Dynamic HTML
The Definitive Reference

Dynamic HTML
The Definitive Reference

Danny Goodman

O’REILLY"

Beijing - Cambridge - Farnbam - Kéln - Paris - Sebastopol - Taipei - Tokyo

Dynamic HTML: The Definitive Reference
by Danny Goodman

Copyright © 1998 Danny Goodman. All rights reserved.
Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA 95472.

Editor: Paula Ferguson
Production Editor: Mary Anne Weeks Mayo

Printing History:
July 1998: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered
trademarks of O'Reilly & Associates, Inc. The association between the image of a flamingo
and the topic of Dynamic HTML is a trademark of O’Reilly & Associates, Inc. Many of the
designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O'Reilly & Associates, Inc.,
was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher assumes

no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 1-56592-494-0 [1/00]

M]

Table of Contents

PFeJQICE ... ix
L Applying Dynamic HTML ... 1
1. The State Of the ATtcccccocoiiiiiiiiiiiieeee e 3

The Standards Alphabet SOUPcoooiiiiiiiii e 4
Version Headachescoooiiiiiiii e 4
HTML 4.0 oottt 5
SEYLE SREELS ... 6
Document Object MOdElcocoiiiiiiiiiiiiiiiiii e 9
ECMASCIIPDU ettt 11

A Fragmenting World ... 12

2. Cross-Platforn COmMPrONiSes ..., 14
What Is @ PLAtfOIM? ...o.iiiiiiiiiiiii e 14
Navigator 4 DHTMLc..oooiiiiiiiiiiiieeii et 15
Internet EXplorer 4 DHTMLoo.oiiiiiiiiiieiiese e 19
Cross-Platform Srate€@IeScciiiiiiiiiiiiieiii ettt 21
Cross-Platform EXPECtationsccciiiiiiiiiiriiiiiaiieiie et 27

3. Adding Style Sheets t0 DOCUMENLS ..., 28
Rethinking HTML SEIUCLUIES ...c.vieuiiiiieaiieiiesiie ettt aee e 28
Understanding Block-Level Elementscccccoooiiiiiiiiiiiiiiiciece 31
Two Types of CONLAINMENT ...ooouviiiiiiiiiiiiee e 33
CSS PIAtFOIIS ..eiieiiie ettt 35

Of Style Sheets, Elements, Attributes, and Valuescccocoviiiiiiiinnne 36

v

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

vi

Table of Contents

Embedding Style SHEetsoooiiiiiiiiiiiiee e 39
SUDGIOUP SEIECIOISiiiiiiiiiiie e 44
Attribute Selector Futures: CSS2ccivviiiiiiiiiiiiiiii e 51
JavaScript Style SHEet SYNtaXcccociiiiiiiiiiiii it 54
Cascade Precedence RULEScccciiiiiiiiiiiiiiiiic e 59
Cross-Platform Style Differencesccoocoviiiiiiiiiniiiiiic e 62
Adding Dynamic Positioning to Documents 65
Creating Positionable EIEMentscccccoviiiiiiiiiiiiiiiiie e 66
POSItioNING ALTDULES ...o.viiiiiiiiiii et 74
Changing Attribute Values via SCriptingcccccoviiviiniiiiiiiiiiicicice 80
Cross-Platform PoOSIition SCHPHNGcveiiviiiiiiiiiiiieii et 86
Handling Navigator Window ReSizingcccccooviiiiiiiiiiiiiiiiieieeieeen 93
Common Positioning TasKscccceiviiiiiiiiiiiiiciiee e 93
Making Content Dynamiic ... 102
Writing Variable CONENEccooiiiiiiiiiiieiie et 102
Writing to Other Frames and Windowscccccoiiiiiiiiiiiiiiiiece e, 104
Links to Multiple Framescccoociiiiiiiiiiiiiiiiiiec e 108
IMAZE SWAPPING .ovvviiiiiiiiiiiii e 109
Changing Tag Attribute Valuesccccooiiiiiiiiiiiiii e 112
Changing Style Attribute Valuesccccoviiiiiiiiiiiiiiieieee e 113
Chang@ing CONEENTociuiiiiiiii ettt 117
SCripting EVeNLS ... 132
BasiC EVENLS ..o 132
Binding Event Handlers to ElIementscccoccoeviiiiiiiiiiiiiiiiie e 135
Event Handler Return VAluescccoiiiiiiiiiiiiii e 139
Event Propagation ...t 139
Examining Modifier KEYScovoiiiiiiiiiiiiiiiieice e 147
Examining Mouse Buttons and Key Codescccocvviiiiiniiiiiiniiiee. 150
Dragg@ing EICMENLSooiiiiiiiiiiiiiiiiii ettt 152
EVENE FUTULES ...ttt 156
Looking Abead to HTML 4.0c.cccccoooooviiiniiiiiiien, 157
New Directions OVEIVIEWccccoiiiiiiiiiiiiiiiiiie e 158
NEW ELEME@ILS ..iiiiiiiiiiiiiie ettt 160
Deprecated EICMENTScc.ooiiiiiiiiiiiiiit e 161
ODbSolete ELEMENES ..ottt 161
New Element AttriDULESc.ooiiiiiiiiiiiiie et 101
Deprecated AITDULESc.ooiiiiiiiiiiiiiiie e 162

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Table of Contents vii

1L

10.

11.

1r.

12.
13.
14.
15.

Dynamic HTML Reference ... 165
HTML RefereniCecccccocoovoeiiiiiiiiiiiiiieieeieeee e 167
ALEDULE VAIUE TYPES .ooiiiiiiieiiiiiieeie ettt 168
Common HTML ATriDULESooiiiiiiiiiiii it 171
Alphabetical Tag REfErencCeccccevviiiiiiiiiiiiiieee e 174
Document Object Reference ..., 460
Property VAIUE TYPES ...oooiiiiiiiieiiieeiie ettt 461
About client- and offset- PrOpertiescoccoveiiiiiiiiiiiieiiiiieeie e 463
Event Handler PrOPEIti€socooiiiiiiiiiiiiiiiiicit e 464
Common Object Properties, Methods, and Collectionscccocceovenenn. 465
Alphabetical Object Referencecccoviiiiiiiiiiiiiiiiiiiiccee e 475
Style Sheet Attribute Reference ..., 836
ALrDULE VAIUE TYPES .oiiiiiiiiiiiieiiieiit ettt 837
Pseudo-Elements and Pseudo-Classesccocvviiiiiiniiiiiiiiiiiicnieae e 839
ALRULLS oo 840
CONVENTIONS ...ttt 841
Alphabetical Attribute Referencecoccoviiiiiiiiiiiiiiiiii e 842
JavaScript Core Language Reference ... 909
Internet Explorer JSCript VEIrSIONSccccoviiiiiiieiiiieiie e 909
ADOUL SEAtIC ODJECES ..ttt 910
COTE ODJECES vttt 911
(@) 0T -1 7o) ¢ PSSP PR PR 956
CONLIOL STALEMIEIIS ...vviiiiiiietieie ettt 967
GlODal FUNCHONS ..ottt 972
SEALCIMEIIES ..ottt ettt ettt ettt et e et eenneee e 976
CTOSS RefererniCes ..., 979
HTML Attribute Index ..., 981
Document Object Properties Indexc.ccco..... 987
Document Object Methods Index ..., 1002
Document Object Event Handlers Index 1007

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

viii

Table of Contents

IV APPendixes ..., 1011
A. Color Names and RGB Valuesccoccooceeioeecciac 1013
B. HTML Character ERLIties ..., 1018
C. Keyboard Event Character Values ... 1026
D. Internet Explorer COmmandscccoouvvoinnoinnninn. 1028
GLOSSATY ..o 1033
TRUACX ... 1041

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Preface

I am going to admit a selfish motive for writing this book: I needed the finished
product for my own consulting and development work. After struggling with tan-
gled online references and monstrous printed versions of Netscape, Microsoft, and
World Wide Web Consortium (W3C) documentation for Dynamic HTML (DHTML)
features, T had had enough. My human brain could no longer store the parallels
and discrepancies of the hundreds of terms for HTML attributes, style sheets, and
scriptable object models. And no browser maker was about to tell me how com-
patible a particular feature might be in another browser. It was clearly time to roll
my own reference.

At first, I thought the project would be a relatively straightforward blending of con-
tent from available sources, with a pinch of my development experience thrown in
for flavoring. But the more I examined the existing documents, the worse the situ-
ation became. Developer documentation from the browser makers, and even the
W3C, contained inconsistencies and incomplete (if at times erroneous) informa-
tion. From the very beginning, it was clear that T could not trust anything I read,
but instead had to try as much as I could on as many browsers and browser ver-
sions as I could. Multiply all that code testing by the hundreds of HTML attributes,
CSS attributes, object properties, object methods, and event handlers...before 1
knew it, many extra months of day-and-night coding and writing were history.

The result of that effort is the DHTML reference I've been wanting for a long
time—one that is especially well suited to creating content that works on Naviga-
tor and Internet Explorer. But even if you have the luxury of working in only one
of the browser brands, you should find the organization and browser version
information in this book valuable in your day-to-day development work. You may
also encounter descriptions of features that are not documented, but came to light
as a result of my probing into the inner workings of both browsers.

ix
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

x Preface

I would be the last person on the planet to promise that this book is perfect in
every way. In many instances, when a discrepancy between vendor documenta-
tion and observable reality occurred, I documented the reality. But there were
times during my explorations when even the observed reality didn’t jibe with
either the documentation or logical expectations. In some instances, the docu-
ments say one thing, and the implementations in two different operating system
versions of the same browser exhibit two entirely different behaviors. T have tried
to point out those issues as cautions for your own development, hoping for clarifi-
cation in future versions of the browsers and the W3C documents.

What You Should Already Know

Because this is a reference book, it has been written with the assumption that, in
the least, you have dabbled in Dynamic HTML. You should already be HTML liter-
ate and know the basics of client-side scripting in JavaScript. You need not be a
DHTML expert, but even the instructional chapters of Part I are very much crash
courses, intended for readers who are already comfortable with hand-coding web
pages (or at least modifying the HTML generated by WYSIWYG authoring tools).

Contents of This Book

This book is divided into four parts:

Part I, Applying Dynamic HTML
After making sense of the alphabet soup of industry standards surrounding
DHMTL, the chapters in this part demonstrate the use of cascading style
sheets, element positioning, dynamic content, and scripting events. These
chapters reveal not only how each browser implements the various DHTML
technologies, but also how to deploy as much as possible in a form that works
on both Navigator and Internet Explorer.

Part II, Dynamic HIML Reference
The chapters of Part II provide at-a-glance references for the tags, attributes,
objects, properties, methods, and event handlers of HTML, CSS, DOM, and
core JavaScript. These are the chapters I use all the time: to look up the
attributes of an HTML element or to see whether a particular object property is
available in the desired browser brands and versions. Every effort has been
expended to present this information in a condensed yet meaningful format.

Part III, Cross References
The chapters in Part III slice through the information of Part IT along different
angles. Perhaps you recall the name of an attribute you found useful some
time ago, but don’t recall which elements provide that attribute. Here you can

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Preface Xxi

look up that attribute (or object property, method, or event handler) to find all
the items that recognize it.

Part 1V, Appendixes
Several appendixes provide quick lookup for a variety of values useful in
HTML authoring and scripting. A glossary also gives you quick explanations of
some of the new and potentially confusing terminology of DHTML.

Conventions Used in This Book

Ttalic is used for:

e Pathnames, filenames, program names, email addresses, and web sites

e New terms where they are defined
Constant Width is used for:

e Any HTML, CSS, or scripting term, including HTML tags, attribute names,
object names, properties, methods, and event handlers

e All HTML and script code listings
Constant Width Italic is used for:

e Method and function parameter or assigned value placeholders that indicate
an item is to be replaced by a real value in actual use

Throughout Part II, compatibility tables accompany most entries. A number shown
for an item indicates the version of the designated browser or web standard in
which the term was first introduced. If an item premiere predates Navigator 2,
Internet Explorer 3, or HTML 3.2, it is assigned the value “all”. If an item is not
supported by a browser or standard as the book went to press, it is assigned the
value “n/a”.

Request for Comments

Your feedback on the quality of this book is important to us. If you discover any
errors, bugs, typos, explanations that you cannot grok, or platform-specific issues
not covered here, please let us know. You can email your bug reports and com-
ments to us at: bookquestions@ora.com.

Also be sure to check the errata list at btp:.//www.oreilly.com/catalog/dbtmliref.
Previously reported errors and corrections are available for public view and fur-
ther comment.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

xii Preface

Acknowledgments

I had long wanted to write a book for the “class act” that is O'Reilly & Associates. T
thank Tim O’Reilly for trusting that my personal need for this book would trans-
late into the needs of other web page authors. Then I had the good fortune of the
book being assigned to Paula Ferguson, a first-rate editor in her own right (you
probably have on your bookshelf one or more excellent O'Reilly titles that have
benefited from her guidance). The reference chapters of this book presented
extraordinary design challenges that would make most publishers wince. Paula
shared my vision and worked magic with the O’Reilly designers to turn my dream
into a reality.

When I write about a comparatively new technology—and a complex one at
that—it is difficult to find someone who is knowledgeable enough to double-
check my work and articulate how to make things better. Amid the politically
charged browser wars, it is even more difficult to find a bipartisan supporter of the
developer in the trenches. I couldn’t have been luckier than when my old friend,
Dan Shafer, recommended his BUILDER.COM colleague, Charity Kahn, for the job.
I doubt she expected to wrestle with the nearly one-foot-thick original manu-
script, but she stuck with it to the very end. I still marvel at the insight and experi-
ence embedded within each comment and suggestion she made.

This book would not exist were it not for the many readers of my articles and
books over the past 20 years. My greatest reward has been to help you unlock
your own talent and create great solutions. To new readers, I bid you welcome, as
we all explore the possibilities that lie ahead in this new era of Dynamic HTML.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying Dynamic HTML

This part of the book, Chapters 1 through 7, tries to make sense of the alphabet
soup of industry standards surrounding DHTML and demonstrates the use of cas-
cading style sheets, element positioning, dynamic content, and scripting events.
These chapters explain how Netscape Navigator and Microsoft Internet Explorer
implement the various DHTML technologies, and they discuss how to develop
cross-browser web applications.

e Chapter 1, The State of the Art

e Chapter 2, Cross-Platform Compromises

e Chapter 3, Adding Style Sheets to Documents

e Chapter 4, Adding Dynamic Positioning to Documents

e Chapter 5, Making Content Dynamic

e Chapter 6, Scripting Events

e Chapter 7, Looking Abead to HIML 4.0

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

In this chapter:

e The Standards
Alphabet Soup

* Version Headaches
o HTML 4.0
* Style Sheets

* Document Object
Model

+ ECMASeript The State of the Art

» A Fragmenting World

It wasn’t all that long ago that becoming a web page authoring wizard required lit-
tle more than an understanding of a few dozen Hypertext Markup Language
(HTML) tags, and perhaps modest experience with a scanner and a graphics pro-
gram to generate a corporate logo image file. Armed with that knowledge, you
could start an Internet design business or become the online content guru at a For-
tune 500 company. Ah, those were the good old days...about two years ago.

The stakes are much higher now. The hobby phase is over. The Internet is big
business. Competition for visitor “hits” is enormous, as it becomes more and more
difficult to get your site noticed, much less bookmarked. Sensing that the author-
ing world wanted more out of HTML than a poor imitation of the printed page, the
web browser makers and the Internet standards bodies have been expanding the
capabilities of web pages at a feverish pace. These changes are allowing us to
make our pages more dynamic—pages that can “think and do” on their own,
without much help from the server once they have been loaded in the browser.
But at the same time, what we authors have to do to make our new, fancy con-
tent play on all the browsers is constantly changing.

As a result, it is no longer possible to become a web content guru by studying the
formal HTML recommendation published by the World Wide Web Consortium
(W30). Adding effective Dynamic HTML (DHTML) content to your pages requires
an understanding of other technologies, specified by additional standards that exist
outside the charter of the original HTML Working Group. In this chapter, we’ll dis-
cuss the variety of standardization efforts that are currently underway. You should
begin to appreciate both how far the browser makers have come and how far they
have to go in providing us with compatible DHTML capabilities at a suitably high
level.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

4 Chapter 1: The State of the Art

The Standards Alphabet Soup

There is no such thing as a single Dynamic HTML standard. DHTML is an amal-
gam of specifications that stem from multiple standards efforts and proprietary
technologies that are built into the two most popular DHTML-capable browsers,
Netscape Navigator and Internet Explorer, beginning with Version 4 of each
browser.

Efforts by various standards bodies and working groups within those bodies are as
fluid and fast moving as any Internet-related technology. As a savvy web content
author these days, you must know the acronyms of all relevant standards (HTML,
CSS, CSS-P, DOM, and ECMA for starters). You also have to keep track of the cur-
rent release of each standard, in addition to the release that is incorporated into
each version of each browser that you are developing for. Unfortunately for the
authoring community, it is not practical for the various standards bodies and the
browser makers to operate in complete synchronicity with each other. Market
pressures force browser makers to release new versions independent of the sched-
ules of the standards bodies.

Version Headaches

As a further complication, there are the inevitable prerelease versions of browsers
and standards.

Browser prereleases are sometimes called “preview editions” or “beta” versions.
While not officially released, these versions give us a chance to see what new
functionality will be available for content display in the next-generation browser.
Authors who follow browser releases closely sometimes worry when certain
aspects of their current pages fail to work properly in prerelease versions. The fear
is that the new version of the browser is going to break a carefully crafted master-
piece that runs flawlessly in released versions of the browser.

Somewhere between the releases of Netscape Navigator 2 and 3, I learned not to
fret over breakages that occur in prerelease browser versions. Of course, it is vital
to report any problems to the browser maker. I refuse, however, to modify my
HTML or scripting code to accommodate a temporary bug in a prerelease version
of a browser, as it is being used by an extremely small percentage of the popula-
tion. My feeling is that anyone who uses a prerelease browser does so at his or
her own risk. If my pages are breaking on that browser, they’re probably not the
only ones on the Net that are breaking. A user of a prerelease browser must
understand that using such a browser for mission-critical web work is as danger-
ous as entrusting your life’s work to a beta version of a word processing program.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

HTML 4.0 5

On the standards side, working groups usually publish prerelease versions of their
standards. These documents are very important to the people who build browsers
and authoring tools for us. The intent of publishing a working draft is not much
different from making a prerelease browser version public. The goal is to get as
many concerned netizens as possible looking over the material to find flaws or
shortcomings before the standard is published.

And speaking of standards, it is important to recognize that the final releases of
these documents from standards bodies are called not “standards” but “recommen-
dations.” No one is forcing browser makers to implement the recommendations.
Fortunately, from a marketing angle, it plays well to the web audience that a com-
pany’s browser adheres to the “standards.” Eventually—after enough release cycles
of both standards and browsers allow everyone to catch up with each other—our
lives as content creators should become easier.

In the meantime, the following sections provide a snapshot of the various stan-
dards and their implementation in browsers as they relate to the technologies that
affect DHTML.

HTML 4.0

The most recent release of recommendations for HTML is Version 4.0
(www.w3.org/MarkUp/). As you will see in more detail in Chapter 7, Looking
Abead to HTML 4.0, HTML 4.0 has a considerably larger vocabulary than the previ-
ous release that is in common use, Version 3.2. Surprisingly, this time around the
standard is way ahead of the browser makers. Many of the new features of HTML
4.0 are designed for browsers that make the graphical user interface of a web page
more accessible to users who cannot see a monitor or use a keyboard. The new
tags and attributes readily acknowledge that a key component of the name World
Wide Web is World. Users of all different written and spoken languages need
equal access to the content of the Web. Thus, HTML 4.0 includes support for the
alphabets of most languages and provides the ability to specify that a page be ren-
dered from right to left, rather than left to right, to accommodate languages that
are written that way.

Perhaps the most important long-term effect of HTML 4.0, however, is distancing
the content of web pages from their formatting. Strictly speaking, the purpose of
HTML is to provide structural meaning to the content of pages. That's what each
tag does: this blurb of text is a paragraph, another segment is labeled internally as
an acronym, and a block over there is reserved for data loaded in from an exter-
nal multimedia file. HTML 4.0 is attempting to wean authors from the familiar tags
that make text bold and red, for example. That kind of information is formatting
information, and it belongs to a separate standardization effort related to content
style.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

6 Chapter 1: The State of the Art

In the HTML 4.0 world, a chunk of text in a paragraph is bold because it is tagged
as being an element that requires emphasis. Whether it is bold or italic or green is
not defined by the HTML vocabulary, per se. Instead, the HTML passes the format-
ting decision to a style definition. When the text is viewed in a browser on a video
monitor, the color may be green and the style italic, but when the same page is
viewed through a projection system, it may be a different shade of green, to com-
pensate for the different ambient lighting conditions, and bold, so it is more read-
able at a distance. And when the content is being read aloud electronically for a
blind user, the voice speaks the tagged words with more emphasis. The key point
here is that the content—the words in this case—was written and tagged once.
Style definitions, either in the same document or maintained in separate files that
are linked into the document, can be modified and enhanced independently of the
content.

As a modern HTML author, you should find it encouraging that the HTML 4.0
working group did not operate in isolation from what is going on in the real
world. Their recognition of the work going on with style sheets is just one exam-
ple. Another is their clear understanding of the role of client-side scripting: the
<SCRIPT> and <NOSCRIPT> tags are part of the HTML 4.0 specification, and most
elements that get rendered on the page have scripting event handler attributes
defined for them right in the HTML 4.0 specification. This represents a very realis-
tic view of the web authoring world.

Netscape Navigator 4 was released many months before the HTML 4.0 specifica-
tion was published, which means that the HTML support in that browser was
decided on well before the scope of HTML 4.0 was finalized. As a result, Naviga-
tor’s support for the new features of HTML 4.0 is limited to the internationaliza-
tion features and the separation of style from content by way of style sheets. Many
of the new tags and the new attributes for existing tags are not supported in Navi-
gator 4. Internet Explorer 4 reached its final release much closer to the publica-
tion of the HTML 4.0 specification; as a result, the Microsoft browser includes sub-
stantially more support for new features of HTML 4.0, especially in the way of
structural elements for table components. Chapter 7 describes which new tags are
supported by each browser, and Chapter 8, HTML Reference, provides a complete
HTML reference.

Style Sheets

A style sheet is a definition of how content should be rendered on the page. The
link between a style sheet and the content it influences is either the tag name of
the HTML element that holds the content or an identifier associated with the ele-
ment by way of an attribute (such as the ID or CLASS attribute). When a style
sheet defines a border, the style definition doesn’t know (or care) whether the

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Style Sheets 7

border will be wrapped around a paragraph of text, an image, or an arbitrary
group of elements. All the style knows is that it specifies a border of a particular
thickness, color, and type for whatever element or identifier is associated with the
style. That's how the separation of style from content works: the content is igno-
rant of the style and the style is ignorant of the content.

The standardization efforts for style sheets are still trying to establish themselves,
despite the fact that some versions have already been published. At the time the
Version 4 implementations of Navigator and Internet Explorer were under con-
struction, there were two separate, but related, style sheet efforts underway: Cas-
cading Style Sheets Level 1 (CSS1) and Cascading Style Sheets-Positioning (CSS-P).
The CSS-P functionality is being blended into the primary specification for the next
version of CSS, Cascading Style Sheets Level 2 (CSS2). All CSS standards activity is
under the auspices of the W3C (www.w3c.org/Style/). Chapter 10, Style Sheet
Attribute Reference, provides a complete reference for all the style attributes avail-
able in CSS1 and CSS2.

CSS1

The Cascading Style Sheets Level 1 recommendation lets authors define style rules
that are applied to HTML elements. A rule may apply to a single element, a related
group of elements, or all elements of a particular type (such as all P elements).
Style rules influence the rendering of elements, including their color, alignment,
border, margins, and padding between borders and the content. Style rules can
also control specialty items, such as whether an OL element uses letters or roman
numerals as item markers. CSS1 defines a full syntax for assigning style attributes
to rules.

CSS frees you from the tyranny of the pixel and the arbitrary way that each
browser measures fonts and other values. Font sizes can be specified in real point
sizes, instead of the absurd 1-through-7 relative scale of HTML. If you want a para-
graph or a picture indented from the left margin, you can do so with the preci-
sion of ems or picas, instead of relying on hokey arrangements of tables and trans-
parent images.

Many of the style specifications that go into CSS rules derive their inspiration from
existing HTML tag attributes that control visual aspects of elements. In some cases,
style sheet rules even supplant entire HTML elements. For example, in the world
of CSS, font changes within a paragraph are not done with tags. Instead, a
style sheet rule sets the font, and the style rule is assigned to structural HTML ele-
ments (perhaps tags) that surround the affected content.

On their own, style sheets as described in the CSS1 specification are not dynamic.
They simply set rules that are followed as a page loads. But under script control,

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

8 Chapter 1: The State of the Art

there is the possibility of changing a style rule after a page has loaded. Of course,
the browser must be constructed to allow such on-the-fly changes. I'll have more
to say about that in the section on the document object model.

Netscape Navigator 4 implements most of the CSS1 specification. In addition to the
standard CSS1 rule specification syntax, Navigator offers authors an alternate syn-
tax (based on JavaScript) to assign style sheet rules to elements. We'll talk more
about this alternate syntax in Chapter 3; for now it is important to understand that
it is merely another way of specifying CSS1 functionality. Internet Explorer began
supporting CSS1 in Version 3, although the functionality was little used by authors
unless the target audience was using IE 3 exclusively. More complete support of
the CSS1 specification is built into Version 4, but even in this version Microsoft has
elected to omit a few features. The good news is that CSS1 functionality is largely
the same in both IE 4 and Navigator 4, so we should start to see increased usage
of style sheets on the Web.

CSS-P

Begun as a separate working group effort, Cascading Style Sheets-Positioning
offers much more in the way of interactivity: more of the D in DHTML. The basic
notion of CSS-P is that an element or group of elements can be placed in its own
plane above the main document. The element lives in its own transparent layer, so
it can be hidden, shown, precisely positioned, and moved around the page with-
out disturbing the other content or the layout of the document. For the first time,
HTML elements can even overlap each other.

A script can make elements fly around the page or it can allow the user to drag
elements around the page. Content can pop up out of nowhere or expand to let
the viewer see more content—all without reloading the page or contacting the
server.

As an add-on to the CSS1 effort, CSS-P functionality uses a syntax that simply
extends the CSS1 vocabulary. CSS-P rules are embedded in documents the same
way that CSS1 rules are embedded.

The W3C work on CSS-P wasn’t as far along as CSS1 was when Navigator 4 had to
be put to bed. Moreover, Netscape had been lobbying the standards bodies to
adopt a different technique for handling content positioning, involving both a new
HTML tag and a scriptable object. Navigator 4 therefore implements the <LAYER>
tag and a scriptable layer object. A Netscape layer is in most respects the same as
a CSS-P layer, except that Netscape wanted to make it a part of the HTML syntax
as well.

Unfortunately for Netscape and Navigator 4, the <LAYER> tag was not adopted by
the W3C for HTML 4.0, and it is not likely that it will be added in the future. Even

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Document Object Model 9

so, if you are authoring for a Navigator-only audience, the LAYER element is a
convenient way to work with positionable elements. While its existence may not
be emphasized by Netscape in future browsers, it will certainly be available for
backward compatibility with pages that use it.

The good news for authors, however, is that whether you create a positionable
element via the CSS-P syntax or as a LAYER element, scripting the element on the
fly is the same in Navigator. The Netscape layer object exposes most of the CSS-P
properties for access via scripts.

In contrast, Internet Explorer 4 follows the CSS-P specification very closely. Includ-
ing a single attribute (the position attribute) in a style sheet rule makes the ele-
ment associated with that rule positionable.

The bad news for authors is that Microsoft’s way of working with positionable ele-
ments in scripts is different from Netscape’s way. All is not lost, however.
Chapter 4, Adding Dynamic Positioning to Documents, demonstrates ways to raise
the common denominator of positionable element scripting for both browsers in
the same document.

CSS2

In the next generation, Cascading Style Sheets Level 2, the work from the CSS-P
group is being blended with the other style sheet specifications. Therefore, with
the release of CSS2, there is no separate CSS-P specification. CSS2 also greatly
expands on CSS1 by supporting style sheet functionality for a lot of the advanced
work in HTML 4.0. Thus, youll find new style sheet attributes for electronic
speech (aural style sheets) and more attributes designed to remove style burdens
from HTML element attributes.

CSS2 is more recent than either Version 4 browser. Navigator 4 incorporates noth-
ing yet from CSS2, and Internet Explorer 4 has only a smattering of CSS2 attributes
built in. A lot of the new items added to CSS2 are optional, so there is no reason
to expect a 100% implementation in any browser in the future.

Document Object Model

When an HTML page loads into a scriptable browser, the browser creates a hid-
den, internal roadmap of all the elements it recognizes as scriptable objects. This
roadmap is hierarchical in nature, with the most “global” object—the browser win-
dow or frame—containing a document, which, in turn, contains a form, which, in
turn, contains form elements. For a script to communicate with one of these
objects, it must know the path through the hierarchy to reach the object, so it can
call one of its methods or set one of its property values. Document objects are the
“things” that scripts work with.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

10 Chapter 1: The State of the Art

Without question, the most hotly contested competition between Navigator and
Internet Explorer has been how each browser builds its internal roadmap of
objects. This roadmap is called a document object model (DOM). When one
browser implements an object as scriptable but the other doesn’t, it drives script-
ers and page authors to distraction. A lot of authors felt the sting of this problem
when they implemented image-swapping mouse rollovers in Navigator 3. They
soon discovered that images were not scriptable objects in Internet Explorer 3, so
their IE 3 users were getting script errors when visiting the sites and moving their
mice across the hot images.

In an effort to standardize this area, a separate working group of the W3C is
charged with setting recommendations for an HTML Document Object Model
(www.w3c.org/DOM/) that would become the common denominator among
browsers (the HTML subgroup is only one branch of a larger DOM effort). This is
an incredibly difficult task for a number of reasons: Netscape and Microsoft are
often at loggerheads on DOM philosophy; technically the browsers aren’t built the
same way inside, making common implementation of some ideas difficult; and his-
torically authors are familiar with their favorite browser’s way of handling objects
and don’t want to learn an entirely new method.

Of all the standards discussed in this chapter, DOM is the least solid. From indica-
tions in the working drafts, even the first release won’t cover some important cate-
gories, such as event handling. The issues around incompatible DOMs involve a
long, uphill struggle that DHTML authors will face for a while. We will be tanta-
lized by features of one browser, only to have our hopes dashed when we learn
that those features aren’t available in the other browser.

By virtue of being the first scriptable browser on the market by quite a margin,
Navigator 2 was the first to incorporate a scriptable object model. A subset of
HTML elements were exposed to scripts, but once a document was loaded into a
window or frame, nothing outside of form control content (i.e., text in text entry
areas, selections in checkboxes, etc.) could really change without reloading the
window or dynamically writing an entirely new document to the window. Even in
Navigator 3, the image was the only truly dynamic HTML element in a document
(as shown in those mouse rollovers).

Internet Explorer 3, as few web authors seemed to realize, was based on the
scriptability of Navigator 2. That's why the image object didn’t exist in IE 3. Most
authors had left Navigator 2 in the dust of history, when, in fact, they should have
kept its limited capabilities fresher in their minds, to accommodate IE 3.

In the Version 4 browsers, however, the object model advantage has shifted dra-
matically in Microsoft’s favor. Literally every HTML element is exposed as a script-
able object in IE 4, and you can modify the content and style of inline content (not

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

ECMAScript 11

just positionable elements) on the fly. IE 4 automatically reflows the page (and
quickly, T might add) whenever you do anything that changes the page, like
adjusting the size of a font for a phrase in a paragraph or inserting some HTML
text in the middle of a paragraph.

Navigator 4, on the other hand, adds little to dynamic scripting beyond the ability
to swap the content of layers. Elements are exposed to scripts, but only in script
statements that use JavaScript to set style sheet rules as the page loads. And even if
the object model allowed content modification on the fly, pages do not automati-
cally reflow in Navigator 4.

The working draft of the DOM recommendation includes specifications that are
somewhere between the functionality provided by IE 4 and that provided by Navi-
gator 4. The draft recognizes that most elements should be reflected as document
objects whose properties and methods are accessible via scripting. It does not,
however, go so far as to dictate the automatic reflow of the page when content
changes. That loophole might take some of the pressure off Netscape for imple-
menting this functionality, but it also ensures that page authors are going to have
to struggle with the object model disparity for a lot longer (unless you are fortu-
nate enough to be able to design for just one browser).

Chapter 5, Making Content Dynamic, and Chapter 6, Scripting Events, cover the
current DOM implementations, while Chapter 9, Document Object Reference, pro-
vides a complete DOM reference.

ECMAScript

When Navigator 2 made its debut, it provided built-in client-side scripting with
JavaScript. Despite what its name might imply, the language was developed at
Netscape, originally under the name LiveScript. It was a marketing alliance
between Netscape and Sun Microsystems that put the “Java” into the JavaScript
name. Yes, there are some striking similarities between the syntax of JavaScript
and Java, but those existed even before the name was changed.

Internet Explorer 3 introduced client-side scripting for that browser. Microsoft pro-
vided language interpreters for two languages: VBScript, with its syntax based on
Microsoft’s Visual Basic language, and JScript, which, from a compatibility point of
view, was virtually 100% compatible with JavaScript in Navigator 2.

It is important to distinguish a programming language, such as JavaScript, from the
document object model that it scripts. It is too easy to forget that document objects
are not part of the JavaScript language, but are rather the “things” that program-
mers script with JavaScript (or VBScript). The JavaScript language is actually more
mundane in its scope. It provides the nuts and bolts that are needed for any pro-

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

12 Chapter 1: The State of the Art

gramming language: data types, variables, control structures, and so on. This is the
core JavaScript language.

From the beginning, JavaScript was designed as a kind of core language that could
be applied to any object model, and this has proven useful. Adobe Systems, for
example, uses JavaScript as the core scripting language for Acrobat Forms script-
ing. The same core language you use in HTML documents is applied to a com-
pletely different object model in Acrobat Forms.

To head off potentially disastrous incompatibilities between the implementations
of core JavaScript in different browsers, several concerned parties (including
Netscape and Microsoft) worked with a European computer standards group now
known only by its acronym: ECMA. The first published standard, ECMA-262
(www.ecma.ch/stand/ecma-262.htm), also known as the politically neutral ECMA-
Script, is essentially the version of JavaScript found in Navigator 3. Both Navigator
4 and Internet Explorer 4 implement this ECMA standard (with only very esoteric
exceptions). In addition, the Version 4 browsers both extend the work of the first
ECMA release in a consonant fashion. The core JavaScript language in Navigator 4
(JavaScript 1.2) is supported almost to the letter by JScript in Internet Explorer 4.

After the dissonance in the object model arena, it is comforting for web authors to
see so much harmony in the core language implementation. For the objects in the
core JavaScript language, Chapter 11, javaScript Core Language Reference, pro-
vides a complete reference.

A Fragmenting World

As you will see throughout this book, implementing Dynamic HTML applications
that work equally well in both Navigator 4 and Internet Explorer 4 can be a chal-
lenge unto itself. Understanding and using the common-denominator functionality
among the various pieces of DHTML will lead you to greater success than plow-
ing ahead with a design for one browser and crossing your fingers about how
things will work in the other browser.

One more potential gotcha is that the same browser brand and version may not
behave identically across different operating systems. Navigator 4 is pretty good
about maintaining compatibility when you open a document in operating systems
as diverse as Solaris and Windows 3.1. The same can’'t be said for Internet
Explorer 4, however. Microsoft readily admits that some features (detailed in later
chapters) are guaranteed to work only on Win32 operating systems (Windows 95,
Windows 98, and Windows NT 4). Even features that should work on non-Win32
systems, such as style sheets, don’t always translate well to, say, the Macintosh ver-
sion of IE 4.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

A Fragmenting World 13

If the inexorable flow of new browser versions, standards, and authoring features
teaches us anything, it is that each new generation only serves to fragment further
the installed base of browsers in use throughout the world. While I'm sure that
every reader of this book has the latest sub-version of at least one browser
installed (and probably a prerelease edition of a new version), the imperative to
upgrade rarely trickles down to all the users of yesterday’s browsers. If you are
designing web applications for public consumption, coming up with a strategy for
handling the ever-growing variety of browser versions should be a top priority. It’s
one thing to build a DHTML-based, context-sensitive pop-up menu system into
your pages for IE 4 users. But what happens to users who visit with Navigator 4,
or IE 3, or a pocket computer mini-browser, or Lynx?

There is no quick and easy answer to this question. So much depends on your
content, the image you want to project via your application, and your intended
audience. If you set your sights too high, you may leave many visitors behind; if
you set them too low, your competition may win over visitors with engaging con-
tent and interactivity.

It should be clear from the sheer size of the reference section in this book that
those good ol’ days of flourishing with only a few dozen HTML tags in your head
are gone forever. As much as I'd like to tell you that you can master DHTML with
one hand tied behind your back, T would only be deceiving you. Using Dynamic
HTML effectively is a multidisciplinary endeavor. Perhaps it’s for the best that con-
tent, formatting, and scripting have become separate enough to allow specialists in
each area to contribute to a major project. I've been the scripter on many such
projects, while other people handled the content and design. This is a model that
works, and it is likely that it will become more prevalent, especially as each new
browser version and standards release fattens the following pages in the years to
come.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

In this chapter:
» What Is a Platform?
* Navigator 4 DHTML

* Internet Explorer 4
DHTML

* Cross-Platform
Strategies

* Cross-Platform

CTOS S- P la l:f‘ orm Expectations
Compromises

Declaring support for industry standards is a noble act. But when each web
browser maker is also out to put its stamp on the details of still-evolving stan-
dards, it’s easy to see how a new browser release can embody ideas and exten-
sions to standards that are not available in other browsers. With so many stan-
dards efforts related to Dynamic HTML in play at the release of both Netscape
Navigator 4 and Microsoft Internet Explorer 4, implementation differences were
bound to occur. This chapter provides an overview of each browser’s approach to
DHTML. It also explores some strategies that you might use for DHTML applica-
tions that must run identically on Navigator and Internet Explorer.

What Is a Platform?

The term platform has multiple meanings in web application circles, depending on
how you slice the computing world. Typically, a platform denotes any hardware
and/or software system that forms the basis for further product development.
Operating system developers regard each microprocessor family as a platform
(Pentium, PowerPC, or SPARC CPUs, for example); desktop computer application
developers treat the operating system as the platform (Winl6, Windows 95/NT,
MacOS8, Unix, Linux, and the rest); peripherals makers perceive a combination of
hardware and operating system as the platform (for example, a Wintel machine or
a Macintosh).

The de facto acceptance of the web protocols, such as HTTP, means that a web
application developer doesn’t have to worry about the underlying network trans-
port protocols that are being used. Theoretically, all client computers equipped
with browsers that support the web protocols—regardless of the operating system
or CPU—should be treated as a single platform. The real world, however, doesn’t
work that way.

14
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Navigator 4 DHTML 15

Today’s crop of web browsers are far more than data readers. Each one includes a
highly customized content rendering engine, a scripting language interpreter, a
link to a custom Java virtual machine, security access mechanisms, and connec-
tions to related software modules. The instant you decide to author content that
will be displayed in a web browser, you must concern yourself with the capabili-
ties built into each browser. Despite a certain level of interoperability due to
industry-wide standards, you must treat each major browser brand as a distinct
development platform. Writing content to the scripting API or HTML tags known
to be supported by one browser does not guarantee support in the other browser.

If you are creating content, you must also be aware of differences in the way each
browser has been tailored to each operating system. For example, even though the
HTML code for embedding a clickable button inside a form is the same for both
Navigator and Internet Explorer, the look of that button is vastly different when
rendered in Windows, Macintosh, and Unix versions of either browser. That’s
because the browser makers have appropriately observed the traditions of the user
interface look and feel for each operating system. Thus, a form whose elements
are neatly laid out to fit inside a window or frame of a fixed size in Windows may
be aligned in a completely unacceptable way when displayed in the same browser
on a Macintosh or a Unix system.

Even though much of the discussion in this book uses “cross-platform” to mean
compatible with both Netscape and Microsoft browsers (“cross-browser” some
might call it), you must also be mindful of operating-system-specific details. Even
the precise positioning capabilities of “cross-platform” cascading style sheets do
not eliminate the operating-system-specific vagaries of form elements and font ren-
dering. If you are developing DHTML applications, you can eliminate pre-version
4 browsers from your testing matrix, but there are still a number of browser and
operating system combinations that you need to test.

Navigator 4 DHTML

As early as Navigator 2, JavaScript offered the possibility of altering the content
being delivered to a browser as a page loaded. It was Navigator 3, however, that
showed the first glimpse of what Dynamic HTML could be. This browser imple-
mented the IMG HTML element as a document object whose SRC attribute could
be changed on the fly to load an entirely different image file into the space
reserved by the tag. In DHTML parlance, this is known as a replaced ele-
ment because it is rendered as an inline element (capable of flowing in the mid-
dle of a text line), yet its content can be replaced afterward. The most common
application of this replacement feature is the mouse rollover, in which an image is
replaced by a highlighted version of that image whenever the user positions the
cursor atop the image. If you surround the tag with a link (<A>) tag, you

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

16 Chapter 2: Cross-Platform Compromises

can use the link’s mouse event handlers to set the image object’s source file when
the cursor rolls atop the image and when it rolls away from the image:

<A HREF="someURL.html"
onMouseOver="document . images['logo'] .src = 'images/logoHOT.jpg'"
onMouseOut="document.images['logo'].src = 'images/logoNORMAL.jpg'">

At the time, this capability was a breakthrough that allowed dynamic content with-
out the delay of loading a Java applet or rich media for a plug-in. Navigator 3 even
allowed JavaScript to pre-cache all images on a page during the initial page down-
load, so that the first image transition was instantaneous.

A glaring limitation of this scheme, however, hindered some designs. The size of
the image area was fixed by the IMG element’'s HEIGHT and WIDTH attributes when
the page loaded. All other images assigned to that object had to be the same size
or risk being scaled to fit. While rarely a problem for mouse rollovers, the lack of
size flexibility got in the way of more grandiose plans.

While the replaceable image object is still a part of Navigator 4, if for no other rea-
son than backward compatibility, this version of the browser has added even more
dynamic capabilities.

Cascading Style Sheets Level 1

Navigator 4 includes support for the majority of the CSS1 recommendation (see
Chapter 1, The State of the Ar). The unsupported features in Navigator 4 are
detailed in Chapter 3, Adding Style Sheets to Documents. CSS1 style sheets are not
as dynamic in Navigator 4 as you might wish, however. Styles and properties of
content already loaded in the browser cannot be changed. To do something like
flash the color of a block of text, you must create the content for each color as a
separate positioned element that can be hidden and shown with the help of a
script.

JavaScript Style Sheet Syntax

To further support the use of JavaScript in Navigator 4, Netscape has devised an
alternate syntax for setting style attributes that uses JavaScript. The “dot” syntax for
specifying styles follows the syntax of the core JavaScript language, rather than the
CSS1 attribute:value syntax. The TYPE attribute of the <STYLE> tag lets you
define the style sheet syntax you are using for a definition. For example, the fol-
lowing samples set the left margin for all <H1> elements in a document to 20 pix-
els, using CSS1 and JavaScript syntax, respectively:
<STYLE TYPE="text/css">

H1l {marginLeft:20px}
</STYLE>

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Navigator 4 DHTML 17

<STYLE TYPE="text/javascript">

tags.Hl.marginLeft=20

</STYLE>
The JavaScript style sheet syntax is supported only in Navigator, whereas the CSS1
syntax is supported in both Navigator and Internet Explorer.

CSS-Positioning

Navigator supports the CSS-P recommendation as it was defined in the most recent
working draft prior to the release of Navigator 4 (see Chapter 1). You can use the
cascading style sheet syntax to define items on a page whose location and visibil-
ity can be changed after a document has fully loaded. If an element is position-
able, its style sheet rule must include the position attribute. In the following
example, positioning attributes are set for an element that identifies itself with an
ID of iteml:

<STYLE type="text/css">

#iteml {position:absolute; top:50px; left:100px}

</STYLE>
In the body of the document, the style sheet rule is connected to an element by
assigning iteml to the ID attribute of an element (a DIV element in this exam-
ple):

<DIV ID="iteml">

</DIV>
Alternatively, you can use the STYLE attribute (from CSS1-type style sheets) inside
the affected element to set position properties:

<DIV STYLE="position:absolute; top:50; left:100">

</DIV>
A positionable container is reflected as an object in the Navigator document object
model. Each of these objects has a number of properties and methods that a script
can use to move, clip, hide, and show the content of that container.

Layers

A Netscape-specific alternative to CSS-Positioning utilizes a document model object
created with the <LAYER> tag. You can think of each layer as a content holder that
exists in its own transparent plane above the base document in the window. Many
graphic programs, such as Photoshop, use the same metaphor. The content, posi-
tion, and visibility of each layer are independent of the base document and any
other layer(s) defined within the window. Layers can also be created anew by
JavaScript (with the Layer () constructor) after a page has been loaded, allowing

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

18 Chapter 2: Cross-Platform Compromises

for the dynamic addition of new content to a page (content in its own layer, rather
than inserted into the existing content space).

Content for a layer is defined as HTML content, most often loaded in from a sepa-
rate HTML file. As a result, each layer contains its own document object, distinct
from the base document object. Such a document may also include definitions for
additional layers, which can be nested as many levels deep as needed for the
application design.

As document model objects, layer objects have properties and methods that are
accessible to JavaScript. As a convenience for cross-platform compatibility, Naviga-
tor treats a positionable element defined via CSS-P syntax or the <LAYER> tag as
the same kind of object. The same scriptable properties and methods are associ-
ated with both kinds of positionable elements in Navigator.

Limited Dynamic Content

Navigator 4’s document object model is only slightly enhanced over the first model
that appeared in Navigator 2. Once a document has loaded into a window or
frame, a script can do very little to modify a portion of the page without reloading
the entire document. Swapping images in place, loading new content into a layer,
and setting the location of a positionable element are about as far as you can go in
making HTML content dynamic in Navigator 4.

Event Capturing

When you script positionable elements, it is often convenient to have user actions
handled not by the specific objects being clicked on, typed into, or dragged, but
by scripts that encompass a range of related object behaviors. Navigator 4 sup-
ports objects that have this broader view—window, document, and layer objects
specifically—and can intercept events before they reach their intended targets. A
script then has the flexibility to respond to the event and either let the event pass
on to the target or even redirect the event to another target.

Downloadable Fonts

A document to be displayed in Navigator 4 can include a CSS style attribute or a
<LINK> tag that instructs the browser to download a Bitstream TrueDoc font defi-
nition file. Each font definition file can contain more than one font definition, so
one reference to a font file can load all the necessary fonts for a page. Here are
the two techniques for downloading a font:

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Internet Explorer 4 DHTML 19

<STYLE TYPE="text/css">
@fontdef url("http://www.mySite.com/fonts/someFonts.pfr")
</STYLE>

<LINK REL=fontdef SRC="http://www.mySite.com/fonts/someFonts.pfr">

Once a font has been downloaded into the browser, it is applied to text by way of
the tag set.

Internet Explorer 4 DHTML

While Internet Explorer 3 (for Windows) did not even allow for swapping of
images after a document loaded, IE 4 provides substantial facilities for dynami-
cally modifying the content of a page after it has loaded. In addition, you can
dynamically create content during loading with the help of VBScript or JScript, just
as you could in IE 3. IE 4 exposes virtually every element defined by HTML in a
document to the scripting language of your choice.

Cascading Style Sheets Level 1

Some CSS functionality was introduced in IE 3, but almost every aspect of the W3C
recommendation for CSS1 is implemented in IE 4. Only a few CSS1 attributes, such
as word-spacing and white-space, are missing from the IE 4 implementation.

CSS-Positioning

In addition to supporting the specifications of the working draft of CSS-Position-
ing that existed at the time of IE 4’s release in 1997, the browser also allows you to
apply CSS-P attributes to individual HTML elements—including those that are not
containers. Therefore, you can assign a specific position and visibility to, say, an
image, even when it is not surrounded by a container tag such as <DIV> or
:

<IMG SRC="myFace.jpg" HEIGHT=60 WIDTH=40
STYLE="position:absolute; left:200; top:100">

Of course, you can also assign positioning attributes to containers, if you prefer.

Dynamic Content

IE 4’s rendering engine is designed in such a way that it can respond very quickly
to changes in content. The browser’s document object model provides access to
virtually every kind of content on a page for modification after the document has
loaded. For example, a script can alter the text of a specific <H1> header or the
size of an image at any time. The rendering engine instantaneously reflows the
page to accommodate the newly sized content. With each HTML element exposed

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

20 Chapter 2: Cross-Platform Compromises

to scripting as an object, most properties can be changed on the fly. The model
even accommodates changing the HTML associated with an element. For exam-
ple, you can demote an <H1> heading to an <H3> heading, with the same or dif-
ferent text, by adjusting one property of the original object.

Event Bubbling

As part of IE 4’s document object model definition, virtually every object has event
handlers that can be scripted to respond to user and system actions. For example,
it is possible to associate different actions with user clicks over different headings
(even if they are not visibly displayed as links) by assigning a different script state-
ment to each heading’s onClick event handler. Moreover, unless otherwise
instructed by script, an event continues to “bubble up” through the HTML element
containment hierarchy of the document. Consider the following simple HTML doc-
ument:

<HTML>

<BODY>

<DIV>

<P>Some Text:</P>

<FORM>

<INPUT TYPE="button" VALUE="Click me" onClick="alert('Hi!')">

</FORM>

</DIV>

</BODY>

</HTML>
When the user clicks on the button, the click event is first processed by the
onClick event handler in the button’s own tag. Then the click event propagates
through the FORM, DIV, and BODY elements. If the tag for one of those elements
were to have an onClick event handler defined in it, the click event would trig-
ger that handler. Event bubbling can also be programmatically canceled at any
level along the way.

Transitions and Filters

Building atop the syntactical conventions of CSS1, IE 4 includes a style attribute
called filter. This attribute serves double duty. One set of attribute parameters
supplies extra display characteristics for certain types of HTML content. For exam-
ple, you can set a filter to render content with a drop shadow or with its content
flipped horizontally. The other set of attributes lets you define visual transition
effects for when an object is hidden or shown, very much like the transition effects
you set in presentation programs such as PowerPoint.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Cross-Platform Strategies 21

Downloadable Fonts

A document to be displayed in Internet Explorer 4 can embed TrueType font fami-
lies downloaded from the server. You download the font via CSS style attributes:

=]
-
5E
23
o £
==
=i
=
-

<STYLE TYPE="text/css">

@font-face {
font-family: familyName;
font-style:normal;
font-weight:normal;
src:url ("someFont.eot") }

</STYLE>

With the basic font family downloaded into the browser, the family can be

assigned to content via CSS styles or tags.

Note that the downloadable font format differs between Internet Explorer and
Navigator. Each browser requires that the font definition files be generated with a
different tool.

Data Binding

IE 4 provides hooks for ActiveX controls and Java applets that communicate with
text files or databases on the server. Elements from these server-based data
sources can be associated with the content of HTML elements, essentially allow-
ing the document to access server data without processing a CGI script. While data
binding is not covered in depth in this book, I mention it here because it is one of
Microsoft’s dynamic content features.

Cross-Platform Strategies

If your DHTML application must run on both Netscape and Microsoft browsers,
you have a choice of several deployment strategies to pursue: page branching,
internal branching, common denominator design, and custom API development. In
all likelihood, your application will employ a combination of these techniques to
get the same (or nearly the same) results on both platforms. No matter how you
go about it, you must know the capabilities of each browser to provide equivalent
experiences for users of both browsers. The rest of this book is designed to help
you understand the capabilities of each browser, so the material in this section is
mostly about the different strategies you can use.

Page Branching

Web pages that use absolute-positioned elements degrade poorly when displayed
in older browsers. The positioned elements do not appear where their attributes
call for, and, even worse, the elements render themselves from top to bottom in

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

22 Chapter 2: Cross-Platform Compromises

the browser window, in the order in which they appear in the HTML file. Also,
any elements that are to be hidden when the page loads appear in the older
browsers in their source code order. To prevent users of older browsers from see-
ing visual gibberish, you should have a plan in place to direct users of non-
DHTML-capable browsers to pages containing less flashy content or instructions
on how to view your fancy pages. A server-side CGI program can perform this
redirection by checking the USER_AGENT environment variable sent by the client
at connect-time and redirecting different HTML content to each browser brand or
version.

Alternatively, you can do the same branching strictly via client-side scripting.
Depending on the amount of granularity you wish to establish for different
browser brands and versions at your site, you have many branching techniques to
choose from. All these techniques are based on a predominantly blank page that
has some scripted intelligence behind it to automatically handle JavaScript-enabled
browsers. Any script-enabled browser can execute a script that looks into the visi-
tor’s browser version and loads the appropriate starter page for that user.
Example 2-1 shows one example of how such a page accommodates both scripted
and unscripted browsers.

Example 2-1. Branching Index Page

<HTML>

<HEAD>

<TITLE>MegaCorp On The Web</TITLE>
<SCRIPT LANGUAGE="JavaScript">

<!--

if (parselnt (navigator.appVersion) >= 4) {

if (navigator.appName == "Netscape") {
window.location.href = "startNavDHTML.html"
} else if (navigator.appName.indexOf ("Internet Explorer") != -1) {
window.location.href = "startIEDHTML.html"
} else {
window.location.href = "startPlainScripted.html"
}
} else {
window.location.href = "startPlainScripted.html"
}
//==>
</SCRIPT>

<META HTTP-EQUIV="REFRESH"
CONTENT="1; URL=http://www.megacorp.com/startUnscripted.html">
</HEAD>

<BODY>

<CENTER>

<IMG SRC="images/megaCorpLogo.gif" HEIGHT=60 WIDTH=120 BORDER=0
ALT="MegaCorp Home Page">

</CENTER>

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Cross-Platform Strategies 23

Example 2-1. Branching Index Page (continued)

</BODY>
</HTML>

The script portion of Example 2-1 provides three possible branches, depending on
the browser level. If the browser version is 4 or later, this index page automati-
cally loads a Navigator-specific starter page for Netscape Navigator users, an IE-
specific starter page for IE users, or a starter page that accommodates the outside
chance of there being a Version 4 browser of yet another brand. That same plain
scripted starter page is the one that all other JavaScript-enabled browsers load.

For browsers that either don’t have JavaScript built in or have JavaScript turned off,
a <META> tag refreshes this page after one second by loading a starter page for
unscripted browsers. For “bare bones” browsers that may not recognize scripting
or <META> tags (including Lynx and browsers built into a lot of handheld devices),
a simple image link leads to the unscripted starter page. Users of these browsers
will have to “click” on this link to enter the content portion of the web site.

Example 2-1 is an extreme example. It assumes that the application has as many
as four different paths for four different classes of visitor. This may seem like a
good idea at first, but it seriously complicates the maintenance chores for the
application in the future. At best, it provides a way to filter access between
DHTML-capable browsers and all the rest.

Internal Branching

Instead of creating separate documents for Navigator and IE 4 users, you can use
JavaScript to write browser-specific content for a page within a single document.
For example, you may find that some style sheet specifications are not rendered
the same in both browsers. To get the same look for an element, you can create a
browser-specific branch to use the JavaScript document .write() method to gen-
erate content suited to each browser. Example 2-2 show a simplified page that
writes HTML for a positionable element two different ways. For Internet Explorer,
the HTML is a DIV container; for Navigator, it is a <LAYER> tag that loads an
external file (whose content is not shown in the example).

Example 2-2. Internal Branching for Browsers

<HTML>
<HEAD>
<TITLE>MegaCorp On The Web</TITLE>
<SCRIPT LANGUAGE="JavaScript">
<!--
var isNav4, isIE4
if (parselnt (navigator.appVersion) >= 4) {
isNav4 = (navigator.appName == "Netscape")
isIE4 = (navigator.appName.indexOf ("Microsoft") != -1)

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

24 Chapter 2: Cross-Platform Compromises

Example 2-2. Internal Branching for Browsers (continued)

//==>
</SCRIPT>
</HEAD>

<BODY>
Some regular text
<SCRIPT LANGUAGE="JavaScript">
<!--
var output = ""
if (isIE4) {
output += "<DIV ID='help' "
output += "STYLE='position:absolute; top:75; width:350; border:none; "
output += "background-color:#98FB98; '>"
output += "<P STYLE='margin-top:5; align:center'>Instructions</
P>"
output += "<HR><OL STYLE='margin-right:20'>"
output += "Step 1."
output += "Step 2."
output += "Step 3."
output += "<DIV align='center'><BUTTON "
output += "onClick='document.all.help.style.visibility=\"hidden\" '>"
output += "Click Here</BUTTON></DIV></DIV>"
} else if (isNav4) {
output += "<LAYER ID='help' TOP=75 WIDTH=350 SRC='help.html'></LAYER>"
}
document .write (output)
//==>
</SCRIPT>
</BODY>
</HTML>

The key to efficient branching in such a page is establishing a Boolean global vari-
able for each browser at the top of the document (isNav4d and isIE4 in
Example 2-2). This allows scripts elsewhere in the document to make decisions
based on the browser that is running the script and writing the HTML that applies
to that browser. Notice in Example 2-2 that the if construction writes HTML con-
tent only if one of the two global variables is true. Conceivably, a user who does
not have a DHTML-capable browser could gain access to the URL of this page. In
this example, the only content such a user would see is the short line of text after
the <BODY> tag.

Designing for the Common Denominator

From a maintenance point of view, the ideal DHTML page is one that uses a com-
mon denominator of syntax that both browsers interpret and render identically.
You can achieve some success with this approach, but you must be very careful in
selecting standards-based syntax (e.g., CSS1 and CSS-P) that is implemented identi-
cally in both browsers. Because some of these standards were little more than

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Cross-Platform Strategies 25

working drafts as the browsers were released to the world, the implementations
are not consistent across the board.

DHTML feature sets that you can use as starting points for a common denomina-
tor approach are the standards for Cascading Style Sheets Level 1 and CSS-Posi-
tioning. When you peruse the documentation from the browser vendors in this
arena, it is nigh impossible to distinguish support for the recommended standard
from a company’s proprietary extension that adheres to the spirit, but not the let-
ter, of the standard. Just because a feature is designated as being “compatible with
CSS” does not mean that it is actually in the published recommendation. Refer to
the reference chapters in Part II of this book for accurate information on the
implementations in the browsers as it relates to the standards.

You are likely to encounter situations in which the same style sheet syntax is inter-
preted or rendered slightly differently in each browser. This is one reason why it is
vital to test even recommended standards on both browser platforms. When an
incompatibility occurs, there is probably a platform-specific solution that makes
the result look and behave the same in both browsers. To achieve this parity,
you’ll need to use internal branching for part of the page’s content. This is still a
more maintainable solution than creating an entirely separate page for each
browser.

Some features that are available in one browser cannot be translated into the other
browser. Internet Explorer 4 includes a few DHTML capabilities that have no par-
allel features in Navigator 4. Therefore, don’t expect to find common denomina-
tors for dynamic content (beyond swapping images of the same size), transitions,
or filters. DHTML facilities in Navigator 4 can be re-created in IE 4 either directly
or via internal branching. For example, the IE 4 <IFRAME> element closely resem-
bles the Navigator 4 <ILAYER> element.

If this short lesson in finding a common denominator of functionality reveals any-
thing about the Version 4 browsers, it is that if you start your design with Naviga-
tor 4 in mind, you can probably develop an IE 4 version using some or all of the
techniques described in this chapter. But if you start with IE 4 and get carried
away with its DHTML features, you may be disappointed when you run your
application in Navigator 4.

Custom APIs

Despite the common denominator of CSS1 and CSS-P recommendations for the
HTML elements in documents, scripted access to these objects and their proper-
ties can vary substantially from one browser to the other. Even when the two
browsers have similar objects with similar properties, the syntax for the property
names may be different enough that you need to use internal branching for your
application to work seamlessly across platforms.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o
-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

26 Chapter 2: Cross-Platform Compromises

Once you go to the trouble of writing scripts that perform internal branching, you
might prefer to avoid doing it again for the next document. Both browsers allow
JavaScript to load libraries of script functions (files named with the .js extension)
that you can link into any HTML document you like. You can therefore create
your own meta language for scripted DHTML operations by writing a set of func-
tions whose terminology you design. Place the functions in a library file and rely
on them as if they were part of your scripting vocabulary. The language and func-
tion set you create is called an application programming interface—an APL
Example 2-3 shows a small portion of a sample DHTML API library.

Example 2-3. Portion of a DHTML Library

// Global variables

var isNav4, isIE4

var range = "'

var styleObj = ""

if (parselnt (navigator.appVersion) >= 4) {

if (navigator.appName.indexOf ("Microsoft") != -1) {
isNav4 = true
} else {
isIE4 = true
range = "all."
styleObj = ".style"

}

// Convert object name string or object reference
// into a valid object reference
function getObject (obj) {

var theObj
if (typeof obj == "string") {

theObj = eval ("document." + range + obj + styleObj)
} else {

theObj = obj
}
return theObj
}

// Positioning an object at a specific pixel coordinate
function shiftTo(obj, x, y) {
var theObj = getObject (obj)
if (isNav4) {
theObj .moveTo (x,y)
} else {
theObj.pixelLeft = x
theObj.pixelTop = y

One of the incompatibilities between positionable elements in Navigator 4 and IE
4 is the format of references to the element’s properties and methods. For an
unnested Navigator layer object (remember that all positionable items in Naviga-

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Cross-Platform Expectations 27

tor are treated as layer objects), a reference must begin with the document object
reference (e.g., document.layerName). In contrast, properties that govern IE 4
positionable elements are properties of a style property associated with the
object. Moreover, every named object, no matter how deeply nested within other
containers, can be referenced from the document object if the all keyword is
included in the reference (e.g., document .all.objectName.style).

The getObject () function of Example 2-3 is an all-purpose function that returns
a reference to an object that is passed originally as either a string that contains the
object name or a ready-to-go object reference. When the incoming object name is
passed as a string, the eval () function assembles a valid reference based on the
browser running the script. If the browser is Navigator 4, the range and style-
Obj variables are empty strings, and the resulting reference being evaluated is
"document .objectName"; in IE 4, the keywords all and style are assembled as
part of the reference. For both browsers, when the incoming parameter is already
an object reference, it is passed straight through: the assumption is that the object
reference is valid for the current browser (probably based on internal branching in
the main document that calls this function).

The more interesting function in Example 2-3 is shiftTo (), which changes the
position of an object, so that it is located at the specific coordinates that are passed
as parameters. Each browser has its own way to set the position of an object in a
script. Navigator 4 features a one-step moveTo () method of a layer object; IE 4
requires setting the pixelLeft and pixelTop properties of the object’s style
property. Those differences, however, are handled by the function. Any time you
need scripted control of the movement of an item in a document, you can call the
shiftTo () function to do the job in whatever browser is currently running.

Building an API along these lines lets you raise the common denominator of
DHTML functionality for your applications. You free yourself from limits that
would be imposed by adhering to 100% syntactical compatibility. In Chapter 4,
Adding Dynamic Positioning to Documents, 1 present a more complete custom API
that smooths over potentially crushing CSS-Positioning incompatibilities.

Cross-Platform Expectations

Before undertaking cross-platform DHTML development, be sure you understand
that the features you can exploit in both browsers—regardless of the techniques
you use—are limited to comparable feature sets within the realms of style sheets,
positionable elements, event models, object models, and downloadable fonts.
Dynamic content on a small scale is also a cross-platform possibility, but the
instantaneous reflowing of modified content, display filters, and transitions that are
available in Internet Explorer 4 have no parallels in Navigator 4.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o
-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

In this chapter:

* Rethinking HTML
Structures

» Understanding Block-
Level Elements

» Two Types of
Containment

* CSS Platforms

Addlng Sl:yle Sheets « Of Style Sheets,

Elements, Attributes,
and Values

to Documents + Embedding Style
Sheets
* Subgroup Selectors

o Attribute Selector
Futures: CSS2

» JavaScript Style Sheet
Syntax

e Cascade Precedence
Rules

* Cross-Platform Style
Differences

Like their counterparts in word processing and desktop publishing programs,
HTML style sheets are supposed to simplify the deployment of fine-tuned format-
ting associated with content. Instead of surrounding every H1 element in a docu-
ment with tags to make all of those headings the same color, you can use
a one-line style definition in a style sheet to assign a color to every instance of the
H1 element on the page. Of course, now that style sheets make it easier to specify
colors, margins, borders, and unusual element alignments, you are probably add-
ing more HTML elements to your documents. So your documents may not be any
smaller, but they should be more aesthetically pleasing, or at least closer to what
you might design in a desktop publishing program.

Rethinking HTML Structures

In order to successfully incorporate style sheets into HTML documents, you may
have to reexamine your current tagging practices. How much you’ll have to
change your ways depends on how and when you learned HTML in the first
place. Over the years, popular browsers have generally been accommodating with

28
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Rethinking HTML Structures 29

regard to—how shall T say it—less-than-perfect HTML. Consider the <P> tag,
which has long been regarded as a single tag that separates paragraphs with a
wider line space than the
 line break tag. HTML standards even encourage
this start-tag-only thinking by making some end tags optional. You can define an
entire row of table cells without once specifying a </TD> or </TR> tag: the
browser automatically closes a tag pair when it encounters a logical start tag for,
say, the next table cell or row.

The “new thinking” that you may have to adopt is triggered by an important fact:
style sheets, and the browser object models that work with them, are largely con-
tainer oriented. With rare exception (the
 tag is one), an element in a docu-
ment should be treated as a container whose territory is bounded by its start and
end tags (even if the end tag is optional). This container territory does not always
translate to space on the page, but rather applies to the structure of the HTML
source code. To see how “HTML-think” has changed, let's look at a progression of
simple HTML pages. Here’s a page that might have been excerpted from a tutorial
for HTML Version 2:

<HTML>

<HEAD>

<TITLE>Welcome to HypeCo</TITLE>

</HEAD>

<BODY>

<H1>Welcome to HypeCo's Home Page</H1>

We're glad you're here.

<P>

You can find details of all of HypeCo's latest products and special offers.
Our goal is to provide the highest quality products and the best customer
service in the industry.

<P>

Click here to view our on-line catalog.
</BODY>

</HTML>

While the preceding HTML produces a perfectly fine, if boring, page, a modern
browser does not have enough information from the tags to turn the content
below the H1 element into three genuine paragraph elements. Before you can
apply a document-wide paragraph style to all three paragraphs, you must make
each paragraph its own container. For example, you can surround the text of the
paragraph with a <P>/</P> tag pair:

<HTML>

<HEAD>

<TITLE>Welcome to HypeCo</TITLE>

</HEAD>

<BODY>

<H1>Welcome to HypeCo's Home Page</H1>

<P>We're glad you're here.</P>
<P>

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

30 Chapter 3: Adding Style Sheets to Documents

You can find details of all of HypeCo's latest products and special offers.
Our goal is to provide the highest quality products and the best customer
service in the industry.

</Pp>

<P>

Click here to view our on-line catalog.

</Pp>

</BODY>

</HTML>

When viewed in a modern browser, the pages created by the two preceding
examples look identical. But internally, the browser recognizes three paragraph

elements in the second example, and, more importantly, the style of these para-
graphs can be controlled by style sheets.

The HTML vocabulary for DHTML-capable browsers includes two additional tags
you can use to establish containment: <DIV> and . A DIV element creates a
container shaped like a block that begins at the starting point of one line and ends
with a line break. A SPAN element is an inline container, meaning that it is sur-
rounded by chunks of running text. For example, if you want to assign a special
style to the first two paragraphs in our example, one approach is to group those
two elements inside a surrounding DIV container:

<BODY>

<H1>Welcome to HypeCo's Home Page</H1>

<DIV>

<P>We're glad you're here.</P>

<pP>

You can find details of all of HypeCo's latest products and special offers.
Our goal is to provide the highest quality products and the best customer
service in the industry.

</P>

</DIV>

<pP>

Click here to view our on-line catalog.

</P>

</BODY>

Surrounding the two paragraph elements by the <DIV> tag pair does not affect

how the content is rendered in the browser, but as shown in Figure 3-1, it does
alter the containment structure of the elements in the document.

As you can see from Figure 3-1, even a simple document has a number of contain-
ment relationships. The link in the last paragraph is contained by the third para-
graph element; the paragraph element is contained by the body element; the body
element is contained by the document (represented in HTML by the <HTML> tag
pain).

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Understanding Block-Level Elements 31

Body Body

H1 Heading | H1 Heading |

DIV1

Paragraph 1 I Paragraph 1 |
Paragraph 2 | Paragraph 2 |

Paragraph 3 Paragraph 3

Figure 3-1. Element containment before and after the addition of the <DIV> tag

Understanding Block-Level Elements

If you are a style sheet coder, you must be aware of the element containment dic-
tated by HTML tags. If you are a page designer, however, you need to understand
an entirely different kind of containment structure: block-level elements. A block-
level element is a self-contained unit of content that normally begins at the start-
ing margin of one line and ends in a way that forces the next bit of content to
appear on a new line following the block. Each of the heading tags (H1, H2, etc.)
is a block-level element because it stands alone on a page (unless you use DHTML
positioning tricks to overlay other elements). Other common block-level elements
are P, UL, OL, and LI.

A CSS-enabled browser automatically defines a set of physical features to every
block-level element. By default, the values for all these features are set to zero or
none, so that they don’t appear or occupy space on the page when you use sim-
ple HTML tags without style sheets. But one of the purposes of style sheets is to
let you modify the values of those features to create graphical borders, adjust mar-
gin spacing, and insert padding between the content and border. In fact, those
three terms—>border, margin, and padding—account for about half the style sheet
attributes implemented in the Version 4 browsers.

Dynamic HTML: The Definitive Reference, eMatiter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
-
=
Y
2,
(1]
=
= |
]
-

>
=
=2
=

=
«

32 Chapter 3: Adding Style Sheets to Documents

Box Pieces

You can think of the content and features of a block-level element as a box. To
help you visualize the role and relative position of the features of a block-level
element, Figure 3-2 shows a schematic diagram of a generic chunk of block-level
content (imagine it’s a paragraph, if that helps), where the margin, border, and
padding are indicated in relation to the content. The width and height of the con-
tent are the same, regardless of extra stuff being tacked on outside of the content.
Each of the surrounding features—padding, borders, and margins—can occupy
space based on its corresponding dimensions. The width and height of the entire
box is the sum of the element content, plus padding, borders, and margins. If you
don’t assign any values to those features, their dimensions are zero and, therefore,
they contribute nothing to the dimensions of the box. In other words, without any
padding, borders, or margins, the content and box dimensions are identical. With

style sheets, you can assign values to your choice of edges (top, right, bottom, or
left) for any feature.

box top
box left
margin space (transparent)
border space
padding space

content space
-~ =
e >
s 8

«~—— element width |,

box width

Figure 3-2. Schematic diagram of block-level elements

All margin space is transparent. Thus, any colors or images that exist in the next
outer containing box (the BODY element always provides the base-level box) show
through the margin space. Borders are opaque and always have a color associ-
ated with them. Padding space is also transparent, so you cannot set the padding
to any color; the background color or image of the content shows through the

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Two Types of Containment 33

padding space. Thus, this space “pads” the content to give some extra breathing
room between the content and any border and/or margin defined for the element.

Some style sheet attributes provide a one-statement shortcut for applying indepen-
dent values to each of the four edges of the margin, border, or padding. For exam-
ple, you can set the top and bottom border widths to one size and apply a differ-
ent size to the left and right sides of the same border. When such shortcuts are
available (see the border, margin, and padding style attributes in Chapter 10,
Style Sheet Attribute Reference), the values are applied in the same order: clock-
wise from the top—top, right, bottom, left.

Box Positioning

While the content dimensions remain the same regardless of the dimensions
assigned to various box features, the size of the box expands when you assign
padding, borders, and margins to the element. As you will see in Chapter 4, Add-
ing Dynamic Positioning to Documents, the “thing” that gets positioned within the
various coordinate planes is the box. The left and top outer edges of the box are
emphasized in Figure 3-2 to reinforce this idea.

It is important to understand the difference between a piece of content and its
containing box, especially if you start nesting positioned elements or need to rely
on extremely accurate locations of elements on the page. Nesting multiple block-
level elements inside each other offers a whole range of possible visual effects, so
page designers have much to experiment with while developing unique looks.

Two Types of Containment

If you have worked with JavaScript and the scriptable document object models
inside Navigator and Internet Explorer, you are aware that scriptable document
objects have a containment hierarchy of their own—an object containment hierar-
chy. The window object, which represents the content area of a browser window
or frame, is at the top of the hierarchy. The window object contains objects such as
the history, location, and document objects. The document object contains
objects such as images and forms, and, among the most deeply nested objects, the
form object contains form elements, such as text fields and radio buttons.

Document object containment is important in JavaScript because the hierarchy
defines how you refer to objects and their methods and properties in your scripts.
References usually start with the outermost element and work their way inward,
using the JavaScript dot syntax to delimit each object. For example, here’s how to
reference the content of a text field (the value property) named zipCode inside a
form named userInfo:

window.document .userInfo.zipCode.value

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

34 Chapter 3: Adding Style Sheets to Documents

Unlike most object-oriented worlds (such as Java), the object-based world of
scriptable browsers does not strictly adhere to the notion of parents and children.
In fact, except for the relationship between a frameset document and the frames it
creates, the word “parent” is not part of the object containment vocabulary. Docu-
ment objects do not inherit properties or methods of objects higher in the contain-
ment hierarchy.

In contrast to this structure, styles adhere more closely to the element contain-
ment as defined by the tag geography of a document. In this context, you do see
frequent references to parents and children. That's because an element can inherit
a style assigned to another element higher in the element containment hierarchy.

Inberitance

All HTML document elements belong to the document’s inheritance chain. The
root of that chain is the HTML element. Its immediate children (also called descen-
dants) are the next elements in the containment hierarchy. The inheritance chain
depends entirely on the structure of HTML elements in the document. Figure 3-3
shows the inheritance chains of the documents whose containment structures were
depicted in Figure 3-1.

E HTML HTML
E HE‘AD BODY HE‘AD /B(TJY\
L TME W PP T TITLE W1 K T
E A P P A !

Figure 3-3. Inberitance chains of two simple documents

The importance of inheritance chains becomes clear when you begin assigning
style attributes to elements that have descendants. In many cases, you want a
descendant to inherit a style assigned to a parent or grandparent. For example, if
you assign a red text color to all paragraphs (P elements), you more than likely
want all descendant elements, such as portions designated as EM elements inside a
paragraph, to render their content in the same red color.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

CSS Platforms 35

Not all style attributes are inherited. Therefore, the style sheet attribute reference in
Chapter 10 indicates whether or not each attribute is passed from parent to child.

The Cascade

Element containment also plays a role in helping the browser determine which, of
potentially several, overlapping style sheet rule should be applied to an element.
As you will see later in this chapter, it is possible to assign multiple styles to the
same element, by importing multiple style sheet definition files and by defining
multiple styles for the same element, or its parent, directly in the document. Cas-
cading style sheets are so called because styles can flow from a number of
sources; the outcome of this cascade is what is displayed by the browser.

I'll come back to cascading later in this chapter, but for now you should be aware
that the first step in predicting the outcome of overlapping style sheets is deter-
mining the element containment structure of the document. Once you know
where an element stands within the document’s inheritance chain, you can apply
strict CSS principles that assign varying weights to the way a style is defined for a
particular element.

CSS Platforms

Starting with Cascading Style Sheet Level 1, you can use an attribute of the STYLE
element to specify the syntax you are using to define style sheets. The value of the
TYPE attribute is in the form of a content-type declaration; it defines the syntax
used to assign style attributes. The formal CSS recommendation by the W3C pro-
motes a syntax of content type text/css. This TYPE attribute is not required in
today’s leading browsers, but the CSS recommendation does not believe that there
should be a default type. Therefore, I strongly recommend specifying the TYPE
attribute for all style sheets, in case some other user agent (an HTML-empowered
email reader, for example) should implement a strict interpretation of the CSS stan-
dard in the future. A STYLE element that relies on the CSS syntax should look like
the following:

<STYLE TYPE="text/css">

</STYLE>
Internet Explorer 4 and Navigator 4 both recognize the text/css type of CSS syn-
tax. Navigator 4 also includes an alternative syntax that follows the JavaScript
object reference format. This alternate type, text/javascript, provides Java-
Script equivalents for most of the style attributes and structures provided by the
text/css syntax. The Navigator implementation also includes the power to use
JavaScript statements and constructions inside <STYLE> tags to assist in defining
styles based on client- or user-specific settings (as demonstrated later in this chap-

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

36 Chapter 3: Adding Style Sheets to Documents

ter). In other words, the implementation of style sheets in Navigator 4 is largely
CSS compatible, and style sheets can be specified using either CSS or JavaScript
syntax.

NOTE In the early days of Navigator 4 (prerelease and early final versions),
Netscape referred to style sheets of type text/javascript with
names such as JavaScript Style Sheets (JSS or JSSS, depending on
whom you talk to) or JavaScript-Accessible Style Sheets. The official
terminology changes with the wind, but these earlier names are no
longer part of the Netscape marketing vocabulary. At last reading,
the company referred to this technology as “accessing style sheet
properties from JavaScript via the Document Object Model”—even
though the formal Document Object Model standard was far from
complete at the time.

Of Style Sheets, Elements, Attributes,
and Values

Regardless of the syntax you use to define a style sheet, the basic concepts are the
same. A style sheet is a collection of one or more rules. Each rule has two parts to
it:

e One or more elements (or groups of elements) that are having style sheets
defined for them

e One or more style sheet attributes that apply to the element(s)

In other words, each rule defines a particular look and feel and the item(s) in the
document that are to be governed by that look and feel.

Style Attributes

A style attribute is the name of a (usually) visible property of a piece of content on
the page. An attribute such as foreground color can apply to any element because
that color can be applied to foreground content, such as text. Some attributes,
such as borders and margins, can apply only to elements rendered as blocks on
the page—they have a clear beginning and ending in both the HTML source code
and in the layout. Details on all the CSS style sheet attributes can be found in
Chapter 10, but Table 3-1 shows a summary of CSS1 attributes implemented in

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Of Style Sheets, Elements, Attributes, and Values

37

both Internet Explorer 4 and Navigator 4 (in both CSS and JavaScript syntax). Each
browser also defines other style attributes that are noted in Chapter 10.

