
How to Cheat at Chess:
A Security Analysis of the Internet Chess Club

J. Black
∗

M. Cochran
∗

R. Gardner
∗

November 15, 2004

Abstract

The Internet Chess Club (ICC) is a popular online chess server with more than 30,000 members
worldwide including various celebrities and the best chess players in the world. Although the ICC
website assures its users that the security protocol used between client and server provides sufficient
security for sensitive information to be transmitted (such as credit card numbers), we show this is not
true. In particular we show how a passive adversary can easily read all communications with a trivial
amount of computation, and how an active adversary can gain virtually unlimited powers over an ICC
user. We also show simple methods for defeating the timestamping mechanism used by ICC. For each
problem we uncover, we suggest repairs. Most of these are practical and inexpensive.
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1 Introduction

Background. In the early 1990’s the Internet Chess Server (ICS) was a free open-source server that allowed
users on the Internet to play chess against each other. Some users played via text-based interfaces, but a
few rudimentary graphical interfaces existed as well. The architecture was as shown in Figure 1; clients
established a TCP/IP connection to a specified port on the server, and the server arranged matches between
players. Each move a player made was transmitted (in the clear) to the ICS server, which would then relay
that move to the opponent. The server enforced the rules of chess, recorded the position of the game after
each move, adjusted the ratings of the players according to the outcome of the game, and so forth.

As players in the 19th century discovered, it can be extremely frustrating to play chess without a time
control: the opponent simply refuses to move when he is losing. These days all serious chess players use
a pair of clocks: suppose Alice is playing Bob; at the beginning of a game, each player is allocated some
number of minutes. When Alice is thinking, her time ticks down; after she moves, Bob begins thinking as
his time ticks down. If either clock reaches zero before the game ends, the player who has run out of time
forfeits. (We are ignoring several nuances here, but this is sufficient for our purposes.)

The ICS server also managed the clocks: when Alice moved, Bob would not only receive Alice’s move
but also learn how much time she had taken. If either player ran overtime, the server would record the game
as a loss for that player.

ICS had a number of problems. First, the server was quite buggy and would crash frequently. Also,
playing fast games (say, 5 minutes per player or faster) was impractical since the network latency between
client and server was charged to that player’s clock. This meant that if Alice were averaging 2 seconds round
trip from her machine to the server, she would be charged 2 extra seconds, on average, for each move she
made. In a fast game, this is a very significant disadvantage. If Alice were in Europe and the server were in
the United States, fast games were simply unplayable.
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Figure 1: The original ICS configuration: clients made a TCP/IP connection to a port on a server. The
ICS server enforced the rules of chess and maintained the state of each player’s clock. In this configuration,
network lag would be charged to the players’ clocks.

Daniel Sleator. Daniel Sleator is a professor in the Department of Computer Science at Carnegie Mellon
University, and is a well-regarded researcher in theoretical computer science. He is probably best-known
for inventing Splay Trees with Tarjan [19]. In 1992, Sleator became the chief programmer for ICS, and he
set about fixing the many problems it had. Players soon noticed vast improvements on ICS: the bugs were
disappearing, the server was more stable. Additionally, Sleator introduced the idea of “move timestamping.”

Move timestamping is a nice idea that aims to remove the problems mentioned above regarding network
lag. The basic idea is as follows (see Figure 2): when Alice receives a move from Bob, a local process running
on Alice’s machine records the time Bob’s move arrived. Then, after Alice makes her move, it records the
actual time Alice took; this is the time reported to the server, and this is the amount of time charged to
Alice’s clock. (Note that the timestamp process could be run on a separate machine, but then Alice is not
compensated for lag between her machine and the timestamping machine.)

Of course ICS members immediately asked the obvious security question: couldn’t one fake the timestamp
and thereby be charged for less time than was actually used? Sleator responded that two measures went
toward preventing this: (1) the source code for the timestamping process would not be released, and (2)
all communication to and from the server was encrypted (implying that Alice could not simply alter the
outgoing packets to indicate that less time had been used). As we shall see, there are problems with both of
these measures.

The Internet Chess Club. As a result of the improved server and the introduction of timestamping,
ICS grew in popularity. However, several people complained that Sleator was not releasing his improved
source code. It became clear that Sleator had commercial aspirations for ICS, and over a period of time
he introduced a membership fee for those wishing full services, while still allowing guests to play for free.
(Guests were restricted in what they were allowed to do, and these days there are very few things a guest
can do other than play chess with other guests.)

