

JavaScript Cookbook

JavaScript Cookbook

Shelley Powers

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

JavaScript Cookbook
by Shelley Powers

Copyright © 2010 Shelley Powers. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Simon St.Laurent
Production Editor: Adam Zaremba
Copyeditor: Colleen Toporek
Proofreader: Kiel Van Horn

Indexer: Potomac Indexing, LLC
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
July 2010: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. JavaScript Cookbook, the image of a lesser egret, and related trade dress are trade-
marks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-0-596-80613-2

[SB]

1278088163

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

Table of Contents

Preface . xiii

1. Working with JavaScript Strings . 1
1.1 Concatenating Two or More Strings 3
1.2 Concatenating a String and Another Data Type 4
1.3 Conditionally Comparing Strings 5
1.4 Finding a Substring in a String 8
1.5 Extracting a Substring from a String 9
1.6 Checking for an Existing, Nonempty String 10
1.7 Breaking a Keyword String into Separate Keywords 13
1.8 Inserting Special Characters 15
1.9 Processing Individual Lines of a textarea 16

1.10 Trimming Whitespace from the Ends of a String 17
1.11 Left- or Right-Pad a String 19

2. Using Regular Expressions . 21
2.1 Testing Whether a Substring Exists 24
2.2 Testing for Case-Insensitive Substring Matches 25
2.3 Validating a Social Security Number 26
2.4 Finding and Highlighting All Instances of a Pattern 28
2.5 Replacing Patterns with New Strings 31
2.6 Swap Words in a String Using Capturing Parentheses 32
2.7 Using Regular Expressions to Trim Whitespace 35
2.8 Replace HTML Tags with Named Entities 36
2.9 Searching for Special Characters 37

3. Dates, Time, and Timers . 39
3.1 Printing Out Today’s Date 41
3.2 Printing Out the UTC Date and Time 42
3.3 Printing Out an ISO 8601 Formatted Date 43

v

3.4 Converting an ISO 8601 Formatted Date to a Format Acceptable
to the Date Object 45

3.5 Creating a Specific Date 47
3.6 Scheduling a Future Date 48
3.7 Tracking Elapsed Time 49
3.8 Creating a Timeout 49
3.9 Creating Recurring Timers 50

3.10 Using Function Closures with Timers 52

4. Working with Numbers and Math . 55
4.1 Keeping an Incremental Counter 57
4.2 Converting a Decimal to a Hexadecimal Value 59
4.3 Creating a Random Number Generator 59
4.4 Randomly Generating Colors 60
4.5 Converting Strings in a Table to Numbers 61
4.6 Summing All Numbers in a Table Column 62
4.7 Converting Between Degrees and Radians 64
4.8 Find the Radius and Center of a Circle to Fit Within a Page Element 65
4.9 Calculating the Length of a Circular Arc 67

5. Working with Arrays and Loops . 69
5.1 Looping Through an Array 71
5.2 Creating a Multidimensional Array 71
5.3 Creating a String from an Array 73
5.4 Sorting an Array 74
5.5 Store and Access Values in Order 75
5.6 Store and Access Values in Reverse Order 76
5.7 Create a New Array as a Subset of an Existing Array 77
5.8 Searching Through an Array 78
5.9 Flatten a Multidimensional Array 79

5.10 Search and Remove or Replace Array Elements 80
5.11 Applying a Function Against Each Array Element 82
5.12 Applying a Function to Every Element in an Array and Returning

a New Array 83
5.13 Creating a Filtered Array 84
5.14 Validating Array Contents 86
5.15 Using an Associative Array to Store Form Element Names and

Values 88

6. Building Reusability with JavaScript Functions . 93
6.1 Creating a Block of Reusable Code 94
6.2 Passing Single Data Values to and from a Function 95
6.3 Passing Complex Data Objects to a Function 96

vi | Table of Contents

6.4 Creating a Dynamic Runtime Function 98
6.5 Passing a Function As an Argument to Another Function 100
6.6 Implementing a Recursive Algorithm 101
6.7 Create a Function That Remembers Its State 103
6.8 Improving Application Performance with a Generalized Currying

Function 107
6.9 Improve Application Performance with Memoization (Caching

Calculations) 109
6.10 Using an Anonymous Function to Wrap Global Variables 112

7. Handling Events . 115
7.1 Detecting When the Page Has Finished Loading 117
7.2 Capturing the Location of a Mouse Click Event Using the Event

Object 119
7.3 Creating a Generic, Reusable Event Handler Function 122
7.4 Canceling an Event Based on Changed Circumstance 125
7.5 Preventing an Event from Propagating Through a Set of Nested

Elements 126
7.6 Capturing Keyboard Activity 129
7.7 Using the New HTML5 Drag-and-Drop 132
7.8 Using Safari Orientation Events and Other Mobile Development

Environments 140

8. Browser Pieces . 143
8.1 Ask the Web Page Reader to Confirm an Action 144
8.2 Creating a New, Stripped-Down Browser Window 144
8.3 Finding Out About the Browser Accessing the Page 145
8.4 Warning the Web Page Reader About Leaving a Page 146
8.5 Changing Stylesheets Depending on Color Support 147
8.6 Modifying Image Dimensions Depending on Page Size 149
8.7 Creating Breadcrumbs in a CMS Template Page 150
8.8 Bookmarking a Dynamic Page 153
8.9 Preserving State for Back Button, Page Refresh 156

9. Form Elements and Validation . 159
9.1 Accessing Form Text Input Values 159
9.2 Dynamically Disabling and Enabling Form Elements 161
9.3 Getting Information from a Form Element Based on an Event 161
9.4 Performing an Action When a Radio Button Is Clicked 164
9.5 Checking for a Valid Phone Number 166
9.6 Canceling a Form Submission 167
9.7 Preventing Duplicate Form Submissions 169
9.8 Hiding and Displaying Form Elements 171

Table of Contents | vii

9.9 Modifying a Selection List Based on Other Form Decisions 173

10. Debugging and Error Handling . 177
10.1 Gracefully Handling No JavaScript Support 177
10.2 Checking for Errors in Functions 180
10.3 Using an Alert for Simple Debugging 181
10.4 Catching an Error and Providing Graceful Error Handling 182
10.5 Initiating Manageable Errors 184
10.6 Using Firebug with Firefox 185
10.7 Setting a Breakpoint and Examining Data with Firebug 188
10.8 Firefox and the Console 190
10.9 Using IE’s Built-in Debugger 194

10.10 Setting a Breakpoint with IE Developer Tools 196
10.11 Opera’s Dragonfly 198
10.12 Setting a Breakpoint with Dragonfly 201
10.13 Turning on Safari’s Development Tools 201
10.14 Setting a Breakpoint with Safari’s Debugger 207
10.15 Debugging in Chrome 208

11. Accessing Page Elements . 211
11.1 Access a Given Element and Find Its Parent and Child Elements 214
11.2 Accessing All Images in the Web Page 216
11.3 Discover All Images Within an Article 221
11.4 Discover all Images in Articles Using the Selectors API 222
11.5 Finding the Parent Element for a Group of Elements 226
11.6 Highlighting the First Paragraph in Every Element 227
11.7 Apply a Striping Theme to an Unordered List 230
11.8 Creating an Array of All Elements of a Given Class 231
11.9 Finding All Elements That Share an Attribute 232

11.10 Finding All Checked Options 233
11.11 Summing All the Values in a Table Row 234
11.12 Get Element Attributes 237
11.13 Get Style Information for an Element 238

12. Creating and Removing Elements and Attributes . 241
12.1 Using innerHTML: A Quick and Easy Approach to Adding

Content 241
12.2 Inserting Elements Before Existing Page Elements 242
12.3 Appending a New Element to the End of a Page 246
12.4 Triggering Older Versions of IE to Style New Elements 247
12.5 Inserting a New Paragraph 248
12.6 Adding Text to a New Paragraph 249
12.7 Adding Attributes to an Existing Element 251

viii | Table of Contents

12.8 Testing for a Boolean Attribute 252
12.9 Removing an Attribute 253

12.10 Moving a Paragraph 254
12.11 Replacing Links with Footnote Bullets 254
12.12 Adding Rows to an Existing Table 257
12.13 Removing a Paragraph from a div Element 260
12.14 Deleting Rows from an HTML Table 262
12.15 Changing the Element’s CSS Style Properties 264

13. Working with Web Page Spaces . 269
13.1 Determining the Area of the Web Page 270
13.2 Measuring Elements 272
13.3 Locating Elements in the Page 273
13.4 Hiding Page Sections 276
13.5 Creating Collapsible Form Sections 277
13.6 Adding a Page Overlay 281
13.7 Creating Tab Pages 284
13.8 Creating Hover-Based Pop-up Info Windows 289
13.9 Collapsing or Resizing the Sidebar 292

14. Creating Interactive and Accessible Effects with JavaScript, CSS, and ARIA 297
14.1 Displaying a Hidden Page Section 299
14.2 Creating an Alert Message 300
14.3 Highlighting Form Field with Missing or Incorrect Data 302
14.4 Adding Keyboard Accessibility to a Page Overlay 308
14.5 Creating Collapsible Form Sections 312
14.6 Displaying a Flash of Color to Signal an Action 316
14.7 Adding ARIA Attributes to a Tabbed Page Application 320
14.8 Live Region 323

15. Creating Media Rich and Interactive Applications . 325
15.1 Creating Basic Shapes in Canvas (Using the canvas Element) 326
15.2 Implementing Canvas Applications in IE 328
15.3 Creating a Dynamic Line Chart in Canvas 330
15.4 Adding JavaScript to an SVG File 333
15.5 Accessing SVG from Web Page Script 335
15.6 Emulating SVG in Internet Explorer 338
15.7 Enable Interactive SVG Embedded in HTML 339
15.8 Using the Math Functions to Create a Realistic, Ticking Analog

Clock in SVG 345
15.9 Integrating SVG and the Canvas Element in HTML 347

15.10 Turning on WebGL Support in Firefox and WebKit/Safari 350
15.11 Running a Routine When an Audio File Begins Playing 351

Table of Contents | ix

15.12 Controlling Video from JavaScript with the video Element 353

16. JavaScript Objects . 359
16.1 Defining a Basic JavaScript Object 360
16.2 Keeping Object Members Private 361
16.3 Expanding Objects with prototype 362
16.4 Adding Getter/Setter to Objects 364
16.5 Inheriting an Object’s Functionality 366
16.6 Extending an Object by Defining a New Property 369
16.7 Enumerating an Object’s Properties 374
16.8 Preventing Object Extensibility 377
16.9 Preventing Object Additions and Changes to Property Descriptors 379

16.10 Preventing Any Changes to an Object 380
16.11 One-Off Objects and Namespacing Your JavaScript 381
16.12 Rediscovering “this” with Prototype.bind 383
16.13 Chaining Your Object’s Methods 385

17. JavaScript Libraries . 389
17.1 Packaging Your Code 390
17.2 Testing Your Code with JsUnit 392
17.3 Minify Your Library 397
17.4 Hosting Your Library 397
17.5 Using an External Library: Building on the jQuery Framework 400
17.6 Using Existing jQuery Plug-ins 402
17.7 Convert Your Library to a jQuery Plug-in 404
17.8 Safely Combining Several Libraries in Your Applications 408

18. Communication . 413
18.1 Accessing the XMLHttpRequest Object 414
18.2 Preparing the Data for Transmission 416
18.3 Determining the Type of Query Call 417
18.4 Adding a Callback Function to an Ajax Request 420
18.5 Checking for an Error Condition 421
18.6 Processing a Text Result 422
18.7 Making an Ajax Request to Another Domain (Using JSONP) 422
18.8 Populating a Selection List from the Server 424
18.9 Using a Timer to Automatically Update the Page with Fresh Data 427

18.10 Communicating Across Windows with PostMessage 430

19. Working with Structured Data . 435
19.1 Process an XML Document Returned from an Ajax Call 436
19.2 Extracting Pertinent Information from an XML Tree 437
19.3 Generate a JavaScript Object with JSON, Old-School Style 442

x | Table of Contents

19.4 Parse a JSON Formatted String 444
19.5 Convert an Object to a Filtered/Transformed String with JSON 445
19.6 Convert hCalendar Microformat Annotations

into a Canvas Timeline 447
19.7 Glean Page RDFa and Convert It into JSON Using rdfQuery and

the jQuery RDF Plug-in 450

20. Persistence . 457
20.1 Attaching Persistent Information to URLs 458
20.2 Creating a Cookie to Persist Information Across Pages 462
20.3 Persisting Information Using the History.pushState Method and

window.onpopevent 465
20.4 Using sessionStorage for Client-Side Storage 469
20.5 Creating a localStorage Client-Side Data Storage Item 476
20.6 Persisting Data Using a Relational Data Store 479

21. JavaScript Outside the Box . 483
21.1 Creating a Browser Add-0n, Plug-in, or Extension 484
21.2 Creating Desktop and Mobile Widgets 489
21.3 Creating JavaScript Applications for the iPhone, Android, and

BlackBerry with PhoneGap 494
21.4 Enhancing Tools with JavaScript 496
21.5 Creating Efficient Desktop Applications with

Web Workers and the File API 500

Index . 511

Table of Contents | xi

Preface

I wrote my first book on JavaScript 15 years ago, and had to scramble just to find enough
material to fill a book. With the JavaScript Cookbook, I had to choose among hundreds
of uses to determine what to include. After all these years of watching JavaScript grow,
I am still surprised at how far-reaching the use of JavaScript has become. In my opinion,
there is no more useful programming language or development tool. About the only
technology with wider use is HTML.

This book is for those who have dabbled with JavaScript and wish to try out new
techniques, or increase their grasp of both fundamentals and advanced features of
JavaScript. Along the way, I’ll demonstrate how to:

• Work with the JavaScript objects, such as String, Array, Number, and Math

• Create reusable objects

• Query and create new elements in the Document Object Model (DOM)

• Use the new Selectors API for efficient and targeted querying

• Use JavaScript with new HTML5 technologies, such as the new media elements,
video and audio

• Create interactive applications

• Manage your web page space

• Store data in various ways, from the simple to the complex

• Use JavaScript with Scalable Vector Graphics (SVG) and the canvas element

• Work with some of the interesting data structures, like Microformats and RDFa

• Package your library for others to use, as well as use other libraries in your
applications

• Ensure your JavaScript applications are accessible through the use of Accessible
Rich Internet Applications (ARIA)

• Work in environments other than the typical desktop browser, such as creating
mobile phone web applications, or extending Photoshop with new behaviors

• Use and create jQuery plug-ins

• Develop Ajax applications

xiii

• Debug your applications using your browser’s debugger

• Work with the new HTML5 drag-and-drop

• Communicate using the new HTML5 cross-documentation techniques

• Implement concurrent programming with Web Workers

• Use the File API to access a desktop file directly in client-side JavaScript

It’s not a complete encyclopedia of JavaScript use today—no one book can cover all
there is to cover. But hopefully, you’ll come away with an appreciation of all you can
do with JavaScript.

Bon appetit!

Audience, Assumptions, and Approach
Readers of this book should have some exposure to web development, and the use of
JavaScript. In addition, the recipe format means I’ll be focusing on specific tasks, rather
than providing an overall general introduction. I won’t cover every last aspect of a
JavaScript topic, such as Strings. Instead, I’ll focus on the more common tasks, or
challenges, associated with the topic.

There will be lots of code, some of it in code snippets, some in full-page applications.
The recipes are also cross-referenced, so if I mention a specific topic in one recipe that
was covered in another, I’ll include this information in the “See Also” section for the
recipe. To assist you, I’ve also created example code for all of the recipes that you can
download and work with immediately.

Target Browsers
Throughout the book, I’ll mention the target browsers. The majority of example code
in this book has been designed for, and tested to work with, the latest releases of the
most commonly used browsers:

• Firefox 3.6x on Mac and Windows

• Safari 4.0x on Mac and Windows

• Opera 10.x on Mac and Windows

• Chrome 5.x on Windows

• Internet Explorer 8 on Windows

I didn’t have a Linux machine to test for that environment, but, knock on wood, most
of the recipes should work in a Linux environment with Firefox. I also didn’t have a
System 7 for testing the IE9 preview, but most of the applications should work, in-
cluding those using SVG (a new addition for IE9).

Some of the recipes required a specialized environment, such as a mobile device or
emulator, or beta (or alpha) release of the browser. I made a note where an example

xiv | Preface

would not work with the target browsers, or required a specialized environment or
browser. In addition, I’m introducing several new technologies and APIs that are only
implemented in alpha/beta releases of certain of the browsers. Again, I included a note
about browser support.

Many of the examples won’t work with IE6. Before I even began the book I decided
not to provide support for IE6—including any workaround code. Many major sites no
longer support this far too old and too insecure browser, including Amazon, Google,
YouTube, and Facebook. In addition, the workarounds necessary for IE6 are so well-
known and so well-documented online, that I felt it wasn’t necessary to also include
coverage in this book.

Most of the examples that work with IE8 will work with IE7, with some exceptions.
IE7 doesn’t support getAttribute/setAttribute on the common attributes, such as
style, id, and class, and doesn’t support hasAttribute at all. In addition, IE7 doesn’t
support either the CSS selectors, or the Selectors API methods, such as docu
ment.querySelectorAll (covered in Chapter 11).

Where IE7 doesn’t work, either I provide IE7-specific workarounds in comments in
the example code you can download, or I make a note about nonsupport in the recipe—
or both.

Sample Code Conventions
There are many code snippets and full-page examples all throughout the book. Most
are based in HTML, but there are some that are based in XHTML, the XML serialization
of HTML. In addition, most of the examples are based in HTML5, though I’ve also
used a couple of other HTML versions, especially with the SVG examples:

HTML5

<!DOCTYPE html>

XHTML5

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">

XHTML+SVG

<!DOCTYPE html PUBLIC
 "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN"
 "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg.dtd">

There’s only a couple of differences in the samples based on the HTML version. If the
example is X/HTML5, you don’t need a type attribute for either the style or script
elements. Additionally, in many of the XHTML sample pages, I surround the code with
a CDATA section, like the following:

<script>
//<![CDATA[

Preface | xv

...

//--><!]]>
</script>

The reason for using a CDATA section for the script block in XHTML is that characters
such as the angle bracket (< >) and ampersand (&) are meaningful in JavaScript, but
they’re also meaningful as markup. When an XML parser sees the characters, it wants
to interpret them as markup. To prevent this, the CDATA section tells the parser to
ignore the section.

I tried to keep all of the style settings and script in the same page to simplify the ex-
amples. However, in the real world, you’ll want to separate your stylesheet and script
into separate files, as much as possible. Doing so keeps your HTML files clean, and
makes it easy to change both style and script.

Approach
In the book, I cover basic JavaScript functionality that’s been around since the dawn
of time, and is still essential for application development. I also include recipes covering
some of the newer functionality, including working with the canvas element, trying out
the new cross-domain widget communication technique (postMessage), working with
the new File API and Web Workers, integrating your code with the popular jQuery
library—even working with the new HTML video and audio elements (which was a lot
of fun). I also introduce some of the newer uses of JavaScript, such as in mobile devices
and offline desktop applications, as well as the different forms of data storage, and
accessing metadata such as Microformats and RDFa in the web page.

Organization
The book is a relatively esoteric blend of topics, primarily covering those areas where
I’ve seen both interest and growth in the last few years. I also include an introduction
to the new ECMAScript 5 and HTML5 innovations.

However, this book does consist of two rather general sections: the first focuses on
existing JavaScript functionality and objects; the second focuses more on JavaScript
used within environments, such as a browser. If you’re relatively new to JavaScript, I
recommend working through all of the recipes in the first 10 chapters before tackling
the recipes later in the book.

Following is a chapter breakdown of the book:

Chapter 1, Working with JavaScript Strings
Covers some of the more commonly occurring String tasks, such as concatenating
strings, trimming white space, breaking strings into tokens, as well as finding sub-
strings within strings.

xvi | Preface

Chapter 2, Using Regular Expressions
Demonstrates the use of regular expressions, as well as working with the JavaScript
RegExp object. Recipes include basic how-tos such as swapping words, replacing
HTML tags with named entities, validating a Social Security number (and other
patterned objects), and globally replacing values.

Chapter 3, Dates, Time, and Timers
Describes how to access dates and times, as well as how to format date strings,
track elapsed time, find a future date, and using both the new and old ISO 8601
JavaScript functionality. The chapter also introduces JavaScript timers and work-
ing with timers and function closures.

Chapter 4, Working with Numbers and Math
Includes basic number functionality, such as keeping an incremental counter and
including conversions between hexadecimals and decimals, generating random
colors, converting strings in tables to numbers, as well as converting between ra-
dian and degrees (important when working with canvas or SVG).

Chapter 5, Working with Arrays and Loops
Arrays are the thing in this chapter, which provides a look at how to use arrays to
create FIFO queues and LIFO stacks, as well as how to sort an array, work with
multidimensional arrays, traverse arrays, use the new ECMAScript 5 array func-
tionality to create filtered arrays, and validate array contents. The chapter also
covers associative arrays, as well as various ways to traverse arrays.

Chapter 6, Building Reusability with JavaScript Functions
The JavaScript Function is the heart and soul of this language, and this chapter
focuses on how to create functions, pass values to and from the function, create a
recursive function, as well as build a dynamic function. The chapter also includes
how to use Memoization and Currying, to enhance application efficiency and per-
formance, as well as how to use an anonymous function in order to wrap global
variables.

Chapter 7, Handling Events
Covers basic event handling tasks, including capturing events, canceling events,
accessing the Event object, as well as working with both mouse and keyboard
events. The chapter also covers the new HTML5 drag-and-drop functionality, as
well as working with Safari’s Orientation Events (for mobile development).

Chapter 8, Browser Pieces
This chapter gets into the basic working components all browsers, and many other
user agents, share. This includes creating new windows, changing a stylesheet,
modifying an image, adding a bread crumb to a web page, bookmarking a dynamic
page, as well as preserving the back button in Ajax applications. The chapter also
introduces the new HTML5 History functionality for preserving dynamic state.

Chapter 9, Form Elements and Validation
This chapter continues the introduction of regular expressions from Chapter 2, but
focuses on form elements and validation. The chapter also covers how to enable

Preface | xvii

and disable form elements and hide or display elements, and includes how to
modify a selection list, and canceling a form submission.

Chapter 10, Debugging and Error Handling
None of us like it, all of us need it: this chapter focuses on error handling in ap-
plications, as well as how to use the different debugging tools in the book’s target
browsers.

Chapter 11, Accessing Page Elements
This chapter covers the various ways you can access one or more document
elements. Included are discussions on accessing all elements of a certain type, a
specific element, or using the newer Selectors API to use CSS-like syntax to find
elements. Also included is a discussion of namespace specifics, where appropriate.

Chapter 12, Creating and Removing Elements and Attributes
The chapter includes ways to create and add elements to a web document, includ-
ing adding text, paragraphs, working with table elements, and moving and remov-
ing document elements. The chapter also covers how to add and access element
attributes, and includes coverage of namespace specifics, where appropriate.

Chapter 13, Working with Web Page Spaces
The web page is a canvas on which we create, and this chapter covers how to
determine the area of the web page, the size of page elements, their location, as
well as how to hide and show page sections. Popular behaviors such as expandos/
accordions and page overlays, as well as tabbed pages are included, as is how to
create a collapsible sidebar and a hover-based pop-up message.

Chapter 14, Creating Interactive and Accessible Effects with JavaScript, CSS, and ARIA
For the longest time, our dynamic web page effects were literally silent to a signif-
icant web community—those using screen readers. This chapter introduces the
new Web Accessibility Initiative–Accessible Rich Internet Applications (WAI-
ARIA) attributes and roles and demonstrates how they can make a web page come
alive for all readers, not just those who are sighted. The chapter also covers other
very common interactive effects, including providing a flash of color to signal an
event, working with pop-up messages, creating Live Regions, and providing ac-
cessible effects when validating forms.

Chapter 15, Creating Media Rich and Interactive Applications
I am not the most artistic of souls, but I do know how to make JavaScript work
with the canvas element and SVG. In this chapter, I provide the basic steps needed
in order to work with both of these media, as well as the newer WebGL 3D envi-
ronment, and the new HTML5 video and audio elements.

Chapter 16, JavaScript Objects
Probably one of the most important chapters in the book, this chapter covers the
basics of creating JavaScript objects, including how to keep data members private,
adding Getters/Setters, using the new ECMAScript 5 object protection function-
ality, chaining object methods, and using the new Prototype.bind.

xviii | Preface

Chapter 17, JavaScript Libraries
All of the book focuses on creating your own JavaScript objects and applications.
This chapter introduces us to jQuery, one of the more popular JavaScript frame-
work libraries. It covers common library tasks such as how to package your code
into libraries, how to test the libraries, and how to build a jQuery plug-in, as well
as how to use your library with other libraries, such as jQuery.

Chapter 18, Communication
Most of the chapter is focused on Ajax tasks, including preparing the data for
sending, creating an XMLHttpRequest object, checking for errors, and processing the
results. Also included are how to use a timer for a continuously updated query,
how to create a dynamic image pop-up, and how to use JSON-P for cross-domain
requests. The chapter introduces the postMessage functionality, for communicating
between a remotely hosted widget and your own application.

Chapter 19, Working with Structured Data
Tasks covered include how to process an XML document returned from an Ajax
call, using the new JSON object to parse JSON or stringify a JavaScript object. The
chapter also includes how to work with Microformats or RDFa in the page.

Chapter 20, Persistence
This chapter covers how to create and use an HTTP cookie, of course, and how to
store data using the page URL, but also provides recipes for working with the new
sessionStorage and localStorage persistence techniques introduced with HTML5,
and an introduction to client-side SQL databases.

Chapter 21, JavaScript Outside the Box
This chapter briefly gets into all the various ways that JavaScript can be used now,
none of which have anything to do with traditional web page development. Inclu-
ded are discussions on creating mobile and desktop widgets, mobile device appli-
cation development, creating add-ons and extensions for browsers, as well as how
JavaScript can be used with so many of our applications, such as OpenOffice
(which I used to write this book) and Photoshop. I also include a discussion of
desktop application development, including support for offline applications, and
featuring examples of both the Web Workers API, and the File API.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Indicates computer code in a broad sense, including commands, arrays, elements,
statements, options, switches, variables, attributes, keys, functions, types, classes,
namespaces, methods, modules, properties, parameters, values, objects, events,

Preface | xix

event handlers, XML tags, HTML tags, macros, the contents of files, and the output
from commands.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Websites and pages are mentioned in this book to help you locate online information
that might be useful. Normally both the address (URL) and the name (title, heading)
of a page are mentioned. Some addresses are relatively complicated, but you can prob-
ably locate the pages easier using your favorite search engine to find a page by its name,
typically by writing it inside quotation marks. This may also help if the page cannot be
found by its address; it may have moved elsewhere, but the name may still work.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “JavaScript Cookbook, by Shelley Powers.
Copyright 2010 Shelley Powers, 9780596806132.”

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.

xx | Preface

mailto:permissions@oreilly.com

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreilly.com/catalog/9780596806132

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://oreilly.com

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

Acknowledgments
I want to thank Simon St.Laurent, who has been a long-time editor and friend, for all
the help and encouragement he’s provided, in this book and in my previous books.

Preface | xxi

http://oreilly.com/catalog/9780596806132
mailto:bookquestions@oreilly.com
http://oreilly.com
http://my.safaribooksonline.com/?portal=oreilly

I also want to thank those who contributed time and expertise to review the book, and
helped me do a better job: Elaine Nelson, Zachary Kessin, Chris Wells, and Sergey
Ilinsky. My thanks also to Gez Lemon, who provided thoughtful commentary and help
with my ARIA chapter, and Brad Neuberg for his help with SVGWeb in Chapter 15.

I also want to thank my copyeditors, and others in the production staff: Colleen Top-
orek, Adam Zaremba, Rob Romano, Kiel Van Horn, and Seth Maislin.

My gratitude, also, to those who helped create the specifications, such as HTML5 and
ECMAScript 5, the tools, the APIs, the libraries, the browsers, and all the other fun
stuff that helps make JavaScript development as exciting today as it was 15 years ago.

xxii | Preface

CHAPTER 1

Working with JavaScript Strings

1.0 Introduction
JavaScript strings are the most important component of JavaScript, probably used more
than any other data type. Though you may get numeric values from web page forms,
the values are retrieved as strings, which you then have to convert into numeric values.

Strings are also used as parameters when invoking server-side application calls through
Ajax, as well as forming the basic serialization format of every JavaScript object. One
of the methods that all JavaScript objects share is toString, which returns a string
containing the serialized format of the object.

A String Primitive
A JavaScript string can be both a primitive data type or an object. As a primitive type,
it joins with four other JavaScript primitive types: number, Boolean (true or false),
null (no value), and undefined (unknown). In addition, as a primitive data type, strings
are also JavaScript literals: a collection that includes numbers (as either floating point
or integer), the literal format for arrays, objects, and regular expressions, as well as
numbers and Booleans.

We’ll see more about the literal formats for the various JavaScript ob-
jects throughout the book.

A string is zero or more characters delimited by quotes, either single quotes:

'This is a string'

Or double quotes:

"This is a string"

1

There is no rule for which type of quote to use. If you’re including single quotes within
the text, you’ll most likely want to use double quotes:

"This isn't a number."

If you mix up the quote types—begin a string with a single quote and end with a
double—you’ll receive an application error:

var badString = 'This is a bad string"; // oops, error

Both quote types are used interchangeably in the book.

A String Object
A string object is called String, appropriately enough, and like all other JavaScript
objects has a set of properties that come prebuilt into the object type.

A String object can be instantiated using the JavaScript new operator, to create a new
object instance:

var city = new String("St. Louis");

Once instantiated, any one of the available string properties can be accessed on it, such
as in the following code, where the string is lowercased using the String object method
toLowerCase:

var lcCity = city.toLowerCase(); // new string is now st. louis

If you access the String constructor without using new, you’ll create a string literal rather
than a String object:

var city = String("St. Louis");

If you do need to access a String object method on a string literal, you can. What
happens is the JavaScript engine creates a String object, wraps it around the string
literal, performs the method call, and then discards the String object.

When to use String, as compared to using a string literal, depends on the circumstan-
ces. Unless you plan on using the String object properties, you’ll want to use string
literals wherever possible. However, if you’ll be using String methods, then create the
string as an object.

See Also
Mozilla has a terrific page that discusses the concept of JavaScript literals and the dif-
ferent types. You can access the page at https://developer.mozilla.org/en/Core_Java
Script_1.5_Guide/Literals.

2 | Chapter 1: Working with JavaScript Strings

https://developer.mozilla.org/en/Core_JavaScript_1.5_Guide/Literals
https://developer.mozilla.org/en/Core_JavaScript_1.5_Guide/Literals

1.1 Concatenating Two or More Strings
Problem
You want to merge two or more strings into one.

Solution
Concatenate the strings using the addition (+) operator:

var string1 = "This is a ";
var string2 = "test";

var string3 = string1 + string2; // creates a new string with "This is a test"

Discussion
The addition operator (+) is typically used to add numbers together:

var newValue = 1 + 3; // result is 4

In JavaScript, though, the addition operator is overloaded, which means it can be used
for multiple data types, including strings. When used with strings, the results are con-
catenated, with the strings later in the equation appended to the end of the string result.

You can add two strings:

var string3 = string1 + string2;

or you can add multiple strings:

var string1 = "This";
var string2 = "is";
var string3 = "a";
var string4 = "test";
var stringResult = string1 + " " + string2 + " " +
 string3 + " " + string4; // result is "This is a test"

There is a shortcut to concatenating strings, and that’s the JavaScript shorthand as-
signment operator (+=). The following code snippet, which uses this operator:

var oldValue = "apples";
oldValue += " and oranges"; // string now has "apples and oranges"

is equivalent to:

var oldValue = "apples";
oldValue = oldValue + " and oranges";

The shorthand assignment operator works with strings by concatenating the string on
the right side of the operator to the end of the string on the left.

1.1 Concatenating Two or More Strings | 3

There is a built-in String method that can concatenate multiple strings: concat. It takes
one or more string parameters, each of which are appended to the end of the string
object:

var nwStrng = "".concat("This ","is ","a ","string"); // returns "This is a string"

The concat method can be a simpler way to generate a string from multiple values, such
as generating a string from several form fields. However, the use of the addition operator
is the more commonly used approach.

1.2 Concatenating a String and Another Data Type
Problem
You want to concatenate a string with another data type, such as a number.

Solution
Use the exact same operators, such as addition (+) and shorthand assignment (+=), you
use when concatenating strings:

var numValue = 23.45;
var total = "And the total is " + numValue; // string has "And the total is 23.45"

Discussion
A different process occurs when adding a string and another data type. In the case of
another data type, such as a Boolean or number, the JavaScript engine first converts
the other data type’s value into a string, and then performs concatenation:

// add a boolean to a string
var boolValue = true;
var strngValue = "The value is " + boolValue; // results in "The value is true"

// add a number to a string
var numValue = 3.0;
strngValue = "The value is " + numValue; // results in "The value is 3"

The automatic data conversion also applies if you’re concatenating a String object with
a string literal, which is a necessary capability if you’re not sure whether the strings
you’re working with are objects or literals but you still want to create a concatenated
string:

var strObject = new String("The value is ");
var strngLiteral = "a string";
var strngValue = strObject + strngLiteral; // results in "The value is a string"

The resulting string is a string literal, not a String object.

4 | Chapter 1: Working with JavaScript Strings

1.3 Conditionally Comparing Strings
Problem
You want to compare two strings to see if they’re the same.

Solution
Use the equality operator (==) within a conditional test:

var strName = prompt("What's your name?", "");

if (strName == "Shelley") {
 alert("Your name is Shelley! Good for you!");
} else {
 alert("Your name isn't Shelley. Bummer.");
}

Discussion
Two strings can be compared using the equality operator (==). When used within a
conditional statement, a block of code is run if the test evaluates to true (the strings are
equal):

if (strName == "Shelley") {
 alert("Your name is Shelley! Good for you!");
}

If the strings are not equal, the first statement following the conditional statement block
is processed. If an if...else conditional statement is used, the block of code following
the else keyword is the one that’s processed:

if (strName == "Shelley") {
 alert("Your name is Shelley! Good for you!");
} else {
 alert("Your name isn't Shelley. Bummer.");
}

There are factors that can influence the success of the string comparison. For instance,
strings have case, and can consist of uppercase characters, lowercase characters, or a
combination of both. Unless case is an issue, you’ll most likely want to convert the
string to all lowercase or uppercase, using the built-in String methods toLowerCase and
toUpperCase, before making the comparison, as shown in the following code:

var strName = prompt("What's your name?", "");

if (strName.toUpperCase () == "SHELLEY") {
 alert("Your name is Shelley! Good for you!");
} else {
 alert("Your name isn't Shelley. Bummer.");
}

Note that the toUpperCase method (and toLowerCase) do not take any parameters.

1.3 Conditionally Comparing Strings | 5

In Recipe 1.2, I discussed that data type conversion occurs automatically when con-
catenating a numeric or Boolean value, or a String object to a string. This same type
of data type conversion also occurs with the equality operator if one value is a string.
In the following, the number 10.00 is converted into the string “10”, and then used in
the comparison:

var numVal = 10.00;
if (numVal == "10") alert ("The value is ten"); succeeds

There may be times, though, when you don’t want automatic data conversion to
occur—when you want the comparison to fail if the values are of different data types.
For instance, if one value is a string literal and the other is a String object, you might
want the comparison to fail because the two variables are of different data types, re-
gardless of their perspective values. In this case, you’ll want to use a different equality
operator, the strict equality operator (===):

var strObject = new String("Shelley");

var strLiteral = "Shelley";

if (strObject == strLiteral) // this comparison succeeds

...

if (strObject === strLiteral) // fails because of different data types

The comparison fails if the two variables being compared are different data types, even
though their primitive string values are the same.

Sometimes, you might want to specifically test that two strings are not alike, rather than
whether they are alike. The operators to use then are the inequality operator (!=) and
strict inequality operator (!==). They work in the same manner as the previous two
operators just discussed, but return true when the strings are not alike:

var strnOne = "one";
var strnTwo = "two";
if (strnOne != strnTwo) // true, as they are not the same string value

The strict inequality operator returns true if the strings are not the same value or the
data type of the two operands (values on either side of the operator) is different:

var strObject = new String("Shelley");
var strLiteral = "Shelley";
if (strObject !== strLiteral) // succeeds, because data type of operands differs

If you’re more interested in discovering how two strings may differ, you can use other
comparison operators, as shown in Table 1-1.

6 | Chapter 1: Working with JavaScript Strings

Table 1-1. Comparison operators

Operator Description Example

Equality == True if operands are the same; otherwise false var sVal = "this";
if (sVal == "this) // true

Strict equality === True if operands are the same, and the same data type;
otherwise false

var sVal = "this";
var sVal2 = new String("this");

if (sVal === sVal2) // not true

Inequality != True if operands are not the same; otherwise false var sVal = "this";
if (sVal == "that") // true

Strict inequality !== True if operands are not the same, or are not the same
data type; otherwise false

var sVal = "this";
var sVal2 = new String("this");

if (sVal !== sVal2) // true

Greater than > True if first operand is greater in value than second
operand

var sOne = "cat";
var sTwo = "dog";

if (sOne > sTwo) // false

Greater than or equal >= True if first operand is greater than or equal to second
operand

var sOne = "Cat";
var sTwo = "cat";

if (sOne >= sTwo) // true

Less than < True if second operand is greater than first operand var sOne = "cat";
var sTwo = "Cat";

if (sOne < sTwo) // true

Less than or equal <= True if second operand is greater than or equal to first
operand

var sOne = new String("cat");
var sTwo = "cat";

if (sOne <= sTwo) // equal, true

Comparison operators work numerically with numbers, but lexically with strings. For
instance, the value “dog” would be lexically greater than “cat”, because the letter “d”
in “dog” occurs later in the alphabet than the letter “c” in “cat”:

var sOne = "cat";
var sTwo = "dog"
if (sOne > sTwo // false, because "cat" is lexically less than "dog"

If two string literals only vary based on case, the uppercase characters are lexically
greater than the lowercase letter:

var sOne = "Cat";
var sTwo = "cat";
if (sOne >= sTwo) // true, because 'C' is lexically greater than 'c'

There is no strict greater than or strict less than operators, so it makes no difference if
the data type of the operands differs:

var sOne = new String("cat");
var sTwo = "cat";
if (sOne <= sTwo) // both equal, so true, as data type doesn't matter

1.3 Conditionally Comparing Strings | 7

Before leaving this recipe, there is another approach you can use to compare strings,
but this one has a little kick to it. It’s based on the String method, localeCompare.

The localeCompare method takes one parameter, a string, which is compared against
the string value to which it is attached. The method returns a numeric value equal to
0 if the two strings are the same; –1 if the string parameter is lexically greater than the
original string; 1 otherwise:

var fruit1 = "apple";
var fruit2 = "grape";
var i = fruit1.localeCompare(fruit2); // returns -1

For the most part, you’ll probably use the comparison operators rather than the
localeCompare method, but it’s always interesting to see more than one approach.

See Also
For more on string-to-number conversion, see Recipe 4.5.

1.4 Finding a Substring in a String
Problem
You want to find out if a substring, a particular series of characters, exists in a string.

Solution
Use the String object’s built-in indexOf method to find the position of the substring, if
it exists:

var testValue = "This is the Cookbook's test string";
var subsValue = "Cookbook";

var iValue = testValue.indexOf(subsValue); // returns value of 12, index of substring

if (iValue != -1) // succeeds, because substring exists

Discussion
The String indexOf method returns a number representing the index, or position of
the first character of the substring, with 0 being the index position of the first character
in the string.

To test if the substring doesn’t exist, you can compare the returned value to –1, which
is the value returned if the substring isn’t found:

if (iValue != -1) // true if substring found

The indexOf method takes two parameters: the substring, and an optional second pa-
rameter, an index value of where to begin a search:

8 | Chapter 1: Working with JavaScript Strings

var tstString = "This apple is my apple";
var iValue = tstString.indexOf("apple", 10); // returns 17, index of second substring

The indexOf method works from left to right, but sometimes you might want to find
the index of a substring by searching within the string from right to left. There’s another
String method, lastIndexOf, which returns the index position of the last occurrence of
a substring within a string:

var txtString = "This apple is my apple";
var iValue = tstString.lastIndexOf("apple"); // returns 17,
 // index of last occurrence of substring

Like indexOf, lastIndexOf also takes an optional second parameter, which is an index
value of where to start the search, counted from the right:

"This apple is my apple".lastIndexOf("apple"); // returns value of 17
"This apple is my apple".lastIndexOf("apple",12); // returns value of 5
"This apple is my apple".lastIndexOf("apple", 3); // returns value of -1, not found

Notice that the value returned from lastIndexOf changes based on the starting position,
as counted from the string’s right.

It’s odd to see a String method called directly on quoted text, but in
JavaScript, there’s no difference in calling the method on a string literal,
directly, or on a string variable.

See Also
The String method search is used with regular expressions in order to find a specific
pattern within a string, and is discussed in Recipe 2.3. The String method replace can
be used to replace a substring found using a regular expression, and is discussed in
Recipe 2.4.

1.5 Extracting a Substring from a String
Problem
You have a string with several sentences, one of which has a list of items. The list begins
with a colon (:) and ends with a period (.). You want to extract just the list.

Solution
Use the indexOf String method to locate the colon, and then use it again to find the
first period following the colon. With these two locations, extract the string using the
String substring method:

var sentence = "This is one sentence. This is a sentence with a list of items:
cherries, oranges, apples, bananas.";

1.5 Extracting a Substring from a String | 9

var start = sentence.indexOf(":");
var end = sentence.indexOf(".", start+1);

var list = sentence.substring(start+1, end);

Discussion
The list is delimited by a beginning colon character and an ending period. The
indexOf method is used without the second parameter in the first search, to find the
colon. The method is used again, but the colon’s position (plus 1) is used to modify
the beginning location of the search for the period:

var end = sentence.indexOf(".",start+1);

If we didn’t modify the search for the ending period, we would have ended up with the
location of the first sentence’s period, rather than the location of the second sentence’s
period.

Once we have the beginning and ending location for the list, we use the substring
method, passing in the two index values representing the beginning and ending posi-
tions of the string:

var list = sentence.substring(start+1, end);

The resulting string in list is:

cherries, oranges, apples, bananas

We could then use a method, such as String.split to split the list into its individual
values:

var fruits = list.split(",") ; // array of values

There is another string extraction method, substr, but it’s based on the index position
of the start of the substring, and then passing in the length of the substring as the second
parameter. In a real life application, we won’t know the length of the sentence.

See Also
See Recipe 1.7 for more on using the String.split method.

1.6 Checking for an Existing, Nonempty String
Problem
You want to check that a variable is defined, is a string, and is not empty.

10 | Chapter 1: Working with JavaScript Strings

Solution
Use a combination of the typeof operator, the general valueOf method (which all Java-
Script objects share), and the String length property to create a conditional test that
ensures a variable is set, is a string, and is not empty:

// true if variable exists, is a string, and has a length greater than zero
if(((typeof unknownVariable != "undefined") &&
 (typeof unknownVariable.valueOf() == "string")) &&
 (unknownVariable.length > 0)) {
 ...
}

Discussion
Probably the most important built-in property for String is length. You can use
length to find out how long the string is, and to test whether the string variable is an
empty string (zero length) or not:

if (strFromFormElement.length == 0) // testing for empty string

However, when you’re working with strings and aren’t sure whether they’re set, you
can’t just check their length, as you’ll get an undefined JavaScript error if the variable
has never been set. You have to combine the length test with another test for existence,
and this brings us to the typeof operator.

The JavaScript typeof operator returns the type of a variable. The list of possible re-
turned values are:

• "number" if variable is a number

• "string" if variable is a string

• "boolean" if variable is a Boolean

• "function" if variable is a function

• "object" if variable is null, an array, or another JavaScript object

• "undefined" if variable is undefined

The last value is what interests us right now, because a variable that has never been
defined has a data type of undefined.

When a data type test is combined with a test of string length via a logical AND (&&)
operator, the only time the entire statement will succeed is if the variable has been
defined, and it contains a string with a length longer than zero:

// succeeds if variable exists, and has length greater than zero
if ((typeof unknownVariable !== "undefined") && (unknownVariable.length >)) {
 ...
}

1.6 Checking for an Existing, Nonempty String | 11

If the first test fails—whether the variable has been defined—the second condition isn’t
processed, as the entire statement fails. This prevents the error of accessing a property
on an undefined variable.

The conditional statement in the last code snippet works, but what happens if the
variable is defined, but is not a string? For instance, if the variable is a number? Well,
in this case, the condition still fails, because the length property is undefined for a
number. However, what if the value is a String object?

If you’re not sure what type the variable is, you can also explicitly test for the
"string" data type before testing the length:

// succeeds if string with length greater than zero
if ((typeof unknownVariable == "string") && (unknownVariable.length > 0)) {
 ...
}

If the test succeeds, you know exactly what you have: a string, with a length greater
than zero. However, if the variable is a String object, not a literal, typeof returns a data
type of "object" not "string". That’s why the solution incorporates another JavaScript
object method, valueOf.

The valueOf method is available for all JavaScript objects, and returns the primitive
value of whatever the object is: for Number, String, and boolean, their primitive values;
for Function, the function text, and so on. So if the variable is a String object,
valueOf returns a string literal. If the variable is already a string literal, applying the
valueOf method to it temporarily wraps it in a String object, which means the
valueOf method will still return a string literal.

Our conditional test then ends up incorporating a test to see if the variable has been
set, and if so, whether it is a String object or literal using valueOf, and, finally, whether
the length of the string is greater than zero:

// true if variable exists, is a string, and has a length greater than zero
if(((typeof unknownVariable != "undefined") &&
 (typeof unknownVariable.valueOf() == "string")) &&
 (unknownVariable.length > 0)) {
 ...
}

Seems like a lot of work, but typically your application won’t have to be this extensive
when testing a value. Generally you’ll only need to test whether a variable has been set,
or find the length of a string, in order to ensure it’s not an empty string.

12 | Chapter 1: Working with JavaScript Strings

1.7 Breaking a Keyword String into Separate Keywords
Problem
You have a string with keywords, separated by commas. You want to break the string
into an array of separate keywords, and then print the keywords out with a keyword
label.

Solution
Use the String split method to split the string on the commas. Loop through the array,
printing out the separate values. Example 1-1 shows a complete web page demonstrat-
ing this approach. The keywords are provided by the web page reader, via a prompt
window, and are then processed and printed out to the web page.

Example 1-1. Demonstrating use of String split to get keyword list

<!DOCTYPE html>
<head>
<title>Example 1-1</title>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" >
<script type="text/javascript">

window.onload = function() {

 // get keyword list
 var keywordList = prompt("Enter keywords, separated by commas","");

 // use split to create array of keywords
 var arrayList = keywordList.split(",");

 // build result HTML
 var resultString = "";
 for (var i = 0; i < arrayList.length; i++) {
 resultString+="keyword: " + arrayList[i] + "
";
 }

 // print out to page
 var blk = document.getElementById("result");
 blk.innerHTML = resultString;
}

</script>
</head>
<body>
<div id="result">
</div>
</body>
</html>

1.7 Breaking a Keyword String into Separate Keywords | 13

Discussion
The String split method takes two parameters: a required parameter with the char-
acter representing the separator for the split method; the second parameter (optional)
is a number representing a count of the number of splits to make. In Example 1-1, the
separator is a comma (,), and no second parameter is provided. An example of using
the second parameter is the following:

var strList = "keyword1,keyword2,keyword3,keyword4";

The following split method call would generate an array with two entries:

var arrayList = strList.split(",",2); // results in two element array

Not specifying the second parameter will split on every occurrence of the separator
found:

var arrayList = strList.split(","); // results in four element array

Here’s an interesting use of split: if you want to split a string on every character, specify
the empty string ('') or ("") as the separator:

var arrayList = strList.split("");

You can also use a regular expression as the parameter to split, though this can be a
little tricky. For instance, to find the same sentence list as returned from the example
code in the solution, you could use a couple of regular expressions:

var sentence = "This is one sentence. This is a sentence with a list of items:
cherries, oranges, apples, bananas.";
var val = sentence.split(/:/);
alert(val[1].split(/\./)[0]);

The regular expression looks for a colon first, which is then used for the first split. The
second split uses a regular expression on the resulting value from the first split, to look
for the period. The list is then in the first array element of this result.

Tricky, and a little hard to get your head around, but using regular expressions with
split could be a handy option when nothing else works.

See Also
See Recipe 5.3 for a discussion about creating a string from an array. See Recipe 11.1
about accessing a page element with the document object, and Recipe 12.1 about using
the innerHTML property. Chapter 2 provides coverage of regular expressions. Rec-
ipe 2.6 covers using capturing parentheses and a regular expression to get the same
results as the solutions demonstrated in this recipe.

14 | Chapter 1: Working with JavaScript Strings

1.8 Inserting Special Characters
Problem
You want to insert a special character, such as a line feed, into a string.

Solution
Use one of the escape sequences in the string. For instance, to add the copyright symbol
into a block of text to be added to the page (shown in Figure 1-1), use the escape
sequence \u00A9:

var resultString = "<p>This page \u00A9 Shelley Powers </p>";

// print out to page
 var blk = document.getElementById("result");
 blk.innerHTML = resultString;

Figure 1-1. Page demonstrating use of escape sequence to create copyright symbol

Discussion
The escape sequences in JavaScript all begin with the backslash character, (\). This
character lets the application processing the string know that what follows is a sequence
of characters that need special handling.

Table 1-2 lists the other escape sequences.

1.8 Inserting Special Characters | 15

Table 1-2. Escape sequences

Sequence Character

\' Single quote

\" Double quote

\\ Backslash

\b Backspace

\f Form feed

\n Newline

\r Carriage return

\t Horizontal tab

\ddd Octal sequence (3 digits: ddd)

\xdd Hexadecimal sequence (2 digits: dd)

\udddd Unicode sequence (4 hex digits: dddd)

The last three escape sequences in Table 1-2 are patterns, where providing different
numeric values will result in differing escape sequences. The copyright symbol in the
solution is an example of the Unicode sequence.

All of the escape sequences listed in Table 1-2 can also be represented as a Unicode
sequence. For instance, the horizontal tab (\t), can also be represented as the Unicode
escape sequence, \u0009. Of course, if the user agent disregards the special character,
as browsers do with the horizontal tab, the use is moot.

One of the most common uses of escape sequences is to include double or single quotes
within strings delimited by the same character:

var newString = 'You can\'t use single quotes in a string surrounded by single
quotes';

1.9 Processing Individual Lines of a textarea
Problem
You want to be able to process individual lines from a textarea box.

Solution
Use the String split method, combined with the line break escape sequence (\n) to
split the contents of the textarea into its separate lines:

var txtBox = document.getElementById("inputbox");
var lines = txtBox.value.split("\n");

// print out last line to page

16 | Chapter 1: Working with JavaScript Strings

var blk = document.getElementById("result");
blk.innerHTML = lines[lines.length-1];

Discussion
Escape sequences can be used for more than building strings; they can also be used in
pattern-matching operations. In the solution, the textarea string is split into its separate
lines by looking for the escape sequence for the newline character (\n).

This approach is also a way to convert text that may be encoded with escape sequences,
such as the newline character, into properly formatted HTML. For instance, to modify
the example to output the textarea exactly as typed, but as HTML, use the following:

// get textarea string and split on new lines
var txtBo x = document.getElementById("test");
var lines = txtBox.value.split("\n");

// generate HTML version of text
var resultString = "<p>";
for (var i = 0; i < lines.length; i++) {
 resultString += lines[i] + "
";
}
resultString += "</p>";

// print out to page
var blk = document.getElementById("result");
blk.innerHTML = resultString;

This code snippet converts all line breaks into the HTML br element. When added
back to the page, the text is printed as it was found in the textarea, line breaks and all.
This is a popular technique used to echo comments, as they are typed for a live preview,
in many blogs.

See Also
Another approach to replacing characters in a string is to use a regular expression with
the String replace method, covered in Recipe 2.5.

1.10 Trimming Whitespace from the Ends of a String
Problem
You want to trim the whitespace around a string that you’ve accessed from a form
element.

Solution
Use the new ECMAScript 5 String trim method:

var txtBox = document.getElementById("test");
var lines = txtBox.value.split("\n");

1.10 Trimming Whitespace from the Ends of a String | 17

var resultString = "";

for (var i = 0; i < lines.length; i++) {
 var strng = lines[i].trim();
 resultString += strng + "-";
}
alert(resultString);

Discussion
Prior to the release of ECMAScript 5, you had to use regular expressions and the String
replace method to trim the unwanted whitespace from around a string. Now, trimming
a string is as simple as calling the trim method.

Firefox already supported a trim method, but its use was nonstandard
before ECMAScript 5.

Most, if not all, browsers will eventually support trim. Among the target browsers for
this book, the only one that doesn’t is IE8. A workaround you can use is outlined below,
which not only allows for the use of trim, but a fallback if trim does not exist.

First, at some point before you need to use the trim functionality, you must test to see
if trim exists as a property of the String object. If it doesn’t, you’ll need to use the
String prototype to add a customized trim method to the object:

if (typeof String.trim == "undefined") {
 String.prototype.trim = function() {
 return this.replace(/(^\s*)|(\s*$)/g, "");
 }
}

Once this code is processed, when you call the trim method on any string, it will return
a string with whitespace trimmed from both ends (as long as the application is within
page scope). This functionality happens regardless of whether the method is already
built-in by the browser, or added by your hack:

var strng = lines[1].trim();

Most of the JavaScript framework libraries, such as jQuery, which I in-
troduce in Chapter 17, have already added the trim method.

Other new, related methods from ECMAScript 5 are trimLeft, which trims the white-
space on the left side of the string, and trimRight, which does the same on the right
side of the string.

18 | Chapter 1: Working with JavaScript Strings

See Also
The use of regular expressions is covered in Chapter 2. The use of the JavaScript object
prototype property is covered in Recipe 16.3.

1.11 Left- or Right-Pad a String
Problem
You need to create a string that’s left- or right-padded with a given character.

Solution
Test the length of the string, then generate a padding string consisting of duplications
of a given character to either concatenate to the original string (if padding to the right)
or attaching to the beginning of the string (if padding to the left). The following left-
pads the existing string with the nonbreaking space named character ():

<!DOCTYPE html>
<head>
<title>Recipe 1.12</title>
</head>
<body>
<div id="result"></div>
<script>

 var prefLineLength = 20;
 var oldStr = "This is a string";

 var diff = prefLineLength - oldStr.length;
 var filler = ' ';

 for (var i = 0; i < diff; i++) {
 oldStr=filler + oldStr;
 }

 document.getElementById("result").innerHTML=oldStr;

</script>

</body>

Discussion
You don’t want to pad strings that go into a database, because you want to keep the
data in the database as small and efficient as possible. But you might want to pad the
value before you display it in the web page.

The characters you use to pad the string are guided by the use. Typically, you’ll use
spaces. However, if the value is inserted into a web page that disregards multiple spaces,

1.11 Left- or Right-Pad a String | 19

you’ll either have to use the named entity () or its numeric equivalent() if
your content needs to be XHTML-compatible. Or you can just use CSS to format the
text positioning. For instance, to right-align the text, create the CSS rule:

.rightformatted
{
 text-align: right:
}

And then apply the rule when you add the string to the page. You can use the CSS rule
as a class name with the innerHTML property:

var div = document.getElementById("item");
item.innerHTML="<p>" + strValue + "</p>";

or you can use DOM (Document Object Model) Level 2 functionality:

var num = 123.55;
var item = document.getElementById("item");

// create text node and paragraph element
var txt = document.createTextNode(num);
var p = document.createElement("p");

// attach text node to paragraph
p.appendChild(txt);
p.setAttribute("class","rightformatted");

// append paragraph to document element
item.appendChild(p);

See Also
See Chapters 11 and 12 for more on using the Document Object Model (DOM) to
access, create, and remove web page elements and element attributes.

20 | Chapter 1: Working with JavaScript Strings

CHAPTER 2

Using Regular Expressions

2.0 Introduction
Regular expressions are search patterns that can be used to find text that matches a
given pattern. For instance, in the last chapter, we looked for the substring Cookbook
within a longer string:

var testValue = "This is the Cookbook's test string";
var subsValue = "Cookbook";

var iValue = testValue(subsValue); // returns value of 12, index of substring

This code snippet worked because we were looking for an exact match. But what if we
wanted a more general search? For instance, we want to search for the words Cook and
Book, in strings such as “Joe’s Cooking Book” or “JavaScript Cookbook”?

When we’re looking for strings that match a pattern rather than an exact string, we
need to use regular expressions. We can try to make do with String functions, but in
the end, it’s actually simpler to use regular expressions, though the syntax and format
is a little odd and not necessarily “user friendly.”

Recently, I was looking at code that pulled the RGB values from a string, in order to
convert the color to its hexadecimal format. We’re tempted to just use the
String.split function, and split on the commas, but then you have to strip out the
parentheses and extraneous whitespace. Another consideration is how can we be sure
that the values are in octal format? Rather than:

rgb (255, 0, 0)

we might find:

rgb (100%, 0, 0)

There’s an additional problem: some browsers return a color, such as a background
color, as an RGB value, others as a hexadecimal. You need to be able to handle both
when building a consistent conversion routine.

21

In the end, it’s a set of regular expressions that enable us to solve what, at first, seems
to be a trivial problem, but ends up being much more complicated. In an example from
the popular jQuery UI library, regular expressions are used to match color values—a
complicated task because the color values can take on many different formats, as this
portion of the routine demonstrates:

// Look for #a0b1c2
if (result = /#([a-fA-F0-9]{2})([a-fA-F0-9]{2})([a-fA-F0-9]{2})/.exec(color))
 return [parseInt(result[1],16), parseInt(result[2],16), parseInt(result[3],16)];

// Look for #fff
if (result = /#([a-fA-F0-9])([a-fA-F0-9])([a-fA-F0-9])/.exec(color))
 return [parseInt(result[1]+result[1],16), parseInt(result[2]+result[2],16),
parseInt(result[3]+result[3],16)];

// Look for rgba(0, 0, 0, 0) == transparent in Safari 3
if (result = /rgba\(0, 0, 0, 0\)/.exec(color))
 return colors['transparent'];

// Otherwise, we're most likely dealing with a named color
 return colors[$.trim(color).toLowerCase()];

Though the regular expressions seem complex, they’re really nothing more than a way
to describe a pattern. In JavaScript, regular expressions are managed through the
RegExp object.

A RegExp Literal
As with String in Chapter 1, RegExp can be both a literal and an object. To create a
RegExp literal, you use the following syntax:

var re = /regular expression/;

The regular expression pattern is contained between opening and closing forward
slashes. Note that this pattern is not a string: you do not want to use single or double
quotes around the pattern, unless the quotes themselves are part of the pattern to
match.

Regular expressions are made up of characters, either alone or in combination with
special characters, that provide for more complex matching. For instance, the following
is a regular expression for a pattern that matches against a string that contains the word
Shelley and the word Powers, in that order, and separated by one or more whitespace
characters:

var re = /Shelley\s+Powers/;

The special characters in this example are the backslash character (\), which has two
purposes: either it’s used with a regular character, to designate that it’s a special char-
acter; or it’s used with a special character, such as the plus sign (+), to designate that
the character should be treated literally. In this case, the backslash is used with “s”,
which transforms the letter s to a special character designating a whitespace character,

22 | Chapter 2: Using Regular Expressions

such as a space, tab, line feed, or form feed. The \s special character is followed by the
plus sign, \s+, which is a signal to match the preceding character (in this example, a
whitespace character) one or more times. This regular expression would work with the
following:

Shelley Powers

It would also work with the following:

Shelley Powers

It would not work with:

ShelleyPowers

It doesn’t matter how much whitespace is between Shelley and Powers, because of the
use of \s+. However, the use of the plus sign does require at least one whitespace
character.

