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ABSTRACT

The checkers program Chinook has earned the right to challenge for the World
Checkers Championship. The experiences gained in developing the program
and preparing for the match illustrate several important obstacles to success-
fully mounting a challenge to the human World Champion. These points
appear to be directly applicable to chess, and the checkers experience may well
be a preview of what is to come in chess.

1. Introduction

The last five years have seen chess programs achieve tremendous success against
strong human chess players, including Grandmasters [5]. Even though the Deep Thought
program was handily defeated by World Champion Garry Kasparov [5], the impression
prevails that it will only be a short time until the two (or their successors) square off for
the World Chess Championship. In fact, with recent advances in hardware and software
technology, it is hard to be pessimistic when forecasting the date this match will take
place, with most experts predicting the human demise before the end of this decade [7].

The checkers program Chinook is arguably one of the two or three best checker
players in the world, and has earned the right to challenge the World Champion, Dr.
Marion Tinsley, for his title [10, 11]. By coming second to Tinsley in the biennial U.S.
Open, Chinook became the next challenger to the World Champion. In an exhibition
match in December, 1990, Tinsley narrowly defeated Chinook 8.5 - 7.5, winning game
10 and drawing the rest. A 40-game World Championship match is tentatively scheduled
to be played in November, 1991.

The games of chess and checkers programs share many similarities, so it is not
surprising that programs to play these games should be similar. They are both played on
8 X 8 boards (although in checkers only half the squares are used) with each side alter-
nating moves (black moves first in checkers). Both games have opening, middlegame
and endgame phases with similar characteristics. Championship-level players of both
games must extensively study the opening literature, understand the subtleties of posi-
tional play, have a tactical acuity, and have a delicate touch in the endgame. Chess and
checkers programs use deep alpha-beta searching to amaze the masters with long, star-
tling combinations, while sometimes appearing like duffers when it comes to the
subtleties of positional play. Other than redefining the move generator and position
evaluation function, most of the work on computer chess can be applied to computer
checkers.
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Programs are closer to toppling the best humans in checkers than in chess. Given
the strong similarity between the games, one would expect that the lessons learned from
attempting to defeat Tinsley may be applicable to future man-machine World Champion-
ship chess matches. Despite Chinook’s success, we remain pessimistic about defeating
Tinsley for a variety of reasons, many of which are discussed here.

In this paper, the experience gained in mounting a challenge for the checkers World
Championship is extrapolated to the game of chess. There are a number of obstacles that
will make it difficult to mount a successful challenge to Garry Kasparov this decade.
Some of these problems have yet to be seriously looked at by the computer chess com-
munity.

2. All Draws are Not Equal

At the U.S. National Open (Tupelo, 1990), in eight of its 32 games Chinook
announced that the game was drawn by move 10! In other words, the deep searches had
found their way safely into the endgame databases, backing up a draw score to the root of
the tree. The adversaries could now agree to a draw and move on to their next game. Or
should they?

Consider the following four instances of "drawn" games:

(a) Of the eight games Chinook announced as draws in the U.S. National Open, the pro-
gram won two of them. Although the program believed the position was drawn,
assuming the opponent could see as far as the program could, the depth of the
analysis was beyond what the humans could see and two eventually made mistakes
and lost. The other six games ended in quick draws without Chinook doing any-
thing to make the opponent’s life difficult.

(b) In the Mississippi State Open, Chinook reached an endgame with a large advantage
that was, however, insufficient to force a win. Given a choice of moves that
preserved the draw, Chinook made some questionable selections. Over the span of
5 moves, the opponent’s position steadily improved to the point where he refused
Chinook’s draw offer. The program was in its database so there was no possibility
of losing the game. Nevertheless, the game was extended an additional 90 minutes
while the opponent tried to press home an insufficient advantage.

(c) In a Tinsley match game, the program declined winning a checker. It had correctly
seen that all lines led to draws, but Tinsley was surprised that the program did not at
least win the checker, thereby forcing him to come up with the correct (non-
obvious) sequence of moves (which he had seen).

(d) In Chinook’s lone loss to Tinsley, the program announced a draw, only to change its
assessment downward a few moves later and eventually lose the game. As early as
move 10, Tinsley knew he was winning, yet Chinook’s deep searches managed to
find inventive ways of postponing realization of the danger (and thereby not offer-
ing the stiffest resistance).