Table 3-1. Summary of CSS1 Style Sheet Attributes in Version 4 Browsers

Attribute Name—CSS Syntax (IE 4 and NN 4) ‘ Attribute Name—JavaScript Syntax (NN 4)

Box Properties

border
border-top?
border-right?
border-bottom?
border-left?

border-color borderColor
border-top-color?

border-right-color?

border-bottom-color?

border-left-color?

border-style borderStyle
border-top-style?

border-right-style

border-bottom-style?

border-left-style?

border-width borderwidths ()
border-top-width borderTopWidth
border-right-width borderRightWidth
border-bottom-width borderBottomwidth
border-left-width borderLeftwidth
clear

float

margin margins ()
margin-top marginTop
margin-right marginRight
margin-bottom marginBottom
margin-left marginLeft
padding paddings ()
padding-top paddingTop
padding-right paddingRight
padding-bottom paddingBottom
padding-left paddingLeft
Color and Background Properties

background

background-attachment?

background-color backgroundColor
background-image backgroundImage
background-position

background-repeat

color color

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=]
-
5E
23
o £
==
=i
=
-

38 Chapter 3: Adding Style Sheets to Documents

Table 3-1. Summary of CSS1 Style Sheet Attributes in Version 4 Browsers (continued)

Attribute Name—CSS Syntax (IE 4 and NN 4) ‘ Attribute Name—JavaScript Syntax (NN 4)
Classification Properties

display display
list-style-type listStyleType
list-style-image?®

list-style-position?

list-style

white—spaceb whiteSpace
Font Properties

font

font-family fontFamily
font-size fontSize
font-style fontStyle
font-variant?

font-weight fontWeight
Text Properties

letter-spacing?

text-align textAlign
text-decoration textDecoration
line-height lineHeight
text-indent

text-transform textTransform
vertical-align verticalAlign

4 Not implemented in CSS for Navigator 4
b Not implemented in Internet Explorer 4

CSS Attribute Assignment Syntax

The syntax for assigning a value to an attribute is different from what you know
about HTML attributes and their values. Moreover, the precise syntax is different
between CSS and JavaScript style sheets.

For CSS syntax, value assignment is made via the colon operator (in contrast to the
equal sign operator in HTML). The combination of an attribute name, colon opera-
tor, and value to be assigned to the attribute is called a declaration. To assign the
color red to the foreground of an element, you could use either of the following
declarations:

color:#££0000
color:red

If a style sheet rule includes more than one declaration, separate declarations with
semicolons:

color:#££0000; font-size:12pt;

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Embedding Style Sheets 39

A trailing semicolon after the last declaration is optional, as is a space after the
colon.

Notice, however, that unlike HTML attribute values, CSS syntax attribute values do
not—and cannot—have double quotes around the values, even when the value
appears to be a string value with spaces.

Binding CSS Style Sheets to Elements

Defining a rule’s declarations is only half the job. The other half involves binding
that declaration to an HTML element—also called a selector in CSS jargon. In a
simple case, you bind a declaration to a single element or a single type of ele-
ment (e.g., all P elements). The CSS standard also provides for additional ways of
binding a declaration to a subgroup of elements scattered throughout a docu-
ment; you define the relationship of the elements as a selector. Finally, you can
define exceptions to the grouping rules you establish in the document.

JavaScript Attributes and Element Binding

It should be no surprise that the JavaScript style sheet syntax in Navigator assigns
values to style attributes in JavaScript statements. As we’ll discuss in detail later in
the chapter, using such statements is very much like assigning values to other doc-
ument object properties in client-side JavaScript.

Embedding Style Sheets

If you want to develop style sheet-enhanced pages that work in both Internet
Explorer and Navigator, you should use the CSS syntax. In the next few sections,
all of examples I present are going to use the CSS syntax, since it works in both
browsers. Later, I'll discuss the Navigator-specific JavaScript syntax for style sheets.

Style sheets can be added directly to a document or imported from one or more
external files. In-document and external style sheets coexist well in the same docu-
ment; you can have as many of each type as your page design requires.

In-Document Styles

There are two ways to embed CSS information directly in an HTML document:
using the <STYLE> tag pair or using STYLE attributes of HTML tags. For ease of
maintenance and consistency throughout a document, I recommend using a
<STYLE> tag inside the HEAD section of the document. But you can also include
STYLE attributes directly inside the tag for almost any HTML element.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

40 Chapter 3: Adding Style Sheets to Documents

The <STYLE> tag

It is convenient to define style sheet rules between <STYLE> and </STYLE> tags.
The collection of rules within these tags is the classic instance of a CSS style sheet.
Because the elements to which you bind style declarations can appear early in the
body of the document (and may be bound to the BODY element itself), you should
use the <STYLE> tag in the HEAD section of your document. This guarantees that
the style sheet is loaded and in effect before any elements of the document are
rendered. Include the TYPE attribute in the opening tag, as in:

<STYLE TYPE="text/css">

style sheet rule(s) here

</STYLE>
Some older browsers ignore the start and end tags and attempt to render the con-
tents as if they were part of the document body. If you fear that this will affect
users of your pages, you can surround the statements inside the STYLE element
with HTML comment symbols. Such a framework looks as follows:

<STYLE TYPE="text/css">

<!--

style sheet rule(s) bere

—-—>

</STYLE>
This technique is similar to the one used to hide the contents of <SCRIPT> tag
pairs from older browsers, except that the end-comment statement in a script must
include a JavaScript comment (//-->). The content is still downloaded to the cli-
ent and is visible in the source code, but for all but the most brain-dead browsers,
the style sheet rules are hidden from plain view in the browser window. In the
examples in this book, I have omitted these comment symbols to conserve space
and improve readability, but you should take care to use them as necessary in
your STYLE elements.

As 1 mentioned earlier, the element to which a style declaration is assigned is
called a selector. In practice, selector has a wide range of meanings. In its sim-
plest form, a selector is the name of one type of HTML element—the case-insensi-
tive HTML tag stripped of its enclosing angle brackets (e.g., the P selector, which
represents all the paragraphs in a document). As you will see as this chapter
progresses, a selector can take on additional forms, including some that have no
resemblance at all to HTML elements. Just remember that a selector defines the
part (or parts) of an HTML document that is governed by a style declaration.

In the most common application, each style rule binds a declaration to a particu-
lar type of HTML element. When a rule is specified in a <STYLE> tag, the declara-
tion portion of the rule must appear inside curly braces, even if there is just one
style attribute in the declaration. The style sheet in the following example includes

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Embedding Style Sheets 41

o
two rules. The first assigns the red foreground (text) color and initial capital text S
transform to all H1 elements in the document; the second assigns the blue text g:;
color to all P elements: =g
=
<HTML> =
<HEAD>

<STYLE TYPE="text/css">
H1 {color:red; text-transform:capitalize}
P {color:blue}
</STYLE>
</HEAD>
<BODY>
<H1>Some heading</H1>
<P>Some paragraph text.</P>
</BODY>
</HTML>
There is no practical limit to the number of rules that can be listed inside the
<STYLE> tag pair, nor is there a limit to the number of style attributes that can be
used in a style rule. Also, rules can appear in any order within a style sheet, and
the indenting shown in the preceding example is purely optional. If you prefer,
you can also break up a series of declarations (inside the curly braces), placing
them on separate lines.

CSS syntax provides a shortcut for assigning the same style declaration to more
than one selector. By preceding the curly-braced style declaration with a comma-
delimited list of selectors, you can have one statement do the work of two or more
statements. For example, if you want to assign a specific color to H1, H2, and H3
elements in the document, you can do so with one statement:

<STYLE TYPE="text/css">

H1, H2, H3 {color:blue}
</STYLE>

The STYLE attribute in other tags

Another way to bind a style declaration to an HTML element is to include the dec-
laration as an attribute of the actual HTML element tag. The declaration is assigned
to the STYLE attribute; almost every HTML element recognizes the STYLE attribute.

Because the STYLE attribute is a regular HTML attribute, you assign a value to it
via the equal sign operator. The value is a double-quoted string that consists of
one or more style attribute/value pairs. These style attribute/value pairs use the
colon assignment operator. Use a semicolon to separate multiple style attribute set-
tings within the same STYLE attribute. Here is a STYLE attribute version of the
<STYLE> tag example shown in the preceding section. Because the style sheets are
attached to the actual HTML element tags, all this takes place in the BODY section
of the document:

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

42 Chapter 3: Adding Style Sheets to Documents

<BODY>

<H1 STYLE="color:red; text-transform:capitalize">Some heading</H1>

<P STYLE="color:blue">Some paragraph text.</P>

</BODY>
Notice, too, that when a style sheet definition is specified as a STYLE attribute,
there are no curly braces involved. The double quotes surrounding the entire style
sheet definition function as the curly brace grouping characters.

Selecting a style sheet style

In deciding whether to use the <STYLE> tag or STYLE attribute methodology for
defining style sheets, you need to consider how important it is for you to separate
design from content. The <STYLE> tag technique distances HTML content from the
styles associated with elements throughout the document. If you need to change a
font family or size for a particular kind of element, you can do so quickly and reli-
ably by making the change to one location in the document. If, on the other hand,
your style definitions are scattered among dozens or hundreds of tags throughout
the document, such a change requires much more effort and the possibility for
mistakes increases. However, for small-scale deployment of style sheets, the STYLE
attribute will certainly do the job. And, if one person is responsible for both con-
tent and design, it isn’t too difficult to keep the content and design in sync.

Current web development trends lean toward the separation of design from con-
tent. In large projects involving writers, designers, and programmers, it is usually
easier to manage the entire project if different contributors to the application can
work toward the same goal without stepping on each other’s code along the way.
Using the <STYLE> tag offers the best growth path for an evolving web site, and it
smooths the eventual transition to external style sheet files.

Importing External Style Sheets

Perhaps the most common use of style sheets in the publishing world is to estab-
lish a “look” designed to pervade across all documents, or at least across all sec-
tions of a large document. To facilitate applying a style sheet across multiple
HTML pages, the CSS specification provides two ways to include external style
sheet files: an implementation of the <LINK> tag and a special type of style sheet
rule selector (the @import rule).

Style sheet files

No matter how you import an external style sheet, the external file must be writ-
ten in such a way that the browser can use it to build the library of style sheets
that controls the currently loaded document. In other words, the browser must
take into account not only external styles, but any other styles that might also be
defined inside the document. Because there is an opportunity for the overlap of
multiple style sheets in a document, the browser must see how all the styles are

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Embedding Style Sheets 43

bound to elements, so it can apply cascading rules (described later in this chap-
ter) to render the content.

An external style sheet file consists exclusively of style sheet rules without any
HTML tags. The file can be saved with any filename extension (you can use .htm,
.btml, or .css if the file is written in CSS syntax). For example, to convert the style
sheet used in the previous sections to an external style sheet file, create a text file
that contains the following and save the file as basestyl.css:

Hl {color:red; text-transform:capitalize}

P {color:blue}
When a browser encounters either technique for importing an external style sheet,
the content of the file is loaded into the browser as if it were typed into the main
HTML document at that location (although it doesn’t become part of the source
code if you use the browser to view the source).

The LINK element

More recent versions of the HTML recommendation include a general-purpose tag
for linking media-independent content into a document. This is not a link like the
<A> tag because the LINK element can appear only in the HEAD portion of a docu-
ment. It is up to the browser to know how to work with the various attributes of
this tag (see Chapter 8, HTML Reference).

The CSS2 specification claims one application of the LINK element as a way to
link an external style sheet file into a document. The attributes and format for the
tag are rather simple:

<LINK REL=STYLESHEET TYPE="sheetMimeType" HREF="filename.css"

If the style sheet in the previous section is saved as basestyl.css, you can import
that style sheet as follows:

<HTML>

<HEAD>

<LINK REL=STYLESHEET TYPE="text/css" HREF="basestyl.css">
</HEAD>

<BODY>

<H1>Some heading</H1>

<P>Some paragraph text.</P>

</BODY>

</HTML>

A document can have multiple LINK elements for importing multiple external style
sheet files. The document can also contain STYLE elements as well as STYLE
attributes embedded within element tags. But if there is any overlap of more than
one style applying to the same element, the cascade rules (described later in this
chapter) determine the specific style sheet rule that governs the element’s display.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

44 Chapter 3: Adding Style Sheets to Documents

The @import rule

CSS2 describes an extensible system for declarations or directives (commands, if
you will) that become a part of a style sheet definition. They are called at-rules
because a rule starts with the “at” symbol (@), followed by an identifier for the
declaration. Each at-rule includes one or more descriptors that define the charac-
teristics of the rule. (For more about at-rules, see Chapter 10.)

One such at-rule that is implemented in Internet Explorer 4 (but not Navigator 4)
imports an external style sheet file from inside a STYLE element. It performs the
same function as the LINK import technique described in the previous section. In
the following example, a file containing style sheet rules is imported into the cur-
rent document:

<STYLE TYPE="text/css">
@import url (styles/corporate.css)
</STYLE>
If you are creating documents for browser versions that support the @import rule,
it may be more convenient to keep all style sheet definitions within the STYLE ele-
ment rather than spreading the import job to a separate LINK element.

Subgroup Selectors

While a selector for a style sheet rule is most often an HTML element name, that

scenario is not flexible enough for more complex documents. Consider the follow-

ing possibilities:

e You want certain paragraphs scattered throughout the document to be set
apart from running text by having wider left and right margins.

e You want all H2 elements in the document but one to be set to the color red,;
the exception must be blue.

e In a three-level ordered list (OL) group, you want to assign different font sizes
to each level.

Each of these possibilities calls for a different way of creating a new selector group
or specifying an exception to the regular selectors. In an effort to distance design
from content, CSS style sheets provide three ways of creating subgroups that can
handle almost every design possibility:

e (lass selectors
e ID selectors

e Contextual selectors

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Subgroup Selectors 45

Using these subgroup selectors requires special ways of defining selectors in style
sheet rules. These selectors also require the addition of attributes to the HTML tags
they apply to in the document.

Class Selectors

A class selector is an identifier you can use to assign a style to a subset of ele-
ments in a document. To apply a class selector, you first invent an identifier for
the class name. To allow for the potential scripting of class names, it is wise to
adhere to the rules of JavaScript identifiers when devising class names. A Java-
Script identifier is a one-word name (i.e., no spaces) that can include numerals,
letters, and limited punctuation (such as the underscore character). Also, the first
character of an identifier cannot be a numeral. The CSS2 guidelines for selector
identifiers are less stringent: you can embed hyphens, Unicode characters above
160, and escaped characters (characters that begin with a backslash character) in
an identifier, but the name must not begin with a numeral or hyphen. If you are
now or may eventually script class selectors, follow the JavaScript rules instead of
the more liberal CSS2 rules.

The class identifier goes in both the style sheet rule and the HTML tag (assigned to
the CLASS attribute) for the element that is to obey the rule. While the identifier
name is the same in both cases, the syntax for specifying it is quite different in
each place.

Binding a class identifier to an element type

In the style sheet rule, the class identifier is part of the rule’s selector. When a class
selector is intended to apply to only one kind of HTML element, the selector con-
sists of the element name, a period, and the identifier. The following rule assigns a
specific margin setting for all P elements flagged as belonging to the narrow class:

P.narrow {margin-left:5em; margin-right:5em}

To force a P element to obey the P.narrow rule, you must include a CLASS
attribute in the <P> tag and set the value to the class identifier:

<P CLASS="narrow">Content for the narrow paragraph</P>

Any P elements that don’t have the CLASS attribute set to narrow follow whatever
style is applied to the generic P element.

As implemented in Navigator 4 and Internet Explorer 4, class selectors permit only
one class identifier for each selector. In other words, you cannot create a nested
hierarchy of classes (e.g., a selector P.narrow.redHot is not allowed). The cur-
rent browsers are very forgiving if you reassign the same class name to different
element types in different rules. Be aware, however, that for purposes of present-

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

46 Chapter 3: Adding Style Sheets to Documents

day or future scriptability of style classes, you should avoid reusing a class identi-
fier in a document for any other purpose.

Example 3-1 shows a complete document that includes style sheet rules for all P
elements and a subclass of P.narrow elements. The rule for all P elements speci-
fies a 2-em margin on the left and right as well as a 14-point font size. For all P
elements tagged with the CLASS=narrow attribute, the margins are set to 5 ems
and the text color is set to red. It is important to note that the P.narrow rule
inherits (or is affected by) style settings from the P rule. Therefore, all text in the
P.narrow elements is displayed at a font size of 14 points. But when the margin
attributes are set in both rules, the settings for the named class override the set-
tings of the broader P element rule (the language of CSS does not include the
object-oriented concepts of subclass or superclass). Following the inheritance trail
one level higher in the containment hierarchy, all P elements (and all other ele-
ments in the document if there were any) obey the style sheet rule for the BODY
element, which is where the font face is specified.

Example 3-1. Applying the P.narrow Class Rule

<HTML>

<HEAD>

<TITLE>Class Society</TITLE>

<STYLE TYPE="text/css">
P {font-size:14pt; margin-left:2em; margin-right:2em}
P.narrow {color:red; margin-left:5em; margin-right:5em}
BODY {font-face:Arial, serif}

</STYLE>

</HEAD>

<BODY>

<P>

This is a normal paragraph. This is a normal paragraph. This is a normal
paragraph. This is a normal paragraph. This is a normal paragraph.

</Pp>

<P CLASS=narrow>

This is a paragraph to be set apart with wider margins and red color. This is a
paragraph to be set apart with wider margins and red color. This is a paragraph
to be set apart with wider margins and red color.

</P>

<P>

This is a normal paragraph. This is a normal paragraph. This is a normal
paragraph. This is a normal paragraph. This is a normal paragraph.

</Pp>

<P CLASS=narrow>

This is a paragraph to be set apart with wider margins and red color. This is a
paragraph to be set apart with wider margins and red color. This is a paragraph
to be set apart with wider margins and red color.

</P>

</BODY>

</HTML>

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Subgroup Selectors 47

Defining a free-range class rule

Most of the time, you don’t want to limit a class selector to a single element type
in a document. Fortunately, you can define a rule with a class selector that can be
applied to any element in the document. The selector of such a rule is nothing
more than the identifier preceded by a period. Example 3-2 contains a rule that
assigns a red underline style to a class named hot. The hot class is then assigned
to different elements scattered throughout the document. Notice inheritance at
work in this example. When the hot class is assigned to a DIV element, it applies
to the P element nested inside the DIV element: the entire paragraph is rendered
in the hot style and follows the P.narrow rule as well, since the rules do not
have any overlapping style attributes.

=]
-
=
33
&<
=3
-] 2
=
-

Example 3-2. Applying a Class Rule to a Variety of HTML Elements

<HTML>
<HEAD><TITLE>Free Range Class</TITLE>
<STYLE TYPE="text/css">
P {font-size:14pt; margin-left:2em; margin-right:2em}
P.narrow {margin-left:5em; margin-right:5em}
.hot {color:red; text-decoration:underline}
BODY {font-face:Arial, serif}
</STYLE>
</HEAD>

<BODY>

<H1 CLASS=hot>Get a Load of This!</H1>

<P>

This is a normal paragraph. This is a normal paragraph. This is a normal
paragraph. This is a normal paragraph. This is a normal paragraph.

</P>

<DIV CLASS=hot>

<P CLASS="narrow">

This is a paragraph to be set apart with wider margins and red color. This is a
paragraph to be set apart with wider margins and red color. This is a paragraph
to be set apart with wider margins and red color.

</P>

</DIV>

<P>

This is a normal paragraph. This is a normal paragraph but with a
red-hot spot. This is a normal paragraph. This is a normal paragraph. This
is a normal paragraph.

</P>

<P CLASS=narrow>

This is a paragraph to be set apart with wider margins and red color. This is a
paragraph to be set apart with wider margins and red color. This is a paragraph
to be set apart with wider margins and red color.

</P>

</BODY>

</HTML>

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

48 Chapter 3: Adding Style Sheets to Documents

ID Selectors

In contrast to the class selector, the ID selector lets you define a rule that applies
to only one element in the entire document. Like the class selector, the ID selec-
tor requires a special way of defining the selector in the style sheet rule and a spe-
cial tag attribute (ID) in the tag that is the recipient of that rule. The ID attribute of
a tag is similar to the NAME attribute applied to elements for scripting purposes.
This means that to maintain integrity of the object model for the current docu-
ment, the ID selector identifier must be unique within the document.

The style rule syntax for defining an ID selector calls for the identifier to be pre-
ceded with the # symbol. This can be in conjunction with an element selector or
by itself. Therefore, both of the following rules are valid:

Pé#speciald {border:5px ridge red}

#speciald{border:5px ridge red}
To apply this rule for this ID to a P element, you have to add the ID attribute to
that element’s tag:

<P ID=speciald4>Content for a special paragraph.</P>

There is an important difference between the two style rule examples just shown.
By specifying the ID selector in concert with the P element selector in the first
example, we've told the browser to obey the ID=special4 attribute only if it
appears in a P element. The second rule, however, is a generic rule. This means
that the ID=speciald attribute can appear in any kind of element. Since an ID
attribute value should be used in only one element throughout the entire docu-
ment, the first rule is unnecessarily limiting.

Example 3-3 shows the ID selector at work, where it is used to assign a rule
(defining a red, ridge-style border for a block) to only one of several P elements in
the document. Notice that it is assigned to a P element that also has a class selec-
tor assigned to it: two rules are applied to the same element. In this example, the
style rules do not conflict with each other, but if they did, the cascade precedence
rules (described later in this chapter) would automatically determine precisely
which rule wins the battle of the dueling style attributes.

Example 3-3. Applying an ID Selector to a Document

<HTML>

<HEAD><TITLE>ID Selector</TITLE>

<STYLE TYPE="text/css">
P {font-size:14pt; margin-left:2em; margin-right:2em}
P.narrow {color:red; margin-left:5em; margin-right:5em}
#speciald {border:5px ridge red}
BODY {font-face:Arial, serif}

</STYLE>

</HEAD>

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Subgroup Selectors 49

Example 3-3. Applying an ID Selector to a Document (continued)

<BODY BGCOLOR="#FFFFFF">

<H1>Get a Load of This!</H1>

<P>

This is a normal paragraph. This is a normal paragraph. This is a normal
paragraph. This is a normal paragraph. This is a normal paragraph.

</P>

<P CLASS=narrow ID=special4>This is a paragraph to be set apart with wider
margins, red color AND a red border. This is a paragraph to be set apart with
wider margins, red color AND a red border.

</P>

<P>

This is a normal paragraph. This is a normal paragraph. This is a normal
paragraph. This is a normal paragraph. This is a normal paragraph.

</P>

<P CLASS=narrow>This is a paragraph to be set apart with wider margins and red
color. This is a paragraph to be set apart with wider margins and red color. This
is a paragraph to be set apart with wider margins and red color.

</P>

</BODY>

</HTML>

Contextual Selectors

One more way to assign styles to specific categories of elements is the contextual
selector. To use a contextual selector, you should be comfortable with the contain-
ment hierarchy of elements in a document and how inheritance affects the appli-
cation of styles to a chunk of content. Consider the two single-selector rules in the
following style sheet:
<STYLE TYPE="text/css">
P {font-size:14pt; color:black}
EM {font-size:16pt; color:red}
</STYLE>
This style sheet dictates that all EM elements throughout the document be dis-
played in red with a 16-point font. If you were to add an EM element as part of an
H1 element, the effect might be less than desirable. What you really want from the
style sheet is to apply the EM style declaration to EM elements only when they are
contained by—are in the context of—P elements. A contextual selector lets you do
just that. In a contextual selector, you list the elements of the containment hierar-
chy that are to be affected by the style, with the elements separated by spaces.

To turn the second rule of the previous style sheet into a contextual selector, mod-
ify it as follows:

<STYLE TYPE="text/css">
P {font-size:1l4pt; color:black}
P EM {font-size:16pt; color:red}
</STYLE>

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

50 Chapter 3: Adding Style Sheets to Documents

You still need the rule for the base P element in this case because the style is
something other than the browser default. There is no practical limit to the num-
ber of containment levels you can use in a contextual selector. For example, if the
design calls for a section of an EM element to have a yellow background color, you
can assign that job to a SPAN element and set the contextual selector to affect a
SPAN element only when it is nested inside an EM element that is nested inside a P
element. Example 3-4 shows what the source code for such a document looks
like. The example goes one step further in that one element of the contextual
selectors is a class selector (P.narrow). Each element selector in a contextual
selector can be any valid selector, including a class or ID selector. You can also
apply the same style declaration to more than one contextual selector by separat-
ing the contextual selector groups with commas:

P EM SPAN, H3 B {background-color:yellow}

It's an odd-looking construction, but it’s perfectly legal (and byte conservative).

Example 3-4. Applying a Three-Level Contextual Selector

<HTML>

<HEAD><TITLE>ID Selector</TITLE>

<STYLE TYPE="text/css">
P {font-size:14pt; margin-left:2em; margin-right:2em}
P.narrow {color:red; margin-left:5em; margin-right:5em}
P.narrow EM {font-weight:bold}
P.narrow EM SPAN {background-color:yellow}
#speciald {border:5px ridge red}
BODY {font-face:Arial, serif}

</STYLE>

</HEAD>

<BODY>

<H1>Get a Load of This!</H1>

<P>

This is a normal paragraph. This is a normal paragraph. This is a normal
paragraph. This is a normal paragraph. This is a normal paragraph.

</P>

<P CLASS=narrow ID=special4>This is a paragraph to be set apart with
wider margins, red color AND a red border. This is a paragraph to be set apart
with wider margins, red color AND a red border.

</Pp>

<P>

This is a normal paragraph. This is a normal paragraph. This is a normal
paragraph. This is a normal paragraph. This is a normal paragraph.

</P>

<P CLASS=narrow>This is a paragraph to be set apart with
wider margins and red color. This is a paragraph to be set apart with wider
margins and red color. This is a paragraph to be set apart with wider margins and
red color.

</Pp>

</BODY>

</HTML>

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Attribute Selector Futures: CSS2 51

Attribute Selector Futures: CSS52

Navigator 4 and Internet Explorer 4 implement the individual, class, ID, and con-
textual selector schemes described in the previous sections. The newer CSS2 speci-
fication makes further enhancements to the way selectors can be specified in style
sheet rules. Some of these recommendations may find their way into future ver-
sions of the browsers (IE 4 already uses a few of them) or other implementations
of style sheets (such as in XML-enabled applications). These items are noted here
briefly to offer a preview of what you might expect in the next generation of
DHTML-capable browsers. However, since specifications like CSS do not insist on
100% compliance (some items are optional), don’t be surprised if some of the
items described in this section do not appear in the next version of your browser.

Pseudo-Element and Pseudo-Class Selectors

The original idea for pseudo-elements and pseudo-classes was defined as part of
the CSS1 recommendation; these selectors have been expanded in CSS2. A fine
line distinguishes these two concepts, but they do share one important factor:
there are no direct HTML tag equivalents for the elements or classes described by
these selectors. Therefore, you must imagine how the selectors will affect the real
tags in your document.

Using pseudo-elements

A pseudo-element is a well-defined chunk of content in an HTML element. Two
pseudo-elements specified in the CSS1 recommendation point to the first letter and
the first line of a paragraph. The elements are named :first-letter and
:first-line, respectively. It is up to the browser to figure out where, for exam-
ple, the first line ends (based on the content and window width) and apply the
style only to the content in that line. If the browser is told to format the :first-
letter pseudo-element with a drop cap, the browser must also take care of ren-
dering the rest of the text in the paragraph so that it wraps around the drop cap.

For example, to apply styles for the first letter and first line of all P elements, use
the following style rules:
<STYLE TYPE="text/css">
P:first-letter {font-face:Gothic, serif; font-size:300%; float:left}
P:first-line {font-style:small-caps}
</STYLE>
Style attributes that can be set for :first-letter and :first-line include a
large subset of the full CSS attribute set. They include all font, color, background,
margin, padding, and border attributes, as well as a handful of element-specific
attributes that logically apply to a given element.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

52 Chapter 3: Adding Style Sheets to Documents

Using pseudo-classes

In contrast to a pseudo-element, a pseudo-class applies to an element whose look
or content may change as the user interacts with the content. Pseudo-classes
defined in the CSS1 recommendation are for three states of the A element: a link
not yet visited, a link being clicked on by the user, and a link that has been vis-
ited. Default behavior in most browsers is to differentiate these states by colors
(default colors can usually be set by user preferences as well as by attributes of
the BODY element). The syntax for pseudo-class selectors follows the same pattern
as for pseudo-elements. This style sheet defines rules for the three A element
pseudo-classes:
<STYLE TYPE="text/css">
A:link {color:darkred}
A:active {color:coral}
A:visited {color:lightblue; font-size:-1}
</STYLE>
As with other selectors, you can combine class or ID selectors with pseudo-ele-
ments or pseudo-classes to narrow the application of a special style. For instance,
you may want a large drop cap to appear only in the first paragraph of a page.
See Chapter 10 for an example, plus a list of CSS2 pseudo-elements and pseudo-
classes.

Attribute Selectors

The CSS2 specification expands the facilities in Navigator 4 and Internet Explorer 4
for selectors based on plain elements, classes, and IDs. In the enhanced scheme, it
is helpful to think of a selector as an expression that helps the user agent (browser
or application) locate a match of HTML elements or attributes to determine
whether the style should be applied. In many respects, the functionality mimics
that of a scripting language that you would use to inspect the value assigned to an
element’s attribute before assigning a specific style. But the CSS2 attribute selector
model is nothing at all like JavaScript syntax for style sheets (described later).

Table 3-2 shows the three attribute selector formats and what they mean. A new
syntactical feature for selectors—square brackets—adds another level of complex-
ity to defining style sheet rules, but the added flexibility may be worth the effort.

Table 3-2. Attribute Selector Syntax

Syntax Format Description

[attributeName] Matches an element if the attribute is defined in the HTML
tag

[attributeName=value] Matches an element if the attribute is set to the specified

value in the HTML tag

[attributeName~=value] | Matches an element if the specified value is present
among the values assigned to the attribute in the HTML

tag

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Attribute Selector Futures: CSS2 53

To see how these selector formats work, observe how the sample style sheet rules
in Table 3-3 apply to an associated HTML tag.

Table 3-3. How Attribute Selectors Work

Style Sheet Selector Applies To Does Not Apply To
P[ALIGN] <P ALIGN="left"> <P>
<P ALIGN="left" <P TITLE="Summary">
TITLE="Summary">
HR[ALIGN="left"] <HR ALIGN="left"> <HR ALIGN="middle">
IMG[ALT~="Temporary"] <IMG ALT="Temporary <APPLET ALT="Temporary
placeholder™" Applet" CODE=... >
SRC="picture.gif">

Universal Selectors

In practice, the absence of an element selector before an attribute selector implies
that the rule is to apply to any and all elements of the document. But a special
symbol more clearly states your intentions. The asterisk symbol (*) acts like a
wildcard character to select all elements. You can use this to a greater advantage
when you combine selector types, such as the universal and attribute selector. The
following selector applies to all elements whose ALIGN attributes are set to a spe-
cific value:

* [ALIGN="middle"]

Parent-Child Selectors

Element containment is a key factor in the parent-child selector. Again, following
the notion of a style rule selector matching a pattern in a document, the parent-
child selector looks for element patterns that match a specific sequence of parent
and child elements. The behavior of a parent-child selector is very similar to that
of a contextual selector, but the notation is different—a greater-than symbol (>)
separates the element names in the selector, as in:

BODY > P {font-size:12pt}

Another difference is that the two elements on either side of the symbol must be
direct relations of each other, as a paragraph is of a body.

Adjacent Selectors

An adjacent selector lets you define a rule for an element based on its position rel-
ative to another element or, rather, the sequence of elements. Such adjacent selec-
tors consist of two or more element selectors, with a plus symbol (+) between the
selectors. For example, if your design calls for an extra top margin for an H2 block

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o
-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

54 Chapter 3: Adding Style Sheets to Documents

whenever it comes immediately below an H1 element in the document, the rule
looks like the following:

H1 + H2 {margin-top: 6pt}

JavaScript Style Sheet Syntax

So far throughout this chapter, all style sheet examples have used the CSS syntax
promoted in the W3C recommendations and implemented to varying degrees in
both Navigator 4 and Internet Explorer 4. In this section, we discuss Netscape’s
alternative syntax for specifying style sheets. This syntax follows the rules of the
JavaScript (and, by extension, ECMAScript) language, but the object model is
unique to Navigator 4. Unless you exercise browser branching safeguards, you will
encounter script errors if you attempt to load documents equipped with this style
sheet syntax into Internet Explorer 4. It’s important to emphasize that this is not an
alternate style sheet mechanism; rather, it is just another way to program CSS style
sheets. The advantage of this syntax is that you gain the power of using other
JavaScript statements inside <STYLE> tags to create, for example, algorithmically
derived values for style sheet rules.”

As you may have noticed in Table 3-1, not every CSS attribute implemented in
Navigator 4 has a JavaScript equivalent. The most common attributes are
accounted for, but some design choices, such as setting independent colors for
border sides, aren’t available in Navigator 4—in JavaScript or CSS syntax.

Attributes and Elements

JavaScript syntax simplifies assigning values to style attributes and then assigning
those attributes to HTML elements, in that you don’t have to learn the CSS syntax.
Each statement in a JavaScript style sheet is a property assignment statement. The
object reference on the left side of the statement is an element type, class, or ID.
These objects all have style properties to which you can assign values.

To demonstrate the difference in syntax, the next listing is a duplicate of one ear-
lier in the chapter that showed a simple setting of two style rules in CSS syntax:

<HTML>

<HEAD>

<STYLE TYPE="text/css">
H1 {color:red; text-transform:capitalize}
P {color:blue}

</STYLE>

</HEAD>

* If you want to use algorithmically derived values in style sheets in IE 4, you can create a custom API
that inserts style rules into an existing style sheet, using IE’s document object model.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

JavaScript Style Sheet Syntax 55

<BODY>

<H1>Some heading</H1>
<P>Some paragraph text.</P>
</BODY>

</HTML>

In JavaScript syntax, the document looks as follows:

<HTML>

<HEAD>

<STYLE TYPE="text/javascript">
tags.Hl.color = "red"
tags.Hl.textTransform = "capitalize"
tags.P.color = "blue"

</STYLE>

</HEAD>

<BODY>

<H1>Some heading</H1>

<P>Some paragraph text.</P>

</BODY>

</HTML>

Note three primary differences between the two versions:

e The TYPE attribute of the <STYLE> tag is text/javascript.

e Style attributes use the JavaScript versions, which turn multiword hyphenated
CSS attribute names into one-word, intercapitalized JavaScript identifiers.

e Property values other than numbers are quoted strings, so as not to be con-
fused with JavaScript variables.

You can also use JavaScript syntax to assign values to style properties inside other
HTML tags with the STYLE attribute. The attribute value must be a quoted string of
a style property assignment statement; values being assigned to these properties
must then be written as a nested string. For example, the following tag uses Java-
Script syntax to set the font size and color of the paragraph:

<P STYLE="fontSize='18pt'; color='blue'">

The construction is a little awkward. But as I mentioned earlier in this chapter,
inline STYLE attributes are more difficult to maintain over time, so you’re better off
using the <STYLE> tag set for your style sheets.

JavaScript Selectors

Like the CSS syntax, the JavaScript syntax for style sheets allows you to select plain
elements, classes, IDs, and contextual subgroups. A JavaScript style rule begins
with one of the object names tags, classes, or ids or the contextual ()
method. Technically, all four of these entities belong to the document object, but
Navigator assumes the document context whenever you use these references
inside a <STYLE> tag. Therefore, you can omit document from all such references.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

56 Chapter 3: Adding Style Sheets to Documents

Don’t forget, however, that you are in a JavaScript context whenever the <STYLE>
tag is of type text/javascript. As a result, you can use a JavaScript shortcut,
such as the with statement, to set many properties of the same element with less
code. Outside of the <STYLE> tag context, you can use references to these objects
for read-only access to the style sheet properties.

Plain element selectors

Use the tags object to start a rule involving a single element. Element names are
the same as in CSS syntax. The format for setting a plain element style property is:

tags. tagName.propertyName = "value"

The name of the tag is not case sensitive in this construction, but all other compo-
nents of the reference are case sensitive. The following fragment sets three style
properties for all the P elements in a document:
tags.P.fontSize = "ldpt"
tags.P.marginLeft = "2em"
tags.P.marginRight = "2em"
As a shortcut, you can use the JavaScript with statement to group these state-
ments together:
with (tags.P) {
fontSize = "l4pt"
marginLeft = "2em"
marginRight = "2em"
}
In other words, all three property setting statements are applied to the tags.P
object.

Class selectors

You can define a class selector that matches all tags whose CLASS attributes are set
to the same class name. Such classes can be bound to a particular element type or
can be “free-range” classes, if your design calls for it.

To set the style property of a class bound to a single element type, the syntax is as
follows:

classes.className.elementName.propertyName = "value"

If, on the other hand, you wish to apply a class to any element that includes a
CLASS attribute set to that class name, you substitute the all keyword for the ele-
ment name, as in the following format:

classes.className.all.propertyName = "value"

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

JavaScript Style Sheet Syntax 57

NOTE This application of the all keyword applies only to style sheet class
selectors in Navigator 4. The identical keyword is used in an entirely
different context (element positioning) in Internet Explorer 4. Do not
try to establish any relationship between the two applications of this
keyword.

An example of class-to-element-type binding is shown later in Example 3-5.

ID selectors

An ID is an identifier assigned to one HTML element in the document with the ID
attribute. Therefore, the ID selector lets you target a single element for a particular
style setting, even if it is also targeted by a plain element selector or a class ele-
ment selector (just like the CSS ID selector described earlier in this chapter).

Syntax for the ID selector follows the same structure as other JavaScript style prop-
erties:

ids. idName.propertyName = "value"

Contextual selectors

The construction of a contextual selector in JavaScript syntax is a little different
compared to the other selector styles. The need is to group two or more other
selectors into a sequence, so that the browser applies the style to an element only
if it appears in the context of related elements. The JavaScript syntax turns the
contextual reference into a JavaScript method whose parameters are the compo-
nent selectors that define the pattern to be matched for context. In JavaScript, mul-
tiple parameters are delimited by commas.

Earlier in this chapter, you saw the following CSS syntax for a style sheet that
defined a rule for all P elements and a rule for all EM elements nested inside P ele-
ments:

<STYLE TYPE="text/css">
P {font-size:1l4pt; color:black}
P EM {font-size:16pt; color:red}
</STYLE>

In JavaScript, the first rule is converted to a tags reference. The second rule must
use the contextual () method, which has the following syntax:

contextual (selectorl, ..., selectorN) .propertyName = "value"
Therefore, the JavaScript syntax equivalent for the preceding CSS style sheet is:

<STYLE TYPE="text/javascript">
tags.P.fontSize = "1l4pt"

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

58 Chapter 3: Adding Style Sheets to Documents

tags.P.color = "black"

contextual (tags.P, tags.EM).fontSize = "lépt"

contextual (tags.P, tags.EM).color = "red"
</STYLE>

You could also use two with statements for the style sheet, but with only two
statements per group, you don’t gain much in the way of code size.

To demonstrate a number of JavaScript style sheet properties being set and used in
a document, Example 3-5 is a JavaScript syntax version of the document in
Example 3-4. Notice that the HTML portion of the document—notably the usage of
CLASS and ID attributes—is identical for both versions. The only differences are in
the style sheet definitions.

Example 3-5. A JavaScript Syntax Version of Example 3-4

<HTML>

<HEAD><TITLE>ID Selector</TITLE>

<STYLE TYPE="text/javascript">

with (tags.P) {
fontSize = "14pt"
marginleft = "2em"
marginRight = "2em"

}

with (classes.narrow.P) {
color = "red"
marginLeft= "5em"
marginRight = "5em"

}

with (ids.speciald) {
borderwidths ("5px", "5px", "5px", "5px")
borderStyle = "ridge"
borderColor = "red"

}

contextual (classes.narrow.p, tags.EM).fontWeight = "bold"

contextual (classes.narrow.P, tags.EM, tags.SPAN) .backgroundColor = "yellow"
tags.BODY.fontFamily = "Times New Roman, serif"

</STYLE>

</HEAD>

<BODY>

<H1>Get a Load of This!</H1>

<P>

This is a normal paragraph. This is a normal paragraph. This is a normal
paragraph. This is a normal paragraph. This is a normal paragraph.

</P>

<P CLASS=narrow ID=special4>This is a paragraph to be set apart with
wider margins, red color AND a red border. This is a paragraph to be set apart
with wider margins, red color AND a red border.

</Pp>

<P>

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Cascade Precedence Rules 59

Example 3-5. A JavaScript Syntax Version of Example 3-4 (continued)

This is a normal paragraph. This is a normal paragraph. This is a normal
paragraph. This is a normal paragraph. This is a normal paragraph.

</P>

<P CLASS=narrow>This is a paragraph to be set apart with
wider margins and red color. This is a paragraph to be set apart with wider
margins and red color. This is a paragraph to be set apart with wider margins and
red color.

</P>

</BODY>

</HTML>

=]
-
=
33
&<
=3
-] 2
=
-

When viewed in Navigator 4, Example 3-4 and Example 3-5 render absolutely
identically. They should, since the two listings are simply using two different syn-
taxes to control the same underlying style sheet mechanisms in the browser.

Cascade Precedence Rules

By now it should be clear that there are many ways styles can be applied to an
element—from an external style sheet file, from a <STYLE> tag set, and from a
STYLE attribute in a tag—and there is the possibility that multiple style rules can
easily apply to the same element in a document (intentionally or not). To deal
with these issues, the CSS recommendation had to devise a set of rules for resolv-
ing conflicts among overlapping rules. These rules are intended primarily for the
browser (and other user agent) makers, but if you are designing complex style
sheets or are seeing unexpected results in a complex document, you need to be
aware of how the browser resolves these conflicts for you.

Conflict resolution is mostly a matter of assigning a relative weight to every rule
that applies to a particular element. Rules with the most weight are the ones that
most specifically target the element. At the lightweight end of the spectrum is the
“nonrule,” or default style setting for the document, generally governed by the
browser’s internal design and sometimes influenced by preference settings (e.g.,
the base font size for text content). Such a “nonrule” may actually apply directly
only to a high-level object, such as the BODY element; only by way of inheritance
does the default rule apply to some element buried within the content. At the
heavyweight end of the spectrum is the style rule that is targeted specifically at a
particular element. This may be by way of an ID selector or the ultimate in speci-
ficity: a STYLE attribute inside the tag. No rule can override an embedded STYLE
attribute.

Between those two extremes are dozens of potential conflicts that depend on the
way style sheets are defined for the document. Before rendering any style-sheet-
capable element, the browser uses the following decision path to determine how
that element should be rendered:

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

60 Chapter 3: Adding Style Sheets to Documents

1. Scan the document for any style declarations that have a selector that matches
the element. If the element is not selected by any rules, short-circuit the rest of
the decision path and render the element according to the browser’s current
settings.

2. Sort all applicable declarations according to weight as indicated by a special
limportant declaration (see the following section). Declarations marked
important are assigned greater weight than unmarked declarations. If only one
declaration bubbles to the top of the order, apply that style to the element and
short-circuit the rest of the decision path.

3. Sort the applicable declarations again, this time by origin. In today’s browsers,
this simply assigns greater weight to all author-defined declarations than to the
browser’s default or preferences settings.

4. Now sort the applicable declarations by the specificity of the rule’s selector.
The more specific the selector (see the section on selector specificity later in
this chapter), the greater the weight assigned to that declaration.

5. Finally, if more than one declaration is assigned the same weight after previ-
ous sorting, sort one last time based on the order in which the rules are
defined in the document. The last applicable rule with the greatest weight
wins the conflict. Rules defined in multiple imported style sheets are defined
in the order of the statements that trigger the import; a rule defined in a
<STYLE> tag set comes after any imported style sheet; a rule defined in an ele-
ment’s STYLE attribute is the last and heaviest rule.

Making a Declaration Important

You can give an individual declaration within a rule an extra boost in its battle for
superiority in the cascading order. When you do this to a declaration, the declara-
tion is called the important declaration; it is signified by an exclamation mark and
the word important following the declaration. For example, in the following style
sheet, the margin-left attribute for the P element is marked important:
<STYLE TYPE="text/css">
P {font-size:14pt; margin-left:2em ! important; margin-right:2em}
P.narrow {color:red; margin-left:5em; margin-right:5em}
</STYLE>
When the document encounters a <P> tag with a CLASS attribute set to narrow,
the left margin setting of the less specific P tag overrides the setting of the more
specific P.narrow class because of the important declaration. Note that this is an
artificial example because you typically would not include conflicting style rules in
the same style sheet. The important declaration can play a role when a document
imports one or more style sheets. If a generic rule for the specific document must

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Cascade Precedence Rules 61

override a more specific rule in an imported style sheet, the important declaration
can influence the cascading order.

>
=
=3
=

=
o

o

-
=
(Y]
3
(1]
=
=
=
=

NOTE The important declaration is not implemented in Navigator 4, but
does work in Internet Explorer 4.

Determining a Selector’s Specificity

The fourth cascading precedence rule refers to the notion of specificity, or how
well a rule selector targets a particular element in a document. The CSS recom-
mendation establishes a ranking system that assigns values to three categories,
arbitrarily designated a, b, and c¢. These categories represent the counts of items
within a rule selector, as follows:

The count of ID selectors
b The count of other selector types
¢ The count of elements mentioned by name in the selector
For any rule selector, the browser calculates the counts and then concatenates the

values to come up with a specificity value. Table 3-4 displays a sequence of rule
selectors in increasing specificity.

Table 3-4. Specificity Ratings for Rule Selectors

Rule Selector | a | b | ¢ | Specificity Rating
EM 0]01]1

P EM 010122

DIV P EM 0j]0|3|3

EM.hot 01 1|11

P EM.hot 011 |2]12

#hotStuff 11010 100

Browsers use the highest applicable specificity rating value to determine which
rule wins any conflict. For example, if a style sheet defines the six rules for EM ele-
ments shown in Table 3-4 (with the #hotStuff rule being an ID selector), the
browser applies the highest relevant specificity rating to each instance of the EM
element. For example, an element with the tag <EM CLASS=hot> inside an H1 ele-
ment most closely matches the EM.hot rule selector (specificity rating of 11), and
therefore ignores all other selectors. But if the same EM element is placed inside a
P element, the more specific rule selector (P EM.hot) wins.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

62 Chapter 3: Adding Style Sheets to Documents

Cross-Platform Style Differences

Despite the commonality that CSS brings to Navigator and Internet Explorer, there
is no guarantee that the visual representation of a particular style will be the same
in both browsers. Differences can be attributed to browser bugs, varying interpre-
tations of the standard, and disagreements in design philosophies. Differences can
also accrue even among different operating system versions of the same browser.

To demonstrate this point, Figures 3-4, 3-5, and 3-6 show three different rendi-
tions of the same CSS-enhanced page (Example 3-4) in Internet Explorer 4 for
Windows 95, Navigator 4 for Windows 95, and Navigator 4 for the Macintosh. All
browser windows were sized to fill a 640-by-480 monitor, minus the Windows 95
Taskbar and Macintosh menu bar.

3 ID Selector - Microsoft Internet Explorer
J File Edit “iew Go Favortes Help |

]@@9@‘@@@

Back Fomward Stop Refresh Home Search Fawortez History Channels

J Links

[

Fullzcreen

Get a Load of This!

This is a normal paragraph. This is a normal paragraph. This is a
normal paragraph. This is a normal paragraph. This is a normal
paragraph.

is is a paragraph fo be sef aparf with wider
arging, red color AND a red border. This iz a
aragraph to be zet apart with wider margins, red
color AND a red border.

This is a normal paragraph. This is a normal paragraph. This is a
normal paragraph. This is a normal paragraph. This iz a normal
paragraph.

@ Cone | l_l_l_ 25 Local intranet zone

Figure 3-4. Example 3-4 loaded into Internet Explorer 4 for Windows 95

Notice how each browser shows a vastly different quantity of the document, even
though a specific font point size is assigned for all paragraph elements. Next,
check out how Internet Explorer and Navigator treat default padding between a
border and its content: Navigator automatically builds in a three-pixel padding
(which cannot be overridden) to keep content away from a border. Another point

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Cross-Platform Style Differences 63

ID Selector - Metscape

Eil= Edit View Go Communicator Help

Back Forward Reload Home Seach Guide Frint Secunty Stop E

|»

Get a Load of This!

This 15 a normal paragraph. This 15 a normal paragraph. This 15 a normal
paragraph. This is a normal paragraph. This is a normal paragraph.

This 15 a paragraph fo be set apart with wider marging,
red color AND ared border This is a paragraph to be set
apart with wider margins, red color AND ared border.

This is a normal paragraph. This is a normal paragraph. This is a normal
paragraph. This 1 a normal paragraph. This is a normal paragraph.

Thiz 15 a paragraph to be sef apart with wider margins and

red color. This is a paragraph to be set apart with wider

margins and red color. This is a paragraph to be set apart with (i
wider margins and red color. =

= | |Document; Done

Figure 3-5. Example 3-4 loaded into Navigator 4 for Windows 95

that may not be clearly visible from the figures is that the precise shades and shad-
owing of the border are different between the two browser brands (detailed galler-
ies are available in the border-style section of Chapter 10).

There are some bugs that may bite you from time to time. For example, if you
specify a color attribute for an LI element inside a UL or OL element in Navigator
4, only the bullet or number gets the color, not the text for the item. This is a
known bug and is detailed in Netscape’s release notes for Navigator.

You may also encounter outrageously frustrating anomalous behavior when apply-
ing some CSS syntax attributes, especially when elements are nested within one
another. With rare exceptions (such as Navigator’s built-in padding), it is difficult
to predict errant behavior patterns. Different combinations of style attributes, ele-
ment nesting, and especially positioning specifications (covered in Chapter 4) can
make each page design a new challenge. Except where the browser embodies
pure buggy behavior (Internet Explorer 4.0 for the Macintosh is particularly trou-
blesome), you should eventually be able to find workarounds to make the Ver-
sion 4 browsers behave within an acceptable range of compatibility. Just remem-
ber, at this stage of style sheet deployment the simpler you make your design, the
more likely it is you’ll succeed in making it look the same on both browsers.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
-
=
Y
2,
(1]
=
= |
]
-

>
=
=3
=

=
o

64 Chapter 3: Adding Style Sheets to Documents

Netscape: ID Selector

2 o A & 2 £ 4 <4 & 0

: Back Forward Reload Huorme Search Guide Irages Print Security Stop
[

Get a Load of This!

Thiz 15 a nermal paragraph. This 12 a nermal paragraph. This is a nortnal
paragraph. This is a normal paragraph. This is a normal paragraph.

This iz a pargcraphk lo be sef gpar? with wider
marging, red color AMND a red border. This is a paragraph
to be set apart with wider margine, red color AND a red
border.

Thiz 15 a nermal paragraph. This 12 a nermal paragraph. This is a nortnal
paragraph. This is a normal paragraph. This is a normal paragraph.

Thiz 15 a pargerapk o he sel gpart with wider margins
and red coler. This iz a paragraph to be set apart with wider
marging and red color. This is a paragraph to be set apart
with wider margins and red color.

= | =
et

Figure 3-6. Example 3-4 loaded into Navigator 4 for the Macintosh

All these discrepancies point to the fact that deployment of CSS style sheets across
all DHTML-capable browsers requires testing on both browser brands and on as
many operating systems as you can get your hands on. Carefully study the output
on each to make sure that your design goals are met, even if the exact implemen-
tation doesn’t match pixel for pixel on the screen.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

In this chapter:

* Creating Positionable
Elements

* Positioning Attributes

» Changing Attribute
Values via Scripting

* Cross-Platform
Position Scripting

" Windou Resising Adding Dynamic

* Common Positioning

Tasks Positioning to
Documents

Cascading style sheets, as described in Chapter 3, Adding Style Sheets to Docu-
ments, are primarily concerned with how content looks on the screen (or how it
looks on a page printed from the screen). An extension to CSS, called CSS-Posi-
tioning (or CSS-P), is primarily concerned with where content appears on the
palfs!fcge. CSS-P is blended with regular CSS in the CSS2 specification, but because
the Version 4 browsers were designed while positioning was a separate standards
effort, I use the CSS-P term frequently.

The CSS-P recommendation from the W3C focuses on the HTML code that authors
put into documents to govern the position of elements on the page when the
browser-controlled flow of content just isn’t good enough. To accomplish element
positioning, a browser must be able to treat positionable elements as layers that
can be dropped anywhere on the page, even overlapping other fixed or position-
able elements—something that normal HTML rendering scrupulously avoids.

The notion of layering adds a third dimension to a page, even if a video monitor
(or a printed page) is undoubtedly a two-dimensional realm. That third dimen-
sion—the layering of elements—is of concern to you as the author of positionable
content, but is probably of no concern to the page’s human viewer.

* T use the term “layer” guardedly here. While the word appears in the Netscape DHTML lexicon (Nav-
igator has a <LAYER> tag and a scriptable layer object), you probably won'’t see the same word being
used by the Microsoft camp. My application of the term is generic and it aptly describes what's going on
here: a positionable element is like an acetate layer of a film cartoon cel. The cartoon artist starts with a
base layer for the scene’s backdrop and then positions one or more acetate layers atop the background;
each layer is transparent except for some or all of the art for a single frame of the film. For the next frame
of the cartoon, perhaps one of the layers for a character in the background must move a fraction of an
inch. The artist repositions that layer, while the others stay the same. That's what I mean by “layer” in this
context.

65
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

66 Chapter 4: Adding Dynamic Positioning to Documents

While the CSS-P recommendation offers a cross-platform way to lay out position-
able elements, the browsers have extended the idea by turning positionable ele-
ments into scriptable objects whose properties can be changed in response to user
action. Now you have the opportunity to create some very interactive content:
content that flies around the page, hides and shows itself at will, centers itself hori-
zontally and vertically in the currently sized browser window, and even lets itself
be dragged around the page by the user.

The implementations of positionable elements in Navigator 4 and Internet Explorer
4 are perhaps the most divergent parts of DHTML to grace both browsers. If you
have the luxury of designing an application for only one browser platform, you
can focus on the implementation for that browser to the exclusion of the other
browser’s idiosyncrasies. Successful cross-platform development, however,
requires knowledge of both browsers’ object models (at least as they relate to
positionable elements) and the range of DHTML authoring capabilities in both
browsers. As you will see in this chapter, there is a common denominator of func-
tionality, but it is often up to you to raise the level of commonality in order to get
a highly interactive page to work identically in both browsers.

Creating Positionable Elements

Regardless of browser, you can make any HTML container element (an element
with a start and end tag) a positionable element. As a ridiculous example of how
true the preceding statement is, you could direct a browser to render a word sur-
rounded by / tags at a position that is 236 pixels below its normal place
in a paragraph (but why would you?).

CSS-P Elements

To turn an HTML element into a positionable element that works in both Naviga-
tor 4 and Internet Explorer 4, you must assign it a CSS style rule that has a special
attribute: position. As demonstrated in Chapter 3, you can assign this style
attribute by including a STYLE attribute in the actual HTML tag or using an ID
selector for the rule and setting the corresponding ID attribute in the element’s
HTML tag.

The following HTML document demonstrates the two techniques you can use to
turn an element into a positionable element:

<HTML>
<HEAD>
<STYLE TYPE="text/css">
#someSpan {position:absolute; left:10; top:30}
</STYLE>
</HEAD>
<BODY>

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Creating Positionable Elements 67

<DIV ID="someDiv" STYLE="position:absolute; left:100; top:50">

Hello.

Hello, again.

</DIV>

</BODY>

</HTML>
The first technique defines an ID selector inside a <STYLE> tag that is mated to an
ID attribute of a SPAN element in the document’s body. The second method
defines the style as an inline attribute of a <DIV> tag. As with ordinary CSS style
sheets, you can use any combination of methodologies to apply position style
rules to elements in a document.

Once you have set the position attribute, you can set other CSS-P attributes,
such as left and top, to position the element. Possible values for the position
attribute are:

absolute
Element becomes a block element and is positionable relative to the ele-
ment’s positioning context.

relative
Element maintains its normal position in element geography (unless you over-
ride it) and establishes a positioning context for nested items.

static
Item is not positionable and maintains its normal position in element geogra-
phy (default value).

Absolute Versus Relative Positioning

The position attribute terminology can be confusing because the coordinate sys-
tem used to place an element depends on the positioning context of the element,
rather than on a universally absolute or relative coordinate system. A positioning
context defines a point somewhere on the screen that is coordinate point 0,0. The
most basic positioning context is the invisible box created by virtue of the <HTML>
tag set of the document, corresponding to the BODY element. In other words, the
entire (scrollable, if necessary) space of the browser window or frame that dis-
plays the content of the document is the default positioning context. The 0,0 coor-
dinate point for the default positioning context is the upper left corner of the win-
dow or frame. You can position an element within this context by setting the
position attribute to absolute and assigning values to the left and top attributes
of the style rule:
<DIV ID="someDiv" STYLE="position:absolute; left:50; top:100">

Hello. And now it's time to say goodbye.
</DIV>

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

68 Chapter 4: Adding Dynamic Positioning to Documents

Figure 4-1 shows how this simple block-level element appears in a browser win-
dow.

ID Selector - Hetzcape

File Edit Wiew Go Communicator Help

Back Fopward Reload Home Search Guide Frint Securty Stop m

Hello. And now it's time to say goodbye.

|2 | Document: Done S s A

Figure 4-1. An element positioned within the default positioning context

Each time an element is positioned, it spawns a new positioning context with the
0,0 position located at the top left corner of that element. Therefore, if we insert a
positioned element in the previous example nested within the DIV element that
forms the new positioning context, the newly inserted element lives in the new
context. In the following example, we insert a SPAN element inside the DIV ele-
ment. Positioning attributes for the SPAN element place it 10 pixels in from the left
and 30 pixels down from the top of its positioning context—the DIV element in
this case:

<DIV ID="someDiv" STYLE="position:absolute; left:100; top:50">

Hello.

Hello, again.

And now it's time to say goodbye.

</DIV>
Figure 4-2 shows the results; note how the DIV element’s positioning context gov-
erns the SPAN element’s location on the page.

Notice in the code listing that the position attribute for each element is abso-
lute, even though you might say that the nested SPAN element is positioned rela-
tive to its parent element. Now you see why the terminology gets confusing. The
absolute positioning of the SPAN element removes that element from the docu-
ment’s content flow entirely. The split content of the parent DIV element closes
up, as if the content of the SPAN element wasn’t there. But the SPAN element is in
the document—in its own plane and shifted into a position within the DIV ele-
ment’s positioning context. All other parent-child relationships of the DIV and
SPAN elements remain intact (style sheet rule inheritance, for instance), but physi-
cally on the page, the two elements appear to be disconnected.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Creating Positionable Elements 69

D Selector - Hetscape

File Edt Yew Go Communicator Help

Back Fopward FReload Home Search Guide Frint Securty Stop m

Hello. And now it's tne to say goodbye.

Hells, again.

= | Document: Done

Figure 4-2. A second element nested inside another

The true meaning of relative positioning can be difficult to visualize because
experiments with the combination of absolute and relative positioning often yield
bewildering results. Whereas an absolute-positioned element adopts the position-
ing context of its HTML element parent, a relative-positioned element adopts the
positioning context of the element’s normal (unpositioned) location within the
document’s content flow. A sequence of modifications to some content should
help demonstrate these concepts.

To begin, here is a fragment with a single absolute-positioned DIV element that
contains three sentences:

<DIV ID="someDiv" STYLE="position:absolute; left:100; top:50">
Hello.

Hello, again.

And now it's time to say goodbye.

</DIV>

This code generates a simple line of text on the page, as shown in Figure 4-3.

D Selector - Netscape
File Edit Wiew Go Communicator Help

Print Security Stop m

Helle. Hello, again. And now it's time to say goodbye.

E| | Document: Done

Figure 4-3. A simple three-sentence DIV element

Pay special attention to the location of the middle sentence as it flows in normal
HTML. Now, if that second sentence is made into a relative-positioned SPAN ele-
ment supplied with some offset (left and top) values, something quite unusual

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

70 Chapter 4: Adding Dynamic Positioning to Documents

happens on the screen. The following fragment positions the second sentence 10
pixels in from the left and 30 pixels down from the top of some positioning con-
text:

<DIV ID="someDiv" STYLE="position:absolute; left:100; top:50">

Hello.

Hello, again.

And now it's time to say goodbye.

</DIV>
But what is that context? With a relative-positioned element, the anchor point of its
positioning context is the top left corner of the place (the box) where the normal
flow of the content would go. Therefore, by setting the left and top attributes of
a relative-positioned element, as in the previous code fragment, you instruct the
browser to offset the content relative to its normal location. You can see the
results in Figure 4-4.

D Selector - Netscape
File Edt %iew Go Communicator Help
Back Fonward Reload Home Seach Guide Print Securty Stop m
IR
Hello. And now t's time to say goodbye.
Hello, again.
=] | Document; Done i

Figure 4-4. The relative-positioned element generates its own positioning context

Note how the middle sentence is shifted within the context of its normal flow loca-
tion. The positioning context established by the relative-positioned element is now
available for positioning of other elements (most likely as absolute-positioned ele-
ments) that you may wish to insert within the tag pair. Take special notice
in Figure 4-4 that the browser does not close up the space normally occupied by
the SPAN element’s content because it is a relative-positioned element; had it been
absolute-positioned, the surrounding text would have closed the gap. All this
behavior is dictated by the CSS-P recommendation.

In most cases, you don’t assign values for left and top to a relative-positioned
element because you want to use a relative-positioned element to create a posi-
tioning context for more deeply nested elements that are absolutely positioned
within that context. Using this technique, regular content flows according to the
browser window’s current size or as its appearance is affected by style rules, while
elements that must be positioned relative to some running content are always
positioned properly.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Creating Positionable Elements 71

To demonstrate this concept, consider the following fragment that produces a long
string of one-word sentences. The goal is to have the final sentence always appear
aligned with the final period of the last “Hello” and 20 pixels down. This means
that the final sentence needs to be positioned within a context created for the final
period of the last “Hello.” In other words, the period character must be defined as
a relative-positioned element, so that the nested SPAN element can be positioned
absolutely with respect to the period. The following code shows how it’s done:

<DIV ID="someDiv" STYLE="position:absolute; left:100; top:50">Hello. Hello.

Hello. Hello. Hello. Hello. Hello. Hello. Hello. Hello. Hello. Hello. Hello.

Hello. Hello. Hello.

And now it's time to say goodbye.

</DIV>
Carefully observe the nesting of the elements in the previous example. Figure 4-5
shows the results in a small browser window.

D Selector - Netscape

Fil= Edit Wiew Go Communicator Help

Back Fopward Reload Home Search Guide Frint Security Stop m

Hello. Hello. Hello. Helle. Helle. Hello. Hello. Hello. Hello.
Helle. Hello. Helle. Helle. Hello. Hello. Hello.
And now it's
tirne to say
goodbye.

,F| | Document: Done

Figure 4-5. A relative-positioned element creates a positioning context for another element

A

If you resize the browser window so that the final “Hello” appears on another line
or in another vertical position on the page, the final sentence moves so that it
always starts 20 pixels and just to the right of the period of the final “Hello” of the
content. When applied in this fashion, the term “relative positioning” makes per-
fect sense.

Overlapping Versus Wrapping Elements

One of the advantages of CSS-Positioning is that you can set an absolute position
for any element along both the horizontal and vertical axes as well as its position
in stacking order—the third dimension. This makes it possible for more than one
element to occupy the same pixel on the page, if you so desire. It is also impor-

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

72 Chapter 4: Adding Dynamic Positioning to Documents

tant to remember that absolute-positioned elements exist independently of the sur-
rounding content of the document. In other words, if a script shifts the position of
such an element, the surrounding content does not automatically wrap itself
around the new position of the element.

If your design calls for the content of an element to wrap around another ele-
ment, you should use the CSS float attribute, rather than CSS-Positioning. Proper-
ties of the float attribute let you affix an element at the left or right margin of a
containing block element and at a specific location within the running content. For
example, if you want to place an image in the middle of a paragraph, you wrap
that image element inside a SPAN element whose style sets the float attribute, as
follows:

<P>Lots of text.

And more text.</P>
Now, no matter how the browser window is sized or how the font rendering var-
ies from platform to platform, the text in the paragraph always wraps around the
image. A floating element defined in this manner, however, is not a positionable
element in that you cannot script positionable element properties of such an item.

Netscape Layers

Netscape Navigator 4 provides an alternate syntax for creating positionable ele-
ments in the form of two sets of tags that are not recognized by IE 4 or HTML 4.0.
They are the <LAYER> and <ILAYER> tags, which correspond to absolute and rela-
tive positioning styles, respectively. The basic concepts of absolute and relative
positioning from CSS-P apply to these tags, so the discussion earlier in this chap-
ter about the two positioning styles applies equally well to Netscape layers.
Because you use HTML tags to generate these elements, attributes are set like reg-
ular HTML attributes (attributeName="value"), rather than with the CSS-style
rule syntax (attributeName:value).

The <LAYER> tag generates an element that can be absolute-positioned within the
positioning context of the next outer layer (or the base document if that’s the next
outer layer). The following code fragment from the body of a document generates
the same content shown earlier in Figure 4-2:

<LAYER NAME="someLayer" LEFT=100 TOP=50>
Hello.

<LAYER NAME="anotherlLayer" LEFT=10 TOP=30>
Hello, again.

</LAYER>

And now it's time to say goodbye.

</LAYER>

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Creating Positionable Elements 73

The inner layer (anotherLayer) is absolute-positioned relative to the next outer
layer (someLayer). That outer layer is absolute-positioned relative to the default
positioning context of the document.

In the following fragment, the inner layer is changed to be a relative-positioned
element by using the <ILAYER> tag (inline layer):

<LAYER NAME="someLayer" LEFT=100 TOP=50>

Hello.

<ILAYER NAME="inLinelLayer" LEFT=10 TOP=30>

Hello, again.

</ILAYER>

And now it's time to say goodbye.

</LAYER>
The <ILAYER> tag lets you designate a piece of running content that has its own
positioning context. In this case, the <ILAYER> content is positioned within that

context, leaving a gap in the running content, as shown earlier in Figure 4-4.

A more practical application of the <ILAYER> tag is to use it to set a positioning
context for further nested absolute-positioned layers. Thus, in the following code
fragment, an <ILAYER> is applied to the final period of the outer layer. The
<LAYER> tag nested inside the <ILAYER> tag obeys the positioning context of that
inline layer, such that the final content tracks the location of the period regardless
of normal content wrapping, as shown earlier in Figure 4-5:

<LAYER ID="someLayer" LEFT=100 TOP=50>Hello. Hello. Hello.

Hello. Hello. Hello. Hello. Hello. Hello. Hello. Hello. Hello. Hello. Hello.

Hello. Hello<ILAYER NAME="inLinelLayer">.

<LAYER NAME="anotherLayer" TOP=20>

And now it's time to say goodbye.

</LAYER>

</ILAYER>

</LAYER>
There is more to the Netscape layer than its simply being an alternative syntax to
CSS-Positioning. Each layer and inline layer object can have external content
associated with it (via an SRC attribute, as documented in Chapter 8, HTML Refer-
ence). In fact, in the document object model for Navigator 4, each layer object
contains its own document object, which a script can manipulate like any docu-
ment object. This object model is vastly different from the one Internet Explorer 4
uses for positionable objects, so when it comes to writing scripts that reference
positionable objects, the situation gets a bit gnarly, as described later.

One other point about the relationship between Netscape layers and CSS-P objects
is that Navigator automatically converts CSS-P objects into layers for the object
model of the currently loaded document. For example, the following document
defines one positionable element in CSS-P syntax:

<HTML>
<HEAD>

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o
-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

74 Chapter 4: Adding Dynamic Positioning to Documents

</HEAD>

<BODY>

<DIV STYLE="position:absolute; left:100; top:50">

Hello.

</DIV>

</BODY>

</HTML>
Navigator 4’s object model treats the DIV element as a layer; “Hello.” is the con-
tent of the layer’s document object. Therefore, while Navigator’s scripting environ-
ment works only with layer objects for controlling positioning, you have the
same level of scriptability whether a positionable element is defined as a Naviga-
tor layer or as a CSS-P element.

Positioning Attributes

The CSS-Positioning recommendation specifies several properties that can be set as
style sheet rule attributes. These attributes are used only when the position
attribute is included in the rule; otherwise they have no meaning. Implementation
of all the CSS-P attributes varies from browser to browser. Table 4-1 provides a
summary of all the attributes defined in the W3C recommendation as well as how
those attributes are implemented in the browsers. A separate column shows the
Navigator <LAYER> tag attribute that corresponds to the CSS-P attribute.

Table 4-1. Summary of Positioning Attributes

CSS Attribute | Description CSS-P | IE | NN | Layer Attribute
position Defines a style rule as being for a 1 4 | 4 -

positionable element
left The offset distance from the left 1 4 | 4 LEFT

edge of the element’s positioning
context to the left edge of the
element’s box

top The offset distance from the top 1 4 | 4 TOP
edge of the element’s positioning
context to the top edge of the
element’s box

width The width of an absolute-posi- 1 4 | 4 WIDTH
tioned element’s content

height The height of an absolute-posi- 1 4 | 4 HEIGHT
tioned element’s content

clip The shape and dimension of the 1 4 4 CLIP

viewable area of an absolute-posi-
tioned element

overflow How to handle content that 1 4 4 -
exceeds its height/width settings

visibility | Whether a positionable element is 1 4 4 VISIBILITY
visible or not

z-index The stacking order of a position- 1 4 | 4 Z-INDEX

able element

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Positioning Attributes 75

The implementation of these positioning attributes is not completely identical in
both Version 4 browsers, but there is a large degree of compatibility, with the
exception of the clip and overflow attributes.

left, top, beight, and width Attributes

Four attributes deal with lengths, whether they are for positioning of the element
or determining its physical dimensions on the page. Recall from Chapter 3
(Figure 3-2) that height and width refer to the size of the content, exclusive of
any padding, borders, or margins assigned to the element. The left and top val-
ues, however, apply to the location of the box edges (content + padding + border
+ margin). When using the CSS syntax, each of these four attributes can be speci-
fied as a fixed length or a percentage. Fixed-length units are borrowed from the
CSS specification, as shown in Table 4-2. Percentage values are specified with an
optional + or - symbol, a number, and a % symbol. Percentage values are applied
to the parent element’s value.

Table 4-2. Length Value Units (CSS and CSS-P)

Length Unit | Example | Description

em 1.5em Element’s font height

ex lex Element’s font x-height

px 14px Pixel (precise length is depends on the display device)
in 0.75in Inch (absolute measure)

cm 5cm Centimeter (absolute measure)

mm 55mm Millimeter (absolute measure)

pt 10pt Point (equal to 1/72 of an inch)

pc 1.5pc Pica (equivalent to 12 points)

The length unit you choose should be based on the primary output device for the
document. Most HTML pages are designed for output solely on a video display, so
the pixel unit is most commonly used for length measures. But if you intend your
output to be printed, you may obtain more accurate placement and relative align-
ment of elements if you use one of the absolute units: inch, centimeter, millime-
ter, point, or pica. Print quality also depends on the quality of the printing engine
built into the browser.

For attributes of the <LAYER> tag that correspond to the CSS attributes, the values
you assign do not include units. All measurements are in pixels.

Navigator 4 and Internet Explorer 4 also disagree on how to render certain types
of block elements, as described at the end of Chapter 3. Navigator closes up the
height of a block around its content, regardless of the height setting of the ele-
ment. Moreover, any content, such as text, an image, or even a solid background
color, is inset from the edges of the element by a forced padding of about three
pixels that cannot be removed. On the other hand, if you define a positionable

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

76 Chapter 4: Adding Dynamic Positioning to Documents

object via the <LAYER> tag in Navigator, these problems disappear, and the width
and height attributes truly set the size of the block element.

The clip Attribute

A clipping region is a geometric area (currently limited to rectangles) through
which you can see a positioned element’s content. For example, if you include an
image in a document, but want only a small rectangular segment of the whole
image to appear, you can set the clip attribute of the element to limit the view-
able area of the image to that smaller rectangle. It is important to remember that
the element does not shrink in overall size for the purposes of document flow, but
any area that is beyond the clipping rectangle becomes transparent, allowing ele-
ments below it in the stacking to show through. If you want to position the view-
able, clipped region so that it appears without a transparent border, you must
position the entire element (whose top left corner still governs the element’s posi-
tion in the grid). Similarly, because the clipping region encompasses viewable
items such as borders, you must nest a clipped image inside another element that
sets its own border.

Figure 4-6 demonstrates (in three stages) the concept of a clipping region relative
to an image. It also shows how positioning a clipped view requires setting the
location of the element based on the element’s original size.

Fil= Edit View Go Communicator Help

Back Fomweard Reload Home Search Guide Frint Securty Stop ﬂ

Unclipped image (396 x 84):

.O’REILLY

Compuier Books + Web Software

Image clipped to {clip:rect (0px 3%6px 83px 98px)}:

O’REILLY

Computer Books + Web Software

Image clipped and moved to { left: -98px}:

O’REILLY

Computer Books » Web Software

= | |Document: Done

Figure 4-6. How element clipping works

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Positioning Attributes 77

Setting the values for a clip region requires slightly different thinking from how
you might otherwise describe the points of an rectangle. The clip attribute
includes a shape and four numeric values in the sequence of top, right, bottom,
left—the same clockwise sequence used by CSS to assign values to edge-related
attributes (borders, padding, and margins) of block-level elements. Moreover, the
values are entered as a space-delimited sequence of values in this format:

clip:rect(top right bottom left)

In Figure 4-6, the goal is to crop out the critter from the image and align the
clipped image to the left. The original image (396 by 84 pixels) is at the top. To
trim the critter requires bringing in the left clip edge 98 pixels. The bottom, one-
pixel rule is also clipped:

Then, to reposition this image so that the clipped area abuts the left edge of its
positioning context, the style rule for the element must assign a negative value to
take up the slack of the now blank space:

The overflow Attribute

If you define a fixed width and height for a relative- or absolute-positioned ele-
ment, you can tell the browser how to handle content that extends beyond the
physical dimensions of the element block. While the overflow attribute is defined
to help in this regard, unfortunately the implementation of this attribute is not the
same in Navigator 4 and Internet Explorer 4. Consider the following document
fragment that affects how much of the upper left corner of an image appears in
the browser window:

In the previous example, even though the width and height style attributes are
set for a SPAN wrapper around an image, the natural width and height of the
image force both browsers to show every pixel of the image. In other words, the
content overflows the edges of the block containing the image. By adding an
overflow attribute and value to the style rule, you can instruct the browser to cut
the view at the edges of the block defined by the style rule:

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

78 Chapter 4: Adding Dynamic Positioning to Documents

Thus, any content (between the and tag pair) is clipped to the
size of the SPAN element’s box. Navigator 4, however, exhibits slightly different
behavior in that the horizontal dimension is never clipped by the overflow
attribute. In the preceding example, the visible portion of the image is 50 pixels
square in Internet Explorer 4 and 120 pixels wide by 50 pixels high in Navigator 4.
If you truly want to clip the view of any content, it is best to use the clip attribute
(described in the previous section) to set the viewing boundaries of content.

Internet Explorer also supports an optional CSS-P recommendation for setting the
overflow attribute to scroll. This setting automatically displays scrollbars (a full
set, unfortunately) inside the clipped rectangle defined by the positioned ele-
ment’s height and width attributes. Content is clipped to the remaining visible
space; the user clicks or drags the scrollbars to maneuver through the content
(image or text). This attribute setting is not available in Navigator 4.

The visibility Attribute

The purpose of the visibility attribute is obvious: it makes an element visible
or hidden. Unless the element is under script control, however, it is unlikely that
you would bother setting the attribute’s value (to inherit, visible, or hidden).
There is rarely a need to load a normally visible HTML element into a page as hid-
den, unless you also have a script that changes its state as the user visits the
page—perhaps in response to mouse clicks or a timed event.

It is, however, important to understand the difference between setting a position-
able element’s visibility attribute and setting the CSS display attribute to
none. When a positionable element is set to be hidden, the space occupied by the
element—whether it be a position in the stacking order or the location for flowed
content set off as a relative-positioned element—does not go away. If you hide a
relative-positioned element that happens to be an emphasized chunk of text
within a sentence, the rest of the sentence text does not close up when the posi-
tioned portion is hidden.

In contrast, if you set the CSS attribute of an element to display:none, this tells
the browser to ignore the element as it flows the document. Navigator 4 does not
have a scriptable property to correspond to the display style attribute, so you
cannot modify this property on the fly (although Navigator does recognize the
display attribute when a page loads). But in Internet Explorer 4, you can change
the display property on the fly under script control. When you do, the content
automatically reflows, closing up any gap left by the “undisplayed” element. This
is how some DHTML-driven collapsible menus are created and controlled.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Positioning Attributes 79

The z-index Attribute

Positioned elements can overlap each other. While overlapping text doesn’t usu-
ally make for a good page design, overlapping opaque elements, such as images
and blocks with backgrounds, can be put to good use, particularly when the ele-
ments are under script control. The z-index attribute lets you direct the stacking
order (also called the z-order, where Z stands for the third dimension, after X and
Y) of elements within a positioning context. The higher the z-index value (values
are integers), the closer the element layer is to the user’s eye.

Positioned elements—even if their z-index attributes are not specified in their
style rules—exist as a group in a plane closer to the user’s eye than nonposi-
tioned content. The notable exception to this is Navigator 4’s belief that any form
element (positioned or otherwise) should exist in a plane in front of positioned
elements, regardless of z-index setting. In other words, you cannot obscure a form
element behind a positioned element in Navigator 4.

If you do not specify the z-index attribute for any positioned elements in a docu-
ment, the default stacking order is based on the sequence in which the positioned
elements are defined in the HTML source code. Even so, these positioned items
are in front of nonpositioned items (except form elements in Navigator 4). There-
fore, you need to specify z-index values only when the desired stacking order is
other than the natural sequence of elements in the source code.

More commonly, z-index values are adjusted by scripts when a user interacts with
maneuverable content (by dragging or resizing), or when a script moves an ele-
ment as a form of animation. For example, if your page allows dragging of ele-
ments (perhaps an image acting as a piece of a jigsaw puzzle), it may be valuable
to set the z-index attribute of that element to an arbitrarily high value as the user
drags the image. This keeps the image in front of all other positionable puzzle
pieces while being dragged (so it doesn’t “submarine” and get lost behind other
elements). When the user releases the piece, you can reset the z-index attribute
to, say, zero to move it back among the pool of other inactive positioned ele-
ments.

You cannot interleave elements that belong to different positioning contexts. This
is because z-index values are relative only to sibling elements. For example, imag-
ine you have two positioned DIV elements named Divl and Div2 (see
Figure 4-7). Divl contains two positioned SPAN elements; Div2 contains three
positioned SPAN elements. A script can adjust the z-index values of the elements in
Divl all they want, but the two elements are always kept together; similarly the
three elements in Div2 are always “contiguous” in their stacking order. If you
swap the z-index values of Divl and Div2, the group of elements contained by
each DIV swaps positions as well.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

80 Chapter 4: Adding Dynamic Positioning to Documents

SPAN 2.1
% SPAN 1.1
——— SPAN 1.2
DIvV2 DIV1
BODY

Figure 4-7. Stacking order is relative to the positioning context of the element

Changing Attribute Values via Scripting

Despite the similarity of the Version 4 browsers’ support for defining positionable
elements, the two browsers diverge widely in how you control attribute values
from a script. The primary differences can be attributed to the way each browser
implements its document object model. When these browser versions were
released in 1997, the DOM standardization effort was only at the earliest stages in
defining the requirements for such a standard. As a result, each browser company
extended its object model from its previous version along clashing philosophical
lines. The level of compatibility is fairly low, but the regular nature of both object
models makes it possible to raise that compatibility level to embed sophisticated
DHTML capabilities for both browsers in the same document.

Referencing Positionable Objects

In comparing the document object models of the two browsers, it is clear that
Internet Explorer 4 went to extremes to make virtually every HTML element a
scriptable object. Navigator 4, on the other hand, restricts access to element prop-
erties by making them read-only except when being set inside JavaScript-syntax
style sheet rules. The first piece of the cross-browser positioning puzzle involves
referring to the positionable elements in a document.

