CrRELLY”

Building Oracle XML Applications

Steve Muench
Publisher: O'Reilly

First Edition September 2000
ISBN: 1-56592-691-9, 810 pages

Building Oracle XML Applications gives Java and PL/SQL developers a
rich and detailed look at the many tools Oracle provides to support XML
development. It shows how to combine the power of XML and XSLT with
the speed, functionality, and reliability of the Oracle database. The
author delivers nearly 800 pages of entertaining text, helpful and
time-saving hints, and extensive examples that developers can put to
use immediately to build custom XML applications. The accompanying
CD-ROM contains JDeveloper 3.1, an integrated development
environment for Java developers.

Building Oracle XML Applications

Copyright © 2000 O'Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA
95472.

The O'Reilly logo is a registered trademark of O'Reilly & Associates, Inc. Many of
the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and
O'Reilly & Associates, Inc. was aware of a trademark claim, the designations have
been printed in caps or initial caps.

Oracle®, JDeveloper™, and all Oracle-based trademarks and logos are
trademarks or registered trademarks of Oracle Corporation, Inc. in the United
States and other countries. Java™ and all Java-based trademarks and logos are
trademarks or registered trademarks of Sun Microsystems, Inc. in the United
States and other countries. O'Reilly & Associates, Inc. is independent of Oracle
Corporation and Sun Microsystems.

While every precaution has been taken in the preparation of this book, the
publisher assumes no responsibility for errors or omissions, or for damages
resulting from the use of the information contained herein.

Table of Contents

Preface
Audience for This Book
Which Platform and Version?
Structure of This Book
About the Examples
About the CD-ROM
Conventions Used in This Book
Comments and Questions
Acknowledgments

I: XML Basics

1. Introduction to XML
1.1 What Is XML?
1.2 What Can I Do with XML?
1.3 Why Should I Use XML?
1.4 What XML Technologies Does Oracle Provide?

2. Working with XML
2.1 Creating and Validating XML
2.2 Modularizing XML
2.3 Searching XML with XPath

II: Oracle XML Fundamentals

3. Combining XML and Oracle
3.1 Hosting the XML FAQ System on Oracle
3.2 Serving XML in Any Format
3.3 Acquiring Web-based XML Content

4. Using JDeveloper for XML Development
4.1 Working with XML, XSQL, and JSP Files
4.2 Working with Database Objects
4.3 Using JDeveloper with Oracle XDK Components

5. Processing XML with PL/SQL
5.1 Loading External XML Files
5.2 Parsing XML
5.3 Searching XML Documents with XPath
5.4 Working with XML Messages
5.5 Producing and Transforming XML Query Results

6. Processing XML with Java
6.1 Introduction to Oracle8 i JServer
6.2 Parsing and Programmatically Constructing XML
6.3 Searching XML Documents with XPath
6.4 Working with XML Messages
6.5 Producing and Transforming XML Query Results

7. Transforming XML with XSLT
7.1 XSLT Processing Mechanics
7.2 Single-Template Stylesheets
7.3 Understanding Input and Output Options
7.4 Improving Flexibility with Multiple Templates

8. Publishing Data with XSQL Pages
8.1 Introduction to XSQL Pages
8.2 Transforming XSQL Page Results with XSLT
8.3 Troubleshooting Your XSQL Pages

9. XSLT Beyond the Basics
9.1 Using XSLT Variables
9.2 The Talented Identity Transformation
9.3 Grouping Repeating Data Using SQL
9.4 Sorting and Grouping Repeating Data with XSLT

10. Generating Datagrams with PL/SQL
10.1 Programmatically Generating XML Using PL/SQL
10.2 Automatic XML Generation with DBXML

11. Generating Datagrams with Java
11.1 Generating XML Using Java
11.2 Serving XML Datagrams over the Web
11.3 Automatic XML from SQL Queries

12. Storing XML Datagrams
12.1 Overview of XML Storage Approaches
12.2 Loading Datagrams with the XML SQL Utility
12.3 Storing Posted XML Using XSQL Servlet
12.4 Inserting Datagrams Using Java

13. Searching XML with interMedia
13.1 Why Use interMedia?
13.2 What Is interMedia?
13.3 The interMedia Query Language
13.4 Handling Heterogeneous Doctypes

13.5 Handling Doctype Evolution
13.6 Advanced interMedia

14. Advanced XML Loading Techniques
14.1 Storing Datagrams in Multiple Tables
14.2 Building an XMLLoader Utility
14.3 Creating Insert Transformations Automatically

ITI: Oracle XML Applications

15. Using XSQL Pages as a Publishing Framework
15.1 Overview of XSQL Pages Facilities
15.2 Additional XML Delivery Options

16. Extending XSQL and XSLT with Java
16.1 Developing Custom XSQL Actions
16.2 Integrating Custom XML Sources
16.3 Working with XSLT Extension Functions

17. XSLT-Powered Portals and Applications
17.1 XSLT-Powered Web Store
17.2 Building a Personalized News Portal
17.3 Online Discussion Forum

IV: Appendixes
A. XML Helper Packages
A.1 Installing the XML Helper Packages
A.2 Source Code for the XML Helper Packages
B. Installing the Oracle XSQL Servlet
B.1 Supported Configurations
B.2 Prerequisites
B.3 Downloading and Installing the XSQL Servlet
C. Conceptual Map to the XML Family

D. Quick References

Colophon

Preface

This book is a hands-on, practical guide that teaches you the nuts and bolts of XML and the family
of Internet standards related to it and shows how to exploit XML with your Oracle database using
Java™, PL/SQL, and declarative techniques. It's a book for Oracle developers by an Oracle
developer who has lived the technology at Oracle Corporation for over ten years and has directly
catalyzed the company’s XML technology direction and implementation. As you read this book, I
hope you will come to appreciate the wide variety of tools Oracle provides to enable you to
combine the best of XML with the best of Oracle to build flexible, database-powered applications
for the Web.

This book abounds with tested, commented, and fully explained examples because—in the
unforgettable words of a high school mentor of mine—"you only get good at something by
working through an ungodly number of problems." The examples include a number of helper
libraries and utilities that will serve to jump-start your own Oracle XML development projects (see
“About the Examples" later in this Preface for details).

If this book has one main goal, it is to educate, excite, and thoroughly convince you that by
combining:

e The speed, functionality, and reliability of the Oracle database
e The power of XML as a universal standard for data exchange
e The flexibility to easily transform XML data into any format required

we can accomplish some pretty amazing things, not to mention saving ourselves a lot of work in
the process.

Audience for This Book

This book is aimed mainly at Java and PL/SQL developers who want to use the XML family of
Internet standards in conjunction with their Oracle databases. I also expect that this book may
catch the eye of existing Oracle database administrators who want to update their skills to learn
how to apply Java, PL/SQL, and XML to their daily work. In addition, the in-depth coverage of
Oracle’s template-driven XSQL Pages technology should prove useful to non-programmers as
well.

This book assumes no prior knowledge of XML on your part, but it does assume a basic working
knowledge of SQL and familiarity with either Java or PL/SQL as a programming language.

Which Platform and Version?

Much of this book applies to Oracle8 and Oracle8i (and even Oracle7 in some cases). In general,
if you want to use XML outside the database, you can use any Oracle version. However, if you
want to use XML features inside the database (and take full advantage of the features I describe
here), you must use Oracle8i. Wherever relevant, I note whether a particular XML feature is
specific to Oracle8/ or can be used with earlier Oracle versions as well.

The examples for this book were developed and tested on a Windows NT 4.0 platform using
JDeveloper 3.1 as a development environment and Oracle8/ Release 2 Enterprise Edition for NT
(version 8.1.6) as the database. However, none of the examples, tools, or technologies covered
in the book are Windows-specific. The JDeveloper 3.1 product—included on the CD-ROM that
accompanies this book—is certified to run on Windows NT and Windows 2000.

Structure of This Book

This book is not divided strictly by individual tool and function. Instead, it begins in Part I with an
overview of fundamental XML standards and concepts. Part II covers all core Oracle XML
technologies, presenting increasingly detailed discussions of various Oracle XML capabilities. Part
III describes combining the technologies we've learned to build applications and portals. Finally,
Part IV includes four useful appendixes with installation and reference information.

The book uses extensive examples—in both PL/SQL and Java—to present material of increasing
sophistication.

The following list summarizes the contents in detail.

Part I, introduces the basics of XML and provides a high-level overview of Oracle’s XML
technology. It consists of the following chapters:

e Chapter 1, provides a gentle introduction to XML by describing what it is, what you can do
with it, why you should use it, and what software Oracle supplies to work with it.

e Chapter 2, describes how to build your own “vocabularies" of tags to represent the
information you need to work with, as well as how to use XML namespaces and entities to
modularize your documents and XPath expressions to search them.

Part II, describes the core development activities that Oracle XML developers need to understand
when using XML with an Oracle database. It consists of the following chapters:

e Chapter 3, provides a typical “day-in-the-life" scenario illustrating the power of combining
XML with an Oracle database.

e Chapter 4, describes how you can use Oracle’s JDeveloper product to help with XML
development.

e Chapter 5, explains how you can use PL/SQL to load XML files, parse XML, search XML
documents, post XML messages, and both enqueue and dequeue XML messages from
queues.

e Chapter 6, explains how you can combine Java and XML both inside and outside Oracle8i
to load XML files, parse XML, search XML documents, and post XML messages, as well as
enqueue and dequeue XML messages from queues.

e Chapter 7, explains the fundamentals of creating XSLT stylesheets to carry out
transformations of a source XML document into a resulting XML, HTML or plain text output.

e Chapter 8, explains how to build dynamic XML datagrams from SQL using declarative
templates to perform many common tasks.

e Chapter 9, builds on the fundamentals from Chapter 7 and explores additional XSLT
functionality like variables, sorting and grouping techniques, and the many kinds of useful
transformations that can be done using a variation on the identity transformation.

e Chapter 10, gives Java developers a whirlwind introduction to PL/SQL and describes how
to use PL/SQL to dynamically produce custom XML datagrams containing database
information.

e Chapter 11, describes numerous techniques for programmatically producing XML
datagrams using Java by using JDBC™, SQLJ, JavaServer Pages™, and the Oracle XML
SQL Utility.

e Chapter 12, explains how to store XML datagrams in the database using the XML SQL
Utility and other techniques, as well as how to retrieve them using XSQL pages and XSLT
transformations.

e Chapter 13, describes how you can use Oracle8i ’s integrated interMedia Text functionality
to search XML documents, leveraging their inherent structure to improve text searching
accuracy.

e Chapter 14, describes the techniques required to insert arbitrarily large and complicated
XML into multiple tables. It also covers using stylesheets to generate stylesheets to help
automate the task.

Part I1I, describes how to build applications using Oracle and XML technologies. It consists of the
following chapters:

e Chapter 15, builds on Chapter 8, explaining the additional features that make XSQL Pages
an extensible framework for assembling, transforming, and delivering XML information of
any kind.

e Chapter 16, describes how to extend the functionality of the XSQL Pages framework using
custom action handlers, and how to extend the functionality of XSLT stylesheets by calling
Java extension functions.

e Chapter 17, builds further on Chapter 11 and on earlier chapters, describing best-practice
techniques to combine XSQL pages and XSLT stylesheets to build personalized
information portal and sophisticated online discussion forum applications.

Part IV, contains the following summaries:

e Appendix A, provides the source code for the PL/SQL helper packages we built in Chapter
3: xml, xmldoc, xpath, xslt, and http.

e Appendix B, describes how to install the XSQL Servlet that you can use with any servlet
engine (Apache JServ, JRun, etc.).

e Appendix C, graphically summarizes the relationships between key XML concepts and the
family of XML-related standards that supports them.

e Appendix D, provides “cheat sheets" on XML, XSLT, and XPath syntax.

About the Examples

This book contains a large number of fully working examples. Many are designed to help you build
your own Oracle XML applications. To that end, I've included all examples on the O'Reilly web site
(http://www.oreilly.com/catalog/orxmlapp). The site includes full source code of all examples
and detailed instructions on how to create the sample data required for each chapter. I'll try to
keep the code up to date, incorporating corrections to any errors that are discovered, as well as
improvements suggested by readers.

In order to run the complete set of examples yourself, you will need the following software:

e Oracle 8/ Release 2 (version 8.1.6) or greater
e Oracle JDeveloper 3.1 or greater

From the Oracle XML Developer’s Kit for Java:
e Oracle XML Parser/XSLT Processor for Java, Release 2.0.2.9 or greater
e Oracle XSQL Pages and the XSQL Servlet Release 1.0.0.0
e Oracle XML SQL Utility

From the Oracle XML Developer’s Kit for PL/SQL:

e Oracle XML Parser/XSLT Processor for PL/SQL Release 1.0.2 or greater

All of this software is downloadable from the Oracle Technology Network (OTN) web site for
Oracle developers at http://technet.oracle.com and is available free of charge for
single-developer use. For information on runtime distribution of the Oracle XML Developer’s kit
components, read the license agreement on the download page of any of the components. For
your convenience, all of the software listed—with the exception of the Oracle8/ database itself—is
available on the CD-ROM accompanying this book and is automatically installed as part of the
JDeveloper 3.1 installation.

About the CD-ROM

We are grateful to Oracle Corporation for allowing us to include the JDeveloper 3.1 for Windows
NT software (developer version) on the CD-ROM accompanying this book. This product provides
a complete development environment for Java developers working with Oracle and XML. Chapter
4 covers the details of significant JDeveloper 3.1 features that are of interest to XML application
developers. You'll find full product documentation and online help on the CD-ROM as well.

Conventions Used in This Book

The following conventions are used in this book:
Italic

Used for file and directory names and URLs, menu items, and for the first mention of new
terms under discussion

Constant width

Used in code examples and for package names, XML elements and attributes, and Java
classes and methods

Constant width italic

In some code examples, indicates an element (e.g., a filename) that you supply
Constant width bold

Indicates user input in code examples
UPPERCASE

Generally used for Oracle SQL and PL/SQL keywords

lowercase

Generally used for table names in text and for table, column, and variable names in code
examples

The following icons are used in this book:

This icon indicates a tip, suggestion, or general note related to
«: | surrounding text.

This icon indicates a warning related to surrounding text.

Comments and Questions

I have tested and verified the information in this book to the best of my ability, but you may find
that features have changed (or even that I have made mistakes!). Please let me know about any
errors you find, as well as your suggestions for future editions, by writing to:

O’Reilly & Associates 101 Morris Street Sebastopol, CA 95472 800-998-9938 (in the U.S. or
Canada) 707-829-0515 (international or local) 707-829-0104 (FAX)

You can also send O'Reilly messages electronically. To be put on the mailing list or request a
catalog, send email to:

info@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

We have a web site for this book, where we’ll include examples (see Section P.4 earlier in the
Preface), errata, and any plans for future editions. You can access this page at:

http://www.oreilly.com/catalog/orxmlapp/

For more information about this book and others, see the O'Reilly web site:

http://www.oreilly.com

Acknowledgments

I owe an unrepayable debt of gratitude to my wife Sita. For over a year, she juggled our two
active youngsters on nights and weekends while Daddy “disappeared" to work on his book—a
true labor of love. She did not understand what demon drove me to write this book, but she felt
I might regret not writing it for the rest of my life. I'm happy to say to her, Emma, and Amina,
“Daddy’s home."

Thanks to my mother-in-law, Dr. Nila Negrin, who assisted me in finding the perfect XML insect
to grace the cover of this book, Xenochaetina Muscaria Loew. Regrettably, O'Reilly couldn’t find a
print of this Tennessee-native fly, so we had to go for plan B.

Many thanks to the technical reviewers for this book: Adam Bosworth, Terris Linenbach, Don
Herkimer, Keith M. Swartz, Leigh Dodds, Murali Murugan, Bill Pribyl, and Andrew Odewahn. I owe
Keith a special thank you for his amazingly detailed review.

Garrett Kaminaga, a key developer on Oracle’s interMedia Text product development team, wrote
the lion’s share of Chapter 13, for which I am very grateful. In addition, thanks go to MK, Visar,
and Karun in Oracle’s Server Technology XML development team for answering questions when I
bumped into problems, and for always having an open mind to new ideas.

Norm Walsh, coauthor of DocBook: The Definitive Guide (O'Reilly & Associates), offered early
encouragement for my then-crazy idea of authoring this entire book in XML, and he answered
many questions at the outset about using the DocBook DTD for technical manuals.

Many thanks to Tony Graham at Mulberry Technologies for giving us permission to include the
helpful XML, XSLT, and XPath quick references in Appendix D and to Oracle Corporation for
allowing us to include JDeveloper 3.1 on the accompanying CD-ROM.

Thanks to the entire O'Reilly production team, especially to Madeleine Newell, the project
manager and copyeditor, whose keen questions about wording and XML enhanced the book.

Finally, thanks to Debby Russell, my editor at O'Reilly, for believing in my initial idea and more
importantly for not rushing me to finish. The book you’re now reading is everything I envisioned
at the outset for a one-stop-shop book for developers using Oracle and XML. No compromises
were made and thankfully, none was ever asked of me.

Part I: XML Basics

This part of the book introduces the basics of XML and provides a high-level overview of Oracle's
XML technology. It consists of the following chapters:

e Chapter 1, provides a gentle introduction to XML by describing what it is, what you
can do with it, why you should use it, and what software Oracle supplies to work
with it.

e Chapter 2, describes how to build your own vocabularies of tags to represent the
information you need to work with, as well as how to use XML namespaces and
entities to modularize your documents and XPath expressions to search them.

Chapter 1. Introduction to XML

The Internet is driving an unprecedented demand for access to information. Seduced by the
convenience of paying bills, booking flights, tracking stocks, checking prices, and getting
everything from gifts to groceries online, consumers are hungry for more. Compelled by the lower
costs of online outsourcing and the ability to inquire, day or night, "What's the status?,"
businesses are ramping up to reap the rewards. Excited by improved efficiency and universal
public access, governments are considering how all kinds of raw data, from financial reports to
federally funded research, can be published online in an easily reusable format.

More than ever before, database-savvy web application developers working to capitalize on these
exciting Internet-inspired opportunities need to rapidly acquire, integrate, and repurpose
information, as well as exchange it with other applications both inside and outside their
companies. XML dramatically simplifies these tasks.

As with any new technology, you first need to understand what XML is, what you can do with it,
and why you should use it. With all the new terms and acronyms to understand, XML can seem
like a strange new planet to the uninitiated, so let's walk before we run. This chapter introduces
"Planet XML" and the "moons" that orbit it, and provides a high-level overview of the tools and
technology Oracle offers to exploit the combined strengths of XML and the Oracle database in
your web applications.

1.1 What Is XML?

First, let's look at some basic XML definitions and examples.
1.1.1 Extensible Markup Language

XML, which stands for the "Extensible Markup Language," defines a universal
standard for electronic data exchange. It provides a rigorous set of rules enabling
the structure inherent in data to be easily encoded and unambiguously
interpreted using human-readable text documents. Example 1.1 shows what a
stock market transaction might look like represented in XML.

Example 1.1. Stock Market Transaction Represented in XML

<?xml version="1.0"?>
<transaction>
<account>89-344</account>
<buy shares="100">
<ticker exch="NASDAQ">WEBM</ticker>

</buy>
<sell shares="30">
<ticker exch="NYSE">GE</ticker>
</sell>
</transaction>

After an initial line that identifies the document as an XML document, the

example begins with a <transaction> tag. Nested inside this opening tag and its

matching </transaction> closing tag, other tags and text encode nested
structure and data values respectively. Any tag can carry a list of one or more

named attribute="value" entries as well, like shares="nn" on <buy> and

<sell> and exch="xxx" ON <ticker>.

XML's straightforward "text with tags" syntax should look immediately familiar if
you have ever worked with HTML, which also uses tags, text, and attributes. A
key difference between HTML and XML, however, lies in the kind of data each
allows you to represent. What you can represent in an HTML document is

constrained by the fixed set of HTML tags at your disposal—like <table>, ,

and <a> for tables, images, and anchors. In contrast, with XML you can invent

any set of meaningful tags to suit your current data encoding needs, or reuse an
existing set that someone else has already defined. Using XML and an
appropriate set of tags, you can encode data of any kind, from highly structured
database query results like the following:

<?xml version="1.0"7?>
<ROWSET>
<ROW num="1">
<ENAME>KING</ENAME>
<SAL>5000</SAL>
</ROW>
<ROW num="2">
<ENAME>SCOTT</ENAME>
<SAL>3000</SAL>
</ROW>
</ROWSET>

to unstructured documents like this one:

<?xml version="1.0"7?2>

<DamageReport>
The insured's <Vehicle Make="Volks">Beetle</Vehicle> broke through
the guard rail and plummeted into a ravine. The cause was determined
to be <Cause>faulty brakes</Cause>. Amazingly there were no

casualties.

</DamageReport>

and anything in between.

A set of XML tags designed to encode data of a particular kind is known as an XML
vocabulary. If the data to be encoded is very simple, it can be represented with
an XML vocabulary consisting of as little as a single tag:

<?xml version="1.0"?2>
<OrderConfirmed/>

For more complicated cases, an XML vocabulary can comprise as many tags as
necessary, and they can be nested to reflect the structure of data being
represented:

<?xml version="1.0"?2>
<Planet Name="Earth">
<Continent Name="North America">
<Country Name="USA">
<State Name="California">
<City Name="San Francisco"/>
</State>
</Country>
</Continent>
</Planet>

As we've seen in the few examples above, an XML document is just a sequence of
text characters that encodes data using tags and text. Often, this sequence of
characters will be the contents of a text file, but keep in mind that XML
documents can live anywhere a sequence of characters can roost. An XML
document might be the contents of a string-valued variable in a running
computer program, a stream of data arriving in packets over a network, or a
column value in a row of a database table. While XML documents encoding
different data may use different tag vocabularies, they all adhere to the same set
of general syntactic principles described in the XML specification, which is
discussed in the next section.

1.1.2 XML Specification

The XML 1.0 specification became a World Wide Web Consortium (W3C)
Recommendation in February 1998. Before a W3C specification reaches this final
status, it must survive several rounds of public scrutiny and be tempered by
feedback from the early implementation experience of multiple vendors. Only
then will the W3C Director declare it a "Recommendation” and encourage its
widespread, public adoption as a new web standard. In the short time since
February 1998, hundreds of vendors and organizations around the world have
delivered support for XML in their products. The list includes all of the big-name
software vendors like Oracle, IBM, Microsoft, Sun, SAP, and others, as well as
numerous influential open source organizations like the Apache Software
Foundation. XML's apparent youth belies its years; the W3C XML Working Group
consciously designed it as a simplified subset of the well-respected SGML
(Standard Generalized Markup Language) standard.

In order to be as generally applicable as possible, the XML 1.0 specification does
not define any particular tag names; instead, it defines general syntactic rules
enabling developers to create their own domain-specific vocabularies of tags.
Since XML allows you to create virtually any set of tags you can imagine, two
common questions are:

e How do I understand someone else's XML?
« How do I ensure that other people can understand my XML?

The answer lies in the document type definition you can associate with your XML
documents.

1.1.3 Document Type Definition

A document type definition (DTD) is a text document that formally defines the
lexicon of legal names for the tags in a particular XML vocabulary, as well as the
meaningful ways that tags are allowed to be nested. The DTD defines this lexicon
of tags using a syntax described in the DTD specification, which is an integral part
of the XML 1.0 specification described earlier. An XML document can be
associated with a particular DTD to enable supporting programs to validate the
document's contents against that document type definition; that is, to check that
the document's syntax conforms to the syntax allowed by the associated DTD.
Without an associated DTD, an XML document can at best be subjected to a
"syntax check."

Recall our transaction example from Example 1.1. For this transaction vocabulary,
we might want to reject a transaction that looks like this:

<?xml version="1.0"7?>
<transaction>
<buy>
<ticker exch="NASDAQ">WEBM</ticker>
<sell shares="30">
<ticker exch="NYSE">GE</ticker>
</sell>
</buy>
</transaction>

because it's missing an account number, doesn't indicate how many shares to

buy, and incorrectly lists the <sel11> tag inside the <buy> tag.

We can enable the rejection of this erroneous transaction document by defining
a DTD for the transaction vocabulary. The DTD can define the set of valid tag

names (also known as element names) to include <transaction>, <account>,
<buy>, <sell>, and <ticker>. Furthermore, it can assert additional constraints

on a <transaction> document. For example, it can require that:

e A <transaction> should be comprised of exactly one <account> element
and one or more occurrences of <buy> or <sell> elements

e A <buy> or <sell> element should carry an attribute named shares, and
contain exactly one <ticker> element

e A <ticker> element should carry an attribute named exch

With a <transaction> DTD such as this in place, we can use tools we'll learn

about in the next section to be much more picky about the transaction
documents we accept. Figure 1.1 summarizes the relationships between the XML
specification, the DTD specification, the XML document, and the DTD.

Figure 1.1. Relationship between the XML spec, XML

document, DTD spec, and DTD

XML Specification DTD Specification
Extensible Markup Language
WG standard describing the % W3C standard describing the
synitax used 10 encode tres- syntax used to defing a lexicon
structured data into a portable, of legal element names
machine-readable text document and allowabla combinations

|
Defings milgs governing
wall-formadness and validity of
Defings syntax far

XML Document (]

)) Document Type Definition
zam be validated

Sequence of characters encoding against 1 Text document defining the
treg-structurad data following rules lexicon of legal element
spacifiad by the XML standard names and allowable

. combinations for a specifi |
|7 XML vocabulary |7

If an XML document passes the strict XML syntax check, it is known as a

well-formed document. If in addition, its contents conform to all the constraints
in a particular DTD, the document is known as "well-formed and valid " with

respect to that DTD.

1.2 What Can I Do with XML?

Beyond encoding data in a textual format, an XML document doesn't do much of
anything on its own. The true power of XML lies in the tools that process it. In this
section, we take a quick tour of the interesting ways to work with XML documents
using tools and technologies widely available today from a number of different

vendors.

1.2.1 Work with XML Using Text-Based Tools

Since an XML document is just text, you can:

These and other tools can treat an XML file the same as any other text file for

View and edit it with vi, Emacs, Notepad, or your favorite text editor
Search it with grep, sed, findstr, or any other text-based utility
Source-control it using systems like CVS, ClearCase, or RCS

common development tasks.

1.2.2 Edit XML Using DTD-Aware Editors

More sophisticated XML editing tools read an XML DTD to understand the lexicon
of legal tag names for a particular XML vocabulary, as well as the various
constraints on valid element combinations expressed in the DTD. Using this
information, the tools assist you in creating and editing XML documents that
comply with that particular DTD. Many support multiple views of your XML
document including a raw XML view, a WYSIWYG view, and a view that augments
the WYSIWYG display by displaying each markup tag.

As an example, this book was created and edited entirely in XML using SoftQuad's
XMetal 1.0 product in conjunction with the DocBook DTD, a standard XML
vocabulary for authoring technical manuals. Figure 1.2 shows what XMetal looks
like in its WYSIWYG view with tags turned on, displaying an earlier version of the
XML source document for this very chapter.

Figure 1.2, Editing a chapter in this book with XMetal

({8 xMetal - [intia] [_[O] =]
(U Fie Edt View Jrset Tools Table wWindow Help =13 x|
= ﬁ] fh 4 F B o = B |7
(Ts=aiy Cle> What Can | Do With [t+? (fEE) B =

,) pala -
[Zpara»Bevond encoding data in a textual format, an XML T H
document doesn't = smphasis 4o < femphasiz) much of anything else :I
om its own. The true power of XML lias in the tools that support lang
(Eemphasiz»processing it In this saction we take a emap |
quick tour of the interesting ways to work with XML documents i]
uEIng toals and technalcgies widaly availabla h:hdaj.r froma

number of differant vandors.

= C> P
(Zpara’»Since an XML document is "just text® you can:
wred
sgmkag
+ [listem > (Zpara > View and edit it with [Zlteeal> . {fieral) itemizedist
[_fReral eral), Motepad, or your favorite text eim:rr replaceshle
4 Euul e | example

Figure =
. [CpwaySaarch it with [CReay - (iea), [Siew> =l
<iteral] [~iterels <Merdl) orlany other text-based «||[C Change & In

o B S|[Tsecti T sectz i emizedistflistitem i para | 4] |

If the XML documents you edit look more like a data structure than a technical
manuscript, then a WYSIWYG view is likely not what you want. Other DTD-aware
editors like Icon Software's XML Spy and Extensibility's XML Instance present
hierarchical views of your document more geared toward editing XML-based data
structures like our transaction example in Example 1.1, or an XML-based
purchase order.

1.2.3 Send and Receive XML over the Web

An XML document can be sent as easily as any other text document over the Web
using any of the Internet's widely adopted protocols, such as:

FTP

The File Transfer Protocol, used for sending and receiving files
SMTP

The Simple Mail Transfer Protocol, used for exchanging documents in email
HTTP

The HyperText Transfer Protocol, used for exchanging documents with web
servers

Figure 1.3. The Web already supports XML document

exchange

Content-Type: text/xml

<?xml version="1.0"%>
e SIUOL S
cticker=0RCL=/tickers
. cprice>86.00</prices>
e </guote>

Content-Type: text/html

<html=
<head=
=title>My Stocks</title=
< /head=
: <hbody> ... </body=
'-__‘- <fhtml= R

B -%j“m“”mm.HTTP.mﬂf”f

Content-Type:
image/gif

By convention, when documents or other resources are exchanged using such
protocols, each is earmarked with a standard content type identifier that
indicates the kind of resource being exchanged. For example, when a web server

returns an HTML page to a browser, it identifies the HTML document with a

content type of text/html. Similarly, every time your browser encounters an
 tag in a page, it makes an HTTP request to retrieve the image using a URL

and gets a binary document in response, with a content type like image/gif. As

illustrated in Figure 1.3, you can easily exchange XML documents over the Web
by leveraging this same mechanism. The standard content type for XML

documents is text/xml.

The act of exchanging XML documents over the Web seems straightforward when
XML is viewed as just another content type, but it represents something very
powerful. Since any two computers on the Web can exchange documents using
the HTTP protocol, and since any structured data can be encoded in a standard
way using XML, the combination of HTTP and XML provides a vendor-neutral,
platform-neutral, standards-based backbone of technology to send any
structured data between any two computers on the network. When XML
documents are used to exchange data in this way, they are often called XML
datagrams . Given the rapid increase in the number of portable electronic devices
sporting wireless Internet connectivity, these XML datagrams can be easily
shuttled between servers and cell phones or personal data assistants (PDAs) as
well.

1.2.4 Generate XML with Server-Side Programs

The XML datagrams exchanged between clients and servers on the Internet
become even more interesting when the content of the XML datagram is
generated dynamically in response to each request. This allows a server to
provide an interesting web service, returning datagrams that can answer
questions like these:

What are the French restaurants within one city block of the Geary Theatre?
<?xml version="1.0"?>
<RestaurantList>
<Restaurant Name="Brasserie Savoy" Phone="415-123-4567"/>
</RestaurantList>
When is Lufthansa Flight 458 expected to arrive at SFO today?
<?xml version="1.0"?>
<FlightArrival Date="06-05-2000">
<Flight>
<Carrier>LH</Carrier>
<Arrives>SFO</Arrives>

<Expected>14:40</Expected>
</Flight>
</FlightArrival>
What is the status of the package with tracking number 567897
<?xml version="1.0"?>
<TrackingStatus PackageId="56789">
<History>
<Scanned At="17:45" On="06-05-2000" Comment="Williams
Sonoma Shipping"/>
<Scanned At="21:13" On="06-05-2000" Comment="SFO"/>
<Scanned At="04:13" On="06-06-2000" Comment="JFK"/>
<Scanned At="06:05" On="06-06-2000" Comment="Put on
truck"/>
<Delivered At="09:58" On="06-06-2000" Comment="Received by
Jane Hubert"/>
</History>
</TrackingStatus>

Since XML is just text, it is straightforward to generate XML dynamically using
server-side programs in virtually any language: Java, PL/SQL, Perl, JavaScript,
and others. The first program you learn in any of these languages is how to print
out the text:

Hello, World!

If you modify this example to print out instead:

<?xml version="1.0"7?>
<Message>Hello, World!</Message>

then, believe it or not, you have just mastered the basic skills needed to generate
dynamic XML documents! If these dynamic XML documents are generated by a
server-side program that accesses information in a legacy database or file format,
then information that was formerly locked up in a proprietary format can be
liberated for Internet-based access by simply printing out the desired information
with appropriate XML tags around it.

1.2.5 Work with Specific XML Vocabularies

As we saw above, an XML document can use either an ad hoc vocabulary of tags
or a formal vocabulary defined by a DTD. Common questions developers new to
XML ask are:

What are some existing web sites that make XML available?

The nicely organized http://www.xmltree.com site provides a directory of
XML content on the Web and is an interesting place to look for examples.
The http://www.moreover.com site serves news feeds in XML on hundreds
of different news topics.

How do I find out whether there is an existing standard XML DTD for what I want to publish?

There is at present no single, global registry of all XML DTDs, but the
following sites are good places to start a search: http://www.xml.org,
http://www.schema.net, and http://www.ebxml.org.

If I cannot find an existing DTD to do the job, how do I go about creating one?

There are a number of visual tools available for creating XML DTDs. The
XML Authority tool from Extensibility (see http://www.extensibility.com)
has proven itself invaluable time and time again during the creation of this
book, both for viewing the structure of existing DTDs and for creating new
DTDs. An especially cool feature is its ability to import an existing XML
document and "reverse engineer" a DTD for it. It's not always an exact
science—since the example document may not contain occurrences of
every desired combination of tags—but the tool does its best, giving you a
solid starting point from which you can easily begin fine-tuning.

1.2.6 Parse XML to Access Its Information Set

We've seen that XML documents can represent tree-structured data by using
tags that contain other nested tags as necessary. Because of this nesting, just
looking at an XML document's contents can be enough for a human to understand
the structured information it represents:

<?xml version="1.0"?>
<transaction><account>89-344</account><buy shares="100"><ticker
exch="NASDAQ">WEBM</ticker></buy><sell shares="30"><ticker
exch="NYSE">GE</ticker></sell></transaction>

This is especially true if the document contains extra whitespace (line breaks,
spaces, or tabs) between the tags to make them indent appropriately, as in
Example 1.1. For a computer program to access the structured information in the
document in a meaningful way, an additional step, called parsing, is required. By
reading the stream of characters and recognizing the syntactic details of where
elements, attributes, and text occur in the document, an XML parser exposes the
hierarchical set of information in the document as a tree of related elements,
attributes, and text items. This logical tree of information items is called the XML

document's information set, or infoset for short. Figure 1.4 shows the
information set produced by parsing our <transaction> document.

Figure 1.4. Parsing to access the transaction datagram's

information set

Text Document "Information Set"
<?xml vergsion="1.0"7>
<btransacticne=<account=89-3dd</ac -
count><buy sharess*100%><ticker: -
WEBM«=/ticker=</buy»<sell sharess =Lransaction>
"Il r=cticker=INTCs /ticker>=< /gaall
></transaction>
' A9-344
L %ﬁbuy}HsharcsﬂlDD"
mel_ -
arspy WEERM
ﬂn:sellesharEﬂ:'El}'

When you work with items in the logical, tree-structured infoset of an XML
document, you work at a higher level of abstraction than the physical "text and
tags" level. Instead, you work with a tree of related nodes: a root node, element
nodes, attribute nodes, and text nodes. This is conceptually similar to the "tables,
rows, and columns" abstraction you use when working with a relational database.
Both abstractions save you from having to worry about the physical "bits and
bytes" storage representation of the data and provide a more productive model
for thinking about and working with the information they represent.

1.2.7 Manipulate XML Using the DOM

Once an XML document has been parsed to produce its infoset of element,
attribute, and text nodes, you naturally want to manipulate the items in the tree.
The W3C provides a standard API called the Document Object Model (DOM) to
access the node tree of an XML document's infoset. The DOM API provides a
complete set of operations to programmatically manipulate the node tree,
including navigating the nodes in the hierarchy, creating and appending new
nodes, removing nodes, etc. Once you're done making modifications to the node
tree, you can easily save, or serialize the modified infoset back into its physical

text representation as text and tags again. Figure 1.5 illustrates the relationship
between an XML document, the infoset it represents, and the DOM API.

Figure 1.5. Relationship between XML document and

Document Object Model

XML Document

Sequence of characters encoding
froee-structurad data following rulas
specifiad by the XML standard

g

Can be sanalized

Can be parsed 1o produce
o proguce |
XML Infoset) . Dom
Can be manipulated Document Object Model
W3C standard data-model wsing
for the ree-structured WaC standard API for constructing
infarmation items and manipulating an XML
in an XML document document’s information set

1.2.8 Query XML Using XPath

Often you will want to interrogate an XML document to select interesting subsets
of information. The W3C standard XML Path Language (XPath) provides a simple,
declarative language to accomplish the job. Let's look at some simple examples

of this declarative syntax using our <transaction> document from Example 1.1.

Leveraging your familiarity with the hierarchical path notation for URLs and files

in directories, an XPath expression allows you to select the <ticker> symbol of

the <buy> request in the <transaction> by using the expression:

/transaction/buy/ticker

To select the number of shares inthe <sell>requestin the <transaction>, you

can use the expression /transaction/sell/@shares, prefixing the name of the

attribute you want with an at-sign. Filter predicates can be added at any level to
refine the information you will get back from the selection. For example, to select

the ticker symbol for <buy> requests over 50 shares, you can use the expression

/transaction/buy[@shares>50]/ticker.

As illustrated in Figure 1.6, XPath queries select information from the logical
tree-structured data model presented by an XML document's infoset, not from its
raw text representation.

Figure 1.6. Relationship between XML infoset and XPath

language
XPath - XML Infoset
XML Path Language Gan be queried
- using W3C standard data-model
W3C standard language to select for the treg-structurad
interasting subsets of an XML information items
document’s information et in an XML document

1.2.9 Transform XML Using XSLT

One of the most useful things you can do with XML is transform it from one
tree-based structure to another. This comes in handy when you want to:

o Convert between XML vocabularies used by different applications
e Present an XML document's data by transforming it into HTML or another
format that's appropriate to the user or device requesting the data

Fortunately, the W3C has again provided a companion standard called XSLT (the
XML Stylesheet Language for Transformations) to make this task declarative.
XSLT was originally conceived as a language to transform any XML document into
a tree of formatting objects from which high-quality printed output could be
easily rendered. The W3C XSL Working Group recognized early that this XML
transformation facility would be an important subset of functionality in its own
right, so they formally separated the XSLT language from the XSL formatting
objects specification. This allowed the XSLT language to perform any useful
XML-to-XML transformation. These origins help explain why the definition of an
XML transformation is known as a stylesheet .

An XSLT stylesheet is an XML document that uses the XSLT language's
vocabulary to describe the transformation you want to perform. The stylesheet
consists of transformation instructions, which use XPath expressions to select
interesting information items from the infoset of a source document and specify

how to process the results of these selections to construct an infoset for a
+++result document with a different structure. Figure 1.7 highlights this
relationship between XSLT and XPath and illustrates how the transformation is
carried out on the logical source tree and result tree.

Figure 1.7. Relationship between XSLT, XPath, and the infoset

XML Infoset XML Infoset

XPath
XML Path Language

W3C standard language 1o select
interesting subsets of an XML
document's information set

F 3

{an be transformed To prod
Selects ifams using 0 prootice

to transform using + d I':'E'l'l-"

XSLT Stylesheet

ML document that uses the
KELT language to defing the
miles to transform a source free

into a result tree [7-

Defines transformation
language used by
|
X5LT
X5L Transformations

W3C standard language to transform
& source XML document's information
set into & result information et of a
different structure

Let's assume that on receiving our transaction datagram, our application needs
to turn around and send an appropriate datagram to the NASDAQ trading system
to complete the trade. Of course, the datagram we send to NASDAQ must use the
XML vocabulary that the NASDAQ trading system understands. The relevant

datagram using the <nasdag-order> vocabulary might look like this:

<?xml version="1.0"?>
<nasdag-order clientid="123">
<trans type="buy">
<security>WEBM</security>
<shares>100</shares>
</trans>
</nasdag-order>

We can create an XSLT stylesheet that selects any <buy> requests in the

<transaction> for stocks on the NASDAQ exchange and constructs the
appropriate <trans>, <security>, and <shares> elements as nested "children"

of a <nasdag-order> in the result. Example 1.2 shows what this stylesheet looks
like.

Example 1.2. XSLT Stylesheet to Transform Between XML

Vocabularies

<?xml version="1.0"?2>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output indent="yes"/>
<xsl:template match="/">
<nasdag-order clientid="123">
<!-- Use XPath to select buy transactions for stocks on the NASDAQ

<xsl:for-each
select="/transaction/buy[ticker/Q@exch="NASDAQ"']">
<trans type="buy">
<security><xsl:value-of select="ticker"/></security>
<shares><xsl:value-of select="@shares"/></shares>
</trans>
</xsl:for-each>
</nasdag-order>
</xsl:template>
</xsl:stylesheet>

Notice that we use the XPath expression

/transaction/buy[ticker/@exch="NASDAQ'] to select the <buy> elements that

satisfy our criteria as part of the transformation. Given a source tree structure
like the one for our incoming transaction document and an XSLT stylesheet like
Example 1.2 describing the transformation, an XSLT processor carries out the
transformation to produce the result tree as illustrated in Figure 1.8.

Figure 1.8. XSLT processor transforms source tree to result

tree
XSLT
Stylesheet
-- xsl‘
.. » Pry T
Source Tree *essor
E =<trangaction=>
Result Tree v
—| £y |—| ghareg="100" | <nasdag-orders |—| clientid="123"

<t ickers —|exeh="NASDAG®
<sell>|—{shares=-30"
L[{L.iﬂhﬁr‘:~|—|uxq;1|='m‘f5ﬁ+

<trans> H cype="buy" |

<gacurlty=

- Appendix C, illustrates how all the basic standards in the XML
a family relate to one another. It's a summary of what we've seen
—4% in this chapter, all in a single diagram for easy reference.

1.3 Why Should I Use XML?

Why have vendors like Oracle, IBM, Microsoft, Sun, SAP, and many others moved so fast to
support XML? After all, these companies have worked for many years to fine-tune the efficiency
of their proprietary data formats and tools. The reason is simple: as a vendor-neutral,
platform-neutral, language-neutral technology for web-based data exchange, the XML family of
standards solves a key problem for these companies' customers. In a nutshell, XML simplifies the
task of connecting applications and services over the Web.

1.3.1 XML Enables a Data Web of Information Services

Proprietary data formats undoubtedly represent data in a more efficient way, but what XML
sacrifices in compactness, it gains many times over in flexibility. If you can publish an XML
datagram on the "wire," anyone connected to the Internet can receive the datagram, parse it,
manipulate it, search it, and transform it using a wide selection of freely available tools that

implement the XML family of standards. Skeptics who dwell on XML's apparent inefficiencies ("It's
more tags than data, for heaven's sake!," they say), haven't yet understood how its usefulness
grows when it is combined with the Internet's universal reach. The HTML standard and the
essentially free cost of HTML-savvy browsers sparked the creation of the Web as we know it today:
a sea of information available 24 hours a day for a pair of human eyeballs focused on a browser
to exploit. The XML family of standards and the low cost of many XML-savvy tools have already
begun to spark an analogous "data web" of Internet-based machine-to-machine information
exchanges. XML is on track to have an even greater impact on the computing landscape than
HTML has had.

Critics are correct to point out that XML is no magic bullet, noting that companies still need to
agree on common XML vocabularies for application data exchange. However, market forces are
already quickly resolving these concerns. Due to the tremendous opportunities presented by
business-to-business e-commerce, a burgeoning sector whose key players are already leveraging
this new XML-based data web, the number of XML-based standards for domain-specific business
messages is growing exponentially. By tapping into the XML data web, you can save money by
leveraging outsourced business content and services, and generate new revenue by publishing
slices of your own valuable data as web services to be "consumed" by other partners.

1.3.2 XML Simplifies Application Integration

It is not uncommon for a company to have:

e Machines running operating systems from Sun, HP, IBM, Microsoft, and others
¢ Databases from Oracle, IBM, Microsoft, and others
e Packaged applications from Oracle, SAP, and others

An XML-based representation of data and the HTTP protocol might be the only things these
various systems can ever hope to have in common! More and more, these systems must be
integrated over the Internet and across firewalls, so XML over HTTP or secure HTTPS is the data
exchange mechanism of choice to connect these heterogeneous applications.

Figure 1.9 illustrates a sample architecture for XML-based application integration. It shows how
an SAP system using a Microsoft SQL Server database sends an XML datagram over the Web to
a server that acts as a message hub. The hub server routes the datagram to a particular target
application, say an Oracle Applications installation using an Oracle8/ database. In doing this, it

may need to transform the incoming XML datagram into an appropriate XML vocabulary for the
target application before sending the datagram to its destination.

Figure 1.9. XML and HTTP can connect different applications

."II I-.'-I.l :.I . M
XML y racledr
XML
v
Meg
53
SAP Huhga
Apps
A XSLT |
¥ Slylesheet II’#‘IL
saL T
Server i

XML

Adopting an architecture like this does not require invasive, dramatic changes to existing systems.
Data in the SAP and Oracle Applications systems is still stored in its original relational tables,
exactly as it was before the integration. The XML datagram is materialized from information in the
source system by dynamically generating an XML document. Upon arrival at the target system,
the datagram is parsed, searched, and programmatically manipulated to enable appropriate
information from the datagram to be inserted into the target application's database. While SAP
and Oracle Applications use completely different database schemas to support their respective
application suites, these physical storage details are not a roadblock to integration when the two
systems communicate using XML datagrams.

1.3.3 XML Simplifies Information Publishing and Reuse

The same strengths that make XML good for application integration also deliver benefits to other
areas of application development. Leveraging the dynamic duo of XML (to represent rich data
structures independent of presentation details) and XSLT (to transform the data into any other
XML, HTML, or text-based output format), you can easily:

e Separate data from presentation, allowing you to change the /ook of the information
without affecting application code

e Publish the same data using output styles specific to each kind of requesting device:
browser, cell phone, PDA, another computer, etc.

With the exploding humber of web-enabled devices and the increasing number of XML-based
standards emerging, the ability to assemble information from multiple sources and transform it
for delivery into any format required by the target device is extremely valuable.

As any database-savvy developer knows, SQL is a highly effective tool for finding, filtering,
shaping, and summarizing the data required by any application task. Using XML to publish
SQL-based query results packs an even stronger punch, making the information in the query
results easy to transform, transport, and transcribe. Figure 1.10 shows the high-level
architecture for the combination of SQL, XML, and XSLT. By representing SQL query results as
XML, we can assemble a "data page" from multiple queries and external XML information sources.
Then we can use XSLT to transform this assembled XML data page into any desired output format
(like HTML) for presentation in a browser or any of a number of XML-based formats, such as:

WML

The Wireless Markup Language, for cell phones and PDAs
SVG

The Scalable Vector Graphics language, for rendering rich, data-driven images
XSL Formatting Objects

For high-quality printed output
Figure 1.10. Assembling and transforming XML "data pages"

4 4 4
Welr Server

| | |
AHHML.xy As-HTML.ng As-sus.:slgj
T

XSLT shvleshesis can fransform
the assembled XML data page
inte any targat format
|

I
XML Data Page

XML fram external web
information sources/senices

XML from SOL :r;ruery resuits

N I

Relational
Database

Publishing XML datagrams from relational databases and storing the information from XML
datagrams you receive in the database as tables and columns offer you the best of both worlds.
You retain the proven scalability, reliability, manageability, and performance of today's mature
relational databases and the tools and applications that work with them. You also gain the
newfound ability to exchange information with anyone, anywhere over the Web. As we will see
throughout this book, the combination of SQL, XML, and XSLT is powerful stuff.

1.4 What XML Technologies Does Oracle Provide?

Now that we understand what the XML family of standards is, what we can do with it, and why it
is interesting to apply to database-driven web applications, let's get an overview of the tools and
technologies that Oracle provides to implement Oracle XML applications. Figure 1.11 shows an
example of the key Oracle XML components and how they relate to the XML standards we've
discussed earlier.

Figure 1.11. Overview of key Oracle technologies for XML

Save entire gocument or fragments
i indexed CLOB colimns

XML Document .

= Retrieve based on searching

Pgrsg; "‘SE'-'J'E-"ZE XML document structure
H H L

i H) Ur
Manipulate 5 : mt&riﬂ%
I))]
Dom : }{ﬁﬁlﬁ Automatically store XML in a Tex
i P“'Ser fabie, view, object wew R
i I
Or - vy :
Eﬂ%lﬁ _.* XML Infoset ,_" _____________
NGing A
. L Automatically produce XML from
Select/query results of any SOL query
XPath Oracie
ST
DEEESD
P
¥ Transfornm
XSLT

Using the Oracle XML Parser, you can parse XML documents into their infoset, manipulate their
contents, and return the modified infoset back into XML format. Using the Oracle XSLT processor,
you can transform XML into XML, HTML, or text of another structure. Both the Oracle XML Parser
and the Oracle XSLT processor share the common Oracle XPath Engine that enables querying an
XML document's infoset to select interesting subsets of its information. The Oracle XML SQL Utility
automates the tasks of producing XML from SQL query results and storing XML documents into
tables in the database. Oracle interMedia Text enables indexing and querying of XML documents
or document fragments, with rich support for leveraging the structure of the XML in the query

criteria. These core components are used by more than 40 of Oracle's own internal development
teams, so their quality, performance, and conformance to W3C standards are very high.

Building on these core Oracle XML technologies, the Oracle XSQL Pages system is an extensible
XML publishing framework that makes combining the strengths of SQL, XML, and XSLT a
declarative walk in the park. It simplifies the job of assembling XML data pages from multiple
sources and transforming their information content for delivery using XSLT. Table 1.1 provides a
summary of key Oracle XML technologies and the chapters that cover each one.

Table 1.1. Key Oracle XML Technologies and Chapters That Cover Them

Oracle Technology Description Chapter (s)

XML Parser Parses, constructs, and validates XML documents |5, 6

XPath Engine Searches in-memory XML documents declaratively |2
3,5,6,7,8,9, 12, 14,
16, 17

XML SQL Utility |Produces XML from SQL and inserts XML into tables |5, 6, 11, 12

XSLT Processor |Transforms XML documents

Assembles XML data declaratively and publishes with

XSQL Pages 3,8,12,15, 17
XSLT

. . Indexes and searches XML documents using their

interMedia Text 13
structure

Object views Serve rich XML-enabled views of flat relational data |12

JServer Java Reduces network traffic by running Java in the

VM database

Creates, syntax-checks, and debugs Java, XML,
JDeveloper 4,6
XSLT, and XSQL

Advanced

. Queues and dequeues XML messages 56
Queuing
PLSXML utilities |Produce XML datagrams in Oracle?7 10

[In Oracle8i Release 3, JServer has been renamed Oracle8i JVM.

In the sections that follow, I will summarize the Oracle XML tools and technologies described in
this book, noting which chapters describe them and which Oracle releases support them. Many of
these Oracle technologies are installed as part of the JDeveloper 3.1 development environment,
which comes on the CD-ROM that accompanies this book; I'll note which technologies are
included in JDeveloper 3.1 and give their version numbers.

iy

A By the time you read this book, updated releases of some of
these components may be available. It's best to check for the
latest versions on the Oracle Technology Network (OTN) at
http://technet.oracle.com/software, where all of the
technologies described here, including the Oracle8/ database,
are available for download.

You will need to sign up for a free OTN membership before
getting to the download page. See the OTN web page for
details.

1.4.1 Oracle XML Parser

The Oracle XML Parser fully supports the W3C XML 1.0 Recommendation as well as the Document
Object Model (DOM) for processing and constructing XML. Using its companion support for the
Simple API for XML (SAX), you can process XML datagrams of arbitrary size with low memory
usage. Using the supplied oraxml tool, you can parse and validate XML files from the command
line or in scripts. The parser supports integrated XPath searching on in-memory XML documents
using the integrated Oracle XPath Engine, an embedded component shared by the Oracle XML
Parser and the Oracle XSLT processor. The Oracle XPath Engine fully supports the W3C XPath 1.0
Recommendation.

I cover all of the key XML Parser capabilities, both inside and outside the database, in Chapter 5,
and Chapter 6. We'll learn about using XPath expressions in Chapter 2, and we'll use them
throughout the book in our XSLT transformations.

The Oracle XML Parser is available for Java, PL/SQL, and C/C++ on all popular platforms. The
Java, C, and C++ versions can run outside the database, but exploiting the PL/SQL and Java
versions inside the database requires Oracle8/. Version 2.0.2.7 of the Oracle XML Parser for Java
is included with JDeveloper 3.1 on the CD-ROM.

1.4.2 Oracle XSLT Processor

The Oracle XSLT processor fully supports the W3C XSLT 1.0 Recommendation. Using the supplied
oraxsl tool, you can perform XSLT transformations on XML files from the command line or in
scripts. Of course, you can also use the XSLT processor in your own programs.

I cover extensive examples of XSLT in Chapter 3, Chapter 5, Chapter 6, Chapter 7, Chapter 8,
Chapter 9, Chapter 12, Chapter 14, Chapter 16 and Chapter 17

You can use the Oracle XSLT processor both inside the database using PL/SQL or Java, and
outside the database using Java, C, or C++. Using the processor inside the database requires

Oracle8/. Version 2.0.2.7 of the Oracle XSLT processor for Java is included with JDeveloper 3.1 on
the CD-ROM.

1.4.3 Oracle XML SQL Utility

The Oracle XML SQL Utility provides a rich layer of services to work with the results of SQL
statements as XML documents and to process incoming XML documents for inserting their
information into database tables, views, and object views.

I explore using the Oracle XML SQL Utility in PL/SQL in Chapter 5, and using it in Java in Chapter
6, Chapter 11, and Chapter 12.

The Oracle XML SQL Utility can be used outside the database in any Java program, or inside the
database in Oracle8i. Version 1.1 of the XML SQL Utility is included with JDeveloper 3.1 on the
CD-ROM.

1.4.4 Oracle XSQL Pages XML Publishing Framework

Using declarative templates called XSQL pages, you can assemble any kind of dynamic XML
information and transform it for delivery using XSLT stylesheets, as illustrated in Figure 1.12. The
Oracle XSQL Pages framework includes an XML template processing engine called the XSQL page
processor. This processor manages the assembly of XML fragments based on SQL queries and
external XML resources and coordinates transformation of the assembled data page using the
Oracle XSLT processor. Also included as part of the framework are the XSQL Servlet, for
web-based publishing of XSQL pages, and the XSQL command-line utility for offline batch
publishing.

Figure 1.12. Oracle XSQL Pages framework simplifies XML

publishing
. Oracle XSOL Serviet -
Oracle 0 - 0
XSOL Page “picle gM'LEcle }{fgm
Processor Pa:‘g'ér miIiST}?L pr“CELafﬁr :
X50LPage = ———— | XSLT Stylesheet |
- e TE— .
- . Declaratively transfonm resulting
. [data page into any format
h D‘ i appropriate for web delivery
[~ i

Declaratively assermble dynarmic
XML content chunks

ol

Oracle8i

You'll see a preview of using XSQL Pages in 3, and learn how to use it in Chapter 8, Chapter 12,
Chapter 15 and Chapter 17.

Oracle XSQL Pages works against any version of Oracle and can run outside the database on your
favorite servlet engine (Apache JServ, JRun, ServletExec, Tomcat, and so on) as well as inside the
database on the Oracle Servlet Engine in Oracle8/ Release 3 (version 8.1.7). Version 1.0.0.0 of
Oracle XSQL Pages comes preinstalled with Oracle Internet Application Server 1.0, Oracle8i
Release 3, and is installed with JDeveloper 3.1 on the CD-ROM that accompanies this book.

1.4.5 Oracle8 XML-Enabled Object Views

Leveraging Oracle's investment in object-relational technology, object views defined over
relational data provide a powerful technique to superimpose one or more richly structured, logical
views on top of your existing database data. Data queried from object views can be automatically
rendered as XML documents, and XML documents can be inserted automatically into the database
using object views of an appropriate structure.

You'll learn how to define and use object views for XML in Chapter 12. You can exploit this feature
outside the database using any version of Oracle8, but using it inside the database requires
Oracle8;.

1.4.6 Oracle8i JServer Java Virtual Machine

Java and PL/SQL are now peer languages for the Oracle8/ database. Any standard Java and
JDBC™ code can execute in the same process as the database server, reducing network traffic of
data-centric Java code. PL/SQL and Java can interoperate using Java stored procedures.

You'll learn the ins and out of developing, deploying, and debugging Java-based XML application
code with JServer in Chapter 6. JServer is an integrated feature of Oracle8i.

1.4.7 Oracle interMedia

Using interMedia's Text component's XML document indexing, you can perform queries over
millions of XML documents, leveraging the structure of the XML document for razor-sharp search
precision. XML document searching is fully integrated with Oracle SQL, so you can easily exploit
it in combination with other SQL query predicates to find your "needle" in a "haystack" of XML
documents.

You'll learn how to create XML indexes and use XML searching in Chapter 13.

XML searching with interMedia Text is available only in Oracle8/, and Oracle8i Release 2 or later
is recommended because of the many functional improvements over Release 1 in this area.

1.4.8 Oracle JDeveloper IDE

With its built-in support for color-coded XML editing, indenting, and syntax checking, the
JDeveloper Integrated Development Environment (IDE) makes common XML development tasks
easier. Its native support for running servlets, XSQL Pages, and JavaServer™ Pages, combined
with robust remote debugging support for Apache JServ, Tomcat, and JServer, makes a big
difference in development productivity.