These three events call into question the meaning of a draw score. In commenting on
Chinook’s play against him, Tinsley writes [14]:

This illustrates the saying that for Chinook one draw is as good as another.
The programmers have a challenge to direct him (sic) to select the most
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aggressive line of attack.

A draw score backed up to the root of a search tree is not necessarily a guaranteed
draw. The reliability of the draw assessment depends on the accuracy of leaf node
evaluation. For example, if the opponent has a choice of a draw (score = 0) and an infe-
rior position (score = -10), minimax assumes he maximizes his score, resulting in a draw
score for this node. This score could be backed up to the root and the program will
declare the position drawn. A deeper search (for example, on the next iteration) may
search this line an additional ply and discover that the extra depth uncovers a tactical
nuance, changing the assessment to a win (score = 100). Now the opponent backs up a
winning score (100), possibly changing the root assessment of a draw into a loss.

When a draw score is backed-up to the root, how reliable is it? Alpha-beta gives no
clues. Other search algorithms, such as conspiracy numbers [8] do, but with greatly
increased search effort. A chess or checkers program faces the dilemma that if two or
more moves backup a draw score, it is random which one is selected. Of course, there
are "easy" and "hard" draws. The program needs some way of differentiating this.

Points (a), (b) and (c) above illustrate the need to differentiate draw scores. The
program must be able to select moves that maximize the program’s chances of winning.
Point (b) also illustrates that the program can "con" the opponent into exerting himself
longer than is required, an exercise that can only end up in tiring the human. Point (d)
illustrates that a draw score can hide danger. For example, in this game at the critical
position, Chinook selected a "drawing" move but an analysis of the game tree shows that
path to the draw mirage was narrow and fraught with danger. An alternative move (the
correct move), led to a small disadvantage (score = -10) but the program had many
acceptable subsequent choices. In fact, an additional 4 ply of search would of been suffi-
cient to see that this line led to a draw. The dilemma? Maximize score or maximize
safety.

The move with the highest minimax score may not be the best move to maximize
winning chances. Consider a position with the choice of two moves, m1 and m2:

m1: leads to a persistent advantage but the opponent will have no difficulty finding the
right sequence of moves to draw.

m2: leads to a dead draw. However, there are a couple of traps along the way that
require the opponent to resist playing the "obvious" move.

Which move would you choose? This is an important issue that has received some atten-
tion in the literature ([2, 6, 9], for example) but, unfortunately, has not been addressed in
an implementation.

Selecting the move to maximize winning chances is not easy; a static evaluation
function is often inadequate. The evaluation of a line of play should not be based solely
on the position at the end of the line (as alpha-beta does). The evaluation of a line must
also be a function of the series of moves that lead to the leaf position. Some considera-
tions would include the depth of search required to see the correct result of the line of
play (although this can often be misleading), the number of reasonable choices the
opponent has at interior nodes along the line, how "obvious" the moves the opponent
must play are, and any traps or pitfalls along the way. Peter Jansen has made some prel-
iminary efforts at resolving these issues as they apply to traps and pitfalls [4].
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It is difficult to know what the best solution to the draw differentiation problem is.
In Chinook, scores can be viewed as 2 parts: integer and decimal (although that is not
how they are implemented). The integral value is the usual minimax score, with a draw
having a value of zero. Only when the position is scored as a draw are the decimal digits
used. When reaching a drawn node (such as by hitting a position in an endgame data-
base), a static evaluation is performed and assigned to the decimal digits. The program
tries to maximize its integral score and, in the case of draws, maximize the decimal score.
Another way of looking at it is that we have created a large range of values that fall in
between the range -1..1, all of which are draw scores. In this way, we can differentiate
draw scores by their backed-up static evaluation score, preferring to reach drawn posi-
tions that are more favorable to us than otherwise (solving problem (c) above).

In this framework, we are unsure how to modify draw scores to reflect the difficulty
of the line required to reach that position. Although we have many ideas how to incor-
porate depth of the line, obviousness of the moves and probability of human error into
the scores, it is very difficult to assess the utility of any solution. There are no books
with collections of test positions where, in a drawn position, one attempts to choose the
move that gives the opponent the most chances to go wrong.