Navigator 4 references

For controlling positionable element properties on the fly, Navigator uses its
layer object model to supply a wide range of methods and directly settable prop-
erties for adjusting an element’s location, size, z-index, and visibility: the family of
CSS-P attributes. Because Navigator internally turns a CSS-P element into a layer
object, you use the same mechanism to manipulate positionable elements, whether
they are created with CSS-P or the <LAYER> tag.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Changing Attribute Values via Scripting 81

NOTE Netscape doesn’t like to use the term layer object when referring to
positionable elements. The company’s official wording is “accessing
style sheet properties from JavaScript via the Document Object
Model.” This implies a Document Object Model standard, which
didn’t exist when this wording was created. Also, it's nearly impossi-
ble to refer to these objects in a Navigator context without using the
word “layer,” since, as you will see, the word can become part of a
reference to a positionable object. It’s like someone introducing him-
self as: “Hi, my name is Fred, but please call me Alice.” This book
uses layer object when referring to an object that uses the proper-
ties, methods, and event handlers of Navigator’s explicitly named
layer object (see Chapter 9, Document Object Reference).

Building a reference to a layer object requires knowledge of the containment
hierarchy of the element within the document. This is because Navigator 4 does
not provide a shortcut referencing mechanism that can dive through all nested ele-
ments of a document and pick one out by name. Instead, the reference must rep-
resent the containment hierarchy starting with the base document object. More-
over, recall that a layer always contains a document. For one layer to contain
another means that the outer layer contains a document, which, in turn, contains
the nested layer. These relationships must be reflected in a reference to a layer
object.

As an example of a one-layer-deep reference, consider the following code:

<HTML>

<BODY>

<DIV STYLE="position:absolute; left:20; top:20">

</DIV>

</BODY>

</HTML>
To access one of the position style attributes, you must build a reference that spec-
ifies the hierarchical path to the layer in the document. Here’s how to set the left

property to a different value:
document . layers[0] .left = 50

Navigator reflects the ID attribute of a CSS-P element as the layer’s name property.
If you assign an ID attribute to the DIV element, you can use that name in the ref-
erence:

document .myLayer.left = 50

To access the content of the layer object, you must extend the reference hierar-
chy to include the document contained by the layer. For example, to change the
image source file in the preceding example, the statement is:

document .layers[0] .document . images[0] .src = "otherImage.gif"

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

82 Chapter 4: Adding Dynamic Positioning to Documents

Once the reference reaches the document holding the content, regular Navigator
document object model references take over, as shown earlier by the reference to
the image object and its src property.

The situation gets more complex when there are two nested levels of positionable
elements. In the following example, a SPAN element defines a relative-positioned
grid for the absolute-positioned DIV element that contains an image:
<HTML>
<BODY>
Here's an image
:
<DIV ID="inner" STYLE="position:absolute; left:5; top:3">

</DIV>

</BODY>
</HTML>

To change the left property of the DIV element, the reference becomes:
document . layers[0] .document. layers[0].left = 10

And to change a property of the deeply nested content, the reference gets quite
long:

document.layers[0] .document.layers[0] .document.images[0] .src = "otherImage.gif"

When scripting deeply nested items such as this, your script statements will be
more manageable if you set a variable to represent an object level somewhere
down the containment hierarchy. For example, if you must refer to the inner layer
and its content in two or more statements, initialize a variable to represent the
inner layer. Then use that variable to simplify references to specific properties or
document objects:

var innerDiv = document.layers[0].document.layers[0]

innerDiv.left = 10

innerDiv.document .images[0] .src = "otherImage.gif"
Assigning ID attributes to elements also assists in making long references more
readable, since it is easier to determine which objects from the document are
being referenced:

document . outer.document . inner.document . images [0] .src = "otherImage.gif

Even though you assign unique names to positioned and nested elements, Naviga-
tor 4’s object model has no instant way to slice through the hierarchy to reach
such a nested element.

Internet Explorer 4 references

Internet Explorer 4 provides a syntax for pinpointing any uniquely named (via the
ID attribute) element in a document (positioned or not). The keyword that makes

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Changing Attribute Values via Scripting 83

it possible is all. This keyword represents a collection of all HTML elements in a
document; it is a property of the base document object. Another important distinc-
tion between browser object models is that each positionable element in IE 4 does
not have its own document object (except for the IFRAME element, which defines
a new frame object within the current document). Therefore, objects that are nor-
mally reflected as collections (Microsoft’s way of describing arrays of objects, such
as images, applets, and links) are referenced directly from the base docu-
ment, rather than through an element hierarchy.

Style sheet rules, including those that affect positioning attributes, are accessible
through a style property of an element. So, while an element may have some of
its own properties that are accessible directly (such as the innerHTML property),
in order to read or modify one of the style sheet rules associated with the ele-
ment, you must include a reference to the style property.

To demonstrate how references work in IE 4, consider the following simple docu-
ment with a DIV element nested inside and a SPAN element:

<HTML>
<BODY>
Here's an image
:
<DIV ID="inner" STYLE="position:absolute; left:5; top:3">

</DIV>

</BODY>
</HTML>

References to the three items influenced by positioning are as follows:

document.all.outer
document.all.inner
document . images [0]

If you want to access one of the style sheet properties, the reference gets a little
longer, to include the style property of the positioned element:

document.all.inner.style.pixelLeft = 10

And yet, to change a property of even the deeply nested image object, the refer-
ence is a simple one:

document. images[0] .src = "otherImage.gif"

Positionable Element Properties

The next piece of the cross-browser positioning puzzle involves the actual prop-
erty names. Table 4-3 shows the primary properties that control a positionable ele-
ment’s location, size, visibility, z-order, and background (many of which mirror

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o
-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

84

Chapter 4: Adding Dynamic Positioning to Documents

CSS-P attributes). For Navigator 4, these properties belong to the layer object; for
IE 4, these properties belong to the style object.

Table 4-3. Common Scriptable Positioning Properties

NN Layer Property

Notes

IE Style Property

left

top

clip.height

clip.width

visibility

zIndex

background

bgColor

The offset in pixels from the left edge of the
current positioning context. The IE 4 style
object has a 1left property, but the value is a
string with the unit of measure (e.g.,
"20px"). So, to manipulate the value of the
left property in IE 4, you should use the
pixelLeft property.

The offset in pixels from the top edge of the
current positioning context. The same situa-
tion applies here as with the left versus
pixelLeft property in IE 4.

The height (in pixels) of the displayed
content, including overflow.

The width (in pixels) of the displayed
content, including overflow.

The width (in current units) of the element,
as directed by the CSS width attribute.

The height (in current units) of the element,
as directed by the CSS height attribute.
The layer object returns one of "show",
"hide", or "inherit"; the style object
returns one of the CSS-P standard values of
"visible", "hidden", or "inherit". But
the layer object property can be set to the
standard property values without complaint.
The stacking order of the element. There is
complete agreement between the two
browsers with regard to this property.

The URL of a background image.

The background color of the element.
Although the browsers use different property
names, they use the same color values,
including Netscape plain-language names.

pixelleft

pixelTop

posWidth
posHeight

visibility

zIndex

background
backgroundColor

Navigator 4 generally assigns default values to positionable object properties, even
if the style rule (or <LAYER> tag) does not specifically set the corresponding
attribute values. Internet Explorer 4 tends to leave properties empty if the associ-
ated style attributes are not set in the rule.

Layer Object Methods

The third and final piece of the cross-browser positioning puzzle concerns the
techniques you use to alter the positionable properties. The Internet Explorer 4

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Changing Attribute Values via Scripting 85

style object is heavy on properties, but very light on methods. Aside from two
generic methods that get and set style attributes (getAttribute() and set-
Attribute()), there are no facilities for directly influencing object behavior with
methods. Navigator 4’s layer object, on the other hand, provides eight methods
that you can use to efficiently change the location, size, and stacking order of an
element.

The layer.moveBy () method demonstrates just how efficient these methods are.
The method takes two parameters that specify the number of pixels to move an
element along the X and Y axes. Positive values indicate movement to the right
and downward; negative values direct movement to the left and upward. Thus, to
repeatedly move an object diagonally to the right and down, in 5 incremental
steps of 10 pixels each, you can use the following for loop in JavaScript:
for (var i = 0; i < 5; i++) {
document . layers[0] .moveBy (10, 10)
}
Doing this same action with an Internet Explorer 4 positionable element requires
adjusting each property that controls the pixel location of the element:
for (var i = 0; 1 < 5; i++) {
document.all.elementName.style.pixellLeft += 10
document.all.elementName.style.pixelTop += 10
}
Despite what might appear to be stair-stepped action in IE 4, the browser buffers
the changes so that the animation appears in the straight line intended by the
author.

The full set of Netscape layer methods consists of the following items:

e Jload("filename", y)

e moveAbove (layerOby)

e moveBelow(layerObyj)

e moveBy(deltaX, deltaYy)

e moveTo (X, V)

e moveToAbsolute(x, y)

e resizeBy(deltaX, deltay)

e resizeTo (width, height)

Not every method has a scriptable property equivalent in IE 4 because the object
and rendering models vary in some key places, such as specifying the viewable
size of a positionable element. Mastering one platform’s way of scripting position-
able elements may mean having to “unlearn” or ignore items that don’t have a
cross-platform equivalent.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

86 Chapter 4: Adding Dynamic Positioning to Documents

Cross-Platform Position Scripting

Reconciling the differences between the object and rendering models of Navigator
4 and Internet Explorer 4 is one of the biggest challenges you face if you want to
script positionable elements for both platforms in the same HTML document. The
key factors to take into account are:

e How to address positionable elements when the object references are so vastly
different

e How to make adjustments to differently named properties in a truly interac-
tive and dynamic environment

You cannot avoid having your scripts branch to execute platform-specific state-
ments. What you must decide for your application is how and where the branch-
ing occurs. There are three basic techniques you can use to implement cross-plat-
form position scripting in a document:

e Explicit branching
e Platform-equivalent referencing

e Custom APIs

Explicit branching and platform-equivalent referencing place the branching code
directly in your scripts. For a limited amount of scripted positioning, having all the
branching code in your scripts is manageable and actually easier to debug. But if
you are doing a serious amounts of scripted positioning, a custom API lets you
push the ugly branching code off to the side in an external library. In essence, you
create a meta-language that gives you control over the specific syntax used in both
browsers. A custom API requires a lot more work up front, but once the API code
is debugged, the API simplifies not only the current scripting job, but any subse-
quent pages that need the same level of scriptability.

Browser Flags

Regardless of the approach you take, you will need to set up global variable Bool-
ean flags (JavaScript global variables scope only within the current document) that
indicate which browser is running the script. In the same code that establishes
those variables, you should include code that redirects browsers not capable of
rendering positionable elements to another page that explains the browser require-
ments. Unlike pages that use regular style sheets, which generally degrade accept-
ably for older browsers, pages with positioned elements fare very poorly when
viewed with older browsers, especially if the intended design includes overlap-
ping and/or hidden elements.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Cross-Platform Position Scripting 87

JavaScript provides many ways to set browser flags. Some of the variation depends
on how granular you want the detection to be. Browser detection can get down to
the x.0x version, if a particular feature you use is buggy in earlier releases. You
must also decide if detection only needs to find a floor for compatibility (e.g., Ver-
sion 4 or later) or should be restricted to one generation of browser only.

Browser makers have been pretty good about maintaining backward compatibility
for browsers. Therefore, it is generally safe to let the browser detection script set
the flag when the browser version is greater than or equal to the minimum ver-
sion you need for your application. This technique lets the page you write today
run tomorrow on the next major release of the browser. Example 4-1 shows a
script sequence that should run as a page loads, to set flags arbitrarily named
isNav and isTE; the script also redirects older browsers to another page.

Example 4-1. A JavaScript Browser Detection Script

var isNav, isIE
if (parselnt (navigator.appVersion) >= 4) {

if (navigator.appName == "Netscape") {
isNav = true
} else {

isIE = true
}
}
if (!isNav && !isIE) {
top.location.href = "noDHTML.htm"

With the two flags initialized as null values in the first statement, you can safely
use either one as a control structure condition expression, since a value of null
evaluates to false in those situations. That’s precisely how the last 1f statement
operates (but with the flags preceded by the ! operator, since the script is inter-
ested in the values not being true).

Explicit Branching

For the occasional need to control the property of a positionable element, an
explicit branch does the job without a lot of fuss. All you need to do is determine
the platform-specific versions of the statement(s) to be executed and embed them
inside a simple 1f construction. Example 4-2 shows a script fragment whose job it
is to move an element (named face) to a particular coordinate point relative to
the positioning context of the body. For the Navigator version, the script takes
advantage of the layer object’s moveTo () method; for IE, the script adjusts the

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

88 Chapter 4: Adding Dynamic Positioning to Documents

pixelLeft and pixelTop properties. Notice, too, that the object references fol-
low the conventions of the respective browser’s object model.

Example 4-2. Simple Branching

function placeIt() {
if (isNav) {
document . face.moveTo (25, 15)
} else {
document .all. face.style.pixelLeft = 25
document.all.face.style.pixelTop = 15

}

There is no prohibition against using this technique on a complex document
involving dozens of such branches. The primary penalty is the unnecessarily
expanded amount of script code in the document. For some scripters, however,
this technique is easiest to debug. It also comes in handy when the positionable
objects are nested to different depths. Other techniques discussed in the following
sections can also work with layers at different levels in Navigator, but usually not
as easily.

Platform-Equivalent Referencing

Platform-equivalent referencing involves finding a common denominator approach
to building references to positionable objects on both platforms. One way to do
this is to create global variables to hold the platform-specific components of object
references.

If you study the format of references to the Internet Explorer style properties of
positionable objects, you see they always fall into the following format:

document .all.elementName.style

In contrast, single-level-deep Navigator layer objects are referenced according to
the following format:

document . layerName

If you assign the unique Internet Explorer pieces to global variables when run-
ning in that browser, but assign empty strings to those same globals when run-
ning in Navigator, you can use the JavaScript eval () function to derive a valid
object reference for either browser by assembling one reference, as shown in
Example 4-3. This example embeds the global variable setting in the script seg-
ment that also sets the browser Boolean flags. It concludes with a function that

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Cross-Platform Position Scripting 89

takes advantage of the identical property names for a particular positioning prop-
erty in both browsers.

=]
-
5E
23
o £
==
=i
=
-

Example 4-3. Platform-Equivalent Variable Setting and Object Evaluation

var isNav, isIE
var coll = ""
var styleObj = ""

if (parselnt (navigator.appVersion) >= 4) {
if (navigator.appName == "Netscape") {
isNav = true
} else {
isIE = true
coll = "all."
styleObj = ".style"

}

}

// set stacking order of "face" element

function setFaceZOrder (n) ({
var obj = eval ("document." + coll + "face" + styleObj)
obj.zIndex = n

Notice that the variables for the IE reference pieces—coll (for collection) and
styleObj (for style object)—contain specific punctuation to assist the eval ()
function in assembling a proper string representation of the reference for conver-
sion to a genuine object reference.

The platform-equivalent reference technique is particularly helpful for cases where
the property names are identical on both platforms, as shown in Example 4-3. But
you can also combine this technique with explicit branching to handle more com-
plex tasks. Example 4-4 shows a hybrid approach to moving an element, adapted
from Example 4-2.

Example 4-4. A Hybrid Approach: Explicit Branching and Platform Equivalency

function placeIt() {
var obj = eval ("document." + coll + "face" + styleObj)
if (isNav) {
obj .moveTo (25, 15)
} else {
obj.pixellLeft = 25
obj.pixelTop = 15

Custom APIs

If you find yourself doing a lot of scripting of positionable elements in your appli-
cations, it is probably worth the effort to create a custom API that you can link
into any application you create. A custom API can take care of the “grunt” work

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

90 Chapter 4: Adding Dynamic Positioning to Documents

for common position-scripting tasks, such as moving, hiding, showing, and resiz-
ing elements, as well as setting background colors or patterns. When you define a
custom API library, the methods you write become the interface between your
application’s scripts and various positioning tasks.

Example 4-5 gives you a sample of what such an API library might look like. The
API defines the following functions:

getObject (ob7)
Takes a positionable element from the default positioning context and returns
an object reference for either the Navigator layer or the Internet Explorer
style object
shiftTo(obj, %, y)
Moves an object to a coordinate point within its positioning context
shiftBy(obj, deltaX, deltaYy)
Moves an object by the specified number of pixels in the X and Y axes of the
object’s positioning context
setzZIndex(obj, zOrder)
Sets the z-index value of the object
setBGColor (obj, color)
Sets the background color of the object
show (ob7)
Makes the object visible
hide (ob7)
Makes the object invisible
getObjectLeft (ob7j)
Returns the left pixel coordinate of the object within its positioning context
getObjectTop (obj)
Returns the top pixel coordinate of the object within its positioning context

Example 4-5. A Custom API for Positionable Elements

// DHIMLapi.js custom API for cross-platform
// object positioning by Danny Goodman (http://www.dannyg.com)

// Global variables
var isNav, isIE

var coll = ""

var styleObj = ""

if (parselnt (navigator.appVersion) >= 4) {
if (navigator.appName == "Netscape") {
isNav = true
} else {

isIE = true

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Cross-Platform Position Scripting 91

=)
Example 4-5. A Custom API for Positionable Elements (continued) E =
3 =
coll = "all." 52
styleObj = ".style" E"E

=

-

// Convert object name string or object reference
// into a valid object reference
function getObject (obj) {

var theObj
if (typeof obj == "string") {
theObj = eval("document." + coll + obj + styleObj)
} else {
theObj = obj
}

return theObj

// Positioning an object at a specific pixel coordinate
function shiftTo(obj, x, y) {
var theObj = getObject (obj)
if (isNav4d) {
theObj .moveTo (x,y)
} else {
theObj .pixellLeft = x
theObj.pixelTop = y

// Moving an object by x and/or y pixels
function shiftBy(obj, deltaX, deltay) {
var theObj = getObject (obj)
if (isNav4) {
theObj .moveBy (deltaX, deltay)
} else {
theObj.pixelleft += deltaX
theObj .pixelTop += deltaY

// Setting the z-order of an object

function setzIndex(obj, zOrder) {
var theObj = getObject (obj)
theObj.zIndex = zOrder

// Setting the background color of an object
function setBGColor (obj, color) {
var theObj = getObject (obj)
if (isNav4) {
theObj .bgColor = color
} else {
theObj .backgroundColor = color

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

92 Chapter 4: Adding Dynamic Positioning to Documents

Example 4-5. A Custom API for Positionable Elements (continued)

// Setting the visibility of an object to visible
function show(obj) {

var theObj = getObject (obj)

theObj.visibility = "visible"

// Setting the visibility of an object to hidden
function hide(obj) {
var theObj = getObject (obj)
theObj.visibility = "hidden"

// Retrieving the x coordinate of a positionable object
function getObjectLeft (obj) {
var theObj = getObject (obj)
if (isNav4) {
return theObj.left
} else {
return theObj.pixelleft

// Retrieving the y coordinate of a positionable object
function getObjectTop(obj) {
var theObj = getObject (obj)
if (isNav4) {
return theObj.top
} else {
return theObj.pixelTop

}

Notice that every function call in the API invokes the getObject () function. If
the parameter passed to a function is already an object, the object reference is
passed through to the function’s other statements. Thus, you might use a combina-
tion of techniques to work with nested objects, as in the following call to a cus-
tom API function:
if (isNav) {
setBGColor (document .outer.document.inner, "red")
} else {
setBGColor (document.all.inner.style, "red")
}
The custom API in Example 4-5 is provided as a starting point for you to create
your own extensions that fit the kinds of positioning tasks your applications
require. Your version will probably grow over time, as you further enhance the
positioning techniques used in your applications.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Handling Navigator Window Resizing 93

When you write a custom API, save the code in a file with any filename that uses
the .js extension. Then, you can link the library into an HTML document with the
following tag pair in the HEAD portion of the document:

<SCRIPT LANGUAGE="JavaScript" SRC="myAPI.js"></SCRIPT>

Once you do this, all the functions and global variables in the custom API library
become immediately available to all script statements in the HTML document.

Handling Navigator Window Resizing

Navigator 4 has a nasty habit of destroying the layout of positioned elements
(including LAYER elements) if the user resizes the browser window. The user may
see overlapped text and elements shaped very peculiarly after the resize. There is
a scripted workaround you should include in all pages that use positioned ele-
ments.

The workaround requires trapping for the resize event and forcing the page to
reload. This sequence causes the page to flicker briefly between the jumbled page
and the reloaded, properly proportioned page, but it’s better than nothing. The
following script, taken from the HEAD section of a document, assumes you’ve
included the utility code described earlier in this chapter that defines a global vari-
able called isNav when the current browser is Navigator 4 or later:

function handleResize() {
location.reload()
return false

}
if (isNav) {
window.captureEvents (Event .RESIZE)
window.onresize = handleResize
}
Internet Explorer 4 handles window resizing more gracefully, automatically reflow-

ing the content without the need for intervention.

Common Positioning Tasks

This chapter concludes with examples of two common positioning tasks: center-
ing objects and flying objects. A third task, user-controlled dragging of objects, is
kept on hold until Chapter 6, Scripting Events, where we discuss the browser
event models.

Centering an Object

The common way to center an element within a rectangle is to calculate the half-
way point along each axis for both the element and its containing rectangle (posi-

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

94 Chapter 4: Adding Dynamic Positioning to Documents

tioning context). Then subtract the element value from the container value for
each axis. The resulting values are the coordinates for the top and left edges of the
element that center the element.

Document object properties and references differ so widely for these attributes in
Navigator and Internet Explorer that it takes a bit of code to handle the centering
task for both browsers in the same document. The calculations rely on browser-
specific functions that might best be placed into a custom API and linked in from
an external .js file. For purposes of demonstration, however, the library functions
are embedded into the example document shown here.

The element being centered in the browser window is an outer DIV element with
a yellow background. Inside this DIV element is a one-word P element, which,
itself, is positioned inside the context of the DIV element. The goal is to center the
outer DIV element, bringing the contained paragraph along for the ride.
Example 4-6 shows the complete page listing.

Example 4-6. A Page That Centers an Element Upon Loading

<HTML>
<HEAD>
<SCRIPT LANGUAGE="JavaScript">
// ***Begin library code better placed in an external API***
// Set global variables for browser detection and reference building
var isNav, isIE
var coll = ""
var styleObj = ""
if (parselnt (navigator.appVersion) >= 4) {
if (navigator.appName == "Netscape") {
isNav = true
} else {
isIE = true
coll = "all."
styleObj = ".style"

}
// Utility function returns rendered height of object content in pixels
function getObjHeight (obj) {
if (isNav) {
return obj.clip.height
} else {
return obj.clientHeight

}
// Utility function returns rendered width of object content in pixels
function getObjwidth (obj) {
if (isNav) {
return obj.clip.width
} else {
return obj.clientWidth

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Common Positioning Tasks 95

Example 4-6. A Page That Centers an Element Upon Loading (continued)

// Utility function returns the available content width space in browser window
function getInsideWindowWidth() {
if (isNav) {
return window.innerWidth
} else {
return document.body.clientWidth

=
-
8 Z
35S
o=
_= =
=13
=
-

}
// Utility function returns the available content height space in browser window
function getInsideWindowHeight () {
if (isNav) {
return window.innerHeight
} else {
return document.body.clientHeight

}
// Utility function to position an element at a specific x,y location
function shiftTo(obj, x, vy) {
if (isNav) {
obj .moveTo (X,y)
} else {
obj.pixellLeft = x
obj.pixelTop = y

}
// ***End library code***

// Center an element named banner in the current window/frame, and show it
function centerIt() {
// 'obj' is the positionable object
var obj = eval("document." + coll + "banner" + styleObj)
// 'contentObj' is the element content, necessary for IE 4 to return the
// true current width
var contentObj = eval ("document." + coll + "banner")
var x = Math.round((getInsideWindowWidth () /2) - (getObjWidth (contentObj) /2))
var y = Math.round((getInsideWindowHeight ()/2) - (getObjHeight (contentObj) /2))
shiftTo(obj, x, y)
obj.visibility = "visible"
}
// Special handling for CSS-P redraw bug in Navigator 4
function handleResize() {
if (isNav) {
// causes extra re-draw, but must do it to get banner object color drawn
location.reload/()
} else {
centerIt ()

}
</SCRIPT>
</HEAD>

<BODY onLoad="centerIt()" onResize="handleResize() ">
<DIV ID="banner" STYLE="position:absolute; visibility:hidden; left:0; top:0;
background-color:yellow; width:1; height:1">

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

96 Chapter 4: Adding Dynamic Positioning to Documents

Example 4-6. A Page That Centers an Element Upon Loading (continued)

<P ID="txt" STYLE="position:absolute; left:0; top:0; font-size:36pt; color:red">
Congratulations!

</Pp>

</DIV>

</BODY>

</HTML>

No matter what size the browser window is initially, or how the user resizes the
window, the element always positions itself dead center in the window space.
Notice that the outer positionable element is initially loaded as a hidden element
positioned at 0,0. This allows a script (triggered by the onLoad event handler of
the BODY element) to perform calculations based on the element properties and
then show the properly positioned element. The page allows the browser to deter-
mine the current height and width of the content, based on how each browser
(and operating system) calculates its fonts (initial width and height are arbitrarily
set to 1). This is preferable to hard-wiring the height, width, and clipping region of
the element. It means, however, that when the script is running in IE 4, it cannot
rely on style object properties. Those properties always pick up the style sheet
attributes; they do not change unless the properties are changed by a script.
Instead, the script in Example 4-6 uses the clientWidth and clientHeight
properties of the element itself, when running in IE 4.

Many of the concepts shown in Example 4-6 can be extended to centering nested
elements inside other elements. Be aware, however, that Navigator 4 handles
nested items best when they are specified in the document with <LAYER> tags
rather than with CSS-P syntax. You may find it worthwhile to include browser-spe-
cific branches in your document that use the document .write () method to write
CSS-P or <LAYER> HTML content, depending on the current browser (using the
isNav and isIE globals). Using the <LAYER> tag for Navigator positionable
objects does not affect the syntax of scripted access to those items: the same prop-
erties and methods apply whether the object is defined in CSS-P or as a genuine
layer. Rendering, however, is more reliable in Navigator 4 with genuine layers.
Support for CSS should certainly improve in future versions of Navigator.

Flying Objects

Moving objects around the screen is one of the features that can make Dynamic
HTML pay off for your page—provided you use the animation to add value to the
presentation. Gratuitous animation (like the example in this section) more often
annoys frequent visitors than it helps convey information. Still, ’'m sure you are
interested to know how animation tricks are performed with DHTML, including
cross-platform deployment.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Common Positioning Tasks 97

Straight-line paths are relatively easy to script. However, when you need to
account for object centering and a variety of browser window sizes, the scripts can
bulk up a bit. A page that requires as many utility functions as the one shown here
is best served by linking in a custom API.

=]
-
5E
23
o £
==
=i
=
-

The example in this section builds somewhat on the centering application in
Example 4-6. The goal of this demonstration is to have a banner object fly in from
the right edge of the window (centered vertically in the window), until it reaches
the center of the currently sized window. The source code for the page is shown
in Example 4-7.

Example 4-7. A Page with a “Flying” Banner

<HTML>
<HEAD>
<SCRIPT LANGUAGE="JavaScript">
// ***Begin library code better placed in an external API***
// Set global variables for browser detection and reference building
var isNav, isIE, intervalID
var coll = ""
var styleObj = ""
if (parselnt (navigator.appVersion) >= 4) {
if (navigator.appName == "Netscape") {
isNav = true
} else {
isIE = true
coll = "all."
styleObj = ".style"

}
// Utility function returns height of object in pixels
function getObjHeight (obj) {
if (isNav) {
return obj.clip.height
} else {
return obj.clientHeight

}
// Utility function returns width of object in pixels
function getObjwidth (obj) {
if (isNav) {
return obj.clip.width
} else {
return obj.clientWidth

}
// Utility function returns the x coordinate of a positionable object
function getObjLeft (obj) {
if (isNav) {
return obj.left
} else {
return obj.pixellLeft

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

98 Chapter 4: Adding Dynamic Positioning to Documents

Example 4-7. A Page with a “Flying” Banner (continued)

// Utility function returns the y coordinate of a positionable object
function getObjTop(obj) {
if (isNav) {
return obj.top
} else {
return obj.pixelTop

}
// Utility function returns the available content width space in browser window
function getInsideWindowWidth() {
if (isNav) {
return window.innerWidth
} else {
return document.body.clientWidth

}
// Utility function returns the available content height space in browser window
function getInsideWindowHeight () {
if (isNav) {
return window.innerHeight
} else {
return document.body.clientHeight

}
// Utility function sets the visibility of an object to visible
function show(obj) {

obj.visibility = "visible"

// Utility function sets the visibility of an object to hidden
function hide(obj) {
obj.visibility = "hidden"
}
// Utility function to position an element at a specific x,y location
function shiftTo(obj, x, y) {
if (isNav) {
obj .moveTo (x,y)
} else {
obj.pixellLeft = x
obj.pixelTop = y

}
// Utility function to move an object by x and/or y pixels
function shiftBy(obj, deltaX, deltay) {
if (isNav) {
obj .moveBy (deltaX, deltaY)
} else {
obj.pixellLeft += deltaX
obj.pixelTop += deltaY

}
// ***End library code***

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Common Positioning Tasks 99

Example 4-7. A Page with a “Flying” Banner (continued)

// Set initial position offscreen and show object and
// start timer by calling glideToCenter ()
function intro() {
var obj = eval("document." + coll + "banner" + styleObj)
var contentObj = eval ("document." + coll + "banner")
shiftTo(obj, getInsideWindowWidth(),
Math.round((getInsideWindowHeight () /2) - (getObjHeight (contentObj) /2)))
show (obj)
glideToCenter ()
}
// Move the object to the left by 5 pixels until it's centered
function glideToCenter () {
var obj = eval("document." + coll + "banner" + styleObj)
var contentObj = eval ("document." + coll + "banner")
shiftBy (obj,-5,0)
var a = getObjLeft (obj)
var b = Math.round((getInsideWindowWidth()/2) - (getObjWidth (contentObj)/2))
if (a <= b) {
clearTimeout (intervalID)
} else {
intervalID = setTimeout ("glideToCenter()",1)

}

</SCRIPT>

</HEAD>

<BODY onLoad="intro()" >

<DIV ID="banner" STYLE="position:absolute; visibility:hidden; left:0; top:0;
background-color:yellow; width:1; height:1">

<P ID="txt" STYLE="position:absolute; left:0; top:0; font-size:36pt; color:red">
Congratulations!

</P>

</DIV>

</BODY>
</HTML>

The bulk of the utility functions in Example 4-7 get the pixel sizes and left-edge
locations of the window and the flying object. These are all important because the
main operation of this page requires those calculated values, to take into account
the current size of the browser window.

All action is triggered by the onLoad event handler of the BODY element. In the
intro() function, platform equivalency is used to get a valid reference to the
banner object (this would not be necessary if we were using the API shown in
Example 4-5 because the API automatically converts object names to object refer-
ences for each utility function call). The first positioning task is to move the ini-
tially hidden banner object off the screen to the right, so that the banner’s left
edge lines up with the right edge of the window. At the same time, the script cal-
culates the proper vertical position of the banner, so that it is centered from top to

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

100 Chapter 4: Adding Dynamic Positioning to Documents

bottom. With the banner safely out of view, it's safe to make the object visible.
Then the magic begins.

JavaScript 1.2, in Navigator 4 and Internet Explorer 4, adds the setInterval ()
and clearInterval() functions specifically to assist in animation. But because
clearInterval () doesn’t work correctly in IE 4 for the Macintosh, this example
reverts to the setTimeout () methodology, which also does the job. The final
script statement of intro() invokes the glideToCenter () function, which ends
with a setTimeout () function that keeps calling glideToCenter () until the ele-
ment is centered horizontally. Each millisecond (or as quickly as the rendering
engine allows), the browser invokes the glideToCenter () function and refreshes
its display.

Each time glideToCenter () runs, it shifts the banner object to the left by five
pixels without adjusting the vertical position. Then it checks whether the left edge
of the banner has arrived at the position where the banner is centered on the
screen. If it is at (or to the left of) that point, the timer is cleared and the browser
ceases to invoke glideToCenter () anymore.

If you want to move an element along a more complicated path, the strategy is
similar, but you have to maintain one or more additional global variables to store
loop counters or other values that change from point to point. Example 4-8 shows
replacements for the intro() and glideToCenter () functions in Example 4-7.
The new functions roll the banner around in a circle. An extra global variable for
counting steps along the route is all that is required.

Example 4-8. Rolling a Banner in a Circle

// Set initial position centered horizontally and 50 pixels down; start timer
function intro() {
var obj = eval ("document." + coll + "banner" + styleObj)
var contentObj = eval ("document." + coll + "banner")
var objX = Math.round((getInsideWindowWidth() - getObjWidth (contentObj))/2)
var objY = 50
shiftTo(obj, objX, objY)
show (obj)
goAround ()
}
// Iteration counter global variable
var i = 1
// Move element along an arc that is 1/36 of a circle; stop at full circle
function goAround() {
var obj = eval ("document." + coll + "banner" + styleObj)
var objX = getObjLeft (obj) + Math.cos(i * (Math.PI/18)) * 5
var objY = getObjTop(obj) + Math.sin(i * (Math.PI/18)) * 5
shiftTo(obj, objX, objY)

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Common Positioning Tasks 101

=)
Example 4-8. Rolling a Banner in a Circle (continued) E =
5 =
if (i++ == 36) { 52
clearTimeout (intervalID) 5 e
} else { E
intervalID = setTimeout ("goAround()",1)

}
}
In Chapter 6, we'll come back to the dynamic positioning of elements and exam-
ine how to make an object track the mouse pointer. That application requires
knowledge of the partially conflicting event models built into Navigator 4 and
Internet Explorer 4, which is why we can’t cover it here.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

In this chapter:

» Writing Variable
Content

» Writing to Other
Frames and Windows

o Links to Multiple
Frames

* Image Swapping

7‘ I , » Changing Tag
aklng Con ten t Attribute Values

. * Changing Style
Dynélm ZC Attribute Values

* Changing Content

In addition to letting you script the positions of elements, as described in
Chapter 4, Adding Dynamic Positioning to Documents, Dynamic HTML is meant to
allow you to write scripts that modify content and adjust styles on the fly. Prior to
the Version 4 browsers, your ability to script dynamic content was limited to con-
trolling the HTML being written to the current page, loading HTML documents into
other frames, and, in some browser versions, swapping images during mouse roll-
overs. The Version 4 browsers offer much more in the way of altering the content
and appearance of documents that have already been displayed in response to
user activity.

Unfortunately for those of us on the leading edge of DHTML deployment, Naviga-
tor 4 and Internet Explorer 4 have very different ideas about how content should
be made dynamic. In particular, IE 4 exposes much more of every document ele-
ment to scripting, and the browser automatically reflows a document to accommo-
date any changes you make. Navigator 4’s capabilities are more limited in this
regard. Notably, Navigator’s lack of automatic reflow puts the browser at a disad-
vantage if your design calls for dynamically changing inline elements of a page.

This chapter provides an overview of the most common ways of dynamically
changing content, including some that date back to Navigator 2. It also offers some
suggestions about how to develop workarounds for the widely divergent
approaches to dynamic content practiced in the two Version 4 browsers.

Writing Variable Content

While a page is loading, you can use the JavaScript document .write() method
to fill in content that cannot be stored as part of the document. Example 5-1 shows
a simple example of combining hard-wired HTML with dynamically written con-

102
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Writing Variable Content 103

tent to fill a page. In this case, the dynamically written content consists of proper-
ties that only the client computer and browser can determine (without the help of
a server-based CGI program). The user is oblivious to the fact that a script creates
some of the text on the page.

=]
-
5E
23
o £
= =
=i
=
-

Example 5-1. Combining Fixed and Dynamic Content in a Rendered Page

<HTML>

<BODY>

<H1>Welcome!</H1>

<HR>

<P>You are using version

<SCRIPT LANGUAGE="JavaScript">
document .write (navigator.appVersion)
document.write(" of the " + navigator.appName + " browser.")
</SCRIPT>

</P>

</BODY>

</HTML>

You can use document.write() or document.writeln() in scripts that exe-
cute while a document is loading, but you cannot use either method to modify the
content of a page that has already loaded. Once a document has finished loading,
if you make a single call to document.write() directed at the current docu-
ment, the call automatically clears the current document from the browser win-
dow and writes the new content to the page. So, if you want to rewrite the con-
tents of a page, you must do so with just one call to the document.write()
method. Example 5-2 demonstrates how to accumulate content for a page in a
variable that is written in one blast.

Example 5-2. Creating a New Document for the Current Window

<HTML>
<HEAD>
<TITLE>Welcome Page</TITLE>
<SCRIPT LANGUAGE="JavaScript">
// create custom page and replace current document with it
function rewritePage (form) {
// accumulate HTML content for new page
var newPage = "<HTML>\n<HEAD>\n<TITLE>Page for "
newPage += form.entry.value
newPage += "</TITLE>\n</HEAD>\n<BODY BGCOLOR='cornflowerblue'>\n"
newPage += "<Hl1>Hello, " + form.entry.value + "!</H1>\n"
newPage += "</BODY>\n</HTML>"
// write it in one blast
document .write (newPage)
// close writing stream
document .close ()
}
</SCRIPT>

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

104 Chapter 5: Making Content Dynamic

Example 5-2. Creating a New Document for the Current Window (continued)

<BODY>

<H1>Welcome!</H1>

<HR>

<FORM onSubmit="return false">

<P>Enter your name here: <INPUT TYPE="text" NAME="entry"></P>

<INPUT TYPE="button" VALUE="New Custom Page" onClick="rewritePage (this.form)">
</FORM>

</BODY>

</HTML>

Notice that the script inserts data from the original screen’s form into the content
of the new page, including a new title that appears in the browser window’s title
bar. As a convenience to anyone looking at the source of the new document,
escaped newline characters (\n) are inserted for cosmetic purposes only. After the
call to document.write(), the rewritePage() function calls docu-
ment.close() to close the new document. While there are also docu-
ment.open () and document.clear () methods, we don’t need to use them to
replace the contents of a window. The one document.write () method clears the
old content, opens a new output stream, and writes the content.

Writing to Other Frames and Windows

You can also use the document.write() method to send dynamically created
content to another frame in a frameset or to another browser window. In this case,
you are not restricted to only one call to document.write() per page; you can
open an output stream to another frame or window and keep dumping stuff into it
until you close the output stream with document.close().

All you need for this kind of content creation is a valid reference to the other
frame or window. How you generate the frameset or secondary window influ-
ences this reference.

Framesets and Frames

A typical frameset document defines the physical layout of how the main browser
window is to be subdivided into separate panels. Framesets can, of course, be
nested many levels deep, where one frame loads a document that is, itself, a
frameset document. The key to writing a valid reference to a distant frame is
knowing the relationship between the frame that contains the script doing the
writing and the target frame.

The most common frameset structure consists of one frameset document and two
to four frames defined as part of that frameset (you can have more frames if you
like, but not everyone is fond of frames). Ideally, you should assign a unique iden-
tifier to the NAME attribute of each <FRAME> tag. Example 5-3 is a basic frameset

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Writing to Other Frames and Windows 105

document that assigns a name to each of the three frames and loads an efficient
local blank page into each frame. The technique used here is to invoke a func-
tion, blank (), that exists in the frameset (parent) document. In each case, the
javascript: pseudo-URL is applied to the newly created frame. From each
frame’s point of view, the blank() function is in the parent document, hence the
parent.blank () reference. The 100-pixel wide frame down the left side of the
browser window is a navigation bar. The right portion of the window is divided
into two sections. The upper section (arbitrarily called main) occupies 70% of the
column, while the lower section (called instructions) occupies the rest of the
column.

Example 5-3. A Simple Three-Frame Frameset with Blank Pages Written to Each Frame

<HTML>
<HEAD>
<SCRIPT LANGUAGE="JavaScript">
<!--
function blank() {
return "<HTML></HTML>"
}
//==>
</SCRIPT>
</HEAD>
<FRAMESET COLS="100,*">
<FRAME NAME="navBar" SRC="javascript:parent.blank()">
<FRAMESET ROWS="70%, *">
<FRAME NAME="main" SRC="javascript:parent.blank()">
<FRAME NAME="instructions" SRC="javascript:parent.blank() ">
</FRAMESET>
</FRAMESET>
</HTML>

Now imagine that a modified version of Example 5-2 is loaded into the main
frame. The job of the script, however, is to write the dynamic content to the frame
named instructions. To accomplish this, the reference to the other frame must
start with the parent document (the frameset), which the two frames have in com-
mon. Example 5-4 shows the modified page that goes into the main frame and
writes to the instructions frame. The two small changes that were made to the
original code are highlighted in boldface.

Example 5-4. Writing Dynamic Content to Another Frame

<HTML>
<HEAD>
<TITLE>Welcome Page</TITLE>
<SCRIPT LANGUAGE="JavaScript">
// create custom page and replace current document with it
function rewritePage (form) {
// accumulate HTML content for new page
var newPage = "<HTML>\n<HEAD>\n<TITLE>Page for "
newPage += form.entry.value

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

106 Chapter 5: Making Content Dynamic

Example 5-4. Writing Dynamic Content to Another Frame (continued)

newPage += "</TITLE>\n</HEAD>\n<BODY BGCOLOR='cornflowerblue'>\n"
newPage += "<Hl1>Hello, " + form.entry.value + "!</H1>\n"
newPage += "</BODY>\n</HTML>"
// write it in one blast
parent.instructions.document .write (newPage)
// close writing stream
parent .instructions.document.close()
}
</SCRIPT>
<BODY>
<H1>Welcome!</H1>
<HR>
<FORM onSubmit="return false">
<P>Enter your name here: <INPUT TYPE="text" NAME="entry"></P>
<INPUT TYPE="button" VALUE="New Custom Page" onClick="rewritePage (this.form)">
</FORM>
</BODY>
</HTML>

If, on the other hand, you simply want to load a different document from the
server into the instructions frame, you can use a script-less HTML link and set
the TARGET attribute to the instructions frame. A script in main can also spec-
ify a document for the instructions frame as follows:

parent.instructions.location.href = "nextPage.html"

Secondary Windows

JavaScript provides facilities for not only generating a new browser window, but
also setting the window’s size and (in Version 4 browsers) its location on the
screen. You can then use references to communicate from one window to the
other, although the form of those references is quite different, depending on
where the script is running.

The JavaScript method that generates a new window returns a reference to the
new window object. If you plan to communicate with that window after it has
been opened, you should store the reference in a global variable. This reference is
the only avenue to the subwindow. Example 5-5 features a script for opening a
new window and writing to it. In addition, it also takes care of a feature lacking in
Navigator 2 (described in a moment), inserts a brief delay to allow the often slug-
gish Internet Explorer 3 to finish creating the window before writing to it, and
brings an already opened but hidden window to the front, if the browser supports
that feature (Navigator 3 or later and IE 4 or later).

Example 5-5. Opening a New Window and Writing to It

<HTML>
<HEAD>
<TITLE>A New Window</TITLE>

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Writing to Other Frames and Windows 107

Example 5-5. Opening a New Window and Writing to It (continued)

<SCRIPT LANGUAGE="JavaScript">
// Global variable for subwindow reference
var newWindow
// Version flag for old browsers (Nav2/IE3)
var oldStuff = parselnt (navigator.appversion) < 3
// Generate and fill the new window
function makeNewWindow () {
// make sure it isn't already opened
newWindow = window.open("", "sub", "status, height=200,width=300")
// handle Navigator 2, which doesn't have an opener property
if (!newWindow.opener) {
newlWindow.opener = window
}
// delay writing until window exists in IE3
setTimeout ("writeToWindow ()", 500)
if (!loldstuff) ({
// window is already open so bring it to the front
newwindow. focus ()

}

function writeToWindow() {
// assemble content for new window
var newContent = "<HTML><HEAD><TITLE>One Sub Window</TITLE></HEAD>\n"
newContent += "<BODY>\n<H1>This is a new window.</H1>\n"
newContent += "</BODY>\n</HTML>"
// write HTML to new window document
newWindow.document .write (newContent)
newWindow.document.close() // close layout stream

}

</SCRIPT>

</HEAD>

<BODY>

<FORM>

<INPUT TYPE="button" NAME="newOne" VALUE="Create New Window"

onClick="makeNewWindow () ">

</FORM>

</BODY>

</HTML>

Example 5-5 shows that the reference to the subwindow (stored in the newWin-
dow global variable) can be used to call document.write() and docu-
ment.close() for that window. The window object reference is the gateway to
the subwindow.

A script in a document loaded into a subwindow can communicate back to the
window or frame that spawned the new window. Every scriptable browser (except
Navigator 2) automatically sets the opener property of a new window to a refer-
ence to the window or frame that created the window. One of the workarounds in
Example 5-5 creates and sets this property for Navigator 2, so you can use it across
the board. Therefore, to access the value property of a form text box (named

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=]
-
5E
23
o £
==
=i
=
-

108 Chapter 5: Making Content Dynamic

entryField) located in the main browser window, you can use the following
script statement in the subwindow:

opener .document . forms [0] .entryField.value

Remember that opener refers directly to the window or frame that spawned the
subwindow. If you need to access content in another frame in the frameset, your
reference must traverse the object hierarchy accordingly:

opener .parent . otherFrameName . document . forms [0] . someField.value

Links to Multiple Frames

It is not uncommon for the navigation bar in a frameset to contain links, or icons,
that must load documents into two or more other frames of the frameset at the
same time. For a single frame, the standard HTML link facilities work fine, since
they let you specify a target frame with nothing more than plain attributes. But the
attribute technique doesn’t do the job for controlling the content of multiple tar-
gets. Scripting comes to the rescue, with a few different ways to accomplish the
same goal:

e Invoke a function from the element’s onClick event handler to control both
frames

e Use a javascript: pseudo-URL to invoke a function to control both frames

e Use the default link for one frame and the onClick event handler for the
other

The first two choices require defining a JavaScript function that loads the desired
documents into their target frames. Such a function might look as follows:
function loadFrames() {
parent.main.location.href = "section2.htm"
parent.instructions.location.href = "instrux2.htm"
return false
}
You can then create a link that invokes the function for browsers with JavaScript
turned on or that at least links to the main frame content if JavaScript is turned off:

...

The loadFrames() function returns false when it is done. This forces the
onClick event handler to return false as well, which preempts the actions of the
HREF and TARGET attributes (when JavaScript is turned on).

The javascript: pseudo-URL can be applied to a link’s HREF attribute as fol-
lows:

...

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Image Swapping 109

Instead of navigating directly to a URL on the server, the link invokes whatever
JavaScript function is named in the pseudo-URL. By including the void operator,
you instruct JavaScript to ignore any value returned by the function.

For the third approach, let the HREF and TARGET attributes handle one frame while
the onClick event handler takes care of the other with an inline script:
<A HREF="section2.htm" TARGET="main"
onClick="parent.instructions.location.href="instrux2.htm'">...
Client-side image maps require a little more care because the onClick event han-
dler isn’t defined for the area object until the Version 4 browsers. But you can use
the javascript: pseudo-URL trick with the HREF attribute inside a <MAP> tag.

Image Swapping

Before we had the true Dynamic HTML powers of the Version 4 browsers, Naviga-
tor 3 (and Internet Explorer 3 for the Macintosh only) gave us a glimpse of things
to come with image swapping. The basis for this technique is a document object
model that defines an image as an object whose properties can be changed (or
“replaced,” in the language of cascading style sheets) on the fly. One of those
properties, src, defines the URL of an image loaded initially by virtue of an
tag and currently displayed in the page. Change that property and the image
changes, within the same rectangular space defined by the tag’s HEIGHT
and WIDTH attributes (or, lacking those attribute settings, the first image’s dimen-
sions as calculated by the browser), while all the other content around it stays put.

Navigator 3 (and later) goes one step further by defining an Image object from
which new “virtual” images can be created in the browser’'s memory with the help
of scripts. These kinds of images do not appear in the document, but can be
scripted to preload images into the browser’s image cache as the page does its
original download. Thus, when it comes time to swap an image, the switch is
nearly instantaneous because there is no need for network access to grab the
image data.

The example in this section shows you how to pre-cache and swap images for the
buttons of an imaginary video controller. There are four controls—Play, Stop,
Pause, and Rewind. Each control has its own image that acts as a button. As the
user rolls the mouse atop a button, a highlighted version of the button icon
appears in the image space; as the mouse rolls off the button, the original unhigh-
lighted version reappears.

Precaching Images

When preloading images (and later retrieving them for swapping), it is convenient
to create an array for each state that the images will be in. In Example 5-6, there

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

110 Chapter 5: Making Content Dynamic

are two states: highlighted and unhighlighted (which are more conveniently
referred to as “on” and “off”). The HEAD portion of the document contains a series
of script statements that generate the new Image objects (in memory) and assign
the URLs for the associated image files to the src properties of those memory
image objects. Example 5-6 shows the sequence of statements that makes this hap-
pen for the four “on” images and the four “off” images. Depending on your audi-
ence for this page, you may wish to use a browser-specific branch to prevent
these statements from running in Navigator 2 or Internet Explorer 3 for Windows:
the Image object is not in the object model of either of these browsers. Another
tactic, shown in Example 5-6, is to simply check for the support of the images
array object in the browser.

Example 5-6. Precaching Code for Two Sets of Four Related Images

if (document.images) {

// create "on" array and populate with Image objects
var onImgArray = new Array ()

onImgArray[0] = new Image(75,35
onImgArray[1] new Image (75,35
onImgArray[2] new Image (75,35
onImgArray[3] = new Image(75,35
// set URLs for the "on" images

onImgArray[0] .src = "images/playon.gif"
onImgArray[l] .src = "images/stopon.gif"
onImgArray[2] .src = "images/pauseon.gif"
onImgArray[3].src = "images/rewindon.gif"

// create "off" array and populate with Image objects
var offImgArray = new Array ()
offTmgArray[0] = new Image (75,35
offImgArray([l] = new Image(75,35
offImgArray[2] = new Image(75,35
offTmgArray[3] = new Image (75,35
// set URLs for the "off" images
offImgArray[0] .src "images/playoff.gif"
offImgArray[1l].src "images/stopoff.gif"
offImgArray[2] .src "images/pauseoff.gif"
offImgArray[3].src = "images/rewindoff.gif"

The act of stuffing the URL for each image file into the src property of each
Image object is enough to force the browser to actually fetch the image and store
it in its image cache without displaying the image anywhere. Also, the numeric
relationships among the array entries play a significant role in the actual image
swapping, as you'll see shortly.

Swap Your Image

Now it's time to look at the HTML that displays the images within the document.
For the sake of this example, the surrounding HTML is of no importance.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Image Swapping 111

Since image objects in a document don’t respond to mouse events (except in
IE 4), the images are wrapped inside links. To prevent the normal link color bor-
der from appearing around the images, the BORDER attribute of each tag is
set to zero. The event handlers of the surrounding links trigger all the action for
the image swapping. Example 5-7 shows the four image elements and their sur-
rounding links.

=]
-
=
33
&<
=3
-] 2
=
-

Example 5-7. The Images to Be Swapped, Wrapped in Links with Event Handlers

<A HREF="javascript:playVideo()"
onMouseOver="imageOn (0) ; return setMsg('Play/Continue the clip')"

onMouseOut="imageOff (0) ; return setMsg('')">

<A HREF="javascript:stopVideo()"
onMouseOver="imageOn (1) ; return setMsg('Stop video')"

onMouseOut="imageOff (1) ; return setMsg('')">

<A HREF="javascript:pauseVideo ()"
onMouseOver="imageOn (2); return setMsg('Pause video')"

onMouseOut="imageOff (2); return setMsg('')">

<A HREF="javascript:rewindvideo ()"
onMouseOver="imageOn (3); return setMsg('Rewind to beginning')"

onMouseOut="imageOff (3); return setMsg('')">

The onMouseOver and onMouseOut event handlers in each link have two tasks.
The first is to change the image and the second is to display an appropriate mes-
sage in the status bar of the browser window (to avoid displaying the java-
script: pseudo-URL there). All this is handled with three simple functions,
shown in Example 5-8.

Example 5-8. Functions that Swap Images and Display Messages in the Status Bar

function imageOn (i) {
if (document.images) {
document.images[i] .src = onImgArray[i].src

}
function imageOff (i) {
if (document.images) {
document . images[i] .src = offImgArray[i].src

}

function setMsg (msg) {
window.status = msg
return true

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

112 Chapter 5: Making Content Dynamic

Image swapping is accomplished by setting the src property of the visible image
element to the src property of the desired memory image. It is convenient in this
example that the first four images on the page are of the buttons, so the array
indexing works without a problem. But even if there were other images on the
page, you could use the index values that are part of the image object names to
reference the objects:

function imageOn (i) {

document.images["btn" + i].src = onImgArrayl[i].src

}
The setMsg() function returns true, so that the last statement of all mouse-
related event handlers evaluates to true. This allows the status bar setting to take
hold.

Changing Tag Attribute Values

You’d think that with so many HTML tag attributes reflected as scriptable proper-
ties, it would be simple enough to modify the look of many elements by adjusting
their properties after the document has loaded. Unfortunately for compatibility, of
the currently released scriptable browsers, only Internet Explorer 4 lets you adjust
highly visible attributes on the fly. This is because the rendering engine in the
browser does a nice job of reflowing a page’s content in response to a change of
any property. Therefore, you can increase the size of an IMG element by altering
the height and width properties of the object, and the content around and below
the image is shifted to make room for the bigger picture. If you try to do this with
Navigator 4, however, a script error message reminds you that these properties are
read-only in that browser.

In fact, if you are aiming for cross-platform compatibility in altering the physical
appearance of a currently loaded document, your possibilities are very limited.
Outside of form element values (e.g., the contents of a text box, selected items in
a checkbox, the state of a radio button, and selected list options), about the only
tag attributes you can alter from a script in Navigator are the image object’s src
attribute (as described in the previous section) and the document’s bgColor prop-
erty. Even the document .bgColor property has some caveats when the page is
being run in Navigator 2 or 3 on an operating system other than Windows: the
color change may obscure other existing content on the page. Other color-related
properties of the document object are not settable from a script.

As you dream of creating dynamic content in a document, keep in mind that Navi-
gator through Version 4 and Internet Explorer 3 do not automatically reflow the
document in response to changes of element properties.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Changing Style Attribute Values 113

Changing Style Attribute Values

The lack of automatic content reflow in Navigator 4 prevents it from displaying
most changes to style sheet attribute values after the document has loaded, even if
the values are exposed to scripting. By contrast, the list of read-write properties
associated with IE 4’s style object (see Chapter 9, Document Object Reference) is
impressive, to say the least. If the conditions of your design are just right, how-
ever, you might be able to get away with a cross-platform workaround for the
desired style changes. The tactic is to consider the Navigator 4 methodologies as
the lowest common denominator: if the trick can be done in Navigator 4, it can be
done cross-platform, even if not in the most elegant or efficient way for IE 4.

We'll examine both an IE 4-specific and a cross-platform way of cycling a chunk
of text through a sequence of colors. For IE 4, the job is as simple as changing the
color attribute of a SPAN element’s style. For Navigator 4 compatibility, however,
each color version of the text must be created as a separate positioned element
that is shown and hidden in the appropriate order.

Example 5-9 shows the Internet Explorer 4 version. A single SPAN element in the
body has the color property of its style changed in a for loop. For programming
convenience, the color names are stored in a global variable array, with another
global variable maintaining a record of the color currently showing. No position-
ing or other tactics are required.

Example 5-9. Internet Explorer Version of an Inline Text Color Change

<HTML>
<HEAD>
<TITLE>A Hot Time in IE</TITLE>
<STYLE TYPE="text/css">
#hotl {color:red}
</STYLE>
<SCRIPT LANGUAGE="JavaScript">
// Set global variables
var totalCycles = 0
var currColor = 1
var colors, intervalID
// Build array of color names
function init() {
colors = new Array(4)

colors[l] = "red"
colors[2] = "green"
colors[3] = "yellow"
colors[4] = "blue"

}

// Advance the color by one

function cycleColors() {
// reset counter to 1 if it reaches 4; otherwise increment by 1
currColor = (currColor == 4) ? 1 : ++currColor

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

114 Chapter 5: Making Content Dynamic

Example 5-9. Internet Explorer Version of an Inline Text Color Change (continued)

// set style color to new color from array
document.all.hotl.style.color = colors[currColor]
// invoke this function again until total = 27 so it ends on red
if (totalCycles++ < 27) {
intervalID = setTimeout ("cycleColors ()", 100)
} else {
clearTimeout (intervalID)
}
}
</SCRIPT>
</HEAD>
<BODY onLoad="init(); cycleColors() ">
<H1>Welcome to the Hot Zone Web Site</H1>
<HR>
</BODY>
</HTML>

Since Navigator 4 cannot change an inline text color on the fly, we need to use a
different approach to make this application have the same appearance on both
platforms. The tactic shown in Example 5-10 is to create four different SPAN ele-
ments—each in a different text color—and script the hiding and showing of each
element in turn.

The tricky part is getting the SPAN elements to align perfectly, since they must be
implemented as positionable elements that can be hidden and shown. At least one
element must be part of the running text so that the surrounding text flows prop-
erly around it. If that element is set as a relative-positioned element, the browser
determines where the element goes (based on normal content flow), but that ele-
ment then becomes a positioning context that can be used to position the other
three elements. However, the other three elements cannot be children of the first
SPAN element because if the parent is hidden (as it will be three-quarters of the
time), all the children are too, due to inheritance. In practice, only IE 4 hides the
children as expected, so accommodation must be made for this behavior.

The solution is to make all four elements siblings, but set only the first one as a
relative-positioned element; the other three are absolute-positioned. This means
that the script must be able to find out the left and top coordinates of the relative-
positioned element and set the positioning properties of the absolute-positioned
elements to match. The two browsers have different ways of obtaining this infor-
mation. Navigator 4 has pageX and pageY properties, which yield the coordinates
relative to the visible page; IE 4 has offsetLeft and offsetTop properties,
which yield the coordinates relative to the parent element. Since the parent ele-
ment in this case is the document, these properties are equivalent to the Naviga-
tor pageX and pageY properties. The positioning of the three hidden elements
occurs during an initialization routine triggered by the onLoad event handler. This
assures that the relative-positioned element is in its final resting place, ready to be
measured.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Changing Style Attribute Values 115

WARNING A bug in Internet Explorer 4.0 for the Macintosh causes the position-
ing of the alternate-colored elements to be out of line with the rela-
tive-positioned element.

=]
-
5E
23
o £
= =
=i
=
-

Cycling through the colors also requires a little more code than the IE 4-only ver-
sion. The cycleColors () function must obtain references to the two elements to
be affected by the current color change. The current element is hidden while the
new color element is shown.

Example 5-10. Cross-Platform Equivalent of an Inline Text Color Change

<HTML>

<HEAD>

<TITLE>A Hot Time</TITLE>

<STYLE TYPE="text/css">
#hotl {position:relative; color:red; visibility:visible}
#hot2 {position:absolute; color:green; visibility:hidden}
#hot3 {position:absolute; color:yellow; visibility:hidden}
#hot4d {position:absolute; color:blue; visibility:hidden}

</STYLE>

<SCRIPT LANGUAGE="JavaScript">

var currHot = 1

var totalCycles = 0

var isNav, isIE, intervalID

var coll = ""

var styleObj = ""

if (parselnt (navigator.appVersion) >= 4) {

if (navigator.appName == "Netscape") {
isNav = true
} else {
isIE = true
coll = "all."
styleObj = ".style"

}
// Utility function returns the x coordinate of a positionable object relative
// to page
function getPagelLeft (obj) {
if (isNav) {
return obj.pageX
} else {
return obj.offsetLeft

}
// Utility function returns the y coordinate of a positionable object relative
// to page
function getPageTop (obj) ({
if (isNav) {
return obj.pageY
} else {

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

116 Chapter 5: Making Content Dynamic

Example 5-10. Cross-Platform Equivalent of an Inline Text Color Change (continued)

return obj.offsetTop

}
// Set absolute positions of three hidden elements to match visible's relative
// position
function init() {
// get object reference of visible element
var objl = eval("document." + coll + "hotl")
// get left/top location relative to document
var pageleft = getPagelLeft (objl)
var pageTop = getPageTop (objl)
// set position of three elements (hot2, hot3, and hot4)
for (var 1 = 2; i <= 4; i++) {
var obj = eval ("document." + coll + "hot" + i + styleObj)
obj.left = pageLeft
obj.top = pageTop

}
// Advance the color by one
function cycleColors() {
// get reference to element to be hidden
var objToHide = eval ("document." + coll + "hot" + currHot + styleObj)
// reset coutner to 1 if it reaches 4; otherwise increment by 1
currHot = (currHot == 4) ? 1 : ++currHot
// get reference to element to be shown
var objToShow = eval ("document." + coll + "hot" + currHot + styleObj)
// do the shuffle
objToHide.visibility = "hidden"
objToShow.visibility = "visible"
// invoke this function again until total = 27 so it ends on red
if (totalCycles++ < 27) {

intervalID = setTimeout ("cycleColors ()", 100)
} else {
clearTimeout (intervalID)
}
}
</SCRIPT>
</HEAD>

<BODY onLoad="init(); cycleColors() ">

<H1>Welcome to the Hot ZoneHot Zone
Hot ZoneHot Zone Web Site</H1>
<HR>

</BODY>

</HTML>

Between the two versions, the IE 4-only version degrades best for display on older
browsers. No extra text elements are included in the BODY portion for an old
browser to render. Running the cross-platform version on an older browser dis-
plays the content of all four SPAN elements in the running text.

It should be clear from the examples in this section that cross-platform modifica-
tion of style attributes works only if the change does not require reflowing of the

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Changing Content 117

content. If your design can be implemented as a series of overlapping layers,
there’s hope for your cross-platform dreams.

Changing Content

For many application authors, the holy grail of Dynamic HTML is the ability to
manipulate already loaded text and tag content in response to user action. Prior to
the Version 4 browsers, the granularity of such changes was no smaller than an
entire frame’s document, as demonstrated earlier in this chapter. The situation
improves markedly in the Version 4 browsers, with Internet Explorer 4 allowing
direct access to any piece of text content displayed in a document. This means
that you have much more flexibility with dynamic content in IE 4 than in Naviga-
tor 4.

Fixed-Size Containers

Navigator 4 and Internet Explorer 4 provide browser-specific tags for defining rect-
angular spaces that hold content. They're treated quite differently in the two
browsers, so it is rare that you will be able to achieve an identical look and feel
for a document displayed in both browsers, regardless of how much branching
you use to try to pull it off.

What the two browsers have in common is that you can use the tags to load an
external document into a floating block above the main document or embed an
external document as inline content. With the exception of the inline version in
Navigator 4, the content of the block can be changed on the fly after the docu-
ment has loaded. The rectangular block can be treated like a frame or a window;
you can set its src attribute to a different URL, or you can write directly to the
document object with a script.

Navigator 4 <LAYER>

The Navigator 4 <LAYER> tag and associated document object were discussed in
Chapter 4, but not in terms of altering their content. A genuine layer is a free-float-
ing rectangle that always looks to its parent document for its positioning context.
For a single layer in a page, the base document in the browser window or frame
defines the positioning context. If you include a <LAYER> tag in your document,
be prepared to include LEFT and TOP attribute settings if you don’t want the con-
tent to overlap other inline content appearing later in the HTML source code (you
can also hide the LAYER element at any location without penalty).

After the page has loaded, you can set the src property of that layer object to
load another document into the layer:

document . layerName.src = "someDocument.html"

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

118 Chapter 5: Making Content Dynamic

Unfortunately, if you have also set style properties for the LAYER element, when
the new source document loads into the layer, the LAYER element’s original style
may be corrupted or displaced. For example, a border or padding style setting will
disappear. Also, as I advised earlier, you must set the clipping region of a layer if
you expect the background color or image to maintain its size when new content
loads in—otherwise the clipping region hugs the content.

As harsh as these behaviors sound, under controlled circumstances you can suc-
cessfully swap HTML documents in and out of a LAYER element and still display
the effect of style sheet features such as borders and padding. Think of the layer
strictly as an invisible, positionable frame for the replaceable content. As a frame,
its responsibility is determining the location and (optionally) basic dimensions of
the view to your documents. All fancy style sheets should be in the documents
being loaded into the layer, not assigned to the layer itself. In other words, feel
free to set the TOP, LEFT, HEIGHT, WIDTH, and CLIP attributes of the <LAYER> tag
to fix the initial frame for the document. However, if you want the documents to
appear with a three-pixel-wide solid red border around them, make sure that all of
the individual documents to be loaded in the layer are using the same style sheets.

You will experience the smoothest ride if you limit your attribute settings to TOP,
LEFT, and WIDTH when the size of the content being swapped varies in length and
you assign border-related properties. A quirk in the Navigator 4 rendering engine
forces the document’s background color or image to fill its layer’s hard-wired clip-
ping region, but the bottom border cinches up to the bottom of the content, leav-
ing the swath of background dangling below the bottom border. Allow the height
of the content loaded at any given moment to define the visible height of the
layer.

Navigator 4 <ILAYER>

Unfortunately, when it comes to the inline layer element of Navigator 4, the cau-
tion flags come out in the first lap of the race. While this element is an excellent
way to introduce external content into a document as the document loads (and
have other content flow naturally before and after it), the layer object it gener-
ates in the object model does not respond well to having its src property set.
Content appears to ignore the position of the element, and further attempts to load
content may crash the browser. Even if these problems were solved, the browser
does not know to reflow the page when new content is added.

Until these bugs are fixed in the browser, my recommendation is simple: do not
attempt to load new content into an ILAYER element.
Internet Explorer 4 <IFRAME>

The IFRAME element from Microsoft exhibits similar innate behavior as Netscape’s
ILAYER element. Both can be positioned anywhere in a document and occupy

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Changing Content 119

real estate within the base document loaded in the browser. Both can load exter-
nal HTML documents. Their default appearance, however, differs substantially.

If you don’t specify a height or width for an IFRAME element, the browser sup-
plies a default block of space in the document relative to the baseline of the pre-
ceding content—much like an IMG element. Attributes of the <IFRAME> tag
include ALIGN to set the vertical relationship to surrounding content (possible val-
ues include ABSBOTTOM, BASELINE, MIDDLE, and TEXTOP). An IFRAME also gener-
ates a plain border unless you explicitly turn it off. And if the content extends
beyond the rectangle (default or one specified by the HEIGHT and WIDTH
attributes), optional scroll bars appear to assist in navigation. In other words, an
IFRAME element is a fixed-size rectangle within the running content of a docu-
ment.

To load a different document into an IFRAME, assign a URL to the element’s src
property. Remember that this is an element, not a direct object in the object model
like a traditional frame. Therefore, you must reference an IFRAME element via the
all collection:

document.all.iframeName.src = "otherDocument.html"

An IFRAME element does a decent job of holding on to any style sheet rules that
are assigned to it, even when you change content. Therefore, you don’t have to
specify the style sheet rules (for things like borders) in the loaded documents. You
can specify them via style rules for the IFRAME element (although documents can
have their own style sheets too, to override the IFRAME style attributes).

Variable-Length Containers

Because Internet Explorer 4 automatically reflows a page when content changes,
it's not surprising that the browser offers substantial scripting and object model
support for wholesale modification of text content in a document. The support can
be divided into two categories. The first is a group of element properties—inner-
Text, innerHTMIL, outerText, and outerHTML—that allow scripts to get and set
interesting portions of a document. The second is the TextRange object, which
offers vast powers to locate and isolate any chunk of running text (including a
simple insertion point) for further manipulation by scripts.

Text and HTML properties

Every element that is reflected in the IE 4 object model—essentially anything that
is defined in a document by a tag—has properties that let a script read and write
both the displayed text associated with the element and the HTML that defines the
entire element. Before you use these properties, it's important to know the differ-
ence between an “inner” and “outer” component of an element.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

120 Chapter 5: Making Content Dynamic

To help you visualize the difference, let’s start with a nested pair of elements as
they appear in a document’s source code:
<DIV STYLE="font-style:italic">
<P ID=parl STYLE="font-style:normal">
A fairly short paragraph.
</P>
</DIV>

Focus on the P element, whose properties will be adjusted in a moment.

The inner component of the P element consists of the string of characters between
the start and end tags, but not including those tags. Any changes you make to the
inner content of this element still have everything wrapped inside a P element.

In contrast, the outer component of the P element is the entire element, including
the <P> and </P> tags, any tag attributes, and the content between the start and
end tags. Changes to the outer component replace the entire element and can con-
ceivably turn it into an entirely different type of element.

How an element’s inner or outer component responds to changes depends on
whether you direct the element to treat the new material as raw text or as text that
may have HTML tags inside (e.g., innerText or innerHTML). To demonstrate
how these important nuances affect your work with these properties, the follow-
ing sequence starts with the P element shown earlier, as it is displayed in the
browser window. Then comes a series of statements that operate on the original
element and representations of the element as it appears in the browser window
after each statement:

A fairly short paragraph.

document.all.parl.innerText = "How are you?"
How are you?

document.all.parl.innerHIML = "How are you?"
How are you?

document.all.parl.outerText = "How are you?"
How are you?

document.all.parl.outerHTML = "How are you?"

How areyou?

Adjusting the inner material never touches the <P> tag, so the normal font style
prevails. Setting the innerText property tells the browser to render the content
literally, without interpreting the tags, while setting innerHTML tells the
browser to interpret the tags, which is why the word “you” is in bold after the sec-
ond statement.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Changing Content 121

Adjusting the outer material eradicates the <P> tag pair. When this happens, the
next outer element container rules that spot in the document. Thus, outerText is
rendered literally, but because the <P> tags are also replaced, the italic font style
governs the display. And when we set outerHTML, the browser interprets the
tags of the replacement string.

NOTE You can make repeated adjustments to the innerText and
innerHTML properties of an element because the reference to the
element is still good after the change. But if you alter the outer-
Text or outerHTML properties, the element in the reference is
blown away. Subsequent references result in script errors because
the object no longer exists. Reloading the document restores all ele-
ments and their content to their original state.

A handful of elements have only outerText and outerHTML properties—a tag
that has no end tag companion has no inner components.

As we've seen, you can replace content by setting these properties. You can also
remove the content or the entire element by setting the appropriate property to
the empty string. By the same token, you can create an empty element that acts as
a placeholder for content that is to be dynamically added to the document later.
The HTML you set to an element’s inner or outer component can be as large and
complex as you like, but the value must be a string. You cannot assign a URL to
one of these properties and expect the content of that URL’s document to load
into the location (see the discussion of the IFRAME element earlier in this chapter
if you want to do that).

Inserting content

In IE 4, every element also has two methods that make it easier to add visible text
and/or HTML to an existing element. The two methods are:

e insertAdjacentHTML (where, text)

e insertAdjacentText (where, text)

These methods assume you have a valid reference to an existing element and wish
to add content to the beginning or end of the element. As with the inner and outer
component items in the previous section, any text inserted with the insertaAdja-
centHTML () method is rendered like regular source code (any HTML is inter-
preted as HTML), while insertAdjacentText () treats the content as uninter-
preted text.

The precise insert position for these methods is determined by the value of the
where parameter. There are four choices:

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

122 Chapter 5: Making Content Dynamic

BeforeBegin
In front of the start tag of the element

AfterBegin
After the start tag, but immediately before the text content of the element

BeforeEnd
At the very end of the content of the element, just in front of the end tag

AfterEnd
After the end tag of the element

Notice that the BeforeBegin and AfterEnd locations are outside of the element
referenced in the statement. For example, consider the following nested pair of
tags:

Start outer text.
 Some inner text.

End of outer text.

Consider the following statement:
document.all.inner. insertAdjacentHTML ("BeforeBegin", "Inserted!")

The document changes so that the word “Inserted!” is rendered in a bold, red font.
This is because the HTML was added before the beginning of the inner item, and
is therefore under the rule of the element that contains the inner element: the
outer element.

The IextRange object

While the properties discussed in the previous section let you access entire ele-
ments, the TextRange object lets you dig even more deeply into the content of a
document. A TextRange is like an invisible selection in the source code of a doc-
ument. To begin using TextRange, you create a TextRange object in memory
(referenced as a variable) that encompasses the content of one of the following
element types:

e BODY
e BUTTON
e INPUT (TYPE="text")

e TEXTAREA

Performing real work with a TextRange involves at least two steps: creating the
TextRange object and setting its start and end points (using any of a variety of
functions).

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Changing Content 123

For example, to generate a TextRange object that initially encompasses the entire
body of a document, use a statement like the following:

>
=
=3
=

=
o

var range = document.body.createTextRange ()

o

-
=
(Y]
3
(1]
=
=
=
=

You can then write a script (with the help of many TextRange object methods) to
set the start and end points of the selection range. A range can be as narrow as a
single insertion point (i.e., the start and end points are identical). Once the range
is set, you can read or write just the text that appears in the browser window for
that range, or you can work with the complete HTML source code within the
range.

WARNING For Internet Explorer 4, the TextRange object and related function-
ality is guaranteed to work only on Windows platforms. The Macin-
tosh version of IE 4.0, for example, does not support the Text-
Range at all. Plan your deployment accordingly.

Table 5-1 gives a summary of the TextRange object’s methods grouped by func-
tionality (see Chapter 9 for full details). Given the breadth of methods, this is an
extraordinarily powerful object that is often called on to do heavy-duty work, such
as assisting with search-and-replace operations throughout an entire document.

Table 5-1. Internet Explorer 4 TextRange Object Methodls

Method ‘ Description

Adjusting Range Location and Size

collapse() Sets the insertion point at the beginning or the end
of current range

expand () Expands the current range to the nearest character,
word, sentence, or entire range

findText () Searches the range for a string

getBookmark () Returns a pseudo-pointer to a location in the range

move () Collapses the range and move the insertion point by
a variety of unit measures

moveEnd () Moves the end of the range by a variety of unit
measures

moveStart () Moves the start of the range by a variety of unit
measures

moveToBookmark () Moves the range to an existing bookmark pseudo-
pointer

moveToElementText () Sets the range to enclose the text of a given element

moveToPoint () Moves the insertion point to a geographical coordi-
nate

setEndPoint () Sets the range end point relative to another range’s
start or end point

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

124 Chapter 5: Making Content Dynamic

Table 5-1. Internet Explorer 4 TextRange Object Methods (continued)

Method Description

Comparing and Copying Ranges

inRange () Returns whether a subrange is in the current range

isEqual () Returns whether a subrange is equal to the current
range

compareEndPoints () Compares locations of two end points

duplicate() Returns a copy of the current range

Working with the Document

parentElement () Returns the element containing the current range

pasteHTML () Replaces the current range with a string of HTML

scrollIntoView () Scrolls the window to bring the text of the range into
view

select () Selects and highlights the text of the range in the
window

Working with Commands

execCommand () Executes a command

queryCommandEnabled () Returns whether a desired command is available

queryCommandIndeterm() Returns whether a desired command is in the inde-
terminate state

queryCommandState () Returns the current state of a command

queryCommandSupported () Returns whether the command is supported

queryCommandText () Returns the identity of a command

queryCommandvalue () Returns the current value of a command

The commands referred to in the last section of Table 5-1 consist of a large num-
ber of shortcuts you can use to insert many HTML elements into or around a text
range. They’re not script methods, but often have corresponding methods in Java-
Script. You can find a complete list of these commands in Appendix D.
Example 5-11 shows two of these commands and a few TextRange methods at
work. The script fragment starts with a hypothetical function that prompts the user
to enter a string to search for in the document. If there is a match, the script
expands the text range (which is set to the found word) to the sentence encom-
passing that found string, scrolls the document to bring the sentence into view,
and executes the ForeColor command to give the sentence a special color. The
second function undoes the formatting that had been applied to the range. To
make the TextRange object reference available to both functions, it is stored as a
global variable.

Example 5-11. TextRange Methods and Commands

var range
function findaAndHilite() {
var srch = prompt ("Enter a word or phrase to search for:", "sample")

range = document.body.createTextRange ()
if (srch && range.findText (srch)) {

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Changing Content 125

Example 5-11. TextRange Methods and Commands (continued)

range.expand ("sentence")
range.scrollIntoView()
range . execCommand ("ForeColor", "false", "cornflowerblue")

=]
-
=
33
&<
=3
-] 2
=
-

}

}
function undoHilite() {
range . execCommand ("RemoveFormat")

}

Combining Forces: An IE 4 Custom Newsletter

To round out the discussion of dynamic content, I am going to present an applica-
tion that demonstrates several aspects of Internet Explorer 4 DHTML in action.
Unfortunately the Macintosh version of IE 4.0 is missing some key ingredients to
make this application run on that platform, so this only works on Win32 plat-
forms. The example is a newsletter that adjusts its content based on information
provided by the reader. For ease of demonstration, the newsletter arrives with a
total of five stories (containing some real text and some gibberish to fill space)
condensed into a single document. A controller box in the upper right corner of
the page allows the reader to filter the stories so that only those stories containing
specified keywords appear on the page (see Figure 5-1). Not only does the appli-
cation filter the stories, it also orders them based on the number of matching key-
words in the stories. In a real application of this type, you might store a profile of
subject keywords on the client machine as a cookie and let the document auto-
matically perform the filtering as it loads.

For the amount of real-time modification of the document taking place, there is
remarkably little scripting involved, as shown in Example 5-12. The scripts also
take advantage of the classes and IDs defined in the style sheet and used in the
BODY section of the document.

Each story is inside a DIV element of class wrapper; each story also has a unique
ID that is essentially a serial number identifying the date of the story and its num-
ber among the stories of that day. Nested inside each DIV element are both an H3
element (class of headline) and one or more P elements (class of story). In
Example 5-12, the style sheet definition includes placeholders for assigning style
rules to each of those classes. The only rule assigned so far is the display
attribute of the wrapper classes. At load time, all items of the wrapper class are
hidden, so they are ignored by the rendering engine.

The controller box (ID of filter) with all the checkboxes is defined as an abso-
lute-positioned element at the top right of the page. In real life, this type of con-
troller might be better handled as a document in a separate frame.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

126 Chapter 5: Making Content Dynamic

/3 Today in Jollpwood - Microsoft Internet Explorer

J File Edit “iew Go Favoites Help

Jc=,=b,°ﬁ‘@l°£l®

Hiaek Forward Stop Refresh Home Search Favontes History Channels

Fullscreen J Links

-

Today in Jollywood
Friday, September 11, 1998

Critic's Poll Looking Bleak

A recent poll of the top fitm critics shows a preference for foreign films this year. 'T don't have
enough American films vet for my Top Ten List," said Atlanta Ceonstitution cntic, Pauline Gunwhale,
Mo is armour was attere was a wild oldwright fromthinteres of shoesets Oscar contender, "The Day
the Firth Stood Stll" whe burnt head hightier nor a pole juninies that a gynecure was let on, where
gyanacestross mound hold her dummyand shake.

Musical in Tarentino's Fuiure?

@ Dane | l_l_l_ 25 Lacal intranet zone

Figure 5-1. A newsletter that uses IE 4 DHTML to customize its content

The only other noteworthy element is a DIV element of ID myNews (just above
the first story DIV element). This is an empty placeholder where stories will be
inserted for viewing by the user.

The onLoad event handler of the BODY element triggers the searching and sorting
of stories, as does a click on any of the checkboxes in the controller box. Two
global variables assist in the searching and sorting. The keywords array is estab-
lished at initialization time to store all the keywords from the checkboxes. The
foundStories array is filled each time a new filtering task is requested. Each
entry in the foundStories array is an object with two properties: id, which cor-
responds to the ID of a selected story, and weight, which is a numeric value that
indicates how many times a keyword appears in that story.