You'll learn how to use JDeveloper for XML development in Chapter 4 and Chapter 6.

JDeveloper 3.1 can be used to work with Java, XML, and Oracle with any database version, but
Java stored procedures and JServer debugging are only relevant when using it with Oracle8i.
JDeveloper 3.1 can be installed from the CD-ROM accompanying this book on any Windows NT or
Windows 2000 machine.

1.4.9 Oracle Advanced Queuing

Oracle's persistent queuing mechanism is perfect for asynchronously processing XML messages.
I cover both PL/SQL and Java techniques for enqueuing and dequeuing XML messages in Chapter

5 and Chapter 6.

Advanced queues are available in any version of Oracle8 and can be used with Java APIs outside
the database; however, dequeuing, parsing, and searching XML messages inside the database
require Oracle8i.

1.4.10 Oracle PLSXML Utilities

Implemented in PL/SQL, the PLSXML utilities (including the DBXML package) are available to
customers using Oracle?7 or Oracle8 to automatically produce XML from SQL statements. While
the Oracle XML Parser and the XML SQL Utility have superseded the functionality provided by
these utilities, using these new components inside the database requires Oracle8i.

We explore using the PLSXML utilities in Chapter 10. Because they consist of pure PL/SQL, the
PLSXML utilities work with any current production version of Oracle.

Chapter 2. Working with XML

In this chapter, I cover the essential technical details you will need to work with XML documents.
I also devote a section to learning the powerful XPath language, which you can use to flexibly
search XML documents.

2.1 Creating and Validating XML

Building on the high-level overview in Chapter 1, here we drill down in more detail to some of the
specifics of working with XML documents.

2.1.1 Creating Your Own XML Vocabularies

As we saw in the examples in Chapter 1, XML can represent virtually any kind of structured
information. A coherent set of elements and attributes that addresses a particular application
need is called an XML vocabulary. The elements and attributes are the "words" in the vocabulary
that enable communication of information on a certain subject. An XML vocabulary can be as
simple as a single element—for example a <Task>, or can contain as many elements and
attributes as you need. An example document that uses the <Task> vocabulary looks like this:

<Task Name="JDeveloper 3.1">
<Task Name="Improved XML Support">
<Task Name="Syntax-Check XML/XSL" Dev="Steve"/>
<Task Name="Color-Coded Editing" Dev="Yoshi"/>
<Task Name="Run XSQL Pages" Dev="Bret"/>
</Task>
<Task Name="Improved Debugging Support">
<Task Name="Remote Debugging">
<Task Name="JServer Debugging" Dev="Jimmy" />
<Task Name="Apache JServ Debugging" Dev="Liz"/>
</Task>
</Task>
</Task>

One of the big attractions about working with XML is its low cost of admission. The specification
is free to be used by anyone, and you only need a text editor to get started. One way to begin
creating your own XML vocabulary is to simply start typing tags in a text file as they come to your
mind. For example, if you've been assigned the task of managing a "Frequently Asked Questions"
(FAQ) list, you might open up vi or Emacs and start typing the example shown in Figure 2.1.

Figure 2.1. Creating a new XML document using Emacs

e gmacs@SMUENCH-LAP [_[O] x]

Buffers Files Tool: Edi Seach Mule Help

APl version="1.077>
<Fho-Li=tc>

<Freguent=Cuestion Submitter="amuenchforacle.com:
<iguestion>Is it easy to get started with ZML?</Question>
<Answer>Tes ! </ Anawers>

</ Frequent-Juestion>

_ |=fFAQ-List>

——\ ** qUESTIOoNansSwver . Xl {Fundamental) —-Ll-—-ALll-———-———————

It's very useful to just prototype your vocabulary of tags by working directly on an example
document. It makes the process easy to think about. As ideas pop into your head—for example,
"I'm going to need to keep track of who submitted each question"—just type the necessary
element or attribute in your file. You don't have to get it right the first time; just get it down and
get it in there. You can make corrections later. If you decide you like the look of a <FAQ> element
more than <Frequent-Question>, go right ahead and change it! You're the boss. Just do a global
search and replace in your editor, and you're done.

In honor of the eminently pragmatic William Strunk, Jr., and E. B. White (authors of the classic
writing handbook, The Elements of Style), we present the XML elements of style, outlining the
rules you must follow as you create your own documents:

1. Begin each document with an XML declaration.

The first characters in any XML document should be an XML declaration. The declaration is
case-sensitive and looks like this in its simplest form:

<?xml version="1.0"72>

The special tag delimiters of <2 and 2> distinguish this declaration from other tags in the
document. The <?xml characters in the XML declaration must be the very first characters
in the document. No spaces or carriage returns or anything can come before them.

2. Use only one top-level document element.

The first, outermost element in an XML document is called the document element because
its name announces what kind of document it encloses: <FAQ-List>, <Book>,
<transaction>, <TrackingStatus>, and so on. You must only have one document
element per document. So the following is legal:

<?xml version="1.0"?>

<Question>Is this legal?</Question>

But the following is not:

<?xml version="1.0"?>
<Question>Is this legal?</Question>

<Answer>No</Answer>

because both <Question> and <Answer> are top-level elements. You can't even have the
same element name repeated at the top level: there must be exactly one. So the following
is also illegal:

<?xml version="1.0"7?>
<Question>Is this legal?</Question>

<Question>Is that your final answer?</Question>

You need to pick a single nhame and use that element to enclose the others, like this:

<?xml version="1.0"7?>

<FAQ-List>
<Question>Is this legal?</Question>
<Question>Is that your final answer?</Question>

</FAQ-List>
Match opening and closing tags properly.
XML is case-sensitive, so the following are not considered matching tag names:

<Question>Is this legal?</question>
<QUESTION>Is this legal?</Question>

You'll find that XML syntax is rigid and unforgiving. You cannot get away with being sloppy
about the order of closing tags. The following is illegal:

<Question><Link href="http://ga.com/">Is this legal?</Question></Link>
You need to close </Link> before closing </Question>, like this:

<Question><Link href="http://ga.com/">Is this legal?</Link></Question>

Simply keeping your tags neatly indented helps you avoid this mistake:

<Question>
<Link href="http://ga.com/">Is this legal?</Link>

</Question>

Note that adding extra spaces, carriage returns, or tabs between nested tags to make an
XML document look indented to the human eye does not affect its structural meaning

when working with datagrams, although clearly whitespace increases the document's size
slightly.

Add comments between <! - - and --> characters.

You can include comments anywhere after the XML declaration as long as they are not
inside attribute values and don't occur in the middle of the < and > boundaries of a tag. So
the comments in the following document are legal:

<?xml version="1.0"7?>
<!-- Comment Here ok -->
<FAQ-List>
<l--
| And here, multiple lines are fine
+-=>
<Question>Is this legal?<!-- Here is fine --></Question>
<!-- Here too -->
<Answer>Yes</Answer>
</FAQ-List>

<!-- Even Here -->

but all four comments in this example are not:

<!-- NOT before XML declaration -->
<?xml version="1.0"72>

<FAQ-List>

<FAQ Submitter="<!-- NOT in an attribute value -->" >
<Question <!-- NOT between < and > of a tag --> >Is this legal?</Question>
<Answer>Yes</Answer>
<!-- Illegal for comment to contain two hypens -- like this -->

</FAQ>

</FAQ-List>
Start element and attribute names with a letter.

An element or attribute name must be a contiguous sequence of letters and cannot start
with a digit or include spaces. The following are not allowed:

<2-Part-Question> <!-- Error: element name starts with a digit -->
<Two Part Question> <!-- Error: has spaces in the name -—>
<Question 4You="Yes"> <!-- Error: attribute name starts with a digit -->

Some punctuation symbols (like underscore and hyphen) are allowed in names, but most
others are illegal:

< StrangeButLegal>Legal</ StrangeButLegal>
<More-Normal-Looking>Legal</More-Normal-Looking>
<OK_As Well>Legal</OK As Well>

Put attributes in the opening tag.

Attributes are listed inside the opening tag of the element to which they apply. The
following is correct:

<FAQ Submitter="smuench@oracle.com">
<!-- etc. -->

</FAQ>

while the following is illegal:

<FAQ>
<!-- etc. -->

</FAQ Submitter="smuench@oracle.com">

Enclose attribute values in matching quotes.

Either of the following is fine:

<FAQ Submitter="smuench@oracle.com">

<FAQ Submitter='smuench@oracle.com'>

but the following two are not:

<FAQ Submitter=smuench@oracle.com>

<FAQ Submitter='smuench@oracle.com">

You can't forget the quotes or be sloppy about using the same closing quote character as
your opening one.

Use only simple text as attribute values.

Elements are the only things that can be nested. Attributes contain only simple text values.
So the following is illegal:

<Task Subtasks="<Task Name='Learn XML Syntax'>"/>
Use s1t; and samp; instead of < and s for literal less-than and ampersand characters.

The less-than and ampersand characters have a special meaning in XML files, so when you
need to use either of these characters literally, you should use s«1t; and samp; instead:

<Company>AT & T</Company> <!-- AT & T -—>
<Where-Clause>SAL < 5000</Where-Clause> <!-- SAL < 500 -->

On occasion, squot; and sapos; also come in handy to represent literal " and ' in

attribute values:

<Button On-Click="alert ('Print a " and ''); " ></Button>

10. Write empty elements as <ElementName/>.

Elements that do not contain other nested elements or text can be written with the more

compact "empty element" syntax of:

<Task Name="Learn XML Syntax">
<Task Name="Use Empty Elements"/> <!-- Empty Element -->
</Task>

As shown here with the Name attribute on the empty <Task> element, attributes on empty

elements are still legal.

If your XML document follows these ten basic rules, it is called a well-formed XML document.

Unicode Character Encoding

One level below the characters you see in an XML document lies their
numerical representation. The XML specification defines XML documents
as sequences of characters, as defined by the Unicode standard.

Quoting the http://unicode.org web site, "Unicode provides a unique
number for every character, no matter what the platform, no matter
what the program, no matter what the language." Given the unique
16-bit number Unicode assigns to a character, there are different
approaches for representing that number physically as bytes on the disk.
These different approaches are called character encoding schemes.

One encoding scheme, named UTF-16, is the most straightforward. It
uses two bytes (16 bits) to represent each character. This can be
inefficient, however, if the document consists largely or entirely of ASCII
characters that need only values in the range of -127 to be represented.

Another, more clever scheme, named UTF-8, takes a different approach,
using a single byte to represent ASCII characters and a sequence of from
two to five bytes to represent other characters. UTF-8 is the default
encoding scheme for an XML document if one is not specified. If the

default UTF-8 character encoding is not appropriate, include an
encoding attribute that says what encoding your document is using. For

example, an XML document containing Japanese data might use:

<?xml version="1.0" encoding="Shift JIS"?>

If the default UTF-8 encoding is what you want to use, you can even
legally leave off the XML declaration entirely, although it is good practice
to always include one. To save trees where we can, many of the XML
documents in the examples will leave off the XML declaration to shorten
this book a little.

2.1.2 Checking Your XML Document's Syntax

It's easiest to learn the rules if you have a program that will quickly point out your errors while
you are learning. There are three tools that will identify problems.

First, as illustrated in Figure 2.2, you can use JDeveloper 3.1's built-in XML syntax checking by
selecting Check XML Syntax... on any XML file in your project. In the blink of an eye, JDeveloper
finds any problems, prints out the offending error messages in the XML Errors tab, and positions
your cursor in the file at the location of the first error.

Figure 2.2. Checking the syntax of your XML files with

JDeveloper 3.1

o Dracle JDeveloper - XML-Basics - [C:\smibooklsrchenamplesiuml-basics\FAD. smi] MEIE
o> Fle Edit Search Yew Propot Bun Wioasd: Toole ‘Window Help - =] x|
230w 8F 3
| cul wersion -
w x FAD-L1ist
L=l = FAD .'-.'.|I|.|.:'l.|-:'.' oFacle Con
= HML-B asice pus
. Conrections
) ¥ML-Baszics.jpi
i
N MI -
HMake b
A/ Rebuid | & Ihgen
2| WML Eiiaiz | Open Wiewen Az ¥
E=pand Al
LColspze Al

ML Synbax Check faled foe hle Chambookscbesamples®ambbamc: AL aml ot ine 3, charactes 1B
ik AT Samlbaok. \srehexamples\srnl-basic e \FAD, srelc 3, 18 WML-01 25 - [Fatal Esoil Minbule value should stait vath quole

Second, if you are a fan of command-line tools, you can use the oraxml command-line utility that
comes with the Oracle XML Parser to check your XML syntax, as shown in Figure 2.3. Just type:

oraxml filename

and either you'll be told that your file is well-formed, or the offending errors will print out to the
console.

Figure 2.3. Checking XML syntax with the oraxml

command-line utility

S:wxnl-hasicsroraxml FAQ.xml

file: 8:/wml-basics FAQ.xml<Line 3. Colunn 18>:
HML-8125%: (Fatal Errord Atteibute value should stavrt with gquote.

Error occurred while parsing

f:wunl-hasics > ﬂ

E If the oraxml command does not work, try the following
[

" instead:

java oracle.xml.parser.v2.oraxml filename.xml

to explicitly run the oraxml command-line utility as a Java
class. If this also fails, make sure you have done the following:

1. You must have a Java runtime environment properly set

up.
2. You must list the fully qualified Java archive containing

the Oracle XML Parser for Java in your CLASSPATH

environment variable.

If you have installed JDeveloper 3.1 from the CD-ROM, for
example, into the C:\JDev directory, you can do the following to

properly set up your Java environment to run oraxml. Run the

following command to set up your Java runtime environment:

C: \> c:\jdev\bin\setvars c:\jdev

then run:

C: \> set CLASSPATH=
c:\jdev \lib\xmlparserv2 2027.jar; 3CLASSPATHS

to add the Oracle XML Parser for Java to your CLASSPATH.

Third, you can simply attempt to browse your file with Microsoft's Internet Explorer version 5.0 or
later. IES features built-in support for visualizing the structure of any XML document. Simply type
its URL or filename in the Address bar. Figure 2.4 shows the effect of starting up IE5 and browsing
our FAQ.xml/. If there are any syntax errors, they show up immediately in your browser window.

Figure 2.4. Checking XML syntax by browsing a file with IE5

/2] 5:\uml-bazics\FAQ.xml - Microzoft Internet Explorer

Agdress | = 5 \enbbasics\FAD, sl =] o6 Fie > | EEH

The XML page cannot be displayed

Cannot view XML input using X5L style sheet, Please correct the emror
and then click the Refresh button, or try again later.

A string literal was expected, but no opening quote character
was found. Line 3, Position 18

&) Dona 24 My Computiar

While initially presenting us with a few new rules to get used to, XML's unforgiving syntax is
actually one of its core strengths. It means that an XML file is either well-formed or ill-formed.
There is no gray area. Programs needing to process XML documents are easy to write because
they don't have to account for lots of loopholes, endless exceptions to the rules, or oodles of
optional features. They check the ten elements of style I presented earlier, and don't waste their
time processing the document if any of the rules is broken.

iy

A In practice, the ten elements of style are the main things you
need to know. For an exhaustive list of all XML syntax arcana,
you can refer to the XML 1.0 specification at:

http://www.w3.0rg/TR/1998/REC-xmI-19980210

or to Tim Bray's helpful annotated version at:

http://www.xml.com

However, sometimes you'll be interested in knowing more about an XML document than the fact
that all of its tags match up properly. Consider the following document:

<Animal>
<Couch Currency="Rumblefish">
<Draft Raindrops="15">
<Stunning/>
</Draft>
</Couch>
< Thank You />

</Animal>

The document is well-formed, but what does it mean? In the next section we'll learn how to
impose some additional rules to constrain what elements can appear in an XML document by
using a document type definition, and we'll learn how to perform additional validation on an XML
document to check whether it abides by these constraints.

2.1.3 Validating Your XML Against a DTD

If we want to be sure that an XML document's usage of elements and attributes is consistent with
their intended use—with respect to a particular XML vocabulary—we need some additional
information. A document type definition (DTD) specifies all of the valid element names that are
part of a particular XML vocabulary. In addition, it stipulates the valid combinations of elements
that are allowed—what can appear nested within what, and how many times—as well as what
attributes each element is allowed to have. While it's beyond the scope of this book to delve into
the finer points of DTD design, we will study a simple example. It will suffice for us to understand:

¢ How to associate an XML document with a DTD
¢ How to validate the document by that DTD

Since JDeveloper does not include built-in support for visually creating or inspecting DTDs, we
can use a tool like XML Authority from Extensibility. Figure 2.5 illustrates the document type

definition for the frequently asked questions document we saw earlier. We get a graphical view of
the element structure that it defines.

Figure 2.5. Viewing DTD element structure with XML

Authority
F F-Liztdid - =ML Authornity M= E3
Fis Edl View Tooke Widaw Hek
T =Y S ~ =] Crveriew =] Aftribufies) Advanced [Hobes =
Ao Wiocle.
4 did uestion *
=3 FAG-List FaQ-List FACH +
788 FAR Answer ©
=] Subrnitter
=1 Lewel
2 Question
a3 Answer & ElementType ® Test = Elem, Content Model Aflrlbutes
Fa-List ~ (FAQ+)
FAaQ i (Gueston , Answear }+ Submittar, Level
Question w
ANEWET w

The diagram in the figure illustrates that:

e The <FAQ-List> element is comprised of one or more <FAQ> elements.

e A <FAQ> element is comprised of one or more pairs of <Question> followed by <Answer>.
e A <rFAQ> element has attributes named submitter and Level.

e The <Question> and <Answer> elements contain text.

Using another view, the tool shows us some additional information about the attributes, as shown
in Figure 2.6.

Figure 2.6. Viewing DTD attribute definitions with XML

Authority
(5 Attribute Mame Element | Data Type Consiraints Default Required
Lzl Fai enurmeration Beginner | Intermediate | Advanced Intermediate

Submittar FAQ slring

Here we can see that the Level attribute has a default value of Intermediate, and must be one
of the values Beginner, Intermediate, Or Advanced. If you open the DTD file in vi, Emacs, or
JDeveloper, you'll see this text document:

<!ELEMENT FAQ-List (FAQ+)>
<!ELEMENT FAQ (Question , Answer)+>

<!ATTLIST FAQ Submitter CDATA #IMPLIED

Level (Beginner | Intermediate | Advanced) 'Intermediate' >
<!ELEMENT Question (#PCDATA)>
<!ELEMENT Answer (#PCDATA)>

Even a cursory read of this very simple DTD makes you happy that there are tools out there to
help with the process! To associate an XML document with a particular DTD we add one extra line
to the top of the XML document, called the Document Type Declaration, which looks like this:

<!DOCTYPE DocumentElementName SYSTEM "DTDFilename">

This line goes between the XML declaration and the document element, as follows:

<?xml version="1.0"?>
<!DOCTYPE FAQ-List SYSTEM "FAQ-List.dtd">
<FAQ-List>
<FAQ Submitter="smuench@oracle.com">
<Question>Is it easy to get started with XML?</Question>
<Answer>Yes!</Answer>
</FRAQ>
</FAQ-List>

We can immediately see one of the effects of the DTD by browsing the file again with Internet
Explorer 5.0, as shown in Figure 2.7. Notice that even though our document does not specify a
Level attribute on the FAQ element, IE5 shows Level="Intermediate". This happens because
the DTD defined a default value for Level. An XML processor that conforms to the XML 1.0
standard treats the document as if it had specified the attribute with its default value. So default
attribute values are one effect a DTD can have on an XML document that refers to it in its
<!DOCTYPE> declaration.

Figure 2.7. DTD-declared default attributes appear

automatically
A3 5:\eml-hasics\FARWRhDTD £ml - Microsoft Internet Exphoner M (=] E3
Address [& \omlbasics\ FAGWRHDTD el =] s Bl
=
mitter="smugnch@oracle.com’ _ove ="Intermediate
ton=1s it easy to get started with ¥XMLT-/Quess
r=vesl uf E]
i =
-
&] Dane

Let's look at an example of the other kind of effect: validation errors. Suppose we extend our file
to have a couple of questions like this:

<?xml version="1.0"7?>
<!DOCTYPE FAQ-List SYSTEM "FAQ-List.dtd">
<FAQ-List>
<FAQ Submitter="smuench@oracle.com">
<Question>Is it easy to get started with XML?</Question>
<Answer>Yes!</Answer>
</FAQ>
<FAQ Submitter="derek@spinaltap.com" Level="Silly">
<Question>Are we going to play Stonehenge?</Question>
</FAQ>
</FAQ-List>

If we try the oraxml command on this file we get the message:
The input file parsed without errors

So the file is well-formed, but is it valid with respect to the DTD? Let's find out. We can use the
oraxml command-line tool again—this time with the -v flag—to validate the document against its
DTD:

oraxml -v FAQWithTwoQuestions.xml

We immediately get two errors:

FAQWithTwoQuestions.xml <Line 8, Column 53>
XML-0141: (Error) Attribute value 'Silly' should be one of

the declared enumerated values.

FAQWithTwoQuestions.xml <Line 10, Column 9>

XML-0150: (Error) Element FAQ not complete, expected elements ' [Answer]'.

Error occurred while parsing

The oraxml tool consulted the rules in the associated FAQ-List.dtd file and validated the contents
of FAQWithTwoQuestions.xml to find two inconsistencies. We can correct them by:

1. Changing the attribute value silly to a valid value like Advanced
2. Adding the expected <Answer> element to go with the <Question> inside the second
<FAQ> element

This produces the modified document:

<?xml version="1.0"72>

<!DOCTYPE FAQ-List SYSTEM "FAQ-List.dtd">
<FAQ-List>
<FAQ Submitter="smuench@oracle.com">
<Question>Is it easy to get started with XML?</Question>
<Answer>Yes!</Answer>
</FAQ>
<FAQ Submitter="derek@spinaltap.com" Level="Advanced">
<Question>Are we going to play Stonehenge?</Question>
<Answer>But of course</Answer>
</FAQ>
</FAQ-List>

which now passes validation if we repeat the oraxml-v command on it.

As we've seen, DTDs can be invaluable tools for ensuring an additional level of consistency in the
XML information you'll be working with or exchanging with others. As more and more web-based
repositories of DTDs (also known as schemas) emerge, the likelihood of finding existing
domain-specific vocabularies increases. This bodes well for a future of reuse with less need for
custom DTD development.

2.2 Modularizing XML

XML entities and namespaces provide two techniques to modularize the contents of XML
documents. In this section we study simple examples of both.

2.2.1 Including Text and External Resources

Entities are a mechanism for defining named string substitution variables in your XML file. They
can save typing repetitive text in your documents. For example, if the Frequently Asked
Questions document that we're working on is for the Oracle JDeveloper 3.1 product, the text
Oracle JDheveloper and the current version number of the product might appear in many of the
questions and answers. We can define two entities to represent this repetitive text using the
syntax:

<!ENTITY jdev "Oracle JDeveloper">
<!ENTITY ver "3.1">

With these in place we can refer to the entities by name in the contents of our FAQ.xm/ document
with the syntax:

<Question>What is the current version of &jdev;?</Question>

<Answer>The current version is &jdev; &ver;</Answer>

The syntax for user-defined entities is identical to that of the built-in entities we saw earlier (&1t ;,
>, ', and squot;). References to user-defined entities like &jdev; start with an
ampersand character and end with a semicolon, with the entity name in between. Like the default
attribute values we saw earlier, these entities can be defined in an external DTD file, or right in
the current document by including them in the local DTD section known as the internal subset.
The syntax for including these entity definitions in the document you're working on (when you do
not control the DTD or when the entities are not interesting enough to be placed there for global
use) looks like this:

<?xml version="1.0"?>
<!DOCTYPE FAQ-List SYSTEM "FAQ-List.dtd"[
<!-- Internal subset adds local definitions -->
<!ENTITY jdev "Oracle JDeveloper">
<!ENTITY ver "3.1">
1>
<FAQ-List>
<FAQ Submitter="smuench@oracle.com">
<Question>Is it easy to get started with XML?</Question>
<Answer>Yes!</Answer>
</FRAQ>
<FAQ Submitter="smuenchl@oracle.com" Level="Beginner">
<Question>What is the current version of &jdev;?</Question>
<Answer>The current version is &jdev; &ver;</Answer>
</FRAQ>
</FAQ-List>

Notice that when we browse the file with Internet Explorer 5.0 again, as shown in Figure 2.8, the
values of the entities are expanded by the XML processor inside IE5. The same process will occur
when any XML processor reads the document.

Figure 2.8. XML processor expands the text of entities

ol 5 woml-basice\FAWIthE ntities. wml - Microzoft Intermiet Explores

Adress

27 5wl biasies FADWIhE rities ul R v |

smuench@oracle.com” L Intermediate
Is it easy to get started with XML?
Yes!

smuench@oracle.com’ L&y Beginner
What is the current version of Oracle JDeveloper?
er=The current version is Oracle JDeveloper 3.1

L+ |

2] Done

When we upgrade the FAQ.xm/ document for the 4.0 release of JDeveloper, or, heaven forbid, if
the product gets renamed, with our entities in place, we can just edit the text in one place.
References to entities can go anywhere in an XML document where text content is legal, including
inside attribute values. Note that entities are expanded before well-formedness checking and
validation occur on the document, so their text can contain XML tags as well.

In addition to representing useful chunks of substitution text, entities can also refer to external
resources by URL. For example, there might be a file full of questions from 1999 named
1999-Questions.xml:

<FAQ Submitter="ppuddle@za.oracle.com" Level="Advanced">
<Question>Can I remotely debug servlets and stored procedures?</Question>
<Answer>Yes.</Answer>

</FAQ>

and a file full of questions from our web site hamed webquestions.xml:

<FAQ Submitter="rcardenal@pr.oracle.com">
<Question>Does JDeveloper support XML?</Question>
<Answer>Yes.</Answer>

</FAQ>

By including the additional keyword sysTEM in our entity definition, followed by a relative or
absolute URL to the text resource we'd like to include, we can pull in these external document
fragments and make them appear as part of our single XML document,
FAQWithMultipleEntities.xml, as shown in Example 2.1.

Example 2.1. Using Entities to Include Text and External

Resources

<?xml version="1.0"?>
<!DOCTYPE FAQ-List SYSTEM "FAQ-List.dtd"[
<!ENTITY jdev "Oracle JDeveloper">
<!ENTITY ver "3.1">
<!ENTITY lastyears SYSTEM "1999-Questions.xml">
<!ENTITY webg and a SYSTEM "http://xml.us.oracle.com/webquestions.xml">
1>
<FAQ-List>
<FAQ Submitter="smuench@oracle.com">
<Question>Is it easy to get started with XML?</Question>
<Answer>Yes!</Answer>
</FAQ>

<FAQ Submitter="smuench@oracle.com" Level="Beginner">

<Question>What is the current version of &jdev;?</Question>
<Answer>The current version is &jdev; &ver;</Answer>

</FAQ>

&webg and a;

&lastyears;

</FAQ-List>

When we browse the FAQWithMultipleEntities.xml file again with IE5, its XML processor
substitutes the entities, and the browser (as would any program processing the file) "sees" the
contents with all of the entities expanded.

2.2.2 Using Namespaces to Mix XML Vocabularies

If thoughtfully designed XML vocabularies already exist for a particular problem domain, it's a
natural instinct of a good developer to want to reuse the existing vocabulary instead of inventing
a new one. However, when attempting to combine the elements from two or more different XML
vocabularies in a single document, name clashes can occur for common element names. XML
namespaces provide a solution to this problem by specifying a mechanism to uniquely qualify
elements from different vocabularies.

Consider a fictitious tax advice company called Tax Time. A customer named Tina Wells calls to
set up an appointment to discuss her income tax return with one of Tax Time's consultants,
named Jim. Suppose that Tax Time uses an XML document like the following to represent Tina's
<Appointment> with Jim:

<Appointment>
<Name>Tina Wells</Name>
<Schedule For="04/20/2000">
<Consult With="Jim" Time="10:00am">
<Regarding>
<UnknownSubject/>
</Regarding>
</Consult>
<ArrangePayment With="Ella" Time="11:00am"/>
</Schedule>
</Appointment>

As part of a routine pre-visit screening, Jim's administrative assistant Ella calls Tina to get more
details about the subject of her visit. She learns that Tina needs some advice on her Federal
income tax Form 1040. Ella asks Tina to post her 1040 Form over secure HTTP to Tax Time's web
site so Jim can review it before their meeting. Since Tina's tax preparation software supports the
new XML-based IRS tax <Form> format:

<Form id="1040">

<Filer EFileECN="12345">
<Name>Tina Wells</Name>
<TaxpayerId>987-65-4321</TaxpayerId>
<Occupation>Vice President</Occupation>

</Filer>

<Schedule id="B">
<Dividend Amount="12358.74">

<Payer>Bank of America</Payer>

</Dividend>

</Schedule>

</Form>

Tina exports her tax <Form> and posts it to Tax Time. After combining Tina's income tax <Form>
into the <Appointment> datagram, Ella ends up with the XML document shown in Example 2.2.

Example 2.2. Combining Appointment and Form Vocabularies

in One Document

<Appointment>
<Name>Tina Wells</Name>
<Schedule For="04/20/2000">
<Consult With="Jim" Time="10:00am">
<Regarding>
<Form id="1040">
<Filer EFileECN="12345">
<Name>Tina Wells Johnson</Name>
<TaxpayerId>987-65-4321</TaxpayerIld>
<Occupation>Vice President</Occupation>
</Filer>
<Schedule id="B">
<Dividend Amount="12358.74">
<Payer>Bank of America</Payer>
</Dividend>
</Schedule>
</Form>
</Regarding>
</Consult>
<ArrangePayment With="Ella" Time="11:00am"/>
</Schedule>
</Appointment>

The document is now ambiguous, since the element <Schedule> appears twice, meaning two
different things, as does the <Name> element. This is precisely the ambiguity that XML
namespaces are designed to remedy.

We need some way to distinguish the elements in the <Appointment> vocabulary from those in
the tax <Form> vocabulary. Suppose we could just qualify the element names in the
<Appointment> vocabulary with some kind of prefix that would uniquely identify its elements, like
this:

e < [TaxTimeAppointmentVocabulary] :Appointment>
e < [TaxTimeAppointmentVocabulary] :Schedule>

e < [TaxTimeAppointmentVocabulary] :Name>
And, similarly, some unique identifier for the IRS tax <Form> vocabulary:

e <[IRSTaxFormVocabulary]:Form>
e <[IRSTaxFormVocabulary]:Schedule>

e < [IRSTaxFormVocabulary] :Name>

Then the elements would be easy to combine since they are impossible to confuse. But that sure
means a lot of extra characters in our document. Who comes up with the unique names? Couldn't
two clever people who think alike potentially come up with the same unique name?

The designers of XML namespaces have standardized the answers to these concerns. They
decided that Internet domain names were a great way to come up with unique names for things.
As long as companies or organizations use their Internet domain names as part of the unique
names for the XML vocabularies they design, they need only to pick a unique name within their
own organization and the name will be globally unique. So we use standard Internet URLs as the
unique names for XML vocabularies.

b The XML Namespaces specification talks about using URIs, not

- URLs. URI, or Uniform Resource Identifier, is a generic term for

“ all types of names and addresses that refer to resources on the
World Wide Web. A URL is by far the most widely used kind of
URI in practice. The other kind of URI used on occasion is a
URN, a Uniform Resource Name. URNs look like this:

urn:oracle-xsqgl

instead of http://somesite/somename. For the curious, more
details are available at http://www.w3.0org/Addressing/.

Since these unique URL-based namespace names can be long, the XML Namespaces specification
allows document authors to coin a short nickname, called a prefix. This namespace prefix
represents its associated globally unique vocabulary name, which saves a lot of typing.

To define a namespace, you include a special attribute named xmlns on any element with the
following syntax:

<SomeElement xmlns:prefixname="uniqueURLForTheNamespace">

So we can define an appt prefix for the http://www.taxtime.com/Appointment vocabulary with
the syntax:

<appt:Appointment xmlns:appt="http://www.taxtime.com/Appointment">
and an irs namespace prefix for the http://www.irs.gov/Form vocabulary:

<irs:Form xmlns:irs="http://www.irs.gov/Form">

- The presence of a URL like http://www.irs.gov/Form in a
E _ namespace definition does not mean that the program

—4 processing your XML document attempts to contact that URL
over the Web using that URL. It's just a convenient unique
string that's a little easier for humans to remember than the
other common scheme for globally unique names (called
GUIDs), which look like this:

BDC6E3F0-6DA3-11D1-A2A3-00AA00C14882

With the appt and irs namespace prefixes defined, we can unambiguously represent Ella's XML
document about Tina's appointment as shown in Example 2.3.

Example 2.3. XML Namespaces Allow Mixing Different XML

Vocabularies

<appt:Appointment xmlns:appt="http://www.taxtime.com/Appointment">
<appt:Name>Tina Wells</appt:Name>
<appt:Schedule For="04/20/2000">
<appt:Consult With="Jim" Time="10:00am">
<appt:Regarding>
<irs:Form i1d="1040" xmlns:irs="http://www.irs.gov/Form">
<irs:Filer EFileECN="12345">
<irs:Name>Tina Wells Johnson</irs:Name>

<irs:TaxpayerId>987-65-4321</irs:TaxpayerId>

<irs:Occupation>Vice President</irs:Occupation>
</irs:Filer>
<irs:Schedule id="B">
<irs:Dividend Amount="12358.74">
<irs:Payer>Bank of America</irs:Payer>
</irs:Dividend>
</irs:Schedule>
</irs:Form>
</appt:Regarding>
</appt:Consult>
<appt:ArrangePayment With="Ella" Time="11:00am"/>
</appt:Schedule>
</appt:Appointment>

Keep in mind that the prefix is a shortcut name chosen at the discretion of each author of any
document that uses a given vocabulary, so all of the following are equivalent:

e <irs:Form xmlns:irs="http://www.irs.gov/Form">
e <<i:Form xmlns:i="http://www.irs.gov/Form">

e <Form xmlns="http://www.irs.gov/Form">

The so-called qualified name of each example shown is logically the fully qualified name
<[http://www.irs.gov/Form] : Form>, regardless of the prefix used. The third example in this
list uses a further convenient feature of the XML Namespaces recommendation to define a
namespace URL as the default namespace. When a default namespace has been defined, the
absence of a namespace prefix on an element associates it with the default namespace. This is
especially handy when large sections of a document use the same namespace. Using default
namespaces, you can further simplify the document syntax without sacrificing clarity.

Example 2.4 shows Ella's document using http://www.taxtime.com/Appointment as the default
namespace, while using the irs prefix for the http://www.irs.gov/Form namespace.

Example 2.4. Using the Default Namespace for the

Appointment Vocabulary

<Appointment xmlns="http://www.taxtime.com/Appointment">
<Name>Tina Wells</Name>
<Schedule For="04/20/2000">
<Consult With="Jim" Time="10:00am">
<Regarding>
<irs:Form i1d="1040" xmlns:irs="http://www.irs.gov/Form">
<irs:Filer EFileECN="12345">

<irs:Name>Tina Wells Johnson</irs:Name>

<irs:TaxpayerId>987-65-4321</irs:TaxpayerId>
<irs:Occupation>Vice President</irs:Occupation>
</irs:Filer>
<irs:Schedule id="B">
<irs:Dividend Amount="12358.74">
<irs:Payer>Bank of America</irs:Payer>
</irs:Dividend>
</irs:Schedule>
</irs:Form>
</Regarding>
</Consult>
<ArrangePayment With="Ella" Time="11:00am"/>
</Schedule>
</Appointment>

Each namespace definition has a scope in which it is effective. By defining a namespace on a given
element, that namespace is in scope and available for use for that element and all of the elements
it contains. One of the contained elements can redefine a namespace prefix to be bound to a
different namespace—including redefining the default namespace—and as before, the new
namespace is in effect for that new element and any elements it contains. It is also legal to qualify
individual attributes by a namespace prefix, although this usage is less common.

We end with Example 2.5, which shows how Ella's document would look if she uses
http://www.taxtime.com/Appointment as the default namespace and redefines the default
namespace to be http://www.irs.gov/Form for the <Form> element and its children.

Example 2.5. Redefining the Default Namespace for a Subtree

<Appointment xmlns="http://www.taxtime.com/Appointment">
<Name>Tina Wells</Name>
<Schedule For="04/20/2000">
<Consult With="Jim" Time="10:00am">
<Regarding>
<Form 1d="1040" xmlns="http://www.irs.gov/Form">
<Filer EFileECN="12345">
<Name>Tina Wells Johnson</Name>
<TaxpayerId>987-65-4321</TaxpayerId>
<Occupation>Vice President</Occupation>
</Filer>
<Schedule id="B">
<Dividend Amount="12358.74">
<Payer>Bank of America</Payer>
</Dividend>
</Schedule>

</Form>
</Regarding>
</Consult>
<ArrangePayment With="Ella" Time="11:00am"/>
</Schedule>
</Appointment>

In this book, one of the most frequent examples of namespaces that we will see is the namespace
for XSLT. We will work with many examples of XSLT stylesheets that use this vocabulary, whose
unigue namespace name is http://www.w3.0rg/1999/xSL/Transform. Now that you've seen
the examples with namespaces above, the simple XSLT stylesheet in Example 2.6 should look
familiar from a syntactical point of view with its namespace-qualified element names like <xsl:
stylesheet>, <xsl:template>, <xsl:for-each>, and <xsl:value-of>.

Example 2.6. To Write XSLT Stylesheets, XML Namespaces Are

Required

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output indent="yes"/>
<xsl:template match="/">
<OscarFavorites Year="2000">
<xsl:for-each select="/MovielList/Movie[Award/@From="'0Oscar']">
<Winner Category="{Award/@Category}">
<xsl:value-of select="@Title"/>
</Winner>
</xsl:for-each>
</OscarFavorites>
</xsl:template>
</xsl:stylesheet>

This stylesheet transforms an XML <MovieList> that we'll see in the next section into the output:

<?xml version = '1.0' encoding = 'UTF-8'?>
<OscarFavorites Year="2000">
<Winner Category="Best Film">American Beauty</Winner>

</OscarFavorites>

To reiterate our point that a prefix is just a shortcut name, observe that the following stylesheet,
which picks x as the convenient prefix instead of xs1, is functionally identical to the previous one:

<x:stylesheet version="1.0" xmlns:x="http://www.w3.0rg/1999/XSL/Transform">
<x:output indent="yes"/>
<x:template match="/">

<OscarFavorites Year="2000">
<x:for-each select="/MovielList/Movie[Award/@From='0Oscar']">
<Winner Category="{Award/@Category}">
<x:value-of select="@Title"/>
</Winner>
</x:for-each>
</OscarFavorites>
</x:template>
</x:stylesheet>

It's clear that without the ability to unambiguously combine elements from the
http://www.w3.0rg/1999/XSL/Transform hamespace with the unqualified elements in the
stylesheet like <OscarFavorites> and <Winner>, we would have a tough time writing a
stylesheet.

2.3 Searching XML with XPath

When you organize files into directories on a disk, you use the directories to give some
meaningful structure to your files. Familiar commands like dir or 1s allow you to search for
matching files that have been organized into those nested directories. Consider the directory
hierarchy of drive M: as shown in Figure 2.9 using the Windows Explorer.

Figure 2.9. Browsing hierarchical directory structure

BA Exploring - MovieList H=] E3
File Edt View [Go Favotes Tools n
Foldess ® | Mame
=l) j.ﬁwald
=1] Movialst 2] Firs!
=] Mowe 2] Lact
=] Cast
o Achax
| Directen
LIl i
Mloviel st oviad CastAchon

In order to search this hierarchy, you use a path notation to indicate what files you are trying to
find. The path notation for searching a Unix filesystem, for example, allows you to use the
notation /MovieList/Movie/Cast to refer to the Cast subdirectory under the Movie subdirectory of
MovielList, or /MovieList/Movie/Cast/* to refer to any file in that directory.

To list all the files in the Actor subdirectory, you can issue the command:

ls /MovielList/Movie/Cast/Actor/*

which produces this list of matching files:

/MovieList/Movie/Cast/Actor/First
/MovieList/Movie/Cast/Actor/Last
/MovieList/Movie/Cast/Actor/Award

As we saw in Chapter 1, XML documents also have an industry-standard path notation for
searching their content, called XPath. You'll find its syntax easy to understand because of its basic
similarity to what we saw earlier for files in directories. We'll see with several examples (and
throughout this book) that the searches you can do with the XPath notation over an XML
document are much more powerful than the simple file listings illustrated above.

Table 2.1 summarizes the syntax for the most common XPath expressions.

Table 2.1. Syntax Summary for the Most Common XPath Expressions

XPath Expression Syntax

Matches

Name Element named Name

/Name Element named Name at the root of the document

a/b Element b occurring as a direct child of element a

a//b Element b occurring any number of levels below a

1/ Name Element Name occurring any numbers of levels below the root of the
document.

@Name Attribute named Name

* Any element

@x Any attribute

text () Text node

Name [BoolExpr]

Element Name if boolean expression BoolExpr predicate is true

Name [position() =n]

n th Name element

Name [n]

nth Name element

(ListExpr) [n]

n th node in list of nodes matching ListExpr

Namel | NameZ2

Elements Namel or Name?

(ListExpr) [BoolExpr]

Nodes in ListExpr where predicate BoolExpr is true.

The current node

./ /Name

Element Name that occurs any number of levels below the current
node

The parent node

Let's put some of these to work. Consider the <MovieList> document in Example 2.7. It contains
a hierarchy of elements conceptually similar to a hierarchy of directories and files. Elements that
contain other elements are analogous to directories, and elements that don't contain other
elements are like files.

Example 2.7. MovielList Document to Search XPath

Expressions

<MovieList>
<Movie Title="American Beauty" RunningTime="121" Rating="R">
<Director>
<First>Sam</First>
<Last>Mendes</Last>
<Award From="Oscar" Category="Best Director"/>
</Director>
<Cast>
<Actor Role="Lester Burnham">
<First>Kevin</First>
<Last>Spacey</Last>
<Award From="Oscar" Category="Best Actor"/>
<Award From="BAFTA" Category="Best Actor"/>
</Actor>
<Actress Role="Carolyn Burnham">
<First>Annette</First>
<Last>Bening</Last>
<Award From="BAFTA" Category="Best Actress"/>
</Actress>
</Cast>
<Award From="Oscar" Category="Best Film"/>
<Award From="BAFTA" Category="Best Film"/>
</Movie>
<Movie Title="The Talented Mr.Ripley" RunningTime="139" Rating="R">
<Director>
<First>Anthony</First>
<Last>Minghella</Last>
</Director>
<Cast>
<Actor Role="Tom Ripley">
<First>Matt</First>
<Last>Damon</Last>
</Actor>
<Actress Role="Marge Sherwood">

<First>Gwyneth</First>

<Last>Paltrow</Last>
</Actress>
<Actor Role="Dickie Greenleaf">
<First>Jude</First>
<Last>Law</Last>
<Award From="BAFTA" Category="Best Supporting Actor"/>
</Actor>
</Cast>
</Movie>

</MovielList>

/MovieList/Movie/Cast/Actor/* is the XPath notation used to find any of the elements in the
document located under Actor on a Cast of a Movie in the MovieList. We can use the handy
testxpath command-line tool that is supplied with the example files for this chapter (available on
the O'Reilly web site) to experiment with XPath searches over the MovieList.xml file shown in
Example 2.7. We can try this first example with the command:

S:\xml-basics>testxpath MovieList.xml
Type an XPath expression to test and press [Enter]

To quit, press [Enter] without entering a path.

MovieList.xml> /MovielList/Movie/Cast/Actor/*

which returns these results:

<First>Kevin</First>

<Last>Spacey</Last>

<Award From="Oscar" Category="Best Actor"/>
<Award From="BAFTA" Category="Best Actor"/>
<First>Matt</First>

<Last>Damon</Last>

<First>Jude</First>

<Last>Law</Last>

<Award From="BAFTA" Category="Best Supporting Actor"/>

This XPath expression matched all of the elements that were direct children of Actors on casts of
Movies in the MovieList and returned them in "document order"—that is, the order in which they
occur in the document. Note that the testxpath utility then prints out another command line, like
this:

MovieList.xml>

and waits for you to try another XPath expression against the MovieList.xm/ file. We'll use the
testxpath command line to test all the examples we'll see in this section. To exit, just hit Enter
on a blank line.

) The command-line tool testxpath.exe is a compiled executable

s that makes it convenient to run the TestXPath.java utility on

4 Windows. Running this tool requires the Microsoft Java Virtual
Machine to be installed on your Windows computer. To run the
utility on other platforms or to run it with a different Java VM,
see the testxpath.bat script provided with the tool that
illustrates how to set up the CLASSPATH in order to run the

TestXPath class using the command-line Java interpreter. You

may need to adjust the value of the JDEVELOPER HOME variable

in the script.

To find attributes instead of elements, we use a similar notation except that an at-sign character
(@) precedes the attribute name you're looking for. So to find the Titles of all the Movies in the
MovieList, we can use the expression /MovieList/Movie/@Title, which returns:

MovieList.xml> /MovieList/Movie/Q@Title

Title="American Beauty"

Title="The Talented Mr.Ripley"

The slash character (/) between MovieList and Movie in the path expression means "the Movie
directly below MovieList" or "Movie as an immediate child of MovieList." If you need to find an
element like <Award> that occurs as a child element at multiple levels below another
element—for example, <Award> appears as a child of Movie, Director, Actor, and
Actress—you can use the double-slash (//) in your path to mean "any numbers of levels below"
or "as a descendant of." So to find the award elements any number of levels below a Movie in a
MovieList, use the expression /MovielList/Movie//Award

MovieList.xml> /Movielist/Movie//Award

<Award From="Oscar" Category="Best Director"/>

<Award From="Oscar" Category="Best Actor"/>

<Award From="BAFTA" Category="Best Actor"/>

<Award From="BAFTA" Category="Best Actress"/>

<Award From="Oscar" Category="Best Film"/>

<Award From="BAFTA" Category="Best Film"/>

<Award From="BAFTA" Category="Best Supporting Actor"/>

Of course, a // at the beginning of the path means "find an element any number of levels below
the root of the document."” This is the same as saying "anywhere in the document.”" So an XPath
expression of //Actress/QRole selects the rRole attributes of any Actresses anywhere in the
document:

Role="Carolyn Burnham"

Role="Marge Sherwood"

g Keep in mind that although it's convenient, the // operator can
= cause some XPath search engines to search many nodes in the

document to obtain results. For example, //Something has to

effectively visit every element in the document to make sure it
finds <Something> elements at any level. So don't use just use

//Something because you get lazy and want to type less. If you

know any part of the absolute path, it's best to provide it for
optimal performance. Also, it's important to understand the

difference in performance between .//Something and

//Something. The former searches for a <Something>

element at any level below the current node; the latter
searches for a <Something> element anywhere in the entire
document—that is, anywhere below the document root node

"/". Inadvertently using //Something when you

mean .//Something can cause the XPath engine to search

many more nodes than necessary. On medium to large files,
this can have a dramatic negative effect on performance.

Here's where things start to get even more interesting! In addition to specifying the element and
attribute names—or their * and @* wildcard counterparts—as part of the search path, you can
also provide predicates that filter your search results at any step in the path. You filter a search
using an XPath expression that returns a boolean result, enclosed in square brackets [Expr]. The
expression in a predicate is evaluated relative to the node to which it is applied, so you can use
relative paths in a predicate like the following to find the RunningTime of any Movie whose
Director's Last nhame is 'Minghella':

/MovielList/Movie[Director/Last="Minghella']/@RunningTime
Using our testxpath tool to test this we get:
RunningTime="139"

The expression can include multiple conditions with and and or operators. For example, to select
the cast of any movies directed by Minghella with a running time greater than 130 minutes you
can use:

/MovieList/Movie[Director/Last="Minghella' and @RunningTime > 130]/Cast

A predicate can appear on any number of the steps in a path. The following example uses two
predicates, one qualifying Movie and the other qualifying Actor, and illustrates that you can use
whitespace like carriage returns between steps in a pattern to make it more readable when it gets
long:

//Movie[Award/@Category="Best Film']
//Actor[Award/Q@Category="Best Actor']
/Last

This finds the Last name of any Actor who won a Best Actor award in a Movie that won an award
for Best Film. Trying this expression at the testxpath command line, we get:

<Last>Spacey</Last>

To return just the text that's included in an element, we can use the text () expression. If we
tack on an additional text () at the end of the previous example, like this:

//Movie[Award/Q@Category="Best Film']
//Actor [Award/Q@Category="Best Actor']
/Last/text ()

we get just the text:
Spacey
and not the <Last> element containing the text 'spacey’.

Frequently, you'll want to select the first matching element or the first three matching elements
or the n th matching element. You can use the position () function in a predicate to achieve this.
It returns the position of a matching element among all elements that match the expression in the
current step. Note that the position numbering starts with one. So to find only the first aAward
listed at any level in the MovieList, excluding second and subsequent Awards that a Movie,
Director, Actor, Oor Actress might have received, you can use:

//Award[position()=1]

which returns:

<Award From="Oscar" Category="Best Director"/>
<Award From="Oscar" Category="Best Actor"/>
<Award From="BAFTA" Category="Best Actress"/>
<Award From="Oscar" Category="Best Film"/>

<Award From="BAFTA" Category="Best Supporting Actor"/>

If, instead, you want the first award that occurs anywhere in the document, you can use
parentheses to cause //Award to be evaluated first and then filter this list of all matching award
elements to return only the first one. The syntax for this is:

(//Award) [position()=1]
As expected, this returns only the first Award element in document order:

<Award From="Oscar" Category="Best Director"/>

To retrieve the first three Awards anywhere in the document, we can use a predicate that tests for
elements with position() < 4 asin:

(//Award) [position() < 4]

which returns:

<Award From="Oscar" Category="Best Director"/>
<Award From="Oscar" Category="Best Actor"/>

<Award From="BAFTA" Category="Best Actor"/>

As a convenience, instead of using [position()= n], we can just use the array-like subscript
notation of [n]. So to find the Role played by the second Actor in the second Movie in the
MovielList you can use Actor[2] and Movie[2] in the expression
/MovieList/Movie[2]/Cast/Actor[2]/RRole. This gives the result:

Role="Dickie Greenleaf"

In addition to the position () function, XPath defines numerous other useful string, number, and
set functions to use in path expressions. The following are some examples:

Find the directors of movies that won more than four awards of any kind
XPath expression using the count () function:

/MovieList/Movie[count (.//Award)>4]/Director

Result:

<Director>

<First>Sam</First>

<Last>Mendes</Last>

<Award From="Oscar" Category="Best Director"/>
</Director>

Find the last actor in a movie whose name contains the word " Talented"

XPath expression using the 1ast () and contains () functions:

//Movie[contains (@Title, 'Talented')]/Cast/Actor[last()]

Result:

<Actor Role="Dickie Greenleaf">

<First>Jude</First>

<Last>Law</Last>

<Award From="BAFTA" Category="Best Supporting Actor"/>
</Actor>

Find the actors or actresses who won a BAFTA award

XPath expression (which uses the union operator | to combine the results of two
expressions):

//Actress [Award/Q@From="BAFTA'] | //Actor[Award/Q@From='BAFTA']

Note that the combined results appear in document order, regardless of the order in which
the expressions were unioned.

Result:

<Actor Role="Lester Burnham">
<First>Kevin</First>
<Last>Spacey</Last>
<Award From="Oscar" Category="Best Actor"/>
<Award From="BAFTA" Category="Best Actor"/>
</Actor>
<Actress Role="Carolyn Burnham">
<First>Annette</First>
<Last>Bening</Last>
<Award From="BAFTA" Category="Best Actress"/>
</Actress>
<Actor Role="Dickie Greenleaf">
<First>Jude</First>
<Last>Law</Last>
<Award From="BAFTA" Category="Best Supporting Actor"/>
</Actor>

Find the role played by any actor with more than one award
XPath expression:

/MovielList/Movie/Cast/Actor [count (Award) > 1]/Q@Role

Result:

Role="Lester Burnham"

Find any actor who did not win an award
XPath expression:
/MovieList/Movie/Cast/Actor[not (Award)]
Result:

<Actor Role="Tom Ripley">
<First>Matt</First>
<Last>Damon</Last>

</Actor>

Find the title of any movie with a cast member or director whose last name starts with "D"
XPath expression:
/MovieList/Movie[.//Last[starts-with(.,'D"'")]]/@Title
Result:

Title="The Talented Mr.Ripley"

The XPath expression language is much more extensive and powerful than what we've seen in
this section, but these are the fundamental concepts you'll use every day. In several later
chapters, we'll learn about additional XPath syntax and features as we need them (rather than
providing an exhaustive list here to remember). You can refer to the XPath quick-reference in
Appendix D, for a complete list that you're sure to find handy.

i Since the testxpath tool we used in this chapter is useful for
1."‘_ F

Tk g

testing XPath expressions against XML documents from any file
or URL, you may find it handy in later chapters; you may also
find it useful to experiment with XPath in your daily work.

Part II: Oracle XML Fundamentals

This part of the book describes the core development activities that Oracle XML developers need
to understand when using XML with an Oracle database. It consists of the following chapters:

e Chapter 3, provides a typical "day-in-the-life" scenario illustrating the power of
combining XML with an Oracle database.

e Chapter 4, describes how you can use Oracle's JDeveloper product to help with XML
development.

e Chapter 5, explains how you can use PL/SQL to load XML files, parse XML, search
XML documents, post XML messages, and both enqueue and dequeue XML
messages from queues.

e Chapter 6 explains how you can combine Java, JDBC, and XML both inside and
outside Oracle8i to load XML files, parse XML, search XML documents, and post
XML messages, as well as enqueue and dequeue XML messages from queues.

e Chapter 7, explains the fundamentals of creating XSLT stylesheets to carry out
transformations of a source XML document into a resulting XML, HTML, or plain
text output.

e Chapter 8, explains how to build dynamic XML datagrams from SQL using declarative
templates to perform many common tasks.

e Chapter 9, builds on the fundamentals from Chapter 7 and explores additional XSLT
functionality like variables, sorting and grouping techniques, and the many kinds of
useful transformations that can be done using a variation on the identity
transformation.

e Chapter 10, gives Java developers a whirlwind introduction to PL/SQL and describes
how to use PL/SQL to dynamically produce custom XML datagrams containing
database information.

e Chapter 11, describes numerous techniques for programmatically producing XML
datagrams using Java by using JDBC, SQLJ, JavaServer Pages, and the Oracle XML
SQL Utility.

e Chapter 12, explains how to store XML datagrams in the database using the XML SQL
utility and other techniques, as well as how to retrieve them using XSQL pages and
XSLT transformations.

e Chapter 13, describes how you can use Oracle8/ 's integrated interMedia Text
functionality to search XML documents, leveraging their inherent structure to
improve text searching accuracy.

e Chapter 14, describes the techniques required to insert arbitrarily large and
arbitrarily complicated XML into multiple tables. It also covers using stylesheets to
generate stylesheets to help automate the task.

Chapter 3. Combining XML and Oracle

In this chapter, we'll get a taste for what the rest of the book is about: making XML a lot more
interesting by combining it with the power of your Oracle database. We explore a scenario of a
growing company that needs to integrate and share information for a frequently asked questions
"knowledge bank" and put the information to use in a variety of formats.

Don't worry if we move quickly through a lot of the details here. You'll learn how to do everything
we cover in this rapid-fire walkthrough—and much, much more—in the numerous examples
throughout the rest of the book. This chapter is meant as a preview. So buckle yourself in—the
ride is about to start.

3.1 Hosting the XML FAQ System on Oracle

Recall the frequently asked questions document from Chapter 2:

<?xml version="1.0"7?>
<!DOCTYPE FAQ-List SYSTEM "FAQ-List.dtd">
<FAQ-List>
<FAQ Submitter="smuench@oracle.com">
<Question>Is it easy to get started with XML?</Question>
<Answer>Yes!</Answer>
</FAQ>
<FAQ Submitter="derek@spinaltap.com" Level="Advanced">
<Question>Are we going to play Stonehenge?</Question>
<Answer>But of course</Answer>
</FAQ>
</FAQ-List>

Let's assume that we're working at a small Internet startup company. We start out with a single,
small XML file using the FAQ-List.dtd vocabulary similar to the one described earlier. In the
beginning, only a single person is in charge of editing the FAQ file; the humber of questions is
small, and the number of products we sell is tiny, too. Then, as we develop and ship newer
products, we naturally hire more people to help in the process, and now each product team wants
to manage its own XML FAQ file. So we split up the frequently asked questions into one XML FAQ
file per product team—all still sharing the FAQ-List.dtd format. But inevitably:

e Our products get more and more popular.

e Our list of frequently asked questions begins to grow.

e Our customers begin demanding to search FAQs across all products.

e Our customers insist on flexible, fast searching on multiple criteria.

e Our competition launches a personalized FAQ portal page for web developers.

Help! We need a powerful database to go with our XML. So we create a fag_table to hold all of our
frequently asked questions:

create table faqg table(

category VARCHAR2 (30),
question VARCHAR2 (4000) ,
answer VARCHAR?2 (4000),
glevel NUMBER,

submitted by VARCHAR2 (80)
) ;

and we decide to store the difficulty level of the question as a NUMBER so we can sort the
questions numerically by how difficult they are. It's kind of unfortunate that "Advanced" sorts
before "Beginner," but it's not a problem if we treat each level as a number. In order to store all
the questions for all the products, we add a CATEGORY column to the table as well. By querying
the fag_table, we should be able to search for questions across all products or, simply by adding
an appropriate WHERE clause, for just questions in a particular category.