Table 2-1 shows the most commonly used special characters in JavaScript applications.

Table 2-1. Regular expression special characters

Character Matches Example

^ Matches beginning of input /^This/ matches “This is...”

$ Matches end of input /end?/ matches “This is the end”

* Matches zero or more times /se*/ matches “seeee” as well as “se”

? Matches zero or one time /ap?/ matches “apple” and “and”

+ Matches one or more times /ap+/ matches “apple” but not “and”

{n} Matches exactly n times /ap{2}/ matches “apple” but not “apie”

{n,} Matches n or more times /ap{2,}/ matches all p’s in “apple” and “appple” but
not “apie”

{n,m} Matches at least n, at most m times /ap{2,4}/ matches four p’s in “apppppple”

. Any character except newline /a.e/ matches “ape” and “axe”

[...] Any character within brackets /a[px]e/ matches “ape” and “axe” but not “ale”

[^...] Any character but those within brackets /a[^px]/ matches “ale” but not “axe” or “ape”

\b Matches on word boundary /\bno/ matches the first “no” in “nono”

\B Matches on nonword boundary /\Bno/ matches the second “no” in “nono”

\d Digits from 0 to 9 /\d{3}/ matches 123 in “Now in 123”

\D Any nondigit character /\D{2,4}/ matches “Now " in “Now in 123”

\w Matches word character (letters, digits, underscores) /\w/ matches “j” in javascript

\W Matches any nonword character (not letters, digits, or
underscores)

\/W/ matches “%” in “100%”

\n Matches a line feed

\s A single whitespace character

2.0 Introduction | 23

Character Matches Example

\S A single character that is not whitespace

\t A tab

(x) Capturing parentheses Remembers the matched characters

RegExp As Object
The RegExp is a JavaScript object as well as a literal, so it can also be created using a
constructor, as follows:

var re = new RegExp("Shelley\s+Powers");

When to use which? The RegExp literal is compiled when script is evaluated, so you
should use a RegExp literal when you know the expression won’t change. A compiled
version is more efficient. Use the constructor when the expression changes or is going
to be built or provided at runtime.

As with other JavaScript objects, RegExp has several properties and methods, the most
common of which are demonstrated throughout this chapter.

Regular expressions are powerful but can be tricky. This chapter is more
an introduction to how regular expressions work in JavaScript than to
regular expressions in general. If you want to learn more about regular
expressions, I recommend the excellent Regular Expressions Cook
book by Jan Goyvaerts and Steven Levithan (O’Reilly).

See Also
The jQuery function shown in the first section is a conversion of a jQuery internal
function incorporated into a custom jQuery plug-in. jQuery is covered in more detail
in Chapter 17, and a jQuery plug-in is covered in Recipe 17.7.

2.1 Testing Whether a Substring Exists
Problem
You want to test whether a string is contained in another string.

Solution
Use a JavaScript regular expression to define a search pattern, and then apply the pat-
tern against the string to be searched, using the RegExp test method. In the following,
we want to match with any string that has the two words, Cook and Book, in that order:

var cookbookString = new Array();

24 | Chapter 2: Using Regular Expressions

http://oreilly.com/catalog/9780596520694
http://oreilly.com/catalog/9780596520694

cookbookString[0] = "Joe's Cooking Book";
cookbookString[1] = "Sam's Cookbook";
cookbookString[2] = "JavaScript CookBook";
cookbookString[3] = "JavaScript BookCook";

// search pattern
var pattern = /Cook.*Book/;
for (var i = 0; i < cookbookString.length; i++)
 alert(cookbookString[i] + " " + pattern.test(cookbookString[i]));

The first and third strings have a positive match, while the second and fourth do not.

Discussion
The RegExp test method takes two parameters: the string to test, and an optional
modifier. It applies the regular expression against the string and returns true if there’s
a match, false if there is no match.

In the example, the pattern is the word Cook appearing somewhere in the string, and
the word Book appearing anywhere in the string after Cook. There can be any number
of characters between the two words, including no characters, as designated in the
pattern by the two regular expression characters: the decimal point (.), and the asterisk
(*).

The decimal in regular expressions is a special character that matches any character
except the newline character. In the example pattern, the decimal is followed by the
asterisk, which matches the preceding character zero or more times. Combined, they
generate a pattern matching zero or more of any character, except newline.

In the example, the first and third string match, because they both match the pattern
of Cook and Book with anything in between. The fourth does not, because the Book
comes before Cook in the string. The second also doesn’t match, because the first letter
of book is lowercase rather than uppercase, and the matching pattern is case-dependent.

2.2 Testing for Case-Insensitive Substring Matches
Problem
You want to test whether a string is contained in another string, but you don’t care
about the case of the characters in either string.

Solution
When creating the regular expression, use the ignore case flag (i):

var cookbookString = new Array();

cookbookString[0] = "Joe's Cooking Book";
cookbookString[1] = "Sam's Cookbook";
cookbookString[2] = "JavaScript CookBook";

2.2 Testing for Case-Insensitive Substring Matches | 25

cookbookString[3] = "JavaScript cookbook";

// search pattern
var pattern = /Cook.*Book/i;
for (var i = 0; i < cookbookString.length; i++) {
 alert(cookbookString[i] + " " + pattern.test(cookbookString[i],i));
}

All four strings match the pattern.

Discussion
The solution uses a regular expression flag (i) to modify the constraints on the pattern-
matching. In this case, the flag removes the constraint that the pattern-matching has
to match by case. Using this flag, values of book and Book would both match.

There are only a few regular expression flags, as shown in Table 2-2. They can be used
with RegExp literals:

var pattern = /Cook.*Book/i; // the 'i' is the ignore flag

They can also be used when creating a RegExp object, via the optional second parameter:

var pattern = new RegExp("Cook.*Book","i");

Table 2-2. Regular expression flags

Flag Meaning

g Global match: matches across an entire string, rather than stopping at first match

i Ignores case

m Applies begin and end line special characters (^ and $, respectively) to each line in a multiline string

2.3 Validating a Social Security Number
Problem
You need to validate whether a text string is a valid U.S.-based Social Security number
(the identifier the tax people use to find us, here in the States).

Solution
Use the String match method and a regular expression to validate that a string is a Social
Security number:

var ssn = document.getElementById("pattern").value;
var pattern = /^\d{3}-\d{2}-\d{4}$/;
if (ssn.match(pattern))
 alert("OK");
else
 alert("Not OK");

26 | Chapter 2: Using Regular Expressions

Discussion
A U.S.-based Social Security number is a combination of nine numbers, typically in a
sequence of three numbers, two numbers, and four numbers, with or without dashes
in between.

The numbers in a Social Security number can be matched with the digit special char-
acter (\d). To look for a set number of digits, you can use the curly brackets surrounding
the number of expected digits. In the example, the first three digits are matched with:

\d{3}

The second two sets of numbers can be defined using the same criteria. Since there’s
only one dash between the sequences of digits, it can be given without any special
character. However, if there’s a possibility the string will have a Social Security number
without the dashes, you’d want to change the regular expression pattern to:

var pattern = /^\d{3}-?\d{2}-?\d{4}$/;

The question mark special character (?) matches zero or exactly one of the preceding
character—in this case, the dash (-). With this change, the following would match:

444-55-3333

As would the following:

555335555

But not the following, which has too many dashes:

555---60--4444

One other characteristic to check is whether the string consists of the Social Security
number, and only the Social Security number. The beginning-of-input special character
(^) is used to indicate that the Social Security number begins at the beginning of the
string, and the end-of-line special character ($) is used to indicate that the line termi-
nates at the end of the Social Security number.

Since we’re only interested in verifying that the string is a validly formatted Social Se-
curity number, we’re using the String object’s match method. We could also have used
the RegExp test method, but six of one, half dozen of the other; both approaches are
acceptable.

There are other approaches to validating a Social Security number that are more com-
plex, based on the principle that Social Security numbers can be given with spaces
instead of dashes. That’s why most websites asking for a Social Security number provide
three different input fields, in order to eliminate the variations. Regular expressions
should not be used in place of good form design.

In addition, there is no way to actually validate that the number given is an actual Social
Security number, unless you have more information about the person, and a database
with all Social Security numbers. All you’re doing with the regular expression is veri-
fying the format of the number.

2.3 Validating a Social Security Number | 27

See Also
One site that provides some of the more complex Social Security number regular ex-
pressions, in addition to many other interesting regular expression “recipes,” is the
Regular Expression Library.

2.4 Finding and Highlighting All Instances of a Pattern
Problem
You want to find all instances of a pattern within a string.

Solution
Use the RegExp exec method and the global flag (g) in a loop to locate all instances of
a pattern, such as any word that begins with t and ends with e, with any number of
characters in between:

var searchString = "Now is the time and this is the time and that is the time";
var pattern = /t\w*e/g;
var matchArray;

var str = "";
while((matchArray = pattern.exec(searchString)) != null) {
 str+="at " + matchArray.index + " we found " + matchArray[0] + "
";
}
document.getElementById("results").innerHTML=str;

Discussion
The RegExp exec method executes the regular expression, returning null if a match is
not found, or an array of information if a match is found. Included in the returned array
is the actual matched value, the index in the string where the match is found, any
parenthetical substring matches, and the original string.

index
The index of the located match

input
The original input string

[0] or accessing array directly
The matched value

[1],...,[n]
Parenthetical substring matches

In the solution, the index where the match was found is printed out in addition to the
matched value.

28 | Chapter 2: Using Regular Expressions

http://regexlib.com/

The solution also uses the global flag (g). This triggers the RegExp object to preserve the
location of each match, and to begin the search after the previously discovered match.
When used in a loop, we can find all instances where the pattern matches the string.
In the solution, the following are printed out:

at 7 we found the
at 11 we found time
at 28 we found the
at 32 we found time
at 49 we found the
at 53 we found time

Both time and the match the pattern.

Let’s look at the nature of global searching in action. In Example 2-1, a web page is
created with a textarea and an input text box for accessing both a search string and a
pattern. The pattern is used to create a RegExp object, which is then applied against the
string. A result string is built, consisting of both the unmatched text and the matched
text, except the matched text is surrounded by a span element, with a CSS class used
to highlight the text. The resulting string is then inserted into the page, using the
innerHTML for a div element.

Example 2-1. Using exec and global flag to search and highlight all matches in a text string

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Searching for strings</title>
<style type="text/css">
#searchSubmit
{
 background-color: #ff0;
 width: 200px;
 text-align: center;
 padding: 10px;
 border: 2px inset #ccc;
}
.found
{
 background-color: #ff0;
}
</style>
<script type="text/javascript">
//<![CDATA[

window.onload=function() {
 document.getElementById("searchSubmit").onclick=doSearch;
}

function doSearch() {
 // get pattern
 var pattern = document.getElementById("pattern").value;
 var re = new RegExp(pattern,"g");

2.4 Finding and Highlighting All Instances of a Pattern | 29

 // get string
 var searchString = document.getElementById("incoming").value;

 var matchArray;
 var resultString = "<pre>";
 var first=0; var last=0;

 // find each match
 while((matchArray = re.exec(searchString)) != null) {
 last = matchArray.index;
 // get all of string up to match, concatenate
 resultString += searchString.substring(first, last);

 // add matched, with class
 resultString += "" + matchArray[0] + "";
 first = re.lastIndex;
 }

 // finish off string
 resultString += searchString.substring(first,searchString.length);
 resultString += "</pre>";

 // insert into page
 document.getElementById("searchResult").innerHTML = resultString;
}

//--><!]]>
</script>
</head>
<body>
<form id="textsearch">
<textarea id="incoming" cols="150" rows="10">
</textarea>
<p>
Search pattern: <input id="pattern" type="text" /></p>
</form>
<p id="searchSubmit">Search for pattern</p>
<div id="searchResult"></div>
</body>
</html>

Figure 2-1 shows the application in action on William Wordsworth’s poem, “The Kit-
ten and the Falling Leaves,” after a search for the following pattern:

lea(f|ve)

The bar (|) is a conditional test, and will match a word based on the value on either
side of the bar. So a word like leaf matches, as well as a word like leave, but not a word
like leap.

You can access the last index found through the RegExp’s lastIndex property. The
lastIndex property is handy if you want to track both the first and last matches.

30 | Chapter 2: Using Regular Expressions

See Also
Recipe 2.5 describes another way to do a standard find-and-replace behavior, and
Recipe 2.6 provides a simpler approach to finding and highlighting text in a string.

2.5 Replacing Patterns with New Strings
Problem
You want to replace all matched substrings with a new substring.

Solution
Use the String object’s replace method, with a regular expression:

var searchString = "Now is the time, this is the time";
var re = /t\w{2}e/g;
var replacement = searchString.replace(re, "place");
alert(replacement); // Now is the place, this is the place

Figure 2-1. Application finding and highlighting all matched strings

2.5 Replacing Patterns with New Strings | 31

Discussion
In Example 2-1 in Recipe 2.4, we used the RegExp global flag (g) in order to track each
occurrence of the regular expression. Each match was highlighted using a span element
and CSS.

A global search is also handy for a typical find-and-replace behavior. Using the global
flag (g) with the regular expression in combination with the String replace method
will replace all instances of the matched text with the replacement string.

See Also
Recipe 2.6 demonstrates variations of using regular expressions with the String
replace method.

2.6 Swap Words in a String Using Capturing Parentheses
Problem
You want to accept an input string with first and last name, and swap the names so the
last name is first.

Solution
Use capturing parentheses and a regular expression to find and remember the two
names in the string, and reverse them:

var name = "Abe Lincoln";
var re = /^(\w+)\s(\w+)$/;
var newname = name.replace(re,"$2, $1");

Discussion
Capturing parentheses allow us to not only match specific patterns in a string, but to
reference the matched substrings at a later time. The matched substrings are referenced
numerically, from left to right, as represented by the use of “$1” and “$2” in the String
replace method.

In the solution, the regular expression matches two words, separated by a space. Cap-
turing parentheses were used with both words, so the first name is accessible using
“$1”, the last name with “$2”.

The captured parentheses aren’t the only special characters available with the String
replace method. Table 2-3 shows the other special characters that can be used with
regular expressions and replace.

32 | Chapter 2: Using Regular Expressions

Table 2-3. String.replace special patterns

Pattern Purpose

$$ Allows a literal dollar sign ($) in replacement

$& Inserts matched substring

$` Inserts portion of string before match

$’ Inserts portion of string after match

$n Inserts nth captured parenthetical value when using RegExp

The second table entry, which reinserts the matched substring, can be used to provide
a simplified version of the Example 2-1 application in Recipe 2.4. That example found
and provided markup and CSS to highlight the matched substring. It used a loop to
find and replace all entries, but in Example 2-2 we’ll use the String replace method
with the matched substring special pattern ($&)

Example 2-2. Using String.replace and special pattern to find and highlight text in a string

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Searching for strings</title>
<style>
#searchSubmit
{
 background-color: #ff0;
 width: 200px;
 text-align: center;
 padding: 10px;
 border: 2px inset #ccc;
}
.found
{
 background-color: #ff0;
}
</style>
<script>
//<![CDATA[

window.onload=function() {
 document.getElementById("searchSubmit").onclick=doSearch;
}

function doSearch() {
 // get pattern
 var pattern = document.getElementById("pattern").value;
 var re = new RegExp(pattern,"g");

 // get string
 var searchString = document.getElementById("incoming").value;

 // replace

2.6 Swap Words in a String Using Capturing Parentheses | 33

 var resultString = searchString.replace(re,"$&");

 // insert into page
 document.getElementById("searchResult").innerHTML = resultString;
}

//--><!]]>
</script>
</head>
<body>
<form id="textsearch">
<textarea id="incoming" cols="100" rows="10">
</textarea>
<p>
Search pattern: <input id="pattern" type="text" /></p>
</form>
<p id="searchSubmit">Search for pattern</p>
<div id="searchResult"></div>
</body>
</html>

This is a simpler alternative, but as Figure 2-2 shows, this technique doesn’t quite
preserve all aspects of the original string. The line feeds aren’t preserved with Exam-
ple 2-2, but they are with Example 2-1.

The captured text can also be accessed via the RegExp object when you use the RegExp
exec method. Now let’s return to the Recipe 2.6 solution code, but this time using the
RegExp’s exec method:

var name = "Shelley Powers";
var re = /^(\w+)\s(\w+)$/;
var result = re.exec(name);
var newname = result[2] + ", " + result[1];

This approach is handy if you want to access the capturing parentheses values, but
without having to use them within a string replacement. To see another example of
using capturing parentheses, Recipe 1.7 demonstrated a couple of ways to access the
list of items in the following sentence, using the String split method:

var sentence = "This is one sentence. This is a sentence with a list of items:
cherries, oranges, apples, bananas.";

Another approach is the following, using capturing parentheses, and the RegExp exec
method:

var re = /:(.*)\./;
var result = re.exec(sentence);
var list = result[1]; // cherries, oranges, apples, bananas

34 | Chapter 2: Using Regular Expressions

Figure 2-2. Using Example 2-2 to find and highlight text in a string

2.7 Using Regular Expressions to Trim Whitespace
Problem
Before sending a string to the server via an Ajax call, you want to trim whitespace from
the beginning and end of the string.

Solution
Prior to the new ECMAScript 5 specification, you could use a regular expression to
trim whitespace from the beginning and end of a string:

var testString = " this is the string ";

// trim white space from the beginning
testString = testString.replace(/^\s+/,"");

// trim white space from the end
testString = testString.replace(/\s+$/,"");

Beginning with ECMAScript 5, the String object now has a trim method:

2.7 Using Regular Expressions to Trim Whitespace | 35

var testString = " this is the string ";
testString = testString.trim(); // white space trimmed

Discussion
String values retrieved from form elements can sometimes have whitespace before and
after the actual form value. You don’t usually want to send the string with the extra-
neous whitespace, so you’ll use a regular expression to trim the string.

Beginning with ECMAScript 5, there’s now a String trim method. However, until
ECMAScript 5 has wider use, you’ll want to check to see if the trim method exists, and
if not, use the old regular expression method as a fail-safe method.

In addition, there is no left or right trim in ECMAScript 5, though there are nonstandard
versions of these methods in some browsers, such as Firefox. So if you want left- or
right-only trim, you’ll want to create your own functions:

function leftTrim(str) {
 return str.replace(/^\s+/,"");
}
function rightTrim(str) {
 return str.replace(/\s+$/,"");
}

2.8 Replace HTML Tags with Named Entities
Problem
You want to paste example markup into a web page, and escape the markup—have
the angle brackets print out rather than have the contents parsed.

Solution
Use regular expressions to convert angle brackets (<>) into the named entities < and
>:

var pieceOfHtml = "<p>This is a paragraph</p>";
pieceOfHtml = pieceOfHtml.replace(/</g,"<");
pieceOfHtml = pieceOfHtml.replace(/>/g,">");
document.getElementById("searchResult").innerHTML = pieceOfHtml;

Discussion
It’s not unusual to want to paste samples of markup into another web page. The only
way to have the text printed out, as is, without having the browser parse it, is to convert
all angle brackets into their equivalent named entities.

The process is simple with the use of regular expressions, using the regular expression
global flag (g) and the String replace method, as demonstrated in the solution.

36 | Chapter 2: Using Regular Expressions

2.9 Searching for Special Characters
Problem
We’ve searched for numbers and letters, and anything not a number or other character,
but one thing we need to search is the special regular expression characters
themselves.

Solution
Use the backslash to escape the pattern-matching character:

var re = /\\d/;
var pattern = "\\d{4}";
var pattern2 = pattern.replace(re,"\\D");

Discussion
In the solution, a regular expression is created that’s equivalent to the special character,
\d, used to match on any number. The pattern is, itself, escaped, in the string that needs
to be searched. The number special character is then replaced with the special character
that searches for anything but a number, \D.

Sounds a little convoluted, so I’ll demonstrate with a longer application. Exam-
ple 2-3 shows a small application that first searches for a sequence of four numbers in
a string, and replaces them with four asterisks (****). Next, the application will modify
the search pattern, by replacing the \d with \D, and then running it against the same
string.

Example 2-3. Regular expression matching on regular expression characters

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Replacement Insanity</title>
<script>
//<![CDATA[

window.onload=function() {

 // search for \d
 var re = /\\d/;
 var pattern = "\\d{4}";
 var str = "I want 1111 to find 3334 certain 5343 things 8484";
 var re2 = new RegExp(pattern,"g");
 var str1 = str.replace(re2,"****");
 alert(str1);
 var pattern2 = pattern.replace(re,"\\D");
 var re3 = new RegExp(pattern2,"g");
 var str2 = str.replace(re3, "****");
 alert(str2);
}

2.9 Searching for Special Characters | 37

//--><!]]>
</script>
</head>
<body>
<p>content</p>
</body>
</html>

Here is the original string:

I want 1111 to find 3334 certain 5343 things 8484

The first string printed out is the original string with the numbers converted into
asterisks:

I want **** to find **** certain **** things ****

The second string printed out is the same string, but after the characters have been
converted into asterisks:

****nt 1111******** 3334******** 5343********8484

Though this example is short, it demonstrates some of the challenges when you want
to search on regular expression characters themselves.

38 | Chapter 2: Using Regular Expressions

CHAPTER 3

Dates, Time, and Timers

3.0 Introduction
JavaScript’s date and time functionality is quite extensive, and more than sufficient for
most applications.

The Date object contains a number representing the date and time, rather than a string
representation. The numeric value for the Date object is the number of seconds since
January 01, 1970 UTC. Leap seconds are ignored.

Strings used to create dates are parsed and converted into this numeric value. Older
browsers required that this string be UTC (Coordinated Time Universal or Greenwich
Mean Time) format. Beginning with ECMAScript 5, ISO 8601 parsing is supported,
which I’ll cover later in the chapter.

The Date Object
Dates are managed through the Date object. You can create a date using a variety of
techniques (see Recipe 3.1 for a discussion of different approaches), and modify the
date using an extensive number of methods.

You can also access every aspect of a date: year, month, day of week, time, and so on,
using specialized get and set methods, described in Tables 3-1 and 3-2.

Table 3-1. Date object get methods

Method Purpose

getDate Returns day of the month (0–31)

getDay Returns day of the week (0–6)

getFullYear Returns 4-digit full year

getHours Returns local hour (0–23)

getMilliseconds Returns local milliseconds (0–999)

getMinutes Returns local minute (0–59)

39

Method Purpose

getMonth Returns local month (0–11)

getSeconds Returns local second (0–59)

getTime Returns number of seconds since January 1, 1970 00:00:00 UTC

getTimezoneOffset Returns time zone from UTC

getUTCDate Returns day of month in UTC time (0–31) method (Date)

getUTCDay Returns day of the week in UTC time (0–6)

getUTCFullYear Returns 4-digit UTC year

getUTCHours Returns UTC hours (0–23)

getUTCMilliseconds Returns UTC milliseconds (0–999)

getUTCMinutes Returns UTC minutes (0–59)

getUTCMonth Returns UTC month (0–11)

getUTCSeconds Returns UTC seconds (0–59)

Table 3-2. Date object set methods

Method Purpose

setDate Sets the day of month (1–31)

setFullYear Sets 4-digit full year

setHours Sets the hour (0–23)

setMilliseconds Sets the date’s milliseconds (0–999)

setMinutes Sets the date’s minutes (0–59)

setMonth Sets the month (0–11)

setSeconds Sets the seconds (0–59)

setTime Sets the date’s time as milliseconds since January 1, 1970 00:00:00 UTC

setUTCDate Sets the date’s day of month in UTC

setUTCFullYear Sets the full year in UTC

setUTCHours Sets the date’s hours in UTC

setUTCMilliseconds Sets the date’s milliseconds in UTC

setUTCMinutes Sets the date’s minutes in UTC

setUTCMonth Sets the month in UTC

setUTCSeconds Sets the seconds in UTC

You can also calculate a future date by adding a number of days or weeks to any given
date.

40 | Chapter 3: Dates, Time, and Timers

JavaScript Timers
JavaScript also provides another way to work with time, through the use of recurring
or one-time-only timers. I’ve always thought these should be a component of the
Date object, but they’re actually Window object methods: setInterval and setTimeout.

The difference between the two is that setInterval creates a recurring timer that re-
fires until canceled, while setTimeout creates a one-time-only timer. Both take a timer
value, in milliseconds, as well as an expression to evaluate when the timer fires.

3.1 Printing Out Today’s Date
Problem
You want to print out the current date and time to a web page.

Solution
Create a new Date object, without any parameters, and output its value to the web page:

var dtElem = document.getElementById("date");
var dt = new Date();
dtElem.innerHTML = "<p>" + dt + "</p>";

Discussion
When you construct a new Date object, you can pass various parameters to the con-
structor to create a specific date:

var dt = new Date(milliseconds); // milliseconds since 1 January 1970 00:00:00 UTC
var dt2 = new Date(dateString); // string representing a valid date
var dt3 = new Date(year,month,date[,hour,minute,second,millisecond]);

If you don’t specify the time parameters of a date, as shown in the last example, they’re
set to zero by default. At a minimum, you must provide the month, day, and year. If
you don’t provide any form of a date string to the Date constructor, the Date object is
set to the local date and time of the computer used to access the web page.

You can access components of the date using a variety of Date methods. You can directly
print the entire date, as shown in the solution, and the resulting string will look like
the following:

Thu Oct 01 2009 20:34:26 GMT-0500 (CST)

If you prefer a different format, you can access the individual components of the
Date, using methods such as getMonth, getFullYear, getTime, getDate, and then build
the date string:

var dt = new Date();
var month = dt.getMonth();
month++;

3.1 Printing Out Today’s Date | 41

var day = dt.getDate();
var yr = dt.getFullYear();
dtElem.innerHTML = "<p>" + month + "/" + day + "/" + yr;

The above outputs the following string to the page:

10/1/2009

The month is a zero-based integer, which is why I had to increment the month value
in the example to get the actual numeric month value. To get the month name, you’ll
most likely want to use an array:

var months = ['January','February','March','April','May','June','July','August',
'September','October','November','December'];
var month = dt.getMonth();
var monthString = months[month];

3.2 Printing Out the UTC Date and Time
Problem
You want to print out the current UTC (universal time) date and time, rather than the
local time.

Solution
Use the UTC JavaScript methods in order to access the current date and time as uni-
versal time:

var dateElement = document.getElementById("date");
var today = new Date();
var utcDate = today.toUTCString();
dateElement.innerHTML = "<p>local datetime: " + today + " UTC datetime: " +
utcDate + "</p>";

Discussion
The Date toUTCString method returns the date/time string formatted in universal con-
vention. This not only returns the UTC equivalent of the local datetime, it also returns
it the UTC format, which varies just slightly from the datetime for the local time. The
printout from the solution would be:

local datetime: Thu Oct 08 2009 13:58:35 GMT-0500 (CDT)
UTC datetime: Thu, 08 Oct 2009 18:58:35 GMT

There are a couple of differences between the two date printouts. First of all, the time
zone designation differs, which we would expect. I’m currently in Central Daylight
Time (CDT), which is five hours behind universal time (UTC/GMT). In addition, the
day of week in the UTC string is followed by a comma, which doesn’t occur with the
local time printout.

42 | Chapter 3: Dates, Time, and Timers

Rather than the entire date string, you can access the UTC equivalent of the month,
day, year, and time using the relevant Date methods. Instead of getMonth, use
getUTCMonth, and so on. Using these getUTC methods with the local date, you could
build a printout string identical to that given with the local time, or to match any other
formatting, such as the ISO 8601 standard formatting. There are equivalent methods
to set each of these values.

See Also
The get methods are detailed in Table 3-1 and the set methods are detailed in Table 3-2.

3.3 Printing Out an ISO 8601 Formatted Date
Problem
You need a date string with the date formatted according to the ISO 8601 standard
format.

Solution
Construct the Date, access the individual elements, and create the ISO 8601 formatted
string:

 var dt = new Date();

// get month and increment
var mnth = dt.getUTCMonth();
mnth++;

var day = dt.getUTCDate();
if (day < 10) day="0" + day;
var yr = dt.getUTCFullYear();

var hrs = dt.getUTCHours();
if (hrs < 10) hrs = "0" + hrs;

var min = dt.getUTCMinutes();
if (min < 10) min = "0" + min;

var secs = dt.getUTCSeconds();
if (secs < 10) secs = "0" + secs;

var newdate = yr + "-" + mnth + "-" + day + "T" + hrs + ":" + min + ":" + secs + "Z";

Discussion
The ISO 8601 is an international standard that defines a representation for both dates
and times. It’s not unusual for applications that provide APIs to require ISO 8601

3.3 Printing Out an ISO 8601 Formatted Date | 43

formatting. It’s also not unusual for most dates to and from APIs to be in UTC, rather
than local time.

The solution shows one variation of ISO 8601 formatting. Others are the following:

• 2009

• 2009-10

• 2009-10-15

• 2009-10-15T19:20

• 2009-10-15T19:20:20

• 2009-10-15T19:20:20.50

The values are year, month, date, then “T” to represent time, and hours, minutes,
seconds, and fractions of sections. The time zone also needs to be indicated. If the date
is in UTC, the time zone is represented by the letter “Z”, as shown in the solution:

2009-10-15T14:42:51Z

Otherwise, the time zone is represented as +hh:mm to represent a time zone ahead of
UTC, and -hh:mm to represent a time zone behind UTC.

The solution assumes you want to access the current UTC time. If you need to convert
a given date into an ISO 8601 formatted UTC date, create the Date using the date string,
and then use the UTC get methods to get the date components, as shown in the
solution:

var dt = "October 15, 2009 15:10:10";

Eventually, you won’t need this special functionality to print out an ISO 8601 formatted
date, because one of the new Date extensions released with ECMAScript 5 is a new
method, toISOString:

var dt = "October 15, 2009 15:10:10";
alert(dt.toISOString());

Currently only a few browsers support this new functionality (Firefox 3.5 and the
WebKit nightly). Until there is broader support, you’ll still need the functionality out-
lined in the solution to output the correctly formatted ISO date. However, you can
extend the function to check for the existence of toISOString first, and use it if
supported.

See Also
A padding function, such as the one described in Recipe 1.10, can be used to pad the
numbers. The W3C “Note on Date and Time Formats” describing the ISO 8601 format
can be found at http://www.w3.org/TR/NOTE-datetime.

44 | Chapter 3: Dates, Time, and Timers

http://www.w3.org/TR/NOTE-datetime

3.4 Converting an ISO 8601 Formatted Date to a Format
Acceptable to the Date Object
Problem
You need to convert an ISO 8601 formatted date string into values that can be used to
create a new Date object.

Solution
Parse the ISO 8601 string into the individual date values, and use it to create a new
JavaScript Date object:

 var dtstr= "2009-10-15T14:42:51Z";

 dtstr = dtstr.replace(/\D/g," ");
 var dtcomps = dtstr.split(" ");

 // modify month between 1 based ISO 8601 and zero based Date
 dtcomps[1]--;

 var convdt = new
Date(Date.UTC(dtcomps[0],dtcomps[1],dtcomps[2],dtcomps[3],dtcomps[4],dtcomps[5]));

Discussion
If you attempt to create a JavaScript Date with an ISO 8601 formatted string, you’ll get
an invalid date error. Instead, you’ll have to convert the string into values that can be
used with the JavaScript Date.

The simplest way to parse an ISO 8601 formatted string is to use the String.split
method. To facilitate the use of split, all nonnumeric characters are converted to one
specific character. In the solution, the nonnumeric characters are converted to a space:

dtstr = dtstr.replace(/\D/g, " ");

The ISO formatted string would be converted to:

2009 10 15 14 42 51

ISO months are one-based, in values of 1 through 12. To use the month value in Java-
Script Dates, the month needs to be adjusted by subtracting 1:

dtcomps[1]--;

Finally, the new Date is created. To maintain the UTC setting, the Date object’s UTC
method is used to create the date in universal time, which is then passed to the Date
constructor:

 var convdt = new
Date(Date.UTC(dtcomps[0],dtcomps[1],dtcomps[2],dtcomps[3],dtcomps[4],dtcomps[5]));

3.4 Converting an ISO 8601 Formatted Date to a Format Acceptable to the Date Object | 45

The task gets more challenging when you have to account for the different ISO 8601
formats. Example 3-1 shows a JavaScript application that contains a more complex
JavaScript function that converts from ISO 8601 to allowable Date values. The first test
in the function ensures that the ISO 8601 format can be converted to a JavaScript
Date. This means that, at a minimum, the formatted string must have a month, day,
and year.

Example 3-1. Converting ISO 8601 formatted dates to JavaScript Dates

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Converting ISO 8601 date</title>
<style type="text/css">
#dateSubmit
{
 background-color: #ff0;
 width: 200px;
 text-align: center;
 border: 1px solid #ccc;
}
</style>
<script type="text/javascript">
//<![CDATA[

window.onload=function() {
 document.getElementById("dateSubmit").onclick=convertDate;
}

function convertDate() {
 var dtstr = document.getElementById("datestring").value;
 var convdate = convertISO8601toDate(dtstr);
 document.getElementById("result").innerHTML=convdate;
}

function convertISO8601toDate(dtstr) {

 // replace anything but numbers by spaces
 dtstr = dtstr.replace(/\D/g," ");

 // trim any hanging white space
 dtstr = dtstr.replace(/\s+$/,"");

 // split on space
 var dtcomps = dtstr.split(" ");

 // not all ISO 8601 dates can convert, as is
 // unless month and date specified, invalid
 if (dtcomps.length < 3) return "invalid date";
 // if time not provided, set to zero
 if (dtcomps.length < 4) {
 dtcomps[3] = 0;
 dtcomps[4] = 0;
 dtcomps[5] = 0;

46 | Chapter 3: Dates, Time, and Timers

 }

 // modify month between 1 based ISO 8601 and zero based Date
 dtcomps[1]--;

 var convdt = new
Date(Date.UTC(dtcomps[0],dtcomps[1],dtcomps[2],dtcomps[3],dtcomps[4],dtcomps[5]));

 return convdt.toUTCString();
}

//--><!]]>
</script>
</head>
<body>
<form>
<p>Datestring in ISO 8601 format: <input type="text" id="datestring" /></p>
</form>
<div id="dateSubmit"><p>Convert Date</p></div>
<div id="result"></div>
</body>
</html>

Another test incorporated into Example 3-1 is whether a time is given. If there aren’t
enough array elements to cover a time, then the hours, minutes, and seconds are set to
zero when the UTC date is created.

There are other issues related to dates not covered in the application. For instance, if
the ISO 8601 formatted string isn’t in UTC time, converting it to UTC can require
additional code, both to parse the time zone and to adjust the date to incorporate the
time zone. I’ll leave that as an individual exercise, though.

Eventually, you won’t need this special processing, because ECMAScript 5 includes
new support for ISO 8601 dates. This means you’ll be able to create a new Date object
using an ISO 8601 formatted string. However, only a few browsers (Firefox 3.5 and
WebKit-based browsers) currently support the new ISO 8601 formatting, so you’ll still
need to provide the conversion functionality included in this section for the near future.

3.5 Creating a Specific Date
Problem
You want to create a Date object given a month, day, and year.

Solution
Construct a Date object, passing in the month, day, and year as parameters:

var month = 10; // Month 10, in zero based system, is November
var day = 18;

3.5 Creating a Specific Date | 47

var year = 1954;
var dt = new Date(year,month,day); // time is set to zero by default

Discussion
The month, day, and year are integer values passed into the Date constructor. Because
the time values were not given, they’re set to zero by default.

In the solution, a November date is wanted, which is typically written out as 11. How-
ever, months with the Date object are zero-based, which means that November would
be designated, numerically, as 10.

3.6 Scheduling a Future Date
Problem
You want to generate a future date.

Solution
Use a combination of the Date object’s get and set methods in order to create a future
date. In the following, a new date is created that’s 10 days in the future:

var futureDate = new Date();
futureDate.setDate(futureDate.getDate() + 10);

Discussion
You can use a combination of get and set methods to find either a future or past date.
Which methods you use depends on how you want to derive the new date. If you want
to add or subtract days, you’ll use getDate and setDate; for years, use getFullYear and
setFullYear; for hours, use getHours and setHours; and so on.

Here’s a list of the paired methods to use, and the incremental amounts:

• getDate and setDate to adjust the date by days

• getFullYear and setFullYear to adjust the date by years

• getHours and setHours to adjust the date and time by hours

• getSeconds and setSeconds to adjust the date and time by seconds

• getMilliseconds and setMilliseconds to adjust the date and time by milliseconds

• getMinutes and setMinutes to adjust the date and time by minutes

You can also use the UTC versions of the same methods.

To derive a date in the past, subtract the unit by the amount of the change:

var pastDate = new Date();
pastDate.setFullYears(pastDate.getFullYears() - 18);

48 | Chapter 3: Dates, Time, and Timers

3.7 Tracking Elapsed Time
Problem
You want to track the elapsed time between events.

Solution
Create a Date object when the first event occurs, a new Date object when the second
event occurs, and subtract the first from the second. The difference is in milliseconds;
to convert to seconds, divide by 1,000:

var firstDate;
window.onload=startTimer;

function startTimer(){
 firstDate = new Date();
 document.getElementById("date").onclick=doEvent;
}

function doEvent() {
 var secondDate = new Date();
 alert((secondDate - firstDate) / 1000);
}

Discussion
Some arithmetic operators can be used with Dates, but with interesting results. In the
example, one Date can be subtracted from another, and the difference between the two
is returned as milliseconds. However, if you “add” two dates together, the result is a
string with the second Date concatenated to the first:

Thu Oct 08 2009 20:20:34 GMT-0500 (CST)Thu Oct 08 2009 20:20:31 GMT-0500 (CST)

If you divide the Date objects, again the Dates are converted to their millisecond value,
and the result of dividing one by the other is returned. Multiplying two dates will return
a very large millisecond result.

Only the Date subtraction operator really makes sense, but it’s interest-
ing to see what happens with arithmetic operators and the Date object.

3.8 Creating a Timeout
Problem
You want to trigger a timeout based on an event.

3.8 Creating a Timeout | 49

Solution
Use the window.setTimeout method to create a one-time-only timer:

window.onload=function() {
 setTimeout("alert('timeout!')",3000);
}

Discussion
The setTimeout method takes two parameters: the expression to process, and the time
(in milliseconds) when the expression is evaluated. In the solution, the expression is
code, contained in a text string, that’s processed three seconds after the setTimeout
function is run.

The first parameter can also be the name of a function:

setTimeout(functionName, 2000);

In addition, you can create an expression that’s a combination of function and param-
eters by providing the optional parameters after the time:

setTimeout(functionName, 2000, param1, param2, ..., paramn);

You can cancel a timeout, using the clearTimeout method:

var timer1 = setTimeout(functionName, 2000);
...
window.clearTimeout(timer1);

There’s no absolute guarantee that the timer event fires when it is supposed to fire.
Timers run on the same execution thread as all other User Interface (UI) events, such
as mouse-clicks. All events are queued and blocked, including the timer event, until its
turn. So, if you have several events in the queue ahead of the timer, the actual time
could differ. Probably not enough to be noticeable to your application users, but a delay
can happen.

See Also
John Resig offers an excellent discussion on how timers work, and especially the issues
associated with event queues and single threads of execution, at http://ejohn.org/blog/
how-javascript-timers-work/.

3.9 Creating Recurring Timers
Problem
You need to run the same function several times at regular intervals.

50 | Chapter 3: Dates, Time, and Timers

http://ejohn.org/blog/how-javascript-timers-work/
http://ejohn.org/blog/how-javascript-timers-work/

Solution
Use the Window.setInterval method to create a recurring timer:

var x = 0;
setInterval(moveElement,1000);

function moveElement() {
 x+=10;
 var left = x + "px";
 document.getElementById("redbox").style.left=left;
}

Discussion
Dynamic animations in a web page, SVG, or Canvas, are dependent on the setTime
out and setInterval methods. In particular, any flashing, moving, or following type of
animation is dependent on a timer calling a method at specified intervals.

The setInterval method requires two parameters: the code or function to process, and
the delay between timer events. The first parameter can be a function name:

setInterval(functionName,3000);

The first parameter can also be a function call with parameters in a text string:

setInterval ("alert('hello')", 3000);

The second parameter is the time, in milliseconds, of the timer delay. Unlike setTime
out, discussed in Recipe 3.8, the setInterval timer will continue to cycle until the
JavaScript application (the web page) is unloaded, or until the clearInterval method
is called:

var intervalid = setInterval(functionName, 3000);
...
clearInterval(intervalid);

If the first parameter is a function name, you can pass parameters, optionally, following
the timer delay:

setInterval(functionName, 2000, param1, param2, ..., paramn);

Being able to pass parameters to the function is handy if you’re creating an animation
and generating the parameters dynamically. Unfortunately, passing parameters in this
way doesn’t work with IE8. However, you can instead use function closures with the
timer, as covered in Recipe 3.10.

3.9 Creating Recurring Timers | 51

3.10 Using Function Closures with Timers
Problem
You want to provide a function with a timer, but you want to add the function directly
into the timer method call.

Solution
Use an anonymous function as first parameter to the setInterval or setTimeout method
call:

var x = 10;
var intervalId=setInterval(function() {
 x+=5;
 var left = x + "px";
 document.getElementById("redbox").style.left=left;}, 100);

Discussion
Recipes 3.8 and 3.9 use a function variable as the first parameter to the timer methods.
However, you can also use an anonymous function, as demonstrated in the solution.
This approach is especially helpful, because rather than have to use a global value that’s
used in the timer function, you can use a variable local to the scope of the enclosing
function.

Example 3-2 demonstrates the use of an anonymous function within a setInterval
method call. The approach also demonstrates how the use of this function closure
allows access to the parent function’s local variables within the timer method. In the
example, clicking the red box starts the timer, and the box moves. Clicking the box
again clears the timer, and the box stops. The position of the box is tracked in the x
variable, which is within scope for the timer function, since it operates within the scope
of the parent function.

Example 3-2. Using an anonymous function within a setInterval timer parameter

<!DOCTYPE html>
<head>
<title>interval and anonymous function</title>
<style>
#redbox
{
 position: absolute;
 left: 100px;
 top: 100px;
 width: 200px; height: 200px;
 background-color: red;
}
</style>
<script>

52 | Chapter 3: Dates, Time, and Timers

var intervalId=null;

window.onload=function() {
 document.getElementById("redbox").onclick=stopStartElement;
}
function stopStartElement() {
 if (intervalId == null) {
 var x = 100;
 intervalId=setInterval(function() {
 x+=5;
 var left = x + "px";
 document.getElementById("redbox").style.left=left;}, 100);
 } else {
 clearInterval(intervalId);
 intervalId=null;
 }
}

</script>
</head>
<body>
<div id="redbox"></div>
</body>

See Also
See more on functions as parameters and anonymous functions in Chapter 6, especially
Recipe 6.5.

3.10 Using Function Closures with Timers | 53

CHAPTER 4

Working with Numbers and Math

4.0 Introduction
Numbers and numeric operations in JavaScript are managed by two different JavaScript
objects: Number and Math.

Like the String and RegExp objects discussed in earlier chapters, numbers can be both
a literal value and an object. No surprises there, but the Math object is different: it has
no constructor, and all properties and methods are accessed directly from the object.

The Number Object and Number Literal
Numbers in JavaScript are floating point, though there may not be a decimal compo-
nent present. If no decimal is present, they act as if they’re integers:

var someValue = 10; // treated as integer 10, in base 10

Numbers can be defined in the range of –253 to 253. Most numbers in JavaScript are
literal values, assigned as values to variables, and used in various computations:

var myNum = 3.18;
var newNum = myNum * someValue;

You can also construct a Number using a constructor method:

var newNum = new Number(23);

You can assign a literal number to a variable, but when you access a Number method on
the variable, a Number object is created to wrap the literal value, which is discarded when
the method is finished.

The Number object’s methods provide various display operations, such as providing an
exponential notation:

var tst = .0004532;
alert(tst.toExponential()); // outputs 4.532e-4

55

In addition, there are several static Number properties, which can only be accessed via
the Number object directly:

alert(Number.MAX_VALUE); // outputs 1.7976931348623157e+308

There’s a special Number static property, NaN, which is equivalent to the global NaN, and
stands for Not a Number. Anytime you try to use a value in a number operation that
can’t be parsed as a number, you’ll get a NaN error:

alert(parseInt("3.5")); // outputs 3
alert(parseInt("three point five")); // outputs NaN

The Math Object
Unlike the Number object, the Math object does not have a constructor. All of the object’s
functionality, its properties and methods, are static. If you try to instantiate a Math
object:

var newMath = new Math();

You’ll get an error. Rather than create a new Math instance, access properties and meth-
ods directly on the object instead:

var topValue = Math.max(firstValue, secondValue); // returns larger number

The Math object has a considerable number of properties and methods, including several
trigonometric methods. The precision of the methods is at the same level of precision
that we would find using a language like C.

Table 4-1 provides a listing of the Math properties, and Table 4-2 contains a listing of
the Math methods.

Table 4-1. Math object static properties

Property Purpose

E The number value for e, the base of natural logarithms

LN2 Natural logarithm of 2

LN10 Natural logarithm of 10

LOG2E Base 2 logarithm of e, and the reciprocal of LN2

LOG10E Base 10 logarithm of e, and the reciprocal of LN10

PI The number for π

SQRT1_2 Square root of 1/2, reciprocal of SQRT2

SQRT2 Square root of 2

56 | Chapter 4: Working with Numbers and Math

Table 4-2. Math object static methods

Method Purpose

abs (x) Returns absolute value of x; if x is NaN, returns NaN

acos (x) Returns arc cosine of x; if x is greater than 1 or less than 0, returns NaN

asin (x) Returns arc sine of x; if x is greater than 1 or less than –1, returns NaN

atan (x) Returns the arc tangent of x

atan2 (x, y) Returns the arc tangent of the quotient of x, y

ceil (x) Returns the smallest integer equal to or greater than x

cos (x) Returns the cosine of x

exp (x) Returns Ex where E is the base of natural logarithms

floor (x) Returns the largest integer equal to or less than x

log (x) Returns logarithm of x

max (x1, x2, ..., xn) Returns largest of given arguments

min (x1, x2, ..., xn) Returns smallest of given arguments

pow (x,y) Returns result of raising x to power of y

random () Returns random number greater than or equal to 0, and less than 1

round (x) Rounds number to closest integer

sin (x) Returns the sine of x

sqrt (x) Returns the square root of x

4.1 Keeping an Incremental Counter
Problem
You want to maintain an incremental counter in code.

Solution
Define a number variable, either locally or globally, or as part of an object’s properties,
and increment the variable’s value with each iteration of code:

var globalCounter = 0;
function nextTest() {
 globalCounter++;
 ...
}

4.1 Keeping an Incremental Counter | 57

Discussion
The simplest way to increase or decrease a number is using the increment (++) and
decrement (--) operators, respectively. They’re equivalent to:

numValue = numValue + 1; // equivalent to numValue++
numValue = numValue - 1; // equivalent to numValue--

Both operators can be used prefix or postfix, which means the operators can be placed
before or after the operand. How they’re positioned is significant. If the operator is
placed before the operand, the operand’s value is adjusted first, before the operand is
used:

var numValue = 1;
var numValue2 = ++numValue; // numValue and numValue2 are both 2

If the operator is postfix (placed after the operand), the operand is used first, and then
its value is adjusted:

var numValue = 1;
var numValue2 = numValue++; // numValue is 2 and numValue2 is 1

The point at which the counter is incremented depends on its use. If it’s needed in a
loop, the value is incremented in the loop:

var counter = 0;
while (counter <= 10) {
 ...
 counter++;
}

If the counter is needed more globally, it can be declared as a global variable, but use
with caution. A global variable is one that’s declared outside of a function, and isn’t
redeclared within a function. It can easily conflict with any other global variables that
might exist in the application or other libraries you use:

var counter = 0;
function someFunction() {
 counter++;
}

Another approach is to add the counter as property to an object, persisting as long as
the object, and accessible by all object methods.

See Also
Chapter 16 covers how to create JavaScript objects.

58 | Chapter 4: Working with Numbers and Math

4.2 Converting a Decimal to a Hexadecimal Value
Problem
You have a decimal value, and need to find its hexadecimal equivalent.

Solution
Use the Number object’s toString method:

var num = 255;
alert(num.toString(16)); // displays ff, which is hexadecimal equivalent for 255

Discussion
By default, numbers in JavaScript are base 10, or decimal. However, they can also be
created and used in hexadecimal and octal notation. Hexadecimal numbers begin with
0x (a zero followed by lowercase x), and octal numbers always begin with zero:

var octoNumber = 0255; // equivalent to 173 decimal
var hexaNumber = 0xad; // equivalent to 173 decimal

Other base numbers can be created using the Number object’s toString method, passing
in the base radix, in a range from 2 to 36:

var decNum = 55;
var octNum = decNum.toString(8); // value of 67 octal
var hexNum = decNum.toString(16); // value of 37 hexadecimal
var binNum = decNum.toString(2); // value of 110111 binary

To complete the octal and hexadecimal presentation, you’ll need to concatenate the
zero to the octal, and the 0x to the hexadecimal value.

Although decimals can be converted to any base number (between a range of 2 to 36),
only the octal, hexadecimal, and decimal numbers can be manipulated, directly, as
numbers.

See Also
The decimal to hexadecimal conversion is used in Recipe 4.4.

4.3 Creating a Random Number Generator
Problem
You need to generate a random number, between 0 and 255.

4.3 Creating a Random Number Generator | 59

Solution
Use a combination of JavaScript Math methods: random to generate a random value
between 0 and 1, which is then multiplied by 255, and floor to truncate the number.

var randomNumber = Math.floor(Math.random() * 255);

Discussion
The random method generates a random number between 0 and 1. To increase the range,
multiply the result by the upper end of the range of values you want. If you need a
random number with a higher lower end, such as a number between 5 and 10, multiply
the value from random by a number equal to the upper range, minus the lower range,
minus 1, and then add the lower range to the result:

var randomNumber = Math.floor(Math.random() * 6) + 5;

The floor method rounds down the floating-point value to the nearest integer.

4.4 Randomly Generating Colors
Problem
You need to randomly generate a web color.

Solution
Use the Math object to randomly generate each RGB (Red-Green-Blue) value:

function randomVal(val) {
 return Math.floor(Math.random() * val);
}

function randomColor() {
 return "rgb(" + randomVal(255) + "," + randomVal(255) + "," +
randomVal(255) + ")";
}

Discussion
Web color can be expressed either in hexadecimal notation, or as an RGB value. With
the RGB value, each color is represented as a number between 0 and 255. The example
demonstrates one technique to generate a color, using one function to randomly gen-
erate the number, and a second to return an RGB formatted string.

Older browsers may not support the RGB notation. To use a hexadecimal notation,
the randomColor function can be altered to:

function randomColor() {
 // get red
 var r = randomVal(255).toString(16);

60 | Chapter 4: Working with Numbers and Math

 if (r.length < 2) r= "0" + r;

 // get green
 var g = randomVal(255).toString(16);
 if (g.length < 2) g= "0" + g;

 // get blue
 var b = randomVal(255).toString(16);
 if (b.length < 2) b= "0" + b;

 return "#" + r + g + b;
}

The hexadecimal notation is used (#ffffff), and the generated decimal number is con-
verted to hexadecimal notation, using the Number object’s toString method. Since a
decimal value of something like zero converts to a single-digit character and the format
needs to be double-digit, the length is tested and modified accordingly.

All the target browsers support both the RGB and hexadecimal notation, except IE7,
which only supports hexadecimal.

See Also
See Recipe 4.1 about converting between decimal and hexadecimal notation, and Rec-
ipe 4.3 for how to randomly generate numbers.

4.5 Converting Strings in a Table to Numbers
Problem
You want to access values in an HTML table and convert to numbers for processing.

Solution
Access the numbers using the Document Object Model (DOM) API, and use the global
function parseInt to convert the strings to number values:

 var rows = document.getElementById("table1").children[0].rows;
var numArray = new Array();

for (var i = 0; i < rows.length; i++) {
 numArray[numArray.length] = parseInt(rows[i].cells[1].firstChild.data);
}

Discussion
The parseInt global function has two arguments: a required numeric string, and an
optional radix (base). If the radix is not provided, it’s assumed to be 10, for decimal.

4.5 Converting Strings in a Table to Numbers | 61

If the string provided doesn’t contain a number, NaN is returned. If the string contains
a partial number, the parser will convert the number up to the point where a nonnu-
meric value is reached, and return the result:

var numString = "133 hectares";
var numHectares = parseInt(numString); // returns 133

If the number is in floating-point format, parseInt stops when it reaches the decimal,
and returns just the integer part of the number. If the string could contain a floating-
point number and you want the result to be a floating-point number, use the parse
Float global function, instead:

var numString = "1.458 hectares";
var fltNum = parseFloat(numString); // returns 1.458

4.6 Summing All Numbers in a Table Column
Problem
You want to traverse all of the values in a table column, convert the values to numbers,
and then sum the values.

Solution
Traverse the table column containing numeric values, convert to numbers, and sum
the numbers:

var sum = 0;

 // use querySelector to find all second table cells
 var cells = document.querySelectorAll("td:nth-of-type(2)");

 for (var i = 0; i < cells.length; i++)
 sum+=parseFloat(cells[i].firstChild.data);

Discussion
Both global functions parseInt and parseFloat convert strings to numbers, but parse
Float is more adaptable when it comes to handling numbers in an HTML table. Unless
you’re absolutely certain all of the numbers will be integers, parseFloat can work with
both integers and floating-point numbers.

As you traverse the HTML table and convert the table entries to numbers, sum the
results. Once you have the sum, you can use it in a database update, print it to the page,
or pop up a message box, as the solution demonstrates.

You can also add a sum row to the HTML table. Example 4-1 demonstrates how to
convert and sum up numeric values in an HTML table, and then how to insert a table
row with this sum, at the end. The code uses document.querySelectorAll, which uses

62 | Chapter 4: Working with Numbers and Math

a CSS selector, td + td. This selector finds all table cells that are preceded by another
table cell.

Example 4-1. Converting table values to numbers and summing the results

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Accessing numbers in table</title>

<script type="text/javascript">
//<![CDATA[

window.onload=function() {

 var sum = 0;

 var dataTable = document.getElementById("table1");

 // use querySelector to find all second table cells
 var cells = document.querySelectorAll("td + td");

 for (var i = 0; i < cells.length; i++)
 sum+=parseFloat(cells[i].firstChild.data);

 // now add sum to end of table
 var newRow = document.createElement("tr");

 // first cell
 var firstCell = document.createElement("td");
 var firstCellText = document.createTextNode("Sum:");
 firstCell.appendChild(firstCellText);
 newRow.appendChild(firstCell);

 // second cell with sum
 var secondCell = document.createElement("td");
 var secondCellText = document.createTextNode(sum);
 secondCell.appendChild(secondCellText);
 newRow.appendChild(secondCell);

 // add row to table
 dataTable.appendChild(newRow);

}

//--><!]]>
</script>
</head>
<body>
<table id="table1">
 <tr>
 <td>Washington</td><td>145</td>
 </tr>
 <tr>
 <td>Oregon</td><td>233</td>

4.6 Summing All Numbers in a Table Column | 63

 </tr>
 <tr>
 <td>Missouri</td><td>833</td>
 </tr>
</table>
</body>
</html>

Being able to provide a sum or other operation on table data is helpful if you’re working
with dynamic updates via an Ajax operation, such as accessing rows of data from a
database. The Ajax operation may not be able to provide summary data, or you may
not want to provide summary data until a web page reader chooses to do so. The users
may want to manipulate the table results, and then push a button to perform the sum-
ming operation.

Table rows are simple to add, as long as you remember the steps:

1. Create a new table row using document.createElement("tr").

2. Create each table row cell using document.createElement("td").

3. Create each table row cell’s data using document.createTextNode(), passing in the
text of the node (including numbers, which are automatically converted to a string).

4. Append the text node to the table cell.

5. Append the table cell to the table row.

6. Append the table row to the table. Rinse, repeat.

If you perform this operation frequently, you’ll most likely want to create functions for
these operations, and package them into JavaScript libraries that you can reuse. Also,
many of the available JavaScript libraries can do much of this work for you.

See Also
See more on JavaScript libraries in Chapter 17. View more demonstrations of creating
web page components in Chapter 12. The document.querySelectorAll is one of the new
Selectors API methods, and won’t work with older browsers. It is not supported in IE7.
For new browsers, there may also be restrictions on its use. More examples and dis-
cussion of the Selectors API can be found in Recipe 11.4.

4.7 Converting Between Degrees and Radians
Problem
You have an angle in degrees. To use the value in the Math object’s trigonometric func-
tions, you need to convert the degrees to radians.

64 | Chapter 4: Working with Numbers and Math

Solution
To convert degrees to radians, multiply the value by (Math.PI / 180):

var radians = degrees * (Math.PI / 180);

To convert radians to degrees, multiply the value by (180 / Math.PI):

var degrees = radians * (180 / Math.PI);

Discussion
All Math trigonometric methods (sin, cos, tin, asin, acos, atan, and atan2), take values
in radians, and return radians as a result. Yet it’s not unusual for people to provide
values in degrees rather than radians, as degrees are the more familiar unit of measure.
The functionality provided in the solution provides the conversion between the two
units.

4.8 Find the Radius and Center of a Circle to Fit Within a Page
Element
Problem
Given the width and height of a page element, you need to find the radius of the largest
circle that fits within that page element, and its center point.

Solution
Find the smaller of the width and height; divide this by 2 to find the radius:

var circleRadius = Math.min(elementWidth, elementHeight) / 2;

Given the page element’s width and height, find the center by dividing both by 2:

var x = elementWidth / 2;
var y = elementHeight / 2;

Discussion
Working with graphics requires us to do things such as finding the center of an element,
or finding the radius of the largest circle that will fit into a rectangle (or largest rectangle
that can fit in a circle).

Example 4-2 demonstrates both of the solution calculations, modifying an SVG circle
contained within an XHTML document so that the circle fits within the div element
that surrounds it.

4.8 Find the Radius and Center of a Circle to Fit Within a Page Element | 65

Example 4-2. Fitting a SVG circle into a div element

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Using Math method to fit a circle</title>
<style type="text/css">
#elem
{
 width: 400px;
 height: 200px;
 border: 1px solid #000;
}
</style>
<script type="text/javascript">
//<![CDATA[

function compStyle(elemId,property) {
 var elem = document.getElementById(elemId);
 var style;
 if (window.getComputedStyle)
 style=window.getComputedStyle(elem,null).getPropertyValue(property);
 else if (elem.currentStyle)
 style=elem.currentStyle[property];
 return style;
}
window.onload=function() {
 var height = parseInt(compStyle("elem","height"));
 var width = parseInt(compStyle("elem","width"));

 var x = width / 2;
 var y = height / 2;

 var circleRadius = Math.min(width,height) / 2;

 var circ = document.getElementById("circ");
 circ.setAttribute("r",circleRadius);
 circ.setAttribute("cx",x);
 circ.setAttribute("cy",y);
}
//--><!]]>
</script>

</head>
<body>
<div id="elem">
 <svg xmlns="http://www.w3.org/2000/svg" width="600" height="600">
 <circle id="circ" width="10" height="10" r="10" fill="red" />
 </svg>

</div>
</body>

66 | Chapter 4: Working with Numbers and Math

Figure 4-1 shows the page once it’s loaded. There are techniques in SVG that can ac-
complish the same procedure using the SVG element’s viewPort setting, but even with
these, at some point in time you’ll need to polish off your basic geometry skills if you
want to work with graphics. However, as the example demonstrates, most of the math
you’ll need is relatively simple, and basic.