Sleator renamed the server the “Internet Chess Club” (ICC) [9]. Membership for the world’s best players
is free, the server is quite reliable, and the site administrators provide high-quality professional service to
ICC members. As a result, many of the world’s best chessmasters play on ICC, thus attracting more paying
members to join as well. ICC membership is $49 per year (students pay a lower rate). Recently Sleator
incorporated as “Sleator Games, Inc.”

Although free alternatives exist, ICC is by far the best option for serious chessplayers around the world.
It boasts over 30,000 members worldwide, with hundreds of Grandmaster and International Master members.
It is claimed that Madonna, Nicolas Cage, Will Smith, Sting, as well as World Champion Gary Kasparov
have all played chess on ICC [18, page 111]. For a fee, anyone can play against incomprehensibly strong
masters, take lessons, listen to lectures, participate in simultaneous exhibitions, play in tournaments, and so
forth. ICC has been written up in various newspapers and magazines, all concluding it is the place to play
chess for the serious player. A recent book on Internet chess does likewise [18].

Results. The thrust of this paper is to examine the security aspects of ICC. We exhibit attacks in two
distinct domains: the timestamping mechanism and the communication protocol. More specifically,
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Figure 2: The ICC configuration: clients communicate through a timestamp process which records the
arrival-time of incoming moves and computes the elapsed time for a player’s move before transmitting it
to the server. The timestamp process can be run on a different machine, but it is most often on the local
machine. Some clients have the timestamp process built-in; this is the case with the Blitzin Windows client
but not with any of the Unix clients.

• We show a simple way to circumvent the move timestamping mechanism by modifying the binary
directly or (with more effort) by decompiling the timestamp process thereby gaining source code for a
compatible timestamper.

• We suggest ways to make it more difficult to achieve our attack, and we give further suggestions on
how to prevent or detect cheating in this way.

• We analyze the three components of the network security protocol used by ICC: key establishment,
mode of operation, and the blockcipher. We show that all three are severely flawed, and exhibit attacks
on each.

• We suggest simple ways of fixing the security protocols using well-known techniques.

As a proof of both concepts above, we have written code to show that our attacks are easily realized with
little work. Specifically, we have built a cheating timestamp client and tested it. (It was never used in a
rated game or to play against registered ICC members.) And we have built an “ICC sniffer” which passively
watches an ICC connection and then records all communication between client and server. (It has never
been used except to eavesdrop on the authors’ own connections.) We do not plan to release either piece of
software.

Related Work. We are not the first to find security flaws in a widely-used piece of network software.
Recent examples include Goldberg and Wagner’s break of the Netscape browser’s random number genera-
tor [8], the break of the WEP protocol and its use of RC4 [4, 7, 20], and more recently the flaws exposed in
the Diebold electronic voting system [11], flaws in Gnu Privacy Guard [13], and shortcomings of WinZip’s
encryption method [10].

Most of our methods are simple, and most attacks are original though we do employ a basic form of
differential cryptanalysis [2] to analyze the ICC block cipher.

The Moral. The lesson here is an old one: people, even very smart people, should not design their own
security systems and expect them to be secure. It takes a lot of experience to get it right. In each of the
systems mentioned above, the security protocols were designed by non-experts and each was broken usually
without a great deal of effort. Indeed, any security expert who decided to expend some time and effort could
have achieved most of the results above and in this paper.

2 A Security Analysis of ICC: Overview

We now conduct a security analysis of ICC. But before embarking, it might be fair to ask “who cares?” In
other words, if we show you how to fake a timestamp which lets you gain a significant advantage playing
Internet Chess, doesn’t that just mean you unfairly win a few games and some illegitimate rating points?
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More importantly, one might question the existence of any danger in the ability of eavesdroppers to observe
a few communications to and from a game server. In fact, both of these issues are significant.

Although most of the tournaments on ICC offer no awards, some do offer cash prizes: for example, the
2001 “Dos Hermanas” tournament on ICC offered a top prize of 1500 Euros (about $1,350 at that time).
This in itself might be enough incentive to cheat. A cheating timestamp client means that Alice could have
several additional seconds to think, without being charged for them. It means she could even have enough
time to transfer Bob’s move into a strong chess-playing program, even in a very fast game. This would allow
Alice to use another program to generate very good moves against Bob, and the time taken to relay moves
to and from this program would not cost her. The World 1-Minute Chess Champion, Roland Schmaltz,
claims that one need not worry about this form of cheating in games faster than 3 minutes [18, page 54],
but clearly a cheating timestamp client enables this quite easily. It would just appear that Alice had a few
extra seconds of network lag.