On the Oracle Technology Network (OTN) web site we read about Oracle XSQL Pages. The release
notes claim that people who know SQL can get started quickly combining SQL, XML, and XSLT to
easily publish database information in a variety of formats, so we decide to give it a try. We create
our first XSQL page by pasting a SELECT statement over the faq_table into an XML file between
a <xsqgl :query> and a closing </xsql:query> tag. We specify the name of a database connection
to use at the top of the page, and provide a default value of "¢" for the cat parameter in the query,
representing the name of the frequently asked question category to retrieve. The FAQ.xsql/ file we
came up with is shown in Example 3.1.

Example 3.1. XSQL Page to Query FAQ Data from faq_table

<?xml version="1.0"7?>
<!-- FAQ.xsqgl: Return the results of fag table query as XML Information -->

<xsgl:query connection="xmlbook" cat="%" xmlns:xsgl="urn:oracle-xsql">

SELECT category, question, answer, submitted by, glevel,
DECODE (glevel, 1, 'Beginner’',
2, "'"Intermediate’,
3, 'Advanced') as "LEVEL"
FROM faq table
WHERE category LIKE UPPER('{Qcat}')
ORDER BY category, glevel

</xsql:query>

We save the FAQ.xsql file to disk and try to request the page through our browser. To our surprise,
we immediately see the results of our SQL query as XML in the browser. That was pretty easy: we
just had to specify the name of the database connection we wanted to use, paste in our SQL
statement, and save the file. We reference a parameter in the query called cat using the {@cat}
syntax right where we want the value of the category to be substituted. So if we try to request the
page by passing a particular category value in the URL as follows:

http://localhost/xml-basics/FAQ.xsql?cat=jdev

We instantly see XML for only the frequently asked questions in the jdev category, as shown in
Figure 3.1, from our IE5 browser.

Figure 3.1. XML from SQL query displayed in IE5

A3 hitp: / flocalhoszt: FO70/xml-basics/FAQ_xzql?cat=jdey - Microzoft Internet Explorer

Address I-E"F_'I http: #ocahost TOT0/uml-basic s/ FAD szqlfcat=idey j o Go m

ET
murn="1
EGOR JDEY =" ATE -
"=Cam IDeveloper Run X501 Pages?- S TTOMN =
Sure. Right from the IDE. </ S WLl
b - aday@rutgers.edu LUBMITTE
1 JEL
Beginner-/

= CATEGORY =IDEWV =
" Does Jl}-u\.ruluuer 3 1 support remote dehuqqmg’-" s
‘l'es Both for ApachefTomcat and .'I'Sem.rer N
! Vi =paul@javaguys.com-= S LB
y 2 JLEVEL
! Intermediate

R 3
AT For=JDEY - /AT
ExTloM -What is the Ferrarl ¥M flag for on-demand debugging?-=/U==T10M =
-deebunnndemand
i =liz@lizsdebugger.com
3= OLEVEL
Advanced=/1FUE

|

£] Dana

The results don't ook that pretty, but we'll see shortly how we can transform this canonical
<ROWSET>/<ROW> structure into something more useful—in fact, into many different useful
target formats.

We learn that in addition to the XSQL Servlet that comes with the XSQL Pages distribution from
Oracle, there's also a command-line xsgl tool that lets us do offline processing of any XSQL pages
in command scripts. On a whim a few weeks back, we began featuring frequently asked questions
for trivia categories like "famous people" and "geography." So let's try out one of those
categories.

We use the same FAQ.xsql/ page we created above, but this time use the xsql command-line tool
and pass geography as the category:

xsgl FAQ.xsgl cat=geography

And right out on the console appears the dynamic XML shown in Example 3.2 for the frequently
asked questions in the geography category.

Example 3.2. Results of Processing FAQ.xsql for the

Geography Category

<?xml version = '1.0'?>
<!-- FAQ.xsqgl: Return the results of fag table query as XML Information -->
<ROWSET>

<ROW num="1">
<CATEGORY>GEOGRAPHY</CATEGORY>
<QUESTION>What is the capital of Italy?</QUESTION>
<ANSWER>Rome</ANSWER>
<SUBMITTEDiBY>Sita@gallO.Org</SUBMITTED7BY>
<QLEVEL>1</QLEVEL>
<LEVEL>Beginner</LEVEL>

</ROW>

<ROW num="2">
<CATEGORY>GEOGRAPHY</CATEGORY>
<QUESTION>What perilous obstacle stops many Everest climbers?</QUESTION>
<ANSWER>Khumbu Icefall</ANSWER>
<SUBMITTED7BY>deSiO@Crn.it</SUBMITTED7BY>
<QLEVEL>3</QLEVEL>
<LEVEL>Advanced</LEVEL>

</ROW>

</ROWSET>

So it seems that it will be easy to host all of our FAQ questions in the database and leverage SQL
to let users quickly find the answers they are looking for over the Web. We clearly have a little

more work to do before the results will be in a format suitable for users to see directly, but we'll
see that we can make quick work of the task.

We previously built some scripts that worked with our earlier XML FAQ files. Those scripts expect
the frequently asked questions to be in the original FAQ-List.dtd format, but it appears the default
way that Oracle returns XML query results is in a generic <ROWSET> and <row> format.

Since XSLT stylesheets let us to transform XML information from one format to another, we
should be able to transform the <ROWSET>/<ROW>-based information into the FAQ-List.dtd
vocabulary fairly easily. We come up with the XSLT stylesheet in Example 3.3 to handle the job.

Example 3.3. Stylesheet to Transform ROWSET/ROW into

FAQ-List

<?xml version="1.0"?>
<!-- FAQ-In-XML.xsl: Transform ROWSET/ROW format to FAQ-List.dtd vocabulary -->
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output doctype-system="FAQ-List.dtd" indent="yes"/>
<xsl:template match="/">
<FAQ-List>
<xsl:for-each select="ROWSET/ROW">
<FAQ Submitter="{SUBMITTED BY}" Level="{LEVEL}">
<Question><xsl:value-of select="QUESTION"/></Question>
<Answer><xsl:value-of select="ANSWER"/></Answer>
</FAQ>
</xsl:for-each>
</FAQ-List>
</xsl:template>
</xsl:stylesheet>

We found the stylesheet pretty straightforward to create because XSLT stylesheets use XPath
expressions like the ROWSET /ROW expression you see in Example 3.3 to find, iterate over, and plug
information from the source XML document into a template that describes what we want the
target XML to look like. We used JDeveloper 3.1 to create and syntax-check the stylesheet as we
were building it, so that caught our mistakes and made things go faster.

After saving the output of processing the XSQL page in Example 3.1 in a file named
GeographyROWSETFromXSQL.xml, we transform the <ROWSET>/<ROW> structure using the
FAQ-In-XML.xsl stylesheet by using the command-line oraxs1 tool:

oraxsl GeographyROWSETFromXSQL.xml FAQ-In-XML.xsl

to produce:

<?xml version = '1l.0' encoding = 'UTF-8'?>
<!DOCTYPE FAQ-List SYSTEM "FAQ-List.dtd">
<FAQ-List>
<FAQ Submitter="sita@gallo.org" Level="Beginner">
<Question>What is the capital of Italy?</Question>

<Answer>Rome</Answer>

</FAQ>
<FAQ Submitter="desiol@crn.it" Level="Advanced">
<Question>What perilous obstacle stops many Everest climbers?</Question>
<Answer>Khumbu Icefall</Answer>
</FAQ>
</FAQ-List>

This brings a big smile to our face since this result is now dynamically produced from database
data and is in an XML format that is identical to the static pages we were editing before. While the
process was partially automated, we still had to run the XSLT transformation at the command line
to finish the job. In the next section we'll see how to automate that step, too.

3.2 Serving XML in Any Format

We see something interesting in the Oracle XSQL Pages material explaining that we can create a
new XSQL page that reuses the dynamic XML content produced by another page with a tag called
<xsqgl:include-xsql>. We also notice that by including one extra line at the top of our page, like
this:

<?xml-stylesheet type="text/xsl" href="FAQ-In-XML.xsl"?>

we can get the XSQL page processor to handle the XSLT transformation automatically before it
returns the results to the requester. So we combine these two little pearls of information to create
a new XSQL page called FAQXML.xsql:

<?xml version="1.0"7?>
<!-- FAQXML.xsqgl: Show FAQ.xsgl in Standard FAQ-List.dtd Vocabulary -->
<?xml-stylesheet type="text/xsl" href="FAQ-In-XML.xsl"?>

<xsqgl:include-xsqgl href="FAQ.xsqgl" xmlns:xsqgl="urn:oracle-xsqgl"/>

This uses <xsqgl:include-xsqgl> to include the XML results from our previous work, and
associates the FAQ-In-XML.xsl stylesheet we created above to this page. Now, when we try from
our browser to request the new XSQL page for the jdev category of frequently asked questions,
as shown in Figure 3.2, we see our dynamic information in our <FAQ-List> format with no manual
steps involved. Pretty neat.

Figure 3.2. Viewing the dynamic FAQ in the FAQ-List XML

format

A3 hittp: / flocalhost: FO70/ xml-basics/FADXML. xzql 7cat=jdey - Microsoft |nternet ExpliE[a] BT

Address I{I hitp: AAocahost 7070/ uml-basice FALML xeqlicat=jdev ﬂn

=T ter="aday @rutgers.edu’ | = =|="Beginner’ -
t Can IDeveloper Run XSOL Pages? </ 0ol
r=Sure. Right from the IDE.

i ter="paul@javaguys.com’ Loool="Intermediate
t Does IDeveloper 3.1 support remote debugging? </ Ousshion
=¥Yes. Both for Apache fTomcat and 1Server-//)

2 S ter="liz@lizsdebugger.com Le ‘Advanced
Jusstion - What is the Ferrari ¥™ flag for on-demand debugging?-/Cucston
i r=-AXdebugondemand I

=/F&
Fi

& Done

i

Just then, we learn that our CEO is expanding into Europe by acquiring another promising startup
in London. In a parallel universe, the London company had also been working with XML to keep
track of customer questions and answers. However, they were following an established British
standard XML vocabulary that they found on the Web, described by the
Frequently-Posed-Queries.dtd.

We quickly conclude that this is not a problem and offer to host all of their customers' frequently
posed queries in our fag_table. We cobble together a FAQ-In-UKFAQ.xs! XSLT stylesheet to
transform our <ROWSET>/<ROW> XML query results into their <Frequently-Posed-Queries>
format:

<?xml version="1.0"?2>
<!-- FAQ-In-UKFAQ.xsl: Transform ROWSET/ROW format into UK FAQ vocabulary -->
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output doctype-system="Frequently-Posed-Queries.dtd" indent="yes"/>
<xsl:template match="/">
<Frequently-Posed-Queries>
<xsl:for-each select="ROWSET/ROW">
<Query-Frequently-Posed By="{SUBMITTED BY}" Difficulty="{LEVEL}">
<Query><xsl:value-of select="QUESTION"/></Query>
<Reply><xsl:value-of select="ANSWER"/></Reply>
</Query-Frequently-Posed>
</xsl:for-each>
</Frequently-Posed-Queries>
</xsl:template>
</xsl:stylesheet>

We build another XSQL page that reuses the original FAQ.xsg/ page and combines it with the
FAQ-In-UKFAQ.xs! stylesheet:

<?xml version="1.0"?>
<!-- FAQUK.xsqgl: Show FAQ.xsqgl in British Standard FAQ-UK.dtd Vocabulary -->
<?xml-stylesheet type="text/xsl" href="FAQ-In-UKFAQ.xsl"?>

<xsqgl:include-xsqgl href="FAQ.xsqgl" xmlns:xsqgl="urn:oracle-xsqgl"/>

Now, either over the Web or using the xsql command-line tool from the British side of the "Pond,"
the people in London can run:

xsql FAQUK.xsgl cat=jdev

and instantly be working with dynamic XML produced off our database in their XML format.
Everyone is impressed all around:

<?xml version = 'l1.0' encoding = 'UTF-8'?>
<!DOCTYPE Frequently-Posed-Queries SYSTEM "Frequently-Posed-Queries.dtd">
<Frequently-Posed-Queries>
<Query-Frequently-Posed By="adayl@rutgers.edu" Difficulty="Beginner">
<Query>Can JDeveloper Run XSQL Pages?</Query>
<Reply>Sure. Right from the IDE.</Reply>
</Query-Frequently-Posed>
<Query-Frequently-Posed By="paul@javaguys.com" Difficulty="Intermediate">
<Query>Does JDeveloper 3.1 support remote debugging?</Query>
<Reply>Yes. Both for Apache/Tomcat and JServer</Reply>
</Query-Frequently-Posed>
<Query-Frequently-Posed By="1liz@lizsdebugger.com" Difficulty="Advanced">
<Query>What is the Ferrari VM flag for on-demand debugging?</Query>
<Reply>-XXdebugondemand</Reply>
</Query-Frequently-Posed>

</Frequently-Posed-Queries>

Next we tackle our web site. Our users want to see the results of their frequently asked questions
searches in a nice HTML format in their browser. We ask our web design department to provide us
with the HTML source of the "look and feel" they want the FAQ web site to have. They give us
something that looks like Figure 3.3.

Figure 3.3. Mockup of HTML page to display FAQs

Q : To be or not to be, this is the question.
@99
A: Not sure of the answer but it goes here,

The web designers at our place work with Dreamweaver, so in order to turn their mockup into
well-formed XML that we can quickly use as the basis for an XSLT stylesheet, we run Dave
Raggett's free Tidy utility®™ over the HTMLMockup.html/ file they gave us:

1) This very helpful utility corrects many of the most common mistakes made by HTML designers, producing a well-formed XML

document from a messy HTML page. You can obtain it from http://www.w3.0org/People/Raggett/tidy. See the documentation

available there for a full explanation of the utility, including its flags.

tidy -asxml -indent HTMLMockup.html > HTMLMockup.xml

and produce the indented, well-formed XML you see in Example 3.4.

Example 3.4. Output of Using the Tidy Utility on an HTML File

<?xml version="1.0"?2>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<meta name="generator" content="HTML Tidy, see www.w3.org" />
<title>
Frequently Asked Questions
</title>
<style type="text/css">
td {font-family:verdana,arial; font-size:18;
background-color:#f7f7e7; color:#000000 }
th,table {font-family:verdana,arial; font-size:18;
background-color:#cccc99; color:#336699 }
</style>
</head>
<body>
<center>

<table border="0">

<tr>
<th>
Question
</th>
<th>
Difficulty
</th>
</tr>
<tr>
<td>
<table border="0" cellspacing="0">
<tr>
<td>

</td>
<td valign="middle">
To be or not to be, this is the question.
</td>
</tr>
<tr>
<td>

</td>
<td valign="middle">
Not sure of the answer but it goes here.
</td>
</tr>
</table>
</td>
<td>

</td>
</tr>
</table>
</center>
</body>
</html>

o The careful reader will recognize the

-
W 4. xmlns="http://www.w3.0rg/1999/xhtml" default namespace

declaration on the <html> document element in the tidied-up
XML output. This refers to the XML vocabulary called XHTML,

the next generation version of HTML that uses XML syntax with
all of the familiar HTML tags. An HTML page that has been tidied

up to be compliant with the strict XML syntax rules discussed
earlier in this chapter is known as well-formed HTML.

Notice that Tidy has tidied up the HTML tags to be XML empty elements so the
HTML page will be well-formed HTML. We can rename HTMLMockup.xml to FAQ-In-HTML.xsl and
begin turning this tidied-up HTML mockup into the XSLT stylesheet that plugs in our dynamic
query information.

We can easily evolve this well-formed HTML into an XSLT stylesheet by adding the
xsl:version="1.0" attribute to the <html> element, adding the appropriate namespace
declaration for the XSLT vocabulary, and adding a <xsl:for-each> element to loop over the
results of the rROWSET/ROW XPath expression. Doing so loops over each <row> element in the XML
output of the original FAQ.xsql page. We replace the static text the web designers gave us with
<xsl:value-of> elements to plug in the dynamic data from our FAQ.xsq/, using the XPath
expressions QUESTION and ANSWER that are interpreted relative to the current <rowW> elements our
<xsl:for-each> loop is processing.

Finally, we use the XSLT attribute value template syntax of putting XPath expressions between
curly braces to plug dynamic information into the href attribute of the tag to appropriately
refer to Beginner.gif, Intermediate.gif, or Advanced.gif images that the graphic art department
created for us to show the difficulty level. We end up with the XSLT stylesheet in Example 3.5.

Example 3.5. HTML Mockup Converted to an XSLT Stylesheet

<!—-— FAQ-In-HTML.xsl: Transform ROWSET/ROW format into HTML Format -->
<html xsl:version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<head>
<title>Frequently Asked Questions</title>
<style>
td {font-family:verdana,arial; font-size:18;
background-color:#f7f7e7; color:#000000 }
th,table {font-family:verdana,arial; font-size:18;
background-color:#cccc99; color:#336699 }
</style>
</head>
<body>
<center>
<table border="0">
<tr>
<th>Question</th>
<th>Difficulty</th>
</tr>

<xsl:for-each select="ROWSET/ROW">

<tr>
<td>
<table border="0" cellspacing="0">
<tr>
<td>

</td>
<td valign="middle">
<xsl:value-of select="QUESTION"/>
</td>
</tr>
<tr>
<td>

</td>
<td valign="middle">
<xsl:value-of select="ANSWER"/>
</td>
</tr>
</table>
</td>
<td>

</td>
</tr>
</xsl:for-each>
</table>
</center>
</body>
</html>

Let's again create a little XSQL page to reuse our original FAQ.xsqgl and associate it with our new
FAQ-In-HTML.xsl stylesheet:

<?xml version="1.0"72>
<!-- FAQHTML.xsgl: Show FAQ.xsqgl in HTML Format for browsers -->
<?xml-stylesheet type="text/xsl" href="FAQ-In-HTML.xsl1l"?>

<xsqgl:include-xsqgl href="FAQ.xsqgl" xmlns:xsgl="urn:oracle-xsql"/>

We then can request the FAQHTML.xsql page through any browser (Netscape 6 is shown in Figure
3.4) to see the results. We've taken our web designer's HTML mockup, turned it into an XSLT
stylesheet, associated it with an XSQL page, and are now delivering our frequently asked
question information dynamically from faqg_table in an eye-catching HTML format.

Figure 3.4. Dynamic XML transformed with XSLT into HTML

Question Difficulty

Q + Can JDeveloper Run XSQL
* Pages?
9

A: Sure. Right from the IDE.

+ Does JDeveloper 3.1 support
* ramote debugging?

o
A- Yes, Both for Apache/Tomcat

e and JServer

Q + What is the Ferrari VM flag for
* on-demand debugging?

* B R
A: -XXdebugondemand

Document Done (0431 zecs) Buid 10 2000033112 g5

m E ‘E' _._?. E'_lj] Dﬂ Channgls = Toaks = Busir Shop Go ToWindow =

Our DBA comes up to us and asks, "Any chance I could get a SQL script to insert the geography
questions in your faq_table into an Oracle8i Lite database I'm setting up?" We think for a second
and tell him, "Sure. Come back in five minutes." The surprised look on his face says to us, "Five
minutes? Wow." He leaves to get a cup of coffee and we're already in JDeveloper creating another
XSLT stylesheet to transform the output of FAQ.xsgl.xs/ into a SQL script that inserts the data.

We create a stylesheet like FAQ-As-Insert.xsl:

<?xml version="1.0"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output method="text"/>
<xsl:template match="/">
<xsl:for-each select="ROWSET/ROW">
INSERT into fag table values(
/* category */ '<xsl:value-of select="CATEGORY"/>',
/* question */ '<xsl:value-of select="QUESTION"/>',
/* answer */ '<xsl:value-of select="ANSWER"/>',
/* glevel */ '<xsl:value-of select="QLEVEL"/>',
/* submitter */ '<xsl:value-of select="SUBMITTED BY"/>'
) ;
</xsl:for-each>

</xsl:template>
</xsl:stylesheet>

using the familiar tags from the XSLT vocabulary to loop over and plug data into the text template
of an INSERT statement. We create another XSQL page—FAQExport.xsql —to reuse our FAQ.xsq/
XML output from faq_table and associate it with the FAQ-As-Insert.xs/ stylesheet:

<?xml version="1.0"?>
<!-- FAQExport.xsqgl: Export FAQ.xsgl results as INSERT statements -->
<?xml-stylesheet type="text/xsl" href="FAQ-As-Insert.xsl"?>

<xsqgl:include-xsqgl href="FAQ.xsqgl" xmlns:xsgl="urn:oracle-xsql"/>

Then we go out to a command prompt and use the xsql command-line tool to process our new
page:

xsgl FAQExport.xsgl cat=geography

to get the results the DBA needs:

insert into fag table values(
/* category */ 'GEOGRAPHY',
/* question */ 'What is the capital of Italy?',
/* answer */ 'Rome',
/* glevel */ 1,
/* submitter */ 'sita@gallo.org'
)i
insert into fag table values(
/* category */ 'GEOGRAPHY',
/* question */ 'What perilous obstacle stops many Everest climbers?',
/* answer */ 'Khumbu Icefall',
/* glevel */ 3,
/* submitter */ 'desio@crn.it'
)i

We copy the SQL script to a floppy and move on to our next challenge. Next, our boss asks us to
set up a system to email frequently asked questions to developers who have purchased our
products. By now, we know the drill. He budgeted two weeks to have us set up the system, but
we're done with the bulk of the work in a few minutes because we are working with XML to
separate our data from the format we need to deliver it in. We simply create yet another XSLT
stylesheet to produce the results of the XML information from FAQ.xsqgl as the body of an email:

<?xml version="1.0"?>

<!-- FAQ-In-Email.xsl: Transform ROWSET/ROW format into email body text -->

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output method="text"/>

<xsl:template match="/">
<xsl:text>Hello,

</xsl:text>
<xsl:text>Here is your daily email dose of FAQ...</xsl:text>
<xsl:for-each select="ROWSET/ROW">
<xsl:text>&i#fxa;
Question </xsl:text>
<xsl:value-of select="position()"/>
<xsl:text>: </xsl:text>
<xsl:value-of select="QUESTION"/>
<xsl:text>
 Answer: </xsl:text>
<xsl:value-of select="ANSWER"/>
</xsl:for-each>
</xsl:template>
</xsl:stylesheet>

Next we create another familiar XSQL page to reuse FAQ.xsg/ and associate it to our
FAQ-In-Email.xsl stylesheet:

<?xml version="1.0"?2>
<!-- FAQEMail.xsqgl: Format FAQ.xsqgl results as an Email -->
<?xml-stylesheet type="text/xsl" href="FAQ-In-Email.xsl"?>

<xsqgl:include-xsqgl href="FAQ.xsqgl" xmlns:xsgl="urn:oracle-xsql"/>

Now our new notification system can use the XSQL page processor programmatically through its
XSQLRequest Java API to incorporate this dynamic, data-driven email based on our FAQ table.
Write a couple of lines of code in the middle of our mailer program to process the FAQEmail.xsql
page—passing in a cat parameter value of jdev to the routine programmatically—and out pops
our customized email for FAQ questions in the jdev category:

Hello,

Here is your daily email dose of FAQ...

Question 1: Can JDeveloper Run XSQL Pages?
Answer: Sure. Right from the IDE.

Question 2: Does JDeveloper 3.1 support remote debugging?

Answer: Yes. Both for Apache/Tomcat and JServer

Question 3: What is the Ferrari VM flag for on-demand debugging?

Answer: -XXdebugondemand

At this point, we're smiling a pretty wide smile. Suddenly, we're told we have to come up with a
solution for pulling in dynamic FAQ content from Sun's web site, where tons of Java-related FAQ
content lives. Sun's just made it available in XML format and published it to the world, and our

boss got the clever idea that it just might be useful to our customers as well. Once we heard that
the information on Sun's site was available in XML, we started smiling again.

3.3 Acquiring Web-based XML Content

We check out the ServietsFAQ.xml/ file on Sun's site, which they update periodically, and notice
that it has a format like this:

<?xml version = '1.0' encoding = 'UTF-8'?>
<Servlets-FAQ>
<FAQ>
<Q>What's the next major release of the Servlet API?</Q>
<A>Servlet API 2.2
</FAQ>
<FAQ>
<Q>How do I set the age of a cookie?</Q>
<A>yourCookie.setAge (120) ;
</FAQ>
<FAQ>
<Q>How do I save a variable in a per-user session?</Q>
<A>request.getSession (true) .putValue ('varname', 'value') ;
</FAQ>
</Servlets-FAQ>

We want this Servlet FAQ content and others like it from Sun's site to reside in our database so we
can search over it together with all of our own content. We learn that the Oracle XML SQL Utility
can insert XML documents automatically into our faqg_table if they have the canonical
<ROWSET>/<ROW> structure, so we create another XSLT stylesheet to transform a document in
Sun's <Servlets-FAQ> vocabulary into a <ROWSET>/<ROW> document:

<ROWSET xsl:version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:for-each select="/Servlets-FAQ/FAQ">
<ROW>
<CATEGORY>SERVLETS</CATEGORY>
<QLEVEL>1</QLEVEL>
<QUESTION><xsl:value-of select="Q"/></QUESTION>
<ANSWER><xsl:value-of select="A"/></ANSWER>
<SUBMITTED BY>Sun</SUBMITTED BY>
</ROW>
</xsl:for-each>

</ROWSET>

This time, the tables are turned and our XPath expressions in <xs1:for-each> are looping over
Sun's XML format and constructing the <ROWSET>, <ROW>, and column-name elements required

for the automatic insert. As in all of our other stylesheets, we use <xsl:value-of> to plug in the ¢
and 2 children element values from the current /servlets-FAQ/FAQ element as the values of our
<QUESTION> and <ANSWER> elements. Note that because Sun doesn't keep track of the difficulty
level in the FAQ format, we're using a constant value of 1 in our stylesheet to default to a value
that makes sense to our system. Also, we use a constant value of SERVLETS for the category to
make sure that the information from FAQs for Servlets is placed in an appropriate category for
searching through our faq_table.

We suspect that the XSQL Pages system offers some quick way to take advantage of this facility
declaratively, so we look at the online help and notice an <xsqgl:insert-request> element that
allows us to transform and insert any XML document that's posted as input to the page. We create
another little XSQL page, InsertSunjavaFAQ.xsql:

<?xml version="1.0"7?>
<!-- InsertSunJavaFAQ.xsqgl : Transform and insert XML in Sun FAQ Format -->
<xsgl:insert-request connection="xmlbook" xmlns:xsgl="urn:oracle-xsqgl"
transform="SunJavaFAQ-to-FAQTABLE.xsl"
table="faqg table" />

This provides the name of our SunjavaFAQ-to-FAQTABLE.xs! stylesheet as the value of the
transform attribute and faq_table as the value of the table attribute. We run the page using the
xsqgl command-line utility—providing the URL to Sun's ServietsFAQ.xml file as the posted-xml to
handle:

xsql InsertSunJavaFAQ.xsqgl posted-xml=http://java.sun.com/faqgs/ServletsFAQ.xml

In processing this page, the XSQL page processor retrieves the XML from Sun's web site,
transforms it using our indicated stylesheet into <ROWSET>/<ROW> format, and inserts it into
the faq_table with the help of the Oracle XML SQL Utility under the covers. We see the status
message on the console:

<?xml version = '1.0'?>
<!-- InsertSunJavaFAQ.xsqgl : Transform and insert XML in Sun FAQ Format -->

<xsqgl-status action="xsqgl:insert-request" rows="3"/>

indicating that all of Sun's servlet content is now in our database. Just to confirm, we point our
browser at the FAQHTML.xsql page we built earlier and pass servlets for the value of the cat
parameter. Lo and behold, we're now serving up dynamic FAQ content to our users that we
acquired by permission from Sun's site using XML as an exchange format.

At the end of the day, we retrace our steps. By combining SQL, XML, and XSLT transformations
using Oracle XML technology we were able to:

e Transition our static XML-based solution to dynamic, database-driven XML
e Reuse the dynamically produced XML as an interim data abstraction

e Leverage the flexibility of XSLT transformations to make our database-driven FAQ content
available in numerous XML, HTML, and text formats:
o The FAQ-List.dtd format for our U.S. office
o The Frequently-Posed-Queries.dtd format for our U.K. office
o Eye-catching HTML for our web developer's portal page
o SQL scripts for our DBA
o Email for our developer outreach program
e Acquire XML-based information over the Web and store it in our database

The overview in this chapter is just the appetizer course of the bountiful feast of solutions you can
build by exploiting Oracle's many XML facilities. In fact, Oracle's XSQL Pages technology itself is
a shining example of what can be built using Oracle's other XML-enabling technologies, like the
Oracle XML Parser, the Oracle XSLT processor, and the XML SQL Utility. As we've seen here, the
XSQL Pages technology provides a declarative approach to solve common problems easily, but it
does so by tapping into the power these other layers provide. We cover all of Oracle's XML
technologies from the ground up starting in the next chapter. So what are you waiting for? Turn
the page!

Chapter 4. Using JDeveloper for XML

Development

Whether you want to just work with XML and XSL files or you are a hardcore Java or PL/SQL
developer, you'll find that JDeveloper 3.1 has lots of features to make your life easier. A few of the
features that I personally use every single day of my life are:

e Color-coded syntax highlighting for XML/XSLT editing

e Auto-indenting and block indent/unindent to keep XML looking nice

e Built-in XML syntax checking

e Native support for running XSQL pages

e Ability to browse all Oracle8i schema objects, including Java classes

¢ Context-sensitive help as you type for methods and arguments

e Fast jumping to source and JavaDoc for any class that pops into your head
e Robust remote debugging support for Apache JServ, Tomcat, and others

e Robust remote "in-the-database" debugging support for JServer

We'll cover what you need to know to exploit these JDeveloper 3.1 features in this chapter.

These include sample XSQL pages, Java programs, and servlets
" to help you make sure your environment is properly set up to

run all the examples in this book. Open the

JDeveloperXMLExamples.jws workspace in

the .\samples\xmIsamples subdirectory of your JDeveloper

installation home directory to take a look.

E JDeveloper 3.1 ships with a number of helpful XML samples.
W
wr

4.1 Working with XML, XSQL, and JSP Files

This section describes the many ways JDeveloper helps you work with XML, XSQL and JavaServer
Pages.

4.1.1 Performing Basic Project and File Manipulation

JDeveloper allows you to create workspaces to facilitate working on many different projects at
once. The contents of all the projects in your current workspace are always visible and organized
in alphabetical order in the project navigator, as shown in Figure 4.1. At any time, you can click
your mouse in the project navigator and begin typing the initial letters of a file you are looking
for—for example, the letters myi—and a Search for pop-up appears. JDeveloper incrementally
jumps you to the first file matching the letters you've typed in so far, as illustrated in the figure,
so typically only a few letters are required to jump to the file you want.

Figure 4.1. Incrementally search for a file in a project

|

G ¥

] =

4 Sample'wotkspace s

-+ Cormechons
Droe
[k snibook

= MySerdetPioject jp
| MyFoider

&4 MyFeleAFobder kil

0] MyClevesPage kel
= MyCoalMLS ervel java
= MyNilyFage jzp

| My=MLProject.jpr
) MyDioc e dtd
= Mylnformation sl |
geh MyPage xzq
s MyStuleshent xal
geb Aedinsavaclnie oy’

By selecting a project in the navigator and choosing Add Folder... from the right mouse button
menu, you can create additional folders to further organize your files within a project.

To add new or existing files to a project, select the target project to make it active (displayed in
bold in the navigator). Then click the Add File icon—the folder with a plus sign—at the top of the
navigator pane. The File Open/Create dialog appears. Select an existing file or type the name of
a new file you want to create, and click the Open button to dismiss the file dialog and add the file
to your project.

- If you select an existing file in your project before clicking the
s Add File icon, the file dialog will use the existing file's directory

" as the current directory for the File Open/Create dialog. This is
handy if you'll be adding a file from the same directory as
another file in your project.

To delete a file from your project, select the file in the project navigator. Then click the Delete File
icon—the folder with a minus sign—at the top of the navigator pane. Confirm the Save changes to
file? alert box, if appropriate.

Files that have been edited show up with italic names in the navigator. You can save the current
file with Ctrl-S, or use the menu or toolbar to Save All files.

4.1.2 Doing Color-Coded XML, XSL, XSQL, and JSP Editing

JDeveloper 3.1 supports the editing of any XML-based file with color-coded syntax highlighting
and automatic indenting assistance to make it easier to work with XML and HTML source code.

Table 4.1 shows the list of file types and extensions that JDeveloper 3.1 recognizes by default as
XML/HTML file formats.

Table 4.1. Default File Extensions for Syntax Highlighting

File Extension Description
.xm/ XML files
.xsl/ XSLT stylesheets
.xsql XSQL pages
.dtd Document type definitions
.xsd XML schema definitions
.htm, .html HTML files
.Jjsp JavaServer pages

Figure 4.2 illustrates the different XML editing syntax constructs that the JDeveloper 3.1 code
editor recognizes.

Figure 4.2. Syntactic elements that can be highlighted

="String" ="String" >

< J.Ir =

N
W

A
o
W

You can change the syntax highlighting colors for any of these constructs by following these
steps:

1. Select Tools —2IDE Options... from the JDeveloper 3.1 menu.
2. Select the Fonts tab in the IDE Options dialog that appears.

From the Fonts tab, you can set the color, font, foreground color, and background color of any
syntactic element by selecting its name in the Element list and:

e Clicking the left mouse button in a colored square to set the foreground (FG) color

e Clicking the right mouse button in a colored square to set the background (BG) color

e Checking the Foreground or Background checkbox in the Use defaults for group to reset
the respective color to the default setting

In addition, as shown in Figure 4.3, you can set the font name, size, and style for any syntax
element.

Figure 4.3. Customize color syntax highlighting on the Fonts

panel
IDE Options Ed
Editar Fonls INavigalnrl Code Inaigﬂt] En'.'i'nrmanl]
Editor font: [Andale Mano] see [x
Eleinznit Cioka: Test atinbutes
" hitespace - . . [~ Bold
Comment ™ Itaic
Resaned word .

EREfET WOl . . r Ll_rll:lu’inl:
o Lise defendts for
Mumbes I Eoreground
Flasin best
Markedblock 7| . R

Caler SpesdSeting: |[.ln‘.:||,.ils

public class extends

L_1vf L

vyoid

ift

“"The number 15 ° + néw -
B FF
HI ¥

ok | cmd| Heb |

Table 4.2 describes the correspondence between the name of the syntactic element in the
Element list and the context it affects for XML editing.

Table 4.2. Syntax Elements and the Contexts They Affect
Syntax Element Name Controls Color For
Whitespace Space between elements and attributes
Comment XML comments
Reserved word Names of recognized names of HTML elements and attributes
Identifier XML element and attribute names
Symbol <, >, and /> characters
String Attribute values
Plain text Text content of elements

Changes you make to colors for the code editor take effect immediately and can be changed at
any time.

If you work with other XML-based file types and would like JDeveloper to syntax-highlight these
files as well, you can teach the product about your new files. For example, if you want files with
an *.xyz extension to be syntax-highlighted, then do the following:

1. Add *.xyz as a file extension that JDeveloper should treat as a text file, as follows:
o Select the Tools —2 Treat as text... menu option.
o Typein *.xyz in the File pattern to be treated as text field, and click the Add
button.
o Dismiss the Treat as text... dialog by pressing the OK button.
2. Add xyz to the list of file extensions that should be syntax-highlighted like HTML/XML files,

as follows:
o Select the Tools =2 IDE Options... menu option.
o Click on the Editor tab of the IDE Options dialog.
o Choose "Cursor/Search/Display options" from the Settings for: pop-up list.
o In the Display Options frame, add xyz to the end of the current list of file

extensions displayed in the HTML File Extensions field, separated by a semicolon.
o Click the OK button to dismiss the IDE Options dialog.

Make sure to see the instructions in the next section for enabling XML syntax checking on your
*.xyz file extension, if this is desirable. The next time you open your workspace or restart the
JDeveloper product, these new settings will be in effect.

You'll find that JDeveloper's automatic indenting helps a lot in keeping your XML elements nicely
aligned. If you add elements or remove elements, however, often you'd like to quickly fix the
indenting for whole blocks of elements at a time to make the file look nice again. In these cases,
you will find that JDeveloper's block indent and block unindent support come in handy over and
over again. To indent a block of text by two spaces, select the desired lines and type Ctrl-Shift-1I.
To unindent a block of text by two spaces, select the desired lines and type Ctrl-Shift-U.

To change the number of spaces used for each block indent, choose the Tools —>IDE Options...
menu, select the Editor tab in the IDE Options dialog, and set the value of Block Indent to the
value you prefer.

4.1.3 Interactively Syntax Checking XML-based Files

In addition to XML syntax highlighting, JDeveloper 3.1 supports XML syntax checking of any file
in your project that is not read-only and that has one of the file extensions listed in Table 4.3.

Table 4.3. Default File Extensions Recognized for XML Syntax Checking

File Extension Description

.xm/ XML files

.xsl/ XSLT stylesheets
.xsql XSQL pages

.xsd XML schema definitions

At any time, you can select the Check XML Syntax... option from the right mouse button menu
after selecting the desired file to check in the project navigator. JDeveloper checks the syntax of
the file based on the current state of its editor buffer, even if you have pending changes that have
not been saved to disk. If any XML well-formedness errors are detected, appropriate error
messages appear in the XML Errors tab of the Message View and your cursor is brought to the
position of the first error in your file, as Figure 4.4 illustrates.

Figure 4.4. Checking the XML syntax of a file

@ Orache JDeveloper - 5ample [[O] %]
Fle Edit Seach View Pject Bun ‘Wzard: Took “Window Help
n o) T Cumibook\sic\examples\lavonte-sibes_xml _ O] x|
oL yersion--1_08° -
= Sampla._pas 1o
= Conrmctions ctitlesOracle Technology Metworke/t1tles
[k =cott surl=http://technet oracle.con</url>
" «/bookmarks
;E:ghc;jf sbookmark rank="1":
= buff. jps «titlesOracle Homepage«</t1tles
] Favorkesites.did turlehttp://vew_ oracle comn</urle
= sites b c/booknarks
_,;'| Fanvarite-sites hirl i Tavord tar el tass —
icdfaveoiie-sites. L =
FEST
e rce % 18 Izt
Frebuikd - 0] x|
Dpen 'y iy] -
S “Strimg® href="S5tring" :‘
Enpand Al o T
-
Crllapse Al _"l_‘
LN

W 11 Izt
“\Wwedkzpacs [Opered [Dilectony | |

5| MML Enors |

L Syntax Check Failed for lle Chumboak'\sichasampleslavaite-sites sml & bne 3, chaiacle 18 ;I
fibe: AT Sl book \erehesample s \favorile- sibes sk 31 B ML-0125 - [Fatal Enar) Altrbute walue shoud stait with quale J

Fie: Cambookhsichesampleshfavonbe-shes wmil

- To quickly jump to a line by number in the current buffer, type
«: | Ctrl-O+Ctrl-G and type in the line number you want to jump to
: in the Go to Line Number dialog that appears.

y
't

Note that the Check XML Syntax... menu option does just that: it checks syntax. It does not
perform validation of the XML file against its associated DTD. As we saw in Chapter 2, you can use
the oraxml command-line tool with the -v flag to perform DTD validation of an XML file.

Note, however, that JDeveloper 3.1's Check XML Syntax... feature still must read the DTD if your
XML file has an associated <!DOCTYPE>, even though it does not perform full DTD validation. Be
aware that if you work on a computer that is behind a firewall, and if the XML file you are

attempting to syntax-check uses an external DTD with an HTTP-based URL, as in the following
example:

<?xml version="1.0" encoding="iso-8859-1"7?>
<!DOCTYPE moreovernews SYSTEM "http://w.moreover.com/xml/moreovernews.dtd">
<moreovernews>
<article id="_6721342">
<url>http://c.moreover.com/click/here.pl?x6721341</url>
<headline text>U.S. Officers Seize Cuban Boy, Reunite Him With Father
</headline text>
<source>New York Times</source>
<media type>text</media type>
<cluster>Top stories</cluster>
<tagline> </tagline>
<document url>http://www.nytimes.com/yr/mo/day/front/</document url>
<harvest time>Apr 23 2000 2:19AM</harvest time>
<access registration>http://www.nytimes.com/auth/login?Tag=/&Url=
</access_registration>
<access_status>reg</access status>
</article>

</moreovernews>

then you may experience a hanging problem as JDeveloper tries to access the DTD over the Web.
The solution is to teach JDeveloper the name of your proxy server machine so that it may properly
retrieve the DTD from outside the firewall. To set the name of the proxy server for the XML
syntax-checking feature, do the following:

1. Exit JDeveloper. You should not edit the configuration file we're about to edit while the
product is running, since changes you make may be overridden when the product saves
out its configuration information on shutdown.

2. After making a backup copy, use a convenient text editor to edit the jdeveloper.properties
configuration file. This file resides in the .//ib subdirectory under your JDeveloper
installation home directory.

jdeveloper.xml.XmlFileParserAddin.XmlFileExtensions=xml, xsl, xsql, xsd

3. Search for the string HttpProxyHost, which you'll find in the lines:
4. 4

5. # Check XML Syntax... Addin

6. #

7.

8.

jdeveloper.xml.XmlFileParserAddin.HttpProxyHost=
jdeveloper.xml.XmlFileParserAddin.HttpProxyPort=

9. Type the name and port number of your proxy server after the equals sign on the
appropriate line as shown here:

10. #

11. # Check XML Syntax... Addin

12. %
13. Jjdeveloper.xml.XmlFileParserAddin.XmlFileExtensions=xml,xsl,xsqgl,xsd
14. Jjdeveloper.xml.XmlFileParserAddin.HttpProxyHost=yourproxyserver.you.com

jdeveloper.xml.XmlFileParserAddin.HttpProxyPort=80

15. Save the file and restart JDeveloper.
Now you should be able to syntax-check any XML file without incident.

If you work with other XML-based file types and would like JDeveloper to syntax-check these
additional file types as XML, you can teach the product about your new XML-based files. For
example, if you want files with an *.xyz extension to allow XML syntax checking, do the following:

1. First, make sure you've followed the instructions in the previous section, Section 4.1.2, to
register files with extension *.xyz to be treated as text files and optionally registered as
files to syntax-color as XML.

2. Exit JDeveloper. You should not edit the configuration file we're about to edit while the
product is running, since changes you make may be overridden when the product saves
out its configuration information on shutdown.

3. After making a backup copy, edit the jdeveloper.properties file found in the ./lib
subdirectory of your JDeveloper installation home directory.

4. Search for the line:

jdeveloper.xml.XmlFileParserAddin.XmlFileExtensions=xml, xsl,xsql, xsd
5. Add xyz to the end of the list of file extensions, separated by a comma.

The next time you start JDeveloper the Check XML Syntax... menu item should appear for the
*.xyz files in the project.

4.1.4 Developing XSQL Pages and JSPs Using JDeveloper

JDeveloper has built-in support for working with both JavaServer Pages and Oracle XSQL Pages.
While editing JSP and XSQL pages, you get color-coded syntax highlighting as we've described in
the previous section. In addition, since XSQL pages are XML-based templates, they also benefit
from the Check XML Syntax... feature. At any time during development, you can test a JSP or
XSQL page in your browser by running it directly from your project. To run either a JSP or XSQL
page, do the following:

1. Select YourFile.xsql or YourFile.jsp in the project navigator.
2. Select Run from the right mouse button menu.

o If the Run item in the right mouse button menu is disabled,

s make sure that your project is set up to debug files as a "Normal

4 Java Class" and not as "Remote Debugging". To verify this,
select the Project =2 Project Properties... menu, click on the
Run/Debug tab, and look at the value of the Debug Files as
pop-up list. This value needs to be set to "Normal Java
Class"—the default—to run JSP or XSQL pages.

In order to run JSP or XSQL pages from your project, you must include the appropriate JSP and/or
XSQL Runtime libraries in your project's library list. To check the contents of your project's library
list, select Project éProject Properties... from the main menu and click on the Libraries tab of
the Project Properties dialog. You'll see something like the display shown in Figure 4.5.

Figure 4.5. List of libraries for a project

HMLProject jpr Propertics E

CodeCoach | Cade Style | S0 |
Palhs _T_Eﬁffm_'| Defauls | Coampiler] Run/Debug]

J#vea ibaanes

JDeveloper Runlime Add.
Dracle 8.1.6 JDBC —
Connection Manager

JSP Auritime

HSOL Runlie

Libraries

i

| [| Cancel | Help |

To properly run XSQL pages from the JDeveloper environment, you need the XSQL Runtime
library in your library list. For JSP pages, you need the JSP Runtime library. If the appropriate
library is not in the list for your current project, click the Add... button and select it from the list
of defined libraries. Note that each project in a workspace has its own project property settings,
so you might have to perform this operation for each project.

When you run a JSP or XSQL page from your project, JDeveloper does the following for you:

1. Starts—or automatically restarts—the Oracle JSP Runner or the Oracle XSQL Servlet as
appropriate using the Oracle Web-to-go web server on port 7070

2. Sets the web server's virtual filesystem to map onto your project's HTML path

Launches your default browser if one is not currently running

4. Requests the page you're running in your browser using the URL
http://yourmachine:7070/YourCurrentProject/YourFile.xsql

w

While you are running your XSQL or JSP page from your project, you can make edits to:

e XSQL pages, to change any aspect of their functionality
e XSLT stylesheets being used by your XSQL pages
e JSP page source

You can see the effects of your changes instantaneously by refreshing your browser. Before
refreshing your browser, you should use the Check XML Syntax... feature on your edited files and
make sure your XSQL pages and XSLT stylesheets are well-formed to avoid getting an error from
the XSQL Servlet complaining about their syntax. Note that the JSP pages you've edited while
running require on-the-fly recompilation. This is handled automatically by the Oracle JSP Runner
but may cause a noticeable delay on the first request of the changed JSP page. Since XSQL pages
and associated XSLT stylesheets are templates and not compiled Java classes, no recompilation
delay for edited XSLT stylesheets or XSQL pages is necessary.

If after editing your XSQL, XSLT, or JSP files you refresh your
. browser and do not see the changes you are expecting,
typically it is because you have forgotten to save the edited files
to disk in JDeveloper. If you notice that their names are
italicized in the project navigator, just select File —?Save All...
from the menu and try refreshing your browser again.

Note that for JSP pages, it is also possible to select the Debug menu from a page's right mouse
button menu in the project navigator to debug the JSP page locally. This means that as you
request pages through your web server, you can hit breakpoints and step through the Java code
in your JSP pages.

When running XSQL pages from within the JDeveloper 3.1 environment, the XSQL Servlet picks
up its configuration information from the XSQLConfig.xml file in the .\/ib subdirectory of your
JDeveloper installation home. To add or change the properties related to the named database
connection definitions used by the XSQL page processor, edit this file and modify the
<connectiondefs> section as indicated by the comments in the file.

4.1.5 Understanding Project Path Settings

If you receive an error message like:

J:\myprojects\MyPage.xsgl must reside in the

HTML root directory or a subdirectory beneath it.

when you attempt to run an XSQL or JSP page, this means your page's source file is not located
under the HTML root directory defined for the project. All of your project's path settings are visible
on the Paths tab of the Project Properties dialog as shown in Figure 4.6.

Figure 4.6. HTML root directory in the Project Properties Paths

tab
ServletProject jpr Properties E
 CodeCoach | Code Siyle | SO |
F'alhs-l Libranies I Dataults | Compikar] Run/Debug |
Tanget JOFK, version:
[p‘\la verson "JDE1.2 2 JDevelope" j Defing.,
Java Paths
Siource mot dirschones:
|E LA pph ok apacel S erdelProject s Edil...
Dlutpist root drectong
|I2 ‘MLAppW ok spacetclazses Browze.,
Fiuny'Diebug woeking dircton:
|l: ‘eMLApEW ok spacelS erdelProject Browze..
HTML Pathz
HT ML poct dirsctony
IE:%“{MLJ-.m‘nI.-’urkemcc'\wanlbe Browese..
HT ML source direchony:
|E arletProect Browese.,
| 114 I Cancel | Help |

To allow for multiple projects in a workspace to share the same virtual root directory when
running JSP or XSQL files, each JDeveloper project has the following two HTML-related path
settings:

HTML root directory

This is the physical directory to use as the Web-to-go server's "virtual root" while running
JSP or XSQL pages in your project. While running pages inside the JDeveloper
environment, this directory corresponds to the URL:

http://yourmachine:7070/
HTML source directory

This is a physical subdirectory of the directory. It contains the current project's
web-related files: .jsp, .xsql, .html, .gif, etc. While running pages inside the JDeveloper
environment, this directory corresponds to the URL:

http://yourmachine:7070/HTMLSourceDirectoryName/

By setting the HTML root directory to the same physical directory for multiple projects in the
workspace, you can refer to web-related files across projects while running a page from any one
of them. So if you have a workspace with projects named ServletProject and XMLProject, and
you have their respective HTML paths set like this:

e HTML Paths for ServletProject:
° HTML Root Directory = C:\XMLAppWorkspace\Webfiles
HTML Source Directory = ServletProject
e HTML Paths for xMLProject:
° HTML Root Directory = C:\XMLAppWorkspace\Webfiles
HTML Source Directory = XMLProject
then while running any XSQL or JSP page from ServletProject using the URL:
http://yourmachine:7070/ServletProject/SomePage.xsql
you can refer to files from the xMLProject using a URL like:
http://yourmachine:7070/XMLProject/AnotherPage.xsql
without restarting the web server.
In addition to the HTML path settings, each project also has Java-related path settings for:

Source root directories

A semicolon-separated list of one or more root directory names containing Java source
code files for the project

Output root directory
The root directory where Java .class files are written during compilation
Run/Debug working directory

The directory that a Java program being run or debugged will "see" as the current
operating system directory during execution

Figure 4.7 shows the filesystem structure of a typical JDeveloper workspace with multiple
projects related to XML application development.

Figure 4.7. Sample directory structure of a typical Java/XML

project
8 i ¥MLAppWarkspace
8 4 ServietProject
e T B 4 classes
B _d com B 4 com
2 A yourcompany 8 4 yourcompany
B ‘A coolserviet B 4 coolservlet
8 2 CoolServlat.java 8] coolSarviet.class
B & MyClass.java B I myClass.class
8yl 8 _d utl
B 2 MyHelper.java g =] MyHalper. class

By ¥MLProject
B €= Samafile.xml

B & SomeClass.java)
-] nttp: /flocalhost/ServietProject index. hitml

B 4 WebFiles
B4 ServletProject_html
8 3] jndax, html
8 % kahkis.gf http: /facalhost/MMLProject My <S0OLPage . weql
B A HMLProject_html
B o MykSOLPage. ksl
8 & MylSPPage.jsp

Source code root directories for the servletProject and xMLProject can be organized under a
single physical directory or not, as you wish. However, it is important that both servietProject
and xMLProject have the same directory path settings for the following directories:

HTML root directory

So their web-related files can be cross-referenced while running pages in the JDeveloper
environment

Output root directory
So any classes that they share at runtime will be found in the CLASSPATH

Following these suggestions should further simplify your Java/XML-related development using
JDeveloper 3.1.

4.2 Working with Database Objects

All of the examples in this book use a database account named XMLBOOK that you'll need to
create to follow along and try out any code we discuss. In this section, we create an XMLBOOK

user and explore JDeveloper 3.1's features for working with database objects in the development
environment.

4.2.1 Creating the XMLBOOK User to Run the Examples

To create the XMLBOOK user, connect to your Oracle database as a DBA account like SYS or
SYSTEM using the SQL*Plus tool and issue the following commands:

SQL> CREATE USER xmlbook IDENTIFIED BY xmlbook;
User created.
SQL> GRANT connect, resource, query rewrite TO xmlbook;

Grant succeeded.

Then try to connect as the new XMLBOOK user and try a simple SELECT statement by doing the
following:

SQL> CONNECT xmlbook/xmlbook
Connected

SQL> SELECT sysdate FROM dual;
SYSDATE

23-APR-00

If this works, then you're ready to go create a named connection for XMLBOOK inside the
JDeveloper 3.1 environment.

4.2.2 Defining and Browsing Database Connections

JDeveloper 3.1 has a number of built-in features for working more easily with Oracle database
objects. You can define any number of commonly used database connections that are then
available for all workspaces and projects. After starting JDeveloper 3.1, you'll notice a
Connections folder at the top of the project navigator. Double-clicking on this folder or selecting
Connections... from the right mouse button menu option on the folder brings up the JDeveloper
Connection Manager dialog. From here you can create, edit, delete, import, and export
connection definitions for databases you frequently work with during development. Click the
New... button to define a new connection to work with our XMLBOOK user. The Connection dialog
shown in Figure 4.8 appears.

Figure 4.8. Defining a nhew named connection

Connection Type:

Connection Marma: |amibook @+ Joec © (o

Please enter any applicable securty information:

LIsername: [xmlbook Fassword: |f===’f='mr
Rale: |Mormsl *] include password In depioyment archive

Selecta JOBGC Drver: [Oracle JOBC Thin =]
Selecta connection method: |Named Host j
Flease enter your database connection information:
Host il |I-'.rcalhr-51
BID: |oRCL Port: 1521
Row Prefetch: ||EI Batch Walug: |1 Report TABLE_REMARKE
The connection name is used to uniquely identify this connection

Test Connection |

Help OFK Cancel

Enter the username of XMLBOOK and password of XMLBOOK and click on the Test Connection
button to see if the JDBC connection information is correct for your database. The default values
typically work for a local Oracle database running on the same machine as JDeveloper, but if you
are working with a database on another machine, set the host, SID, and port values appropriately
until clicking on Test Connection gives you a Success! message. Click OK on the Connection
dialog and Done on the Connection Manager and we're ready to go.

You can use JDeveloper's built-in database browsing facilities by selecting your named xmlbook
connection in the Connections folder of the project navigator and selecting the Open Viewer As
— Database Browser option off the right mouse button menu as shown in Figure 4.9.

Figure 4.9. Browsing schema objects for a database

connection

@ Oracle JDeveloper - Sample - [xmibook]

[k Fle Edi Seach Yiew Pigect Bun ‘Wizards Took ‘window Heb =& =]
Al (@ patabase Schamas o] = KMLGERN
- & ADAME package xmlgen suthid current =
=4 Sampha.jus + o @ AURORAFORBELMALTE
o Connactiane H-&BAE 00000 M
[2By scott +- & CLARK == Constanta relevant To pu
B smibook H- & CTXEYS DEFAULT ROWTAG CONSTAN
AXMLStI| [woke SOLFI. | DESNNP
BECRLE OpenViewsrds b Database Browser | |
é:::z::: R ORDPLUGINS -= constanta televanlf o ge
- ORDEYS ALL_ROWS CONSTAR
@ ML Epand sl OUTLN SEIP_WONE CONETAN
Loalapze Al SCOTT NOHE CON3TAN
+ - & BYE DI CONSTAN
+ - & BYSTEM SCHEMA CONSTAR
& ¥MLBOOK NO_DTD CONSTAN
+ - H Tables DEFAULT ROWIETTAG CONSTAA
+ i Views | DEFAULT_EFEORTAG CONSTAN
[+] |] 5[5 Smonyms DEFAULT ROWIDATTR COMSTAN
= gz) PLISGQL Packagas
SELoaDLOBS 0 | e
g MLGEN <= ConpStanta relevant to pu
= ;;'__‘_I PLZGL Pach'@ﬂe Boi s TCH CAS CONST -
J R | Pl Er

1l'n.\.l'l:\t‘k:p».:u:z | Olpened] Ditectany Tt By

You can browse all schema objects to which you have access using the database browser's tree
control. For each kind of schema object you select, where appropriate, additional details appear
in the right-hand pane of the browser. For example, selecting a:

Table or View
Displays information on its columns
PL/SQL Package, Package Body, Procedure, Function, or Trigger
Displays its PL/SQL source code
Sequence
Displays its last value, and minimum, maximum, and increment values
Object Type

Displays the source code of its type specification

By expanding the Deployed Java Classes folder in the browser, you can inspect the Java package
hierarchy of all Java classes (to which you have access) that have been loaded into JServer. In

Figure 4.10, we can see that the Oracle XML Parser for Java has been loaded into JServer by the
presence of the oracle.xml.parser.v2 packages.

Figure 4.10. Browsing schema objects for a connection

= L=l Database Schemas
H- & BB
+ & SYSTEM
= d HMLBOOkK,
+ Lm Tahles
Sl Wiewrs
. Synomms
g PLUSOL Packages
I3 ¥MLGEN
&) FLSOL Package Bodies
t 1 PLSAL Funetions
| PLSQL Procedures
el Triggers
_i2 Eafuences
O] Object Types
= Deployed Java Classes
& ([META-IMF
= (i oracle
=i ¥ml
+ (I async
= (0 parser
+--([P v2
+ ([P sol
= {0 org
= (0 w3
+ (O dom =
= (3 =xml
* ([P seEx

|»

o

[E e i <= S =

i
Expanding a package node in the browser displays all classes in that package as well as
subpackages. Clicking on a specific class shows its decompiled method signatures in the details

panel.

In addition to browsing the contents of a named connection that you've defined, connections are
also used by JDeveloper 3.1 for automatically:

Launching SQL*Plus on a connection

Just select the connection in the navigator and choose Invoke SQL*Plus... from the right
mouse button menu.

Running any SQL script on a connection
Just select the SQL script in your project and select Invoke SQL*Plus... from the right

mouse button menu. A submenu allows you to pick which connection you'd like to run the
script under.

Deploying Java stored procedures to a connection

As we'll see in detail in Chapter 6, JDeveloper's deployment profiles feature automates the
deployment and redeployment of Java code to the Oracle8i server using named
connections.