Figure 4-1. Page with SVG circle fit into rectangular div element

See Also
Finding a circle’s radius and the center point of an element is important when working
with both SVG and Canvas, covered in Chapter 15. The method used to find the com-
puted width and height of the div element can be found in Recipe 13.2. Recipe 12.15
covers the setAttribute method.

SVG is not supported in IE8 and earlier, but should be supported in IE9.

4.9 Calculating the Length of a Circular Arc
Problem
Given the radius of a circle, and the angle of an arc in degrees, find the length of the arc.

4.9 Calculating the Length of a Circular Arc | 67

Solution
Use Math.PI to convert degrees to radians, and use the result in a formula to find the
length of the arc:

// angle of arc is 120 degrees, radius of circle is 2
var radians = degrees * (Math.PI / 180);
var arclength = radians * radius; // value is 4.18879020478...

Discussion
The length of a circular arc is found by multiplying the circle’s radius times the angle
of the arc, in radians.

If the angle is given in degrees, you’ll need to convert the degree to radians first, before
multiplying the angle by the radius.

See Also
The Math trigonometric methods provide essential functionality for creating various
Canvas and SVG effects, discussed in Chapter 15. Recipe 4.7 covers how to convert
between degrees and radians.

68 | Chapter 4: Working with Numbers and Math

CHAPTER 5

Working with Arrays and Loops

5.0 Introduction
An array is an ordered collection of elements. In JavaScript, an array can be created
using formal object notation, or it can be initialized using literal notation, as demon-
strated in the following code:

var arrObject = new Array("val1", "val2"); // array as object
var arrLiteral = ["val1", "val2"]; // array literal

To the developer, there is no difference: you can invoke an Array method on both a
literal and an object. However, to the JavaScript engine, an array literal has to be
reinterpreted each time it’s accessed, especially when used in a function call. On the
positive side, though, array literals can replace the need for temporary variables, espe-
cially when sending values to a function.

A new Array object is created using the new operator, as follows:

var arrObject = new Array();

You can also create a new array that has some values:

var arrObject = new Array("val1","val2");

You can create an array literal by using square brackets to hold the array values. For
instance, you can define an array literal and assign it to a variable:

var arrLiteral = ["val1","val2","val3"];

You can also create, and use, a literal array in a function or method call:

someFunction("param1", ["val1","val2"]);

Note, though, that when you pass a variable containing an array literal to a function,
it is passed by reference—the same as passing a variable holding an Array object.
Changes to the variable in the function are reflected outside of the function:

function chgArray(arr) {
 arr[0] = "surprise!";
}

69

var newArray = new Array("val1", "val2");
var newLiteral = ["val1","val2"];

chgArray(newArray);
chgArray(newLiteral);

alert(newArray); // prints surprise!,val2
alert(newLiteral); // prints surprise!,val2

An array, whether literal or object, can hold values of different data types:

var arrObject = new Array("val1", 34, true); // string, number, boolean
var arrLiteral = [arrObject, "val2", 18, false); // object, string, number, boolean

You can print out an array; the JavaScript engine will automatically convert the array
into a string representation:

alert(arrLiteral); // prints out val1,34,true,val2,18,false

In this example, the JavaScript engine makes the array-to-string conversion for both
the array literal and the array object contained as an element within the array literal.

Array elements can be accessed directly, using square brackets containing their index
(position in the array). In addition, array elements can be set using the same index,
which automatically creates the array element if it doesn’t exist:

var arrObject = new Array();

arrObject[0] = "cat"; // array now has one element
alert(arrObject[0]); // prints cat

Arrays in JavaScript are zero-based, which means the first element index is zero, and
the last element is at the array length, minus 1:

var farmAnimals = new Array("cat","dog","horse","pig");
alert(farmAnimals[0]); // print cat
alert(farmAnimals[3]); // print pig

Not all array elements have to be defined when created. For instance, if you create an
array literal, you can use commas to delimit array elements that don’t yet exist:

var arrLiteral = ["val1",,"val3"];

In this code, the second array element is currently undefined. You can’t use the empty
comma, though, to add an undefined array element to the end of the array: JavaScript
will just ignore it.

To create an array of several undefined elements, you can provide an array length when
creating an array:

var largeCollection = new Array(100); // a new array with 100 undefined elements

One you’ve created an array, using Array object or literal notation, you can access the
array elements in a loop, or use any number of array methods.

70 | Chapter 5: Working with Arrays and Loops

5.1 Looping Through an Array
Problem
You want to easily access all elements of an array.

Solution
The most common approach to accessing an array is to use a for loop:

var mammals = new Array("cat","dog","human","whale","seal");
var animalString = "";
for (var i = 0; i < mammals. length; i++) {
 animalString += mammals[i] + " ";
}
alert(animalString);

Discussion
A for loop can be used to access every element of an array. The array begins at zero,
and the array property length is used to set the loop end.

Sometimes, though, you don’t want to access every element of the array. For instance,
you might want to traverse an array until you find either a specific element, or any
element that meets (or doesn’t meet) a certain criteria. In these cases, you’ll want to
use a while loop and test the array elements:

var numArray = new Array(1,4,66,123,240,444,555);
var i = 0;

while (numArray[i] < 100) {
 alert(numArray[i++]);
}

Notice that the index counter, i, is incremented as it’s used to access an array element.
The use of i++ means that the existing value of i is accessed first, and then the variable
is incremented.

5.2 Creating a Multidimensional Array
Problem
You want to create a multidimensional array (an array of arrays).

Solution
Create an array in which each element is also an array. For example, to create an array
with three elements, each of which is also an array of three elements containing, re-
spectively, string, number, and array literals, use the code snippet in Example 5-1.

5.2 Creating a Multidimensional Array | 71

Example 5-1. Creating a multidimensional array

// set array length
var arrayLength = 3;

// create array
var multiArray = new Array(arrayLength);
for (var i = 0; i < multiArray.length; i++) {
 multiArray[i] = new Array(arrayLength);
}

// add items to first array index
multiArray[0][0] = "apple";
multiArray[0][1] = "banana";
multiArray[0][2] = "cherry";

// second
multiArray[1][0] = 2;
multiArray[1][1] = 56;
multiArray[1][2] = 83;

// third
multiArray[2][0] = ['test','again'];
multiArray[2][1] = ['Java','script'];
multiArray[2][2] = ['read','books'];

alert(multiArray); // printed out in first index order
alert(multiArray[2]); // prints out subarray
alert(multiArray[2][2][0]); // individual item

Discussion
Multidimensional arrays in JavaScript are managed by creating a new array as an ele-
ment within an existing array. The new array can be created as an Array element, or as
an array literal.

In Example 5-1, an array, multiArray, is created as an Array object with three members.
Each of those three elements is also created as Array objects with three members. The
array data is then set, with the first array member containing string literals, the second
containing number literals, and the third array literals—themselves containing two
array members, each with a string literal.

To access the array elements, use the square bracket notation, with each set of brackets
used to address each level of the array. In the following code, the array contents are
printed out via an alert window, after being converted to a string first, if necessary:

alert(multiArray[2]); // prints out test,again,Java,script,read,books
alert(multiArray[2][2]); // prints out read,books
alert(multiArray[2][2][1]); // prints out books

Multidimensional arrays are typically used to hold the data from a table structure, but
how the structure is maintained is up to the developer. For instance, the developer can
support an array structure in which the outer index reflects the columns, and the inner

72 | Chapter 5: Working with Arrays and Loops

reflects the rows. As an example, Table 5-1 shows a simple five-column, three-row table
containing a set of numbers.

Table 5-1. Simple table with five columns and three rows and sample data

45.89 4 34 9998.99 56

3 23 99 43 2

1 1 0 43 67

To create this in JavaScript using a multidimensional array, use the following code:

var table = new Array(5);

table[0] = [45.89, 4, 34, 9998.99, 56]; // first row
table[1] = [3, 23, 99, 43, 2]; // second row
table[2] = [1, 1, 0, 43, 67]; // third row

Of course, this doesn’t take into account column and row headers. To add in the head-
ers, just treat them as array data, making sure to incorporate them into the proper place
in the array to reflect the table structure.

In a multideveloper environment, it’s essential that there is agreement
among the developers about whether table structure data is stored
column-centric or row-centric.

5.3 Creating a String from an Array
Problem
You want to create a single string from an array.

Solution
Use the Array object’s built-in join method to join the array elements into a string:

var fruitArray = ['apple','peach','lemon','lime'];
var resultString = fruitArray.join('-'); // apple-peach-lemon-lime

Discussion
The Array join method takes one optional parameter, a delimiter used to separate the
strings when joined—in this case, the dash (-). It returns a string with all of the array
elements concatenated. If the array contains anything other than strings, the values are
converted to a string equivalent:

var numberArray = [1,2,3,4,5]; // array literal containing number elements
var resultString = numberArray.join('+'); // returns string with 1+2+3+4+5

5.3 Creating a String from an Array | 73

If the delimiter parameter isn’t provided, a comma is inserted between array element
values by default:

var numberArray = [1,2,3,4,5];
var resultString = numberArray.join(); // returns string with 1,2,3,4,5

5.4 Sorting an Array
Problem
You want to sort an array.

Solution
Use the Array object’s sort method:

var fruitArray = ['strawberry','apple','orange','banana','lime'];
alert(fruitArray.sort()); // returns apple,banana,lime,orange,strawberry

Discussion
The Array object’s sort method sorts the array elements alphabetically if no optional
compare function parameter is provided. To facilitate the sort, all data types are con-
verted to their string equivalent before sorting:

var numberArray = [4,13,2,31,5];
alert(numberArray.sort()); // returns 13,2,31,4,5

Though the array members in this example are numbers, they’re sorted in lexicograph-
ical (dictionary) order, not numerically. To do an actual numeric sort, use a custom
sort function:

function compareNumbers(a,b) {
 return a - b;
}
var numArray = [13,2,31,4,5];
alert(numArray.sort(compareNumbers)); // prints 2,4,5,13,31

The function subtracts the second parameter value from the first, and if the first is less
than the second, a negative value is returned; otherwise, the value is positive. If the
return value is less than zero, the sort index for the second parameter is set higher than
the first parameter. If the value is greater than zero, the sort index for the first parameter
is set higher than the other. If the value is exactly zero, the sort index for the two is
unchanged.

If the array elements contain strings that could be converted to numbers, then the
compareNumbers sort function still works, as number conversion is automatic:

var numberArray=["34","4","5"];
alert(numberArray.sort(compareNumbers)); // prints 4,5,34

74 | Chapter 5: Working with Arrays and Loops

The sort method sorts the elements in an ascending order. If you want to do a reverse
sort, use the sort method to sort the elements, and then use the reverse method to
reverse the array member order:

var numberArray = [4,5,1,3,2];
numberArray.sort();
numberArray.reverse(); // array now has 5,4,3,2,1

5.5 Store and Access Values in Order
Problem
You want to store values in such a way that you can access the values in the order in
which they were stored.

Solution
To store and access values in the order in which they’re received, create a FIFO (first-
in, first-out) queue. Use the JavaScript Array object push method to add items to the
queue, and shift to retrieve:

// create new array
var queue = new Array();

// push on three entries
queue.push('first');
queue.push('second');
queue.push('third');

// shift two entries
alert(queue.shift()); // returns first
alert(queue.shift()); // returns second
alert(queue); // returns third

Discussion
A queue is an array of elements that are added one at a time, and retrieved in a first-in,
first-out order (FIFO). Think of a line at the bank: people go to the end when they arrive
at the bank, and tellers help those in the front of the line, who have been there the
longest.

You could emulate this behavior using counter variables to hold the index of the last
item added (the end), and the index of the last one retrieved (from the front), but luckily,
the JavaScript Array object provides methods that handle this information for us, and
also keep the array clean in the process.

The Array push method creates a new array element and adds it to the end of the array:

queue.push('first');

The array element count increments with each pushed element.

5.5 Store and Access Values in Order | 75

The Array shift method extracts the array element from the front of the array, remov-
ing it from the array, and returning the element:

var elem = queue.shift();

The array element count decreases by one with each shifted element, as shift also
modifies the array in addition to returning the item.

5.6 Store and Access Values in Reverse Order
Problem
You want to store values in such a way that you can access the values in reverse order:
access the most recently stored value first, then a LIFO (last-in, first-out) stack.

Solution
To access stored values in reverse order (last item added is accessed first), create a LIFO
(last-in, first-out) stack. Use the JavaScript Array object’s push method to add items to
the stack, and the pop method to retrieve:

// create new array
var queue = new Array();

// push on three entries
queue.push('first');
queue.push('second');
queue.push('third');

// pop two entries
alert(queue.pop()); // returns third
alert(queue.pop()); // returns second
alert(queue); // returns first

Discussion
A stack is an array of elements, with each new element added to the top of the stack,
and retrieved in a last-in, first-out (LIFO) order. Think of a stack of dishes: you add
plates to the top as they’re washed, and retrieve them from the top when needed. You
could use a variable holding an integer that tracks the end of the array after each addition
and retrieval, but JavaScript provides the functionality we need.

The Array push method creates a new array element and adds it to the end of the array:

queue.push('first');

The array element count increments with each pushed element.

The Array pop method extracts the array element from the end of the array, removing
it from the array, and returning the element:

var elem = queue.pop();

76 | Chapter 5: Working with Arrays and Loops

The array element count decreases by one with each popped element, as pop modifies
the array.

5.7 Create a New Array as a Subset of an Existing Array
Problem
You want to create a new array from a segment of an existing array. If the array elements
are objects, you want to keep both arrays in sync.

Solution
Use the Array object slice method to create a new array based on elements within a
given range:

var origArray = new Array(4);
origArray[0] = new Array("one","two");
origArray[1] = new Array("three","four");
origArray[2] = new Array("five","six");
origArray[3] = new Array("seven","eight");

// create new array using slice
var newArray = origArray.slice(1,3);

Discussion
The Array slice method is a simple way of building a new array from a consecutive
sequence of elements in another array. The parameters are the beginning and ending
index for the sequence of elements to copy. A negative value for either index indicates
that slice should work from the end of the array.

If the copied elements are literal values, such as strings, numbers, and Booleans, they’re
copied by value—changing the value in the old array has no impact on the same values
in the new array, and vice versa.

When objects are copied, though, they’re copied by reference, whether they’re copied
via slice or by direct variable assignment:

var first = new Array("one","two","three");
var second = first; // copied by reference
second[1] = "apple"; // first and second arrays now have "one","apple","three"

The code that follows demonstrates the object syncing when used with slice. A section
of one array is used to create a new array with slice. The elements in the first array are
Array objects. In the code, when the value of one of the objects in the first array is
changed, the change is reflected in the new array. Conversely, when a value is changed
in the new array, the change is reflected in the original array:

var origArray = new Array(4);
origArray[0] = new Array("one","two");

5.7 Create a New Array as a Subset of an Existing Array | 77

origArray[1] = new Array("three","four");
origArray[2] = new Array("five","six");
origArray[3] = new Array("seven","eight");

var newArray = origArray.slice(1,3);
alert(newArray); // prints out three,four,five,six

// modify original
origArray[1][0] = "octopus";

// print out new
alert(newArray); // prints out octopus,four,five,six

// modify new
newArray[1][1] = "kitten";

// print out old
alert(origArray); // prints out one,two,octopus,four,five,kitten,seven,eight

Another handy use for slice is to convert the function arguments property into a proper
array:

var args = Array.prototype.slice.call(arguments);

Using slice to create a subset of an array is a way of quickly copying a subset of an
array and, if the values are objects, ensure both arrays are in sync. Be aware, though,
that IE8 doesn’t support slice.

5.8 Searching Through an Array
Problem
You want to search an array for a specific value and get the array element index if found.

Solution
Use the new (ECMAScript 5) Array object methods indexOf and lastIndexOf:

var animals = new Array("dog","cat","seal","elephant","walrus","lion");
alert(animals.indexOf("elephant")); // prints 3

Discussion
Though support for both indexOf and lastIndexOf has existed in browsers for some
time, it’s only been formalized with the release of ECMAScript 5. Both methods take
a search value, which is then compared to every element in the array. If the value is
found, both return an index representing the array element. If the value is not found,
–1 is returned. The indexOf method returns the first one found, the lastIndexOf returns
the last one found:

var animals = new Array("dog","cat","seal","walrus","lion", "cat");

78 | Chapter 5: Working with Arrays and Loops

alert(animals.indexOf("cat")); // prints 1
alert(animals.lastIndexOf("cat")); // prints 5

Both methods can take a starting index, setting where the search is going to start:

var animals = new Array("dog","cat","seal","walrus","lion", "cat");

alert(animals.indexOf("cat",2)); // prints 5
alert(animals.lastIndexOf("cat",4)); // prints 1

Currently, all of the book’s target browsers support indexOf and lastIndexOf, except
for IE8.

See Also
As mentioned, not all browsers support indexof and lastIndexOf. A cross-browser
method to implement like functionality in these browsers is given in the Mozilla doc-
umentation, at https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global
_Objects/Array/indexOf. Since IE8 doesn’t support indexOf, here’s the Mozilla work-
around for the function:

if (!Array.prototype.indexOf)
{
 Array.prototype.indexOf = function(elt /*, from*/)
 {
 var len = this.length >>> 0;

 var from = Number(arguments[1]) || 0;
 from = (from < 0)
 ? Math.ceil(from)
 : Math.floor(from);
 if (from < 0)
 from += len;

 for (; from < len; from++)
 {
 if (from in this &&
 this[from] === elt)
 return from;
 }
 return -1;
 };
}

5.9 Flatten a Multidimensional Array
Problem
You want to flatten a multidimensional array into a single dimensional array.

5.9 Flatten a Multidimensional Array | 79

https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Array/indexOf
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Array/indexOf

Solution
Use the Array object concat method to merge the array dimensions into a single di-
mensional array:

var origArray = new Array();
origArray[0] = new Array("one","two");
origArray[1] = new Array("three","four");
origArray[2] = new Array("five","six");
origArray[3] = new Array("seven","eight");

// flatten array
var newArray = origArray[0].concat(origArray[1],origArray[2],origArray[3]);
alert(newArray[5]); // prints six

Discussion
The Array object concat method takes one or more arrays, and appends the array ele-
ments on to the end of the contents of the parent array on which the method was called.
The merged array is then returned as a new array.

One use for this type of functionality is to return a single dimensional array made up
of elements from a multidimensional array, as shown in the solution.

5.10 Search and Remove or Replace Array Elements
Problem
You want to find occurrences of a given value in an array, and either remove the element
or replace with another value.

Solution
Use the Array methods indexOf and splice to find and remove/replace array elements:

var animals = new Array("dog","cat","seal","walrus","lion", "cat");

// remove the element from array
animals.splice(animals.indexOf("walrus"),1); // dog,cat,seal,lion,cat

// splice in new element
animals.splice(animals.lastIndexOf("cat"),1,"monkey"); // dog,cat,seal,lion,monkey

Discussion
The splice method takes three parameters. The first parameter is required; it’s the
index where the splicing is to take place. The other two parameters are optional: the
number of elements to remove, and a substitute. If the index is negative, the elements
will be spliced from the end, not from the beginning of the array:

80 | Chapter 5: Working with Arrays and Loops

var animals = new Array("cat","walrus","lion", "cat");

// splice in new element
animals.splice(-1,1,"monkey"); // cat,walrus,lion,monkey

If the number of elements to splice is not provided, all elements from the index to the
end will be removed:

var animals = new Array("cat","walrus","lion", "cat");

// remove all elements after second
animals.splice(2); // cat,walrus

The last parameter, the replaced value, can be a set of replacement values, separated
by commas:

var animals = new Array("cat","walrus","lion", "cat");

// replace second element with two
animals.splice(2,1,"zebra","elephant"); // cat,walrus,zebra,elephant,cat

Removing or replacing one element is handy, but being able to remove or replace all
instances of a particular element is even handier. In Example 5-2, an array is created
with several elements, including multiple instances of a specific value. The splice
method is then used in a loop to replace all of the elements with this one value with
elements with a new value. The splice method is used again, in a separate loop, to
remove the newly spliced elements.

Example 5-2. Using looping and splice to replace and remove elements

<!DOCTYPE html>
<head>
<title>Looping and Splicing</title>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" >
<script>

var charSets = new Array("ab","bb","cd","ab","cc","ab","dd","ab");

// replace element
while (charSets.indexOf("ab") != -1) {
 charSets.splice(charSets.indexOf("ab"),1,"**");
}
alert(charSets); // **,bb,cd,**,cc,dd,**

// delete new element
while(charSets.indexOf("**") != -1) {
 charSets.splice(charSets.indexOf("**"),1);
}
alert(charSets); // bb,cd,cc,dd

</script>

</head>
<body>
</body>

5.10 Search and Remove or Replace Array Elements | 81

The example works with all of this book’s target browsers except for IE8, which doesn’t
currently support either indexOf or splice.

See Also
See Recipe 5.8 for a workaround for indexOf.

5.11 Applying a Function Against Each Array Element
Problem
You want to use a function to check an array value, and replace it if it matches a given
criterion.

Solution
Use the new ECMAScript 5 Array object forEach to attach a callback function to each
array element:

var charSets = new Array("ab","bb","cd","ab","cc","ab","dd","ab");

function replaceElement(element,index,array) {
 if (element == "ab") array[index] = "**";

}

// apply function to each array element
charSets.forEach(replaceElement);
alert(charSets); // prints **,bb,cd,**,cc,**,dd,**

Discussion
In the last section, we used a while loop to traverse an array to find and replace a value,
but how much more helpful is it to use the forEach method?

The forEach method takes one parameter, the function. The function itself has three
parameters: the array element, the index of the element, and the array. All three were
used in the function, replaceElement.

First, the element’s value is tested to see if it matches a given string, ab. If matched, the
array element’s index is used to modify the array element’s value with the replacement
string, **.

Don’t return a value from the function passed to the forEach method,
as the value will be discarded.

Chrome, Firefox, Opera, and Safari support forEach, but IE8 does not.

82 | Chapter 5: Working with Arrays and Loops

See Also
The concept of callback functions is covered in more detail in Chapter 6.

Most modern browsers support forEach. However, for those that don’t, you can em-
ulate the forEach behavior using the Array.prototype property. Mozilla provides a de-
scription about how to emulate forEach at https://developer.mozilla.org/en/Core_Java
Script_1.5_Reference/Global_Objects/Array/forEach. For completeness, I’ve duplica-
ted the code below. To use, add the code into a library function and make sure it’s
processed before the forEach method is needed:

if (!Array.prototype.forEach)
{
 Array.prototype.forEach = function(fun /*, thisp*/)
 {
 var len = this.length >>> 0;
 if (typeof fun != "function")
 throw new TypeError();

 var thisp = arguments[1];
 for (var i = 0; i < len; i++)
 {
 if (i in this)
 fun.call(thisp, this[i], i, this);
 }
 };
}

5.12 Applying a Function to Every Element in an Array and
Returning a New Array
Problem
You want to convert an array of decimal numbers into a new array with their hexa-
decimal equivalents.

Solution
Use the Array object map method to create a new array consisting of elements from the
old array that have been modified via a callback function passed to the map method:

// function to convert decimal to hexadecimal
function convertToHex(element,index,array) {
 return element.toString(16);
}

var decArray = new Array(23, 255, 122, 5, 16, 99);

var hexArray = decArray.map(convertToHex);
alert(hexArray); // 17,ff,a,5,10,63

5.12 Applying a Function to Every Element in an Array and Returning a New Array | 83

https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Array/forEach

Discussion
Like the forEach method in Recipe 5.11, the ECMAScript 5 map method allows us to
attach a callback function that is applied to each array element. Unlike forEach, though,
the map method results in a new array rather than modifying the original array. There-
fore, you won’t return a value when using forEach, but you must return a value when
using map.

The function that’s passed to the map method has three parameters: the current array
element, the index for the array element, and the array. The forEach and map methods
are currently not supported by IE8.

See Also
Most modern browsers support the Array object map method, but to ensure that the
functionality is present, you can use the Array.prototype property to emulate the meth-
od’s behavior. See how at the Mozilla website.

For comprehensiveness, I’ve included the code for the workaround below. To use,
include the code in a library function that is processed before the map method is needed:

if (!Array.prototype.map)
{
 Array.prototype.map = function(fun /*, thisp*/)
 {
 var len = this.length >>> 0;
 if (typeof fun != "function")
 throw new TypeError();

 var res = new Array(len);
 var thisp = arguments[1];
 for (var i = 0; i < len; i++)
 {
 if (i in this)
 res[i] = fun.call(thisp, this[i], i, this);
 }

 return res;
 };
}

5.13 Creating a Filtered Array
Problem
You want to filter element values in an array and assign the results to a new array.

Solution
Use the Array object filter method:

84 | Chapter 5: Working with Arrays and Loops

https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Array/map

function removeChars(element,index,array) {
 return (element !== "**");
}

var charSet = new Array("**","bb","cd","**","cc","**","dd","**");

var newArray = charSet.filter(removeChars);
alert(newArray); // bb,cd,cc,dd

Discussion
The filter method is another ECMAScript 5 addition, like forEach and map, covered
in Recipes 5.11 and 5.12, respectively. Like them, the method is a way of applying a
callback function to every array element.

The function passed as parameter to the filter method returns a Boolean value, true
or false, based on some test against the array elements. This returned value determines
if the array element is added to a new array: it is added if the function returns true;
otherwise, it is not added. In the solution, the character string “**” is filtered from the
original array when the new array is created.

The function has three parameters: the array element, the index for the element, and
the array, itself. The filter method is not supported by IE8.

See Also
Support for filter is fairly broad, but to ensure access to the functionality, there is a
way to emulate the filter method using Array.prototype. Mozilla details the approach
at https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Ar
ray/filter, but I’ve copied the technique below. To use, include the function in your
code, and run the function before you need to access the filter method:

if (!Array.prototype.filter)
{
 Array.prototype.filter = function(fun /*, thisp*/)
 {
 var len = this.length >>> 0;
 if (typeof fun != "function")
 throw new TypeError();

 var res = new Array();
 var thisp = arguments[1];
 for (var i = 0; i < len; i++)
 {
 if (i in this)
 {
 var val = this[i]; // in case fun mutates this
 if (fun.call(thisp, val, i, this))
 res.push(val);
 }
 }

5.13 Creating a Filtered Array | 85

https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Array/filter

 return res;
 };
}

5.14 Validating Array Contents
Problem
You want to ensure that an array meets certain criteria.

Solution
Use the Array object’s every method to check that every element passes a given criteria.
For instance, the following code checks to ensure that every element in the array is an
alphanumeric character:

var elemSet = new Array("**",123,"aaa","abc","-",46,"AAA");

// testing function
function textValue (element,index,array) {
 var textExp = /^[a-zA-Z]+$/;
 return textExp.test(element);
}

// run test
alert(elemSet.every(textValue)); // false

Or use the Array object’s some method to ensure that at least some of the elements pass
the criteria. As an example, the following code checks to ensure that at least some of
the array elements are alphanumeric strings:

var elemSet = new Array("**",123,"aaa","abc","-",46,"AAA");

// testing function
function textValue (element,index,array) {
 var textExp = /^[a-zA-Z]+$/;
 return textExp.test(element);
}

// run test
alert(elemSet.some(textValue)); // true

Discussion
The every and some Array object methods are the last of the ECMAScript 5 Array
methods I’ll be covering in this book. Unlike the Array callback function methods I
covered in previous recipes in this chapter, every and some functions do not work against
all array elements; they only process as many array elements as necessary to fulfill their
functionality.

86 | Chapter 5: Working with Arrays and Loops

The solution demonstrates that the same callback function can be used for both the
every and the some Array object methods. The difference is that when using the every
method, as soon as the function returns a false value, the processing is finished, and
the method returns false. The some method, though, will continue to test against every
array element until the callback function returns true. At that time, no other elements
are validated, and the method returns true. However, if the callback function tests
against all elements, and doesn’t return true at any point, the some method returns false.

Which method to use depends on your needs. If all array elements must meet certain
criteria, then use every; otherwise, use some.

The callback function takes three parameters: the element, the index for the element,
and the array. Neither the some or every method are supported by IE8, but they are
supported by the other target browsers for this book.

See Also
Most modern browsers support every and some, but for those browsers that don’t (such
as most versions of Internet Explorer), you can emulate the behavior using the
Array.prototype. Mozilla covers how to do this at https://developer.mozilla.org/en/Core
_JavaScript_1.5_Reference/Global_Objects/Array/some and https://developer.mozilla
.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Array/every.

For comprehensiveness, I’ve also included the functionality below. To use, ensure that
the script provided is processed before the methods are needed.

Here’s how to emulate some:

if (!Array.prototype.some)
{
 Array.prototype.some = function(fun /*, thisp*/)
 {
 var i = 0,
 len = this.length >>> 0;

 if (typeof fun != "function")
 throw new TypeError();

 var thisp = arguments[1];
 for (; i < len; i++)
 {
 if (i in this &&
 fun.call(thisp, this[i], i, this))
 return true;
 }

 return false;
 };
}

Here’s how to emulate every:

5.14 Validating Array Contents | 87

https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Array/some
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Array/some
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Array/every
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Array/every

if (!Array.prototype.every)
{
 Array.prototype.every = function(fun /*, thisp*/)
 {
 var len = this.length >>> 0;
 if (typeof fun != "function")
 throw new TypeError();

 var thisp = arguments[1];
 for (var i = 0; i < len; i++)
 {
 if (i in this &&
 !fun.call(thisp, this[i], i, this))
 return false;
 }

 return true;
 };
}

5.15 Using an Associative Array to Store Form Element Names
and Values
Problem
You want to store form element names and values, for later validation purposes.

Solution
Use an associative array to store the elements, using the element identifiers as array
index:

var elemArray = new Object(); // notice Object, no Array
var elem = document.forms[0].elements[0];
elemArray[elem.id] = elem.value;

Iterate over the array using the for...in statement:

for (var key in elemArray) {
 str+=key + "," + elemArray[key] + " ";
}

Discussion
Most JavaScript arrays use a numeric index, such as the following:

arr[0] = value;

88 | Chapter 5: Working with Arrays and Loops

However, you can create an associative array in JavaScript, where the array index can
be a string representing a keyword, mapping that string to a given value. In the solution,
the array index is the identifier given the array element, and the actual array value is
the form element value.

You can create an associative array, but you’re not using the Array object to do so. Using
the Array object is risky and actively discouraged—especially if you’re using one of the
built-in libraries that use the prototype attribute for extending objects, as people dis-
covered when the popular Prototype.js library was first released several years ago.

The earlier Prototype.js library made an assumption that most array use in JavaScript
is numeric index–based, like most of the earlier examples in this chapter. The library
extended the Array object functionality via Array.prototype, based on this assumption.
But extending Array objects in this way breaks the for...in loop functionality used to
traverse an associative array created from an Array object.

It’s not that Prototype.js was “breaking” JavaScript. The for...in loop was intended
for one purpose: iterating over an object’s properties, such as being able to loop through
the String object’s properties, or your own custom object properties.

When we use an Array object to create an associative array, what we’re really doing is
adding new properties to the array object, rather than adding new array elements. You
could actually create an associative array with a RegExp or String, as well as an Array.
The reason is that in JavaScript objects are associative arrays. When you’re adding a
new array, element:

obj[propName] = "somevalue";

what you’re really doing is adding a new object property:

obj.propName = "somevalue";

To further demonstrate how different the associative array is from a numeric-based
array, when you use an Array to create an associative array, you can’t access the array
“elements” by index, and the length property returns zero.

Instead of using an Array object to create the associative array, use the JavaScript
Object directly. You get the exact same functionality, but avoid the clashes with libraries
that extend the base Array object using prototype.

Example 5-3 shows a web page. Here, when the form is submitted, all of the form
elements of type text are accessed and stored in an associative array. The element IDs
are used as the array keyword, and the values assigned to the array elements. Once
collected, the associative array is passed to another function that could be used to
validate the values, but in this case just creates a string of keyword/value pairs, which
is then displayed.

5.15 Using an Associative Array to Store Form Element Names and Values | 89

Example 5-3. Demonstrating associative array with form elements

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Associative Array</title>
<script type="text/javascript">
//<![CDATA[

// get the form element names and values
function getVals() {
 var elems = document.getElementById("picker").elements;
 var elemArray = new Object();
 for (var i = 0; i < elems.length; i++) {
 if (elems[i].type == "text")
 elemArray[elems[i].id] = elems[i].value;
 }
 checkVals(elemArray);
 return false;
}

// check values
function checkVals(elemArray) {

 var str = "";
 for (var key in elemArray) {
 str+=key + "," + elemArray[key] + " ";
 }

 document.getElementById("result").innerHTML = str;
}

//--><!]]>
</script>
</head>
<body>
<form id="picker" onsubmit="return getVals()">
<label>Value 1:</label> <input type="text" id="first" />

<label>Value 2:</label> <input type="text" id="second" />

<label>Value 3:</label> <input type="text" id="third" />

<label>Value 4:</label> <input type="text" id="four" />

<input type="submit" value="Validate" />
</form>
<div id="result"></div>
</body>
</html>

In the example, notice that the array index is formed by the form element’s id. When
the array is traversed, the for loop syntax used is:

for (keyword in array)

90 | Chapter 5: Working with Arrays and Loops

This syntax accesses the array index, which is then assigned to the keyword variable
that can be used to access the array value:

for (keyword in array)
 var a = array[keyword];

Figure 5-1 shows the example after values are typed into the form fields and the form
is submitted.

Figure 5-1. Demonstration of associative array and traversing form elements

This type of keyword/value pairing is commonly referred to as a hash map or hash
table, though the JavaScript functionality isn’t a true hash map functionality. The rea-
son why it isn’t a true hash map is that it doesn’t account for the fact that the same
keyword could be used with multiple values, and the JavaScript version only accepts
strings as keywords.

See Also
See Chapter 16 for more on the object nature of JavaScript, and Recipe 16.3 for more
information about extending the built-in objects, such as Array, using the prototype
property. For more on the risks associated with associative arrays in JavaScript, read
“JavaScript ‘Associative Arrays’ Considered Harmful”, by Andrew Dupont.

5.15 Using an Associative Array to Store Form Element Names and Values | 91

http://andrewdupont.net/2006/05/18/javascript-associative-arrays-considered-harmful/

CHAPTER 6

Building Reusability with JavaScript
Functions

6.0 Introduction
JavaScript functions provide a way to encapsulate a block of code in order to reuse the
code several times. They’re typically created using the function statement and syntax
similar to the following:

function functionname(arg1, arg2, ..., argn) {
 function body
}

JavaScript functions have Function objects, which can be constructed the same as a
String or Number, using the new operator:

var fn = new Function (arg1, arg2, ..., argn, functionbody);

However, using this syntax is not as efficient as using the function statement, because
using a function constructor requires that the function be parsed each time it’s called.
Functions defined with the function statement are parsed once, when the code is
loaded.

There are three basic kinds of functions:

Declarative function
A declarative function is a statement triggered by the use of the function keyword,
and parsed when the JavaScript application is first loaded.

Anonymous function or function constructor
An anonymous function is constructed using the new operator and referencing the
Function object. It’s anonymous because it isn’t given a name, and access to the
function occurs through a variable or another object property. It’s parsed each time
it’s accessed.

93

Function literal or function expression
As with other JavaScript objects, functions can be both object and literal. A literal
function is a function expression, including parameter and body, which is used in
place—such as in an argument to another function. Like a declarative function,
it’s also parsed only once, when the JavaScript application is loaded. Like the
function created as an object, it can also be anonymous.

6.1 Creating a Block of Reusable Code
Problem
You want to create a block of code that you can use several times.

Solution
Create a simple, named, parameter-less function using the function statement:

function simpleFunction() {
 alert("Hello, function!");
};

simpleFunction();

Discussion
A function created using the function keyword and given a name is known as both a
declarative function and a static function. The basic structure is:

function functionName() {
 // JavaScript statements
}

This type of function is parsed when the page containing the JavaScript application is
loaded, and the parsed results are used whenever the function name is referenced. It’s
an efficient way of reusing the same code.

Any name that would be valid for a variable would work for a function. Variable names
can be any combination of characters, numbers, and underscores, as long as the variable
name starts with a character or underscore and case-sensitivity is preserved.

However, functions typically perform some action, and best practices suggest that the
function name should be descriptive. For instance, a function that sums the numbers
in an HTML table might be named sumTableValues.

94 | Chapter 6: Building Reusability with JavaScript Functions

6.2 Passing Single Data Values to and from a Function
Problem
You need to pass data values into a named function and get a result back.

Solution
Provide arguments for the incoming data, and return the result:

function makeHello(strName) {
 return ("Hello " + strName);
}

window.onload=function() {
 var name = prompt("What's your name?","");
 var greeting = makeHello(name);
 alert(greeting);
}

Discussion
Function arguments are a way to pass data to a function. The arguments are separated
by commas and included in the parentheses following the function name:

var firstName = "Shelley":
var lastName = "Powers";

makeHello(firstName, lastName);

The function then processes the arguments, as needed:

function makeHello(firstName, lastName) {
 alert("Hello " + firstName + " " + lastName);
}

Data is returned from the function to the calling program using the return statement:

function makeHello(firstName, lastName) {
 return "Hello " + firstName + " " + lastName;
}

You can pass several arguments to the function, but only one return value. If you want
to return more than one value, you can pass more complex objects, such as an array,
to and from a function.

Unless you’re sure about the type of data coming from the user, you’ll want to also test
the data first. For instance, if you want to ensure that a value passed to the function is
a number, you could do the following:

function someFunc(num) {
 if (typeof num == "number") {
 ...
 }
}

6.2 Passing Single Data Values to and from a Function | 95

You also don’t have to provide a one-to-one mapping between the value passed to the
object, and the number of function parameters. Every function has an arguments object
which contains all of the arguments passed to the function. It’s not a true function, but
you can use array index notation to access the argument, and it does provide a length
property for the number of arguments:

function sumNums() {
 var sum = 0;
 for (var i = 0; i < arguments.length; i++) {
 var num = parseFloat(arguments[i]);
 if (!isNaN(num)) {
 sum+=num;
 }
 }
 return sum;
}
...
var sum = sumNums(4.55, 3.0,1, "apple", 56.33);

See Also
Recipe 6.3 demonstrates passing more complex objects as arguments.

6.3 Passing Complex Data Objects to a Function
Problem
You need to pass more complex data to a function.

Solution
You can use objects, such as arrays, as function arguments:

function makeHello(name) {
 name[name.length] = "Hello " + name[0] + " " + name[1];
}
var name = new Array('Ima','Reader');
makeHello(name);
alert(name[2]); // displays "Hello Ima Reader"

Discussion
Function arguments in JavaScript can be scalar values, such as a string or number, or
complex objects, such as arrays. Arrays are a simple way to pass many values to a
function without having to create separate parameters for each. It’s also a way to pass
an unknown number of values to a function, such as an array of numbers to be summed:

function addNumbers(nums) {
 var total = 0;
 for (var i = 0; i < nums.length; i++) {
 total+=nums[i];

96 | Chapter 6: Building Reusability with JavaScript Functions

 }
 return total;
}

A complex object is treated differently than a scalar argument in a function. In the
solution, an array is passed to the makeHello function, but isn’t returned from the func-
tion. However, the generated value added to the array in the function is still accessible
to the calling program, because objects are passed into functions by reference.

Scalar arguments are passed by value, which means that a copy of the argument is made
for processing in the function and changes to the argument in the function won’t be
reflected back to the calling program. Objects, though, are passed by reference: any
changes to them in the function are reflected in the calling program.

Example 6-1 demonstrates the differences between scalar and complex objects when
used as function arguments. The function takes two parameters, a string literal and an
array. Both are modified in the function, and the contents of both are printed after the
function returns control to the calling program.

Example 6-1. Functional differences between scalar and array arguments

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Function test</title>
<script>
//<![CDATA[

window.onload=function() {
 var items = new Array('apple','orange','cherry','lime');
 var sep = '*';
 concatenateString(items,sep);

 alert(items);
 alert(sep);
}

function concatenateString(strings, separator) {
 var result="";
 for (var i = 0; i < strings.length; i++) {
 result+=strings[i] + separator;
 }

 // assign result to separator
 separator = result;

 // and array
 strings[strings.length]=result;
}

//--><!]]>
</script>
</head>

6.3 Passing Complex Data Objects to a Function | 97

<body>
</body>
</html>

The array reflects the change that occurred in the function:

apple,orange,cherry,lime,apple*orange*cherry*lime*

While the string argument does not reflect the change, and consists only of the asterisk
separator string (*).

6.4 Creating a Dynamic Runtime Function
Problem
You need to create a function, but you won’t know its structure until runtime.

Solution
Use an anonymous function, created using the Function object constructor:

// two parameters and one function body string
var functionName = new Function (x, y, functionBody);
functionName(varA, varB); // two parameters are processed by function

Discussion
Functions created using the new Function object constructor are called anonymous
functions because they’re not given a function name when they’re created. Instead,
they’re assigned to a variable. You then use the variable as you would a function call.

Anonymous functions are parsed at runtime, which makes them inefficient for general
purposes. However, they allow us to define both parameters and function body at
runtime, which is handy if you’re not sure what the function body is going to be until
runtime.

To demonstrate an anonymous function, I’m going to borrow an example from another
of my books, Learning JavaScript (O’Reilly), replicated in Example 6-2. This JavaScript
application prompts the web page reader to provide a function that takes two param-
eters, as well as the value of the parameters. The application then uses these values to
create the function and invoke it.

Example 6-2. Using an anonymous function

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Anonymous Function</title>
<script>
//<![CDATA[

98 | Chapter 6: Building Reusability with JavaScript Functions

http://oreilly.com/catalog/9780596521882/

window.onload=function() {

 var func = prompt("Enter function body:","");
 var x = prompt("Enter value for x:","");
 var y = prompt("Enter value for y:","");

 var newFun = new Function("x","y",func);
 var result = newFun(x,y);

}

//--><!]]>
</script>
</head>
<body>
</body>
</html>

When prompted for the function body, use something simple such as this (shown in
Figure 6-1):

alert(x + " " + y)

If you pass in Hello and World for the next two prompts, the result is an alert message
with “Hello World”.

Figure 6-1. Entering function body for anonymous function

The function return value is assigned a variable, just in case the dynamic function body
returns a value. If no value is returned, then the returned value is undefined.

Of course, using an anonymous function like this isn’t the safest thing to do, because
you can’t control what the person enters as function body. And it’s not particularly
useful either.

6.4 Creating a Dynamic Runtime Function | 99

Anonymous functions can be useful when passing functions as arguments, or assigning
them to object properties. However, in most of these cases a literal function is preferred
over a function object, because function literals are parsed once, when the application
is loaded.

See Also
Literal functions are covered in Recipe 6.5.

6.5 Passing a Function As an Argument to Another Function
Problem
You want to pass a function as an argument to another function.

Solution
For the following function:

function otherFunction(x,y,z) {
 x(y,z);
}

use a literal function:

var param = function(arg1, arg2) { alert(arg1 + " " + arg2); };
otherFunction(param, "Hello", "World");

or a function expression as a function argument:

otherFunction(function(arg1,arg2) { alert(arg1 + ' ' + arg2); }, "Hello","World");

Discussion
The function keyword is an operator as well as a statement, and can be used to create
a function as an expression. Functions created this way are called function expres-
sions, function literals, and anonymous functions, though “anonymous functions” is an
overloaded term since it applies to functions as objects, as well as functions as
expressions.

A function name can be provided with literal functions, but it’s only accessible within
the function:

var param = function inner() { return typeof inner; }
alert(param()); // prints out "function"

This functionality may not seem useful, but it’s essential if you want to implement
recursion.

100 | Chapter 6: Building Reusability with JavaScript Functions

You can pass a function as an argument to another function as a named variable, or
even directly within the argument list, as shown in the solution. Unlike functions
constructed as objects, function literals are parsed when the page is loaded, rather than
each time they’re accessed.

See Also
See Recipe 6.6 for a demonstration of using a named function literal in recursion.

6.6 Implementing a Recursive Algorithm
Problem
You want to implement a function that will recursively traverse an array and return a
reversed array string.

Solution
Use a function literal recursively until the end goal is met:

 var reverseArray = function(x,indx,str) {
 return indx == 0 ? str : reverseArray(x,--indx,(str+= " " + x[indx]));;
}

 var arr = new Array('apple','orange','peach','lime');
 var str = reverseArray(arr,arr.length,"");
 alert(str);

 var arr2 = ['car','boat','sun','computer'];
 str = reverseArray(arr2,arr2.length,"");
 alert(str);

Discussion
Before looking at the solution, I want to cover the concept of recursion first, and the
look at functional recursion.

Recursion is a well-known concept in the field of mathematics, as well as computer
science. An example of recursion in mathematics is the Fibonacci Sequence:

fn = fn-1 + fn-2, for n= 2,3,4,...,n and f0 = 0 and f1 = 1

A Fibonacci number is the sum of the two previous Fibonacci numbers.

Another example of mathematical recursion is a factorial, usually denoted with an
exclamation point (4!). A factorial is the product of all integers from 1 to a given number
n. If n is 4, then the factorial (4!) would be:

24 = 1 × 2 × 3 × 4

6.6 Implementing a Recursive Algorithm | 101

These recursions can be coded in JavaScript using functional recursion. A common
example of JavaScript recursion is the solution for a Fibonacci:

var fibonacci = function (n) {
 return n < 2 ? n : fibonacci(n - 1) + fibonacci(n - 2);
}

or a factorial:

function Factorial(n) {
 return n == 1 ? 1 : n * Factorial(n -1);
}
var val = Factorial(4);

In the Fibonacci example, n is tested to see if it is less than 2. If it is, the value of n (2)
is returned; otherwise the Fibonacci function is called again with (n – 1) and with (n –
2), and the sum of both is returned.

A little convoluted? The second example with the Factorial might be clearer. In this
example, when the function is first called, the value passed as argument is compared
to the number 1. If n is less than or equal to 1, the function terminates, returning 1.

However, if n is greater than 1, what’s returned is the value of n times a call to the
Factorial function again, this time passing in a value of n – 1. The value of n, then,
decreases with each iteration of the function, until the terminating condition (or base)
is reached.

What happens is that the interim values of the function call are pushed onto a stack in
memory and kept until the termination condition is met. Then the values are popped
from memory and returned, in a state similar to the following:

return 1; // 0!

return 1; // 1!

return 1 * 2; // 2!

return 1 * 2 * 3; // 3!

return 1 * 2 * 3 * 4; // 4!

In the solution, we reverse the array elements by using a recursive function literal.
Instead of beginning at index zero, we begin the array from the end length, and decre-
ment this value with each iteration. When the value is zero, we return the string.

If we want the reverse, to concatenate the array elements, in order, to a string, we modify
the function:

 var orderArray = function(x,indx,str) {
 return indx == x.length-1 ? str : orderArray(x,++indx,(str+=x[indx] + " "));
}

var arr = new Array('apple','orange','peach','lime');
var str = orderArray(arr,-1,"");

102 | Chapter 6: Building Reusability with JavaScript Functions

Rather than the length of the array, we start with an index value of –1, and continue
the loop until one less than the length of the array. We increment the index value, rather
than decrement with each loop.

Most recursive functions can be replaced with code that performs the same function
linearly, via some kind of loop. The advantage of recursion is that recursive functions
can be fast, and efficient. The downside, though, is that recursive functions can be very
memory-intensive.

See Also
Some of the negative consequences of recursive functions can be mitigated via memo-
ization, covered in Recipe 6.9. Accessing the outer variable internally with the recursive
function is covered in Recipe 6.7, which goes into function scope.

6.7 Create a Function That Remembers Its State
Problem
You want to create a function that can remember static data, but without having to use
global variables and without resending the same data with each function call.

Solution
Create an outer function that takes one or more parameters, and then an inner function
that also takes one or more parameters but uses both its and its parent function’s pa-
rameters in order to perform its functionality. Return the inner function from the outer
function, and assign it to a variable. From that point, use the variable as a function:

function greetingMaker(greeting) {
 function addName(name) {
 return greeting + " " + name;
 }
 return addName;
}

// Now, create new partial functions
var daytimeGreeting = greetingMaker("Good Day to you");
var nightGreeting = greetingMaker("Good Evening");

...

// if daytime
alert(daytimeGreeting(name));

// if night
alert(nightGreeting(name));

6.7 Create a Function That Remembers Its State | 103

Discussion
We want to avoid global variables as much as possible because of potential clashes
between libraries. However, there are times when you need to store data to be used
across several function calls, and you don’t want to have to repeatedly send this infor-
mation to the function each time.

A way to persist this data from one function to another other is to create one of the
functions within the other, so both have access to the data, and then return the inner
function from the outer. Returning one function from another is known as a function
closure. Before I get into the specifics of function closure, I want to spend a few minutes
on functions and scope.

This type of function closure is also known as a partial function, or
currying, which is covered in detail in Recipe 6.8.

In the solution, the inner function addName is defined in the outer function greeting
Maker. Both of the functions have one argument. The inner function has access to both
its argument and the outer function’s argument, but the outer function cannot access
the argument passed to the inner function. The inner function can operate on the outer
function’s parameters because it is operating within the same context, or scope, of the
outer function.

In JavaScript, there is one scope that is created for the outermost application environ-
ment. All global variables, functions, and objects are contained within this outer scope.

When you create a function, you create a new scope that exists as long as the function
exists. The function has access to all variables in its scope, as well as all of the variables
from the outer scope, but the outer scope does not have access to the variables in the
function. Because of these scoping rules, we can access window and document objects
in all of our browser applications, and the inner function in the solution can also access
the data passed to, or originating in, the outer function that wraps it.

This also explains how the recursive functions in Recipe 6.6 can inter-
nally access the variables they’re assigned to in the outer application
scope.

However, the outer function cannot access the inner function’s arguments or local data,
because they exist in a different scope.

An inner function doesn’t have to be returned from the outer function. It could be an
invoked direction in the code in the outer function. When it is returned, like in the
solution, and the following code:

104 | Chapter 6: Building Reusability with JavaScript Functions

function outer (x) {
 return function(y) { return x * y; };
}

var multiThree = outer(3);
alert(multiThree(2)); // 6 is printed
alert(multiThree(3)); // 9 is printed

the returned function forms a closure. A JavaScript closure is a variable local to a func-
tion that remains alive when the function returns.

When the inner function is returned from the outer function, its application scope at
the time, including all references to the outer function’s variables, is now passed to the
outer, global scope. So even though the outer function’s application scope no longer
exists, the inner function’s scope exists at the time the function was returned, including
a snapshot of the outer function’s data. It will continue to exist until the application is
finished, and the outer, global scope is released.

Another way a closure can be made is if an inner function is assigned to
a global variable.

So what happens to these variables when an application scope is released? JavaScript
supports automatic garbage collection. What this means is you and I don’t have to
manually allocate or deallocate memory for our variables. Instead, the memory for
variables is created automatically when we create variables and objects, and deallocated
automatically when the variable scope is released.

In the solution, the outer function greetingMaker takes one argument, which is a specific
greeting. It also returns an inner function, addName, which itself takes the person’s name.
In the code, greetingMaker is called twice, once with a daytime greeting, assigned to a
variable called daytimeGreeting, and once with a nighttime greeting, assigned to a var-
iable called nightGreeting.

Now, whenever we want to greet someone in daytime, we can use the daytime greeting
function, daytimeGreeting, passing in the name of the person. The same applies to the
nighttime greeting function, nightGreeting. No matter how many times each is used,
the greeting string doesn’t need to be respecified: we just pass in a different name. The
specialized variations of the greeting remain in scope until the page that contains the
application is unloaded from the browser.

Closures are interesting and useful, especially when working with JavaScript objects,
as we’ll see later in the book. But there is a downside to closures that turns up when
we create accidental closures.

An accidental closure occurs when we code JavaScript that creates closures, but aren’t
aware that we’ve done so. Each closure takes up memory, and the more closures we

6.7 Create a Function That Remembers Its State | 105

create, the more memory is used. The problem is compounded if the memory isn’t
released when the application scope is released. When this happens, the result is a
persistent memory leak.

Here’s an example of an accidental closure:

function outerFunction() {
 var doc = document.getElementById("doc");
 var newObj = { 'doc' : doc};
 doc.newObj = newObj;
}

The newObj contains one property, doc, which contains a reference to the page element
identified by doc. But then, this element is given a new property, newObj, which contains
a reference to the new object you just created, which in turn contains a reference to the
page element. This is a circular reference from object to page element, and page element
to object.

The problem with this circular reference is exacerbated in earlier versions of IE, because
IE does not release memory associated with DOM objects (such as the doc element) if
application scope is released. Even leaving the page does not reclaim the memory: you
have to close the browser.

Other browsers detected this type of situation and performed a cleanup
when the user left the application (the web page where the JavaScript
resided).

Luckily, newer versions of IE don’t have this problem. However, function closures
should be deliberate, rather than accidental.

See Also
More on function closures and private function methods in Chapter 16. An excellent
overview of function scope and closure is “JavaScript Closures”, by Richard Cornford.
Though written in 2004, it’s still one of the best descriptions of closures. Mozilla pro-
vides a nice, clean description of closures at https://developer.mozilla.org/en/Core_Java
Script_1.5_Guide/Working_with_Closures.

Recipe 6.8 also makes use of specialized function closure, specifically for simplifying
the number of arguments that have to be passed to functions, an effect called currying.

106 | Chapter 6: Building Reusability with JavaScript Functions

http://www.jibbering.com/faq/faq_notes/closures.html
https://developer.mozilla.org/en/Core_JavaScript_1.5_Guide/Working_with_Closures
https://developer.mozilla.org/en/Core_JavaScript_1.5_Guide/Working_with_Closures

6.8 Improving Application Performance with a Generalized
Currying Function
Problem
You have several functions you want to simplify by attaching recurring argument values
to the functions, so the arguments don’t have to be repeated.

Solution
Use the concept of currying, a specialized form of function closure, to create a function
generator that takes the function name and the persisted arguments, and returns a new
partial function that only needs the remaining arguments. Here is the curry function I
adapted from a function created by Dustin Diaz, which works in all of this book’s target
browsers:

function curry (fn, scope) {
 var scope = scope || window;
 var args = [];
 for (var i=2, len = arguments.length; i < len; ++i) {
 args.push(arguments[i]);
 };
 return function() {
 var args2 = [];
 for (var i = 0; i < arguments.length; i++) {
 args2.push(arguments[i]);
 }
 var argstotal = args.concat(args2);
 return fn.apply(scope, argstotal);
 };
}

When you want to curry a function, you pass the function name, and whatever values
you want statically assigned to the returned function:

function diffPoint (x1, y1, x2, y2) {
 return [Math.abs(x2 - x1), Math.abs(y2 - y1)];
}
var diffOrigin = curry(diffPoint, null, 3.0, 4.0);
var newPt = diffOrigin(6.42, 8.0); // array with 3.42, 4

Discussion
A typical function could be like the following, which takes two pairs of numbers (an
origin and a new location) and returns an array with the difference between the two:

function diffPoint (x1, y1, x2, y2) {
 return [x2 - x1, y2 - y1];
}

6.8 Improving Application Performance with a Generalized Currying Function | 107

The function is fine, but if the origin is going to be the same across many calls to the
function, wouldn’t it be nice to somehow attach this information to the function?
Currying is the process that allows us to do this.

Currying is a way of statically attaching more than one argument to a function, so the
argument doesn’t have to be duplicated. We demonstrated one form of currying in
Recipe 6.7, but in that case, we created a single purpose outer function in order to
provide the currying functionality for the inner function.

In the solution, what I’ve done is create a multipurpose currying function that can
perform this functionality for any method in which we want to split parameters between
those repeated and those not. In the curry method, I capture the arguments for the first
function call, and those from the second, concatenate the two, and then use the
Function apply method to return a function with the combined set of arguments.

The code then uses the curry method to create a new function, diffOrigin, that finds
the difference between the point and a given origin, in this case, where origin is at
x = 3, y = 4:

var diffOrigin = curry(diffPoint, null, 3.0, 4.0);
var newPt = diffOrigin(6.42, 8.0); // array with 3.42, 4

We can use the same curry method with diffPoint and another set of origin points:

var farPoint = curry (diffPoint, null, 183.66, 98.77);

and then use it as many times as needed:

var ptA = farPoint(1.33, 2.11);
var point0 = genFunction(0,0); // 182.329999..., 96.66

The curry method can also take a scope as an argument. In the example, there is no
specialized scope, so the window object is used. However, I could also have passed in
a reference to an element or other object, and then the inner function would have access
to that object’s context.

See Also
A curry method is provided in many JavaScript libraries, such as Dojo, jQuery, and
Prototype.js, either directly or as an extension. The Function apply method is demon-
strated in Chapter 16, beginning with Recipe 16.5. See another example of function
closure and currying in Recipe 6.7.

108 | Chapter 6: Building Reusability with JavaScript Functions

6.9 Improve Application Performance with Memoization
(Caching Calculations)
Problem
You want to optimize your JavaScript applications and libraries by reducing the need
to repeat complex and CPU-intensive computations.

Solution
Use function memoization in order to cache the results of a complex calculation. Here,
I’m borrowing an example from Douglas Crockford’s book, JavaScript: The Good
Parts (O’Reilly), as applied to the code to generate a Fibonacci number:

var fibonacci = function () {
 var memo = [0,1];
 var fib = function (n) {
 var result = memo[n];
 if (typeof result != "number") {
 result = fib(n -1) + fib(n - 2);
 memo[n] = result;
 }
 return result;
 };
 return fib;
}();

Discussion
Memoization is the process where interim values are cached, rather than recreated,
cutting down on the number of iterations and computation time. It works especially
well with something like the Fibonacci numbers, or factorials, both of which operate
against previously calculated values. For instance, we can look at a factorial, 4!, as
follows:

return 1; // 0!

return 1; // 1!

return 1 * 2; // 2!

return 1 * 2 * 3; // 3!

return 1 * 2 * 3 * 4; // 4!

But we can also view it as: 3! * 4 // 4!

In other words, if we cache the value for 2! when creating 3!, we don’t need to recalculate
1 * 2; and if we cache 3! when calculating 4!, we don’t need 1 * 2 * 3, and so on.

6.9 Improve Application Performance with Memoization (Caching Calculations) | 109

http://oreilly.com/catalog/9780596517748/
http://oreilly.com/catalog/9780596517748/

Memoization is built into some languages, such as Java, Perl, Lisp, and others, but not
into JavaScript. If we want to memoize a function, we have to build the functionality
ourselves. The key to the effective use of memoization is being aware that the technique
doesn’t result in performance improvements until the number of operations is signifi-
cant enough to compensate for the extra effort.

Example 6-3 shows the memoized and nonmemoized versions of the Fibonacci func-
tion that Crockford provided in his book. The example also uses the Console API to
record times, so you’ll need to run the application in Firefox or Safari. Make sure the
tool’s Console is open. Note that the calculations are intense and can take a consider-
able time. Save any work you have in other tabs. You may have to override a message
given by the browser, too, about killing a script that’s running a long time.

Example 6-3. A demonstration of memoization

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Testing Memoization</title>
<script>
//<![CDATA[

window.onload=function() {

// Memoized Function
var fibonacci = function () {
 var memo = [0,1];
 var fib = function (n) {
 var result = memo[n];
 if (typeof result != "number") {
 result = fib(n -1) + fib(n - 2);
 memo[n] = result;
 }
 return result;
 };
 return fib;
}();

// nonmemoized function
var fib = function (n) {
 return n < 2 ? n : fib(n - 1) + fib(n - 2);
};
// run nonmemo function, with timer
console.time("non-memo");
for (var i = 0; i <= 10; i++) {
 console.log(i + " " + fib(i));
}
console.timeEnd("non-memo");

// now, memo function with timer
console.time("memo");
for (var i = 0; i <= 10; i++) {
 console.log(i + " " + fibonacci(i));

110 | Chapter 6: Building Reusability with JavaScript Functions

}
console.timeEnd("memo");

}
//--><!]]>
</script>
</head>
<body>
<p>content</p>
</body>
</html>

First, the code is run against a number of 10. The result is as follows, and as shown in
Figure 6-2:

non-memo: 39ms
memo: 38ms

Figure 6-2. Memoization program running in Safari, with debugger and console displayed

The result generates one big “meh.” In the second run, though, the code is edited to
run the code in a for loop of 30. The result is as follows:

non-memo: 54761ms
memo: 160ms

A major change.