Now skip to the filter () function, which is the primary function of this applica-
tion. It is invoked at load time and by each click on a checkbox. This function
uses the TextRange object to perform the search for keyword matches. The first
task is to clear the myNews element by setting its innerHTML property to an empty
string. Then the function searches for each checked keyword, using a fresh Text-
Range object that encompasses the entire BODY element.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Changing Content 127

When the findText () method uncovers a match (returning true in the process),
the TextRange adjusts itself to encompass only the matched word. At this point,
the parent element of the current range (the element whose tags surround the
matched text) is passed to the getDIVIA() function. This function makes sure the
parent element of the found item has a class associated with it (meaning that it is
of the wrapper, headline, or story class). The goal is to find the wrapper class
of the matched string, so getDIVIA() works its way up the chain of parent ele-
ments until it finds a wrapper element. Now it’s time to add the story belonging to
the wrapper class element to the array of found stories. But since the story may
have been found during an earlier match, there is a check to see if it'’s already in
the array. If so, the array entry’s weight property is incremented by one. Other-
wise, the new story is added to the foundStories array.

Coming back to the filter() function, the next statement collapses the text
range (which currently encompasses the found word) to a single insertion point at
the end of the range. This lets the next search begin with the character immedi-
ately following the previously found string in the body.

Since it is conceivable that no story could have a matched keyword (or no key-
words are selected), a short routine loads the foundStories array with informa-
tion from every story in the document. Thus, if there are no matches, the stories
appear in the order in which they were entered into the document. Otherwise, the
foundStories array is sorted by the weight property of each array entry.

The finale is at hand. With the foundStories array as a guide, the innerHTML of
each ID’s element is appended to the end of the myNews element, using the
insertAdjacentHTML () method. The browser renders and reflows the newly
inserted HTML (picking up any styles that may be assigned to these elements).
Then the foundStories array is emptied, so it is ready to do it all over again
when the reader clicks on another checkbox.

Example 5-12. A Custom Newsletter Filter That Uses IE 4 DHTML

<HTML>
<HEAD>
<TITLE>Today in Jollywood</TITLE>
<STYLE TYPE="text/css">
#banner {}
#date {}
.wrapper {display:none}
.headline {}
.story {}
#filter {position:absolute; top:10; left:320; width:260;
border:solid red 3px; padding:2px; background-color:coral}
</STYLE>
<SCRIPT LANGUAGE="JavaScript">
// Global variables and object constructor
var keywords = new Array ()

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

128 Chapter 5: Making Content Dynamic

Example 5-12. A Custom Newsletter Filter That Uses IE 4 DHTML (continued)

var foundStories = new Array ()
function story(id, weight) {
this.id = id
this.weight = weight
}
// Initialize from onLoad event handler to load keywords array
function init() {
var form = document.filterer
for (var i = 0; i < form.elements.length; i++) {
keywords[i] = form.elements[i].name

}
// Find story's "wrapper" class and stuff into foundStories array
// (or increment weight)
function getDIVId(elem) {
if (!elem.className) {

return
}
while (elem.className != "wrapper") {
elem = elem.parentElement
}
if (elem.className != "wrapper") {
return
}
for (var 1 = 0; i < foundStories.length; i++) {
if (foundStories[i].id == elem.id) {
foundStories[i] .weight++
return
}
}
foundStories[foundStories.length] = new story(elem.id, 1)
return

}
// Sorting algorithm for array
function compare(a,b) {
return b.weight - a.weight
}
// Main function finds matches and displays stories
function filter() {
var txtRange
// clear any previous selected stories
document.all .myNews . inner! = ""
// look for keyword matches
for (var i = 0; i < keywords.length; i++) {
// reset default textRange for each keyword
txtRange = document.body.createTextRange ()
if (document.filterer.elements[i].checked) {
while (txtRange.findText (keywords[i])) {
// extract wrapper id and log found story
getDIVId (txtRange.parentElement ())

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Changing Content 129

Example 5-12. A Custom Newsletter Filter That Uses IE 4 DHTML (continued)

// move textRange pointer to end of match for next search
txtRange.collapse (false)

=
-
8 Z
35S
o=
_= =
=13
=
-

}
if (foundStories.length == 0) {
// no matches, so grab all stories as delivered
// start by assembling an array of all DIV elements
var divs = document.all.tags("DIV")
for (var i = 0; i < divs.length; i++) {
if (divs[i].className && divs[i].className == "wrapper") {
foundStories[foundStories.length] = new story(divs[i].id)

}
} else {
// sort selected stories by weight
foundStories.sort (compare)
}
var oneStory =
for (var i = 0; i < foundStories.length; i++) {
oneStory = eval("document.all." + foundStories[i].id + ".innerHTML")
document.all .myNews. insertAdjacentHTML ("BeforeEnd", oneStory)

}

foundStories.length = 0
}
</SCRIPT>
</HEAD>
<BODY BGCOLOR="#ffffff" onLoad="init();filter()">
<H1 ID=banner>Today in Jollywood</H1>
<H2 ID=date>Friday, September 11, 1998</H2>
<HR>
<DIV ID=myNews>
</DIV>
<DIV CLASS=wrapper ID=N091198001>
<H3 CLASS=headline>Kevin Costner Begins New Epic</H3>
<P CLASS=story>Oscar-winning director and actor, Kevin Costner has begun location
shooting on a new film based on an epic story. Sally ("Blurbs") Thorgenson of
KACL radio, who praised "The Postman" as "the best film of 1997, " has already
supplied the review excerpt for the next film's advertising campaign: "Perhaps
the best film of the decade!" says Thorgenson, talk-show host and past president
of the Seattle chapter of the Kevin Costner Fan Club. The Innscouldn't it the
trumple from rathe night she signs. Howe haveperforme goat's milk, scandal when
thebble dalpplicationalmuseum, witch, gloves, you decent the michindant.</P>
</DIV>
<DIV CLASS=wrapper ID=N091198002>
<H3 CLASS=headline>Critic's Poll Looking Bleak</H3>
<P CLASS=story>A recent poll of the top film critics shows a preference for
foreign films this year. "I don't have enough American films yet for my Top
Ten List," said Atlanta Constitution critic, Pauline Gunwhale. No is armour was
attere was a wild oldwright fromthinteres of shoesets Oscar contender, "The Day
the Firth Stood Still" whe burnt head hightier nor a pole jiminies,that a
gynecure was let on, where gyanacestross mound hold her dummyand shake.</P>

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

130 Chapter 5: Making Content Dynamic

Example 5-12. A Custom Newsletter Filter That Uses IE 4 DHTML (continued)

</DIV>

<DIV CLASS=wrapper ID=N091198003>

<H3 CLASS=headline>Summer Blockbuster Wrap-Up</H3>

<P CLASS=story>Despite a world-wide boycott from some religious groups, the
animated film "The Satanic Mermaid" won the hearts and dollars of movie-goers
this summer. Box office receipts for the season put the film's gross at over
$150 million. Sendday'seve and nody hint talking of you sippated sigh that
cowchooks,weightier nore, sian shyfaun lovers at hand suckers, why dol am
alookal sin busip, drankasuchin arias so sky whence. </P>

</DIV>

<DIV CLASS=wrapper ID=N091198004>

<H3 CLASS=headline>Musical in Tarentino's Future?</H3>

<P CLASS=story>Undaunted by lackluster box-office results from last Christmas'
"Jackie Brown, " director Quentin Tarentino has been seen scouting Broadway
musicals for potential future film projects. "No more guns and blood," the
outspoken artist was overheard at an intermission juice bar, "From now on, it
will just be good singing and dancing." He crumblin if so be somegoat's milk
sense. Really? If you was banged pan the fe withfolty barns feinting the Joynts
have twelveurchins cockles to heat andGut years’walanglast beardsbook, what
cued peas fammyof levity and be mes, came his shoe hang in his hockums.</P>
</DIV>

<DIV CLASS=wrapper ID=N091198005>

<H3 CLASS=headline>Letterman to Appear in Sequel</H3>

<P CLASS=story>As if one cameo appearance weren't enough, TV talk show host
David Letterman will reprise his role as the dock-side monkey vendor in "Cabin
Boy II," coming to theaters this Christmas. Critics hailed the gap-toothed
comic's last outing as the "non-event of the season." This the way thing,what
seven wrothscoffing bedouee lipoleums. Kiss this mand shoos arouna peck of
night, in sum ear of old Willingdone. Thejinnies and scampull's syrup.</P>
</DIV>

<HR>

<P ID=copyright>Copyright 1998 Jollywood Blabber, Inc. All Rights Reserved.</P>
<DIV ID=filter>

Filter news by the following keyword(s) :

<FORM NAME="filterer">

<INPUT TYPE="checkbox" NAME="director" onClick="filter (this.form)">director
<INPUT TYPE="checkbox" NAME="box" onClick="filter (this.form)">box (office)
<INPUT TYPE="checkbox" NAME="critic" onClick="filter (this.form)">critic
<INPUT TYPE="checkbox" NAME="summer" onClick="filter (this.form) ">summer
<INPUT TYPE="checkbox" NAME="Christmas" onClick="filter (this.form)">Christmas
</FORM>

</DIV>

</BODY>

</HTML>

Some might argue that it is a waste of bandwidth to download content that the
viewer may not need. But unless you have a CGI program running on the server
that can query the user’s preferences and assemble a single document from match-
ing documents, the alternative is to have the client make numerous HTTP requests
for each desired story. When you want to give the user quick access to change-

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Changing Content 131

able content, a brief initial delay in downloading the complete content is prefera-
ble to individual delays later in the process.

=]
-
5E
23
o £
==
=i
=
-

It should be clear that Internet Explorer 4 is much better suited to truly dynamic
content in an HTML page than Navigator 4. It is very likely that a future version of
Navigator will incorporate these same powers—if not the same techniques—to
extend dynamic content across both browsers.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

In this chapter:
e Basic Events

* Binding Event
Handlers to Elements

» FEvent Handler
Return Values

» Event Propagation
* Examining Modifier

Scripting Events Keys

» Examining Mouse
Buttons and Key
Codes

* Dragging Elements
o Event Futures

A graphical user interface constantly monitors the computer’s activity for signs of
life from devices such as the mouse, keyboard, serial port, and so on. Programs
are written to respond to specific actions, called events, and run some code based
on numerous conditions associated with the event. For example, was the Shift key
held down while the mouse button was clicked? Where was the text insertion
pointer when a keyboard key was pressed? As you can see, an event is more than
the explicit action initiated by the user or system—an event also has information
associated with it that reveals more details about the state of the world when the
event occurred.

In a Dynamic HTML page, you can use a scripting language such as JavaScript (or
VBScript in Internet Explorer), to instruct a visible element to execute some script
statements when the user does something with that element. The bulk of scripts
you write for documents concern themselves with responding to user and system
actions after the document has loaded. In this chapter, we'll examine the events
that are available for scripting and discuss how to associate an event with an
object. We'll also explore how to manage events in the more complex and con-
flicting event models of the Version 4 browsers.

Basic Events

Events have been scriptable since the earliest scriptable browsers. The number and
granularity of events have risen with the added scriptability of each browser gener-
ation. The HTML 4.0 recommendation cites a group of events it calls “intrinsic
events,” which all Version 4 browsers have in common (many of them dating back

132
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Basic Events 133

to the time of Navigator 2). These include onClick, onMouseOver, onKeyPress,
and onLoad events, as well as many other common events. But beyond this list,
there are a number of events that are browser specific and support the idiosyncra-
sies of the document object models implemented in Navigator 4 and Internet
Explorer 4. Eventually (no pun intended), standards for events will be maintained
by the formal DOM specification, but the subject is a complex one and appears to
have been tabled until DOM Level 2.

Every event has a name, but the actual nomenclature you use in your scripts is
more complicated. For example, when a user clicks a mouse button, the physical
action fires a “click” event. But, as you will see in various tag attributes and script
statements, the way you direct a clicked object to actually do something in
response to the event is to assign the object an event handler that corresponds to
the event. An event handler adopts the event name and appends the word “on” in
front of it. Thus, the click event becomes the onClick event handler.

NOTE Capitalization of event handler names is another fuzzy subject. When
used as HTML tag attributes, event handler names are case insensi-
tive. A tradition among long-time scripters has been to capitalize the
first letter of the actual event, as in onClick. In other situations, you
might assign an event handler as a property of an object. In this
case, the event handler must be all lowercase to be compatible
across platforms. In this book, generic references to event handlers
and event handlers as tag attributes all have the inside capital letter;
event handlers as object properties are shown in all lowercase.

It is not uncommon to hear someone call an event handler an event. There is a
fine distinction between the two, but you won’t be arrested by the “jargon police”
if you say “the onClick event.” It is more important that you understand the range
of events available for a particular browser version and what action fires the event
in the first place.

Table 6-1 is a summary of all the event handlers defined in the Version 4 brows-
ers. Pay special attention to the columns that show in which version of each
browser the particular event handler was introduced. Bear in mind, however, that
an event handler introduced in one browser version may have been extended to
other objects in a later browser version. In Chapter 15, Document Object Event
Handlers Index, you can find a listing of all event handlers and the objects to
which they may be assigned.

Many of the event handlers in Table 6-1 apply only to Internet Explorer 4’s data
binding facilities, which allow form elements to be bound to server database

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

134

Chapter 6: Scripting Events

sources. Even though Microsoft includes data binding among its list of DHTML
capabilities, the subject is not covered in depth in this book.

Table 6-1. Navigator 4 and Internet Explorer 4 Event Handlers

Event Handler NN | IE | Description

onAbort 3 4 | The user has interrupted the transfer of an image to
the client

onAfterUpdate - 4 | Transfer of data from a databound document
element to a data source has completed

onBeforeUnload - 4 | The page is about to be unloaded from a window
or frame

onBeforeUpdate - 4 Data from a databound document element is about
to be sent to a data source

onBlur 2 3 | An element has lost the input focus because the
user clicked out of the element or pressed the Tab
key

onBounce - 4 The content of a MARQUEE element has reached the
edge of the element area

onChange 2 3 An element has lost focus and the content of the
element has changed since it gained focus

onClick 2 3 | The user has pressed and released a mouse button
(or keyboard equivalent) on an element

onDataAvailable - 4 | Data has arrived (asynchronously) from a data
source for an applet or other object

onDatasetChanged - 4 | Data source content for an applet or other object
has changed or the initial data is ready

onDatasetComplete - 4 | Transfer of data from a data source to an applet or
other object has finished

onbblClick 4 4 | The user has double-clicked a mouse button

onDragDrop 4 - A desktop icon has been dropped into a window or
frame

onDragStart - 4 | The user has begun selecting content with a mouse
drag

onError 3 4 | An error has occurred in a script or during the
loading of some external data

onErrorUpdate - 4 | An error has occurred in the transfer of data from a
databound element to a data source

onFilterChange - 4 | A filter has changed the state of an element or a
transition has completed

onFinish - 4 | A MARQUEE object has finished looping

onFocus 2 3 | An element has received the input focus

onHelp - 4 | The user has pressed the F1 key or chosen Help
from the browser menu

onKeyDown 4 4 | The user has begun pressing a keyboard character
key

onKeyPress 4 4 | The user has pressed and released a keyboard char-
acter key

onKeyUp 4 4 | The user has released a keyboard character key

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Binding Event Handlers to Elements

135

Table 6-1. Navigator 4 and Internet Explorer 4 Event Handlers (continued)

=]
-
5E
23
o £
==
=i
=
-

Event Handler NN | IE | Description

onLoad 2 3 | A document or other external element has
completed downloading all data into the browser

onMouseDown 4 4 | The user has begun pressing a mouse button

onMouseMove 4 4 | The user has rolled the mouse (irrespective of
mouse button)

onMouseOut 3 4 | The user has rolled the mouse out of an element

onMouseOver 2 3 | The user has rolled the mouse atop an element

onMouseUp 4 4 | The user has released the mouse button

onMove 4 3 | The user has moved the browser window

onReadyStateChange | - 4 An object has changed its readyState

onReset 3 4 | The user has clicked a Reset button

onResize 4 4 | The user has resized a window or object

onRowEnter - 4 | Data in the current row of a databound object
(acting as a data provider) has changed

onRowExit - 4 | Data in the current row of a databound object
(acting as a data provider) is about to be changed

onScroll - 4 | The user has adjusted an element’s scrollbar

onSelect 2 3 | The user is selecting text in an INPUT or TEXTAREA
element

onSelectStart - 4 | The user is beginning to select an element

onStart 4 | A MARQUEE element loop is beginning

onSubmit 2 3 | A form is about to be submitted

onUnload 2 3 | A document is about to be unloaded from a
window or frame

Binding Event Handlers to Elements

The first step in using events in a scriptable browser is determining which object
and which event you need to trigger a scripted operation. With form elements, the
choices are fairly straightforward, especially for mouse and keyboard events. For
example, if you want some action to occur when the user clicks on a button
object, you need to associate an onClick event handler with the button. Some
possibilities are not so obvious, however. For example, if you need to execute a
script after a document loads (say, to adjust some style sheet rules in response to
the size of the user’s browser window), you need to specify an onLoad event han-
dler. For the onLoad event handler to fire, it must be associated with the BODY ele-
ment or the window object (by a quirk of HTML tag structure, all window object
event handlers are associated with the BODY element).

Event Handlers as 1ag Attributes

Perhaps the most common way to bind an event handler to an element is to
embed the handler in the HTML tag for the element. All event handlers can be

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

136 Chapter 6: Scripting Events

specified as attributes of HTML tags. Such attribute names are case insensitive. The
value you assign to one of these attributes can be a string that contains inline
script statements:

<INPUT TYPE="button" VALUE="Click Here" onClick="alert('You clicked me!')">
Or it can be a function invocation:

<INPUT TYPE="button" VALUE="Click Here" onClick="handleClick()">
Multiple statements within the value are separated by semicolons:

<INPUT TYPE="button" VALUE="Click Here" onClick="doFirst(); doSecond() ">

You can pass parameter values to an event handler function, just as you would
pass them to any function call, but there are also some nonobvious parameters
that may be of value to an event handler function. For example, the this key-
word is a reference to the element as an object. In the following text field tag, the
event handler passes a reference to that very text field object to a function named
verify():

<INPUT TYPE="text" NAME="CITY" onChange="convertToUpper (this)">

The function can then use that parameter as a fully valid reference to the object,
for reading or writing the object’s properties:

function convertToUpper (field) {

field.value = field.value.toUpperCase ()

}
Once a generic function like this one is defined in the document, an onChange
event handler in any text field element can invoke this single function with assur-
ance that the result is placed in the changed field.

The this reference can also be used in the event handler to extract properties
from an object. For example, if an event handler function must deal with multiple
items in the same form, it is useful to send a reference to the form object as the
parameter and let the function dig into the form object for specific elements and
their properties. Since every form element has a form property, you can pass an
element’s form object reference with the parameter of this. form:

<INPUT TYPE="button" VALUE="Convert All" onClick="convertAll (this.form) ">

The corresponding function might assign the form reference to a parameter vari-
able called form as follows:
function convertAll (form) {
for (var i = 0; i < form.elements.length; i++) {
form.elements[i] .value = form.elements[i].value.toUpperCase ()
}
}
An added benefit of this kind of parameter passing is that references inside the
function can be reduced from the generic document.forms[0].ele-

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Binding Event Handlers to Elements 137

ments.length to the simpler form.elements.length. The parameter variable
automatically points to the proper form object if there are multiple forms on the

page.

Navigator 4 has one additional keyword that can be passed as an event handler
parameter: event. As we discuss later in the chapter, this is an event object that
contains more information about the event that fired the event handler.

Event Handlers as Object Properties

As of Navigator 3 and Internet Explorer 4, an event handler can also be assigned
to an object as a property of that object via a script statement. For every event that
an object supports, the object has a property with the event handler name in all
lowercase (although Navigator 4 also recognizes the intercapitalized version, as
well). You use the standard assignment operator (=) to assign a function (or script
statements) to the event handler. Function assignments are references to func-
tions, which means that you omit the parentheses normally associated with the
function name. For example, to have a button’s onClick event handler invoke a
function named handleClick() defined elsewhere in the document, the assign-
ment statement is:

document . forms [0] .buttonName.onclick = handleClick

Notice, too, that the reference to the function name is case sensitive, so any capi-
talization in the function name must be preserved in its reference.

Binding event handlers to objects in this manner has both advantages and disad-
vantages. An advantage is that you can use scripted branching to simplify the invo-
cation of event handler functions that require (or must omit) certain browser ver-
sions. For example, if you implement an image-swapping mouse rollover atop a
link surrounding an image, you can weed out old browsers that don’t support
image swapping by not assigning the event handler to those versions:

if (document.images) {
document.links[1] .onmouseover = swapImagel
}
Without an event handler specified in the tag, an older browser is not tripped up
by the invalid object, and the image swapping function doesn’t have to do the ver-
sion checking.

But the preceding example also shows one of the disadvantages of assigning event
handlers to object properties: you cannot pass parameters to functions invoked
this way. Navigator 4 automatically passes an event object along with each of
these calls (as described later in this chapter), but other than that, it is up to the
called function to specifically reference information, such as an element’s form or
other properties.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

138 Chapter 6: Scripting Events

Another potential downside is more of a caution: assignment statements like the
preceding one must be executed after the object has loaded in the document. This
means that the script statement either must be physically below the element’s
HTML tag in the document or it must be run in a function invoked by the onLoad
event handler. If the object is not loaded, the assignment statement causes an error
because the object does not exist.

Event Handlers as <SCRIPT> lags

The third and final technique for binding event handlers to objects currently works
only in Internet Explorer 4. The technique uses two special attributes (FOR and
EVENT) in the <SCRIPT> tag to specify that the script is to be run in response to
an event for a particular object. The FOR attribute points to an ID attribute value
that is assigned to the element that generates the event handler; the EVENT
attribute names the event handler. Internet Explorer does not attempt to resolve
the FOR attribute reference while the document loads, so it is safe to put the script
before the element in the source code.

The following fragment shows what the entire <SCRIPT> tag looks like for the
function defined earlier that converts all of a form’s element content to uppercase
in response to a button’s onClick event handler:

<SCRIPT FOR=upperAll EVENT=onclick LANGUAGE="JavaScript">
var form = document.forms([0]
for (var i = 0; i < form.elements.length; i++) {
form.elements[i] .value = form.elements[i].value.toUpperCase ()
}
</SCRIPT>

The HTML for the button does not include an event handler, but does require an
ID (or NAME) attribute.

<INPUT TYPE="button" ID="upperAll" VALUE="Convert All">

NOTE You might see a variation of this technique for defining scripts

directly as event handlers when the scripting language is specified as
VBScript. Instead of specifying the object name and event as tag
attributes, VBScript lets you combine the two in a function name,
separated by an underscore character, as in:

<SCRIPT LANGUAGE="VBScript">

Function upperAll_onclick

script statements
End Function
</SCRIPT>

The tag for the element requires only the ID attribute to make the
association.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Event Handler Return Values 139

In those rare instances in which an event contains parameters (such as the error
event), the parameters can be assigned to parameter variables in the EVENT
attribute (EVENT="onerror (msg, url, lineNum)"). Those parameter variables
can then be used directly in script statements inside the <SCRIPT> tag pair.

Event Handler Return Values

A few event handlers associated with specific objects have extra powers available
to them, based on whether the event handler contains a scripted return state-
ment that returns true or false. For example, an onClick event handler associ-
ated with a link ignores the action of the HREF and TARGET attributes if the event
handler evaluates to return false. Similarly, a form object’s onSubmit event
handler can cancel the submission of a form if the event handler evaluates to
return false.

The easiest way to implement this feature is to include a return statement in the
event handler itself, while the function invoked by the handler returns true or
false based on its calculations. For example, if a form requires validation prior to
submission, you can have the onSubmit event handler invoke the validation rou-
tine (probably passing this, the form itself, as a parameter to the function). If the
routine finds a problem somewhere, it returns false and the submission is can-
celed; otherwise, it returns true and the submission proceeds as usual. Such a
FORM element looks like the following:

<FORM METHOD="POST" ACTION="http://www.megaCo.com/cgi-bin/entry"

onSubmit="return validate(this) ">
This technique also allows you to have a link navigate to a hardcoded URL for
nonscriptable browsers, but execute a script when the user has a scriptable
browser:

...

Here, the return statement is set as the final statement of the event handler; it
does not have to trouble the called function for a return value.

Event Propagation

In some DHTML applications, it is not always efficient to have target elements pro-
cess events. For example, if you have a page that allows users to select and drag
elements around the page, it is quite possible that one centralized function can
handle that operation for all elements. Rather than define event handlers for all of
those elements, it is better to have the mouse-related events go directly to an
object or element that has scope over all the draggable elements. In other words,
one event handler can do the job of a dozen. For this kind of treatment to work,
events must be able to propagate through the hierarchy of objects or elements in

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

140 Chapter 6: Scripting Events

the document. Version 4 browsers are the first to incorporate event propagation in
their event models.

The differences in the event models between Navigator 4 and Internet Explorer 4
are most evident in the way that an event passes through the document hierarchy
after it fires. Events literally travel in opposite directions in the two browsers: Navi-
gator 4 events trickle down through the object hierarchy to the intended target
object, while IE 4 events bubble up from the target element through the element
containment hierarchy. In addition, Navigator 4 objects don’t intercept events as
they trickle down unless they are explicitly instructed to do so, while IE 4 events
automatically bubble up unless explicitly stopped by any element along the bub-
ble path.

Navigator 4 Event Propagation

When a user initiates an action that fires an event targeted to a page element in
Navigator 4, the event passes through an object hierarchy: namely the window,
document, and possibly layer objects that eventually lead to the target element.
Without any instructions to do otherwise, these intervening objects do nothing to
the event as it passes through. But if you want to intercept the event at any one of
those levels, you may do so by invoking the captureEvents () method for the
window, document, or layer object.

Capturing events

The captureEvents () method, however, requires special instructions about the
kind of event (or events) to capture. Parameters to the captureEvents () method
are static properties of an Event object (with an uppercase E) that exists in every
window or frame. The properties are essentially constants that represent the types
of events that can pass through the window, document, or layer object. Table 6-2
shows the events you can capture at those levels.

Table 6-2. Event Object Static Properties

Event .ABORT Event .BLUR Event . CHANGE
Event .CLICK Event .DBLCLICK Event . DRAGDROP
Event .ERROR Event .FOCUS Event . KEYDOWN
Event .KEYPRESS Event .KEYUP Event .LOAD
Event . MOUSEDOWN Event .MOUSEMOVE Event .MOUSEOUT
Event .MOUSEOVER Event .MOUSEUP Event .MOVE
Event .RESET Event .RESIZE Event .SCROLL
Event .SELECT Event.SUBMIT Event .UNLOAD

You can select multiple events to be captured by specifying multiple parameters
separated by the bitwise OR operator (|). For example, if you want the document
object to capture all mouse over and mouse out events, the script statement is:

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Event Propagation 141

document . captureEvents (Event . MOUSEOVER | Event .MOUSEOUT)

Capturing events is only part of the job. The window, document, or layer object
must also have an event handler for each event assigned to it. For instance, if the
document object is capturing mouse over and mouse out events, as just shown,
two more statements in the script must follow to assign functions to these event
handler properties. The following two statements assume existing function defini-
tions for turnOnImage () and turnOffImage():

document . onmouseover = turnOnImage

document . onmouseout = turnOffImage
When a function is assigned to an event handler, Navigator 4 automatically passes
an event object (lowercase e) as an argument to the function. This object con-
tains details about the physical event that occurred. If the function intends to
examine that information, it should include a parameter variable for the event, as
in:

function turnOnImage (evt) {

Statements

}
You can, of course, also use the function.arguments property to extract this
value without an explicit parameter variable, but having the parameter variable is a
clean way to handle the event object reference.

A function that executes in response to an explicitly captured event like this can
cancel the native action of the intended target of the event by returning false.
For example, consider a document object that is set to capture and process
Event.CLICK events. If a user clicks on a link, the event handler function at the
document level can end with a return false statement to prevent the link from
carrying out its native action (navigating to the HREF URL). If the function ends
with a return true statement (or no return statement at all), however, the link
action takes place as usual.

If you want event capturing to work immediately after the initial loading of the
page, you should put the call to captureEvents () and the event handler assign-
ment statements in an initialization function that gets invoked from the onLoad
event handler of the BODY element. That way you know that all relevant object
and function references are valid before these statement are invoked.

Releasing events

Just as you can capture individual event types, you can turn off that capturing
when necessary. The window, document, and layer objects in Navigator 4 have
releaseEvents () methods that turn off event capture for the event types speci-
fied as parameters. For example, if the mouse over and mouse out events were
initially captured by the document object, but due to user interaction on the page,

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

142 Chapter 6: Scripting Events

you now want all mouse out events to go directly to their targets, invoke the fol-
lowing statement:

document . releaseEvents (Event . ONMOUSEOUT)

You may capture and release events as often as necessary for your page design.

Handing events off to their targets

If a window or document captures an event, the event handler may examine the
details of the event object passed as a parameter (described shortly) and deter-
mine that no special processing is required. In other words, the event should pro-
ceed to its intended target. There is no automatic propagation of events in Naviga-
tor, so you must include a statement that invokes the window, document, or layer
routeEvent () method. Pass along the event object as a parameter to this
method:

function turnOnImage(evt) {
if (condition that doesn’t require processing here) {
document . routeEvent (evt)
} else {
special processing statements
}
}
You may, of course, use a function like the preceding to perform some prepro-
cessing of the event and still invoke the routeEvent () method to let the target

object continue handling the event.

Redirecting events

The final possible disposition for an event that has been captured is to send it to
an object that is not the intended target. Every Navigator 4 object that has event
handlers available to it also has a handleEvent () method, which allows it to
receive an event object sent to it by a window, document, or layer object that
has captured the event prior to its intended target. While the routeEvent ()
method sends an event to its intended target without naming the target, the han-
dleEvent () method must be called from the object that is meant to receive the
event. For example, you could have several related links on a page all funnel their
mouse over and mouse out events to just one of the links. To accomplish this, the
document must be set up to capture both event types. The functions assigned to
the document .onmouseover and document.onmouseout event handlers should
include statements like the following one, which directs all such events to the first
link in the document:

document .1links[0] .handleEvent (evt)

That first link must have onMouseOver and onMouseOut event handlers assigned
to it for event redirection to work correctly.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Event Propagation 143

Examining a Navigator 4 event

The event (lowercase e) object passed with each physical event contains several
properties that are useful to scripts. Remember that this object is automatically
passed to a function assigned to an event handler property of an object; you may
also explicitly include it as a parameter to an event handler defined as a tag
attribute, as in the following example:

<INPUT TYPE="button" VALUE="Click me" onClick="doClickScript (event) ">

The function can then find out things about the event, such as the location of a
click, whether a modifier key was pressed at the time of the event, the intended
target, and the key pressed in a keyboard event. The event object can have the
following properties:

data
The URL of a drag and drop event

layerX, layerY
The horizontal and vertical coordinates of the event, relative to the containing
layer

modifiers
An integer value that represents modifier keys pressed at the time of the event
(a numeric combination of Event object static properties for modifier keys)

pageX, pageY
The horizontal and vertical coordinates of the event, relative to the window or
frame

screenX, screenY
The horizontal and vertical coordinates of the event, relative to the screen

target
An object reference to the intended target
type
The string representation of the event name ("click™)
which
For mouse events, an integer that represents the mouse button pressed; for
keyboard events, the ASCII code of key pressed

Note that not all events supply information for every property.

To demonstrate how you might combine event capturing with examination of the
event object, Example 6-1 shows the window-level capture of all key press events
on a page. The function processes all key press events. For events directed at text
input fields, the keyboard characters are examined to make sure that no numbers
are entered into the fields. Notice that after the call to alert (), checkNums ()
returns false to make sure that the native action of the text box (the rendering of
the typed character) doesn’t take place. However, at the end of the function, a

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

144 Chapter 6: Scripting Events

return true statement allows all other key press events (perhaps directed at a
TEXTAREA) to function normally.

Example 6-1. Event Capturing and Processing in Navigator 4

document . captureEvents (Event . KEYPRESS)
document . onkeypress = checkNums

function checkNums (evt) {
// get ASCII code
var oneChar = evt.which
// process only targets whose object are of type 'text'
if (evt.target.type == "text") {
// check for ASCIT range of 0-9
if (oneChar >= 48 && oneChar <= 57) {
alert ("Numbers are not allowed in text fields.")
return false
} else {
// let all other characters onward to object in case
// there is an onKeyPress event handler defined there
routeEvent (evt)

}
return true

You'll see more examples of event capturing and processing later in this chapter
when we discuss cross-platform event handling.

Internet Explorer 4 Event Bubbling

In contrast to Navigator 4’s trickle-down event mechanism, events in Internet
Explorer 4 bubble up from the target element through an element hierarchy. Note
that I said element hierarchy, which is different from the object hierarchy used in
Navigator—in IE 4, virtually every HTML element has events associated with it.
Consider the following skeletal structure of an HTML document:
<HTML>
<BODY>
<FORM>
<DIV>
<INPUT TYPE="text">
</DIV>
</FORM>
</BODY>
</HTML>
As the user types into the text input field, the key press event starts at the input
field and then works its way up through the DIV, FORM, and BODY elements of the
document, in that order. In this situation, an onKeyPress event handler can be
defined for any and all of these elements. Any such event handler you define will

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Event Propagation 145

be triggered by a key press in the text field, unless event bubbling is canceled (as
described in the next section).

This isn’t as anarchic as it sounds. In fact, it's quite powerful. With IE 4, you can
have event handlers that apply to running text content on a page, with granularity
that lets you specify different responses to each little element you define in the
HTML—character by character, if you like.

Automatic bubbling

Event bubbling is automatic in IE 4. For the most part, you don’t have to worry
about it, since there isn’t likely to be much overlap in non-DHTML pages. An
event handler in a form element works there and does not collide with similarly
named event handlers elsewhere in the element containment hierarchy. But if
there is a chance for events to collide, you can explicitly instruct an event not to
bubble beyond a specific element.

Canceling bubbling involves the IE 4 event (lowercase e) object, which is cov-
ered in more detail in the next section. This object belongs to the window object
and has a property named cancelBubble. The default value for this property is
false, meaning that event bubbling takes place. But if you set this property to
true, the event does not bubble past the current event handler.

If you assign an event handler as a tag attribute, you can cancel bubbling with an
extra statement in the attribute value:

<INPUT TYPE="button" onClick="doBtnClick(); window.event.cancelBubble=true">

Since the event object is bound to the window object, the cancelBubble prop-
erty can be set in any script statement to cancel bubbling for the current event.
Thus, if you assign an event handler as an element property, the bubble cancella-
tion can take place in the function invoked by the event handler with the simple
statement:

window.event.cancelBubble=true

Only one event is bubbling at any given instant, so this statement knows to can-
cel the right one. It also means that you can let an event bubble part of the way
through the element hierarchy, but stop it at any desired element, so as not to
interfere with other elements higher up the chain.

The window.event object

IE 4’s window.event object is somewhat analogous to Navigator 4’s event (low-
ercase e€) object. When an event fires, details of the event are automatically stuffed
into the window.event object and stay there until all scripts invoked by event
handlers along the bubble chain have finished. Then the next event stuffs its
details into the window.event object. In other words, there is only one win-

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

146 Chapter 6: Scripting Events

dow.event object alive at a time (within a given window or frame). Even with
events closely spaced in time (the mouse down, mouse up click sequence, for
example), only one event is “alive” at a time.

Like the Navigator version, this event object provides properties that contain
details about the event. Unfortunately, the property sets of the two objects don’t
match or have equivalents, but there are a number of similarities that can be use-
ful in cross-platform deployment, as demonstrated later in this chapter. Table 6-3
provides a list of the IE 4 window.event object properties and, when available,
the Navigator 4 equivalents.

Table 6-3. Properties of the Event Object for IE 4 and Navigator 4 Equivalents

NN4
IE 4 Property Type Description Type Property
altKey Boolean The Alt key was pressed Event modifiers
during the event property
button Integer The mouse button pressed in | Integer which
the mouse event
cancelBubble | Boolean Whether the event should
bubble further
clientX, Pixel The horizontal and vertical Pixel pageX,
clientyY values coordinates of the event in values pageY
the content region of
browser window
ctrlKey Boolean The Ctrl key was pressed Event modifiers
during the event property
fromElement Object The object or element from
which the pointer moved for
a mouse over or mouse out
event
keyCode Integer The keyboard character code | Integer which
of a keyboard event
offsetX, Pixel The horizontal and vertical
offsetY values coordinates of the event
within the element space
reason Integer The disposition of a data
transfer event
returnValue Boolean The value returned by the
event
screenX, Pixel The horizontal and vertical Pixel screenX,
screenY values coordinates of the event rela- | values screenY
tive to the screen
shiftKey Boolean The Shift key was pressed Event modifiers
during event property
srcElement Object The default object or element | Object target
intended to receive the event
srcFilter Object The filter object that trig-
gered a filter change event

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Examining Modifier Keys 147

Table 6-3. Properties of the Event Object for IE 4 and Navigator 4 Equivalents (continued)

NN4
IE 4 Property Type Description Type Property
toElement Object The object or element to
which the pointer moved for
a mouse over or mouse out
event
type String The name of the event String type
(without “on” prefix)
X, Y Pixel The horizontal and vertical
values coordinates of the event

within BODY element (for
unpositioned target) or posi-
tioned element

As you can see, very few event object properties in Table 6-3 have the same
names and data values across browsers (screenX, screenY, and type are the
only properties in common), although important properties for coordinate posi-
tions, modifier keys, mouse button, and keyboard character are available in both
browsers. This means that with a little platform-specific branching, you can make
events work for both browsers in one document. At the same time, as long as you
don’t need the element-level granularity of event handling available in IE 4 but
lacking in Navigator 4, the different event propagation directions are not that diffi-
cult to handle.

Examining Modifier Keys

Example 6-2 demonstrates several aspects of working with the browser-specific
event objects. As a bonus, the page includes some cross-platform element posi-
tioning and dynamic styles. The page is primarily a laboratory for experimenting
with particular event object properties to determine which modifier keys are held
down during mouse down and key press events. A small table is used as the out-
put area of the page (see Figure 6-1). As the user clicks on a link or types into a
text input field, the relevant event properties are checked for the modifier key(s)
being held down at the time. For each possible key, the background color of the
corresponding TD element is changed to red if the key is pressed. The scripting
techniques on this page also reveal some details about particular events that can
catch you off guard in one browser or the other.

The application uses a style rule to define the appearance of the TD elements that
represent the modifier keys. These elements are all positioned relative to the docu-
ment flow, and the clipping rectangle is set to compensate for Navigator 4’s pro-
pensity to cinch up the background around an element’s content.

The script begins with the familiar script statements that set global variables for
browser-specific branching and platform equivalent references. An API-like func-

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

148 Chapter 6: Scripting Events

<3 Modifiers Keys Properties - Microsoft Internet E xplorer

J File Edit Yiew Go Favortes Help ‘

= = o ° @‘ § Lirk.z
Eaek Fanward Stop Fiefresh Haome Search Favortes Histary Chan

Events and Modifier Keys

|MudiﬁerKeys:| Al | Control _ Ideta |

Hold one or more modfier keys and click on this link to see which keys you are
holding.

Enter some text with uppercase and lowercase letters:
(ol

[
|&] Dol l_l_l_ o5 Local intranst zone i

Figure 6-1. Experimenting with modifier keys

tion is defined to take care of setting an element’s background color with plat-
form-dependent syntax.

The checkMods () function is the heart of this example. It is called whenever the
user clicks the link or types in the text input area. The function receives a Naviga-
tor 4 event object as a parameter. For IE 4, the function relies upon the win-
dow. event object, so the parameter is ignored in that browser. The first four state-
ments in checkMods () set Boolean variables for the four modifier keys. Note that
the Meta key is the same as the Command key on the Macintosh keyboard and the
Windows key on recent Windows keyboards. IE 4, however, does not recognize
the Meta key as a modifier key, so its value in this script is always false.

Each assignment statement uses the conditional operator (?:) to do the right thing
for each browser. If isNav is true, the statement uses the bitwise AND (&) opera-
tor on the Navigator 4 event object’s modifiers property and the appropriate
constant from the Event object. If, through the operator’s binary arithmetic, the
right operand is determined to be a component of the left operand, the expres-
sion evaluates to true. If isNav is false, however, the statement assigns the spe-
cific modifier key property of the window.event object (a Boolean value) to the
script’s local variable.

After checkMods () sets its variables, it calls the setBGColor () function for each
modifier to set the color of the corresponding TD element.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Examining Modifier Keys 149

In the HTML for the page, shown in Example 6-2, notice that the link has both an
onMouseDown and an onClick event handler bound to it. The onClick event
handler cannot be used by itself because Navigator 4 performs unique actions
when you mouse down on a link with certain modifier keys held down; con-
versely, IE 4 opens a new browser window with the HREF attribute unless the
onClick event handler returns false. To accommodate both behaviors, the
onMouseDown event handler is used for the event sampling, while the onClick
event handler is specified so that it always returns false.

=]
-
=
33
&<
=3
-] 2
=
-

Example 6-2. A Modifier Key Event Laboratory

<HTML>
<HEAD>
<TITLE>Modifier Keys Properties</TITLE>
<STYLE TYPE="text/css">
.flags {position:relative; clip:rect(0,80,18,0); background-color:white}
</STYLE>
<SCRIPT LANGUAGE="JavaScript">
// Global variables for browser versions and platform equivalencies
var isNav, isIE
var coll = ""
var styleObj = ""
if (parselnt (navigator.appVersion) >= 4) {

if (navigator.appName == "Netscape") {
isNav = true
} else {
isIE = true
coll = "all."
styleObj = ".style"

}
// API function for setting a positionable element's background color
function setBGColor (objIn, color) {
var obj = eval ("document." + coll + objIn + styleObj)
if (isNav) {
obj.bgColor = color
} else {
obj .backgroundColor = color

}
// Invoked with each click of the link or typed key of the field, this function
// checks the modifier key and sets the element background color accordingly
function checkModKeys (evt) {
var alt = (isNav) ? evt.modifiers & Event.ALT MASK : window.event.altKey
var ctrl = (isNav) ? evt.modifiers & Event.CONTROL_MASK :
window.event.ctrlKey

var shift = (isNav) ? evt.modifiers & Event.SHIFT MASK :
window.event.shiftKey

var meta = (isNav) ? evt.modifiers & Event.META_MASK : false

setBGColor ("ctrll", ((alt) ? "red" : "white"))

setBGColor ("ctrl2", ((ctrl) ? "red" : "white"))

setBGColor ("ctrl3", ((shift) ? "red" : "white"))

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

150 Chapter 6: Scripting Events

Example 6-2. A Modifier Key Event Laboratory (continued)

setBGColor ("ctrld", ((meta) ? "red" : "white"))

return false
}
</SCRIPT>
</HEAD>
<BODY>
<H1>Events and Modifier Keys</H1>
<HR>
<TABLE BORDER=1>
<TR HEIGHT=20 >
<TH>Modifier Keys:</TH>
<TD WIDTH=80 HEIGHT=20 ALIGN=MIDDLE ID=ctrll CLASS=flags>Alt</TD>
<TD WIDTH=80 ALIGN=MIDDLE ID=ctrl2 CLASS=flags>Control</TD>
<TD WIDTH=80 ALIGN=MIDDLE ID=ctrl3 CLASS=flags>Shift</TD>
<TD WIDTH=80 ALIGN=MIDDLE ID=ctrl4 CLASS=flags>Meta</TD>
</TABLE>
<P>Hold one or more modifier keys and click on
<A HREF="javascript:void(0)" onMouseDown="return checkModKeys (event)"
onClick="return false">
this link to see which keys you are holding.</P>
<FORM NAME="output">
<P>Enter some text with uppercase and lowercase letters:
<INPUT TYPE="text" SIZE=40 onKeyPress=" checkModKeys (event)"></P>
</FORM>
</BODY>
</HTML>

There are other quirks that affect keyboard events. Currently, only true alphanu-
meric character keys generate events whose details can be examined. In other
words, function keys and arrow keys cannot be trapped by the script. Also, the
browser does not let you override the normal Ctrl, Meta, and Alt key combina-
tions that may be menu equivalents or system shortcuts. Therefore, while you
might be able to test some key combinations on one operating system platform
(Mac browsers, for example, typically have no internal use for the Ctrl key), you
can reliably intercept only upper- and lowercase letters on all operating systems. If
you have plans for creating your own set of keyboard accelerators to trigger
scripts, you may have to put those ideas on hold until a better event handling
scheme is worked into future browsers

Examining Mouse Buttons
and Key Codes

The next code listing, Example 6-3, further demonstrates how to access event
object properties in both browsers, even when the properties don’t match up well.
In this case, a script displays information about mouse clicks and key presses in
the status bar, to limit the disruption of the user. For mouse clicks over a button,

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Examining Mouse Buttons and Key Codes 151

this laboratory application presents the identifying integer for the mouse button
used to do the click. For key presses in a text area, the application displays the
character code value of the key typed by the user.

Example 6-3. Looking for Mouse Button and Keyboard Character Codes

<HTML>

<HEAD>

<TITLE>Button Codes / Key Codes</TITLE>

<SCRIPT LANGUAGE="JavaScript">

var isNav, isIE

if (parselnt (navigator.appVersion) >= 4) {
{

if (navigator.appName == "Netscape")
isNav = true
} else {

isIE = true

}
function showBtnOrKey (evt) {
var theBtnOrKey
if (isNav) {
theBtnOrKey = evt.which

} else {
if (window.event.srcElement.type == "textarea") {
theBtnOrKey = window.event .keyCode
} else if (window.event.srcElement.type == "button") {

theBtnOrKey = window.event.button

}
status = theBtnOrKey
return false
}
</SCRIPT>
</HEAD>
<BODY>
<H1>Mouse Button and Key Codes from Event Objects</H1>
<HR>
<FORM>
<P>Click on this
<INPUT TYPE="button" VALUE="Button" onClick="showBtnOrKey (event) ">
with either mouse button (if you have more than one) .</P>
<P>Enter some text with uppercase and lowercase letters:

<TEXTAREA COLS=30 ROWS=4 onKeyPress="showBtnOrKey (event)" WRAP="virtual">
</TEXTAREA></P>
</FORM>
(Results appear in the status bar as you click or type.)
</BODY>
</HTML>

A single function handles the investigation of both the mouse button and key-
board events. This design is partially influenced by the fact that both values come
from the same event object property in Navigator 4—the which property. With
that browser, a single statement extracts the value from the event object that is

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
-
8 Z
35S
o=
_= =
=13
=
-

152 Chapter 6: Scripting Events

passed as a parameter, regardless of the event type. For Internet Explorer 4, how-
ever, the values are maintained in two separate properties. Therefore, the script
examines the source of the event (the window.event.srcElement property),
whose type property is a string that is either “textarea” or “button” in this applica-
tion. For a text area, the window.event .keyCode property contains the character
code, while for a button, the window.event .button property contains the mouse
button code.

There are a couple of things you should know about the mouse button identifiers.
First, the two browsers have different numbering schemes for the buttons. In Navi-
gator 4, the primary mouse button (on a multibutton mouse) has an integer value
of 1; in IE 4, that button has a value of 0. Second, the native behavior of both
browsers prevents mouse events from ever being triggered by the secondary but-
ton. Right-clicking on elements produces a context-sensitive pop-up menu, SO no
event object is generated by the click.

As for the keyboard character codes, the two browsers specify different character
bases for their values. Navigator 4 specifies just ASCII values, while IE 4 extends
support to include Unicode characters. For the English language, the “lower 128”
ASCII values are the same as the Unicode values for the same characters.

Dragging Elements

The final example in this chapter, Example 6-4, demonstrates how event captur-
ing and event bubbling can work together to let document-level event handlers
control the dragging of elements on the screen. Because Navigator does not sup-
port events for elements that are not part of the document object hierarchy, it
makes perfect sense to have the document capture all pertinent events and pro-
cess them. While IE 4 could have event handlers assigned to each of the ele-
ments, that would require more effort than is necessary.

All the dragging event handlers are assigned as properties in an init () function
invoked by the onLoad event handler. The only platform-specific process taking
place here involves setting the document .captureEvents () method to grab all
mouse down and mouse move events that come in from Navigator 4.

The draggable elements in this example are two absolute-positioned DIV ele-
ments that contain IMG elements. The user can click on either image and drag that
image around. While it is a simple operation for the user, the application must do
a fair amount of work to figure out which element has been clicked and then track
the location of the element in sync with the mouse. Stacking order also comes into
consideration because you want a selected element to be atop all its peers as the
user drags it around the screen.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Dragging Elements 153

Determining which element has been clicked requires a lot more work in Naviga-
tor than in IE. Assuming that all targeted elements are sibling layers, the script
must look through each layer to see if the click location is within the clipping
region of that layer. Moreover, this must be done in reverse stacking order, so that
the layer closest to the top of the stacking order is found to be the one under the
cursor. If the draggable elements were in different layers (for instance the DIV ele-
ments were nested), you'd need some hairy scripts to crawl through all layers in
search of the clicked element—a mighty, although not impossible, task.

Coordinate systems also play a significant role in scripting the drag process. Ide-
ally, the element should track from the point where the user clicks inside the ele-
ment. This means that the location (top left corner) of the element must be offset
(up and to the left) from the cursor position by the number of pixels of the click
offset within that element. This information is easier to come by in IE (the
event.offsetX and event.offsetY properties) than in Navigator, where you
must calculate the offset by subtracting the location of the layer from the event
coordinate in the page space. In either case, the offset values are stored as global
variables in Example 6-4, so that the dragging action can use them for proper
placement of the element under the cursor.

Making the element track the cursor also requires some calculation, as the loca-
tion of the element after each mouse move event must be set in the page (or cli-
ent) space, after being adjusted by that initial click offset. For Navigator 4, the base
coordinates come from the pageX and pageY properties of the event; for IE 4, the
corresponding values are event.clientX and event.clientY.

Although there is a bit of platform-specific branching going on in Example 6-4, the
example demonstrates nonetheless that all is not lost when attempting to create
sophisticated DHTML implementations for both browser models in one document.
It certainly requires a lot of testing and tweaking, as well as nimble thinking about
the two systems of property names and positionable object relationships, but it is
possible.

Example 6-4. Dragging Elements Around the Window

<HTML>
<HEAD>
<TITLE>It's a Drag</TITLE>
<STYLE TYPE="text/css">
#imgA {position:absolute; left:50; top:100; width:120; border:solid black lpx;
z-index:0}
#imgB {position:absolute; left:110; top:145; width:120; border:solid black 1lpx;
z-index:0}
</STYLE>
<SCRIPT LANGUAGE="JavaScript">
// Global variables for platform branching
var isNav, isIE
if (parselnt (navigator.appVersion) >= 4) {

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

154 Chapter 6: Scripting Events

Example 6-4. Dragging Elements Around the Window (continued)

if (navigator.appName == "Netscape") {
isNav = true
} else {

isIE = true

// ***Begin Utility Functions***
// Set zIndex property
function setZIndex(obj, zOrder) {
obj.zIndex = zOrder
}
// Set element background color (only works dynamically in IE)
function setBorderColor (obj, color) {
obj .borderColor = color
}
// Position an object at a specific pixel coordinate
function shiftTo(obj, x, vy) {
if (isNav) {
obj .moveTo (X,y)
} else {
obj.pixelleft = x
obj.pixelTop = y

}
// ***End Utility Functions***

// Global holds reference to selected element

var selectedObj

// Globals hold location of click relative to element
var offsetX, offsetY

// Find out which element has been clicked on
function setSelectedElem(evt) ({
if (isNav) {
var clickX = evt.pageX
var clickY = evt.pageY
var testObj
for (var i = document.layers.length - 1; i >= 0; i--) {
testObj = document.layers([i]
if ((clickX > testObj.left) &&
(clickX < testObj.left + testObj.clip.width) &&
(clickY > testObj.top) &&
(clickY < testObj.top + testObj.clip.height)) {
selectedObj = testObj
if (selectedObj) {
setBorderColor (selectedObj, "red")
setZIndex (selectedObj, 100)
return

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Dragging Elements 155

Example 6-4. Dragging Elements Around the Window (continued)

} else {
var imgObj = window.event.srcElement
selectedObj = imgObj.parentElement.style
if (selectedObj) {
setBorderColor (selectedObj, "red")
setZIndex (selectedObj,100)

=]
-
5E
23
o £
==
=i
=
-

return
}
}
selectedObj = null
return

}
// Drag an element
function dragIt(evt)
if (selectedObj)
if (isNav) {
shiftTo (selectedObj, (evt.pageX - offsetX), (evt.pageY - offsetY))
} else {
shiftTo (selectedObj, (window.event.clientX - offsetX),
(window.event.clientY - offsetY))
// prevent further system response to dragging
return false

{
{

}
// Turn selected element on
function engage(evt) {
setSelectedElem (evt)
if (selectedObj) {
if (isNav) {
offsetX = evt.pageX - selectedObj.left
offsetY = evt.pageY - selectedObj.top
} else {
offsetX = window.event.offsetX
offsetY = window.event.offsetY

}
// prevent further processing of mouseDown event so that

// the Macintosh doesn't display the contextual menu and
// lets dragging work normally.
return false

}
// Turn selected element off

function release(evt) {
if (selectedObj) {
setZIndex (selectedObj, 0)
setBorderColor (selectedObj, "black")
selectedObj = null

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

156 Chapter 6: Scripting Events

Example 6-4. Dragging Elements Around the Window (continued)

// Set event capture for Navigator
function setNSEventCapture() {
if (isNav) {
document . captureEvents (Event .MOUSEDOWN | Event.MOUSEMOVE | Event.MOUSEUP)

}
// Assign event handlers used by both Navigator and IE
function init() {

if (isNav) {

setNSEventCapture ()

}

document . onmousedown = engage

document . onmousemove = draglt

document .onmouseup = release
}
</SCRIPT>
</HEAD>
<BODY onLoad="init () ">
<H1>Element Dragging</H1>
<HR>
<DIV ID=imgA></DIV>
<DIV ID=imgB></DIV>
</BODY>
</HTML>

FEvent Futures

It is unclear how the W3C and the browser makers will resolve the complex issues
involved with scripting events. There are many forces exerting pressure on how
the job should best be done, including what, if any, relationship there should be
between the JavaScript and Java event models. We’'ll have to watch the activity of
the DOM working group to see how the situation settles down. In the meantime,
there is a messy legacy of installed browsers to worry about.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

In this chapter:

* New Directions
Overview

e New Elements
» Deprecated Elements
e Obsolete Elements

e New Element
Attributes

* Deprecated Attributes Looking Ahedd tO
HTML 4.0

As the installed base of web browsers increases over time, that base becomes
more and more fragmented. It is not uncommon for users to choose not to
upgrade to the latest browser version or for organizations to prohibit individuals
from upgrading beyond a corporate standard that may be one or two generations
old. This makes the job of adopting new W3C standards difficult, for both web
browser makers and page authors. The breadth of the changes from HTML 3.2 to
4.0 reveals the depth of the quandary facing web developers.

Regardless of the latest bells and whistles or the “preferred” way to apply certain
content formats, there are still many thousands of web pages on the Net that use
techniques long gone from the standards documents. Web browser makers bear
the burden of this “ancient” baggage, as their browsers must continue to be back-
ward compatible with previous versions of HTML, all the way back to HTML 1.0.
Unfortunately, this continued support can lead casual page authors to believe that
the old ways are just fine, so there is no incentive to use the latest tags.

The purpose of this chapter is to acquaint you with the changes that have been
made to the HTML recommendation between Version 3.2 and Version 4.0. A large
number of tags and attributes have been deprecated because their original func-
tions are now covered by Cascading Style Sheets. It is clear that HTML document
creation is moving toward the separation of content from format. This, in fact, is
what SGML and XML are all about. If you are developing web applications for
users who have style-sheet-enabled browsers, you would be wise to start adopt-
ing this methodology.

As often happens in the browser and standard release cycles, the HTML 4.0 recom-
mendation was finalized after both Netscape Navigator 4 and Internet Explorer 4
shipped final release versions. By virtue of being released closer to the HTML 4.0
standard, IE 4 has adopted a fair number of the new tags and attributes of HTML

157
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

158 Chapter 7: Looking Abead to HTML 4.0

4.0, but certainly not all of them. Navigator 4 is behind the curve right now, but
Navigator 5 is looming on the horizon, so that shouldn’t be the case for long.

New Directions Overview

With a lot of the basic content issues covered in HTML 3.2, the new items in
HTML 4.0 focus on topics that reflect more mature thinking about the role of the
World Wide Web as a global, universal, content publishing medium. Many con-
cerns that have been addressed by computer operating system and application
software makers for years are being formalized for the Web for the first time in
Version 4.0. This section highlights the new directions in HTML 4.0.

Internationalization

Surprise! Inhabitants of Earth do not all use the English language or the Roman
alphabet. HTML 4.0 adopts various industry efforts to assist with internationaliza-
tion. These are meant to support both the authoring of content in any of the
world’s written languages and the display of that content in any alphabet, includ-
ing non-Roman ones, such as Cyrillic, Arabic, Hebrew, Chinese, Japanese, and the
rest. Of course, the browser and operating system underneath it must do all the
hard work in terms of rendering character sets that are not native to the system.
Acceptance of the Unicode character set (ISO 10646) is a first step in making these
facilities seamless to users.

Accessibility

Not every potential web visitor can read a video display, roll the mouse around on
a desktop, or touch-type on a keyboard. A lot of new items in the HTML 4.0 rec-
ommendation have been included to increase browser accessibility to web surfers
whose physical limitations might otherwise reduce or prohibit their access. Sepa-
rating content from form is in itself an aid, especially if your pages provide choices
for, say, larger fonts or alternate color combinations. Content might also be
directed to other devices, such as Braille writers or text-to-speech synthesizers.
Under HTML 4.0, you can assign keyboard combinations for what are otherwise
mouse actions (e.g., clicking a button). Even the new “requirement” that an IMG
element include an ALT attribute with a short image description demonstrates a
concern for a wider audience.

Tables

Specifications for tables in HTML 4.0 should enhance the display, usability, and
rendering speed of tabular content on a page. Details are based on RFC 1942,
which includes recommendations for allowing up-front sizing of column widths, to
allow a browser to start displaying a large table while the cell content is still arriv-

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

New Directions Overview 159

ing. Browser makers are urged to implement tables so that a user can scroll a
table’s body section while the table’s header and footer remain stationary. The
emphasis on style sheets for accurate placement of content should mean that the
days are numbered for using transparent images to fill blank table cells for format-
ting. Future HTML recommendations are likely to hand off even more formatting
tasks to style sheets.

Forms

While many HTML 4.0 enhancements related to forms are for the sake of improved
accessibility, there are some potentially helpful by-products of those efforts
(depending on how much is implemented in the common browsers of the future).
The ability to disable and write-protect form elements, which has been long
sought after, is part of the new recommendation. Form elements can also be visu-
ally grouped into FIELDSET elements, complete with legends (currently imple-
mented in Internet Explorer 4). Tabbing order can also be controlled by element
attributes, rather than by geography.

Embedded Objects

A new element, OBJECT, becomes the formal way of embedding multimedia and
other types of data into a compound document. The IMG and APPLET elements
are still supported for those specific data types.

Style Sheets

While not favoring any one style sheet authoring language over another, HTML 4.0
does provide for the STYLE element and all the promise that it offers. This ele-
ment is going to have a significant effect on the long-term makeup of the library of
HTML tags and attributes. The push to use style sheets to separate content from
format means that a lot of elements and attributes that you have probably been
using for formatting purposes, like the tag, are no longer recommended.
The list of deprecated items in HTML 4.0 is long, although support for these items
is not likely to disappear in browsers for a very long time to come.

Scripting

The SCRIPT element is not new to the HTML standard, but two aspects of it are
new. First, the intrinsic event handlers of elements are listed in the HTML 4.0 rec-
ommendation as attributes. These event handlers are, of course, independent of
the scripting language in use. Second, the way you specify a particular scripting
language has changed. The LANGUAGE attribute is now deprecated in favor of the
TYPE attribute, which is defined as containing a content-type string (for example,

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o

-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

160 Chapter 7: Looking Abead to HIML 4.0

"text/vbscript"). For backward compatibility, the LANGUAGE attribute is cer-
tain to be supported well into the future.

Embedded Context

The LINK element offers many potential uses, but one that may be exploited
sooner rather than later in upcoming browsers is its ability to hold information
about documents that are linked to the current document. For example, a browser
could conceivably use LINK element values to build a pop-up menu that takes you
to various pages (e.g., previous page, next page, glossary page, index page, con-
tents page) in a related collection of documents. This is another way to separate
content from, in this case, context.

New Elements

Some of the new elements in HTML 4.0 are new only to the HTML specification;
they have been in one or both browsers for some time. Other elements are brand
new and may not yet be part of either browser. Table 7-1 lists all the new ele-
ments defined in HTML 4.0. The table also indicates the version of each browser
that first supported each element.

Table 7-1. New Elements in HTML 4.0

Element NN | IE | Description

ABBR - - Abbreviation

ACRONYM - 4 | Acronym

BDO - - Override default bidirectional rendering algorithms
BUTTON - 4 Push button (alternative version)
COL - 4 | Table column default attributes
COLGROUP | - 4 | Table column group

DEL - 4 | Deleted text format

FIELDSET | - 4 Form element grouping

FRAME 2 3 | Frame within a FRAMESET
FRAMESET | 2 3 | Specification for a set of frames
IFRAME - 4 | Inline frame

INS - 4 | Inserted text format

LABEL 4 | Form element label text

LEGEND - 4 | Label for a FIELDSET

NOFRAMES | 2 3 | Content for a no-frame browser
NOSCRIPT | 3 4 | Content for a browser with JavaScript turned off
OBJECT 4 4 | Embedded media

OPTGROUP | - - Option group

PARAM 3 4 | Named value for an applet or object
Q - 4 | Short inline quotation

SPAN 4 4 | Generic content container

TBODY - 4 | Table body

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Deprecated Elements 161

Table 7-1. New Elements in HIML 4.0 (continued)

Element NN | IE | Description

TFOOT - 4 | Table footer

THEAD - 4 | Table header
Deprecated Elements

As T stated earlier, style sheets obviate the need for a number of tags that were
commonly used for basic formatting tasks. Those tags are now deprecated, but
they will continue to be supported in browsers for generations to come. Obvi-
ously, any attributes associated with these elements are also deprecated, but not
necessarily in all other active elements. Table 7-2 shows all the elements that are
deprecated in the HTML 4.0 specification.

Table 7-2. Deprecated Elements in HTML 4.0

Element Supplanted By

APPLET The OBJECT element

BASEFONT Style sheet font attributes

CENTER <DIV ALIGN=center>

DIR The UL element

FONT Style sheet font attributes

ISINDEX <INPUT TYPE="text">

MENU The UL element

S The style sheet {text-decoration:line-through}
STRIKE The style sheet {text-decoration:line-through}
U The style sheet {text-decoration:underline}

Obsolete Elements

Three elements have been deleted in favor of an existing element that has been
doing the job of all four in browser implementations for a long time. The three
obsolete elements are LISTING, PLAINTEXT, and XMP. The popular PRE element
is the one you should use for displaying preformatted text. The HTML 4.0 recom-
mendation leaves implementation details, such as the treatment of whitespace, the
default font setting, and word wrapping, up to browsers. Typically, PRE elements
are rendered in Courier and they honor carriage returns inserted in the text.

New Element Attributes

Practically every existing element has one or more new attributes in HTML 4.0.
Many of these new attributes are applied to every element due to HTML 4.0’s
focus on internationalization, accessibility, style sheets, and scripting. Table 7-3
lists the common attributes that have been added to most elements that can act as

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

o
-
=
(Y]
3
(1]
=
=
=
=

>
=
=3
=

=
o

162

Chapter 7: Looking Abead to HTML 4.0

content containers (that is, they have start and end tags). Element-specific addi-
tions are not shown here, but are covered in full in Chapter 8, HTML Reference.

Table 7-3. New HTML 4.0 Attributes Shared by Most Elements

Attribute Description

CLASS Group identifier (selector) for applying a style rule
DIR Text direction of the element’s content

ID Unique identifier (selector) for applying a style rule
LANG Human language used in the element’s content

STYLE Inline style sheet rule

TITLE Short description of the element

onClick Event handler for click events

onDblClick Event handler for double-click events

onKeyDown Event handler for keyboard key down events
onKeyPress Event handler for keyboard key press (down and up) events
onKeyUp Event handler for keyboard key up events
onMouseDown Event handler for mouse down events

onMouseMove Event handler for mouse movement inside the element
onMouseOut Event handler for mouse movement out of the element
onMouseOver Event handler for mouse movement into the element
onMouseUp Event handler for mouse up events

Deprecated Attributes

A large number of attributes are deprecated in HTML 4.0, primarily due to the
preference given to style sheets over direct content formatting. Browsers will con-
tinue to honor these deprecated attributes for a long time to come, but if you
eventually design content exclusively for browsers that are HTML 4.0 compatible,
you should use that project as a starting point for weaning yourself from these
deprecated attributes. Table 7-4 lists all the deprecated attributes in HTML 4.0, plus
the affected elements and suggested replacement syntax. In some instances, you
will see a deprecated attribute associated with a new element (like the deprecated
ALIGN attribute of the new IFRAME element). This is not a trick. You can still use
the “old” attribute with a new element for the sake of authoring-style compatibility.

Table 7-4. Deprecated Attributes in HIML 4.0

Attribute Elements Supplanted By
ALIGN CAPTION, APPLET, text-align and vertical-align
IFRAME, IMG, INPUT, style attributes
OBJECT, LEGEND, TABLE,
HR, DIV, H1-H6, P
ALINK BODY A:active {color:}
ALT APPLET OBJECT element TITLE attribute
ARCHIVE APPLET OBJECT element ARCHIVE attribute
BACKGROUND | BODY background style attribute

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Deprecated Attributes

163

Table 7-4. Deprecated Attributes in HIML 4.0 (continued)

=]
-
5E
23
o £
==
=i
=
-

Attribute Elements Supplanted By

BGCOLOR BODY, TABLE, TD, TH, TR | background-color style attribute
BORDER IMG, OBJECT border-width style attributes
CLEAR BR clear style attribute

CODE APPLET OBJECT element CLASSID attribute
CODEBASE APPLET OBJECT element CODEBASE attribute
COLOR BASEFONT, FONT color style attribute

COMPACT DIR, DL, MENU, OL, UL {display:compact}

FACE BASEFONT, FONT font-face style attribute

HETIGHT APPLET OBJECT element HEIGHT attribute
HEIGHT TD, TH height positioning style attribute
HSPACE IMG, OBJECT left positioning style attribute
LINK BODY A:1link {color:}

NAME APPLET OBJECT element NAME attribute
NOSHADE HR

NOWRAP TD, TH white-space style attribute
OBJECT APPLET OBJECT element CLASSID attribute
PROMPT ISINDEX LABEL element

SIZE HR width positioning style attribute
SIZE FONT, BASEFONT font-size style attribute

START OL To be determined in CSS2

TEXT BODY color style attribute

TYPE LI, OL, UL list-style-type style attribute
VALUE LI To be determined in CSS2
VERSION HTML Built into the DTD for HTML 4.0
VLINK BODY A:visited {color:}

VSPACE IMG, OBJECT top positioning style attribute
WIDTH HR width positioning style attribute
WIDTH APPLET OBJECT element WIDTH attribute
WIDTH TD, TH COLGROUP element WIDTH attribute

The HTML reference in Chapter 8 includes

all the elements and attributes speci-

fied in the HTML 4.0 recommendation. Items are clearly marked with regard to
browser version support. As you'll see, there are plenty of items marked as HTML
4.0 only, with no support yet in either Navigator or Internet Explorer. As future
browser generations become reality, however, you can be sure more items will be

supported in the browsers.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

L1

Dynamic HIML Reference

This part of the book, Chapters 8 through 11, is a complete reference to all the
tags, attributes, objects, properties, methods, and event handlers for HTML, CSS,
DOM, and core JavaScript.

e Chapter 8, HIML Reference

e Chapter 9, Document Object Reference

e Chapter 10, Style Sheet Attribute Reference

e Chapter 11, JavaScript Core Language Reference

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

HTML Reference

Since the earliest days of the World Wide Web, the Hypertext Markup Language
(HTML) standard has been pulled, pushed, twisted, extended, contracted, misun-
derstood, and even partially ignored by web browser vendors. With the formal
release of the recommendation for HTML Version 4.0 at the end of 1997, the
World Wide Web Consortium (W3C) outpaced the implementations of HTML in
browsers that were shipping at the time. For once, the W3C recommendation was
ahead of the implementation curve. This, of course, can lead to plenty of confu-
sion for web application authors who study the details of the W3C documents in
search of handy new features: it can be discouraging to see the tag or attribute of
your dreams, only to discover that no browser on the planet supports it.

The purpose of this chapter is to provide a complete list of HTML tags and
attributes—the ones implemented in Navigator and Internet Explorer, as well as
the ones specified in the W3C recommendation. So that you can see whether a
particular entry applies to the browser(s) you must support, version information
accompanies each tag and attribute listed in the following pages. At a glance, you
can see the version number of Navigator, Internet Explorer, and the W3C HTML
specification in which the item was first introduced. Because this book deals with
Dynamic HTML, the history timeline goes back only to HTML 3.2, Navigator 2, and
Internet Explorer 3. If an item existed prior to one of these versions, it is simply
marked “all.” Where no implementation exists, I've used “n/a” to indicate that. In
rare instances, an item has been removed from the HTML specification for Version
4.0. Such items are marked as less than 4 (“<4”).

This chapter is organized alphabetically by HTML element (or tag, if you prefer);
within each element’s description, attributes are listed alphabetically. The refer-
ence entries are designed so that it is easy to see which elements require end tags
and whether attributes are optional or required. Scripted object references are

167
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

168 Attribute Value Types

displayed in JavaScript standard syntax style but are segregated by browser (“NN”
for Netscape Navigator; “IE” for Internet Explorer), because the object models are
not necessarily the same. When there is no object model listing for a particular
browser, it means that the element or attribute is not part of that browser’s script-
able object model. The description for an item details any significant differences
between the various implementations of the item.

Attribute Value Types

Many element attributes share similar data requirements. For the sake of brevity in
the reference listings, this section describes a few common attribute value types in
more detail than is possible within each listing. Whenever you see one of these
attribute value types associated with an attribute, consult this section for a descrip-
tion of the type.

Length

A length value defines a linear measure of document real estate. The unit of mea-
surement can be any applicable unit that helps identify a position or space on the
screen. HTML attribute length units are uniformly pixels, but in other content, such
as that specified in Cascading Style Sheets (see Chapter 9, Document Object Refer-
ence), measurements can be in inches, picas, ems, or other relevant units. A sin-
gle numeric value may represent a length when it defines the offset from an edge
of an element. For example, a coordinate point (10,20) consists of two length val-
ues, denoting pixel measurements from the left and top edges of an element,
respectively.

Identifier

An identifier is a name that adheres to some strict syntactical rules. Most impor-
tant is that an identifier is one word with no whitespace allowed. If you need to
use multiple words to describe an item, you can use the inter-capitalized format
(in which internal letters are capitalized) or an underscore character between the
words. Most punctuation symbols are not permitted, but all numerals and alpha-
betical characters are. To avoid potential conflicts with scripting languages that
refer to items by their identifiers, it is good practice to avoid using a numeral for
the first character of an identifier.

URI and URL

The term Universal Resource Identifier (URD is a broad term for an address of con-
tent on the Web. A Universal Resource Locator (URL) is a type of URI. For most
web authoring, you can think of them as being one in the same because most web
browsers restrict their focus to URLs. A URL may be complete (including the proto-

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Attribute Value Types 169

col, host, domain, and the rest) or may be relative to the URL of the current docu-
ment. In the latter case, this means the URL may consist of an anchor, file, or path-
name. In scriptable browsers, attributes that expect URI values can also accept the
javascript: pseudo-URL, which makes a script statement or function the desti-
nation of the link.

Language Code

There is an extensive list of standard codes that identify the spoken and written
languages of the world. A language code always contains a primary language
code, such as “en” for English or “zh” for Chinese. Common two-letter primary
codes are cataloged in ISO-639. An optional subcode (separated from the primary
code by a hyphen) may be used to identify a specific implementation of the pri-
mary language, usually according to usage within a specific country. Therefore,
although “en” means all of English, “en-US” means a U.S.-specific version of
English. The browser must support a particular language code for its meaning to
be of any value to an element attribute.

Alignment Constants

Several HTML elements load external data into rectangular spaces on the page.
Images and Java applets are perhaps the most common elements of this type. Any
such element has an ALIGN attribute that lets you determine how the element
relates geographically to the surrounding content (usually text). Values for this
attribute are constant values that have very specific meanings.

Browser makers have gone beyond the minimum possibilities for alignment speci-
fied in the HTML 4.0 recommendation. Fortunately, Navigator and Internet
Explorer agree on the extensions (at least in the most recent versions).

Here is a synopsis of the various case-insensitive ALIGN attribute settings and how
they affect the display of the element and surrounding text content:

absbottom
Text is aligned such that the bottom of any possible text rendering (including
character descenders) is on the same horizontal line as the very bottom of the
element.

absmiddle
The middle of the text height (from descender to ascender) is aligned with the
middle of the element height.

baseline
The baseline of the text is on the same horizontal line as the very bottom of
the element (note that character descenders extend below the baseline).

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

170 Attribute Value Types

bottom
Identical to baseline.

left
If there is text starting on the same line as the element, the element is low-
ered to the next line and displayed flush left within the next outermost con-
tainer context. Text that follows the element cinches up to the end of the text
preceding the element, causing the text to wrap around the object or image
(called “floating™).

middle
The baseline of the text is aligned with the middle of the element height.

right
If there is text starting on the same line as the element, the element is low-
ered to the next line and displayed flush right within the next outermost con-
tainer context. Text that follows the element starts on the line immediately
below the starting text, causing the text to wrap around the object or image
(called “floating”).

texttop
The very top of the element is on the same horizontal line as the ascenders of
the preceding text.

top
The top of the element is on the same horizontal line as the top of the tallest
element (text or other kind of element) rendered in the line.

Colors

A color value can be assigned either via a hexadecimal triplet or with a plain-lan-
guage equivalent. A hexadecimal triplet consists of three pairs of hexadecimal
(base 16) numbers that range between the values 00 and FF, corresponding to the
red, green, and blue components of the color. The three pairs of numbers are
bunched together and preceded by a pound sign (#). Therefore, the reddest of
reds has all red (FF) and none (00) of the other two colors: #FF0000; pure blue is
#0000FF. The letters A through F can also be lowercase.

This numbering scheme obviously leads to a potentially huge number of combina-
tions (over 16 million), but not all video monitors are set to distinguish among mil-
lions of colors. Therefore, you may wish to limit yourself to a more modest pal-
ette of colors known as the web palette. A fine reference of colors that work well
on all browsers at popular bit-depth settings can be found at htp://
www.lynda.com/bexh.btml.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Common HTML Attributes 171

The HTML recommendation also specifies a basic library of 16 colors that can be
assigned by plain-language names. Note that the color names are case insensitive.
The names and their equivalent hexadecimal triplets are as follows:

Black #000000 Maroon #800000 Green #008000 Navy #000080
Silver #COCOCO Red #FF0000 Lime #00FFOO Blue #00O0OFF
Gray #808080 Purple #800080 Olive #808000 Teal #008080
White #FFFFFF Fuchsia #FFOOFF Yellow #FFFF00 Aqua #00OFFFF

In other words, the attribute settings BGCOLOR="Aqua" and BGCOLOR="#00FFFF"
yield the same results.

Netscape has developed a much longer list of plain-language color equivalents.
These are detailed in Appendix A, Color Names and RGB Values, and are recog-
nized by recent versions of both Navigator and Internet Explorer.

Common HTMIL Attributes

In the HTML specifications for Navigator, Internet Explorer, and HTML 4.0, several
attributes are shared across a vast majority of HTML elements. Rather than repeat
the descriptions of these attributes ad nauseam in the reference listings, T am list-
ing their details here only once. Throughout the rest of the chapter, the attribute
list for each element points to these common attributes when the attribute name is
in italic. When you see an attribute listed in italic, it means that you should
look to this section for specific details about the attribute. If you recognize a term
from the list of attributes-in-common, but it is not shown in italic, that means that
there is some element-specific information about the attribute, so the description is
provided with the element. Here is a list of the common attributes:

Attributes

CLASS ID LANGUAGE STYLE TITLE

DIR LANG

CLASS NN 4 IE 3 HTML 4
CLASS="classNamel/ ...classNameN]" Optional

An identifier generally used to associate an element with a style sheet rule defined for a
class selector. See Chapter 3, Adding Style Sheets to Documents. Be aware that even though
the CLASS attribute is specified for most elements of this chapter, Navigator 4 does not
implement a CLASS attribute for every one of those elements. In Navigator 4, implementa-
tion tends to be limited to visible elements.

Example Chapter 3

Value

Case-sensitive identifier. Multiple classes can be assigned by separating the class names with
spaces within the quoted attribute value.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

172 Common HTML Attributes

Default None.

Object Model Reference

IE [window.] document . elementCollection[1] . className
[window.] document .all elementlD.className

DIR NN w/a 1E n/a HIML 4

DIR=" direction" Optional

The direction of character rendering for the element’s text when the characters are not
governed by inherent directionality according to the Unicode standard. Character rendering
is either left-to-right or right-to-left. This attribute is usually set in concert with the LANG
attribute; it must be used to specify a character rendering direction that overrides the
current direction.

Example
Some Unicode Arabic text characters here

Value ltr | rtl (case insensitive)

Default 1tr

ID NN 4 1IE 4 HTML 4

ID="clementldentifier" Optional

A unique identifier that distinguishes this element from all the rest in the document. Can be
used to associate a single element with a style rule naming this attribute value as an ID
selector. An element can have an ID assigned for uniqueness as well as a class for inclu-
sion within a group. See Chapter 3. Be aware that even though the ID attribute is specified
for most elements of this chapter, Navigator 4 does not implement an ID attribute for every
one of those elements. In Navigator 4, implementation tends to be limited to visible
elements.

Example <H2 ID="sect3Head">Section Three</H2>
Value Case-sensitive identifier.

Default None.

Object Model Reference

IE [window.]document .all.elementID.id

LANG NN 3 IE 4 HIML 4
LANG="languageCode" Optional

The language being used for the element’s attribute values and content. A browser can use
this information to assist in proper rendering of content with respect to details such as treat-
ment of ligatures (when supported by a particular font or required by a written language),
quotation marks, and hyphenation. Other applications and search engines might use this
information to aid selection of spell-checking dictionaries and creating indices.

Example <B LANG="de">Deutsche Bundesbahn

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Common HTML Attributes 173

Value Case-insensitive language code.

Default Browser default.

Object Model Reference

IE [window.] document .all .elementID.lang

LANGUAGE NN n/a IE 4 HTIML n/a
LANGUAGE=" scriptingLanguage" Optional

Sets the scripting language (and switches on the desired scripting engine) for script state-
ments defined in the element (such as event handler script statements in the tag). This
attribute is distinct from the LANGUAGE attribute currently in common use with the SCRIPT
element. Internet Explorer uses the LANGUAGE attribute in any element to engage a different
script language interpreter for subsequent script statements. If you use JScript exclusively
within a document, you don’t have to use this attribute.