3. Databases

Endgame databases are important in both chess and checkers because of the perfect
knowledge they provide to the program. In this area, more so than any other aspect of the
games, computer technology is vastly superior to human abilities.

Chinook currently has access to all the 6-piece and some of the 7-piece databases, a
total of 15 billion positions. As well, by inference, the program has solved all the n
versus 1 and n versus 2 endgames (e.g. 12 checkers against 2). Very soon, we expect to
complete the 7-seven piece databases (a further 20 billion positions) and start tackling the
8-piece databases (400 billion positions).

In checkers, since capture moves are forced, it is easy for a long forcing line to ter-
minate in a database. For example, a 3 minute search of the checkers starting position
already reaches positions in the database. Hence, the databases must be online and acces-
sible throughout a game.

As the number and size of the databases grow, so will the need to access them inex-
pensively. Our estimate is that an exact representation (win, loss or draw) of the 8-piece
databases might be compressible to 15-20 gigabytes. Better compression ratios are possi-
ble, but may render the database unusable in a real-time application. Given a position,
the program must compute where in the database the value will be found, access from
disk the relevant portion of the file, and decompress it to extract the value. Since the
database is being accessed during the search, the time taken to decompress and access
values must be comparable to the time it takes to generate a move list or evaluate a posi-
tion. This immediately rules out many of the standard compression algorithms. Unfor-
tunately, even with optimal compression the databases still require too much storage, and
each position reached will require a disk access, significantly slowing down the searcher.
Although work has been done on compressing endgame databases (in chess [1] and Nine
Men’s Morris [3], for example), the size of the databases considered is not as big as we
require (and will eventually be needed by chess), nor do they necessarily have the online
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and fast access requirements.

In constructing databases this large, it is too expensive to save anything but the
value (win, loss or draw) for a position. Additional information, such as the best move to
play in a position, would increase the database size roughly four-fold. A consequence is
that in some 6-piece endgames, Chinook may reach a winning position and not know how
to win, even with 25-ply searches.

An alternative approach to storing databases is to trade time for space. Examination
of the checkers databases shows definite patterns that might be exploited. A series of
pattern recognition tests might, for example, be able to ascertain the value of a position
90% of the time. Only for the exceptions would you need to reach into the database. The
problem, of course, is how to extract patterns from the billions of position-value pairs in
the database. Humans are very good at playing many endgames using only a few rules.
Ultimately, computers must be able to do the same thing, even if it means introducing a
small probability of error into an assessment. If so, then a few gigabytes of disk space
may be replaced by a few pages of code.

As more chess and checkers databases are computed, the problems of how to store
them compactly and access them in real-time will become more acute. In chess, Stiller’s
5-piece endgame work done on the Connection Machine [12] is being extended to 6
pieces [13]. Once this work is complete, the total number of endgame positions com-
puted for chess will dwarf our planned 400 billion for checkers.

4. Search and Knowledge

Chinook searches a minimum of 15-ply (plus extensions) deep in the opening, gra-
dually increasing that to over 20 ply in the endgame. Even at these depths, humans can
still out-search the program. How deep does a brute-force searcher need to go to be
better than the best humans?

Chinook does not lose a game to a tactical combination. All its (few) losses against
the world’s best humans stem from the same problem: making a move that has fatal
long-term consequences. For example, Marion Tinsley, commenting on his only victory
over Chinook, said of Chinook’s 10th move [14]:

What a shock! This move didn’t seem like Chinook. ... From this point I
could see quickly a clear unmistakable win.

Tinsley’s vision consisted of a three-stage plan that he knew Chinook could not prevent.
The program resigned 25 moves later. Only on move 27, 34 ply after the mistake on
move 10, did Chinook realize it was in trouble. Search alone cannot solve this problem
for us.

If the depths of search that Chinook reaches are not sufficient to defeat Tinsley, will
these depths be sufficient to defeat Kasparov? Possibly. Chess has a higher branching
factor than checkers (an average of 35 versus 10 in non-capture positions) and thus a ply
of search is more complicated. Deeper searches will reduce the chances of the computer
making a mistake and increase the chances for human error. However, the practical lim-
its of search (another 1000-fold speed increase in the next few decades?) will still be
insufficient to uncover the subtleties of some "simple" positions.