6.9 Improve Application Performance with Memoization (Caching Calculations) | 111

See Also
There’s little information on JavaScript memoization online. There has been effort to
create memoize functions that can work with all functions that would benefit. Crock-
ford provided one in his book, JavaScript: The Good Parts (O’Reilly). Other discussions
on the topic can be found by searching for “JavaScript memoization” in your favorite
search engine.

6.10 Using an Anonymous Function to Wrap Global Variables
Problem
You need to create a variable that maintains state between function calls, but you want
to avoid global variables.

Solution
Use an anonymous function to wrap variables and functions both:

<!DOCTYPE html>
<head>
<title>faux Global</title>
<script>

(function() {
 var i = 0;

 function increment() {
 i++;
 alert("value is " + i);
 }

 function runIncrement() {
 while (i < 5) {
 increment();
 }
 }

 window.onload=function() {
 runIncrement();
 }
})();

</script>
</head>
<body>
</body>

112 | Chapter 6: Building Reusability with JavaScript Functions

http://oreilly.com/catalog/9780596517748/

Discussion
The functionality demonstrated in the solution has existed for some time, but I’ve only
seen anonymous functions as a way to scope what would normally be global variables
in John Resig’s work with the jQuery framework library. It’s used as a way of wrapping
jQuery plug-in functions so that the code can use the jQuery dollar sign function ($)
when the jQuery plug-in is used with another framework library, such as Prototype,
which also uses the dollar sign function:

// swap colors, blue and red
(function($) {
 $.fn.flashBlueRed = function() {
 return this.each(function() {
 var hex = $.bbConvertRGBtoHex($(this).css("background-color"));
 if (hex == "#0000ff") {
 $(this).css("background-color", "#ff0000");
 } else {
 $(this).css("background-color", "#0000ff");
 }
 });
 };
})(jQuery);

The approach consists of surrounding the code block with parentheses, beginning with
the anonymous function syntax, and following up with the code block and then the
final function closure. It could be the following, if there’s no parameter passed into the
code block:

})();

or the following, if you are passing a parameter into the function:

})(jQuery);

Now you can use as many “global” variables as you need without polluting the global
space or colliding with global variables used in other libraries.

See Also
Recipe 17.7 covers writing jQuery plug-ins.

6.10 Using an Anonymous Function to Wrap Global Variables | 113

CHAPTER 7

Handling Events

7.0 Introduction
Events, especially within an interactive environment such as a browser, are what make
JavaScript essential. There is very little JavaScript functionality that isn’t triggered by
some event, even if the only event that occurs is a web page being loaded. Event handling
in JavaScript depends on determining which event or events you want to trigger some
activity, and then attaching JavaScript functionality to the event.

The earliest form of event handling is still one of the most common: the use of an event
handler. An event handler is an element property that you can assign a function, such
as the following, which assigns a function to the window.onload event handler:

window.onload=someFunction;

You can also assign an event handler directly in an element, such as in the opening
body tag:

<body onload="someFunction()">

However, I don’t recommend embedding events directly in page elements, as it makes
it difficult to find and change the event handling routines later. If you use the first
approach, which is to assign a function to an event handler in script element or in a
JavaScript library, you only have to look in one place in order to make changes.

JavaScript lives in an enormous number of environments, as Chap-
ter 21 demonstrates. Most of this chapter is focused on JavaScript within
a browser or browser-like environment.

Some Common Events
There are several events that can be captured via JavaScript, though not all are available
to all web page elements. The load and unload events are typically used with the window
object to signal when the page is finished loading, and just before the page is unloaded

115

because the web page reader is navigating away from the page. The submit and reset
events are used with forms to signal when the form is submitted, or has been reset by
the reader.

The blur and focus events are frequently used with form elements, to determine when
an element gets focus, and loses it. Changing a form value can trigger the change event.
The blur and change events are especially handy if you need to validate the form values.

Most web page elements can receive the click or dblclick event. Other mouse events
include mousedown, mousemove, mouseout, mouseover, and mouseup, which can be used to
track the cursor and mouse activity.

You can also track keyboard activity with events such as keydown and keyup, as well as
keypress. If something can be scrolled, you can typically capture a scroll event.

Event History and New Event Handling
There’s a history to event handling with JavaScript. The earliest form of event handling
is frequently termed “DOM Level 0” event handling, even though there is no DOM
Level 0. It involves assigning a function directly to an event handler.

You can assign the event handler in the element directly:

<div onclick="clickFunction()">

or assign a function to the event handler in a script element or JavaScript library:

window.onload=someFunction;

In the last several years, a newer DOM Level 2 event handling system has emerged and
achieved widespread use. With DOM Level 2 event handling, you don’t assign a func-
tion to an event handler directly; instead, you add the function as an event listener:

window.addEventListener("load",loadFunction,false);

The general syntax is:

targetElement.addEventListener(typeOfEvent,listenerFunction,
 useCapture);

The last parameter in the function call has to do with how events are handled in a stack
of nested elements. For example, if you’re capturing an event for a link within a div
element, and you want both elements to do some processing based on the event, when
you assign the event listener to the link, set the last parameter to false, so the event
bubbles up to the div element.

You can also remove event listeners, as well as cancel the events themselves. You can
also prevent the event from propagating if the element receiving the event is nested in
another element. Canceling an event is helpful when dealing with form validation, and
preventing event propagation is helpful when processing click events.

It’s up to you to decide which level of event handling meets your needs. If you’re doing
simple event handling—not using any external JavaScript libraries and not worried

116 | Chapter 7: Handling Events

about canceling events, or whether events bubble up in a stack of elements—you can
use DOM Level 0 events. Most of the examples in this book use window.onload to trigger
the demonstration JavaScript.

If you need the more sophisticated event handling, including the ability to more easily
control events, you’ll want to use DOM Level 2 events. They can be easily encapsulated
into a JavaScript library, and can be safely integrated into a multi-JavaScript library
environment. However, the fly in this little event handling pie is that the DOM Level
2 event handling isn’t supported universally by all browsers: Microsoft has not imple-
mented DOM Level 2 event handling with IE8 or earlier. However, it’s fairly simple to
work around the cross-browser issues, as detailed in Recipe 7.3.

There’s ongoing work to create a new DOM Level 3 event handling,
which builds on the work of the DOM Level 2 event handling and is
included as part of the Web Applications work at the W3C. However,
implementation of the newer material is sparse, at best.

New Events, New Uses
There are newer events to go with the newer models, and to go with a nonbrowser-
specific DOM. As examples of DOM events, the DOMNodeInserted and DOMNodeRe
moved events are triggered when a node is added or removed from the page’s document
tree. However, I don’t recommend using the W3C event for general web pages, as these
events are not supported in the current versions of IE, and only partially supported in
most other browsers. Most web application authors wouldn’t need these events,
anyway.

There are also events associated with the increasingly popular mobile and other hand-
held computing environments. For instance, Firefox has a nonstandard set of events
having to do with touch swiping, which Mozilla calls the mouse gesture events. It’s in-
teresting, but use with caution until there’s wider acceptance of the newer events. We’ll
take a look at one type of mobile device event handling towards the end of the chapter.

See Also
See Recipe 7.3 for a demonstration of handling cross-browser event handling.

7.1 Detecting When the Page Has Finished Loading
Problem
You want to run a function after the page is finished loading.

7.1 Detecting When the Page Has Finished Loading | 117

Solution
Capture the load event via the onload event handler on the window:

window.onload=functionName;

Or:

window.onload=function() {
 var someDiv = document.getElementById("somediv");
 ...
}

Discussion
Prior to accessing any page element, you have to first make sure it’s been loaded into
the browser. You could add a script block into the web page after the element. A better
approach, though, is to capture the window load event and do your element manipu-
lation at that time.

This recipe uses the DOM Level 0 event handling, which assigns a function or func-
tionality to an event handler. An event handler is an object property with this syntax:

element.onevent=functionName;

Where element is the target element for the event, and onevent is the specific event
handler. Since the event handler is a property of the window object, as other objects
also have access to their own event handler properties, it’s accessed using dot nota-
tion (.), which is how object properties are accessed in JavaScript.

The window onload event handler in the solution is assigned as follows:

window.onload=functionName;

You could also use the onload event handler directly in the element. For the window
load event, attach the onload event handler to the body element:

<body onload="functionName()">

Use caution with assigning event handlers directly in elements, though, as it becomes
more difficult to find them if you need to change them at a later time. There’s also a
good likelihood of element event handlers eventually being deprecated.

See Also
See Recipe 7.3 for a discussion about the problems with using this type of DOM Level
0 event handling.

118 | Chapter 7: Handling Events

7.2 Capturing the Location of a Mouse Click Event Using the
Event Object
Problem
You need to discover the location in the web page where a mouse click occurred.

Solution
Assign the onclick event handler to the document object, and when the event handler
function is processed, access the click location from the Event object:

document.onclick=processClick;
...
function processClick(evt) {

 // access event object
 evt = evt || window.event;
 var x = 0; var y = 0;

 // if event object has pageX property
 // get position using pageX, pageY
 if (evt.pageX) {
 x = evt.pageX;
 y = evt.pageY;

 // else if event has clientX property
 } else if (evt.clientX) {
 var offsetX = 0; offsetY = 0;

 // if documentElement.scrollLeft supported
 if (document.documentElement.scrollLeft) {
 offsetX = document.documentElement.scrollLeft;
 offsetY = document.documentElement.scrollTop;
 } else if (document.body) {
 offsetX = document.body.scrollLeft;
 offsetY = document.body.scrollTop;
 }

 x = evt.clientX + offsetX;
 y = evt.clientY + offsetY;
 }

alert ("you clicked at x=" + x + " y=" + y);
}

Discussion
Whoa! We didn’t expect all of this for a simple task such as finding the location in the
page of a mouse click. Unfortunately, this recipe is a good demonstration of the cross-
browser challenges associated with JavaScript event handling.

7.2 Capturing the Location of a Mouse Click Event Using the Event Object | 119

From the top: first, we need to find information about the event from the event ob-
ject. The event object contains information specific to the event, such as what element
received the event, the given location relative to the event, the key pressed for a key
press event, and so on.

In the solution, we immediately run into a cross-browser difference in how we access
this object. In IE8 and earlier, the Event object is accessible from the Window object; in
other browsers, such as Firefox, Opera, Chrome, and Safari, the Event object is passed,
by default, as a parameter to the event handler function.

The way to handle most cross-browser object differences is to use a conditional OR
(||) operator, which tests to see if the object is not null. In the case of the event object,
the function argument is tested. If it is null, then window.event is assigned to the variable.
If it isn’t, then it’s reassigned to itself:

evt = evt || window.event;

You’ll also see another approach that’s not uncommon, and uses the ternary opera-
tor, to test to see if the argument has been defined and is not null. If it isn’t, the argument
is assigned back to the argument variable. If it is, the window.event object is accessed
and assigned to the same argument variable:

evt = evt ? evt : window.event;

Once we’ve worked through the event object difference, we’re on to the next. Firefox,
Opera, Chrome, and Safari both get the mouse location in the web page via the non-
standard event pageX and pageY properties. However, IE8 doesn’t support these prop-
erties. Instead, your code can access the clientX and clientY properties, but it can’t
use them as is. You have to adjust the value to account for any offset value, due to the
window being scrolled.

Again, to find this offset, you have to account for differences, primarily because of
different versions of IE accessing your site. Now, we could consider disregarding any-
thing older than IE6, and that’s an option. For the moment, though, I’ll show support
for versions of IE both older and newer than IE6.

For IE6 strict and up, you’ll use document.documentElement.scrollLeft and docu
ment.documentElement.scrollTop. For older versions, you’ll use document.body.scroll
Left and document.body.scrollTop. Here’s an example of using conditional statements:

var offsetX = 0; offsetY = 0;
if (document.documentElement.scrollLeft) {
 offsetX = document.documentElement.scrollLeft;
 offsetY = document.documentElement.scrollTop;
} else if (document.body) {
 offsetX = document.body.scrollLeft;
 offsetY = document.body.scrollTop;
}

120 | Chapter 7: Handling Events

Once you have the horizontal and vertical offsets, add them to the clientX and
clientY values, respectively. You’ll then have the same value as what you had with
pageX and pageY:

x = evt.clientX + offsetX;
y = evt.clientY + offsetY;

To see how all of this holds together, Example 7-1 shows a web page with a red box.
When you click anywhere in the web page, the box is moved so that the top-left corner
of the box is positioned exactly where you clicked. The example implements all of the
various cross-browser workarounds, and operates safely in all the main browser types,
even various older browsers.

Example 7-1. Capturing the mouse-click location and moving element to location

<!DOCTYPE html>
<head>
<title>Box Click Box Move</title>
<style type="text/css">

#info
{
 width: 100px; height: 100px;
 background-color: #ff0000;
 position: absolute;
 top: 0;
 left: 0;
}
</style>
<script>

window.onload=function() {
 document.onclick=processClick;
}

function processClick(evt) {
 evt = evt || window.event;
 var x = 0; var y = 0;
 if (evt.pageX) {
 x = evt.pageX;
 y = evt.pageY;
 } else if (evt.clientX) {
 var offsetX = 0; offsetY = 0;
 if (document.documentElement.scrollLeft) {
 offsetX = document.documentElement.scrollLeft;
 offsetY = document.documentElement.scrollTop;
 } else if (document.body) {
 offsetX = document.body.scrollLeft;
 offsetY = document.body.scrollTop;
 }

 x = evt.clientX + offsetX;
 y = evt.clientY + offsetY;
 }

7.2 Capturing the Location of a Mouse Click Event Using the Event Object | 121

 var style = "left: " + x + "px; top: " + y + "px";
 var box = document.getElementById("info");
 box.setAttribute("style", style);
}
</script>
</head>
<body>
<div id="info"></div>
</body>

Cross-browser differences may seem overwhelming at times, but most of the code can
be packaged into a library as a reusable event handler. However, there is a good like-
lihood that many of these browser differences will vanish with IE9.

The example doesn’t work with IE7 because of the use of
setAttribute with the style attribute. The downloaded example con-
tains a workaround.

See Also
Mozilla has, as usual, excellent documentation on the event object at https://developer
.mozilla.org/En/DOM/Event. See Recipe 12.15 for a description of setAttribute.

7.3 Creating a Generic, Reusable Event Handler Function
Problem
You want to implement DOM Level 2 event handling, but the solution needs to be
reusable and cross-browser friendly.

Solution
Create a reusable event handler function that implements DOM Level 2 event handling,
but is also cross-browser friendly. Test for object support to determine which functions
to use:

function listenEvent(eventTarget, eventType, eventHandler) {
 if (eventTarget.addEventListener) {
 eventTarget.addEventListener(eventType, eventHandler,false);
 } else if (eventTarget.attachEvent) {
 eventType = "on" + eventType;
 eventTarget.attachEvent(eventType, eventHandler);
 } else {
 eventTarget["on" + eventType] = eventHandler;
 }
}

122 | Chapter 7: Handling Events

https://developer.mozilla.org/En/DOM/Event
https://developer.mozilla.org/En/DOM/Event

...
listenEvent(document, "click", processClick);

Discussion
The reusable event handler function takes three arguments: the target object, the event
(as a string), and the function name. The object is first tested to see if it supports
addEventListener, the W3C DOM Level 2 event listener method. If it is supported, this
method is used to map the event to the event handler function.

The first two arguments to addEventListener are the event string and the event handler
function. The last argument in addEventListener is a Boolean indicating how the event
is handled with nested elements (in those cases where more than one element has an
event listener attached to the same event). An example would be a div element in a web
page document, where both the div and document have event listeners attached to their
click events.

In the solution, the third parameter is set to false, which means that the listener for an
outer element (document) doesn’t “capture” the event, but allows it to be dispatched to
the nested elements (the div) first. When the div element is clicked, the event handler
function is processed for the div first, and then the document. In other words, the event
is allowed to “bubble up” through the nested elements.

However, if you set the third parameter to true, the event is captured in the outer
element, and then allowed to “cascade down” to the nested elements. If you were to
click the div element, the document’s click event would be processed first, and then the
div.

Most of the time, we want the events to bubble up from inner nested elements to outer
elements, which is why the generic function is set to false by default. However, to
provide flexibility, you could add a third parameter to the reusable function, allowing
the users to determine whether they want the default bubble-up behavior or the
cascade-down instead.

Most JavaScript libraries, applications, and developers assume that
events are processed in a bubble-up fashion. If you are using external
material, be very cautious about setting events to be cascade-down.

To return to the solution, if addEventListener is not supported, then the application
checks to see if attachEvent is supported, which is what Microsoft supports in IE8. If
this method is supported, the event is first modified by prepending “on” to it (required
for use with attachEvent), and then the event and event handler function are mapped.

Notice that attachEvent doesn’t have a third parameter to control whether the event is
bubble-up or cascade-down. That’s because Microsoft only supports bubble-up.

7.3 Creating a Generic, Reusable Event Handler Function | 123

Lastly, in the rare case where neither addEventListener nor attachEvent is supported,
the fallback method is used: the DOM Level 0 event handling. If we’re not worried
about very old browsers, such as IE5, we can leave off the last part.

Why go through all of this work when we can just use the simpler DOM Level 0 event
handling? The quick answer is compatibility.

When we use DOM Level 0 event handling, we’re assigning an event handler function
to an object’s event:

document.onclick=functionName;

If we’re using one or more JavaScript libraries in addition to our code, we can easily
wipe out the JavaScript library’s event handling. The only way to work around the
overwriting problem is the following, created by highly respected developer Simon
Willison:

function addLoadEvent(func) {
 var oldonload = window.onload;
 if (typeof window.onload != 'function') {
 window.onload = func;
 } else {
 window.onload = function() {
 if (oldonload) {
 oldonload();
 }
 func();
 }
 }
}

In the function, whatever the window.onload event handler is assigned, is assigned to a
variable. The type is checked and if it’s not a function, we can safely assign our function.
If it is, though, we assign an anonymous function to the event handler, and in the
anonymous function, invoke both our function and the one previously assigned.

However, a better option is to use the more modern event listeners. With DOM Level
2 event listeners, each library’s function is added to the event handler without over-
writing what already exists; they’re even processed in the order they’re added.

The differences in how browsers handle events goes much deeper than
what method to use. Recipes 7.5 and 7.7 cover other differences asso-
ciated with the cross-browser event handling.

To summarize, if you’re just doing a quick and dirty JavaScript application, without
using any libraries, you can get away with DOM Level 0 events. I use them for most of
the small examples in this book. However, if you’re building web pages that could use
libraries some day, you’re better off using DOM Level 2. Luckily, most JavaScript
libraries already provide the cross-browser event handling functions.

124 | Chapter 7: Handling Events

Reusable, DOM Level 2 event handling: piece of cake. Except that we’re not finished.

Creating a universal stop-listening function

There will be times when we want to stop listening to an event, so we need to create a
cross-browser function to handle stopping events:

function stopListening (eventTarget,eventType,eventHandler) {
 if (eventTarget.removeEventListener) {
 eventTarget.removeEventListener(eventType,eventHandler,false);
 } else if (eventTarget.detachEvent) {
 eventType = "on" + eventType;
 eventTarget.detachEvent(eventType,eventHandler);
 } else {
 eventTarget["on" + eventType] = null;
 }
}

Again, from the top: the W3C DOM Level 2 method is removeEventListener. If this
method exists on the object, it’s used; otherwise, the object is tested to see if it has a
method named detachEvent, Microsoft’s version of the method. If found, it’s used. If
not, the final DOM Level 0 event is to assign the event handler property to null.

Now, once we want to stop listening to an event, we can just call stopListening, passing
in the same three arguments: target object, event, and event handler function.

IE8 does not support DOM Level 2 event handling, but IE9 will. How-
ever, until older versions of IE, such as IE7 and IE8, vanish from use,
you’ll most likely need to continue using the cross-browser technique
covered in this recipe.

7.4 Canceling an Event Based on Changed Circumstance
Problem
You need to cancel an event, such as a form submission, before the event propagates
to other elements.

Solution
Create a reusable function that will cancel an event:

// cancel event
function cancelEvent (event) {
 if (event.preventDefault) {
 event.preventDefault();
 } else {
 event.returnValue = false;
 }
}

7.4 Canceling an Event Based on Changed Circumstance | 125

...

function validateForm(evt) {
 evt = evt || window.event;
 cancelEvent(evt);
}

Discussion
You may want to cancel an event before it completes processing, such as preventing
the default submission of a form, if the form elements don’t validate.

If you were using a purely DOM Level 0 event handling procedure, you could cancel
an event just by returning false from the event handler:

function formSubmitFunction() {
...
if (bad)
 return false
}

However, with the new, more sophisticated event handling, we need a function like
that shown in the solution, which cancels the event, regardless of event model.

In the solution, the event is passed as an argument to the function from the event
handler function. If the event object has a method named preventDefault, it’s called.
The preventDefault method prevents the default action, such as a form submission,
from taking place.

If preventDefault is not supported, the event property returnValue is set to false in the
solution, which is equivalent to what we did with returning false from the function for
DOM Level 0 event handling.

7.5 Preventing an Event from Propagating Through a Set of
Nested Elements
Problem
You have one element nested in another. Both capture the click event. You want to
prevent the click event from the inner element from bubbling up or propagating to the
outer event.

Solution
Stop the event from propagating with a generic routine that can be used with the ele-
ment and any event:

// stop event propagation
function cancelPropagation (event) {

126 | Chapter 7: Handling Events

 if (event.stopPropagation) {
 event.stopPropagation();
 } else {
 event.cancelBubble = true;
 }
}

In the event handler for the inner element click event, call the function, passing in the
event object:

cancelPropagation(event);

Discussion
If we don’t want to cancel an event, but do want to prevent it from propagating, we
need to stop the event propagation process from occurring. For now, we have to use a
cross-browser method, since IE8 doesn’t currently support DOM Level 2 event
handling.

In the solution, the event is tested to see if it has a method called stopPropagation. If it
does, this event is called. If not, then the event cancelBubble property is set to true. The
first method works with Chrome, Safari, Firefox, and Opera, while the latter property
works with IE.

To see this work, Example 7-2 shows a web page with two div elements, one nested in
another and both assigned a click event handler function. When the inner div element
is clicked, two messages pop up: one for the inner div element, one for the other. When
a button in the page is pressed, propagation is turned off for the event. When you click
the inner div again, only the message for the inner div element is displayed.

Example 7-2. Preventing an event from propagating among nested elements

<!DOCTYPE html>
<head>
<title>Prevent Propagation</title>
<style>
#one
{
 width: 100px; height: 100px; background-color: #0f0;
}
#two {
 width: 50px; height: 50px; background-color: #f00;
}
#stop
{
 display: block;
}
</style>
<script>

// global for signaling propagation cancel
var stopPropagation = false;

7.5 Preventing an Event from Propagating Through a Set of Nested Elements | 127

function listenEvent(eventTarget, eventType, eventHandler) {
 if (eventTarget.addEventListener) {
 eventTarget.addEventListener(eventType, eventHandler,false);
 } else if (eventTarget.attachEvent) {
 eventType = "on" + eventType;
 eventTarget.attachEvent(eventType, eventHandler);
 } else {
 eventTarget["on" + eventType] = eventHandler;
 }
}

// cancel propagation
function cancelPropagation (event) {
 if (event.stopPropagation) {
 event.stopPropagation();
 } else {
 event.cancelBubble = true;
 }
}

listenEvent(window,"load",function() {
 listenEvent(document.getElementById("one"),"click",clickBoxOne);
 listenEvent(document.getElementById("two"),"click",clickBoxTwo);
 listenEvent(document.getElementById("stop"),"click",stopProp);
 });

function stopProp() {
 stopPropagation = true;
}

function clickBoxOne(evt) {
 alert("Hello from One");
}

function clickBoxTwo(evt) {
 alert("Hi from Two");
 if (stopPropagation) {
 cancelPropagation(evt);
 }
}
</script>

</head>
<body>
<div id="one">
<div id="two">
<p>Inner</p>
</div>
</div>
<button id="stop">Stop Propagation</button>
</body>

The button event handler only sets a global variable because we’re not worried about
its event propagation. Instead, we need to call cancelPropagation in the click event

128 | Chapter 7: Handling Events

handler for the div elements, when we’ll have access to the actual event we want to
modify.

Example 7-2 also demonstrates one of the challenges associated with cross-browser
event handling. There are two click event handler functions: one for the inner div ele-
ment, one for the outer. Here’s a more efficient click handler method function:

function clickBox(evt) {
 evt = evt || window.event;
 alert("Hi from " + this.id);
 if (stopPropagation) {
 cancelPropagation(evt);
 }
}

This function combines the functionality contained in the two functions in the example.
If stopPropagation is set to false, both elements receive the event. To personify the
message, the identifier is accessed from the element context, via this.

Unfortunately, this won’t work with IE8. The reason is that event handling with
attachEvent is managed via the window object, rather than the DOM. The element
context, this, is not available. You can access the element that receives the event via
the event object’s srcElement property. However, even this doesn’t work in the exam-
ple, because the srcElement property is set to the first element that receives the event,
and isn’t updated when the event is processed for the next element as the event prop-
agates through the nested elements.

When using DOM Level 0 event handling, these problems don’t occur. Microsoft has
access to the element context, this, in the handler function, regardless of propagation.
We could use the above function only if we assign the event handler for the two div
elements using DOM Level 0:

document.getElementById("one").onclick=clickBox;
document.getElementById("two").onclick=clickBox;

7.6 Capturing Keyboard Activity
Problem
You want to capture keyboard events for a textarea, and look for specific character
uses.

Solution
Capture the keyboard activity for a textarea element and check the ASCII value of the
character to find the character or characters of interest:

var inputTextArea = document.getElementById("source");
listenEvent(inputTextArea,"keypress",processKeyStroke);
function processKeyStroke(evt) {

7.6 Capturing Keyboard Activity | 129

 evt = evt ? evt : window.event;
 var key = evt.charCode ? evt.charCode : evt.keyCode;
 // check to see if character is ASCII 38, or the ampersand (&)
 if (key == "38")
 ...

Discussion
There are multiple events associated with the keyboard:

keydown
Key is pressed down.

keyup
Key is released.

keypress
Follows keydown.

textInput
Follows keypress (Safari only).

Let’s look more closely at keypress and keydown.

When a key is pressed down, it generates a keydown event, which records that a key was
depressed. The keypress event, though, represents the character being typed. If you
press the Shift key and the “L” key to get a capital letter L, you’ll get two events if you
listen to keydown, but you only get one event if you listen with keypress. The only time
you’ll want to use keydown is if you want to capture every key stroke.

In the solution, the keypress event is captured and assigned an event handler function.
In the event handler function, the event object is accessed to find the ASCII value of
the key pressed (every key on a keyboard has a related ASCII numeric code). Cross-
browser functionality is used to access this value: IE and Opera do not support char
Code, but do support keyCode; Safari, Firefox, and Chrome support charCode.

Not listed in the possible keyboard events is the textInput event, which
is part of the new DOM Level 3 event specification currently in draft
state. It also represents a character being typed. However, its imple-
mentation is sparse, and based on an editor draft, not a released speci-
fication. Stick with keypress for now.

To demonstrate how keypress works, Example 7-3 shows a web page with a
textarea. When you open the page, you’ll be prompted for a “bad” ASCII character
code, such as 38 for an ampersand (&). When you start typing in the textarea, all of
the characters are reflected in the textarea except for the “bad” character. When this
character is typed, the event is canceled, the default keypress behavior is interrupted,
and the character doesn’t appear in the textarea.

130 | Chapter 7: Handling Events

Example 7-3. Preventing a keyboard value based on ASCII value of key

<!DOCTYPE html>
<head>
<title>Filtering Input</title>
<script>

var badChar;

function listenEvent(eventTarget, eventType, eventHandler) {
 if (eventTarget.addEventListener) {
 eventTarget.addEventListener(eventType, eventHandler,false);
 } else if (eventTarget.attachEvent) {
 eventType = "on" + eventType;
 eventTarget.attachEvent(eventType, eventHandler);
 } else {
 eventTarget["on" + eventType] = eventHandler;
 }
}

// cancel event
function cancelEvent (event) {
 if (event.preventDefault) {
 event.preventDefault();
 event.stopPropagation();
 } else {
 event.returnValue = false;
 event.cancelBubble = true;
 }
}

window.onload=function() {
 badChar = prompt("Enter the ASCII value of the keyboard
key you want to filter","");
 var inputTA = document.getElementById("source");
 listenEvent(inputTA,"keypress",processClick);
}
function processClick(evt) {
 evt = evt || window.event;
 var key = evt.charCode ? evt.charCode : evt.keyCode;

 // zap that bad boy
 if (key == badChar) cancelEvent(evt);
}

</script>
</head>
<body>
<form>
<textarea id="source" rows="20" cols="50"></textarea>
</form>
</body>

Other than being a devious and rather nasty April Fool’s joke you can play on your
blog commenters, what’s the purpose of this type of application?

7.6 Capturing Keyboard Activity | 131

Well, a variation of the application can be used to filter out nonescaped characters such
as ampersands in comments for pages served up as XHTML. XHTML does not allow
for nonescaped ampersands. The program could also be adapted to listen for amper-
sands, and replace them with the escaped versions (&). Normally, you would escape
text as a block on the server before storing in the database, but if you’re doing a live
echo as a preview, you’ll want to escape that material before you redisplay it to the web
page.

And it makes a wicked April Fool’s joke on your blog commenters.

The use of the prompt can trigger a security warning with IE.

See Also
See Recipes 7.3 and 7.4 for an explanation of the event handler functions shown in
Example 7-2.

7.7 Using the New HTML5 Drag-and-Drop
Problem
You want to incorporate the use of drag-and-drop into your web page, and allow your
users to move elements from one place in the page to another.

Solution
Use the new HTML5 native drag-and-drop, which is an adaptation of the drag-and-
drop technique supported in Microsoft Internet Explorer. Example 7-4 provides a
demonstration.

Example 7-4. Using the new HTML5 drag-and-drop

<!DOCTYPE html>
<head>
<title>HTML5 Drag-and-Drop</title>
<style>
#drop
{
 width: 300px;
 height: 200px;
 background-color: #ff0000;
 padding: 5px;
 border: 2px solid #000000;
}
#item

132 | Chapter 7: Handling Events

{
 width: 100px;
 height: 100px;
 background-color: #ffff00;
 padding: 5px;
 margin: 20px;
 border: 1px dashed #000000;
}
*[draggable=true] {
 -moz-user-select:none;
 -khtml-user-drag: element;
 cursor: move;
}

*:-khtml-drag {
 background-color: rgba(238,238,238, 0.5);
}

</style>
<script>

function listenEvent(eventTarget, eventType, eventHandler) {
 if (eventTarget.addEventListener) {
 eventTarget.addEventListener(eventType, eventHandler,false);
 } else if (eventTarget.attachEvent) {
 eventType = "on" + eventType;
 eventTarget.attachEvent(eventType, eventHandler);
 } else {
 eventTarget["on" + eventType] = eventHandler;
 }
}

// cancel event
function cancelEvent (event) {
 if (event.preventDefault) {
 event.preventDefault();
 } else {
 event.returnValue = false;
 }
}

// cancel propagation
function cancelPropagation (event) {
 if (event.stopPropagation) {
 event.stopPropagation();
 } else {
 event.cancelBubble = true;
 }
}

window.onload=function() {
 var target = document.getElementById("drop");
 listenEvent(target,"dragenter",cancelEvent);
 listenEvent(target,"dragover", dragOver);
 listenEvent(target,"drop",function (evt) {

7.7 Using the New HTML5 Drag-and-Drop | 133

 cancelPropagation(evt);
 evt = evt || window.event;
 evt.dataTransfer.dropEffect = 'copy';
 var id = evt.dataTransfer.getData("Text");
 target.appendChild(document.getElementById(id));
 });

 var item = document.getElementById("item");
 item.setAttribute("draggable", "true");
 listenEvent(item,"dragstart", function(evt) {
 evt = evt || window.event;
 evt.dataTransfer.effectAllowed = 'copy';
 evt.dataTransfer.setData("Text",item.id);
 });

};

function dragOver(evt) {
 if (evt.preventDefault) evt.preventDefault();
 evt = evt || window.event;
 evt.dataTransfer.dropEffect = 'copy';
 return false;
}
</script>
</head>
<body>
<div>
<p>Drag the small yellow box with the dash border to the larger
red box with the solid border</p>
</div>
<div id="item" draggable="true">
</div>
<div id="drop">
</div>
</body>

Discussion
As part of the HTML5 specification, drag-and-drop has been implemented natively,
though Opera doesn’t currently support drag-and-drop and it can be a bit tricky in
Firefox, Chrome, Safari, and IE8. The example does not work with IE7, either.

Currently, implementations of HTML5 drag-and-drop are not robust
or consistent. Use with caution until the functionality has broader
support.

Drag-and-drop in HTML5 is not the same as in previous implementations, because
what you can drag is mutable. You can drag text, images, document nodes, files, and
a host of objects.

134 | Chapter 7: Handling Events

To demonstrate HTML5 drag-and-drop at its simplest, we’ll explore how Exam-
ple 7-4 works. First, to make an element draggable, you have to set an attribute,
draggable, to true. In the example, the draggable element is given an identifier of
item. Safari also requires an additional CSS style setting:

-khtml-user-drag: element;

The allowable values for -khtml-user-drag are:

element
Allows element to be dragged.

auto
Default logic to determine whether element is dragged (only images, links, and text
can be dragged by default).

none
Element cannot be dragged.

Since I’m allowing a div element to be dragged, and it isn’t a link, image, or text, I
needed to set -khtml-user-drag to element.

The element that can be dragged must have the draggable attribute set to true. It could
be set in code, using setAttribute:

item.setAttribute("draggable","true");

However, IE doesn’t pick up the change in state; at least, it doesn’t pick up the CSS
style change for a draggable object. Instead, it’s set directly on the object:

<div id="item" draggable="true">
</div>

The dragstart event handler for the same element is where we set the data being trans-
ferred with the drag operation. In the example, since I’m dragging an element node,
I’m going to set the data type to “text” and provide the identifier of the element
(accessible via target, which has the element context). You can specify the element
directly, but this is a more complex operation. For instance, in Firefox, I could try the
following, which is derived from the Mozilla documentation:

evt.dataTransfer.setData("application/x-moz-node",target);

and then try to process the element at the drop end:

var item = evt.dataTransfer.getData("application/x-moz-node");
target.appendChild(item);

However, the item gets set to a serialized form of the div element, not an actual reference
to the div element. In the end, it’s easier just to set the data transfer to text, and transfer
the identifier for the element, as shown in Example 7-4.

7.7 Using the New HTML5 Drag-and-Drop | 135

You can also set several different kinds of data to be transferred, while
your drop targets only look for specific types. There doesn’t have to be
a one-to-one mapping. Also note that WebKit/Safari doesn’t handle the
MIME types correctly unless you use getData and setData specifically.

The next part of the drag-and-drop application has to do with the drag receiver. In the
example, the drag receiver is another div element with an identifier of “drop”. Here’s
another instance where things get just a tad twisted.

There are a small group of events associated with HTML5 drag-and-drop:

dragstart
Drag event starts.

drag
During the drag operation.

dragenter
Drag is over the target; used to determine if target will accept drop.

dragover
Drag is over target; used to determine feedback to user.

drop
Drop occurs.

dragleave
Drag leaves target.

dragend
Drag operation ends.

The dragged item responds to dragstart, drag, and dragend. The target responds to
dragenter, dragover, dragleave, and drop.

When the dragged object is over the target, if the target wants to signal it can receive
the drop, it must cancel the event. Since we’re dealing with browsers that implement
DOM Level 2 event handling, the event is canceled using the cancelEvent reusable
function created in an earlier recipe. The code also returns false:

function dragOver(evt) {
 if (evt.preventDefault) evt.preventDefault();
 evt = evt || window.event;
 evt.dataTransfer.dropEffect = 'copy';
 return false;
}

In addition, the dragenter event must also be canceled, either using preventDefault or
returning false in the inline event handler, as shown in the example.

136 | Chapter 7: Handling Events

Both dragenter and dragover must be canceled if you want the target
element to receive the drop event.

When the drop event occurs, the drop event handler function uses getData to get the
identifier for the element being dragged, and then uses the DOM appendChild method
to append the element to the new target. For a before and after look, Figure 7-1 shows
the page when it’s loaded and Figure 7-2 shows the page after the drag-and-drop event.

Figure 7-1. Web page with drag-and-drop enabled; before drag-and-drop

I also had to cancel event propagation with the receiver element, though it’s not re-
quired in all browsers.

In the example, I use an anonymous function for the dragstart and drop event handler
functions. The reason is that, as mentioned in Recipe 7.5, the attachEvent method
supported by Microsoft does not preserve element context. By using an anonymous
function, we can access the element in the other function scope, within the event han-
dler functions.

I haven’t been a big fan of drag-and-drop in the past. The operation requires a rather
complex hand-and-mouse operation, which limits the number of people who can take
advantage of this interactive style. Even if you have no problems with fine motor skills,

7.7 Using the New HTML5 Drag-and-Drop | 137

using drag-and-drop with a touch screen or mouse pad can be cumbersome. It’s also
been extremely problematic to implement.

The current HTML5 specification details newly standardized drag-and-drop function-
ality, though not everyone is pleased by the capability. Peter-Paul Koch (PPK) of the
well-known Quirksblog describes the current implementation of drag-and-drop in
HTML5 as the “HTML5 drag-and-drop disaster”, and be aware that the article may
not be safe for work). Why? According to PPK, there are several things wrong with the
implementation: too many events, confusing implementation details, and inconsisten-
cies.

One of the biggest concerns PPK mentions is the requirement that if an element is to
receive a drop, when it receives either the dragenter or dragover event, it has to cancel
the events.

I sympathize, but I understand some of the decisions that went into the current imple-
mentation of drag-and-drop in HTML5. For instance, we’re dealing with a legacy event
handling model, so we can’t invent new event triggers just for drag-and-drop. If, by
default, an element is not a valid drag-and-drop target, then the drag-and-drop opera-
tion must continue as another target is sought. If the dragged element enters or is over
a valid target, though, by canceling the dragenter and dragover events, the target is
signaling that yes, it is interested in being a target, and doing so using the only means
available to it: by canceling the dragenter and dragover events.

Figure 7-2. Web page after drag-and-drop operation

138 | Chapter 7: Handling Events

http://www.quirksmode.org/blog/archives/2009/09/the_html5_drag.html

PPK recommends using what he calls “old school” implementations of drag-and-drop.
The only issue with those is they aren’t cross-browser friendly, and can be complicated
to implement. They’re also not accessible, though accessibility can be added.

Gez Lemon wrote an article for Opera on using the WAI-ARIA (Web Accessibility
Initiative–Accessible Rich Internet Applications) accessible drag-and-drop features. It’s
titled “Accessible drag and drop using WAI-ARIA”. He details the challenges associated
with making accessible drag-and-drop, as well as the two drag-and-drop properties
associated with WAI-ARIA:

aria-grabbed
Set to true when element is selected for dragging.

aria-dropeffect
Effect that happens when source is released on drag target.

The aria-dropeffect has the following values:

copy
Source is duplicated and dropped on target.

move
Source is removed and moved to target.

reference
A reference or shortcut to source is created in target.

execute
Function is invoked, and source is input.

popup
Pop-up menu or dialog presented so user can select an option.

none
Target will not accept source.

In the article, Gez provides a working example using the existing drag-and-drop capa-
bility, and also describes how ARIA can be integrated into the new HTML5 drag-and-
drop. The example provided in the article currently only works with Opera, which
hasn’t implemented HTML5 drag-and-drop. Yet. But you can check out Figure 7-3 to
see how drag-and-drop would look from a keyboard perspective.

Though old school drag-and-drop is complicated, several libraries, such as jQuery,
provide this functionality, so you don’t have to code it yourself. Best of all, ARIA ac-
cessibility is being built into these libraries. Until the HTML5 version of drag-and-drop
is widely supported, you should make use of one of the libraries.

In addition, as the code demonstrates, drag-and-drop can follow the old school or the
new HTML5 method, and the libraries can test to see which is supported and provide
the appropriate functionality. We can use the jQuery script.aculo.us, or Dojo drag-and-
drop, now and in the future, and not worry about which implementation is used.

7.7 Using the New HTML5 Drag-and-Drop | 139

http://dev.opera.com/articles/view/accessible-drag-and-drop/

See Also
Safari’s documentation on HTML5 drag-and-drop can be found at http://developer.ap
ple.com/mac/library/documentation/AppleApplications/Conceptual/SafariJSProgTopics/
Tasks/DragAndDrop.html. Mozilla’s documentation is at https://developer.mozilla.org/
en/Drag_and_Drop. The HTML5 specification section related to drag-and-drop can be
accessed directly at http://dev.w3.org/html5/spec/Overview.html#dnd.

See Recipe 7.5 for more on the complications associated with advanced cross-browser
event listening, and Recipes 7.3, 7.4, and 7.5 for descriptions of the advanced event
listening functions. Recipe 12.15 covers setAttribute.

7.8 Using Safari Orientation Events and Other Mobile
Development Environments
Problem
You want to determine if the Safari browser accessing your web page has changed its
orientation from portrait to landscape.

Figure 7-3. What a keyboard-enabled drag-and-drop operation could look like

140 | Chapter 7: Handling Events

http://developer.apple.com/mac/library/documentation/AppleApplications/Conceptual/SafariJSProgTopics/Tasks/DragAndDrop.html
http://developer.apple.com/mac/library/documentation/AppleApplications/Conceptual/SafariJSProgTopics/Tasks/DragAndDrop.html
http://developer.apple.com/mac/library/documentation/AppleApplications/Conceptual/SafariJSProgTopics/Tasks/DragAndDrop.html
https://developer.mozilla.org/en/Drag_and_Drop
https://developer.mozilla.org/en/Drag_and_Drop
http://dev.w3.org/html5/spec/Overview.html#dnd

Solution
Use the proprietary orientation events for Safari:

window.onorientationchange = function () {
 var orientation = window.orientation;
 switch(orientation) {
 case 0:
 // portrait orientation
 break;
 case 90:
 case -90:
 // landscape orientation
 break;
 }
}

Discussion
We’re not going to spend a great deal of time on mobile devices—in this chapter, or in
the rest of the book. The primary reason is that most mobile devices either react to your
web page as any other browser would react, albeit in miniature, or the requirements
for mobile development are so extensive as to warrant a separate book.

In addition, many small device and touch screen events are proprietary to the browser,
such as the one demonstrated in the solution for this recipe.

In the solution, we want to capture an orientation change, since devices like the iPhone
can flip from portrait to landscape. In the solution, we use the iPhoneOrientation events
to first capture the orientation change, and then determine the new orientation.

Based on orientation, we can do things such as swap a portrait thumbnail for a
landscape-based image, or even activate some form of motion. When Apple rolled out
the iPhoneOrientation example, it provided a snow globe that would “shake” when
orientation changed.

Typically, though, sophisticated mobile applications, such as many of those for the
iPhone/iPod touch, are not web-based. They use a SDK provided by the company,
which may actually require that you purchase a subscription. As for general web access
for mobile devices, you’re better off providing mobile CSS files for mobile devices. Use
proportional sizes for any pop ups and code your page regardless of device. In fact,
many mobile devices turn off JavaScript for web pages automatically. As long as you
ensure your web page is based on progressive enhancement (fully functional without
script), you should be set for the mobile world.

See Also
Apple’s iPhoneOrientation script can be found at http://developer.apple.com/safari/li
brary/samplecode/iPhoneOrientation/index.html. XUI is a JavaScript framework for
mobile devices currently under development, and is accessible at http://xuijs.com/.

7.8 Using Safari Orientation Events and Other Mobile Development Environments | 141

http://developer.apple.com/safari/library/samplecode/iPhoneOrientation/index.html
http://developer.apple.com/safari/library/samplecode/iPhoneOrientation/index.html
http://xuijs.com/

jQTouch is a jQuery plug-in for mobile devices, at http://www.jqtouch.com/. I also rec-
ommend Jonathan Stark’s book, Building iPhone Apps with HTML, CSS, and Java
Script (O’Reilly).

142 | Chapter 7: Handling Events

http://www.jqtouch.com/
http://oreilly.com/catalog/9780596805791/
http://oreilly.com/catalog/9780596805791/

CHAPTER 8

Browser Pieces

8.0 Introduction
The browser objects include the window, navigator, screen, history, and location.
They’re part of what is known as the Browser Object Model (BOM), or the DOM Level
0 set of objects, which also includes the document, frames, and various other elements.
Typically though, when we think of browser objects, we think of the first five elements
I just mentioned. In the HTML5 specification, these are known as the browsing context.

The topmost element is the window, and all the other browser objects are children. You
can access the children elements using the window:

var browser = window.navigator.userAgent;

Or you can access the objects directly:

var browser = navigator.userAgent;

When working with the browser objects, be aware that until very recently, none of the
objects was covered by a standard specification, and a consistent implementation was
not guaranteed. Though most browsers share the same methods and properties, there
are also browser-specific properties with each object. Make sure to check your target
browsers’ documentation when you work with the objects, and test the pages in all of
the browsers.

Work is underway with the W3C HTML5 effort to provide a user application object
model, which does include all of the browser objects covered in this chapter. However,
it’s all very new, and not broadly implemented at the time of this writing. It’s also
subject to change, since the HTML5 effort is still ongoing. Where possible, I’ll note
how an object or method is changing because of this new work.

143

8.1 Ask the Web Page Reader to Confirm an Action
Problem
You want to confirm an action with the web page reader.

Solution
Use the confirm pop-up box:

var answer = confirm("Are you sure you want to do that?");
if (answer == true) {
 alert("You're sure");
} else {
 alert("You decided against");
}

Discussion
There are three types of pop-up boxes in JavaScript. The alert pop up just provides a
message, with an OK button to close the pop up:

alert("You're sure");

The confirm pop up, demonstrated in the solution, asks a question that is answered
true by pushing the OK button, false if the Cancel button is pressed:

var answer = confirm("Are you sure?");

The last pop up is the prompt. You supply a string used for the prompt message, and
can optionally provide a default response. The web page reader is given an input field
to type a response, which is returned:

var answer = prompt("What's your name", "anonymous");

You’ll want to provide a default response, even if it’s only an empty string (""). Use
caution when using the prompt pop up, as browser security could block the small
window, or require user permission in order to work. Based on the newer levels of
security, consider using forms, even for simple, one-answer questions.

8.2 Creating a New, Stripped-Down Browser Window
Problem
You want to open a web page in a new, stripped-down, fixed-size browser window.

144 | Chapter 8: Browser Pieces

Solution
Open a new browser window using the window.open method, passing in optional pa-
rameters: a URL to load, and a window name:

var newWindow = window.open("http://oreilly.com", "namedWindow");

Discussion
In older implementations, the window.open method takes three parameters: the URL,
the window name, and the window features as a string of comma-delimited options. If
the URL is omitted, the window opens with “about:blank”. If the name is not given,
the default “_blank” is used, which means each window is a new window. If the features
string is omitted, default formatting is used.

However, the window.open method is changing with HTML5. At the time this was writ-
ten, the features string was no longer supported, and a fourth parameter, replace, is a
Boolean value that indicates whether the URL replaces the contents in an open window,
and removes the existing URL from the window’s history.

Opening a new window can trigger pop up window prevention, and the
default behavior can change from browser to browser. For instance, in
Firefox 3.x, the new window is opened as a new tab by default, though
you can configure it differently in the user preferences.

8.3 Finding Out About the Browser Accessing the Page
Problem
You want to determine information about the browser accessing the web page.

Solution
Use the Navigator object to discover information about the browser and browser
environment:

var browser = navigator.userAgent;
var info = "<p>Browser: " + browser + "</p>";

var platform = navigator.platform;
info+="<p>Platform: " + platform + "</p>";

Discussion
The Navigator object has a wealth of information about the web page reader’s browser,
as well as the operating system. The supported properties change from browser to
browser, and several properties aren’t of much interest to the average JavaScript de-
veloper. At a minimum, most support the helpful properties shown in Table 8-1.

8.3 Finding Out About the Browser Accessing the Page | 145

Table 8-1. Navigator properties

Property Purpose Example

appCodeName Code name for the browser Mozilla

appName Official name of the browser Netscape

appVersion Browser version 5.0 (Macintosh; U; PPC Mac OS X 10_4_11; en) AppleWebKit/531.9
(KHTML, like Gecko) Version/4.0.3 Safari/531.9

cookieEnabled Whether cookies are enabled true if enabled, otherwise false

language Language supported en-US or en

platform MacPPC

product Gecko

userAgent Mozilla/5.0 (Macintosh; U; PPC Mac OS X 10.4; en-US; rv:1.9.1.3) Gecko/
20090824 Firefox/3.5.3

vendor Vendor for browser Apple Computer, Inc.

There are also some collections, such as mimeTypes and plugins.

It’s interesting to look at the Navigator object contents, and useful for checking im-
portant information such as whether cookies are enabled or not. It’s a bad decision,
though, to use the Navigator object to detect the browser to determine which code to
run.

Most browsers are constantly releasing new versions with new functionality. If you
code for a browser, you have to change your code each time a browser releases a new
browser. Plus it’s very easy to spoof a browser string, so the value is very unreliable.
You’re better off using object, rather than browser, detection when coding cross-
browser applications.

See Also
To see object detection in action, see Chapter 7, which focuses on event handling and
features several instances of using object detection.

8.4 Warning the Web Page Reader About Leaving a Page
Problem
Your web page reader has clicked a link that takes him out of your website. Because of
the sensitive nature of your site, such as a government, bank, or medical organization
site, you want to make sure that the person is aware that he’s leaving your site and
going to an external site.

146 | Chapter 8: Browser Pieces

Solution
Add an event listener for the window unload event and then provide a prompt to the
web page reader that he’s leaving the site:

window.onunload=goodbye;

function goodbye() {
 alert("You're leaving our site. Thanks for stopping by!";
}

Discussion
We don’t want to indiscriminately throw up pop ups, or intervene with links or people
going about their business, but there are times when we want to ensure that people
know that when they click a link, type in a new domain, or even close the browser,
they’re leaving the current site.

I’ve seen such actions in bank websites, the IRS’s site (U.S. tax organization), and other
sites where the type of information being gathered can be quite confidential. You want
people to be aware of the fact that they’re leaving the previously secure website and
going somewhere that may be less than secure.

In particular, providing this functionality is helpful behavior if you provide links to
external sites within your web pages. Because the link is in your pages, your web page
readers may assume the external site is an offshoot of your own. If the other site re-
sembles your site enough, the confusion can be exacerbated. Your readers may provide
information to the new site only because they think there is a connection between your
site and the external one.

8.5 Changing Stylesheets Depending on Color Support
Problem
You want to change your site’s stylesheet if the device viewing the page only supports
4-bit grayscale, or 8-bit color.

Solution
Use the Screen object to check the colorDepth property, and change either a CSS rule
or an entire stylesheet based on the findings:

if (window.screen.colorDepth <= 8) {
 var style = document.documentElement.style ?
document.documentElement.style : document.body.style;
 style.backgroundColor="#ffffff";
}

8.5 Changing Stylesheets Depending on Color Support | 147

Or:

function setActiveStyleSheet(title) {
 var a;
 for(var i=0; (a = document.getElementsByTagName("link")[i]); i++) {
 if(a.getAttribute("rel").indexOf("style") != -1
 && a.getAttribute("title")) {
 a.disabled = true;
 if(a.getAttribute("title") == title) a.disabled = false;
 }
 }
}
if (window.screen.colorDepth <= 4) {
 setActiveStyleSheet("dull");
}

Discussion
Once upon a time, most computer monitors only supported 8-bit, or 256-color mon-
itors. If you used a CSS style color that was beyond what was considered a “web-safe”
color, you couldn’t depend on the end result. Where you expected a delicate violet,
you might get a washed-out, gray-like color instead.

How important is it to support web-safe colors these days? Not too important. Com-
puter systems have been beyond the 256-color limit for well over a decade now, and
most old 8-bit systems have gone on to their reward or been repurposed into non-
graphical Linux boxes.

Still, there is a whole new breed of web-accessible tools now, including eReaders, like
the Kindle, that are redefining what we think of when it comes to web display. The
Kindle supports 4-bit grayscale, and it allows web access.

You can either change colors directly, as the solution demonstrates, or you can change
the stylesheet. The latter is a better option if you use color and graphics extensively in
your website.

The stylesheet switcher code in the solution was from an example I provided in my
O’Reilly book Painting the Web, which is adapted from an article at A List Apart. The
technology is very mature, as the date of the article (2001) demonstrates. Nowadays,
people provide different stylesheets based on the use of the media attribute. Some ex-
amples of the media attribute are:

• print, for printing

• handheld, for handheld devices

• screen, for typical computer monitors

• tv, for television

• braille, for Braille tactile devices

148 | Chapter 8: Browser Pieces

http://oreilly.com/catalog/9780596515096
http://www.alistapart.com/articles/alternate/

In addition, there’s an @media rule you can use directly in stylesheets to modify values
based on media types. However, there may be cases where there is no media type or
@media rule that works—or the result is quirky, at best.

Let’s examine the stylesheet switcher from the top. The for loop is controlled by ac-
cessing all of the link elements in the web page, which are then assigned, in turn, to a
variable, a. In the loop, each is checked to see if it has a rel attribute set to style. If it
does, and it has a title, and the title doesn’t match the stylesheet we want, we disable
the stylesheet. However, if the title does match, then we enable the stylesheet.

See Also
For more on the getAttribute method, see Recipe 11.12. Lynda Weinmann is generally
regarded as the first person who provided documentation of web-safe colors. You can
see the web-safe palette and read more of the history of web-safe colors at http://www
.lynda.com/resources/webpalette.aspx.

8.6 Modifying Image Dimensions Depending on Page Size
Problem
You want to set the screen width and serve up an appropriately sized photo.

Solution
Use the Screen object’s availWidth or width values to determine available space:

window.onload=function() {
 if (window.screen.availWidth >= 800) {
 var imgs = document.getElementsByTagName("img");
 for (var i = 0; i < imgs.length; i++) {
 var name = imgs[i].src.split("-");
 var newname = name[0] + "-big.jpg";
 imgs[i].src = newname;
 }
 }
}

Discussion
The ability to swap images in and out of the page has been around for years, and was
a very common form of dynamic HTML at one time. It’s still popular with Ajax-based
image libraries and slideshows.

The solution assumes that the website can be accessed in browsers or other user agents
that are less than 800 pixels in width. It also assumes the images are provided in two
sizes, and the names of the images are differentiated between those that are large
(imgname-big.jpg), and small (imgname-thumb.jpg).

8.6 Modifying Image Dimensions Depending on Page Size | 149

http://www.lynda.com/resources/webpalette.aspx
http://www.lynda.com/resources/webpalette.aspx

There are two horizontal properties available with Screen: availWidth and width. The
width property provides information about the screen width, while the availWidth
property provides information about the browser width. In the solution, I’m using
availWidth.

In the solution, all of the img elements in the page are accessed, and for each, the name
of the current image is accessed. The String split method is used to find the unique
part of the image filename (before the dash), which is then concatenated to -big.jpg
to set the image src attribute to the larger-sized image.

One of the disadvantages to this approach is that the person will see this switching
going on. A way around this is to use CSS to modify the width of the image, say to 90%
of the page size:

img
{
 max-width: 90%;
}

However, this doesn’t always generate a good image, as browsers don’t do the best job
of creating smaller versions of images.

The solution also doesn’t take into account the bandwidth necessary to, first, load the
larger image. That’s why it’s not unusual for websites just to load the smallest image
into the web page by default, and then provide a link to the larger image, or use an
image management JavaScript library to load larger images inline when clicking the
thumbnail.

See Also
Probably one of the more popular image JavaScript libraries in use is LightBox2, avail-
able at http://www.huddletogether.com/projects/lightbox2/.

8.7 Creating Breadcrumbs in a CMS Template Page
Problem
You want to display footprint information based on the page URL for use in a Content
Management System (CMS) template.

Solution
Use the window.location object to get information about the current page’s URL, and
then break it down to provide the footprint information:

var items = location.pathname.substr(1).split("/");
var breadcrumbTrail = "<p>";
for (var i = 0; i < items.length; i++) {
 breadcrumbTrail+=" -> " + items[i];

150 | Chapter 8: Browser Pieces

http://www.huddletogether.com/projects/lightbox2/

}
breadcrumbTrail+="</p>";

Discussion
The window.location object can be accessed in JavaScript as just location. It has eight
properties, all of which describe one aspect of the web page URL, as listed in Table 8-2.

Table 8-2. window.location object properties

Property Description Example

hash Part of URL following #, including the # #mysection

host Hostname and optional port burningbird.net or [burningbird.net]:80

hostname Hostname burningbird.net

href Full URL http://burningbird.net/jscb#test

pathname Relative path name /jscb#test

port Port number 80

protocol URL protocol http:

search Part of the URL following ?, including ? ?q=username

A breadcrumb trail is a reprint of the path relative to the hostname, broken into pieces
that can then be accessed directly.

You could embed the breadcrumb directly into a web page, but many Content Man-
agement Systems (CMS), such as Drupal or Wordpress, use one page as a template for
most of the site contents. For instance, Drupal has one page called page.tmpl.php, which
serves as the template for most of the content of a Drupal site.

Though there are plug-ins and other applications that can embed a breadcrumb, some-
times it’s just as easy to use JavaScript to create the breadcrumb—especially if the
navigation to the separate site components is also available in a menu (for accessibility
purposes, or if JavaScript is turned off).

To demonstrate how to create a breadcrumb, Example 8-1 shows a breadcrumb ap-
plication that not only parses out the different relative path components, but surrounds
them with a subpath link and adds an arrow annotation.

Example 8-1. Building a breadcrumb trail with window.location

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>breadcrumb trail</title>
<script>
//<![CDATA[

window.onload=function() {

8.7 Creating Breadcrumbs in a CMS Template Page | 151

 // split relative path
 var items = location.pathname.substr(1).split("/");

 // build main path
 var mainpath = "<a href='" + location.protocol + "//" +
 location.hostname + "/";

 // begin breadcrumb
 var breadcrumbTrail = "<p>";
 for (var i = 0; i < items.length; i++) {

 // trailing slash
 if (items[i].length == 0) break;

 // extend main path for new level
 mainpath+=items[i];

 // add slash after all but last item
 if (i < items.length-1)
 mainpath+="/";

 // create breadcrumb component
 // add arrows for interior items only
 if (i > 0 && i < items.length)
 breadcrumbTrail+=" -> ";

 // add crumb
 breadcrumbTrail+= mainpath + "'>" + items[i] + "";
 }

 // insert into page
 breadcrumbTrail+="</p>";
 document.getElementById("breadcrumb").innerHTML=breadcrumbTrail;

}

//--><!]]>
</script>
</head>
<body>
<div id="breadcrumb"></div>
</body>
</html>

The application adjusts for the first item in the list (no arrow), as well as the last (no
final slash [/]), and includes handling cases where subdirectories have a trailing slash
in the URL. There would be no list items for the main page, so no breadcrumb is printed
out. You could adjust the script even further to not insert the empty paragraph element
into the script when there are no items, or use different markup.

The script is simple, and works whether the page is statically or dynamically generated,
as shown in Figure 8-1.