Example

How <SPAN CLASS="bolds" LANGUAGE="VBSCRIPT"
onClick="MsgBox 'Hi, there!'">bold it is!

Value JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT

Default

Although the default scripting language of IE 4 is JScript, no value is automatically assigned
to this attribute if the attribute is not included in the tag.

Object Model Reference

IE [window.] document .all elementID.language

STYLE NN 4 IE 4 HIML 4
STYLE="styleSheetProperties" Optional

This attribute lets you set one or more style sheet rule property assignments for the current
element. You may use the CSS or JavaScript syntax for assigning style attributes. However if
you are designing the page for cross-browser deployment, use only the CSS syntax, which
both Navigator and Internet Explorer support. Be aware that even though the STYLE
attribute is specified for most elements of this chapter, Navigator 4 does not implement a
STYLE attribute for every one of those elements. In Navigator 4, implementation tends to be
limited to visible elements.

Example <B STYLE="color:green; font-size:18px">Big, green, and bold

Value

An entire CSS-syntax style sheet rule is enclosed in quotes. Multiple style attribute settings
are separated by semicolons. Style sheet attributes are detailed in Chapter 10, Style Sheet
Attribute Reference.

Default None.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

174 <A4>

Object Model Reference

IE [window.]document .all .clementlD.style

TITLE NN #/a 1E 3 HIML 3.2
TITLE="advisorylext" Optional

An advisory description of the element. For HTML elements that produce visible content on
the page, Internet Explorer 4 renders the content of the TITLE attribute as a tooltip when
the cursor rests on the element for a moment. For example, the table-related COL element
does not display content, so its TITLE attribute is merely advisory. To generate tooltips in
tables, assign TITLE attributes to elements such as TABLE, TR, TH, or TD.

The appearance of the tooltip is governed by the operating system version of the browser.
In Windows, the tooltip is the standard small, light-yellow rectangle; on the Mac, the tooltip
displays as a cartoon bubble in the manner of the MacOS bubble help system. If no
attribute is specified, the tooltip does not display. Although IE 3 implements this attribute,
no tooltip appears.

You can assign any descriptive text you like to this attribute. Not everyone will see it,
however, so do not put mission-critical information here. Future or special-purpose
browsers might use this attribute’s information to read information about the link to vision-
impaired web surfers.

Although the compatibility listing for this attribute dates the attribute back to Internet
Explorer 3 and HTML 3.2, it is newly ascribed to many elements starting with IE 4 and
HTML 4.0.

Example <B TITLE="United States of America">U.S.A.

Value

Any string of characters. The string must be inside a matching pair of (single or double)
quotation marks.

Default None.

Object Model Reference
IE [window.]document .all.cementlDtitle

Alpbabetical Tag Reference

<A> NN all 1E all HTML all

<A>... End Tag: Required

The A element is the rare element that can be an anchor and/or a link, depending on the
presence of the NAME and/or HREF attributes. As an anchor, the element defines a named
location in a document to which any URL can reference by appending a hashmark and the
anchor name to the document’s URI (htip://www.megacorp.com/contents#a-c). Names are
identifiers assigned to the NAME attribute (or in newer browsers, the ID attribute). Content
defined solely as an anchor is not (by default) visually differentiated from surrounding BODY
content.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<A> 175

By assigning a URI to the HREF attribute, the element becomes the source of a hypertext
link. Activating the link generally navigates to the URI assigned to the HREF attribute (or it
may load other media into a plugin without changing the page). Links typically have a
distinctive appearance in the browser, such as an underline beneath text (or border around
an object) and a color other than the current content color. Separate colors can be assigned
to links for three states: an unvisited link, a link being activated by the user, and a previ-
ously visited link (the linked document is currently in the browser cache). An A element can
be both an anchor and a link if, in the least, both the NAME (or ID) and HREF attributes have
values assigned to them.

Example

Just an anchor named "anchor3."

A link to navigate to "anchor3" in the same
document .

Go from here (anchor 3) to home page.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

Object Model Reference

NN [window.]document .links[i]
[window.]document .anchors[i]

IE [window.]document .links[1i]

[window.]document .anchors[i]
[window.] document .all .elementID

Attributes

ACCESSKEY DATASRC LANG REV TARGET
CHARSET DIR LANGUAGE SHAPE TITLE
CLASS HREF METHODS STYLE TYPE
COORDS HREFLANG NAME TABINDEX URN
DATAFLD ID REL

Event Handler Attributes

Handler NN IE HTML
onBlur n/a 4 4
onClick 2 3 4
onDblClick 4 4 4
onFocus n/a 4 4
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown 4 4 4
onMouseMove n/a 4 4
onMouseOut 3 4 4
onMouseOver 2 3 4
onMouseUp 4 4 4
onSelectStart | n/a 4 n/a

Anchor-only A elements have no event handlers in Navigator through Version 4.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

176 <A4>

ACCESSKEY NN w/a IE 4 HIML 4

ACCESSKEY=" character" Optional

A single character key that follows the link. The browser and operating system determine if
the user must press a modifier key (e.g., Ctrl, Alt, or Command) with the access key to acti-
vate the link. In IE 4/Windows, the Alt key is required and the key is not case sensitive.
This attribute does not work in IE 4/Mac.

Example

Table of
Contents

Value Single character of the document set.

Default None.

Object Model Reference

IE [window.]document .links[i] .accessKey
[window.]document .anchors[i] .accessKey
[window.] document . all elementlD.accessKey

CHARSET NN #/a 1E nw/a HIML 4

CHARSET=" characterSet" Optional

Character encoding of the content at the other end of the link.

Example
Visit Moscow

Value

Case-insensitive alias from the character set registry (fip./fip.isi.edu/in-notes/iana/assign-
ments/character-sets).

Default Determined by browser.

COORDS NN w/a 1E nw/a HIML 4

COORDS=" coord]1, ... coordN" Optional

When a link surrounds an image, this attribute defines the coordinate points (relative to the
top-left corner of the element) associated with an area map.

Example

Value

Each coordinate is a length value, but the number of coordinates and their order depend on
the shape specified by the SHAPE attribute, which may optionally be associated with the
element. For SHAPE="rect", there are four coordinates (left, top, right, bottom); for

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<A> 177

SHAPE="circle", there are three coordinates (center-x, center-y, radius); for
SHAPE="poly", there are two coordinate values for each point that defines the shape of the
polygon (x1, y1, X2, y2, x3, y3,..xN, yN).

Default None.

DATAFLD NN n/a 1E 4 HIML wa

DATAFLD=" columnName" Optional

Used with IE 4 data binding to associate a remote data source column name in lieu of an
HREF attribute for a link. The data source column must contain a valid URI (relative or abso-
lute). A DATASRC attribute must also be set for the element.

Example Late-Breaking News
Value Case-sensitive identifier.

Default None.

Object Model Reference

IE [window.]document .links[i] .dataFld
[window.]document .all eclementiDdataFld

DATASRC NN n/a 1IE 4 HIML n/a

DATASRC=" dataSourceName" Optional

Used with IE 4 data binding to specify the name of the remote ODBC data source (such as
an Oracle or SQL Server database) to be associated with the element. Content from the data
source is specified via the DATAFLD attribute.

Example Late-Breaking News
Value Case-sensitive identifier.

Default None.

Object Model Reference

IE [window.]document .links[i] .dataSrc
[window.]document .all clementlDdataSrc

HREF NN all 1E all HTML all
HREF="URI" Required for links

The URI of the destination of a link. In browsers, when the URI is an HTML document, the
document is loaded into the current (default) or other window target (as defined by the
TARGET attribute). For some other file types, the browser may load the destination content
into a plugin or save the destination file on the client machine. In the absence of the HREF
attribute, the element does not distinguish itself in a browser as a clickable link and may
instead be only an anchor (if the NAME or ID attribute is set).

Example Chapter 3

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

178 <A4>

Value

Any valid URI, including complete and relative URLs, anchors on the same page (anchor
names prefaced with the # symbol), and the javascript: pseudo-URL in scriptable
browsers to trigger a script statement rather than navigate to a destination.

Default None.

Object Model Reference

IE [window.]document.links[i] .href
[window.]document .all .elementIDhref

NN [window.]document .links[i] .href

In both browsers, other link object properties allow for the extraction of components of the
URL, such as protocol and hostname. See the Link object in Chapter 9.

HREFIANG NN n/a IE w/a HIML 4

HREFLANG=" languageCodle" Optional

The language code of the content at the destination of a link. Requires that the HREF
attribute also be set. This attribute is primarily an advisory attribute to help a browser
prepare itself for a new language set if the browser is so enabled.

Example Chapter 3 (in Hindi)
Value Case-insensitive language code.

Default Browser default.

ID NN 3 IE 3 HIML 4

ID="clementldentifier" Optional

A unique identifier that distinguishes this element from all the rest in the document. Can be
used to associate a single element with a style rule naming this attribute value as an 1D
selector. Browsers typically allow the ID attribute to be used as a substitute for the NAME
attribute to make the element an anchor. In this case, one ID attribute can serve double
duty as a style sheet rule selector and anchor name. An A element can have an ID assigned
for uniqueness as well as a class for inclusion within a group.

Example Section 3
Value Case-sensitive identifier.
Default None.

Object Model Reference

IE [window.]document.links[i].id
[window.] document .anchors[i] .id
[window.]document .all.elementiDid

NN [window.]document .anchors[i] .name

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<A> 179

METHODS NN n/a 1E 4 HIML n/a
METHODS=" http-method" Optional

An advisory attribute about the functionality of the destination of a link. A browser could
use this information to display special colors or images for the element content based on
what the destination will do for the user.

Example

Chapter 3

Value Comma-delimited list of one or more HTTP methods.

Default None.

Object Model Reference

1E [window.]document .links[i] .Methods
[window.]document .all clementlDMethods

NAME NN all IE all HTIML all

NAME=" elementldentifier" Required for anchors

The traditional way to signify an anchor position within a document. Other link elements
can refer to the anchor by setting their HREF attributes to a URL ending in a pound sign (#)
followed by the identifier. Omitting the NAME (and ID) attribute for the A element prevents
the element from being used as an anchor position. This attribute is interchangeable with
the ID attribute in recent browsers. If the NAME and HREF attribute are set in the element,
the element is considered both an anchor and a link.

Example Section III
Value Case-sensitive identifier.

Default None.

Object Model Reference

IE [window.]document .links[i] .name
[window.]document .anchors[i] .name
[window.] document .all elementlDname

NN [window.]document .links[i] .name
[window.]document .anchors[i] .name

REL NN n/a IE 3 HIML 4
REL="linkTjpes" Optional

Defines the relationship between the current element and the destination of the link. Also
known as a forward link, not to be confused in any way with the destination document
whose address is defined by the HREF attribute. The HTML 4.0 recommendation defines
several link types; it is up to the browser to determine how to employ the value. This
attribute has meaning in IE 4 primarily for the LINK element, although there is significant
room for future application for tasks such as assigning an A element (acting as a link) to a
button in a static navigation bar pointing to the next or previous document in a series. The
element must include an HREF attribute for the REL attribute to be applied.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

180 <A4>

Example Chapter 3

Value

Case-insensitive, space-delimited list of HITML 4.0 standard link types applicable to the
element. Sanctioned link types are:

alternate contents index start
appendix copyright next stylesheet
bookmark glossary prev subsection
chapter help section

In addition, IE 3 defined a fixed set of four values: same | next | parent | previous.
Default None.

Object Model Reference

IE [window.]document .links[i] .rel
[window.]document .all .clementlDxrel

REV NN n/a IE 3 HIML 4
REV="IlinkT)pes" Optional

A reverse link relationship. Like the REL attribute, the REV attribute’s capabilities are defined
by the browser, particularly with regard to how the browser interprets and renders the
various link types available in the HTML 4.0 specification. Given two documents (A and B)
containing links that point to each other, the REV value of B is designed to express the
same relationship between the two documents as denoted by the REL attribute in A. There
is not yet much application of either the REL or REV attributes of the A element in IE 4.

Example Chapter 2

Value

Case-insensitive, space-delimited list of HTML 4.0 standard link types applicable to the
element. See the REL attribute for sanctioned link types.

Default None.

Object Model Reference

IE [window.]document .links[i] .rev
[window.]document .all.elementlD.xrev

SHAPE NN n/a 1IE w/a HIML 4
SHAPE="shape" Optional

Defines the shape of a server-side image map area whose coordinates are specified with the
COORDS attribute.

Example

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<4> 181

Value Case-insensitive shape constant: default | rect | circle | poly.

Default None.

TABINDEX NN n/a 1IE 4 HIML 4

TABINDEX=1integer Optional

A number that indicates the sequence of this element within the tabbing order of all focus-
able elements in the document. Tabbing order follows a strict set of rules. Elements that
have values other than zero assigned to their TABINDEX attributes are first in line when a
user starts tabbing in a page. Focus starts with the element with the lowest TABINDEX value
and proceeds in order to the highest value, regardless of physical location on the page or in
the document. If two elements have the same TABINDEX values, the element that comes
earlier in the document receives focus first. Next come all elements that either don’t support
the TABINDEX attribute or have the value set to zero. These elements receive focus in the
order in which they appear in the document. Because an A element cannot be disabled, it
always receives focus in turn, except for special handling in IE 4. Typically, an A element
wired as a link can be triggered with a press of the spacebar once the element has focus.

Note that the Macintosh user interface does not provide for giving focus to elements other
than text input fields. Links and anchors cannot be tabbed to with the Mac version of IE 4.

Example Chapter 3

Value

Any integer from 0 through 32767. In IE 4, setting the TABINDEX to -1 causes the element
to be skipped in tabbing order altogether.

Default None.

Object Model Reference

IE [window.]document.links[i] .tabIndex

TARGET NN all 1E all HTML all
TARGET="windowOrFrameName" Optional

If the destination document is to be loaded into a window or frame other than the current
window or frame, you can specify where the destination document should load by
assigning a window or frame name to the TARGET attribute. Target frame names must be
assigned to frames and windows as identifiers. Assign names to frames via the NAME
attribute of the FRAME element; assign names to new windows via the second parameter of
the window.open () scripting method. If you omit this attribute, the destination document
replaces the document containing the link. An identifier other than one belonging to an
existing frame or window opens a new window for the destination document. This attribute
is applicable only when a value is assigned to the HREF attribute of the element.

A link element can have only one destination document and one target. If you want a link
to change the content of multiple frames, you can use an A element’s onClick event
handler or a javascript: pseudo-URL to fire a script that loads multiple documents. Set
the location.href property of each frame to a desired URL.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

182 <A4>

Example

Section 3.2
Start Over

Value

Case-sensitive identifier when the frame or window name has been assigned via the target
element’s NAME attribute. Four reserved target names act as constants:
_blank Browser creates a new window for the destination document.

_parent Destination document replaces the current frame’s framesetting document Gf
one exists; otherwise, it is treated as _self).

_self Destination document replaces the current document in its window or frame.

_top Destination document is to occupy the entire browser window, replacing any
and all framesets that may be loaded (also treated as _self if there are no
framesets defined in the window).

Default _self

Object Model Reference

IE [window.]document.links[i] .target

NN [window.]document.links[i] .target

TYPE NN w/a IE nw/a HTML 4
TYPE="MIMET}jpe" Optional

An advisory about the content type of the destination document or resource. A browser
might use this information to assist in preparing support for a resource requiring a multi-
media player or plugin.

Example
View Devil's Ghost slope
Value

Case-insensitive MIME type. A catalog of registered MIME types is available from fip./
[ip.isi.edu/in-notes/iana/assignments/media-types/.

Default None.

URN NN n/a IE 4 HIML wa
=" URN" Optional

A Uniform Resource Name version of the destination document specified in the HREF
attribute. This attribute is intended to offer support in the future for the URN format of URI,
an evolving recommendation under discussion at the IETF (see RFC 2141). Although
supported in IE 4, this attribute does not take the place of the HREF attribute.

Example Chapter 3

Value

A valid URN in the form of "urn:NamespaceID: NamespaceSpecificString".

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<ABBR> 183

Default None.

Object Model Reference

IE [window.]document.links[i].urn

<ABBR> NN w/a IE w/a HTML 4
<ABBR>. . .</ABBR> End Tag: Required

The ABBR element provides an encapsulation and enumeration mechanism for abbrevia-
tions that appear in the body text. For example, consider a web page that includes your
company’s address. At one point in the document, the abbreviation IA is used for Iowa. A
spelling checker, language translation program, or speech synthesizer might choke on this
abbreviation; a search engine would not include the word “Iowa” in its relevancy rating
calculation. But by turning the IA text into an ABBR element (and assigning a TITLE
attribute to it), you can provide a full-text equivalent that a search engine (if so equipped)
can count; a text-to-speech program would read aloud the full state name instead of some
guttural gibberish. Like many elements new in HTML 4.0, this one is intended to assist
browser technologies that may not yet be implemented but could find their way into prod-
ucts of the future.

A related element, ACRONYM, offers the same services for words that are acronyms. Both
elements are part of a larger group of what the HTML 4.0 recommendation calls phrase
elements.

Example

Ottumwa, <ABBR TITLE="Iowa">IA</ABBR> 55334

<ABBR LANG="de" TITLE="und so weiter">usw.</ABBR>

Attributes

CLASS ID LANG STYLE TITLE
DIR

Event Handler Attributes

Handler NN IE HTML
onClick n/a n/a 4
onDblClick n/a n/a 4
onKeyDown n/a n/a 4
onKeyPress n/a n/a 4
onKeyUp n/a n/a 4
onMouseDown n/a n/a 4
onMouseMove n/a n/a 4
onMouseOut n/a n/a 4
onMouseOver n/a n/a 4
onMouseUp n/a n/a 4

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

184 <ACRONYM>

TITLE NN »w/a IE n/a HIML 4

TITLE="advisorylext" Optional

An advisory description of the element. For the ABBR element, it plays a vital role in
providing a hidden full-text description of the abbreviation rendered in the document.

Ehxnniﬂe <ABBR TITLE="Iowa">IA</ABBR>

Value

Any string of characters. The string must be inside a matching pair of (single or double)
quotation marks.

Default None.

<ACRONYM> NN wa IE 4 HIML 4

<ACRONYM>. . .</ACRONYM> End Tag: Required

The ACRONYM element provides an encapsulation and enumeration mechanism for acro-
nyms that appear in the body text. For example, consider a web page that includes a
discussion of international trade issues. At one point in the document, the acronym GATT is
used for General Agreement on Tariffs and Trade. A spelling checker, language translation
program, or speech synthesizer might choke on this acronym; a search engine would not
include the word “tariffs” in its relevancy rating calculation. But by turning the GATT text
into an ACRONYM element (and assigning a TITLE attribute to it), you can provide a full-text
equivalent that a search engine (if so equipped) can count; a text-to-speech program would
read aloud the full meaning of the acronym. Like many elements new in HTML 4.0, this one
is intended to assist browser technologies that may not yet be implemented but could find
their way to products of the future.

A related element, ABBR, offers the same services for words that are abbreviations. Both
elements are part of a larger group of what the HTML 4.0 recommendation calls phrase
elements.

Example

<ACRONYM TITLE="General Agreement on Tariffs and Trade">GATT</ACRONYM>
<ACRONYM LANG="it" TITLE="Stati Uniti">S.U.</ACRONYM>

Object Model Reference

IE [window.] document .all .elementID

Attributes

CLASS ID LANGUAGE STYLE TITLE
DIR LANG

Event Handler Attributes

Handler NN | IE | HTML
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onHelp n/a 4 n/a

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<ADDRESS> 185

Handler NN 1E HTML

onKeyDown n/a 4 4

onKeyPress n/a 4 4

onKeyUp n/a 4 4

onMouseDown n/a 4 4

onMouseMove n/a 4 4

onMouseOut n/a 4 4

onMouseOver n/a 4 4

onMouseUp n/a 4 4

onSelectStart | n/a 4 n/a
TITLE NN #/a IE 4 HIML 4
TITLE="advisorylext" Optional

An advisory description of the element. For the ACRONYM element, it plays a vital role in
providing a hidden full-text description of the acronym rendered in the document.

Example <ACRONYM TITLE="United States of America">U.S.A.</ACRONYM>

Value

Any string of characters. The string must be inside a matching pair of (single or double)
quotation marks.

Default None.

Object Model Reference

IE [window.]document .all.clementiD.title

<ADDRESS> NN all IE all HTIML all
<ADDRESS>. . .</ADDRESS> End Tag: Required

Prior to HTML 4, the ADDRESS eclement was often regarded as a display formatting tag
appropriate for displaying a page author’s contact information on the page. Navigator and
Internet Explorer display ADDRESS elements in an italic font. But the increased focus on
separating content from form in HTML 4.0 adds some extra meaning to this element. Search
engines and future HTML (or XML) parsers may apply special significance to the content of
this element, perhaps in cataloging author information separate from the hidden informa-
tion located in META elements. If you want to use this structural meaning of the element
while keeping the rendering in line with the rest of your body text, you need to assign style
sheet rules to override the browser’s default formatting tendencies for this element. Any
standard BODY elements, such as links, can be contained inside an ADDRESS element.

Example

<ADDRESS>

<P>Send comments to:jbemegacorp.com
</P>

</ADDRESS>

Object Model Reference

1IE [window.] document .all .elementlD

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

186 <APPLET>

Attributes
CLASS ID LANGUAGE STYLE TITLE
DIR LANG

Event Handler Attributes

Handler NN 1IE HTML

onClick n/a 4 4

onDblClick n/a 4 4

onDragStart n/a 4 n/a

onHelp n/a 4 n/a

onKeyDown n/a 4 4

onKeyPress n/a 4 4

onKeyUp n/a 4 4

onMouseDown n/a 4 4

onMouseMove n/a 4 4

onMouseOut n/a 4 4

onMouseOver n/a 4 4

onMouseUp n/a 4 4

onSelectStart n/a 4 n/a
<APPLET> NN 2 IE 3 HIML 3.2
<APPLET>. . .</APPLET> End Tag: Required

You can embed an executable chunk of Java code in an HTML document in the form of an
applet. An applet occupies a rectangular area of the page, even if it is only one-pixel
square. An applet may require that some initial values be set from the HTML document.
One or more PARAM elements can be used to pass parameters to the applet before the
applet starts running (provided the applet is written to accept these parameters). PARAM
elements go between the start and end tags of an APPLET element.

Applets are compiled by their authors into class files (filename suffix .class). An applet class
file must be in the same directory as, or a subdirectory of, the HTML document that loads
the applet. Key attributes of the APPLET element direct the browser to load a particular
class file from the necessary subdirectory.

All user interface design for the applet is programmed into the applet in the Java language.
One of the roles of attributes in the APPLET element is to define the size and other
geographical properties of the applet for its rendering on the page. Recent browsers allow
JavaScript scripts to communicate with the applet, as well as allowing applets to access
document elements.

Note that HTML 4.0 deprecates the APPLET element in favor of the more generic OBJECT
element. Browser support for the APPLET element will continue for some time to come,
however.

Example

<APPLET CODE="simpleClock.class" NAME="myClock" WIDTH=400 HEIGHT=50>
<PARAM NAME=bgColor VALUE="black">

<PARAM NAME=fgColor VALUE="yellow">

</APPLET>

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<APPLET> 187

Object Model Reference
NN [window.]document .applets[i]

[window.] document . appletName

IE [window.]document .applets[i]
[window.]document . appletName

Attributes
ALIGN CODE HEIGHT NAME TITLE
ALT CODEBASE HSPACE SRC VSPACE -
ARCHIVE DATAFLD ID STYLE WIDTH E
CLASS DATASRC MAYSCRIPT -
(3]
e

Event Handler Attributes 5

Handler NN 1IE HTML E

onAfterUpdate n/a 4 n/a

onBeforeUpdate n/a 4 n/a

onBlur n/a 4 n/a

onClick n/a 4 n/a

onDataAvailable n/a 4 n/a

onDatasetChanged n/a 4 n/a

onDatasetComplete n/a 4 n/a

onDblClick n/a 4 n/a

onDragStart n/a 4 n/a

onErrorUpdate n/a 4 n/a

onFocus n/a 4 n/a

onHelp n/a 4 n/a

onKeyDown n/a 4 n/a

onKeyPress n/a 4 n/a

onKeyUp n/a 4 n/a

onMouseDown n/a 4 n/a

onMouseMove n/a 4 n/a

onMouseOut n/a 4 n/a

onMouseOver n/a 4 n/a

onMouseUp n/a 4 n/a

onReadyStateChange | n/a 4 n/a

onResize n/a 4 n/a

onRowEnter n/a 4 n/a

onRowExit n/a 4 n/a
ALIGN NN 2 IE 3 HIML 3.2
ALIGN="alignmentConstant" Optional

The ALIGN attribute determines how the rectangle of the applet aligns within the context of
surrounding content. See the section “Alignment Constants” earlier in this chapter for
description of the possibilities defined in both Navigator and Internet Explorer for this
attribute. Only a subset of the allowed constant values is specified in the HTML recommen-

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

188 <APPLET>

dation. Although Navigator included this attribute in Version 2, only BOTTOM, LEFT, RIGHT,
and TOP were implemented in that version.

Both browsers follow the same rules on laying out content surrounding an applet whose
ALIGN attribute is set, but the actual results are sometimes difficult to predict when the
surrounding content is complex. A thorough testing of rendering possibilities with browser
windows set to various sizes prevents surprises later.

Example

<APPLET CODE="simpleClock.class" NAME="myClock" ALIGN=ABSMIDDLE
WIDTH=400 HEIGHT=50></APPLET>

Value Case-insensitive constant value.

Default bottom

Object Model Reference

1E [window.]document .applets[i] .align
[window.] document . appletName.align

ALT NN 3 IE 3 HIML 3.2
ALT="textMessage" Optional

If a browser does not have the facilities to load and run Java applets or if the browser has
Java support turned off in its preferences, the text assigned to the ALT attribute is supposed
to display in the document where the APPLET element’s tag appears. Typically, this text
provides advice on what the page visitor is missing by not being able to load the Java
applet. Unlike the NOSCRIPT or NOFRAMES elements, there is no corresponding element for
an absent Java applet capability. In practice, browsers don’t necessarily display this message
for applets that fail to load for a variety of reasons.

In the event that this feature should work better in the future, use the ALT attribute with
care. If the applet is not a critical part of your page’s content, you may just want the rest of
the page to load without calling attention to the missing applet in less-capable browsers.
The alternate message may be more disturbing to the user than a missing applet.

Example

<APPLET CODE="simpleClock.class" NAME="myClock" ALIGN=ABSMIDDLE
ALT="A Java clock applet." WIDTH=400 HEIGHT=50></APPLET>

Value Any quoted string of characters.

Default None.

ARCHIVE NN 3 IE w/a HIML 4

ARCHIVE="archiveFileURL" Optional

The precise meaning of the ARCHIVE attribute varies between the HTML 4.0 recommenda-
tion and Netscape’s implementation. The basic idea behind Netscape’s ARCHIVE attribute is
that an author can package together multiple class files into a single uncompressed .zip
archive file and let the browser load the entire set of classes at one time. This can offer a
performance improvement over loading just the main class file (specified by the CODE
attribute) and then letting the class loader fetch each additional class file as needed.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<APPLET> 189

In addition to specifying the ARCHIVE attribute, be sure to include a CODE attribute that
names the main class to load. Navigator first looks for the presence of that class file in the
archive. If the file is missing from the archive, Navigator loads the CODE class file sepa-
rately. (That class may then load additional supporting class files individually.) Navigator
requires that the archive file have a .zip filename extension. The URL must also be relative
to the CODEBASE location.

The HTML specification allows multiple URLs to be specified (in a space-delimited list) for
additional class or other resource files. This design is in anticipation of the same attribute
being used with the OBJECT element, which the W3C has deemed to be the successor to
the APPLET element.

Example

<APPLET CODE="ScriptableClock.class" ARCHIVE="myClock.zip" WIDTH=400
HEIGHT=50>
</APPLET>

Value Case-sensitive URI.

Default None.

CODE NN 2 IE 3 HIML 3.2
CODE=" fileName.class" Required

The name of the main class file that starts and runs the applet. If the CODEBASE attribute is
not specified, the CODE attribute must include a path from the directory that stores the
HTML document loading the applet. You might get away with omitting the .class filename
extension, but don’t take any chances: be complete with the class name. Most servers are
case sensitive, so also match case of the actual class filename.

Example

<APPLET CODE="applets/ScriptableClock.class" WIDTH=400 HEIGHT=50>
</APPLET>

Value
Case-sensitive .class filename or complete path relative to the HTML document.

Default None.

Object Model Reference

IE [window.]document .applets[i] .code
[window.]document . appletName. code

CODEBASE NN 2 1IE 3 HIML 3.2

CODEBASE="path" Optional

Path to the directory holding the class file designated in either the CODE or ARCHIVE
attribute. The CODEBASE attribute does not name the class file, just the path. You can make
this attribute a complete URL to the directory, but don't try to access a codebase outside of
the domain of the current document: security restrictions may prevent the class from
loading. A full path and filename can be set together in the CODE or OBJECT attribute, elimi-
nating the need for the CODEBASE attribute setting.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

190 <APPLET>

Example

<APPLET CODE="ScriptableClock.class" CODEBASE="applets/" WIDTH=400
HEIGHT=50>
</APPLET>

Value

Case-sensitive pathname, usually relative to the directory storing the current HTML
document.

Default None.

Object Model Reference

IE [window.]document .applets[i] .codeBase
[window.]document . appletName. codeBase

DATAFLD, DATASRC

See the PARAM element for data binding to Java applets.

HEIGHT, WIDTH NN 2 1IE 3 HIML 3.2

WIDTH=" pixels" Required
HEIGHT=" pixels"

The size that a Java applet occupies in a document is governed by the HEIGHT and WIDTH
attribute settings. Some browser versions might allow you to get away without assigning
these attributes, letting the applet’s own user interface design determine the height and
width of its visible rectangle. As with images, however, it is more efficient for the browser’s
rendering engine when you explicitly specify the object’s dimensions. Make a habit of
supplying these values for all applets, as you should for all images or other visible external
objects.

Example

<APPLET CODE="ScriptableClock.class" WIDTH=400 HEIGHT=50>
</APPLET>

Value

Positive integer pixel values (optionally quoted). You cannot entirely hide an applet by
setting values to zero, but you can reduce its height and width to one pixel in each dimen-
sion. If you want to hide an applet, do so with DHTML by setting its positioning display
attribute to none.

Default None.

Object Model Reference

IE [window.]document .applets[i] .height
[window.] document . appletName.height
[window.]document .applets[i] .width
[window.]document . appletName.width

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<APPLET> 191

HSPACE, VSPACE NN 2 IE 3 HIML 3.2

HSPACE=" pixels" Optional
VSPACE=" pixels"

You can put some empty space (“air”) between an applet and any surrounding content by
assigning pixel values to the HSPACE and VSPACE attributes. The VSPACE attribute governs
space above and below the applet; the HSPACE attribute governs space to the left and right
of the applet. For browsers that are style sheet savvy, you are perhaps better served by
using the padding and/or margin style attributes to gain control down to individual sides, if
you so desire.

Example

<APPLET CODE="ScriptableClock.class" WIDTH=400 HEIGHT=50 HSPACE=3 VSPACE=4>
</APPLET>

Value Positive integer pixel values (optionally quoted).

Default 0
Object Model Reference
IE [window.]document .applets[i] .hspace

[window.] document . appletName.hspace
[window.]document .applets[i] .vspace
[window.] document . appleiName.vspace

ID NN n/a IE 4 HIML 4

ID=" clementldentifier" Optional

A unique identifier that distinguishes this element from all the rest in the document. Can be
used to associate a single element with a style rule naming this attribute value as an ID
selector. An element can have an ID assigned for uniqueness as well as a class for inclu-
sion within a group. See Chapter 3.

If you assign an ID attribute and not a NAME attribute, the value of the ID attribute can be
used as the applet’s name in script reference forms that use the element name
(document . appletName).

Example

<APPLET ID="clocker" CODE="ScriptableClock.class" WIDTH=400 HEIGHT=50>
</APPLET>

Value Case-sensitive identifier.

Default None.

Object Model Reference

IE [window.]document .applets[i] .id
[window.]document . appletName. 1d

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
-
=
(']
—r
®
-
@
=
]
@

192 <APPLET>

MAYSCRIPT NN 3 IE 4 HIML wa

MAYSCRIPT Optional

Navigator 3 introduced a technology called LiveConnect, which allowed scripts to commu-
nicate with Java applets and vice versa. For security reasons, an applet’s communications
facilities with scripts must be explicitly switched on by the page author. By adding the
MAYSCRIPT attribute to the applet’s tag, an applet that is written to take advantage of the
document objects and scripts can address those items. In other words, the HTML is granting
the applet the ability to reach scripts in the document. This attribute is a simple switch:
when the attribute name is present, it is turned on.

One more step is required for an applet to communicate with JavaScript. The applet code
must import a special Netscape class called JSObject.class. This class file (and its companion
exception class) are built into the Java support in the Windows version of Internet Explorer
4. Although the execution is not perfect in IE 4, applets can perform basic communication
with scripts.

Example

<APPLET CODE="ScriptableClock.class" WIDTH=400 HEIGHT=50 MAYSCRIPT>
</APPLET>

Value

No value assigned to the attribute. The presence of the attribute name sets turns on applet-
to-script communication.

Default Off.

NAME NN 2 IE 3 HIML 3.2

NAME=" elementldentifier" Optional

If you are scripting an applet, it is usually more convenient to create a reference to the
applet by using a unique name you assign to the applet. Then, if you edit the page and
move or delete multiple applets on the page, you do not have to worry about adjusting
index values to array-style references. In IE 4, you have the option of omitting the NAME
attribute and using the ID attribute value in script references to the applet object.

Example

<APPLET NAME="clock2" CODE="ScriptableClock.class" WIDTH=400 HEIGHT=50>
</APPLET>

Value Case-sensitive identifier.

Default None.

Object Model Reference

1IE [window.]document .applets[i] .name
[window.]document . appletName.name

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<AREA> 193

SRC NN n/a 1E 4 HIML wa
SRC="URL" Optional

Internet Explorer 4 defines this attribute as the URL for an “associated file.” This may be the
same as the ARCHIVE attribute defined in HTML and Navigator specifications. The SRC
attribute is not a substitute for the CODE and/or CODEBASE attributes.

Value A complete or relative URL.

Default None.

Object Model Reference

1E [window.]document .applets[i] .src
[window.] document . appletName. src

VSPACE
See HSPACE.

WIDTH
See HEIGHT.

<AREA> NN all 1E all HTML 3.2
<AREA> End Tag: Forbidden

A MAP element defines a client-side image map that is ultimately associated with an image
or other object that occupies space on the page. The only job of the MAP element is to
assign a name and a tag context for one or more AREA element definitions. Each AREA
element defines how the page should respond to user interaction with a specific geograph-
ical region of the image or other object.

A client-side image map area can act like an A element link in that an area can link to a
destination or javascript: pseudo-URL and assign another frame or window as the target
for loading a new document. In fact, in the scripting document object model, an AREA
element is referenced as a link. It is not uncommon to use client-side area maps in a navi-
gation bar occupying a slender frame of a frameset. This allows an artist to be creative with
a menu design, while giving the page author the power to turn any segment of a larger
image into a special-purpose link.

Example

<MAP NAME="nav">
<AREA COORDS="20,30,120,70" HREF="contents.html" TARGET="display">
</MAP>

Object Model Reference
NN [window.]document .links[i]
IE [window.]document .1links[i]

[window.]document . all.elementiD

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

194 <AREA>

Attributes

ACCESSKEY DIR LANG NOHREF TABINDEX
ALT HREF LANGUAGE SHAPE TARGET
CLASS ID NAME STYLE TITLE
COORDS

Event Handler Attributes

Handler NN IE HTML

onBlur n/a 4 4

onClick 4 4 4

onDblClick n/a 4 4

onDragStart n/a 4 n/a

onFocus n/a 4 4

onHelp n/a 4 n/a

onKeyDown n/a 4 4

onKeyPress n/a 4 4

onKeyUp n/a 4 4

onMouseDown n/a 4 4

onMouseMove n/a 4 4

onMouseOut 3 4 4

onMouseOver 3 4 4

onMouseUp n/a 4 4

onSelectStart | n/a 4 n/a
ACCESSKEY NN n/a IE w/a HTIML 4
ACCESSKEY=" character" Optional

A single character key that follows the link associated with the image hotspot. The browser
and operating system determine if the user must press a modifier key (e.g., Ctrl, Alt, or
Command) with the access key to activate the link.

Example

<AREA COORDS="20,30,120,70" HREF="contents.html" TARGET="display"
ACCESSKEY="t">

Value Single character of the document set.

Default None.

ALT NN n/a IE 3 HIML 3.2

ALT="textMessage" Required

Nongraphical browsers can use the ALT attribute setting to display a brief description of the
meaning of the (invisible) image’s hotspots. At one time, it was thought that the ALT
message might by default be displayed in the browser’s status bar when the area had focus
or the cursor rolled over the area. That function is now typically performed by onMouse-
oOver event handlers and scripts. Keep in mind that recent handheld computers usually
have nongraphical browsers (or allow graphics to be turned off for improved perfor-
mance). Don’t ignore the graphically impaired.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<AREA> 195

Example

<AREA COORDS="20,30,120,70" HREF="contents.html" TARGET="display"
ALT="Table of Contents">

Value Any quoted string of characters.

Default None.

Object Model Reference

IE [window.]document .all.cementiDalt

COORDS NN all IE all HTML 3.2
COORDS=" coord1, ... coordN" Optional

Although the formal W3C definition for the COORDS attribute of an AREA element states that
the attribute is optional, that doesn’t mean that you can omit this attribute and expect an
AREA to behave as it should. The COORDS attribute lets you define the outline of the area to
be associated with a particular link or scripted action. Some third-party authoring tools can
assist in determining the coordinate points for a hot area. You can also load the image into
a graphics program that displays the cursor position in real time and then transfer those
values to the COORDS attribute values.

Coordinate values are entered as a comma-delimited list. If two areas overlap, the area that
is defined earlier in the HTML code takes precedence.

Example
<AREA COORDS="20,30,120,70" HREF="contents.html" TARGET="display">

Value

Each coordinate is a length value, but the number of coordinates and their order depend on
the shape specified by the SHAPE attribute, which may optionally be associated with the
element. For SHAPE="rect", there are four coordinates (left, top, right, bottom); for
SHAPE="circle", there are three coordinates (center-x, center-y, radius); for
SHAPE="poly", there are two coordinate values for each point that defines the shape of the
polygon (x1, y1, X2, y2, x3, y3,..xN, yN).

Default None.

Object Model Reference

IE [window.]document .all.elementlD.coords

HREF NN all 1E all HTIML 3.2
HREF="URI[" Required

The URI of the destination of a link associated with the area. In a browser, when the URI is
an HTML document, the document is loaded into the current (default) or other window
target (as defined by the TARGET attribute). For some other file types, the browser may load
the destination content into a plugin or save the destination file on the client machine.
Because Navigator (through Version 4) treats AREA elements as A elements, the HREF
attribute must be defined in the AREA element for Navigator scripts to access various prop-
erties about the URL and for event handlers (such as onMouseOver) to work.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

196 <AREA>

Example
<AREA COORDS="20,30,120,70" HREF="contents.html" TARGET="display">
Value

Any valid URI, including complete and relative URLs, anchors on the same page (anchor
names prefaced with the # symbol), and the javascript: pseudo-URL in scriptable
browsers to trigger a script statement rather than navigate to a destination.

Default None.

Object Model Reference

IE [window.]document .links[i] .href
[window.]document .all.clementiDhref

NN [window.]document.links[i] .href

In both browsers, other link object properties allow for the extraction of components of the
URL, such as protocol and hostname. See the Link object in Chapter 9.

NAME NN w/a IE n/a HIML 4
NAME=" elementldentifier" Optional

This attribute is included in the HTML 4.0 specification for consistency with other elements.
Although NAME attributes are used for identifying form elements upon submission and for
scripting references, the browsers through Version 4 do not support this attribute. (IE 4 uses
the ID attribute to assign a name to an AREA element for scripted references.) This attribute
may become active in future browsers.

Value Case-sensitive identifier.

Default None.

NOHREF NN all IE all HTML 3.2

NOHREF Optional

Tells the browser that the area defined by the coordinates has no link associated with it (as
does just not including any HREF attribute). When you include this attribute, scriptable
browsers no longer treat the element as a link. As implemented in both Navigator and
Internet Explorer, when an AREA element lacks an HREF attribute, the element no longer
responds to user events. In IE 4, you can turn this attribute on and off from a script by
setting the property to true or false.

Example <AREA "COORDS="20,30,120,70" NOHREF>
Value The presence of this attribute sets its value to true.

Default false

Object Model Reference

IE [window.]document .all .elemenilDnoHref

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<AREA> 197

SHAPE NN all IE all HTML 3.2

SHAPE=" shape" Optional

Defines the shape of the client-side area map whose coordinates are specified with the
COORDS attribute. The SHAPE attribute tells the browser how many coordinates to expect.

Example

<AREA SHAPE="poly" "COORDS="20,20,20,70,65,45" HREF="contents.html"
TARGET="display">

Value

Case-insensitive shape constant. Each implementation defines its own set of shape names
and equivalents, but there are common denominators across browsers (circle, rect,
poly, and polygon).

Shape Name | NN IE HTML
circ - . -
circle U U U
poly . . .
polygon o o -
rect . . .
rectangle - o -

Default rect

Object Model Reference

1IE [window.] document . all elementlD.shape

TABINDEX NN n/a IE 4 HIML 4
TABINDEX=integer Optional

A number that indicates the sequence of this element within the tabbing order of all focus-
able elements in the document. Tabbing order follows a strict set of rules. Elements that
have values other than zero assigned to their TABINDEX attributes are first in line when a
user starts tabbing in a page. Focus starts with the element with the lowest TABINDEX value
and proceeds in order to the highest value, regardless of physical location on the page or in
the document. If two elements have the same TABINDEX values, the element that comes
earlier in the document receives focus first. Next come all elements that either don’t support
the TABINDEX attribute or have the value set to zero. These elements receive focus in the
order in which they appear in the document. Because an AREA element cannot be disabled,
it always receives focus in turn, except for special handling in IE 4. Typically, an AREA
element wired as a link can be triggered with a press of the spacebar once the element has
focus.

Note that the Macintosh user interface does not provide for giving focus to elements other
than text input fields. Image map areas cannot be tabbed to on the Mac version of IE 4.

Example

<AREA COORDS="20,30,120,70" HREF="contents.html" TARGET="display"
TABINDEX=3>

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

198 <AREA>

Value

Any integer from 0 through 32767. In IE 4, setting the TABINDEX to -1 causes the element
to be skipped in tabbing order altogether.

Default None.

Object Model Reference

IE [window.] document .all.elementlD.tabIndex

TARGET NN all IE all HTML 3.2
TARGET=" windowOrFrameName" Optional

If the destination document is to be loaded into a window or frame other than the current
window or frame, you can specify where the destination document should load by
assigning a window or frame name to the TARGET attribute. Target frame names must be
assigned to frames and windows as identifiers. Assign names to frames via the NAME
attribute of the FRAME element; assign names to new windows via the second parameter of
the window.open () scripting method. If you omit this attribute, the destination document
replaces the document containing the link. This attribute is applicable only when a value is
assigned to the HREF attribute of the element.

An AREA element can have only one destination document and one target. If you want a
link to change the content of multiple frames, you can use an AREA element’s onClick
event handler (check Chapter 9 for supported browser versions) or a javascript:
pseudo-URL to fire a script that loads multiple documents. Set the location.href prop-
erty of each frame to the desired URL.

Example

<AREA COORDS="20,30,120,70" HREF="contents.html" TARGET="display">
<AREA COORDS="140,30,180,70" HREF="index.html" TARGET="_top">

Value

Case-sensitive identifier when the frame or window name has been assigned via the target
element’s NAME attribute. Four reserved target names act as constants:
_blank Browser creates a new window for the destination document.

_parent Destination document replaces the current frame’s framesetting document (if
one exists; otherwise, it is treated as _self).

_self Destination document replaces the current document in its window or frame.

_top Destination document is to occupy the entire browser window, replacing any
and all framesets that may be loaded (also treated as _self if there are no
framesets defined in the window).

Default _self

Object Model Reference

IE [window.]document.links[i].target
[window.]document . all.elementID.target

NN [window.]document .links[i].target

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

 199

 NN all 1E all HTML all
... End Tag: Required

The B element—one of several font style elements in HTML 4—renders its content in a
boldface version of the font face governing the next outermost HTML container. You can
nest multiple font style elements to create combined styles, such as bold italic (<I>
bold-italic text</I>).

It is up to the browser to fatten boldface display by calculating the character weight or by
perhaps loading a bold version of the currently specified font. If you are striving for font
perfection, it is best to use style sheets (and perhaps downloadable fonts) to specify a true
bold font face, rather than risk the browser’s extrapolation of a boldface from a system font.
The font-weight style attribute provides quite granular control over the degree of bold
applied to text if the font face supports such fine-tuning.

You can take advantage of the containerness of this element by assigning style sheet rules
to some or all B elements in a page. For example, you may wish all B elements to be in a

red color. By assigning the style rule B {color:red}, you can do it to all elements with
only a tiny bit of code.

Although this element is not deprecated in HTML 4, it would not be surprising to see it lose
favor to style sheets in the future.

Example <P>This product is new and improved!</P>

Object Model Reference

IE [window.] document .all elementID

Attributes

CLASS ID LANGUAGE STYLE TITLE
DIR LANG

Event Handler Attributes

Handler NN IE HTML
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onSelectStart n/a 4 n/a

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

200 <BASE>

<BASE> NN all 1E all HTML all
<BASE> End Tag: Forbidden

A BASE element is defined inside a document’s HEAD element to instruct the browser about
the URL path to the current document. This path is then used as the basis for all relative
URLs used to specify various SRC and HREF attributes in the document. The BASE element’s
URL should be a complete URL, including the document name. The browser calculates the
base URL path to the directory holding that document. For example, if you specify <BASE
HREF="http://www.megacorp.com/products/index.html"> the HREF attribute of a
link on that page to widgets/framitz801.html resolves to the full URL of bitp://www.mega-
corp.com/products/widgets/framitz801.hbtml. Similarly, a relative URL can walk up the
hierarchy with the dot syntax. For example, from the BASE element defined earlier, an IMG
element in the index.html page might be set for SRC="../images/logo.jpg". That refer-
ence resolves to hitp.//www.megacorp.com/images/logo.jpg.

By and large, today’s browsers automatically calculate the base URL of the currently loaded
document, thus allowing use of relative URLs without specifying a BASE element. This is
especially helpful when you are developing pages locally and don’t want to change the
BASE element settings when you deploy the pages. The HTML 4.0 specification states that a
document lacking a BASE element should by default use the current document’s URL as the
BASE URL. Of course, this is only for true web pages, rather than HTML-enhanced docu-
ments such as email messages, which have no default BASE URL.

You can also use the BASE element to define a default target for any link-type element in
the document. Therefore, if all links are supposed to load documents into another frame,
you can specify this target frame once in the BASE tag and not worry about TARGET
attributes elsewhere in the document. If you wish to override the default for a single link,
you may do so by specifying the TARGET attribute for that element.

Example

<HEAD>

<BASE HREF="http://www.megacorp.com/index.html" TARGET="_top">
</HEAD>

Object Model Reference

IE [window.] document .all .elementID

Attributes

HREF TARGET

HREF NN all IE all HTML all
HREF="URL" Optional

The HREF attribute is a URL of a document whose server path is to be used as the base URL
for all relative references in the document. This is typically the URL of the current docu-
ment, but it can be set to another path if it makes sense to your document organization and
directory structure.

Example <BASE HREF="http://www.megacorp.com/products/index.html">
Value This should be a full and absolute URL to a document.

Default Current document pathname.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<BASEFONT> 201

Object Model Reference

1IE [window.]document .all.tags ("base") [0] .href

TARGET NN all IE all HIML 4
TARGET=" windowOrFrameName" Optional

If all or most links and area maps on a page load documents into a separate window or
frame, you can set the TARGET attribute of the BASE element to take care of targeting for all
of those elements. You can set the TARGET attribute without setting the HREF attribute if
you want to set only the base target reference.

Example <BASE TARGET="rightFrame">

Value

Case-sensitive identifier when the frame or window name has been assigned via the target

element’s NAME attribute. Four reserved target names act as constants:

_blank Browser creates a new window for the destination document.

_parent Destination document replaces the current frame’s framesetting document (if
one exists; otherwise, it is treated as _self).

_self Destination document replaces the current document in its window or frame.

_top Destination document is to occupy the entire browser window, replacing any
and all framesets that may be loaded (also treated as _self if there are no
framesets defined in the window).

Default _self

Object Model Reference
IE [window.]document .all.tags ("base") [0] .target

<BASEFONT> NN all 1E all HTML 3.2

<BASEFONT> End Tag: Forbidden

A BASEFONT element advises the browser of some font information to be used as the basis
for text rendering of the current page below the BASEFONT element. You can apply this
element in either the HEAD or BODY portion of the document (although Microsoft recom-
mends in the BODY only for IE 4), and you can insert BASEFONT elements as often as is
needed to set the base font for a portion of the document. Be aware that settings of the
BASEFONT element do not necessarily apply to content in tables. If you want table content
to resemble a custom BASEFONT setting, you likely have to set the font styles to table
elements separately.

The BASEFONT element overrides the default font settings in the browser’s user preferences
settings. Like most font-related elements, the BASEFONT element is deprecated in HTML 4.0
in favor of style sheets. The latter provide much greater control over fonts (see Chapter 10).

Example <BASEFONT FACE="Times, serif" SIZE=4>

Attributes
CLASS DIR ID NAME STYLE
COLOR FACE LANG SIZE TITLE

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

202 <BASEFONT>

COLOR NN n/a IE 3 HIML 4
COLOR=" colorTripletOrName" Optional

Sets the font color of all text below the BASEFONT element. Even though the attribute made
its HTML recommendation debut in Version 4.0, the attribute is nonetheless deprecated.

Example <BASEFONT COLOR="Olive">

Value

A hexadecimal triplet or plain-language color name. See Appendix A for acceptable plain-
language color names.

Default Browser default.

Object Model Reference

1IE [window.] document.all.tags ("basefont") [i].color

FACE NN na 1IE 4 HIML 4
FACE="fontFaceNamel], ... fontFaceNameNJ" Optional

You can assign a hierarchy of font faces to use for the default font of a section headed by a
BASEFONT element. The browser looks for the first font face in the comma-delimited list of
font face names until it either finds a match in the client system or runs out of choices, at
which point the browser default font face is used. Font face names must match the system
font face names exactly. If you use this attribute (instead of the preferred style sheet
attribute), you can always suggest a generic font face (serif, sans-serif) as the final
choice.

In IE 3, this attribute was called the NAME attribute.
Example <BASEFONT FACE="Bookman, Times Roman, serif">

Value

One or more font face names, including the recognized generic faces: serif | sans-serif
| cursive | fantasy | monospace.

Default Browser default.

Object Model Reference

IE [window.] document.all.tags ("basefont") [i].face

NAME NN n/a 1E 3 HIML n/a
NAME=" fontFaceName" Optional

This was IE 3’s version of what is today the FACE attribute. It accepts a single font face as a
value. The NAME attribute is no longer used.

Value A single font face name.

Default Browser default.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<BGSOUND> 203

SIZE NN all IE all HIML 3.2

SIZE="1integerOrRelativeSize" Optional

Font sizes referenced by the SIZE attribute are on a relative size scale that is not tied to any
one point size across operating system platforms. The default browser font size is 3. The
range of acceptable values for the SIZE attribute are integers from 1 to 7 inclusive. The
exact point size varies with the operating system and browser design.

Users can often adjust the default font size in preferences settings. The SIZE attribute over-
rides that setting. Moreover, SIZE values can be relative to whatever font size is set in the
preferences. By preceding an attribute value with a + or - sign, the browser’s default size
can be adjusted upward or downward, but always within the range of 1 through 7.

Example

<BASEFONT SIZE=4>
<BASEFONT SIZE="+3">

Value

Either an integer (quoted or not quoted) or a quoted relative value, consisting of a + or -
symbol and an integer value.

Default 3

Object Model Reference

IE [window.] document.all.tags ("basefont")[i].size

<BDO> NN n/a 1E w/a HTML 4
<BDO>. . .</BDO> End Tag: Required

The name of the BDO element stands for bidirectional override. The LANG and DIR attributes
of most elements are designed to take care of most situations involving the mixture of
writing systems that compose text in opposite directions. The BDO element is designed to
assist in instances when due to various conversions during text processing, the normal bidi-
rectional algorithms must be explicitly overridden. Because this element is not yet
implemented in browsers, it is detailed here for informational purposes only.

Example <BDO dir="1ltr">someMixedScriptTextHere</BDO>

Attributes
CLASS ID LANG STYLE TITLE
DIR

<BGSOUND> NN n/a IE 3 HIML wa

<BGSOUND> End Tag: Optional

This Internet Explorer-only attribute lets you define a sound file that is to play in the back-
ground while the user visits the page. The element is allowed only inside the HEAD element.
Several attributes were added for Version 4. With scripting, you can control the volume and
how many times the sound track plays even after the sound file loads. Although an end tag

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
-
=
(']
—r
®
-
@
=
]
@

204 <BGSOUND>

is optional, there is no need for it because all specifications for the sound are maintained by
attributes in the start tag.

If you are going to use this tag, I strongly recommend making the playing of a background
sound a user-selectable choice that is turned off by default. In office environments, it can be
startling (if not embarrassing) to have background music or sounds unexpectedly emanate
from a computer. Also be aware that there is likely to be some delay in the start of the
music due to download time.

Example <BGSOUND SRC="tunes/mazeppa.mid">

Object Model Reference

IE [window.] document .all.clementlD

Attributes

BALANCE ID LOOP TITLE VOLUME

CLASS LANG SRC

BAIANCE NN w/a 1IE 4 HIML wa
BALANCE=" signedInteger" Optional

A value that directs how the audio is divided between the left and right speakers. Once this
attribute value is set in the element, its value cannot be changed by script control.

Example <BGSOUND SRC="tunes/mazeppa.mid" BALANCE="+2500">

Value

A signed integer between -10,000 and +10,000. A value of 0 is equally balanced on both
sides. A negative value gives a relative boost to the left side; a positive value boosts the
right side.

Default 0

Object Model Reference

IE [window.] document.all.tags ("bgsound") [0].balance

Loor NN w/a 1IE 3 HIML wa
LOOP=integer Optional

Defines the number of times the sound plays. If the attribute is absent or is present with
any value other than -1, the sound plays at least once. Assigning a value of -1 means that
the sound plays until the page is unloaded. Contrary to Microsoft’s Internet Explorer SDK
information, there does not appear to be a way to precache the sound without having it
start playing.

Example <BGSOUND SRC="tunes/mazeppa.mid" LOOP=3>

Value

No value assignment necessary for a single play. A value of 0 still causes a single play.
Values above zero play the sound the specified number of times. Assign -1 to have the
sound play indefinitely.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<BIG> 205

Default -1

Object Model Reference

IE [window.] document.all.tags ("bgsound") [0].loop

SRC NN w/a 1IE 3 HIML wa
SRC="URL" Optional

A URL that points to the sound file to be played. The type of sound file that can be played
is limited only by the audio facilities of the browser. Common audio formats, including
MIDI, are supported in Internet Explorer without further plugin installation.

Example <BGSOUND SRC="tunes/beethoven.mid">

Value

Any valid URL, including complete and relative URLs. The file must be in a MIME type
supported by Internet Explorer or a plugin.

Default None.

Object Model Reference

IE [window.] document.all.tags ("bgsound") [0].src

VOLUME NN n/a 1E 4 HIML n/a
VOLUME=" signedlnteger" Optional

An integer that defines how loud the background sound plays relative to the maximum
sound output level as adjusted by user preferences in the client computer. Maximum
volume—a setting of zero—is only as loud as the user has set in the Sound control panel.
Attribute adjustments are negative values as low as -10,000 (although most users lose the
sound at a value much higher than -10,000).

Example <BGSOUND SRC="tunes/beethoven.mid" VOLUME="-500">

Value A signed integer value between -10,000 and 0.

Default 0

Object Model Reference

IE [window.] document.all.tags ("bgsound") [0].volume

<BIG> NN all 1E all HIML 3.2
<BIG>...</BIG> End Tag: Required

The BIG element—one of several font style elements in HTML 4—renders its content in the
next font size (in HTML's 1 through 7 scale) larger than the previous body font size. If you
nest BIG elements, the effects on the more nested elements are cumulative, with each
nested level rendered one size larger than the next outer element. Default font size is
dependent upon the browser, operating system, and user preferences settings. For more
precise font size rendering, use style sheet rules.

Example <p>This product is <BIG>new</BIG> and <BIG>improved</BIG>!</P>

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
-
=
(']
—r
®
-
@
=
]
@

206 <BLOCKQUOTE>

Object Model Reference

IE [window.] document .all .elementlD

Attributes

CLASS ID LANGUAGE STYLE TITLE
DIR LANG

Event Handler Attributes

Handler NN IE HTML

onClick n/a 4 4

onDblClick n/a 4 4

onDragStart n/a 4 n/a

onHelp n/a 4 n/a

onKeyDown n/a 4 4

onKeyPress n/a 4 4

onKeyUp n/a 4 4

onMouseDown n/a 4 4

onMouseMove n/a 4 4

onMouseOut n/a 4 4

onMouseOver n/a 4 4

onMouseUp n/a 4 4

onSelectStart n/a 4 n/a
<BLINK> NN all 1E n/a HTML n/a
<BLINK>. ..</BLINK> End Tag: Required

The BLINK element is Marc Andreessen’s contribution to horrifying web pages. All content
of the element flashes on and off uncontrollably in a distracting manner. The more content
you place inside the element, the more difficult it is to read between the flashes. Please
don’t use this tag. I beg you. This element does not have any attributes or event handlers.

Example <BLINK>I dare you to read this...and not look at it.</BLINK>

<BLOCKQUOTE> NN all 1E all HIML all

<BLOCKQUOTE>. . . </BLOCKQUOTE> End Tag: Required

The BLOCKQUOTE element is intended to set off a long quote inside a document. Tradition-
ally, the BLOCKQUOTE element has been rendered as an indented block, with wider left and
right margins (about 40 pixels each), plus some extra whitespace above and below the
block. Browsers will likely continue this type of rendering, although you are encouraged to
use style sheets to create such displays (with or without the BLOCKQUOTE element). For
inline quotations, see the Q element.

Example

<BLOCKQUOTE>Four score and seven years ago...
shall not perish from the earth</BLOCKQUOTE>

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<BODY> 207

Object Model Reference

IE [window.] document .all .elementlD

Attributes

CITE DIR LANG STYLE TITLE
CLASS ID LANGUAGE

Event Handler Attributes

Handler NN IE HTML -
onClick n/a 4 4 E
onDblClick n/a 4 4 -
onDragStart n/a 4 n/a E@-
onHelp n/a 4 n/a §
onKeyDown n/a 4 4 e
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onSelectStart | n/a 4 n/a

CITE NN n/a 1E w/a HIML 4

CITE="URL" Optional

A URL pointing to an online source document from which the quotation is taken. This is
not in any way a mechanism for copying or extracting content from another document.
Presumably, this HTML 4.0 recommendation is to encourage future browsers and search
engines to utilize a reference to online source material for the benefit of readers and surfers.

Value

Any valid URL to a document on the World Wide Web, including absolute or relative URLs.

Default None.

<BODY> NN all 1E all HTML all
<BODY>. . .</BODY> End Tag: Optional

After all of the prefatory material in the HEAD portion of an HTML file, the BODY element
contains the genuine content of the page that the user sees in the browser window (or may
hear when browsers know how to speak to users). Before style sheets, the BODY element
was the place where page authors could specify document-wide color and background
schemes. A great many favorite attributes covering these properties are deprecated in HTML
4, in favor of style sheet rules that may be applied to the BODY element. Support for all
these attributes, however, will remain in Navigator and Internet Explorer for years to come.

The BODY element is also where window object event handlers are placed. For example, a
window object as defined in most document object models has an onLoad event handler

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

208 <BODY>

that fires when a document has finished loading into the current window or frame.
Assigning that event handler as an element attribute is done in the BODY element.

Although it may appear from a variety of implications that the BODY element is the docu-
ment object, this is not entirely true. The document object has additional properties (such
as the document.title) that are defined outside of the BODY element in an HTML docu-
ment. Also, most browsers don’t quibble when you omit either or both the start and end
tags. But if you are debugging a page, it’s helpful to see the end tags for the BODY and HTML
elements when viewing the source to verify that the page has fully loaded into the browser.

Example

<BODY BACKGROUND="watermark.jpg"

</BODY>

onLoad="init () ">

Object Model Reference

NN [window.]document

IE [window.] document . body

Attributes

ALINK BOTTOMMARGIN LANG

BACKGROUND CLASS LANGUAGE

BGCOLOR DIR LEFTMARGIN

BGPROPERTIES ID LINK

Event Handler Attributes
Handler NN 1IE HTML
onAfterUpdate n/a 4 n/a
onBeforeUnload | n/a 4 n/a
onBeforeUpdate n/a 4 n/a
onBlur 3 4 n/a
onClick n/a 4 4
onDblClick n/a 4 4
onDragDrop 4 n/a n/a
onFocus 3 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onLoad 2 3 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 3 4
onMouseUp n/a 4 4
onMove 4 n/a n/a
onResize 4 n/a n/a
onRowEnter n/a 4 n/a
onRowExit n/a 4 n/a

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

RIGHTMARGIN

<BODY> 209

Handler NN 1IE HTML

onScroll n/a 4 n/a

onSelect n/a 4 n/a

onSelectStart n/a 4 n/a

onUnload 2 3 4
ALINK NN all 1E all HIML 3.2
ALINK=" colorTripletOrName" Optional

Establishes the color of a hypertext link when it is activated (being clicked on) by the user.
This is one of three states for a link: unvisited, active, and visited. The color is applied to
the link text or border around an image or object embedded within an A element. This
attribute is deprecated in favor of the BODY:active {color:} style sheet rule (and the
future :active pseudo-class, as described in Chapter 10).

Example <BODY ALINK="#FF0000">...</BODY>

Value

A hexadecimal triplet or plain-language color name. See Appendix A for acceptable plain-
language color names.

Default #FF0000 (in Navigator 4); #000000 (in IE 4).

Object Model Reference
NN [window.]document .alinkColor
IE [window.]document .alinkColor

[window.]document .body .aLink

BACKGROUND NN all IE all HTML 3.2

BACKGROUND="URL" Optional

Specifies an image file that is used as a backdrop to the text and other content of the page.
Unlike normal images that get loaded into browser content, a background image loads in its
original size (without scaling) and tiles to fill the available document space in the browser
window or frame. Smaller images usually download faster but are obviously repeated more
often in the background. Animated GIFs are also allowable but very distracting to the
reader. When selecting a background image, be sure it is very muted in comparison to the
main content so that the content stands out clearly. Background images, if used at all,
should be extremely subtle.

This attribute is deprecated in HTML 4.0 in favor of the background style attribute.
Example <BODY BACKGROUND="watermark.3jpg">...</BODY>
Value Any valid URL to an image file, including complete and relative URLs.

Default None.

Object Model Reference
IE [window.] document .body . background

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

210 <BODY>

BGCOLOR NN all IE all HTML 3.2

BGCOLOR=" colorTripletOrName" Optional

Establishes a fill color (behind the text and other content) for the entire document. If you
combine a BGCOLOR and BACKGROUND, any transparent areas of the background image let
the background color show through. This attribute is deprecated in HTML 4.0 in favor of
the background-color style attribute.

Example <BODY BGCOLOR="tan">...</BODY>

Value

A hexadecimal triplet or plain-language color name. A setting of empty is interpreted as
"#000000" (black). See Appendix A for acceptable plain-language color names.

Default Varies with browser, browser version, and operating system.

Object Model Reference
NN [window.] document .bgColor
IE [window.] document .bgColor

[window.]document .body.bgColor

BGPROPERTIES NN n/a 1IE 3 HIML n/a

BGPROPERTIES="property" Optional

An Internet Explorer attribute that lets you define whether the background image (set with
the BACKGROUND attribute or style sheet) remains in a fixed position or scrolls as a user
scrolls the page. This can provide both intriguing and odd effects for the user. When the
background image is set to remain in a fixed position, scrolled content flows past the back-
ground image very much like film credits roll past a background image on the screen.

Example <BODY BACKGROUND="watermark.jpg" BGPROPERTIES="fixed">...</BODY>

Value

If set to "fixed", the image does not scroll. Omit the attribute or set it to an empty string
(") to let the image scroll with the content.

Default None.

Object Model Reference

IE [window.] document .body .bgProperties

BOTTOMMARGIN NN wa 1IE 4 HIML wa
BOTTOMMARGIN="integer" Opt ional

Establishes the amount of blank space between the very end of the content and the bottom
of a scrollable page. The setting has no visual effect if the length of the content or size of
the window does not cause the window to scroll. The default value is for the end of the
content to be flush with the end of the document, but in the Macintosh version of Internet
Explorer 4, there is about a 10-pixel margin visible even when the attribute is set to zero.
Larger sizes are reflected properly. This attribute offers somewhat of a shortcut to setting the
margin-bottom style sheet attribute for the BODY element.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<BODY> 211

Example <BODY BOTTOMMARGIN="20">...</BODY>

Value

A string value of the number of pixels of clear space at the bottom of the document. A
value of an empty string is the same as zero.

Default 0

Object Model Reference

1IE [window.]document .body .bottomMargin

LEFTMARGIN NN w/a 1IE 3 HIML wa
LEFTMARGIN="integer" Optional

Establishes the amount of blank space between the left edge of the content area of a
window and the left edge of the content. This attribute offers somewhat of a shortcut to
setting the margin-left style sheet attribute for the BODY element. As the outermost parent
container in the element hierarchy, this attribute setting fixes the left margin context for all
nested elements in the document.

Example <BODY LEFTMARGIN="25">...</BODY>

Value

A string value of the number of pixels of clear space at the left margin of the document. A
value of an empty string is the same as zero.

Default 10 (Windows); 8 (Macintosh).

Object Model Reference

IE [window.] document .body . leftMargin

LINK NN all 1E all HTIML 3.2
LINK=" colorTripletOrName" Optional

Establishes the color of a hypertext link that has not been visited (i.e., the URL of the link is
not in the browser’s cache). This is one of three states for a link: unvisited, activate, and
visited. The color is applied to the link text or border around an image or object embedded
within an A element. This attribute is deprecated in favor of the BODY:1link {color:} style
sheet rule (and the future :1ink pseudo-class, as described in Chapter 10).

Example <BODY LINK="#00FF00">...</BODY>

Value

A hexadecimal triplet or plain-language color name. See Appendix A for acceptable plain-
language color names.

Default #0000FF

Object Model Reference

NN [window.] document . linkColor

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

212 <BODY>

IE [window.]document . linkColor
[window.]document .body.link

RIGHTMARGIN NN n/a 1IE 4 HIML n/a

RIGHTMARGIN="integer" Optional

Establishes the amount of blank space between the right edge of the content area of a
window and the right edge of the content. This attribute offers somewhat of a shortcut to
setting the margin-right style sheet attribute for the BODY element. As the outermost
parent container in the element hierarchy, this attribute setting fixes the right margin context
for all nested elements in the document. Be aware that IE on the Mac does not let content
come as close to the right edge of the window as the Windows version.

Example <BODY RIGHTMARGIN="25">... </BODY>

Value

A string value of the number of pixels of clear space at the right margin of the document. A
value of an empty string is the same as zero.

Default 10 (Windows); 0 (Macintosh).

Object Model Reference

IE [window.]document .body.rightMargin

SCROLL NN n/a IE 4 HTML
SCROLL=yes | no Optional

Controls the presence of scrollbars when the content space exceeds the size of the current
window. Without scrollbars, if you want your users to move around the page, you have to
provide some scripted method of adjusting the scroll of the window. Be aware that Internet
Explorer 4 for the Mac always shows scrollbars when the document is too large for the
window, even when the SCROLL attribute is set to no.

Example <BODY SCROLL=NO>...</BODY>
Value Constant values yes or no (case insensitive).

Default yes

Object Model Reference

IE [window.]document .body.scroll

TEXT NN all 1E all HTML 3.2
TEXT=" colorTripletOrName" Optional

Establishes the color of body content in the document. Colors of individual elements within
the document can override the document-wide setting. Because the default background
color of browsers varies widely with browser brand, version, and operating system, it is
advisable to set the BGCOLOR attribute (or equivalent style sheet rule) in concert with the
document’s text color. This attribute is deprecated in favor of the{color:} style sheet rule.

Example <BODY BGCOLOR="#FFFFFF" TEXT="#c0c0c0">...</BODY>

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<BODY> 213

Value

A hexadecimal triplet or plain-language color name. See Appendix A for acceptable plain-
language color names.

Default #000000 (black).

Object Model Reference
NN [window.] document . fgColor
IE [window.]document . fgColor

[window.] document .body . text

TOPMARGIN NN w/a 1E 3 HIML wa

TOPMARGIN=" integer" Optional

Establishes the amount of blank space between the top edge of the content area of a
window and the top edge of the content. This attribute offers somewhat of a shortcut to
setting the margin-top style sheet attribute for the BODY element. As the outermost parent
container in the element hierarchy, this attribute setting fixes the top margin context for all
nested elements in the document. On both Windows and Macintosh versions, setting the
TOPMARGIN attribute to zero or an empty string ("") pushes the content to the very top of
the document content region.

Example <BODY TOPMARGIN="0">... </BODY>

Value

A string value of the number of pixels of clear space at the top of the document. A value of
an empty string is the same as zero.

Default 15 (Windows); 8 (Macintosh).

Object Model Reference

IE [window.]document .body . topMargin

VLINK NN all IE all HTML 3.2
VLINK=" colorTripletOrName" Optional

Establishes the color of a hypertext link after it has been visited by a user (and the destina-
tion page is still in the browser’s cache). This is one of three states for a link: unvisited,
active, and visited. The color is applied to the link text or border around an image or object
embedded within an A element. This attribute is deprecated in favor of the BODY:visited
{color:} style sheet rule (and the future :visited pseudo-class, as described in
Chapter 10).

Example <BODY VLINK="#teal">...</BODY>

Value

A hexadecimal triplet or plain-language color name. See Appendix A for acceptable plain-
language color names.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
-
=
(']
—r
®
-
@
=
]
@

214

Default

#551a8b (Navigator 4); #800080 (Internet Explorer 4 Windows); #006010 (Internet
Explorer 4 Macintosh).

Object Model Reference
NN [window.]document .vlinkColor
IE [window.]document .v1inkColor

[window.]document .body .vLink

 NN all 1E all HTML all

 End Tag: Forbidden

The BR element forces a visible line break (carriage return and line feed) wherever its tag
appears in the document. Browsers tend to honor the BR element as a genuine line break,
whereas paragraphs defined by the P element are given more vertical space between
elements on the page. If the text containing the BR element is wrapped around a floating
image or other object, you can direct the next line (via the CLEAR attribute or style sheet
equivalent) to start below the object, rather than on the next line of the wrapped text.

Example <P>I think that I shall never see
A poem lovely as a tree.</P>

Object Model Reference
IE [window.]document .all.elementID

Attributes
CLASS ID LANGUAGE STYLE TITLE
CLEAR

CLEAR NN a/l IE all HTML 3.2

CLEAR=" constani" Optional

The CLEAR attribute tells the browser how to treat the next line of text following a BR
element if the current text is wrapping around a floating image or other object. The value
you use depends on the side of the page to which one or more inline images are pegged
and how you want the next line of text to be placed in relation to those images.

This attribute is deprecated in HTML 4.0 in favor of the BR {clear:setting} style sheet
rule in CSS2.

Example <BR CLEAR="left">

Value

Navigator and Internet Explorer accept three constants: all | left | right. HTML 4.0
includes what should be the default value: none. This value is listed in IE 3 documentation,
but not for IE 4. You can set the property to none and it either responds to the value or
ignores it (yielding the same results).

Default None.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<BUTTON> 215

Object Model Reference

IE [window.]document .all.elementlDclear

<BUTTON> NN wa 1E 4 HIML 4
<BUTTON>. . .</BUTTON> End Tag: Required

The BUTTON element is patterned after the INPUT element (of types button, submit, and
reset) but carries some extra powers, particularly when used as a submit-type button.
Content for the button’s label goes between the element’s start and end tags, rather than
being assigned as an attribute. Other elements can be used to generate the label content,
including an IMG element if so desired (although client-side image maps of such images are
strongly discouraged by the W3C). Although you can assign a style sheet to a BUTTON
element, you can also wrap the label content inside an element (such as a SPAN) and assign
or override style rules just for that content. Both style sheet mechanisms permit the button
label to use custom fonts and styles.

When a BUTTON element is assigned a TYPE of submit, the browser submits the button’s
NAME and VALUE attributes to the server as a name/value pair, like other form elements. No
special form handling is conveyed by a BUTTON when other types are specified.

In theory, a BUTTON element should be embedded within a FORM element. In practice, IE 4
has no problem rendering a free-standing BUTTON element. This might be acceptable when
no related form elements (such as text boxes) need to be referenced by scripts associated
with the button. Some scripting shortcuts (passing form object references as parameters)
simplify the scripted interactivity between form elements.

The W3C implemented this INPUT element variant to offer browser makers a chance to
create a different, richer-looking button. In practice, in IE 4, both button types have very
similar appearance. You can detect a slight difference, however, between the INPUT and
BUTTON rendering on the Mac version of IE 4: with a BUTTON element, the browser draws
more whitespace around the label text for a more pleasing appearance.

Example

<BUTTON TYPE="button" onClick="doSomething()">Click Here</BUTTON>
<BUTTON TYPE="submit" NAME="Type" VALUE="infoOnly">Request Info</BUTTON>
<BUTTON TYPE="reset"></BUTTON>

Object Model Reference

IE [window.] document .all .elementID

Attributes

ACCESSKEY DATAFORMATAS ID NAME TITLE
CLASS DATASRC LANG STYLE TYPE
DATAFLD DISABLED LANGUAGE TABINDEX VALUE

Event Handler Attributes

Handler NN | IE | HTML
onAfterUpdate n/a 4 n/a
onBeforeUpdate n/a 4 n/a
onBlur n/a 4 4
onClick n/a 4 4

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

216 <BUTTON>

Handler NN IE HTML

onDblClick n/a 4 4

onDragStart n/a 4 n/a

onFocus n/a 4 4

onHelp n/a 4 n/a

onKeyDown n/a 4 4

onKeyPress n/a 4 4

onKeyUp n/a 4 4

onMouseDown n/a 4 4

onMouseMove n/a 4 4

onMouseOut n/a 4 4

onMouseOver n/a 4 4

onMouseUp n/a 4 4

onResize n/a 4 n/a

onRowEnter n/a 4 n/a

onRowExit n/a 4 n/a

onSelectStart n/a 4 n/a
ACCESSKEY NN w/a 1IE 4 HIML 4
ACCESSKEY=" character" Optional

A single character key that specifies the keyboard shortcut to effect a click of the button.
The browser and operating system determine if the user must press a modifier key (e.g.,
Ctrl, Alt, or Command) with the access key to “click” the button. In IE 4/Windows, the Alt
key is required, and the key is not case sensitive. This attribute does not work in IE 4/Mac.

Example

<BUTTON TYPE="button" ACCESSKEY=t onClick="goToContents () ">
Table of Contents
</BUTTON>

Value Single character of the document set.

Default None.

Object Model Reference

IE [window.]document . all elementlD.accessKey

DATAFLD NN n/a IE 4 HIML n/a
DATAFLD=" columnName" Optional

Used with IE 4 data binding to associate a remote data source column name with the label
of a button. The data source column must be either plain text or HTML (see
DATAFORMATAS). A DATASRC attribute must also be set for the BUTTON element.

Example

<BUTTON TYPE="button" DATASRC="#DBSRC3" DATAFLD="label"
onClick="getTopStory () ">
</BUTTON>

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<BUTTON> 217

Value Case-sensitive identifier.

Default None.

Object Model Reference

IE [window.]document .all elementIDdataFld

DATAFORMATAS NN wa 1IE 4 HIML n/a
DATAFORMATAS=" datalype" Optional

Used with IE 4 data binding, this attribute advises the browser whether the source material
arriving from the data source is to be treated as plain text or as tagged HTML. This attribute
setting depends entirely on how the data source is constructed.

Example

<BUTTON TYPE="button" DATASRC="#DBSRC3"DATAFORMATAS="HTML" DATAFLD="label"
onClick="getTopStory () ">
</BUTTON>

Value IE 4 recognizes two possible settings: text | HTML.

Default text

Object Model Reference

1IE [window.]document .all.elementlDdataFormatAs

DATASRC NN n/a 1E 4 HIML n/a
DATASRC=" dataSourceName" Optional

Used with IE 4 data binding to specify the name of the remote ODBC data source (such as
an Oracle or SQL Server database) to be associated with the element. Content from the data
source is specified via the DATAFLD attribute.

Example

<BUTTON TYPE="button" DATASRC="#DBSRC3" DATAFLD="label"
onClick="getTopStory () ">
</BUTTON>

Value Case-sensitive identifier.

Default None.

Object Model Reference

IE [window.]document .all elementlDdataSrc

DISABLED NN wa 1IE 4 HIML 4
DISABLED Optional

A disabled BUTTON element appears grayed out on the screen and cannot be activated by
the user. In Windows, a disabled BUTTON cannot receive focus and does not become active
within the tabbing order rotation. HTML 4.0 also specifies that a disabled BUTTON whose
TYPE is submit should not send its name/value pair when the form is submitted.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

218 <BUTTON>

The DISABLED attribute is a Boolean type, which means that its presence in the attribute
sets its value to true. Its value can also be adjusted after the fact by scripting (see the
button object in Chapter 9).

Example <BUTTON TYPE="submit" DISABLED>Ready to Submit</BUTTON>
Value The presence of the attribute sets its value to true.

Default false

Object Model Reference

IE [window.]document .all.elementiDdisabled

NAME NN n/a 1E 4 HIML 4
=" elementldentifier" Optional

For a BUTTON element, the NAME attribute can play two roles, depending on the TYPE
attribute setting. For all TYPE attribute settings, the NAME attribute lets you assign an identi-
fier that can be used in scripted references to the element (the ID attribute is an alternate
way to reference the element). For a button type of submit, the NAME attribute is sent as
part of the name/value pair to the server at submit time.

Example
<BUTTON TYPE="submit" NAME="Type" VALUE="infoOnly">Request Info</BUTTON>

Value Case-sensitive identifier.

Default None.

Object Model Reference

IE [window.]document .all .elemenilDname

TABINDEX NN #n/a 1E 4 HIML 4
TABINDEX=integer Optional

A number that indicates the sequence of this element within the tabbing order of all focus-
able elements in the document. Tabbing order follows a strict set of rules. Elements that
have values other than zero assigned to their TABINDEX attributes are first in line when a
user starts tabbing in a page. Focus starts with the element with the lowest TABINDEX value
and proceeds in order to the highest value, regardless of physical location on the page or in
the document. If two elements have the same TABINDEX values, the element that comes
earlier in the document receives focus first. Next come all elements that either don’t support
the TABINDEX attribute or have the value set to zero. These elements receive focus in the
order in which they appear in the document. A BUTTON element set to be disabled does not
become part of the tabbing rotation.