Starting the JServer remote debug agent on a connection

Again, as we'll see in Chapter 6, JDeveloper uses the named connections when you
remotely debug Java code running inside Oracle8i 's JServer VM.

4.3 Using JDeveloper with Oracle XDK Components

Oracle's XML Developer's Kit (XDK) includes many of the enabling XML technologies that we'll be
using in the rest of this book. Among other components, it contains Java and PL/SQL versions of
the following:

e Oracle XML Parser
e Oracle XSLT Processor
e Oracle XML SQL Utility

In addition, it includes an Oracle XSQL Servlet that comes with a Java API for adding your own
so-called action handlers and programmatically processing XSQL Pages templates. In the
following sections, we'll discuss the basics of setting up JDeveloper to work with these Oracle XDK
components in Java. While JDeveloper 3.1 does offer color-coded syntax editing of PL/SQL and
the ability to browse stored procedures and run the SQL scripts against a named database
connection, most of the true developer productivity features in the product target Java
development (as you'd assume from the "J" in JDeveloper).

4.3.1 Adding Oracle XDK Libraries to Your Project

To dramatically simplify working with libraries of Java code in your projects, JDeveloper 3.1 has
a facility called named libraries . Each library consists of:

e A user-friendly library name like "Oracle XML Parser 2.0."

e A Class path comprising one or more .jar files, .zip files, or directories separated by
semicolons, containing the executable classes to support the library; for example,
J:\lib\xmlIparserv2.jar.

e An optional Source path comprising one or more .jar files, .zip files, or directories
containing the Java source code for the library.

e An optional Doc path comprising one or more .jar files, .zip files, or directories containing
the JavaDoc HTML files for the library.

To use the functionality provided by a library in your project, do the following:

1. Select Project 9Project Properties... from the main menu.
2. Click on the Libraries tab in the Project Properties dialog.
3. Click on the Add... button on the Libraries tab to select a library to add to your project's

library list.
4. Select a library to add from the list that appears.
5. Click OK.

In the Libraries tab of the Project Properties dialog, notice the Java libraries list. This is an ordered
list of the libraries your project depends on. The order of the library names in this list is very
significant because their order directly controls the order of the .jar files, .zip files, and directories
in the Java CLASSPATH of the compilation and runtime environment for the current project. You
can use drag-and-drop to rearrange the order of the libraries in the library list.

So, rather than fighting with CLASSPATH settings—one of the biggest frustrations of Java
developers the world over—you simply pick the libraries you need and they, in turn, are used by
JDeveloper to control the CLASSPATH.

JDeveloper 3.1 comes preconfigured with Java libraries to work with the principal Oracle XML
Developer's Kit components: Java SDKs and JDBC libraries. This means that building custom XML
applications in Java using the Oracle XDK is a matter of simply picking the library you want to
work with and adding it to your project's library list. Table 4.4 shows the most common tasks you
might want to perform and which built-in named libraries you add to your project to accomplish
them.

Table 4.4. Built-in Libraries for XML Application Development

If you want to do this Add this library to your project
Connect to an Oracle database Oracle 8.1.6 JDBC
Produce XML from SQL queries Oracle XML SQL Utility
Save XML documents into tables/views Oracle XML SQL Utility
Parse XML documents using DOM or SAX Oracle XML Parser 2.0
Transform XML documents using XSLT Oracle XML Parser 2.0
Searching XML documents using XPath Oracle XML Parser 2.0
Construct XML documents using DOM Oracle XML Parser 2.0
Build servlets to process or return XML Servlet SDK
Run XSQL Pages XSQL Runtime
Build custom XSQL action handlers XSQL Runtime
Process XSQL pages programmatically XSQL Runtime

Compile/run JSP from your project JSP Runtime

You can use JDeveloper's library facility to create your own libraries as well to complement the
built-in library names. To create your own library to manage code you frequently need to use in
other projects, do the following:

1. Select Project 9Project Properties... from the main menu.

2. Click on the Libraries tab in the Project Properties dialog.

3. Click on the Libraries... button on the right edge of the Libraries tab to call up the Available
Java Libraries dialog.

4. Click on the New button.

An Untitled library entry appears, as shown in Figure 4.11, and you can enter the new library
Name, Class path, and optional Source and Doc paths, then click OK.

Figure 4.11. Creating a new library definition

Available Java libraries B
045 Funbme ﬂ
Oiacle 7.3 4 JDEC Mams
Oracks .05 JDEC
Dtacie 8.1 6 JDEC [My Fesly Useful ML Code
(racle 8.1 6 JDBC [DEBUG])
DOracle 3.1 6 JOEC NLS Suppat Llass path:
Orache *ML Parzer IE:"u}u'nr‘m}'ullk"-hE||:lEf.|El J
Dracle =ML Parser 1.0
Oracle XML Parser 2.0 Source patic
Dracle ML 0L Utliy Ty ——
Oracket Lite IE pulishate J
Serviat SDE Diag palh:
SOLJ Rundi
o IC.‘.}u‘nr‘m}lullk"-J:Iuc J

SW'ETI'l J
Mew | Deete | E@ | 0k | cocel | Hen |

If you find yourself using a library in almost every project you create, you can add the library to
the Default Project Properties library list so that every new project will contain that library upon
creation. For example, to add your new "My Really Useful XML Code" library to the Default Project
Properties library list, follow these steps:

1. Select Tools eDefau/t Project Properties... from the main menu.
2. Select the Libraries tab.
3. Click on the Add... button to add your library to the list, as shown in Figure 4.12.

Figure 4.12. Defining default libraries for all new projects

Default Project Froperties

Javea libranies:

JDeveloper Runbirmes

Oracle 816 JDEC

Dracle =ML Parser 2.0
Oracle XML SOL by

My A ealy Usetul =ML Code

Libeaties .,

ok | Cancel | Help |

ik |

Now any subsequently created projects will have your library by default. You can add built-in
libraries as well as any libraries you create yourself to this list.

Updated versions of the Oracle XDK Components for Java are released frequently on the Oracle
Technology Network (OTN) web site. As a result of this rapid release pace, it is very possible that
the version of the XDK libraries that ships with the JDeveloper 3.1 release on the accompanying

CD-ROM is no longer the most current version available. You should check the XML home page at
OTN at the following URL:

http://technet.oracle.com/tech/xml

to see if more recent versions are available for any of the Oracle XDK Java components. If you find
that a new version is available, simply do the following:

1. Download the latest release of the XDK component from OTN. Let's say, for example, that
you discover that a new version 2.0.2.9 of the Oracle XML Parser for Java is now available.

2. Extract the .tar.gz or .zip file for the distribution into a convenient directory; for example,
into C:\xmlparserv2_2.0.2.9.

3. Create a new library in JDeveloper to work with it; for example, we'd set up the new library
settings as shown in Figure 4.13.

Figure 4.13. Defining path information for a new library

Marne:
|Oracke WML Parses 2029

Clazs path

|E ‘wniparsenyZ_2 002 db\smiparserd?. jar J
Source path

Dac path:

[Cumiparsen2_2.0.2 Sdoc J

Then we can add the new "Oracle XML Parser 2.0.2.9" library to any project where we want to use
it.

4.3.2 Using JDeveloper Coding Productivity Features

JDeveloper 3.1 offers a number of coding productivity features to make building your XML
application code in Java easier. Here we cover the key features to which you will quickly become
addicted.

While you are typing code, JDeveloper's Code Insight feature watches what you are doing and is
ready to help simplify the task of remembering method names and method arguments for any

class you work with. Any time you type a dot between an object and a method name, JDeveloper
pops up a context-sensitive list of the methods that are relevant to call on the object, as shown

in Figure 4.14.

Figure 4.14. Code Insight assists with methods as you type

E C-\smibook\zsrchexampleseml-bazics-java'>dPathV alidator_java

import Jzvas net R =
import oracle =ml parser. vi. ™
import org.vwic. dom. *

public class IFathYalidator

public static woid main Siring args) throws Exception
if Brgs .F'IEIII ?
fPath¥alidataor new IFathvalidator

FAiL,
<p¥.validate (args|@ args.1

else errorExnl

pubblic void validate String 11lename. String rulesfile throws E:
IHLDocunent source iMLHelperJoarse (URLUtI 1s newlRL (Filename
[NLDocunent rules SMLHelper fathod tormatParzeEmor : Siong
Strine ruleset rules valuene |Methoed parse - <MLDocument
if (ruleset. equals errorExit
System.out . printiln filename ruleset
NodeLizt rulelist rules zelectNodes

int rulesFound uleList. getLength

if ‘rulesFound 1" errorExit 'l..l-::"i'.:_lll
'l I E
\ Source 4 Design j Class A Doc 16 36 Modihed Insest

After typing just enough of the leading letters of the method name you want—or alternatively,
using the up/down arrow keys—you can hit Return and JDeveloper fills in the rest of the method
name for you. As soon as you type the opening parenthesis to pass the arguments to the method,
the Code Insight feature pops up another context-sensitive list of all overloadings, arguments,
and their datatypes that are relevant as shown in Figure 4.15.

Figure 4.15. Code Insight assists with method arguments

o Diacle JDeveloper - xsqiwork. - [E:\emPasglisrchoracle\amliksql<SoL... =] E3
= Fie Edit Search Yiew Popct Bun Wiezad: Jool Window Help = || x|

2 He 8 F2a YES S oo B

i
public static Document parsel Inputitream 15, UERL ::u:-:LJ
throws J0Exception SAXParseEzception. SAXExceptior

DOMParser x=p new [OMFarser
if (baselrl null
ip . 2etBaselRL (basellrl

Cchowta InputSource pd

stV al InputStream pl

c5etFre Reader pl
Stnng pl

terr URAL pl

rse p=

alse —J

p
< p
<P cel true

= ririter
-

=l
L=

Document d «p. getbocunant
Element e d.getDocunentElenent

return =p.geibocument =
1| LlJ
" Source ADesign {Class fDoc g1 18 Modified Inzet

File: E-hwnrdessglherchoracletsanlueghx S0 LParcerHelper java

If there are multiple arguments, Code Insight will step through the arguments in the pop-up help,
keeping the current argument required and its datatype in bold.

If you find that the Code Insight feature is not working for you, it's probably for one of the
following reasons:

e JDeveloper cannot deduce what type your object is because of a typo or because your
code has not yet declared the object. To resolve this, check for typos and/or define the
variable properly in your code.

e You're using a class that you have not imported. To resolve this, add an appropriate
import statement to the top of your class.

e You've forgotten to add the appropriate library to your project's library list that contains
the current class. To resolve this, add the appropriate library to your project's library list.

e Your code contains some horrible syntax error and JDeveloper's Code Insight parser gets
confused by it. To resolve this, try compiling your class to find the culprit.

To browse the source code of any class you have two choices:

e Ifit's the class for an object your code is currently working with, click the right mouse
button over the class or variable in your code and select Browse Symbol at Cursor.
e Ifit's a class that just pops into your head, press Ctrl-/ and a Goto: box appears in the
status line at the very bottom of the JDeveloper window. Then:
o If you remember the fully qualified name of the class, type it in and press Enter.
o Otherwise, type in the name of the package that class is in and press Enter.

Figure 4.16 shows an example of typing Ctrl-/ followed by the package name
javax.servlet.http, followed by Enter. The package appears for browsing in the Opened tab of
the project navigator, showing all of the classes in the package. Single-clicking on any of the
classes in the package shows a structural breakdown of all of its members in the "Structure Pane"
located below the project navigator. Double-clicking on any class summons up one of the
following:

e Theclass's source code in a code editor, if it is a class in the current project orif it is a class
in a library on your project's library path and that library defines a "Source path" so
JDeveloper can find the source.

e A decompiled version of the source which is good enough to see the methods and
arguments.

Figure 4.16. Quickly jump to the source code and JavaDoc of

any class
& Oracle JDeveloper - xmibook - [H:\jeedk-1.0.1\lib\zerviet o [\avax\servict\hitp\Cookie. clazs] [H[S]E3
] Fle Edi Seach View Project Fun Wizard: Took ‘Wirdow Helb I
2 H\a 3F32a
A . : -l
% Overview Package Class Use Tree Deprecate
- Opened Lit =) | PREVECULASS LLOIL o o
{9 b servet hilp j SUMMART; INNER | FIELD | CONSTR | METH DETAL: FIELD |
—J Cookie class
—] HtipSendet class
] HitipSerdesfequest class jarai-serulet.ntip
— HitpSendetiespanse class Class Cookie
] HitpSession class
—] HitipSessionB ndngk vent clazs
] HitpSessionB ndnglistenes class Jova. lang. Object
] HitipSessionConbest class L I
- 4=-Javax. serviet http_ Cookie
—J Coakie -
2, Object j
S Cloreacle public class Cookie
0] choned] ~ extands java lang Object
23] Cookie{Siing. Stiing) implermeants java.lang. Cloneable
A0 getComment|]
A0 getDemainl] Creales a coakie, a small amount of information sent
10 getManfigel] by a servet to a Web browser, saved by the browser,
A0 getMame(] = and later sant back 1o the server whan the chent x
s s 1 .
ﬁ _j‘w'ulk:pacz I'. o+ Opened | _E D'r:cll:r}ll-ll 1'|_5I|:|.||I|:E Dec] Loaded
Gobo: [javaw.sendet hitr] =l

Clicking on the Doc tab of any code editor causes one of two things to occur:

e The class's JavaDoc appears if it is a class in a library on your project's library path and
that library defines a "Doc path" so JDeveloper can find the JavaDoc.
e Otherwise, JDeveloper shows a blank page with "No JavaDoc found".

So you can very quickly refer to the structure, source, and JavaDoc for any class in any library you
use. Each of these features is small in and of itself, but put together they "nickel and dime" their
way to saving you lots and lots of time.

4.3.3 Final Observations

I'll close this chapter with a few final observations:

¢ Don't underestimate the power of the Oracle Technology Network web site. If you do
nothing else, try searching its online "Documentation" archive. This archive has every
manual of every product Oracle has shipped in the last ten years indexed using Oracle and
interMedia for fast searching and fewer dead trees. Reference information right at your
fingertips!

The OTN site offers an XML Discussion Forum where Oracle experts hang out and answer
questions. It's a great resource.
Don't fret if you were waiting for details in this chapter about remote debugging using

JDeveloper for Apache and JServer. We'll cover those topics as we need them in Chapter
6.

Chapter 5. Processing XML with PL/SQL

PL/SQL is Oracle's procedural language extension to SQL, and is the database programming
language familiar to nearly all Oracle DBAs and application developers. In this chapter, we'll study
lots of examples that illustrate how to perform basic XML processing using PL/SQL. In particular,
we'll learn how to:

e Load external XML files into the database

e Parse XML using the Oracle XML Parser for PL/SQL

e Search XML documents in memory using XPath expressions

e Post an XML message to another server and get an XML response back

e Enqueue and dequeue XML messages from Oracle Advanced Queuing (AQ) queues

In addition, in this chapter we'll cover the basic mechanics of producing XML automatically from
SQL queries and transforming the results into any desired XML format using XSLT stylesheets.
Both of these topics are covered in full in their own chapters later in the book. For an abbreviated
overview of PL/SQL itself, see Chapter 10.

Along the way, we'll build up several useful PL/SQL packages that you can use to simplify basic
XML processing from within your own PL/SQL stored procedures, functions, packages, and
database triggers. The full source code for these XML helper packages appears in Appendix A, and
is available on the O'Reilly web site. Let's dive right in.

5.1 Loading External XML Files

When a developer is setting out to store the contents of an XML document in the database to
perform queries over its content and structure, one of the first questions that arises is, "How do
I get XML files in there?" While in Chapter 12, we explore numerous techniques available for
storing XML in the database, here we'll start simple and work through the steps of loading an
existing XML file into a CLOB column.

b CLOB (pronounced "klob" or "see-lob") stands for C haracter L

s arge OB ject. You can think of a column of type CLOB as a very,

" very large VARCHAR2. It can hold character-based data like
XML documents as large as four gigabytes (4GB).

Assume that we have an XML document like claim77804.xml below in a directory named
C:\XMLFILES on the filesystem of the machine where our database is installed:

<!-- claim77804.xml -->

<Claim>
<ClaimId>77804</ClaimId>
<Policy>12345</Policy>

<Settlements>
<Payment Approver="JCOX">1000</Payment>
<Payment Approver="PSMITH">1850</Payment>

</Settlements>

<DamageReport>
The insured's <Vehicle Make="Volks">Beetle</Vehicle>
broke through the guard rail and plummeted into a ravine.
The cause was determined to be <Cause>faulty brakes</Cause>.
Amazingly there were no casualties.

</DamageReport>

</Claim>

Since operating systems differ in their file and directory naming conventions, Oracle abstracts
these details with a logical directory object. You create a logical directory with the command:

CREATE DIRECTORY directoryname AS 'OS-Specific-Dirname';

You then use the logical directory name directoryname when working with files inside PL/SQL. In
order to create a logical directory, use SQL*Plus to connect to the database as a user with the
CREATE ANY DIRECTORY privilege. The SYS and SYSTEM users have this privilege by default, so
the easiest way to proceed is to connect as SYS or SYSTEM and create the directory with:

CREATE DIRECTORY xmlfiles AS 'C:\xmlfiles';

Once the logical directory name exists, you can grant READ permission on the directory to
another user like XMLBOOK with the command:

GRANT READ ON DIRECTORY xmlfiles TO xmlbook;

This enables the XMLBOOK user to read files from the XMLFILES directory. To verify this, you can
connect to the database as XMLBOOK and issue the SELECT statement:

SELECT directory name,directory path
FROM all directories;

which gives a list of all the directories to which XMLBOOK has access:

DIRECTORY NAME DIRECTORY PATH

XMLFILES C:\xmlfiles

Any time you want to refer to an operating system file in PL/SQL, you use the built-in datatype for
external files called a BFILE. To refer to our existing claim77804.xml file in the XMLFILES
directory, we use the special BFileName () function, whose syntax is:

BFileName ('logical-directory-name','filename') .

Let's immediately put this file to use. For example, we can determine the length of the
claim77804.xml file with the SELECT statement:

SELECT DBMS LOB.getLength(BFileName ('XMLFILES', 'claim77804.xml"))
AS length
FROM dual;

which uses one of the functions in the built-in DBMS LOB package to determine the length of a
BFILE object, returning the result:

LENGTH

Now we're ready to load the document into the database. We have two choices:

e Save a handle to the external file in a column of type BFILE
e Save a copy of the contents of the external file in a column of type CLOB

The BFILE column offers an option that occupies virtually no space inside the database (just a file
pointer) but restricts the contents of the external document to be read-only. The CLOB column
option takes up space in the database but is fully readable and writable. As we'll see in Chapter 13,
XML documents in both BFILEs and CLOBs can be indexed for fast XML document searching
across millions of rows. The need for the document content to be writable and/or the desire to
have the content completely inside the database (where it cannot be accessed by file-based tools)
are the factors in deciding whether to use CLOBs over BFILEs.

Let's study the CLOB example. We can create a simple table nhamed xml_documents having a
"document name" as a primary key and the body of the XML document in a CLOB column:

CREATE TABLE xml documents (
docname VARCHAR2 (200) PRIMARY KEY,
xmldoc CLOB,
timestamp DATE

)

By adding a database trigger, we can have the table automatically maintain the last modified
timestamp column on any XML documents stored in this table:

CREATE TRIGGER xml documents timestamp
BEFORE INSERT OR UPDATE ON xml_documents
FOR EACH ROW
BEGIN

:new.timestamp := SYSDATE;
END;

With the xml_documents table in place, we're ready to start inserting XML documents into it. To
store an external XML file into our xml_documents table, follow these steps:

Insert a new row into xml_documents with an empty CLOB for the xmldoc column.
Retrieve the empty CLOB into a variable.

Get a BFILE handle to the external file.

Open the file for reading.

Copy the contents of the file into the CLOB variable.

Close the file and COMMIT.

oOu A wWwN =

Example 5.1 shows a sample insertxMLFile stored procedure that accepts as arguments the
directory name, the filename, and the name you'd like to associate with the document as its
primary key. Then it performs the six steps above to store the external file into the
xml_documents table.

Example 5.1. Inserting an External XML File into a CLOB

CREATE OR REPLACE PROCEDURE insertXmlFile(dir VARCHARZ,
file VARCHAR2Z,

name VARCHAR2? := NULL) IS
theBFile BFILE;
theCLob CLOB;
theDocName VARCHARZ2 (200) := NVL (name, file);

BEGIN
-- (1) Insert a new row into xml documents with an empty CLOB, and

-- (2) Retrieve the empty CLOB into a variable with RETURNING. .INTO

INSERT INTO xml documents (docname,xmldoc) VALUES (theDocName, empty clob())
RETURNING xmldoc INTO theCLob;

-— (3) Get a BFile handle to the external file
theBFile := BFileName (dir,file);

-- (4) Open the file
dbms_ lob.fileOpen (theBFile);

-— (5) Copy the contents of the BFile into the empty CLOB
dbms lob.loadFromFile (dest lob => theCLob,

src_lob => theBFile,

amount => dbms lob.getLength (theBFile));

-— (6) Close the file and commit
dbms lob.fileClose (theBFile);
COMMIT;

END;

With the insertxmlFile procedure now in place, from the SQL*Plus command-line we can
execute the stored procedure to load claim77804.xml from the XMLFILES directory using the
syntax:

EXEC insertXmlFile ('XMLFILES', 'claim77804.xml")

Directory names are case-sensitive and are created in
42 | uppercase by default, like other database object names. So this
—4% syntax:

CREATE DIRECTORY mydir AS 'F:\files\mydir';

creates a directory object named MYDIR, while:

CREATE DIRECTORY "AnotherDir" AS 'W:\another\mydir';

creates a directory object named AnotherDir. When using the

BFileName () constructor to refer to a file in a directory, the

directory name is always case-sensitive, and the filename is
case-sensitive if filenames on the operating system of your
database server are case-sensitive. So if the directory object is
named MYDIR, the function

BFileName ('mydir', 'myfile.xml') will fail because you

referred to the directory object's name in lowercase.

Note this line in the example:

theDocName VARCHAR2 (200) := NVL (name, file) ;

This ensures that if you do not pass in the optional third argument to assign a meaningful name
to the file being stored, the value of theDocName will default to the name of the file being loaded
and will be used during the insert as the value of the docname column in the xml_documents
table.

5.2 Parsing XML

The Oracle XML Parser for PL/SQL provides PL/SQL developers with a set of APIs for parsing,
manipulating, and transforming XML documents inside the database. As we'll see in Chapter 6,
these same APIs are available to Java programmers as well using the Oracle XML Parser for Java.

As illustrated in Figure 5.1, in Oracle8/ Releases 1, 2, and 3—server versions 8.1.5, 8.1.6, and

8.1.7, respectively—the Oracle XML Parser for PL/SQL is a set of PL/SQL packages that expose
the underlying functionality of the XML Parser for Java. In the 8.1.7 release, the XML Parser for
Java is natively compiled inside the server for better performance.

Figure 5.1. XML Parser for PL/SQL wraps the XML Parser for

Java

Oracledi

| Parser for PL/SQL

xmlparser

wmldom Oracle XML
Parser for Java

xalprocassor

.

The packages included in the Oracle XML Parser for PL/SQL are listed in Table 5.1.

Table 5.1. Key PL/SQL Packages for Working with XML

PL/SQL Package

Nette Description
xmlparser Contains datatypes, functions, and procedures for parsing XML
Contains datatypes, functions, and procedures for creating and manipulating
xmldom the members of an XML document's object model like elements, attributes, text,

comments, etc.

xslprocessor |using XSLT stylesheets and searching an in-memory XML document using XPath

Contains datatypes, functions, and procedures for transforming XML documents

expressions

In this chapter, we build up various PL/SQL helper packages

that centralize the key functionality from the xmlparser,

xmldom, and xslprocessor packages. However, for your

reference, full API documentation for these packages is

available in the ./doc subdirectory of the XML Parser for PL/SQL
distribution that you can download from the Oracle Technology
Network at http://technet.oracle.com/tech/xml.

By the end of this chapter we'll have made extensive use of all of these facilities. But before we
can use the Oracle XML Parser for PL/SQL inside Oracle8i, we should check that it's installed

properly.

e We require the Oracle XML Parser for PL/SQL Release 1.0.2 or
ol greater for the examples in this section. This is the default
— version that ships with Oracle8i Release 3 (8.1.7), but if you are
using an earlier release of Oracle8i, you can download the
appropriate release from the Oracle Technology Network web
site.

5.2.1 Installing Oracle XML Parser for PL/SQL

We first need to make sure that the XML Parser for Java is properly installed, since the XML Parser
for PL/SQL depends on it. You can verify proper installation by doing the following:

1. Connect to your Oracle8i database with SQL*Plus:
sqglplus xmlbook/xmlbook
2. Check the status of the oracle.xml.parser.v2.DOMParser class by running the following

SQL statement:
3. SELECT SUBSTR (dbms_java.longname (object name),1,30) AS class, status

N

FROM all objects
WHERE object type = '"JAVA CLASS'

AND object name = dbms Jjava.shortname ('oracle/xml/parser/v2/DOMParser');

o

If you see the result:

CLASS STATUS

oracle/xml/parser/v2/DOMParser VALID

then the Oracle XML Parser for Java is already installed and ready to be used.
If you see this result, but the status is INVALID, try the command:

ALTER JAVA CLASS "oracle/xml/parser/v2/DOMParser" RESOLVE

If the parser is installed, you do not need to complete any further installation steps.

If the verification procedure produces the SQL*Plus message no rows selected, complete the
following steps to install the Oracle XML Parser for Java in your Oracle8i database:

1. Locate the xmliparserv2.jar file that contains the executable code for the XML Parser for
Java. It is bundled with the XML Parser for PL/SQL download from OTN.

2. Go to the ./lib/java subdirectory where the xmliparserv2.jar file that you'll be installing is
located.

3. Load the xmliparservZ2.jar file into your schema using the loadjava command:

loadjava -verbose -resolve -user xmlbook/xmlbook xmlparserv2.jar

If the 1oadjava command does not appear to work, make sure

that the ./bin subdirectory of your Oracle installation home is in
your system path.

Repeat the test above to confirm that the status of the class is now VALID, meaning the XML
Parser for Java is ready to be used in the server.

Next, check to see if the Oracle XML Parser for PL/SQL is already installed in your Oracle8i
database by doing the following:

1. Connect to your Oracle8i database with SQL*Plus:

sqlplus xmlbook/xmlbook

2. Try to describe the xmlparser package from the SQL*Plus command line:

DESCRIBE xmlparser

If you see a description of the procedures and functions in the xmlparser package, the Oracle
XML Parser for PL/SQL is already installed and ready to be used. You do not need to complete any
further installation steps.

If instead you get an error like ORA-04043: object xmlparser does not exist, complete the
following steps to install the Oracle XML Parser for PL/SQL in your Oracle8/ database:

1. Download the latest release of the Oracle XML Parser for PL/SQL from
http://technet.oracle.com/tech/xml.

2. Extract the .zip or the .tar.gz file into a convenient directory.

Change directory to the ./lib/java subdirectory of the distribution.

4. Load the xmlplsql.jar file into your schema:

w

loadjava -verbose -resolve -user xmlbook/xmlbook xmlplsgl.jar

5. Change directory to the ./lib/sql subdirectory of the distribution.
6. Run the load.sql SQL script to create the XML Parser for PL/SQL packages:

sqlplus xmlbook/xmlbook @load.sqgl

Repeat the earlier test to confirm that you can now describe the xmlparser package, so the XML
Parser for PL/SQL is ready to be used in the server. As with any PL/SQL packages, you can GRANT
EXECUTE on the xmlparser, xmldom, and xslprocessor packages to other database users to
give them privileges to access these components.

5.2.2 Parsing XML from a CLOB

The xmlparser package provides a very straightforward API for parsing XML documents from
within PL/SQL stored procedures, functions, and packages. Given an XML document in text form,
the XML Parser reads the document and constructs an in-memory tree of the elements, attributes,
and text content of the document. In the process of accomplishing this task, the parser will
identify any syntactic errors in the document that prevent it from correctly completing the job.
One useful way to use the parser is to simply verify that the XML documents you've stored in your
database are well-formed.

We can check that an XML document is well-formed in just three steps:

1. Call xmlparser.newParser to create a new XML Parser for the job.
Call one of the following to parse the document: xmlparser.parse,
xmlparser.parseBuffer, OF xmlparser.parseCLOB.

3. Call xmlparser.freeParser to free the instance of the XML Parser.

If any syntactic problems are encountered while parsing the XML document, the PL/SQL
exception number -20100 will be raised. If we declare a user-defined exception (for example,
XMLParseError) and use the PL/SQL PRAGMA EXCEPTION_INIT to associate the named
exception with the error code -20100:

-—- Associate the XMLParseError exception with the -20100 error code

PRAGMA EXCEPTION INIT(XMLParseError, -20100);

we can then handle the exception in a PL/SQL EXCEPTION block:

EXCEPTION
WHEN XMLParseError THEN

-- Some Error Handling Code Here

Example 5.2 shows a checkxXMLInCLOB stored procedure that returns a boolean status indicating
whether the XML document in the CLOB you pass in is well-formed. If the document is not
well-formed, the parsing error message is also returned in the error argument.

Example 5.2. Checking the Well-Formedness of XML in a CLOB

CREATE OR REPLACE PROCEDURE checkXMLInCLOB (c CLOB,
wellFormed OUT BOOLEAN,
error OUT VARCHARZ2) IS
parser xmlparser.Parser;
xmldoc xmldom.DOMDocument;

XMLParseError EXCEPTION;

-- Associate the XMLParseError exception with the -20100 error code

PRAGMA EXCEPTION INIT(XMLParseError, -20100);
BEGIN

-— (1) Create a new parser

parser := xmlparser.newParser;

-- (2) Attempt to parse the XML document in the CLOB

xmlparser.ParseCLOB (parser,c) ;

-— (3) Free the parser.

xmlparser.freeParser (parser) ;

-— If the parse succeeds, we'll get here
wellFormed := TRUE;
EXCEPTION
-- If the parse fails, we'll jump here.
WHEN XMLParseError THEN
xmlparser.freeParser (parser) ;
wellFormed := FALSE;
error := SQLERRM;
END;

Now suppose we use our insertXMLFile procedure from the SQL*Plus command line to insert
the syntaxError.xml file in the XMLFILES directory:

<!-- syntaxError.xml (Missing quote on Vehicle Element's Make attribute) -->
<Claim>
<ClaimId>77804</ClaimId>
<Payment>1000</Payment>
<DamageReport>
The insured's <Vehicle Make=Volks">Beetle</Vehicle>
broke through the guard rail and plummeted into a ravine.

The cause was determined to be <Cause>faulty brakes</Cause>.

Amazingly there were no casualties.
</DamageReport>
</Claim>

by using the syntax:

EXEC insertXMLFile ('XMLFILES', 'syntaxError.xml')

The result is that the contents of the syntaxError.xml file will be inserted into the xml_documents
table, with the document name that defaults to the name of the file, syntaxError.xml.

We can then try out our checkxMLInCLOB procedure on the newly loaded XML document in the
xml_documents table with the following anonymous block of PL/SQL:

SET SERVEROUTPUT ON
DECLARE

xmlClob CLOB;

wellFormed BOOLEAN;

parseError VARCHARZ2 (200) ;
BEGIN

-—- Select the CLOB for the document named 'syntaxError.xml' into a variable
SELECT xmldoc

INTO xmlClob

FROM xml documents

WHERE docname = 'syntaxError.xml';

-— Check it for XML Well-formedness
checkXMLInCLOB (xmlClob,wellFormed, parseError) ;

-— Print out an error if it was not well-formed.
IF NOT wellFormed THEN
dbms output.put line(parseError);
END TIF;
END;

b Blocks of PL/SQL code can be part of a named procedure,

ol function, or package, or can be executed directly in a block of

- code with no name. These so-called anonymous blocks of
PL/SQL are frequently used in SQL scripts to run a sequence of
PL/SQL commands without predefining them as part of a named

stored procedure, function, or package.

This retrieves the XML document from the xml1doc CLOB column in the xml_documents table, calls
checkXMLInCLOB to verify whether the document is well-formed, and prints out the returned error

message if it is not. In this case, executing the anonymous block of code above generates the
message:

ORA-20100: Error occurred while parsing:

Attribute value should start with quote.

This is expected since the syntaxError.xml file is missing an opening quote for the value of the
Make attribute on the <Vehicle> element.

Taking this simple idea a step further, let's say we want to create a stored procedure to
periodically comb through the xmI_documents table and move any documents that are not
well-formed to another table called bad_xml_documents. We can start by creating a
bad_xml_documents table in the image of the existing xmI_documents table, and adjusting the
new table's columns to fit our needs. We can accomplish this by:

1. Creating an empty table named bad_xml_documents with the same structure as
xml_documents:
2. CREATE TABLE bad xml documents AS

3. SELECT *
FROM xml documents
WHERE ROWNUM < 1 /* Don't Select Any Data, Just Get the Structure */;

5. Dropping the timestamp column using the new ALTER TABLE . . . DROP COLUMN feature
in Oracle8/ Release 2:

ALTER TABLE bad xml documents DROP COLUMN timestamp;

6. Adding a column to store the error message that's causing the document not to parse
correctly:

ALTER TABLE bad xml documents ADD (error VARCHARZ2 (4000));

Then we can use a stored procedure like moveBadxmlDocuments in Example 5.3 to complete the
task. Note that it makes use of our checkxMLInCLOB procedure from Example 5.2 to automatically
move "syntactically-challenged" XML documents into the bad_xml_documents table where they
can be studied and corrected later.

Example 5.3. Moving IlI-Formed XML Documents to Another

Table in Batch

CREATE OR REPLACE PROCEDURE moveBadXmlDocuments IS
wellFormed BOOLEAN;
errMessage VARCHAR2 (200) ;

BEGIN
—-- Loop over all documents in the xml documents table

FOR curDoc IN (SELECT docname,xmldoc FROM xml documents) LOOP

—-- Check the syntax of the current 'xmldoc' CLOB in the loop

checkXMLInCLOB (curDoc.xmldoc, wellFormed, errMessage);

IF NOT wellFormed THEN
-- Move ill-formed xml document to a bad xml documents table

INSERT INTO bad xml documents (docname,xmldoc,error)

VALUES (curDoc.docname, curDoc.xmldoc, errMessage);
DELETE FROM xml documents WHERE docname = curDoc.docname;
COMMIT;
END IF;
END LOOP;

END;

Of course, since moveBadxXmlDocuments iS @ PL/SQL procedure like any other, it can be run in a
database job every night at 2 A.M. by using the standard Oracle facilities in the DBMS JOB package
like this:

SET SERVEROUTPUT ON
DECLARE
JjobId BINARY INTEGER;
firstRun DATE;
BEGIN
-— Start the job tomorrow at 2am
firstRun := TO DATE (TO CHAR(SYSDATE+1, 'DD-MON-YYYY') ||"' 02:00"',
'DD-MON-YYYY HH24:MI');

-— Submit the job, indicating it should repeat once a day
dbms_ job.submit (job => jobId,
what => '"moveBadXmlDocuments; ',
next date => firstRun,
interval => 'SYSDATE + 1' /* Reschedule for 1 Day Later */
) ;
dbms output.put line('Successfully submitted job. Job Id is '||jobId);
END;

So even after just a few simple examples, you can see that by making XML processing accessible
to PL/SQL, the Oracle features you know and love are all you need to use XML in your database.
There's no need to learn any new management, backup, and recovery techniques for applications
to work with XML. Any place where PL/SQL is valid, now XML can play, too.

5.2.3 Parsing XML from a String

In addition to parsing XML stored in CLOBs, it's also possible to parse XML documents that reside
in VARCHAR?2 string variables. This is especially convenient if you want to write stored procedures
or functions that take small XML datagrams as arguments and do some processing on them.

The xmlparser package has a parseBuffer function that parses a string buffer and returns an
instance of xmldom.DOMDocument if it is successful. The xm1dom package provides datatypes,
functions, and procedures for working with the parsed XML document's complete "object model,"
allowing programmatic manipulation of all elements, attributes, text content, comments, etc.,
that appear in the file. Table 5.2 provides a short list of the of the most common Document Object

Model (DOM) API methods you will use in practice.

o &

g

“ The xmldom package provides a PL/SQL language binding to all
1_.,", r

of the functionality specified in the W3C's DOM Level-1 Core.
We'll use a few of the most commonly used methods in the DOM
API in the examples in this chapter, giving us a feeling for how
they are used in PL/SQL. Complete details on these methods
can be found at
http://www.w3.0rg/TR/REC-DOM-Level-1/level-one-core.html.

Table 5.2. Highlighting Some Common DOM API Methods

DOM API Method Name

Description

getDocumentElement

Returns the document element, the top-level element in the XML
document

getAttribute Returns the value of a named attribute for an element
getChildren Returns the list of child nodes of an element
getNodeType Returns the numerical constant indicating the type of a node
getNodeName Returns the name of a node

getNodeValue Returns the string value of a node

setNodeValue Sets the string value of a node

createElement Creates a new element

setAttribute Sets an attribute value on an element

createText Creates a new text node

appendChild Appends a node as a child of another

removeChild Removes a child node of an element

getElementsByTagName

Returns a list of descendent elements with a given tag name

getFirstChild

Returns the first child node of any node

The idAattributeOfDocElement function in Example 5.4 illustrates a simple example of using the
xmlparser.parseBuffer function and a few functions in the xm1dom package to get the document
element of the parsed XML document and return the value of its id attribute.

Example 5.4. Parsing XML from a String and Using DOM

CREATE OR REPLACE FUNCTION idAttributeOfDocElement (xmldoc VARCHAR2)
RETURN VARCHAR2 IS

theXmlDoc xmldom.DOMDocument;

theDocElt xmldom.DOMElement;

retval VARCHAR?2 (400) ;

XMLParseError EXCEPTION;

PRAGMA EXCEPTION INIT(XMLParseError, -20100);

-— Local parse function keeps code cleaner. Return NULL if parse fails

FUNCTION parse (xml VARCHARZ) RETURN xmldom.DOMDocument IS

retDoc xmldom.DOMDocument;

parser xmlparser.Parser;

BEGIN

parser := xmlparser.newParser;

xmlparser.parseBuffer (parser,xml) ;

retDoc := xmlparser.getDocument (parser);

xmlparser.freeParser (parser) ;

RETURN retdoc;

EXCEPTION

-— If the parse fails, we'll jump here.

WHEN XMLParseError THEN

xmlparser.freeParser (parser) ;

RETURN retdoc;

END;

BEGIN

-- Parse the xml document passed in the VARCHAR2Z argument

theXmlDoc :=

parse (xmldoc) ;

-— If the XML document returned is not NULL...
IF NOT xmldom.IsNull (theXmlDoc) THEN

-—- Get the outermost enclosing element (aka "Document Element")

theDocElt

xmldom.getDocumentElement (theXmlDoc) ;

-— Get the value of the document element's "id" attribute

retval

xmldom.getAttribute (theDocElt, 'id") ;

—-— Free the memory used by the parsed XML document
xmldom. freeDocument (theXmlDoc) ;
RETURN retval;
ELSE
RETURN NULL;
END IF;
END;

The idAattributeOfDocumentElement function uses a lesser-known PL/SQL feature of declaring a
nested, local function inside the outer function's DECLARE section. This makes the code cleaner
and makes it easier to extract that function later as a standalone function if you begin to discover
a wider need for its facilities.

g To check whether a variable of type xmldom.DOMDocument is

NULL, use the syntax:

—-— Check i1f yourXmlDocVar
is NULL
IF xmldom.IsNull (yourXmlDocVar) THEN

You need to do this because the normal:

IF yourXmlDocVar IS NULL THEN

syntax does not work for RECORD-type variables. If you look in
the source code for the xml1dom package specification—located
in the xmldom.sql file supplied with the Oracle XML Parser for
PL/SQL—you'll see that the poMDocument and other DOMXxxx

datatypes are declared as RECORD types.

Let's give our new function a try. Suppose we have a table of small XML-based messages, whose
XML message bodies are less than 4000 characters defined with the command:

CREATE TABLE message (
received DATE,
recipient VARCHAR?2 (80),
xml message VARCHARZ2 (4000)

)

Since our idAttributeOfDocumentElement function has no side-effects that modify the database,
we are free to use it in the middle of a SELECT statement like the following:

SELECT idAttributeOfDocElement (XML MESSAGE) AS ID, RECIPIENT, XML MESSAGE
FROM message
WHERE received > SYSDATE - 1

that produces the expected SQL result:

ID RECIPIENT XML MESSAGE

101 wsmithers <Message id="101">
<From>Montgomery Burns</From>
<Text>Release the Hounds!</Text>

</Message>

Of course, we can also use the function within the body of any other PL/SQL program. Note that
while using the getattribute () function on an element makes it easy to retrieve any attribute
value, retrieving the value of an element is less than obvious. For example, in the output just
shown, to retrieve the text "Montgomery Burns" as the value of the <From> element, you need to
realize that the string "Montgomery Burns" is actually a text node that is a child of the <From>
element. An element doesn't technically have a value of its own. Retrieving an element's value
requires a combination of using the getFirstChild () or getChildNodes () functions, followed by
using the getNodevalue () function on the child text nodes.

Understanding Maximum Sizes for
VARCHAR2 Data

While SQL and PL/SQL share the ability to work with data of type
VARCHAR?2, they differ in the maximum allowed length. Within a PL/SQL
program, local variables of type VARCHAR2 can be declared to contain up
to 32,767 characters. However, when declaring a database column of
type VARCHAR2, the maximum length is 4000 characters. This SQL
VARCHAR?2 limit of 4000 characters holds as well when VARCHAR2
values appear inside DML (Data Manipulation Language) statements like
SELECT, INSERT, UPDATE, and DELETE. Keep this in mind when
referencing PL/SQL functions inside DML statements, since their return
values cannot exceed 4000 characters. To illustrate the problem,
imagine a simple function like this:

CREATE OR REPLACE FUNCTION stars (how many NUMBER)
RETURN VARCHARZ2 IS
BEGIN
-- Return a string with 'how many' stars
RETURN RPAD('*',how many,'*");
END;

The statement SELECT stars (4000) FROM dual selects a string of 4000

stars, while the statement SELECT stars (4001) FROM dual produces the

error:

ORA-06502: PL/SQL: numeric or value error:
character string buffer too small

Use CLOB datatypes and the DBMS L.OB package to work with character

data that is over 4K.

Before moving on to the next section, make sure you understand the following points about using
the XML Parser for PL/SQL packages:

e Since PL/SQL is not an object-oriented language like Java, the PL/SQL API for DOM is not
object-oriented. In Java, you would call a getDocumentElement method on an instance of
an XML document object; in PL/SQL, you pass the XML document object to the
xmldom.getDocumentElement function as an argument, as shown here:

° // Java syntax
° theDocElt = theXMLDoc.getDocumentElement ();
°
o -- PL/SQL syntax
theDocElt := xmldom.getDocumentElement (theXmlDoc) ;

e Since the XML Parser for PL/SQL is a wrapper of the Java implementation, you have to
explicitly call routines to free the XML documents you parse when you no longer need
them. This means that whether you use XML documents for a brief moment inside a
function or a procedure, or keep XML documents in PL/SQL package-level variables to
cache them, you need to be diligent about freeing them when you're done using them.
This ensures that the memory used by the underlying Java objects is properly reused. In
Example 5.4, we see calls at appropriate points to:

xmlparser.freeParser (parser) ;

and to:

xmldom. freeDocument (theXmlDoc) ;

which free the XML Parser object and XML Document object, respectively.

Next we'll see how to reach out over the network to pull XML into the database by retrieving and
parsing XML over a URL.

5.2.4 Parsing XML from a URL

The xmlparser.parse function allows you to parse XML documents from any URL. This is the
easy part. The tricky parts of working with XML over the network from inside Oracle8i involve
dealing with:

e Firewall machines that protect your intranet from the Internet
e Database permissions to enable a user to successfully open a connection to another server
from inside the Oracle8i database

We'll learn how to deal with these issues by working through an example.

Moreover.com is an Internet startup that publishes news stories on the Web. Other sites can
leverage the news that Moreover.com is constantly adding to gigantic databases in order to offer
headline news features on their own sites. At the time of this writing, Moreover.com offers 253
different categories of news. Of particular interest to us is the category of hews about XML-related
technologies. The fact that the company deliver its news feeds in XML is particularly serendipitous.
We'll use the live web-based news feed on XML in XML as the example for this section.

Browsing the following URL:

http://p.moreover.com/cgi-local/page?index xml+xml

will retrieve an XML datagram of news stories that looks like Example 5.5.

Example 5.5. Example Moreover.com News Feed Datagram

<?xml version="1.0" encoding="iso-8859-1"7?>
<!DOCTYPE moreovernews
SYSTEM "http://w.moreover.com/xml/moreovernews.dtd">
<moreovernews>
<article id="_ 6331562">
<url>http://c.moreover.com/click/here.pl?x6331558</url>
<headline text>IBM, Oracle Expand XML's Role</headline text>
<source>Internet Week</source>
<media type>text</media type>
<cluster>XML and metadata news</cluster>
<tagline> </tagline>
<document url>http://www.internetwk.com/</document url>
<harvest time>Mar 30 2000 3:50PM</harvest time>
<access registration> </access registration>
<access_status> </access_ status>

</article>

<!-- More <article>s here -->

<article id=" 6328106">
<url>http://c.moreover.com/click/here.pl?x6328104</url>
<headline text>XML May Mark Spot for B2B Profits</headline text>
<source>ON24 Audio/Video</source>
<media type>audio</media type>
<cluster>XML and metadata news</cluster>
<tagline> </tagline>
<document url>http://www.on24.com/newsline/top</document url>
<harvest time>Mar 30 2000 12:00PM</harvest time>
<access registration> </access registration>
<access_status> </access status>

</article>

</moreovernews>

What we want to do is programmatically retrieve this XML by parsing the URL cited previously,
and process the news story information that arrives. If you have to set a proxy server name in
order to use your web browser, that's a good sign that your database machine will need to have
the proxy server set correctly, too.

- Even if you are parsing an XML document from a VARCHAR2 or
CLOB value, that document might contain a <!DOCTYPE> that
references its associated external DTD via an http:// -based
URL like this:

<!DOCTYPE moreovernews
SYSTEM
"http://w.moreover.com/xml/moreovernews.dtd">

Since the XML Parser will attempt to retrieve the external DTD,
this is another situation when you need the HTTP proxy server
name to be properly set to avoid network timeouts when the
XML Parser tries to retrieve the DTD.

Since the XML Parser for PL/SQL is implemented in Java under the covers, we need to set the
proxy server in the way that Java programs require, by setting the values of the three System
properties in Table 5.3.

Table 5.3. Java System Properties to Control Proxy Server Settings

System Property o
Description
Name
roxySet Has the value true or false to indicate whether the proxy server should be used.
Xy
If unset, the default is false.
proxyHost The name or IP address of the machine to be used as the HTTP proxy server for
URL requests. No leading http:// is required, just the machine name.
proxyPort The port number to use for communication with the proxy server.

Since there is no built-in PL/SQL API to set Java System properties, we'll need to build one by:

1. Creating a Java class to call system.setProperty (name, value)
2. Compiling the class and loading it into Oracle8i
3. Creating a Java stored procedure specification for it

So let's do it. The tiny PropertyHelper class below will do the job for us:

public class PropertyHelper {
public static void setSystemProperty(String name, String value) {

System.setProperty (name,value) ;

This class defines a single method named setSystemProperty that sets the value of a named
System property to the value passed in. To compile this class, use JDeveloper or any
command-line javac compiler:

javac PropertyHelper.java

This produces the compiled Java class file named PropertyHelper.class. To load this class into
the database, do the following:

loadjava -verbose -resolve -user sys/password PropertyHelper.class

We're loading it into the SYS schema since SYS has privileges to set System properties (SYSTEM
does not, by default). We'll control access to this capability by granting EXECUTE permission on
the Java stored procedure wrapper we're just about to create.

Connect to the database using SQL*Plus as SYS and run the script:

CREATE OR REPLACE PROCEDURE setJavaSystemProperty (name VARCHAR2,value VARCHARZ2)
AS LANGUAGE JAVA NAME

'PropertyHelper.setSystemProperty(java.lang.String, java.lang.String)';

The CREATE PROCEDURE command uses the following syntax that is new with Oracle8; :

AS LANGUAGE JAVA NAME 'classname.methodname (args) '

This allows you to create a PL/SQL procedure or function specification whose body is implemented
by static methods of a Java class. Once a Java stored procedure specification like
setJavaSystemProperty is created, both SQL and PL/SQL can call it exactly as if it were
implemented in PL/SQL.

We can create an http util package that exposes the ability to set the proxy server and port
through a setProxy procedure with the code:

CREATE OR REPLACE PACKAGE http util AS

-— Set proxy server for any Java code running in the current session.

PROCEDURE setProxy (host VARCHARZ, port NUMBER := 80);
END;
CREATE OR REPLACE PACKAGE BODY httpiutil AS

PROCEDURE setProxy (host VARCHARZ, port NUMBER := 80) IS

BEGIN
setJavaSystemProperty ('proxySet', "true');
setJavaSystemProperty ('proxyHost', host) ;
setJavaSystemProperty ('proxyPort', TO CHAR(port));
END;
END;

So now, any user with permissions to invoke:

http util.setProxy('somemachine');

can set the proxy server. As with any globally useful package, we'll create a public synonym for
it:

CREATE PUBLIC SYNONYM http util FOR http util;
and then have SYS grant permission to the XMLBOOK user to use the new http util package:

GRANT EXECUTE ON http util TO XMLBOOK;

Finally then, we can connect again as XMLBOOK and set the HTTP proxy by issuing the command:

exec http util.setProxy('proxyserver.you.com');

Whew! With all this machinery in place, let's get to the good stuff. Example 5.6 shows the code
necessary to retrieve the top news stories about XML from Moreover.com. The code:

Sets the proxy server using our new http util.setProxy()

Parses the XML "news feed" document retrieved from the URL

Searches for all <headline text> elements using getElementsByTagName

Loops over all the found <headline text> nodes, and for each node, gets the first text
node child of <headline text> and prints out the headline

HwnN e

Example 5.6. Retrieving an XML-based News Feed from

Moreover.com

SET SERVEROUTPUT ON

DECLARE
newsURL VARCHARZ2 (80) ;
parser xmlparser.Parser;
newsXML xmldom.DOMDocument;
titles xmldom.DOMNodeList;
titles found NUMBER;
curNode xmldom.DOMNode;
textChild xmldom.DOMNode;
BEGIN

dbms output.put line('Top Stories on XML from Moreover.com on '||
TO_CHAR(SYSDATE,‘FMMonth ddth, YYYY'));
-— This is the URL to browse for an XML-based news feed of stories on XML

newsURL := 'http://p.moreover.com/cgi-local/page?index xml+xml';

-— Set the machine to use as the HTTP proxy server for URL requests

http util.setProxy ('yourproxyserver.you.com') ;

-—- Parse the live XML news feed from Moreover.com by URL
parser := xmlparser.newParser;
newsXML := xmlparser.parse(newsURL);

xmlparser.freeParser (parser) ;

—-- Search for all <headline text> elements in the document we receive

titles := xmldom.getElementsByTagName (newsXML, 'headline text');

-- Loop over the "hits" and print out the text of the title

FOR j IN 1..xmldom.getLength(titles) LOOP
-- Get the current <headline text> node (Note the list is zero-based!)
curNode := xmldom.item(titles,j-1);

—-— The text of the title is the first child (text) node of

-- the <headline text> element in the list of "hits"

textChild := xmldom.getFirstChild (curNode) ;
dbms output.put line('('||LPAD(J,2)||"') '||Ixmldom.getNodeValue (textChild));
END LOOP;

-— Free the XML document full of news stories since we're done with it.

xmldom.freeDocument (newsXML) ;

END;

-] If you have no firewall or proxy server machine between you
s and the wild, woolly Internet, you can comment out the line:

http util.setProxy('yourproxyserver.you.com') ;

If you do have a firewall, edit the example on the CD to reflect
the name of your proxy server before running examples.

Executing the anonymous block of PL/SQL in Example 5.6 should produce output like this:

Top Stories on XML from Moreover.com on April 2nd, 2000

(1) Oracle increases XML support

(2) An object programming lesson on how you can be successful

(3) Here's a vignette about how e-commerce platforms are shaking out

(4) Vendors don't want you to sell used software as you would used books or CDs
(5) SpaceWorks, WebMethods Ink OEM Alliance

(6) XML Comes Of Age

(7) IBM, Oracle Expand XML's Role

(29) Pinacor Establishes XML-Based E-Business Inventory Pipeline

(30) Moving Home: Portable Site Information

If, instead, it produces an error like this:

Top Stories on XML from Moreover.com on April 2nd, 2000

DECLARE

*

ERROR at line 1:

ORA-29532: Java call terminated by uncaught Java exception:
java.security.AccessControlException: the Permission
(Java.net.SocketPermission p.moreover.com resolve) has not been granted by
dbms java.grant permission to

SchemaProtectionDomain (XMLBOOK |PolicyTableProxy (XMLBOOK))

then we've found a good reason to talk about the other tricky part of parsing web-based XML by
URL over HTTP: the permission to open a socket from inside the database.

Of course, you don't want all your database users to be able to write programs that run on your
production server that can open up HTTP connections with other machines and send or receive
information. To address this, Oracle8i provides fine control over the ability to open a
communication socket with another machine.

We get this error because you don't have permission to open a socket of any kind, not to mention
a socket to connect for an HTTP-based TCP/IP exchange with p.moreover.com to get your XML
news feed. You can grant this "open-a-socket" permission on:

e Any machine name or IP address ("*")
¢ Any machine in a given domain ("*.moreover.com")
e A particular machine or IP address ("101.123.208.104" or "stocks.xmlville.com")

We can resolve the problem by creating a useful PL/SQL procedure to allow url access to a
particular server (or wildcard pattern for a server name). The code in Example 5.7 will do the
trick.

Example 5.7. Controlling Security on URL Access Inside

Oracle8i JServer

CREATE OR REPLACE PROCEDURE allow url access(to user VARCHARZ,
on server VARCHARZ2) IS
BEGIN

-— Note "on server" can include a leading asterisk (e.g. '*.oracle.com')

-— See JavaDoc for the java.net.SocketPermission class for other legal values

dbms java.grant permission(grantee => to user,
permission type => 'java.net.SocketPermission',
permission name => on_server,

permission action => 'connect,resolve');

END;

This code should be created in the SYS or SYSTEM account and then access to open connections
with particular servers can be granted to individual users by executing the allow url access
procedure, like this:

EXEC allow url access ('XMLBOOK', '*.moreover.com') ;

This grants XMLBOOK the ability to open a connection and retrieve a resource from any URL with
a domain name that ends in .moreover.com. By connecting again as XMLBOOK and executing the
SQL statement:

SELECT name AS allowed server name

FROM user java policy

WHERE type name = 'java.net.SocketPermission'

You should now see this heart-warming result:

ALLOWED SERVER NAME

* .moreover.com

This granted permission will enable us to successfully retrieve:
e The "news feed" URL:

http://p.moreover.com/cgi-local/page?index xml+xml

e The DTD referenced in the XML news feed document:

http://w.moreover.com/xml/moreovernews.dtd

Rerunning the code in Example 5.6 as the XMLBOOK user should now work fine.

5.2.5 PL/SQL Helper Packages for XML Parsing

Since we'll be parsing XML documents a lot, it makes sense to build a convenience package called
xml that handles all of our common parsing needs with the simplest possible API. Example 5.8
shows the PL/SQL package specification of precisely the little helper package we need.

Example 5.8. The xml Helper Package Specification

CREATE OR REPLACE PACKAGE xml AS

-- Set HTTP proxy server in case you reference documents

-— or DTDs outside a corporate firewall

PROCEDURE setHttpProxy (machinename VARCHARZ,
port VARCHAR2 := '80"'");

-— Parse and return an XML document
FUNCTION parse (xml VARCHAR2) RETURN xmldom.DOMDocument;
FUNCTION parse (xml CLOB) RETURN xmldom.DOMDocument;

FUNCTION parse (xml BFILE) RETURN xmldom.DOMDocument;

-—- Parse and return an XML Document by URL

FUNCTION parseURL (url VARCHARZ2Z) RETURN xmldom.DOMDocument;
-— Free the memory used by an XML document
PROCEDURE freeDocument (doc xmldom.DOMDocument) ;

END;

The xml package centralizes the key XML parsing functionality for:

e Setting the HTTP proxy server

e Parsing XML from a VARCHAR2

e Parsing XML from a CLOB

e Parsing XML from a BFILE

e Parsing XML from a URL

e Freeing an XML document when we're done using it

Internally, the helper package worries about creating and freeing the XML parser object needed
to do the parsing, so already that's one less thing to think about. We'll see that creating helper
packages like this will make future PL/SQL-based XML work a lot easier and will save us a lot of

typing.

While we're at it, we can create a helper package called xmldoc for simplifying our life when
working with useful chunks of XML we'd like to store in tables, such as our xml_documents table
from earlier in the chapter.

The xmldoc package in Example 5.9 centralizes the basic, useful functionality of:

e Saving an XML document in the xml_documents table as a VARCHAR2, CLOB, BFILE, or
xmldom.DOMDocument, With a given document name as its "key"

e Getting an XML document by document name as a CLOB, VARCHAR?2, or
xmldom.DOMDocument from the xml_documents table

¢ Removing an XML document by name from the table

e Testing whether a given document name exists in the table

Example 5.9. The xmildoc Helper Package Specification

CREATE OR REPLACE PACKAGE xmldoc AS

-- Save an XML document (parsing it first if necessary) into the

-- xml documents table with a given document name.