152 | Chapter 8: Browser Pieces

8.8 Bookmarking a Dynamic Page
Problem
You have a dynamic application in which updates occur in the page rather than when
the page refreshes. You want to provide a link to your web page reader that not only
takes the user back to the page, but returns it to a given state.

Solution
Use the Location object’s hash property in order to return to the state directly:

var someval = window.location.hash.split("#")[1];
if (someval == "state1") {
...
}

Discussion
A page fragment (#somevalue) isn’t just a way to annotate an in-page link; it can also
be a way to restore a state for an application. If dynamic effects are being made in a
web page, and you want to preserve state at any time in such a way that a person can
return to that state, you can create a unique hash for it and then provide the link to
your web page reader.

To demonstrate, Example 8-2 is a web page that has a div wrapping a button and
another div, and which changes various CSS-style property attributes with each click
of the button. Since we want to give the web page reader the ability to return to a state
at any time, a link is generated for that the person.

Why don’t I use a stylesheet class and change the class name, rather than set the at-
tributes individually? And why call all of the functions in order, rather than directly call

Figure 8-1. A JS-enabled breadcrumb application

8.8 Bookmarking a Dynamic Page | 153

each one? The reason is I’m building on the style settings from each previous function
call, rather than resetting the style with each. If I used a class setting with the values,
the results would be vastly different, because the style attributes not set would be
returned to their inherited values. That’s the major difference between using a class
setting and changing individual style attributes.

Example 8-2. Preserving page state through hash on link

<!DOCTYPE html>
<head>
<title>Remember me?</title>
<script>

 window.onload=function() {

 // set up button
 document.getElementById("next").onclick=nextPanel;

 // check for hash, if found, reload state
 var hash = window.location.hash.split("#")[1];
 switch (hash) {
 case "one" :
 functionOne();
 break;
 case "two" :
 functionOne();
 functionTwo();
 break;
 case "three" :
 functionOne();
 functionTwo();
 functionThree();
 }

 }

 // display next panel, based on button's class
 function nextPanel() {
 var classNm = this.getAttribute("class");
 switch(classNm) {
 case "zero" :
 functionOne();
 break;
 case "one" :
 functionTwo();
 break;
 case "two" :
 functionThree();
 }
 }
 // set both the button class, and create the state link,
 // add to page
 function setPage(page) {
 document.getElementById("next").setAttribute("class",page);

154 | Chapter 8: Browser Pieces

 var link = document.getElementById("link");
 var path = location.protocol + "//" + location.hostname + "/" +
 location.pathname + "#" + page;
 link.innerHTML="<p>link</p>";

 }

 // function one, two, three - change div, set button and link
 function functionOne() {
 var square = document.getElementById("square");
 square.style.backgroundColor="#ff0000";
 square.style.width="200px";
 square.style.height="200px";
 square.style.padding="10px";
 square.style.margin="20px";
 setPage("one");
 }

 function functionTwo() {
 var square = document.getElementById("square");
 square.style.backgroundColor="#ffff00";
 square.style.position="absolute";
 square.style.left="200px";
 setPage("two");
 }

 function functionThree() {
 var square = document.getElementById("square");
 square.style.width="400px";
 square.style.height="400px";
 square.style.backgroundColor="#00ff00";
 square.style.left="400px";
 setPage("three");
 }
</script>
</head>
<body>
<button id="next" class="zero">Next Action</button>
<div id="square">
<p>This is the object</p>
<div id="link"></div>
</div>
</body>

In the code, if there is a hash mark given in the window.object, the functions to set the
state of the page are called. Since, in this example, each is dependent on what’s hap-
pened in the other state functions, they’ll need to be called before the end state. So if
the hash mark is three (#three), both functionOne and functionTwo need to be called
before functionThree, or the div element’s state will be different (the style settings won’t
be the same).

8.8 Bookmarking a Dynamic Page | 155

The use of set- and getAttribute with the style attribute won’t work
with IE7. The downloadable example contains a workaround.

See Also
Recipe 12.15 provides a detailed discussion about changing CSS properties for ele-
ments. Chapters 13 and 14 demonstrate other dynamic page effects created by setting
CSS-style attributes or changing an element’s class name. Recipe 20.1 covers another
example in which information can be persisted using the URL. Recipe 20.3 demon-
strates state persistence using new HTML5 functionality.

Recipe 8.9 extends the concept of state from Example 8-2, so that the example can also
work with page refreshes and after the use of the back button. Recipe 11.12 covers the
getAttribute method.

8.9 Preserving State for Back Button, Page Refresh
Problem
You want to store a dynamic page’s effects in such a way that if the web page reader
accidentally hits the page refresh or back button, the effects aren’t lost.

Solution
You set the location object’s hash to preserve state automatically, so a dynamic effect
is preserved:

// get state
var someval = window.location.hash.split("#")[1];
if (someval == "state1") {
...
}
// set state
function setPage(page) {
 location.hash=page;
}

Discussion
In Recipe 8.8, links are provided for the web page reader to return to a page state at a
later time. The same principle can be used to capture a page state at any time, in case
the person accidentally refreshes a page.

156 | Chapter 8: Browser Pieces

To modify Example 8-2 to maintain state automatically, all you need to do is modify
the setPage function:

function setPage(page) {
 document.getElementById("next").setAttribute("class",page);
 location.hash=page;
}

Rather than build a link and add to the page, the page is added as a hash to location,
which also serves to add the link, with hash, to the page history. With this change, if
the person accidentally does a refresh at any point in time, the page will be returned to
the exact state it was in before she did the refresh.

The use of location and unique hashes to record dynamic state has also been used for
the infamous back button problem when it comes to dynamic or Ajax-based
applications.

With most browsers, if you add a new hash with each state change, and then click the
back button, you’ll see the address bar reflect the change. What you probably won’t
see, though, is the actual state of the change reflected in the page. That’s because even
if you change the location in the address bar, you’re not triggering a page reload. And
there is no way to capture an address change in order to reload the page.

A workaround to this problem is to add a timer that fires at certain intervals, triggering
code that checks the current location object and, in turn, triggers a page reload so the
page reflects the address bar. Frankly, I’m not overly fond of this approach.

I do like the idea of capturing state because of accidental page refreshes, or providing
a bookmark link. I haven’t found repairing the back button to be a serious concern. At
least, not until the state of technology is such that it can occur without having to use
such things as timers.

See Also
See Recipe 8.8 for Example 8-2.

Speaking of the state of technology, Recipe 20.3 introduces the new HTML5 history
object method, pushState, and associated window.onpopevent event handler. These
maintain state and were created to help resolve the back button problem mentioned in
this recipe. Recipe 12.15 covers the setAttribute method.

8.9 Preserving State for Back Button, Page Refresh | 157

CHAPTER 9

Form Elements and Validation

9.0 Introduction
Outside of hypertext links, form elements were the very first form of interaction between
web developers and web page readers, and were also one of the first reasons for interest
in a scripting language.

With the advent of JavaScript, form elements could be validated before the data was
sent to the server, saving the reader time and the website extra processing. JavaScript
can also be used to modify form elements based on the data the web reader provides,
such as filling a selection list with the names of cities when a certain state is selected.

The important point to remember when using JavaScript with form elements is that
people turn JavaScript off, so it can’t be a dependency for any form action. JavaScript
enhances, not replaces.

Though validating the form on the client can save a round trip, as a
sound design practice, you’ll still want to validate the data on the server.

9.1 Accessing Form Text Input Values
Problem
You need to access the contents of a text input form element using JavaScript.

Solution
Use the DOM to access the form element:

var formValue = document.forms["formname"].elements["elementname"].
value;

159

Discussion
Forms in a web page can be accessed through an object collection (forms) via the
document object. Each form has its own collection (elements) of form elements.

Accessing the form element’s value varies, based on the type of form element. For in-
stance, a text input or textarea form element’s value can be accessed using the value
attribute. To access the following form input element’s data:

<form id="textsearch">
<input type="text" id="firstname" />
</form>

use the following JavaScript:

txtValue = document.forms["textsearch"].elements("pattern"].value;

As demonstrated earlier in the book, you can also access the input form element directly,
via its identifier:

var txtValue = document.getElementByid("pattern").value;

However, when you’re working with a larger form, you’re more likely going to want to
work with the DOM Level 0 form collections, in order to be consistent.

You can also access the form element using an integer representing the form and the
element’s position in the page. The first form that appears in the page is given an array
index of zero, the second an index of one, and so on. The same with the elements. So
to access the example form element, use the following:

var txtValue = document.forms[0].elements[1].value;

Using an array index is tricky, since it may be difficult to determine the location of a
specific form and element. In addition, adding a new form or element can make for
incorrect JavaScript, or a web page application that doesn’t perform as expected. How-
ever, it’s also a simple way to process all form elements in a loop:

while (var i = 0; i < document.forms[0].elements.length; i++) {
 var val = document.forms[0].elements[i].value;
}

Whenever you’re accessing data from a text or other field where the user
can input whatever value he wants, before sending to the database or
displaying in the page, you will want to strip or encode any harmful
SQL, markup, or script that may be embedded in the value. You can use
encodeURI and encodeURIComponent in JavaScript for encoding.

See Also
See Recipe 2.4 for another demonstration of accessing a form and elements.

160 | Chapter 9: Form Elements and Validation

The solution uses the ECMAScript Binding for the DOM Level 2 HTML API, which
can be found at http://www.w3.org/TR/DOM-Level-2-HTML/ecma-script-binding
.html. For more on how to secure form input and the challenges of input security, read
Jeff Atwood’s “Protecting Your Cookies: HttpOnly”.

9.2 Dynamically Disabling and Enabling Form Elements
Problem
Based on some action or event, you want to disable, or enable, one or more form
elements.

Solution
Use the disabled property to enable or disable form element(s), accessing the element
via the forms/elements collections:

document.forms["formname"].elements["elementname"].disabled=true;

or via direct access to an element with an identifier:

document.getElementById("elementname").disabled=true;

Discussion
It’s not unusual to disable some fields in a form until information is provided or a specific
event occurs. An example would be clicking a radio button enabling or disabling other
form elements, such as input text fields.

See Also
See Recipe 9.4 for an example of clicking radio buttons and enabling or disabling spe-
cific form elements. See Recipe 9.8 for another approach to providing access to form
elements based on activity (hiding or showing form elements).

9.3 Getting Information from a Form Element Based on an
Event
Problem
You need to access information from a form element after an event.

Solution
Depending on the form element, you can capture any number of events, and based on
the event, process the form element data.

9.3 Getting Information from a Form Element Based on an Event | 161

http://www.w3.org/TR/DOM-Level-2-HTML/ecma-script-binding.html
http://www.w3.org/TR/DOM-Level-2-HTML/ecma-script-binding.html
http://www.codinghorror.com/blog/2008/08/protecting-your-cookies-httponly.html

If you want to validate a form field after the data in the field has changed, you can assign
a function to the onchange event handler function for the element:

document.getElementById("input1").onchange=textChanged;

In the related function, access the form element’s value:

var value = this.value;

You can also attach a function to a form element based on whether it gets or loses focus,
using the onfocus and onblur event handlers. The onblur event handler can be handy
if you want to ensure a form field has data:

document.getElementById("input2").onblur=checkValue;

In the function that checks to ensure some value is provided, you’ll first need to trim
any whitespace. Since the String trim method is not supported in IE8, the following
code uses a variation of the regular expression String.replace method covered in
Chapter 2:

var val = this.value;
val = val.replace(/^\s\s*/, '').replace(/\s\s*$/, '')
if (val.length == 0) alert("need value!");

You can capture keyboard events for form elements, such as onkeypress for a checkbox,
but a click event is triggered for most form elements whether the element is clicked on
by a mouse or the spacebar is clicked when the element has keyboard focus:

document.getElementById("check1").onclick=getCheck;

In the function, you can then access the checkbox checked property:

var checked = this.checked;
if (checked) { ...}

Discussion
There are several different events based on the type of form element. Each can be cap-
tured, and the appropriate event handler assigned a function.

Table 9-1 contains a list of form elements and the events most commonly captured for
the element.

Table 9-1. Form elements and commonly occurring events

Elements Events

button, submit click, keypress, focus, blur

checkbox click, keypress

radiobutton click, keypress

textarea select, change, focus, blur, click, keypress, mousedown, mouseup, keydown, keyup

password, text change, focus, blur, keypress, select

selection change, focus, blur

162 | Chapter 9: Form Elements and Validation

Elements Events

file change, focus, blur

The list of elements isn’t exhaustive, nor is the list of events, but this gives you an idea
of the more commonly occurring form element/event pairings.

In the form event handler function, you can access both the event and the element to
get information about both. How you do this depends on your browser, and also how
you assign the events.

For instance, if you use the DOM Level 0 event handling in which you assign the event
handler function directly to the event handler property:

document.getElementById("button1").onclick=handleClick;

In all browsers, you can access the element using the element context this. However,
if you use DOM Level 2 and up event handling, such as the following function, which
provides cross-browser event handling:

function listenEvent(eventObj, event, eventHandler) {
 if (eventObj.addEventListener) {
 eventObj.addEventListener(event, eventHandler,false);
 } else if (eventObj.attachEvent) {
 event = "on" + event;
 eventObj.attachEvent(event, eventHandler);
 } else {
 eventObj["on" + event] = eventHandler;
 }
}

You can access the element context with this for Firefox, Opera, Chrome, Safari, but
not for IE8. For IE8, you’ll have to access the element using the event object:

function handleClick(evt) {
 // cross browser event access
 evt = evt || window.evt;

 // cross browser element access
 var elem;
 if (evt.srcElement)
 elem = evt.srcElement;
 else
 elem = this;

See Also
See Chapter 2 for using regular expressions with form elements, and Chapter 7 for more
on event handling, including with form elements.

9.3 Getting Information from a Form Element Based on an Event | 163

9.4 Performing an Action When a Radio Button Is Clicked
Problem
You want to perform an action based on which radio button is clicked.

Solution
Attach an onclick event handler to each of the radio buttons; in the event handler
function, perform whatever action you need:

window.onload=function() {
 var radios = document.forms[0].elements["group1"];
 for (var i = 0; i < radios.length; i++)
 radios[i].onclick=radioClicked;
}

function RadioClicked() {
 if (this.value == "one") {
 document.forms[0].elements["line_text"].disabled=true;
 }
}

Discussion
One relatively common use for JavaScript is to modify form elements based on actions
taken elsewhere in the form. For example, clicking a specific radio button may disable
some elements, but enable others. To do this, you need to assign an event handler
function to a form element’s event handler, and then find out information about the
element that received the event.

In the solution, a set of radio buttons with the name of group1 are accessed from the
form, and the onclick event handler for each is assigned to a function named function
RadioClicked. In the function, properties associated with the clicked radio button are
accessible via this, which is a proxy for the owner of the event. Via this, we can find
out information about the event’s owner, including the type of element receiving the
event (“radio”), the tagName (“input”), and the value (“one”).

With this information, we can determine which of the radio buttons was clicked, and
perform whatever action we need based on this information.

One action associated with radio buttons is to enable or disable other form elements
when one or another of the radio buttons is clicked. Example 9-1 shows a more com-
plete demonstration of this type of activity. In the example, three radio buttons are
paired with three text input fields. All three text input fields are disabled when the web
page is loaded. Clicking any one of the radio buttons enables one input field and dis-
ables the other two.

164 | Chapter 9: Form Elements and Validation

Example 9-1. Disabling/enabling input elements based on a clicked radio button

<!DOCTYPE html>
<head>
<title>Radio Click Pick</title>

<style>
:enabled {
 border: 4px solid #ff0000;
 padding: 5px 5px 5px 15px;
}

:disabled {
 border: 2px solid #cccccc;
}

</style>
<script>

window.onload=function() {

 // first, disable all the input fields
 document.forms[0].elements["intext"].disabled=true;
 document.forms[0].elements["intext2"].disabled=true;
 document.forms[0].elements["intext3"].disabled=true;

 // next, attach the click event handler to the radio buttons
 var radios = document.forms[0].elements["group1"];
 for (var i = [0]; i < radios.length; i++)
 radios[i].onclick=radioClicked;
}
function radioClicked() {

 // find out which radio button was clicked and
 // disable/enable appropriate input elements
 switch(this.value) {
 case "one" :
 document.forms[0].elements["intext"].disabled=false;
 document.forms[0].elements["intext2"].disabled=true;
 document.forms[0].elements["intext3"].disabled=true;
 break;
 case "two" :
 document.forms[0].elements["intext2"].disabled=false;
 document.forms[0].elements["intext"].disabled=true;
 document.forms[0].elements["intext3"].disabled=true;
 break;
 case "three" :
 document.forms[0].elements["intext3"].disabled=false;
 document.forms[0].elements["intext"].disabled=true;
 document.forms[0].elements["intext2"].disabled=true;
 break;
 }

}

</script>

9.4 Performing an Action When a Radio Button Is Clicked | 165

</head>
<body>
<form id="picker">
Group 1: <input type="radio" name="group1" value="one" />

Group 2: <input type="radio" name="group1" value="two" />

Group 3: <input type="radio" name="group1" value="three" />

<input type="text" id="intext" />
<input type="text" id="intext2" />
<input type="text" id="intext3" />
</form>
</body>

The nonassociated text input fields are disabled with each new clicked event, in order
to clear previous activity. In addition, to add a little flair to the example, new CSS3
functionality to style enabled and disabled attributes is used in the example, as shown
in Figure 9-1. The CSS3 setting works with all of the book target browsers except IE8.

Figure 9-1. Modifying a form element based on a radio button click

See Also
See Recipe 9.2 for more information about attaching event handlers to form elements,
and getting information from the elements in an event handler function.

9.5 Checking for a Valid Phone Number
Problem
You want to validate form information that requires a certain format, such as a valid
phone number.

Solution
Access the form field value, and then use a regular expression to validate the format.
To validate a U.S.-based phone number (area + prefix + digits):

166 | Chapter 9: Form Elements and Validation

// filter out anything but numbers to
// standardize input
var phone = document.forms[0].elements["intext"].value;
var re = /\D+/g;
var cleanphone = phone.replace(re,"");

// check length
if (cleanphone.length < 10) alert("bad phone");

Discussion
To validate form fields, you need to strip out any extraneous material first, and then
test only what is necessary. Phone numbers can be provided using different formats:

(314) 555-1212

314-555-1212

314.555.1212

3145551212

All you really need are the numbers; everything else is just syntactic sugar. To validate
a phone number, strip out anything that isn’t a number, and then check the length, as
shown in the solution.

Once validated, you can then reformat into a standard format, though usually if you’re
going to store a phone number in a database, you want to store it in the smallest form
possible (all numbers).

Another way to ensure that the data is correct is to provide three fields for the number,
and only allow the number of characters for each field (3-3-4). But it’s probably simpler
for you and for your users to use just one field.

See Also
There are any number of regular expression formulas that work for various validation
purposes. See more on regular expressions in Chapter 2. Also note that many JavaScript
frameworks and libraries provide simple-to-use validation routines, where all you have
to do is give each input element a class name or some other indicator in order to trigger
proper validation.

See Recipe 14.2 for integrating accessibility into your forms using ARIA.

9.6 Canceling a Form Submission
Problem
You want to cancel a form submission if you find the data entered into the form fields
invalid.

9.6 Canceling a Form Submission | 167

Solution
If the form fields don’t validate, cancel the form submission event using the technique
appropriate to the event handling technique you’re using. Here, we’re borrowing from
Chapter 7 (where we covered events):

// listen to an event
function listenEvent(eventObj, event, eventHandler) {
 if (eventObj.addEventListener) {
 eventObj.addEventListener(event, eventHandler,false);
 } else if (eventObj.attachEvent) {
 event = "on" + event;
 eventObj.attachEvent(event, eventHandler);
 } else {
 eventObj["on" + event] = eventHandler;
 }
}

// cancel event
function cancelEvent (event) {
 if (event.preventDefault) {
 event.preventDefault();
 } else {
 event.returnValue = false;
 }
}

window.onload=function() {
 var form = document.forms["picker"];
 listenEvent(form,"submit",validateFields);
}

function validateFields(evt) {
 evt = evt ? evt : window.event;
 ...

 if (invalid) {
 cancelEvent(evt);
 }
}

Discussion
In the same function you use to validate the form field(s), cancel the event. In the event
function, the cancelEvent function checks to see if the preventDefault method is sup-
ported. If it is, it’s called. If not, the event’s returnValue is set to false (cancel event).

See Also
See Chapter 7 for more information on event handling.

168 | Chapter 9: Form Elements and Validation

9.7 Preventing Duplicate Form Submissions
Problem
Potential harm could occur if a user submits the same form multiple times. You want
to prevent duplicate form submissions.

Solution
One approach is to provide a message that the form has been submitted, and then
provide some means to prevent the web page reader from submitting the form again.
In its simplest variation, the following would work:

function validateSubmission(evt) {
...
alert("Thank you, we're processing your order right now");
document.getElementById("submitbutton").disabled=true; // disable

Discussion
Multiple concurrent form submissions are one of the worst problems that can occur in
a user interface. Most people would be unhappy if, say, they found they had purchased
two of the same item when they were only expecting to purchase one.

There are several different approaches you can take to prevent duplicate form submis-
sions, and how strict you want to be depends on the seriousness of the double
submission.

For example, comment forms don’t usually restrict form submission. Duplicate sub-
missions may result in a message that duplicate comments have posted, and the first
has been rejected. Even if the duplicate comment is posted, it’s a minor nuisance, rather
than a serious problem.

However, it’s essential to prevent duplicate form submission with any kind of store-
front, and anything that could result in unexpected charges to your web customers.

If you do restrict duplicate form submissions, provide some form of feedback to the
customer. In the solution, I took a simple approach, popping up a message providing
feedback to the users that the form has been submitted, and then disabling the submit
button so they can’t click it again.

It’s an OK approach, but we can take the security a little further. Instead of a pop up,
we can embed a message directly into the page. Instead of just disabling the submit
button, we can also use a flag to doubly ensure that a submission can’t be initiated
while an existing form submission is being processed. Example 9-2 demonstrates a safer
way to prevent duplicate form submissions.

9.7 Preventing Duplicate Form Submissions | 169

Example 9-2. Demonstrating prevention of duplicate form submissions

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Prevent Duplication Form Submission</title>

<style>
#refresh
{
 display: none;
 width: 200px; height: 20px;
 background-color: #ffff00;
}
</style>
<script>
//<![CDATA[

var inprocess=false;

window.onload=function() {
 document.forms["picker"].onsubmit=validateSubmit;
 document.getElementById("refresh").onclick=startOver;
}

function validateSubmit() {

 // prevent duplicate form submission
 if (inprocess) return;
 inprocess=true;
 document.getElementById("submitbutton").disabled=true;

 // for example only
 document.getElementById("refresh").style.display="block";
 document.getElementById("message").innerHTML=
"<p>We're now processing your request, which can take a minute.</p>";

 // validation stuff
 return false;
}

function startOver() {
 inprocess=false;
 document.getElementById("submitbutton").disabled=false;
 document.getElementById("message").innerHTML="";
 document.getElementById("refresh").style.display="none";
}
//--><!]]>
</script>
</head>
<body>
<form id="picker" method="post" action="">
Group 1: <input type="radio" name="group1" value="one" />
Group 2: <input type="radio" name="group1" value="two" />
Group 3: <input type="radio" name="group1" value="three" />

170 | Chapter 9: Form Elements and Validation

Input 1: <input type="text" id="intext" />
Input 2: <input type="text" id="intext2" />
Input 3: <input type="text" id="intext3" />

<input type="submit" id="submitbutton" value="Send form" />
</form>
<div id="refresh">
<p>Click to reset example</p>
</div>
<div id="message">
</div>
</body>
</html>

If you load the example into a browser and click the Send Form button, it will become
disabled and two new elements will display: a processing message and a button to
refresh the page. The latter is included only because this is an example, as a way to reset
the example.

Normally, in a form, a post-processing web page will display with a confirmation of
the action and a message of thanks, or whatever is appropriate. If Ajax is used to make
the update, the form can be reenabled once the Ajax processing is complete.

9.8 Hiding and Displaying Form Elements
Problem
You want to hide form elements until some event.

Solution
Surround the form elements that will be hidden with a div element:

<form id="picker" method="post" action="">
Item 1: <input type="radio" name="group1" value="one" />
Item 2: <input type="radio" name="group1" value="two" />
Item 3: <input type="radio" name="group1" value="three" />

<div id="hidden_elements">
Input 1: <input type="text" id="intext" />
Input 2: <input type="text" id="intext2" />
Input 3: <input type="text" id="intext3" />

</div>
<input type="submit" id="submitbutton" value="Send form" />
</form>

Change the div’s display to none when the page loads:

window.onload=function() {

 document.getElementById("hidden_elements").style.display="none";

 // attach the click event handler to the radio buttons

9.8 Hiding and Displaying Form Elements | 171

 var radios = document.forms[0].elements["group1"];
 for (var i = [0]; i < radios.length; i++)
 radios[i].onclick=radioClicked;
}

When the event to display the form elements occurs, change the div element’s display
so that the form elements are displayed:

function radioClicked() {
 if (this.value == "two") {
 document.getElementById("hidden_elements").style.display="block";
 } else {
 document.getElementById("hidden_elements").style.display="none";
 }
}

Discussion
In the solution, the hidden form elements are surrounded by a div element in order to
make it easier to work with them as a group. However, you could also control the
display for elements individually.

The CSS display property allows you to completely remove elements from the page
(display="none"), as shown in Figure 9-2. This makes it an ideal CSS property to use;
the visibility property will only hide the elements, but it doesn’t remove them from
the display. If you used visibility, you’d have a gap between the displayed elements
and the form button.

Figure 9-2. Page with form elements removed from display

In the solution, clicking the second radio button displays the input fields, as shown in
Figure 9-3. Notice in the code that if you click on the first or third radio button, the

172 | Chapter 9: Form Elements and Validation

display for the hidden elements is set to none, just in case it is currently displayed after
a previous second radio button selection.

You always want to take into account the state of the page whenever you’re processing
an event that changes the makeup of a form. If certain elements are only displayed for
given form values, then any activity in the form should either check the current state
of the form or just reissue either the hide or show functionality, because it doesn’t hurt
to reshow a shown element or rehide one already hidden.

Figure 9-3. Page with hidden form elements displayed

See Also
See a full-page example of the hidden/displayed form element example in Recipe 10.1
(Example 10-1).

9.9 Modifying a Selection List Based on Other Form Decisions
Problem
You want to modify the contents of a second selection list based on the choice made
in a first selection list.

Solution
You have two options when it comes to modifying the contents of one selection list,
based on the choice in another selection list.

The first is to query a database and build the selection list based on the choice. This is
demonstrated in Recipe 18.9, which covers Ajax.

9.9 Modifying a Selection List Based on Other Form Decisions | 173

The second approach is to maintain a static copy of the second selection list options:

var citystore = new Array();
citystore[0] = ['CA','San Francisco'];
citystore[1] = ['CA','Los Angeles'];
citystore[2] = ['CA','San Diego'];
citystore[3] = ['MO','St. Louis'];
citystore[4] = ['MO','Kansas City'];
citystore[5] = ['WA','Seattle'];
citystore[6] = ['WA','Spokane'];
citystore[7] = ['WA','Redmond'];
//And use this copy to rebuild the selection list:
function filterCities() {
 var state = this.value;
 var city = document.getElementById('cities');
 city.options.length=0;

 for (var i = 0; i < citystore.length; i++) {
 var st = citystore[i][0];
 if (st == state) {
 var opt = new Option(citystore[i][1]);
 try {
 city.add(opt,null);
 } catch(e) {
 city.add(opt);
 }
 }
 }
}

Discussion
Selection lists are often built from direct database queries. To prevent the lists from
being too large, they may be built based on choices in other form elements, from an
Ajax-enabled query, an array, or even a hidden selection list.

As the solution demonstrates, regardless of approach, the simplest and quickest way
to populate the selection list is to first set the options array list to zero, which deletes
everything from the list; then go through the available option data, and based on what-
ever criteria, create new options with the option data and append to the empty selection
list.

To see this type of functionality in action, Example 9-3 shows an entire application that
incorporates the code in the solution. Clicking a state will populate the second selection
list with cities for that state. A try...catch block is used when adding the new option
to the selection list, because IE8 does not support the second parameter for the ele-
ment’s position in the add method. If the first add method fails, the second is used.

Example 9-3. Populating a selection list

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>

174 | Chapter 9: Form Elements and Validation

<title>Populating Selection Lists</title>
<script>
//<![CDATA[

var citystore = new Array();
citystore[0] = ['CA','San Francisco'];
citystore[1] = ['CA','Los Angeles'];
citystore[2] = ['CA','San Diego'];
citystore[3] = ['MO','St. Louis'];
citystore[4] = ['MO','Kansas City'];
citystore[5] = ['WA','Seattle'];
citystore[6] = ['WA','Spokane'];
citystore[7] = ['WA','Redmond'];

window.onload=function() {
 document.getElementById("state").onchange=filterCities;
}

function filterCities() {
 var state = this.value;
 var city = document.getElementById('cities');
 city.options.length=0;

 for (var i = 0; i < citystore.length; i++) {
 var st = citystore[i][0];
 if (st == state) {
 var opt = new Option(citystore[i][1]);
 try {
 city.add(opt,null);
 } catch(e) {
 city.add(opt);
 }
 }
 }
}

//--><!]]>
</script>
</head>
<body>
<form id="picker" method="post" action="">
<select id="state">
<option value="">--</option>
<option value="MO">Missouri</option>
<option value="WA">Washington</option>
<option value="CA">California</option>
</select>
<select id="cities">
</select>
</form>
</body>
</html>

9.9 Modifying a Selection List Based on Other Form Decisions | 175

If scripting is disabled in an application like this one, the best option is to hide the city
selection list by default and display a button (again by default) that submits the form
and populates the city selection on a second page.

See Also
See Recipe 18.9 for a demonstration of using Ajax to populate a selection list. More on
the try...catch error handling in Recipe 10.4.

176 | Chapter 9: Form Elements and Validation

CHAPTER 10

Debugging and Error Handling

10.0 Introduction
It would be wonderful if we could, by some miracle, manage to create JavaScript
applications that never fail, never have errors, never go wrong. Then we would have
perfection and wouldn’t need things like debuggers and error handling. But what would
be the fun in that?

There are two types of errors in JavaScript. The first is a programming error, where we,
the JavaScript developers, do something wrong. These types of errors are typically
found using our favorite browser and our favorite debugger.

At a minimum, what we need from a debugger is the ability to stop program execution
and then examine variables and objects at that point. It also helps if we can continue
the program by steps, drill into functions, and examine network activity and the state
of the DOM at any time. However, we can usually manage debugging if we have the
ability to stop a program and examine object values.

The second type of error occurs when the web page reader answers a question incor-
rectly, pushes the wrong button, or tries to type in a Social Security number when we’re
expecting a name. Or the error can happen when we’re mixing libraries and something
goes wrong between them. We’ll look at these kinds of errors first, and then we’ll get
into the various browsers and their debugging capabilities.

10.1 Gracefully Handling No JavaScript Support
Problem
You want to ensure your pages work as well with JavaScript turned off as when it’s
turned on.

177

Solution
One approach is to the use the noscript element to provide alternative functionality:

<script type="text/javascript">
document.writeln("<p>Some content</p>");
</script>
<noscript><p>Fall back account</p></noscript>

However, more modern applications make an assumption that JavaScript is turned off,
and ensure the page works correctly script-free. Once that’s taken care of, we add script
to make the page more interactive.

Discussion
Several years ago, it wasn’t uncommon to find script blocks scattered about a page,
generating web page content on the fly. To ensure that something showed up even if
scripting was turned off, the developers would match the script with a noscript ele-
ment. This noscript element would provide fallback page content or information. The
noscript element has gone out of favor, and is listed as obsolete in HTML5. Now, web
developers create the entire page and all of its content without any scripting enabled.
Then, and only then, they’ll add script to make the page more helpful, interactive, or
even fun.

For example, a web page can have several form elements. It’s workable, but having
many form elements can take up a lot of space. However, the form elements have to be
available if scripting is turned off.

To solve the problem, the developer can style the form elements to be displayed by
default, and then use JavaScript to turn off the display of some of the elements when
the page loads. Based on the web page reader’s actions, form elements will be displayed
and hidden as needed. This ensures that the form elements are always available and
only hidden when support for scripting is ensured.

Example 10-1 shows a very simple implementation of this type of functionality. If
scripting is turned off, all of the form elements display by default. If scripting is turned
on, however, the text input elements in the lower part of the form are hidden when the
page is loaded (note emphasized code), and only displayed when the second radio
button is clicked.

Example 10-1. Form elements set to display by default if scripting is disabled, hidden if scripting is
enabled

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Hide/Show</title>
<style>
</style>
<script>
//<![CDATA[

178 | Chapter 10: Debugging and Error Handling

var inprocess=false;

window.onload=function() {

 document.getElementById("hidden_elements").style.display="none";

 // attach the click event handler to the radio buttons
 var radios = document.forms[0].elements["group1"];
 for (var i = [0]; i < radios.length; i++)
 radios[i].onclick=radioClicked;
}

function radioClicked() {
 if (this.value == "two") {
 document.getElementById("hidden_elements").style.display="block";
 } else {
 document.getElementById("hidden_elements").style.display="none";
 }
}

//--><!]]>
</script>
</head>
<body>
<form id="picker" method="post" action="">
Item 1: <input type="radio" name="group1" value="one" />
Item 2: <input type="radio" name="group1" value="two" />
Item 3: <input type="radio" name="group1" value="three" />

<div id="hidden_elements">
Input 1: <input type="text" id="intext" />
Input 2: <input type="text" id="intext2" />
Input 3: <input type="text" id="intext3" />

</div>
<input type="submit" id="submitbutton" value="Send form" />
</form>
</body>
</html>

Figure 10-1 shows what the page looks like if scripting is disabled, and Figure 10-2
shows what the page looks like with scripting enabled.

Figure 10-1. Page as it is displayed with scripting disabled

10.1 Gracefully Handling No JavaScript Support | 179

Figure 10-2. Page with scripting enabled

This concept of adding scripting after the page is fully constructed is
known as progressive enhancement. It was the brain child of Steven
Champeon of http://hesketh.com.

See Also
There are several good articles on progressive enhancement. You can start with:

• “Progressive Enhancement: Paving the Way for Future Web Design”

• “Understanding Progressive Enhancement”

• “Progressive Enhancement: What It Is, and How to Use It?”

To ensure the accessibility of this effect, check out the use of ARIA in Chapter 14.

10.2 Checking for Errors in Functions
Problem
You want to signal to the calling application that an error happened in a function.

Solution
The simplest approach to signaling an error in a function is through the returned result:

function sumNumbers(numArray) {
 var result = 0;

 // sum numbers in array
 // unless array is empty, or nonnumber reached
 if (numArray.length > 0) {
 for (var i = 0; i < numArray.length; i++) {
 if (typeof numArray[i] == "number") {
 result+=numArray[i];
 }
 else {
 result = NaN;
 break;
 }
 }

180 | Chapter 10: Debugging and Error Handling

http://hesketh.com
http://www.hesketh.com/publications/articles/progressive-enhancement-paving-the-way-for/
http://www.alistapart.com/articles/understandingprogressiveenhancement
http://www.smashingmagazine.com/2009/04/22/progressive-enhancement-what-it-is-and-how-to-use-it/

 }
 else {
 result = NaN;
 }
 return result;
}
...
 var ary = new Array(1,15,"three",5,5);
 var res = sumNumbers(ary); // res is NaN
 if (isNaN(res)) alert("Encountered a bad array or array element");

Discussion
A simple way to return an error from a function is through the result. The important
point to remember is that the return value and type need to match what you would
expect from the data type of the result if things had gone well.

In the solution, the global NaN value is returned if the array was empty, or has at least
one entry that isn’t a number. The result is tested with the isNaN function, and if the
result is NaN, a message to that effect is given.

10.3 Using an Alert for Simple Debugging
Problem
You want a simple way to check the value of a variable.

Solution
Use an alert message box to output the value of a variable:

alert(someVariable);

Discussion
Most developers use what I call the poor man’s debugging tool: printing out the value
of a variable using whatever output functionality is available. With JavaScript, the poor
man’s debugging usually occurs through an alert message box or with the JavaScript
console, if the console is supported by the browser.

To use an alert message box to debug, just provide the variable in the function call:

alert(variableName);

If the variable is a simple scalar value, the result of this function call is a printout of the
string value of the object’s contents. If the object is more complex, the print results will
vary. For instance, an array will have a print out value like the following:

var fruit = ['apple','cherry','pear'];
alert(fruit); // prints out apple, cherry, pear

The array values are all printed out, in order, with a comma between the entries.

10.3 Using an Alert for Simple Debugging | 181

Using an object with the alert can have interesting effects. If you pass a variable con-
taining a reference to a web page element, you may get unpredictable results depending
on the browser used, its age, the DOM the browser supports, and so on. For the most
part, though, and for most web page elements, the object printouts will be the same.
In Safari 4, a variable with a reference to a div element:

alert(divElement);

prints out as:

[object HTMLDivElement]

Not particularly useful. However, the following could provide useful information:

alert(divElement.innerHTML); // prints out contents of div element

Anything beyond these simple printouts, though, should be left for browser debuggers.

10.4 Catching an Error and Providing Graceful Error Handling
Problem
You want to incorporate helpful error handling into your JavaScript.

Solution
Use the try...catch exception handling technique:

try {
 someFunction(var1);
} catch (e) {
 alert (e.message);
}
finally {
 j = null;
}

Discussion
In the solution, the code accesses a function that hasn’t been defined. Normally, this
would trigger a JavaScript error, resulting in an error message like that shown in the
Firefox JavaScript console in Figure 10-3. It would also cause the script to fail at that
point. It’s an effective error-handling mechanism, but not a particularly graceful or
helpful one.

When the code that could result in an error is contained in a try statement, the asso-
ciated catch statement handles the exception it causes. After the error is processed, the
program control then skips to the first statement that follows the exception handling
statements.

182 | Chapter 10: Debugging and Error Handling

Figure 10-3. Firefox console error when accessing a nonexistent function

You can also use an optional finally statement with code that you want to process
regardless of the success of the try statement. You’ll most likely want to use the
finally statement to do any necessary cleanup.

The exception in the solution is an Error object, and it comes with useful information.
In the solution, the error message is accessed and printed out to an alert message box.
Peering into the exception in Firefox, we find the following properties:

fileName
Name of file where exception occurred

lineNumber
Number of the line where exception occurred

message
The exception message

name
The name of the exception (i.e., ReferenceError)

stack
A stack trace of the exception

The fileName, lineNumber, and stack are nonstandard Firefox extensions and aren’t
guaranteed to exist between browsers. The message and error name are standard, and
should always be available if the application or browser implements JavaScript excep-
tion handling.

10.4 Catching an Error and Providing Graceful Error Handling | 183

10.5 Initiating Manageable Errors
Problem
You want to incorporate custom exceptions into your applications or libraries that
provide useful information to calling applications.

Solution
Use the throw statement, and create a custom object as an exception:

if (typeof value == "number") {
 sum+=number;
} else {
 throw "NotANumber";
}

Discussion
The throw statement is partner to try...catch. With throw, you can throw exceptions
rather than returning error values from functions or setting some global error value.
The advantage to using throw and try...catch is that it doesn’t matter how deeply
nested the error occurs, as the exception can ensure that the error is reflected to the
calling application, and cleanly, too.

In the solution, the exception is thrown as a string. You can also throw an integer,
Boolean, or object. If you only need to provide an exception message, use the string—
or an integer if you’re using an array of exceptions, and the integer is used to look up
the error. Otherwise, either create and throw a specific exception, or create a new
Error object, providing your own error message:

if (typeof value == "number") {
 sum+=number;
} else {
 throw new Error("NotANumber");
}

The existing exception types are Error, as demonstrated, and:

EvalError
Used when eval is used improperly

RangeError
Used when the number is out of range

ReferenceError
Used when a nonexistent variable is referenced

SyntaxError
Used when there’s a syntax error

184 | Chapter 10: Debugging and Error Handling

TypeError
Indicates an unexpected type

URIError
Used when a malformed URI is encountered

DOMException
Indicates a DOM error

EventException
Indicates a DOM event exception

RangeException
Indicates a DOM range exception

The last three exceptions are related to the DOM API. All the errors take a custom
message as a string parameter.

10.6 Using Firebug with Firefox
Problem
You want to set up Firefox for debugging JavaScript.

Solution
Use Firebug, the popular Firefox add-on development tool.

Discussion
Unlike other development tools, Firebug is a Firefox add-on, which you’ll need to
download and install. However, it installs very easily, and new releases update through
Firefox automatically.

To start Firebug, look for the little bug in the status bar, on the right of the browser.
Clicking the bug opens Firebug, as shown in Figure 10-4.

The Firebug tab pages include the Console, the HTML element inspector, the CSS
panel, the Script tab, the DOM tree tab, and the Net tab. The Net tab will be handy
later in the book when we’re working with Ajax, but for now, we’ll take a look at the
HTML, DOM, and CSS tabs before going into more detail on the Script debugger and
Console.

10.6 Using Firebug with Firefox | 185

Figure 10-4. The Firebug tabbed pages

In the HTML tab, you can view the page’s element tree, clicking any element in the
tree to highlight the element in the page, as shown in Figure 10-5. Notice the Style,
Layout, and DOM options in the right panel. The Layout tab is currently checked, and
shows the width, borders, and padding.

The HTML tab is a good way to check your web page to see which element you need
to access or modify with your JavaScript application.

The CSS tab shows the CSS currently set for the web page. You can also edit the CSS
by clicking the Edit option, as shown in Figure 10-6. Again, handy if you’re setting CSS
to work with your JavaScript application. If there is more than one CSS stylesheet, you
can select which one to display from a drop-down menu.

The DOM inspector provides descriptions of the DOM for all of the page elements.
This includes all the properties and methods, which makes a terrific in-page reference
for all the functionality you need when you’re building your dynamic page applications,
as shown in Figure 10-7.

If the Panels are not enabled when you open Firebug, you can enable them by right-
clicking the little Firebug icon in the status bar. Once they are enabled, you can control
what shows up in each panel with drop-down menus.

186 | Chapter 10: Debugging and Error Handling

Figure 10-5. The Firebug HTML tab, with the Layout option selected

Figure 10-6. The Firebug CSS tab, with editing turned on

10.6 Using Firebug with Firefox | 187

Figure 10-7. The Firebug DOM inspector

You can also open Firebug in a separate window, via the Firebug icon menu. Opening
the debugger in a separate window is handy if you don’t want to take up page real estate
with a debugger.

See Also
Download Firebug from http://getfirebug.com/. Estelle Weyl wrote a nice tutorial on
Firebug at http://www.evotech.net/blog/2007/06/introduction-to-firebug/. There’s also a
Firebug Lite for use with other browsers, but I’ve found that each browser’s one native
debugger to be sufficient. If you want to try it, though, download it from http://getfire
bug.com/lite.html.

10.7 Setting a Breakpoint and Examining Data with Firebug
Problem
You want to stop program execution in Firefox and check out the program variables
at the time.

Solution
Set a breakpoint in Firebug and use the Watch Expression panel to examine the data.

188 | Chapter 10: Debugging and Error Handling

http://getfirebug.com/
http://www.evotech.net/blog/2007/06/introduction-to-firebug/
http://getfirebug.com/lite.html
http://getfirebug.com/lite.html

Discussion
JavaScript breakpoints can be set by clicking the line where you want the breakpoint
to be set, as shown in Figure 10-8.

Figure 10-8. Setting a breakpoint in Firebug

In Figure 10-8, a dark box surrounds the debugging flow controls. From left to right,
the first control continues execution of the program until another breakpoint, or the
application ends. The next control is Step Into, which causes the debugger to drill into
any function. The next is Step Over, which would step over a function. The last is Step
Out, to step out of a function.

When you set a breakpoint, you can set it to stop the program execution every time the
line is reached, or you can specify a constraint by right-clicking the breakpoint and
providing a constraint on the breakpoint, as shown in Figure 10-9. Most of the time,
though, you’ll probably want to stop execution with each iteration.

When a breakpoint is reached in Firebug, you can examine the Watch expressions,
variables, and objects, the execution stack, or where current breakpoints are set (handy
for very large applications) in the left panel.

10.7 Setting a Breakpoint and Examining Data with Firebug | 189

Figure 10-9. Setting a conditional breakpoint in Firebug

Figure 10-10 shows the Watch panel open, with several objects showing. If any of the
variables have a drop-down arrow next to it, clicking the arrow displays any properties
and methods of the object directly beneath the object. As you step through program
execution, the objects are updated according to the program.

10.8 Firefox and the Console
Problem
You want to profile a JavaScript application’s performance in Firefox.

Solution
Use Firebug and the Console commands to profile the JavaScript application.

Discussion
The Firebug Console object, its associated panel, and its API, are handy not only for
JavaScript profiling, but for program logging, performing a trace, and other debugging.

190 | Chapter 10: Debugging and Error Handling

Figure 10-10. Examining watch expressions in Firebug after the breakpoint is reached

When the Console panel is enabled in Firebug, there’s a drop-down menu at the top
of the panel that controls what shows up in the Console, such as CSS and XML errors,
whether to turn on strict warnings, or to open a larger command line. The command
line is a small line at the bottom of the Console panel, as shown in Figure 10-11.

The Console command line is a way to enter Console commands (naturally). The com-
mand line isn’t for the inexperienced, but it can be a quick way to work your way around
the DOM. It also has an “autofill” capability: if you start to type in a DOM element,
as shown in Figure 10-12, and hit the tab, you can cycle through options at any point,
hitting the return when you find one you want.

Returning to the solution, to profile JavaScript, you’ll use the Console object API, not
the Command Line API. The Console object API is actually controlled in your Java-
Script, with commands given directly in the script. For instance, to start a JavaScript
profile and give it a name of test, use the following:

console.profile('test');

When you want to finish the profile, use:

console.profileEnd();

10.8 Firefox and the Console | 191

Figure 10-11. The Firebug Console, including command line

Figure 10-12. Using the Firebug Console command line

192 | Chapter 10: Debugging and Error Handling

In the profile tab for the Console panel, you can see the named profiles, and if you click
on each, see where time was spent in the application, as shown in Figure 10-13.

Figure 10-13. Using the Console object’s profile methods to profile the JavaScript

There are other Console object API methods, including console.log to log messages,
console.count, which prints out the number of times the line with this command is
executed, console.time and console.timeEnd, to set up a timer to test execution time
for a block of code, and so on.

Best of all, as we’ll see later, other browser debuggers have also implemented at least
partial support for the Console API.

As with all debugging aids built into an application, make sure you re-
move console inline code commands before rolling your application out
for beta or release.

See Also
The Console command line documentation can be found at http://getfirebug.com/cl
.html, and the command line API at http://getfirebug.com/wiki/index.php/Command

10.8 Firefox and the Console | 193

http://getfirebug.com/cl.html
http://getfirebug.com/cl.html
http://getfirebug.com/wiki/index.php/Command_Line

_Line. The console object API documentation can be found at http://getfirebug.com/
wiki/index.php/Console.

10.9 Using IE’s Built-in Debugger
Problem
You’re using Internet Explorer and you want to debug your JavaScript application.
You need to turn on the IE Developer Tools.

Solution
The Developer Tools, including a JavaScript debugger, can be found under
Tools→Developer Tools, or by pressing F12, as shown in Figure 10-14.

Figure 10-14. Finding the Developer Tools in IE8

Discussion
The Developer Tools that come with IE8 are as featured as you would need and provide
tabbed panels for inspecting HTML, CSS, JavaScript, and JavaScript application Profil-
ing, as shown in Figure 10-15. Don’t let references to “JScript” intimidate you: this is
Microsoft’s term for JavaScript, but is more or less the same thing as “JavaScript” or
even “ECMAScript” to everyone else.

194 | Chapter 10: Debugging and Error Handling

http://getfirebug.com/wiki/index.php/Command_Line
http://getfirebug.com/wiki/index.php/Console
http://getfirebug.com/wiki/index.php/Console

Figure 10-15. The IE Developer Tools interface

The HTML and CSS Developer Tools provide displays of HTML or CSS for the current
web page. In the left panel is a display of markup or CSS for the page, and if you click
on an object, properties for what you clicked display in the right panel.

As with Firebug, you can examine the layout for the page or the CSS attributes for an
element. You can modify both or choose a new stylesheet, and save any edits to a new
HTML or CSS file. The Profile panel is a great way of testing your web page and ap-
plication performance to see where a script may be dragging, as shown in Figure 10-16.

Figure 10-16. Using the IE Developer Tools profile feature

10.9 Using IE’s Built-in Debugger | 195

Microsoft does support a Console API, but be forewarned: it does not operate the same
as the Console API defined with Firebug and also used by WebKit. It’s only available
when typing script into the Console pane; you can’t use it within the actual script itself.
Handy, but not as handy as being able to place console calls into the code itself.

As for the Console pane, Figure 10-17 shows it open, with errors displayed.

Figure 10-17. Examining JavaScript errors in the IE Developer Tools Console pane

See Also
Microsoft provides good documentation of the IE Developer Tools at http://msdn.mi
crosoft.com/en-us/library/dd565622(VS.85).aspx. Be aware, though, that Microsoft
moves pages around a lot, and doesn’t provide redirection in most cases. If the link
provided in this book dies, try searching for “IE8 Developer Tools” to find the docu-
mentation. The high-level IE Developer page is at http://msdn.microsoft.com/en-us/ie/
default.aspx. This will probably be a safe URL.

10.10 Setting a Breakpoint with IE Developer Tools
Problem
You want to halt execution of a JavaScript application at specific lines, and examine
the application data at that point.

196 | Chapter 10: Debugging and Error Handling

http://msdn.microsoft.com/en-us/library/dd565622(VS.85).aspx
http://msdn.microsoft.com/en-us/library/dd565622(VS.85).aspx
http://msdn.microsoft.com/en-us/ie/default.aspx
http://msdn.microsoft.com/en-us/ie/default.aspx

Solution
Use the IE Developer Tools Script debugger to set breakpoints in your code and then
examine the data, as well as the Call Stack and Watch expressions in the right side of
the script debugger.

Discussion
The IE Developer Tools Script debugger isn’t turned on until you do so explicitly, or
you hit an error in the JavaScript and the browser asks if you want to debug the script.
When you open the script, you can set a breakpoint by clicking to the left of the line
where you want the breakpoint to stop, as shown in Figure 10-18.

Figure 10-18. The Script Debugger with a breakpoint set and code execution stopped

Next to the Start/Stop Debugging button shown in Figure 10-18, you can see the op-
tions that control program flow (Step Into, Step Over, Step Out). In the right side of
the debugger is a display of the local variables at that point in the code execution.
Currently the Event object is open, and all of its properties and methods are displayed.

Clicking any of the methods or properties that have a plus (+) next to the name pops
open the additional properties and methods nested next to the property, as shown in
Figure 10-19. This nesting is typical for all of the debuggers. Otherwise, the displays
could get too cluttered to see what’s happening.

10.10 Setting a Breakpoint with IE Developer Tools | 197

10.11 Opera’s Dragonfly
Problem
Your favorite browser is Opera and you want to see what kind of debugging capability
this browser has.

Solution
Use Opera’s Dragonfly for JavaScript and other debugging.

Discussion
I will say one thing: Opera has the prettiest named debugger.

As with most of the browsers these days, Dragonfly is built into Opera. You can access
the tool by selecting the Tools menu, then Advanced, and Developer Tools. Dragonfly
opens in the bottom half of the web page, as shown in Figure 10-20.

As with Firebug and IE’s Developer Tools, Dragonfly provides a panel for examining
and working with HTML (DOM), an Error Console, a place to control the settings for
the tool, a Network page, and a script debugger.

The Settings panel is rather nice, because it’s quite simple to see where to make changes,
as shown in Figure 10-21.

The Error Console will show JavaScript errors, CSS errors, or both, as shown in Fig-
ure 10-22. Unfortunately, at this time, Dragonfly does not support the Console API.

Figure 10-19. The Script Debugger Locals panel with additional properties displayed below their
parent element or object

198 | Chapter 10: Debugging and Error Handling

Figure 10-20. Opera’s Dragonfly opened into browser

Figure 10-21. Dragonfly’s Settings page

10.11 Opera’s Dragonfly | 199

Figure 10-22. Showing both CSS and JavaScript errors in the Dragonfly Error Console

The Network page shows how long each component of the page took to load and the
component’s size, as shown in Figure 10-23. Though not as colorful as Safari’s setup
(as you’ll see later in this chapter), it’s nicely organized and easy to read.

As with other developing tools (except for IE’s), you can unlock the Dragonfly frame
into a separate window by clicking the double window icon next to the Dragonfly icon
at the top of the pane.

Clicking the Dragonfly icon reloads the debugging context, and clicking the red X closes
Dragonfly.

See Also
Opera has provided a nice set of documentation for DragonFly at http://www.opera
.com/dragonfly/documentation/.

200 | Chapter 10: Debugging and Error Handling

http://www.opera.com/dragonfly/documentation/
http://www.opera.com/dragonfly/documentation/

10.12 Setting a Breakpoint with Dragonfly
Problem
You want to set a breakpoint and examine program state in Opera.

Solution
Use Dragonfly’s Scripts panel. Click the line to the left of where you want the breakpoint
to be. As with all other debuggers, you have options at the top to continue script pro-
cessing: Step Over, Step Into, and Step Out, as shown in Figure 10-24.

Notice the right panel in Figure 10-24. Currently, it’s set to display the current call
stack. You can click the Inspection tab to view local variables as they’re set while you
walk through the code, as shown in Figure 10-25.

10.13 Turning on Safari’s Development Tools
Problem
You need to find the development tools available for Safari 4.

Figure 10-23. Dragonfly’s Network page

10.13 Turning on Safari’s Development Tools | 201

Figure 10-24. Stopping at a breakpoint in Dragonfly

Figure 10-25. Inspecting local variables using Dragonfly

202 | Chapter 10: Debugging and Error Handling

Solution
In the Preferences menu, select the Advanced option and check the option to “Show
Develop menu” in menu bar.

Discussion
Safari 4 and up feature a wide variety of helpful tools for the web developer. Once you
turn on the Develop menu, you’ll see options to:

• Open the page in another browser

• Change the User Agent signature to others, to test applications

• Show Web Inspector

• Show Error Console

• Show Snippet Editor

• Start Debugging JavaScript

• Start Profiling JavaScript

• Disable Caches

• Disable Images

• Disable Styles

• Disable JavaScript

• Disable Runaway JavaScript Timer

• Disable Site-Specific Hacks

All of the options are handy, but I’ll focus on those useful for the JavaScript developer.

The Show Web Inspector option opens the Web Inspector into the lower portion of
the browser window.

The Web Inspector is a terrific way of examining the page elements, as well as checking
resource use for pages and debugging script, as shown in Figure 10-26. Moving your
mouse over any of the elements shades the element in the page, making it easier to spot.
The right window shows the current style setting for the element.

Most of the other options work within the Web Inspector, including the Error Console.

The Show Error Console will open the Web Inspector if it’s not already opened, and
then an error message at the bottom. The Error Console reflects all of the JavaScript
errors that occur, including the line number where the error occurred, as shown in
Figure 10-27.

The ability to open the page in another browser provides a nice way to quickly open a
page for testing in one of the other browsers currently available in the system. The
ability to change the User Agent string is a way of testing JavaScript applications and
libraries to see if the code or behavior changes based on the user agent.

10.13 Turning on Safari’s Development Tools | 203

The Snippet Editor is a cute little bugger. When you click on this option, a small,
double-paned window opens. You can type HTML, CSS, or JavaScript in the upper
pane, and the result is displayed in the bottom pane. It’s a great way of trying out various
pieces of markup or code, without having to create a web page, as shown in Fig-
ure 10-28.

Figure 10-26. The Web Inspector open in a Safari browser

Figure 10-27. The Error Console opened in the Web Inspector

204 | Chapter 10: Debugging and Error Handling

Figure 10-28. The Snippet Editor with a line of HTML and small piece of JavaScript

The JavaScript profile functionality provides information about where your application
is spending its time. It is compatible with the console.profile methods described with
Firefox, and provides a nice interface to view the results. Figure 10-29 demonstrates a
profile of a small Canvas application.

I’ll cover one last tool before getting into the JavaScript debugging in Safari: the resource
window. Though not specific to JavaScript use, this handy window can provide you a
good idea of why your pages may be loading slowly; it provides a breakdown of what’s
loaded, and how long it’s taking. The resources tracked are JavaScript files, stylesheets,
images, and the document, as shown in Figure 10-30.

See Also
The Firefox JavaScript profile functionality is covered in Recipe 10.9. For a detailed
overview of the developer tools available with Safari 4, see http://www.apple.com/safari/
features.html#developer.

10.13 Turning on Safari’s Development Tools | 205

http://www.apple.com/safari/features.html#developer
http://www.apple.com/safari/features.html#developer

Figure 10-29. Snapshot of the Safari/WebKit JavaScript Profile window

Figure 10-30. Web Inspector Resources Panel

206 | Chapter 10: Debugging and Error Handling

10.14 Setting a Breakpoint with Safari’s Debugger
Problem
You want to stop program execution and investigate the state of variables.

Solution
Set a breakpoint in Safari’s debugger, and when the breakpoint is reached, check out
the program variables at that point.

Discussion
When the JavaScript debugger is open and JavaScript loaded, you can set a breakpoint
by clicking to the left of the line number for the line where you want the breakpoint to
occur, as shown in Figure 10-31.

Figure 10-31. Setting a breakpoint and examining local variables in the Safari debugger

As shown in Figure 10-31, when the breakpoint is reached, you can check out both
local and global variables, including those for DOM elements, such as document. Click-
ing the arrows next to any of the objects will open a display with the object’s methods
and properties.

10.14 Setting a Breakpoint with Safari’s Debugger | 207

Once you’ve reached the breakpoint, you can continue program execution by using the
buttons above the data panel, as shown in Figure 10-32. From the left, the buttons
represent the pause/run button (to continue execution), and the Step Over, Step Into,
and Step Out Of buttons for controlling how you want to handle function calls in a
line. Typically, I use Step Over, because I don’t necessarily want to drill into a function:
I want to see return values. However, it is a handy way of seeing what’s happening
when you’re using JavaScript libraries.

Figure 10-32. The program execution control buttons over the data panel in the script debugger

Safari (or, I should say, WebKit) is the only browser that implements the console API
made popular by Firebug. If you want to start a JavaScript profile in Safari, insert a
console command to start the profile, as well as the end profile command.

You can then check out the profile in the Profiles panel in the debugger, as shown in
Recipe 10.12, in Figure 10-29.

10.15 Debugging in Chrome
Problem
You want to use a JavaScript debug tool in Google’s Chrome.

208 | Chapter 10: Debugging and Error Handling

Solution
The Developer Tools for Chrome are a little hard to find because of the user interface,
but if you look under the Page icon on the menu bar, you’ll see an option labeled
Developer. Clicking it displays several options, including Debug JavaScript and Java-
Script Console. Clicking the Debug JavaScript option opens the Web Inspector, in-
cluding JavaScript Developer.

Discussion
Chrome is based on WebKit, so the same web inspector and debugging tools made
available in WebKit are also available in Chrome. Once you’ve turned on the debug
option, you’ll see set of panels (as shown in Figure 10-33) that will look familiar if
you’ve worked with recent versions of Safari.

Figure 10-33. The WebKit debugger toolset, open in Chrome

You can set breakpoints, examine data, inspect HTML and CSS, and create JavaScript
profiles—basically, all of the functionality you expect from web developer tools.

See Also
The debugger for Chrome is the WebKit debugger, so I’ll refer you to Recipe 10.13, on
how the debugger is used to debug JavaScript in Safari.