ICC does strive to detect players who cheat by using chess-playing computers, but they currently incapable
of detecting timestamp-cheaters. Instead there seems to be a popular misconception that timestamp is
impossible to cheat [18, pp. 53–54].

The second target of our analysis is the network security protocol used by ICC. We believe the initial
reason to introduce encryption into the timestamp process was to prevent timestamp tampering. However,
the presence of encryption seems to have emboldened the ICC managers to claim that secure information
can be safely sent to the server. See Figure 3, which was taken from the ICC web page. Indeed, when a
member wishes to extend his membership, he is presented with 3 options:

You have the following payment options:

1) Give credit card information on-line now. Your membership will
be extended immediately. The data will be encrypted before it is
sent, and the credit card number will be stored on our system
only in encrypted form, and will be read only by the ICC treasurer.

2) Give credit card information by email, telephone, or FAX.
3) Send credit card information, personal check, or postal money

order by regular postal mail.

Please give your choice ("1", "2", "3", or "quit"):
--->

We show that the encryption mechanism used by ICC is flawed in a variety of ways: there is no authen-
tication whatsoever, and an attacker can freely flip bits of his choice in the underlying plaintext without
any knowledge of the key. The blockcipher used has several differential weaknesses and is unsuitable for
use as a random number generator (which is how it is used). The mode of operation is insecure and can
be broken with a few bytes of known-plaintext. And, worst of all, the key exchange protocol is done in the
clear, enabling a passive eavesdropper to collect all necessary key material at ICC connection time and then
record everything sent between client and server, including credit card information, ICC passwords, etc.
(Despite the fact they they should not, many people probably use the same password for ICC as they have
for their bank, Paypal, and other important accounts. Combine that with the public viewability of many
chess players’ email addresses from their profiles, and someone could quickly acquire a new Paypal account
he need never fund.)

An active adversary can do even more harm: a malicious man-in-the-middle could alter moves to and
from the server, lie about clocks and board positions, spoof messages from the administrators, and so forth.
It would probably not be hard to convince a user to reveal sensitive information if the attacker were to
masquerade as an ICC administrator.

Security Models. Note that there are distinct security models being used for each setting above: in the
timestamp model, Alice herself is the adversary. She is trying to convince the server that she has used less
time than she actually used. She controls the client machine and all the software running on it. This model
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Figure 3: The ICC timestamp help page explaining the benefits of timestamping. We have placed a box
around the security claim near the bottom of the page.
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is similar to the DRM model1 where achieving security is notoriously difficult. As we discuss further in
Section 4, solutions to this problem are problematic.

In the communication model, where encryption is being used, Alice and the server are the communicating
parties and the adversary is some outside party who is attempting to passively eavesdrop (to collect credit
card numbers or listen in on Alice’s interaction) or to actively corrupt Alice’s session (to change her choice
of move, give her a false board position, or impersonate ICC administrators in order to coax sensitive
information from her). Here solutions are well-known, and we suggest some simple ones in Section 4.

3 A Cheating Timestamp Client

Sleator’s attempt to avert timestamp cheaters was to release only the binary for the program and to encrypt
(but not authenticate) its output. Sleator undoubtedly knew that it was not too hard to circumvent these
precautions, but he needed a simple, cost-effective, secure solution to the problem of network lag, and this
is the approach he chose. We now examine the results.

Withholding the Source. Sleator chose to withhold the source for the timestamp program; this is
reasonable: if the source were freely distributed, it would be a very simple matter to modify the program to
cheat in arbitrary ways. Controlling the source code is a common way for many companies to attempt to
retain control over their code. (For example, the source code for Microsoft Windows is tightly controlled.)
Of course this works only to some extent: reverse engineering a binary entails some amount of work, but for
small programs it is quite reasonable. We decided to reverse engineer a piece of ICC code because it was
quite easy to do so, thanks to the way Linux is supported for ICC members.