PROCEDURE save (name VARCHARZ,

xmldoc VARCHARZ,

docommit BOOLEAN := TRUE) ;
PROCEDURE save (name VARCHARZ,

xmldoc CLOB,

docommit BOOLEAN := TRUE) ;
PROCEDURE save (name VARCHARZ,

xmldoc BFILE,

docommit BOOLEAN := TRUE) ;
PROCEDURE save (name VARCHARZ,

-—- Get an
FUNCTION

-—- Get an
FUNCTION

-— Get an

xmldoc xmldom.DOMDocument,

docommit BOOLEAN:=TRUE) ;

XML document by name from the xml documents table

get (name VARCHAR2) RETURN xmldom.DOMDocument;

XML document as a CLOB by name from the xml documents table

getAsCLOB (name VARCHAR2) RETURN CLOB;

XML document as a VARCHAR2 by name from the xml documents table

FUNCTION getAsText (name VARCHAR2) RETURN VARCHAR2;

-— Remove

PROCEDURE

an XML document by name from the xml documents table

remove (name VARCHAR2, docommit BOOLEAN TRUE) ;

-- Test if a named document exists in the xml documents table
FUNCTION docExists (name VARCHARZ2) RETURN BOOLEAN;
END;

You'll find the full source code of the xm1 and xmldoc packages in Appendix A as well as
instructions for installing them. We'll exploit these helper packages (as well as introduce a few
more) later in this chapter.

In Example 5.6 we used some DOM techniques for:

e Finding all <headline text> elements using xmldom.getElementsByTagName
e Getting the value of the <headline text>element by using xmldom.getFirstChild () to
get the text node child of the <headline text> element

In the next section, we'll see how these raw DOM techniques will seem brute force, at best, in
comparison with XPath.

5.3 Searching XML Documents with XPath

While processing XML documents and datagrams inside the database, you'll frequently find it
necessary and convenient to search the content of the document you're processing. We've noted
that the xmldom package provides a completely programmatic way of hunting through the entire
tree of nodes of an XML document to find what you're looking for. We'll see in this section how
XPath's searching of in-memory XML makes it all declarative and so much easier.

5.3.1 Basic Use of XPath in PL/SQL

We saw in Chapter 2, that XPath expressions provide a compact, declarative syntax to describe
any parts of an XML document you would like to address. Let's explore what opportunities exist
for the PL/SQL developer to exploit XPath expressions to search in-memory documents.

Let's look again at our simple insurance claim XML document:

<!-- claim77804.xml -->
<Claim>
<ClaimId>77804</ClaimId>
<Policy>12345</Policy>
<Settlements>
<Payment Approver="JCOX">1000</Payment>
<Payment Approver="PSMITH">1850</Payment>
</Settlements>
<DamageReport>
The insured's <Vehicle Make="Volks">Beetle</Vehicle>
broke through the guard rail and plummeted into a ravine.
The cause was determined to be <Cause>faulty brakes</Cause>.
Amazingly there were no casualties.
</DamageReport>

</Claim>
We might want to answer the following questions about this document:
What is the value of the policy number for this claim?

We may want to store the policy number for this XML-based insurance claim in its own
database column so we can more easily search, sort, and group by that key piece of
information. To do this, we need the ability to retrieve the value of the XPath expression:

/Claim/Policy
Does this claim have any settlement payments over $500 approved by JCOX?

If this XML document were arriving as a CLOB attribute of an object type in an Oracle8i AQ
message queue, we might want to evaluate boolean tests based on XPath expressions
like:

//Settlements/Payment[. > 500 and @Approver="JCOX"]

so we can properly route the message to the right department.
What is the XML document fragment contained by the <DamageReport> element?

We might be creating a data warehouse of millions of insurance claims to study trends in
the kinds of claims we receive. We might want to extract the content of the
<DamageReport> element as an XML fragment using the XPath expression:

/Claim/DamageReport

We can then store the fragment in a column that has been indexed for lightning-fast XML
document searching using Oracle's interMedia Text product (described in Chapter 13).

Who approved settlement payments for this claim?

We might want to iterate over the <Payment> elements in the claim matching the XPath
expression:

/Claim/Settlements/Payment

and then do some processing with the value of each <Payment> element's Approver
attribute.

The Oracle XML Parser for PL/SQL provides the enabling APIs to answer all of these questions on
in-memory XML documents in its xs1processor package. Its powerful valueOf and selectNodes
functions allow us to retrieve the value of an XPath expression and return a list of nodes matching
an XPath expression, respectively. Using a combination of these functions, we can create an
xpath helper package that puts all the most common XPath-related activities right at our
fingertips, allowing us to:

e Easily retrieve the value0Of an XPath expression

e Quickly test whether an XPath expression is true or false

e Conveniently extract matching subtrees of a document matching an XPath expression
e Use selectNodes matching an XPath expression to process a list of matches

All four of these functions are provided in versions that work on an xmldom.DOMDocument that has
already been parsed in memory, or directly on a VARCHAR2 or CLOB value. If you use the
VARCHAR2 or CLOB versions, the implementations of these functions do the parsing for you
internally by using the xml.parse routine from our xml helper package.

Example 5.10 shows the specification of our xpath helper package. As with the other helper
packages, you can find the full source code for the xpath package in Appendix A.

Example 5.10. The xpath Helper Package Specification

CREATE OR REPLACE PACKAGE xpath AS
-- Return the value of an XPath expression, optionally normalizing whitespace

FUNCTION wvalueOf (doc xmldom.DOMDocument,
xpath VARCHARZ,
normalize BOOLEAN:=FALSE) RETURN VARCHARZ;

FUNCTION valueOf (node xmldom.DOMNode,
xpath VARCHARZ,
normalize BOOLEAN:=FALSE) RETURN VARCHAR2;

FUNCTION valueOf (doc VARCHARZ,
xpath VARCHARZ,
normalize BOOLEAN := FALSE) RETURN VARCHAR2;

FUNCTION valueOf (doc CLOB,
xpath VARCHARZ,
normalize BOOLEAN := FALSE) RETURN VARCHAR2;

—-— Test whether an XPath predicate is true

FUNCTION test (doc =xmldom.DOMDocument,xpath VARCHARZ) RETURN BOOLEAN;

(
FUNCTION test (node xmldom.DOMNode, xpath VARCHAR2) RETURN BOOLEAN;
FUNCTION test (doc VARCHAR2Z, xpath VARCHAR2) RETURN BOOLEAN;
FUNCTION test (doc CLOB, xpath VARCHAR2) RETURN BOOLEAN;

-—- Extract an XML fragment for set of nodes matching an XPath pattern

-- optionally normalizing whitespace (default is to normalize 1it)

FUNCTION extract (doc xmldom.DOMDocument,

xpath VARCHAR2:='/",

normalize BOOLEAN:=TRUE) RETURN VARCHARZ;
FUNCTION extract (doc VARCHARZ,

xpath VARCHAR2 := '/',

normalize BOOLEAN := TRUE) RETURN VARCHARZ;
FUNCTION extract (doc CLOB,

xpath VARCHAR2 := '/',

normalize BOOLEAN := TRUE) RETURN VARCHARZ;

-—- Select a list of nodes matching an XPath pattern

-— Note:

FUNCTION

FUNCTION

FUNCTION

FUNCTION

END;

selectNodes (doc xmldom.DOMDocument,

xpath VARCHAR2) RETURN xmldom

selectNodes (node xmldom.DOMNode,
xpath VARCHAR2) RETURN xmldom

selectNodes (doc VARCHARZ,
xpath VARCHAR2) RETURN xmldom
selectNodes (doc CLOB,

xpath VARCHAR2) RETURN xmldom

DOMNodeList returned has a zero-based index

.DOMNodeList;

.DOMNodeList;

.DOMNodeList;

.DOMNodeList;

Using this new xpath helper package, let's see how we can easily answer all four of our previous
questions. The PL/SQL script in Example 5.11 illustrates using the following functions:

xml.parse

From our xml helper package; reads the contents of the claim77804.xml file in the
XMLFILES directory into memory

xpath.valueOf

Answers the first question

xpath.test

Answers the second question

xmldoc.save

Saves the document with the name of claim77804 to our xml_documents table

xmldoc.get

Retrieves the document with the name of claim77804 from our xml_documents table

xpath.extract

Answers the third question

xpath.selectNodes
Answers the fourth question
xml.freeDocument
Frees the XML document's parsed representation
Of course, saving the claim XML document to our xml_documents table and getting it back again

are not at all required to answer the questions, but seeing a working example of how this helper
package works doesn't do any harm. The sample appears in Example 5.11.

Example 5.11. Test, Extract, and Retrieve an XPath

Expression Value

SET SERVEROUTPUT ON
DECLARE
doc xmldom.DOMDocument;

approvers xmldom.DOMNodeList;

PROCEDURE p (msg VARCHAR2, nl BOOLEAN := TRUE) IS BEGIN
dbms output.put line(msg);IF nl THEN dbms output.put (CHR(10)); END IF;
END;

FUNCTION yn (b BOOLEAN) RETURN VARCHAR2 IS

BEGIN IF b THEN RETURN 'Yes'; ELSE RETURN 'No'; END IF; END;
BEGIN

doc := xml.parse (BFileName ('XMLFILES', 'claim77804.xml"));

p('What is the value of the Policy number for this claim?');

p (xpath.valueOf (doc, '/Claim/Policy'));

p('Does this claim have any settlement payments over $500 approved by JCOX?');
p (yn (xpath.test (doc, '//Settlements/Payment[. > 500 and @Approver="JCOX"]')));

-- Demonstrate Saving and Re-getting the XML document
xmldoc.save ('claim77804"',doc) ;

doc := xmldoc.get('claim77804");

p('What is XML document fragment contained by the <DamageReport> element?');
p (xpath.extract (doc, '/Claim/DamageReport')) ;

p ('Who approved settlement payments for this claim?');
approvers := xpath.selectNodes (doc, '/Claim/Settlements/Payment') ;

FOR j IN 1..xmldom.getLength (approvers) LOOP

p (xpath.valueOf (xmldom.item (approvers, j-1), '@Approver'),nl=>FALSE) ;
END LOOP;
xml . freeDocument (doc) ;

END;

Running the script in the example produces the following output in the SQL*Plus command
console window:

What is the value of the Policy number for this claim?

12345

Does this claim have any settlement payments over $500 approved by JCOX?

Yes

What is XML document fragment contained by the <DamageReport> element?

<DamageReport> The insured's <Vehicle Make="Volks">Beetle</Vehicle> broke
through the guard rail and plummeted into a ravine. The cause was determined to
be <Cause>faulty brakes</Cause>. Amazingly there were no casualties.

</DamageReport>

Who approved settlement payments for this claim?

JCOX
PSMITH

We're just scraping the surface of XPath here. Since Oracle's implementation of XPath is fully
compliant with the W3C XPath 1.0 Recommendation (see
http://www.w3.0rg/TR/1999/REC-xpath-19991116), you can use any legal XPath expression
with the xpath helper package or the underlying xslprocessor package on which it depends.
Even these simple examples demonstrate the power of XPath compared to tedious DOM
node-navigation code; with XPath, you just say what you want and get it instantly.

5.3.2 Using XPath for Custom XML-to-Table Mapping

XPath expressions and the functions in the xpath helper package come in handy when trying to
write custom routines to store XML documents into one or more database tables. Theoretically,
you could use the xmldoc.save routine to store all XML documents as CLOBs into a single
xml_documents table. Most likely, however, this is not what you want if your incoming XML
documents are business documents and your business applications need to query, sort, search,
and perform calculations using the full power of SQL on the information contained in the
documents.

Rather than dump the incoming XML-based insurance claim datagrams into a single, generic
xml_documents table, you might choose to store them in the combination of the two relational
tables ins_claim and ins_claim_payment:

CREATE TABLE ins claim (
claimid NUMBER PRIMARY KEY,
policy NUMBER,
damagereport CLOB

) i

CREATE TABLE ins claim payment (
claimid NUMBER,
amount NUMBER,
approver VARCHAR2 (8),
CONSTRAINT payment for claim
FOREIGN KEY (claimid) REFERENCES ins claim
ON DELETE CASCADE

) i

We can create a package like xm1 claim in Example 5.12 to take in the XML insurance claim
document as a CLOB or an in-memory DOM Document object and perform the required INSERTs
into the ins_claim and ins_claim_payment tables. We store raw scalar data like the c1aimid, the
policy number, the payment amount, and the payment approver into appropriate NUMBER and
VARCHAR?2 columns, and we store the contents of the <DamageReport> XML document fragment
(all XML markup intact) into the damagereport CLOB column. In Chapter 13, we'll learn how to
create an XML search index on the damagereport column to enable precise XML-based searches
over millions of claims.

Example 5.12. Storing XML Insurance Claim in Multiple Tables

with XPath

CREATE OR REPLACE PACKAGE xml claim AS

PROCEDURE store(doc xmldom.DOMDocument) ;
PROCEDURE store(claimdoc CLOB) ;

END;
CREATE OR REPLACE PACKAGE BODY xml claim AS

PROCEDURE store(doc xmldom.DOMDocument) IS
claim ins_claim%ROWTYPE;
payment ins claim payment3%ROWTYPE;
damrep CLOB;
damrepText VARCHAR2 (32767) ;

payments xmldom.DOMNodeList;
curNode xmldom.DOMNode;

BEGIN
-- Use xpath.valueOf to retrieve values for INSERT
claim.claimid := xpath.valueOf (doc, '/Claim/ClaimId") ;
claim.policy := xpath.valueOf (doc,'/Claim/Policy");

-- Use xpath.extract to extract matching XML fragment

damrepText := xpath.extract (doc, '/Claim/DamageReport') ;

INSERT INTO ins_ claim(claimid,policy,damagereport)
VALUES (claim.claimid, claim.policy, empty clob())
RETURNING damagereport INTO damrep;

-- Write the damagereport xml document fragment into the CLOB column

dbms lob.writeappend(damrep, LENGTH (damrepText) , damrepText) ;

-—- Process all the <Payment> elements in the <Settlements> section
payments := xpath.selectNodes (doc, '/Claim/Settlements/Payment') ;
FOR 7 IN 1..xmldom.getLength (payments) LOOP

-— Recall that the Node List is zero-based!

curNode := xmldom.item(payments, Jj-1);

-- Use xpath.valueOf to retrieve the values for INSERT
-- Note that Amount is the value of the current "Payment" element
payment.amount := xpath.valueOf (curNode, '.");

payment.approver := xpath.valueOf (curNode, '@Approver');

INSERT INTO ins_ claim payment (claimid, amount, approver)

VALUES (claim.claimid, payment.amount, payment.approver) ;

END LOOP;
END;

PROCEDURE store(claimdoc CLOB) IS
xmldoc xmldom.DOMDocument;
BEGIN
-- If we're called with a CLOB, parse it and pass it to the other store()
xmldoc := xml.parse(claimdoc) ;
store (xmldoc) ;
xml.freeDocument (xmldoc) ;
EXCEPTION
WHEN OTHERS THEN xml.freeDocument (xmldoc); RAISE;

END;

END;
e The variable declarations:
. "r' claim ins claim%ROWTYPE;

payment ins claim payment%ROWTYPE;

in Example 5.12 use the TABLENAMESROWTYPE as the datatype of
a variable, which automatically declares a record variable with

the same structure as a row in TABLENAME.

To prove that it works, we can try out the little test program in Example 5.13.

Example 5.13. Testing the xml_claim Package

DECLARE
claimdoc xmldom.DOMDocument;

BEGIN

-- Store an XML insurance claim into ins claim and ins claim payment

-- tables directly from an external XML BFILE

claimdoc := xml.parse (BFileName ('XMLFILES', 'claim77805.xml1")) ;
xml claim.store (claimdoc);

xml.freeDocument (claimdoc) ;

-- To show another technique, first store the external XML file in

-- the xml documents "staging" table...

claimdoc := xml.parse (BFileName ('XMLFILES', 'claim77804.xml")) ;
xmldoc.save ('claim77804"',claimdoc) ;

xml.freeDocument (claimdoc) ;

-- ...Then store the XML insurance claim into ins_claim and

-- ins claim payments by reading the XML from the staging table.

claimdoc := xmldoc.get ('claim77804");
xml claim.store (claimdoc);

xml.freeDocument (claimdoc) ;

END;

After executing this code to exercise our xm1 claim.store procedure, we can immediately query
our underlying tables to see its effect:

SELECT claimid,policy,damagereport
FROM ins claim
WHERE claimid IN (77804,77805)

Using the SQL*Plus command COLUMN damagereport FORMAT A60 to widen the display, we see the
results:

CLAIMID POLICY DAMAGEREPORT

77804 12345 <DamageReport> The insured's <Vehicle Make="Volks">Beetle
</Vehicle> broke through the guard rail and plummeted into a
ravine. The cause was determined to be <Cause>faulty brakes

</Cause>. Amazingly there were no casualties. </DamageReport>

77805 12345 <DamageReport> The insured's <Vehicle Make="Audi">TT</Vehicle>
hit a tree. The cause was determined to be a <Cause>missing bolt

</Cause> in the wheel assembly. </DamageReport>

A query over the detail table ins_claim_payment:

SELECT claimid, amount, approver
FROM ins claim payment

WHERE claimid IN (77804,77805)

ORDER BY claimid, amount

shows that our routine correctly inserted both master claim information and detail payment
information based on the insurance claim XML document given as input:

CLAIMID AMOUNT APPROVER
77804 1000 JCOX
77804 1850 PSMITH
77805 498 JCOX
77805 2000 DALLEN

Since we have versions of the xpath helper package functions that work directly on VARCHAR2
and CLOB datatypes, and since these functions return VARCHAR?2, they are legal to use inside a
SELECT statement. For example, we can combine the following:

e Regular columns like claimid

e SQL aggregate calculations for the suMm of settlement payments
e PL/SQL functions like xpath.valueOf to "dig in" to the damagereport XML fragment and
pick out just the <Make> and <Cause> information

in the same SQL statement, as in this example:

SELECT c.claimid,
s.total AS settlement total,
xpath.valueOf (c.damagereport, '//Vehicle/@Make') AS Make,
xpath.valueOf (c.damagereport, '//Cause') AS Cause
FROM ins claim ¢, (SELECT claimid,
SUM (amount) AS TOTAL
FROM ins claim payment p
WHERE p.claimid in (77804,77805)
GROUP BY claimid) s
WHERE c.claimid = s.claimid
AND c.claimid in (77804,77805)

This returns the result:

CLAIMID SETTLEMENT TOTAL MAKE CAUSE
77805 2498 Audi missing bolt
77804 2850 Volks faulty brakes

These are all quite simple examples of using XPath, but the xpath helper package we've put in
place works for any XML document and any valid XPath expression, so you can achieve quite
sophisticated in-memory XML queries. However, keep in mind that all of the functions in the
xpath helper package rely on having the parsed XML representation of the document in memory.
This works great for doing XPath processing on a small number of small to medium-sized XML
documents at a time. However, the xpath package is absolutely not the right tool for the job if you
want to search through your huge claims table of one million insurance claims for a document
matching a given XPath expression.

For example, the following is never a good idea if you have more than a handful of insurance
claims in your ins_claim table:

/*

** Performance would be horrible with xpath helper

** functions in the WHERE clause

*/

SELECT claimid, xpath.valueOf (damagereport,'//Cause') AS Cause

FROM ins claim

WHERE xpath.valueOf (damagereport,

'//Cause[contains (., "brakes")]') IS NOT NULL

Given enough time and memory, this approach would end up parsing each XML document in your
ins_claim table, perhaps to find that none of them matches! Yikes.

We'll see in Chapter 13 how searching through millions of XML documents is made both fast and
easy using Oracle8i 's interMedia Text XML searching facilities. As a sneak preview of this
functionality, instead of using xpath helper functions in the WHERE clause, let's leverage the
interMedia Text CONTAINS () operator in our SQL statement's WHERE clause like this:

/*

** Performance is excellent with intermediaText

** CONTAINS() to narrow down the millions of

** documents to the few matching ones. Then,

** xpath.valueOf can be used in the SELECT

** statement to operate on the few matching documents.

*/

SELECT claimid, xpath.valueOf (damagereport,'//Cause') AS Cause
FROM ins claim

WHERE CONTAINS (damagereport, 'brakes WITHIN Cause') > 0

By using interMedia Text to locate the few matching documents out of a million, and our xpath
helper package to extract XML subtrees from the few matching document fragments, we can have
our cake and eat it, too.

5.3.3 Using XPath Expressions as Validation Rules

Next, let's take a closer look at how we can apply the xpath.test function to create a data-driven
system of XPath-based validation rules. Imagine that we're building a system to manage the
logistics of a large conference, like XML99 or JavaOne. Part of the Herculean task of organizing
shows like these is the "Request for Submissions" process. Authors submit proposals for technical
presentations they would like to deliver and, out of thousands of choices, the conference
organizers have to pick a select few that make the cut.

Years ago, submitting a proposal involved filling out a paper form and mailing or faxing it in.
These days, authors typically submit proposals online by sending in an email or filling out a web
page. Some conferences have begun using an XML format for these proposals, imposing some
structure on the incoming submissions so they can be machine-processed and automatically put
into a database. Here's a simple example of such a proposal:

<Submission>
<Title>Using XPath Expressions as Validation Rules</Title>
<Author>
<Name>
<First>Steve</First>

<Last>Muench</Last>

</Name>

<Email>smuench@yahoo.com</Email>

<Company>Oracle</Company>

<PreviousExperience>Yes</PreviousExperience>

</Author>
<Abstract>

By storing
into "rule
applied to
rules in a

is true or

</Abstract>

</Submission>

XPath expressions in a database table, grouped
sets", data-driven validation rules can be

any XML document by iterating over the list of
rule set and testing whether each XPath expression

false.

While this sample seems complete, it turns out that many of the submissions sent in are
frequently missing key information. This obviously complicates the lives of the conference
organizers! We're going to build a system to automate the process of checking a set of validation
rules for each XML-based submission to make sure each proposal contains the key information
the conference organizers need.

Let's say that for a proposal to be valid, it must satisfy the following rules:

1. The submission must have an abstract.

The organizers need to know a little more about the submission than just the title.

2. The author must supply first name, last name, and email address.

The organizers need to know who's making the proposal and how to get back in touch with
that person.

3. The title must be longer than 12 characters.

The organizers have been burned in the past by presentations like "Webbing It!" and "XML.:
Cool!," so this year they want the title to have a little more substance.

4. The presenter must have previous presentation experience.

The organizers are tired of dealing with stage fright. This year, only folks who have
presented before will be considered.

Since our technical paper submissions are coming in as XML documents, it's natural to think of
XPath as a language to express these rules. To ascertain whether the submission is valid, we just

need to parse the submission's XML document and test whether the following four XPath
expressions are true:

1. The submission must have an abstract.

/Submission/Abstract

2. The author must supply first name, last name, and email address.

/Submission/Author [Name/First and Name/Last and Email]

3. The title must be longer than 12 characters.

string-length (/Submission/Title) > 12

4. The presenter must have previous presentation experience.

//Buthor/PreviousExperience = "Yes"

If all of these expressions test true on our document, we'll consider it valid. If any of them tests
false, we should notify the submitter of the proposal about the offending error so they can
resubmit their proposal after making the necessary corrections. At the moment, the conference
organizers have told us about four rules they need to check on each submission document;
however, it is inevitable that they will:

e Change their minds or discover some additional rules later on
¢ Want to apply the system of validations against other XML documents besides the
<Submission> documents for which they will initially use the system

Given this foregone conclusion, it is best if we design our solution to be generic and reusable so
the same XPath-based rules-validation system can have its rules changed or extended easily and
can be applied to any kind of XML document.

Since the conference organizers are familiar with editing XML but are not familiar with databases,
it might be nice to provide them with an XML-based format to communicate the set of rules they
need enforced to the system. This way, they just edit a simple XML file to make changes or add
new rules, and the system can do the rest. Example 5.14 shows about the simplest possible XML
document that will serve our purpose.

Example 5.14. Ruleset Document Describing a Set of XPath

Validation Rules

<ruleset name="AbstractSubmission">

<rule name="Submission must have an abstract">

/Submission/Abstract

</rule>

<rule name="Author must supply First name, Last name, and Email">
/Submission/Author [Name/First and Name/Last and Email]

</rule>

<rule name="Title must be longer than 12 characters">
string-length (/Submission/Title) > 12

</rule>

<rule name="You must have previous presentation experience.">
//Author/PreviousExperience = "Yes"

</rule>

</ruleset>
Notice that:

e The <ruleset> element has a name attribute and contains one or more <rule> elements.

e Each <rule> element has a name attribute as well, giving a user-readable description of
the rule, and each <rule> element contains its corresponding XPath expression as text
content.

The organizers can use their favorite text editor or XML editor to modify the <ruleset> document,
adding new rules or changing the content of the existing ones. To assist them in testing their
ruleset outside the production submission system, we could even provide a standalone
command-line utility that applies the rules in their <ruleset> document to an example
submission to make sure the rules are working correctly. In fact, in Chapter 6 we'll show how to
build this utility.

But here, let's focus on the system that validates the submission documents inside the database
using PL/SQL. Since we're going to be validating a lot of submissions, we want to avoid having to
constantly reparse the <ruleset> document that contains the validation rules we need to verify.
So inside the production system, let's keep the ruleset information in a couple of database tables
to make querying and accessing the rules very fast, with no parsing needed. No rocket science
needed—just the two simple tables:

CREATE TABLE ruleset (

id NUMBER PRIMARY KEY,

name VARCHAR? (30) UNIQUE
) 7

and:

CREATE TABLE rule(
ruleset NUMBER,
name VARCHAR2 (200),
xpath test VARCHAR2 (4000),

CONSTRAINT rule pk PRIMARY KEY (ruleset,name),
CONSTRAINT rule in set FOREIGN KEY (ruleset)
REFERENCES ruleset ON DELETE CASCADE
) ;

and a quick database sequence to generate a unique primary key for each ruleset:

CREATE SEQUENCE ruleset seq;
We can create a PL/SQL package called xpath rules admin that allows us to easily:

e Add a ruleset by passing in the XML <ruleset> document as an argument
e Drop a ruleset from the system, given the name

The package specification for xpath rules admin looks like this:

CREATE OR REPLACE PACKAGE xpath rules admin AS

-—- Add (or replace) a ruleset based on an XML <ruleset> document

PROCEDURE addRuleSet (doc xmldom.DOMDocument);

-— Drop a ruleset by name
PROCEDURE dropRuleSet (ruleset name VARCHAR2);

END;
The package body appears in Example 5.15. The code for addruleset does the following:

1. Declares handy record variables using ruleset$ROWTYPE and rule%ROWTYPE to work with
variables that have the same structure as the ruleset and rule tables, respectively

2. Uses xpath.valueOf (doc, '/ruleset/@name’') to get the name of the ruleset being
added from the name attribute on the <ruleset> element

3. Inserts the new ruleset into the ruleset table, after getting a new primary key from the
ruleset seq sequence and dropping any existing ruleset by the same name

4. Uses xpath.selectNodes (doc, '/ruleset/rule') to get a list of all <rule> elements
declared in the document

5. Loops over the list of rules by using xmldom.getLength (theRules) to determine how
many <rule> elements we found in step 4

6. Uses xmldom.item(theRules, j-1) to get the jth item in the (zero-based) list of
matching <rule> elements

7. Uses xpath.valueOf (curRuleNode, '@name') to get the name of the current rule

8. Uses xpath.valueOf (curRuleNode,'.',normalize=>TRUE) to get the value of the
current rule node—the XPath expression—with any extra whitespace normalized out of the
value

9. Finally, inserts the data into the ruleset table

Example 5.15. Routines to Administer XPath Validation Rules

CREATE OR REPLACE PACKAGE BODY xpath rules admin AS

PROCEDURE addRuleSet (doc xmldom.DOMDocument) IS
-— (1) Declare handy record variables to work with
theRuleSet ruleset3ROWTYPE;
theRule rule$ROWTYPE;
theRules xmldom.DOMNodeList;
curRuleNode xmldom.DOMNode;
BEGIN
--— (2) Get the name of the ruleset being added
theRuleSet.name := xpath.valueOf (doc, '/ruleset/@name') ;
DropRuleSet (theRuleSet.name) ;
-— (3) Get a new ruleset id and insert the new ruleset
SELECT ruleset seg.nextval INTO theRuleSet.id FROM DUAL;
INSERT INTO ruleset (id,name) VALUES (theRuleSet.id, theRuleSet.name);
-—— (4) Get a list of all <rule> elements under <ruleset>
theRules := xpath.selectNodes (doc,'/ruleset/rule');
-— (5) Loop over the list of <rule> elements we found
FOR j IN 1..xmldom.getLength (theRules) LOOP
-- (6) Get the j-th rule in the list (zero-based!)
curRuleNode := xmldom.item(theRules,j-1);
theRule.ruleset := theRuleSet.id;
-— (7) Get the name of the current rule
theRule.name := xpath.valueOf (curRuleNode, '@name') ;
-— (8) Get the normalized value of the current rule element ('.')
theRule.xpath test := xpath.valueOf (curRuleNode,'.',normalize=>TRUE) ;
-— (9) Insert the current rule into the rule table
INSERT INTO rule(ruleset,name, xpath test)
VALUES (theRule.ruleset, theRule.name, theRule.xpath test);
END LOOP;
COMMIT;
END;

PROCEDURE dropRuleSet (ruleset name VARCHARZ) IS
BEGIN
DELETE FROM ruleset WHERE name = ruleset name;
COMMIT;
END;
END;

To load the current version of the XPath ruleset for conference paper proposal submissions into
our system, assume that the conference organizers have emailed us the ruleset document from

Example 5.14 in a file named AbstractSubmissionRules.xml. We save the attachment into our
C:\XMLFILES directory on our database server machine. Since we will be loading rulesets from
XML <ruleset> files frequently, we can think ahead and create a stored procedure to automate
the steps:

CREATE OR REPLACE PROCEDURE loadRulesetFromFile(dir VARCHARZ,
filename VARCHAR2) IS
rulesXMLFile BFILE;
xmldoc xmldom.DOMDocument;
BEGIN
-- Get a handle to the ruleset file
rulesXMLFile := BFileName (dir, filename) ;
-—- Parse the file to get an XML Document
xmldoc := xml.parse(rulesXMLFile);
-—- Add a new ruleset based on the document
xpath rules admin.addRuleset (xmldoc) ;
-— Free the memory used by the parsed XML Document
xml.freeDocument (xmldoc) ;
EXCEPTION
WHEN OTHERS THEN xml.freeDocument (xmldoc); RAISE;
END;

Then, to load our ruleset from the AbstractSumbmissionRules.xml files, we can just execute a
one-liner at the SQL*Plus command prompt:

EXEC loadRulesetFromFile ('XMLFILES', 'AbstractSubmissionRules.xml') ;

To verify that our rules were loaded correctly, we can try the SELECT statement:

SELECT r.name, xpath test
FROM rule r, ruleset rs
WHERE rs.name = 'AbstractSubmission'

AND r.ruleset = rs.id

and indeed we see that our rules have been loaded out of the AbstractSubmissionRules.xml file
and stored for safekeeping in the rule table:

NAME XPATH TEST

Author must supply /Submission/Author[Name/First and Name/Last and Email]

First name, Last

name, and Email

Submission must /Submission/Abstract

have an abstract

Title must be string-length (/Submission/Title) > 12
longer than 12

characters

You must have //Presenter/PreviousExperience = "Yes"
previous
presentation

experience.

The last step in implementing our solution is to write a routine to validate an XML document
against a ruleset that we've loaded into the database. The xpath rules.validate method below
should do just fine:

CREATE OR REPLACE PACKAGE xpath rules AS

-— Validate an XML document based on a named ruleset

-—- Return any offending errors in the errors argument

PROCEDURE validate(doc IN xmldom.DOMDocument,
ruleset name IN VARCHARZ,
valid OUT BOOLEAN,
errors OUT VARCHAR2
) ;
END;

Since the hard part of enforcing the rules is done by simply using xpath.test to evaluate whether
a given XPath rule is true or false, the code for the validate routine only needs to do the
following:

1. Loop over all the rules in the rule table for the ruleset name passed in.
Call xpath.test () on the current rule's XPath expression.
3. Keep track of any rules that fail and report the failing rules in the errors variable that is

returned to the caller.

The straightforward implementation for the xpath rules package is in Example 5.16.
Example 5.16. Validating XML Document Against an XPath
Ruleset

CREATE OR REPLACE PACKAGE BODY xpath rules AS

FUNCTION idForRuleset (ruleset name VARCHARZ) RETURN NUMBER IS

theId NUMBER;
BEGIN
SELECT id
INTO theId
FROM ruleset

WHERE name = ruleset name;
RETURN theld;
EXCEPTION
WHEN NO DATA FOUND THEN RETURN NULL;
END;
PROCEDURE validate (doc IN xmldom.DOMDocument,
ruleset name IN VARCHAR2Z,
valid OUT BOOLEAN,
errors OUT VARCHAR2
) IS
errcount NUMBER := 0;
rulesetId NUMBER := idForRuleSet (ruleset name) ;
BEGIN
IF xmldom.isNull (doc) THEN
valid := FALSE;
errors := 'Cannot validate. Document is null';
ELSIF rulesetId IS NULL THEN
valid := FALSE;
errors := 'Cannot validate. Ruleset '||ruleset name||' does not exist.';
ELSE

-— Assume the doc is valid until proven otherwise
valid := TRUE;
-- (1) Loop over all the rules for the ruleset whose name is passed in
FOR curRule IN (SELECT name, xpath test
FROM rule
WHERE ruleset = rulesetId) LOOP
-- (2) Call xpath.test on the current rule's expression
IF NOT xpath.test (doc,curRule.xpath test) THEN
-— (3) Keep track of rules that fail by bumping error count

errcount := errcount + 1;
-— Mark the doc invalid
valid := FALSE;

-- Put 2nd through Nth error on a new line.

IF errcount > 1 THEN

errors := errors | |CHR(10);
END IF;
errors := errors || '"('||errcount]||"') '||curRule.name;

END IF;

END LOOP;
END IF;
END;
END;

Next, we need to write a handleNewSubmission routine to handle new abstract submissions. It
needs to apply the general xpath rules package—which can validate any XML document against
any ruleset—to validate <submission> documents against the particular AbstractSubmission
ruleset. We need the routine to:

1. Call xpath rules.validate using the AbstractSubmission ruleset to verify that all of
the rules for abstract submissions are in order.

2. Insert the key information for the abstract into the database and assign the submission an
ID number for tracking if the abstract being considered passes all the validation rules.

3. Send an email notification to the submitter indicating that we received the abstract. If
there are any validation errors, the email should indicate what was wrong with the
submission.

The new utl smtp built-in package that ships with Oracle8i makes sending email over SMTP from
within PL/SQL possible. The sendEmail procedure in Example 5.17 uses the routines in utl smtp
to send an email using the SMTP protocol directly from inside the database. Since the package is
implemented in a generic way, you might find plenty of other uses for it in your work as well.

Example 5.17. Sending an Email from Inside Oracle8i Using

PL/SQL

CREATE OR REPLACE PROCEDURE sendEmail (smtp server VARCHARZ,
from userid VARCHARZ,
to userid VARCHARZ,

subject VARCHARZ,
body VARCHARZ,
from name VARCHARZ2 := NULL,
to name VARCHARZ2 := NULL,
content type VARCHARZ2 := NULL)
IS
c utl smtp.connection;
from domain VARCHARZ2 (200) := SUBSTR(from userid, INSTR(from userid, '@")+1);

PROCEDURE header (name VARCHAR2, value VARCHAR2) IS
BEGIN

utl smtp.write data(c, name || ': ' || value || utl tcp.CRLF);
END;

BEGIN
c := utl smtp.open connection(smtp server);
utl smtp.helo(c, from domain);
utl smtp.mail (c, from userid);
utl smtp.rcpt(c, to userid);

utl smtp.open data(c);

header ('"From', '"'| [NVL (from name, from userid) ||'" <'||from userid]||'>");
header ('To', '"' | INVL(to name, to userid) |['" <'||to userid]||'>");
header ('Subject', subject);

(

header ('Content-Type', NVL(content type,'text/plain'));
utl smtp.write data(c, utl tcp.CRLF || body);
utl smtp.close data(c);
utl smtp.quit(c);
EXCEPTION
WHEN utl smtp.transient error OR utl smtp.permanent error THEN
utl smtp.quit(c);

raise application error (-20199, 'Error sending mail: ' || sglerrm);

END;

We'll implement the handleNewSubmission procedure to accomplish the three required steps
noted previously: calling xpath.validate to check the submission against the ruleset, inserting
the information into the database if it's valid, and then sending an email notification with
sendEmail. The table we'll need to store the submission information is:

CREATE TABLE accepted submission (

id NUMBER PRIMARY KEY,
title VARCHAR?Z2 (80) ,
presenter VARCHAR2 (80),
email VARCHAR?2 (80),

abstract VARCHAR (4000)
)7

and the sequence we'll need for generating submission IDs is:

CREATE SEQUENCE accepted submission seq START WITH 600;

Example 5.18 shows the code for handleNewSubmission.

Example 5.18. Procedure to Coordinate New Paper

Submission Handling

CREATE OR REPLACE PROCEDURE handleNewSubmission (theSubmission CLOB) IS

isvalid BOOLEAN;

EmailSubject VARCHAR2 (80) ;

EmailBody VARCHARZ2 (32767) ;

doc xmldom.DOMDocument;

submission accepted submission%ROWTYPE;
BEGIN

doc := xml.parse (theSubmission);

xpath rules.validate (doc,
ruleset name => 'AbstractSubmission',

valid => 1isValid,
errors => EmailBody) ;
submission.email := xpath.valueOf (doc,'/Submission/Author/Email') ;

IF isValid THEN

-- Assign a new submission id

SELECT accepted submission seqg.nextval INTO submission.id FROM DUAL;

—-— Collect the info we need from the XML Paper Submission

submission.title := xpath.valueOf (doc, '/Submission/Title', TRUE) ;

submission.presenter := xpath.valueOf (doc,'/Submission/Author/Name/First') ||
' '||xpath.valueOf (doc, '/Submission/Author/Name/Last"') ;

submission.abstract := xpath.valueOf (doc,'/Submission/Abstract', TRUE) ;

-- Insert it into our accepted submissions table

INSERT INTO accepted submission

VALUES (submission.id, submission.title, submission.presenter,

submission.email, submission.abstract);

EmailSubject := 'Your abstract was accepted. Reference# '||submission.id;
EmailBody := 'Thank you.';

ELSE
EmailSubject := 'Your abstract was rejected because...';

-- EmailBody already contains errors flagged by XPath Validation
END TIF;

IF submission.email IS NOT NULL THEN
sendEmail (smtp server => 'mailserver@you.com',
from userid => 'smuench@yahoo.com',
to userid => submission.email,
subject => EmailSubject,
body => EmailBody) ;
END TIF;
xml.freeDocument (doc) ;
COMMIT;
EXCEPTION
WHEN OTHERS THEN xml.freeDocument (doc); ROLLBACK; RAISE;

END;

So we can call handleNewSubmission to handle a single new abstract submission, but what if we
want to handle all of the abstracts that have been submitted today in batch? Since we're using
PL/SQL, it's a simple matter of looping over the abstracts submitted today and calling
handleNewSubmission for each one. The aptly named handleTodaysSubmissions procedure
looks like this:

CREATE OR REPLACE PROCEDURE handleTodaysSubmissions IS
BEGIN

-— Loop over any Submission in the xml documents table submitted today.
FOR currentSubmission IN (SELECT xmldoc
FROM xml documents
WHERE timestamp > TRUNC (SYSDATE)
AND docname like 'Abstract$') LOOP

-— Handle the current abstract

handleNewSubmission(currentSubmission.xmldoc);

END LOOP;
END;

We're done! To review, we've implemented the following code:
xpath_rules_admin

A package to add XPath rulesets based on <ruleset> documents
xpath_rules

A package to validate an XML document against any ruleset
sendEmail

A procedure to send email from inside the database
handleNewSubmission

A procedure to validate a <submisson> document against the AbstractSubmisson ruleset
and notify the submitter by email of their status

handleTodaysSubmissions

A procedure to process all new submissions that arrived today in batch

Let's test out the system on a few sample paper submissions. We'll be working with the two
submissions Abstract With Error.xml and Abstract Good.xml, shown in Example 5.19.

Example 5.19. Two Sample Abstract Submissions to Process

<!-- Abstract With Error.xml -->
<Submission>
<Title>Using XPath</Title>
<Author>
<Name>

<First>Steve</First>
</Name>
<Email>smuench@yahoo.com</Email>
<Company>Oracle</Company>
<PreviousExperience>No</PreviousExperience>
</Author>

</Submission>

<!-- Abstract Good.xml -->
<Submission>
<Title>Using XPath Expressions as Validation Rules</Title>
<Author>
<Name>
<First>Steve</First>
<Last>Muench</Last>
</Name>
<Email>smuench@yahoo.com</Email>
<Company>Oracle</Company>
<PreviousExperience>Yes</PreviousExperience>
</Author>
<Abstract>

By storing XPath expressions in a database table, grouped
into rulesets, data-driven validation rules can be

applied to an XML document by iterating over the list of
rules in a ruleset and testing whether each XPath expression

is true or false.

</Abstract>

</Submission>

First, we load the two sample submissions into our xml_documents table from the XMLFILES
directory by using xmldoc.save. In the real system, the submissions will be inserted by a web

server into the xml_documents table by a routine that calls xmldoc.save in response to the
posting of the HTML form that authors will use to post their submissions from their browser:

BEGIN
-- Load the two XML files from the file system into our xml documents table
xmldoc.save ('AbstractOne',BFileName ('XMLFILES', '"Abstract With Error.xml'));
xmldoc.save ('AbstractTwo',BFileName ('XMLFILES', 'Abstract Good.xml'));

END;

Then we run our batch process by executing the handleTodaysSubmissions routine from the
SQL*Plus command line:

EXEC handleTodaysSubmissions;

- If you are on a Unix platform running Oracle8/ version 8.1.6,
= you might receive an error when trying to run this example,
with the symptoms:

ORA-29540: class oracle/plsgl/net/TCPConnection
does not exist
ORA-06512: at "XMLBOOK.HANDLENEWSUBMISSION", line 45

To remedy the situation, connect as SYS and run:

?/rdbms/admin/initplsj.sqgl.

In a few minutes, the first email notification arrives, bringing the bad news about the first
submission:

Return-Path: <smuench@yahoo.com>

Date: Mon, 3 Apr 2000 17:16:53 -0700 (PDT)
From: "smuench@yahoo.com" <smuench@yahoo.com>
To: "smuench@yahoo.com" <smuench@yahoo.com>
Subject: Your abstract was rejected because...

Content-Type: text/plain

Author must supply First name, Last name, and Email
Submission must have an abstract

Title must be longer than 12 characters

Sw N

You must have previous presentation experience.

If you go back and review the contents of Abstract_With_Error.xml above, you'll see indeed that
it fails all of the XPath validation rules, so the abstract was correctly handled and no data
regarding the abstract was entered into the accepted_submission table.

Shortly thereafter, another email arrives with the joyous announcement that the second abstract
was received and assigned the tracking number of 600:

Return-Path: <smuench@yahoo.com>

Date: Mon, 3 Apr 2000 17:47:28 -0700 (PDT)

From: "smuench@yahoo.com" <smuench@yahoo.com>

To: "smuench@yahoo.com" <smuench@yahoo.com>
Subject: Your abstract was accepted. Reference# 600

Content-Type: text/plain
Thank you.

So everything is working as designed. Next, we'll look at the basic processing required to post
XML to another server and receive XML back in return. This would, for example, allow us to post
our accepted paper submissions in XML format to a server at another company that is
coordinating the paper selection process, or eventually send information on accepted presenters
to a company that might be coordinating their hotel reservations and flight arrangements.

5.4 Working with XML Messages

In this section, we'll investigate examples of using XML as a structured data exchange mechanism
between applications. First we'll look at synchronous approaches like posting and getting XML
messages over HTTP; then we'll learn the basics of Oracle's Advanced Queuing (AQ) mechanism
to support asynchronous XML message passing between applications using reliable queues.

5.4.1 Sending and Receiving XML Between Servers

Since XML can represent structured data in an open, standard way, it is quickly becoming the
preferred method of data exchange over the Web. In a year or two, it will be the dominant method.
Sites that serve up information in HTML—useful primarily to human eyeballs—will add the ability
to retrieve the information in an XML-based format that will allow other servers to use that data
more easily. Businesses whose current web-based applications only allow human interaction
through web-based HTML forms are scrambling to add the ability to accept posted requests in
XML formats to enable Business-to-Business automation.

In this way, the Web will rapidly evolve to offer a business application developer a sea of
XML-based information services, where your application can check on the status of an order,
cancel a reservation, or book a flight simply by sending and receiving appropriate XML datagrams.
It goes without saying that the ability to write programs that post and receive XML is a core
competence for any developer building the next generation of web applications. Here we'll
explore how these key activities can be done with PL/SQL inside Oracle8i.

To be very precise, when we talk about "posting XML to another server over the Web," what we
mean is sending an HTTP POST request to that server, containing an XML document in the request
body with a MIME cContent-Type of text/xml.

Therefore, a fundamental ingredient in posting XML over the Web is the ability to send an HTTP
POST request. Since the HTTP protocol is a set of conventions layered on top of TCP/IP, we can
make use of the Oracle8/ built-in package called utl tcp to build our HTTP POSTing solution.

The utl tcp package exposes the low-level routines necessary to open a TCP/IP connection,
write data into the connection, and read data back from the connection. By writing the
appropriate HTTP commands and data to the connection, we can easily implement our
PL/SQL-based XML posting functionality. For example, to post this XML document:

<moreovernews>
<article>
<url> http://www.xmlhack.com/read.php?item=400 </url>
<headline text> XSL Working Group to address extension concerns
</headline text>
<source> XMLHack.com </source>
</article>

</moreovernews>

to a web service located at the URL:
http://services.example.com:2775/add-news-story.xsql
we need to do the following:

Open a TCP/IP connection to the services.example.com machine on port 2775.

1

2. Write the header information to the connection:
3 HTTP POST /add-news-story.xsgl HTTP/1.0
4

Content-Type: text/xml
Content-Length: 240

5. Write a carriage return to the connection to separate the header from the body.
6. Write the XML document to the connection.

Then we read the response from the connection. In Appendix A you can check out the full source
code of the package that implements this HTTP behavior on top of the lower-level facilities
provided by the utl tcp package. Here, we just need to see the API for our http package, which
looks like this:

CREATE OR REPLACE PACKAGE http AS

-—- HTTP POST a document to url and return response

PROCEDURE post (doc VARCHAR2Z2,

content type VARCHARZ,

url VARCHARZ,

resp OUT VARCHARZ,

resp _content type OUT VARCHARZ,
proxyServer VARCHAR2 := NULL,
proxyPort NUMBER := 80);

-— HTTP GET resource at url and return response document

PROCEDURE get (url VARCHARZ,
resp OUT VARCHARZ,
resp _content type OUT VARCHARZ,
proxyServer VARCHAR2 := NULL,
proxyPort NUMBER := 80);

END;

This package lets us easily HTTP POST or HTTP GET any information over the Web.

Built on top of the post and get procedures in the http package, we can build another helper
package called xm1 http which makes posting and getting XML-based information a little easier.
Example 5.20 shows the package specification for xml1 http.

Example 5.20. The xml_http Helper Package Specification

CREATE OR REPLACE PACKAGE xml http AS

-— POST XML document in string buffer to URL, return response as XML Document

PROCEDURE post (doc VARCHARZ,
url VARCHARZ,
resp OUT xmldom.DOMDocument,
proxyServer VARCHAR2 := NULL,
proxyPort NUMBER = 80);

-— HTTP POST XML document to URL and return response as an XML document

PROCEDURE post (doc xmldom.DOMDocument,
url VARCHAR2,
resp OUT xmldom.DOMDocument,
proxyServer VARCHAR2 := NULL,

proxyPort NUMBER := 80);

-— HTTP GET resource at url and return response as an XML document

PROCEDURE get (url VARCHARZ,
resp OUT xmldom.DOMDocument,
proxyServer VARCHAR2 := NULL,
proxyPort NUMBER := 80);
END;

You'll see in the implementation of xm1 http in Example 5.21 that the procedures here simply
add the convenience of being able to directly post an xmldom.DOMDocument object as well return
the response of a POST or a GET directly as an xmldom.DOMDocument for further processing.

Example 5.21. Implementation of xml_http Helper Package

CREATE OR REPLACE PACKAGE BODY xml http AS

PROCEDURE xmlDocForResponse (response VARCHARZ2,

content type VARCHARZ,

xmldoc OUT xmldom.DOMDocument) IS
BEGIN

IF response IS NOT NULL THEN
IF content type LIKE 'text/xml%' OR
content type LIKE 'application/xml$%' THEN

xmldoc := xml.parse (response);
END IF;
END IF;
END;
PROCEDURE post (doc VARCHARZ2,
url VARCHARZ,
resp OUT xmldom.DOMDocument,
proxyServer VARCHAR2 := NULL,
proxyPort NUMBER := 80)
IS
response VARCHAR2 (32767) ;
content type VARCHAR2Z (400);
BEGIN

http.post (doc, 'text/xml',
url, response,content type,proxyServer,proxyPort);
xmlDocForResponse (response, content type, resp) ;
END;

PROCEDURE post (doc xmldom.DOMDocument,
url VARCHARZ,
resp OUT xmldom.DOMDocument,

proxyServer VARCHAR2 := NULL,
proxyPort NUMBER 1= 80)
IS
response VARCHAR2 (32767) ;
content type VARCHAR2Z (400);
BEGIN

http.post (xpath.extract (doc), 'text/xml"',
url, response,content type,proxyServer,proxyPort);

xmlDocForResponse (response, content type, resp) ;

END;

PROCEDURE get (url VARCHARZ,
resp OUT xmldom.DOMDocument,
proxyServer VARCHAR2 := NULL,
proxyPort NUMBER := 80) IS

response VARCHARZ2 (32767) ;
content type VARCHAR2Z (400);
BEGIN
http.get (url, response, content type,proxyServer,proxyPort);
xmlDocForResponse (response, content type, resp) ;

END;

END;

With all these routines in place, it's time to put them to work. First, we'll try posting a news story
to a server that supports a "Post a New Newstory Service." Figure 5.2 illustrates the
XML-over-HTTP exchange that takes place between our database server and the news story
service.

Figure 5.2. Posting an XML-based news story datagram to a

web service

SMOF BOVETNEWS >
<arkbicles=
<url>http://somaservar/somapage.html< /url>
- <headline_text=It Workedi«/headline_ text=
<gource>gtewa< / Sources
K\ </article=

< /mOreovernews

hN

e "
.__1“_.._.

¥,

Dngtmewsgturyi___j“mm =xsgl-status rows="1"/=
= "Success" h -

The requester posts an XML-based news story in an expected XML format like the Moreover.com
news format, and the service returns an XML-based message to indicate the status of the request.
Here, the returning XML message only contains a status message, but the datagram sent back by
the server could contain lots of additional useful information besides a status.

Example 5.22 shows a postNewsStory procedure that:

1. Concatenates the argument values passed to the function at the appropriate places in the
<moreovernews> XML datagram

2. Posts the news story datagram to the web service URL using xml http.post

3. Tests the content of the returned XML document using xpath.test to see if the POST
request succeeded.

Example 5.22. Posting XML-based News Stories to Another

Web Server

CREATE OR REPLACE FUNCTION postNewsStory(story headline VARCHARZ,
story source VARCHAR2Z,
story url VARCHARZ2
) RETURN VARCHAR2 IS
msg VARCHAR2 (32767) ;
service url VARCHAR2 (80);
xml response xmldom.DOMDocument;
retval VARCHAR?Z2 (10) ;
BEGIN

—-— This is the URL for the Post-a-New-Newstory Web Service

service url := 'http://xml/xsqgl/demo/insertxml/insertnewsstory.xsql’;

—-— Prepare the XML document to post by "gluing" the values of
—-— the headline, news source, and URL of the article into the

-- XML message at the appropriate places.

msg := '<moreovernews>
<article>
<url>'|| story url ||'</url>
<headline text>'|| story headline ||'</headline text>

<source>'|Istory_sourcel|'</source>
</article>

</moreovernews>"';

—-— Post the XML document to the web service URL and get the Response

xml http.post (msg,service url,xml response);

—— Check the response to see if it was a success.

-- This service returns <xsqgl-status rows="1"/> if it was a success.

IF xpath.test (xml response,'/xsqgl-status/@rows="1""') THEN
retval := 'Success';

ELSE
retval := 'Failed';

END TIF;

-—- Free the XML document

xml . freeDocument (xml response);

-— Return the status

RETURN retval;

EXCEPTION
WHEN OTHERS THEN xml.freeDocument (xml response); RAISE;
END;

We can quickly test the function from SQL*Plus by creating a SQL*Plus variable named status,
and executing the function like this:

SQL> variable status varchar2(10);
SQL> exec :status := postNewsStory('It
Worked!', 'Steve', 'http://someserver/somepage.html') ;

PL/SQL procedure successfully completed.

SQL> print status

STATUS

Success
Printing the value of the status variable shows that the request was a Success.

Next, we'll try an HTTP GET example. Sometimes, web services simply take the information they
need to carry out their task as parameters on a URL. In these cases, it is not required to post any
XML document. Instead we just do an HTTP GET on the service's URL with appropriate parameter
values tacked on to the end of the URL.

Figure 5.3 shows the exchange between our database and a web service that allows us to look up
the name of an airport, given its three-letter description. The database running at the site offering
this "Airport Lookup" service contains the three-letter codes and descriptions of more than
10,000 worldwide airports. We can look up the code for any airport code xyz by doing an HTTP
GET on the URL:

http://ws5.0lab.com/xsqgl/demo/airport/airport.xsqgl?airport=XYZ

Figure 5.3. Getting XML from a web service

CODE DESCRIPTION
AR Anaa, French Polynesia
FOO Numfoor, Indonesia

S0L San Carlos, California, USA

XML Minlaton, Sa, Australia

2ZV Zanesville, Ohio, USA

e,

kY
"-.
airportDescription(XML) {i-cﬁka
= "Minlaten, Sa, Australia' <hirports
<Code>XML=< / Code=
<Descriptions>

Minlaton, Sa, Australia
< /Descripbion>
f=Birports
< Ok

To do this, we create a quick airportDescription function that:

1. Concatenates the argument value passed to the function at the end of the web service's
URL

2. Gets the datagram from the web service using xml http.get

3. Tests the content of the return XML document using xpath.test to see if the POST
request succeeded.

Here is the code:

CREATE OR REPLACE FUNCTION airportDescription (code VARCHAR2) RETURN VARCHAR2 IS
description VARCHARZ2 (80);
proxyServer VARCHAR2 (80) := 'www-proxy.us.oracle.com';
service url VARCHAR2 (80);
xml response xmldom.DOMDocument;
BEGIN
-— This is the url of the XML web service to look up airports by code

service url := 'http://ws5.olab.com/xsql/demo/airport/airport.xsql’;

-- Do an HTTP GET of the service url, tacking on the "airport" parameter
xml http.get(service url||'?airport="'||code,
xml response,

proxyServer) ;

-— If the Document Element is <0k>, then return the description
IF xpath.test (xml response, 'Ok') THEN
RETURN xpath.valueOf (xml response,'/Ok/Airport/Description');
ELSE
RETURN NULL;
END TIF;
END;

Again, we can quickly test our new airportbescription function from SQL*Plus like this to see
what airport corresponds to the three-letter abbreviation xML:

SQL> VARIABLE descrip VARCHARZ2 (80) ;
SQL> EXEC :descrip := airportDescription ('XML');

PL/SQL procedure successfully completed.
SQL> PRINT descrip
DESCRIP

Minlaton, Sa, Australia

So using this web service, we discover that to really travel to the heart of XML country, you'll need
to fly Qantas.

5.4.2 Handling Asynchronous XML Messages in Queues

Whether you're processing bank customers at a teller window or customer orders on a web site,
both theory and practice concur that queues are an optimal approach to handle the job. Queues
allow work to pile up in an orderly fashion, and enable a flexible number of workers to be assigned
to process the work as soon as is feasible. During rush hour, more workers can be assigned to the
task. During off hours, a skeleton crew can hold down the fort. In our scenario, the queue of work
is handled by an Oracle Advanced Queueing queue whose contents are managed in a queue table,
and the "workers" are programs that dequeue messages and process them.

Since Oracle's AQ facility leverages the Oracle8/ database extensively, the messages you place in
the queues have the same reliability guarantees as all database data. In layman's terms, this
means that messages are reliably delivered and never get lost. Oracle AQ even handles the
automatic propagation of messages between queues on different machines and between different
queuing systems. So it should be clear that it's worth our time to investigate how to tap into this
powerful feature for exchanging XML messages asynchronously.

Figure 5.4 illustrates the basic idea of a queue in the database. One or more processes add work
to be done into the queue by enqueuing a message, and other worker processes dequeue the
messages for handling. The default is intuitively the "fairest" mechanism, first-in, first-out, but
AQ supports many other dequeuing methods as well. A simple example might be to dequeue
high-priority orders first, or orders from platinum customers.