Note that the Macintosh user interface does not provide for giving focus to elements other
than text input fields. Buttons cannot be tabbed to on the Mac version of IE 4.

Example

<BUTTON TYPE="button" TABINDEX=3 onClick="doSomething()">Click Here
</BUTTON>

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<CAPTION> 219

Value

Any integer from 0 through 32767. In IE 4, setting the TABINDEX to -1 causes the element
to be skipped in tabbing order altogether.

Default None.

Object Model Reference

IE [window.]document . elementID. tabIndex

TYPE NN n/a IE 4 HIML 4
TYPE="buttonTipe" Optional

Defines the internal style of button for the browser. A button style is intended to be used to
initiate scripted action via an event handler. A “reset” style behaves the same way as an
INPUT element whose TYPE attribute is set to reset, returning all elements to their default
values. A “submit” style behaves the same way as an INPUT element whose TYPE attribute
is set to submit. A BUTTON element whose TYPE attribute is set to either reset or submit
must be associated with a form for its implied action to be of any value to the page.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

Example
<BUTTON TYPE="reset"></BUTTON>

Value

Case-insensitive constant value from the following list of three: button | reset | submit.

Default button

Object Model Reference

IE [window.] document .all elementID.type

VALUE NN n/a 1IE 4 HIML 4
VALUE=" fext" Optional/Required

Preassigns a value to a BUTTON element that is submitted to the server as part of the name/
value pair when the element is a member of a form.

Example <BUTTON NAME="connections" VALUE="ISDN">ISDN</BUTTON>
Value Any text string.

Default None.

Object Model Reference

IE [window.]document .all.elementlDvalue

<CAPTION> NN all 1E all HTML 3.2
<CAPTION>. . .</CAPTION> End Tag: Required

A CAPTION element may be placed only inside a TABLE element (and immediately after the
<TABLE> start tag) to denote the text to be used as a caption for the table. A caption applies

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

220 <CAPTION>

to the entire table, whereas a table heading (TH element) applies to a single column or row

of the table. Only one CAPTION element is recognized within a TABLE element.

A table caption is usually a brief description of the table. A longer description may be
written for the SUMMARY attribute of a TABLE element for browsers that use text-to-speech
technology for users who cannot see browsers. The primary distinguishing attribute of the
CAPTION element is ALIGN, which lets you define where the caption appears in relation to

the actual table.

Example
<TABLE ...>

<CAPTION CLASS="tableCaptions">
Table 3-2. Sample Inverse Framistan Values

</CAPTION>

</TABLE>

Object Model Reference

IE [window.]document . all.elementlD

Attributes

ALIGN DIR LANG

CLASS ID LANGUAGE

Event Handler Attributes
Handler NN IE HTML
onAfterUpdate n/a 4 n/a
onBeforeUpdate n/a 4 n/a
onBlur n/a 4 n/a
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onFocus n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onResize n/a 4 n/a
onRowEnter n/a 4 n/a
onRowEXit n/a 4 n/a
onSelect n/a 4 n/a
onSelectStart n/a 4 n/a

STYLE
TITLE

VALIGN

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<CAPTION> 221

ALIGN NN all IE all HIML 3.2

ALIGN="where" Optional

Determines how the caption is rendered in physical relation to the table. Not all versions of
all browsers support the full range of possibilities for this attribute. Only top and bottom
are universal among all supporting browsers.

Browsers typically render a caption above or below a table in the running body font (unless
modified by tag or style sheet) and centered horizontally on the table. If the caption is
wider than the table, text is wrapped to the next line, maintaining center justification.

The ALIGN attribute is deprecated in HTML 4.0 in favor of the text-align: and
vertical-align: style sheet attribute.

Example <CAPTION ALIGN="top">Table II. Stock List</CAPTION>

Value

Each browser and the HTML 4.0 specification define different sets of values for this
attribute. Select the one(s) from the following table that work for your deployment:

Value NN 4 IE 4 HTML 4.0
bottom o o .
center - . -
left - . .
right - o .
top . . .

Moreover, IE 4 and HTML 4.0 disagree on the intention of the left and right values. In IE
4, the captions are always at the top or bottom of the table (see the VALIGN attribute), but
the text is right-, center-, or left-aligned in those positions. HTML 4.0 speaks of left and
right as meaning positioning the entire caption to the left or right of the table. If Internet
Explorer were to adopt the HTML 4.0 specification in a future version, it could break the
layout of existing table captions.

Default top (in IE 4, center if VALIGN attribute is also sev).

Object Model Reference

IE [window.]document .all .elementID.align

VALIGN NN wa 1IE 3 HTML n/a
VALIGN="where" Optional

The VALIGN attribute was Internet Explorer’s early attribute for placing a table caption
above or below the table. Although this attribute is now a part of the ALIGN attribute, IE’s
special way of handling left, center, and right values of the ALIGN attribute give
VALIGN something to do. For example, you can use VALIGN to set the caption below the
table, and use ALIGN="right" to right-align the caption at the bottom. This combination is
not possible with the HTML 4.0 attribute. The VALIGN attribute is in IE 4 for backward
compatibility, if for no other reason.

Example
<CAPTION ALIGN="right" VALIGN="bottom">Table 3-2. Fiber Content.</CAPTION>

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

222 <CENTER>

Value Two possible case-insensitive values: bottom | top.

Default top

Object Model Reference

IE [window.]document .all .elementlD.valign

<CENTER> NN all 1E all HTML 3.2
<CENTER>. . .</CENTER> End Tag: Required

The CENTER element was introduced by Netscape and became widely used before the
W3C-sanctioned DIV element came into being. It is clear, even from the HTML 3.2 docu-
mentation, that the HTML working group was never fond of this element. Momentum,
however, carried the day, and this element found its way into the HTML 3.2 specification.
The element is deprecated in HTML 4.0 in favor of the DIV element with a style sheet rule
of text-align:center. In licu of style sheets (but still deprecated in HTML 4), you can
use a DIV element with ALIGN="center".

Content of a CENTER element is aligned along an axis that runs down the middle of the
next outermost containing element—usually the BODY.

Example <CENTER>Don't do this.</CENTER>

Object Model Reference

IE [window.]document .all .elementID

Attributes

CLASS LANG LANGUAGE STYLE TITLE
ID

Event Handler Attributes

Handler NN 1IE HTML
onClick n/a 4 n/a
onDblClick n/a 4 n/a
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 n/a
onKeyPress n/a 4 n/a
onKeyUp n/a 4 n/a
onMouseDown n/a 4 n/a
onMouseMove n/a 4 n/a
onMouseOut n/a 4 n/a
onMouseOver n/a 4 n/a
onMouseUp n/a 4 n/a
onSelectStart n/a 4 n/a

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<CODE> 223

<CITE> NN all 1E all HTML all

<CITE>...</CITE> End Tag: Required

The CITE element is one of a large group of elements that the HTML 4.0 recommendation
calls phrase elements. Such elements assign structural meaning to a designated portion of
the document. A CITE element is one that contains a citation or reference to some other
source material. This is not an active link but simply notation indicating what the element
content is. Search engines and other HTML document parsers may use this information for
other purposes (assembling a bibliography of a document, for example).

Browsers have free rein to determine how (or whether) to distinguish CITE element content
from the rest of the BODY element. Both Navigator and Internet Explorer elect to italicize the
text. This can be overridden with a style sheet as you see fit.

Example

<P>Trouthe is the hyest thing that many may kepe.

(Chaucer, <CITE>The Franklin's Tale</CITE>)</P>

Object Model Reference

IE [window.] document .all .elementID

Attributes

CLASS ID LANGUAGE STYLE TITLE
DIR LANG

Event Handler Attributes

Handler NN IE HTML

onClick n/a 4 4

onDblClick n/a 4 4

onDragStart n/a 4 n/a

onHelp n/a 4 n/a

onKeyDown n/a 4 4

onKeyPress n/a 4 4

onKeyUp n/a 4 4

onMouseDown n/a 4 4

onMouseMove n/a 4 4

onMouseOut n/a 4 4

onMouseOver n/a 4 4

onMouseUp n/a 4 4

onSelectStart | n/a 4 n/a
<CODE> NN all IE all HIML all
<CODE>. . .</CODE> End Tag: Required

The CODE element is one of a large group of elements that the HTML 4.0 recommendation
calls phrase elements. Such elements assign structural meaning to a designated portion of
the document. A CODE element is one that is used predominantly to display one or more
inline characters representing computer code (program statements, variable names,
keywords, and the like).

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
-
=
(']
—r
®
-
@
=
]
@

224 <COL>

Browsers have free rein to determine how (or whether) to distinguish CODE element content
from the rest of the BODY element. Both Navigator and Internet Explorer elect to render
CODE element content in a monospace font, usually in a slightly smaller font size than the
default body font (although it is not reduced in IE 4 for the Macintosh). This rendering can
be overridden with a style sheet as you see fit.

White space (including carriage returns) are treated the same way in CODE element content
as it is in the browser’s BODY element content. Line breaks must be manually inserted with
BR elements. See also the PRE element for displaying preformatted text that observes all
whitespace entered in the source code.

Example

Initialize a variable in JavaScript with the <CODE>var</CODE> keyword.

Object Model Reference

IE [window.] document .all .elementID

Attributes

CLASS ID LANGUAGE STYLE TITLE
DIR LANG

Event Handler Attributes

Handler NN IE HTML

onClick n/a 4 4

onDblClick n/a 4 4

onDragStart n/a 4 n/a

onHelp n/a 4 n/a

onKeyDown n/a 4 4

onKeyPress n/a 4 4

onKeyUp n/a 4 4

onMouseDown n/a 4 4

onMouseMove n/a 4 4

onMouseOut n/a 4 4

onMouseOver n/a 4 4

onMouseUp n/a 4 4

onSelectStart n/a 4 n/a
<COL> NN wa 1E 3 HTML 4
<COL> End Tag: Forbidden

The COL element provides shortcuts to assigning widths and other characteristics (styles) to
one or more subsets of columns within a table or within a table’s column group. With this
information appearing early in the TABLE element, a browser equipped to do so starts
rendering the table before all source code for the table has loaded (at which time it would
otherwise perform all of its geographical calculations).

You can use the COL element in combination with the COLGROUP element or by itself. The
structure depends on how you need to assign widths and styles to individual columns or
contiguous columns. A COL element can apply to a single column by omitting the REPEAT

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<COL> 225

(or SPAN in IE 4) attribute. By assigning an integer value to the REPEAT attribute, you direct
the browser to ply the COL element’s width or style settings to said number of contiguous
columns. The REPEAT element is similar to the COLGROUP element’s COLSPAN attribute. In
concert with the COLGROUP element, the COL element allows you to create a kind of subset
of related columns within a COLGROUP set.

No matter how you address the column structure of your table, the total number of columns
defined in all COL and COLGROUP elements should equal the physical number of columns
you intend for the table. If there should be more cells in a row than columns defined in
COL and COLGROUP, the browser probably has to reflow the table and discard whatever
incremental rendering it had accomplished. The following three skeletal examples specify
HTML 4.0 tables with six columns:

<TABLE>
<COL REPEAT=6>

</TABLE>
<TABLE>
<COL>

<COL REPEAT=4>
<COL>

</TABLE>
<TABLE>
<COLGROUP>

<COL REPEAT=2></COLGROUP>
<COLGROUP SPAN=4>

</TABLE>

HTML 4.0 specifications for the COL element exceed the implementation in Internet Explorer
4 in some respects. For example, HTML 4.0 provides for alignment within a column to be
around any character, such as the decimal point of a money amount. This kind of feature
adds to the rationale behind the COL element. For example, you can have a table whose
first three columns are formatted one way and a fourth column assigned a special style and
its own alignment characteristics:

<HTML>
<HEAD>
<STYLE TYPE="text/css">
.colHdrs {color:black}
.normColumn {color:green}
.priceColumn {color:red}
</STYLE>
</HEAD>
<BODY>
<TABLE>
<COLGROUP CLASS="normColumn" SPAN=3></COLGROUP>
<COL CLASS="priceColumn" ALIGN="char" CHAR=".">
<THEAD CLASS="colHdrs">
<TR><TH>Stock No.<TH>In Stock<TH>Description<TH>Price</TR>
<TBODY>

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
-
=
(']
—r
®
-
@
=
©
@

226 <COL>

<TR><TD>8832<TD>Yes<TD>Brass Frobnitz<TD>$255.98</TR>
<TR><TD>8835<TD>No<TD>Frobnitz (black)<TD>$98</TR>
</TABLE>

</BODY>

</HTML>

Because attributes of the COL and COLGROUP elements apply to the entire column, in the
preceding example the style sheet rule for the THEAD overrides the color settings for the
two column styles for the rows enclosed by the THEAD element. The preceding example
works in IE 4 for Windows, except for the alignment of the final column, which is ignored,
IE 4 for the Mac assigns styles and other attributes to the wrong columns.

Example <COL CLASS="dateCols" WIDTH="15" ALIGN="right">

Object Model Reference

IE [window.] document .all .elementID

Attributes

ALIGN CLASS LANG STYLE VALIGN
CHAR DIR REPEAT TITLE WIDTH
CHAROFF ID SPAN

Event Handler Attributes

Handler NN 1E HTML

onClick n/a n/a 4

onDblClick n/a n/a 4

onKeyDown n/a n/a 4

onKeyPress n/a n/a 4

onKeyUp n/a n/a 4

onMouseDown n/a n/a 4

onMouseMove n/a n/a 4

onMouseOut n/a n/a 4

onMouseOver n/a n/a 4

onMouseUp n/a n/a 4
ALIGN NN n/a 1E 3 HTML 4
ALIGN="alignConstant" Optional

Establishes the horizontal alignment characteristics of content within column(s) covered by
the COL element. The HTML 4.0 specification defines settings for the ALIGN attribute that
are not yet reflected in the CSS specification. Therefore, this ALIGN attribute is not fully
deprecated. As a rule, alignment should be specified by style sheet wherever possible.

Example <COL CLASS="dateCols" WIDTH="15" ALIGN="right">

Value HTML 4.0 and IE 4 have two sets of attribute values:

Value | IE4 HTML 4.0
center . .
char - o
justify - .

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<COL> 227

Value IE 4 HTML 4.0
left o .
right . .

The values center, left, and right are self-explanatory. The value justify is intended
to space content so that text is justified down both left and right edges. For the value char,
the CHAR attribute must also be set to specify the character on which alignment revolves. In
the HTML 4.0 specification example, content that does not contain the character appears to
be right-aligned to the location of the character in other rows of the same column.

It is important to bear in mind that the ALIGN attribute applies to every row of a column,
including any TH element you specify for the table. If you want a different alignment for the
column header, override the setting with a separate ALIGN attribute or text-align style
sheet attribute for the THEAD or individual TH elements.

Default left

Object Model Reference

IE [window.]document .all .elementlD.align

CHAR NN wa 1IE wa HIML 4
CHAR=" character" Optional

The CHAR attribute defines the text character used as an alignment point for text within a
column. This attribute is of value only for the ALIGN attribute set to "char".

Example <coL CLASS="priceColumn" ALIGN="char" CHAR=".">
Value Any single text character.

Default None.

CHAROFF NN n/a IE n/a HTIML 4

CHAROFF=" length" Optional

The CHAROFF attribute lets you set a specific offset point at which the character specified by
the CHAR attribute is to appear within a cell. This attribute is provided in case the browser
default positioning does not meet with the design goals of the table.

Example <COL CLASS="priceColumn" ALIGN="char" CHAR="." CHAROFF="80%">
Value Any length value in pixels or percentage of cell space.

Default None.

REPEAT NN n/a IE n/a HIML 4

REPEAT=" columnCount" Optional

Defines the number of adjacent columns for which the COL element’s attribute and style
settings apply. If this attribute is missing, the COL element governs a single column. You can
combine multiple COL elements of different REPEAT sizes as needed for your column
subgrouping.

This HTML 4.0 attribute is represented in IE 4 by the SPAN attribute.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

228 <COL>

Example <COL REPEAT=3>

Value Integer value greater than zero.

Default 1

SPAN NN wa IE 3 HIML wa
SPAN=columnCount Optional

Defines the number of adjacent columns for which the COL element’s attribute and style
settings apply. If this attribute is missing, the COL element governs a single column. You can
combine multiple COL elements of different SPAN sizes as needed for your column
subgrouping.

This IE 4 attribute is represented in HTML 4.0 by the REPEAT attribute.
Example <COL SPAN=3>

Value Integer value greater than zero.

Default 1

Object Model Reference

IE [window.]document . all .elementID. span

VALIGN NN n/a 1E 4 HIML 4

VALIGN=" alignmentConstant" Optional

Determines the vertical alignment of content within cells of the column(s) covered by the
COL element. You can override the vertical alignment for a particular cell anywhere in the
column.

Example <COL VALIGN="middle">

Value

Four constant values are recognized by both IE 4 and HTML 4.0: top | middle | bottom |
baseline. With top and bottom, the content is rendered flush (or very close to it) to the
top and bottom of the table cell. Set to middle (the default), the content floats perfectly
centered vertically in the cell. When one cell’s contents might wrap to multiple lines at
common window widths (assuming a variable table width), it is advisable to set the VALIGN
attributes of all cells in the same row (or all COL elements) to baseline. This assures that
the character baseline of the first (or only) line of a cell’s text aligns with the other cells in
the row—usually the most aesthetically pleasing arrangement.

Default middle

Object Model Reference
IE [window.]document .all .elementlD.vAlign

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<COLGROUP> 229

WIDTH NN w/a IE 4 HIML 4

WIDTH=" multiLength" Optional

Defines the maximum width for the column(s) covered by the COL element. In practice (in
IE 4 Windows, anyway), the browser won't render a column narrower than the widest
contiguous stretch of characters not containing whitespace (e.g., the longest word). The
precise measure of such a column width, of course, depends on the font characteristics of
the content, as well. Internet Explorer 4 for the Mac mixes up column width assignments
when the COL element is deployed.

Example <CcoL WIDTH=100>

Value

Internet Explorer 4 accepts length values for the WIDTH in the form of pixel measures
(without the “px” unit) or percentage of available horizontal space allocated to the entire
table (WIDTH="25%").

The HTML 4.0 specification introduces an additional length measurement scheme to supple-
ment the regular length measure. Called a proportional length (also MultiLength), this
format features a special notation and geometry. It is best suited for situations in which a
COL element is to be sized based on the available width of the table space after all fixed
length and percentage lengths are calculated. Using the proportional length notation (a
number followed by an asterisk), you can direct the browser to divide any remaining space
according to proportion. For example, if there is enough horizontal space on the page for
100 pixels after all other column width calculations are performed, three COL elements
might specify WIDTH attributes of 1* 3* and 1*. This adds up to a total of five propor-
tional segments. The 100 available pixels are handed out to the proportional columns based
on their proportion to the whole of the remaining space: 20, 60, and 20 pixels, respectively.

Default Determined by browser calculation.

<COLGROUP> NN #/a IE 3 HIML 4

<COLGROUP>. . .</COLGROUP> End Tag: Optional

The COLGROUP element provides shortcuts to assigning widths and other characteristics
(styles) to one or more subsets of columns within a table. With this information appearing
early in the TABLE element source code, a browser equipped to do so starts rendering the
table before all source code for the table has loaded (at which time it would otherwise
perform all of its geographical calculations).

You can use the COLGROUP element in combination with the COL element or by itself. You
may also define a COLGROUP that has COL elements nested within to assist in defining
subsets of columns that share some attribute or style settings. The need for the element’s
end tag is determined by the presence of standalone COL elements following the COLGROUP
element. For example, if you specify column groupings entirely with COLGROUP elements,
end tags are not necessary:

<TABLE>

<COLGROUP SPAN=2 WIDTH=30>

<COLGROUP SPAN=3 WIDTH=40>

<THEAD>

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
-
=
(']
—r
®
-
@
=
]
@

230 <COLGROUP>

If you have a freestanding COL element following the COLGROUP element, you must clearly
end the COLGROUP element before the standalone COL element:

<TABLE>

<COLGROUP CLASS="leftCols">
<COL WIDTH=30>

<COL WIDTH=20>

</COLGROUP>

<COL CLASS="priceCol" WIDTH=25>
<THEAD>

The structure depends on how you need to assign widths and styles to individual columns
or contiguous columns. To create a column grouping that consists of multiple adjacent
columns, use the SPAN attribute. This is entirely different from the COLSPAN attribute of a TD
element, which has the visual impact of joining adjacent cells together as one. The SPAN
attribute helps define the number of columns to be treated structurally as a group (for
assigning attribute and style sheet settings across multiple columns, regardless of the
column content).

No matter how you address the column structure of your table, the total number of columns
defined in all COL and COLGROUP elements should equal the physical number of columns
you intend for the table. If there should be more cells in a row than columns defined in
COL and COLGROUP, the browser probably has to reflow the table and discard whatever
incremental rendering it had accomplished. The following three skeletal examples specify
HTML 4.0 tables with six columns:

<TABLE>
<COLGROUP SPAN=6>

</TABLE>
<TABLE>
<COL>

<COLGROUP SPAN=4>
<COL>

</TABLE>
<TABLE>
<COLGROUP>
<COL REPEAT=2>

</COLGROUP>
<COLGROUP SPAN=4>

</TABLE>

HTML 4.0 specifications for the COLGROUP element exceed the implementation in Internet
Explorer 4 in some respects. For example, HTML 4.0 provides for alignment within a
column to be around any character, such as the decimal point of a money amount. This
kind of feature adds to the rationale behind the COL element (see the COL element for an
example).

Syntactically, there is little difference between a COLGROUP and COL element (a minor differ-
ence in the IE 4 implementation only). A COLGROUP eclement, however, lends a structural

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<COLGROUP> 231

integrity to a group of columns that is rendered differently when the containing TABLE
element specifies RULES="groups"; the browser draws rule lines (standard table borders in
IE 4) only between COLGROUP elements and not COL elements.

Example <COLGROUP CLASS="dateCols" WIDTH="15" ALIGN="right">

Object Model Reference
IE [window.]document .all.elementiD
Attributes -
ALIGN CLASS LANG STYLE VALIGN =
CHAR DIR SPAN TITLE WIDTH ;
CHAROFF ID g"
s

Event Handler Attributes 4

Handler NN IE HTML

onClick n/a n/a 4

onDblClick n/a n/a 4

onKeyDown n/a n/a 4

onKeyPress n/a n/a 4

onKeyUp n/a n/a 4

onMouseDown n/a n/a 4

onMouseMove n/a n/a 4

onMouseOut n/a n/a 4

onMouseOver n/a n/a 4

onMouseUp n/a n/a 4
ALIGN NN na 1IE 3 HTIML 4
ALIGN="alignConstant" Optional

Establishes the horizontal alignment characteristics of content within column(s) covered by
the COLGROUP element. The HTML 4.0 specification defines settings for the ALIGN attribute
that are not yet reflected in the CSS specification. Therefore, this ALIGN attribute is not fully
deprecated. As a rule, alignment should be specified by style sheet wherever possible.

Internet Explorer 3 documents label this attribute HALIGN. In practice, IE 3 for Windows
appears to ignore both the ALIGN and HALIGN attribute for the COLGROUP element.

Example <COLGROUP CLASS="dateCols" WIDTH="15" ALIGN="right" SPAN=3>

Value HTML 4.0 and IE 4 have two sets of attribute values:

Value IE 4 HTML 4.0
center . .
char - U
justify - .
left . .
right o U

The values center, left, and right are self-explanatory. The value justify is intended
to space content so that text is justified down both left and right edges. For the value char,

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

232 <COLGROUP>

the CHAR attribute must also be set to specify the character on which alignment revolves. In
the HTML 4.0 specification example, content that does not contain the character appears to
be right-aligned to the location of the character in other rows of the same column.

It is important to bear in mind that the ALIGN attribute applies to every row of a column,
including any TH element you specify for the table. If you want a different alignment for the
column header, override the setting with a separate ALIGN attribute or text-align style
sheet attribute for the THEAD or individual TH elements.

Default left

Object Model Reference

IE [window.]document .all .elementID.align

CHAR NN w/a IE n/a HIML 4
CHAR=" character" Optional

The CHAR attribute defines the text character used as an alignment point for text within a
column. This attribute is of value only for the ALIGN attribute set to "char".

Example <COLGROUP CLASS="priceCols" ALIGN="char" CHAR="." SPAN=2>
Value Any single text character.

Default None.

CHAROFF NN w/a 1E n/a HIML 4

CHAROFF="length" Optional

The CHAROFF attribute lets you set a specific offset point at which the character specified by
the CHAR attribute is to appear within a cell. This attribute is provided in case the browser
default positioning does not meet with the design goals of the table.

Example
<COLGROUP CLASS="priceColumn" ALIGN="char" CHAR="." CHAROFF="80%" SPAN=2>

Value Any length value in pixels or percentage of cell space.

Default None.

SPAN NN n/a IE 3 HIML 4

SPAN=columnCount Optional

Defines the number of adjacent columns for which the COLGROUP element’s attribute and
style settings apply. If this attribute is missing, the COLGROUP element governs a single
column. You can combine multiple COLGROUP elements of different SPAN sizes as needed
for your column subgrouping.

This corresponding attribute for the COL element is represented in IE 4 by the SPAN
attribute and in HTML 4.0 by the REPEAT attribute.

Example <COLGROUP SPAN=3>

Value Integer value greater than zero.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<COLGROUP> 233

Default 1

Object Model Reference

IE [window.]document .all .elementID. span

VALIGN NN n/a IE 3 HIML 4
VALIGN="alignmentConstant" Optional

Determines the vertical alignment of content within cells of the column(s) covered by the
COLGROUP element. You can override the vertical alignment for a particular cell anywhere in
the column.

Example <COLGROUP VALIGN="middle">

Value

Four constant values are recognized by both IE 4 and HTML 4: top | middle | bottom |
baseline. With top and bottom, the content is rendered flush (or very close to it) to the
top and bottom of the table cell. Set to middle (the default), the content floats perfectly
centered vertically in the cell. When one cell’s contents might wrap to multiple lines at
common window widths (assuming a variable table width), it is advisable to set the VALIGN
attributes of all cells in the same row (or all COLGROUP elements) to baseline. This assures
that the character baseline of the first (or only) line of a cell’s text aligns with the other cells
in the row—usually the most aesthetically pleasing arrangement.

Default middle

Object Model Reference

IE [window.]document .all .elementlD.vAlign

WIDTH NN na IE 3 HIML 4
WIDTH="multilength" Optional

Defines the maximum width for the column(s) covered by the COLGROUP element. In prac-
tice (in IE 4 Windows, anyway), the browser won’t render a column narrower than the
widest contiguous stretch of characters not containing whitespace (e.g., the longest word).
The precise measure of such a column width, of course, depends on the font characteris-
tics of the content, as well. Internet Explorer 4 for the Mac mixes up column width
assignments when the COLGROUP element is deployed.

Example <COLGROUP WIDTH=100>

Value

Internet Explorer 4 accepts length values for the WIDTH in the form of pixel measures
(without the “px” unit) or percentage of available horizontal space allocated to the entire
table (WIDTH="25%").

An alternate variation of the proportional length value is described in the HTML 4.0 specifi-
cation. For a COLGROUP element, you can specify WIDTH="*0" to instruct the browser to
render all columns according to the minimum width necessary to display the content of the
cells in the column. For a browser to make this calculation, it must load all table contents,

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

234 <DD>

thus eliminating the possibility of incremental rendering of a long table. For more informa-
tion about proportional lengths, see the WIDTH attribute of the COL element.

Default Determined by browser calculation.

<COMMENT> NN n/a IE all HTML n/a

<COMMENT>. . .</COMMENT> End Tag: Required

The COMMENT element is an artifact of early Internet Explorer browsers and is now obso-
lete. It was intended as a plain-language tag alternate to the <!--comment--> comment
element. The browser did not render content inside the COMMENT element. Internet Explorer
4 supports this element only for backward compatibility, although it also implements some
modern attributes (ID, LANG, and TITLE). Do not use this element. Further details are
omitted here to reduce the incentive to use the element.

<DD> NN all 1E all HTML all
<DD>...</DD> End Tag: Optional

The DD element is a part of the DL, DT, DD triumvirate of elements used to create a defini-
tion list in a document. The entire list is bracketed by the DL element’s tags. Each definition
term is denoted by a leading DT element tag, and the definition for the term is denoted by a
leading DD element tag. A schematic of a definition list sequence for three items looks as
follows:

<DL>
<DT>Term 1
<DD>Definition 1
<DT>Term 2
<DD>Definition 2
<DT>Term 3
<DD>Definition 3

</DL>

A DT element is an inline element, whereas a DD element can contain block-level content,
including bordered text, images, and other objects. End tags are optional for both DT and
DD elements because the next start tag automatically signals the end of the preceding
element. The entire list, however, must close with an end tag for the encapsulating DL
element.

Although the HTML specification forces no particular way of rendering a definition list,
Navigator and Internet Explorer are in agreement in left-aligning a DT element and
indenting any DD element that follows it. No special font formatting or visual elements are
added by the browser, but you are free (if not encouraged) to assign styles as you like. If
you want to stack multiple terms and/or definitions, you can place multiple DT and/or DD
elements right after each other in the source code.

Because HTML is being geared toward context-sensitive tagging, avoid using definition lists
strictly as a formatting trick (to get some indented text). Use style sheets and adjustable
margin settings to accomplish formatting tasks.

In Navigator 4, any styles assigned to DT and DD elements by way of the CLASS, ID, or

STYLE attribute do not work. If you wish to assign the same style attributes to both the DT
and DD elements, assign the style to the DL element; otherwise, wrap each DT and DD

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

 235

element with a SPAN element whose styles the nested DT and DD elements inherit. This
workaround is observed in IE 4, although it is not necessary for IE 4-only documents.

Example

<DL>
<DT>Z-scale
<DD>A railroad modeling scale of 1:220. The smallest mass-produced
commercial model scale.

</DL>

Object Model Reference

IE [window.] document .all .elementlD

Attributes

CLASS ID LANGUAGE STYLE TITLE
DIR LANG

Event Handler Attributes

Handler NN 1IE HTML

onClick n/a 4 4

onDblClick n/a 4 4

onDragStart n/a 4 n/a

onHelp n/a 4 n/a

onKeyDown n/a 4 4

onKeyPress n/a 4 4

onKeyUp n/a 4 4

onMouseDown n/a 4 4

onMouseMove n/a 4 4

onMouseOut n/a 4 4

onMouseOver n/a 4 4

onMouseUp n/a 4 4

onSelectStart n/a 4 n/a
 NN n/a 1E 4 HIML 4
. . . End Tag: Required

The DEL element and its companion, INS, define a format that shows which segments of a
document’s content have been marked up for deletion (or insertion) during the authoring
process. This is far from a workflow management scheme, but in the hands of a supporting
WYSIWYG HTML authoring tool, these elements can assist in controlling generational
changes of a document in process.

Among the Version 4 browsers, only Internet Explorer supports the DEL element. Text
contained by this element is rendered as a strikethrough style (whereas INS elements are
underlined). The HTML 4.0 specification includes two potentially useful attributes (not in
IE 4) for preserving hidden information about the date and time of the alteration and some
descriptive text about the change.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
-
=
(']
—r
®
-
@
=
]
@

236

Example

<P>Four score and
<DEL CITE="Fixed the math">eight<INS>seven</INS> years ago...</P>

Object Model Reference

IE [window.] document .all .elementlD

Attributes

CITE DATETIME ID LANGUAGE TITLE
CLASS DIR LANG STYLE

Event Handler Attributes

Handler NN IE HTML

onClick n/a 4 4

onDblClick n/a 4 4

onDragStart n/a 4 n/a

onHelp n/a 4 n/a

onKeyDown n/a 4 4

onKeyPress n/a 4 4

onKeyUp n/a 4 4

onMouseDown n/a 4 4

onMouseMove n/a 4 4

onMouseOut n/a 4 4

onMouseOver n/a 4 4

onMouseUp n/a 4 4

onSelectStart n/a 4 n/a
CITE NN n/a 1E w/a HIML 4
CITE="Slring" Optional

A description of the reason for the change or other notation to be associated with the
element, but normally hidden from view. This information is meant to be used by authoring
tools, rather than by visual browsers.

Example <DEL CITE="Fixed the math --A.L.">eight

Value

Any string of characters. The string must be inside a matching pair of (single or double)
quotation marks.

Default None.

DATETIME NN n/a 1E n/a HIML 4

DATETIME=" datetimeString" Optional

The date and time the deletion was made. This information is most likely to be inserted into
a document with an HTML authoring tool designed to track content insertions and dele-
tions. Data from this attribute can be recalled later as an audit trail to changes of the

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

 237

document. There can be only one DATETIME attribute value associated with a given DEL
element.

Example
<DEL DATETIME="1998-09-11T20:03:32-08:00">SomeDeleteTextHere
Value

The DATETIME attribute requires a value in a special date-time format that conveys informa-
tion about the date and time in such a way that the exact moment can be deduced from
any time zone around the world. Syntax for the format is as follows:

yyyy-MM-ddThh: mm: ssTZD

h%%%'% Four-digit year

MM Two-digit month (01 through 12)

ad Two-digit date (01 through 31)

T Uppercase “T” to separate date from time

hh Two-digit hour in 24-hour time (00 through 23)
mm Two-digit minute (00 through 59)

ss Two-digit second (00 through 59)

TZD Time Zone Designator

There are two formats for the Time Zone Designator. The first is simply the uppercase letter
“7”, which stands for UTC (Coordinated Universal Time—also called “Zulu”). The other
format indicates the offset from UTC that the time shown in hh:mm:ss represents. This time
offset consists of a plus or minus symbol and another pair of hh:mm values. For time zones
west of Greenwich Mean Time (which, for all practical purposes is the same as UTC), the
operator is a negative sign because the main hh:mm:ss time is earlier than UTC; for time
zones east of GMT, the offset is a positive value. For example, Pacific Standard Time is
eight hours earlier than UTC: when it is 6:00 P.M. in the PST zone, it is 2:00 A.M. the next
morning at UTC. Thus, the following examples all represent the exact same moment in time
(Time Zone Designator shown in boldface for clarification only):

1998-09-12T02:00:00Z UTC
1998-09-11T21:00:00-05:00 Eastern Standard Time
1998-09-11T18:00:00-08:00 Pacific Standard Time
1998-09-12T13:00:004+11:00 Sydney, Australia

For more details about this way of representing time, see the ISO-8601 standard.

Default None.

TITLE NN w/a IE 4 HIML 4

TITLE="advisorylext" Optional

An advisory description of the element. Rendered as a tooltip in IE 4. The TITLE attribute
can also be used to store information intended for the CITE attribute. But when assigned to
the TITLE attribute, the text (in IE 4 at least) is viewable to the user as a tooltip.

Example <DEL TITLE="Deleted by JB">SomeDeletedTextHere

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

238 <DFN>

Value

Any string of characters. The string must be inside a matching pair of (single or double)
quotation marks.

Default None.

Object Model Reference

IE [window.]document .all elementID.title

<DFN> NN n/a IE 3 HIML 3.2
<DFN>. . .</DFN> End Tag: Required

The DFN element is one of a large group of elements that the HTML 4.0 recommendation
calls phrase elements. Such elements assign structural meaning to a designated portion of
the document. A DFN element signifies the first usage of a term in a document (its defining
instance). A common technique in documents is to italicize an important vocabulary term
the first time it is used in a document. This is generally the place in the document where
the term is defined so that it may be used in subsequent sentences with its meaning under-
stood. By default, Internet Explorer italicizes all text within a DFN element. You can, of
course, easily define your own style for DFN elements with a style sheet rule.

Example

<P>Concerto composers usually provide a space for soloists to show off
technical skills while reminding the audience of various themes used
throughout the movement. This part of the concerto is called the <DFN>
cadenza</DFN>. </P>

Object Model Reference

IE [window.] document .all elementID

Attributes

CLASS ID LANGUAGE STYLE TITLE
DIR LANG

Event Handler Attributes

Handler NN 1IE HTML
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onSelectStart n/a 4 n/a

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<DIR> 239

<DIR> NN all 1E all HTML all

<DIR>...</DIR> End Tag: Required

The original idea of the DIR element was to allow browsers to generate multicolumn lists of
items. Virtually every browser, however, treats the DIR element the same as a UL element,
to present an unordered single column list of items (usually preceded by a bullet). The DIR
element is deprecated in HTML 4. You should be using the UL element, in any case,
because you are assured backward compatibility and forward compatibility should this
element ever disappear from the browser landscape. Everything said here also applies to
the deprecated MENU element.

Example
Common DB Connector Types:
<DIR>
DB-9
DB-12
DB-25
</DIR>
Object Model Reference
IE [window.] document .all .elementID
Attributes
CLASS DIR LANG STYLE TITLE
COMPACT ID LANGUAGE

Event Handler Attributes

Handler NN IE HTML

onClick n/a 4 4

onDblClick n/a 4 4

onDragStart n/a 4 n/a

onHelp n/a 4 n/a

onKeyDown n/a 4 4

onKeyPress n/a 4 4

onKeyUp n/a 4 4

onMouseDown n/a 4 4

onMouseMove n/a 4 4

onMouseOut n/a 4 4

onMouseOver n/a 4 4

onMouseUp n/a 4 4

onSelectStart n/a 4 n/a
COMPACT NN #/a IE 3 HTML 3.2
COMPACT Optional

A Boolean attribute originally designed to let browsers render the list in a more compact
style than normal (smaller line spacing between items). Internet Explorer ignores this
attribute (despite the fact that support for this attribute is indicated in IE 3 documentation).

Example <DIR COMPACT>...</DIR>

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

240 <DIV>

Value The presence of this attribute makes its value true.

Default false

<DIV> NN all 1E all HTML 3.2
<DIV>...</DIV> End Tag: Required

The DIV element gives structure and context to any block-level content in a document.
Unlike some other structural elements that have very specific connotations attached to them
(the P element, for instance), the author is free to give meaning to each particular DIV
element by virtue of the element’s attribute settings and nested content. Each DIV element
becomes a generic block-level container for all content within the required start and end
tags.

As a basic example, the DIV element is now recommended as the element to use to center
text on a page, in place of the deprecated CENTER element. The DIV element that does the
work includes style information that takes care of the centering of the content. It is also
convenient to use the DIV element as a wrapper for multielement content that is to be
governed by a single style sheet rule. For example, if a block of content includes three
paragraphs, rather than assign a special font style to each of the P elements, you can wrap
all three P elements with a single DIV element whose style sheet defines the requested font
style. Such a style sheet could be defined as an inline STYLE attribute of the DIV element or
assigned via the CLASS or ID attribute, depending on the structure of the rest of the
document.

DIV elements are block-level elements. If you need an arbitrary container for inline content,
use the SPAN element, instead.

HTML 4.0 defines many more attributes for the DIV element than are implemented in
Version 4 browsers. The breadth of HTML attributes indicates the potential power of this
generic element to include links to related resources and many advisory attributes about
those links. The same set of attributes applies to the SPAN element in the HTML 4.0
specification.

Example <DIV CLASS="sections" ID="section3">...</DIV>

Object Model Reference

IE [window.]document . all.elementiD

Attributes

ALIGN DATAFORMATAS HREFLANG MEDIA TARGET
CHARSET DATASRC ID REL TITLE
CLASS DIR LANG REV TYPE
DATAFLD HREF LANGUAGE STYLE

Event Handler Attributes

Handler NN | IE | HTML
onAfterUpdate n/a 4 n/a
onBeforeUpdate n/a 4 n/a
onBlur n/a 4 4
onClick n/a 3 4

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<DIV> 241

Handler NN IE HTML
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onFocus n/a 4 4
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4 =
onMouseMove n/a 4 4 =
onMouseOut n/a 4 4 E
onMouseOver n/a 3 4 5
onMouseUp n/a 4 4 E
onResize n/a 4 n/a
onRowEnter n/a 4 n/a
onRowExit n/a 4 n/a
onScroll n/a 4 n/a
onSelectStart n/a 4 n/a
ALIGN NN 2 IE 3 HIML 3.2
ALIGN="alignmentConstant" Optional

The ALIGN attribute determines how content wrapped by the DIV element is aligned within
the context of the DIV element. This attribute is deprecated in favor of the text-align
style sheet attribute. Even so, you can use this attribute for backward compatibility with
non-CSS-compliant browsers. This is the element and attribute you can use to substitute for
the deprecated CENTER element.

Example <DIV ALIGN="center">Part IV</DIV>

Value

Case-insensitive constant value. Navigator 4 and Internet Explorer 4 (Windows) recognize
all four constants specified in HTML 4: center | left | right | justify. IE 4 for the
Macintosh does not recognize the justify setting.

Default left or right, depending on direction of current language.

Object Model Reference

IE [window.]document .all elementID.align

CHARSET NN n/a 1E w/a HIML 4
CHARSET=" characterSet" Optional

Character encoding of the content at the other end of the HREF link.

Example <DIV CHARSET="csIS05427Cyrillic ">CyrillicTextHere</DIV>

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

242 <DIV>

Value

Case-insensitive alias from the character set registry (fip./fip.isi.edu/in-notes/iana/
assignments/character-sets).

Default Determined by browser.

DATAFLD NN n/a 1IE 4 HIML n/a

DATAFLD=" columnName" Optional

Used with IE 4 data binding to associate a remote data source column name with the HTML
content of a DIV element. The data source column must be HTML (see DATAFORMATAS).
DATASRC and DATAFORMATAS attributes must also be set for the DIV element.

Example
<DIV DATASRC="#DBSRC3" DATAFLD="sec3" DATAFORMATAS="HTML"> </DIV>

Value Case-sensitive identifier.

Default None.

Object Model Reference

IE [window.]document .all .elementlD.dataFld

DATAFORMATAS NN wa IE 4 HIML wa
DATAFORMATAS=" dataType" Optional

Used with IE 4 data binding, this attribute advises the browser whether the source material
arriving from the data source is to be treated as plain text or as tagged HTML. A DIV
element should receive data only in HTML format.

Example
<DIV DATASRC="#DBSRC3" DATAFLD="sec3" DATAFORMATAS="HTML"> </DIV>

Value IE 4 recognizes two possible settings: text | HTML

Default text

Object Model Reference

1IE [window.]document .all.elementiD.dataFormatAs

DATASRC NN wa 1IE 4 HIML wa
DATASRC=" dataSourceName" Optional

Used with IE 4 data binding to specify the name of the remote ODBC data source (such as
an Oracle or SQL Server database) to be associated with the element. Content from the data
source is specified via the DATAFLD attribute.

Example
<DIV DATASRC="#DBSRC3" DATAFLD="sec3" DATAFORMATAS="HTML"> </DIV>

Value Case-sensitive identifier.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<DIV> 243

Default None.

Object Model Reference

IE [window.]document .all .elementlD.dataSrc

HREF NN n/a 1E n/a HIML 4
HREF="URI" Optional

According to the HTML 4.0 specification, the HREF attribute is meant to offer a URL to a
resource that can supply “more information” about the DIV element’s content. No recom-
mendation is provided as to whether this URL should be rendered in any way (like the
HREF attribute of an A element). Perhaps a future browser could use this URL to generate a
margin note or footnote in the form of a link. Several other attributes clearly intend for the
HREF attribute’s URL to be accessible in some way by the user.

Example <DIV HREF="bibliogs/chap3.html">ChapterThreeContentHere</DIV>

Value

Any valid URL, including complete and relative URLs, anchors on the same page (anchor
names prefaced with the # symbol) and the javascript: pseudo-URL in scriptable
browsers to trigger a script statement rather than navigate to a destination.

Default None.

HREFIANG NN n/a IE w/a HIML 4

HREFLANG=" languageCode" Optional

The language code of the content at the destination of a link. Requires that the HREF
attribute also be set. This attribute is primarily an advisory attribute to help a browser
prepare itself for a new language set if the browser is so enabled.

Example

<DIV HREFLANG="HI" HREF="bibliogs/hindi/chap3.html">
ChapterThreeContentinHindiHere
</DIV>

Value Case-insensitive language code.

Default Browser default.

MEDIA NN w/a 1E w/a HIML 4
MEDIA=" descriptorList" Optional

Sets the intended output device for the content of the DIV element. The MEDIA attribute
looks forward to the day when browsers are able to tailor content to specific kinds of
devices such as pocket computers, text-to-speech digitizers, or fuzzy television sets. The
HTML 4.0 specification defines a number of constant values for anticipated devices, but the
list is open-ended, allowing future browsers to tailor output to yet other kinds of media and
devices.

Example <DIV MEDIA="screen, tv, handheld">...</DIV>

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

244 <DIV>

Value

Case-sensitive constant values. Multiple values can be grouped together in a comma-
delimited list within a quoted string. Values defined in HTML 4.0 are screen | tty | tv |
projection | handheld | print | braille | aural | all.

Default screen

REL NN n/a 1E n/a HIML 4
REL="/linkT)pes" Optional

Defines the relationship between the current element and the destination of the link. Also
known as a forward link, not to be confused in any way with the destination document
whose address is defined by the HREF attribute. The HTML 4.0 recommendation defines
several link types; it is up to the browser to determine how to employ the value. The
element must include an HREF attribute for the REL attribute to be applied.

Example <DIV REL="next chapter" HREF="chapter3.html">...</DIV>

Value

Case-insensitive, space-delimited list of HTML 4.0 standard link types applicable to the
element. Sanctioned link types are:

alternate contents index start
appendix copyright next stylesheet
bookmark glossary prev subsection
chapter help section

Default None.

REV NN w/a IE n/a HIML 4
REV="/linkTjpes" Optional

A reverse link relationship. Like the REL attribute, the REV attribute’s capabilities are defined
by the browser, particularly with regard to how the browser interprets and renders the
various link types available in the HTML 4.0 specification. Given two documents (A and B)
containing links that point to each other, the REV value of B is designed to express the
same relationship between the two documents as denoted by the REL attribute in A.

Example <DIV REV="previous chapter" HREF="chapter2.html">...</DIV>

Value

Case-insensitive, space-delimited list of HTML 4.0 standard link types applicable to the
element. See the REL attribute for sanctioned link types.

Default None.

TARGET NN n/a IE w/a HIML 4

TARGET=" windowOrFrameName" Optional

If the destination document associated with the HREF attribute is to be loaded into a
window or frame other than the current window or frame, you can specify where the desti-

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<DIV> 245

nation document should load by assigning a window or frame name to the TARGET
attribute. Target frame names must be assigned to frames and windows as identifiers. Assign
names to frames via the NAME attribute of the FRAME element; assign names to new
windows via the second parameter of the window.open () scripting method. If you omit
this attribute, the destination document replaces the document containing the link. This
attribute is applicable only when a value is assigned to the HREF attribute of the element.

If this feature is implemented in future browsers, the DIV element will probably have only
one destination document and one target (like the A element). If you want a link to change
the content of multiple frames, you can use a DIV element’s onClick event handler or a
javascript: pseudo-URL to fire a script that loads multiple documents. Set the
location.href property of each frame to the desired URL.

Example <DIV TARGET="display" HREF="chap3.html#sec2">...</DIV>

Value

Case-sensitive identifier when the frame or window name has been assigned via the target

element’s NAME attribute. Four reserved target names act as constants:

_blank Browser creates a new window for the destination document.

_parent Destination document replaces the current frame’s framesetting document (if
one exists; otherwise, it is treated as _self).

_self Destination document replaces the current document in its window or frame.

_top Destination document is to occupy the entire browser window, replacing any
and all framesets that may be loaded (also treated as _self if there are no
framesets defined in the window).

Default _self

TITLE NN n/a IE 4 HIML 4
TITLE="advisorylext" Optional

An advisory description of the destination document. Internet Explorer 4 implements this
attribute such that the browser displays a tooltip with the attribute’s value when the cursor
remains positioned over the element for a couple of seconds. The appearance of the tooltip
is governed by the operating system version of the browser. In Windows, the tooltip is the
standard small, light yellow rectangle; on the Mac, the tooltip displays as a cartoon bubble
in the manner of the MacOS bubble help system. If no attribute is specified, the tooltip does
not display.

Use this attribute with care. Because a DIV element can be fairly large, it is likely that the
cursor will frequently be at rest over the element when the user isn’'t particularly paying
attention. The incessant display of the tooltip over the large screen area could become
annoying.

You can assign any descriptive text you like to this attribute. Not everyone will see it, so do

not put mission-critical information here. Future or special-purpose browsers might use this
attribute’s information to read information about the link to vision-impaired web surfers.

Example <DIV TITLE="Sub-Saharan Africa" HREF="chapter3.html">...</DIV>

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

246 <DL>

Value

Any string of characters. The string must be inside a matching pair of (single or double)
quotation marks.

Default None.

Object Model Reference

IE [window.]document .all elementID.title

TYPE NN w/a 1IE n/a HIML 4
TYPE="MIMETYPE" Optional

An advisory about the content type of the destination document or resource. A browser
might use this information to assist in preparing support for a resource requiring a multi-
media player or plugin.

lknzn@pk? <DIV TYPE="video/mpeg" HREF="skid.mpeg">...</DIV>

Value

Case-insensitive MIME type. A catalog of registered MIME types is available from fip./
Sip.isi.edu/in-notes/iana/assignments/media-types/.

Default None.

<DL> NN all 1E all HTML all
<DL>...</DL> End Tag: Required

The DL element is a part of the DL, DT, DD triumvirate of elements used to create a defini-
tion list in a document. The entire list is bracketed by the DL element’s tags. Each definition
term is denoted by a leading DT element tag, and the definition for the term is denoted by a
leading DD element tag. A schematic of a definition list sequence for three items looks like
the following:

<DL>
<DT>Term 1
<DD>Definition 1
<DT>Term 2
<DD>Definition 2
<DT>Term 3
<DD>Definition 3

</DL>

The entire list must close with an end tag for the encapsulating DL element. Note that the
DL element is the container of the entire list, which means that inheritable style sheet rules
assigned to the DL element apply to the nested DT and DD elements. Unwanted inherit-
ances can be overridden in the DT and DD elements.

Although the HTML specification forces no particular way of rendering a definition list,
Navigator and Internet Explorer are in agreement in left-aligning a DT element and
indenting any DD element that follows it. No special font formatting or visual elements are
added by the browser, but you are free (if not encouraged) to assign styles as you like. If

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<DL> 247

you want to stack multiple terms and/or definitions, you can place multiple DT and/or DD
elements right after each other in the source code.

Because HTML is being geared toward context-sensitive tagging, avoid using definition lists
strictly as a formatting trick (to get some indented text). Use style sheets and adjustable
margin settings to accomplish formatting.

Example

<DL>
<DT>Z-scale
<DD>A railroad modeling scale of 1:220. The smallest mass-produced
commercial model scale.

</DL>

Object Model Reference

IE [window.] document .all .elementID

Attributes

CLASS DIR LANG STYLE TITLE
COMPACT ID LANGUAGE

Event Handler Attributes

Handler NN 1E HTML

onClick n/a 4 4

onDblClick n/a 4 4

onDragStart n/a 4 n/a

onHelp n/a 4 n/a

onKeyDown n/a n/a 4

onKeyPress n/a n/a 4

onKeyUp n/a n/a 4

onMouseDown n/a 4 4

onMouseMove n/a 4 4

onMouseOut n/a 4 4

onMouseOver n/a 4 4

onMouseUp n/a 4 4

onSelectStart n/a 4 n/a
COMPACT NN 3 IE 3 HIML 3.2
COMPACT Optional

When set to true (by virtue of its presence in the DL element tag), the COMPACT Boolean
attribute instructs the browser to render a related DT and DD pair on the same line if space
allows. The criterion for determining this space (as worked out in both Navigator and
Internet Explorer) is related to the amount of indentation normally assigned to a DD element
(indentation size differs slightly with operating system). With COMPACT turned on, if the DT
element is narrower than the indentation space, the DD element is raised from the line
below and displayed on the same line as its DT element. Because the width of characters in
proportional fonts varies so widely, there is no hard-and-fast rule about the number of char-
acters of a DT element that lets the DD element come on the same line. But this compact
styling is intended for DT elements consisting of only a few characters.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

248 <DT>

Example <DL COMPACT>ListItems</DL>

Value

Case-insensitive attribute name. Its presence sets the feature to true.

Default false

Object Model Reference

IE [window.] document .all .elementlD. compact

<DT> NN all IE all HTML all
<DT>...</DT> End Tag: Optional

The DT element is a part of the DL, DT, DD triumvirate of elements used to create a defini-
tion list in a document. The entire list is bracketed by the DL element’s tags. Each definition
term is denoted by a leading DT element tag, and the definition for the term is denoted by a
leading DD element tag. A schematic of a definition list sequence for three items looks like
the following:

<DL>
<DT>Term 1
<DD>Definition 1
<DT>Term 2
<DD>Definition 2
<DT>Term 3
<DD>Definition 3

</DL>

A DT element is an inline element, whereas a DD element can contain block-level content,
including bordered text, images, and other objects. End tags are optional for both DT and
DD elements because the next start tag automatically signals the end of the preceding
element. The entire list, however, must close with an end tag for the encapsulating DL
element.

Although the HTML specification forces no particular way of rendering a definition list,
Navigator and Internet Explorer are in agreement in left-aligning a DT element and
indenting any DD element that follows it. No special font formatting or visual elements are
added by the browser, but you are free (if not encouraged) to assign styles as you like. If
you want to stack multiple terms and/or definitions, you can place multiple DT and/or DD
elements right after each other in the source code.

Because HTML is being geared toward context-sensitive tagging, avoid using definition lists
strictly as a formatting trick (to get some indented text). Use style sheets and adjustable
margin settings to accomplish formatting.

In Navigator 4, any styles assigned to DT and DD elements by way of the CLASS, ID, or
STYLE attribute do not work. If you wish to assign the same style attributes to both the DT
and DD elements, assign the style to the DL element; otherwise, wrap each DT and DD
element with a SPAN element whose styles the nested DT and DD elements inherit. This
workaround is observed in IE 4, although it is not necessary for IE 4-only documents.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

 249

Example

<DL>
<DT>Z-scale
<DD>A railroad modeling scale of 1:220. The smallest mass-produced
commercial model scale.

</DL>

Object Model Reference

IE [window.] document .all .elementlD

Attributes

CLASS ID LANGUAGE STYLE TITLE
DIR LANG

Event Handler Attributes

Handler NN IE HTML

onClick n/a 4 4

onDblClick n/a 4 4

onDragStart n/a 4 n/a

onHelp n/a 4 n/a

onKeyDown n/a 4 4

onKeyPress n/a 4 4

onKeyUp n/a 4 4

onMouseDown n/a 4 4

onMouseMove n/a 4 4

onMouseOut n/a 4 4

onMouseOver n/a 4 4

onMouseUp n/a 4 4

onSelectStart n/a 4 n/a
 NN all IE all HTIML all
... End Tag: Required

The EM element is one of a large group of elements that the HTML 4.0 recommendation
calls phrase elements. Such elements assign structural meaning to a designated portion of
the document. An EM element is one that is to be rendered differently from running body
text to designate emphasis.

Browsers have free rein to determine how (or whether) to distinguish EM element content
from the rest of the BODY element. Both Navigator and Internet Explorer elect to italicize the
text. This can be overridden with a style sheet as you see fit.

Example

<P>The night was dark, and the river's churning waters were very
cold.</P>

Object Model Reference

1IE [window.] document .all .elementlD

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
-
=
(']
—r
®
-
@
=
]
@

250 <EMBED>

Attributes
CLASS ID LANGUAGE STYLE TITLE
DIR LANG

Event Handler Attributes

Handler NN IE HTML
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onSelectStart n/a 4 n/a

<EMBED> NN 2 IE 3 HIML na

EMBED>. . .</EMBED End Tag: Required

An EMBED element allows you to load media and file types other than those natively
rendered by the browser. Typically, such external data requires a plugin or helper applica-
tion to properly load the data and display its file. Notice that this element has been
supported by both Navigator and Internet Explorer since Versions 2 and 3, respectively, but
the element is still not a part of the HTML standard vocabulary. The HTML 4.0 specification
recommends the OBJECT element as the one to load the kind of external data covered by
the EMBED element in the browsers. Navigator 4 and Internet Explorer 4 also support the
OBJECT element, and you should gravitate toward that element for embedded elements if
your visitor browser base can support it.

Bear in mind that for data types that launch plugins, the control panel displayed for the
data varies widely among browsers, operating systems, and the plugins the user has
installed for that particular data type. It is risky business trying to carefully design a layout
combining a plugin’s control panel and surrounding text or other elements.

The list of attributes for the EMBED element is a long one, but pay special attention to the
browser compatibility rating for each attribute. Because the plugin technologies of the two
browsers are not identical, neither are the attribute sets. Even so, it is possible to assign an
EMBED element in one document that works on both browser brands when the embedded
element does not rely on an attribute setting not supported in one of the browsers. Some
plugins, however, may require or accept attribute name/value pairs that are not listed for
this element. At least in the case of Navigator, all attributes (including those normally
ignored by the browser) and their values are passed to the plugin. Therefore, you must also
check with the documentation for a plugin to determine what, if any, extra attributes may
be supported. The OBJECT element gets around this object-specific attribute problem by
letting you add any number of PARAM elements tailored to the object.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<EMBED> 251

The end tag is required in Internet Explorer but is optional in Navigator.

Example
<EMBED NAME="jukebox" SRC="jazz.aif" HEIGHT=100 WIDTH=200></EMBED>

Object Model Reference

NN [window.] document . elementName

IE [window.] document .all.clementlD

Attributes

ALIGN CODEBASE 1D PLUGINURL TYPE

ALT FRAMEBORDER NAME SRC UNITS

BORDER HEIGHT PALETTE STYLE VSPACE

CLASS HIDDEN PLUGINSPAGE TITLE WIDTH

CODE HSPACE

ALIGN NN all IE 4 HIML na
ALIGN="where" Optional

If the embedded object (or player control panel) occupies space on the page, the ALIGN
attribute determines how the object is rendered in physical relation to the element’s next
outermost container. If some additional text is specified between the start and end tags of
the EMBED element, the ALIGN attribute also affects how that text is rendered relative to the
object’s rectangular space.

Most of the rules for alignment constant values cited at the beginning of this chapter apply
to the EMBED element. Precise layout becomes difficult because the HTML page author
usually isn’t in control of the plugin control panel that is displayed on the page. Dimen-
sions for the element that work fine for one control panel are totally inappropriate for
another. (Compare Netscape’s stocky audio control panel to the narrow horizontal slider in
Internet Explorer.)

Typically, ALIGN attributes are deprecated in HTML 4.0 in favor of the align: style sheet
attribute. But if you are using the EMBED element for backward compatibility, stick with the
ALIGN attribute.

Example <EMBED SRC="jazz.aif" ALIGN="left" HEIGHT=100 WIDTH=200></EMBED>

Value

Each browser defines a different set of values for this attribute. Select the one(s) from the
following table that work for your deployment:

Value NN 4 IE 4
absbottom - o
absmiddle - .
baseline - .
bottom o o
left o O
middle . .
right . .

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

252 <EMBED>

Value NN 4 IE 4
texttop - .
top . .

Default bottom

Object Model Reference

IE [window.]document .all.elementID.align

ALT NN w/a 1IE 4 HIML wa
ALT="tlexiMessage" Optional

If Internet Explorer does not have the facilities to load and run the external media, the text
assigned to the ALT attribute is supposed to display in the document where the EMBED
element’s tag appears. Typically, this text provides advice on what the page visitor is
missing by not being able to load the data (although IE also presents a dialog about how to
get plugin information from an online source).

Use the ALT attribute with care. If the external data is not a critical part of your page’s
content, you may just want the rest of the page to load without calling attention to the
missing media controller in lesscapable browsers. The alternate message may be more
disturbing to the user than a missing media player.

The equivalent powers are available in Navigator with the NOEMBED element.

Example
<EMBED SRC="jazz.aif" ALT="Sound media player" HEIGHT=10 WIDTH=20></EMBED>

Value Any quoted string of characters.

Default None.

BORDER NN 2 IE w/a HIML n/a

BORDER=pixels Optional

Navigator provides a dedicated attribute to specifying the thickness of a border around an
EMBED element. This feature does not appear to be working in Navigator 4. Also, when the
EMBED element has style sheet attributes, setting a border for the element results in a
floating border around a small square outside of the EMBED element’s area.

Example <EMBED SRC="jazz.aif" BORDER=3 HEIGHT=150 WIDTH=250></EMBED>
Value Any integer pixel value.

Default None.

CODE NN na IE 4 HTIML wa
CODE=" fileName.class" Required

I'm not sure why Microsoft specifies the CODE attribute for the EMBED element. Typically, a
CODE attribute points to a Java class filename. In theory, an applet could be loaded into a
document via the EMBED element (rather than the APPLET or OBJECT element), but this
approach does not work in IE 4. Nor does the CODEBASE element help the browser find a

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<EMBED> 253

Java applet class filename assigned to the SRC attribute. My recommendation is to avoid this
attribute.

CODEBASE NN n/a 1E 4 HIML wa
CODEBASE=" path" Optional

As with the CODE attribute, Internet Explorer 4 seems to ignore the CODEBASE attribute for
the EMBED element, despite its apparent support in the SDK documentation. The SRC
attribute must contain the path to the data file because it does not rely on the CODEBASE
attribute value. My recommendation is to avoid this attribute.

FRAMEBORDER NN 2 IE wla HIML wa

FRAMEBORDER="yes" | "no" Optional

Predating style sheet borders, the FRAMEBORDER attribute is a switch that lets you turn on a
plugin control panel’s border (whose thickness is set by the BORDER attribute). This attribute
does not appear to work in Navigator 4, nor does a style sheet border do what you'd
expect it to do.

Example
<EMBED SRC="jazz.aif" FRAMEBORDER="no" HEIGHT=150 WIDTH=250></EMBED>

Value ves | no

Default yes

HEIGHT, WIDTH NN 2 1IE 3 HIML n/a
HEIGHT="length" Required
WIDTH="length"

The size that an embedded object (or its plugin control panel) occupies in a document is
governed by the HEIGHT and WIDTH attribute settings. Some browser versions might allow
you to get away without assigning these attributes, letting the plugin’s own user interface
design determine the height and width of its visible rectangle. It is best to specify the exact
dimensions of a plugin’s control panel whenever possible. (Control panels vary with each
browser and even between different plugins for the same browser.) In some cases, such as
Navigator 4 for the Macintosh, the control panel does not display if you fail to supply
enough height on the page for the control panel. If you assign values that are larger than
the actual control panel, the browser reserves that empty space on the page, which could
interfere with your intended page design.

Example <EMBED SRC="jazz.aif" HEIGHT=150 WIDTH=250></EMBED>

Value

Positive integer values (optionally quoted) or percentage values (quoted). You cannot
entirely hide an embedded object’s control panel by setting values to zero (one pixel
always shows and occupies space), but you can reduce its height and width to one pixel in
each dimension. If you want to hide a plugin, do so with DHTML by setting its positioning
display attribute to none. Navigator also includes a HIDDEN attribute that is backward
compatible for that browser brand.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
-
=
(']
—r
®
-
@
=
]
@

254 <EMBED>

Default None.

Object Model Reference

IE [window.]document .embeds [i] .height
[window.] document . elementlD.height
[window.]document .embeds [i] .width
[window.]document . elementID.width

HIDDEN NN 2 1IE 4 HIML wa

HIDDEN="true" | "false" Optional

Predating style sheet borders, the HIDDEN attribute is a switch that lets you set whether the
embedded data’s plugin control panel appears on the screen. This might be desirable for
background music under script control (via Netscape’s LiveConnect). When you set the
HIDDEN attribute, the HEIGHT and WIDTH attributes are overridden.

Example <EMBED SRC="soothing.aif" HIDDEN></EMBED>
Value true | false

Default false

Object Model Reference

IE [window.]document .embeds [i] .hidden
[window.]document . elementID.hidden

HSPACE, VSPACE NN 2 IE 3 HTML wa

HSPACE=pixelCount Optional
VSPACE=pixelCount

Predating style sheet margins, the HSPACE and VSPACE attributes let you define a margin
that acts as whitespace padding around the visual content of the EMBED element. HSPACE
establishes a margin on the left and right sides of the rectangle; VSPACE establishes a
margin on the top and bottom sides of the rectangle. This attribute appears to work in Navi-
gator 4 but not in Internet Explorer 4. With these attributes not reflected as scriptable
properties of an EMBED element, it is likely that these attributes are truly not supported in IE
4, Microsoft’s SDK notwithstanding.

Example <EMBED SRC="soothing.aif" VSPACE=10 HSPACE=10></EMBED>

Value

Integer representing the number of pixels for the width of the margin on the relevant sides
of the EMBED element’s rectangle.

Default 0
ID NN wa 1IE 4 HTML n/a
ID="clementldentifier" Optional

A unique identifier that distinguishes this element from all the rest in the document. Can be
used to associate a single element with a style rule naming this attribute value as an ID

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<EMBED> 255

selector. An element can have an ID assigned for uniqueness as well as a class for inclu-
sion within a group. See Chapter 3.

If you assign an ID attribute and not a NAME attribute, the value of the ID attribute can be
used as the EMBED element’s name in Internet Explorer script reference forms that use the
element name (document.all.embedName).

Eﬁxnn{ﬂe <EMBED ID="jazzSound" SRC="jazz.aif" HEIGHT=15 WIDTH=25></EMBED>
Value Case-sensitive identifier.
Default None.

Object Model Reference

IE [window.]document .embeds [1] .1id
[window.]document . elementID. 1d

NAME NN 2 IE 3 HIML wa
NAME=" elementldentifier" Optional

If you are scripting a plugin (especially in Navigator via LiveConnect), it is usually more
convenient to create a reference to the embedded element by using a unique name you
assign to the item. Thus, if you edit the page and move or delete multiple EMBED elements
on the page, you do not have to worry about adjusting index values to array-style refer-
ences (document . embeds [1]).

lﬂyﬂﬂqph? <EMBED NAME="jukebox" SRC="jazz.aif" HEIGHT=15 WIDTH=25></EMBED>
Value Case-sensitive identifier.
Default None.

Object Model Reference

IE [window.]document . embeds [1] .name
[window.]document . elementID.name

PALETTE NN 2 IE 4 HIML wa

PALETTE="foreground" | "background" Optional

The Netscape documentation says that the PALETTE attribute lets you apply the back-
ground or foreground palette to the plugin invoked by the EMBED element, but only in the
Windows environment.

Example

<EMBED NAME="jukebox" SRC="jazz.aif" HEIGHT=150 WIDTH=250
PALETTE="foreground">
</EMBED>

Value Case-insensitive constant: foreground | background

Default background

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

256 <EMBED>

Object Model Reference

IE [window.]document .embeds [i] .palette
[window.] document . elementlD.palette

PLUGINSPAGE NN 2 IE wla HIML wa

PLUGINSPAGE="URL" Optional

If the MIME type of the data file assigned to the EMBED element’s SRC attribute is not
supported by an existing plugin or helper application in the browser, the PLUGINSPAGE
attribute is intended to provide a URL for downloading and installing the necessary plugin.
If you omit this attribute, Navigator presents a generic link to Netscape’s own resource
listing of plugin vendors.

Example

<EMBED NAME="jukebox" SRC="jazz.aif" HEIGHT=150 WIDTH=250
PLUGINSPAGE="http://www.giantco.com/plugin/install/index.html">
</EMBED>

Value Any valid URL.

Default None.

PLUGINURL NN 4 IE w/a HIML n/a

PLUGINURL="URL" Optional

Navigator 4 introduces the power (a feature called Smart Update) to allow somewhat auto-
matic installation of browser components. If a user does not have the necessary plugin
installed for your EMBED element’s data type, the PLUGINURL can point to a Java Archive
(JAR) file that contains the plugin and digitally signed objects to satisfy security issues
surrounding automatic installation (via Netscape’s Java Installation Manager). A JAR file is
both digitally signed and compressed (very much along the lines of a .zip file), and is
created with the help of Netscape’s JAR Packager tool.

You can include both the PLUGINSPAGE and PLUGINURL attributes in an EMBED element’s
tag to handle the appropriate browser version. Navigator 2 and 3 respond to the
PLUGINSPAGE attribute, whereas Navigator 4 gives precedence to the PLUGINURL attribute
when it is present.

Example

<EMBED NAME="jukebox" SRC="jazz.aif" HEIGHT=150 WIDTH=250
PLUGINURL="http://www.giantco.com/plugin/install.jar">
</EMBED>

Value Any valid URL to a JAR file.

Default None.

SRC NN 2 IE 3 HIML wa
SRC="URL" Optional

The SRC attribute is a URL to a file containing data that is played through the plugin. For
most uses of the EMBED element, this attribute is required, but there are some circum-

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<EMBED> 257

stances in which it may not be necessary (see the TYPE attribute). Browsers typically use
the filename extension to determine which plugin to load (based on browser preferences
settings for plugins and helper applications).

Example
<EMBED NAME="babyClip" SRC="Ugachaka.avi" HEIGHT=150 WIDTH=250></EMBED>

Value A complete or relative URL.

Default None.

=
Object Model Reference ,§_|
1E [window.]document .embeds [i] .src :_:E
[window.]document . elementID. src 5
-
]
TYPE NN 2 IE w/a HIML wa
TYPE="MIMEtpe" Optional

Navigator anticipated the potential of a plugin not requiring any outside data file. Instead,
such a plugin would more closely resemble an applet. If such a plugin is to be put into
your document, you still use the EMBED element but specify just the MIME type instead of
the data file URL (in the SRC attribute). This assumes, of course, that the MIME type is of
such a special nature that only one possible plugin would be mapped to that MIME type in
the browser settings. Either the SRC or TYPE attribute must be present in a Navigator EMBED
element tag.

Example
<EMBED TYPE="application/x-frobnitz" HEIGHT=150 WIDTH=250></EMBED>

Value

Any valid MIME type name as a quoted string, including the type and subtype portions
delimited by a forward slash.

Default None.

UNITS NN 2 IE 3 HTML wa

UNITS="measurementUnitType" Optional

The UNITS attribute is supposed to dictate the kind of measurement units used for the
element’s HEIGHT and WIDTH attribute values. Both Navigator 4 and Internet Explorer 4
appear to treat the measurements in pixels, regardless of this attribute’s setting.

Example <EMBED SRC="jazz.aif" HEIGHT=150 WIDTH=250 UNITS="en"></EMBED>

Value

Not only does this attribute not appear to influence the rendering of an EMBED element, but
Navigator 4 and Internet Explorer 4 disagree on the precise spelling and available units for
values. Navigator 4 specifies choices of pixels or en; Internet Explorer goes with px or em.

Default pixels (or px).

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

258 <FIELDSET>

Object Model Reference

IE [window.]document .embeds[i] .units
[window.]document . elementID.units

VSPACE
See HSPACE.

WIDTH

See HEIGHT.

<FIELDSET> NN wa IE 4 HIML 4
<FIELDSET>...</FIELDSET> End Tag: Required

A FIELDSET element is a structural container for form elements (as distinguished from the
functional containment of the FORM element). In fact, you can define multiple FIELDSET
elements within a single FORM element to supply context to logical groupings of form
elements. For example, one FIELDSET element might contain text input fields for name and
address info; another FIELDSET might be dedicated to credit card information. In applica-
tions envisioned by the HTML 4.0 specification, users could use access keys to navigate
from one group to another, rather than have to tab ad nauseam to reach the next group.

Internet Explorer 4 boosts the attractiveness of this element by automatically drawing a rule
around the form elements within each FIELDSET container. You can also attach a label that
gets embedded within the rule by defining a LEGEND element immediately after the start tag
of a FIELDSET element. When IE 4 draws the rule, the box extends the full width of the
next outermost container geography—usually the document. If you'd rather have the box
cinch up around the visible form elements, you have to set the width style sheet property.
Unfortunately, the Mac and Windows versions do not render the box set to a specific width
the same way: the Windows version comes closest to honoring the pixel count, whereas the
Mac version is substantially wider.

Example

<FORM METHOD=POST ACTION="...">

<FIELDSET>

<LEGEND>Credit Card Information</LEGEND>

. ..IlnputElementsHere. . .

</FIELDSET>

</FORM>

Object Model Reference

IE [window.]document . all .elemenilD

Attributes

ALIGN DIR LANG STYLE VALIGN
CLASS ID LANGUAGE TITLE

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<FIELDSET> 259

Event Handler Attributes

Handler NN 1E HTML
onBlur n/a 4 n/a
onChange n/a 4 n/a
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onFilterChange n/a 4 n/a
onFocus n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onResize n/a 4 n/a
onScroll n/a 4 n/a
onSelect n/a 4 n/a
onSelectStart n/a 4 n/a
ALIGN NN n/a 1E 4 HTIML n/a
ALIGN="where" Optional

The ALIGN attribute appears only in Internet Explorer 4, and its implementation is far from
consistent across operating systems. In theory, the attribute should control the alignment of
INPUT elements it contains. This is true in the Macintosh version of IE 4, but in the
Windows version, the settings have a minor effect on whether the FIELDSET element rule is
flush left, flush right, or centered. It is best to let the default setting take precedence.

As a general rule, ALIGN attributes are deprecated in HTML 4.0 in favor of style sheets. Even
though the ALIGN attribute isn’t supported in HTML 4.0, you should feel free to use style
sheets even for this Internet Explorer-specific attribute.

Example <FIELDSET ALIGN="center">...</FIELDSET>
Value Allowed values are left | center | right.

Default left

Object Model Reference
IE [window.]document .all .elementID.align

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

260

TITLE NN w/a IE 4 HIML 4

TITLE="advisorylext" Optional

An advisory description of the element. In Internet Explorer 4, the title is rendered as a
tooltip when the cursor rests on the element for a moment. TITLE attributes of nested form
elements override the setting for the entire FIELDSET, allowing you to specify one tooltip
for the main fieldset area and more detailed tooltips for each element.

Example <FIELDSET TITLE="Credit Card Info">...</FIELDSET>

Value

Any string of characters. The string must be inside a matching pair of (single or double)
quotation marks.

Default None.

Object Model Reference

IE [window.]document .all.elementlD.title

VALIGN NN n/a IE 4 HIML 4
VALIGN="alignmentConstant" Optional

Determines the vertical alignment of the FIELDSET within the FORM.

Example <FIELDSET VALIGN="bottom">...</FIELDSET>

Value

Four constant values are recognized by both IE 4 and HTML 4.0: top | middle | bottom |
baseline. With top and bottom, the content is rendered flush (or very close to it) to the
top and bottom of the table cell. Set to middle (the default), the content floats perfectly
centered vertically in the cell. When one cell’s contents might wrap to multiple lines at
common window widths (assuming a variable table width), it is advisable to set the VALIGN
attribute to baseline. This assures that the character baseline of the first (or only) line of a
cell’s text aligns with the other cells in the row—usually the most aesthetically pleasing
arrangement

Default middle

Object Model Reference

IE [window.]document .all.elementlD.vAlign

 NN all IE all HIML 3.2
. . . End Tag: Required

A FONT element is a container whose contents are rendered with the font characteristics
defined by the element’s attributes. This element is deprecated in HTML 4.0 in favor of font
attributes available in style sheets that are applied directly to other elements or the artificial
SPAN container for inline font changes. This element will be supported for a long time to
come to allow backward compatibility with web pages designed for older browsers,
however.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

 261

The FONT element has evolved over its lifetime, adding new attributes along the way to
work in the more mature browsers. Navigator includes some proprietary attributes for
Version 4 that are better served by style sheets for cross-browser compatibility.

Example

Object Model Reference

IE [window.] document .all .elementlD

Attributes -

CLASS FACE LANGUAGE SIZE TITLE E

COLOR ID POINT-SIZE STYLE WEIGHT %

DIR LANG)
]
-
]

COLOR NN 2 IE 3 HTML 3.2

COLOR=" colorTripletOrName" Optional

Sets the font color of all text contained by the FONT element. This attribute is deprecated in
HTML 4.0 in favor of style sheets.

Example ...

Value

A hexadecimal triplet or plain-language color name. See Appendix A for acceptable plain-
language color names.

Default Browser default.

Object Model Reference

IE [window.]document .all .elemenilD. color

FACE NN 3 IE 3 HTML 4
FACE="fontFaceNamel|, ... fontFaceNameN]" Optional

You can assign a hierarchy of font faces to use for a segment of text contained by a FONT
element. The browser looks for the first font face in the comma-delimited list of font face
names until it either finds a match on the client system or runs out of choices, at which
point the browser default font face is used. Font face names must match the system font
face names exactly. If you use this attribute (instead of the preferred style sheet attribute),
you can always suggest a generic font face (serif, sans-serif) as the final choice.

Example ...

Value

One or more font face names, including the recognized generic faces: serif | sans-serif
| cursive | fantasy | monospace.

Default Browser default.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

262

Object Model Reference

1IE [window.]document .all.elementiD. face

ID NN 4 1IE 4 HIML 4
ID="clementldentifier" Optional

A unique identifier that distinguishes this element from all the rest in the document. Can be
used to associate a single element with a style rule naming this attribute value as an ID
selector. An element can have an ID assigned for uniqueness as well as a class for inclu-
sion within a group. A style sheet rule applied to a FONT element overrides any directly
assigned attribute values. Therefore, you can define a set of font characteristics for non-CSS-
capable browsers and a modified version for CSS-capable browsers in the same tag. See
Chapter 3.

Example ...
Value Case-sensitive identifier.

Default None.

Object Model Reference

IE [window.]document .all .elementlD.id

POINT-SIZE NN 4 IE w/a HIML w/a
POINT-SIZE="pointSize" Optional

The POINT-SIZE attribute is Navigator 4’s non-CSS equivalent of setting the font size by
specific point size (rather than by relative font size directed by the SIZE attribute). If you
assign a value to the POINT-SIZE attribute and set the font-size style attribute, the style
attribute takes precedence. If you are aiming for cross-browser deployment, I suggest using
style sheets exclusively for precise point sizes.

Example ...
Value A positive integer, representing the desired point size.

Default Browser default.

SIZE NN all 1E all HTML 3.2
SIZE="integerOrRelativeSize" Optional

Font sizes referenced by the SIZE attribute are the relative size scale that is not tied to any
one point size across operating system platforms. The default browser font size is 3. The
range of acceptable values for the SIZE attribute are integers from 1 to 7 inclusive. The
exact point size varies with the operating system and browser design.

Users can often adjust the default font size in preferences settings. The SIZE attribute over-
rides that setting. Moreover, SIZE values can be relative to whatever font size is set in the
preferences. By preceding an attribute value with a + or - sign, the browser’s default size
can be adjusted upward or downward, but always within the range of 1 through 7.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<FORM> 263

Example

...
...

Value

Either an integer (quoted or not quoted) or a quoted relative value consisting of a + or -
symbol and an integer value.

Default 3

Object Model Reference

1IE [window.]document .all .elementlD. size

STYLE NN 4 IE 4 HTIML 4
STYLE="syleSheetProperties" Optional

This attribute lets you set one or more style sheet rule property assignments for the current
element. A style sheet rule applied to a FONT element overrides any directly assigned
attribute values. Therefore, you can define a set of font characteristics for non-CSS-capable
browsers and a modified version for CSS-capable browsers in the same tag.

Example ...

Value

An entire CSS-syntax style sheet rule is enclosed in quotes. Multiple style attribute settings
are separated by semicolons. Style sheet attributes are detailed in Chapter 10.

Default None.

Object Model Reference

IE [window.]document .all .elementlD.style

WEIGHT NN 4 1IE wa HIML n/a
WEIGHT="boldnessValie" Optional

The WEIGHT attribute is Navigator 4’s non-CSS equivalent of setting the font weight with a
regular attribute rather than by style sheet rule. The attribute does not appear to work, but
setting the font-weight style attribute does the job.