Reverse Engineering the Linux Client. By far the most popular client for ICC runs on Microsoft
Windows and is called “Blitzin.” It is about 2.15 megabytes in size, and the timestamping (and encryption)
is built-in. Given that our analysis tools consisted primarily of a debugger, we opted instead to examine
the Linux timestamp program. The Linux program is only 27 kilobytes and is separate from the graphical
clients that use it. Moreover, the Linux binary has symbols intact. This means that program labels for static
variables and function names were listed within the binary and Linux programs such as nm or objdump would
list helpful names like encrypt, decrypt, set base time, and so forth. It also meant that when using our
debugger of choice, gdb, these symbols would be listed when disassembling code or setting breakpoints. It
would have made our job a good deal harder had Sleator run the Linux program strip in order to remove
symbols from the binary before distributing it.

Another attempt to make reverse engineering harder is to use a program obfuscator. Although this has
been shown to be impossible in a general sense [1], game producers often use such techniques in an attempt
to slow down the piracy of their products, and some attempts have been made (with mixed results) to build
a theory of practical obfuscation techniques [5]. In Sleator’s defense, however, there were probably not very
many obfuscators around in 1992 when timestamp was invented.

Hacking the Timestamp Program. Our first cheating timestamp program was a hacked version of the
Linux program which simply zeroed the eax register, indicating that 0 seconds were used to make a move.
(ICC charges a minimum of 0.1 seconds per move, so in fact one does not get an infinite clock with this
technique.) Our method was to simply use gdb to overwrite instructions in-place to fill the eax register with
0. We overwrote a portion of code at the end of a function which normally repairs the call stack, and with
a few more adjustments we repaired the stack later on. Finding the appropriate section of code to modify
was easy because of the existence of symbols. Making this modification took about 30 minutes from start
to finish.

Without symbols our job would still have not been too hard: the timestamp program must somehow
determine the time, and this requires a call to the operating system which is easily identified. Modifying the
code at this point would do the trick. Also, one could intercept the operating system call to get time of day
and return falsified values even if the timestamp program itself were inscrutable. In this sense, an obfuscator

1DRM stands for “Digital Rights Management,” a technology which attempts to prevent users from copying software, music,
video, and other content.
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would be of little help. Nonetheless, it would have taken a lot more than 30 minutes to achieve this, and
there are a few additional technical problems to be overcome.

Our Cheating Client. The most general solution is, of course, to reverse engineer the client. Given
its small size, this took us about 65 hours of work. Zeroing out a register, as we did in our first attempt,
works fine but arouses suspicion: who, other than a chess program, responds instantly to every move? With
our reverse-engineered client, more sophisticated (and therefore less suspicious) rules can be established for
deducting time. The most natural idea is to subtract some constant amount of time from the time actually
used, giving the server the appearance that the average lag between it and the client is some number of
seconds greater than it really is.

Possible Remedies. Sleator undoubtedly knew that it was not too hard to make a cheating timestamp
client. He was faced with trying to make Internet Chess a fairer experience without going to extraordinary
lengths. To this end, he did about as well as could be expected.

In order to prevent cheating, we would have to remove control of the timestamp process from the adversary
(ie, the player). This immediately leads to problems: if we move the timestamp functionality upstream (ie,
toward the server), then the user pays for network lag between his machine and the timestamper. Even if a
trusted ISP were to offer timestamping service (which might be useful in several contexts other than Internet
Chess), it would be only a partial solution: lag from the client machine to the ISP would be charged against
the player, and most likely many small ISPs would probably not offer the service. Also, it would probably
not be hard for Alice to pretend she is an ISP and timestamp packets herself such that upstream routers
would leave them alone.

Since rearchitecting the Internet is both infeasible and falls short of a full solution, we are faced with
keeping the timestamping functionality close to the user. In order to prevent Alice from tampering with the
timestamp, it seems that using secure hardware is the only real solution. The idea is to put a card into the
bus of Alice’s computer that computes the elapsed time (with its own clock) and uses proper encryption and
authentication to produce a message for the ICC server. (The encryption is to prevent upstream viewing of
an incoming move by a confederate of Alice who then relays the move to her.) The problem, of course, is
that such cards cost money and requiring every ICC user to purchase such a card would be prohibitive, not
to mention the endless problems with compatibility, diversity of platforms ICC supports, availability of bus
slots or USB ports, and so forth. This solution is likely not practical.