Figure 5.4. Enqueuing and dequeuing XML messages with

Oracle AQ

Message

o ____=order id="101"/= dequeue

<oprder ids"102*/>

r
<order id="103"/>

i
|

.,

* corder id="104%/>

Setting up a queue to use is easy to do. If you have been granted the AQ_ADMINISTRATOR_ROLE,
you can do all the maintenance operations to create, alter, and drop queues and queue tables. If
a DBA like SYS grants you the following permissions, you'll be in business:

connect sys/password

GRANT AQ ADMINISTRATOR ROLE TO xmlbook;
GRANT EXECUTE ON SYS.DBMS AQADM TO xmlbook;
GRANT EXECUTE ON SYS.DBMS AQ TO xmlbook;
GRANT EXECUTE ON SYS.DBMS AQIN TO xmlbook;

We'll create an xm1l msg queue to store our XML messages while they await further processing. A
queue is associated with a companion table used to store and enable querying of queued
messages, so we first create a queue table, then a queue that lives in that table, by running an
anonymous block of PL/SQL like this:

DECLARE
queueTableName VARCHARZ2 (30) := 'xml msg queuetable';
queueName VARCHARZ2 (30) := 'xml msg queue';

BEGIN

-—- Drop the queue table, ignoring an error if it does not
BEGIN
dbms agadm.drop queue table (queueTableName) ;
EXCEPTION WHEN OTHERS THEN NULL;
END;

—-— Create the queue table
dbms agadm.create queue table (queue table => queueTableName,

queue payload type => 'RAW');

-— Create the queue based on the queue table

dbms agadm.create queue (queueName, queueTableName) ;

-- Start the queue (enabling enqueues and dequeues to occur)
dbms agadm.start queue (queueName) ;
END;

Note that we're using the simplest kind of queue, which supports a raw binary payload of up to
32K bytes, for learning about the mechanics. Once you have the basics under your belt for how
to work with XML messages in these raw-payload queues, you'll find that experimenting with AQ's
other facilities will become much easier. As we've done with other XML-related technologies that
we plan to use over and over, let's build a helper package to work with XML messages and
advanced queues. Example 5.23 shows the package specification of the xm1q package. It's very
simple: it contains just two routines, an enqueue and a dequeue. The enqueue procedure takes an
xmldom.DOMDocument and the name of the queue into which the XML message should be

enqueued. The dequeue function takes a queue name and wait flag, and returns the dequeued
message as an xmldom.DOMDocument.

Example 5.23. The xmlq Helper Package Specification

CREATE OR REPLACE PACKAGE xmlg AS
-— Exception raised when queue is empty and dequeue with no wait is attempted
queue empty EXCEPTION;
PRAGMA EXCEPTION INIT (queue empty,-25228);
-— Enqueue an XML document to the (raw-payload) 'queueName' queue.
PROCEDURE enqueue (xmldoc xmldom.DOMDocument, queueName VARCHAR2);
-— Dequeue an XML document from the (raw-payload) 'queueName' queue.

FUNCTION dequeue(gqueueName VARCHAR2, wait BOOLEAN := TRUE)
RETURN xmldom.DOMDocument;

END;

The implementation of the xm1q package is nearly as simple as its specification. The only points
worth noting are the use of the utl raw.cast to raw function to cast the XML message passed
in as a block of raw bytes, and the utl raw.cast to varchar2 to perform the reverse operation
on the dequeue. If the caller passed in a wait flag value of TRUE, we set the corresponding option
in the dequeue options record structure. This tells Oracle AQ that if no message is presently
waiting for us in the queue, we intend on sleeping until a message arrives:

CREATE OR REPLACE PACKAGE BODY xmlg AS
msgProp dbms_ag.message properties t;

-— Enqueue an XML document to the (raw-payload) 'queueName' queue.

-- Raw-payload queues have a message-size limit of 32767 bytes.
PROCEDURE enqueue (xmldoc xmldom.DOMDocument, queueName VARCHAR2) IS
engOpt dbms ag.enqueue options t;

msgHdl RAW(16) ;

BEGIN

dbms ag.enqueue (queue name => queueName,

enqueue options => engOpt,
message properties => msgProp,
payload => utl raw.cast to raw(xpath.extract (xmldoc)),
msgid => msgHdl) ;
COMMIT;
END;

-— Dequeue an XML document from the (raw-payload) 'queueName' queue.

-- If the 'wait' parameter is TRUE (the default) the function blocks
-- until a message 1is available on the queue. If 'wait' is false,
-- either an XML document is returned, or the 'empty queue' exception

-— is thrown.

FUNCTION dequeue(gqueueName VARCHAR2, wait BOOLEAN := TRUE)
RETURN xmldom.DOMDocument IS
degOpt dbms_ ag.dequeue options t;
retval xmldom.DOMDocument;
msgHdl RAW(16) ;
message RAW(32767);
BEGIN
IF NOT wait THEN
degOpt.wait := dbms aqg.NO WAIT;
END IF;
dbms aqg.dequeue (queue name => queueName,
dequeue options => deqgOpt,
message properties => msgProp,
payload => message,
msgid => msgHdl) ;
COMMIT;

RETURN xml.parse(utl raw.cast to varchar2 (message)) ;

END;

END;

Notice that in the xm1q package specification we use an EXCEPTION_INIT pragma to associate a
meaningful exception name like xmlg.queue empty with the error condition that occurs when we

attempt to dequeue a message without waiting and there is no message there.

To illustrate a simple example of enqueuing a few XML orders, the following anonymous block of
PL/SQL should suffice. It creates and enqueues five new XML-based order messages by calling
xmlqg.enqueue. Each order looks like <order id="101"/>:

set serveroutput on

DECLARE
xmldoc xmldom.DOMDocument;
xmlOrder VARCHAR2 (200);
BEGIN
dbms output.put line ('XML Enqueue Test in Session '|| userenv ('SESSIONID'"));
FOR ordId IN 101..105 LOOP
-— Build a little XML order document like <order id="xxx"/>
xmlOrder := '<order id=""'||ordId||'"/>"';
-— Parse the current order document
xmldoc := xml.parse (xmlOrder) ;
-— Enqueue the current order to the 'xml msg queue' queue
xmlg.enqueue (xmldoc, "xml msg queue');
—-— Free the current XML document
xml . freeDocument (xmldoc) ;
-- Print out a log message
dbms output.put line('Placed order '||ordId||' in the queue.');
END LOOP;
END;

Running this code shows that our first five orders are now on their way into the order processing
"pipeline" of workflow steps, managed by the queue:

XML Engqueue Test in Session 1682
Placed order 101 in the queue.
Placed order 102 in the queue.
Placed order 103 in the queue.
Placed order 104 in the queue.

Placed order 105 in the queue.

Logging in from a different SQL*Plus session, we can illustrate dequeuing the orders. As shown in
Example 5.24, we execute a loop that calls xml1g.dequeue with the wait flag set to false. By
including an EXCEPTION block that includes a WHEN xmlqg.queue empty clause, we can trap and
handle this condition sensibly.

Example 5.24. Dequeuing Messages Until a Queue Is Empty

set serveroutput on

DECLARE
xmldoc xmldom.DOMDocument;
ordId NUMBER;

C NUMBER := 0;
BEGIN
dbms output.put line('XML Dequeue Test in Session '|| userenv ('SESSIONID'));

WHILE (TRUE) LOOP

-- Dequeue XML message from the 'xml msg queue' queue (Don't Wait)

xmldoc := xmlg.dequeue ('xml msg queue', wait=>false);

-- Use xpath.valueOf to look in XML message content to find ordId
ordId := xpath.valueOf (xmldoc, '/order/@id") ;

-- Processing the current message (Here just print a message!)

dbms_output.put line('Processing Order #'||ordId);

-—- Free the current XML document

xml.freeDocument (xmldoc) ;

END LOOP;
EXCEPTION
WHEN xmlg.queue empty THEN
dbms output.put line('No more orders to process.');
END;

Running this code shows the first-in, first-out nature of a queue that's been created with all
default settings, like our xml msg queue was. One by one, the messages are dequeued until we
empty the queue:

XML Dequeue Test in Session 1684
Processing Order #101
Processing Order #102
Processing Order #103
Processing Order #104
Processing Order #105

No more orders to process.

In Chapter 6 we will learn how to have Java programs enqueue and dequeue messages so Java
and PL/SQL programs can cooperate asynchronously through queues by passing XML messages.

5.5 Producing and Transforming XML Query Results

In this section, we'll briefly cover the following mechanisms available to PL/SQL in Oracle8i for
producing XML from SQL queries and for transforming XML using XSLT transformations:

e The XML SQL Utility provides capabilities to automatically deliver the results of any valid
SELECT statement as an XML document.

e The Oracle XSLT processor implements a transformation engine for XML documents that is
compliant with the W3C XSLT 1.0 Recommendation (see

http://www.w3.0rg/TR/1999/REC-xsIt-19991116), and that allows you to transform XML
in one format into XML, HTML, or plain text of another format.

These topics are covered in detail in Chapter 7, and Chapter 9, so here we will focus mostly on the
basic PL/SQL syntax of working with the XML SQL Utility and the Oracle XSLT processor. First,
we'll cover the steps required to verify that these facilities are properly installed in your database,
then we'll cover simple examples of their use.

5.5.1 Installing the XML SQL Utility and XSLT Processor

First, check to see if the Oracle XML SQL Utility is already installed in your Oracle8i database by
doing the following:

1. Connect to your Oracle8i database with SQL*Plus:

sglplus xmlbook/xmlbook

2. Check the status of the oracle.xml.sql.query.OraclexMLQuery class by running the
following SQL statement:

3. SELECT SUBSTR (dbms_java.longname (object name),1,35) AS class, status
4. FROM all objects
5. WHERE object type = 'JAVA CLASS'

AND object name =
dbms java.shortname ('oracle/xml/sgl/query/OracleXMLQuery")

You should see the result:

CLASS STATUS

oracle/xml/sqgl/query/OracleXMLQuery VALID

If instead you see the SQL*Plus message no rows selected, skip the following verification
step and proceed to the steps in the next list to install the Oracle XML SQL Utility in your
Oracle8/ database.

6. Try to describe the xml1gen package from the SQL*Plus command line:

DESCRIBE xmlgen

If you see a description of the procedures and functions in the xmlgen package, then the Oracle
XML SQL Utility is already installed and is ready to be used. You do not need to complete any
further installation steps.

If instead you get an error like ORA-04043: object xmlgen does not exist, complete the
following steps to install the Oracle XML SQL Utility in your Oracle8/ database:

1. Make sure you've already loaded the Oracle XML Parser for Java into Oracle8i.

The XML SQL Utility depends on it, but we did this earlier in this chapter, so you should be
set.

2. Download the latest release of the Oracle XML SQL Utility from
http://technet.oracle.com/tech/xmil:
o If your database is Oracle8i Release 2 (8.1.6) or later, download the XSU12.tar.gz
or XSU12.zip
o If your database is Oracle8i Release 1 (8.1.5), download the XSU111.tar.gz or
XSU111.zip
3. Extract the .zip or the .tar.gz file into a convenient directory.
4. Change directory to the ./lib subdirectory of the distribution.
5. Load the xsul2.jar file (or xsulll.jar for 8.1.5) into your schema:

loadjava -verbose -resolve -user xmlbook/xmlbook xsul2.jar

6. Run the SQL script to create the XML SQL Utility PL/SQL package:

sglplus xmlbook/xmlbook @xmlgenpkg.sqgl

Repeat the previous test to confirm that you can now describe the xml1gen package, so the XML
SQL Utility is ready to be used in the server.

Installation for the Oracle XSLT processor is very simple, since its implementation is an integrated
part of the Oracle XML Parser for Java and its PL/SQL API is an integrated part of the Oracle XML
Parser for PL/SQL packages.

We do not need to install the Oracle XSLT processor separately. It's already properly installed if
the Oracle XML Parser for PL/SQL is working on your system.

5.5.2 Producing XML from SQL Queries

Let's assume that the conference abstract submission system we built earlier in this chapter
needs to coordinate over the Web with another system that is managing the abstract selection
process. We need to post the accepted submissions as we receive them to the other system's
server using our xml http.post routine.

Because of the processing and reporting that we want to do on the accepted submissions, we
have chosen to save the information from the accepted submissions into an accepted_submission
table in our database. In this way, we enable our existing tools and applications to easily make
use of the data, instead of retrofitting them or rewriting them to understand how to work with the
XML-based <Submission> documents that authors submit through our web site.

So, for an accepted submission that we've received and processed, we need to take the relevant
data in our accepted_submission table and send it in XML format to the other server. Luckily, the
XML SQL Utility's xm1gen package makes this SQL-to-XML job straightforward with its get XML
function. In fact, the submissionxML function in Example 5.25 is all the code we need to select the
appropriate data from accepted_submission for a particular submission ID and produce it as an
XML document.

Example 5.25. Serving SQL Query Results for an Accepted

Submission in XML

CREATE OR REPLACE FUNCTION submissionXML(id NUMBER) RETURN CLOB IS
query VARCHAR2 (100) ;
BEGIN
query := 'SELECT *
FROM accepted submission
WHERE id = '|[|]id;

RETURN xmlgen.getXML (query) ;
END;

Here we've done a SELECT * query, but the XML SQL Utility can handle any query that is valid to
execute against the Oracle database and produce the XML for its results. As with the PL/SQL
functions earlier, we can use these queries inside other PL/SQL programs as well as directly inside
SQL statements like this one:

SELECT submissionXML (600) FROM DUAL

which produces the following dynamic XML document:

SUBMISSIONXML (600)
<?xml version = '1.0'?>
<ROWSET>
<ROW num="1">
<ID>600</ID>
<TITLE>Using XPath Expressions as Validation Rules</TITLE>
<PRESENTER>Steve Muench</PRESENTER>
<EMAIL>smuench@yahoo.com</EMAIL>
<ABSTRACT>By storing XPath expressions in a database table,
grouped into "rule setsé", data-driven validation rules
can be applied to an XML document by iterating over the list of

rules in a rule set and testing whether each XPath expression is

true or false.</ABSTRACT>
</ROW>
</ROWSET>

In Chapter 11, we cover all of the various options available with the XML SQL Utility that control
how it converts SQL to XML—for example, whether the tags are generated in upper- or lowercase,
what tag should be used for each row of the result, etc.—but for now, we'll just use the default
settings.

The xmlgen package supports SQL statements with named bind variables, too, so we can rewrite
Example 5.25 as follows to use a bind variable :id instead of concatenating the value of the id
parameter as literal text into the SELECT statement:

CREATE OR REPLACE FUNCTION submissionXML (id NUMBER) RETURN CLOB IS
query VARCHAR2 (100) ;
BEGIN
query := 'SELECT *
FROM accepted submission
WHERE id = :id';

xmlgen.clearBindValues;

xmlgen.setBindValue ('id', id) ;
RETURN xmlgen.getXML (query) ;
END;

Next we'll see how to use an XSLT transformation in combination with the XML SQL Utility to
produce dynamic XML documents from SQL queries that comply with any needed XML format.

5.5.3 Transforming XML Using XSLT

Chapter 7 and Chapter 9 go into detail about using XSLT transformations to morph the original

XML structure of a document into any other XML, HTML, or text format you need to deliver the

information. Here we'll cover a simple example for the purpose of seeing how to tap into this XSLT
transformation functionality from within PL/SQL.

The company with whom we are coordinating over the Web to handle the abstract selection
process expects to receive information on the abstract submissions in their standard
<TechnicalPaper> submission format, which looks like this:

<TechnicalPaper Id="101" Conference="XML Europe">
<Subject>XSLT For Fun and Profit</Subject>

<Presenter Email="smuench@yahoo.com">

<Name>Steve Muench</Name>
</Presenter>

<Summary>

This paper discusses the fun and profit
that are yours for the taking by cleverly
applying XSLT Transformations to database-driven

XML information.

</Summary>

</TechnicalPaper>

The selection company's servers are not configured to handle information in the default
ROWSET/ROW format produced by the XML SQL Utility, so we'll need to transform the resulting XML
to deliver it in the format the company requires.

To help us out, the selection company has provided us with TechnicalPaper.dtd, an XML document
type description (DTD) that illustrates exactly the XML format they expect to receive from our
system. Using a tool like XML Authority, we can view the expected document structure, as shown

in Figure 5.5.

Figure 5.5. Viewing structure of TechnicalPaper DTD using

XML Authority

TechnicalPaper. did - XML Authority H=E
Fie Edil “iew Tooks ‘Mndow Help
N = H S o =] Owerview (=] Aftrbules 3 Adwanced 9 hlotes
Al Module
4 ded
=Nl =chnicalFaper &
=1 1d Subject
=] Conference . [
&3 Subjoct TechnicalFaper Presenter Mame
= £ Presenter 5
Summa
=] Email v
= Mama
£ Summary
J ElementType = Test = Elem, Cortent Model
echmcﬂpaéer v (Subject, Presenter | Summary)
Subject v
Presenter v (Marme
Mame o
Summary o

We can even use XML Authority's File 9Export 9Examp/e XML Document... to produce a
skeleton XML file to work with in the expected format. Here is the example XML document

produced by the tool for the TechnicalPaper.dtd file:

<?xml version ="1.0"?2>
<!DOCTYPE TechnicalPaper SYSTEM "TechnicalPaper.dtd">
<!-- Generated by XML Authority -->
<TechnicalPaper Id = "string" Conference = "string">
<Subject>only text</Subject>
<Presenter Email = "string">
<Name>only text</Name>
</Presenter>
<Summary>only text</Summary>

</TechnicalPaper>

We can easily edit this skeleton XML document to turn it into the TechnicalPaper.xsl stylesheet in
Example 5.26. This XSLT stylesheet will transform the default XML SQL Utility output we saw
earlier into the expected <TechnicalPaper> format that our business partner needs.

Example 5.26. Stylesheet to Transform ROWSET/ROW to

TechnicalPaper

<!-- TechnicalPaper.xsl -->
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="1.0">
<xsl:output indent="yes" doctype-system="TechnicalPaper.dtd"/>
<xsl:param name="Conference"/>
<xsl:template match="/ROWSET/ROW">
<TechnicalPaper Id="{ID}" Conference="{$Conference}">
<Subject><xsl:value-of select="TITLE"/></Subject>
<Presenter Email="{EMAIL}">
<Name><xsl:value-of select="PRESENTER"/></Name>
</Presenter>
<Summary><xsl:value-of select="ABSTRACT"/></Summary>
</TechnicalPaper>
</xsl:template>
</xsl:stylesheet>

We'll learn a lot more about how to create such a transformation in Chapter 7, but for now just
notice that the stylesheet looks like a skeleton example of the target XML document that has been
sprinkled with special <xsl:value-of> tags and simple XPath expressions inside curly braces to
plug values from the source document (in <ROWSET>/<ROW> format) into the desired tags of
the target document (in <TechnicalPaper> format).

We can load the TechnicalPaper.xsl stylesheet from the XMLFILES directory on our database
server machine into our xml_documents table with a document name of
'TechnicalPaperTransform' by issuing the command:

BEGIN
xmldoc.save ('TechnicalPaperTransform',
BFileName ('XMLFILES', 'TechnicalPaper.xsl'));
END;

Now we're ready to show how to leverage the Oracle XSLT processor inside the database to
perform the transformation using the stylesheet we just created and loaded into our
xml_documents table. The raw ingredients are provided by the Oracle XML Parser for PL/SQL's
xslprocessor package, but as we've done before, to put the most commonly used facilities right
at our fingertips we can create a final xs1t helper package, as shown in Example 5.27. It contains
helper functions to do the following:

e Create an XSLT stylesheet object from its XML source in a VARCHAR2, CLOB, BFILE,
xmldom.DOMDocument, or from a URL

e Transform an XML document using an XSLT stylesheet object, producing the result in plain
text format

e Transform an XML document using an XSLT stylesheet object, returning the transformed
XML document as an xmldom.DOMDocument for further processing

e Create a parameter list to pass to a transformation to support parameterized stylesheets

e Free the memory used by an XSLT stylesheet when you're done using it

Example 5.27. The xslIt Helper Package Specification

CREATE OR REPLACE PACKAGE xslt AS
TYPE name value IS RECORD(NAME VARCHARZ (40), VALUE VARCHAR2 (200));
TYPE paramlist IS TABLE OF name value INDEX BY BINARY INTEGER;
none paramlist;

-— Return an XSLT stylesheet based on XML document of the stylesheet source

FUNCTION stylesheet (doc xmldom.DOMDocument) RETURN xslprocessor.Stylesheet;

(
FUNCTION stylesheet (doc VARCHARZ) RETURN xslprocessor.Stylesheet;
FUNCTION stylesheet (doc CLOB) RETURN xslprocessor.Stylesheet;
FUNCTION stylesheet (doc BFILE) RETURN xslprocessor.Stylesheet;
FUNCTION stylesheetFromURL (url VARCHARZ) RETURN xslprocessor.Stylesheet;

-- Transform an XML Document by an XSLT stylesheet, returning a String

FUNCTION transform(source xmldom.DOMDocument,

style xslprocessor.Stylesheet,

params paramlist := none) RETURN VARCHAR2;
FUNCTION transform(source VARCHARZ,

style xslprocessor.Stylesheet,

params paramlist := none) RETURN VARCHARZ2;
FUNCTION transform(source CLOB,
style xslprocessor.Stylesheet,

params paramlist := none) RETURN VARCHARZ2;
-— Transform an XML Document by an XSLT stylesheet, returning an XML doc

FUNCTION transformToDOM (source xmldom.DOMDocument,
style xslprocessor.Stylesheet,
params paramlist := none)
RETURN xmldom.DOMDocument;

FUNCTION transformToDOM (source VARCHARZ,
style xslprocessor.Stylesheet,
params paramlist := none)
RETURN xmldom.DOMDocument;

FUNCTION transformToDOM (source CLOB,
style xslprocessor.Stylesheet,
params paramlist := none)

RETURN xmldom.DOMDocument;
-- Return a paramlist to be used for a transformation.

FUNCTION params (nl VARCHARZ, vl VARCHARZ,
n2 VARCHARZ2:=NULL, v2 VARCHARZ2:=NULL,
n3 VARCHARZ2:=NULL, v3 VARCHARZ2:=NULL,
n4 VARCHARZ2:=NULL,v4 VARCHARZ2:=NULL,
n5 VARCHARZ2:=NULL,v5 VARCHAR2:=NULL) RETURN paramlist;

-— Release the memory used by a Stylesheet
PROCEDURE freeStylesheet(style xslprocessor.Stylesheet);
END;
As before, you'll find the full source code for the xs1t package body in Appendix A.
With these useful facilities of our xs1t helper package in hand, we can modify our original
submissionxXML function that we created in the previous section to apply the TechnicalPaper.xsl/

transformation before returning the result to the requester. The modified version appears in
Example 5.28.

Example 5.28. Modified submissionXML Function Uses the xslt

Helper Package

CREATE OR REPLACE FUNCTION submissionXML(id NUMBER) RETURN VARCHAR2 IS
query VARCHARZ2 (100) ;
queryXML xmldom.DOMDocument;

stylesheet xslprocessor.Stylesheet;

retval VARCHARZ (32767) ;
BEGIN
query := 'select *

from accepted submission
where id = :id’';
xmlgen.clearBindValues;
xmlgen.setBindvValue ('id', id) ;
-- (1) Create the stylesheet from TechnicalPaper.xsl loaded by
-- name from the xml documents table.
stylesheet := xslt.stylesheet (xmldoc.get ('TechnicalPaperTransform'));
-— (2) Transform the xmlgen.getXML (query) results by the stylesheet,
- passing the value of "XML Europe" for the top-level stylesheet
- parameter named 'Conference'
retval := xslt.transform(xmlgen.getXML (query),
stylesheet,
xslt.params ('Conference', 'XML Europe')):;
-— (3) Free the stylesheet
xslt.freeStylesheet (stylesheet)
-- Return the transformed result
RETURN retval;
END;

Notice that we've added code to do the following:

1. Create an XSLT stylesheet object from the TechnicalPaper.xs! stylesheet, loaded by name
from our xml_documents table using xmldoc.get:

stylesheet := xslt.stylesheet (xmldoc.get ('TechnicalPaperTransform'));

2. Transform the results returned from xmlgen.getXML (query) by the stylesheet, passing

'XML Europe' as the value for the top-level stylesheet parameter named conference:
3. retval := xslt.transform(xmlgen.getXML (query),

stylesheet,

xslt.params ('Conference', 'XML Europe')):;

5. Free the stylesheet when we're done:

xslt.freeStylesheet (stylesheet);

To exercise the new version of submissionxML, we can just try to select a submission by number
from the dual table using the function:

SELECT submissionxml (600) FROM dual

which gives the resulting XML document in precisely the <TechnicalPaper> format needed by our
business partner:

SUBMISSIONXML (600)
<?xml version = '1.0' encoding = 'UTF-8'?>
<!DOCTYPE TechnicalPaper SYSTEM "TechnicalPaper.dtd">
<TechnicalPaper Id="600" Conference="XML Europe">

<Subject>Using XPath Expressions as Validation Rules</Subject>

<Presenter Email="smuench@yahoo.com">

<Name>Steve Muench</Name>

</Presenter>

<Summary>By storing XPath expressions in a database table, grouped into
"rule sets", data-driven validation rules can be applied to an XML document by
iterating over the list of rules in a rule set and testing whether each XPath
expression is true or false.</Summary>

</TechnicalPaper>

At this point, we could easily combine functionality of our xm1 http package and our
submissionxML function to post abstract submissions over the Web as we submit them to our
partner in the expected XML format.

Chapter 6. Processing XML with Java

In its relatively brief history, Java has become a dominant programming language for new
software development projects and the main language taught to waves of hew programmers in
universities. Initially conceived as a portable language for client-side agents and user interfaces,
Java's most rapid adoption has been for writing complex, server-side applications. Since nearly
any interesting server-side application makes heavy use of a relational database, Oracle
responded to the strong demand for server-side Java and database integration by introducing
Oracle8i 's JServer product and has moved quickly to provide support for Java servlets and Java
Server Pages (JSPs) in its application server offerings. Starting with Oracle8/ version 8.1.5,
JServer has been provided with the database.

XML emerged in the age of Java and has been nearly inseparable from it. It is frequently said that,
" Java is portable code, and XML is portable data"—a natural fit. In fact, from the beginning, the
majority of software tools available for processing XML have been Java-based, and that tradition
continues today. Vendors like Oracle and IBM—as well as organizations like the Apache Software
Foundation—have done all of their XML innovation in Java first, with other language
implementations—C, C++, PL/SQL, Perl, and others—being delivered in later phases. Given
these dynamics, it's not hard to figure out why Oracle8i 's integration of rich server-side support
for the industry's new standard for information exchange (XML) with the most popular
server-side programming language (Java) and the existing standard for data access and
manipulation (SQL) has caught a lot of developers' attention. The fact that Java and PL/SQL can
be used together seamlessly inside Oracle8/ means that existing Oracle developers and DBAs can
learn Java at their own pace while new college grads dive headlong into Java.

By the end of this chapter, you'll understand how to combine Java, JDBC, SQL, and XML—both
outside and inside Oracle8i—in order to:

e Load external XML files into the database

e Parse XML using the Oracle XML Parser for Java

e Search XML documents in memory using XPath expressions

e Post an XML message to another server and get an XML response back
¢ Enqueue and dequeue XML messages from Oracle AQ queues

In addition, we'll cover the basic mechanics of producing XML automatically from SQL queries and
transforming the results into any desired XML structure using XSLT stylesheets. These two topics
are also covered in full in their own chapters later in the book.

6.1 Introduction to Oracle8i JServer

Before jumping into XML-specific Java programming with Oracle, you need to understand exactly
what Oracle8/ JServer is and what options exist for the Java programmer regarding:

e Where Java code can be deployed
e How the deployed Java code talks to the database
¢ How the deployed Java code can be accessed by clients

Then we'll cover the basics of connecting to the Oracle8i database and the fundamentals of
working with CLOBs—Oracle8i 's native datatype for large character data documents like XML
documents.

6.1.1 What Is JServer?

JServer is Oracle's Java virtual machine (VM), the execution environment for Java code that runs
in the same process space as the Oracle8/ database server. While functionally compatible with
any Java VM, JServer was completely written from scratch to exploit and tightly integrate with
Oracle's scalable and reliable server infrastructure. This makes Java in Oracle8i a safe choice for
server programming. Logging into Oracle8i Release 2 or later using the SQL*Plus command-line
tool, we can see that JServer announces itself as a built-in part of the database server:

SQL*Plus: Release 8.1.6.0.0 - Production on Fri Apr 14 21:31:51 2000
(c) Copyright 1999 Oracle Corporation. All rights reserved.
Connected to:

Oracle8i Enterprise Edition Release 8.1.6.0.0 - Production

With the Partitioning option

JServer Release 8.1.6.0.0 - Production

SQL>

Of course, Oracle has been a programmable database server since version 7.0, which introduced
PL/SQL, but in Oracle8i, Java joins PL/SQL as a peer in this capacity. Any server contexts where
PL/SQL can be used—stored procedures, functions, packages, triggers, and object types—can
now be written using Java as well. Besides the obvious differences in language syntax, the key
difference for programmers between PL/SQL and Java is that Java programs that access Oracle
data and process XML can run unchanged both outside and inside the database.

Figure 6.1 shows where your Java code can run and what options are available for integrating
Java with Oracle database data.

Figure 6.1. Understanding where Java runs and how it talks to

Oracle
Your Java Code Your Java Code
JOBG 1.x Interfaces JOBC 2.0 Interfaces

JOBC (oci8) JOBG (thin) JDEC (thin) JDBG (ocis)

Any 1.1 or 1.2 Java Vi

Data transferred with
network roundtnp

Your Java Gode
' JOBG 2.0 Intarfaces
' JOBG (nativekprh)

H "‘ JSarver 1.2 Java VIV

Data accessed from
101 SMITH senser caches

119 JONES in mamory

Your Java code can run outside the database or inside JServer. In either case, your code uses the
standard JDBC (Java DataBase Connectivity) interfaces to access and manipulate Oracle data.
These interfaces are exactly the same both outside the database and inside JServer, so your
database-centric Java code can work unchanged in either place. The key differences lie in the
implementation details:

e Outside the database, you can use a Java 1.1- or Java 1.2-based JDK. Inside JServer, your
code runs on its Java 1.2-compliant virtual machine.

e Outside the database, you can use either JDBC 1.x or JDBC 2.0 drivers. Inside JServer,
use the built-in JDBC 2.0-compliant driver.

e Outside the database, you can choose the pure-Java thin driver or the ocig8 JDBC driver
implementation. Inside JServer, use the built-in native driver.

While the drivers support identical JDBC interfaces, a big difference in the implementation of the
thin and oci8 drivers used outside the database and the native driver used inside the database is
the mechanism for data transport. Your code running outside the database sends and receives
data over a network connection, while the native driver in JServer accesses data from the

Oracle8/ server's in-memory caches. Data-intensive Java code can perform better when it is
sitting right on top of the data being manipulated inside of JServer, instead of sending and
receiving the data in packets over the network.

Lty

- Developers using a version of Oracle prior to Oracle8i do not

. have the option of running Java inside the database. However,

4 since almost everything we explore in this chapter works
unchanged outside the database as well, you can run programs
that way just fine.

Figure 6.2 illustrates the different deployment scenarios for Java code using Oracle8i. Your code
can be deployed inside JServer as:

e Java stored procedures, accessed from SQL and PL/SQL through JDBC

e CORBA servers, accessed through a CORBA remote interface by a client

e Enterprise Java Beans, accessed through an EJB remote interface by a client
e Java servlets (in Oracle8i Release 3, version 8.1.7), accessed through HTTP

Your code can also be run outside JServer anywhere Java is supported and can connect to the
database using JDBC, CORBA, or EJB.

Figure 6.2. Available deployment scenarios for Java code with

OracleS8i
A — = JSery OJSP .isp ;
HTTP.fI TPS servlets, JSPs, or any Java code
w

Oracle Infermet
Application
Server

Apache

[mod_iserv | [g
W thinsocid

CORBA
Remate
Interface

EJE
Remaote
Imterface

i

iﬂracle Serviet Engine Java
: Stored
; Serviet 0JSP Procedure

MNetd

]

5P

hoe

CORBA
Server

JServer 1.2x Java VM

pour data

AMIMNOP .

Enterprise
Java Bean

Any supparting Java coda

While the details of JServer CORBA and EJB are beyond the scope of this book, Java stored
procedures—due to their simplicity and wide-ranging uses—are the most interesting option here,
and are an ideal choice for existing Oracle customers in any event.

Simply put, a Java stored procedure is a PL/SQL stored program specification, with a Java static
method implementation for the body. Since it has a PL/SQL specification, it appears to SQL and
PL/SQL as an indistinguishable twin of its pure-PL/SQL counterpart. Since it has a Java
implementation, it can leverage the rich functionality in the JDK classes or any supporting Java
classes that you load into the server. Java stored procedures can be functions or
procedures—either top-level or contained in packages—as well as triggers or object type bodies.
Figure 6.3 shows how a Java stored procedure works. After loading the someClass Java class into
JServer, you publish the Java stored procedure to the SQL and PL/SQL world as follows:

e Create a procedure as you normally would, but use the AS LANGUAGE JAVA syntax to
associate the PL/SQL specification with the Java implementation.

e Use the AUTHID CURRENT_USER or AUTHID DEFINER clause to indicate whether the
procedure should run with the privileges of the user invoking the routine (new in Oracle8/)
or of the user who created the procedure.

e Supply the NAME ' Class.Method(Args) ' clause to indicate the static method in the class
that provides the implementation. This also serves to indicate the desired datatype
mapping between PL/SQL arguments (and function return values, if applicable) and Java
object arguments.

Figure 6.3. Publishing a Java static method as a Java stored

procedure
PL/SOL ,
Do_Something{ 'test’, 55, xmlelob) ;
CREATE FROCEDURE
do_Something{ a VARCHARZ, b WUMEBER, < IN OUT HOCOPY CLOB)

AUTHID CURRENT_USER
AS LAMGUAGE JAVA MAME

'SemeClass.doit (java.lang.String, java.lang. Integer, sracle.sgl .CLOEB[])'

Java ,
public class SomeClass |
public static deit{ String a, Integer b, CLOE[] c} {
£/ Java Code Here. Can Use Any Other Classes
c[0] = someClobGoinglul;
}
¥

Once you've published the Do Something procedure, you can invoke it as you would any other
stored procedure. As we'll see later, JDeveloper automates all of these steps for you to make the
job as easy as a single menu selection.

6.1.2 Connecting to the Database in Java

In contrast to Chapter 5, whose PL/SQL examples always run inside the database in the context
of the currently connected database user, Java code can execute either outside or inside the
Oracle8i database. When acquiring a database connection using the JDBC
DriverManager.getConnection method, code running outside the database chooses either the
Oracle ocisg driver or the pure-Java thin driver by using an appropriate JDBC connection string:

e Jjdbc:oracle:oci8:

e jdbc:oracle:thin:

Code running inside the database uses a special, in-memory JDBC driver implementation called
the JServer Native Driver whose driver string is jdbc:oracle:kprb:. Since code running inside
the database is already running in the context of a currently connected database user, no
username or password is required. Examples of complete JDBC connection strings using these
three drivers are:

e Jjdbc:oracle:oci8:scott/tiger
e Jjdbc:oracle:thin:scott/tiger@xmlapps:1521:0RCL
e Jjdbc:oracle:kprb:

To write Java code that can work without code changes both outside and inside Oracle8i, we can
isolate the JDBC connection details into a helper class like the Examples class in Example 6.1.

Example 6.1. Examples Class Hides JDBC Connection Details

import java.sqgl.*;
import java.util.*;
import oracle.jdbc.driver.*;

public class Examples {

// Return a JDBC Connection appropriately either outside or inside Oracle8i

public static Connection getConnection() throws SQLException {
String username = "xmlbook";
String password = "xmlbook";
String thinConn = "jdbc:oracle:thin:@localhost:1521:0RCL";
String default8iConn = "jdbc:oracle:kprb:";
Connection cn = null;
try {

// Register the JDBC Driver
Driver d = new oracle.jdbc.driver.OracleDriver();

// Connect with the Native (kprb) Driver if inside Oracle8i

if (insideOracle8i()) {

cn = DriverManager.getConnection (default8iConn) ;
}
else { // Connect with the Thin Driver
cn = DriverManager.getConnection (thinConn,username, password) ;

}
// Make sure JDBC Auto-Commit is off.
cn.setAutoCommit (false) ;
return cn;
}
catch (Exception e) {throw new SQLException ("Error Loading JDBC Driver"); }
}
public static boolean insideOracle8i() {

// If oracle.server.version is non-null, we're running in the database

String ver = System.getProperty("oracle.server.version");
return (ver != null && !ver.equals(""));
}
}
o You may be wondering, "Is the Java class in Example 6.1

- . . . n
W 4. missing a package declaration?" Yes and no. To keep Java class

names short, all of the examples in the book use classes that
are not declared to be part of a specific package. This is okay; it
is still legal Java and saves some typing.

Examples.getConnection detects that it's running inside the Oracle8i server by checking
whether the oracle.server.version system property is defined. This property provides the

major and minor version humber of the Oracle database we're connected to, (for example, 8.1.5,

8.1.6, etc.), and will only exist when we're running inside the database.
Examples.getConnection uses the insideOracle8i method to decide which connection string
to use. All of the Java examples in this chapter and others call Examples.getConnection to
acquire their JDBC connection appropriately for the context in which they are running.

i To run the examples, you may have to edit the thinConn JDBC
L &

database connection string in the Examples.java code. That
string assumes that your database is on the current machine,

localhost, has a SID of orCL, and is listening for connections

on port 1521.

6.1.3 Reading XML from and Writing XML to CLOBs

The Oracle8i built-in Character Large Object (CLOB) datatype offers a way to store character data
like XML documents of any size from one character to four gigabytes. Since CLOB is the principal
datatype used for storing XML documents or document fragments in the server, here we'll explore
the basics of reading and writing CLOBs in Java.

Oracle's JDBC driver provides built-in support for:

e Reading the contents of a CLOB as an InputStream Or Reader
e Writing the contents of an outputStream or Writer to a CLOB

To work with an existing CLOB column value, you select it into a variable of type
oracle.sql.CLOB using a SELECT statement with an appropriate WHERE clause to identify the
row(s) you want to work with. For example:

SELECT docname /* VARCHAR2 */, xmldoc /* CLOB */
FROM xml documents
WHERE docname /* Primary Key Column */ = ?

What you select from the database is not immediately the entire contents of the CLOB, but just a
handle to the actual contents, called the /ocator. You access the contents of the CLOB by calling
one of the following methods on the instance of the CLOB locator:

YourClob.getCharacterStream()

To return a character-based Reader
YourClob.getAsciiStream()

To return a byte-based InputStream

Neither of these method names seems like a good name for what it actually returns, but that's
what we have to work with. Example 6.2 shows the ReadCcLOB class, whose fromColumn method
allows you to pass the name of any table, CLOB column in the table, and primary key column
name in the table. It returns a Reader on the value of the CLOB in the row whose primary key
column matches the primary key value passed in. The companion fromColumnAsInputStream
method does the real work of using a JDBC pPreparedStatement to construct an appropriate
SELECT statement and to select the CLOB value to return.

Example 6.2. Reading a Stream of Characters from a CLOB

import oracle.sqgl.*;

import java.sqgl.*;

import oracle.jdbc.driver.*;
import java.io.*;

import org.w3c.dom.Document;

public class ReadCLOB {
// Read a Clob from any column in any table, returning a character Reader
public static Reader fromColumn (Connection conn, String tableName,
String colName, String idCol, String idval)
throws FileNotFoundException ({
InputStream is = fromColumnAsInputStream(conn, tableName,colName,idCol,idVal) ;
return is != null ? new InputStreamReader (is) : null;
}
// Read a Clob from any column in any table, returning an InputStream
public static InputStream fromColumnAsInputStream(Connection conn,
String tableName,
String colName,
String idCol,
String idval)
throws FileNotFoundException ({

try |
PreparedStatement p = conn.prepareStatement ("SELECT " + colName +

" FROM " + tableName +

" WHERE " + idCol + "= 2");

CLOB theClob = null;
p.setString(l,idval);
ResultSet rs = p.executeQuery();
boolean exists = false;
if (rs.next()) {

exists = true;

theClob = ((OracleResultSet)rs).getCLOB (1) ;

}
rs.close();
p.close();
if (!exists) {
throw new FileNotFoundException (idval);
}
else {

return theClob.getAsciiStream();

}
catch (SQLException s) {

return null;

Figure 6.4 shows the xml_documents table we created in Chapter 5.

Figure 6.4. Simple table for storing XML documents in CLOBs

xml_documents

docname limestamp amidoc

<?xml wersion=%1.0%7>
< I DOCTYPE chapter *Book.dtd®:=
[book/Chapterl . xml 04714700 22:30 | =chapter=

</chapters

/test/Book.dtd 04/14/00 22:30 | <'ELEMENT chapter (section+)>

/fmessages/order . xaml | 04712700 0%:11 | <order sym="ORCL® gby="31%"/=

<xzl:stylesheet version="1.0">
fatyle/febiz. xsl 04/08/,00 17:44 :
=fxgl:stylesheat=

We can retrieve the value of a document named /messages/order.xml by using our ReadCLOB
class like this:

Reader r = ReadCLOB.fromColumn (myJDBCConnection, // JDBC Connection
"xml documents", // Table Name
"xmldoc", // CLOB Column Name
"docname", // Key Column Name

"/messages/order.xml"); // Key Column Value

To write the contents of a document into a CLOB, you must first either:

¢ Insert a new row into the table containing the CLOB column, using the empty clob()
function to create a "blank" CLOB instance in the row

e Use a SELECT...FOR UPDATE statement to retrieve an existing CLOB and lock the row for
modification

Then use one of these methods on oracle.sgl.CLOB to retrieve an output stream:

e getCharacterOutputStream() to return a character-based writer
e getAsciiOutputStream() to return a byte-based outputStream

With a Wwriter or OutputStream in hand, you simply write the document's data into the CLOB's
output stream. The changes become permanent when you commit the transaction. Example 6.3

shows a companion helper class to ReadCLOB called WriteCLOB. Its fromReader method takes the
contents of any Reader and writes it into the CLOB's output stream.

Notice that the code uses the CLOB's getChunkSize method to

" determine the optimal buffer size for copying data into the
output stream. The optimal size depends on your database's
DB_BLOCK_ SIZE parameter in the INIT.ORA file.

Example 6.3. Writing Data from a Character Reader into a

CLOB

import java.sgl.SQLException;
import oracle.sgl.CLOB;

import java.io.*;

public class WriteCLOB {

// Write the contents read from a Reader into a CLOB

public static void fromReader (Reader in, CLOB theClob) throws SQLException {
// Open character output stream for writing to the CLOB
Writer out = theClob.getCharacterOutputStream();
// Read in chunks from the input and write to the output,
// asking the CLOB for its optimal ChunkSize
int chunk = theClob.getChunkSize();

char[] buffer = new char[chunk];

int length = -1;
try |
while ((length = in.read(buffer)) != -1) {

out.write (buffer, 0, length);
}
// Close streams
in.close();
out.close();
}

catch (IOException iox) { }

Since the CLOB's getOutputStream method returns a writer, we can use any Java code that can
write data to a writer to set the contents of the CLOB. For example, the following code creates
aBufferediWriter on a CLOB using its optimal chunk size and then calls the print method on the

XMLDocument object passed in to "print" the serialized text representation of the XML document
into the CLOB:

import oracle.sqgl.CLOB;
import java.io.*;

import oracle.xml.parser.v2.XMLDocument;

public class XMLDocumentToClob
public static void write(XMLDocument doc, CLOB theClob) throws Exception ({
// Open a writer for writing into the CLOB, buffering the writes using
// the CLOB's optimal chunk size.
BufferedWriter out = new BufferedWriter (theClob.getCharacterOutputStream(),
theClob.getChunkSize ());
// "print" the XML document into the clob
doc.print (new PrintWriter (out));
// Close the writer

out.close();

If you take another look at Figure 6.4 you'll see that, while the structure of the xml_documents
table is simple, it provides all we need to store useful XML documents inside the database in a
generic way. Although the table's docname column can be any String value, we could constrain
our docname string values to look like fully qualified filenames. In this way, we can think of the
value of the xml1doc CLOB column in the row of xml_documents with a docname equal to
/book/Chapterl.xml as the contents of the Chapterl.xml file in the /book directory.

We can build up a useful helper class called xMLDocuments to encapsulate the access to our
xml_documents table in a way that makes it very easy to retrieve, delete, list, and save XML
documents stored there. Building on the ReadCLOB and WriteCLOB helpers we wrote above, we
can provide methods in our new class like the following:

getReader()
To return a Reader on a CLOB in xml_documents with a given docname:

public static Reader getReader (Connection conn, String docname)
throws FileNotFoundException {
return
ReadCLOB. fromColumn (conn, "xml documents", "xmldoc", "docname", docname) ;
}
delete()

To delete a row with a given docname from the table:

public static void delete (Connection conn, String docname) throws SQLException{
PreparedStatement stmt = conn.prepareStatement ("DELETE FROM xml documents"+
" WHERE docname = ?");
stmt.setString (1l,docname) ;
stmt.execute ();
stmt.close();

conn.commit () ;

list()
To provide a list of documents matching a given docname:

public static void list (Connection conn,String docname,PrintWriter out)
throws SQLException {
PreparedStatement ps = conn.prepareStatement (
"SELECT docname, TO CHAR (timestamp, 'Mon DD HH24:MI')"
+" FROM xml documents"
+" WHERE docname LIKE REPLACE (?,'*','s'")|[]|'%s"'"
+" ORDER BY docname");
ps.setString (1, docname) ;
ResultSet rs = ps.executeQuery();
while (rs.next()) {
out.println(rs.getString(2)+" "+rs.getString(1l));
}
ps.close();
}
save()

To save the contents of any Reader as a named document in xml_documents:

public static void save (Connection conn,String docname,Reader input)
throws SQLException, SAXException {
// Delete existing row if present
delete (conn,docname) ;

// Insert a new row with empty clob()

CallableStatement stmt = conn.prepareCall (
"BEGIN " +
" INSERT INTO xml documents (docname, xmldoc) " +
" VALUES(?, empty clob()) "+
" RETURNING xmldoc INTO ?;" + // Use RETURNING...INTO to get CLOB
"END; ") ;

stmt.setString(l,docname); // Bind var in VALUES()
stmt.registerOutParameter (2,0racleTypes.CLOB); // RETURNING INTO
stmt.execute(); // Do it

// Retrieve the returned values of CLOB locator

CLOB theXMLClob = ((OracleCallableStatement)stmt).getCLOB(2) ;
stmt.close();

// Write the input to the CLOB

WriteCLOB.fromReader (input, theXMLClob);

// Commit the changes and close the connection.

conn.commit () ;

With these routines in our xMLDocuments class to encapsulate access to xml_documents, we can
build a helpful command-line tool like xMLDoc in Example 6.4 to really make our lives easier. The
XMLDoc utility will let us:

Save a file into xml_documents:

java XMLDoc save filename docname

e Retrieve a document:

java XMLDoc get docname

e List documents matching a docname:

java XMLDoc list docname

e Delete a document:

java XMLDoc delete docname

Setting Up to Run Examples

To successfully run the xMLDoc example and other command-line Java

programs in this chapter and the rest of the book, the following two
things must be true:

1. You must have a Java runtime environment properly set up.

2. You must list the fully qualified names of any directories and Java
archive (.jar) files containing classes you wish to run—as well as
classes on which these classes depend—in your CLASSPATH
environment variable.

If you have installed JDeveloper 3.1 from the CD-ROM accompanying
this book, then one option is to run the examples from within the
JDeveloper 3.1 IDE. In this scenario, everything is set up to work
properly in the workspace of example files that you downloaded from the

O'Reilly web site. If you want to run the examples from the command
line, you can simply run the .\bin\setvars.bat script to set up your
Java runtime environment correctly. If you have installed JDeveloper

into the C:\JDev directory, then the syntax to run setvars looks like this:

C:\> c:\jdev\bin\setvars c¢:\jdev

The first argument to setvars gives the name of the directory where

JDeveloper is installed. The script sets up your PATH and CLASSPATH to
properly run Java programs. However, as noted in step 2, you still may
need to add additional directories and/or .jar filenames to the
CLASSPATH environment variable in order to run particular programs.

For example, if you have compiled the examples for this chapter into the
C:\xmlbook\chO6\classes directory, and those examples depend on the
Oracle XML Parser for Java, you should add two entries to the front of the
CLASSPATH with the syntax (all on one line when you type it in):

C:\> set CLASSPATH=C:\xmlbook\chO6\classes;
C:\JDev\lib\xmlparserv2 2027.jar; $CLASSPATHS

The syntax to do this on Unix platforms will differ slightly, as will the
directory separator character, but follow the syntax you normally use on
your platform for setting environment variable values.

Example 6.4. XMLDoc Lists, Loads, Saves, and Deletes XML

Documents

import Jjava.io.*;
import Jjava.sqgl.*;
import Jjava.net.URL;
import XMLDocuments;

import oracle.xml.parser.v2.*;

// Command-line utility to get, delete, list, and save XML documents
public class XMLDoc {
public static void main (String[] args) throws Exception {
Connection conn = Examples.getConnection();
PrintWriter out = new PrintWriter (System.out);

int argCount = args.length;

if (argCount > 1) {

String filename = null;
try {
String cmd = args[0];
filename = args[1l];
if (cmd.equals("get")) {

writeReader (XMLDocuments.getReader (conn, filename) ,out) ;

}

else if (cmd.equals("list")) { XMLDocuments.list (conn, filename,out);}

else if (cmd.equals("delete")) { XMLDocuments.delete (conn, filename);}

else if (cmd.equals("save") && argCount > 2) {

String docname = argsl[2];
URL u = URLUtils.newURL (filename) ;

// From Example 6-5

Reader r = new InputStreamReader (u.openStream());

XMLDocuments.save (conn,docname, r) ;

}
catch (FileNotFoundException fnf) {

out.println("File '""+filename+"' not found.");

}

else {

out.println ("usage: XMLDoc [get|delete|list| [save file]] docname");

}

out.close(); conn.close();

}

// Write a Reader to a Writer

private static void writeReader (Reader r, Writer out)

throws IOException ({
char[] buffer = new char[8192];

int length = -1;
while ((length = r.read(buffer)) != -1) {

out.write (buffer, 0, length);

}
out.flush();

So if we just happen to have Shakespeare's A Midsummer Night's Dream in XML lying around in

the current directory (courtesy of Jon Bosak):

<?xml version="1.0"72>
<!DOCTYPE PLAY SYSTEM "play.dtd">

<PLAY>

<TITLE>A Midsummer Night's Dream</TITLE>
<l-- ... etc ... ——>
</PLAY>

we can load the files dream.xm/ and its accompanying DTD play.dtd into a "directory" named
/plays/shakespeare in our xml_documents table with these two simple commands:

java XMLDoc save dream.xml /plays/shakespeare/dream.xml

java XMLDoc save play.dtd /plays/shakespeare/play.dtd

and list the contents of /plays/shakespeare with the command:

java XMLDoc list /plays/shakespeare

which shows us the XML documents stored in CLOBs in xml_documents as if they were files with
timestamps.

Apr 14 18:39 /plays/shakespeare/dream.xml
Apr 14 18:39 /plays/shakespeare/play.dtd

So, in effect, we've built a little CLOB-based "filesystem" inside the Oracle8i database that is sure
to come in handy. In Chapter 13, we'll learn how to create an interMedia XML Search index on the
xmldoc CLOB column of the xml_documents table to enable fast XML searches over the document
content as well.

We'll see the full source code of the xMLDocuments class later in this chapter.

6.2 Parsing and Programmatically Constructing XML

The Oracle XML Parser for Java is an amazing little piece of software. It provides everything we
need to:

e Parse XML documents and DTDs

e Validate XML documents against a DTD

e Programmatically construct and manipulate XML documents
e Search XML documents using XPath expressions

e Transform XML documents using XSLT stylesheets

By the end of this chapter, we'll have done all these tasks, but in the next few sections we focus
on the first three. First, let's make sure we've got the latest version of the Oracle XML Parser for
Java software and that it's properly installed in your Oracle8i database.

6.2.1 Installing Oracle XML Parser for Java

To verify that the Oracle XML Parser for Java is properly installed in your Oracle8i database, do
the following:

1. Connect to your Oracle8i database with SQL*Plus:

sqlplus xmlbook/xmlbook

2. Check the status of the oracle.xml.parser.v2.DOMParser class by running the following
SQL statement:

3. SELECT SUBSTR (dbms_java.longname (object name),1,30) AS class, status
4. FROM all objects
5. WHERE object type = 'JAVA CLASS'
AND object name = dbms java.shortname ('oracle/xml/parser/v2/DOMParser')

If you see the result:

CLASS STATUS

oracle/xml/parser/v2/DOMParser VALID

then the Oracle XML Parser for Java is already installed and ready to be used. You do not need to
complete any further installation steps.

If instead you see the SQL*Plus no rows selected message, complete the following steps to
install the Oracle XML Parser for Java in your Oracle8i database:

1. Locate the xmiparserv2.jar file that contains the executable code for the XML Parser for
Java. You can do this in one of two ways:

o Download the latest release of the Oracle XML Parser for Java version 2 from
http://technet.oracle.com/tech/xml. You'll find the xmiparserv2.jar file in the ./lib
subdirectory of the .zip or .tar.gz file that you download.

o Use the xmliparserv2.jar file in the ./jlib subdirectory of your Oracle8i server
installation home directory. Note, however, that this may not be the latest version
available.

2. Change directory to the directory that contains the xmlparserv2.jar file you'll be installing.
3. Load the xmliparservZ2.jar file into your schema using the loadjava command:

loadjava -verbose -resolve -user xmlbook/xmlbook xmlparserv2.jar

If the 1oadjava command does not appear to work, make sure

3% that the ./bin subdirectory of your Oracle installation home is in
your system path.

Repeat the test above to confirm that the status of the class is now VALID, so the XML Parser for
Java is ready to be used in the server.

6.2.2 Parsing XML from Files, Streams, and Strings

Before we get started, it's good to get an overview of the Java packages we'll use most frequently
for basic XML processing. Table 6.1 provides a list that you'll find comes in handy over and over
again.

Table 6.1. Commonly Used Java Packages for Basic XML Processing

To do this Import this package And use these classes/interfaces

Parse and optionally validate XML

oracle.xml.parser.vZ.*|DOMParser OF SAXParser
documents

XSLStylesheet and

Transform XML documents with XSLT|oracle.xml.parser.v2.*
XSLProcessor

Work with the individual nodes in the

. Document, Element
"tree" of an XML document's "object jorg.w3c.dom. * ' '

Attribute, Text, etc.

model"
Work with URLs java.net.* URL
Work with input and output streams | L Reader, InputStream, Writer,
java.lo.
of characters or bytes OutputStream, etc.
Handle generic parsing events
]] InputSource and
and/or catch generic parsing org.xml.sax.*

. SAXParseException
exceptions

The Oracle XML Parser for Java supplies the oracle.xml.parser.v2 package classes; the other
most commonly used packages are not Oracle-specific:

e The java.net and java.io packages are part of the standard JDK.

e The org.w3c.dom package of Document Object Model (DOM) interfaces is available from
the W3C web site at http://www.w3.0rg/TR/REC-DOM-Level-1/java-binding.zip.

e The org.xml.sax package of Simple API for XML interfaces is available from
http://www.megginson.com/SAX/saxjava-1.0.zip.

You don't really have to download the org.w3c.dom and org.xml.sax packages, however; for
your convenience, Oracle includes them in the Oracle XML Parser for Java's xmlparserv2.jar file
archive. With this public service message out of the way, we're ready to start parsing.

Recall a slightly modified version of our FAQWithMultipleEntities.xml/ file from Chapter 2:

<?xml version="1.0"7?>
<!DOCTYPE FAQ-List SYSTEM "FAQ-List.dtd"[
<!ENTITY jdev "Oracle JDeveloper'">
<!ENTITY ver "3.1">
<!ENTITY lastyears SYSTEM "1999-Questions.xml">
<!ENTITY webg and a SYSTEM "http://xml.us.oracle.com/webquestions.xml">
1>
<FAQ-List>
<FAQ Submitter="smuenchloracle.com">
<Question>Is it easy to get started with XML?</Question>
<Answer>Yes!</Answer>
</FAQ>
<FAQ Submitter="smuenchloracle.com" Level="Neophyte">
<Question>What is the current version of &jdev;?</Question>
<Answer>The current version is &jdev; &ver;</Answer>
</FAQ>
&webg_and a;
&lastyears;

</FAQ-List>

Parsing the file requires three basic steps:

1. Construct an instance of the boMpParser class.

2. Create a rFileReader to read the file we want to parse.

3. Parse the stream of XML in the FileReader by calling the DOMParser's parse method:
4. import oracle.xml.parser.v2.*;

5. import org.xml.sax.SAXParseException;

6. import java.io.FileReader;

7.

8. public class ParseFAQ {

9. public static void main(String[] args) throws Exception ({
10. String filename = "FAQWithMultipleEntities.xml";

11. // (1) Create a new XML Parser

12. DOMParser dp = new DOMParser();

13. // (2) Open a Reader on the file (assuming its in current directory)
14. FileReader fileRdr = new FileReader (filename) ;

15. try {

16. // (3) Attempt to parse the stream

17. dp.parse (fileRdr) ;

18. System.out.println ("Parsed ok.");

19. }

20. catch (SAXParseException spe) {

21. System.out.println (spe.getMessage());

22. }

23. }

However, running this code fails with the error:

Error opening external DTD 'FAQ-List.dtd'.