Value

Integer value between 100 and 900 in increments of 100. A value of 900 is the maximum
boldness setting.

Default Unknown.

<FORM> NN all 1E all HTML all

<FORM>. . .</FORM> End Tag: Required

Despite the importance of HTML forms in communication between web page visitors and
the server, a FORM element at its heart is nothing more than a container of controls. Most,

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

2064 <FORM>

but not all, form controls are created in the document as INPUT elements. Even if user inter-
action with INPUT elements is not intended for submission to a server (perhaps some client-
side scripting requires interaction with the user), such INPUT elements are contained by a
FORM element.

A document may contain any number of FORM elements, but a client may submit the
settings of controls from only one form at a time. Therefore, the only time it makes sense to
divide a series of form controls into multiple FORM elements is when the control groups can
be submitted independently of each other. If you need to logically or structurally group
controls while maintaining a single form, use the FIELDSET element to create the neces-
sary subgroupings of controls.

When a form is submitted to the server, all controls that have NAME attributes assigned to
them pass both their names and values—in name/value pairs—to the server for further
processing (or possibly as an email attachment or message with Navigator). A Common
Gateway Interface (CGI) program running on the server can accept and dissect the name/
value pairs for further processing (adding a record to a server database or initiating a
keyword search, for example). The server program is invoked via URL to the program
assigned to the ACTION attribute.

Inside browsers, the submission process consists of a few well-defined steps. The process
begins by the browser assembling a form data set out of the name/value pairs of form
controls. The name comes from the value assigned to the NAME attribute. A control’s value
depends on the type of control. For example, a text INPUT element’s value is the content
appearing in the text box at submission time; for a radio button within a radio group (all of
whose NAME attributes are assigned the same value), the value assigned to the VALUE
attribute of the selected radio button is inserted into the name/value pair for the radio
group.

The second step of submission encodes the text of each name/value pair. A + symbol is
substituted for each space character. Reserved characters (as defined by RFC 1738) are
escaped, and all other nonalphanumeric characters are converted to hexadecimal represen-
tations (in the form %$HH, where HH is the hex code for the ASCII value of the character).
Name and value components of each name/value pair are separated by an = symbol, and
each name/value pair is delimited with an ampersand (&).

In the final step, the METHOD attribute setting determines how the escaped form data set is
transmitted to the server. With a METHOD of get, the form data set is appended to the URL
stated in the ACTION attribute, separated by a ? symbol. With a METHOD of post and a
default ENCTYPE, the data set is transmitted as a kind of (nonemail) message to the server.

Default behavior of the Enter key in forms has evolved into a recognized standard. When a
form consists of a single text INPUT element, a press of the Enter (or Return) key automati-
cally submits the form (as if the user had clicked on a SUBMIT button element. If the form
consists of two or more text INPUT elements, the Enter (or Return) key does not automati-
cally submit the form.

Form submission can be canceled in modern browsers with the help of scripts that perform
validation checking or other functions triggered by the onSubmit event handler. This event
fires prior to the form being submitted. If the event handler evaluates to false, the form is
not submitted, and the user may continue to edit the form elements.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<FORM> 265

Example

<FORM NAME="orders" METHOD=POST ACTION="http://www.giantco.com/cgi-bin/
order">

</FORM>

Object Model Reference
NN [window.]document . forms [i]
[window.] document . formName
IE [window.]document . forms [i]
[window.] document . formName
Attributes
ACCEPT CLASS ID METHOD TARGET
ACCEPT-CHARSET DIR LANG NAME TITLE
ACTION ENCTYPE LANGUAGE STYLE

Event Handler Attributes

Handler NN 1IE HTML

onClick n/a 4 4

onDblClick n/a 4 4

onDragStart n/a 4 n/a

onHelp n/a 4 n/a

onKeyDown n/a 4 4

onKeyPress n/a 4 4

onKeyUp n/a 4 4

onMouseDown n/a 4 4

onMouseMove n/a 4 4

onMouseOut n/a 4 4

onMouseOver n/a 4 4

onMouseUp n/a 4 4

onReset 3 4 4

onSelectStart n/a 4 n/a

onSubmit 2 3 4
ACCEPT NN n/a IE n/a HTIML 4
ACCEPT="MIMETpelList" Optional

Intended for use with INPUT elements of type file, the ACCEPT attribute lets you specify
one or more MIME types for allowable files to be uploaded to the server when the form is
submitted. The predicted implementation of this attribute would filter the file types listed in
file dialogs used to select files for uploading. In a way, this attribute provides client-side
validation of a file type so that files not conforming to the permitted MIME type are not
even sent to the server.

Example <FORM ACCEPT="text/html, image/gif" ...>...</FORM>

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

266 <FORM>

Value

Case-insensitive MIME type (content type) value. For multiple items, a comma-delimited list
is allowed.

Default None.

ACCEPT-CHARSET NN n/a IE w/a HIML 4

ACCEPT-CHARSET=" MIMETjpelist" Optional

A server advisory (for servers that are equipped to interpret the information) about which
character sets it must receive from a client form.

Example <FORM ACCEPT-CHARSET="it, es" ...>...</FORM>

Value

Case-insensitive alias from the character set registry (fip:/fip.isi.edu/in-notes/iana/
assignments/character-sets). Multiple character sets may be delimited by commas. The
reserved value, "unknown", is supposed to represent the character set that the server used
to generate the form for the client.

Default 'unknown"

ACTION NN all IE all HTIML all
ACTION="URL" Optional

Specifies the URL to be accessed when the form is being submitted. When the form is
submitted to a server for further processing, the URL may be to a CGI program or to an
HTML page that includes server-side scripts. (Those scripts execute on the server before the
HTML page is downloaded to the client.) As a result of the submission, the server returns an
HTML page for display in the client. If the returned display is to be delivered to a different
frame or window, the TARGET attribute must be specified accordingly.

You may also substitute a mailto: URL for the ACTION attribute value. Navigator turns the
name/value pairs of the form into a document for attachment to an email message (or as
the message body with the ENCTYPE attribute set to "text/plain"). For privacy reasons,
client users are notified of the impending email transmission and have the chance to cancel
the message. Internet Explorer through Version 4 does not automatically include form
element data inside an email message begun with a mailto: URL.

If you omit the ACTION attribute and the form is submitted, the current page reloads itself,
returning all form elements to their default values.

Example
<FORM METHOD=POST ACTION="http://www.glantco.com/orders/order.html">

Value A complete or relative URL.

Default None.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<FORM> 267

Object Model Reference

NN [window.]document . forms[i] .action
[window.] document . formName.action

IE [window.]document . forms [i] .action
[window.] document . formName.action

ENCTYPE NN all 1E all HTML all
ENCTYPE="MIMET)pe" Optional

Sets a MIME type for the data being submitted to the server with the form. For typical form
submissions (where the METHOD attribute is set to post), the default value is the proper
content type. If you include a file INPUT element, specify "multipart/form-data" as the
ENCTYPE attribute. And for Navigator, it is usually more convenient to have form data
submitted to a mailto: URL to be in the message body instead of as a message attach-
ment. To embed the form data into the message body, set the ENCTYPE to "text/plain".

Example

<FORM METHOD=POST ACTION="mailto:orders@giantco.com" ENCTYPE="text/plain">
</FORM>

Value

Case-insensitive MIME type (content type) value. For multiple items, a comma-delimited list
is allowed.

Default application/x-www-form-urlencoded

Object Model Reference

NN [window.]document . forms[i] .encoding
[window.] document . formName. encoding

IE [window.]document . forms[i] .encoding
[window.] document . formName. encoding

METHOD NN all 1IE all HTML all

METHOD=get | post Optional

Forms may be submitted via two possible HTTP methods: get and post. These methods
determine whether the form element data is sent to the server appended to the ACTION
attribute URL (get) or as a transaction message body (post). In practice, when the ACTION
and METHOD attributes are not assigned in a FORM element, the form performs an uncondi-
tional reload of the same document, restoring form controls to their default values.

Due to potential problems with internationalization, the get method is deprecated in HTML
4.0. Because so much of the World Wide Web depends on this method and get is the
default method on most browsers, the get method is unlikely to go away for a long time.

Example
<FORM METHOD=POST ACTION="http://wwwégiantco.com/orders/order.html">

</FORM>

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
-
=
(']
—r
®
-
@
=
]
@

268 <FORM>

Value

Case-insensitive values of get or post. These values do not have to be quoted.

Default get

Object Model Reference

NN [window.]document . forms [1] .method
[window.] document . formName.method

IE [window.]document . forms[i] .method
[window.] document . formName.method

NAME NN 2 IE 3 HIML wa
NAME=" elementldentifier" Optional

Assigns an identifier to the entire FORM element. This value is particularly useful in writing
scripts that reference the form or its nested controls.

Example

<FORM NAME="orders" METHOD=POST ACTION="http://www.giantco.com/cgi-bin/
order">

</FORM>
Value Case-sensitive identifier.
Default None.

Object Model Reference

NN [window.]document . forms [1] .name
[window.] document . formName.name

IE [window.]document . forms[i] .name
[window.] document . formName. name

TARGET NN all IE all HIML all

TARGET=" windowOrFrameName" Optional

If the HTML document returned from the server after it processes the form submission is to
be loaded into a window or frame other than the current window or frame, you can specify
where the returned document should load by assigning a window or frame name to the
TARGET attribute. Target frame names must be assigned to frames and windows as identi-
fiers. Assign names to frames via the NAME attribute of the FRAME element; assign names to
new windows via the second parameter of the window.open() scripting method. If you
omit this attribute, the returned document replaces the document containing the FORM
element. An identifier other than one belonging to an existing frame or window opens a
new window for the returned document.

A FORM element can have only one returned document and one target. If you want a form
submission to change the content of multiple frames, you can include a script in the
returned document whose onLoad event handler loads or dynamically writes a document
into a different frame. (Set the location.href property of each frame to a desired URL.)

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<FRAME> 269

Example

<FORM METHOD=POST ACTION="http://www.giantco.com/cgi-bin/order"
TARGET="new">

</FORM>

Value

Case-sensitive identifier when the frame or window name has been assigned via the target
element’s NAME attribute. Four reserved target names act as constants:

_blank Browser creates a new window for the destination document.

_parent Destination document replaces the current frame’s framesetting document (if
one exists; otherwise, it is treated as _self).

_self Destination document replaces the current document in its window or frame.

_top Destination document is to occupy the entire browser window, replacing any
and all framesets that may be loaded (also treated as _self if there are no
framesets defined in the window).

Default _self

Object Model Reference

NN [window.]document . forms[i] . target
[window.] document . formName. target

IE [window.]document . forms[i] .target
[window.] document . formName. target

<FRAME> NN 2 IE 3 HIML 4

<FRAME> End Tag: Forbidden

The FRAME element defines properties of an individual window space that is some frac-
tional portion of the entire browser window. A FRAME element must be defined within the
context of a FRAMESET element. It is the FRAMESET that defines the row and column
arrangement of a related group of frames.

A browser treats a frame as a separate browser window within the browser application’s
window. As such, each frame window can load its own content, independent of other
frames. Although no attributes of the FRAME element are required, assigning a value to the
NAME attribute is highly recommended if you have forms or links whose returned or destina-
tion document is to be displayed in a different frame. Scripting among multiple frames also
benefits greatly from names assigned to frames because it makes references to those frames
(and their contents) more easily understandable to someone reading the script code.

Example

<FRAMESET COLS="150,*">
<FRAME NAME="navbar" SRC="nav.html">
<FRAME NAME="main" SRC="pagel.html">
</FRAMESET>

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

270 <FRAME>

Object Model Reference
NN [window.] fiameName
[window.] frames[i]
IE [window.] frameName
[window.] frames[i]
[window.]document .all. fiamelD

Attributes

BORDERCOLOR FRAMEBORDER LANGUAGE NAME STYLE

CLASS HEIGHT LONGDESC NORESIZE TITLE

DATAFLD ID MARGINHEIGHT SCROLLING WIDTH

DATASRC LANG MARGINWIDTH SRC

BORDERCOLOR NN 3 IE 4 HIML wa
BORDERCOLOR=" colorTripletOrName" Optional

If your frameset displays borders (as set with the BORDER attribute of the FRAMESET
element), but you want a subset of the frames in the frameset to be rendered with a border
color different from the rest, you can assign a color to the BORDERCOLOR attribute of an
individual FRAME element. Mixing border colors in a frameset exposes your HTML to the
risk of different rendering techniques of each browser and operating system. Not only do
the precise pixel composition of borders vary, but each browser and operating system may
resolve conflicts between different colored borders differently. If you assign a color to only
some frames of a frameset, be sure to test the look on as many browser versions and oper-
ating systems as possible to evaluate the visual effect of your color choices.

Example <FRAME NAME="navbar" SRC="nav.html" BORDERCOLOR="salmon">

Value

A hexadecimal triplet or plain-language color name. See Appendix A for acceptable plain-
language color names.

Default None.

Object Model Reference

IE [window.]document .all. fiamelD.borderColor

DATAFLD NN n/a IE 4 HIML wa
DATAFLD=" columnName" Optional

Used with IE 4 data binding to associate a remote data source column name in lieu of an
SRC attribute for a FRAME element. The data source column must contain a valid URI (rela-
tive or absolute). A DATASRC attribute must also be set for the element.

Example <FRAME DATASRC="#DBSRC3" DATAFLD="newsURL">
Value Case-sensitive identifier.

Default None.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<FRAME> 271

Object Model Reference

IE [window.]document.all. fiamelD.dataFld

DATASRC NN n/a IE 4 HIML wa
DATASRC=" dataSourceName" Optional

Used with IE 4 data binding to specify the name of the remote ODBC data source (such as
an Oracle or SQL Server database) to be associated with the element. Content from the data
source is specified via the DATAFLD attribute.

Example <FRAME DATASRC="#DBSRC3" DATAFLD="newsURL">
Value Case-sensitive identifier.

Default None.

Object Model Reference

IE [window.]document .all. fiamelD.dataSrc

FRAMEBORDER NN 3 IE 3 HIML 4
FRAMEBORDER=" borderSwitch" Optional

Controls whether an individual frame within a frameset displays a border. The setting is
supposed to override the FRAMEBORDER attribute setting of the containing FRAMESET
element. Controlling individual frame borders appears to be a problem for most browsers in
most operating system versions. Turning off the border of one frame may have no effect if
all adjacent frames have their borders on. Feel free to experiment with the effects of turning
some borders on and some borders off, but be sure to test the final effect on all browsers
and operating systems used by your audience. Rely more comfortably on the FRAMEBORDER
attribute of the entire FRAMESET.

Example <FRAME NAME="navbar" SRC="nav.html" FRAMEBORDER=no>

Value

On-off values for this attribute vary with the source. HTML 4.0 specifies the values of 1 (on)
and 0 (off). Navigator uses yes and no. Internet Explorer 4 accepts both sets of values. For
cross-browser compatibility, use the yes/no pairing.

Default yes

Object Model Reference

IE [window.]document .all. fiamelD. frameBorder

HEIGHT, WIDTH NN n/a 1E 4 HIML n/a
HEIGHT="length" Optional
WIDTH="length"

Microsoft HTML documentation for IE 4 says that the HEIGHT and WIDTH attributes control
the size of a frame. In practice in IE 4, these attributes have no direct control over the
appearance of the frames within a frameset. Instead, the COLS and ROWS attributes of the

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

272 <FRAME>

containing FRAMESET govern the initial geometry of a frame. Because the corresponding
object properties for a frame are documented, but not part of the IE 4 document object
model, the HEIGHT and WIDTH attributes are most likely in the documentation by error. Do
not use them.

LONGDESC NN #w/a 1E nw/a HIML 4

LONGDESC=" URL" Optional

Specifies a URL of a document that contains a longer description of the element than what
the content of the TITLE attribute reveals. One application of this attribute in future
browsers is to retrieve an annotated description of the element for users who cannot read
the browser screen.

Example
<FRAME LONGDESC="navDesc.html" TITLE="Navigation Bar" SRC="navbar.html">

Value Any valid URI, including complete and relative URLs.

Default None.

MARGINHEIGHT, MARGINWIDTH NN n/a IE 3 HIML 4

MARGINHEIGHT="pixelCount" Optional
MARGINWIDTH=" pixelCoumnt"

The number of pixels between the inner edge of a frame and the content rendered inside
the frame. The MARGINHEIGHT attribute controls space along the top and (when scrolled)
the bottom edges of a frame; the MARGINWIDTH attribute controls space on the left and right
edges of a frame. The HTML 4.0 specification leaves default behavior up to browsers.

Without any prompting, Internet Explorer 4 automatically inserts a margin of 14 (Windows)
or 8 (Macintosh) pixels inside a frame. But if you attempt to override the default behavior,
be aware that setting any one of these two attributes causes the value of the other to go to
zero. Therefore, unless you want the content to be absolutely flush with various frame
edges, you need to assign values to both attributes. Due to the disparity in default values
for each operating system, you cannot assign truly default values to these attributes.

Example <FRAME SRC="navbar.html" MARGINHEIGHT=20 MARGINWIDTH=14>
Value Any positive integer value or zero.

Default 14 (Windows) or 8 (Macintosh).

Object Model Reference

IE [window.]document.all. fiumelD.marginHeight
[window.]document .all. fiamelD.marginWidth

NAME NN 2 IE 3 HIML 4
NAME=" elementldentifier" Optional

When links and forms must load their destination or returned documents into frames other
than the one holding the link or form, those elements have TARGET attributes indicating

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<FRAME> 273

which frame receives the new content. To direct such content to a frame, the frame must
have a value assigned to its NAME attribute. That same value is assigned to the TARGET
attribute of the A or FORM element. Client-side scripting also uses the frame’s name in
building references to other frames or content in other frames. It is good practice to assign a
unique identifying name to all frames.

Example <FRAME NAME="navbar" SRC="nav.html">
Value Case-sensitive identifier.
Default None.

Object Model Reference

NN [window.] fiameName.name
[window.] frames[i] .name

IE [window.] fiameName.name
[window.] frames[i] .name
[window.]document .all. fiamelD.name

NORESIZE NN 2 IE 3 HIML 4

NORESIZE Optional

Frame borders can be resized by the user dragging the border perpendicular to the axis of
the border edge. When present, the NORESIZE attribute instructs the browser to prevent the
frame’s edges from being manually resized by the user. All border edges of the affected
FRAME element become locked, meaning that all edges that extend to other frames in the
frameset remain locked as well.

Example <FRAME SRC="navbar.html" NORESIZE>
Value The presence of the attribute makes the frame nonresizable.

Default Frames are resizable by default.

Object Model Reference

IE [window.]document .all. fiamelD.noResize

SCROLLING NN 2 IE 3 HIML 4
SCROLLING=auto | no | yes Optional

By default, browsers add vertical and/or horizontal scrollbars when the content loaded into
a frame exceeds the visible content region of the frame. Scrollbars can affect the layout of
some content because they occupy space normally devoted to content (that is, the frame
does not expand to accommodate scrollbars). Also, due to differences in default font sizes
in browsers and operating system versions, a given collection of text content may display
differently in different clients. If you want to prevent scrollbars from appearing in the frame,
set the SCROLLING attribute to no; if you want scrollbars to be in the frame at all times, set
the attribute to yes. In the latter case, if the content does not require scrolling, the scroll-
bars are disabled. In some older versions of Navigator, the automatic scrollbars remain
visible, even if content not requiring them is subsequently loaded into a frame. In Navi-
gator 4 (and all versions of Internet Explorer), the automatic scrollbars appear only when
needed.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

274 <FRAME>

Setting the SCROLLING attribute to no should be used only after you have tested on all
browsers and platforms that mission-critical content is always visible in the frame. If the
frame is set to not scroll and has the NORESIZE attribute set, some users might not be able
to see all the content of the frame.

Example <FRAME SRC="navbar.html" SCROLLING=no>
Value Case-insensitive constant values (quoted or not): auto | no | yes.

Default auto

Object Model Reference

IE [window.]document .all. fiamelD. scrolling

SRC NN 2 1E 3 HIML 4
SRC="URL" Optional

Defines the URL of the content to be loaded into the FRAME element. The URL can be an
absolute URL or one relative to the URL of the document containing the frameset specifica-
tions. You may also use the javascript: pseudo-URL to have the returned value of a
script appear in the frame. For example, if you want a frame to be blank when the frameset
loads, you can define a function in the frameset document that returns a blank HTML page.
The SRC attribute for each soon-to-be blank frame invokes the function from the vantage
point of the child frame:

<HTML>
<SCRIPT LANGUAGE="JavaScript">
function blank() {
return "<HTML></HTML>"
}
</SCRIPT>
<FRAMESET COLS="50%,50%">
<FRAME NAME=leftFrame SRC="javascript:parent.blank()">
<FRAME NAME=rightFrame SRC="javascript:parent.blank()">
</FRAMESET>
</HTML>

Another type of blank page is available from some browsers and versions via the
about :blank URL, which draws from an internal blank page. However, Navigator 2 and 3
for the Macintosh display an unwanted message with this URL in a window or frame.

Example <FRAME SRC="navbar.html">
Value A complete or relative URL or a javascript: pseudo-URL.

Default None.

Object Model Reference
IE [window.]document.all. fiamelD. src
WIDTH

See HEIGHT.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<FRAMESET> 275

<FRAMESET> NN 2 IE 3 HIML 4

<FRAMESET>. . .</FRAMESET> End Tag: Required

Defines the layout of a multiple-frame presentation in a browser’s application window. The
primary duty of the FRAMESET element is to specify the geographical layout—in a row and
column array—of rectangular frames. Attributes defined in a FRAMESET element apply to all
FRAME elements nested within (unless overridden by a similar attribute for a specific
FRAME). A FRAMESET element’s tag takes the place in an HTML document that is normally
devoted to the BODY element.

You may nest a FRAMESET element within a FRAMESET element. This tactic allows you to
subdivide a frame from the outer FRAMESET element into two or more frames. For example,
if you define one FRAMESET element with three rows and two columns, you get a total of
six frames:

<FRAMESET ROWS="33%, 33%, 34%" COLS="50%, 50%">
<FRAME NAME="rlcl"...
<FRAME NAME="rlc2"...
<FRAME NAME="r2cl"...
<FRAME NAME="r2c2"...
<FRAME NAME="r3cl"...
<FRAME NAME="r3c2"..

</FRAMESET>

.VVVVVV

Figure 8-1 shows the resulting frame organization.

Frames - Netscape
File Edt “iew Go Communicator Help
Fopward Reload Home Seach Guide FEirat m
Frame: Frame:
Rowl/Columnl Rowl/Column2
Frame: Frame:
Row2/Columnl Row2/Column2
Frame: Frame:
Row3/Columnl Row3/Column2
= |Document: Done =| 352 4 = i

Figure 8-1. A three-row, two-column frameset

On the other hand, if you nest a frameset where a frame definition goes, that frame is
divided into whatever frame organization is defined by that nested frameset. Consider the
following nested frameset:

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

276 <FRAMESET>

<FRAMESET ROWS="33%, 33%, 34%">
<FRAME NAME="rl1"...>
<FRAMESET COLS="50%, 50%">

<FRAME NAME="r2cl"...>
<FRAME NAME="r2c2"...>
</FRAMESET>
<FRAME NAME="r3"...>
</FRAMESET>

This produces the frame organization shown in Figure 8-2.

rames - Netscape

Fil= Edit Wiew Go Communicator Help

.— Back Fopward Reload Home Seach Guide Friat m

Frame: Rowl

Frame: Frame:
Row2/Columnl Row2/Column?

Frame: Row3

E| | Document: Done =| -

Figure 8-2. A nested frameset

You may nest FRAMESET elements as deeply as your page design requires. Be aware that
frames can devour memory resources of browsers on some operating systems. Not all users
appreciate frames that display borders, even when such a structure may make logical sense
for your page design.

The outermost frameset document is the one whose TITLE attribute governs the display in
the browser window title bar. Documents loaded into individual frames have no control
over title bar display, although for reasons of scripting and potential application in future
browsers, the TITLE attribute of framed documents should be set anyway.

If you wish to offer an option for a user to remove a frameset, you can supply a link or
button that invokes a script. The script should set the top.location.href property to the
URL of the single most important document of the pages loaded into frames (the primary
content).

Example

<FRAMESET COLS="150, *">
<FRAME NAME="navbar" SRC="nav.html">
<FRAME NAME="main" SRC="pagel.html">
</FRAMESET>

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<FRAMESET> 277

Object Model Reference

1IE [windowRef. 1 document . all . fiamesetID

Attributes

BORDER COLS ID LANGUAGE STYLE
BORDERCOLOR FRAMEBORDER LANG ROWS TITLE
CLASS FRAMESPACING

Event Handler Attributes

Handler NN IE HTML

onBlur 3 4 n/a

onFocus 3 n/a

onLoad 2 3 4

onMove 4 n/a n/a

onResize 4 n/a n/a

onUnload 2 3 4
BORDER NN 3 IE 4 HIML n/a
BORDER=" pixelCount" Optional

Frames display 3-D borders by default. The default thickness of that border varies with
browser and operating system. You can adjust this thickness by assigning a different value
to the BORDER attribute of the frameset. Only the outermost FRAMESET element of a system
of nested framesets responds to the BORDER attribute setting.

Navigator 4 is consistent across Windows and Macintosh platforms by displaying a default
border that is the same thickness as when the BORDER attribute is set to 5. For IE 4, the
default value is 6 in Windows and 1 on the Mac (although the actual rendering is far more
than one pixel wide). Any single setting you make for the BORDER attribute therefore does
not look the same on all browsers. Moreover, at smaller settings, some browsers react
strangely. IE 4 won’t display a border in Windows when the value is 2 or less; Navigator
loses its 3-D effect when the value is 2 or less. Navigator also has a nasty habit of rendering
an odd divot in the center of frame bars on the Macintosh.

This hodge-podge deployment of frame borders may make you shy away from using them
altogether (set the BORDER attribute to 0). In some cases, however, borders provide reas-
suring visual contexts for frame content that requires a scrollbar. Having a scrollbar appear
floating in a browser window might be disconcerting to some viewers.

That the HTML 4.0 specification does not include a BORDER attribute might lead one to
believe it prefers the use of style sheet borders instead of borders tied only to frames.
Neither browser (through Version 4) responds to style sheet border settings, however.

Example <FRAMESET COLS="150,*" BORDER=0>...</FRAMESET>

Value

An integer value. A setting of zero eliminates the border entirely. Although the value is
supposed to represent the precise pixel thickness of borders in the frameset, this is not
entirely true for all operating systems or browsers.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
-
=
(']
—r
®
-
@
=
]
@

278 <FRAMESET>

Default See description.

Object Model Reference

IE [windowRef. 1 document .all. fiamesetlD.border

BORDERCOLOR NN 3 IE 4 HIML wa
BORDERCOLOR=" color{ripletOrName" Optional

Establishes the rendering color for all visible borders in a frameset. A BORDERCOLOR setting
in an outermost FRAMESET element may be overridden by a BORDERCOLOR attribute of a
nested FRAMESET element (for the nested frameset’s frames only) or an individual FRAME
element. Browsers resolve conflicts of colors assigned to adjacent frames differently. Test
your color combinations carefully if you mix border colors.

Example <FRAMESET COLS="150,*" BORDERCOLOR="salmon">...</FRAMESET>

Value

A hexadecimal triplet or plain-language color name. See Appendix A for acceptable plain-
language color names.

Default
Browser default, usually a shade of gray with black or blue highlighting for the 3-D effect.

Object Model Reference

IE [windowRef. 1document . all. fiamesetlD.borderColor

COLS NN 2 IE 3 HIML 4
COLS=" columnlengthsList" Optional

Defines the sizes or proportions of the column arrangement of frames in a frameset. If it is
the intent to use the FRAMESET element to create frames in multiple columns, you must
assign a list of values to the COLS attribute.

Column size is defined in one of three ways:

® An absolute pixel size
e A percentage of the width available for the entire frameset

e A wildcard (*) to represent all available remaining space after other pixels and percent-
ages have been accounted for

Use an absolute pixel size when you want the width of a frame to be the same no matter
how the user has sized the overall browser window. This is especially useful when the
frame is to display an object of fixed width, such as an image. Use a percentage when you
want the frame width to be a certain proportion of the frameset’s width, no matter how the
user has adjusted the size of the overall browser window. If you use all percentage values
for the COLS attribute, they should add up to 100%. If the values don’t add up to 100%, the
browser makes the columns fit anyway. Finally, use the asterisk wildcard value to let the
browser calculate the width of one frame when all other frames in the frameset have fixed
or percentage values assigned to them. Separate the values within the attribute value string
with commas.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<FRAMESET> 279

You can mix and match all three types of values in the attribute string. For example,
consider a three-column frameset. If you want the leftmost column to be exactly 150 pixels
wide, but the middle column must be 50% of the total frameset width, set the value as
follows:

<FRAMESET COLS="150,50%,*">

The precise width of the two rightmost frames is different with each browser window’s
width adjustment. The rightmost frame width in this example is roughly equal to one half
the width of the frameset minus the 150 pixels reserved for the leftmost frame.

To create a regular grid of frames, assign values to both the COLS and ROWS attributes in the
FRAMESET element’s tag. For an irregular array, you must nest FRAMESET elements, as
shown in the description of the FRAMESET element, earlier in this section.

Example <FRAMESET COLS="25%,50%,25%">...</FRAMESET>

Value

Comma-separated list of pixel, percentage, or wildcard (*) values. Internet Explorer 4 for
the Macintosh exhibits incorrect behavior with some combinations that include a wildcard
value.

Default 100%

Object Model Reference

IE [windowRef. 1document .all. fiamesetlD.cols

FRAMEBORDER NN 3 IE 3 HIML wa
FRAMEBORDER=" borderSwitch" Optional

Controls whether all frames within the frameset display a border (acting as dividers between
frame edges). The FRAMEBORDER attribute of FRAME elements can override the FRAMESET
element’s setting for this attribute, but some frame organizations don’t lend themselves well
to eliminating frames from subgroups of frames. Override the FRAMESET element’s attribute
with caution and testing on all browsers and operating system platforms.

Example <FRAMESET COLS="25%,50%,25%" FRAMEBORDER="no">...</FRAMESET>

Value

On-off values for this attribute vary with the browser. Navigator uses yes and no. Internet
Explorer 4 accepts both yes | no and 1 | 0 (only the latter pair are specified for IE 3). For
Version 4 cross-browser compatibility, use the yes/no pairing.

Default yes

Object Model Reference

IE [windowRef. 1 document .all. fiamesetlD. frameBorder

FRAMESPACING NN n/a 1E 3 HIML n/a
FRAMESPACING=" pixellength" Optional

The Internet Explorer FRAMESPACING attribute is an older version of the BORDER attribute.
The older attribute is supported in IE 4 for backward compatibility. The behavior of

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

280 <FRAMESET>

FRAMESPACING attribute is more uniform across operating system versions of IE 4: a setting
of 10 pixels generates a border between frames that is essentially identical in both Windows
and Mac versions. For an IE-only deployment, the FRAMESPACING attribute is a more accu-
rate way to create borders that look the same across operating system versions.

lixanqpkz <FRAMESET COLS="25%,50%,25%" FRAMESPACING="7">...</FRAMESET>

Value

A positive integer. Unlike the BORDER attribute, however, a setting of zero does not remove
the border. Use the FRAMEBORDER attribute to hide borders entirely.

Default 2

Object Model Reference

IE [windowRef. 1document .all. fiamesetlD. frameSpacing

ROWS NN 2 IE 3 HIML 4
ROWS="rowLengthsList" Optional

Defines the sizes or proportions of the row arrangement of frames in a frameset. If it is the
intent to use the FRAMESET element to create frames with multiple rows, you must assign a
list of values to the ROWS attribute.

Row size is defined in one of three ways:
e An absolute pixel size
e A percentage of the height available for the entire frameset in the browser window

* A wildcard (*) to represent all available remaining space in the browser window after
other pixels and percentages have been accounted for

Use an absolute pixel size when you want the height of a frame row to be the same no
matter how the user has sized the overall browser window. This is especially useful when
the frame is to display an object of fixed height, such as an image. Use a percentage when
you want the frame height to be a certain proportion of the frameset’s height, no matter
how the user has adjusted the size of the overall browser window. If you use all percentage
values for the ROWS attribute, they should add up to 100%. If the values don’t add up to
100%, the browser makes the rows fit anyway. Finally, use the asterisk wildcard value to let
the browser calculate the height of one row when all other rows in the frameset have fixed
or percentage values assigned to them. Separate the values within the attribute value string
with commas.

You can mix and match all three types of values in the attribute string. For example,
consider a three-row frameset. If you want the bottom row to be exactly 80 pixels high to
accommodate a navigation bar, but the middle row must be 50% of the total frameset
height, set the value as follows:

<FRAMESET ROWS="*,50%,80">

The precise height of the two topmost frames is different with each browser window’s
height adjustment. The topmost frame height in this example is roughly equal to one half
the height of the frameset minus the 80 pixels reserved for the bottom row.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<HI1>, <H2>, <H3>, <H4>, <H5>, <H6> 281

To create a regular grid of frames, assign values to both the COLS and ROWS attributes in the
FRAMESET element’s tag. For an irregular array, you must nest FRAMESET elements, as
shown in the description of the FRAMESET element, earlier in this section.

Example <FRAMESET ROWS="25%,50%,25%">...</FRAMESET>

Value

Comma-separated list of pixel, percentage, or wildcard (*) values. Internet Explorer 4 for
the Macintosh exhibits incorrect behavior with some combinations that include a wildcard
value.

Default 100%

Object Model Reference

IE [windowRef. 1document . all. fiamesetlD. rows

STYLE NN n/a 1E 4 HIML 4
STYLE=" styleSheetProperties" Optional

This attribute lets you set one or more style sheet rule property assignments for the current
element. The format of the property assignments depends on the browser’s default style,
but both Navigator and Internet Explorer accept the CSS syntax. Documents loaded into
frames in IE 4 override style settings for a frameset, so don’t bother writing STYLE attributes
for FRAMESET elements.

Value

An entire CSS-syntax style sheet rule is enclosed in quotes. Multiple style attribute settings
are separated by semicolons. Style sheet attributes are detailed in Chapter 10.

Default None.

Object Model Reference
IE [windowRef. 1document .all. fiamesetlD. style

<HI>, <H2>, <H3>,
<H4>, <H5>, <H06> NN all IE all HTML all

<H1>...</Hl>, <H2>...</H2>, <H3>...</H3> End Tag: Required
<H4>...</H4>, <H5>...</H5>, <H6>...</H6>

HTML defines a series of six heading levels whose associated numbers are intended to
signify the relative importance of the section below the heading. The H1 element repre-
sents the most important, whereas H6 represents the least important. HTML document
parsers could examine a page’s tags to create a table of contents based on the headings.
This means that for proper document structure, these heading levels should be used in
proper sequence, without skipping levels for aesthetic purposes.

It is up to the browsers to determine the font, weight, and other characteristics of each
level. Each heading element is rendered on its own line, with no line break or paragraph
elements necessary to begin the content of the section titled with the heading. Figure 8-3

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

282 <HI1>, <H2>, <H3>, <H4>, <H5>, <H6>

shows examples of how Navigator 4 and Internet Explorer 4 renders all six heading levels
in Windows 95. By and large, this pattern applies to other browser versions and operating
systems except for Navigator on the Macintosh, whose default H4 and H6 elements render
characters wider (albeit shorter) than the H3 and H5 elements preceding them.

3 Header Levels - Microzoft Internet Explorer [_ O] x] > Frames - Netscape

J File Edit Wiew Go Favortes Help | File Edt Wiew Go Communicator Help

o o ° Back Forward Reload Home Search Guide Print m
J Back Fomed Stop Refresh Home ‘ 5

I L

=l | A Sample of Level H1
A Sample of Level I12

A Sample of Level H1

A Sample of Level H2
A Sample of Level H3
A Sample of Level H3
A Sample of Level H4
A Sample of Level H4
A Sample of Level HS

A Sample of Level H5
A Sample of Leve Hb

A Sample of Leve HE

r,iliyi 25 Local intranet zone iz @| [Document: Done =| = =SHE P | v

Figure 8-3. Heading levels in Internet Explorer 4 and Navigator 4

You can always override the browser’s rendering style for any heading level or individual
heading with style sheet rules.

Example

<H1>The Solar System</H1>

<P>Floating gracefully within the Milky Way galaxy is our Solar System.
... </P>

<H2>The Sun</H2>

<P>At a distance of 93,000,000 miles from Earth, the Sun...</P>
<H3>The Planets</H3>

<P>Nine recognized planets revolve around the Sun. ...</P>
<H4>Mercury</H4>

Object Model Reference

1IE [window.]document .all.elementlD

Attributes

ALIGN DIR LANG STYLE TITLE
CLASS ID LANGUAGE

Event Handler Attributes

Handler NN | IE | HTML
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<HEAD> 283

Handler NN 1IE HTML

onHelp n/a 4 n/a

onKeyDown n/a 4 4

onKeyPress n/a 4 4

onKeyUp n/a 4 4

onMouseDown n/a 4 4

onMouseMove n/a 4 4

onMouseOut n/a 4 4

onMouseOver n/a 4 4

onMouseUp n/a 4 4

onSelectStart n/a 4 n/a
ALIGN NN all 1E all HIML 3.2
ALIGN="wbhere" Optional

Determines how the heading is rendered in physical relation to the next outermost
container, usually the body. Both Navigator and Internet Explorer support alignment values
for center, left, and right alignment. HTML 4.0 adds the possibility of a fully justified
alignment, as well.

The ALIGN attribute is deprecated in HTML 4.0 in favor of the text-align: style sheet
attribute.

Example <H1 ALIGN="center">Article I</Hl>

Value

The following table shows values for the ALIGN attribute. Values may be treated as case-
insensitive values.

Value NN 4 IE 4 HTML4.0
center . . o
justify - - .
left . . .
right U O o

Default left

Object Model Reference

IE [window.]document .all elementID.align

<HEAD> NN all 1E all HTML all
<HEAD>. . .</HEAD> End Tag: Optional

The HEAD element contains document information that is generally not rendered as part of
the document in the browser window. At most, the TITLE element affects what the user
sees when a browser displays its content in the browser window’s titlebar.

Content of the HEAD element consists entirely of other elements that are intended to assist
the browser in working with document data. Another classification of data, handled in one
or more META elements, can also assist search engines and document parsers to learn more

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

284 <HEAD>

about the document based on abstract information supplied by the author. The following
table shows the elements that may be nested inside a HEAD element according to three
different specifications.

Element NN 4 IE 4 HTML 4.0
BASE ° ° °
BASEFONT . . -
BGSOUND - . -
TISINDEX L4 - L]
LINK ° ° .
D/_[ETA L) L) L J
NEXTID - . -
SCRIPT o o o
STYLE o o o
TITLE o o o

Example

<HEAD>

<META NAME="Author" CONTENT="Danny Goodman">
<STYLE TYPE="text/css">
H1 {color:cornflowerblue}
</STYLE>
</HEAD>
Object Model Reference

IE [window.]document . all.elementiD

Attributes

CLASS ID LANG PROFILE TITLE
DIR

CLASS NN n/a 1IE 4 HTML n/a
CLASS=" classNamel/ ...classNameNJ" Optional

An identifier generally used to associate an element with a style sheet rule defined for a
class selector. See Chapter 3. The CLASS attribute makes no sense for the HEAD element
because the attribute can’t be assigned to a class style selector that has not yet been
defined. (It gets defined later within the HEAD element.) This attribute appears to be in
Internet Explorer for the sake of consistency, rather than genuine functionality.

Value

Case-sensitive identifier. Multiple classes can be assigned by separating the class names with
spaces within the quoted attribute value.

Default None.

Object Model Reference

IE [window.]document .all.elementlD. className

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<HEAD> 285

ID NN n/a IE 4 HIML n/a

ID="clementldentifier" Optional

A unique identifier that distinguishes this element from all the rest in the document. You
can use this attribute value in Internet Explorer scripts as a way to reference the HEAD
element by ID rather than by the longer document .all.tags ("HEAD") [0] reference.

Example <HEAD ID="docHead"s>...</HEAD>
Value Case-sensitive identifier.
Default None.

Object Model Reference

IE [window.]document .all.tags ("HEAD") [0] .id
[window.]document .all.elementlD.1id

PROFILE NN n/a IE w/a HIML 4

PROFILE=" URLList" Optional

A meta data profile is a separate file (or browser built-in named definition) that defines one
or more meta data property behaviors. In some ways, a profile is like a header for meta
data whose properties are assigned in plain view within META elements inside a HEAD
element. Future browsers and external systems (such as search engines) may use the profile
information to extend the typical name/value assignments in META elements as imple-
mented in Version 4 (and earlier) browsers.

Example

<HEAD PROFILE="http://www.giantco.com/profiles/common">
<META NAME="Author" content="Jane Smith">
<META NAME="keywords" CONTENT="benefits, insurance, ">

</HEAD>
Value Any valid URL or browser profile constant.

Default Browser default.

TITLE NN nw/a 1IE 4 HIML n/a

TITLE="advisorylext" Optional

An advisory description of the element. Because the HEAD element does not display content
in the browser window, there is no region of the screen to associate with the normal tooltip
that displays TITLE attribute data.

Do not confuse the TITLE attribute of a HEAD element with the TITLE element that is
nested inside the HEAD element. The latter represents the title of the document that appears
in the browser window’s titlebar and can be used by document parsers to extract the title
for indexing purposes.

Example <HEAD TITLE="Widget Price List">...</HEAD>

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
-
=
(']
—r
®
-
@
=
]
@

286 <HR>

Value

Any string of characters. The string must be inside a matching pair of (single or double)
quotation marks.

Default None.

Object Model Reference

IE [window.]document .all.elementlD.title

<HR> NN all 1E all HTIML all
<HR> End Tag: Forbidden

The HR element draws a horizontal rule according to visual rules built into the browser with
a variety of attribute controls. As a block element, the HR element starts and ends its rule on
its own line, as if the element were surrounded by BR elements. This element is not a
content container, and many of the attributes that have been in use for a long time are
deprecated in HTML 4.0 in favor of style sheet rules. The HTML recommendation leaves
default appearance specifications up to the browser maker.

Example <HR ALIGN="center" WIDTH="80%">

Object Model Reference

IE [window.] document .all.elementlD

Attributes

ALIGN ID LANGUAGE SIZE TITLE
CLASS LANG NOSHADE STYLE WIDTH
COLOR

Event Handler Attributes

Handler NN IE HTML
onBeforeUpdate n/a 4 n/a
onBlur n/a 4 n/a
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onFocus n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onResize n/a 4 n/a

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<HR> 287

Handler NN 1IE HTML

onRowEnter n/a 4 n/a

onRowExit n/a 4 n/a

onSelectStart n/a 4 n/a
ALIGN NN all 1E all HTML 3.2
ALIGN="where" Optional

Determines how the HR element is rendered in physical relation to the next outermost
container (usually the BODY). The ALIGN attribute is deprecated in HI'ML 4.0 in favor of the
align: style sheet attribute.

Example <HR ALIGN="right">
Value One of three case-insensitive values: center | left | right.

Default left

Object Model Reference

IE [window.]document .all .elementlD.align

COLOR NN w/a 1IE 4 HIML wa
COLOR=" colorTripletOrName" Optional

Sets the color of the HR element in Internet Explorer. Setting the COLOR attribute also turns
on the NOSHADE attribute. If you want a 3-D effect rule to appear with a color, use the style
sheet color: attribute. Navigator 4, however, doesn’t apply color style sheet rules to HR
elements.

Example <HR COLOR="salmon">

Value

A hexadecimal triplet or plain-language color name. See Appendix A for acceptable plain-
language color names.

Default None.

Object Model Reference

IE [window.] document .all .elementID.color

NOSHADE NN all IE all HTML 3.2
NOSHADE Optional

The presence of the NOSHADE attribute tells the browser to render the rule as a flat (not
3-D) line. In Internet Explorer only, if you set the COLOR attribute, the browser changes the
default line style to a no-shade style.

Example <HR NOSHADE>
Value The presence of the attribute turns on no-shade rendering.

Default Oft.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

288 <HTML>

Object Model Reference

1IE [window.]document .all.elementlD.noShade

SIZE NN all 1E all HTML 3.2
SIZE="pixelCount" Optional

You can override the default thickness of the HR element by assigning a value to the SIZE
attribute. The SIZE attribute is deprecated in HTML 4.0 in favor of the height: style sheet
attribute. You can use this style rule in Internet Explorer 4, but not in Navigator 4.

Example <HR SIZE=4>
Value Any positive integer. A setting of zero still draws a one-pixel thick rule.

Default 2
Object Model Reference

1IE [window.]document .all.elementlD. size

WIDTH NN all IE all HTML 3.2
WIDTH="length" Optional

Defines the precise pixel width or percentage of available width (relative to the containing
element) to draw the HR element rule. This attribute is deprecated in HTML 4.0 in favor of
the width: style sheet attribute.

Example <HR WIDTH="75%">
Value Any length value in pixels or percentage of available space.

Default 100%

Object Model Reference

IE [window.]document .all.elementlD.width

<HTML> NN all IE all HIML all
<HTML>. . .</HTML> End Tag: Optional

The HTML element is the container of the entire document content, including the HEAD
element. Both the start and end tags are optional, but good style dictates the inclusion of
both. Typically, the HITML element start tag is the second line of an HTML file, following the
Document Type Definition (DTD) statement. If no DTD is provided in the file (it assumes
the browser’s default DTD), the HTML start tag becomes the first line of the file. The end tag
should be in the last line of the file (but it does not have to stand on its own line).

Example

<HTML>
<HEAD>

</HEAD>
<BODY>

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<I> 289

</BODY>
</HTML>

Attributes
DIR LANG TITLE VERSION

TITLE NN n/a 1IE 4 HIML n/a

TITLE="advisorylext" Optional

An advisory description of the element. In Internet Explorer 4, the title is rendered as a
tooltip when the cursor rests anywhere in the document for a moment. TITLE attributes of
other elements in the window override the attribute value set for the HTML element.

Example <HTML TITLE="It's a cool document!">...</HTML>

Value

Any string of characters. The string must be inside a matching pair of (single or double)
quotation marks.

Default None.

Object Model Reference

IE [window.]document .all.clementlD.title

VERSION NN wa IE n/a HIML 3.2
VERSION="string" Optional

The VERSION attribute is deprecated in HTML 4.0 and was never adopted by the major
browsers. Originally intended to specify the HTML DTD version supported by the docu-
ment, this information is universally supplied in the separate DTD statement (in the
IDOCTYPE element) above the HTML element in the document.

Value

Any string of characters. The string must be inside a matching pair of (single or double)
quotation marks.

Default None.

<[> NN all 1E all HTML all
<I>...</I> End Tag: Required

The I element—one of several font style elements in HTML 4.0—renders its content in an
italic version of the font face governing the next outermost HTML container. You can nest
multiple font style elements to create combined styles, such as bold italic (<I>bold-
italic text</I>).

It is up to the browser to italicize a system font or perhaps load an italic version of the
currently specified font. If you are striving for font perfection, it is best to use style sheets
(and perhaps downloadable fonts) to specify a true italic font face, rather than risk the
browser’s extrapolation of an italic face from a system font.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
-
=
(']
—r
®
-
@
=
]
@

290 <IFRAME>

You can take advantage of the containerness of this element by assigning style sheet rules
to some or all I elements in a page. For example, you may wish all I elements to be in a
red color. By assigning the style rule I{color:red}, you can do it to all elements with
only a tiny bit of code.

Although this element is not deprecated in HTML 4.0, it would not be surprising to see it
lose favor to the font-style: style sheet attribute in the future.

Example <p>This product is <I>new</I> and <I>improved</I>!</P>

Object Model Reference

1E [window.] document .all .elementID

Attributes

CLASS ID LANGUAGE STYLE TITLE
DIR LANG

Event Handler Attributes

Handler NN 1E HTML

onClick n/a 4 4

onDblClick n/a 4 4

onDragStart n/a 4 n/a

onHelp n/a 4 n/a

onKeyDown n/a 4 4

onKeyPress n/a 4 4

onKeyUp n/a 4 4

onMouseDown n/a 4 4

onMouseMove n/a 4 4

onMouseOut n/a 4 4

onMouseOver n/a 4 4

onMouseUp n/a 4 4

onSelectStart n/a 4 n/a
<IFRAME> NN n/a 1E 3 HIML 4
<IFRAME>. . .</IFRAME> End Tag: Required

An IFRAME element creates an inline frame within the natural flow of a document’s content.
The frame is a rectangular space into which you may load any other HTML document (or
use scripts to dynamically write content to the space). If you assign a value to the NAME
attribute of an IFRAME element, you may supply that name as the value of a TARGET
attribute of A, FORM, or other element that lets you define a target for a destination or
returned document.

Although an IFRAME element’s rectangular space begins immediately following the content
that comes before it (including in a line of text), all content following the end tag starts on
the next line following the frame rectangle. Text leading up to the IFRAME element can be
aligned in the same ways that text can be aligned around an IMG or OBJECT element.

Content between the start and end tags is ignored by browsers that support the IFRAME
element. All others display such content as inline HTML content (as a way to let users know

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<IFRAME> 291

what they’re missing and perhaps provide a link to related information). The Navigator 4
element that comes closest to the functionality and behavior of the IFRAME element is the
ILAYER element.

Example

<IFRAME SRC="quotes.html" WIDTH=150 HEIGHT=90>

Click here to see the latest quotes

</IFRAME>

Object Model Reference

IE [window.] document . fiimeName

Attributes

ALIGN DATASRC ID MARGINWIDTH STYLE

BORDER FRAMEBORDER LANG NAME TITLE
BORDERCOLOR FRAMESPACING LANGUAGE NORESIZE VSPACE

CLASS HEIGHT LONGDESC SCROLLING WIDTH

DATAFLD HSPACE MARGINHEIGHT SRC

ALIGN NN w/a IE 3 HTML 4
ALIGN="alignmentConstant" Optional

Determines how the rectangle of the IFRAME element aligns within the context of
surrounding content. See the section “Alignment Constants” earlier in this chapter for a
description of the possibilities defined in Internet Explorer for this attribute. Only a subset
of the allowed constant values are specified in the HTML recommendation, whereas
Internet Explorer 4 runs the gamut.

Example
<IFRAME SRC="quotes.html" WIDTH=150 HEIGHT=90 ALIGN="baseline"></IFRAME>

Value Case-insensitive constant value.

Default bottom

Object Model Reference

IE [window.] document . fiameName.align

BORDER NN n/a IE 4 HTIML wa
BORDER=" pixelCount" Optional

Theory and practice of IFRAME element borders in Internet Explorer 4 diverge a lot, espe-
cially when trying to match behaviors across operating systems. IE 4 for the Macintosh
displays IFRAME elements with a 3-D effect around the border that is always visible, no
matter what border attribute settings are assigned. For the Windows 95 version, the 3-D
effect goes away when you turn off the FRAMEBORDER attribute. As for the BORDER attribute,
the size of the border acts as a margin setting in IE 4/Mac, but only for the top and left
edges of the frame space: content is displaced to the right and down by the border size,
causing the content to flow over the right and bottom edges—quite a mess. The BORDER

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
-
=
(']
—r
®
-
@
=
]
@

292 <IFRAME>

attribute setting appears to have no effect in Windows 95. In no case does the border
around an IFRAME look like a FRAME element border in IE 4.

That the HTML 4.0 specification does not include a BORDER attribute might lead one to
believe it prefers the use of style sheet borders, instead of borders tied only to frames. If
you want a genuine border around an IFRAME element in IE 4, use a style sheet border
instead. Its behavior is far more consistent and predictable (and is thoroughly unrelated to
nonfunctioning style sheet borders for frames defined by a FRAMESET).

lixan@pha <IFRAME SRC="quotes.html" WIDTH=150 HEIGHT=90 BORDER=10></IFRAME>

Value A positive integer value.

Default 0

Object Model Reference

IE [window.] document . fiameName.border

BORDERCOLOR NN w/a IE 4 HIML wa
BORDERCOLOR=" colorTripletOrName" Optional

The BORDERCOLOR attribute should assign a color to whatever border surrounds an IFRAME
element. In practice, because borders controlled by attributes do not appear in the
Windows 95 version of Internet Explorer 4, no color appears either. On the Macintosh side,
an assigned color may appear on two adjacent edges of an IFRAME element, but the look is
unpredictable. Use style sheet rules to assign borders and border colors to IFRAME
elements.

Example

<IFRAME SRC="quotes.html" WIDTH=150 HEIGHT=90 BORDERCOLOR="salmon">
</IFRAME>

Value

A hexadecimal triplet or plain-language color name. See Appendix A for acceptable plain-
language color names.

Default None.

Object Model Reference

IE [window.] document . fiameName.borderColor

DATAFLD NN n/a 1E 4 HTIML wa
DATAFLD=" columnName" Optional

Used with IE 4 data binding to associate a remote data source column name in lieu of an
SRC attribute for an IFRAME element. The data source column must contain a valid URI
(relative or absolute). A DATASRC attribute must also be set for the element.

Example <IFRAME DATASRC="#DBSRC3" DATAFLD="newsURL"></IFRAME>
Value Case-sensitive identifier.

Default None.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<IFRAME> 293

Object Model Reference

IE [window.] document . firmeName.dataF1ld

DATASRC NN n/a IE 4 HIML wa
DATASRC=" dataSourceName" Optional

Used with IE 4 data binding to specify the name of the remote ODBC data source (such as
an Oracle or SQL Server database) to be associated with the element. Content from the data
source is specified via the DATAFLD attribute.

Example <IFRAME DATASRC="#DBSRC3" DATAFLD="newsURL"></IFRAME>

Value Case-sensitive identifier.

=
=
=
-
=
(']
—r
®
-
@
=
]
@

Default None.

Object Model Reference

IE [window.] document . fiameName.dataSrc

FRAMEBORDER NN n/a 1E 3 HIML 4

FRAMEBORDER=" borderSwitch" Optional

Controls whether an individual frame within a frameset displays a border. Setting IFRAME
element borders via the element’s attributes is chancy at best in Internet Explorer 4. Use
style sheet borders instead.

Example
<IFRAME SRC="quotes.html" WIDTH=150 HEIGHT=90 FRAMEBORDER=0></IFRAME>

Value

On-off values for this attribute vary with the source. HTML 4.0 specifies the values of 1 (on)
and 0 (off). Navigator uses yes and no. Internet Explorer 4 accepts the HTML values and
yes or no.

Default 1

Object Model Reference

IE [window.] document . fiameName. frameBorder

FRAMESPACING NN wa IE 4 HIML wa
FRAMESPACING="pixellength" Optional

Controls the thickness of space between multiple, adjacent IFRAME elements. In practice,
the attribute has no effect in Internet Explorer 4. Use style sheet border attributes to create
borders around IFRAME elements.

Value A positive integer.

Default 0

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

294 <IFRAME>

Object Model Reference

1IE [window.] document . firmeName. frameSpacing

HEIGHT, WIDTH NN wa 1IE 4 HIML wa
HEIGHT="length" Optional

WIDTH="length"

Microsoft HTML documentation for IE 4 says that the HEIGHT and WIDTH attributes control
the size of a IFRAME element. The attributes are recognized in IE 4 for Windows, but not
for the Macintosh. Moreover, these attributes are not recognized as scriptable properties—
often a sign that the attributes are not genuinely supported. Use these attributes at your
own risk. Instead, you can rely on style sheet positioning (using relative positioning) to set
the height and width of the element in all operating system platforms.

Example <IFRAME SRC="nav.html" HEIGHT=200 WIDTH=200>
Value Any length value in pixels or percentage of available space.

Default A width of 300 pixels; a height of 150 pixels.

HSPACE, VSPACE NN wa IE 4 HIML wa

HSPACE=" pixelCount" Optional
VSPACE="pixelCount"

Sets padding around an IFRAME element within content flow. The HSPACE attribute controls
padding along the left and right edges (horizontal padding), and the VSPACE attribute
controls padding along the top and bottom edges (vertical padding). Adding such padding
provides an empty cushion around the frame. As an alternate, you can specify the various
margin style sheet settings, especially if you want to open space along only one edge.

Example <IFRAME SRC="nav.html" HSPACE=20 VSPACE=10>

Value Any positive integer.

Default 0
LONGDESC NN n/a IE w/a HIML 4
LONGDESC=" [RL" Optional

Specifies a URL of a document that contains a longer description of the element than what
the content of the TITLE attribute reveals. One application of this attribute in future
browsers is to retrieve an annotated description of the element for users who cannot read
the browser screen.

Example

<IFRAME LONGDESC="navDesc.html" TITLE="Navigation Bar" SRC="navbar.html">
</IFRAME>

Value Any valid URI, including complete and relative URLs.

Default None.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<IFRAME> 295

MARGINHEIGHT, MARGINWIDTH NN n/a IE 3 HIML 4

MARGINHEIGHT=" pixelCount" Optional
MARGINWIDTH=" pixelCount"

Determine the number of pixels between the inner edge of a frame and the content
rendered inside the frame. The MARGINHEIGHT attribute controls space along the top and
(when scrolled) the bottom edges of a frame; the MARGINWIDTH attribute controls space on
the left and right edges of a frame. The HTML 4.0 specification leaves default behavior up
to browsers.

Without any prompting, Internet Explorer 4 automatically inserts a margin of 14 (Windows)
or 8 (Macintosh) pixels inside a frame. But if you attempt to override the default behavior,
be aware that setting any one of these two attributes causes the value of the other to go to
zero. Therefore, unless you want the content to be absolutely flush with various frame
edges, you need to assign values to both attributes. Due to the disparity in default values
for each operating system, you cannot assign truly default values to these attributes.

Example
<IFRAME SRC="navbar.html" MARGINHEIGHT=20 MARGINWIDTH=14></IFRAME>

Value Any positive integer value or zero.

Default 14 (Windows) or 8 (Macintosh).

Object Model Reference

IE [window.] document . fiameName.marginHeight
[window.] document . fiameName.marginwWidth

NAME NN n/a 1E 3 HIML 4
=" elementldentifier" Optional

When links and forms must load their destination or returned documents into frames other
than the one holding the link or form, those elements have TARGET attributes indicating
which frame receives the new content. To direct such content to a frame, the frame must
have a value assigned to its NAME attribute. That same value is assigned to the TARGET
attribute of the A or FORM element. Client-side scripting also uses the frame’s name in
building references to other frames or content in other frames. It is good practice to assign a
unique identifying name to all frames.

Example <IFRAME NAME="navbar" SRC="nav.html"></IFRAME>
Value Case-sensitive identifier.

Default None.

Object Model Reference

IE [window.] document . fiameName.name

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

296 <IFRAME>

NORESIZE NN n/a 1E 4 HIML wa

NORESIZE Optional

It's curious why the NORESIZE attribute is included in Internet Explorer for the IFRAME
element. Regardless of the setting, an IFRAME element cannot be manually resized by the
user.

Example <IFRAME SRC="navbar.html" NORESIZE></IFRAME>
Value
The presence of the attribute makes the frame nonresizable (although so does its absence).

Default An IFRAME element is supposed to be resizable by default, but in practice it is
not.

Object Model Reference

IE [window.] document . fiameName.noResize

SCROLLING NN n/a IE 3 HIML 4
SCROLLING=auto | no | yes Optional

By default, browsers add vertical and/or horizontal scrollbars when the content loaded into
an inline frame exceeds the visible content region of the element. Scrollbars can affect the
layout of some content because they occupy space normally devoted to content (that is, the
frame does not expand to accommodate scrollbars). Also, due to differences in default font
sizes in browsers and operating system versions, a given collection of text content may
display differently in different clients. If you want to prevent scrollbars from appearing in
the frame, set the SCROLLING attribute to no; if you want scrollbars to be in the frame at all
times, set the attribute to yes. In the latter case, if the content does not require scrolling, the
scrollbars are visible, but disabled.

Setting the SCROLLING attribute to no should be used only after you have tested on all
browsers and platforms that mission-critical content is always visible in the frame. If the
frame is set to not scroll, some users might not be able to see all content of the frame.

Example <IFRAME SRC="navbar.html" SCROLLING=no></IFRAME>
Value Case-insensitive constant values (optionally quoted): auto | no | yes.

Default auto

Object Model Reference

IE [window.]document . fiameName. scrolling

SRC NN n/a 1IE 3 HIML 4
SRC="URL" Optional

Defines the URL of the content to be loaded into the IFRAME element. The URL can be an
absolute URL or one relative to the URL of the document containing the frameset specifica-
tions. You may also use the javascript: pseudo-URL to have the returned value of a
script appear in the frame. If you omit the SRC attribute, the frame opens empty.

Example <IFRAME SRC="navbar.html"></IFRAME>

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<ILAYER> 297

Value A complete or relative URL or a javascript: pseudo-URL.

Default None.

Object Model Reference

IE [window.] document . fiameName. src

STYLE NN n/a IE 4 HIML 4
STYLE="styleSheetProperties" Optional

This attribute lets you set one or more style sheet rule property assignments for the current
element. Styles affect the inline frame and not its content. Therefore, a border assigned to
an IFRAME element style appears around the frame, not inside the frame.

Example <IFRAME SRC="navbar.html" STYLE="border:solid blue 3px"></IFRAME>

Value

An entire CSS-syntax style sheet rule is enclosed in quotes. Multiple style attribute settings
are separated by semicolons. Style sheet attributes are detailed in Chapter 10.

Default None.
Object Model Reference

IE [window.] document . fiameName. style

VSPACE
See HSPACE.

WIDTH
See HEIGHT.

<ILAYER> NN 4 IE wa HIML wa

<ILAYER>...</ILAYER> End Tag: Required

An ILAYER element is an inline version of the Navigator-specific LAYER element. In some
respects, the ILAYER element works like the IFRAME element in Internet Explorer, but an
ILAYER is automatically regarded as a positionable element in Navigator’s object model
(e.g., like a block-level element whose CSS position: attribute is set to relative). As a
result, many of the attributes are the same as the LAYER element and are named according
to the Navigator way of positioning, sizing, and stacking positionable elements. It is unlikely
that the LAYER or ILAYER elements will be adopted by the W3C, so you are encouraged to
use CSS-Positioning syntax (which works on both browser platforms) instead.

Content for an ILAYER element can be read in from a separate file (with the SRC attribute)
or wired into the current document by placing the HTML between the start and end tags.
You can include both types of content in the same ILAYER element. Content from the SRC
document is rendered first (as its own block-level element), with additional content starting
on its own line below the external content’s rectangle.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

298 <ILAYER>

Example
<ILAYER ID="thingyl" SRC="quotes.html" WIDTH=150 HEIGHT=90></ILAYER>

Object Model Reference

NN [window.] document . layerName

Attributes

ABOVE BGCOLOR ID TOP WIDTH
BACKGROUND CLIP LEFT VISIBILITY Z—-INDEX
BELOW HEIGHT SRC

Event Handler Attributes

Handler NN 1E HTML

onBlur 4 n/a n/a

onFocus 4 n/a n/a

onLoad 4 n/a n/a

onMouseDown 4 n/a n/a

onMouseOut 4 n/a n/a

onMouseOver 4 n/a n/a

onMouseUp 4 n/a n/a
ABOVE NN 4 IE n/a HIML wa
ABOVE="layerID" Optional

Names the positionable element that is to be above (in front of) the current ILAYER in the
stacking order. This is a different way to set the Z-INDEX attribute that does not rely on an
arbitrary numbering system. If you use the ABOVE attribute, do not use the BELOW or Z-INDEX
attribute for the same ILAYER element.

Example <ILAYER ID="thingy4" SRC="quotes.html" ABOVE="thingy3"></ILAYER>
Value Case-sensitive identifier.

Default None.

Object Model Reference

NN [window.] document . layerName. above

BACKGROUND NN 4 IE wa HIML n/a
BACKGROUND="URL" Optional

Specifies an image file that is used as a backdrop to the text and other content of the
ILAYER element. Unlike normal images that get loaded into browser content, a back-
ground image loads in its original size (without scaling) and tiles to fill the available layer
space. Smaller images download faster but are obviously repeated more often in the back-
ground. Animated GIFs are also allowable but very distracting to the reader. When selecting
a background image, be sure it is very muted in comparison to the main content so that the
content stands out clearly. Background images, if used at all, should be extremely subtle.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<ILAYER> 299

Example

<ILAYER ID="thingy4" SRC="quotes.html" BACKGROUND="blueCrinkle.jpg">
</ILAYER>

Value Any valid URL to an image file, including complete and relative URLs.

Default None.

Object Model Reference

NN [window.] document . layerName.background

BELOW NN 4 IE n/a HIML n/a
BELOW="layerID" Optional

Names the positionable element that is to be below (behind) the current ILAYER in the
stacking order. This is a different way to set the Z-INDEX attribute that does not rely on an
arbitrary numbering system. If you use the BELOW attribute, do not use the ABOVE or Z-INDEX
attribute for the same ILAYER element.

Example <ILAYER ID="thingy4" SRC="quotes.html" BELOW="thingy5"></ILAYER>
Value Case-sensitive identifier.

Default None.

Object Model Reference

NN [window.] document . layerName.below

BGCOLOR NN 4 IE ma HIML wa
BGCOLOR=" colorTripletOrName" Optional

Establishes a fill color (behind the text and other content) for the entire layer rectangle. If
you combine a BGCOLOR and BACKGROUND, any transparent areas of the background image
let the background color show through.

Example <ILAYER SRC="quotes.html" BGCOLOR="tan"></ILAYER>

Value

A hexadecimal triplet or plain-language color name. A setting of empty is interpreted as
"#000000" (black). See Appendix A for acceptable plain-language color names.

Default Varies with operating system.

Object Model Reference

NN [window.] document . layerName.bgColor

CLIP NN 4 IE wa HIML n/a
CLIP="[lefiPixel, topPixel,] rightPixel, bottomPixel" Optional

A clipping region is a rectangular view to the full ILAYER content. Only content that is
within the clipping rectangle can be seen on the page. The default value of the CLIP
attribute is determined by the space required to display the content as it naturally flows into

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

300 <ILAYER>

the element. Setting the CLIP attribute lets you rein in long content that might flow beyond
a fixed rectangle desired for the page design.

Example <ILAYER SRC="quotes.html" CLIP="50,50"></ILAYER>

Value

CLIP attribute values are pixel measures from the top and left edges of the element as it
flows in the document. The order of values is clockwise from the left edge, around the rect-
angle sides: left, top, right, bottom. If you supply only two values, Navigator assumes the
left and top values are zero, meaning that you wish to adjust only the right and bottom
edges. Thus, a setting of "50, 50" means that the clipping region is 50-pixels square, starting
at the top-left corner of the layer’s rectangle. If you want the same size view, but starting 10
pixels in from the left, the CLIP attribute setting becomes "10, 0, 60, 50".

Default Naturally flowing viewing area of ILAYER content.

Object Model Reference

NN [window.]document . layerName.clip.left
[window.] document . layerName.clip. top
[window.] document . layerName.clip.right
[window.]document . layerName.clip.bottom

HEIGHT, WIDTH NN 4 IE w/a HIML wa

HEIGHT="length" Optional
WIDTH="length"

Define the minimum size of the layer as it flows in the document. When you add content to
the layer, however, the attribute settings do not restrict the amount of the content that is
visible along either axis. For example, if you display an image in an ILAYER that is 120
pixels wide by 90 pixels high, the actual visible size of an ILAYER element whose HEIGHT
and WIDTH attributes are set to a smaller size expands to allow the full image to appear.
The same happens to text or other content: the viewable region expands to allow all
content to appear. To restrict the visible portion of the content, set the CLIP attribute.

Setting the HEIGHT and WIDTH attributes to specific sizes is helpful when you are creating a
colored or patterned rectangle (via the BGCOLOR or BACKGROUND attributes) to act as an
underlying layer beneath some other positioned content. Without content pushing on the
edges of the TLAYER, the HEIGHT and WIDTH attributes set the clipping region to their sizes.

Example <ILAYER BGCOLOR="yellow" HEIGHT=100 WIDTH=100></ILAYER>

Value

Positive integer values (optionally quoted) or percentage values (quoted). You can reduce
both values to zero to not only hide the element (which you can also do with the
VISIBILITY attribute), but prevent the element from occupying any page space.

Default Naturally flowing viewing area of ILAYER content.

Object Model Reference

NN [window.] document . layerName.height
[window.] document . layerName.width

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<ILAYER> 301

ID NN 4 IE w/a HIML n/a

ID="clementldentifier" Optional

A unique identifier that distinguishes this element from all the rest in the document. This is
the identifier used as values for the ABOVE and BELOW attributes. Scripts also use the ID
attribute value as the ILAYER element’s name for object references.

Example
<ILAYER ID="oldYeller" BGCOLOR="yellow" HEIGHT=100 WIDTH=100></ILAYER>

Value Case-sensitive identifier.

Default None.

Object Model Reference

IE [window.] document . layerName.name

LEFT, TOP NN 4 IE w/a HIML wa
LEFT="pixelCount" Optional

TOP=" pixelCount"

Define the positioned offset of the left and top edges of the layer relative to the spot in the
document where the TLAYER element would normally appear. This precise location relative
to the page varies because an ILAYER element is an inline layer, which means that it can
start anywhere within normally flowing HTML content. When you set either of these
attributes, Navigator preserves the space in the document where the ILAYER element
appears, rather than cinch up surrounding content to fill space vacated by the element that
has shifted its location. You are therefore likely to set these attributes for an ILAYER only
when attempting to accomplish a look tailored to very customized content (perhaps an
ILAYER amid inflow images).

Example <ILAYER BGCOLOR="yellow" LEFT=10 TOP=50></ILAYER>

Value Positive integer values (optionally quoted).
Default 0

Object Model Reference

NN [window.] document . layerName. left

[window.] document . layerName. top

SRC NN 4 IE w/a HIML w/a
SRC="URL" Optional

To load the content of an external HTML file into an ILAYER element, assign the URL of
that file to the SRC attribute. Any HTML content between the ILAYER start and end tags is
rendered on the page after the content loaded from the SRC URL. If you omit the SRC
attribute, only content between the tags is rendered. Scripts can change the corresponding
object property (src) after the document has loaded to dynamically change content within
the ILAYER element (without reloading the main document).

Example <ILAYER SRC="quotes.html"></ILAYER>

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

302 <ILAYER>

Value A complete or relative URL.
Default None.
Object Model Reference

NN [window.] document . layerName. src

TOP
See LEFT.

VISIBILITY NN 4 IE w/a HIML wa

VISIBILITY="uvisibilityConstant" Optional

Determines whether Navigator displays the ILAYER element. The default behavior is for a
layer to inherit the VISIBILITY attribute of its next outermost (parent) layer. For an
ILAYER element that is part of the basic document body, this means that the layer is seen
by default (the base layer is always visible). To hide a layer when the page loads, set the
VISIBILITY attribute to "hidden". You need set the attribute to "show" only if the
TILAYER element is nested within another LAYER whose VISIBILITY value is set to (or is
inherited as) "hidden".

Regardless of the VISIBILITY attribute setting, an ILAYER element always occupies its
normal inflow space in the document. This allows Navigator to change the visibility on the
fly (via scripting) without reloading the document. (Navigator 4 does not automatically
reflow changed content.)

Example <ILAYER SRC="quotes.html" VISIBILITY="hidden"></ILAYER>
Value One of the accepted constants: hidden | inherit | visible.
Default inherit

Object Model Reference

NN [window.] document . layerName.visibility

WIDTH
See HEIGHT.

Z-INDEX NN 4 IE wa HTML wa
Z-INDEX="layerNumber" Optional

Controls the positioning of layers along the Z-axis (front-to-back) of the document relative
to the next outermost layer container. When the Z-INDEX values of two or more position-
able elements within the same container (such as the base document layer) are identical
numbers, the loading order of the elements in the HTML source code controls the stacking
order, with the later elements stacked in front of earlier ones. The default Z-INDEX value
for all positionable elements is zero. Therefore, if you want only one positionable element
to appear in front of all the others that stack in their default order, you simply assign any
positive value (even 1) to that stand-out element. Stacking order of positionable elements
can be changed on-the-fly via scripting.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

 303

Example <ILAYER SRC="quotes.html" Z-INDEX=1></ILAYER>

Value Any integer.

Default 0

Object Model Reference

NN [window.] document . layerName . zIndex

 NN all IE all HTIML all
 End Tag: Forbidden

The IMG element displays a graphical image in whatever MIME types the browser is
equipped to handle. Common image MIME types are GIF and JPEG. IMG elements are inline
elements, appearing anywhere in the document you specify, including in the middle of a
line of text. A large number of attributes affecting visual presentation of the element are
deprecated in HTML 4.0 in favor of style sheet rules. You will be able to use the attributes
safely for many browser generations to come, however, because of the need to be back-
ward compatible with the large collection of image-laden documents already on the Web.
Note, too, that if you intend to use style sheets for IMG element borders and margins in
Navigator 4, you must wrap the IMG element inside DIV or SPAN elements and assign the
style sheets to the surrounding element. This workaround works with Internet Explorer, too,
so you can use style sheets in cross-browser deployment.

If you want to make an entire image a clickable link, wrap the IMG element inside an A
element. To eliminate the typical link border around the image, set the BORDER attribute to
0. And for image maps (where different segments of an image link to different destina-
tions), the HTML recommendation encourages the use of client-side image maps (via the
USEMAP attribute) over the server-side image map (ISMAP).

To be backward compatible with earlier scriptable browsers, it is advisable to include
HEIGHT and WIDTH attribute assignments in all IMG element tags. When values are assigned
to these attributes, the browser renders pages more quickly because it doesn’t have to wait
for the image to load in order to determine its size and organize other content on the page.

Example

Object Model Reference
NN [window.] document . imageName
[window.]document . images[i]

IE [window.] document . imageName
[window.]document . images [1i]
[window.]document .all . elementlD

Attributes

ALIGN DATASRC ID LOOP STYLE
ALT DIR ISMAP LOWSRC TITLE
BORDER DYNSRC LANG NAME USEMAP
CLASS HEIGHT LANGUAGE SRC VSPACE
DATAFLD HSPACE LONGDESC START WIDTH

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

304

Event Handler Attributes

Handler NN 1IE HTML
onAbort 3 4 n/a
onAfterUpdate n/a 4 n/a
onBeforeUpdate n/a 4 n/a
onBlur n/a 4 n/a
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onError 3 4 n/a
onFocus n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onLoad 3 4 n/a
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onResize n/a 4 n/a
onRowEnter n/a 4 n/a
onRowExit n/a 4 n/a
onSelectStart n/a 4 n/a
ALIGN NN all IE all HTML all
ALIGN="where" Optional

Determines how the IMG element is rendered in physical relation to the element’s next
outermost container and surrounding content. Some settings also let you “float” the image
to the left or right margin and let surrounding text wrap around the image (but no wrap-
ping with a centered image).

Most of the rules for alignment constant values cited at the beginning of this chapter apply
to the IMG element. Typically, ALIGN attributes are deprecated in HTML 4.0 in favor of the
style sheet attributes. But if you require backward compatibility for your document, stick
with the ALIGN attribute.

Example

Value

Each browser defines a different set of values for this attribute. Although the ALIGN attribute
has a long heritage, not all values do. The more esoteric values, such as absmiddle and

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

 305

baseline, were added to browser offerings in Navigator 3 and Internet Explorer 4. Select
the value(s) from the following table that work for your deployment:

Value NN 4 IE 4 HTML 4.0
absbottom . . -
absmiddle . . -
baseline o . -
bottom . . J
left U J J
middle . . .
right o J J
texttop L4 L -
top . . .

Default bottom

Object Model Reference

IE [window.] document . imageName.align
[window.]document .images[i] .align

ALT NN all IE all HIML all
ALT="fextMessage" Required

In a world littered with graphical browsers, it is often hard to remember that not everyone
can, or chooses to, download images. Aside from those using VT100 terminals with
browsers such as Lynx, pocket computers often offer better performance when images don’t
have to be downloaded and rendered. To replace the image in such a browser, the text
assigned to the ALT attribute is displayed where the IMG element appears on the page. The
ALT attribute should contain a brief description of what the image is. The HTML recommen-
dation calls the ALT attribute a requirement for the IMG element, but in practice, graphical
browsers can get by without it. Still, some browsers display the ALT text initially as the
image downloads from the server, providing a temporary alternate display. Be aware that
the size of the image area on the page may limit the amount of text you can use for ALT.
Make sure the description is readable.

Example

<IMG SRC="navbar.gif" USEMAP="#nav" ALT="Navigation Bar" WIDTH=400
HEIGHT=50>

Value Any quoted string of characters.

Default None.

Object Model Reference

IE [window.] document . imageName.alt
[window.]document . images[i] .alt

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

306

BORDER NN all IE all HTML 3.2

BORDER=pixels Optional

Navigator provides a dedicated attribute to specifying the thickness of a border around an
IMG element. Default rendering of the border is in black, but if the IMG element is wrapped
inside an A element, the border takes on the document’s various link colors (depending on
link state). If you want a different color for a plain border, use style sheets (with the appro-
priate DIV or SPAN wrapper for Navigator 4). When a link surrounds the image, you can
eliminate the colored border altogether by setting the BORDER attribute size to zero.

Example

Value Any integer pixel value.

Default 0
Object Model Reference
NN [window.] document . imageName.border

[window.]document .images[i] .border

IE [window.] document . imageName.border
[window.]document . images[i] .border

DATAFLD NN n/a 1IE 4 HIML n/a

DATAFLD=" columnName" Optional

Used with IE 4 data binding to associate a remote data source column name with the SRC
attribute URL of an IMG element. The data source column must contain an absolute or rela-
tive URL. A DATASRC attribute must also be set for the IMG element.

Example
Value Case-sensitive identifier.

Default None.

Object Model Reference

IE [window.] document . imageName.dataFld
[window.]document . images[i] .dataFld

DATASRC NN n/a IE 4 HIML n/a

DATASRC=" dataSourceName" Optional

Used with IE 4 data binding to specify the name of the remote ODBC data source (such as
an Oracle or SQL Server database) to be associated with the element. Content from the data
source is specified via the DATAFLD attribute.

Example
Value Case-sensitive identifier.

Default None.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

 307

Object Model Reference

IE [window.]document . imageName.dataSrc
[window.]document . images[i] .dataSrc

DYNSRC NN n/a IE 4 HIML wa
DYNSRC="URL" Optional

Internet Explorer 4 allows video clips (and VRML) to be displayed via the IMG element (as
an alternate to the EMBED or OBJECT element). To help the browser differentiate between a
dynamic and static image source, you use the DYNSRC attribute in place of the SRC attribute
to load the video clip. All other visual aspects of the IMG element are therefore immedi-
ately applicable to the rectangular region devoted to playing the video clip. See also the
LOOP attribute for controlling the frequency of clip play and the START attribute.

Example
Value Any valid URL, including complete and relative URLs.

Default None.

Object Model Reference

IE [window.]document . images[i] .dynsrc
[window.]document . imageName.dynsrc

HEIGHT, WIDTH NN all 1E all HTML 3.2
HEIGHT="length" Optional
WIDTH=" leng[b "

Define the dimensions for the space on the page reserved for the image, regardless of the
actual size of the image. For best performance (and backward script compatibility), you
should set these attributes to the actual height and width of the source image. If you supply
a different measure, the browser scales the image to fit the space defined by these
attributes.

Example

Value
Positive integer values (optionally quoted) or percentage values (quoted).