A final suggestion that is practical would be for the ICC server to attempt to detect cheating timestamp
clients out-of-band. The server could use various network services such as ICMP ECHOes (pings) to attempt
to measure actual latency between itself and the client. If a timestamp process were sending back timings
indicating lag far above the client’s ping time, the server might choose to disable timestamping for that
connection. Of course we could hack the client machine to send back inflated ICMP pings as well, but this
begins to get much harder than the work we have done above. Additionally there are other network services
which could be used in attempt to validate latency; hacking all of them would be quite an undertaking.
Also, the server could ping upstream points from the client, deciding whether the lag was at the last-hop
(suspicious) or somewhere along the way (less suspicious). It would be very difficult to hack backbone
routers’ ping times.

One promising approach might be to send a small program, perhaps as Java bytecode, which contains
an authentication key embedded within it, and is obfuscated. This small program would be sent with each
move, would measure the time used, and would output the time used along with an authentication tag. The
program would be generated anew for each move, so a client would likely be unable to reverse engineer the
obfuscated program quickly enough to be able to cheat. The problem with this approach is that the program
would need to internally compute the elapsed time (since, as we have seen, calling the operating system is
not secure). Still, this approach holds promise perhaps for other similar applications.

4 Cryptanalysis

In the previous section we showed how to simply defeat the timestamp security of ICC, and reached the
somewhat unsatisfactory conclusion that there probably was no perfect solution to the problem. In this
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Figure 4: The ICC Key Establishment Protocol: two pseudo-random 64-bit strings are exchanged between
client and server. A deterministic process then computes symmetric sender and receiver keys on each end.
An encrypted test message “Darooha was here” is then sent using the derived keys. (“Darooha” is Sleator’s
ICC nickname.)

section we examine the cryptographic methods used by the ICC client and show that they are easily attacked.
In this case we are able to offer straightforward and well-known ways to repair the defects.

Overview. There are two main components to the ICC cryptographic protocol: (1) key establishment
and (2) encryption. Key establishment is done only once at session start-up time using a protocol between
client and server which is described later. The goal of key establishment is to share two 64-bit strings called
the send encryptor key and the receive encryptor key. These keys are used by a symmetric encryption
scheme with the send encryptor key of the client matching the receive encryptor key of the server and
vice-versa.

The encryption protocol consists of a mode of operation over a custom blockcipher. It is used after key
establishment to encrypt and decrypt messages between the client and server. Note that no authentication
is attempted in the protocol and, as we shall see, it is trivial to manipulate the plaintext because the mode
is essentially a one-time pad [12]. This defect is particularly relevant to timestamping, since the main goal
in installing the encryption protocol was to prevent timestamp tampering.

All algorithms above were (we suppose) invented by Sleator himself, as we have not seen these techniques
used elsewhere in our experience. All of them have serious defects which we now discuss.

4.1 Key Establishment

Overview. Key establishment works as follows: at session start-up the client and server each choose a
pseudo-random 64-bit string. (As it turns out, the Linux client always chooses the same 64-bit string
because the client fails to call srand() to seed the pseudo-random generator; the Blitzin client and the ICC
server do not have this defect.) The server and client then exchange these seeds in the clear. Then the
server and client each perform a deterministic process (involving the blockcipher we will discuss shortly)
which depends only on the two exchanged seeds (see Figure 4). This means that obtaining the seeds and
understanding the key derivation process enables a passive eavesdropper to easily decrypt all subsequent
communication. An active adversary can mount a man-in-the-middle attack or even impersonate the ICC
server in order to extract information from the user.

Our ICC Sniffer. We coded a simple “ICC sniffer” using the freely-available pcap library to extract
packets from the network. Our sniffer extracts the two seeds as they are exchanged between client and
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server during the key establishment protocol and then dumps all subsequent communication to the screen.
This of course requires that the sniffer understand the encryption and decryption procedures, but these were
reverse engineered from the Linux timestamp client. (Extracting just the code relevant to the encryption
and decryption routines required about 25 hours.)

Our sniffer also works with the Blitzin client, although there was additional work required here as the
Blitzin protocol uses a deterministic transformation on the plaintext before encryption in order to compress
the messages by about 30%. To extract this information we disassembled a portion of the Blitzin client,
finding the relevant area of code in the Blitzin binary by searching for constants used in the encryption
algorithms and then tracing execution in the neighborhood of the encryption calls. We did not write any
code for mounting an active attack, though this would not be hard. Man-in-the-middle attacks can be
mounted on insecure connections via standard tricks like ARP cache poisoning [16] and DNS spoofing.

Once again, we do not plan to release our code.