Let's look again at the line:

<!DOCTYPE FAQ-List SYSTEM "FAQ-List.dtd"[

Since the sysTeEM Identifier for the pocTyPE does not refer to an absolute URL, the relative
reference to "FAQ-List.dtd" here means, intuitively, "Find FAQ-List.dtd in the same directory as
the current file." If you double-check, you'll see that FAQ-List.dtd is indeed in the same directory
as the file we're parsing. The problem is that since we fed the XML Parser a stream of characters
by calling:

dp.parse (fileRdr); // Parse a stream of characters

it has no way of inferring the filename from the sequence of characters we fed it. Without
understanding the filename it's currently parsing, it's logical that the parser also has no way of
knowing what directory the source XML is coming from. Without knowing the name of the current
directory, it is impossible for the parser to figure out what "find the DTD in the same directory as
the current file" means, so it gives up by complaining that it cannot find the external DTD.

The solution to the problem is to call the setBaseURL method on the poMParser we're currently
using to help it find the filename that corresponds to the stream of characters we're asking it to
parse:

// Help the parser know what file:// URL this stream represents
dp.setBaseURL (urlForFile (filename)) ;

The setBaseURL method expects a URL object, which in the case of a file URL looks like
file:///somedir/somefile.ext. We can use a method like urliForFile below to convert a
name like file.xml into the proper file URL it represents (including the full absolute path to the
directory it lives in) with a little code, like this:

private static URL urlForFile(String filename) throws MalformedURLException {
// Get the absolute path of the file
String path = (new File(filename)) .getAbsolutePath();
// If directory separator character is not a forward slash, make it so.
if (File.separatorChar != '/') {
path = path.replace(File.separatorChar,'/");
}
// Add a leading slash if path doesn't start with one (e.g. E:/foo/bar)
if (!path.startsWith("/")) {
path = "/"+path;

}
// Return the file URL
return new URL("file://" + path);

After we make these changes to our program, rerunning it to parse our file with an external DTD
gives a successful result. Note that while these examples have focused on using a FileReader,
the poMparser cares only that the object you pass in is a Reader of some kind, so any valid
Reader subclass is easy to pass in for parsing. In fact, either a Reader or an InputStream can be
used. Just be sure to call setBaseURL to tell the parser what it's parsing in case the document has
any external resources (DTD or external entities) to read in from locations relative to the current
document's location.

Since we'll end up using this uriForFile logic over and over in our examples, it makes sense to
create a URLUtils helper class with a newURL method that takes any URL in string form, and
returns a valid URL object that it represents. In particular, for URLs with no protocol, the code in
Example 6.5 assumes the reference is to a file, and it determines the appropriate file URL.

Example 6.5. Helper Class to Handle String-based URLs

Intelligently

import java.io.*;
import java.net.*;
public class URLUtils {
// Create a new URL from a string
static URL newURL (String filename) throws MalformedURLException
{
URL url = null;
try {
// First try to see if filename is *already* a valid URL
url = new URL(filename) ;
}
// If not, then assume it's a "naked" filename and make a URL
catch (MalformedURLException ex) {
// Get the absolute path of the file
String path = (new File(filename)) .getAbsolutePath();
// If directory separator character is not a forward slash, make it so.
if (File.separatorChar != '/") {
path = path.replace(File.separatorChar,'/");
}
// Add a leading slash if path doesn't start with one (e.g. E:/foo/bar)
if (!path.startsWith("/")) {
path = "/"+path;

}

// Construct the file URL

url = new URL("file://"™ + path);
}

return url;

Now we can immediately put URLUtils to work in an example that shows another way to use the
DOMParser. In this example, we'll parse a URL directly, rather than send it in a character stream.
While we're at it, since it's just one extra line of code, let's ask the poOMParser to perform
validation against the DTD as well. Example 6.6 shows the code required.

Example 6.6. Parsing and Validating an XML File from a URL

import org.xml.sax.SAXParseException;
import org.xml.sax.InputSource;
import org.w3c.dom.Document;

import oracle.xml.parser.v2.*;

import Jjava.io.*;

import Jjava.net.*;

import URLUtils;

public class ParseFAQWithValidation {
public static void main(String[] args) throws Exception {
String filename = "FAQWithMultipleEntities.xml";
// Use a URL directly from the beginning. No need to set SystemId
URL fileURL = URLUtils.newURL (filename) ;
// Create a new XML Parser
DOMParser dp = new DOMParser();
// Validate the document against its DTD
dp.setValidationMode (true) ;
try |
// Attempt to parse the URL
dp.parse (£fileURL) ;
System.out.println ("Parsed ok.");
// Get the parsed document
Document xmldoc = dp.getDocument ();
// Print the document
((XMLDocument) xmldoc) .print (System.out) ;
}
catch (SAXParseException spe) {
System.out.println (spe.getMessage());

As we saw when using the oraxml command-line tool with the -v flag in Chapter 2, the validation
error against the DTD is shown:

Attribute value 'Neophyte' should be one of the declared enumerated values.

Because it is common to pass small XML documents as string arguments to methods for
processing, developers frequently ask "How can I parse an XML document from a string?" Luckily,
it's quite easy. Since we learned earlier that the boMParser can parse any Reader, and since the
java.io package conveniently has the class stringReader to read the contents of any String,
we can put two and two together to parse the string-based XML document by:

1. Constructing a stringReader from our String:

StringReader myStringRdr = new StringReader (myXmlStringVar) ;
2. Passing it to the poMParser as input:

dp.parse (myStringRdr) ;

A working sample is shown in Example 6.7.

Example 6.7. Parsing XML from a String Using a StringReader

import org.xml.sax.SAXParseException;
import java.io.StringReader;
import org.w3c.dom.Document;

import oracle.xml.parser.v2.*;

public class ParseFromString {

public static void main(String[] args) throws Exception {
String xmldocString = "<this>"+
" <that/>"+
" <!-- and the other -->"+
"</this>";

// Open a character reader on the string
StringReader sr = new StringReader (xmldocString);
// Create a new XML Parser
DOMParser dp = new DOMParser();
try {

// Attempt to parse the reader

dp.parse(sr) ;

// Get the parsed document
Document xmldoc = dp.getDocument ();
// Print the document
((XMLDocument) xmldoc) .print (System.out) ;
}
catch (SAXParseException spe) {
System.out.println (spe.getMessage());

As expected, this example prints out:

<this>

<that/>

<!-- and the other -->
</this>

Parsing XML in all of its forms is such a common operation that it, too, is a great candidate for a
quick helper class like xMLHelper in Example 6.8. In addition to helpful methods for quickly
parsing ReaderS, InputStreams, Strings, and URLS, we've also included a handy method to
format the saxpParseException for display, indicating the position and cause of the parsing error.

Example 6.8. XMLHelper Class to Simplify XML Parsing Tasks

import org.w3c.dom.*;

import oracle.xml.parser.v2.*;
import org.xml.sax.*;

import java.io.*;

import java.net.*;

public class XMLHelper {
// Parse an XML document from a character Reader
public static XMLDocument parse(Reader r, URL baseUrl)
throws IOException, SAXParseException, SAXException

// Construct an input source from the Reader
InputSource input = new InputSource(r);
// Set the base URL if provided
if (baseUrl != null) input.setSystemlId(baseUrl.toString());
// Construct a new DOM Parser
DOMParser xp = new DOMParser();
// Parse in Non-Validating Mode
xp.setValidationMode (false) ;

// Preserve Whitespace

xp.setPreserveWhitespace (true) ;
// Attempt to parse XML coming in from the Reader

Xp.parse (input) ;

// If the parse is successful, return the DOM Document

return (XMLDocument) xp.getDocument();

}

// Parse XML from an InputStream
InputStream is, URL baseURL)

public static XMLDocument parse (
IOException {

throws SAXParseException, SAXException,

// Construct a Reader and call parse (Reader)

return parse(new InputStreamReader (is), baseURL);

}
// Parse XML From a String

public static XMLDocument parse (
throws MalformedURLException, IOException,

String xml, URL baseurl)

SAXParseException, SAXException {

// Construct a reader and call parse (Reader)

return parse (new StringReader (xml) ,hbaseurl);

}
// Parse XML from a URL

public static XMLDocument parse(URL url)
SAXParseException,

throws IOException,

SAXException {
// Construct an InputStream and call parse (InputStream)

// Use the url passed-in as the baseURL

return parse(url.openStream(), url);

}

// Format information for a parse error
public static String formatParseError (SAXParseException s)

{

int lineNum = s.getLineNumber();

int colNum = s.getColumnNumber ();

s.getSystemId();

String file
String err = s.getMessage();

" + (file != null ? "in file
" + colNum + "\n" + err;

return "XML parse error "+ file + "\n" : ")+

"at line " 4+ lineNum + ", character

Because XMLHelper can help us parse any InputStream, it can, in particular, easily parse
compressed XML contained in a .zip or .gzip file using built-in classes like GZIPInputStream in the
JDK's java.util.zip package. This process is so simple that it doesn't even warrant a full example,

just a few lines of code:

import java.util.zip.GZIPInputStream;

// Create a URL for the GZip'd resource

URL u = URLUtils.newURL ("test.xml.gz");

// Create a GZIPInputStream over the compressed stream of XML in the GZip file.
GZIPInputStream gz = new GZIPInputStream(u.openStream());

// Parse it with our XMLHelper like any other InputStream, passing base URL!
XMLDocument x = XMLHelper.parse(gz,u);

Next we'll look at some potential problems related to parsing XML documents from CLOB columns
inside the database, and come up with a nifty solution.

6.2.3 Simplifying CLOB-based XML Parsing

Let's apply what we've already learned to parsing XML from database CLOB columns. Earlier, we
used our xMLDoc utility to load the contents of Shakespeare's A Midsummer Night's Dream file,
dream.xml, and its corresponding play.dtd into our xmI_documents table. We can parse the XML
contents of the CLOB with the help of three of our helper classes:

Examples.getConnection

To connect to the database
XMLDocuments.getReader

To get a Reader for the CLOB where dream.xml is stored
XMLHelper.parse

To parse the Reader

We are stoked; this will be easy! We try the following example code that puts these three steps
into action to read the document /plays/shakespeare/dream.xml.

import XMLHelper;
import java.io.Reader;

import java.sgl.Connection;

public class ReadDream {
public static void main(String[] args) throws Exception {
// Connect to the database
Connection conn = Examples.getConnection();
// Get a reader for the CLOB named '/plays/shakespeare/dream.xml'
Reader r = XMLDocuments.getReader (conn, "/plays/shakespeare/dream.xml") ;

try { // To parse it...

XMLHelper.parse (r,null) ;

}

catch (Exception ex) { // Doh!
System.out.println(ex);

}

conn.close(); // Disconnect

We get the following dreaded error because the parser cannot find the play.dtd in the same
directory as the dream.xm/ document it's currently parsing:

Error opening external DTD 'play.dtd'.

Well, we know how to fix that, don't we? We just call setBaseURL () with the URL of the document
we're parsing, right? Then the parser can properly find play.dtd in the same directory as the
current document. But let's think a little. What is the URL of the current character stream of
dream.xml coming from a CLOB? Not file://something because we're not reading it from a
filesystem. Not http:// something because we're not retrieving the document over the Web.
Certainly not ftp://something or gopher://something. So what kind of URL is it? Aye, there's
the rub.

You might be tempted to say:

e It's a database URL.
e It'sa CLOB URL.
e It's an xml_documents table URL.

But none of these would be exactly right. The answer is that there is no URL that describes the
resource identified by the row in the xml_documents table whose docname column value is
/play/shakespeare/dream.xml. But since the "U" in URL stands for "uniform"—suggesting that
it's been designed to handle any possible need—we're in luck. The URL system is designed to be
extensible, so we can build the URL we need and slot it into the grand scheme of things. Since
we're trying to describe resources that live in the xml_documents table, let's invent a new kind of
URL protocol named xmldoc: so we can work with our CLOB-based document using the following
single line of Java code:

URL u = new URL("xmldoc:/play/shakespeare/dream.xml") ;
to refer to the resource we were trying unsuccessfully to parse earlier.

It turns out that it is not very much work at all to implement a new URL protocol. Figure 6.5
illustrates the steps involved in building our xmldoc: handler.

Figure 6.5. Implementing an xmldoc: URL protocol handler

URL w = new URL(*xmldoc:/foo/bar.xml");

InputStream is = u.openConnection()]
v
LIRL
v
¥MLDocURLStreamHandlerFactory
fila_ Handlar [BB oo <for bar=*baz"/>

http Handlar |- hm;,

EMLDocURLStreamHandler | -s—xmildod:

' }

XMLDocURLConnection KMLDocuments.getinputSireami)
| .

yml_documents

docname timestamp ¥midoc

Sfoo/bar xml | 0451500 07:12 | <foo bar="baz" >

The steps are as follows:

1. We need to create a class that implements the java.net.URLStreamHandlerFactory
interface.

This is required for any class that is intended to assist the URL mechanism in deciding how
to handle opening a stream for a URL. The default implementation of
URLStreamHandlerFactory can delegate responsibility to the correct URLStreamHandler
based on the protocol. We need to implement our XMLDocURLStreamHandlerFactory SO
that it properly handles a request for our new xmldoc protocol, but hands control back to
the default mechanism for any other protocol by returning null. Here's the code:

import Jjava.net.*;

import XMLDocURLStreamHandler;

public class XMLDocURLStreamHandlerFactory implements
URLStreamHandlerFactory {
public URLStreamHandler createURLStreamHandler (String protocol) {
// If the URL being constructed is an xmldoc:/foo/bar.xml Url, we do...
if (protocol.equals ("xmldoc")) return new XMLDocURLStreamHandler();
// Otherwise, let the default URL mechanism handle it.

else return null;

2. We need to create a class that extends URLStreamHandler and defines what the
openConnection () method means for one of our new xmldoc: URLs. In our case, we
want it to return a new xXMLDocURLConnection object to represent the connection to the
resource that the URL represents:

3. import java.net.*;

4. import Jjava.io.IOException;

5. import XMLDocURLConnection;

6.

7. public class XMLDocURLStreamHandler extends URLStreamHandler ({

8. protected URLConnection openConnection (URL u) throws IOException {
9. return new XMLDocURLConnection (u);

10. }

11.Finally, we need our XMLDocURLConnection to extend URLConnection and override the
getInputStream() method to return the input stream that we want for xm1doc: URLs.
We want to return the Inputstream for the CLOB in the xml_documents table whose
docname equals the URL's filename. As shown in the code for XMLDocURLConnection in
Example 6.9, we use our xMLDocuments.getInputStream to do the real work.

Example 6.9. Returning the Input Stream for an xmldoc: URL

from

import
import
import
import
import

import

public

a CLOB

java.net.*;
java.io.*;
java.sqgl.*;
oracle.jdbc.driver.*;
XMLDocuments;

Examples;

class XMLDocURLConnection extends URLConnection {

Connection conn = null;

public XMLDocURLConnection (URL u) {

super (u) ;

}

public void connect() {

// Don't need to do anything here, but must implement this method

}

public InputStream getInputStream() throws IOException {

Connection conn = null;

try {

// Get the default Oracle8i connection for the current user
conn = Examples.getConnection();
}
catch (SQLException s) {
throw new IOException("Fatal error getting database connection");
}
// Return InputStream for the requested "file" in xml documents table
return XMLDocuments.getInputStream(conn,url.getFile());
}
public void finalize() {
// Close the database connection when object is garbage-collected

try { 1if (conn != null) conn.close(); } catch (SQLException s) {}

And with this, we're done. Well, almost done. We need to add a method to our XMLDocuments
class that puts our XMLDocURLStreamHandlerFactory in charge instead of the default
URLStreamHandlerFactory. That code for this method looks like this:

// Enable the use of xmldoc:/dirl/dir2/file.xml URLs in this session

public static void enableXMLDocURLs () {
try {
// Give *our* handler first chance to handle URL.openConnection() requests

URL.setURLStreamHandlerFactory (new XMLDocURLStreamHandlerFactory());
}

catch (java.lang.Error alreadyDefined) { /* Ignore */ }

Now we're ready to test out our shiny new xmldoc: URLs. We already have our Shakespeare
dream.xml and play.dtd in our xml_documents table, but just for good measure, let's load
another document with external references of different kinds to make sure everything is working
properly. The following EntityText.xm/ document contains a relative URL reference to its external
test.dtd in a dtd subdirectory, an external entity using a relative URL "external.xml", an
external entity using an http: URL, and an external entity using a file: URL:

<?xml version="1.0" encoding="UTF-8"?>
<!-- DTD is in the "dtd" subdirectory -->
<!DOCTYPE test SYSTEM "dtd/test.dtd" [

<!-- This external entity is in the "same" relative directory -->

<!ENTITY e SYSTEM "external.xml">

<!-- This external entity is retrieved by HTTP -->
<!ENTITY f SYSTEM "http://xml.us.oracle.com/http-external.xml">

<!-- This external entity is retrieved from the file system -->
<!ENTITY g SYSTEM "file:///C:/xmlfiles/file-external.xml">
1>
<test>
&e;
&t
&g;
</test>

If our xmldoc: protocol is working properly, it should handle any references relative to the
original document being parsed because a URL relative to an xmldoc: URL will also be an xmldoc:
URL. The file: and http: URL entities should be retrieved correctly. So using XMLDoc, we can
load these extra few test files into our xml_documents table:

java XMLDoc save EntityTest.xml /testdir/EntityTest.xml
java XMLDoc save external.xml /testdir/external.xml

java XMLDoc save test.dtd /testdir/dtd/test.dtd

and run the test program in Example 6.10.

Example 6.10. Testing Our New xmldoc: URL Handler

import java.net.URL;

import oracle.xml.parser.v2.*;

import java.io.*;

import XMLDocURLStreamHandlerFactory;
import XMLHelper;

public class TestXMLDocURL {
// debug main is Oracle8i Java stored procedure Debugging entry point
public static void debug main() throws Exception {
main (null) ;
}
public static void main(String[] args) throws Exception {
// Enable the use of xmldoc URLs in this session
XMLDocuments.enableXMLDocURLs () ;
// Create an xmldoc URL for the /plays/shakespeare/dream.xml file
URL u = new URL ("xmldoc:/plays/shakespeare/dream.xml") ;
// Parse the shakespeare document
XMLDocument xmldoc = XMLHelper.parse (u);
// Create an xmldoc URL for the /testdir/EntityTest.xml'
u = new URL ("xmldoc:/testdir/EntityTest.xml");
// Parse the test document

xmldoc = XMLHelper.parse (u);

// Print out the test document

xmldoc.print (System.out) ;

Eureka! The program successfully parses dream.xm/ without complaining about the play.dtd as
before, and parses EntityTest.xml correctly to print out the document with all of its external
entities properly retrieved:

<?xml version = '1l.0' encoding = 'UTF-8'?>
<!-- DTD is in the "dtd" subdirectory -->
<!DOCTYPE test SYSTEM "xmldoc:/testdir/dtd/test.dtd" [
<!ENTITY e SYSTEM "xmldoc:/testdir/external.xml">
<!ENTITY f SYSTEM "http://xml.us.oracle.com/http-external.xml">
<!ENTITY g SYSTEM "file:/C:/xmlfiles/file-external.xml">
1>
<test>

<external>Local</external>

<external>From HTTP</external>

<external>From File</external>

</test>

6.2.4 Deploying and Debugging Stored Procedures

Now that we have demonstrated that our xmldoc: URL and its supporting classes work properly
outside the database, let's deploy them into the Oracle8/i JServer VM and make sure they work
properly inside the database as well. The manual steps to deploy our TestxMLDocUr1 class (and
all the classes it depends on) to JServer are as follows:

1. Compile all Java classes related to TestXMLDocUr1.
Create a Java archive (e.g., deploy.jar) containing all the classes in Step 1.

3. Use the 1loadjava command-line tool to load the Java archive into JServer into the
XMLBOOK schema:

loadjava -verbose -resolve -user xmlbook/xmlbook deploy.jar

4. Determine the proper datatype mapping between PL/SQL types and Java types for the
arguments in order to properly create a PL/SQL procedure specification.

5. Create a procedure specification using the AS LANGUAGE JAVA keywords that map to the
TestXMLDocUrl.debug main static method.

In JDeveloper 3.1, the process is completely wizard-driven. The first time you want to deploy, just

select Project aDeploy —2 New Deployment Profile... from the menu to create a new Oracle8i
stored procedure deployment profile, as shown in Figure 6.6.

Figure 6.6. Selecting the type of deployment

Delivery Options

" Select 3 type of deployment

Classes and Java Stored Procedures to Oraclesi

O Deploy as a simple archive file
Next, select the files from your project you want to deploy, as illustrated in Figure 6.7.

Figure 6.7. Selecting the files to deploy

Select Files to Deploy:

v = EMLDocURL jpr

=y E¥amples java

& ResdCLOB java

& TosMLDocURL java

L2 Vit CLOB |ava

& AMLDocuments | ava

s FMLDocURLConnection e

s AMLDocURLStreamHandler java

sz AMLDoc URLStreammHandlerF actory jaw
= KMLHelper java

| | +]

CARCARE ARCARE AR AR ARC A Y

JDeveloper analyzes class dependencies to make sure you don't forget any. Then select which of
the available static methods in the classes you are deploying should be published as Java stored
procedures as shown in Figure 6.8. You also select a "Database package" name and choose
whether your new Java stored procedures should run with the privileges of the CURRENT USER or
the DEFINER.

Figure 6.8. Selecting static methods to publish as stored

procedures

Select the methods to publish to the database

Publizh Class Method
v TestMLDocLIRL debug_rmain
TestZMLDocLIRL il

| W [MLDocuments enableXMLDocURLS

Setings... |

Datahase packapge: h-iu LDocURL

AUTHID: [CURRENT_USER =]

v Overwrile exisling packagelprocedures

Pick a database connection to use for the deployment from the list of preconfigured connections
on the next panel, and then, finally, provide a name for the deployment profile so your project's
files can be redeployed at any time with a single menu click. If you make changes to any of your
code, just select Deploy from the context menu on your deployment profile, as shown in Figure
6.9, and your files are instantly redeployed to JServer, no questions asked.

Figure 6.9. Redeploying a project with an existing profile

x|

-j-'_‘ .ﬂ_

A MLDacURL jus

¢ Comnections

A =MLDoclAL.jpr

__| Dregloyreent
i | eploy. oo

2 Evamples jmee Femowe from Folde:
= AeadCLOB ja
& TcsHMLDmlm
& WikeCLDB jyr Etoperties..,
_\-;‘,-.)‘fHLD-fn‘:uh'f.‘r Expand &l
e #MLDeelJRLI
sz AMLDecURLL
e AMLDocURL StreamHander™ actony java
s #MLHelped java

Colapze Al

If something about your Java code running in JServer is not functioning as expected, you can
easily do remote debugging against the JServer virtual machine by visiting your project's
Properties dialog and setting the Debug Files as: pop-up list to "Oracle8i Stored Procedure", as

shown in Figure 6.10.

Figure 6.10. Setting up for JServer Java debugging

xmk-basics-javajpr Froperties [x]

CodeCosch] Cade Siyle | S0L |
Fath: | Lbrasies | Defauks | Compilr Fun/Diebug
[Diebusg Session Ophang
Dby Files sz
|III|au:Ir:-Ei Slored Proceduns j

Homal Java class

Oraclet CORBAEIR
DizcleB On Demand Sessnon
Remote Debugpng

Dithway

[|

Set your desired breakpoints, then click on the Debug icon in the toolbar to begin your remote

debugging session with JServer. As illustrated in Figure 6.11, you can set breakpoints, examine
the call stack and any variables, step through, into, and out of routines, and even see the JServer
output conveniently in the JDeveloper message log instead of having to hunt through server trace

files to find your debugging messages.

Figure 6.11. JDeveloper 3.1 debugging Java stored

procedures

@ Oracle JDeveloper - XMLDocURAL - [C:\smibookiarchexamples\sml-bazsics-jovah T estMLDocUR. .. M= E3
cgp Ele Edit Seach Wiew Pioect Bun ‘Wizard: Took Window Hebp

- L ' s
=0 H\ | 25 =3 a
Zl[+ public class (ezcifllboclRl ;l
s BN 2 2
_."Il'rmd"FIchtTI'rmd"ing;l public static woid debug_main throws Exception
. * matn nwll
Zumaind] : 23, TesfMLDo ,
A0 debug_main(] : 17, Test ™ public static void natn String args throws b
4 3
_I—l # CALDocuments enableXALDocURL =
|3 Locd -
O zrgs: javalang Sting(] » . UEL u - mew UR
o
ol probocol iava_leng_'ihirq-"-rdlj:l'I"JHI Document =nldoc (HLHe lper parseiu
00l hast: jag lang St
ool hostaddress: javan o U = pew URL{*xnldoc:/testdir/EntityTest_ xnl®);
Ml pott k=1 enld {HLHe | =
i “h Iwe‘lmgslnl - n (=] h [=] pa el =
| [
:]| s

D=

2| TesttMLDoclIRL | Depiopment |

\Source A Design & Class { Do [/

Opanirg JOBC conhection to databass "idbe: oracke hire @localhod 1521:0F
Starting Surora VM Agent. Fhiz may take a it while

| |

3

Sowce breakpant occuned st ine 23 in hle Ctemlback orchesamplestomb-be o
L3

E]

Invzat

Eucaphion: unhanded thiow of al esce
Deadock detection, Peisistant [Urnesl
Chwmibook hsichexampleshsmbbasics-j

JLi|

Runring Compiled successhil,

iy

Ta For Java stored procedure debugging, the program that you
want to debug must have the following method defined:

public static void debug main()

This is the debug entry point method for remote JServer
debugging.

When we run the TestXMLDocURL inside JServer, one of two things will happen:

e It works successfully.
e It fails with JServer permission violations.

Being a secure server environment for production applications, JServer is no slouch when it
comes to enforcing the Java 2 security model. This means that not just anyone can run Java code
inside the database. The system administrator has fine control over what operations each user is
allowed to perform in his or her Java code.

In order for TestxXMLDocURL to work properly inside JServer, we need permissions to:

e Setthe URLStreamHandlerFactory to enable xmldoc: URLs

e Resolve the machine name xml.us.oracle.com and connect to it to allow the XML Parser
running inside JServer to retrieve the external entity from SYSTEM Identifier
http://xml.us.oracle.com/http-external.xml

e Read the files in the C:\xmilfiles directory on the local (i.e., database server) machine to
allow the XML Parser to retrieve the external entity from SYSTEM Identifier
file:///C:/xmlfiles/file-external.xml

e Debug the code running in JServer

The system administrator manages Java 2 security policies and permissions using the

grant permission, revoke permission, enable permission, disable permission, and
delete permission procedures in the DBMS JavVA package. The script in Example 6.11, if run as
SYS, grants the privileges necessary to successfully debug and test the TestXMLDocURL Java
stored procedure.

Example 6.11. Granting Java 2 Security Privileges Using the

dbms_java Package

BEGIN
-— Grant Permission to read a file in the C:\xmlfiles directory
dbms java.grant permission (
grantee => 'XMLBOOK',

permission type => 'SYS:java.io.FilePermission',

permission name => 'C:\xmlfiles*',

permission action => 'read');

-- Grant Permission to set the URLStreamHandlerFactory

dbms java.grant permission (

grantee => 'XMLBOOK',

permission type => 'SYS:java.lang.RuntimePermission',

permission name => 'setFactory',

permission action => '');

-— Grant Permission to resolve and connect to URL at xml.us.oracle.com

dbms java.grant permission (

grantee => 'XMLBOOK',

permission type => 'SYS:java.net.SocketPermission',

permission name => 'xml.us.oracle.com',

permission _action => 'connect,resolve');

-- Grant Permission to debug JServer java code

dbms java.grant permission (

grantee => 'XMLBOOK',

permission type => 'SYS:oracle.aurora.security.JServerPermission',

permission name => 'Debug',

permission_action =>

")

COMMIT;

END;

You can verify what privileges you have by running the useful SELECT SQL statement against the
data dictionary view java user policy in Example 6.12.

Example 6.12. Listing URL-Related Java Security Policies in

OracleS8i

PROMPT + +
PROMPT | Your URL, File, and Debug-Related Java Security Settings |
PROMPT + +

set pages 999

column
column
column
column
column

SELECT

"Permission" format a30

"Name" format a20
"Action" format alb
"Enab?" format ab

"Key" format 99999

SUBSTR (type name, INSTR (type name, '.

v-1)+

'"('| |SUBSTR (type name, 1, INSTR(type name, '.

1) | ICHR(10) | |
D)D) !

AS "Permission",

name AS "Name",

action AS "Action",

DECODE (SUBSTR (enabled,1,1),'E','Y"', 'N") AS "Enab?",
seq AS "Key"

FROM user java policy
WHERE GRANTEE NAME IN (USER, 'JAVADEBUGPRIV') /* Eliminate PUBLIC privs */

AND (type name = 'Jjava.net.SocketPermission'
OR type name = 'java.io.FilePermission'
OR type name = 'java.lang.RuntimePermission'
OR type name = 'java.util.PropertyPermission'
OR (type name = 'oracle.aurora.security.JServerPermission'
AND name = 'Debug')

)
ORDER BY 1,3,2

/

After running the grant script in Example 6.11, Example 6.12 should produce results like this:

=== +

| Your URL, File, and Debug-Related Java Security Settings |

+=== +

Permission Name Action Enab? Key
FilePermission C:\xmlfiles* read Y 249
(java.io)

JServerPermission Debug Y 61

(oracle.aurora.security)

RuntimePermission setFactory Y 246
(java.lang)

SocketPermission xml.us.oracle.com connect, resolve Y 266

(java.net)

Table 6.2 gives a summary of the most common JServer permissions for working with XML inside
the database.

Table 6.2. Common JServer Permissions Used for Working with XML

And

act:

If you want to You need this permission With this name

Resolve a URL SYS:java.net.SocketPermission machine.domain.com|con

or *.domain.com res
) /dir/file.ext Or

Open a file SYS:java.io.FilePermission . rea
/dixr/*

Debug Java in JServer SYS:oracle.aurora.security.JServerPermission|Debug

Use custom , , o

SYS:java.lang.RuntimePermission setFactory
URLStreamHandlerFactory
Set a system property SYS:java.util.PropertyPermission propname wri

Last, but not least, we end this section with Example 6.13, the full source code of the
XMLDocuments class used previously to create a simple, CLOB-based filesystem on top of the
xml_documents table. Recall that our xMLDoc utility was a simple command-line shell over the
methods in the xMLDocuments class.

Example 6.13. Implementing a CLOB-based "Filesystem"

Inside JServer

import java.sgl.Connection;
import org.w3c.dom.Document;
import org.xml.sax.SAXException;
import oracle.jdbc.driver.*;
import java.sgl.*;

import oracle.sqgl.*;

import java.net.URL;

import java.io.*;

import java.sgl.*;

import XMLDocURLStreamHandlerFactory;
import XMLHelper;

import ReadCLOB;

import WriteCLOB;

public class XMLDocuments {
// get: Read an XML document from the xml documents table.
public static Document get (Connection conn, String idval)
throws FileNotFoundException, SAXException {
Reader r = getReader (conn,idval);
try { return r != null ? XMLHelper.parse(r,null) : null; }
catch (FileNotFoundException fnf) { throw fnf; }
catch (IOException iox) { }
return null;
}
// Return Reader on XML document named 'docname' from xml documents table

public static Reader getReader (Connection conn, String docname)

throws FileNotFoundException {
return ReadCLOB.fromColumn (conn, "xml documents","xmldoc", "docname", docname) ;
}
// Return InputStream on XML document named 'docname' from xml documents
public static InputStream getInputStream(Connection conn, String docname)
throws FileNotFoundException ({
return ReadCLOB.fromColumnAsInputStream(conn, "xml documents","xmldoc",
"docname", docname) ;
}
// Save contents of a Reader into xml documents with doc name of 'docname'
public static void save (Connection conn,String docname,Reader input)
throws SQLException, SAXException {
// Delete existing row if present
delete (conn,docname) ;
// Insert a new row with empty clob()

CallableStatement stmt = conn.prepareCall (

"BEGIN " +
" INSERT INTO xml documents (docname, xmldoc) " +
" VALUES(?, empty clob()) "+

" RETURNING xmldoc INTO ?;" + // Use RETURNING...INTO to get CLOB
"END; ") ;
stmt.setString(1l,docname); // Bind var in VALUES()
stmt.registerOutParameter (2,0racleTypes.CLOB); // RETURNING INTO
stmt.execute(); // Do it
// Retrieve the returned values of CLOB locator
CLOB theXMLClob = ((OracleCallableStatement)stmt).getCLOB(2);
stmt.close();
// Write the input to the CLOB
WriteCLOB. fromReader (input, theXMLClob);
// Commit the changes and close the connection.
conn.commit ();
}
// Delete XML document named 'docname' from xml documents
public static void delete(Connection conn,String docname) throws SQLException{
PreparedStatement stmt = conn.prepareStatement ("DELETE FROM xml documents"+
" WHERE docname = ?");
stmt.setString(l,docname) ;
stmt.execute();
stmt.close();
conn.commit ();
}
// Print a list of documents in xml documents matching 'docname'
// Allow either % or * as wildcard character in the name.

public static void list (Connection conn,String docname,PrintWriter out)

throws SQLException {
PreparedStatement ps =
conn.prepareStatement ("SELECT docname, TO _CHAR (timestamp, 'Mon DD HH24:MI')"
+" FROM xml documents"
+" WHERE docname LIKE REPLACE (?,'*','S")|]|'S""
+" ORDER BY docname");
ps.setString (1, docname) ;
ResultSet rs = ps.executeQuery();
while (rs.next()) {
out.println(rs.getString(2)+" "+rs.getString(1l));
}
ps.close();

}
// Enable the use of xmldoc:/dirl/dir2/file.xml URLs in this session

public static void enableXMLDocURLs () {
try |
// Give *our* handler first chance to handle URL.openConnection() requests
URL.setURLStreamHandlerFactory (new XMLDocURLStreamHandlerFactory());

}

catch(java.lang.Error alreadyDefined) { /* Ignore */ }

6.2.5 Constructing XML from IllI-Formed HTML Input

In this section, we'll study an example that illustrates how to use the Oracle XML Parser for Java
to programmatically construct an XML document on the fly. To anyone excited about the power of
separating data from presentation, it remains a sad fact of life that most of the interesting
information on the Web today is still presented in HTML format. Book searches at Amazon.com,
stock quotes from http://quote.yahoo.com, or the latest international currency exchange rates at
http://www.x-rates.com are all available only as HTML pages. This is great for human eyeballs,
but depressingly useless if you'd like to have a computer application make heads or tails of the
valuable information contained in all those <TD> tags!

If HTML could be parsed as easily as XML, we might be able to attack the problem of scraping the
interesting data out of the advertisement-laden presentations, but, alas, most web developers
create their HTML without regard to its being well-formed. But a light at the end of this dim tunnel
is a clean-sounding, clever utility named "Tidy," by Dave Raggett, the lead for the HTML working
group at the World Wide Web Consortium (W3C). Tidy, which we introduced in Chapter 3,
understands many of the most common mistakes made by HTML page designers and quickly
corrects them to produce a well-formed XML document out of the messy HTML page you give it.l!

(1] More information on the original C language version of Tidy is at http://www.w3.org/People/Raggett/tidy/.

Even more interesting for us at the moment is Andy Quick's Java port of Dave's Tidy utility, called
"JTidy". If you download JTidy from http://www3.sympatico.ca/ac.quick/jtidy.html, you can be
parsing HTML and turning it into XML in no time.

We're going to build a class called JTidyConverter that illustrates how to put JTidy to work to
parse an arbitrary HTML page and produce a well-formed XML tree of nodes in memory. Then
we'll use the Oracle XML Parser's implementation of the Document Object Model APIs to walk
JTidy's in-memory tree structure and programmatically construct an instance of XMLDocument on
which we can perform further processing, like data extraction.

Our goal is to start with an HTML page like the one shown in Figure 6.12 and end up with an
XMLDocument containing only the data we're interested in, like the Ticker and Price information

shown in Example 6.14.2

(21 While our Yahoo Quotes! example demonstrates the basic techniques needed to acquire information published in HTML and
transform it for further processing into a clean XML format, in practice, you must check the information supplier's policy on reuse

of information before including it in an application you build.

Example 6.14. Dynamically Scraping XML Data out of Existing

HTML Pages

<?xml version = 'l1.0' encoding = 'UTF-8'?>
<QuoteStream time="Tue Jun 20 3:57pm ET - U.S. Markets Closed.">
<Quote Ticker="ORCL" Price="86.188"/>
<Quote Ticker="GE" Price="50.500"/>
<Quote Ticker="MSFT" Price="74.688"/>
<Quote Ticker="IBM" Price="118.188"/>
<Quote Ticker="T" Price="34.125"/>
<Quote Ticker="LU" Price="59.812"/>
<Quote Ticker="CSCO" Price="67.938"/>

</QuoteStream>

Figure 6.12. HTML stock quote information from Yahoo!

/2] Yahoo! Finance - [f] ORCL ... CSCOD - Miciozoft Internet Explorer

R * | Addess |[£] hip//quote yahoo com/g?e=0RCL *| PGo || Fie ¥ n
- jome - Vool - Help |-
"REICOCOLFINANCE -5 =
| GetQuotes ||Basic I
= m_-!-
C 1:' : 'br’a"'u 3 SUDIE‘:E‘:;& Chick to trade or opan an account, -
Views: Basic [edif] - DayWatch - Perforrsanee - Fondamentals - Dietailed - [Mew Wiew]
Tue Jun 20 1:43pm ET - U5, Iarkets close in 2 hours 17 mirites
Symbol Last Trade Change Yolume More Info |
ECL 1:27FM 86.38 15,357,300 Bles _ Ir_, ”IE'*"
R “hast , Hews , Migs , Profils
12280 5069 08,00 e Continns MEW
©1a7PM 469 15,752,300 St Hew, Mom, Bl
[Bh 1:22PM 118.88 B e P
“hast , Hews , Migz , im
L22PM 3431 L2130 el | [msader , Options MEUN
Wiz , Profile
L 122PM 8975 9,428,600 i NEW!
- Thant , Hews , Mags , Profile
3TN 606 200 rins NEWI
Select & Sywhal for a defailed quote. Cuofes delaved 15 marstes for Hasdag, 20 mmudes otheranss ﬂ

el D Intemet

Since the JTidy bean does the "rocket science" part of the problem, we'll see that
programmatically creating the XML document based on JTidy's results is actually very
straightforward. Example 6.15 shows that to "XML-ify" HTML in our xMLi fyHTMLFrom method, we
must perform these steps:

1. Construct an instance of JTidy's Tidy bean.
Set some JTidy HTML conversion options for the best results.

3. Construct a new xMLDocument object to use as the root of the well-formed XML document
our method will return.

4. Obtain an InputStream on the desired HTML page to tidy up by calling openStream() on
its URL.

5. Call tidy.parse() to parse the HTML InputStream into JTidy's in-memory DOM
representation.

6. Call clonexMLFragment () on the root node of the JTidy DOM document to recursively
construct an Oracle XML Parser DOM tree.

Example 6.15. Using JTidy to Turn HTML into XML

import java.io.*;

import java.net.URL;
import oracle.xml.parser.v2.*;
import org.w3c.dom.*;

import org.w3c.tidy.Tidy;

public class JTidyConverter {
// Parse a URL returning for a possibly ill-formed HTML page and return
// a "tidied" up XML document for the page using JTidy
public XMLDocument XMLifyHTMLFrom(URL u) throws IOException ({
// (1) Construct a new Tidy bean to use for converting HTML to XML
Tidy tidy = new Tidy();
// (2) Set some Tidy options to get the best results for "data scraping"
tidy.setMakeClean (true);
tidy.setBreakBeforeBR (true) ;
tidy.setShowWarnings (false) ;
tidy.setOnlyErrors (true);
tidy.setErrout (new PrintWriter (new StringWriter()));
// (3) Construct an empty target Oracle XML DOM document
XMLDocument xmldocToReturn = new XMLDocument ();
// (4) Get an InputStream of HTML from the URL
InputStream HTMLInput = u.openStream();
// (5) Ask Tidy to parse the incoming HTML into an in-memory DOM tree
Document tidiedHTMLDoc = tidy.parseDOM (u.openStream(), null);
// (6) Clone the JTidy DOM tree by recursively building up an Oracle DOM copy
cloneXMLFragment (tidiedHTMLDoc, xmldocToReturn) ;
return xmldocToReturn;
}
// Recursively build an Oracle XML Parser DOM tree based
// on walking the JTidy DOM tree of the "tidied" page.
private void cloneXMLFragment (Node node, Node curTarget) {
if (node == null) return;
Document d = curTarget instanceof Document ? (Document)curTarget
curTarget.getOwnerDocument () ;
int type = node.getNodeType();
switch (type) {
// If we get the root node of the document, start the recursion
// by calling build the Doc Element
case Node.DOCUMENT NODE:
cloneXMLFragment (((Document)node) .getDocumentElement (),d);

break;

// If we get an Element in the JTidy DOM, create Element in Oracle DOM
// and append it to the current target node as a child. Also build
// Oracle DOM attribute nodes for each attrib of the JTidy DOM Element

case Node.ELEMENT NODE:

Element e = d.createElement (node.getNodeName ()) ;

NamedNodeMap attrs = node.getAttributes();

for (int 1 = 0; 1 < attrs.getLength(); i++) |
e.setAttribute (attrs.item (i) .getNodeName (),

attrs.item (i) .getNodeValue());

}

curTarget.appendChild(e) ;

NodeList children = node.getChildNodes();

// Recurse to build any children

if (children !'= null) {
int len = children.getLength();
for (int 1 = 0; 1 < len; 1i++) {

cloneXMLFragment (children.item(1i) ,e);

}

break;
// If we get a Text Node in the JTidy DOM, create Text Node in Oracle
// DOM and append it to the current target node as a child
case Node.TEXT NODE:

curTarget.appendChild (d.createTextNode (node.getNodeValue()));

break;

The clonexMLFragment method is where the dynamic XML document creation is really happening.
Observe that our routine behaves differently depending on what type of DOM tree node we're
currently processing:

o If we see the root DOCUMENT NODE, we start the recursive tree copy by calling
clonexXMLFragment on the top-level document element in the JTidy document.
e Whenever we see an ELEMENT NODE, we do the following:
1. Create a new Element node in the Oracle XML DOM tree with the same name.
2. Append it to the current target node in the Oracle XML DOM tree as a child.
3. Copy all the Attribute name/value pairs from the JTidy DOM element to the Oracle
DOM element.
4. Recursively call clonexXMLFragment on each child node of the current element (if
any).
e Whenever we see a TEXT NODE, we create a new Text node in the Oracle XML DOM tree
and append it to the current target node.

As a result, to retrieve any HTML page and convert it to an XML document for subsequent
processing, we need just three lines of code:

// Construct a JTidyConverter

JTidyConverter j = new JTidyConverter();

// Pick a URL with some HTML to process

URL u = new URL ("http://quote.yahoo.com g?d2=v1&0=d&s=0RCL+GE+MSFT+IBM+T+LU+CSCO") ;
// Get back an XML document for the HTML page to process further

XMLDocument voila = j.XMLifyHTMLFrom(u) ;

Since server-side programs querying information from relational databases produce most
dynamically generated HTML pages, it's logical that these HTML pages will have some predictable,
repeating HTML structure. Imagine the pseudo-code for the Yahoo! Quotes web page service:

// Server-side Pseudo-code for the Yahoo! Quotes HTML page
printYahooFinanceBanner ();

printSymbolLookupForm() ;

printAdsForPartners();

// 's' is the parameter passed in the URL with list of quotes
printQuoteTableFor (s) ;

printFooter ();

The printQuoteTableFor (s) routine loops over the 20-minute delayed quote prices in the
database for the ticker symbols you've passed in and prints out a row of the HTML table for each
one.

If we actually run the three lines of code to put our JTidyConverter class to work on the Yahoo!
Quotes page, we get an xMLDocument containing the entire, well-formed content of the
dynamically produced page. Even though there's a lot of random HTML stuff around the wee bit
of data we're looking for, with XML in hand we're now in much better shape. The XMLDocument
returned by xMLi fyHTMLFrom (with a few comments added to highlight the parts we're interested

in) looks like Example 6.16.

Example 6.16. Tidied Version of the Yahoo Quotes HTML Page

<?xml version = '1.0' encoding = 'UTF-8'?>
<html>
<head>

<meta content="HTML Tidy, see www.w3.org" name="generator"/>

<title>Yahoo! Finance - (7) ORCL ... CSCO</title>
</head>
<body>
<div style="text-align: center">
<!-- Ads, Banner, and other preceding HTML removed for brevity -->
<!-- Time of quotes is value of the <p> element preceding <table> -->

<p>Tue Jun 20 3:57pm ET - U.S. Markets Closed.</p>

<t--

| Stock quotes start with the <table> whose first <th> header cell
| in the first <tr> row has the value "Symbol"
+-—>
<table cellspacing="0" cellpadding="1" border="1">

<tr bgcolor="#dcdcdc">
<th nowrap="">Symbol</th>
<th colspan="2" nowrap="">Last Trade</th>
<th colspan="2" nowrap="">Change</th>
<th nowrap="">Volume</th>
<th nowrap="">More Info</th>

</tr>

<!-- Stock Quote *data* starts in the 2nd <tr> row after headers -->

<tr align="right">
<!-- Ticker symbol is the wvalue of the first <td> cell -->
<td align="left" nowrap="">

0ORCL
</td>
<td align="center" nowrap="">Apr 14</td>
<!-- Price is the wvalue of third <td> cell -->
<td nowrap="">
86.188

</td>
<td style="color: #ff0020" nowrap="">+0.38</td>
<td style="color: #ff0020" nowrap="">+0.44%</td>
<td nowrap="">15,357,300</td>

<td align="center" nowrap="">
</td>
</tr>
<!-- Other identical "Stock Quote" <TR> rows removed for brevity -->
</table>
<!-- Other stuff removed -->
</div>
</body>
</html>

Since the HTML page is now well-formed XML, it's easier to recognize the repeating patterns we
are interested in:

e Outof many <table>sin the returned document, the <table> containing the stock quotes
is the one where the first <th> table header in the first <tr> table row has the value
Symbol.

e The effective time of the quote information is the value of the first <p> element preceding
this table.

e The actual stock quote data is in the individual <t r> rows of this <table>, starting with the
second row, since the first row is just column headers.

e Ineach row of stock quotes, the Ticker symbol is the value of the first <td> table data cell,
and the Price is the value of the third <td> cell.

il By the value of the <td> cell we mean the text content inside
L I

4% the <td> element or any of its nested elements (disregarding
attribute values). So the value of:

<td>
86.188
</td>

is the text 86.188.

We can use an XSLT transformation to encapsulate the patterns we discovered above into a
simple stylesheet, like this:

<!-- YahooQuotes-to-QuoteStream.xsl —-->
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="1.0">

<xsl:template match="/">

<!-- Find the <table> whose first row's first table header has "Symbol" -->
<xsl:for-each select="//table[tr[1]/th[1l]="Symbol']">
<!-- The time of the quotes is in the first <p> preceding this table -->

<QuoteStream time="{preceding::p[1l]}">

<!-- For each row after the first row -->

<xsl:for-each select="tr[position()>1]">
<!-- Ticker is value of first <td> cell -->
<!-- Price 1is value of third <td> cell -->

<Quote Ticker="{td[1l]}"
Price="{format-number (number (td[3]), "###, ###.000") }"/>
</xsl:for-each>
</QuoteStream>
</xsl:for-each>
</xsl:template>
</xsl:stylesheet>

We'll learn a lot more about how to create transformations like this in Chapter 7 and Chapter 9,
but it's pretty straightforward. The elements that start with <xs1:something> are XSLT
transformation actions. <xs1:for-each> lets us loop over elements in the source document that
match a particular pattern, described using an XPath expression. The attributes whose values are
surrounded by curly braces like time="{preceding::p[1]}" are created in the result with a
value that also comes from evaluating an XPath expression relative to the current loop.

This transformation reads the source XML document (our well-formed HTML page of Yahoo!
Quotes) and does the following:

1. For each <table> with symbol in the first row's first header column, it creates a
<QuoteStream> element in the result with a time attribute equal to the value of the <p>
element preceding the table

2. Nested inside this <QuoteStream> element, it creates one <Quote> element for each <tr>
row of stock quote data matched in the sources.

3. For each <Quote> element, it creates Ticker and pPrice attributes with the respective
values pulled in from the first and third <td> elements in the current <tr> row

That's it. As we saw in Chapter 3, we could use the oraxsl command-line utility to transform the
single, tidied-up Yahoo! Quotes page above into a corresponding XML <QuoteStream> document
with the command:

oraxsl TidiedUpYahooQuotesPage.xml YahooQuotes-to-QuoteStream.xsl

But this will just produce XML results for a single page. We want to serve this real-time data over
the Web, so let's build a server-side Java program that leverages the cool machinery we've just
built.

Implementing a Java servlet is the standard way to write applications that respond to client
requests over the Web. While traditionally used to serve dynamic HTML pages in response to
requests from web browsers, by design, servlets are more general-purpose in nature. Requests
can come from any kind of client program, called a User Agent, and the servlet's response to
those requests can be of any MIME type, including the basic type for XML documents, text/xml.

Technically, a servlet is any class that implements the javax.servlet.Servlet interface. In
practice, most servlets extend the basic javax.servlet.HttpServlet class and override its
methods as appropriate to handle HTTP requests for a particular application. To respond to an
HTTP GET request, override the doGet method. To respond to an HTTP POST request, override
doPost. While doGet and doPost are the most common methods, Table 6.3 gives a short list of
servlet methods that developers typically override.

Table 6.3. Overview of HttpServlet Methods

Method

Description
Name

Called when the servlet is initialized. Servlet-wide resources such as database
init connections can be acquired here and shared across multiple servlet threads (see the
discussion following the table).

doGet Called in response to a User Agent's request for a page using the HTTP GET method. A

GET request is called when the User Agent wants to retrieve a page of information. It is
not expected that a GET request will modify any persistent state in the server. This is
the most frequent kind of HTTP request.

Called in response to a User Agent's request for a page using the HTTP POST method,
typically used to post the contents of an HTML form to the server. A POST method
doPost |typically implies that the server will modify some persistent data using the results of the
request, then return a page indicating the status of the operation or presenting the next
step in a sequence of tasks to the user.

Called when the servlet is destroyed. Typically used to free system resources like

destroy i ;)
database connections that the servlet might have been using.

With this brief introduction to servlets in hand, let's take our Yahoo! Quotes example one last step
and build a Java servlet that makes use of the JTidyConverter class and the Oracle XSLT
processor to enable the data-scraping mechanism to be used dynamically over the Web. Example
6.17 shows the implementation of a YahooXMLQuotesServlet that does the job.

In the servlet's init () method, we construct an instance of a JTidyConverter and an
XSLStylesheet to use for processing each request. To show off yet another technique for parsing
XML from a stream, Example 6.17 uses the getClass() .getResourceAsStream (" filename")
method to load the source of the XSLT stylesheet YahooQuotes-to-QuoteStream.xsl from the
same location in the CLASSPATH as the current servlet class is found.

In the servlet's doGet () method, which runs each time a request for this servlet comes into the
web server, we do the following:

1. Set the MIME type of the servlet response to be text/xml.
Get the value of the HTTP parameter named symbols.

3. Create a URL for the Yahoo! Quotes page, tacking on the list of ticker symbols after
replacing commas with plus signs.

4. Call jtc.xMLifyHTMLFrom on the URL to get a tidied-up XML version of the returned Yahoo!
Quotes HTML page.

5. Create an instance of xSLProcessor and call processxsL() on it to transform the XML
results of our Yahoo! Quotes into a <QuoteStream>.

Example 6.17. Serviet to Convert Yahoo! Quotes to XML

Quotes in Real Time

import javax.servlet.http.*;
import oracle.xml.parser.v2.*;
import java.net.URL;

import javax.servlet.*;

import java.io.*;

import JTidyConverter;

public class YahooXMLQuotesServlet extends HttpServlet ({
JTidyConverter jtc = null;
XSLStylesheet sheet = null;

protected void doGet (HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException ({
String YahooQuotesURL = "http://quote.yahoo.com/q?d2=vl&o=d&s=";
String quotes = reqg.getParameter ("symbols");
// First, tell the requestor we're sending her XML data as the response.
resp.setContentType ("text/xml") ;

// Then, get the Servlet's output Writer to write the response into.

PrintWriter out = resp.getWriter();

if (quotes != null) {
URL yahooUrl = new URL(YahooQuotesURL+quotes.replace(',',"'+"));
try f

// Convert the dynamically produced Yahoo! Quotes page to XML doc
XMLDocument yahooquotes = jtc.XMLifyHTMLFrom (yahooUrl) ;
// Transform the document using our stylesheet into <QuoteStream>
// and let the XSLT processor write the result to our 'out' Writer
XSLProcessor xslt = new XSLProcessor();
xslt.processXSL (sheet, yahooquotes, out) ;

}

catch (Exception ex) {out.println("<error>"+ex.getMessage()+"</error>");}

}

else { out.println("<error>No Symbols Provided</error>"); }

public void init (ServletConfig sc) throws ServletException {
super.init (sc);
// Make sure the Servlet can "see" through the corporate firewall...
System.setProperty ("proxySet", "true") ;
System.setProperty ("proxyHost", "yourproxyserver.you.com") ;
System.setProperty ("proxyPort","80") ;
// Construct a JTidyConverter. We can use the same one over and over.
jtc = new JTidyConverter();
try {
// Read the Yahoo2Xml.xsl stylesheet from the CLASSPATH as a resource.
InputStream styleSource =
getClass() .getResourceAsStream("YahooQuotes-to-QuoteStream.xsl") ;
if (styleSource == null) {

throw new ServletException ("YahooQuotes-to-QuoteStream.xsl not found.");

// Cache a new stylesheet. Note: XSLStylesheet object is not threadsafe
// in Oracle XSLT processor 2.0.2.7, but ok for this demo
sheet = new XSLStylesheet (styleSource,null); // No base URL needed here!
}
catch (XSLException xslx) {

throw new ServletException ("Error preparing XSLT stylesheet.");

Now any user can browse our web server with a URL like this:

http://server/YahooXMLQuotesServlet?symbols=WBVN, YHOO, EBAY

and instantly receive an appropriate XML <QuoteStream> datagram over the Web containing just
the quotes they care about right now:

<?xml version = '1.0' encoding = 'UTF-8'?>

<QuoteStream time="Sun Apr 16 2:55pm ET - U.S. Markets Closed.">
<Quote Ticker="WBVN" Price="5.688"/>
<Quote Ticker="YHOO" Price="116.000"/>
<Quote Ticker="EBAY" Price="139.562"/>

</QuoteStream>

Later in the chapter, we'll build an "XML Quote Service" that runs inside the Oracle8i database as
an example of how this kind of XML processing can be integrated into the server to periodically
retrieve XML-based information from another site and store it in tables in your database for fast,
local processing.

While we're talking about basic XML processing and servlets, it's worth mentioning here that in
addition to allowing the kind of remote JServer debugging we saw earlier, Oracle's JDeveloper 3.1
product also supports both local and remote debugging of Java servlets. This means that you can
quickly test and debug a servlet on your own machine, or attach the debugger to a live, remote
Apache JServ server where you are load-testing your production servlet code. The debugging
facilities are identical in every configuration, so this can really be a lifesaver for your web-based
XML development with Oracle.

For local debugging of a servlet, no special settings are necessary. Just click the Debug icon and
a single-user, local Java servlet engine is used to step through your code. To enable remote
debugging of servlets—or, in fact, any remotely executing Java code—visit your JDeveloper
Project Properties and set Debug Files as: to "Remote Debugging", as shown in Figure 6.13.

Figure 6.13. Setting up for remote Java debugging

CodeCoach | Code Style | oL |
Paths] Lbrssies | Defauls | Compilr Aun/Ciebug
Debasg Session Opbons
Diebang Files az
|F'Il:rn-:|h.- Debugging ﬂ

Homal Java class

Disclets Slored Fiocedue

Oraclet CORBAEJE

| Dracleh On O emand Session
1

Click on the Debug icon in JDeveloper and tell the debugger the machine hame and debugging
port it should connect to, as shown in Figure 6.14.

Figure 6.14. Remote debugger attach dialog

= Remote Debugging Dialog |- (O] x|

Erten the attachment infomation and peess Altach
whezn the debugges has been slated

[rebugging Protocol
@ Drarle 1V

" Jaens Plattoem Debuggng Achiectuns

Hosztmams: ||'?'Cn!|"ﬂ5t j
Fart: |.|_|;|:|;| ﬂ

Aktach Cancal Halp
| | | |

When you dismiss the remote debugging dialog, the debugger attempts to attach to the running
process, and you're off to find the cause of the problem without resorting to
System.out.println() messages in an external file.

Apache JServ here is just an example. JDeveloper remote debugging works with any remotely
executing Java code running on a Java 1.2-compliant virtual machine. You can find details on
setting up your own server for remote debugging in JDeveloper's online help system.

6.2.6 Handling Very Large XML Data Streams

In the last section, we walked the in-memory tree structure of an XML document to copy its nodes.
A common question that developers ask is, "For a really big XML file, won't that in-memory tree
of DOM objects get really big?" Great question: the answer is a resounding "yes!" However, the
size of the tree of objects in memory is a function of how many elements, attributes, and text

nodes the tree contains, not strictly of its file size. For a concrete example, consider the following
two XML documents:

<!-- This document is 180 bytes long -->
<doc>

Just one big text node here with

lots of text in it. And some more

and some more and some more and

some more and...