10.15 Debugging in Chrome | 209

CHAPTER 11

Accessing Page Elements

11.0 Introduction
A web document is organized like an upside-down tree, with the topmost element at
the root and all other elements branching out, beneath. As you can see when you look
at a web page within the Safari Web Developer Elements window (Figure 11-1), the
top-level element is the html element, followed by the head and body elements. The
head element contains title, script, and meta elements, while the body contains a
couple of div elements, one containing paragraphs (p), the other containing an unor-
dered list (ul) and list items (li)—one of which contains a paragraph, which contains
a span.

Except for the root element (HTML), each element has a parent node, and all of the
elements are accessible from one object: document.

There are several different techniques available for accessing these document elements,
or nodes as they’re called in the Document Object Model (DOM). Today, we access
these nodes through standardized versions of the DOM, such as the DOM Levels 2 and
3, mentioned throughout the book. Originally, though, a de facto technique was to
access the elements through the browser object model, sometimes referred to as DOM
Level 0. The DOM Level 0 was invented by the leading browser company of the time,
Netscape, and its use has been supported (more or less) in most browsers since. The
key object for accessing web page elements in the DOM Level 0 is the document object.

The DOM Level 0 Document
In the earlier browser object model, page elements were accessed via the document ob-
ject, via a set of element collections. For instance, to access an img element, we would
access the images array, which contains entries for all images in the page, in order of
their occurrence in the page:

var selectImage = document.images[1]; // get second image in page

211

The earliest collections that can be accessed via the Document object are:

images
All images in the page

forms
Any forms in the page

links
All links in the page (declared with)

cookie
Access, add, and modify web page cookies

Some of the collection elements themselves had collections, such as being able to access
all elements within a form via the form’s elements property:

var elemOne = document.forms[0].elements[0]; // first element in first form

As with images, elements could be accessed by array entry, with position in the array
determined by the position of the element in the web page. In addition, elements given
an identifier could also be accessed directly via the collection:

<form id="new">
...
</form>

Figure 11-1. Example of a document tree

212 | Chapter 11: Accessing Page Elements

var newForm = document.forms["new"];

Forms also had name attributes as well as ids, either of which could be used to access
the form. The form could also be accessed, via a shortcut, by its identifier/name:

var newForm = document.new; // form named "new"

Note, though, that this technique is not standardized via specification, though support
for it is included in most (if not all) browsers.

Also note that the name attribute is only supported in a limited set of web
page elements. You’re encouraged to use the id attribute instead.

In addition, all elements in the web page could be accessed via the document.all prop-
erty, by specifying the identifier given the element:

<div id="test">
...
var tstElem = document.all["test"]; // returns ref to test div element

The all collection was created by Microsoft in Internet Explorer, and eventually be-
came another de facto standard. The all property and the other collections are still
available for use now, and many of the element collections are now in the DOM Level
2 HTML specification, but the all property’s use is discouraged in favor of the tech-
niques formalized under the DOM Level 1 specification.

The Standardized DOMs
The problem with the earliest techniques in accessing web page elements is that the
browser companies didn’t agree on any one technique, and to support all of the brows-
ers we had to use a convoluted set of if statements, testing for browser support.

The W3C remedied this problem by releasing a new, standard approach to working
with the web page document object model: the DOM Level 1. Since then, the organi-
zation has worked to refine the DOM with releases of DOM Level 2, DOM Level 3,
and the current work associated with HTML5—demonstrated in this chapter and in
the rest of this book.

The W3C specifications provide a core API that can be used for more generic docu-
ments, as well as APIs specific to HTML. These include a new events model, support
for XPath, keyboard access, in addition to various methods to access existing elements,
and to create new elements that can then be inserted into the document tree. The W3C
documentation for the DOM consists of the standards specifications and language
bindings. We’re primarily interested in the ECMAScript language binding.

11.0 Introduction | 213

Be aware that at the time this book was written, implementation of
DOM Level 3 Events functionality was sketchy, at best.

The most used method supported in the DOM Level 2 and up is the document object
method getElementById:

<div id="test">
...
var testElement = document.getElementById("test");

The document.getElementById method originated in the DOM Level 1 HTML API, and
then moved over as a more generalized method to DOM Level 2.

With document.getElementById, rather than have to access a specific element collection
or determine if document.all was supported, we can use the standard method and be
assured of accessing any page element by its given id.

The getElementById method was just the beginning, and this very helpful method has
been joined by getElementsByTagName, to get all elements via a specific element tag;
getElementsByClassName, to get all elements that share the same class name; and the
very new querySelector and querySelectorAll methods, which allow us to use the CSS
style selectors in order to make more sophisticated queries.

See Also
See Chapter 7 for coverage of event handling in DOM Level 2. The best way to find a
summary of the different DOM specifications is via the W3C DOM Technical Reports
page. Mozilla also provides a nice DOM summary, as does the Wikipedia entry on the
DOM.

The ECMAScript binding for DOM Level 1 is at http://www.w3.org/TR/REC-DOM
-Level-1/ecma-script-language-binding.html. DOM Level 2’s ECMAScript binding is at
http://www.w3.org/TR/DOM-Level-2-Core/ecma-script-binding.html. The binding for
DOM Level 3 is at http://www.w3.org/TR/DOM-Level-3-Core/ecma-script-binding
.html.

11.1 Access a Given Element and Find Its Parent and Child
Elements
Problem
You want to access a specific document element, and find its parent and child elements.

214 | Chapter 11: Accessing Page Elements

http://www.w3.org/DOM/DOMTR
http://www.w3.org/DOM/DOMTR
https://developer.mozilla.org/En/DOM_Levels
http://en.wikipedia.org/wiki/Document_Object_Model
http://en.wikipedia.org/wiki/Document_Object_Model
http://www.w3.org/TR/REC-DOM-Level-1/ecma-script-language-binding.html
http://www.w3.org/TR/REC-DOM-Level-1/ecma-script-language-binding.html
http://www.w3.org/TR/DOM-Level-2-Core/ecma-script-binding.html
http://www.w3.org/TR/DOM-Level-3-Core/ecma-script-binding.html
http://www.w3.org/TR/DOM-Level-3-Core/ecma-script-binding.html

Solution
Give the element a unique identifier, and use the document.getElementById method:

<div id="demodiv">

...
var demodiv = document.getElementById("demodiv");

Find its parent via the parentNode property:

var parent = demodiv.parentNode;

Find its children via the childNodes property:

var children = demodiv.childNodes;

Discussion
The most commonly used DOM method is getElementById. It takes one parameter: a
case-sensitive string with the element’s identifier. It returns an element object, which
is referenced to the element if it exists; otherwise, it returns null.

The returned element object has a set of methods and properties, including several
inherited from the node object. The node methods are primarily associated with
traversing the document tree. For instance, to find the parent node for the element, use
the following:

var parent =demodiv.parentNode; // parent node property

If you want to find out what children an element has, you can traverse a collection of
them through the childNodes property:

if (demodiv.hasChildNodes()) {
 var children =demodiv.childNodes;
 for (var i = 0; i < children.length; i++) {
 outputString+=" has child " + children[i].nodeName + "
";
 }
}

You can find out the type of element for each node through the nodeName property:

var type = parent.nodeName; // BODY

You also might be surprised at what appears as a child node. For instance, whitespace
before and after an element is, itself, a child node, with a nodeName of #text. For the
following div element:

<div id="demodiv" class="demo">
<p>Some text</p>
<p>Some more text</p>
</div>

The demodiv element (node) has five children, not two:

has child #text
has child P

11.1 Access a Given Element and Find Its Parent and Child Elements | 215

has child #text
has child P
has child #text

However, IE8 only picks up the two paragraph elements, which demonstrates why it’s
important to be specific with the queries and check nodeName to ensure you’re accessing
the correct elements.

11.2 Accessing All Images in the Web Page
Problem
You want to access all img elements in a given document.

Solution
Use the document.getElementsByTagName method, passing in img as the parameter:

var imgElements = document.getElementsByTagName('img');

Discussion
The getElementsByTagName returns a collection of nodes (a NodeList) of a given element
type, such as the img tag in the solution. The collection can be traversed like an array,
and the order of nodes is based on the order of the elements within the document: the
first img element in the page is accessible at index 0, and so on:

var imgElements = document.getElementsByTagName('img');
for (var i = 0; i < imgElements.length; i++) {
 var img = imgElements[i];
 ...
}

Though the NodeList collection can be traversed like an array, it isn’t an Array object—
you can’t use Array object methods, such as push() and reverse(), with a NodeList.
NodeList’s only property is length, which contains the number of elements in the col-
lection. The only method is item, which takes the index of the item, beginning with the
first element at index 0:

var img = imgElements.item(1); // second image

NodeList is an intriguing object because it’s a live collection, which means changes
made to the document after the NodeList is retrieved are reflected in the collection.
Example 11-1 demonstrates the NodeList live collection functionality, as well as
getElementsByTagName.

In the example, three images in the web page are accessed as a NodeList collection using
the getElementsByTagName method. The length property, with a value of 3, is output in
an alert. Immediately after the alert, a new paragraph and img elements are created, and
the img appended to the paragraph. To append the paragraph following the others in

216 | Chapter 11: Accessing Page Elements

the page, getElementsByTagName is used again, this time with the paragraph tags (p).
We’re not really interested in the paragraphs, but in the paragraphs’ parent element,
found via the parentNode property on each paragraph.

The new paragraph element is appended to the paragraph’s parent element, and the
previously accessed NodeList collection variable’s length property again printed out.
Now, the value is 4, reflecting the addition of the new img element.

Example 11-1. Demonstrating getElementsByTagName and the NodeList live collection property

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>NodeList</title>
<script type="text/javascript">
//<![CDATA[

window.onload=function() {
 var imgs = document.getElementsByTagName('img');
 alert(imgs.length);
 var p = document.createElement("p");
 var img = document.createElement("img");
 img.src="orchids4.preview.jpg";
 p.appendChild(img);

 var paras = document.getElementsByTagName('p');
 paras[0].parentNode.appendChild(p);

 alert(imgs.length);
}
//]]>
</script>
</head>
<body>
<p><img src="orchids12.preview.jpg"
 alt="Orchid from MBG 2009 orchid show" /></p>
<p><img src="orchids6.preview.jpg"
 alt="Orchid from MBG 2009 orchid show" /></p>
<p><img src="orchids9.preview.jpg"
 alt="Orchid from MBG 2009 orchid show" /></p>
</body>
</html>

In addition to using getElementsByTagName with a specific element type, you can also
pass the universal selector (*) as a parameter to the method to get all elements:

var allelems = document.getElementsByTagName('*');

IE7, or IE8 running in IE7 mode, will return an empty nodelist if you
use the universal selector with the getElementsByTagName method.

11.2 Accessing All Images in the Web Page | 217

Namespace Variation
There is a variation of getElementsByTagName, getElementsByTagNameNS, which can be
used in documents that support multiple namespaces, such as an XHTML web page
with embedded MathML or SVG.

In Example 11-2, an SVG document is embedded in XHTML. Both the XHTML docu-
ment and the embedded SVG make use of the title element. The title element in the
XHTML document is part of the default XHTML namespace, but the title in the SVG
is part of the Dublin Core namespace.

When the title element is accessed, information about the title, including its name-
space, the prefix, the localName and the textContent are printed out. The prefix is the
dc component of dc:title, and the localName is the title part of dc:title. The text
Content is a new property, added with the DOM Level 2, and is the text of the element.
In the case of title (either the XHTML or the Dublin Core element), it would be the
title text.

Example 11-2. The differences between the namespace and nonnamespace variation of
getElementsByTagName

<!DOCTYPE html PUBLIC
 "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN"
 "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>Namespace</title>
<script type="text/javascript">
//<![CDATA[

window.onload=function () {

 var str = "";
 var title = document.getElementsByTagName("title");
 for (var i = 0; i < title.length; i++) {
 str += title.item(i).namespaceURI + " " +
 title.item(i).prefix + " " +
 title.item(i).localName + " " +
 title.item(i).text + " ";
 }
 alert(str);

 str = "";
 if (!document.getElementsByTagNameNS) return;
 var titlens =
document.getElementsByTagNameNS("http://purl.org/dc/elements/1.1/",
"title");
 for (var i = 0; i < titlens.length; i++) {
 str += titlens.item(i).namespaceURI + " " +
 titlens.item(i).prefix + " " +
 titlens.item(i).localName + " " +
 titlens.item(i).textContent + " ";
 }

218 | Chapter 11: Accessing Page Elements

 alert(str);}
//]]>

</script>
</head>
<body>
<h1>SVG</h1>
<svg id="svgelem"
 height="800" xmlns="http://www.w3.org/2000/svg">
 <circle id="redcircle" cx="300" cy="300" r="300"
 fill="red" />
 <metadata>
 <rdf:RDF xmlns:cc="http://web.resource.org/cc/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#
">
 <cc:Work rdf:about="">
 <dc:title>Sizing Red Circle</dc:title>
 <dc:description></dc:description>
 <dc:subject>
 <rdf:Bag>
 <rdf:li>circle</rdf:li>
 <rdf:li>red</rdf:li>
 <rdf:li>graphic</rdf:li>
 </rdf:Bag>
 </dc:subject>
 <dc:publisher>
 <cc:Agent rdf:about="http://www.openclipart.org">
 <dc:title>Testing RDF in SVG</dc:title>
 </cc:Agent>
 </dc:publisher>
 <dc:creator>
 <cc:Agent>
 <dc:title id="title">Testing</dc:title>
 </cc:Agent>
 </dc:creator>
 <dc:rights>
 <cc:Agent>
 <dc:title>testing</dc:title>
 </cc:Agent>
 </dc:rights>
 <dc:date></dc:date>
 <dc:format>image/svg+xml</dc:format>
 <dc:type
 rdf:resource="http://purl.org/dc/dcmitype/StillImage"/>
 <cc:license
 rdf:resource="http://web.resource.org/cc/PublicDomain"/>
 <dc:language>en</dc:language>
 </cc:Work>
 <cc:License
 rdf:about="http://web.resource.org/cc/PublicDomain">
 <cc:permits
 rdf:resource="http://web.resource.org/cc/Reproduction"/>
 <cc:permits
 rdf:resource="http://web.resource.org/cc/Distribution"/>

11.2 Accessing All Images in the Web Page | 219

 <cc:permits
 rdf:resource="http://web.resource.org/cc/DerivativeWorks"/>
 </cc:License>
 </rdf:RDF>
 </metadata>
 </svg>
</body>
</html>

The result of the application can vary between browsers. When using Firefox and ac-
cessing title without using the namespace variation, the only title returned is the
XHTML document title. However, when using the namespace variation (getElements
ByTagNameNS), and specifying the Dublin Core namespace, all of the Dublin Core titles
in the RDF within the SVG are returned.

When accessing the nonnamespaced version of getElementsByTagName in Safari,
Chrome, and Opera, both the XHTML title and the Dublin Core titles are returned, as
shown in Figure 11-2.

Figure 11-2. Using getElementsByTagNameNS to get namespaced elements

Though IE8 doesn’t directly support the XHTML MIME type, if the page is served as
text/html using some form of content negotiation, IE will process the page as HTML.
However, though the getElementsByTagName works with IE, the namespaced version of
the method, getElementsByTagNameNS, does not. All of the values are returned as
undefined. IE8 doesn’t return the dc:title entries in the SVG, either.

220 | Chapter 11: Accessing Page Elements

http://purl.org/dc/elements/1.1/

If the Dublin Core namespace is declared in the html element, instead of in the svg
element, IE8 does return all of the dc:title entries, as well as the XHTML title:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:dc="http://xml:lang="en">

An alternative approach consists of using a tag name string that concatenates the
prefix and localName. All of the browsers will find the dc:title using the following:

var titles = document.getElementsByTagName("dc:title");

However, you can’t access the namespace-specific properties using the pseudoname-
space method. Your applications can’t access the namespace properties using the IE
approach of embedding all of the namespace declarations in the html tag, but you can
find out the namespace URI via Microsoft’s tagURN property:

alert(title[i].tagURN); // for dc:title

Browsers can use the following to get all elements with a given tag, regardless of name-
space, if the document is served as application/xhtml+xml or other XML type:

var titles = document.getElementsByTagNameNS("*","title");

This JavaScript returns both the default XHTML namespace title and the titles in the
Dublin Core namespace.

As mentioned earlier, IE8 doesn’t properly support namespaces, but IE9
should with its new support for XHTML.

See Also
Using getElementsByTagName to get all the paragraphs just to find their parent in Ex-
ample 11-1 is overkill. Recipe 11.5 demonstrates how to use the Selectors API to directly
access just the parent element for the paragraphs. The parentNode property is intro-
duced in Recipe 11.1.

11.3 Discover All Images Within an Article
Problem
You want to access all images within article elements only.

Solution
Find all article elements in the web page. Once they are found, find the img elements
for each one:

11.3 Discover All Images Within an Article | 221

var imgString = "";

// find all articles
var articles = document.getElementsByTagName('article');

// find all images in articles
for (var i = 0; i < articles.length; i++) {
 var imgs = articles[i].getElementsByTagName('img');

 // print out src
 for (var j = 0; j < imgs.length; j++) {
 var img = imgs[j];
 imgString+=img.src + "
";
 }
 }
 document.getElementById("result").innerHTML=imgString;

Discussion
The DOM method getElementsByTagName is available for the element object, as well as
the document object. This is handy if you want to look for elements of a certain type
throughout the document or within a specific subtree of the document, with a given
element as its root.

In the solution, the first use of getElementsByTagName returns a nodeList, which is a
collection of article elements for the entire document. This collection is traversed like
an array, and the getElementsByTagName is used again, this time with each of the
article elements, to look for any img elements within the subtree formed by the article.

The example works with all of the book target browsers except IE8. IE8 does pick up
the articles from the first use of document.getElementsByTagName. However, IE8 does
not support the use of getElementsByTagName with an element, so it doesn’t pick up the
images.

See Also
In order to access the new HTML5 article element with IE8, you’ll need to use an
HTML5 shim. IE8 and earlier versions don’t correctly process the new HTML5 ele-
ments, such as article, without this additional assistance. Recipe 12.4 has more dis-
cussion on using an HTML5 shim.

Recipe 11.3 provides in-depth coverage of the getElementsByTagName method.

11.4 Discover all Images in Articles Using the Selectors API
Problem
You want to get a list of all img elements that are descendants of article elements, but
not have to traverse HTML collection objects, which can be a slow operation.

222 | Chapter 11: Accessing Page Elements

Solution
Use the newer Selectors API and access the img elements contained within article ele-
ments using CSS-style selector strings:

var imgs = document.querySelectorAll("article img");

Discussion
Once you’ve worked with the Selectors API, you’ll never look for another way to access
document elements. The Selectors API is a new specification that is undergoing work at
the time this was written. It has broad implementation across browsers, though there
are some differences in implementation support.

Earlier versions of browsers, such as IE7, Firefox 2, and so on, do not
support the Selectors API. You’ll have to use fallback methods to per-
form the same queries. In addition, IE8 does not support many selector
variations.

There are two selector query API methods. The first, querySelectorAll, was demon-
strated in the solution. The second is querySelector. The difference between the two
is querySelectorAll returns all elements that match the selector criteria, while
querySelector only returns the first found result.

The selectors syntax is derived from those that support CSS selectors. In the example,
all img elements that are descendants of article elements are returned. To access all
img elements, regardless of parent element, use:

var imgs = document.querySelectorAll("img");

In the solution, you’ll get all img elements that are direct or indirect descendants of a
article element. This means that if the img element is contained within a div that’s
within an article, this img element will be among those returned:

<article>
 <div>

 </div>
</article>

If you want only those img elements that are direct children of an article element, you
would use the following:

var imgs = document.querySelectorAll("article> img");

If you’re interested in accessing all img elements that are immediately followed by a
paragraph, you would use:

var imgs = document.querySelectorAll("img + p");

11.4 Discover all Images in Articles Using the Selectors API | 223

If you’re interested in an img element that has an empty alt attribute, you can use the
following:

var imgs = document.querySelectorAll('img[alt=""]');

If you’re only interested in img elements that don’t have an empty alt attribute, use the
following:

var imgs = document.querySelectorAll('img:not([alt=""])');

The negation pseudoselector (:not) is used to find all img elements with alt attributes
that are not empty.

For these queries, which are looking for all img elements that meet the given selectors,
you should get the same result with the more modern browsers, such as Firefox 3.x,
Opera 10.x, Safari 4.x, and Chrome 4.x. Unfortunately, IE8 has only limited support
for selectors—the code in the solution does not work.

The collection of elements returned from querySelectorAll is not a “live” collection,
unlike the collection of objects returned from getElementsByTagName. Updates to the
page are not reflected in the collection if the updates occur after the collection is
retrieved.

Though the Selectors API is a wonderful creation, it shouldn’t be used
for every document query. For instance, it’s not efficient for accessing
elements by a specific identifier, so you’re still better off using
getElementById for this purpose. Best bet is to test your application using
the Selectors API and a variety of other methods and see which provides
best performance and broadest support.

Namespace Variation
CSS3 provides syntax for handling namespaces. This is how to define a namespace in
CSS3, via the Namespace module:

@namespace svg "http://www.w3.org/2000/svg";

If an element is given with a namespace prefix, such as the following:

<q:elem>...</q:elem>

to style the element, you would use:

@namespace q "http://example.com/q-markup";
q|elem { ... }

and to style an attribute, you could use:

@namespace foo "http://www.example.com";
[foo|att=val] { color: blue }

Recipe 11.2 covered the concept of namespaces when querying against the document,
and introduced the first of the namespace-specific methods: getElementsByTagNameNS.

224 | Chapter 11: Accessing Page Elements

Since the CSS selectors allow for resolving namespaces, we might assume we could use
namespaces with querySelector and querySelectorAll. In fact we could, with earlier
iterations of the API Selectors draft, but there is no way to do so now.

Now, a namespace error will be thrown if the namespace is not resolved before using
the Selectors API methods. Unfortunately, the Selectors API doesn’t provide an ap-
proach to resolve the namespace before using one of the methods.

Instead, the Selectors API specification recommends using JavaScript processing to
handle namespaces. For instance, to find all of the dc:title elements within an SVG
element in a document, you could use the following:

var list = document.querySelectorAll("svg title");
var result = new Array();
var svgns = "http://www.w3.org/2000/svg"

for(var i = 0; i < list.length; i++) {
 if(list[i].namespaceURI == svgns) {
 result.push(list[i]);
}

In the example code, querying for all of the titles that are descendants of the svg element
will return both SVG titles and any Dublin Core or other titles used in the SVG block.
In the loop, if the title is in the Dublin Core namespace, it’s pushed on to the new array;
otherwise, if the title is in some other namespace, including the SVG namespace, it’s
disregarded.

It’s not an elegant approach, but it is serviceable, and also the only option available for
namespaces and the Selectors API at this time.

IE8 and earlier do not support the namespaceURI property, nor do they
support XHTML or SVG, where you would most likely need to use
namespaces. IE9 should provide support for namespaces, XHTML, and
SVG.

See Also
JavaScript access of the new HTML5 elements, such as article, requires the use of a
HTML5 shim: a small JavaScript application that enables the use of these elements in
IE8. Recipe 12.4 has more on the use of the HTML5 shim.

There are three different CSS selector specifications, labeled as Selectors Level 1, Level
2, and Level 3. You can access CSS Selectors Level 3 at http://www.w3.org/TR/css3
-selectors/, a site which contains links to the documents defining the other levels. These
documents provide the definitions of, and examples for, the different types of selectors.
In addition, the CSS3 Namespace module can be found at http://www.w3.org/TR/css3
-namespace/, and is currently a Candidate Recommendation.

11.4 Discover all Images in Articles Using the Selectors API | 225

http://www.w3.org/TR/css3-selectors/
http://www.w3.org/TR/css3-selectors/
http://www.w3.org/TR/css3-namespace/
http://www.w3.org/TR/css3-namespace/

There are currently two Selectors API specifications under development: the Selectors
API Level 1, which is a Candidate Recommendation, and the Selectors API Level 2,
which is a working draft.

John Resig, the creator of the popular jQuery library, has provided a comprehensive
test suite for selectors at http://ejohn.org/apps/selectortest/. The source for the test suite
can be found at http://github.com/jeresig/selectortest/tree/master. The CSS3.info site also
has a nice selectors test at http://tools.css3.info/selectors-test/test.html. This one is a little
easier to view, and provides links with each test to the example code.

As noted, Selectors API support isn’t universal. However, many of the popular Java-
Script framework libraries, such as jQuery, Prototype, and Dojo, provide workarounds
so you can use the selector and it offers a fallback, if necessary.

Chapter 17 introduces using jQuery and other libraries with your application code.

11.5 Finding the Parent Element for a Group of Elements
Problem
You want to access the parent element for a group of paragraphs.

Solution
Use the querySelector method to access the first paragraph in the set, and then access
the parentNode property for this element:

var parent = document.querySelector("body p").parentNode;

Discussion
With all the ways we can access child nodes and siblings, not to mention descendants
to many depths, you’d think we’d also be able to directly query for parent elements.
Unfortunately, there is nothing in CSS comparable to :parent to return a parent ele-
ment. However, we can fake it by accessing a known child element and then accessing
the parent via the parentNode property.

In the solution, the querySelector method will return the first paragraph element that
is a descendant of the body element. Since querySelector only returns one element, you
don’t have to use array reference to access an individual element. Once we have one of
the child elements, the parent is accessed via the parentNode property.

See Also
See Recipe 11.4 for more details on the Selectors API and the querySelector and
querySelectorAll methods.

226 | Chapter 11: Accessing Page Elements

http://www.w3.org/TR/selectors-api/
http://www.w3.org/TR/selectors-api/
http://www.w3.org/TR/selectors-api2/
http://ejohn.org/apps/selectortest/
http://github.com/jeresig/selectortest/tree/master
http://tools.css3.info/selectors-test/test.html

11.6 Highlighting the First Paragraph in Every Element
Problem
Based on some user event, you want to dynamically change the background color to
yellow for the first paragraph in every div element.

Solution
Use the document.querySelectAll with the appropriate CSS selector in order to refer-
ence all first paragraphs in div elements, and then modify the paragraph’s CSS back-
ground color:

var paras = document.querySelectorAll('div p:first-of-type');
for (var i = 0; i < paras.length; i++) {
 paras[i].setAttribute("style","background-color: #ffff00");
}

If the specific pseudoselector syntax is not supported, use an alternative, such as the
following:

var divs = document.querySelectorAll("div");
for (var j = 0; j < divs.length; j++) {
 var ps = divs.item(j).getElementsByTagName("p");
 if (ps.length > 0) {
 ps[0].setAttribute("style","background-color: #ffff00");
 }
}

Discussion
We’re only interested in selectors where the paragraph element is a descendant of a
div element:

var paras = document.querySelectorAll('div p');

In addition, we’re interested in the first paragraph element in the div, so at first glance,
the following looks acceptable:

var paras = document.querySelectorAll('div p:first-child');

However, there’s no guarantee that the div element won’t contain elements of other
types, and if the first element is not a paragraph, the first paragraph won’t be found.
Instead, as shown in Example 11-3, the :first-of-type CSS selector is used so that the
first paragraph in the div element is highlighted when the document is clicked, even if
it isn’t the first element in the div. The code is included in a try...catch block in order
to provide an alternative if the type of selector syntax isn’t supported.

11.6 Highlighting the First Paragraph in Every Element | 227

Example 11-3. Using the first-of-type selector in order to highlight the first paragraph element in a div

<!DOCTYPE html>
<head>
<title>paras</title>
<meta charset="utf-8" />
<style>
div
{
 padding: 10px;
 border: 1px solid #000000;
}
</style>
<script type="text/javascript">

window.onload=function() {
 document.onclick=function() {
 try {
 var paras = document.querySelectorAll('div p:first-of-type');
 for (var i = 0; i < paras.length; i++) {
 paras[i].setAttribute("style","background-color: #ffff00");
 }
 } catch(e) {
 var divs = document.querySelectorAll("div");
 for (var j = 0; j < divs.length; j++) {
 var ps = divs.item(j).getElementsByTagName("p");
 if (ps.length > 0) {
 ps[0].setAttribute("style","background-color: #ffff00");
 }
 }
 }
 };
}
</script>
</head>
<body>
 <div>
 <p>Paragraph one</p>
 <p>Paragraph two</p>
 <p>Paragraph three</p>
 </div>
 <div>
 <p>Paragraph one</p>
 <p>Paragraph two</p>
 </div>
 <div>

 List item one
 List item two

 <p>Paragraph one</p>
 <p>Paragraph two</p>
 </div>
</body>

228 | Chapter 11: Accessing Page Elements

Figure 11-3 shows that even though the first element in the third div is an unordered
list, the first paragraph that follows is still highlighted. Another CSS selector that pro-
vides the same functionality is :nth-of-type(1), where parentheses are used to wrap
the number of the target element.

Figure 11-3. Page displaying highlighted first paragraphs in every div element

Firefox, Safari, Chrome, and Opera support :first-of-type. IE8 doesn’t, but it does
support :first-child. However, as the example demonstrates, we can’t count on the
paragraph being the first element. Instead, we use a more generalized query for all
div elements, and then access all the paragraphs with getElementsByTagName.

We could use the getElementsByTagName for the first query, except that this method
returns a live collection, and the first approach doesn’t. We want the functionality to
be the same for both approaches, as much as possible. If you need to support IE7,
though, you should use getElementsByTagName, as this browser doesn’t support
querySelectorAll.

11.6 Highlighting the First Paragraph in Every Element | 229

See Also
See Recipe 11.2 for more on getElementsByTagName and live collections, and Rec-
ipe 11.4 for an in-depth introduction to the Selectors API. Microsoft provides a page
for the CSS selectors it supports at http://msdn.microsoft.com/en-us/library/
cc351024(VS.85).aspx. Note, though, that Microsoft does have a habit of changing its
URLs, so this web page address may not work in the future.

11.7 Apply a Striping Theme to an Unordered List
Problem
You want to modify the appearance of unordered list items so that the list appears
striped.

Solution
Use the Selectors API to query for every other item in the list, and then change the
background color:

var lis = document.querySelectorAll('li:nth-child(2n+1)');
for (var i = 0; i < lis.length; i++) {
 lis[i].setAttribute("style","background-color: #ffeeee");
}

or:

var lis = document.querySelectorAll('li:nth-child(odd)');
for (var i = 0; i < lis.length; i++) {
 lis[i].setAttribute("style","background-color: #eeeeff");
}

or access the list parent element and then traverse its child nodes, changing the back-
ground color of every other element, using the arithmetic modulo operator:

var parentElement = document.getElementById("thelist");
var lis = parentElement.getElementsByTagName("li");
for (var i = 0; i < lis.length; i++) {
 if (i % 2 == 0) {
 lis[i].setAttribute("style","background-color: #eeffee");
 }
}

Discussion
The :nth-child() pseudoclass allows us to specify an algorithm pattern, which can be
used to find elements that match a certain pattern, such as 2n+1, to find every other
element. You can also use the odd and even arguments to access the odd or even elements
of the type:

var lis = document.querySelectorAll('li:nth-child(odd)');

230 | Chapter 11: Accessing Page Elements

http://msdn.microsoft.com/en-us/library/cc351024(VS.85).aspx
http://msdn.microsoft.com/en-us/library/cc351024(VS.85).aspx

Not all browsers support this relatively new selector type. Firefox, Opera, Safari, and
Chrome do, but IE8 doesn’t support the first two approaches given in the solution, and
older versions of most other browsers don’t. In these situations, you’ll want to use the
third approach in the solutions: get access to all of the elements using whatever method,
and then use the modulo arithmetic operator to filter the elements. The modulo operator
returns the remainder of dividing the first operand by the second. Dividing the numbers
0, 2, 4, 6, and so on by 2 returns 0; the condition is successful, and the element is
affected.

In the solution, the even elements are the ones affected. To access the odd elements,
use the following:

if ((i + 1) % 2) {
 ...
}

The setAttribute with the style property also doesn’t work for IE7 for the third ap-
proach. The downloadable example code contains a workaround for this browser.

See Also
See Recipe 11.4 for more details on the Selectors API and the querySelector and
querySelectorAll methods. See Recipe 12.15 for more on setAttribute.

11.8 Creating an Array of All Elements of a Given Class
Problem
You want to retrieve a collection of elements that have a specific class name within the
document.

Solution
Use the getElementsByClassName method to retrieve a collection of all elements in the
document that share the same class name:

var elems = document.getElementsByClassName("classname");

or use the Selectors API to get the class-named items:

var elems = document.querySelectorAll(".classname");

Discussion
The method, getElementsByClassName, goes beyond one element type to find all ele-
ments that share the same class value. It can also work with multiple classes:

var elems = document.getElementsByClassName("firstclass secondclass");

11.8 Creating an Array of All Elements of a Given Class | 231

Chrome, Safari, Firefox, and Opera support getElementsByClassName, but IE8 doesn’t.
The second approach using querySelectorAll is a good alternative option. It, too, can
search for multiple class names:

var elems = document.querySelectorAll(".firstclass, .secondclass");

See Also
See Recipe 11.4 for more details on the Selectors API and the querySelector and
querySelectorAll methods.

11.9 Finding All Elements That Share an Attribute
Problem
You want to find all elements in a web document that share the same attribute.

Solution
Use the universal selector (*) in combination with the attribute selector to find all ele-
ments that have an attribute, regardless of its value:

var elems = document.querySelectorAll('*[class]');

The universal selector can also be used to find all elements with an attribute that’s
assigned the same value:

elems = document.querySelectorAll('*[class="red"]');

Discussion
The solution demonstrates a rather elegant query selector. All elements are analyzed
because of the use of the universal selector (*). To test the existence of an attribute, all
you need do is list the attribute name within square brackets ([attrname]).

In Recipe 11.8, a couple approaches were demonstrated for finding all elements that
have a specific class name. The query selector used in the solution could be modified
to do the same:

var elems = document.querySelectorAll('*[class"=test"]');

If you’re not sure of the class name, you can use the substring-matching query selector:

var elements = document.querySelectorAll('*[class*="test"]');

Now any class name that contains the substring test matches.

You could also modify the syntax to find all elements that don’t have a certain value.
For instance, to find all div elements that don’t have the target class name, use
the :not negation operator:

var elems = document.querySelectorAll('div:not(.test)');

232 | Chapter 11: Accessing Page Elements

This and the selector syntax examples given in the solution work with Opera, Chrome,
Firefox, and Safari. Both of the selector syntax examples in the solution work with IE8,
but the use of the negation operator, :not, does not. The querySelectorAll method
does not work with IE7.

See Also
See Recipe 11.4 for more details on the Selectors API and the querySelector and
querySelectorAll methods.

11.10 Finding All Checked Options
Problem
You want to find all checkbox input elements that are selected (checked):

Solution
Use a :checked pseudoclass selector to directly query all checked checkbox input
elements:

var checked = document.querySelectorAll("#checks
input[type='checkbox']:checked");
for (var i = 0; i < checked.length; i++) {
 str+=checked[i].value + " ";
}

If the :checked selector fails, use the following, which accesses all of the input elements,
checks their type, and then checks to see if they’re selected:

var inputs = document.querySelectorAll("#checks input");
for (var j = 0; j < inputs.length; j++) {
 if (inputs.item(j).type == "checkbox" && inputs.item(j).checked) {
 str+=inputs.item(j).value + " ";

 }
}

Discussion
The :checked pseudoselector will only return those checkbox or radio elements that
are checked. Since we only want the checkbox input types, we further refined the se-
lector syntax to look for a specific type of input element.

The use of the :checked pseudoclass selector is a nicely targeted approach, though it’s
only supported in Safari, Firefox, Chrome, and Opera, and not in IE8. The alternative
does work in IE8, but not IE7, which doesn’t support the querySelectorAll method.

11.10 Finding All Checked Options | 233

When working with these new selectors, a good approach is to wrap the selector query
in a try statement and then provide an alternative in the catch statement. Incorporating
this into the solution gives us:

 var str = "checked values ";
 try {
 var checked = document.querySelectorAll("#checks
input[type='checkbox']:checked");
 for (var i = 0; i < checked.length; i++) {
 str+=checked[i].value + " ";
 }
 } catch(e) {
 var inputs = document.querySelectorAll("#checks input");
 for (var j = 0; j < inputs.length; j++) {
 if (inputs.item(j).type == "checkbox" &&
 inputs.item(j).checked) {
 str+=inputs.item(j).value + " ";
 }
 }
 }
 document.getElementById("results").innerHTML=str;

See Also
Recipe 11.4 includes more details on the Selectors API and the querySelector and
querySelectorAll methods.

11.11 Summing All the Values in a Table Row
Problem
You want to sum the numbers in table cells per row (or per column).

Solution
Use the Selectors API to access the specific table row cells directly, or retrieve a collec-
tion of all table rows, access the target row from the returned collection, and then access
the table row’s cells. Once retrieved by either method, traverse the cells, accessing the
cell data and converting the data to a number:

try {
 var cells = document.querySelectorAll("tr:nth-child(3) td");
} catch(e) {
 var tableElement = document.getElementById("thetable");
 var trs = tableElement.getElementsByTagName("tr");
 var cells = trs[2].getElementsByTagName("td");
}

// process cell data
var sum = 0;
for (var i = 0; i < cells.length; i++) {

234 | Chapter 11: Accessing Page Elements

 var val = parseFloat(cells[i].firstChild.data);
 if (!isNaN(val)) {
 sum+=val;
 }
}

// output the sum
alert("sum " + sum);

Discussion
There are several ways to get all the cells for a table row, including adding a click event
handler to the rows, and then processing all of the cells when the row is clicked.

In the solution, we looked at two different approaches. The first approach uses the
Selectors API querySelectorAll with a selector that targets all table cells in the third
table row. The second approach is to access all of the table rows, using getElementsBy
TagName, and then access all the table cells using the same method, against the target
row. I prefer the first approach, because it reduces the processing involved and provides
better, targeted results. However, tr:nth-child(3) td isn’t supported in IE8. To pre-
vent problems where the selector syntax or querySelectorAll aren’t supported, the code
is wrapped in a try...catch block, with the second approach as the fallback option.

What if we want to sum a column of table cells, rather than a row? In this case, what
we really want is every table cell in a specific position for every table row. For this type
of functionality, especially in light of some of the quirks with querySelectorAll, we’ll
need to use another approach, such as getElementsByTagName. Example 11-4 shows an
example that sums values from the third column—skipping the first row, which con-
sists of column headers.

Example 11-4. Application that sums cells in third table column

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<title>Sum Table Column</title>
<script>
//<![CDATA[

window.onload=function() {
 var table = document.querySelector("table");
 table.onclick=sum;
}

function sum() {
 var rows =
 document.getElementById("sumtable").getElementsByTagName("tr");
 var sum = 0;

 // start with one to skip first row, which is col headers
 for (var i = 1; i < rows.length; i++) {
 sum+=parseFloat(rows[i].childNodes[2].firstChild.data);

11.11 Summing All the Values in a Table Row | 235

 }
 alert(sum);
}

//]]>
</script>

</head>
<body>
<table id="sumtable">
<tr><th>Value 1</th><th>Value 2</th><th>Value 3</th><th>Value 4</th>
</tr>
<tr><td>--</td><td>**</td><td>5.0</td><td>nn</td></tr>
<tr><td>18.53</td><td>9.77</td><td>3.00</td><td>153.88</td></tr>
<tr><td>Alaska</td><td>Montana</td><td>18.33</td><td>Missouri</td>
</tr>
</table>
</body>
</html>

The actual data value is accessed via the data property of the Text node that is the td
child element. The parseFloat method is used to convert the text to a number. If you’re
not sure that the table cells contain numbers, you’ll want to test the value first, or you
could up with a result of NaN.

In the example, the table rows are accessed using getElementsByTagName directly on the
table element, which is retrieved using the getElementById method on the document
object. Rather than have to use all of these methods individually, I chain the methods
one after another. Method chaining doesn’t work with all JavaScript object methods,
but it does work with many among the DOM objects.

You probably wouldn’t use a querySelector or getElementsByTagName with a static web
table, because you can create the sums as you’re building the table (if the table is built
via an Ajax call). However, if you’re using something like editing in place to add or
modify table values, this isn’t a bad approach to update column or row sums after the
edit.

The example works with all the book’s target browsers, but does not work with IE7
because of the use of querySelector.

See Also
ParseFloat is covered in Recipe 4.5. Recipe 16.13 has a demonstration and a more in-
depth explanation of method chaining. Recipe 11.4 includes more details on the Se-
lectors API and the querySelector and querySelectorAll methods.

236 | Chapter 11: Accessing Page Elements

11.12 Get Element Attributes
Problem
You want to access the information contained in an element attribute.

Solution
If the attribute is defined as a standard attribute in the DOM by the user agent (browser),
you can access the attribute directly on the element:

<input id="field" type="check" checked="checked" value="test" />
...

var field = document.getElementById("field");
alert(field.checked); // true
alert(field.value); // test
alert(field.type); // text

Some attributes are renamed when you access them in JavaScript, such as the class
attribute, which you access as className:

<div id="elem" class="test" role="article" data-index="1">
testing
</div>
...
 var elem = document.getElementById("elem");
 alert(elem.className); // test

For nonstandard attributes, or ones that have been newly defined but are not considered
standard by the specific browser, you need to use the getAttribute method:

var index = elem.getAttribute("data-index");
alert(index); // 1

var role = elem.getAttribute("role");
alert(role); // article

Discussion
When elements are defined in various HTML specifications, such as HTML5, they’re
given a set of shared and/or unique attributes, which you can access directly from the
object:

var id = elem.id;

Nonstandard or newly defined attributes have to be accessed using the getAttribute
method:

var role = elem.getAttribute("role");

Since the getAttribute method works equally well with standard and nonstandard
attributes, you should get in the habit of using the method to access all attributes.

11.12 Get Element Attributes | 237

If the attribute doesn’t exist, the method returns a value of null or the empty string
(""). You can check to see if an attribute exists first, by using the hasAttribute method:

if (elem.hasAttribute(role)) {
 var role = elem.getAttribute("role");
 ...
}

This approach bypasses the problem that can occur when different user agents return
different values (empty string or null) when an attribute doesn’t exist.

See Also
There is a namespace variation of getAttribute, getAttributeNS, which takes the name-
space as the first parameter of the method. See Recipe 11.2 for more on working with
namespaces.

11.13 Get Style Information for an Element
Problem
You want to get one or more CSS style settings for an element.

Solution
If you want to access style information that’s set inline or via JavaScript, and access it
directly on the element’s style property, use:

var width = elem.style.width;

If you want to access the element’s existing style information, regardless of how it’s set,
you need to use a cross-browser approach:

function getStyle(elem, cssprop, cssprop2){

 // IE
 if (elem.currentStyle) {
 return elem.currentStyle[cssprop];

 // other browsers
 } else if (document.defaultView &&
 document.defaultView.getComputedStyle) {
 return document.defaultView.getComputedStyle(elem,
null).getPropertyValue(cssprop2);

 // fallback
 } else {
 return null;
 }
}

window.onload=function() {

238 | Chapter 11: Accessing Page Elements

 // setting and accessing style properties
 var elem = document.getElementById("elem");

 var color = getStyle(elem,"backgroundColor", "background-color");
 alert(color); // rgb(0,255,0)
}

Discussion
Every web page element has a set of properties and methods, some unique to the object,
and some inherited from other objects, such as Element or Node, covered in earlier rec-
ipes. One of the properties elements share is the style object, representing the CSS style
settings for the element.

There are a couple of ways you can get style information. The first is to directly access
the style object, using the familiar dot notation used throughout the book to access
object properties and methods:

var elem = document.getElementById("elem");
var width = elem.style.width;

All inline or dynamically set style settings can be accessed using this approach, but there
is a special syntax you have to use. For nonhyphenated property values, such as
width, you access the setting directly:

var width = elem.style.width;

However, for property names with hyphens, such as background-color, use a Camel-
Case notation such as the following:

var bkcolor = elem.style.backgroundColor;

Using background-color doesn’t work, because JavaScript interprets the hyphen as a
subtraction operator. The new name is formed by removing the hyphen, and capitalizes
the first letter of the word following the hyphen.

Another approach to accessing the style is to use the getAttribute method to access
the style object:

var style = elem.getAttribute("style");

However, you would then have to parse the values out of the string. You’re better off
just accessing the values directly on the style property.

IE7 also returns an object, rather than a string with CSS values, when
you access the style property using getAttribute.

11.13 Get Style Information for an Element | 239

Only those CSS values that are set inline, using the element’s style attribute, or set
dynamically using JavaScript, are accessible using either of the approaches just dem-
onstrated. To access CSS values set by default by the user agent, via a stylesheet,
dynamically, or inline, you’ll need to use a cross-browser approach:

var style;
var cssprop = "fontFamily";
var cssprop2 = "font-family";
if (elem.currentStyle) {
 style = elem.currentStyle[cssprop];
} else if (document.defaultView &&
 document.defaultView.getComputedStyle) {
 style = document.defaultView.getComputedStyle(elem,
null).getPropertyValue(cssprop2);
}

The currentStyle object is an IE-specific object that consists of a collection of all sup-
ported and applicable CSS style properties for an element. It expects values to be in
CamelCase notation, such as fontFamily, rather than font-family.

The book’s other target browsers support the window.getComputedStyle method, which
can also be accessed as document.defaultView.getComputedStyle. This method takes
two parameters: the element, and a pseudoelement, which is typically left null (or an
empty string, "").

What’s returned using the cross-browser approach is rather interesting. It’s the com-
puted style for the element, which is a combination of all CSS settings, including those
that are set by default by the browser, set using a stylesheet, or set dynamically using
CSS. What’s returned when accessing the font-family depends on the circumstances:

• If the font-family is not set, you’ll get the browser default value, if any

• If the font-family is set via a stylesheet, you’ll get the stylesheet value

• If the font-family is set inline and in a stylesheet, you’ll get the inline value

• If the font-family is set dynamically, regardless of whether it is set inline or in a
stylesheet, you’ll get the dynamic value

See Also
Example 12-7, in Recipe 12.15, demonstrates various techniques for setting and re-
trieving style information.

240 | Chapter 11: Accessing Page Elements

CHAPTER 12

Creating and Removing Elements and
Attributes

12.0 Introduction
The existing Document Object Models provide a plethora of methods you can use to
create new web document elements. Most of the methods I use in this chapter and in
the following chapters are from the DOM Levels 1 and 2 and, since most of the examples
in this chapter are specific to HTML or XHTML documents, the methods and objects
described inherit functionality from both Core and HTML DOM specifications.

There is one older property, innerHTML, from the nonstandard DOM Level 0, that I’ll
also demonstrate, primarily because it’s so popular, and also because of new support
in HTML5.

Most of the methods and associated properties are available with all of the modern
browsers. I’ll make a note where a method or property isn’t supported by one or more
browsers.

See Also
See the Introduction to Chapter 11, for a more in-depth look at the Document Object
Model and the DOM levels.

12.1 Using innerHTML: A Quick and Easy Approach to Adding
Content
Problem
You want to add a couple of paragraphs with text to a div element, and you want to
do so quickly and easily.

241

Solution
Use the innerHTML property to overwrite an element’s existing contents, with new
material:

var div = document.getElementById("target");
div.innerHTML = "<p>This is a paragraph</p><p>This is a second</p>";

Discussion
The innerHTML property has been around for a very long time, and is part of what is
known as DOM Level 0—the first de facto API developed by the browser companies.
It can be much faster when you’re making complex additions to the web page, because
its processing is handled by the HTML parser, rather than the DOM engine.

Because innerHTML was never part of a standard, there are some variations in how it’s
implemented. For instance, not all browsers support the use of innerHTML with tables,
so you won’t want to use the property for adding table rows. The use of innerHTML isn’t
standard with XML formats, such as XHTML, as there’s no way to ensure that what is
appended into the page is well formed. In earlier years, the use of innerHTML wasn’t even
supported with XHTML documents.

Now, though, innerHTML is becoming officially blessed by being defined within the
HTML5 effort. In addition, the outerHTML property has also been formally defined in
the HTML5 specification. It differs from innerHTML in that outerHTML represents both
the element and the element’s contents, while innerHTML only represents the element’s
contents.

Currently, the HTML5 specification states that the use of innerHTML will
abort the current X/HTML parsing process. And not all browsers allow
innerHTML to be set until after the page is finished loading. Based on these
restrictions, it’s best to not use innerHTML until after the page is com-
pletely loaded.

12.2 Inserting Elements Before Existing Page Elements
Problem
You need to add a new div element to the web page before an existing div element.

Solution
Use the DOM method createElement to create a new div element. Once created, attach
it to the web page before an existing element, using another DOM method,
insertBefore:

242 | Chapter 12: Creating and Removing Elements and Attributes

// get the existing element
var refElement = document.getElementById("sister");

// get the element's parent node
var parent = refElement.parentNode;

// create new div element
var newDiv = document.createElement("div");

// attach to page before sister element
parent.insertBefore(newDiv, refElement);

Discussion
Adding a web page element is uncomplicated, as long as you keep in mind the tree-like
structure of the web page. If you’re interested in attaching a web page element before
another element, you’ll not only need to access this element, but also the target ele-
ment’s parent element, in order to create the actual placement.

The reason you need the parent element is that there is no functionality to insert an
element before another, given just the target element. Instead, you have to access the
target element’s parent element, and use the insertBefore method to insert the new
element before the existing one.

In Example 12-1, the solution for this recipe is embedded into a web page that originally
consists only of one named div element. When this element receives a click event, a
new sister div element is created and inserted into the document before the existing
element.

Example 12-1. Inserting a div element into a web page

<!DOCTYPE html>

<head>
<title>object detection</title>
<style type="text/css">
div
{
 width: 50%;
 height: 20px;
 padding: 10px;
 margin: 10px 0;
}

#div1
{
 background-color: #ffff00;
 }

.divclass
{
 background-color: #ccffcc;
}

12.2 Inserting Elements Before Existing Page Elements | 243

</style>
<script type="text/javascript">

window.onload=function() {
 document.getElementById("div1").onclick=addDiv;
}

function addDiv() {

 // get parent
 var parent = this.parentNode;

 // create new div
 var newDiv = document.createElement("div");
 newDiv.className = "divclass";
 newDiv.innerHTML = "<p>I'm here, I'm in the page</p>";

 // add to page
 parent.insertBefore(newDiv,this);
}
</script>
</head>
<body>
 <div id="div1">
 <p>Click me to add new element</p>
 </div>
</body>

In the example, since the event is attached to the original div element, a reference to it
can be accessed using this within the event function, because the element is the owner
of the onclick event handler function. You can then get the element’s parent through
the parentNode property. Once you have a reference to both the parent and the existing
element, all you need to do is create the new div element and insert it.

Use the document.createElement method, passing in the type of element—in this case,
div. Since the current document is an HTML document, the createElement method
creates a new HTMLElement, which inherits all functionality of the more generic
Element class, as well as additional methods and properties. The new element is assigned
a CSS style through the className property, which is a standard property for all HTMLEle
ment objects. It’s given some content using the innerHTML property. The new div element
is then added to the web page with insertBefore.

Each successive click of the original div element prepends a new div element to the
original, each with the same class and content. Figure 12-1 shows the web page after
the original div element has been clicked several times.

244 | Chapter 12: Creating and Removing Elements and Attributes

Figure 12-1. Inserting div elements into a web page

Namespace Variation
Recipe 11.2 included a discussion on namespaces and their impact on some of the DOM
methods that allow us to query and add new web page elements in a document that
can contain multiple namespaces. If you’re working within an environment where
namespaces are supported, such as an XHTML or SVG document, and you create a
new element or attribute, it’s automatically added to the document’s default namespace
unless you use one of the namespace-specific DOM methods.

Generally, the default behavior is sufficient. However, if you want to create an element
within a specific namespace, such as creating a title in the Dublin Core namespace
rather an XHTML title, use the namespace variation of createElement, createEle
mentNS:

var dcTitle = document.createElementNS("http://purl.org/dc/elements/1.1/","title");

The createElementNS takes two parameters: the first is the namespace for the element;
the second is the element tag.

12.2 Inserting Elements Before Existing Page Elements | 245

The namespace method createElementNS is not supported in HTML currently, as
namespaces aren’t supported in HTML. The method is also not currently supported
in IE8, but should be in IE9, when Microsoft adds support for XHTML.

See Also
See Recipe 11.2 for more information about namespaces and the DOM. For a specific
description of the HTMLElement, see the related W3C page.

12.3 Appending a New Element to the End of a Page
Problem
You want to add a new element to a web page, but you want to append it to the end
of the page.

Solution
Access the highest level web page element, the body element, and use the appendChild
method to append the new element to the page:

var bdy = document.getElementsByTagName("body")[0]; // body element
var newDiv = document.createElement("div");

// append to body
bdy.appendChild(newDiv);

Discussion
Since we’re appending the new element to the end of the page, it makes sense to access
the top-level page element (the body element) directly, using the DOM getElementsBy
TagName method. Since the method always returns an array (more properly, a
nodeList), we get the individual element in the first array index:

var bdy = document.getElementsByTagName("body")[0];

Once we have the parent element, the appendChild method appends the new element
to the end of the parent element. The method takes just one parameter: the newly
created element.

Will a document always have a body element? Typically, yes, if the document is HTML
or XHTML. However, if you’re working with other document types, such as SVG or
MathML, or are concerned about ensuring that the new element is appended to what-
ever is the top-level document element, you can use the approach demonstrated in
Recipe 12.0 to get the parent of an existing element that will be a sibling to the new
element:

var bdy = document.getElementById("div1").parentNode;

246 | Chapter 12: Creating and Removing Elements and Attributes

http://www.w3.org/TR/DOM-Level-2-HTML/html.html#ID-58190037

This sibling-parent approach ensures that the new element is appended as a sibling of
the existing element, and at the same level in the document tree.

12.4 Triggering Older Versions of IE to Style New Elements
Problem
You want to use one of the new HTML5 elements, such as article, and have it styled
or programmatically accessible in IE7/8.

Solution
Use document.createElement in order to trigger IE8 (and IE7) into properly handling
new HTML5 elements:

// add article element
document.createElement("article");

Discussion
The article element is one of the new HTML5 elements, accessible via the DOM by
all of the book’s target browsers except for IE. In order to style or programmatically
access article with IE8 or older, you need to apply an HTML5 shim. This shim intro-
duces the article and other new elements to the IE DOM tree by using the
document.createElement method to create one instance of the element:

document.createElement("article");

The element doesn’t have to be assigned to a variable name or inserted into the web
page—it just has to be created. Once an instance of the element type is created, IE can
recognize the element. This step is essential not only for JavaScript applications, but
to ensure the element can be styled with CSS.

Entire libraries now exist in order to define all of the HTML5 elements. All you need
do is include the library before any other script in the page. The html5-shims page at
Google Code maintains a list of HTML5 shims and other resources. The library I use
in the book examples is the html5shiv, originally created by John Resig and now main-
tained by Remy Sharp, at http://html5shiv.googlecode.com/svn/trunk/html5.js.

See Also
See Recipes 11.3 and 11.4 for JavaScript applications that are dependent on the HTML5
shim.

12.4 Triggering Older Versions of IE to Style New Elements | 247

http://code.google.com/p/html5-shims/
http://code.google.com/p/html5-shims/
http://html5shiv.googlecode.com/svn/trunk/html5.js

12.5 Inserting a New Paragraph
Problem
You want to insert a new paragraph just before the third paragraph within a div element.

Solution
Use some method to access the third paragraph, such as getElementsByTagName, to get
all of the paragraphs for a div element. Then use the createElement and insertBefore
DOM methods to add the new paragraph just before the existing third paragraph:

// get the target div
var div = document.getElementById("target");

// retrieve a collection of paragraphs
var paras = div.getElementsByTagName("p");

// if a third para exists, insert the new element before
// otherwise, append the paragraph to the end of the div
var newPara = document.createElement("p");
if (paras[3]) {
 div.insertBefore(newPara, paras[3]);
} else {
 div.appendChild(newPara);
}

Discussion
The document.createElement method creates any HTML element, which then can be
assigned other elements or data and appended or inserted into the page. In the solution,
the new paragraph element is inserted before an existing paragraph using the insert
Before method.

Since we’re interested in inserting the new paragraph before the existing third para-
graph, we need to retrieve a collection of the div element’s paragraphs, check to make
sure a third paragraph exists, and then use the insertBefore method to insert the new
paragraph before the old. If the third paragraph doesn’t exist, we can append the ele-
ment to the end of the div element using the appendChild method instead.

See Also
Chapter 11 demonstrates several techniques for accessing page elements, including
getElementsByTagName. If your target browsers support it, you could also use the Selec-
tors API to fine-tune the query.

The following recipe, Recipe 12.6, contains a complete example demonstrating how
to access the div element and the paragraphs, and add a paragraph with text just before
the second paragraph.

248 | Chapter 12: Creating and Removing Elements and Attributes

12.6 Adding Text to a New Paragraph
Problem
You want to create a new paragraph with text and insert it just before the second
paragraph within a div element:

// use getElementById to access the div element
var div = document.getElementById("target");

// use getElementsByTagName and the collection index
// to access the second paragraph
var oldPara = div.getElementsByTagName("p")[1]; // zero based index

// create a text node
var txt =
 document.createTextNode("The new paragraph will contain this text");

// create a new paragraph
var para = document.createElement("p");

// append the text to the paragraph, and insert the new para
para.appendChild(txt);
div.insertBefore(para, oldPara);

Discussion
The text within an element is itself an object within the DOM. Its type is a Text node,
and it is created using a specialized method, createTextNode. The method takes one
parameter: the string containing the text.

Example 12-2 shows a web page with a div element containing four paragraphs. The
JavaScript that runs after the page loads creates a new paragraph from text provided
by the user via a prompt window. The text could just as easily have come from an Ajax
application, as we’ll see later in the book.

The provided text is used to create a text node, which is then appended as a child node
to the new paragraph. The paragraph element is inserted in the web page before the
first paragraph.

Example 12-2. Demonstrating various methods for adding content to a web page

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Adding Paragraphs</title>
<script type="text/javascript">
//<![CDATA[

window.onload=function() {

 // use getElementById to access the div element

12.6 Adding Text to a New Paragraph | 249

 var div = document.getElementById("target");

 // get paragraph text
 var txt = prompt("Enter new paragraph text","");

 // use getElementsByTagName and the collection index
 // to access the first paragraph
 var oldPara = div.getElementsByTagName("p")[0]; //zero based index

 // create a text node
 var txtNode = document.createTextNode(txt);

 // create a new paragraph
 var para = document.createElement("p");

 // append the text to the paragraph, and insert the new para
 para.appendChild(txtNode);

 div.insertBefore(para, oldPara);

 }
//]]>
</script>
</head>
<body>
<div id="target">
 <p>
 There is a language 'little known,'

 Lovers claim it as their own.
 </p>
 <p>
 Its symbols smile upon the land,

 Wrought by nature's wondrous hand;
 </p>
 <p>
 And in their silent beauty speak,

 Of life and joy, to those who seek.
 </p>
 <p>
 For Love Divine and sunny hours

 In the language of the flowers.
 </p>
</div>
</body>
</html>

Figure 12-2 shows a web page after some text has been added.

Inserting user-supplied text directly into a web page without scrubbing
the text first is not a good idea. When you leave a door open, all sorts
of nasty things can crawl in. Example 12-2 is for demonstration purpo-
ses only.

250 | Chapter 12: Creating and Removing Elements and Attributes

See Also
See Chapter 18 for demonstrations of using Ajax to retrieve new page contents.

12.7 Adding Attributes to an Existing Element
Problem
You want to add one or more attributes to an existing element.

Solution
You can use the createAttribute method to create an Attr node, set its value using the
nodeValue property, and then use setAttribute to add to an element:

var someElement = document.getElement("elem");
var newAttr = document.createAttribute("newAttribute");
newAttr.nodeValue = "testvalue";
someElement.setAttribute(newAttr);

or you can set the value directly with setAttribute, passing in the attribute name and
value:

someElement.setAttribute("newAttribute","testvalue");

Discussion
You can add any number of attributes to a document element using either createAt
tribute and setAttribute, or setAttribute directly. Both approaches are equally effi-
cient, so unless there’s a real need, you’ll most likely want to use the simpler approach
of setting the attribute name and value directly in setAttribute.