Remedies. The simplest remedy would be to remove claims that ICC encryption provides any measure
of security. Then require users wishing to pay online to submit membership fees through a web-based
payment gateway using SSL/TLS. This would vastly increase the security of the system (in spite of the
fact that payment gateways are periodically compromised). Note that the passive and active attacks already
mentioned remain possible in the absence of a secure end-to-end protocol, but securing credit card information
should probably be a top priority.

In order to prevent all passive and active attacks, we must repair the protocol. The obvious solution
is to use a proper key exchange based on Diffie-Hellman [6] or RSA [17]. Freely-available libraries such as
OpenSSL [21] could be used to quickly insert this functionality (at the cost of expanding the size of the
client binary). Of course OpenSSL did not exist in 1992, so it is understandable that Sleator did not use it
originally, but the secure key exchange techniques listed above were known for at least 15 years prior.

Once the server’s RSA public key is present on the client, the client generates a pseudo-random session key
(taking care that the pseudo-random generator uses proper techniques [8]) and encrypts using the server’s
public key. The server, having the corresponding private key, decrypts the session key and a symmetric
algorithm is then used for further communication. This is all quite well-known and standard.

Implementing a full PKI system with key freshening, revocation, and expiration would probably be
prohibitive. Perhaps an acceptable solution would be to fix a large (say, 4096 bit) RSA public key in the
client and never change it. It should be some time before factoring technology and/or quantum computers
represent a threat, and when they do we will have bigger problems than broken chess clients.

Unfortunately, fixing just the key exchange protocol is insufficient. There still is no authentication, and
the mode of operation and the blockcipher still have serious defects which we now describe.

4.2 The ICC Mode of Operation

Overview. The ICC Mode of Operation uses the blockcipher (described next) to produce a pseudo-random
seed to two linear congruential generators (LCGs). These two generators each produce 100 bytes of output,
and these bytes are XORed to form a pad which is used for encryption and decryption [12, page 21]. It is
well-known that LCGs are not cryptographically strong and they should not be used to generate pads [12,
pp. 170–187]. One should therefore be suspicious of a technique that XORs together two LCG outputs for
use as a pad. And indeed we show that the ICC mode which employs this tack does in fact not work. We
are able to recover the entire pad given about 10 bytes of pad.

The Mode. Let si denote the i-th byte of a string s where we count from left-to-right starting at 0. Let
⊕ denote the XOR operation on same-length strings. For an n-byte message m the ICC mode produces
ciphertext c by computing c = m⊕ r where r is a pseudo-random string of n bytes. Each ri is generated by
XORing together two bytes output by two LCGs (see Figure 5). Specifically, ri = yi ⊕ zi where

wi = 17wi−1 mod 2413871 and yi = wi mod 28

xi = 3xi−1 + 1 mod 43060573 and zi = xi mod 28.
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Figure 5: The ICC Mode of Operation: 64 bits are generated by enciphering a counter under the sender’s
blockcipher key. The first 32 are sent to LCG1 and the other 32 to LCG2. The LCG’s are iterated 100 times
and their lowest bytes are XORed to produce an encryption pad which is XORed with the message M to
produce the ciphertext C.

Every 100 bytes we reset i to 0 and re-seed w0 and x0 to new values generated by the blockcipher. For the
purposes of our attack, these seeds can be arbitrary.

The Attack. Our attack produces all 100 relevant xi and wi values given that 10 or so consecutive bytes
of a given message are known. This seems reasonable given the consistency of the messages sent by ICC.
The attack has elements of both brute force and cleverness, but mostly of the former. The attack runs in
about 1.1 seconds on a laptop with an AMD XP 2400+ processor.

Note that the attack is not general: changing the constants in the LCGs to different values can make
this attack computationally infeasible. We believe the general approach of XORing together the output of
two LCGs cannot be right, but for the purposes of this paper we focus on the LCGs used by ICC.

We start by choosing some i such that we know mi · · ·mi+9. This allows us to determine ri · · · ri+9. We
will try to guess yi outright. This means an outer loop guessing the values in [0, 2413870]. Upon a guess gi

of yi, the algorithm computes gi, ..., gi+9 and the corresponding guesses for zi, which we will call hi, ..., hi+9.
Let xh

j (resp. wh
j ) denote the 24 most significant bytes of xj (resp. wj) such that xj = 28xh

j + zj (resp.
wj = 28wh

j + yj). Statistically, we expect the following relation to hold for about 1 out of every 3 values of
j:

xj < (43060573− 1)/3.