</doc>

and:

<!-- This document is 180 bytes long -->

<doc>
<a><c><d><e><f><g><h><i/></h></g></f></e></d></c>
<a><c><d><e><f><g><h><i/></h></g></f></e></d></c>

</doc>

Both documents are exactly the same size—180 bytes—but parsing the first document produces
the in-memory structure shown in Figure 6.15.

Figure 6.15. Node tree representation with a single text node

Just one big text
noede here with lots
of text in it. And
somEe more and some
more and some more
and ...

This structure has a root node representing the Document, an Element node child of the root
representing the document element named <doc>, and a single Text node child of the document
element. This makes a total of just three objects in memory. On the other hand, parsing the
180-byte file in the second example produces the in-memory tree of objects, shown in Figure
6.16.

Figure 6.16. Node tree representation with nested elements

That tree contains a root node representing the Document, an Element node child of the root
representing the document element named <doc>, and then 18 additional Element nodes and
three Text nodes representing the whitespace (ws)—carriage returns, line feeds, spaces, and
tabs—in the file that makes the elements appear on different lines and look indented. So the
180-byte file in the first example requires just three objects in memory, while the second file
needs 23 objects. Clearly, the amount of memory required to parse an XML document is a
function both of its sheer size in bytes and of the number of elements, attributes, and text nodes
it contains. This is not an argument against using lots of elements in your XML, just a sign that for
large files we need a technique other than the straightforward parse-it-all-into-memory
approach.

When an XML file is used to export a large data set —for example, one year's worth of detailed
stock quote closing prices for all listed securities on the NASDAQ exchange—parsing the resulting
XML file into a single, in-memory tree of nodes can be impractical due to the amount of memory
required. However, it is often the case that these gigantic XML documents are composed of a
single containing element like <vyearOfNasdaqCloses> in Example 6.18, whose children are a
series of a million repeating subdocuments like the contents of each <ClosingQuote> elementin
this example.

Example 6.18. A Year of Closing Price Information for

NASDAQ Stocks

<l--

| File size is approximately (137 bytes per entry) times (5207 securities)
| times (5 days a week) times (52 weeks per year) = 176MB of XML

+-=>

<YearOfNasdaqgCloses Year="1999" TotalSecurities="5207">
<ClosingQuote Ticker="AAABB">
<Date>01/01/1999</Date>
<Price>6.25</Price>
<Percent>0.5</Percent>
</ClosingQuote>
<ClosingQuote Ticker="AABC">
<Date>01/01/1998</Date>
<Price>7.05</Price>
<Percent>1.25</Percent>

</ClosingQuote>
<!-- 1,353,817 Additional Entries Removed -->

<ClosingQuote Ticker="ZVXI">
<Date>12/31/1999</Date>
<Price>16.10</Price>
<Percent>-1.05</Percent>
</ClosingQuote>
</YearOfNasdagCloses>

An actual XML file containing closing quotes for each of the 5207 stocks on the NASDAQ for each
of the 5 business days in each of 52 weeks during the year—at about 140 bytes per entry—works
out to be approximately 176MB of XML! Since these huge XML data files are typically produced by
looping over rows of data in a relational table and writing out each row as a subdocument, it's
understandable that the subdocuments have a consistent, repeating structure. We will take
advantage of this fact to come up with a new approach to processing these large files.

Using a time-honored divide and conquer strategy, we'll design and implement a mechanism here
to split up the huge file into a sequence of subdocuments, processing each subdocument
separately instead of loading the entire 176MB into memory before starting. For this task, instead
of using the now-familiar boMparser, we'll make use of its companion saxparser class in the
oracle.xml.parser.v2 package.

The acronym SAXE! stands for the "Simple API for XML," an API that allows us to process an XML
document as a stream of events instead of as a tree of nodes. When the saxpParser reads in the

stream of characters comprising the XML document, it simply announces the arrival of each
recognizable syntactic construct in the document. So the first of our earlier 180-byte example
files would be announced, in sequence, by the sAxpParser as:

31 You can find more details on SAX at http://www.megginson.com.

"Starting to parse the document"

"Starting to parse an element named doc with no attributes"

"Starting to parse a text node with these characters: " Just one big...""
"Done parsing the element named doc"

AN

"Done parsing the document"

In fact, announcing the syntactic constructs as it encounters them is the only thing a saxparser
does! It does not create any in-memory objects that represent these structures, as the
DOMParser does. Given this fact, it's easy to understand why parsing a file with the saxparser
requires very little memory: it just does I/O and sends parsing event notifications. The tradeoff is
that you have to write code to handle these events to actually do something interesting with the
XML document streaming in. The sAXParser scans the incoming characters and announces each
construct it encounters by calling an appropriate method of the SAX DocumentHandler interface:

public interface DocumentHandler {
void setDocumentLocator (Locator p0);
void startDocument () throws SAXException;
void processingInstruction(String p0, String pl) throws SAXException;
void startElement (String p0O, Attributelist pl) throws SAXException;
void characters(char[] p0O, int pl, int p2) throws SAXException;
void ignorableWhitespace (char[] p0, int pl, int p2) throws SAXException;
void endElement (String p0) throws SAXException;

void endDocument () throws SAXException;

Any class that implements the DocumentHandler interface above can be notified by the
SAxparser Of these parsing events after calling the parser's setDocumentHandler () method to
register itself for notification. In addition to DocumentHandler, there are other org.xml.sax
handler interfaces like EntityResolver, DTDHandler, and ErrorHandler, SO if necessary, your
class can have complete control over every aspect of the document being parsed.

To handle our task of splitting a large XML document into its many repeating subdocuments, we'll
implement an appropriately named xMLDocumentSplitter class. Since the useful base class
org.xml.sax.HandlerBase provides a default implementation for all of the SAX handling
interfaces, our xMLDocumentSplitter will extend this and override only the handling methods
that make sense for our task.

So what is the task, exactly? Given the name of the XML element representing the repeating
subdocument—for instance, <ClosingQuote> in our <YearOfNasdaqCloses> example—it will be

XMLDocumentSplitter's job to handle the startElement and endElement SAX events to enable
the separate handling of each subdocument.

Since working with SAX's event-based parsing can be confusing to developers who are not used
to such a programming paradigm, we'll choose a path that blends the best of the SAX and the
DOM approaches:

e We'll use a sAxParser in XMLDocumentSplitter to handle XML documents of arbitrary
size.

e For each subdocument we encounter, we'll build a DOM document for it and call a method
to handle that individual subdocument's processing.

This approach kills two birds with one stone: it alleviates the need to have all of the large XML
document in memory at once without sacrificing the easier-to-use DOM model to handle each
subdocument. Since we want xMLDocumentSplitter to be reusable, it makes sense to create an
XMLDocumentHandler interface to define the contract between the component doing the splitting
of the large XML file and the component that will handle the processing of each subdocument:

import Jjava.net.URL;
import org.w3c.dom.Document;
public interface XMLDocumentHandler ({

void handleDocument (Document d , URL u) throws Exception;

With this simple interface in place, we can see how the interaction between SAX and DOM will
work in Figure 6.17.

Figure 6.17. Combining the best of SAX and DOM for large,

repetitive XML

XMLDocurnentSplitter KMLDocumentHandler
4
<YearOfNasdagCloses> E DOM tres
for current

i : subdocument
o R : =ClosingQuote Ticker="AAABB®:=

=Date=>01/01/199%</Datex> :
=Price=h6,25</Price= e 4
H <Percent>0.5</Percent>
P </Closingfucte=
Parss giant i
documant 5 i
... = handiels 1
SAX stream . i
e i FEANIE() N
<Clesinguote Tickers"ZViI":>
<Date>12/31/19%9%</Date>
zPrice=1&,10=/Price=
<Percent>-1.05</Percent>
</Closingfuote>

E .. nanme“ 1353_321]

¥ </YearOfNlasdagClosess

XMLDocumentSplitter parses the entirety of the large file using a saxparser. It registers itself to
be the handler for all of the startElement and endElement parsing events. In the startElement
handler, based on checking the name of the element being started, it does one of the following:

¢ Creates a new subdocument, if it's the start event for the splitter element

e Creates a new Element for the element being started and appends it to the current
element in the current subdocument under construction

e Ignores the element if it's not between the start and end element tags of the splitter
element

In the endElement handler, again based on checking the name of the element being ended,
XMLDocumentSplitter does one of the following:

e (alls the xMLDocumentHandler to handle the current subdocument, if we're seeing the
closing tag for the splitter element

e Sets the current node in the subdocument under construction to the parent of the current
current node, if we're "ending" any other element inside the subdocument

e Ignores the element if it's not between the start and end element tags of the splitter
element

Example 6.19 shows the commented source code for XMLDocumentSplitter.

Example 6.19. Processing Large Streams of

Subdocuments

import org.xml.sax.*;

import org.w3c.dom.*;

import java.io.*;

import java.net.*;

import oracle.xml.parser.v2.*;

public class XMLDocumentSplitter extends HandlerBase ({

private Document curDoc;

private Node curNode;

private Element curElement;

private URL fileURL;

private XMLDocumentHandler handler;

private String splitOnElement = null;

boolean seenDocElementYet = false;

// Remember the XMLDocumentHandler we're being asked to use.
public XMLDocumentSplitter (XMLDocumentHandler handler) {
this.handler = handler;

}

// Split a large XML document into N subdocuments,

Repeating

each one identified

// by the an opening 'splitElement' element. Invoke an XMLDocumentHandler

// to process each subdocument encountered.

public void split (URL fileURL, String splitElement)

throws SAXParseException, SAXException, IOException {

this.fileURL

= fileURL;

this.splitOnElement = splitElement;

// Create a new SAXParser

Parser parser = new SAXParser();

// Register the current instance of this class as the Document Handler

parser.setDocumentHandler (this) ;

// Create a SAX InputSource on the URL's InputStream

InputSource is =
// Start parsing
parser.parse (is);

}

new InputSource (fileURL.openStream());

the stream of XML

// Handle the <Element> "start-element" parsing event

public void startElement (String name,AttributelList atl)

// 1If we were given a null element name to split on,

// by using the document element as the splitElement.

if (splitOnElement == null && !seenDocElementYet) ({

throws SAXException {

behave "normally"

splitOnElement = name;
seenDocElementYet = true;
}
// Construct a DOM Element node for the current element being parsed
curElement = new XMLElement (name) ;
// Add DOM Attribute nodes to the element for each attribute parsed
for (int 1=0; i<atl.getLength(); i++) {
curElement.setAttribute (atl.getName (i), atl.getValue(i));
}
// If we're NOT currently building a subdocument and the element name
// is the split element, then create a new XMLDocument for new subdocument
if (curDoc == null) {
if (name.equals (splitOnElement)) {
curDoc = new XMLDocument ();
curNode = curDoc;
}

else {
// If we're NOT building a subdocument but this element

// 1s not the splitterElement, then do nothing.

return;

}
// Append the current DOM Element as a child of the current node in the

// subdocument being constructured, and set it to be the new current node
curNode.appendChild (curElement) ;
curNode = curElement;

}

// Handle the </Element> "end-element" parsing event

public void endElement (String name) throws SAXException {
// If we're NOT building a subdocument, we don't care. Just return.
if (curDoc == null) return;
// If this is the endElement event for the subdocument splitElement
// then we're done with the subdocument and are ready to call the
// handler to handle it.
if (name.equals(splitOnElement)) {

if (curDoc != null) {
try {
// Call the XMLDocumentHandler.handle() method for current subdoc

handler.handleDocument (curDoc, £fileURL) ;
}
catch (Exception e) {

System.err.println (e.getMessage());

// Get ready for the next subdoc by nulling out our

curDoc = null;
curNode = null;
curElement = null;
}

else {

'current'

variables

// If this is the endElement for any other element, make

// its parent the new current node

curNode =

}
}

curNode.getParentNode (

) ;

// Handle the "just got some text" parsing event

public void characters(char|[]

// If we get text characters,

cbuf, int start,

// append it as a child of the current node.

int len)

{

create a new DOM Text node and

curElement.appendChild (new XMLText (new String(cbuf,start,len)));

Now let's apply xMLDocumentSplitter to solve a problem with a large XML file. Imagine that you
are trying use Oracle8/ 's powerful data warehousing features to analyze your web site's weekly
"click stream" information. Further, let's suppose that your web server outputs the raw
information for each web page access in an XML file like the one shown in Example 6.20.

Example 6.20. Excerpt from XML-based Web Server Access

Log File

<accesslog>

<t--

-—>

h="Host Making the Request"

t="Time of Request"
r="HTTP Request Header"
s="Status of Request"
b="Bytes Sent"
f="Referred from URL"

u="User Agent"/>

<req h="146.74.93.17"

t="13/Sep/1999:20:53:34
r="GET / HTTP/1.0"
s="200"

b="11058"
f="http://www.yesyesyes

-0500"

.com/keylists/example

.html"

u="Mozilla/4.08 [en] (WinNT; I ;Nav)"/>
<req h="146.74.93.17"

t="13/Sep/1999:20:53:35 -0500"

r="GET /sis logo.Jjpg HTTP/1.0"

s="200"

b="26025"

f="http://www.spunkyworld.com/"

u="Mozilla/4.08 [en] (WinNT; I ;Nav)"/>
<req h="146.74.93.17"

t="13/Sep/1999:20:53:36 -0500"

r="GET /services.gif HTTP/1.0"

s="200"

b="856"

f="http://www.spunkyworld.com/"

u="Mozilla/4.08 [en] (WinNT; I ;Nav)"/>

<!-- Millions more page-views in the log where these came from! -->
</accesslog>

To quickly load this large XML file into an access_log table into your data warehouse, you need to
perform just two steps:

1. Write a LogEntryInsertHandler class that implements xMLDocumentHandler and
contains the code to handle a <req> subdocument by inserting its data into a row of the
access_log table.

2. Write an InsertAccessLog command-line program that takes a given access log XML file,
constructs an xMLDocumentSplitter to process the log in chunks, and uses the
LogEntryInsertHandler as the XMLDocumentHandler for the job.

The code for LogEntryInsertHandler is straightforward because:
e It only needs to handle a single <req> subdocument.
¢ We don't have to learn a new paradigm for handling this simple document just because it
happens to live in a huge file.

e We can use Oracle DOM methods like value0f to simplify the job.

The code for LogEntryInsertHandler appears in Example 6.21.

Example 6.21. Handling the Insert for a Single Web Access

Log Entry

import java.net.URL;

import Jjava.sgl.*;

import org.w3c.dom.Document;

import java.sgl.Connection;

import oracle.xml.parser.v2.XMLDocument;

import java.sqgl.Date;

public class LogEntryInsertHandler implements XMLDocumentHandler({
private Connection conn;
private CallableStatement cs;
private long rows = 0;
private long commitBatch = 10;
// Remember the commit-batch quantity and database connection
public LogEntryInsertHandler (Connection conn, long commitBatch)
throws SQLException {
this.commitBatch = commitBatch;
this.conn = conn;
setupCallableStatement ();
}
// Return number of rows processed so far
public long getRowsHandled() { return rows; }
// Handle the processing of a single <reg> document
public void handleDocument (Document doc , URL u) throws Exception ({
XMLDocument d = (XMLDocument)doc;
// Bump the row counter
rows++;
// Bind the values for the insert from values of XPath over current doc
cs.setString(1l,d.valueOf ("/req/@h")); // host
; // request made

cs.setString .valueOf ("/req/@r"

; // referred from

(
(
cs.setString(
cs.setString(

(

())
2,d ())
3,d.valueOf ("/req/@t")); // time of request
4,d.valueOf ("/reqg/@f"))
cs.setString (5,d.valueOf ("/req/Qu")); // user agent
// Do the insert
cs.execute();
if (rows % commitBatch == 0) {
// Commit every 'commitBatch' rows

conn.commit ();

}

// Setup reusable statement for inserts

private void setupCallableStatement() throws SQLException {
if (cs !'= null) {
try { cs.close(); }

catch (SQLException s) {}

cs = conn.prepareCall ("INSERT INTO access log VALUES(?,7?,?,?2,?)");
}

// Commit any uncommitted rows, and close statement and connection.

protected void finalize() throws Throwable {
try { conn.commit(); } catch (SQLException s) {}
try { cs.close(); } catch (SQLException s) {}
try { conn.close(); } catch (SQLException s) {}

Note that this class uses value0f () with an XPath expression relative to the document being
handled to retrieve the values of the <req> document content to be inserted. The
InsertAccessLog command-line driver program appears in Example 6.22.

Example 6.22. Utility to Insert XML-based Web Server Access
Log File

public class InsertAccessLog {
public static void main(String[] args) throws Exception {
// Take the access log filename from the first command-line argument
String filename = args[0];
// Split up the giant AccesslLog file treating
// each <reg> element as its own subdocument.
String splitElement = "req";
// Create an instance of the document handler. Commit every 100
LogEntryInsertHandler dochandler =
new LogEntryInsertHandler (Examples.getConnection(),100);
// Create a XMLDocumentSplitter
XMLDocumentSplitter xds = new XMLDocumentSplitter (dochandler);
long start = System.currentTimeMillis();
// Tell the splitter to split based on the splitElement 'reqg'
xds.split (URLUtils.newURL (filename), splitElement) ;

long end = System.currentTimeMillis();

long rows = dochandler.getRowsHandled();

System.out.println ("Inserted "+dochandler.getRowsHandled()+" rows..."+
"in " + (end-start)+"ms." +
" (" + ((end-start)/rows)+" ms. per row)");

This example creates an instance of LogEntryInsertHandler indicating that the handler should
COMMIT every 100 records and passes it to the constructor of the xMLDocumentSplitter. Then
it calls the sp1it () method on the document splitter to split—and handle—the contents of the

entire web server log file whose name is passed in as an argument. The result is that the contents
of an arbitrarily large XML-based web log file will be loaded into the access_log table.

F- In Chapter 14, we'll expand on this example to show combining

".': . : .
"' 4. XMLDocumentSplitter with a handler that enables any size

XML document to be inserted into any number of database
tables.

Let's give our new utility a spin with the command:

java InsertAccessLog AccessLog.xml
For a 6MB AccessLog.xml log file containing 27625 <req> subdocuments, we can monitor the

memory usage using Windows NT's Task Manager as shown in Figure 6.18 to observe that using
this technique really does not require much memory at all to process very large files.

Figure 6.18. Low, flat memory usage on large XML files with

SAX

CFU Uzape Histary

IMemoey Lisags Histary

The test works fine and prints out a status message of:

Inserted 27265 rows...in 173049ms. (6 ms. per row)

6.3 Searching XML Documents with XPath

In this section, we'll work through several examples that illustrate the power and productivity
offered by the Oracle XML Parser's tightly integrated XPath support. Using these XPath
capabilities, we'll see how easy searching, extracting, evaluating, and retrieving the value of the
nodes in an XML document can be, avoiding tons of tedious DOM node manipulation code.

6.3.1 Basic Use of XPath in Java

Oracle's implementation of the Document Object Model extends the basic DOM APIs to provide
some simple yet powerful additional methods that can save you lots of time when writing
applications that process XML. These extensions come in the form of the following extra methods
on the xMLNode object:

selectNodes (xXPathExpr)

Returns a DOM NodeList containing the nodes matching an XPath expression
selectSingleNode (xPathExpr)

Returns the first DOM node matching an XPath expression
valueOf (xPathExpr)

Returns a String with the text value of the nodes matching an XPath expression
print (Writer | OutputStream)

Serializes the node and its children to an output stream as XML markup

These methods are all defined on the xMILNode class that implements the DOM Node interface in
the Oracle XML Parser. Since xMLDocument extends from XMLNode, you can use any of these
methods on an entire XML document, or just scope them to a particular node. Since the methods
are not defined by the W3C's base DOM interfaces, in order to call the methods you have to cast
a Node object into an xMLNode before you can call them, like this:

for (int z = 0; z < matches; z++) {
// Retrieve current node in a NodeList and cast it to an XMLNode
XMLNode curNode = (XMLNode)myNodeList.item(z) ;
// Use a method that is on XMLNode but not on the Node interface...

System.out.println (curNode.valueOf ("connection/username")) ;

Since the selectNodes and print methods will do all the hard work, it's easy to write an
XPath-enabled ecgrep utility to search the contents of an XML file for nodes matching an XPath
expression passed on the command line and print out the matches. If you have not used Unix,
where grep is a mainstay utility for searching through the contents of text files using regular
expressions, you may instead be familiar with the Windows findstr utility, which does the same
thing. To write our XPath-enabled grep utility requires three steps:

1. Use selectNodes() to get a NodeList of matches.
2. Loop over the nodes in the list.

3. Call print () on each node to serialize it as XML markup.

Example 6.23 shows the simple source code for such an xpPathGrep utility.

Example 6.23. XPathGrep Searches XML Files with XPath

Expressions

import java.net.URL;

import oracle.xml.parser.v2.*;
import org.w3c.dom.*;

import org.xml.sax.*;

import java.io.*;

public class XPathGrep {
public static void main(String[] args) throws Exception {

if (args.length == 2) {
XPathGrep xpg = new XPathGrep();
xpg.run(args[0],args[1l]);

}

else {
System.err.println ("usage: XPathGrep filename.xml XPathExpr");
System.exit (1) ;

}

void run(String filename, String XPath) throws Exception {

URL xmlurl = URLUtils.newURL (filename) ;

DOMParser d = new DOMParser();

try {
d.parse (xmlurl) ;

}

catch (SAXParseException spe) {
System.out.println ("XPathGrep: File "+ filename+" is not well-formed.");
System.exit (1);

}

catch (FileNotFoundException f) {
System.out.println ("XPathGrep: File "+filename+" not found.");
System.exit (1) ;

}

// Cast getDocument() to an XMLDocument to have selectNodes() Method
XMLDocument xmldoc = (XMLDocument)d.getDocument ();
if (XPath.equals("/")) {

// If the path is the root, print the entire document

xmldoc.print (System.out) ;

}
else {
NodeList nl = null;
// Otherwise handle the matching nodes
try {
// Select nodes matching XPath
nl = xmldoc.selectNodes (XPath) ;
}
catch (XSLException err) {
System.out.println ("XPathGrep: "+err.getMessage());
System.exit (1);
}
int found = nl.getLength();
if (found > 0) {
// Loop over matches
for (int z=0; z < found; z++) {
XMLNode curNode = (XMLNode)nl.item(z);
// Print the current node as XML Markup to the output
curNode.print (System.out) ;
// Print a new line after Text or Attribute nodes

int curNodeType = curNode.getNodeType();

if (curNodeType == Node.ATTRIBUTE NODE | |
curNodeType == Node.TEXT NODE | |
curNodeType == Node.CDATA SECTION NODE) {

System.out.print ("\n");

}
else { System.out.println ("XPathGrep: No matches for "+ XPath); }

A lot of the code in xPathGrep is needed only to process the command-line arguments! The real
XPath work is a piece of cake. We can quickly try it out on our dream.xml file to grep for all
<LINE>s in the play containing the word wood in @ <SPEECH> spoken by the <SPEAKER> named

HELENA:
java XPathGrep dream.xml //SPEECH[SPEAKER='HELENA']/LINE[contains (., 'wood")]

This produces the output:

<LINE>Then to the wood will he to-morrow night</LINE>
<LINE>Nor doth this wood lack worlds of company,</LINE>
<LINE>We should be wood and were not made to woo.</LINE>

<LINE>I told him of your stealth unto this wood.</LINE>

If we turn our new utility loose on our YahooQuotesinXML.xml/ file to find all attributes in the file:

java XPathGrep YahooQuotesinXML.xml //@%*

XPathGrep will produce:

time="Sun Apr 16 2:42am ET - U.S. Markets Closed."
Ticker="ORCL"
Price="86.188"
Ticker="GE"
Price="50.500"
Ticker="MSFT"
Price="74.688"
Ticker="IBM"
Price="118.188"

Ticker="T"
Price="34.125"
Ticker="LU"
Price="59.812"
Ticker="CSCO"
Price="67.938"

Besides being simple to implement, you'll find xPathGrep a handy sidekick in your daily work with
XML.

6.3.2 Using XPath for Reading Configuration Files

With the latest releases of the specifications for Java servlets and Enterprise Java Beans, Sun has
moved to an all-XML format for its configuration information. Here we show how simple it is to do
the same for our own programs using XPath.

Let's say we have the following Connections.xml file, which stores named database connections
and the appropriate connection information for each:

<!-- Connections.xml -->
<connections>
<connection name="default">
<username>xmlbook</username>
<password>xmlbook</password>
<dburl>jdbc:oracle:thin:@localhost:1521:0RCL</dburl>
</connection>

<connection name="demo">

<username>scott</username>

<password>tiger</password>

<dburl>jdbc:oracle:thin:@xml.us.oracle.com:1521:xml</dburl>
</connection>
<connection name="test">

<username>test</username>

<password>test</password>

<dburl>jdbc:oracle:thin:@linuxbox:1721:0RCL</dburl>
</connection>

</connections>

We can create a ConnectionFactory class that reads the Connections.xml file as a resource from
the CLASSPATH, and returns a JDBC connection for the connection name passed in. Example 6.24
shows the implementation, which leverages the following methods:

selectSingleNode()
To find the named connection in the XML-based configuration file
valueOf()

On the <connection> element we find, to quickly grab the values of the interesting child
elements containing the JDBC connection information

Example 6.24. Using an XML File for Configuration

Information

import java.sqgl.*;
import oracle.jdbc.driver.*;
import oracle.xml.parser.v2.*;

import java.io.*;

public class ConnectionFactory {
private static XMLDocument root;
public static Connection getConnection (String name) throws Exception {
if (root == null) {
// Read Connections.xml from the runtime CLASSPATH

Class ¢ = ConnectionFactory.class;
InputStream file = c.getResourceAsStream("Connections.xml") ;
if (file == null) {

throw new FileNotFoundException ("Connections.xml not in CLASSPATH") ;
}

// Parse Connections.xml and cache the XMLDocument of config info

root = XMLHelper.parse(file,null);
}
// Prepare an XPath expression to find the connection named 'name'
String pattern = "/connections/connection[@name="'"+name+"']";

// Find the first connection matching the expression above

XMLNode connNode = (XMLNode) root.selectSingleNode (pattern);
if (connNode != null) {
String username = connNode.valueOf ("username") ;
String password = connNode.valueOf ("password") ;
String dburl = connNode.valueOf ("dburl") ;
String driverClass = "oracle.jdbc.driver.OracleDriver";
Driver d = (Driver)Class.forName (driverClass) .newInstance();
System.out.println ("Connecting as " + username + " at " + dburl);

return DriverManager.getConnection (dburl,username,password);

}

else return null;

Then, in any program where you want to make use of this named database connection facility,
just include the lines:

import java.sgl.Connection;

import ConnectionFactory;
Connection myConn = ConnectionFactory.getConnection ("default");

With this, you'll be on your way. It's easy to edit the Connections.xml file at any time to make
changes or add new named connections, and the code in ConnectionFactory doesn't need to
change to accommodate it.

6.3.3 Using XPath Expressions as Validation Rules

In Chapter 5, we learned how the XPath expression language can be used to create a set of
flexible validation rules for XML documents. By simply attempting to select the current node with
any XPath expression applied to it as a predicate:

myNode.selectSingleNode ("./self::node() [AnyXPathExpr]")

we can determine whether the predicate is true or false. If we successfully select the current node,
then the predicate is true. If not, the predicate is false.

In Chapter 5, we built a system to load a XPath <ruleset> document like the following into the
database.

<ruleset name="AbstractSubmission">
<rule name="Submission must have an abstract">
/Submission/Abstract
</rule>
<rule name="Author must supply First name, Last name, and Email">
/Submission/Author [Name/First and Name/Last and Email]
</rule>
<rule name="Title must be longer than 12 characters">
string-length (/Submission/Title) > 12
</rule>
<rule name="You must have previous presentation experience.">
//Author/PreviousExperience = "Yes"
</rule>
</ruleset>

However, we hinted there that it would be very useful to supply a command-line utility that
allowed developers creating ruleset files to test their sets of rules against example XML
documents outside the production database environment. Let's build that utility here.

The basic algorithm for validating a source XML document against a ruleset of XPath-based
validation rules is as follows. For each <rule> in the <ruleset>:

1. Evaluate the current rule's XPath expression as a predicate applied to the root node of the

XML document.
2. If the current rule's XPath expression tests false, then print out the current rule's name to

indicate that the rule failed.

The code in Example 6.25 is all we need to accomplish the job.

Example 6.25. Command-line Tool Validates XML Against

XPath Rulesets

import java.net.URL;
import oracle.xml.parser.v2.*;

import org.w3c.dom.*;

public class XPathValidator {
public static void main(String[] args) throws Exception {
if (args.length == 2) {
XPathValidator xpv = new XPathValidator();
xpv.validate (args[0],args[1l]);
}

else errorExit ("usage: XPathValidator xmlfile rulesfile");

}

// Validate an XML document against a set of XPath validation rules
public void validate(String filename, String rulesfile) throws Exception {
// Parse the file to be validated and the rules file
XMLDocument source = XMLHelper.parse (URLUtils.newURL (filename))

XMLDocument rules = XMLHelper.parse (URLUtils.newURL (rulesfile));

// Get the name of the Ruleset file with valueOf

String ruleset = rules.valueOf ("/ruleset/@name");

if (ruleset.equals("")) errorExit ("Not a valid ruleset file.");
System.out.println("Validating "+filename+" against " +ruleset+" rules...");
// Select all the <rule>s in the ruleset to evaluate

NodeList rulelList = rules.selectNodes ("/ruleset/rule");

int rulesFound = rulelList.getLength();

if (rulesFound < 1) errorExit ("No rules found in "+rulesfile);

else {
int errorCount = 0;
for (int z = 0; z < rulesFound; z++) {
XMLNode curRule = (XMLNode)ruleList.item(z);
String curXPath = curRule.valueOf (".").trim();

// If XPath Predicate test fails, print out rule name as an err message

if (!'test (source,curXPath)) {
String curRuleName = curRule.valueOf ("@name") ;
System.out.println (" ("+ (++terrorCount)+") "+curRuleName) ;
}
}
if (errorCount == 0) System.out.println("No validation errors.");

}

// Test whether an XPath predicate is true with respect to a current node
public boolean test (XMLNode n, String xpath) {

NodeList matches = null;
try { return n.selectSingleNode ("./self::node() ["+xpath+"]") != null; }

catch (XSLException xex) { /* Ignore */ }
return false;

}

private static void errorExit (String m) {System.err.println(m);System.exit (1)}

So we can validate an XML document like our conference abstract submission:

<!-- Abstract With Error.xml -->
<Submission>
<Title>Using XPath</Title>
<Author>

<Name>

<First>Steve</First>
</Name>
<Email>smuench@yahoo.com</Email>
<Company>Oracle</Company>
<PreviousExperience>No</PreviousExperience>
</Author>

</Submission>

using the command-line utility:

java XPathValidator Abstract With Error.xml AbstractSubmissionRules.xml

and immediately see the validation errors:

Validating Abstract With Error.xml against AbstractSubmission rules...
(1) Submission must have an abstract

(2) Author must supply First name, Last name, and Email
(3) Title must be longer than 12 characters

(4)

You must have previous presentation experience.

even before loading the <ruleset> into the database. This tool is sure to come in handy for more
general kinds of XML document sanity checking as well. Just build a ruleset file describing the
XPath assertions you'd like to validate, and use this generic command-line tool to report any
errors.

6.4 Working with XML Messages

In this section, we'll learn the basic Java techniques required to exchange XML data:

e Over the Web in real time, by posting an XML message over HTTP to another server and
immediately receiving an XML-based response

e Asynchronously between processes, by enqueuing XML messages into and dequeuing
them out of Oracle AQ queues

These two important tasks are fundamental to the implementation of web services, the
business-to-business interchange of information using XML message formats and the HTTP
protocol.

6.4.1 Sending and Receiving XML Between Servers

As we saw in Chapter 1, the general approach for moving information of any kind around the Web
involves the exchange via requests and responses of text or binary resources over the HTTP
protocol. A requester requests information by using its Uniform Resource Locator (URL) and a

server handling requests for that URL responds appropriately, delivering the requested
information or returning an error. HTTP's request/response paradigm supports including a
resource with the request as well as receiving a resource back in the response, so it's a two-way
street for information exchange.

Any resources being exchanged between requester and server are earmarked by a distinguishing
MIME type so the receiver can understand what kind of information it is getting. The registered
MIME type for XML-based information resources is text/xml. Putting it all together, the phrase
"posting XML to another server" means precisely this: sending an HTTP POST request to that

server containing an XML document in the request body with a MIME Content-Type Of text/xml.

Posting an XML datagram in the request is useful when you need to submit richly structured
information to the server for it to provide its service correctly. At other times, simple parameters
in the request are enough to get the answer you need. Here are two examples that make the
difference clear.

Each year, more and more Americans are filing their income taxes electronically over the Web. An
income tax return comprises a number of forms and schedules, each full of structured data that
the Internal Revenue Service wants to collect from you. Imagine a simplified tax return in XML as

shown in Example 6.26.

Example 6.26. Simplified XML Tax Form

<Form 1d="1040" xmlns="http://www.irs.gov">
<Filer EFileECN="99454">
<Name>Steven Muench</Name>
<TaxpayerId>123-45-6789</TaxpayerId>
<Occupation>XML Evangelist</Occupation>
</Filer>
<l-- etc. -—>
<Form 1d="8283">
<Donation Amount="300" Property="yes">
<ItemDonated>Working Refrigerator</ItemDonated>
<Donee>Salvation Army</Donee>
</Donation>
</Form>
<Schedule id="B">
<Dividend Amount="-58.74">
<Payer>Bank of America</Payer>
</Dividend>
<Dividend Amount="1234.56">
<Payer>E*Trade Securities</Payer>
</Dividend>
</Schedule>

</Form>

Before filing your return electronically, you might first want to take advantage of a tax advice web
service: you submit your tax return—over secure HTTP (https:) of course—and the service
instantly returns information about errors in your return and suggestions on how to reduce your
tax liability. To submit your tax return to the tax advice service, you need to post a structured
XML datagram to the URL of the tax advice service:

https://www.goodtaxadvice.com/AdviceService

so the service can do its job analyzing all the information in your return. In response to posting
the XML tax form above, the tax advice service might reply in kind with an XML datagram back to
you that looks like this:

<TaxAdvice for="Steven Muench">
<Reminder Form="8283">
Make sure you include a documented receipt for
your "Working Refrigerator" charitable property donation!
</Reminder>
<Error Schedule="B" Line="1">
Negative dividends are not permitted. Check dividend amount of -58.74!
</Error>

</TaxAdvice>

Once you've successfully filed your return electronically with the IRS, you may be interested in
getting an updated filing status for your return. In this case, sending your entire tax return as an
XML datagram is not required. You need only provide your Social Security number as a parameter
on the URL request, like this:

https://www.irs.gov/EFile/FilingStatus?ssn=123-45-6789

and the service might respond with an XML datagram like this:

<Form DCN="12-34567-123-33" id="1040" xmlns="http://www.irs.gov">
<Filer EFileECN="99454">
<Name>Steven Muench</Name>
<TaxpayerId>123-45-6789</TaxpayerId>
<Occupation>XML Evangelist</Occupation>
</Filer>
<StatusHistory>
<Status time="17 Apr 2000 23:59:59">
Your tax return was received successfully.
</Status>
<Status time="18 Apr 2000 08:11:20">
Your tax return was accepted. Your DCN is 12-34567-123-33

</Status>
</StatusHistory>

</Form>

indicating that your return has been assigned a Document Control Number. The
"send-my-whole-tax-return-in-XML" scenario is an example of doing an HTTP POST
request—when a structured XML datagram must accompany the request. The
"check-the-status-of-my-return" scenario—where only URL parameters are needed—is an
example of an HTTP GET request. In both cases, you get a structured XML response back from the
server .

To simplify these XML POSTs and XML GETs over the Web, let's implement an xMLHttp helper
class to handle the details. The class needs methods like these:

// POST an XML document to a Service's URL, returning XML document response
XMLDocument doPost (XMLDocument xmlToPost, URL target)
// GET an XML document response from a Service's URL request

XMLDocument doGet (URL target)
The doPost method needs to:

Open an HttpUrlConnection to the target URL

Indicate a request method of pPoOST

Set the MIME type of the request body to text/xml

Indicate that we want to both write and read from the connection

Write the content of the XML datagram to be posted into the connection
Get an InputStream from the connection to read the server's response

Use XMLHelper.parse to parse and return the response as an XMLDocument

NoUu A WNH

The doGet method is extremely simple. It only needs to use XMLHelper.parse (url) to parse and
return the response from the URL request as an XMLDocument.

Example 6.27 provides a straightforward implementation of these two useful facilities.

Example 6.27. XMLHttp Class Simplifies Posting and Getting
XML

import Jjava.net.*;

import oracle.xml.parser.v2.*;
import Jjava.io.*;

import org.xml.sax.*;

import java.util.Properties;

public class XMLHttp {
// POST an XML document to a Service's URL, returning XML document response
public static XMLDocument doPost (XMLDocument xmlToPost, URL target)
throws IOException, ProtocolException ({
// (1) Open an HTTP connection to the target URL
HttpURLConnection conn = (HttpURLConnection)target.openConnection();
if (conn == null) return null;
// (2) Use HTTP POST
conn.setRequestMethod ("POST") ;
// (3) Indicate that the content type is XML with appropriate MIME type
conn.setRequestProperty ("Content-type", "text/xml") ;
// (4) We'll be writing and reading from the connection
conn.setDoOutput (true) ;
conn.setDoInput (true) ;
conn.connect ();
// (5) Print the message XML document into the connection's output stream
xmlToPost.print (new PrintWriter (conn.getOutputStream()));
// (6) Get an InputStream to read the response from the server.
InputStream responseStream = conn.getInputStream();
try {
// (7) Parse and return the XML document in the server's response
// Use the 'target' URL as the base URL for the parsing
return XMLHelper.parse (responseStream, target);
}
catch (Exception e) { return null; }
}
// GET an XML document response from a Service's URL request
public static XMLDocument doGet (URL target) throws IOException {
try { return XMLHelper.parse(target); }
catch (SAXException spx) { return null; }
}
// Set HTTP proxy server for current Java VM session
public static void setProxy(String serverName, String port) {
System.setProperty ("proxySet", "true") ;
System.setProperty ("proxyHost", serverName) ;

System.setProperty ("proxyPort", port);

We can test out xMLHttp to post @ new <moreovernews> XML newsgram to a web service that
accepts news stories from roving web correspondents with a little program like TestxmlHttp in

Example 6.28.

Example 6.28. Utility to Test Posting XML Newsgrams to a

Web Server

import XMLHttp;
import oracle.xml.parser.v2.XMLDocument;

import java.net.URL;

public class TestXmlHttp {
// Test posting a new News Story to our Web Site that accepts stories in XML
public static void main(String args|[]) throws Exception {
// Make sure we can see through the firewall
XMLHttp.setProxy ("yourproxyserver.you.com","80") ;
// Here's the XML 'datagram' to post a new news story in a String
String xmlDoc =
"<moreovernews>"+
" <article>"+
" <url> http://technet.oracle.com/tech/xml </url>"+
" <headline text> Posting from Java </headline text>"+
" <source> you </source>"+
" </article>"+
"</moreovernews>";
// Parse XML message in a string, no external references so null BaseURL OK
XMLDocument docToPost = XMLHelper.parse (xmlDoc,null);
// Here's the URL of the service that accepts posted XML news stories
String url = "http://ws5.o0lab.com/xsgl/demo/insertxml/insertnewsstory.xsql";
// Construct the target service URL from the string above
URL target = new URL(url);
// Post the XML message.
XMLDocument response = XMLHttp.doPost (docToPost, target);
// Print the response.

response.print (System.out) ;

This parses the newsgram from a String, posts it to the appropriate service URL, and prints out
the XML response from the server indicating that one story was received and accepted:

<?xml version = '1.0'?>

<xsqgl-status action="xsqgl:insert-request" rows="1"/>

Let's generalize Example 6.28 by building a useful utility called postxML that allows us to post any
XML file to any web service from the command line. Example 6.29 shows the postxML utility that
processes command-line arguments, then calls xMLHelper.parse and XMLHttp.doPost.

Example 6.29. PostXML Posts XML to Any URL from

Command Line

import oracle.xml.parser.v2.*;

import java.net.*;

import org.xml.sax.*;

import XMLHttp;

public class PostXML ({

public static void main(String[] args) throws Exception {

String filename = null,targetURL = null, proxy = null;

for (int z=0;z < args.length; z++) {

if (argslz].equals("-x")) {
if (args.length > z + 1) proxy = args[++z];
else errorExit ("No proxy specified after -x option");

}

else if (filename == null) filename = args[z];
else if (targetURL == null) targetURL = args[z];
}
if (filename != null && targetURL != null) {

}

// If user supplied a proxy, set it

if (proxy != null) XMLHttp.setProxy (proxy,"80");
// Post the xml!

PostXML px = new PostXML();

px.post (filename, targetURL) ;

else errorExit ("usage: PostXML [-x proxy] xmlfile targetURL");

}

// Post XML document in 'filename' to 'targetURL'

public void post(String filename, String targetURL) {

try {

}

// Parse the file to be posted to make sure it's well-formed
XMLDocument message = XMLHelper.parse (URLUtils.newURL (filename)) ;

// Construct the URL to make sure it's a valid URL

URL target = new URL(targetURL) ;

// Post the XML document to the target URL using XMLHttp.doPost
XMLDocument response = XMLHttp.doPost (message, target);

if (response == null) errorExit ("Null response from service.");

// If successful, print out the XMLDocument response to standard out

else response.print (System.out) ;

// If the XML to post is ill-formed use XMLHelper to print err

the

catch (SAXParseException spx) {errorExit (XMLHelper.formatParseError (spx));}
// Otherwise, print out appropriate error messages
catch (SAXException sx) { errorExit ("Error parsing "+filename); }
catch (MalformedURLException m){ errorExit ("Error: "+targetURL+" invalid");}
catch (Exception ex) { errorExit ("Error: "+ex.getMessage()); }

}

private static void errorExit (String m) {System.err.println(m);System.exit (1)}

We can now accomplish what the previous sample code did in a generic way from the command
line by using PostxML to post the XML newsgram from a file:

java PostXML -x yourproxyserver.you.com NewsStory.xml http://server/service

But we can use the postxML utility for lots of other purposes. It will come in handy to test out any
server-side code written to handle incoming, posted XML documents. In fact, let's look next at
exactly what the server-side Java code looks like on the receiving end of a posted XML datagram.
Since these messages are posted over HTTP, and since Java servlets are designed to enable you
to easily write server-side programs that handle HTTP requests, it's natural to study a servlet
example.

While the service it provides is arguably of little value, the xMLUpperCaseStringServlet in
Example 6.30 serves as a complete example for:

Receiving an XML datagram in the HTTP POST request and parsing it
Processing the data by using XPath expressions and selectNodes
Changing the document in some interesting way

Writing back an XML document as a response

HwnN e

The service we're providing in Example 6.30 is to accept any posted XML document, search it for
<String> elements, uppercase the value of each of these <string> elements, and write the
modified document back as the response XML datagram.

In Chapter 8, Chapter 9, and Chapter 11, we'll see how to make these services much more
interesting by interacting with your database information.

Example 6.30. Receiving, Parsing, Searching, and

Manipulating Posted XML

import javax.servlet.http.*;
import oracle.xml.parser.v2.*;
import org.w3c.dom.*;

import org.xml.sax.SAXException;

import java.net.URL;
import Jjavax.servlet.ServletException;

import java.io.*;

public class XMLUpperCaseStringServlet extends HttpServlet {
// Handle the HTTP POST request
protected void doPost (HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException ({
XMLDocument incomingXMLDoc = null;
// Tell the requester she's getting XML in response
resp.setContentType ("text/xml") ;
// Get the character writer to write the response into
PrintWriter out = resp.getWriter();
try |
// If we're receiving posted XML
if (reg.getContentType().equals("text/xml")) {
// Get the InputStream on the HTTP POST request's request body
InputStream incomingXMLStream = reqg.getInputStream();
// Parse it with our helper
incomingXMLDoc = XMLHelper.parse (incomingXMLStream,null);
// Find any <String> elements in the posted doc using selectNodes
NodeList stringElts = incomingXMLDoc.selectNodes ("//String");
// Loop over any matching nodes and uppercase the string content
int matches = stringElts.getLength();
for (int z=0; z<matches; z++) {
Text t = (Text)stringElts.item(z) .getFirstChild();
// Uppercase the node value of the first text-node Child
t.setNodeValue (t.getNodeValue () .toUpperCase());
}
// Write posted XML doc (with <String>'s now uppercased) to response
incomingXMLDoc.print (out) ;
}
else out.println("<error>You did not post an XML document</error>");
}
catch (SAXException s) {
out.println("<error>You posted an ill-formed XML document</error>");
}
catch (XSLException x) {

out.println("<error>Error processing selectNodes</error>");

You'll notice that the only new trick is the use of the getContentType method on the
HttpServletRequest to sense if we're receiving posted XML, and the getInputStream method to
retrieve the contents of the posted document. If we use pPostxML to test out our new servlet on
the following Sample.xml file:

<!-- Sample.xml -->
<Something>
<Containing>
<String>this is a string</String>
<String>this is too</String>
</Containing>
<String>And a third...</String>
</Something>

with the command line:

java PostXML Sample.xml http://localhost/servlets/XMLUpperCaseStringServlet

We get back the XML response that includes the results of the service:

<!-- Sample.xml -->
<Something>
<Containing>
<String>THIS IS A STRING</String>
<String>THIS IS TOO</String>
</Containing>
<String>AND A THIRD...</String>
</Something>

So we now we've seen how to both pitch and catch XML information over the Web.

6.4.2 Acquiring XML Data from Another Server

Next let's walk through an example of retrieving XML information from another web site from
inside Oracle8i. Just to mix things up a little, we'll show how Java and PL/SQL can be used
together to accomplish the job. We will do the following:

1. Build a class called captureQuotes that will:
o Use our JTidyConverter and YahooQuotes-to-QuoteStream.xsl transformation to
retrieve live XML <QuoteStream> data from Yahoo! Quotes over the Web
o Insert the Ticker and Price information returned with each <Quote> into the
database by invoking a stored procedure to do the handling
2. Create the latest_quotes table and an insert quote stored procedure in PL/SQL that will
make sure only a single latest quote per day per ticker symbol stays in our table

3. Test our captureQuotes outside the database, then deploy it as a Java stored procedure
so it can be executed periodically by a DBMS JOB database job
4. Deal with a few new JServer permissions that we'll need to make the whole thing work

So let's get started, taking the simple steps first. We can create the table to store our latest
quotes with the following command:

CREATE TABLE latest quotes (
ticker VARCHARZ2 (7),
price NUMBER,
day DATE

)7

And creating the PL/SQL stored procedure to handle inserting a quote is easy, too:

CREATE OR REPLACE PROCEDURE insert_quote(sym VARCHAR2, cost NUMBER,eff DATE) IS
BEGIN

-- Remove any previous "latest" quote from today for this symbol.

-—- Make sure an Oracle8i Functional index on (TRUNC (day),ticker) exists!

DELETE FROM latest quotes

WHERE ticker = sym

AND TRUNC (day) = TRUNC (eff);

INSERT INTO latest quotes VALUES (sym,cost,eff);

END;

Note that insert quote first deletes any existing "latest" quote for the current ticker symbol by
searching the table for a row with the current ticker symbol and a TRUNC (day) equal to the
TRUNC (eff) effective date of the current quote being handled. Since this latest_quotes table may
contain millions of rows—as we might accumulate years of historical stock quotes—we need this
DELETE statement to be fast. Normally a WHERE clause that uses a function like TRUNC () on a
column immediately forfeits the use of the index, but Oracle8/ sports a neat new feature called
functional indexes that allows us to happily issue the CREATE INDEX statement:

CREATE INDEX latest quotes idx ON latest quotes (TRUNC (day),ticker);

e Your database user needs to be granted the QUERY REWRITE
«: | privilege—or be granted a role that has been granted the
k- permission—in order to successfully create a functional index.

So any search on the combination of ticker symbol and TRUNC (day) will be lightning fast. Next
we'll create captureQuotes. The guts of this class will borrow from our earlier
YahooXMLQuotesServlet, but with a few interesting twists. First, we'll read the XSLT stylesheet
to perform the transformation using the handy xml1doc URLs we created earlier. This means that
we can store the YahooQuotes-to-QuoteStream.xsl stylesheet in our xml_documents table and
easily retrieve it for use at any time without leaving the database. Second, rather than simply

spitting back the XML <QuoteStream> as the servlet did earlier, we'll use the XPath searching
facilities to loop over all of the matching quotes and insert each one in the database. Third, we'll
use a JDBC callableStatement to execute the insert quote stored procedure after binding the
values of the current quote information.

Note that after retrieving the Yahoo! Quotes as an XML <QuoteStream> we could simply call
XMLDocuments.save () to save our <QuoteStream> XML document in a CLOB, but this is not our
intention here. We want the historical data to be usable by existing report writing tools like Oracle
Reports, and existing data warehousing tools like Oracle Discoverer. We want to use powerful
SQL queries to sort and group and summarize the data to look for trends and quickly generate
charts and graphs. So having the information in regular rows of a regular database table makes
a whole lot of sense.

Example 6.31 shows the code for CaptureQuotes.

Example 6.31. Java Stored Procedure to Retrieve and Store

Web Stock Quotes

import javax.servlet.http.*;
import oracle.xml.parser.v2.*;
import org.w3c.dom.*;

import java.net.URL;

import java.sqgl.*;

import java.io.*;

import JTidyConverter;

import XMLDocuments;

import Examples;

public class CaptureQuotes {

private static CaptureQuotes cq = null;
private Connection conn = null;
private JTidyConverter jtc = null;
private XSLStylesheet sheet = null;

private CallableStatement stmt = null;

private static final String YQUOTES = "http://quote.yahoo.com/qg?d2=vl&o=d&s=";

public CaptureQuotes (Connection conn) {
this.conn = conn;

}

// Oracle8i Java stored procedure debugging entry point for testing.

public static void debug main() throws Exception ({
storeLatestQuotesFor ("ORCL, INTC, MSFT") ;

}

// Static method to expose as Java stored procedure

public static void storelLatestQuotesFor (String symbolList) throws Exception ({
if (cg == null) {
cqg = new CaptureQuotes (Examples.getConnection());
cg.initialize();
}
cg.retrieve (symbolList) ;
}
// Retrieve Yahoo Quotes and save quote data in a table
private void retrieve (String symbolList) throws Exception {
if (symbolList != null && !symbolList.equals("")) {
URL yahooUrl = new URL(YQUOTES+symbolList.replace(',"',"'+"));
// Convert the dynamically produced Yahoo! Quotes page to XML doc
XMLDocument yahooquotes = jtc.XMLifyHTMLFrom (yahooUrl) ;
// Transform the document using our stylesheet into <QuoteStream>
// getting the transformed result in a DocumentFragment
XSLProcessor xslt = new XSLProcessor();
DocumentFragment result = xslt.processXSL (sheet, yahooquotes);
// Get the document element of the transformed document
XMLElement e = (XMLElement)result.getFirstChild();
// Search for all <Quotes> in the resulting <QuoteStream>
NodeList quotes = e.selectNodes (".//Quote");
int matches = quotes.getLength();
// Loop over any quotes retrieved; insert each by calling stored proc
for (int z = 0; z < matches; z++) {
XMLNode curQuote = (XMLNode)quotes.item(z) ;
// Bind the 1lst stored procedure argument to valueOf Ticker attribute
stmt.setString (1, curQuote.valueOf ("Q@Ticker"));
// Bind the 2ND stored procedure argument to valueOf Price attribute
stmt.setString (2, curQuote.valueOf ("@Price"));
// Execute the stored procedure to process this quote
stmt.executeUpdate();
}

conn.commit ();

}

// Setup proxy server, Cache XSL Transformation, and Callable Statement
private void initialize() throws Exception {
if (jtc == null) {

// Make sure the Servlet can "see" through the corporate firewall...
System.setProperty ("proxySet", "true") ;
System.setProperty ("proxyHost", "yourproxyserver.you.com") ;
System.setProperty ("proxyPort","80") ;
// Construct a JTidyConverter. We can use the same one over and over.

Jjtc = new JTidyConverter();

XMLDocuments.enableXMLDocURLs () ;

// Read the Yahoo2Xml.xsl stylesheet from an xmldoc:// URL in the DB

URL u = new URL("xmldoc:/transforms/YahooQuotes-to-QuoteStream.xsl");
InputStream styleSource = u.openStream();

// Cache a new stylesheet. Not threadsafe in 2.0.2.7 but OK for demo.
sheet = new XSLStylesheet (styleSource,null); // No base URL needed here!
// Cache a reusable CallableStatement for invoking the PL/SQL Stored Proc
stmt = conn.prepareCall ("BEGIN insert quote(?,?,SYSDATE); END;");

Note that the initialize () routine:

e Sets Java System properties to allow the program to talk to URLs outside the firewall

e Constructs a JTidyConverter to use for the life of the session

e Reads the stylesheet from xmldoc:/transforms/YahooQuotes-to-QuoteStream.xsl and
constructs a new xsLstylesheet object to use for the life of the session

e Creates a reusable callableStatement object to execute over and over again with
different bind variable values to invoke the stored procedure

Also note that we've added a debug main() method so we can use JDeveloper's JServer
debugging feature to find any problems that crop up. To test CaptureQuotes outside the
database, we can put the following lines of code in a little tester class:

CaptureQuotes.storelLatestQuotesFor ("ORCL, INTC") ;
CaptureQuotes.storelLatestQuotesFor ("WBVN,MSFT, IBM, WEBM") ;

This will test to make sure we can make multiple calls to the captureQuotes class in the same
session with no problem. After doing this, if we execute the SQL statement:

SELECT ticker, price, TO_CHAR(day,'MM/DD/YY HH24:MI') day
FROM latest quotes

WHERE TRUNC (day) = TRUNC (SYSDATE)

ORDER BY 3,1

we'll see the latest quote data retrieved from over the Web sitting comfortably in our local
database table:

TICKER PRICE DAY

IBM 111.875 04/17/00 17:47
INTC 123 04/17/00 17:47
MSFET 75.875 04/17/00 17:47

ORCL 74.812 04/17/00 17:47

WBVN 4.531 04/17/00 17:47
WEBM 61.75 04/17/00 17:47

Finally, we'll deploy CcaptureQuotes as a Java stored procedure into JServer. We went through
the basic steps earlier in the chapter, so we'll just highlight what's unique this time.

We use JDeveloper to create a new Java stored procedure deployment profile and select the
debug main and storelLatestQuotesFor static methods of the captureQuotes class to be
published. We choose a hame like YAHOOQUOTES (it can be different from the class name) for the
package in which JDeveloper will publish our two selected methods as package procedures.

Before deploying your Java stored procedure, you need to load the .jar file for the JTidy bean into
the database. This is done with the one-line command:

loadjava -verbose -resolve -user xmlbook/xmlbook tidy.Jjar

Then you can select your Java stored procedure profile to deploy it and everything should go
smoothly. JDeveloper's deployment wizard will automatically create the necessary Java stored
procedure specification:

CREATE OR REPLACE PACKAGE YAHOOQUOTES AUTHID CURRENT USER AS
PROCEDURE STORELATESTQUOTESFOR ("symbolList" IN VARCHAR2)

AS LANGUAGE JAVA

NAME 'CaptureQuotes.storelatestQuotesFor (java.lang.String)';
END YAHOOQUOTES;

And after loading the XSLT stylesheet into our xml_documents table (arguments all go on one
line):

java XMLDoc save YahooQuotes-to-QuoteStream.xsl

/transforms/YahooQuotes-to-QuoteStream.xsl
we're good to go!

You can connect to the database in SQL*Plus and give the new Java stored procedure a whirl by
typing something like this to get the latest quotes for Apple Computer, Oracle, and Healtheon:

EXEC yahooquotes.storelatestQuotesFor ('AAPL,ORCL,HLTH'")

At this point, it will either work correctly, or fail with a JServer security violation. The XMLBOOK
user needs the appropriate java.util.PropertyPermission to be able to set the System
variables to affect the proxy server name, as well as the familiar java.net.SocketPermission
from an earlier example for the *.yahoo.com domain. The script in Example 6.32—run as
SYS—grants XMLBOOK the appropriate privileges.

Example 6.32. Granting Privileges to Connect to an External

Web Site

BEGIN
-- Grant Permission to set the proxy* System properties
dbms java.grant permission (
grantee => 'XMLBOOK',
permission type => 'SYS:java.util.PropertyPermission',
permission name => 'proxySet',
permission action => 'write');
dbms java.grant permission (
grantee => 'XMLBOOK',
permission type => 'SYS:java.util.PropertyPermission',
permission name => 'proxyHost',
permission action => 'write');
dbms java.grant permission (
grantee => 'XMLBOOK',
permission type => 'SYS:java.util.PropertyPermission',
permission name => 'proxyPort',
permission action => 'write');
-—- Grant Permission to resolve and connect to URL at *.yahoo.com
dbms java.grant permission (
grantee => 'XMLBOOK',
permission type => 'SYS:java.net.SocketPermission',
permission name => '*.yahoo.com',

permission action => 'connect,resolve');

COMMIT;
END;

Retry the stored procedure and rerun the query from before:

TICKER PRICE DAY

IBM 111.875 04/17/00 17:47
INTC 123 04/17/00 17:47
MSFT 75.875 04/17/00 17:47
WBVN 4.531 04/17/00 17:47
WEBM 61.75 04/17/00 17:47
AAPL