Even today, it is easy to construct a position that a human can solve easily and a
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good program, such as Deep Thought, won’t have the slightest idea of what is going on.
Knowing this and trying to exploit it in a game sounds like a difficult challenge.
Chinook’s games have been extensively analyzed and its weaknesses are known to the
Grandmasters. They now adopt a wait-and-see attitude. In most games nothing interest-
ing develops and the Grandmaster plays towards a safe draw. Occasionally, Chinook
maneuvers itself into a position where the human can force the program to make long-
term commitments. Sometimes these commitments are mis-assessed by the program and
a mistake occurs. Chinook’s last three losses (one to Tinsley and two to Don Lafferty,
the world’s acknowledged second best human player) were each the result of a poor
long-term decision. In all three cases, to the human, while the best move might not have
been obvious, Chinook’s move was obviously a mistake.

Chinook’s static evaluation function is adequate to play Grandmaster checkers.
However, without additional understanding of long-term considerations, it is inadequate
to defeat Tinsley. The conjecture is that the same is probably true for chess. In a 24-
game match, Garry Kasparov will do well if he plays patiently, not forcing things, wait-
ing for a mistake to occur. Unfortunately for many strong players, psychological con-
siderations may prevent them from adopting this objectively best strategy.

5. Theory and Practice

As the chess/checkers program becomes stronger, it becomes harder to find quality
opponents to exercise the program’s skill. Testing the program in the laboratory is insuf-
ficient to cover all the cases that arise in man-machine play. Hence we must go out and
seek matches against the world’s top players. This is not easy to do without appropriate
financial incentives for the human players. It’s difficult to get enough games played
against top-quality opposition.

Chinook is good enough that it would be the favorite to win any checkers tourna-
ment that Tinsley was not competing in. As with any front-runner, the potential
opponents have studied the program’s play in depth looking for weaknesses. After every
public game played, it becomes essential to identify any problems with the program’s
play that exhibited itself and fix it as quickly as possible.

The problem is most acute in the openings, where the humans have the greatest
chance of catching the program by surprise. Grandmasters usually have a large repertoire
of opening information at their disposal, either memorized or available in their extensive
library. We have learned three rules for opening preparation the hard way:

(a) Do not repeat a game. The need to be non-repeatable dictates the preparation of an
opening book that includes all the program’s games and maintains alternate lines of
play. It is important to avoid an opponent’s prepared line, which means the book
must be continually updated.

(b) It is not sufficient to play the best move all the time; a surprise move may have
greater effect. Against human opposition, it is important to keep them guessing, to
not be predictable. For example, Chinook has occasionally made "poor" moves by
human standards which Chinook thinks are quite safe. While the human’s assess-
ment may be objectively correct, the surprise value of the move may work to their
disadvantage.

(c) Do extensive homework and discover opening innovations. We spend an enormous
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number of computer cycles analyzing games and published opening analysis. From
this, we look for moves that are either better than what appears in published play, or
moves that appear to be as good as the published move but is not in the literature.
All innovations must be approved for use in a tournament game by a Grandmaster
we consult with. In a match against Don Lafferty, Chinook played two prepared
opening innovations and ended up winning both games.

While these observations may seem obvious, what was not obvious to us is how much
manual effort they require. In the past six months, over 75% of all time spent on Chi-
nook has been on the opening book. This percentage is expected to increase as we begin
intensive pre-match preparation for Tinsley.

6. What Title is at Stake?

Immediately after Chinook won the right to challenge Tinsley for the World Cham-
pionship, opposition arose to any such contest. In a number of articles appearing in
checkers magazines, arguments were put forth why a machine should not play for a
human title. The opponents of the match were quite vocal and persuasive. Unfor-
tunately, we were given no opportunity to participate in the discussions. Both the
English Draughts Association and American Checker Federation voted against sanction-
ing the match. A clear case of discrimination!

Eventually an agreement was reached with the American Checker Federation to
hold the match as a World "Man-Machine" Championship. Win or lose, Tinsley would
retain his title as World (human) Champion. The smoke screen of a fabricated title is just
a facade. Tinsley has been the best player in the world for over 40 years and during that
period, having played thousands of games, he has lost only five! If Chinook defeats
Tinsley, there will be no doubt as to who the real champion - human or not - really is.