This implies that
zj+1 ≡ 3xj + 1 ≡ 3(28xh

j + zj) + 1 ≡ 3zj + 1 (mod 28).

We will check the values hi, . . . , hi+9 for this property. With 10 known values of yi, when we find the correct
values zi, . . . , zi+9, we expect this relation to hold for 3 consecutive pairs (the probability that it does not
hold for any pairs is less than 3%–this can be reduced with knowledge of more characters of M). When we
have not found the correct values of zi, the expected number of times this happens is much less.

When we find hj such that hj+1 ≡ 3hj + 1 (mod 28), we will find the next pair (hk, hk+1) such that
hk+1 �= 3hk + 1 (mod 28). This implies that 3xk + 1 ≥ 43060573. Let us define c = 3k+1−j28xh

j . This
implies that one of the following two cases hold:

hk+1 ≡ 3hk + 1 + c − 43060573 (mod 28) (1)

hk+1 ≡ 3hk + 1 + c − 2(43060573) (mod 28) (2)
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Without loss of generality, consider that (1) has occurred. Then hk+1 − 3hk − 1 + 43060573 ≡ c (mod 28),
but c ≡ 0 (mod 28), so we will be able to determine between the first and second cases by examining the
values of hk+1 − 3hk − 1 + 43060573 mod 28 and hk+1 − 3hk − 1 + 2(43060573) mod 28. If neither case held,
then we can be sure that the current guesses for hj are incorrect. Alternatively, if one of the cases held we
can be sure that the guesses for hi are correct with probability roughly (1 − 18/216). 2

We know know that 43060573− 3hk− 1 < c < 2(43060573)− 3hk− 1, which implies that ∼18000 < xh
j <

∼36000. We can exhaustively check these remaining values to find the correct one.
Every 100th character will probably not be deciphered correctly. This is a technical issue having to do

with the way every 100th ri is computed. When wi and xi are re-seeded, they are not necessarily smaller
than the moduli used in the LCGs. Thus the value 17−1wi+1 mod 2413871 is not necessarily the wi that
was used to compute ri. The correct character can almost always be inferred from context, however.

The expected number of divisions and multiplications is about 226 (the loop iterating over values in
[0, 2413870] that computes the gi and hi dominates).

4.3 The ICC Blockcipher

Overview. A blockcipher is a very general cryptographic object which can be used for a multitude of
purposes [12]. A blockcipher is an algorithm which takes two inputs: an n-bit input message block M and a
k-bit key K, and produces an n-bit output message block C. A necessary requirement is that for any key K,
if M and M ′ are distinct input message blocks then enciphering them yields distinct output message blocks.
This is because blockciphers are often used for encryption where we must be able to decipher what we have
enciphered. The most well-known blockciphers are DES [14] and AES [15].

There are instances where a blockcipher need not be invertible, however. For example, in counter-mode
encryption [12, page 233] we simply fix a key and then input counter values 0, 1, 2, etc., trusting that their
encipherments are pseudo-random and can be used as pads. The ICC mode of operation described above
is similar: it uses a counter enciphered by the ICC blockcipher to generate seeds to two LCGs (and, as we
have pointed out, this is not a good practice).

We now proceed to describe and analyze the ICC blockcipher. The remainder of this section assumes
basic knowledge about blockcipher construction (see, for example [12]).

Blockcipher Description. Blockcipher S is a 16-round Feistel blockcipher [12], taking a 64-bit input
and a 64-bit key. There is no pre- or post-processing prior to the Feistel rounds.

The round-function f : {0, 1}64 ×{0, 1}32×{0, 1}32 → {0, 1}32 takes a 64-bit key K, a 32-bit round value
V , and the round number r (taken as a 32-bit integer). All arithmetic is signed and modulo 232. (In other
words, computations are carried out in 32-bit signed registers with the carry disregarded). For any string X
let X [i] denote the i-th least significant byte of X . The function f is then

f(K, V, r) = stuff [(V [0] + V [1] + K[r mod 8]) mod 256] + V 2

where stuff is a static table of 256 32-bit values. (The stuff table is generated once again by LCGs, but this
is not relevant for the analysis we conduct below.) Note that only one byte of key K is used per round and
that only the lowest 2 bytes of V are used in indexing stuff . This immediately suggests that the high bits
are not affecting the round function as much as they perhaps should.