Default Actual size of source image.

Object Model Reference

NN [window.] document . imageName.height
[window.]document . images[i] .height
[window.]document . imageName.width
[window.]document . images[i] .width

IE [window.] document . imageName.height
[window.]document . images[i] .height
[window.] document . imageName.width
[window.]document . images[1i] .width

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

308

HSPACE, VSPACE NN all 1E all HTML 3.2

HSPACE=pixelCount Optional
VSPACE=pixelCount

Define a margin that acts as whitespace padding around the visual content of the IMG
element. The HSPACE establishes a margin on the left and right sides of the image rect-
angle; the VSPACE establishes a margin on the top and bottom sides of the image rectangle.
Use the margin or padding attributes to duplicate the same functionality with style sheets
because these attributes are deprecated in HTML 4.0.

Example

Value

Integer representing the number of pixels for the width of the margin on the relevant sides
of the IMG element’s rectangle.

Default 0
Object Model Reference
NN [window.]document . imageName. hspace

[window.]document . images[1i] .hspace
[window.]document . imageName.vspace
[window.]document . images[i] . vspace

IE [window.] document . imageName . hspace
[window.]document . images[i] .hspace
[window.] document . imageName . vspace
[window.]document . images[1i] .vspace

ID NN 4 1IE 3 HIML 4
ID="clementldentifier" Optional

A unique identifier that distinguishes this element from all the rest in the document. Can be
used to associate a single element with a style rule naming this attribute value as an ID
selector. An element can have an ID assigned for uniqueness as well as a class for inclu-
sion within a group. See Chapter 3.

If you assign an ID attribute and not a NAME attribute, the value of the ID attribute cannot
be used reliably as the IMG element’s name in script reference forms that use the element
name. Some browser platforms insist on the NAME attribute being used in an image name
reference.

Example <ING SRC="desk3.gif" ID="desk3" HEIGHT=90 WIDTH=120>
Value Case-sensitive identifier.

Default None.

Object Model Reference

1E [window.] document . imageName.id
[window.]document . images[i] .id

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

 309

ISMAP NN all 1E all HTIML all

ISMAP Optional

The Boolean ISMAP attribute tells the browser that the IMG element is acting as a server-
side image map. To turn an image into a server-side image map, wrap the IMG element
with an A element whose HREF attribute points to the URL of the CGI program that knows
how to interpret the click coordinate information. The browser appends coordinate informa-
tion about the click to the URL like a GET form method appends form element data to the
ACTION attribute URL. In the following example, if a user clicks at the coordinate point 50,
25, the browser sends "http://www.giantco.com/cgi-bin/nav?50,25" to the server. A
server CGI program named nav might examine the region in which the coordinate point
appears and send the relevant HTML back to the client.

More recent browsers allow client-side image maps (see the USEMAP attribute), which
operate more quickly for the user because there is no communication with the server to
carry out the examination of the click coordinate point.

Example

Value The presence of the attribute turns the feature on.

Default Oft.

Object Model Reference

IE [window.] document . imageName. isMap
[window.]document . images[i] .isMap

LONGDESC NN n/a IE w/a HIML 4

LONGDESC=" URL" Optional

Specifies a URL of a document that contains a longer description of the element than what
the content of the ALT or TITLE attributes reveal. One application of this attribute in future
browsers is to retrieve an annotated description of the element for users who cannot read
the browser screen.

Example

Value Any valid URL, including complete and relative URLs.

Default None.

LOOP NN na IE 3 HTML wa
LOOP="loopCount" Optional

If you specify a video clip with the DYNSRC attribute, the LOOP attribute controls how many
times the clip should play (“loop”) after it loads. If you set the value to zero, the clip loads
but does not play initially. Video clips that are not currently running play when the user

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

310

double-clicks on the image, but you may need to provide instructions for that on the page
because there are no other obvious controls.

Example

Value Any positive integer or zero.

Default 1
Object Model Reference
IE [window.] document . imageName. loop

[window.]document . images[i] .loop

LOWSRC NN 3 IE 4 HIML wa

LOWSRC=" URL" Optional

Both Navigator and Internet Explorer recognize the fact that not everyone has a fast Internet
connection and that high-resolution images can take a long time to download to the client.
To fill the void, the LOWSRC attribute lets the author specify a URL of a lower-resolution (or
alternate) image to download into the document space first. The LOWSRC image should be
the same pixel size as the primary SRC image.

Example
Value Any valid URL, including complete and relative URLs.

Default None.

Object Model Reference

NN [window.] document . imageName. lowsrc
[window.]document . images[i] .lowsrc

IE [window.] document . imageName. lowsrc
[window.]document . images[i] . lowsrc

NAME NN 3 1IE 4 HIML w/a

NAME=" elementldentifier" Optional

If you are scripting an image (especially swapping precached images), it is usually more
convenient to create a reference to the IMG element by using a unique name you assign to
the item. Thus, if you edit the page and move or delete multiple IMG elements on the page,
you do not have to worry about adjusting index values to array-style references
(document . images [i]).

Example
Value Case-sensitive identifier.

Default None.

Object Model Reference

NN [window.]document . images[i] .name
[window.] document . imageName. name

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

 311

IE [window.]document . images [i] .name
[window.] document . imageName.name

SRC NN all IE all HIML all
SRC="URL" Required

URL to a file containing image data that is displayed through the IMG element. With the
exception of specifying a DYNSRC attribute in Internet Explorer for video clips, the SRC
attribute is required if you want to see any image in the IMG element space. The browser
must be equipped to handle the image MIME type. On the World Wide Web, the most
common image formats are GIF and JPEG.

Example
Value A complete or relative URL.

Default None.

Object Model Reference

NN [window.]document . images[i] .src
[window.]document . imageName. src

IE [window.]document . images[i] .src
[window.] document . imageName. src

START NN wa 1E 4 HIML wa

START="fileopen" | "mouseover" Optional

Whenever you set the DYNSRC attribute of an IMG to display a video clip, you can direct the
element to start playing the video immediately after the video file loads or when the user
rolls the cursor over the image. The START attribute lets you decide the best user interface
for your page.

Example

Value One of the two case-insensitive constant values: fileopen | mouseover.

Default fileopen

Object Model Reference

IE [window.]document .images[i] .start
[window.]document . imageName. start

STYLE NN 4 1IE 3 HIML 4
STYLE="styleSheetProperties" Optional

This attribute lets you set one or more style sheet rule property assignments for the current
element. You may use the CSS or JavaScript syntax for assigning style attributes. But if you
are designing the page for cross-browser deployment, use only the CSS syntax, which both
Navigator and Internet Explorer support.

For use in Version 4 browsers, style sheets are recommended over dedicated attributes
where applicable, but due to the implementation in Navigator 4, you need to wrap IMG

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
-
=
(']
—r
®
-
@
=
]
@

312

elements with DIV or SPAN elements that contain border and margin-related style sheet
rules to make them work with IMG elements. The following example with the embedded
STYLE attribute works only in Internet Explorer.

Example

Value

An entire CSS-syntax style sheet rule is enclosed in quotes. Multiple style attribute settings
are separated by semicolons. Style sheet attributes are detailed in Chapter 10.

Default None.

Object Model Reference

IE [window.]document . images[i] .style
[window.]document . imageName.style

USEMAP NN all IE all HTIML 3.2
USEMAP=" mapURL" Optional

You can define a client-side image map with the help of the MAP and AREA elements. The
MAP element is a named container for one or more AREA element. Each AREA element sets a
“hot” area on an image and assigns a link destination (and other settings) for a response to
the user clicking in that region. The purpose of the USEMAP attribute is to establish a
connection between the IMG element and a named MAP element in the same document. In
some respects, the MAP element’s name is treated like an anchor in that the “address” of the
MAP element is the element’s name preceded by a # symbol.

Example
Value
A URL to the MAP element in the same document (a hash symbol plus the MAP name).

Default None.

Object Model Reference

IE [window.] document . imageName.useMap
[window.]document . images[i] .useMap

VSPACE
See HSPACE.

WIDTH
See HEIGHT.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<INPUT> 313

<INPUT> NN all 1E all HTML all

<INPUT> End Tag: Forbidden

An INPUT element is sometimes known as a form control, although not all INPUT elements
are visible on the page. For the most part, an INPUT element provides a place for users to
enter text, click buttons, and make selections from lists. The data gathered from this interac-
tion can be submitted to a server-side program (when the surrounding FORM element is
submitted), or it may be used strictly on the client as a way for users to interact with client-
side scripts.

Prior to HTML 4.0, INPUT elements were supposed to be wrapped by a FORM element in all
instances. This restriction is loosening up, but Navigator 4 still requires the FORM wrapper in
order to render INPUT elements.

The primary attribute that determines the kind of control that is displayed on the page is the
TYPE attribute. This attribute can have one of the following values: button, checkbox,
file, hidden, image, password, radio, reset, submit, or text. Not all INPUT element
types utilize the full range of other attributes; sometimes a single attribute has different
powers with different element types. For each attribute of the INPUT element, the listing
specifies the types to which it applies. Although the TEXTAREA element has its own tag, it is
often treated like another form control.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

Example

<FORM METHOD=post ACTION="http://www.glantco.com/cgi-bin/query">
First Name: <INPUT TYPE="text" NAME="first" MAXLENGTH=15>

Last Name: <INPUT TYPE="text" NAME="last" MAXLENGTH=25>

ZIP Code: <INPUT TYPE="text" NAME="zip" MAXLENGTH=10>

<INPUT TYPE="reset">

<INPUT TYPE="submit">

</FORM>
Object Model Reference
NN [window.] document . formName. inputName

[window.]document . forms[i] .elements[i]
1IE [window.] document . formName. inputName

[window.]document . forms[i] .elements[1i]

[window.]document .all.elementiD
Attributes
ACCEPT CHECKED DISABLED NAME TABINDEX
ACCESSKEY CLASS ID READONLY TITLE
ALIGN DATAFLD LANG SIZE TYPE
ALT DATASRC LANGUAGE SRC USEMAP
BORDER DIR MAXLENGTH STYLE VALUE

Event Handler Attributes

Handler NN | IE | HTML
onAfterUpdate n/a 4 n/a
onBeforeUpdate n/a 4 n/a
onBlur 2 3 4
onChange 2 3 4

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

314 <INPUT>

Handler NN IE HTML
onClick 2 3 4
onDblClick 4 4 4
onDragStart n/a 4 n/a
onFocus 2 3 4
onHelp n/a 4 n/a
onKeyDown 4 4 4
onKeyPress 4 4 4
onKeyUp 4 4 4
onMouseDown 4 4 4
onMouseMove n/a 4 4
onMouseOut 3 4 4
onMouseOver 2 3 4
onMouseUp 4 4 4
onSelect 2 3 4
onSelectStart n/a 4 n/a

Not all events are active in all input types.

ACCEPT NN n/a IE n/a HTIML 4
ACCEPT="MIMETjpeList" Optional

Specifies one or more MIME types for allowable files to be uploaded to the server when the
form is submitted. The predicted implementation of this attribute would filter the file types
listed in file dialogs used to select files for uploading. In a way, this attribute provides
client-side validation of a file type so that files not conforming to the permitted MIME type
is not even sent to the server. The HTML 4.0 specification also has this attribute available in
the FORM element. It is unclear whether the implementations in browsers will recognize this
attribute in both places.

Input Types file
Example <INPUT TYPE="file" ACCEPT="text/html, image/gif" ...>

Value

Case-insensitive MIME type (content type) value. For multiple items, a comma-delimited list
is allowed.

Default None.

ACCESSKEY NN w/a IE 4 HIML 4

ACCESSKEY=" character" Optional

A single character key that brings focus to the input element. The browser and operating
system determine if the user must press a modifier key (e.g., Ctrl, Alt, or Command) with
the access key to activate the link. In IE 4/Windows, the Alt key is required, and the key is
not case sensitive. This attribute does not work in IE 4/Mac.

Input Types button, checkbox, file, password, radio, reset, submit, text

Example <INPUT TYPE="text" NAME="first" MAXLENGTH=15 ACCESSKEY="f">

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<INPUT> 315

Value Single character of the document set.
Default None.

Object Model Reference

IE [window.] document . formName. inputName. accessKey
[window.]document . forms[i] .elements[1] .accessKey
[window.]document .all.elementiD.accessKey

ALIGN NN all IE all HIML 3.2

ALIGN="alignmentConstant" Optional

Determines how the rectangle of the input image aligns within the context of the
surrounding content. See the section “Alignment Constants” earlier in this chapter for a
description of the possibilities defined in both Navigator and Internet Explorer for this
attribute. Not all attribute values are valid in browsers prior to the Version 4 releases.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

Both browsers follow the same rules on laying out content surrounding an image whose
ALIGN attribute is set, but the actual results are sometimes difficult to predict when the
surrounding content is complex. A thorough testing of rendering possibilities with browser
windows set to various sizes prevents surprises later.

Input Types image

Example <INPUT TYPE="image" NAME="icon" SRC="icon.gif" ALIGN="absmiddle">

Value

Case-insensitive constant value. All constant values are available in Navigator 4 and Internet
Explorer 4.

Default bottom

Object Model Reference

IE [window.] document . formName. inputName.align
[window.]document . forms[i] .elements[i] .align
[window.]document .all.elementID.align

ALT NN w/a 1E 4 HIML 4

ALT="tlextMessage" Optional

If a browser is not capable of displaying graphical images (or has the feature turned off),
the text assigned to the ALT attribute is supposed to display in the document where the
image INPUT element’s tag appears. Typically, this text provides advice on what the page
visitor is missing by not being able to view the image.

Input Types image

Example
<INPUT TYPE="image" NAME="icon" SRC="sndIcon.gif" ALT="Sound Icon">

Value Any quoted string of characters.

Default None.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

316 <INPUT>

Object Model Reference

IE [window.] document . formName. inputName.alt
[window.]document . forms[i] .elements[i] .alt
[window.]document .all.elementlD.alt

BORDER NN 4 1IE 4 HIML na

BORDER=pixels Optional

Navigator and Internet Explorer treat images displayed by the INPUT element very much
like IMG elements. As such, you can specify a border around the image. Navigator displays
one by default. Because an INPUT element whose TYPE attribute is "image" acts as a
submit-style button, the border is rendered in the browser’s link colors. If you want a
different color for a plain border, use style sheets (with the appropriate DIV or SPAN
wrapper for Navigator 4). You can eliminate the colored border altogether in Navigator by
setting the BORDER attribute size to zero.

Input Types image
Example <INPUT TYPE="image" NAME="icon" SRC="sndIcon.gif" BORDER=0>
Value Any integer pixel value.

Default 2 (Navigator 4) or 0 (Internet Explorer 4).

Object Model Reference

IE [window.] document . formName. inputName.border
[window.]document . forms[i] .elements[i] .border
[window.]document .all.elementlD.border

CHECKED NN 4 1IE 3 HIML 4

CHECKED Optional

A Boolean attribute that designates whether the current checkbox or radio INPUT element is
turned on when the page loads. In the case of a radio button grouping, only one INPUT
element should have the CHECKED attribute. Scripts can modify the internal value of this
attribute after the page has loaded. When the form is submitted, an INPUT element whose
CHECKED attribute is turned on sends its name/value pair as part of the form data. The
name/value pair consists of values assigned to the NAME and VALUE attributes for the
element. If no value is assigned to the VALUE attribute, the string value "active" is auto-
matically assigned when the checkbox or radio button is highlighted. This is fine for
checkboxes because each one should be uniquely named. However, all radio buttons in a
related group must have the same name, so this default behavior doesn’t provide enough
information for most server-side programs to work with.

Input Types checkbox, radio

Example

<INPUT TYPE="checkbox" NAME="addToList" CHECKED>Send email updates to this
web site.

Value The presence of this attribute turns on its property.

Default Off.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<INPUT> 317

Object Model Reference

NN [window.] document . formName. inputName. checked
[window.]document . forms[i] .elements[1i] .checked

IE [window.] document . formName. inputName.checked
[window.]document . forms[i] .elements[i].checked
[window.]document .all .elementlD.checked

DATAFLD NN n/a 1IE 4 HIML n/a

DATAFLD=" columnName" Optional

Used with IE 4 data binding to associate a remote data source column name with parts of
various INPUT elements. A DATASRC attribute must also be set for the element.

Input Types button, checkbox, hidden, password, radio, text

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

Example
<INPUT TYPE="text" NAME="first" DATASRC="#DBSRC3" DATAFLD="firstName">

Value Case-sensitive identifier.

Default None.

Object Model Reference

IE [window.] document . formName. inputName.dataF1ld
[window.]document . forms[i] .elements[i] .dataFld
[window.] document .all elementlD.dataFld

DATASRC NN n/a 1IE 4 HIML n/a

DATASRC=" dataSourceName" Optional

Used with IE 4 data binding to specify the name of the remote ODBC data source (such as
an Oracle or SQL Server database) to be associated with the element. Content from the data
source is specified via the DATAFLD attribute.

Input Types button, checkbox, hidden, password, radio, text

Example
<INPUT TYPE="text" NAME="first" DATASRC="#DBSRC3" DATAFLD="firstName">

Value Case-sensitive identifier.

Default None.

Object Model Reference

IE [window.] document . formName. inputName.dataSrc
[window.]document . forms[i] .elements[i] .dataSrc
[window.]document .all.elementlD.dataSrc

DISABLED NN n/a 1IE 4 HIML 4

DISABLED Optional

A disabled INPUT element appears grayed out on the screen and cannot be activated by the
user. In Windows, a disabled form control cannot receive focus and does not become active

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

318 <INPUT>

within the tabbing order rotation. HTML 4.0 also specifies that the name/value pair of a
disabled INPUT element should not be sent when the form is submitted. INPUT elements
that normally perform submissions do not submit their form when disabled.

The DISABLED attribute is a Boolean type, which means that its presence in the attribute
sets its value to true. Its value can also be adjusted after the fact by scripting (see the
button object in Chapter 9).

Input Types All.
Example <BUTTON TYPE="submit" DISABLED>Ready to Submit </BUTTON>
Value The presence of the attribute disables the element.

Default false

Object Model Reference

IE [window.] document . formName. inputName.disabled
[window.]document . forms[i] .elements[i] .disabled
[window.]document .all.elementlD.disabled

ID NN n/a IE 4 HIML 4
ID="clementidentifier" Optional

A unique identifier that distinguishes this element from all the rest in the document. Can be
used to associate a single element with a style rule naming this attribute value as an ID
selector. Do not confuse the ID attribute with the NAME attribute, whose value is submitted
as part of a name/value pair with the form.

Input Types All.

Example
<INPUT TYPE="button" ID="next" VALUE=">>Next>>" onClick="goNext (3)">

Value Case-sensitive identifier.

Default None.

Object Model Reference

IE [window.] document . formName. inputName.id
[window.]document . forms[i] .elements[i].id
[window.]document .all.elementlD.1id

MAXLENGTH NN all 1IE all HTML all

MAXLENGTH=" characterCount" Optional

Defines the maximum number of characters that may be typed into a text field INPUT
element. In practice, browsers beep or otherwise alert users when a typed character would
exceed the MAXLENGTH value. There is no innate correlation between the MAXLENGTH and
SIZE attributes. If the MAXLENGTH allows for more characters than fit within the specified
width of the element, the browser provides horizontal scrolling (albeit awkward for many
users) to allow entry and editing of the field.

Input Types password, text

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<INPUT> 319

Example <INPUT TYPE="text" NAME="ZIP" MAXLENGTH=10>
Value Positive integer.
Default Unlimited.

Object Model Reference

IE [window.] document . formName. inputName.maxLength
[window.]document . forms[i] .elements[1] .maxLength
[window.]document .all.elementiD.maxLength

NAME NN all IE all HTIML all

NAME=" elementldentifier" Optional

If the INPUT element is part of a form being submitted to a server, the NAME attribute is
required if the value of the element is to be submitted with the form. For forms that are in
documents for the convenience of scripted form elements, INPUT element names are not
required but are helpful just the same in creating scripted references to these objects and
their properties or methods.

Input Types All.

Example <INPUT TYPE="text" NAME="ZIP" MAXLENGTH=10>
Value Case-sensitive identifier.

Default None.

Object Model Reference

NN [window.] document . formName. inputName.name
[window.]document . forms[i] .elements[i] .name

IE [window.] document . formName. inputName.name
[window.]document . forms[i] .elements[i] .name
[window.]document .all.elementlD.name

READONLY NN n/a 1E 4 HIML 4
READONLY Optional

When the READONLY attribute is present, the text field INPUT element cannot be edited on
the page by the user (although scripts can modify the content). A field marked as READONLY
should not receive focus within the tabbing order (although IE 4 for the Macintosh allows
the field to receive focus).

Input Types password, text
Example <INPUT TYPE="text" NAME="ZIP" READONLY>
Value The presence of the attribute sets its value to true.

Default false

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

320 <INPUT>

Object Model Reference

IE [window.] document . formName. inputName.readOnly
[window.]document . forms[i] .elements[i] .readOnly
[window.]document .all .elementlD.readOnly

SIZE NN all IE all HIML all
SIZE="elementWidth" Optional

In practice, the SIZE attribute is limited to describing the character width of text field INPUT
elements. The actual rendered width is calculated based on the font setting (or default font)
for the element, but the results are not always perfect. Variations in font rendering (and the
ability to specify alternate font faces and sizes in Internet Explorer) sometimes lead to unex-
pectedly narrower fields. Therefore, it is not wise to automatically set the SIZE and
MAXLENGTH attributes to the same value without testing the results on a wide variety of
browsers and operating systems with worst-case data (for example, all “m” or “W” charac-
ters in proportional fonts). The HTML 4.0 specification indicates that the SIZE attribute
might be applied to other INPUT element types, but as of the Version 4 browsers, this is not
the case. In the meantime, you can use CSS-Positioning to make buttons wider than the
default size that tracks the width of the VALUE attribute string.

Input Types password, text
Example <INPUT TYPE="text" NAME="ZIP" MAXLENGTH=10 SIZE=12>

Value Any positive integer.

Default 20
Object Model Reference
IE [window.] document . formName. inputName. size

[window.]document . forms[i] .elements[i].size
[window.]document .all .elementlD. size

SRC NN all IE all HIML all
SRC="URL" Required

URL to a file containing image data that is displayed through the INPUT element of type
image. The browser must be equipped to handle the image MIME type. On the World Wide
Web, the most common image formats are GIF and JPEG.

Input Types image
Example <INPUT TYPE="image" NAME="icon" SRC="sndIcon.gif" BORDER=0>
Value A complete or relative URL.

Default None.

Object Model Reference

IE [window.] document . formName. inputName. src
[window.]document . forms[i] .elements[i] .src
[window.]document .all.elementlD. src

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<INPUT> 321

TABINDEX NN n/a IE 3 HIML 4

TABINDEX=integer Optional

A number that indicates the sequence of this element within the tabbing order of all focus-
able elements in the document. Tabbing order follows a strict set of rules. Elements that
have values other than zero assigned to their TABINDEX attributes are first in line when a
user starts tabbing in a page. Focus starts with the element with the lowest TABINDEX value
and proceeds in order to the highest value, regardless of physical location on the page or in
the document. If two elements have the same TABINDEX values, the element that comes
earlier in the document receives focus first. Next come all elements that either don’t support
the TABINDEX attribute or have the value set to zero. These elements receive focus in the
order in which they appear in the document.

Note that the Macintosh user interface does not provide for giving focus to elements other
than text and password INPUT fields.

Input Types button, checkbox, file, password, radio, reset, submit, text
Example <INPUT TYPE="text" NAME="country" TABINDEX=3>

Value

Any integer from 0 through 32767. In IE 4, setting the TABINDEX to -1 causes the element
to be skipped in tabbing order altogether.

Default None.

Object Model Reference

IE [window.] document . formName. inputName. tabIndex
[window.]document . forms[i] .elements[i].tabIndex
[window.]document .all elementID. tabIndex

TYPE NN all 1E all HTML all
TYPE="elementType" Required

Advises the browser how to render the INPUT element (or even whether the element
should be rendered at all). Possible choices are as follows:

Type Description

button A clickable button whose action must be scripted. Its label is assigned by
the VALUE attribute. If you want to use HTML to format the label of a
button, use the BUTTON element instead.

checkbox | A free-standing checkbox that provides two states (active and inactive). Its
label is created by HTML text before or after the INPUT element tag. The
VALUE attribute value is submitted with a form, so you can have multiple
checkboxes with the same name but different values if the server CGI script
wants its data that way.

file A button and field that lets the user select a local file for eventual uploading
to the server. A click of the button generates a File dialog, and the name (or
pathname) of the selected file appears in the field. The server must have a
CGI script running to accept the incoming file at submission time.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
-
=
(']
—r
®
-
@
=
]
@

322 <INPUT>

Type Description

hidden An invisible field often used to carry over database or state data from
submission to submission without bothering the user with its content (or
having to store the temporary data on the server). The name/value pair is
submitted with the form.

image A graphical button whose sole action is to submit the form. The coordinate
points x,y of the click on the image are submitted as two name/value pairs:
inputName.x=n; inputName.y=m.

password | A text field that presents bullets or asterisks for each typed character to
ensure over-the-shoulder privacy for the user. The plain-language text is
submitted as the value for this element.

radio One of a related group of on-off buttons. Assigning the same value to the
NAME attribute of multiple radio buttons assembles them in a related group.
Clicking on one button in the group activates it while unhighlighting all
others. The VALUE attribute value is submitted with a form.

reset A button whose sole job is to revert the form’s elements to the values they
had when the form initially loaded into the client. A custom label can be
assigned via the VALUE attribute.

submit A button whose sole job is to submit the form. A custom label can be
assigned by the VALUE attribute. If NAME and VALUE attributes are assigned
for the element, their values are submitted with the form.

text A one-line field for typing text that gets submitted as the value of the
element. For a multiple-line field, see the TEXTAREA element.

Example

<INPUT TYPE="button" VALUE="Toggle Sound" onClick="toggleSnd() ">
<INPUT TYPE="checkbox" NAME="connections" VALUE="ISDN">ISDN

<INPUT TYPE="file" NAME="uploadFile">

<INPUT TYPE="hidden" NAME="prevState" VALUE="modify">

<INPUT TYPE="image" NAME="graphicSubmit" SRC="submit.jpg" HEIGHT=40
WIDTH=40>

<INPUT TYPE="password" NAME="password" MAXLENGTH=12 SIZE=20>
<INPUT TYPE="radio" NAME="creditCard" VALUE="Visa">Visa

<INPUT TYPE="reset">

<INPUT TYPE="submit" VALUE="Send Encrypted">

Social Security Number:<INPUT TYPE="text"NAME="ssn" VALUE="###-##-####"
onClick="validateSSN(this) ">

Value

Any one of the known INPUT element types: button | checkbox | file | hidden |
image | password | radio | reset | submit | text.

Default text

Object Model Reference

NN [window.] document . formName. inputName. type
[window.]document . forms[i] .elements[i].type

IE [window.]document . formName. inputName. type
[window.]document . forms[i] .elements[1] . type
[window.]document .all .elementlD. type

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<INS> 323

USEMAP NN n/a 1E n/a HTIML 4

USEMAP=" mapURL" Optional

The HTML 4.0 specification lists the USEMAP attribute for an INPUT element of type image.
In the future, this might lead to a link between image INPUT elements and the scriptable
powers of client-side image maps (such as rollovers), but for now, it is unknown for sure
how this attribute will be implemented in browsers.

VALUE NN all 1E all HTIML all

VALUE=" fext" Optional/Required

Preassigns a value to an INPUT element that is submitted to the server as part of the name/
value pair for the element. Some INPUT element types are not submitted (an unchecked
radio button, for example), but any value you associate with all but the button or reset type
INPUT element reaches the server when the element is submitted.

In the case of text and password INPUT elements, the VALUE attribute contains a default
entry. As the user makes a change to the content of the text field, the value changes,
although the source code does not. When a form is reset (via a reset INPUT element), the
default values are put back into the text fields.

The VALUE attribute is required only for checkbox and radio INPUT elements. For INPUT
elements that are rendered as standard clickable buttons, the VALUE attribute defines the
label that appears on the button.

Input Types All.

Example <INPUT TYPE="checkbox" NAME="connections" VALUE="ISDN">ISDN
Value Any text string.

Default None.

Object Model Reference

NN [window.] document . formName. inputName.value
[window.]document . forms[i] .elements[i] .value

IE [window.] document . formName. inputName.value
[window.]document . forms[i] .elements[i] .value
[window.]document .all.elementlD.value

<INS> NN wa IE 4 HIML 4
<INS>...</INS> End Tag: Required

The INS element and its companion, DEL, define a format that shows which segments of a
document’s content have been marked up for insertion (or deletion) during the authoring
process. This is far from a workflow management scheme, but in the hands of a supporting
WYSIWYG HTML authoring tool, these elements can assist in controlling generational
changes of a document in process.

Among the Version 4 browsers, only Internet Explorer supports the INS attribute. Text
contained by this element is rendered underlined (whereas DEL elements are in a
strikethrough style). The HTML 4.0 specification includes two potentially useful attributes

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

324 <INS>

(not in IE 4) for preserving hidden information about the date and time of the alteration and
some descriptive text about the change.

Example

<P>Four score and
<DEL CITE="Fixed the math">eight<INS>seven</INS> years ago...</P>

Object Model Reference

IE [window.] document .all .elementlD

Attributes

CITE DATETIME ID LANGUAGE TITLE
CLASS DIR LANG STYLE

Event Handler Attributes

Handler NN IE HTML

onClick n/a 4 4

onDblClick n/a 4 4

onDragStart n/a 4 n/a

onHelp n/a 4 n/a

onKeyDown n/a 4 4

onKeyPress n/a 4 4

onKeyUp n/a 4 4

onMouseDown n/a 4 4

onMouseMove n/a 4 4

onMouseOut n/a 4 4

onMouseOver n/a 4 4

onMouseUp n/a 4 4

onSelectStart n/a 4 n/a
CITE NN n/a 1E w/a HIML 4
CITE="siring" Optional

A description of the reason for the change or other notation to be associated with the
element, but normally hidden from view. This information is meant to be used by authoring
tools, rather than by visual browsers.

Example <INS CITE="Fixed the math --A.L.">seven</INS>

Value

Any string of characters. The string must be inside a matching pair of (single or double)
quotation marks.

Default None.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<INS> 325

DATETIME NN n/a 1E n/a HTIML 4

DATETIME=" datetimeString" Optional

The date and time the insertion was made. This information is most likely to be added into
a document with an HTML authoring tool designed to track content insertions and dele-
tions. Data from this attribute can be recalled later as an audit trail to changes of the
document. There can be only one DATETIME attribute value associated with a given INS
element.

Example
<INS DATETIME="1998-09-11T20:03:32-08:00">SomeInsertedTextHere</INS>

Value

The DATETIME attribute requires a value in a special date-time format that conveys informa-
tion about the date and time in such a way that the exact moment can be deduced from
any time zone around the world. Syntax for the format is as follows:

Yyyy-MM-ddThh: mm: ssTZD

VYYY Four-digit year

M Two-digit month (01 through 12)

ad Two-digit date (01 through 31)

T Uppercase “T” to separate date from time

hh Two-digit hour in 24-hour time (00 through 23)
mm Two-digit minute (00 through 59)

ss Two-digit second (00 through 59)

TZD Time Zone Designator

There are two formats for the Time Zone Designator. The first is simply the uppercase letter
“7”, which stands for UTC (Coordinated Universal Time—also called “Zulu”). The other
format indicates the offset from UTC that the time shown in hh:mm:ss represents. This time
offset consists of a plus or minus symbol and another pair of hh:mm values. For time zones
west of Greenwich Mean Time (which, for all practical purposes is the same as UTC), the
operator is a negative sign because the main hh:mm:ss time is earlier than UTC; for time
zones east of GMT, the offset is a positive value. For example, Pacific Standard Time is
eight hours earlier than UTC: when it is 6:00 P.M. in the PST zone, it is 2:00 A.M. the next
morning at UTC. Thus, the following examples all represent the exact same moment in time
(Time Zone Designator shown in boldface for clarification only):

1998-09-12T02:00:00Z UTC
1998-09-11T21:00:00-05:00 Eastern Standard Time
1998-09-11T18:00:00-08:00 Pacific Standard Time
1998-09-12T13:00:00+11:00 Sydney, Australia

For more details about this way of representing time, see the 1SO-8601 standard.

Default None.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

326 <KBD>

<ISINDEX> NN all 1E all HTML all

<ISINDEX> End Tag: Forbidden

The ISINDEX element is a longtime holdover from the earliest days of HTML and is depre-
cated in HTML 4.0 in favor of the text INPUT element. The ISINDEX element tag belongs in
the HEAD element. In modern browsers, it is rendered as a simple text field between two HR
elements. When a user types text into the field and presses the Enter/Return key, the
content of the field is URL encoded (with + symbols substituted for spaces) and sent to the
server with the URL of the current document. A CGI program on the server must know how
to process this URL and return HTML for display in the current window or frame.

Example

<HEAD>
<ISINDEX PROMPT="Enter a search string:">
</HEAD>

Object Model Reference

1IE [window.]document .all.elementlD

Attributes

CLASS ID LANGUAGE STYLE TITLE
DIR LANG PROMPT

PROMPT NN all IE all HTML <4

PROMPT=" message" Optional

This attribute lets you assign the prompt message that appears with the element.
lixan@ph? <ISINDEX PROMPT="Enter a search string:">
Value Any quoted string.

Default None.

<KBD> NN all 1E all HTML all
<KBD>. . .</KBD> End Tag: Required

The KBD element is one of a large group of elements that the HTML 4.0 recommendation
calls phrase elements. Such elements assign structural meaning to a designated portion of
the document. A KBD element is one that displays text that a user is supposed to type on
the keyboard, presumably to fill a text field or issue some command.

Browsers have free rein to determine how (or whether) to distinguish XBD element content
from the rest of the BODY element. Both Navigator and Internet Explorer elect to use a
monospace font for the text. This can be overridden with a style sheet as you see fit.

Example

<P>If you don't know the answer, type <KBD>NONE</KBD> into the text box.
</P>

Object Model Reference

1IE [window.] document .all .elementlD

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<KEYGEN> 327

Attributes
CLASS ID LANGUAGE STYLE TITLE
DIR LANG

Event Handler Attributes

Handler NN IE HTML
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a =
onHelp n/a 4 n/a =
onKeyDown n/a 4 4 E
onKeyPress n/a 4 4 5
onKeyUp n/a 4 4 2
onMouseDown n/a 4 4 ®
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onSelectStart n/a 4 n/a

<KEYGEN> NN all 1E n/a HTML w/a

<KEYGEN> End Tag: Forbidden

A KEYGEN element allows a form to be submitted with key encryption, where the server
expects a form to be packaged with an encrypted key. The client browser must have a
digital certificate installed. The user sees two results of including the KEYGEN element inside
a FORM element. First, a select list of available encryption key sizes is rendered in the form
where the KEYGEN element appears. When the user submits the form, the user may see one
or more security-related dialogs for confirmation. This element builds on the public-key
encryption systems built into Navigator.

Example
<FORM ...>

<KEYGEN NAME="encryptedOrder" CHALLENGE="39457582201">

</FORM>

Attributes

CHALLENGE NAME

CHALLENGE NN all IE w/a HIML n/a
CHALLENGE=" challengeString" Optional

If the server is equipped to interpret a challenge string for verification of an encrypted
package, the CHALLENGE attribute is the challenge string.

Example <KEYGEN NAME="encryptedOrder" CHALLENGE="39457582201">

Value Any string.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

328 <LABEL>

Default Empty string.

NAME NN all IE w/a HTIML wa

NAME=" identifier" Required

Encrypting a form turns the entire form into a value that is part of a name/value pair. The
NAME attribute assigns the “name” part of the name/value pair. If the server successfully
decrypts the package, the individual form element name/value pairs are available to the
server for further processing.

Example <KEYGEN NAME="encryptedOrder" CHALLENGE="39457582201">
Value Case-insensitive identifier.

Default None.

<LABEL> NN wa 1IE 4 HTML 4

<LABEL>. . .</LABEL> End Tag: Required

The LABEL element defines a structure and container for the label associated with an INPUT
element. Because the rendered labels for most form controls are not part of the element’s
tag, the LABEL attribute provides a way for a browser to clearly link label content to the
control.

You have two ways to provide the association. One is to assign the ID attribute value of the
control to the FOR attribute of the LABEL element. The other is to wrap the INPUT element
inside a LABEL element. The latter is possible only if the label and control are part of
running body content; if you must physically separate the label from the control because
they exist inside separate TD elements of a table, you must use the FOR attribute linkage.
Whether the label is rendered in front of or after the control depends entirely on the rela-
tive locations of the tags in the source code. A future application for this element is for text-
to-speech browsers reading aloud the label for a control.

Example

<FORM>

<LABEL>Company : <INPUT TYPE="text" NAME="company"></LABEL>

<LABEL FOR="stateEntry">State:</LABEL>

<INPUT TYPE="text" NAME="state" ID="stateEntry">

</FORM>

Object Model Reference

IE [window.] document .all .elementID

Attributes

ACCESSKEY DATAFORMATAS FOR LANGUAGE TABINDEX
CLASS DATASRC ID STYLE TITLE
DATAFLD DIR LANG

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<LABEL> 329

Event Handler Attributes

Handler NN IE HTML
onBlur n/a n/a 4
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onFocus n/a n/a 4
onHelp n/a 4 n/a
onKeyDown n/a 4 4 X
onKeyPress n/a 4 4 E
onKeyUp n/a 4 4 E
onMouseDown n/a 4 4 5
onMouseMove n/a 4 4 E
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onSelectStart n/a 4 n/a
ACCESSKEY NN wa 1IE 4 HTIML 4
ACCESSKEY=" character" Optional

A single character key that brings focus to the associated INPUT element. The browser and
operating system determine if the user must press a modifier key (e.g., Ctrl, Alt, or
Command) with the access key to bring focus to the element. In IE 4/Windows, the Alt key
is required, and the key is not case sensitive. This attribute does not work in IE 4/Mac.

Example <LABEL FOR="stateEntry" ACCESSKEY="s">State:</LABEL>
Value Single character of the document set.

Default None.

Object Model Reference

IE [window.]document .all elementlD.accessKey

DATAFLD NN n/a 1E 4 HIML n/a
DATAFLD=" columnName" Optional

Used with IE 4 data binding to associate a remote data source column name with the label
of an INPUT element. The data source column must be either plain text or HTML (see
DATAFORMATAS). A DATASRC attribute must also be set for the LABEL element.

Example

<LABEL FOR="stateEntry" DATASRC="#DBSRC3" DATAFLD="label"
DATAFORMATAS="HTML" >
State:</LABEL>

Value Case-sensitive identifier.

Default None.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

330 <LABEL>

Object Model Reference

IE [window.]document .all elementlD.dataFld

DATAFORMATAS NN n/a 1IE 4 HIML w/a
DATAFORMATAS=" dataType" Optional

Used with IE 4 data binding, this attribute advises the browser whether the source material
arriving from the data source is to be treated as plain text or as tagged HTML. This attribute
setting depends entirely on how the data source is constructed.

Example

<LABEL FOR="stateEntry" DATASRC="#DBSRC3" DATAFLD="label"
DATAFORMATAS="HTML" >
State:</LABEL>

Value IE 4 recognizes two possible settings: text | HTML.

Default text

Object Model Reference

IE [window.]document .all.elementiD.dataFormatAs

DATASRC NN n/a IE 4 HIML n/a
DATASRC=" dataSourceName" Optional

Used with IE 4 data binding to specify the name of the remote ODBC data source (such as
an Oracle or SQL Server database) to be associated with the element. Content from the data
source is specified via the DATAFLD attribute.

Example

<LABEL FOR="stateEntry" DATASRC="#DBSRC3" DATAFLD="label"
DATAFORMATAS="HTML" >
State:</LABEL>

Value Case-sensitive identifier.

Default None.

Object Model Reference

IE [window.]document .all .elementID.dataSrc

FOR NN n/a 1E 4 HIML 4
FOR="inputElementldentifier" Optional

A unique identifier that is also assigned to the ID attribute of the INPUT element to which
the label is to be associated. The FOR attribute is necessary only when you elect not to wrap
the INPUT element inside the LABEL element, in which case the FOR attribute performs the
binding between the two elements.

lixan@ph; <LABEL FOR="stateEntry">State:</LABEL>

Value Case-sensitive identifier.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<LAYER> 331

Default None.

Object Model Reference

IE [window.]document .all .elementID.htmlFor

TABINDEX NN n/a IE n/a HTIML 4
TABINDEX=integer Optional

A number that indicates the sequence of this element within the tabbing order of all focus-
able elements in the document. Tabbing order follows a strict set of rules. Elements that
have values other than zero assigned to their TABINDEX attributes are first in line when a
user starts tabbing in a page. Focus starts with the element with the lowest TABINDEX value
and proceeds in order to the highest value, regardless of physical location on the page or in
the document. If two elements have the same TABINDEX values, the element that comes
earlier in the document receives focus first. Next come all elements that either don’t support
the TABINDEX attribute or have the value set to zero. These elements receive focus in the
order in which they appear in the document.

Although this attribute is not yet implemented in browsers, the expected behavior is that
when a LABEL element receives focus, the focus shifts automatically to the associated
INPUT element.

Example <LABEL FOR="stateEntry" TABINDEX=3>State:</LABEL>
Value Any integer from 0 through 32767.

Default None.

<LAYER> NN 4 IE wa HTML wa

<LAYER>. . .</LAYER> End Tag: Required

A LAYER element is a positionable element in Navigator’s object model (e.g., like a block-
level element whose CSS position: attribute is set to absolute). As a result, many of the
attributes are named according to the Navigator way of positioning, sizing, and stacking
positionable elements. It is unlikely that the LAYER or the related ILAYER elements will be
adopted by the W3C, so you are encouraged to use CSS-Positioning syntax (which works
on both browser platforms) instead.

Content for a LAYER element can be read from a separate file (with the SRC attribute) or
wired into the current document by placing the HTML between the start and end tags. You
can include both types of content in the same LAYER element. Content from the SRC docu-
ment is rendered first (as its own block-level element), with additional content starting on
its own line below the external content’s rectangle.

A LAYER element can be positioned anywhere within a document and can overlap content
belonging to other layers (including the base document layer). Under link or script control,
content for an individual layer can be changed without having to reload the other content
on the page. Moreover, LAYER elements may be nested inside one another. See Chapter 5,
Making Content Dynamic, for more details.

Example
<LAYER BGCOLOR="yellow" SRC="instrux.html" WIDTH=200 HEIGHT=300></LAYER>

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
-
=
(']
—r
®
-
@
=
]
@

332 <LAYER>

Object Model Reference

NN [window.]document . layerName

Attributes

ABOVE BGCOLOR ID PAGEY VISIBILITY
BACKGROUND CLIP LEFT SRC WIDTH
BELOW HEIGHT PAGEX TOP Z-INDEX

Event Handler Attributes

Handler NN IE HTML

onBlur 4 n/a n/a

onFocus 4 n/a n/a

onLoad 4 n/a n/a

onMouseDown 4 n/a n/a

onMouseOut 4 n/a n/a

onMouseOver 4 n/a n/a

onMouseUp 4 n/a n/a
ABOVE NN 4 IE w/a HTIML n/a
ABOVE="layeriD" Optional

Names the positionable element that is to be above (in front of) the current LAYER in the
stacking order. This is a different way to set the Z-INDEX attribute that does not rely on an
arbitrary numbering system. If you use the ABOVE attribute, do not use the BELOW or Z-
INDEX attribute for the same LAYER element.

Example

<LAYER ID="instrux" BGCOLOR="yellow" SRC="instrux.html" ABOVE="helpl"
WIDTH=200 HEIGHT=300>
</LAYER>

Value Case-sensitive identifier.

Default None.

Object Model Reference

NN [window.] document . layerName. above

BACKGROUND NN 4 1IE n/a HIML n/a
BACKGROUND="URL" Optional

Specifies an image file that is used as a backdrop to the text and other content of the LAYER
element. Unlike normal images that get loaded into browser content, a background image
loads in its original size (without scaling) and tiles to fill the available layer space. Smaller
images download faster but are obviously repeated more often in the background.
Animated GIFs are also allowable but very distracting to the reader. When selecting a back-
ground image, be sure it is very muted in comparison to the main content so that the
content stands out clearly. Background images, if used at all, should be extremely subtle.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<LAYER> 333

Example

<LAYER BACKGROUND="blueCrinkle.jpg" SRC="instrux.html" WIDTH=200
HEIGHT=300>
</LAYER>

Value Any valid URL to an image file, including complete and relative URLs.

Default None.

Object Model Reference
=
NN [window.] document . layerName.background E
=
g
BELOW NN 4 1IE w/a HIML w/a a
BELOW="layerID" Optional %
@

Names the positionable element that is to be below (behind) the current LAYER in the
stacking order. This is a different way to set the Z-INDEX attribute that does not rely on an
arbitrary numbering system. If you use the BELOW attribute, do not use the ABOVE or Z-INDEX
attribute for the same LAYER element.

Example

<LAYER BGCOLOR="yellow" SRC="instrux.html" WIDTH=200 HEIGHT=300
BELOW="thankyou">
</LAYER>

Value Case-sensitive identifier.

Default None.

Object Model Reference

NN [window.]document . kayerName.below

BGCOLOR NN 4 IE w/la HIML n/a
BGCOLOR=" colorTripletOrName" Optional

Establishes a fill color (behind the text and other content) for the entire layer rectangle. If
you combine a BGCOLOR and BACKGROUND, any transparent areas of the background image
let the background color show through.

Example
<LAYER BGCOLOR="yellow" SRC="instrux.html" WIDTH=200 HEIGHT=300></LAYER>

Value

A hexadecimal triplet or plain-language color name. A setting of empty is interpreted as
"#000000" (black). See Appendix A for acceptable plain-language color names.

Default Varies with operating system.

Object Model Reference
NN [window.] document . layerName.bgColor

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

334 <LAYER>

CLIP NN 4 IE wa HIML n/a
CLIP="[lefiPixel, topPixel,] rightPixel, bottomPixel" Optional

A clipping region is a rectangular view to the full LAYER content. Only content that is within
the clipping rectangle can be seen on the page. The default value of the CLIP attribute is
either the default size of the content or the LAYER element’s width by the automatically
flowing content length. Setting the CLIP attribute lets you rein in long content that might
flow beyond a fixed rectangle desired for the page design.

Example

<LAYER BGCOLOR="yellow" SRC="instrux.html" CLIP="50,50" WIDTH=200
HEIGHT=300>

</LAYER>

Value

CLIP attribute values are pixel measures from the top and left edges of the element as it
flows in the document. The order of values is clockwise from the left edge, around the rect-
angle sides: left, top, right, bottom. If you supply only two values, Navigator assumes the
left and top values are zero, meaning that you wish to adjust only the right and bottom
edges. Thus, a setting of "50, 50" means that the clipping region is 50-pixels square, starting
at the top-left corner of the layer’s rectangle. If you want the same size view starting 10
pixels in from the left, the CLIP attribute setting becomes "10,0,60,50".

Default Naturally flowing viewing area of LAYER content.

Object Model Reference

NN [window.]document . layerName.clip.left
[window.]document . layerName.clip. top
[window.] document . layerName.clip.right
[window.] document . layerName.clip .bottom

HEIGHT, WIDTH NN 4 IE n/a HIML wa

HEIGHT="length" Optional
WIDTH="length"

Define the minimum size of the LAYER element. When you add content to the layer during
initial loading, however, the attribute settings do not restrict the amount of the content that
is visible along either axis. For example, if you display an image in a LAYER that is 120
pixels wide by 90 pixels high, the actual visible size of a LAYER element whose HEIGHT and
WIDTH attributes are set to a smaller size expands to allow the full image to appear. The
same happens to text or other content: the viewable region expands to allow all content to
appear. To restrict the visible portion of the content, set the CLIP attribute.

Setting the HEIGHT and WIDTH attributes to specific sizes is helpful when you are creating a
colored or patterned rectangle (via the BGCOLOR or BACKGROUND attributes) to act as an
underlying layer beneath some other positioned content. Without content pushing on the
edges of the LAYER, the HEIGHT and WIDTH attributes set the clipping region to their sizes.

Example
<LAYER BGCOLOR="yellow" SRC="instrux.html" WIDTH=200 HEIGHT=300></LAYER>

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<LAYER> 335

Value

Positive integer values (optionally quoted) or percentage values (quoted). You can reduce
both values to zero to not only hide the element (which you can also do with the
VISIBILITY attribute), but also prevent the element from occupying any page space.

Default Naturally flowing viewing area of LAYER content.

Object Model Reference

NN [window.] document . layerName.height
[window.] document . layerName.width

ID NN 4 IE w/a HIML na

ID="clementldentifier" Optional

A unique identifier that distinguishes this element from all the rest in the document. This is
the identifier used as values for the ABOVE and BELOW attributes. Scripts also use the ID
attribute value as the LAYER element’s name for object references.

Example

<LAYER ID="oldYeller" BGCOLOR="yellow" SRC="instrux.html" WIDTH=200
HEIGHT=300>
</LAYER>

Value Case-sensitive identifier.

Default None.

Object Model Reference

IE [window.] document . layerName.name

LEFT, TOP NN 4 IE n/a HIML wa
LEFT="pixelCount" Optional

TOP=" pixelCount"

Define the positioned offset of the left and top edges of the layer relative to the spot in the
document where the LAYER element would normally appear in source code order. This
precise location relative to the page varies unless you also set the PAGEX and PAGEY
attributes, which absolutely position the element in the document space. Unlike what it
does for the ILAYER element, Navigator does not preserve the space in the document
where a LAYER element appears. The element is placed in its own plane, and the
surrounding source code content is cinched up—usually overlapping the LAYER content
unless the layer is positioned elsewhere.

Example

<LAYER BGCOLOR="yellow" SRC="instrux.html" WIDTH=200 HEIGHT=300 LEFT=10
TOP=50>

</LAYER>
Value Positive integer values (optionally quoted).
Default 0

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

336 <LAYER>

Object Model Reference

NN [window.]document . layerName.left
[window.] document . layerName. top

PAGEX, PAGEY NN 4 IE w/a HTIML n/a

PAGEX=" pixelCount" Optional
PAGEY=" pixelCount"

To truly position a LAYER element with repeatable accuracy, you can use the top-left corner
of the document (page) as the point of reference. When you set the PAGEX and/or PAGEY
attributes, you establish an offset for the left and top edges of the LAYER element relative to
the corresponding edges of the entire document. Therefore, the zero point for a vertically
scrolled page may be above the visible area of the browser window.

Example

<LAYER BGCOLOR="yellow" SRC="instrux.html" WIDTH=200 HEIGHT=300 PAGEX=50
PAGEY=350>
</LAYER>

Value Positive integer values (optionally quoted).

Default 0

Object Model Reference

NN [window.]document . layerName.pageX
[window.] document . layerName. pageY

SRC NN 4 IE wa HIML w/a
SRC="URL" Optional

To load the content of an external HTML file into a LAYER element, assign the URL of that
file to the SRC attribute. Any HTML content between the LAYER start and end tags is
rendered on the page after the content is loaded from the SRC URL. If you omit the SRC
attribute, only content between the tags is rendered. Scripts can change the corresponding
object property (src) after the document has loaded to dynamically change content within
the LAYER element (without reloading the main document).

Example
<LAYER BGCOLOR="yellow" SRC="instrux.html" WIDTH=200 HEIGHT=300</LAYER>

Value A complete or relative URL.

Default None.

Object Model Reference

NN [window.]document . layerName. src
T0P

See LEFT.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<LAYER> 337

VISIBILITY NN 4 IE w/a HIML wa

VISIBILITY="uisibilityConstant" Optional

Determines whether Navigator displays the LAYER element. The default behavior is for a
layer to inherit the VISIBILITY attribute of its next outermost (parent) layer. For a LAYER
element that is part of the basic document body, this means that the layer is seen by default
(the base layer is always visible). To hide a layer when the page loads, set the VISIBILITY
attribute to "hidden". You need set the attribute to "show" only if the LAYER element is
nested within another LAYER (or ILAYER) whose VISIBILITY value is set to (or is inher-
ited as) "hidden".

Example

<LAYER BGCOLOR="yellow" SRC="instrux.html" WIDTH=200 HEIGHT=300
PAGEX=50 PAGEY=350 VISIBILITY="hidden">
</LAYER>

Value One of the accepted constants: hidden | inherit | visible

Default inherit

Object Model Reference
NN [window.] document . layerName.visibility
WIDTH

See HEIGHT.

Z-INDEX NN 4 IE wa HIML n/a
Z-INDEX="layerNumber" Optional

Controls the positioning of layers along the Z-axis (front-to-back) of the document relative
to the next outermost layer container. When the Z-INDEX values of two or more position-
able elements within the same container (such as the base document layer) are identical
numbers, the loading order of the elements in the HTML source code controls the stacking
order, with the later elements stacked in front of earlier ones. The default Z-INDEX value
for all positionable elements is zero. Therefore, if you want only one positionable element
to appear in front of all the others that stack in their default order, you simply assign any
positive value (even 1) to that standout element. Stacking order of positionable elements
can be changed on-the-fly via scripting.

Example

<LAYER BGCOLOR="yellow" SRC="instrux.html" WIDTH=200 HEIGHT=300 Z-INDEX=1>
</LAYER>

Value Any integer.

Default 0
Object Model Reference
NN [window.] document . layerName. zIndex

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

338 <LEGEND>

<LEGEND> NN wa 1IE 4 HTML 4

<LEGEND>. . .</LEGEND> End Tag: Required

The LEGEND element acts as a label for a FIELDSET element. In visual browsers, this usually
means that the label is visually associated with the group border rendered for the FIELDSET
element. Internet Explorer 4 builds the LEGEND element into the FIELDSET border. A text-
to-speech browser might read the label aloud as a user navigates through a form. In
Internet Explorer, the LEGEND element must come immediately after the start tag of the
FIELDSET element for the association to stick. Because the content of the LEGEND element
is HTML content, you can assign styles to make the label stand out, if you like.

Example

<FORM METHOD=POST ACTION="...">

<FIELDSET>

<LEGEND>Credit Card Information</LEGEND>

. ..IlnputElementsHere. . .

</FIELDSET>

</FORM>

Object Model Reference

1IE [window.]document . all.elementlD

Attributes

ACCESSKEY CLASS ID LANGUAGE TITLE
ALIGN DIR LANG STYLE

Event Handler Attributes

Handler NN IE HTML

onClick n/a 4 4

onDblClick n/a 4 4

onDragStart n/a 4 n/a

onHelp n/a 4 n/a

onKeyDown n/a 4 4

onKeyPress n/a 4 4

onKeyUp n/a 4 4

onMouseDown n/a 4 4

onMouseMove n/a 4 4

onMouseOut n/a 4 4

onMouseOver n/a 4 4

onMouseUp n/a 4 4
ACCESSKEY NN n/a 1E n/a HTIML 4
ACCESSKEY=" character" Optional

A single character key that brings focus to the first focusable control of the form associated
with the LEGEND element. The browser and operating system determine if the user must
press a modifier key (e.g., Ctrl, Alt, or Command) with the access key to bring focus to the
element. In IE 4/Windows, the Alt key is required, and the key is not case sensitive. This
attribute does not work in IE 4/Mac.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<LEGEND> 339

Example <LEGEND ACCESSKEY="c">Credit Card Information</LEGEND>
Value Single character of the document set.

Default None.

ALIGN NN n/a 1E 4 HIML 4

ALIGN="where" Optional

Controls the alignment of the LEGEND element with respect to the containing FIELDSET
element. The permissible values do not always work as planned in Internet Explorer 4. For
example, the bottom value displays the label at the top left of the fieldset rectangle—so
does the top value, although it is supposed to be centered along the top. The other values
(center, left, and right) work as expected, but on the Macintosh, the center and
right settings inexplicably widen the fieldset rectangle. Be sure to check your desired
setting on both operating system platforms.

The ALIGN attribute is deprecated in HTML 4.0 in favor of style sheets. But even a style
sheet won't position a label along the bottom of a fieldset in Internet Explorer 4.

Example <LEGEND ALIGN="right">Credit Card Information</LEGEND>
Value
Allowed values in HTML 4.0 are bottom | left | right | top. IE 4 adds center.

Default left

Object Model Reference

IE [window.] document .all .elementID.align

TITLE NN w/a 1IE 4 HIML 4
TITLE="advisorylext" Optional

An advisory description of the element. In Internet Explorer 4, the title is rendered as a
tooltip when the cursor rests on the element for a moment. The TITLE attribute of a
LEGEND overrides the TITLE setting for the entire FIELDSET.

Example <LEGEND TITLE="Credit Card Info">...</LEGEND>

Value

Any string of characters. The string must be inside a matching pair of (single or double)
quotation marks.

Default None.

Object Model Reference
IE [window.]document .all.elementlD.title

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

340

<Ll> NN all 1E all HTML all

... End Tag: Optional

The LI element is a single list item that is nested inside an OL or UL list container. The
outer container determines whether the LI item is preceded with a number or letter (indi-
cating sequence within an order) or a symbol that doesn’t connote any particular order. A
special category of style sheet attributes are devoted to list formatting. Therefore, a number
of formatting attributes for LT, OL, and UL elements are deprecated in HTML 4.0.

If you apply a style sheet rule to an LI element to adjust the color in Navigator 4, only the
leading symbol is colored. To color the text as well, wrap the LI element inside a SPAN
element and apply the style to the SPAN element. This works the same way in Navigator
and Internet Explorer.

Example

Larry
Moe
Curly

Object Model Reference
IE [window.] document .all .elementID
Attributes
CLASS ID LANGUAGE TITLE VALUE
DIR LANG STYLE TYPE

Event Handler Attributes

Handler NN 1IE HTML

onClick n/a 4 4

onDblClick n/a 4 4

onDragStart n/a 4 n/a

onHelp n/a 4 n/a

onKeyDown n/a 4 4

onKeyPress n/a 4 4

onKeyUp n/a 4 4

onMouseDown n/a 4 4

onMouseMove n/a 4 4

onMouseOut n/a 4 4

onMouseOver n/a 4 4

onMouseUp n/a 4 4

onSelectStart n/a 4 n/a
TYPE NN all 1E all HIML 3.2
TYPE="labelTjpe" Optional

The TYPE attribute provides some flexibility in how the leading symbol or sequence
number is displayed in the browser. Values are divided into two groups, with one group
each dedicated to OL and UL items. For an unordered list (UL), you can specify whether the

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

 341

leading symbol should be a disc, circle, or square; for an ordered list (OL), the choices are
among letters (uppercase or lowercase), Roman numerals (uppercase or lowercase), or
Arabic numerals. The TYPE attribute is deprecated in HTML 4.0 in favor of the list-
style-type: style sheet attribute.

For no apparent reason, the square type of unordered list item displays as solid in Windows
browsers and as hollow in Macintosh browsers.

Be aware that in current browser implementations, the TYPE attribute for a LI element sets
the type for subsequent LI elements in the list unless overridden by a TYPE attribute setting
in another LI element. In general, it is best to set the TYPE attribute of the OL or UL
element and let that setting govern all nested elements.

Example <LI TYPE="square">Chicken Curry

Value

When contained by a UL element, possible values are disc | circle | square. When
contained by an OL element, possible values are A | a | I | i | 1. Sequencing is
performed automatically as follows:

Type Example

A A B, C, ..
a a, b, c ..
I I, 10, 11, ...
i i, ii, iii, ...
1 1,2, 3, ..

Default 1 and disc.

Object Model Reference

IE [window.]document . all .elementlD. type

VALUE NN all IE all HTML 3.2
VALUE="number" Optional

The VALUE attribute applies only when the LI element is nested inside an OL element. You
can manually set the number used as a starting point for the sequencing of ordered list
items. This can come in handy when you need to break up an OL element with some
running text that is not part of the list.

Even though the value assigned to this attribute is a number, it does not affect the TYPE
setting. For example, setting VALUE to 3 when TYPE is A means that the sequence starts
from that LT element with the letter C.

Example <LI VALUE=3>Insert Tab C into Slot M. Tighten with a wingnut.

Value Any positive integer.

Default 1
Object Model Reference
IE [window.]document .all.elementlD.value

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
-
=
(']
—r
®
-
@
=
]
@

342 <LINK>

<LINK> NN 4 1IE 3 HTML all

<LINK>...</LINK> End Tag: Forbidden

Unlike the A element (informally called a link when it contains an HREF attribute), the LINK
element belongs inside the HEAD element and is a place for the document to establish links
with external documents, such as style sheet definition files or font definition files. By and
large, browsers have yet to exploit the intended powers of this element. A variety of
attributes let the author establish relationships between the current document and poten-
tially related documents. In theory, some of these relationships could be rendered as part of
the document or browser controls. Implementations of this element in both Navigator 4 and
Internet Explorer 4 are rather weak compared to the HTML 4.0 specification. At the same
time, several attributes (and all event handlers) defined in the HTML 4.0 specification aren’t
very helpful because they more typically apply to elements that actually display content on
the page. No explicit document content is rendered as a result of the LINK element. Some
of those attributes may be listed by mistake or merely for consistency. They are listed here,
but because they are not implemented in browsers, they are supplied for informational
purposes only.

Example

<HEAD>

<TITLE>Section 3</TITLE>

<LINK REV="Prev" HREF="sect2.html">

<LINK REL="Next" HREF="sect4.html">

<LINK REL="stylesheet" TYPE="text/css" HREF="myStyles.css">
</HEAD>

Object Model Reference

IE [window.]document . all.elementlD

Attributes

CHARSET HREF LANG REV TARGET
CLASS HREFLANG MEDIA SRC TITLE
DIR ID REL STYLE TYPE
DISABLED

Event Handler Attributes

Handler NN 1E HTML
onClick n/a n/a 4
onDblClick n/a n/a 4
onKeyDown n/a n/a 4
onKeyPress n/a n/a 4
onKeyUp n/a n/a 4
onMouseDown n/a n/a 4
onMouseMove n/a n/a 4
onMouseOut n/a n/a 4
onMouseOver n/a n/a 4
onMouseUp n/a n/a 4

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<LINK> 343

CHARSET NN n/a 1E n/a HTIML 4

CHARSET=" characterSet" Optional

Character encoding of the content at the other end of the link.
Example <LINK CHARSET="csIS05427Cyrillic" HREF="moscow.html">

Value

Case-insensitive alias from the character set registry (fip:/fip.isi.edu/in-notes/iana/

assignments/character-sets). =
=
Default Determined by browser. -
@
)
DISABLED NN n/a 1IE 4 HTML n/a g
DISABLED Optional @

The presence of this attribute disables the LINK element. Unlike when this attribute is
applied to content-holding elements, in this case no content is grayed out in response.

Example <LINK REL="Index" HREF="indexList.html" DISABLED>
Value The presence of this attribute sets its value to true.

Default false

Object Model Reference

IE [window.]document .all.elementID.disabled

HREF NN n/a I1E 3 HIML all
HREF="URI" Required

The URI of the destination of a link. Navigator 4 uses the SRC attribute for this purpose.
Include both attributes for a cross-browser implementation.

Example <LINK REL="Prev" HREF="sect2.html">
Value Any valid URI, including complete and relative URLs.

Default None.

Object Model Reference

IE [window.]document .all .elemenilD. href

HREFIANG NN wa IE n/a HIML 4
HREFLANG=" languageCode" Optional

The language code of the content at the destination of a link. Requires that the HREF
attribute also be set. This attribute is primarily an advisory attribute to help a browser
prepare itself for a new language set if the browser is so enabled.

Example <LINK HREFLANG="HI" HREF="hindi/Chap3.html">

Value Case-insensitive language code.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

344 <LINK>

Default Browser default.

MEDIA NN n/a IE n/a HTIML 4

MEDIA=" descriplorList" Optional

Sets the intended output device for the content of the destination document pointed to by
the HREF attribute. The MEDIA attribute looks forward to the day when browsers are able to
tailor content to specific kinds of devices such as pocket computers, text-to-speech digi-
tizers, or fuzzy television sets. The HTML 4.0 specification defines a number of constant
values for anticipated devices, but the list is open-ended, allowing future browsers to tailor
output to yet other kinds of media and devices.

Example
<LINK REL="Glossary" HREF="gloss.html" MEDIA="screen, tv, handheld">

Value

Case-sensitive constant values. Multiple values can be grouped together in a comma-
delimited list within a quoted string. Values defined in HTML 4.0 are all | aura |
braille | handheld | print | projection | screen | tty | tv.

Default screen

REL NN 4 1IE 3 HIML 3.2
REL="/linkT)pes" Optional

Defines the relationship between the current element and the destination of the link. The
HTML 4.0 recommendation defines several link types; it is up to the browser to determine
how to employ the value. The element must include an HREF attribute for the REL attribute
to be applied.

Example <LINK REL="Next" HREF="sect6.html">

Value

Case-insensitive, space-delimited list of HTML 4.0 standard link types applicable to the
element. Internet Explorer 4 understands only stylesheet; Navigator 4 recognizes
stylesheet and fontdef. HTML 4.0-sanctioned link types are:

alternate contents index start
appendix copyright next stylesheet
bookmark glossary prev subsection
chapter help section

Default None.

Object Model Reference
IE [window.]document .all.elementlD.rel

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<LINK> 345

REV NN nw/a 1IE n/a HIML 4
REV="[linkTjpes" Optional

A reverse link relationship. Like the REL attribute, the REV attribute’s capabilities are defined
by the browser, particularly with regard to how the browser interprets and renders the
various link types available in the HTML 4.0 specification. Given two documents (A and B)
containing links that point to each other, the REV value of B is designed to express the
same relationship between the two documents as denoted by the REL attribute in A.

Example <LINK REV="Prev" HREF="sect4.html">

Value

Case-insensitive, space-delimited list of HTML 4.0 standard link types applicable to the
element. See the REL attribute for sanctioned link types.

Default None.

SRC NN 4 IE w/a HIML n/a
SRC="URL" Optional

The URL of the destination of a link. Internet Explorer 4 and HTML 4.0 use the HREF
attribute for this purpose. Include both attributes for a cross-browser implementation.

Example <LINK REL="fontdef" HREF="fonts/garamond.pfr">
Value Any valid URL, including complete and relative URLs.

Default None.

TARGET NN nw/a 1IE n/a HIML 4

TARGET=" windowOrFrameName" Optional

Presumably, the TARGET attribute is provided in HTML 4.0 as a way to specify the destina-
tion for display of a document at the other end of the HREF attribute of the LINK element.
No browser yet implements this attribute because the LINK element so far does not link up
to content that can be displayed.

Value

Case-sensitive identifier when the frame or window name has been assigned via the target
element’s NAME attribute. Four reserved target names act as constants:
_blank Browser creates a new window for the destination document.

_parent Destination document replaces the current frame’s framesetting document (if
one exists; otherwise, it is treated as _self).

_self Destination document replaces the current document in its window or frame.

_top Destination document is to occupy the entire browser window, replacing any
and all framesets that may be loaded (also treated as _self if there are no
framesets defined in the window).

Default _self

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
-
=
(']
—r
®
-
@
=
]
@

346 <LISTING>

TYPE NN 4 IE 4 HIML 4
TYPE="MIMET)pe" Optional

An advisory about the content type of the destination document or resource. In practice,
this attribute so far is used to prepare the browser for the style sheet type being linked to.

Example
<LINK REL="stylesheet" TYPE="text/css" HREF="styles/mainStyle.html">

Value

Case-insensitive MIME type. A catalog of registered MIME types is available from fip.//
Sip.isi.edu/in-notes/iana/assignments/media-types/.

Default None.

Object Model Reference

IE [window.]document .all.clementlD. type

<LISTING> NN all 1E all HTML <4
<LISTING>...</LISTING> End Tag: Required

The LISTING element displays its content in a monospace font as a block element, as in
computer code listings rendered 132 columns wide. In most browsers, the font size is also
reduced from the default size. Browsers observe carriage returns and other whitespace in
element content. This element has been long deprecated in HTML and has even been
removed from the HTML 4.0 specification. You are encouraged to use the PRE element
instead.

Example

<LISTING>

&1t; SCRIPT LANGUAGE="JavaScript">
document ..write("Hello, world.")

&1t ; /SCRIPT&gL;

</LISTING>

Object Model Reference

IE [window.]document .all .elementID

Attributes

CLASS LANG LANGUAGE STYLE TITLE
ID

Event Handler Attributes

Handler NN 1IE HTML
onClick n/a 4 n/a
onDblClick n/a 4 n/a
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 n/a
onKeyPress n/a 4 n/a

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<MAP> 347

Handler NN IE HTML
onKeyUp n/a 4 n/a
onMouseDown n/a 4 n/a
onMouseMove n/a 4 n/a
onMouseOut n/a 4 n/a
onMouseOver n/a 4 n/a
onMouseUp n/a 4 n/a
onSelectStart n/a 4 n/a
<MAP>

NN all 1E all HTML 3.2

<MAP>. . .</MAP>

A MAP element is a container for AREA elements that define the location and links of
hotspots of client-side image maps. The primary purpose of the MAP element is to associate

End Tag: Required

=
=
=
=
=
(3]
—r
[1-]
1]
[1-]
-
[x]
(-]

an identifier (the NAME attribute) that the USEMAP attribute points to when turning an IMG
element into a client-side image map. Most other attributes are style-related and may be
applied to the MAP element so that they are inherited by elements nested within.

Example

<IMG SRC="images/logo.gif" ALT="Scroll to the bottom for navigation links."

HEIGHT=300 WIDTH=250 USEMAP="#navigation">

<MAP NAME="navigation">

<AREA SHAPE="rect" COORDS="0,0,100,100" HREF="products.html">
<AREA SHAPE="rect" COORDS="0,100,300,100" HREF="support.html">

</MAP>

Object Model Reference

1IE [window.]document . all.elementID
Attributes

CLASS ID LANGUAGE
DIR LANG NAME

Event Handler Attributes

Handler NN IE HTML
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4

STYLE TITLE

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

348 <MARQUEE>

Handler NN 1IE HTML
onMouseUp n/a 4 4
onSelectStart n/a 4 n/a
NAME NN all IE all HTML 3.2
=" identifier" Required

The identifier to which the USEMAP attribute of an IMG element points. Because the USEMAP
attribute is actually a URL type, its value resembles that of a link to an anchor: the name is

preceded by a hash symbol (only in the USEMAP attribute).
Example <MAP NAME="navigation"> ...</MAP>
Value Case-sensitive unique identifier.

Default None.

Object Model Reference

IE [window.]document .all.elementlD.name

<[‘4ARQ UEE> NN n/a

IE 3 HTML wa

<MARQUEE>. . .</MARQUEE>

End Tag: Optional

The MARQUEE element is unique to Internet Explorer. It displays HTML content in a scrolling
region on the page. Scrolled content goes between the start and end tags. There is no
corresponding element in Navigator, although the effect can be duplicated in a cross-
browser fashion with a Java applet or more cumbersomely through Dynamic HTML.

Example

<MARQUEE BEHAVIOR="slide" DIRECTION="left" WIDTH=250 BGCOLOR="white">

Check out our monthly specials.

</MARQUEE>

Object Model Reference

IE [window.] document .all .clementID

Attributes

BEHAVIOR DATAFORMATAS HSPACE LOOP

BGCOLOR DATASRC ID SCROLLAMOUNT
CLASS DIRECTION LANG SCROLLDELAY
DATAFLD HEIGHT LANGUAGE STYLE

Event Handler Attributes

Handler NN 1IE HTML
onAfterUpdate n/a 4 n/a
onBlur n/a 4 n/a
onBounce n/a 4 n/a
onClick n/a 4 n/a
onDblClick n/a 4 n/a

TITLE
TRUESPEED
VSPACE
WIDTH

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<MARQUEE> 349

Handler NN 1IE HTML

onDragStart n/a 4 n/a

onFinish n/a 4 n/a

onFocus n/a 4 n/a

onHelp n/a 4 n/a

onKeyDown n/a 4 n/a

onKeyPress n/a 4 n/a

onKeyUp n/a 4 n/a

onMouseDown n/a 4 n/a X
onMouseMove n/a 4 n/a E
onMouseOut n/a 4 n/a E
onMouseOver n/a 4 n/a 5
onMouseUp n/a 4 n/a E
onResize n/a 4 n/a

onRowEnter n/a 4 n/a

onRowExit n/a 4 n/a

onSelectStart n/a 4 n/a

onStart n/a 4 n/a

BEHAVIOR NN w/a 1IE 3 HIML wa
BEHAVIOR=" motionljpe" Optional

Sets the motion of the content within the rectangular space set aside for the MARQUEE
element. You have a choice of three motion types.

Example
<MARQUEE BEHAVIOR="slide" DIRECTION="left" WIDTH=250 BGCOLOR="white">

</MARQUEE>
Value One of the case-insensitive MARQUEE element motion types:

alternate Content alternates between marching left and right.

scroll Content scrolls (according to the DIRECTION attribute) into view and out of
view before starting again.

slide Content scrolls (according to the DIRECTION attribute) into view, stops at the
end of its run, blanks, and then starts again.

Default scroll

Object Model Reference

IE [window.]document .all.elementlD.behavior

BGCOLOR NN n/a IE 3 HIML wa
BGCOLOR=" colorTripletOrName" Optional

Establishes a fill color (behind the text and other content) for the rectangular space reserved
for the MARQUEE element.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

350 <MARQUEE>

Example
<MARQUEE BEHAVIOR="slide" DIRECTION="left" WIDTH=250 BGCOLOR="white">

</MARQUEE>
Value

A hexadecimal triplet or plain-language color name. A setting of empty is interpreted as
"#000000" (black). See Appendix A for acceptable plain-language color names.

Default Varies with browser, browser version, and operating system.

Object Model Reference

IE [window.]document .all .elementlD.bgColor

DATAFLD NN n/a 1E 4 HIML n/a
DATAFLD=" columnName" Optional

Used with IE 4 data binding to associate a remote data source column name with the
content scrolled by the MARQUEE element. The data source column must be either plain text
or HTML (see DATAFORMATAS). A DATASRC attribute must also be set for the MARQUEE
element.

Example

<MARQUEE BEHAVIOR="slide" DIRECTION="left" WIDTH=200
DATASRC="#DBSRC3" DATAFLD="news" DATAFORMATAS="HTML">

</MARQUEE>
Value Case-sensitive identifier.

Default None.

Object Model Reference

IE [window.]document .all .elemenilD.dataF1ld

DATAFORMATAS NN wa IE 4 HIML w/a
DATAFORMATAS=" dataTjpe" Optional

Used with IE 4 data binding, this attribute advises the browser whether the source material
arriving from the data source is to be treated as plain text or as tagged HTML. This attribute
setting depends entirely on how the data source is constructed.

Example

<MARQUEE BEHAVIOR="slide" DIRECTION="left" WIDTH=200
DATASRC="#DBSRC3" DATAFLD="news" DATAFORMATAS="HTML">

</MARQUEE>
Value IE 4 recognizes two possible settings: text | HTML.

Default text

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<MARQUEE> 351

Object Model Reference

1IE [window.]document .all.elementiD.dataFormatAs

DATASRC NN wa 1IE 4 HIML wa
DATASRC=" dataSourceName" Optional

Used with IE 4 data binding to specify the name of the remote ODBC data source (such as
an Oracle or SQL Server database) to be associated with the element. Content from the data
source is specified via the DATAFLD attribute.

Example

<MARQUEE BEHAVIOR="slide" DIRECTION="left" WIDTH=200
DATASRC="#DBSRC3" DATAFLD="news" DATAFORMATAS="HTML">

</MARQUEE>
Value Case-sensitive identifier.

Default None.

Object Model Reference

IE [window.]document .all.elementID.dataSrc

DIRECTION NN wa IE 4 HTML wa
DIRECTION="scrollDirection" Optional

A MARQUEE element’s content may scroll in one of four directions. For optimum readability
in languages written left to right, it is easier to grasp the content when it scrolls either to the
left or downward.

Example
<MARQUEE BEHAVIOR="slide" DIRECTION="left" WIDTH=200>

</MARQUEE>
Value Four possible directions: down | left | right | up.

Default left

Object Model Reference

IE [window.]document .all.clementlD.direction

HEIGHT, WIDTH NN wa 1IE 4 HIML wa
HEIGHT="length" Optional

WIDTH="length"

A MARQUEE element renders itself as a rectangular space on the page. You can override the
default size of this rectangle by assigning values to the HEIGHT and WIDTH attributes. The
default value for HEIGHT is determined by the font size of the largest font assigned to
content in the MARQUEE. Default width is set to 100% of the width of the next outermost
container (usually the document BODY). The WIDTH defines how much space is used at one
time or another by horizontally scrolling content. When the MARQUEE is embedded within a

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

=
=
=
-
=
(']
—r
®
-
@
=
]
@

352 <MARQUEE>

TD element that lets the browser determine the table cell’s calculated width, you must set
the WIDTH of the MARQUEE element or risk having the browser set it to 1, making the
content unreadable.

If you want extra padding around the space, see the HSPACE and VSPACE attributes.

Example
<MARQUEE BEHAVIOR="slide" DIRECTION="left" HEIGHT=20 WIDTH=200>

</MARQUEE>
Value Any length value in pixels or percentage of available space.

Default A width of 100%; a height of 12 pixels.

Object Model Reference

1E [window.]document .all elementlD.height
[window.] document .all elementlD.width

HSPACE, VSPACE NN #n/a 1E 4 HIML n/a

HSPACE="pixelCount" Optional
VSPACE="pixelCount"

Internet Explorer provides attributes for setting padding around a MARQUEE element. The
HSPACE attribute controls padding along the left and right edges (horizontal padding),
whereas the VSPACE attribute controls padding along the top and bottom edges (vertical
padding). Adding such padding provides an empty cushion around the MARQUEE’s rect-
angle. As an alternate, you can specify the various margin style sheet settings, especially if
you want to open space along only one edge.

Example

<MARQUEE BEHAVIOR="slide" DIRECTION="left" HEIGHT=20 WIDTH=200
HSPACE=10 VSPACE=15>

</MARQUEE>

Value Any positive integer.

Default 0
Object Model Reference
IE [window.]document . all .elementlD.hspace

[window.]document . all .elementlD.vspace

LOOP NN wa IE 4 HIML wa
LOOP=" count" Optional

Sets the number of times the MARQUEE element scrolls its content. After the final scroll, the
content remains in a fixed position. Constant animation can sometimes be distracting to
page visitors, so if you have the MARQUEE turn itself off after a few scrolls, you may be
doing your visitors a favor.

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<MARQUEE> 353

Example
<MARQUEE BEHAVIOR="slide" DIRECTION="left" HEIGHT=20 WIDTH=200 LOOP=3>

</MARQUEE>
Value

Any positive integer if you want the scrolling to stop. Otherwise, set the value to -1 or
infinite.

Default -1

Object Model Reference

IE [window.]document .all .elementlD.loop

SCROLLAMOUNT NN #/a IE 4 HIML wa
SCROLLAMOUNT=" pixelCount" Optional

MARQUEE content looks animated by virtue of the browser clearing and redrawing its
content at a location offset from the previous location (in a direction set by the DIRECTION
attribute). You can make the scrolling appear faster by increasing the amount of space
between positions of each drawing of the content; conversely, you can slow down the
scrolling by decreasing the space. See also SCROLLDELAY.

Example

<MARQUEE BEHAVIOR="slide" DIRECTION="left" HEIGHT=20 WIDTH=200
SCROLLAMOUNT=2>

</MARQUEE>

Value Any positive integer.

Default 6

Object Model Refe