Figure 12-2. Demonstrating adding paragraphs and text to web page

12.7 Adding Attributes to an Existing Element | 251

When would you need to use createAttribute? If the attribute value is going to be
another entity reference, as is allowable with XML, you’ll need to use the createAttri
bute to create an Attr node, as setAttribute will only support simple strings.

You can also use setAttribute to modify the value for an existing attribute, such as the
id or class attributes:

someElement.setAttribute("id", "newId");

Note, though, that some values have a different name when set directly, than when
they’re set using setAttribute. One such as is class, which is set directly using
className:

someElement.className = "new";
someElement.setAttribute("class", "new");

If the attribute already exists, assigning a value to the attribute directly or using
setAttribute modifies the attribute’s value.

Namespace Variation
As discussed in Recipes 11.2 and 12.2, if you use the createAttribute or
setAttribute methods in a document where multiple namespaces are supported (such
as in an XHTML or SVG document), the engine processing the request sets the attribute
without a namespace. If you mix setAttribute and setAttributeNS in the same docu-
ment, you can end up with the same attribute in different namespaces.

If you’re working in a document that’s using elements and attributes from different
namespaces, such as an XHTML document that incorporates SVG and MathML, you’ll
need to use the namespace-sensitive variants, createAttributeNS and setAttributeNS:

someElement.setAttributeNS("http://somecompany.com/namespace",
 "class",
"somename");

12.8 Testing for a Boolean Attribute
Problem
You want to test to see if an element has a Boolean attribute.

Solution
Use the hasAttribute method to check for the existence of the Boolean or any other
attribute:

var targetNode = document.getElementById("target");
if (targetNode.hasAttribute("class")) {
 alert(targetNode.getAttribute("class"));
}

252 | Chapter 12: Creating and Removing Elements and Attributes

Discussion
Boolean attributes, referred to as attribute minimization in the XHTML specifications,
are attributes in HTML where the attribute’s presence signifies a state, and is assigned
no value. An example is the use of the Boolean attribute compact with the dl element:

<dl compact>

In XHTML, these attributes have to be assigned a value, so they’re assigned a value
comparable to the name of the attribute:

<dl compact="compact">

You can check for the Boolean attribute (or any other) using hasAttribute or its name-
space variation:

var res = div.hasAttributeNS("http://some.com/namespace","attrnm");

A value of true signifies the attribute is present; false that it is not.

The hasAttribute method is not supported in IE7.

See Also
See Recipes 11.2 and 12.2 for more on namespace issues.

12.9 Removing an Attribute
Problem
You want to remove an attribute from an element.

Solution
Use the removeAttribute method:

if (targetNode.hasAttribute("class")) {
 targetNode.removeAttribute("class");
 alert(targetNode.getAttribute("class")); // null
}

Discussion
Most of the time, you’re probably interested in changing an attribute’s value, but there
may be times when you want to remove an attribute completely. You might be tempted
to set the value of the attribute to null to remove it:

div.setAttribute("class",null);

12.9 Removing an Attribute | 253

However, this is not correct. To remove any attribute, use the removeAttribute method,
or its namespace variant, removeAttributeNS:

div.removeAttributeNS("http://somecom.com/namespace","customattr");

You don’t technically have to use hasAttribute to check if the attribute exists first—
using removeAttribute on a nonexistent attribute does not throw an exception. Handy,
since IE7 does not support hasAttribute.

See Also
See Recipes 11.2 and 12.2 for more on namespace-specific methods.

12.10 Moving a Paragraph
Problem
You want to move the last paragraph to before the first.

Solution
Get a reference to the paragraph you want to move, the first paragraph, and the parent
element for the first paragraph, and use insertBefore to insert the last paragraph before
the first:

var para = document.getElementsByTagName("p");
var parent = para[0].parentNode;
parent.insertBefore(para[para.length-1], para[0]);

Discussion
An element exists only once in the DOM regardless of its location. When you insert or
append the element in a new location, it’s automatically removed from its previous
position in the page layout.

See Also
See Recipe 12.2 for a description of insertBefore.

12.11 Replacing Links with Footnote Bullets
Problem
You want to scan a web page for links, remove the links from the page, and replace
them with text-based footnote bullets at the end of the document.

254 | Chapter 12: Creating and Removing Elements and Attributes

Solution
You’ll have to use a variety of techniques to accomplish this task. Example 12-3 dem-
onstrates a full application that moves all of the links contained in a paragraph to a
bulleted footnote list at the end of the document—copying the contents of the link to
the original link position first, and adding a superscript to reference the new footnote.

Example 12-3. Application to pull links out of the web document and append in a list at the end

<!DOCTYPE html>
<head>
<title>Moving Links</title>
<style>
 ul li
 {
 list-style-type: none;
 padding-bottom: 5px;
 }
</style>
<script type="text/javascript">

window.onload=function() {

 var links = document.querySelectorAll("a");
 var footnote = document.createElement("ul");

 // for all links
 for (var i = 0; i < links.length; i++) {

 // get parent element
 var parent = links[i].parentNode;

 // create number index text
 var num = document.createTextNode(i+1);
 var sup = document.createElement("sup");
 sup.appendChild(num);

 // process the children
 var children = links[i].childNodes;
 for (var j = 0; j < children.length; j++) {
 var newChild = children[j].cloneNode(true);
 parent.insertBefore(newChild,links[i]);
 }

 // add number subscript
 var sup2 = sup.cloneNode(true);
 parent.insertBefore(sup2,links[i]);

 // add a link to footnote
 var li = document.createElement("li");
 li.appendChild(sup);
 li.appendChild(links[i]);

 footnote.appendChild(li);

12.11 Replacing Links with Footnote Bullets | 255

 }

 document.getElementsByTagName("body")[0].appendChild(footnote);}
</script>
</head><body> <div id="target">
 <p>A favorite place of mine to visit in St. Louis is the Missouri Botanical Gardens.
Great flowers all year round, and one of the finest annual
orchid shows. My most visited places, though, are the St.
Louis Zoo, the Gateway
Arch,
 the new City Garden,
and the Powder
Valley Conservation Nature Center.
 </p>
 </div>
</body>

Discussion
As demonstrated in the solution, you can use querySelectorAll to find all the links in
the page, passing in the anchor tag:

var links = document.querySelectorAll("a");

You can’t use getElementsByTagName to get the links, and I’ll explain why a little later
in the discussion. The solution also creates a new unordered list to contain the links
we pull out of the document.

Once you have a reference to all the links in the page, it’s time for the fun part. One of
the interesting challenges with moving a link is that you typically want to preserve the
link’s text in place—especially if the link references meaningful content—beyond the
to-be-discouraged “here” or “link”.

You can’t assume the link contents are text because a link can contain other elements
(though not another link). You could use innerHTML to access and copy the contents,
but innerHTML isn’t well supported in XHTML.

Another approach is to move all of the child nodes out of the link. Now, you might
think a way to move the link contents out of the link is to use something like the
following:

var children = links[i].childNodes;
for (var j = 0; j < children.length; j++) {
 parent.insertBefore(children[j],links[i]);
}

The problem with this approach, though, is that childNodes points to a nodeList. In
Chapter 11, we learned that nodeLists are live collections, which means changes in the
page are reflected immediately in the nodeList in our code. So, if the link is something
like the following:

O'Reilly sells books!

256 | Chapter 12: Creating and Removing Elements and Attributes

The childNodes collection would have a length of 2 for the text node and the em. How-
ever, in the first loop iteration, once the first element has been moved (in this case,
inserted before the existing link’s location, but it could be moved to the bullet list), the
length of the childNodes value is now 1, but the for loop iterator has been incremented
to 1—there is now only one child in the collection, and the for loop exits, leaving us
with a link with the contents of the em element.

This is all really nice functionality, but it works against us sometimes. This is also the
reason I didn’t use the getElementsByTagName method to get a list of the anchor tags.
The getElementsByTagName also returns a live nodeList, and when we append the links
to the in-memory unordered list, the link is removed from the document, and the length
of the collection is affected.

Luckily, as the solution demonstrates, we have other methods that do what we want,
without the interesting side effects. The cloneNode method is used to clone the child
elements, which the solution places just before the link. Once the children are taken
care of, the entire link element is moved to the bulleted list using appendChild on a
newly created list element (li), which is then appended to our unordered list (ul).

When using cloneNode, especially in a circumstance such as this, you’ll want to pass a
parameter of true when cloning the node:

var newElement = oldElement.cloneNode(true);

This ensures that all of the node’s children are also cloned in place, in addition to the
element. Once all of the links are processed in the document, the last act is to append
the unordered list to the end of the document. Figure 12-3 shows the web page after
the JavaScript is finished.

The application works with all the book’s target browsers. It doesn’t work with IE7,
because that browser version does not support the querySelectorAll method.

12.12 Adding Rows to an Existing Table
Problem
You want to add one or more rows to an HTML table.

Solution
Adding table rows isn’t complicated, but depending on the size of the table, it can be
tedious. For each table cell, you have to create a textNode for the value, append the
value to a new td element, append the element to a new tr element, and then append
the whole thing to the table:

var table = document.getElementById("targettable");

var tr = document.createElement("tr");
var td = document.createElement("td");

12.12 Adding Rows to an Existing Table | 257

var txt = document.createTextNode("some value");

td.appendChild(txt);
tr.appendChild(td);
table.appendChild(tr);

Figure 12-3. Web page after application has pulled all in-page links to a separate bulleted list

Discussion
Usually, when we’re creating table rows it’s because we’ve received data back from an
Ajax function call. Typically, the data is organized in such a way that we can use loops
of some form to process the data and simplify the process. Example 12-4 demonstrates
how for loops can be used to process data in arrays, and to create all the necessary table
elements.

Example 12-4. Extracting data from arrays and creating and appending table rows

<!DOCTYPE html>
<head>
<title>Sum Table Column</title>
<script>
window.onload=function() {

 var values = new Array(3);
 values[0] = [123.45, "apple", true];
 values[1] = [65, "banana", false];
 values[2] = [1034.99, "cherry", false];

258 | Chapter 12: Creating and Removing Elements and Attributes

 var mixed = document.getElementById("mixed");

 // IE7 only supports appending rows to tbody
 var tbody = document.createElement("tbody");

 // for each outer array row
 for (var i = 0 ; i < values.length; i++) {
 var tr = document.createElement("tr");

 // for each inner array cell
 // create td then text, append
 for (var j = 0; j < values[i].length; j++) {
 var td = document.createElement("td");
 var txt = document.createTextNode(values[i][j]);
 td.appendChild(txt);
 tr.appendChild(td);
 }

 // append row to table
 // IE7 requires append row to tbody, append tbody to table
 tbody.appendChild(tr);
 mixed.appendChild(tbody);
 }

}

</script>

</head>
<body>
<table id="mixed">
<tr><th>Value One</th><th>Value two</th><th>Value three</th></tr>
</table>
</body>

The data for the table is in static arrays, but could easily be XML or JSON returned
from an Ajax call.

To repeat, the steps to create and add a table row are:

1. Create the table row (tr).

2. For each table cell, create a table cell element (td).

3. For each table cell, create a text node for its data, and set the data.

4. Append the text node to the table cell.

5. Append the table cell to the table row.

6. When all of the table cells have been appended to the table row, append the table
row to the tbody element, and the tbody element to the table.

The application includes support for creating a tbody element and appending the table
rows to this element, which is then appended to the table. IE7 does not allow for direct

12.12 Adding Rows to an Existing Table | 259

appending of table rows to the table. IE8 does, though, as do the other supported
browsers.

See Also
Working with XML- and JSON-formatted data is covered in Chapter 19.

12.13 Removing a Paragraph from a div Element
Problem
You want to remove a paragraph from the web page.

Solution
You need to find the paragraph’s parent and use the removeChild method to remove
the paragraph:

var para = document.getElementById("thepara");
para.parentNode.removeChild(para);

Discussion
The DOM removeChild method removes the element from the display and the DOM
tree. The element still remains in memory, though, and you can capture a reference to
the element when you make the removeChild call:

var oldpara = paraParent.removeChild(child);

Example 12-5 demonstrates how to remove paragraphs from the page. When the page
is first loaded, all of the paragraphs are accessed via getElementsByTagName and the
onclick event handler for each assigned to the pruneParagraph function.

The pruneParagraph function references the element that received the click event, finds
its parent node, and then removes the paragraph. You can continue to click paragraphs
until they’re all gone. After the paragraph is removed, the paragraphs in the page are
queried again, and their count printed out.

Example 12-5. Removing paragraph elements from the page

<!DOCTYPE html>
<head>
<title>removeChild</title>
<style>
p
{
 padding: 20px;
 margin: 10px 0;
 width: 400px;
 background-color: #eeeeff;
}

260 | Chapter 12: Creating and Removing Elements and Attributes

</style>
<script>

window.onload=function() {

 var paras = document.getElementsByTagName("p");
 for (var i = 0; i < paras.length; i++)
 paras[i].onclick=pruneparagraph;
}

function pruneparagraph() {
 var parent = this.parentNode;
 parent.removeChild(this);

 alert("paras " + document.getElementsByTagName("p").length);
}

</script>

</head>
<body>
 <p>This is paragraph one</p>
 <p>This is paragraph two</p>
 <p>This is paragraph three</p>
 <p>This is paragraph four</p>
 <p>This is paragraph five</p>
</body>

Figure 12-4 shows the page after the second and fourth paragraphs have been removed.
Notice that the paragraphs that follow the removed elements move to fill in the space
newly freed.

Figure 12-4. Page with two paragraphs removed

12.13 Removing a Paragraph from a div Element | 261

12.14 Deleting Rows from an HTML Table
Problem
You want to remove one or more rows from an HTML table.

Solution
You can use the DOM removeChild method on an HTML table row, and all of the child
elements, such as the table cells, will also be removed:

var parent = row.parentNode;
var oldrow = parent.removeChild(parent);

Discussion
When you remove an element from the web document, you’re not only removing the
element, you’re removing all child elements. You can also get a reference to the removed
element if you want to process its contents before it’s completely discarded. The latter
is helpful if you want to provide an undo method in case the person accidentally selects
the wrong table row.

To demonstrate the nature of DOM pruning, Example 12-6 is a modification of Ex-
ample 12-4, except that before each new table row is added, the tr element’s onclick
event handler is assigned to a function. When any of the new table rows is clicked, it’s
removed from the table. The removed table row element is then traversed and the data
in its cells is extracted and concatenated to a string, which is then printed out.

Example 12-6. Adding and removing table rows and associated table cells and data

<!DOCTYPE html>
<head>
<title>Adding and Removing Elements</title>
<style>
table {
 border-collapse: collapse;
}
td, th {
 padding: 5px;
 border: 1px solid #ccc;
}
tr:nth-child(2n+1)
{
 background-color: #eeffee;
}
</style>
<script>
window.onload=function() {

 var values = new Array(3);
 values[0] = [123.45, "apple", true];
 values[1] = [65, "banana", false];

262 | Chapter 12: Creating and Removing Elements and Attributes

 values[2] = [1034.99, "cherry", false];

 var mixed = document.getElementById("mixed");

 // IE 7 requires tbody
 var tbody = document.createElement("tbody");

 // for each outer array row
 for (var i = 0 ; i < values.length; i++) {
 var tr = document.createElement("tr");

 // for each inner array cell
 // create td then text, append
 for (var j = 0; j < values[i].length; j++) {
 var td = document.createElement("td");
 var txt = document.createTextNode(values[i][j]);
 td.appendChild(txt);
 tr.appendChild(td);
 }

 // attache event handler
 tr.onclick=prunerow;

 // append row to table
 tbody.appendChild(tr);
 mixed.appendChild(tbody);
 }
}

function prunerow() {
 var parent = this.parentNode;
 var oldrow = parent.removeChild(this);

 var datastring = "";
 for (var i = 0; i < oldrow.childNodes.length; i++) {
 var cell = oldrow.childNodes[i];
 datastring+=cell.firstChild.data + " ";
 }

 alert("removed " + datastring);
}
</script>

</head>
<body>
<table id="mixed">
<tr><th>Value One</th><th>Value two</th><th>Value three</th></tr>
</table>
</body>

The example demonstrates that it’s a whole lot simpler to prune the DOM tree than to
grow new branches.

12.14 Deleting Rows from an HTML Table | 263

See Also
Example 12-4 can be found in Recipe 12.12.

12.15 Changing the Element’s CSS Style Properties
Problem
You want to modify one or more CSS properties for an element.

Solution
If you’re only modifying a single property, you can change the CSS setting directly using
the element’s style property:

var elem = document.getElementById("elem");
elem.style.width = "500px";

If you’re modifying one or more values, you can use the element’s setAttribute method:

elem.setAttribute("style","width: 500px; background-color: yellow;");

Discussion
An element’s CSS properties can be modified in JavaScript using one of two approaches.
As the solution demonstrates, the simplest approach is to set the property’s value di-
rectly using the element’s style property:

elem.style.width = "500px";

If the CSS property contains a hyphen, such as font-family or background-color, use a
CamelCase notation for the property:

elem.style.fontFamily = "Courier";
elem.style.backgroundColor = "rgb(255,0,0)";

You can also use the element’s setAttribute method to set the style property:

elem.setAttribute("style","font-family: Courier; background-color: yellow");

However, when you set the style property using setAttribute, it erases any previously
set values in the JavaScript.

Example 12-7 demonstrates how the style-setting techniques work, including the im-
pact of using setAttribute. Various techniques are used to set and get style attributes,
including a cross-browser approach to access the computed style for the attribute.

Example 12-7. Demonstrating setting and retrieving CSS style settings

<!DOCTYPE html>
<head>
<title>Changing style</title>
<meta charset="utf-8" />

264 | Chapter 12: Creating and Removing Elements and Attributes

<style>
#elem
{
 width: 200px; background-color: lime;
}
</style>
<script type="text/javascript">

function getStyle(elem, cssprop, cssprop2){

 // IE
 if (elem.currentStyle) {
 return elem.currentStyle[cssprop];

 // other browsers
 } else if (document.defaultView &&
 document.defaultView.getComputedStyle) {
 return document.defaultView.getComputedStyle(elem,
null).getPropertyValue(cssprop2);

 // fallback
 } else {
 return null;
 }
}
window.onload=function() {

 // setting and accessing style properties
 var elem = document.getElementById("elem");

 var color = getStyle(elem,"backgroundColor", "background-color");
 alert(color); // rgb(0,255,0)

 elem.style.width = "500px";
 elem.style.backgroundColor="yellow";

 alert(elem.style.width); // 500px
 alert(elem.style.backgroundColor); // yellow

 // array notation
 elem.style["fontFamily"] = "Courier";

 // demonstrating overwriting properties
 var style = elem.getAttribute("style");
 alert(style); // should display color: purple; width: 500px;
 // background-color: yellow;

 elem.setAttribute("style","height: 100px");
 var style = elem.getAttribute("style");
 alert(style); // now only displays height, resets styles

 var font = getStyle(elem,"fontFamily", "font-family");
 alert(font); // default font family

12.15 Changing the Element’s CSS Style Properties | 265

}
</script>
</head>
<body>
<div id="elem" style="color: purple">
testing
</div>
</body>

As soon as the page loads, the div element is accessed using getElementById, and its
background-color is retrieved using a cross-browser function that gets the computed
style for the attribute. The message output is “rgb(0,255,0)”, representing the lime color
set in the page’s stylesheet.

Next, two CSS properties are set using the element’s style property: the width and
background-color. Now the div element has a yellow background and is 500, rather
than 200, pixels wide. Both of the modified values are accessed and printed out, so we
can confirm that yes, the values have changed.

Next, the font-family for the element is set to Courier, using the array notation, which
is another approach you can use to set and get style property values. Now the div
element is 500 pixels wide, with a yellow background, and its font family is Courier.

The style property is accessed using getAttribute. A string of the values set using the
style property is returned for all browsers:

color: purple; width: 500px; background-color: yellow;
font-family: Courier;

The purple font color is set inline within a style attribute in the div element.

Next, I’m using the setAttribute method to change the element’s height. A couple of
things happen when I used the setAttribute method in the example. The height of the
element is changed to 100 pixels, but the previously set style properties (color, width,
background-color, and font-family) have been “erased,” and revert back to the original
settings in the stylesheet, or the defaults by the user agent. The element is now 200
pixels wide, 100 pixels tall, with a green background, and the font reverts back to the
default font for the browser (typically a serif value), and the default font color, black.

As you can see, using setAttribute to change the style element property can signifi-
cantly impact on previous settings, including any inline CSS settings. You should only
use setAttribute if you’re changing many values at once, and you don’t use any inline
style attributes or haven’t modified the element’s style settings previously in your
application.

The effects demonstrated in this recipe work the same with all of the book’s target
browsers, except for IE7. The style property is an actual object in IE7, so when you
access style with getAttribute, you’ll get an object, not a string. Since it is an object,
it’s read only, which means you can’t use setAttribute with IE7.

266 | Chapter 12: Creating and Removing Elements and Attributes

See Also
See Recipe 11.13 for more information about accessing the computed style for an
element.

12.15 Changing the Element’s CSS Style Properties | 267

CHAPTER 13

Working with Web Page Spaces

13.0 Introduction
The web page space is all of the area contained within the browser’s chrome: the outer
edge of the browser, status, and menu bars. If the contents of the page are larger than
the window area, vertical and horizontal scrollbars are added so you can scroll to see
all of the page contents.

The web page size is determined by the page elements, in combination with the default
and explicit styling for each. If there are no elements, or the elements don’t participate
in the page flow (if they’re absolutely positioned, or in some other way removed from
the flow), the area of the web page space is the size of the window minus the chrome.

Element sizes vary, based on their contents, but they can be resized or even clipped. If
they are resized, setting the element’s overflow alters what happens to their content
if it is larger than the element’s size. If the overflow is set to scroll, vertical and hori-
zontal scrollbars are added to the element.

How the elements impact page flow is based on a number of factors. For instance, if
the element is a block-level element, such as a div, header (h1), or paragraph (p), there’s
a new line before and after the element. An inline element, though, such as a span, is
not surrounded by line breaks. The display for both types of elements can be changed
by setting the CSS display or float property.

An element’s positioning can also impact page flow. By default, elements have static
positioning, where properties such as top and left have no impact. An element’s
position can be changed through the CSS position property, and through the use of
positional properties such as left and top—either changing the element’s position in
the page, or removing it entirely out of the page flow.

All of the element properties just mentioned can be set in a stylesheet:

<style>
div#test
{
 position: absolute;

269

 left: 10px;
 top: 10px;
}

In this chapter, we’re more interested in the many ways of using JavaScript to dynam-
ically manage the web page’s space.

13.1 Determining the Area of the Web Page
Problem
You want to measure the width and height of the current web page window.

Solution
You’ll need to use a cross-browser technique that ensures consistent results regardless
of the browser used. The following is an example of a function that returns an object
with the web page viewport’s width and height:

function size()
{
 var wdth = 0;
 var hth = 0;

 if(!window.innerWidth)
 {
 wdth = (document.documentElement.clientWidth ?
document.documentElement.clientWidth :
document.body.clientWidth);
 hth = (document.documentElement.clientHeight ?
document.documentElement.clientWidth :
document.body.clientHeight);
 }
 else
 {
 wdth = window.innerWidth;
 hth = window.innerHeight;
 }
 return {width:wdth, height:hth};
}

Discussion
There is currently no standard approach to accessing the window viewport informa-
tion, which is why we have to use a series of case statements.

Most major browsers, including Opera, Firefox, Chrome, and Safari, support window
object properties called innerWidth and innerHeight, which return the window’s view-
port area, minus any scrollbar dimensions. However, Internet Explorer doesn’t support
innerWidth and innerHeight, which accounts for the first test case in the solution.

270 | Chapter 13: Working with Web Page Spaces

If the innerWidth property is supported, the width and height are accessed from inner
Width and innerHeight, respectively. If it isn’t supported, the ternary operator is used
to test for a document property, documentView, and its property, clientWidth. If there
is no documentView object, the clientWidth property is accessed on the document body
property:

wdth = (document.documentElement.clientWidth ?
 document.documentElement.clientWidth :
 document.body.clientWidth);

IE provides viewport information through the documentView property except in IE6,
when the application is run in quirks mode. Though support for IE6 is rapidly dimin-
ishing—major websites such as Google, YouTube, and Amazon no longer support it,
and it isn’t one of the supported browsers in this book—I’ve included the test to be
comprehensive.

Quirks mode is a way for browsers to provide backward version support.
It’s typically triggered with a special DOCTYPE, such as: <!DOCTYPE HTML
PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">.

After the tests, both the width and height values are assigned to appropriately named
properties in a returned object, using JSON notation:

return {width:wdth, height: hth}

Once the viewport size object is returned, you can access the width and height using
the following code:

var viewPort = size();
var w = viewPort.width;
var h = viewPort.height;

See Also
There is a draft for a CSS3 standards effort to define a CSSOM View module, in order
to provide a standard set of CSS specifications for window viewports and other di-
mensional and view information. The current draft is at http://www.w3.org/TR/cssom
-view/. However, the priority for this specification is low, and the cross-browser ap-
proach just demonstrated is widely adopted, so a standard approach is off in the distant
future.

See Recipe 19.4 for more on the JSON notation.

13.1 Determining the Area of the Web Page | 271

http://www.w3.org/TR/cssom-view/
http://www.w3.org/TR/cssom-view/

13.2 Measuring Elements
Problem
You want to determine the current height of a web page element.

Solution
Call getBoundingClientRect for the element. If the returned TextRectangle/
ClientRect object has a height property, use that. Otherwise, subtract the rectangle’s
bottom value from its top to derive the height:

var height = 0;
var rect = document.getElementById("it").getBoundingClientRect();
if (rect.height) {
 height = rect.height;
} else {
 height = rect.bottom - rect.height; // derive height
}
alert(rect.height);

Discussion
The getBoundingClientRect method is based on a method that Microsoft implemented
for IE5, and is now being standardized in the W3C CSSOM View module. The W3C
CSSOM View module specification provides a standardized way of getting information
about the web page viewport, and the element’s spatial arrangement within the
viewport.

The element.getBoundingClientRect method returns a ClientRect object (TextRectan
gle in implementations) that contains information about the bounding rectangle for
the element. Most implementations support four properties on the object: top, bottom,
right, and left. Firefox also includes width and height, though both can be derived
from the other values.

When I mention the bounding rectangle for the element, the dimensions returned in-
clude any padding and border values. If an element has the following stylesheet setting:

#elem
{
 height: 400px;
 }

and you access the bounding rectangle’s height, it is 400 pixels. However, if the element
has the following stylesheet:

#elem
{
 height: 400px;
 padding: 10px;
 border: 5px solid red;

272 | Chapter 13: Working with Web Page Spaces

 margin: 20px;
}

the bounding rectangle’s height would be 430 pixels: 400 for the height setting, plus
10 pixels each side for the padding, and 5 pixels each side for the border. The margin
doesn’t figure into the calculation.

If you don’t provide any stylesheet setting, the height depends on the viewport size;
changing the viewport will also change the element’s dimensions, including its height.

The values for each of the ClientRect/TextRectangle dimensions are floating-point
numbers.

Another impact on the element’s bounding rectangle position is if it’s
in a foreignObject element in embedded SVG, in which case the top-
left is relative to foreignObject’s container and other contents.

13.3 Locating Elements in the Page
Problem
You want to know the exact position of an element in the page.

Solution
Use getBoundingClientRect to get the dimensions and position of the bounding rec-
tangle for the element, and then access its top and left values to find position:

function positionObject(obj) {
 var rect = obj.getBoundingClientRect();
 return [rect.left,rect.top];
}

Discussion
Element positioning is based on the position, or offset, of the element’s top-left corner
relative to its viewport and ancestor elements. The position of the element is relative
to other elements, and is dependent on whether its position is static (by default), rela-
tive, fixed, or absolute. The margin also affects the element’s position.

The element.getBoundingClientRect method returns the rectangle for the element, in-
cluding the top, left, right, and bottom positions, regardless of stylesheet setting.

To demonstrate how the method can be used to find element positions, Exam-
ple 13-1 contains a web page with three nested div elements and a separate div element
acting as cursor. Each nested div element is labeled and outlined, and the separate
element is a solid color. When the page loads, the user is prompted for a box label, and

13.3 Locating Elements in the Page | 273

if the label matches one of the div elements, the solid cursor div element is positioned
over the specified div element. The prompt/move continues until canceled.

Example 13-1. Moving elements over others based on location position and absolute positioning

<!DOCTYPE html>
<head>
<title>Locating Elements</title>
<style type="text/css">
div#a
{
 width: 500px;
}
div
{
 border: 1px solid #000;
 padding: 10px;
}
#cursor
{
 position: absolute;
 background-color: #ffff00;
 width: 20px;
 height: 20px;
 left: 50px;
 top: 300px;
}
</style>
<script type="text/javascript">

function positionObject(obj) {
 var rect = obj.getBoundingClientRect();
 return [rect.left,rect.top];
}
window.onload=function() {
 var tst = document.documentElement.getBoundingClientRect();
 alert(tst.top);
 var cont = "A";
 var cursor = document.getElementById("cursor");
 while (cont) {
 cont = prompt("Where do you want to move the cursor block?",
 "A");
 if (cont) {
 cont=cont.toLowerCase();
 if (cont == "a" || cont == "b" || cont == "c") {
 var elem = document.getElementById(cont);
 var pos = positionObject(elem);
 cursor.setAttribute("style","top: " + pos[1] +
 "px; left : " + pos[0] + "px");
 }
 }
 }
}
</script>
</head>

274 | Chapter 13: Working with Web Page Spaces

<body>
 <div id="a">
 <p>A</p>
 <div id="b">
 <p>B</p>
 <div id="c">
 <p>C</p>
 </div>
 </div>
 </div>
 <div id="cursor"></div>
</body>

Figure 13-1 shows the page after I selected the “B” div element. The application works
with all of this book’s target browsers.

Figure 13-1. Showing element position in action

An interesting little quirk with getBoundingClientRect and positioning is that Microsoft
originally added a two-pixel margin around the document element, which affected the
getBoundingClientRect values. If you test the method with the document element:

var tst = document.documentElement.getBoundingClientRect();
alert(tst.top);

You get a value of 0 for Firefox, Safari, Chrome, and Opera, but you get a value of 2
for IE7, and –2 for IE8. If you run the application in IE7 compatibility mode and re-
position the cursor element using code that’s compatible for IE7 (IE7 doesn’t like the
setAttribute technique when used with the style attribute):

var pos = positionObject(elem);
cursor.style.top = pos[1] + "px";
cursor.style.left = pos[0] + "px";

The cursor is exactly 2 pixels off—both from the top and the left. With IE8, Microsoft
“regularized” the margin for the document element, offsetting it –2 pixels. Now, when
you use getBoundingClientRect with any element in the page, IE8 returns the same
results as the other browsers.

13.3 Locating Elements in the Page | 275

If you need to support IE7, you’ll need to adjust the getBoundingClientRect values
accordingly, and also use the older approach of setting style values. The downloadable
example code contains a workaround for this older browser.

See Also
See Recipe 12.15 for more on using setAttribute to change style settings.

13.4 Hiding Page Sections
Problem
You want to hide an existing page element and its children until needed.

Solution
You can set the CSS visibility property to hide and show the message:

msg.style.hidden="visible"; // to display
msg.style.hidden="hidden"; // to hide

or you can use the CSS display property:

msg.style.display="block"; // to display
msg.style.display="none"; // to remove from display

Discussion
Both the CSS visibility and display properties can be used to hide and show elements.
There is one major difference between the two that impacts on which you’ll use.

The visibility property controls the element’s visual rendering, but its physical pres-
ence still affects other elements. When an element is hidden, it still takes up page space.
The display property, on the other hand, removes the element completely from the
page layout. The property can take several values, but there are four of interest to us:

none
When display is set to none, the element is removed completely from display.

block
When display is set to block, the element is treated like a block element, with a line
break before and after.

inline-block
When display is set to inline-block, the contents are formatted like a block ele-
ment, which is then flowed like inline content.

inherit
This is the default display, and specifies that the display property is inherited from
the element’s parent.

276 | Chapter 13: Working with Web Page Spaces

There are other values, but these are the ones we’re most likely to use within JavaScript
applications.

Unless you’re using absolute positioning with the hidden element, you’ll want to use
the CSS display property. Otherwise, the element will affect the page layout, pushing
any elements that follow down and to the right, depending on the type of hidden
element.

There is another approach to removing an element out of page view, and that is to move
it totally offscreen using a negative left value. This could work, especially if you’re
creating a slider element that will slide in from the left. It’s also an approach that the
accessibility community has suggested using when you have content that you want
rendered by Assistive Technology (AT) devices, but not visually rendered.

To just hide an element, I generally use the hidden attribute, and to remove the element
from the page display, I use the display attribute.

See Also
See Recipe 14.1 on accessible approaches to hiding and displaying page elements. See
Recipe 13.4 for a demonstration of the display attribute.

13.5 Creating Collapsible Form Sections
Problem
You have a large form that takes up a lot of space. You only want to display sections
of the form as they are needed.

Solution
Split the form into display blocks using div elements, and then change the block’s
styling to control the display of the form section. When the page is loaded, hide all of
the form blocks by changing the display value to none using JavaScript:

theformblock.setAttribute("style","display: none");

or:

theformblock.style.display="none";

To expand the section, change the display setting to block using setAttribute:

theformblock.setAttribute("style","block");

or set the value directly:

theformblock.style.display="block";

13.5 Creating Collapsible Form Sections | 277

Discussion
There are multiple ways you can prevent form elements from taking up page space. For
one, you can clip the element by setting the clipping area. Another approach is to resize
the element to zero height. The best approach, though, and the one most applications
use, is to employ a collapsible section.

A collapsible section is a form of widget—a set of elements, CSS, and JavaScript pack-
aged together and generally considered one object. The typical implementation consists
of one element that acts as a label that is always displayed, another element that holds
the content, and all contained within a third, parent element.

The collapsible section may or may not be used with other collapsible sections to form
a higher level widget, the accordion. The accordion widget is a grouping of collapsible
sections with an additional behavior: depending on preference, any number of col-
lapsible sections can be expanded, or only one section can be expanded at a time.

To demonstrate how collapsible sections can be used with forms, Example 13-2 shows
a form that’s split into two sections. Notice that each form block has an associated label
that expands the collapsed form section when clicked. When the label is clicked again,
the form section is collapsed again.

Example 13-2. Collapsed form element

<!DOCTYPE html>
<head>
<title>Collapsed Form Elements</title>
<style>
.label
{
 width: 400px;
 margin: 10px 0 0 0;
 padding: 10px;
 background-color: #ccccff;
 text-align: center;
 border: 1px solid #ccccff;
}
.elements
{
 border: 1px solid #ccccff;
 padding: 10px;
 border: 1px solid #ccccff;
 width: 400px;
}
button
{
 margin: 20px;
}
</style>
</head>
<body>
<form>
 <div>

278 | Chapter 13: Working with Web Page Spaces

 <div id="section1" class="label">
 <p>Checkboxes</p>
 </div>
 <div id="section1b" class="elements">
 <input type="checkbox" name="box1" /> - box one

 <input type="checkbox" name="box1" /> - box one

 <input type="checkbox" name="box1" /> - box one

 <input type="checkbox" name="box1" /> - box one

 <input type="checkbox" name="box1" /> - box one

 </div>
 </div>
 <div>

 <div id="section2" class="label">
 <p>Buttons</p>
 </div>
 <div class="elements">
 <input type="radio" name="button1" /> - button one

 <input type="radio" name="button1" /> - button one

 <input type="radio" name="button1" /> - button one

 <input type="radio" name="button1" /> - button one

 <input type="radio" name="button1" /> - button one

 <button>Submit</button>
 </div>
</div>
</form>
<script type="text/javascript">

var elements = document.getElementsByTagName("div");

// collapse all sections
for (var i = 0; i < elements.length; i++) {
 if (elements[i].className == "elements") {
 elements[i].style.display="none";
 } else if (elements[i].className == "label") {
 elements[i].onclick=switchDisplay;
 }
}

//collapse or expand depending on state
function switchDisplay() {

 var parent = this.parentNode;
 var target = parent.getElementsByTagName("div")[1];

 if (target.style.display == "none") {
 target.style.display="block";
 } else {
 target.style.display="none";
 }
 return false;
}
</script>
</body>

13.5 Creating Collapsible Form Sections | 279

There are numerous ways you can map the click activity in one element by changing
the display in another. In Example 13-2, I wrapped both the label and the content
elements in a parent element. When you click on a label, the parent to the label element
is accessed in JavaScript and its children returned as an HTML collection. The second
element’s display toggles—if the element’s display is none, it’s changed to block; if
block, changed to none. Figure 13-2 shows the page, with one form section expanded.

Figure 13-2. Form split over collapsible accordion sections, with one section expanded

In the example, notice that the form elements are displayed when the page loads, and
only collapsed after the elements are loaded. The reason for this is if JavaScript is turned
off, the form elements are displayed by default.

See Also
See Recipe 14.5 for how to make a collapsible section/accordion widget accessible with
ARIA attributes.

280 | Chapter 13: Working with Web Page Spaces

13.6 Adding a Page Overlay
Problem
You want to overlay the web page in order to display a message, or provide an expanded
photo.

Solution
Provide a stylesheet setting for a div element that is sized and positioned to cover the
entire web page:

.overlay
{
 background-color: #000;
 opacity: .7;
 filter: alpha(opacity=70);
 position: absolute; top: 0; left: 0;
 width: 100%; height: 100%;
 z-index: 10;
}

Create the div element on demand, adding whatever other content is to be displayed
to the div element:function expandPhoto() {

 var overlay = document.createElement("div");
 overlay.setAttribute("id","overlay");
 overlay.setAttribute("class", "overlay");
 document.body.appendChild(overlay);
}

When the overlay is no longer needed, remove it from the page:

function restore() {
 document.body.removeChild(document.getElementById("overlay"));
}

Discussion
Creating an overlay in a web page consists of creating a div element set to a z-index
higher than anything else in the page, absolutely positioned at the upper left of the page,
and sized 100%.

In the solution, this is achieved more easily by created a CSS style setting for the
overlay class that manages the appearance of the element, and then using docu
ment.createElement and appendChild to add it to the page. To restore the page, the
overlay element is removed.

Page overlays are popular for displaying ads, logins, or providing important site mes-
sages. They are also useful with photos. Example 13-3 contains a web page with four
photo thumbnails. Clicking any of the thumbnails opens an overlay, and displays a
larger size photo.

13.6 Adding a Page Overlay | 281

Example 13-3. Creating an overlay for displaying a larger photo

<!DOCTYPE html>
<head>
<title>Overlay</title>
<style>
img
{
 padding: 5px;
}

#outer
{
 width: 100%; height: 100%;
}
.overlay
{
 background-color: #000;
 opacity: .7;
 filter: alpha(opacity=70);
 position: fixed; top: 0; left: 0;
 width: 100%; height: 100%;
 z-index: 10;
}
.overlayimg
{
 position: absolute;
 z-index: 11;
 left: 50px;
 top: 50px;
}
</style>
<script>

function expandPhoto() {

 // create overlay and append to page
 var overlay = document.createElement("div");
 overlay.setAttribute("id","overlay");
 overlay.setAttribute("class", "overlay");
 document.body.appendChild(overlay);

 // create image and append to page
 var img = document.createElement("img");
 img.setAttribute("id","img");
 img.src = this.getAttribute("data-larger");
 img.setAttribute("class","overlayimg");

 // click to restore page
 img.onclick=restore;

 document.body.appendChild(img);

}
// restore page to normal
function restore() {

282 | Chapter 13: Working with Web Page Spaces

 document.body.removeChild(document.getElementById("overlay"));
 document.body.removeChild(document.getElementById("img"));
}

window.onload=function() {
 var imgs = document.getElementsByTagName("img");
 imgs[0].focus();
 for (var i = 0; i < imgs.length; i++) {
 imgs[i].onclick=expandPhoto;
 imgs[i].onkeydown=expandPhoto;
 }
}

</script>

</head>
<body>
<div id="outer">
 <p>Mouse click on image to expand the photo. To close expanded
photo, mouse click on image.</p>
 <img src="dragonfly2.thumbnail.jpg" data-larger="dragonfly2.jpg"
alt="image of common dragonfly on bright green and pink flowers" />
 <img src="dragonfly4.thumbnail.jpg" data-larger="dragonfly4.jpg"
alt="Dark orange dragonfly on water lily" />
 <img src="dragonfly6.thumbnail.jpg" data-larger="dragonfly6.jpg"
alt="Dark orange dragonfly on purple water lily" />
 <img src="dragonfly8.thumbnail.jpg" data-larger="dragonfly8.jpg"
alt="Dragonfly on bright pink water lily" />
</div>
</body>

Example 13-3 creates an overlay that fits the size of the page as it’s currently opened.
Note the CSS setting for the overlay, in particular the fixed positioning. This ensures
that the overlay fits the window even if the contents require you to scroll to the right,
or down, to see all of the contents.

Figure 13-3 shows the page with the overlay and one of the photos displayed.

The application works with Firefox, Opera, Chrome, Safari, and IE8. IE7 doesn’t like
the use of setAttribute with the class attribute. If you need to support IE7, set the
className attribute directly:

overlay.className = "overlay";

See Also
See Recipe 12.15 for more on using setAttribute with CSS styles.

13.6 Adding a Page Overlay | 283

13.7 Creating Tab Pages
Problem
You have divided content that you want to hide or display based on the web page
reader’s actions.

Solution
Create a tabbed page effect and hide or display tab pages based on clicking the tab label:

// click on tab
function displayPage() {
 var current = this.parentNode.getAttribute("data-current");
 document.getElementById("tabnav_" + current).setAttribute("style",
 "background-color: #fff");
 document.getElementById("tabpage_" + current).style.display="none";

 var ident = this.id.split("_")[1];
 this.setAttribute("style","background-color: #f00");
 document.getElementById("tabpage_" + ident).style.display="block";
 this.parentNode.setAttribute("data-current",ident);
}

Figure 13-3. Demonstration of an overlap and photo

284 | Chapter 13: Working with Web Page Spaces

Discussion
Tabbed pages have been popular for some time, and rightfully so. They’re a great way
to make use of limited web page space in a manner that’s intuitive—we’re all familiar
with tabs from other applications, including browsers.

The tabbed page concept is simple: display a list of tabs to click on the top, and pages
underneath. All tabs are shown, but only one page is shown at a time. Clicking any of
the tabs resets the page:

• The highlighted tab is changed to the one just clicked.

• The currently displayed page is hidden or set to nondisplay.

• The clicked tab’s style is changed (so it’s highlighted).

• The associated content page is displayed.

In the solution, part of a tabbed page application is shown: the part that demonstrates
what happens when you click the tab. In this case, the tab is associated by an identifier
number attached to the end of the tab identifier for the associated tab page, so there
doesn’t have to be any form of container relation between the two. You want to avoid
a container relationship between tab and page as much as possible, because it makes
it difficult to ensure the page displays well when JavaScript is turned off.

The current tab picked is stored in the parent node’s custom data attribute, data-
current. Using a custom data-* attribute, as these values are called, means we can avoid
global variables. The next time a tab is clicked, it’s easy to find the current selection in
order to reset the page.

The custom data-* attributes were introduced with HTML5. You can
use any name that begins with data-, and the page is still considered
conforming to HTML5.

There are probably dozens of different approaches you can use to create tabbed pages,
including making your own library, or using another that can be dropped into a page
to automatically build the pages based on class settings.

The approach in Example 13-4 incorporates the approach outlined in the solution. It
also makes use of the fact that elements form their own document trees, and that we
can query an element tree the same as we can query the document tree. Using this
approach, we can add as many tabbed page containers to the page as we wish. For each
container, the application displays the navigation bar, turns off the display for all of
the pages except the first, and highlights the first tab, and then adds the onclick event
handler to each tab.

13.7 Creating Tab Pages | 285

Example 13-4. Creating a reusable, multiple-count, tabbed page application

<!DOCTYPE html>
<head>
<title>Tabbed Pages</title>
<style>
 .tabcontainer
 {
 padding: 5px; width: 500px;
 margin: 20px;
 }
 .tabnavigation ul
 {
 padding: 0; margin: 0; display: none;
 }
 .tabnavigation ul li
 {
 padding: 3px; display: inline;
 border: 1px solid #000; background-color: #fff;
 }
 .tabnavigation ul li:hover
 {
 cursor: pointer;
 }
 .tabpages
 {
 position: relative; z-index: 2;
 border: 1px solid #000; background-color: #fff;
 }
 .tabpage
 {
 margin: 0 10px;
 }
</style>
<script>

// set up display
// for each container display navigation
// hide all but first page, highlight first tab
window.onload=function() {

 // for each container
 var containers = document.querySelectorAll(".tabcontainer");
 for (var j = 0; j < containers.length; j++) {

 // display and hide elements
 var nav = containers[j].querySelector(".tabnavigation ul");
 nav.style.display="block";

 // set current tab
 var navitem = containers[j].querySelector(".tabnavigation ul li");
 var ident = navitem.id.split("_")[1];
 navitem.parentNode.setAttribute("data-current",ident);
 navitem.setAttribute("style","background-color: #f00");

 var pages = containers[j].querySelectorAll(".tabpage");

286 | Chapter 13: Working with Web Page Spaces

 for (var i = 1; i < pages.length; i++) {
 pages[i].style.display="none";
 }

 var tabs = containers[j].querySelectorAll(".tabnavigation ul li");
 for (var i = 0; i < tabs.length; i++) {
 tabs[i].onclick=displayPage;
 }
 }
}

// click on tab
function displayPage() {
 var current = this.parentNode.getAttribute("data-current");
 document.getElementById("tabnav_" + current).setAttribute("style",
"background-color: #fff");
 document.getElementById("tabpage_" + current).style.display="none";

 var ident = this.id.split("_")[1];
 this.setAttribute("style","background-color: #f00");
 document.getElementById("tabpage_" + ident).style.display="block";
 this.parentNode.setAttribute("data-current",ident);
}
</script>
</head>
<body>
<div class="tabcontainer">
 <div class="tabnavigation">

 <li id="tabnav_1">Page One
 <li id="tabnav_2">Page Two
 <li id="tabnav_3">Page Three

 </div>

 <div class="tabpages">
 <div class="tabpage" id="tabpage_1">
 <p>page 1</p>
 </div>
 <div class="tabpage" id="tabpage_2">
 <p>page 2</p>
 </div>
 <div class="tabpage" id="tabpage_3">
 <p>page 3</p>
 </div>
 </div>
</div>
<div class="tabcontainer">
 <div class="tabnavigation">

 <li id="tabnav_4">Page Two One
 <li id="tabnav_5">Page Two Two

 <div>

13.7 Creating Tab Pages | 287

 <div class="tabpages">
 <div class="tabpage" id="tabpage_4">
 <p>Page 4</p>
 </div>
 <div class="tabpage" id="tabpage_5">
 <p>Page 5</p>
 </div>
 </div>
</div>
</body>

Figure 13-4 shows the application with two containers, different tabbed pages open in
each. The application works with Chrome, Firefox, Opera, Safari, and IE8. It doesn’t
work with IE7 because of the use of querySelectorAll.

Figure 13-4. A tabbed page application with two containers, and different tabbed pages open in each

288 | Chapter 13: Working with Web Page Spaces

See Also
See Recipe 14.8 for how to make tabbed pages accessible using ARIA roles and
attributes.

13.8 Creating Hover-Based Pop-up Info Windows
Problem
You like the Netflix web site’s pop-up window that displays when the mouse cursor is
over a movie thumbnail, and you want to incorporate this functionality into your own
application.

Solution
The Netflix-style of pop-up info window is based on four different functionalities.

First, you need to capture the mouseover and mouseout events for each image thumbnail,
in order to display or remove the pop-up window, respectively. Using a function that
manages cross-browser event handling for every object that has an info bubble, assign
a function to both the onmouseover and onmouseout event handlers. In the following
code, the event handlers are attached to all images in the page:

function manageEvent(eventObj, event, eventHandler) {
 if (eventObj.addEventListener) {
 eventObj.addEventListener(event, eventHandler,false);
 } else if (eventObj.attachEvent) {
 event = "on" + event;
 eventObj.attachEvent(event, eventHandler);
 }
}

window.onload=function() {
 var imgs = document.getElementsByTagName("img");
 for (var i = 0; i < imgs.length; i++) {
 manageEvent(imgs[i],"mouseover",getInfo);
 manageEvent(imgs[i],"mouseout",removeWindow);
 }
}

Second, you need to access something about the item you’re hovering over in order to
know what to use to populate the pop-up bubble. The information can be in the page,
or you can use Ajax to get the information:

function getInfo() {

 // prepare request
 if (!xmlhttp) {
 xmlhttp = new XMLHttpRequest();
 }
 var value = this.getAttribute("id");

13.8 Creating Hover-Based Pop-up Info Windows | 289

 var url = "photos.php?photo=" + value;
 xmlhttp.open('GET', url, true);
 xmlhttp.onreadystatechange = showWindow;
 xmlhttp.send(null);

 return false;
}

Third, you need to either show the pop-up window, if it already exists and is not dis-
played, or create the window. In the following code, the pop-up window is created just
below the object, and just to the right when the Ajax call returns with the information
about the item. The element.getBoundingClientRect method is used to determine the
location where the pop up should be placed, and the DOM methods document.crea
teElement and document.createTextNode are used to create the pop up:

// compute position for pop up
function compPos(obj) {
 var rect = obj.getBoundingClientRect();
 var height;
 if (rect.height) {
 height = rect.height;
 } else {
 height = rect.bottom - rect.top;
 }
 var top = rect.top + height + 10;
 return [rect.left, top];
}

// process return
function showWindow() {
 if(xmlhttp.readyState == 4 && xmlhttp.status == 200) {
 var response = xmlhttp.responseText.split("#");
 var img = document.getElementById(response[0]);

 if (!img) return;

 // derive location for pop up
 var loc = compPos(img);
 var left = loc[0] + "px";
 var top = loc[1] + "px";

 // create pop up
 var div = document.createElement("popup");
 div.id = "popup";
 var txt = document.createTextNode(response[1]);
 div.appendChild(txt);

 // style pop up
 div.setAttribute("class","popup");
 div.setAttribute("style","left: " + left + "; top: " + top);
 document.body.appendChild(div);
 }
}

290 | Chapter 13: Working with Web Page Spaces

Lastly, when the mouseover event fires, you need to either hide the pop-up window or
remove it—whichever makes sense in your setup. Since I created a new pop-up window
in the mouseover event, I’ll remove it in the mouseout event handler:

function removeWindow() {
 var popup = document.getElementById("popup");
 if (popup)
 popup.parentNode.removeChild(popup);

 return false;
}

Discussion
Creating a pop-up information or help window doesn’t have to be complicated, if you
keep the action simple and follow the four steps outlined in the solution. If the pop up
is help for form elements, then you might want to cache the information within the
page, and just show and hide pop-up elements as needed. However, if you have pages
like the ones at Netflix, which can have hundreds of items, you’ll have better perform-
ance if you get the pop-up window information on demand using Ajax. The solution
demonstrates that using Ajax doesn’t add significant additional complexity to the
application.

When I positioned the pop up in the example, I didn’t place it directly over the object,
as shown in Figure 13-5. The reason is that I’m not capturing the mouse position to
have the pop up follow the cursor around, ensuring that I don’t move the cursor directly
over the pop up. But if I statically position the pop up partially over the object, the web
page readers could move their mouse over the pop up, which triggers the event to hide
the pop up...which then triggers the event to show the pop up, and so on. This creates
a flicker effect, not to mention a lot of network activity.

If, instead, I allowed the mouse events to continue by returning true from either event
handler function, when the web page readers move their mouse over the pop up, the
pop up won’t go away. However, if they move the mouse from the image to the pop
up, and then to the rest of the page, the event to trigger the pop-up event removal won’t
fire, and the pop up is left on the page.

The best approach is to place the pop up directly under (or to the side, or a specific
location in the page) rather than directly over the object. This is the approach Netflix
uses on its site.

IE7 doesn’t like the use of setAttribute with the class or style attributes. To modify
the code so it also works with IE7, replace the setAttribute with:

// IE7
div.className="popup";
div.style.left=left;
div.style.top = top;

13.8 Creating Hover-Based Pop-up Info Windows | 291

See Also
See Recipes 13.2 and 13.3 for more information about using element.getBoundingClien
tRect. Chapter 12 provides coverage of creating new page elements, and Chapter 18 of
using Ajax. Recipe 12.15 covers using setAttribute with CSS style settings.

13.9 Collapsing or Resizing the Sidebar
Problem
You have a website that has a main column and one or more side columns, as shown
in Figure 13-6. You want to provide a way for your web page readers to control the
width of the main column, without having to resize the browser.

Solution
Use a collapsible sidebar.

Add an X in a span element at the top of the sidebar. Include a custom data-expand
attribute set to "true", to track whether the column is expanded or not. Also include
tabindex="0", so that the element can receive keypress events:

 <div>
 <p id="x" data-expand="true" tabindex="0">

Figure 13-5. Demonstrating a pop-up mouseover information window

292 | Chapter 13: Working with Web Page Spaces

X
 Collapse sidebar</p>
 </div>

Figure 13-6. Collapsible sidebar page before sidebar is collapsed

Add a method handler to the element’s click and keypress events that checks the data-
expand attribute to see if the column is currently expanded or not. If it is expanded, the
column is collapsed, and the main column expanded; if not, the sidebar and main
column are returned to their regular dimensions:

window.onload=function() {

 var x = document.getElementById("x");
 x.setAttribute("style","display: block");
 x.onclick=expandOrShrink;
 x.onkeypress=expandOrShrink;
}

function expandOrShrink() {
 if (this.getAttribute("data-expand") == "true") {
 document.getElementById("sidebar").setAttribute("style",
 "width: 50px");
 document.getElementById("main").setAttribute("style",
 "width: 700px");
 this.setAttribute("data-expand", "false");
 } else {
 document.getElementById("sidebar").setAttribute("style",
 "width: 240px");

13.9 Collapsing or Resizing the Sidebar | 293

 document.getElementById("main").setAttribute("style",
 "width: 500px");
 this.setAttribute("data-expand", "true");
 }
}

Discussion
Working with page space doesn’t mean that the JavaScript has to be complex or in-
volved. The collapsible sidebar is very simple. The key to making it work is to ensure
that the sidebar contents are clipped when the sidebar is shrunk (as shown in Fig-
ure 13-7), rather than overflowing the sidebar dimensions.

Figure 13-7. Collapsible sidebar page after sidebar is collapsed

To ensure the page works if JavaScript is disabled, the default CSS for the X element is
set to display none. When the page loads, JavaScript changes the X to display.

Since IE7 doesn’t like the use of setAttribute with the style attribute, you can modify
the application to support this older browser by using direct attribute assignment:

function expandOrShrink() {
 if (this.getAttribute("data-expand") == "true") {
 document.getElementById("sidebar").setAttribute("style",
 "width: 50px");
 document.getElementById("main").setAttribute("style",
 "width: 700px");

294 | Chapter 13: Working with Web Page Spaces

 // IE7
 // document.getElementById("sidebar").style.width="50px";
 // document.getElementById("main").style.width="700px";

 this.setAttribute("data-expand", "false");
 } else {
 document.getElementById("sidebar").setAttribute("style",
 "width: 240px");
 document.getElementById("main").setAttribute("style",
 "width: 500px");

 // IE7
 // document.getElementById("sidebar").style.width="240px";
 // document.getElementById("main").style.width="500px";

 this.setAttribute("data-expand", "true");
 }
}

IE7 does support the use of getAttribute and setAttribute with custom data-*
attributes.

13.9 Collapsing or Resizing the Sidebar | 295

CHAPTER 14

Creating Interactive and Accessible
Effects with JavaScript, CSS, and ARIA

14.0 Introduction
Using JavaScript with HTML and CSS to enable more interactive web pages has been
around for over a decade. We’ve used the techniques to provide just-in-time help when
people are submitting forms, highlight page sections, cue the users that something
important has happened, or respond to mouse hover events.

These venerable techniques are now joined with a new capability: Accessible Rich In-
ternet Applications (ARIA), a set of accessibility attributes that add accessibility to Rich
Internet Applications.

This chapter is going to focus on classic interactive JavaScript techniques used across
most of the Web, and requiring only basic HTML, CSS, and JavaScript skills. They’ll
be freshened for modern times with the use of the ARIA functionality.

Byte for byte, the effects described in this chapter can provide the most impact with
the least effort. Best of all, the effects described in this chapter are probably the most
cross-browser-friendly techniques in use today. They’re certainly the most user-friendly
techniques available.

The examples in this chapter work in all of the book’s target browsers. To test the
screen-reader-specific accessibility components, you can install a screen reader that
provides a free testing option (such as Windows-Eyes, which allows 30 minutes of
testing between reboots), or a free, fully functional screen reader such as NVDA, which
unfortunately only works on Windows. The Mac has built-in screen reader support
with VoiceOver, but it has only limited ARIA support at this time. The Linux environ-
ment has Orca, another free option. When testing for this chapter, I used Firefox 3.5
and NVDA in Windows XP.

I’ve long known that accessibility is an important feature for web applications, but I
didn’t realize until I was working on the examples for this chapter how fun developing

297

for accessibility can be. Seeing previously silent, verbally unresponsive applications
suddenly come alive when I turned on NVDA was rather amazing, and I must confess
to going a little crazy trying out as many ARIA roles, relationships, and statuses as I
could given the book deadline and size considerations.

The ARIA capabilities are described in a set of documents created via
the WAI-ARIA (Web Accessibility Initiative-Accessible Rich Internet
Applications), an initiative under the auspices of the W3C. For more
information on WAI-ARIA, see the WAI-ARIA overview page.

Though much of the effort for accessibility has been focused on those needing to use
screen readers, the concept of accessibility covers a broad range of impairments:

• Visual impairment, covering complete loss of vision, but can also include partial
loss of vision, eye strain, monitors that are too large or too small, color blindness,
and fatigue.

• Hearing loss, ranging from difficulty in hearing to complete deafness.

• Motor impairment, covering complete immobility, where the use of a mouse is
impossible, to some fine-motor impairment, where the use of the mouse in coor-
dination with the mouse button can be a problem.

• Cognitive impairment, covering a range of issues related to reading comprehen-
sion, reading ability and experience, memory, as well as experience with devices
and with terminology.

As we go through the recipes, I’ll try to tie what I’ve covered back to these broad
groupings.

See Also
Recipe 7.7 also discusses ARIA related to the drag-and-drop event handling, and the
new HTML5 native drag-and-drop support.

Two Windows-based commercial screen readers are JAWS and Window-Eyes, both of
which provide limited time-based testing without having to purchase the product.
NVDA also works only on Windows, and is free. Orca, which works on Linux, can be
found at http://live.gnome.org/Orca. VoiceOver is built-into the Mac environment, and
can be controlled via System Preferences→System→Universal Access.

A nice overview in how to work with Firefox and NVDA can be found at Marco’s
Accessibility Blog. A good overview on setting up a screen reader test environment can
be found at http://www.iheni.com/screen-reader-testing/.

The WebAIM website provides a good overview of the different forms of disability
types.