Let S be the blockcipher resulting from iterating f for 16 rounds using the Feistel construction, and let
S(K, P ) denote running S with key K and input P .

Analysis. Cipher S has serious flaws. The easiest one to spot is this: for any plaintext block P , flipping
the high bit of P merely results in flipping the high bit of S(K, P ), independent of the key. We state this
more formally by first proving a simple property of the round function:

2For purposes of a rough estimate, we consider the probability, given incorrect hi, . . . , hi+9, that some pair hj , hj+1 satisfies
hj+1 ≡ 3hj + 1 (mod 28) to be 9/28. We also consider the probability that the pair hk, hk+1 satisfies (1) or (2) to be less
than 2/28.
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Proposition 1 Let B = 231, and notice that for a 32-bit quantity V , writing V ⊕B denotes flipping the
high-bit of V . Then for any values of K, V , and r, we have f(K, V, r) = f(K, V ⊕B, r).

Proof: Let K be arbitrary and fixed. Since the index value to stuff depends only on the lowest two bytes
of V , clearly V ⊕B will produce the same index. We therefore focus on the squaring operation.

Since arithmetic is signed, B is interpreted as −231 and therefore V ⊕B can be thought of as V − 231 where
V is taken as signed integer. Squaring this quantity

(V − 231)2 ≡ V 2 − 232V + 262 ≡ V 2 (mod 232).

Therefore flipping the high bit of V and squaring is the same as squaring V itself when working modulo 232,
and therefore f produces the same value overall.

This invariant propagates throughout the cipher: consider two 64-bit inputs P = (X, Y ) and P ∗ =
(X ⊕B, Y ) where the quantities in the parentheses are 32-bit values. Because of the above invariant on f ,
we see that if S(K, P ) = (X ′, Y ′) then S(K, P ∗) = (X ′ ⊕B, Y ′) independent of the choice of K. In other
words, flipping the most significant bit of P results in flipping the most significant bit of its ciphertext,
regardless of what key is used. It is clear that P ∗ = (X, Y ⊕B) has analogous behavior. In the language of
Biham and Shamir, we have a probability 1 differential characteristic [2].

This means that S can be distinguished from a random permutation with exactly two chosen plaintexts.
It also means that S is not a very good random number generator (which is the purpose it is being used for
here). It can be shown that when the counter is as little as 216, bytes 0,1,4, and 5 of S(K, 216) will be the
same as those in S(K, 0) independent of K.

In short, the cipher does a poor job diffusing minor changes in plaintexts. Its “avalanche effect” is
insufficient, and therefore the cipher is weak. It should not be used in any cryptographic setting.

Remedies. Once again the best remedy here is to throw out both the mode and the blockcipher and use
something standard. Authentication is needed as well. Using a secure key-exchange protocol along with
a provably-secure authenticated encryption scheme [3] would be the most efficient and cheapest solution.
Alternatively, using a freely-available crypto library like OpenSSL [21] would provide a number of well-tested
routines implementing standard protocols.

Of course even these approaches have their perils: implementation errors can lead to a complete loss of
security. But finding these errors would surely be harder than exploiting the simple vulnerabilities uncovered
in our analysis.

5 Conclusion and Open Problems

We have scrutinized the security aspects of ICC and uncovered several problems. The timestamping mecha-
nism is easily circumvented, allowing malicious users to cheat at chess by unfairly gaining time on the clock.
We still have no fully-satisfying method for measuring the amount of time taken by the client. A solution
to this problem would be useful in other domains beyond Internet Chess, though solving it cheaply and
accurately seems to be difficult, analogous to the problems with DRM.

We have also analyzed the ICC network security protocol and shown it is flawed in numerous ways
enabling passive eavesdroppers to trivially listen in on communications and enabling active adversaries to
mount severe attacks on ICC users. The important lesson we may take from this is that it is very hard to
devise security protocols which work. It seems that whenever a non-expert invents his own, even if he is very
clever, it is often broken. This has long been a message espoused by the security community, but the battle
has not yet been won.
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A Legalities and the DMCA

Obviously this project involved a significant amount of reverse engineering, which remains under a legal
cloud specifically with regard to the DMCA. We have done our best to ensure that our practices were in
accordance with what is “allowable” for this type of research, and we have spoken with people at the EFF
in hopes of fending off lawsuits against the authors and any venue which might wish to include our findings.
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