We are fortunate in that Tinsley wants to play Chinook with a title at stake. It
would have been easy for the World Champion to hide behind the refusal to sanction the
match and avoid playing the computer. It is not hard to imagine that in similar cir-
cumstances for another game, such as chess, that the World Champion might refuse to
play the computer. We hope that Tinsley’s actions set an example that will encourage
future encounters between computers and World Champions.

7. Resource Requirements

Perhaps the most frustrating aspect of our work on Chinook is the realization that
we are incapable of achieving our goals without significant assistance. For the first year
of our project, work was conducted using interested students and available equipment.
With success came the desire to push beyond what was possible using our limited
resources. As our appetite for success grew, so did our resource requirements. Over the
past 6 months, many of the projects we would like to undertake remain on hold as we try
to acquire access to the necessary resources.

The resources required to mount a successful challenge to the human World Check-
ers Champion are significant. They accrue in a number of areas:

(a) Compute Time.Checkers may not be as complicated as chess, but still requires access
to the equivalent of supercomputers. These resources would be used primarily for
building endgame databases and generating a computer opening book. For
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example, the endgame databases we are now constructing will require years of com-
pute time on a 20 MIPS workstation. As well, this machine would require over a
gigabyte of RAM. The only viable solution for solving this problem in a reasonable
amount of time is to have access to a fast, parallel machine - in short, a supercom-
puter. Access to such resources are not possible without the support of a generous
sponsor.

(b) Disk Storage.The 8-piece databases will require a minimum of 15-20 gigabytes of
storage, and probably more. Most program developers do not have access to that
much storage. One can envision going to the World Championship match running
Chinook on a workstation, with an array of gigabyte disks surrounding the machine.

(c) Literature.Collections of Grandmaster games for checkers are not available in
machine readable form, as they are in chess. Consequently, access to a comprehen-
sive library of checkers literature is necessary to assist the opening analysis.

(d) Checkers Consultant.As the strength of the program increases, so must the abilities of
a human checkers expert consultant. In our case, we have a volunteer Grandmaster
who helps us out. To make faster progress, we really need a full-time Grandmaster,
preferably one of the 10 best players in the world. Hiring such a person will cost a
lot of money.

(e) Programming.The checkers project to date has involved 7 people with varying
degrees of commitment. In a University environment, we must rely on (cheap) stu-
dent help. Students can be excellent, but the project may suffer from their inexperi-
ence and their limited time constraints. Full-time programmer/analyst(s) would
expedite things much more quickly.

(f) Salaries.In the University environment, the Faculty members of our Department work-
ing on Chinook require no financial compensation. This will not necessarily be the
case for other, similar projects. A source of funding for the principal researchers on
the project might also be required. For example, IBM is paying salaries to the Deep
Thought principals.

(g) Travel.The need to play matches against strong players and play in strong tourna-
ments means considerable travel expenses.

(h) Prizes.It is necessary to arrange money to sponsor matches against strong Grandmas-
ters, including the World Championship challenge.

All the above points require financial support or access to resources that are usually not
readily accessible.

The easiest solution to this problem is to find an interested sponsor. A conservative
estimate is that the checkers project could use $100,000 of financial support per year,
assuming the sponsor could provide all the computing resources for free. Unfortunately,
the costs required for an equivalent chess endeavor may be even greater.

Given the significant costs of this endeavor, there have to be significant benefits in
return for the sponsor. Some possible incentives might include:

a) the world-wide publicity that a World Man-Machine Checkers Championship would
generate for the sponsor,

b) the opportunity to show off their products (such as hardware),
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c) the right to market the program, and

d) access to all the research results produced from the project (although, in our experi-
ence, this isn’t a big selling point!).

Obviously, how important these items are depends on the sponsor being wooed.

8. Conclusions

Winning the World Checkers Championship is proving to be a harder task than we
initially anticipated. The difficulty stems from two sources:

a) the need to solve new, difficult research problems and

b) the limitations imposed by the resources we have access to.

Solving both these problems is critical to success. By presenting some of our obstacles
to defeating the World Checkers Champion in this article, it is our hope that the computer
chess community can identify the ones that will be relevant to chess, and start work on
addressing these problems now.
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