298 | Chapter 14: Creating Interactive and Accessible Effects with JavaScript, CSS, and ARIA

http://www.w3.org/WAI/intro/aria.php
http://www.freedomscientific.com/products/fs/jaws-product-page.asp
http://www.gwmicro.com/Window-Eyes/
http://www.nvda-project.org/
http://live.gnome.org/Orca
http://www.marcozehe.de/articles/how-to-use-nvda-and-firefox-to-test-your-web-pages-for-accessibility/
http://www.marcozehe.de/articles/how-to-use-nvda-and-firefox-to-test-your-web-pages-for-accessibility/
http://www.iheni.com/screen-reader-testing/
http://www.webaim.org/intro/

14.1 Displaying a Hidden Page Section
Problem
You want to hide or show a page section, as needed.

Solution
If there’s a good likelihood of the page section being needed, you can embed it in the
page and display it when needed:

var msg = document.getElementById("msg");
msg.style.display="block";
msg.setAttribute("aria-hidden", "false");

and hide it, when not:

var msg = document.getElementById("msg");
msg.style.display="none";
msg.setAttribute("aria-hidden", "true");

Discussion
Elements have different CSS display settings, depending on the type of element, and
to some extent, the user agent. For browsers like Opera or Firefox, a span has an
inline display value, while a div element has a block display value. Regardless of ele-
ment type, though, setting the display to none removes the element completely from
the document layout. Visually, this means the element is removed from view and does
not take up any page space or affect how any other element displays, other than its own
child elements.

Assistive Technology devices also understand and support the display property,
though there are some inconsistencies in AT support. The aria-hidden attribute is a
way of providing precise instructions to the AT device: when true, don’t display/speak
the text; if false, display/speak the text. It can be used in combination with the CSS
display property to ensure the same result in visual and nonvisual environments.

Using aria-hidden with the CSS display property doesn’t require any additional work.
If the browser supports attribute selectors, you can set the element’s visual display using
the aria-hidden attribute:

#msg[aria-hidden=true]
{
 display: none;
}

With this CSS, when you change an element’s aria-hidden attribute, you’re also chang-
ing the CSS display property.

14.1 Displaying a Hidden Page Section | 299

Using this CSS style setting causes IE8 to lock up when it’s running in
IE7 compatibility mode.

Being able to hide sections of a page is useful not only for hiding and displaying mes-
sages, but also for hiding form elements, especially in a form that has a lot of elements.
By hiding sections of the page and displaying them only as needed, you help to create
an uncluttered web page. An uncluttered page helps everyone accessing your page, but
is especially helpful for those who have cognitive disabilities and who may have chal-
lenges comprehending a mess of words and form controls all at once.

However, use this functionality with care. Providing a page with labels that a person
can click to reveal the form elements underneath is helpful; unexpectedly popping up
new controls can both surprise and irritate the user.

To ensure the page is always accessible even with JavaScript turned off, set the material
you want available to be displayed by default, and hide the sections using JavaScript
when the page is loaded. Set the messages you don’t want displayed if JavaScript is
disabled to be hidden by default.

See Also
See Recipe 14.5 for an example of a good implementation of hidden form content.

14.2 Creating an Alert Message
Problem
You want to alert the reader to important information.

Solution
Create a visually distinctive alert message in the web page, and ensure it’s noticed by
AT devices:

function addPopUp(txt) {
 // remove old alert, in case
 var msg = document.getElementById("msg");
 if (msg)
 document.body.removeChild(msg);

 // create new text and div elements and set
 // ARIA and class values and id
 var txtNd = document.createTextNode(txt);
 msg = document.createElement("div");
 msg.setAttribute("role","alert");
 msg.setAttribute("id","msg");
 msg.setAttribute("class","alert");

300 | Chapter 14: Creating Interactive and Accessible Effects with JavaScript, CSS, and ARIA

 // append text to div, div to document
 msg.appendChild(txtNd);
 document.body.appendChild(msg);
}

Discussion
Unless a message is going to be displayed frequently, in my opinion it’s better to create
the message and add it to the page only when needed. That way your web page is
uncluttered both physically and visually, and isn’t taking up more bandwidth than
necessary.

Creating a new text message is a simple four-step process:

1. Create the new textNode.

2. Create the parent element.

3. Append the new textNode to the parent element.

4. Append the parent element to the document.

In the solution, the message is going to be incorporated into a newly created div ele-
ment. After the div element is created, three attributes are added. The first is the ARIA
attribute role, set to alert. This should cause an AT device to interrupt what it’s doing
and immediately speak the message. The second attribute is the element id, so the
element can be accessed at a later time. The last is a CSS style class name. The class
ensures that the message is very easy to spot in the page visually. An example of a CSS
setting could be:

.alert
{
 background-color: #ffcccc; // pink
 font-weight: bold;
 padding: 5px;
 border: 1px dashed #000;
}

You can also use an attribute selector on the role attribute to style the CSS, and forgo
the class name:

[role="alert"]
{
 background-color: #ffeeee;
 font-weight: bold;
 padding: 5px;
 border: 1px dashed #000;
 width: 300px;
 margin: 20px;
}

Now the element’s visual appearance matches the urgency of the ARIA role’s setting.

14.2 Creating an Alert Message | 301

To ensure that messages don’t visually pile up in the page before a new alert is created,
any previously created alert is removed using the removeChild method on the message
element’s parent (in this example, the body element).

An alert lets people know that there’s something they need to pay attention to, whether
it’s incorrect data or a session that’s about to time out. Providing simple, specific mes-
sages to the user is also going to be helpful for those who use visual assistance devices
such as screen magnifiers, or have some cognitive difficulties when it comes to web
form use. This includes the inexperienced user, as well as those who may be fatigued
or have other comprehension problems.

Another key aspect to messages such as these is ensuring that they can be easily dis-
missed using both keyboard and mouse movements, as we’ll examine in more detail in
later recipes.

See Also
The function to add the text demonstrated in the solution was derived from a tip in
Marco’s Accessibility blog.

See Recipe 14.4 for a discussion about integrating keyboard access into mouse-based
applications.

14.3 Highlighting Form Field with Missing or Incorrect Data
Problem
You want to highlight missing or incorrectly entered information in a form field.

Solution
For the fields that need to be validated, assign a function to the form field’s onchange
event handler that checks whether the field value is valid. If the value is invalid, pop up
an alert with information about the error, and highlight the field using a contrasting
color:

document.getElementById("elemid").onchange=validateField;
...
function validateField() {

 // check for number
 if (isNaN(parseFloat(this.value))) {
 this.parentNode.setAttribute("style",
"background-color: #ffcccc");
 this.setAttribute("aria-invalid", "true");
 generateAlert("You entered an invalid value in Third Field.
Only numeric values such as 105 or 3.54 are allowed");
 }
}

302 | Chapter 14: Creating Interactive and Accessible Effects with JavaScript, CSS, and ARIA

http://www.marcozehe.de/2008/07/16/easy-aria-tip-3-aria-invalid-and-role-alert/

For the fields that need a required value, assign a function to the field’s onblur event
handler that checks whether a value has been entered:

document.getElementById("field").onblur=checkMandator;
...
function checkMandatory() {
 // check for data
 if (this.value.length === 0) {
 this.parentNode.setAttribute("style",
"background-color: #ffcccc");
 this.setAttribute("aria-invalid", "true");
 generateAlert("A value is required in this field");
 }
}

If any of the validation checks are performed as part of the form submittal, make sure
to cancel the submittal event if the validation fails.

Discussion
You can’t depend on visual indicators to highlight errors, but they can be a useful extra
courtesy.

Highlighting an error with color is good, but you should avoid colors that are hard to
differentiate from the background. If the form background is white, and you use a dark
yellow, gray, red, blue, green, or other color, there’s enough contrast that it doesn’t
matter if the person viewing the page is color blind or not. In the example, I used a
darker pink around the incorrect field, against a white page.

Using a color highlight for form errors is good, but it isn’t enough: you also need to
provide a text description of the error, so there’s no question in the user’s mind about
what the problem is.

How you display the information is also an important consideration. None of us really
like to use alert boxes, if we can avoid them. Alert boxes can obscure the form, and the
only way to access the form element is to dismiss the alert, with its error message. A
better approach is to embed the information in the page, near the form. Fortunately,
with the new ARIA roles, we can create an alert message and assign it an ARIA role of
alert, alerting those using screen readers or other AT devices.

One final touch: to ensure there’s no confusion about which field is invalid, the solution
also sets the aria-invalid attribute to true on the field. Not only does this provide
useful information for AT device users immediately, it can be used to discover all in-
correct fields when the form is submitted.

Example 14-1 demonstrates how to highlight an invalid entry on one of the form ele-
ments, and highlight missing data in another. The example also traps the form submit,
and checks whether there are any invalid form field flags still set. Only if everything is
clears is the form submittal allowed to proceed.

14.3 Highlighting Form Field with Missing or Incorrect Data | 303

Example 14-1. Providing visual and other cues when validating form fields

<!DOCTYPE html>
<head>
<title>Validating Forms</title>
<style>
[role="alert"]
{
 background-color: #ffcccc;
 font-weight: bold;
 padding: 5px;
 border: 1px dashed #000;
}
div
{
 margin: 10px 0;
 padding: 5px;
 width: 400px;
 background-color: #ffffff;
}
</style>
<script>

window.onload=function() {

 document.getElementById("thirdfield").onchange=validateField;
 document.getElementById("firstfield").onblur=mandatoryField;
 document.getElementById("testform").onsubmit=finalCheck;
}

function removeAlert() {

 var msg = document.getElementById("msg");
 if (msg) {
 document.body.removeChild(msg);
 }
}

function resetField(elem) {
 elem.parentNode.setAttribute("style","background-color: #ffffff");
 var valid = elem.getAttribute("aria-invalid");
 if (valid) elem.removeAttribute("aria-invalid");
}

function badField(elem) {
 elem.parentNode.setAttribute("style", "background-color: #ffeeee");
 elem.setAttribute("aria-invalid","true");
}
function generateAlert(txt) {

 // create new text and div elements and set
 // Aria and class values and id
 var txtNd = document.createTextNode(txt);
 msg = document.createElement("div");
 msg.setAttribute("role","alert");
 msg.setAttribute("id","msg");

304 | Chapter 14: Creating Interactive and Accessible Effects with JavaScript, CSS, and ARIA

 msg.setAttribute("class","alert");

 // append text to div, div to document
 msg.appendChild(txtNd);
 document.body.appendChild(msg);
}

function validateField() {

 // remove any existing alert regardless of value
 removeAlert();

 // check for number
 if (!isNaN(parseFloat(this.value))) {
 resetField(this);
 } else {
 badField(this);
 generateAlert("You entered an invalid value in Third Field.
Only numeric values such as 105 or 3.54 are allowed");
 }
}

function mandatoryField() {

 // remove any existing alert
 removeAlert();

 // check for value
 if (this.value.length > 0) {
 resetField(this);
 } else {
 badField(this);
 generateAlert("You must enter a value into First Field");
 }
}
function finalCheck() {

 removeAlert();

 var fields = document.querySelectorAll("[aria-invalid='true']");
 if (fields.length > 0) {
 generateAlert("You have incorrect fields entries that must be
fixed before you can submit this form");
 return false;
 }
}

</script>
</head>
<body>

<form id="testform">
 <div><label for="firstfield">*First Field:</label>

 <input id="firstfield" name="firstfield" type="text"
aria-required="true" /></div>

14.3 Highlighting Form Field with Missing or Incorrect Data | 305

 <div><label for="secondfield">Second Field:</label>

 <input id="secondfield" name="secondfield" type="text" /></div>
 <div><label for="thirdfield">Third Field (numeric):</label>

 <input id="thirdfield" name="thirdfield" type="text" /></div>
 <div><label for="fourthfield">Fourth Field:</label>

 <input id="fourthfield" name="fourthfield" type="text" /></div>

<input type="submit" value="Send Data" />
</form>

</body>

If either of the validated fields is incorrect in the application, the parent element’s
background color is set to pink and an error message is displayed. In addition, the aria-
invalid attribute is set to true in the field, and an ARIA role is set to alert on the error
message, as shown in Figure 14-1.

Figure 14-1. Highlighting an incorrect form field

306 | Chapter 14: Creating Interactive and Accessible Effects with JavaScript, CSS, and ARIA

Notice in the code that the element wrapping the targeted form field is set to its “correct
state” when the data entered is correct, so that when a field is corrected it doesn’t show
up as inaccurate or missing on the next go-round. Regardless of what event happens,
I remove the existing message alert, as it’s no longer valid once the event that triggered
it has been handled.

When the form is submitted, the application uses a querySelectorAll method call to
check for all instances of aria-invalid set to true, and rejects the submission until these
are corrected, as shown in Figure 14-2:

var badFields = document.querySelectorAll("[aria-invalid='true']");

You can also disable or even hide the correctly entered form elements, as a way to
accentuate those with incorrect or missing data. However, I don’t recommend this
approach. Your users may find as they fill in the missing information that their answers
in other fields were incorrect. If you make it difficult for them to correct the fields,
they’re not going to be happy with the experience—or the company, person, or or-
ganization providing the form.

Another approach you can take is to only do validation when the form is submitted.
Most built-in libraries, such as the jQuery Validation plug-in, operate this way. Rather
than check each field for mandatory or correct values as your users tab through, you
only apply the validation rules when the form is submitted. This way people who want
to fill out the form in a different order may do so without getting hit with irritating
validation messages as they tab through. This approach is a friendlier technique for
those people using a keyboard, rather than a mouse, to fill in the form. Or you can use
a mix of both: field-level validation for correct data type and format, form-level vali-
dation for required values.

Using JavaScript to highlight a form field with incorrect and missing data is only one
part of the form submission process. You’ll also have to account for JavaScript being
turned off, which means you have to provide the same level of feedback when pro-
cessing the form information on the server, and providing the result on a separate page.

It’s also important to mark if a form field is required ahead of time. Use an asterisk in
the form field label, with a note that all form fields with an asterisk are required. Use
the aria-required attribute to ensure this information is communicated to those using
assistive devices.

See Also
See Recipe 14.1 for more information about displaying and hiding page sections, such
as messages, and Recipe 14.2 for information about displaying error messages and other
alerts.

14.3 Highlighting Form Field with Missing or Incorrect Data | 307

14.4 Adding Keyboard Accessibility to a Page Overlay
Problem
You’ve created a page overlay in order to display a larger image (or text, or other con-
tent), and you want it to be keyboard accessible.

Solution
Add keyboard listening to the page to complement the mouse events:

// mouse click on image within link
function imgClick() {
 var img = this.firstChild;
 expandPhoto(img.getAttribute("data-larger"));
 return false;
}

// key press on image within link
function imgKeyPress(evnt) {
 evnt = (evnt) ? evnt : ((window.event) ? window.event : "");
 var keycode = (evnt.which) ? evnt.which : evnt.keyCode;
 if (document.getElementById("overlay")) {

Figure 14-2. Attempting to submit a form with inaccurate form field entries

308 | Chapter 14: Creating Interactive and Accessible Effects with JavaScript, CSS, and ARIA

 if (keycode == 27) {
 restore();
 return false;
 }
 } else {
 if (keycode == 13) {
 var img = this.firstChild;
 var src = img.getAttribute("data-larger");
 expandPhoto(src);
 return false;
 }
 }
}

Discussion
The first step to adding keyboard accessibility into a web page is to either use elements
that can receive keyboard focus (a, area, button, input, object, select, and textarea),
or use the tabindex="0" setting on the element, which will make the element focusable.

The second step is to capture keyboard activity in addition to the mouse events. In
Example 14-2, I’ve taken Example 13-3 from Recipe 13.6, and modified what was a
mouse-event-only application to also accept keyboard events. The example creates a
page overlay and displays a larger image when a person either clicks on a thumbnail
image in the original page, or presses the Enter (Return) key when the image has the
focus. Clicking the expanded image or pressing the Esc key removes the overlay, and
returns the page to its original state.

Example 14-2. Making an overlay/photo display page keyboard accessible

<!DOCTYPE html>
<head>
<title>Overlay</title>
<style>
img
{
 padding: 5px;
 border-style: none;
}

.overlay
{
 background-color: #000;
 opacity: .7;
 filter: alpha(opacity=70);
 position: absolute; top: 0; left: 0;
 width: 100%; height: 100%;
 z-index: 10;
}
.overlayimg
{
 position: absolute;
 z-index: 11;

14.4 Adding Keyboard Accessibility to a Page Overlay | 309

 left: 50px;
 top: 50px;
}
</style>
<script>

// expand photo when a/img is clicked
function imgClick() {
 var img = this.firstChild;
 expandPhoto(img.getAttribute("data-larger"));
 return false;
}

// if overlay is open, and ESC, close overlay
// account for keydown event in page
function imgKeyDown(evnt) {
 evnt = (evnt) ? evnt : ((window.event) ? window.event : "");
 var keycode = (evnt.which) ? evnt.which : evnt.keyCode;
 if (document.getElementById("overlay")) {
 if (keycode === 27) {
 restore();
 return false;
 }
 } else {
 if (keycode == 13) {
 var img = this.firstChild;
 var src = img.getAttribute("data-larger");
 expandPhoto(src);
 return false;
 }
 }
 return true;
}
// create overlay, expand photo
function expandPhoto(src) {

 // create overlay element
 var overlay = document.createElement("div");
 overlay.setAttribute("id","overlay");
 overlay.setAttribute("class", "overlay");

 // IE7
 // overlay.id="overlay";
 // overlay.className = "overlay";

 document.body.appendChild(overlay);

 // add image
 var img = document.createElement("img");
 img.src = src;
 img.setAttribute("id","img");

 // set tabindex, for focus
 img.setAttribute("tabindex","-1");

310 | Chapter 14: Creating Interactive and Accessible Effects with JavaScript, CSS, and ARIA

 // style image
 img.setAttribute("class","overlayimg");

 // IE7
 // img.className = "overlayimg";

 img.onclick=restore;
 img.onkeydown=imgKeyDown;

 document.body.appendChild(img);

 // focus on image in overlay
 img.focus();
}

// remove overlay and image
function restore() {

 document.body.removeChild(document.getElementById("overlay"));
 document.body.removeChild(document.getElementById("img"));
}

// add click and keyboard events
window.onload=function() {
 var aimgs = document.getElementsByTagName("a");
 aimgs[0].focus();
 for (var i = 0; i < aimgs.length; i++) {
 aimgs[i].onclick=imgClick;
 }
}

</script>

</head>
<body>
<p>Mouse click on image, or use keyboard to move to photo and hit
ENTER to expand the photo. To close expanded photo, hit ESC or
mouse click on image.</p>
<img src="dragonfly2.thumbnail.jpg" data-larger="dragonfly2.jpg"
alt="image of common dragonfly on bright green and pink flowers" />
<img src="dragonfly4.thumbnail.jpg" data-larger="dragonfly4.jpg"
alt="Dark orange dragonfly on water lily" />
<img src="dragonfly6.thumbnail.jpg" data-larger="dragonfly6.jpg"
alt="Dark orange dragonfly on purple water lily" />
<img src="dragonfly8.thumbnail.jpg" data-larger="dragonfly8.jpg"
alt="Dragonfly on bright pink water lily" />
</body>

When I opened the new image, I assigned it tabindex of –1, to set keyboard focus. To
ensure the application works with scripting disabled, the link references the larger im-
age. When scripting is enabled, the image shows in the overlay; with scripting disabled,
it opens in a separate page.

14.4 Adding Keyboard Accessibility to a Page Overlay | 311

A click (rather than keypress) event is triggered when the Enter key is pressed and the
focus is on one of the standard focusable elements: a, area, button, input, object,
select, and textarea.

The tabbing did not work with Firefox on the Mac. It does work with Firefox on Win-
dows, and hopefully, eventually, will work on the Mac, too. I also tested the application
with Opera, Safari, and Chrome, and it worked fine. You do have to use Shift + the
arrow keys to move among the images with Opera.

Safari overhauled its event system with Safari 3.1, and you no longer get a keypress
event when clicking a noncharacter key. When the overlay is open, rather than capture
the keypress event, you need to capture the keydown event if you’re using the Esc key
to return the page to normal.

The application worked out of the box for IE8. To make the page work with IE7, the
use of setAttribute and getAttribute with the class attribute should be changed to
direct assignment (the downloadable example code contains a workaround).

As you can see, using tabbing within a web page is somewhat challenging. However,
the future looks bright for this capability, with the new tabindex instructions in HTML5
that clarify tabbing and tabindex behavior. Instead of having to wrap images in links
to make them accessible, we can just assign them a tabindex="0". However, for non-
focusable elements such as img, you do need to capture keypress and click events.

Providing keyboard access is absolutely essential for folks using AT devices, as well as
people who have impaired movement. It’s also an important capability for those who
are using devices that may have limited mouse capability, such as some phones. And
it’s a nice enhancement for people who just prefer to use the keyboard whenever
possible.

See Also
See Recipe 13.6 for a more in-depth explanation of the mouse events for the application.
John Resig has an interesting post on the Safari 3.1 event-handling decision at http://
ejohn.org/blog/keypress-in-safari-31/. Recipe 12.15 has more information on using
setAttribute with CSS style properties.

14.5 Creating Collapsible Form Sections
Problem
You want to encapsulate form elements into collapsible sections, and expand when a
label is clicked.

312 | Chapter 14: Creating Interactive and Accessible Effects with JavaScript, CSS, and ARIA

http://ejohn.org/blog/keypress-in-safari-31/
http://ejohn.org/blog/keypress-in-safari-31/

Solution
Use an accordion widget in combination with the aria-hidden and aria-expanded states,
the tablist, tab, and tabpanel roles, and the aria-labeledby relationship indicator.

The entire set of accordion label/panel pairs is surrounded by one element, given a role
of tablist and an attribute of aria-multiselect set to true to indicate that the element
is a container for an accordion or multiselectable tablist. The text for the label is
enclosed in a link to make it keyboard-accessible. Since these are groupings of form
elements, the label/elements pair are surrounded by a fieldset, and the label is a
legend element. If this application were a menu, these elements would most likely be
div elements. The processing would, however, remain the same:

<form>
<div role="tablist" aria-multiselectable="true">
<fieldset>
<legend class="label" aria-controls="panel1" role="tab"
aria-expanded="true" id="label_1" >
Checkboxes
</legend>
<div class="elements" id="panel_1" role="tabpanel"
aria-labeledby="label_1">
<input type="checkbox" name="box1" id="box1" value="one" />
<label for="box1">One</label>

<input type="checkbox" name="box2" id="box2" value="two" />
<label for="box2">Two</label>

<input type="checkbox" name="box3" id="box3" value="three" />
<label for="box3">Three</label>

<input type="checkbox" name="box4" id="box4" value="four" />
<label for="box4">Four</label>

<input type="checkbox" name="box5" id="box5" value="five" />
<label for="box5">Five</label>

</div>
</fieldset>
<fieldset>
<legend class="label" aria-controls="panel2" role="tab"
aria-expanded="true" id="label_2" >
Buttons</legend>
<div class="elements" id="panel_2" role="tabpanel"
aria_labeledby="label_2">
<input type="radio" name="button1" id="b1" value="b one" />
<label>button one</label>

<input type="radio" name="button1" id="b2" value="b two" />
<label>button two</label>

<input type="radio" name="button1" id="b3" value="b three" />
<label>button three</label>

<input type="radio" name="button1" id="b4" value="b four" />
<label>button four</label>

<input type="radio" name="button1" id="b5" value="b five" />
<label>button five</label>

<input type="submit" value="submit" />
</div>
</fieldset>

14.5 Creating Collapsible Form Sections | 313

</div>
</form>

For each accordion label/panel pair, the label is displayed when the page is loaded,
while the contents of the accordion panel are hidden. The label is given a role of tab,
and the panel given a role of tabpanel. The aria-expanded attribute in the label is also
set to false, to indicate to the AT devices that the panel is collapsed, and the aria-
hidden is set to true on the panel, to indicate that the contents are not displayed:

// process tab panel elements
var elements = document.querySelectorAll(".elements");
for (var i = 0; i < elements.length; i++) {
 elements[i].style.display="none";
 elements[i].setAttribute("aria-hidden","true");
}

// process tab elements
var labels = document.querySelectorAll(".label");
for (var j = 0; j < labels.length; j++) {
 labels[j].onclick=switchDisplay;
 labels[j].style.display="block";
 labels[j].setAttribute("aria-expanded","false");
}

When the label is clicked, if the aria-expanded attribute is set to false, the panel is
displayed, its aria-hidden attribute is set to false, and the label’s aria-expanded at-
tribute is set to true. The opposite occurs if the aria-expanded attribute is set to true:

// when tab is clicked or enter key clicked
function switchDisplay() {

 var parent = this.parentNode;
 var targetid = "panel_" + this.id.split("_")[1];
 var target = document.getElementById(targetid);

 if (this.getAttribute("aria-expanded") == "true") {
 this.setAttribute("aria-expanded","false");
 target.style.display="none";
 target.setAttribute("aria-hidden","true");
 } else {
 this.setAttribute("aria-expanded","true");
 target.style.display="block";
 target.setAttribute("aria-hidden","false");
 }
 return false;
}
</script>

Discussion
The solution is a modification of the accordion solution in Recipe 13.5. The major
structural differences are that one container element is used to wrap all of the accordion
label/panel pairs, to indicate a grouping, each tab/panel pair is surrounded by a field
set element, and the div element that acted as a label was replaced by a legend element.

314 | Chapter 14: Creating Interactive and Accessible Effects with JavaScript, CSS, and ARIA

One aspect of working with ARIA that I wasn’t expecting is that it led me to reexamine
how I create my widget-like applications, such as an accordion. In Recipe 13.4, I didn’t
group the individual accordion pairs into one cohesive whole because I didn’t need to
for the solution I created, and I wanted to keep my element use to a minimum.

The ARIA attributes reminded me that there are semantics to the structure of an ac-
cordion—semantics I wasn’t capturing. For instance, I was working with a form but
wasn’t using form-specific elements. In the new version, instead of using div elements
for all aspects of the form element accordion, I used actual form elements: fieldset
and legend.

Another structural change is that a link is used to wrap the text in the label so that the
element can receive keyboard focus. Hitting the Enter key in the label triggers a click
event, since a link is a focusable element. Since I’m not capturing the click event in the
link, it bubbles up to the parent element—the label.

I also added an additional visual element—a background image with an arrow, to in-
dicate the direction the panel will open, as shown in Figure 14-3.

Figure 14-3. An accessible accordion

The reason for the addition of the arrows is to ensure clarity of purpose for the grouping
of elements. Those users unfamiliar with accordion applications, or who may have
cognitive disabilities, can see there is an action associated with the label. I’m not sure
about the type of arrow I used—a better approach might be a simple triangle.

The other change to the example was the addition of ARIA roles and states. At first,
the accessibility additions may seem to be rather numerous, but each provides a specific
piece of information necessary to understand what’s happening with the accordion

14.5 Creating Collapsible Form Sections | 315

widget. Consider how you would describe an accordion if you were describing it over
the phone to a friend: “The accordion is a group of label elements, each of which has
text. Each label also has an arrow, and I know from prior experience with similarly
structured web page objects that clicking each label opens a panel underneath. When
I do click each label, a section of previously hidden web page is displayed directly
beneath the label, and I’m able to see its contents. When I click other labels, their
associated panels also display. However, when I click the label for an already open
label, the panel it is associated with is removed from view.”

In ARIA, these visual impressions are conveyed by the use of the tablist role on the
outer container, and the role of tab on the label. In addition, the use of aria-
multiselect also indicates that more than one panel can be expanded at the same time.

The fact that the panels are collapsed is indicated by the aria-expanded attribute, and
that the panels aren’t displayed is indicated by the aria-hidden on each. When you
open the application with a screen reader, such as NVDA in Firefox, and close your
eyes, what I described is more or less what the device states.

The application works with all the book’s target browsers. However, the use of query
SelectorAll doesn’t work with IE7. An alternative would be to access elements by tag
name, and then check each element’s class to see how to handle it. You’ll also want to
avoid using CSS attribute selector syntax with IE7.

See Also
See Recipe 13.4 for another implementation of the accordion. For an excellent dem-
onstration of the use of the ARIA attributes with an accordion, see the accordion ex-
ample at the Illinois Center for Information Technology and Web Accessibility.

14.6 Displaying a Flash of Color to Signal an Action
Problem
Based on some action, you want to display a visual cue to signify the success of the
action.

Solution
Use a flash to signal the success or failure of an action. The use of a red flash is standard
to signal either a successful deletion, or an error; the use of a yellow flash is typically
used to signal a successful update, or action:

var fadingObject = {
 yellowColor : function (val) {
 var r="ff"; var g="ff";
 var b=val.toString(16);
 var newval = "#"+r+g+b;
 return newval;

316 | Chapter 14: Creating Interactive and Accessible Effects with JavaScript, CSS, and ARIA

http://test.cita.illinois.edu/aria/tabpanel/tabpanel2.php

},

 fade : function (id,start,finish) {
 this.count = this.start = start;
 this.finish = finish;
 this.id = id;
 this.countDown = function() {
 this.count+=30;
 if (this.count >= this.finish) {
 document.getElementById(this.id).style.background=
 "transparent";
 this.countDown=null;
 return;
 }
 document.getElementById(this.id).style.backgroundColor=
 this.yellowColor(this.count);
 setTimeout(this.countDown.bind(this),100);
 }
 }
};
...
// fade page element identified as "one"
fadingObject.fade("one", 0, 300);
fadingObject.countDown();

Discussion
A flash, or fade as it is frequently called, is a quick flash of color. It’s created using a
recurring timer, which changes the background color of the object being flashed. The
color is varied by successively changing the values of the nondominant RGB colors, or
colors from a variation of 0 to 255, while holding the dominant color or colors at FF.
Figure 14-4 shows how this color variation works with the color green. If for some
reason the green color can’t be perceived (such as this figure being in a paper copy of
this book, or because of color blindness), the color shows as successions of gray. As
you progress down the figure, the color gets progressively paler, as the nondominant
red and blue values are increased, from initial hexadecimal values of 00, to FF(255).

The color yellow used in the solution kept the red and green values static, while chang-
ing the blue. A red flash would keep the red color static, while adjusting both the green
and blue.

In the solution, I’m setting the beginning and ending colors for the flash when I call the
fade method on the object, fadingObject. Thus, if I don’t want to start at pure yellow
or end at white, I can begin with a paler color, or end with a paler color.

A color flash is used to highlight an action. When used with Ajax, a red flash can single
the deletion of a table row just before the row is removed from the table. The flash is
an additional visual cue, as the table row being deleted helps set the context for the
flash. A yellow flash can do the same when a table row is updated.

14.6 Displaying a Flash of Color to Signal an Action | 317

A flash can also be used with an alert message. In Recipe 14.2, I created an alert that
displayed a solid color until removed from the page. I could also have used a red flash
to highlight the message, and left the background a pale pink at the end:

function generateAlert(txt) {

 // create new text and div elements and set
 // Aria and class values and id
 var txtNd = document.createTextNode(txt);
 msg = document.createElement("div");
 msg.setAttribute("role","alert");
 msg.setAttribute("id","msg");
 obj.fade("msg", 0, 127);
 obj.redFlash();
 msg.setAttribute("class","alert");

Figure 14-4. Demonstrating how a color flash effect changes

318 | Chapter 14: Creating Interactive and Accessible Effects with JavaScript, CSS, and ARIA

 // append text to div, div to document
 msg.appendChild(txtNd);
 document.body.appendChild(msg);
}

The only requirement for the solution would be to either make the color-fade effect
more generic, for any color, or add a new, specialized redFlash method that does the
same as the yellow.

Previously, if the color flash hasn’t been considered an accessibility aid, it’s also not
considered an accessibility hindrance, either. As I mentioned earlier, it should be paired
with some other event or response that provides information about what’s happening.
In the code snippet, when the alert message is displayed, it’s done with a flash, but the
ARIA alert role is also assigned so that those using a screen reader get notified.

How about other accessibility concerns, though, such as photosensitive epilepsy? Or
those with cognitive impairments where page movement or light flickering can disrupt
the ability to absorb the page content?

A simple color flash as demonstrated should not result in any negative reaction. It’s a
single progressive movement, rather than a recurring flicker, and over quickly. In fact,
the WebAIM website—which is focused on accessibility—makes use of a yellow flash
in an exceedingly clever and accessible way.

If you access one of the WebAIM articles, such as the one on keyboard accessibility,
and click one of the links that takes you to an in-page anchor, the page (once it has
scrolled to the anchor location) gives material associated with the anchor a subtle and
quick yellow flash to highlight its location.

In the site’s JavaScript, the author of the JavaScript writes:

// This technique is a combination of a technique I used for
// highlighting FAQ's using anchors
// and the ever popular yellow-fade technique used by
// 37 Signals in Basecamp.

// Including this script in a page will automatically do two
// things when the page loads...
// 1. Highlight a target item from the URL (browser address bar)
// if one is present.
// 2. Set up all anchor tags with targets pointing to the current
// page to cause a fade on the target element when clicked.

In other words, when the page is loaded, the author accesses all anchors in the page:

var anchors = document.getElementsByTagName("a");

The author then traverses this array, checking to see if the anchor has a fragment
identifier (#):

if (anchors[i].href.indexOf('#')>-1)

14.6 Displaying a Flash of Color to Signal an Action | 319

http://www.webaim.org/techniques/keyboard/tabindex.php

If so, then clicking that link also causes the section to highlight:

anchors[i].onclick = function(){Highlight(this.href);return true};

I haven’t seen a flash used for this effect before, and it demonstrates how accessible a
flash can be when used for good effect. If you’ve ever clicked an in-page link that goes
to a page fragment located toward the bottom of the page, you know how frustrating
it can be to find exactly which section is referenced by the link when there is not enough
page left to scroll the item to the top.

Now, with the use of page-fragment link highlighting, you can immediately locate the
linked section. And since the highlight fades, once the section is located, you don’t have
to put up with the colored background, which can impact on the amount of contrast
between color of text and color of background.

See Also
Gez Lemon has an excellent article on photosensitive epilepsy at http://juicystudio.com/
article/photosensitive-epilepsy.php.

14.7 Adding ARIA Attributes to a Tabbed Page Application
Problem
You want to split the page contents into separate panels, and only display one at a time.
You also want the application to be accessible.

Solution
Use a tabbed page application and include the ARIA roles tablist, tabpanel, and tab,
as well as the aria-hidden state.

The tabbed page is a div element, as is the container, with the tabs as list items (li)
within a single unordered list (ul) at the top. The container div is given a role of
tablist, and each of the li elements given a role of tab. The tabbed panels are div
elements containing whatever type of contents, and each is given a role of tabpanel.
The relationship between panel and tab is made with the aria-labeledby attribute:

<div class="tabcontainer" role="tablist">
 <div class="tabnavigation" role="tab">

 <li id="tabnav_1" role="tab">Page One
 <li id="tabnav_2" role="tab">Page Two
 <li id="tabnav_3" role="tab">Page Three

 </div>

 <div class="tabpages">
 <div class="tabpage" role="tabpanel" aria-labeledby="tabnav_1"
aria-hidden="false" id="tabpage_1">

320 | Chapter 14: Creating Interactive and Accessible Effects with JavaScript, CSS, and ARIA

http://juicystudio.com/article/photosensitive-epilepsy.php
http://juicystudio.com/article/photosensitive-epilepsy.php

 <p>page 1</p>
 </div>
 <div class="tabpage" role="tabpanel" aria-labeledby="tabnav_2"
aria-hidden="true" id="tabpage_2">
 <p>page 2</p>
 </div>
 <div class="tabpage" role="tabpanel" aria-labeledby="tabnav_3"
aria-hidden="true" id="tabpage_3">
 <p>page 3</p>
 </div>
 </div>
</div>

When the page loads, the tabs are displayed and all but the first of the panels are hidden.
The hidden panels are assigned an aria-hidden attribute value of true. The click event
handler for all of the tab elements is assigned a function, displayPage, to control the
tab page display. A custom data attribute, data-current, on the tabbed page container
is used to store which tab is currently selected:

// set up display
// for each container display navigation
// hide all but first page, highlight first tab
window.onload=function() {

 // for each container
 var containers = document.querySelectorAll(".tabcontainer");
 for (var j = 0; j < containers.length; j++) {

 // display and hide elements
 var nav = containers[j].querySelector(".tabnavigation ul");
 nav.style.display="block";

 // set current tab
 var navitem = containers[j].querySelector(".tabnavigation ul li");
 var ident = navitem.id.split("_")[1];
 navitem.parentNode.setAttribute("data-current",ident);
 navitem.setAttribute("style","background-color: #ccf");

 // set displayed tab panel
 var pages = containers[j].querySelectorAll(".tabpage");
 for (var i = 1; i < pages.length; i++) {
 pages[i].style.display="none";
 pages[i].setAttribute("aria-hidden","true");
 }

 // for each tab, attach event handler function
 var tabs = containers[j].querySelectorAll(".tabnavigation ul li");
 for (var i = 0; i < tabs.length; i++) {
 tabs[i].onclick=displayPage;
 }
 }
}

When a tab is clicked, the old tabbed entry is cleared by setting the background of the
tab to white and hiding the panel. The new entry’s tab is highlighted (background color

14.7 Adding ARIA Attributes to a Tabbed Page Application | 321

is changed), and its associated panel is displayed. The hidden panel’s aria-hidden at-
tribute is set to true, while the displayed panel’s aria-hidden attribute is set to false.
The custom data attribute data-current is set to the new tab selection, and the clicked
tab’s id is used to derive the related panel’s ID:

// click on tab
function displayPage() {

 // hide old selection
 var current = this.parentNode.getAttribute("data-current");
 var oldpanel = document.getElementById("tabpage_" + current);

 document.getElementById("tabnav_" + current).setAttribute("style",
 "background-color: #fff");
 oldpanel.style.display="none";
 oldpanel.setAttribute("aria-hidden","true");

 // display new selection
 var ident = this.id.split("_")[1];
 this.setAttribute("style","background-color: #ccf");
 var newpanel = document.getElementById("tabpage_" + ident);

 newpanel.style.display="block";
 newpanel.setAttribute("aria-hidden","false");
 this.parentNode.setAttribute("data-current",ident);

 return false;
}

Discussion
The code in the solution is very similar to that in Recipe 13.7; the only difference is the
addition of the ARIA roles and attributes. The changes are minor—I highlighted the
lines in the JavaScript that were added to enable ARIA support. As you can see, adding
accessibility with ARIA is not an onerous task.

Another excellent demonstration of an ARIA-enabled tabbed page can be found at the
Illinois Center for Information Technology and Web Accessibility. Though the code
to manage the tabbed page behavior differs significantly from mine, the relative struc-
ture and use of ARIA roles and attributes is identical. The main difference between the
two implementations is that my example uses a link to make my tabs clickable, while
the external example uses tabindex. The external application also makes more extensive
use of the keyboard.

As mentioned in Recipe 14.5, working with the ARIA attributes provides a new way of
looking at widget-like applications like tabbed pages and accordions. The Illinois Cen-
ter I just mentioned actually lists both the accordion and tabbed page example in one
section specific to tabbed pages, because they have very similar behavior. The only
difference is one is multiselectable, the other not; one requires modification to the label
to signify which label is associated with which panel, while the other does not need this
information. By looking at both types of widgets with a fresh viewpoint, I’ve learned

322 | Chapter 14: Creating Interactive and Accessible Effects with JavaScript, CSS, and ARIA

http://test.cita.uiuc.edu/aria/tabpanel/tabpanel1.php

new ways to use both: instead of creating vertical accordion panels, I’ve also started
using horizontal panels; rather than tabs being located at the top of a tabbed applica-
tion, I’ve started placing them on the side. It taught me to appreciate how they are both
semantically linked, and how to ensure this semantic similarity is preserved in both
structure and code.

See Also
Recipe 14.4 covers some of the implementation details with using tabindex.

14.8 Live Region
Problem
You have a section of a web page that is updated periodically, such as a page section
that lists recent updates to a file, or one that reflects recent Twitter activity on a subject.
You want to ensure that when the page updates, those using a screen reader are updated
with the new information.

Solution
Use ARIA region attributes on the element being updated:

<ul id="update" role="log" aria-alive="polite" aria-atomic="true"
aria-relevant="additions">

Discussion
A section of the web page that can be updated after the page is loaded, and without
direct user intervention, calls for the use of ARIA Live Regions. These are probably the
simplest ARIA functionality to implement, and they provide immediate, positive re-
sults. And there’s no code involved, other than the JavaScript you need to create the
page updates.

I took the example application from Recipe 18.9, which updates the web page based
on the contents of a text file on the server that the application retrieves using Ajax, and
provided two minor updates.

First, I modified the code that polls for the updates to check how many items have been
added to the unordered list after the update. If the number is over 10, the oldest is
removed from the page:

// process return
function processResponse() {
 if(xmlhttp.readyState == 4 && xmlhttp.status == 200) {
 var li = document.createElement("li");
 var txt = document.createTextNode(xmlhttp.responseText);
 li.appendChild(txt);

14.8 Live Region | 323

 var ul = document.getElementById("update");
 ul.appendChild(li);

 // prune top of list
 if (ul.childNodes.length > 10) {
 ul.removeChild(ul.firstChild);
 }

 } else if (xmlhttp.readyState == 4 && xmlhttp.status != 200) {
 alert(xmlhttp.responseText);
 }
}

With this change, the list doesn’t grow overly long.

I made one more change, adding the ARIA roles and states to the unordered list that
serves as the updatable live region:

<ul id="update" role="log" aria-live="polite" aria-atomic="true"
aria-relevant="additions s">

From left to right: the role is set to log, because I’m polling for log updates from a file,
and only displaying the last 10 or so items. Other options include status, for a status
update, and a more general region value, for an undetermined purpose.

The aria-live region attribute is set to polite, because the update isn’t a critical update.
The polite setting tells the screen reader to voice the update, but not interrupt a current
task to do so. If I had used a value of assertive, the screen reader would interrupt
whatever it is doing and voice the content. Always use polite, unless the information
is critical.

The aria-atomic is set to true, so that the screen reader only voices new additions. It
could get very annoying to have the screen reader voice the entire set with each new
addition, as would happen if this value is set to false.

Lastly, the aria-relevant is set to additions, as we don’t care about the entries being
removed from the top. This is actually the default setting for this attribute, so in this
case it wasn’t needed. In addition, AT devices don’t have to support this attribute. Still,
I’d rather list it than not. Other values are removals, text, and all (for all events). You
can specify more than one, separated by a space.

This ARIA-enabled functionality was probably the one that impressed me the most.
One of my first uses for Ajax, years ago, was to update a web page with information.
It was frustrating to test the page with a screen reader (JAWS, at the time) and hear
nothing but silence every time the page was updated. I can’t even imagine how frus-
trating it was for those who needed the functionality.

Now we have it, and it’s so easy to use. It’s a win-win.

See Also
See Recipe 18.9 for more of the code for the live update.

324 | Chapter 14: Creating Interactive and Accessible Effects with JavaScript, CSS, and ARIA

CHAPTER 15

Creating Media Rich and Interactive
Applications

15.0 Introduction
Pretty pictures. Cool videos. Sound!

The Web of the future will be a richer place, indeed, with the new and improved
innovations ready to use. Our old friends SVG and Canvas are getting new life and
generating new interest. Added to them are the new video and audio elements included
in HTML5, and the near-future potential of 3D graphics.

JavaScript and CSS provide a malleable palette in which to paint web pages, but SVG
and the canvas element provide the capability to take those pages into new and exciting
territory.

SVG, or Scalable Vector Graphics, is an XML-based vector graphics language that can
be used to create scalable vector graphics within web pages. You can insert the SVG
into object elements, or in certain circumstances embed the SVG directly in the web
page. New advances also allow you to include SVG using the img element, and CSS.

SVG is normally a static XML markup, and not dependent on JavaScript. However, as
will be demonstrated later in the chapter, SVG and JavaScript can be used to create any
number of dynamic graphics.

The canvas element originated with Apple, and is now becoming standardized as part
of the HTML5/Web Applications 1.0 effort. Unlike SVG, the canvas element is totally
dependent on JavaScript. We add canvas elements into our page and then use a 2D
context API in order to draw into these elements.

SVG and Canvas are implemented in varying degrees in all of this book’s target brows-
ers, except for Internet Explorer (though recently we learned that IE9 will support SVG,
at least). However, recipes in this chapter provide how-tos for enabling support for
both, in all browsers and in most environments.

325

Newcomers joining the media environment are the audio and video elements included
in HTML5, and already implemented, albeit with some differences, in our target
browsers. Where before we depended on Flash to play video, now we can embed videos
natively and manipulate the videos using JavaScript.

The last newcomer introduced in this chapter isn’t really a newcomer, but an old friend
with a new face: WebGL (Web Graphics Library), and via plug-ins, the newer X3D.
Years ago, I used to work with VRML (Virtual Reality Modeling Language), which was
the earliest version of 3D on the Web. These 3D technologies pick up where VRML
left off, providing a new three-dimensional world to explore.

Since this is only one chapter, and I’m not the most artistic person in the world, I’m
focusing primarily on introducing all of these wonderful new tools and providing some
basic how-tos, such as how can you get SVG to work in IE. Once you have a good idea
of how these media technologies work, you can explore the Web and examine the
already rich set of demos and uses in order to find inspiration for your own adventures.

See Also
See the current working draft for the Canvas 2D API at http://dev.w3.org/html5/canvas
-api/canvas-2d-api.html, though note that this URL is likely to change. Keep up with
current work on SVG at http://www.w3.org/Graphics/SVG/.

15.1 Creating Basic Shapes in Canvas (Using the canvas
Element)
Problem
You want to create multiple shapes, such as overlapping squares, in the canvas element.

Solution
Insert a canvas element into the web page:

<canvas width="600" height="500">
<p>Two overlapping squares</p>
</canvas>

Then use the Canvas 2D API to create the shapes. The following creates three over-
lapping rectangles:

var imgcanvas = document.getElementById("imgcanvas");
if (imgcanvas.getContext) {
 var ctx = imgcanvas.getContext('2d');
 ctx.fillStyle="rgba(255,0,0,.1)";
 ctx.strokeStyle="#000000";

 // rect one
 ctx.fillRect(0,0,100,100);

326 | Chapter 15: Creating Media Rich and Interactive Applications

http://dev.w3.org/html5/canvas-api/canvas-2d-api.html
http://dev.w3.org/html5/canvas-api/canvas-2d-api.html
http://www.w3.org/Graphics/SVG/

 ctx.strokeRect(0,0,100,100);

 // rect two
 ctx.fillRect(50,50,100,200);

 // rect three
 ctx.strokeRect(80,130,200,100);

 }

Discussion
The canvas element is inserted into the web page in the location you want the canvas
drawing to exist. You can provide a styling for the element, but it’s not going to impact
on the actual canvas drawing, which is managed via the Canvas 2D API.

You can set the width and height of the canvas element using the width and height
attributes. You can also, as shown in the solution, provide fallback content—in this
case, a paragraph describing what’s being drawn within the canvas element.

In JavaScript, you have to get the canvas element’s context first. Though most imple-
mentations of the canvas element only support a 2D context, you’ll still need to specify
2d when accessing the context. When support for 3D is added, you’d pass in a value of
3d.

Before you begin drawing, test to see if the canvas element is supported:

if (imgcanvas.getContent) {
 var ctx = imgcanvas.getContext('2d');
...
}

Once you have the canvas context, all the API calls from that point go to that specific
canvas element. The solution demonstrates creating three rectangles, as shown in Fig-
ure 15-1. There are three different rectangle methods:

fillRect
Uses the currently set fillStyle value to fill the rectangle

strokeRect
Uses the currently set strokeStyle value to outline the rectangle

clearRect
Clears whatever is drawn within the rectangle area

The last method, clearRect, wasn’t demonstrated in the solution; it actually removes
the pixels within the rectangle area. Since the canvas element is transparent by default,
this would expose the document content underneath the canvas element.

All three methods take an origin, a width, and a height, in the following order: x, y,
width, height. The origin increases from top to bottom, and from left to right, so an
x,y value of 0,0 would place the upper-left corner of the rectangle at the upper-left
corner of the canvas.

15.1 Creating Basic Shapes in Canvas (Using the canvas Element) | 327

The canvas element is supported in all major browsers except Internet Explorer. Rec-
ipe 15.2 provides a solution that allows the canvas element to work with IE.

See Also
It’s important to provide fallback content not only for accessibility purposes, but in
those cases where JavaScript is not enabled.

Current work is underway with the W3C to provide more in-depth accessibility infor-
mation with the canvas element. Until implemented, though, you shouldn’t use the
canvas element for important information (unless you provide a fallback), or for site
navigation or other critical site use.

15.2 Implementing Canvas Applications in IE
Problem
You want to ensure your Canvas application works in IE.

Figure 15-1. Three rectangles drawn in the canvas area

328 | Chapter 15: Creating Media Rich and Interactive Applications

Solution
Use a Canvas emulation library, such as explorercanvas, created by Erik Arvidsson:

<!--[if IE]><script src="excanvas.js"></script><![endif]-->

Discussion
The explorercanvas library works by emulating the canvas element using Microsoft’s
Virtual Markup Language (VML)—the company’s own version of a vector graphics
language.

Example 15-1 is a web page that contains a link to the explorercanvas library, and the
canvas example from Recipe 15.1. The example creates three rectangles in a canvas
element. The difference between the two applications is that this version works with IE.

Example 15-1. Cross-browser application creating three rectangles in a canvas element

<!DOCTYPE html>
<head>
<title>Canvas Squares</title>
<meta charset="utf-8" />
<!--[if IE]><script src="excanvas.js"></script><![endif]-->

<script type="text/javascript">
//<![CDATA[

window.onload=function() {

 var imgcanvas = document.getElementById("imgcanvas");
 if (imgcanvas.getContext) {
 var ctx = imgcanvas.getContext('2d');
 ctx.fillStyle="rgba(255,0,0,.1)";
 ctx.strokeStyle="#000000";

 // rect one
 ctx.fillRect(0,0,100,100);
 ctx.strokeRect(0,0,100,100);

 // rect two
 ctx.fillRect(50,50,100,200);

 // rect three
 ctx.strokeRect(80,130,200,100);

 }
}

//]]>
</script>
</head>
<body>
<canvas id="imgcanvas" width="400" height="250">
<p>Three rectangles, overlapping</p>

15.2 Implementing Canvas Applications in IE | 329

</canvas>
</body>

There is an additional constraint to using explorercanvas: if you create the canvas ele-
ment dynamically using the document.createElement method, you need to include the
following code so that the library can map the getContext method to the new canvas
element:

var newcanvas = document.createElement("canvas");
G_vmlCanvasManager.initElement(newcanvas);
var ctx = newcanvas.getContext('2d');

Download explorercanvas from http://code.google.com/p/explorercanvas/.

15.3 Creating a Dynamic Line Chart in Canvas
Problem
You want to display a line chart in your web page, but the data changes over time, and
you want to dynamically update it.

Solution
Use the canvas element and the path method to create the chart. When the data changes,
update the chart:

 var array1 = [[100,100], [150, 50], [200,185],
 [250, 185], [300,250], [350,100], [400,250],
 [450, 100], [500,20], [550,80], [600, 120]];

 var imgcanvas = document.getElementById("imgcanvas");

 if (imgcanvas.getContext) {
 var ctx = imgcanvas.getContext('2d');

 // rect one
 ctx.strokeRect(0,0,600,300);

 // line path
 ctx.beginPath();
 ctx.moveTo(0,100);
 for (var i = 0; i < array1.length; i++) {
 ctx.lineTo(array1[i][0], array1[i][1]);
 }
 ctx.stroke();
}

Discussion
Canvas paths are the way to create arbitrary shapes in Canvas. After getting the canvas
context, ctx, the path is begun with a call to ctx.beginPath(). This marks the beginning

330 | Chapter 15: Creating Media Rich and Interactive Applications

http://code.google.com/p/explorercanvas/

of the path, and calling the method again starts a new path. The next line of code is
ctx.moveTo, which moves the drawing “pen” to a beginning location without drawing.
From that point, several calls are made to lineTo, using an array of paired values rep-
resenting the x,y location for each line endpoint.

After all of the line points have been defined, the path is drawn. We’re not creating a
closed path, so I’m not using ctx.closePath(), which would attempt to draw a line
from the ending point to the beginning point. Instead, I’m drawing the line given the
points that have been defined, using ctx.stroke().

This creates a single path. To dynamically update the chart, you can incorporate timers,
and either replace the path (by creating an entirely new context, which would erase the
old), or add the new line chart to the same chart. Example 15-2 shows a web page that
creates the line in the solution and then creates two others, each drawn after a short
period of time using timers. The colors for the stroke path are changed between lines.

Example 15-2. Using timers to dynamically update a line chart

<!DOCTYPE html>
<head>
<title>Canvas Chart</title>
<meta charset="utf-8" />
<!--[if IE]><script src="excanvas.js"></script><![endif]-->

<script type="text/javascript">

window.onload=function() {

 var array1 = [[100,100], [150, 50], [200,185],
 [250, 185], [300,250], [350,100], [400,250],
 [450, 100], [500,20], [550,80], [600, 120]];

 var array2 = [[100,100], [150, 150], [200,135],
 [250, 285], [300,150], [350,150], [400,280],
 [450, 100], [500,120], [550,80], [600, 190]];

 var array3 = [[100,200], [150, 100], [200,35],
 [250, 185], [300,10], [350,15], [400,80],
 [450, 100], [500,120], [550,80], [600, 120]];

 var imgcanvas = document.getElementById("imgcanvas");

 if (imgcanvas.getContext) {
 var ctx = imgcanvas.getContext('2d');

 // rectangle wrapping line chart
 ctx.strokeRect(0,0,600,300);

 // first line
 ctx.beginPath();
 ctx.moveTo(0,100);
 for (var i = 0; i < array1.length; i++) {

15.3 Creating a Dynamic Line Chart in Canvas | 331

 ctx.lineTo(array1[i][0], array1[i][1]);
 }
 ctx.stroke();

 setTimeout(function() {

 ctx.strokeStyle="#ff0000";

 // second line
 ctx.beginPath();
 ctx.moveTo(0,100);
 for (var i = 0; i < array2.length; i++) {
 ctx.lineTo(array2[i][0], array2[i][1]);
 }

 ctx.stroke();

 // second time out
 setTimeout(function() {
 ctx.strokeStyle="#00ff00";
 ctx.fillStyle="rgba(255,255,0,.1)";

 // third line
 ctx.beginPath();
 ctx.moveTo(0,100);
 for (var i = 0; i < array3.length; i++) {
 ctx.lineTo(array3[i][0],array3[i][1]);
 }

 ctx.stroke();
 }, 5000);
 }, 5000);

 }
}

</script>
</head>
<body>
<canvas id="imgcanvas" width="650" height="350">
<p>Include an image that has a static representation of the chart</p>
</canvas>
</body>

Figure 15-2 shows the line chart after all three lines have been drawn. Notice that the
web page makes use of the explorercanvas library, excanvas.js, to ensure the chart also
draws in Internet Explorer.

There are other path methods: arc, to draw curves, and quadraticCurveTo and bezier
CurveTo, to draw quadratic and bezier curves. All of these methods can be combined
in one path to create complex images.

332 | Chapter 15: Creating Media Rich and Interactive Applications

See Also
See Recipe 15.2 for how to incorporate explorercanvas into your applications. A good
Canvas tutorial can be found at Mozilla.

15.4 Adding JavaScript to an SVG File
Problem
You want to add JavaScript to an SVG file or element.

Solution
JavaScript in SVG is included in script elements, just as with XHTML. The DOM
methods are also available for working with the SVG elements. One restriction for SVG
that you don’t have with HTML is that SVG is XML, so script blocks in an SVG file or
element must have CDATA sections surrounding the actual script, as shown in the SVG
file in Example 15-3.

Figure 15-2. Canvas drawing from Example 15-2 using the path method

15.4 Adding JavaScript to an SVG File | 333

https://developer.mozilla.org/en/Canvas_tutorial

Example 15-3. Demonstration of JavaScript within an SVG file

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<svg xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink" width="600" height="600">
 <script type="text/ecmascript">
 <![CDATA[

 // set element onclick event handler
 window.onload=function () {

 var square = document.getElementById("square");

 // onclick event handler, change circle radius
 square.onclick = function() {
 var color = this.getAttribute("fill");
 if (color == "#ff0000") {
 this.setAttribute("fill", "#0000ff");
 } else {
 this.setAttribute("fill","#ff0000");
 }
 }
 }
]]>
 </script>
 <rect id="square" width="400" height="400" fill="#ff0000"
 x="10" y="10" />
</svg>

Discussion
As the solution demonstrates, SVG is XML, and the rules for embedding script into
XML must be adhered to. This means providing the script type within the script tag,
as well as wrapping the script contents in a CDATA block.

The DOM methods document.getElementById, getAttribute, and setAttribute are the
methods we’ve come to know so well in the rest of the book. The DOM methods aren’t
just HTML-specific; they’re usable with any XML document, including SVG. What’s
new is the SVG-specific fill attribute, which is one of the color attributes that are
standard for the SVG shape elements such as rect.

The solution is a standalone SVG file, with a .svg extension. But if we were to embed
the SVG within an XHTML file served as application/xhtml+xml, such as that shown
in Example 15-4, the color-changing animation would work the same.

Example 15-4. SVG element from Example 15-1, embedded into an XHTML page

<!DOCTYPE html PUBLIC
 "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN"
 "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:svg="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink" xml:lang="en">
<head>

334 | Chapter 15: Creating Media Rich and Interactive Applications

<title>Accessing Inline SVG</title>
<meta http-equiv="Content-Type"
content="application/xhtml+xml; charset=utf-8" />
</head>
<body>
<svg:svg width="600" height="600">
 <script type="text/ecmascript">
 <![CDATA[

 // set element onclick event handler
 window.onload=function () {

 var square = document.getElementById("square");

 // onclick event handler, change circle radius
 square.onclick = function() {
 var color = this.getAttribute("fill");
 if (color == "#ff0000") {
 this.setAttribute("fill","#0000ff");
 } else {
 this.setAttribute("fill","#ff0000");
 }
 }
 }
]]>
 </script>
 <svg:rect id="square" width="400" height="400" fill="#ff0000"
 x="10" y="10" />
</svg:svg>
</body>
</html>

Chrome, Safari, Opera, and Firefox all support SVG. IE8 doesn’t, but IE9 will. Rec-
ipe 15.6 covers how you can enable SVG graphics in IE8.

15.5 Accessing SVG from Web Page Script
Problem
You want to modify the contents of an SVG element from script within the web page.

Solution
If the SVG is embedded directly in the web page, access the element and its attributes
using the same functionality you would use with any other web page element:

var square = document.getElementById("ssquare");
square.setAttributeNS(null, "width", "500");

However, if the SVG is in an external SVG file embedded into the page via an object
element, you have to get the document for the external SVG file in order to access the

15.5 Accessing SVG from Web Page Script | 335

SVG elements. The technique requires object detection because the process differs by
browser:

// set element onclick event handler
window.onload=function () {

 var object = document.getElementById("object");
 var svgdoc;

 try {

 svgdoc = object.contentDocument;
 } catch(e) {
 try {

 svgdoc = object.getSVGDocument();

 } catch (e) {
 alert("SVG in object not supported in your environment");
 }
 }

 if (!svgdoc) return;

 var square = svgdoc.getElementById('square');
 square.setAttributeNS(null, "width", "500");

Discussion
The first option listed in the solution accesses SVG embedded in an XHTML file. You
can access SVG elements using the same methods you’ve used to access HTML ele-
ments. Because SVG in XHTML does incorporate support for namespaces, I use the
namespace version of the DOM methods, even when no namespace is used (it’s set to
null).

The second option is a little more involved, and depends on retrieving the document
object for the SVG document. The first approach tries to access the contentDocument
property on the object. If this fails, the application then tries to access the SVG
document using the getSVGDocument object method. Once you have access to the SVG
document object, you can use the same DOM methods you would use with elements
native to the web page. The code works with all the browsers supported in this book
except IE, which I’ll cover in a later recipe.

Example 15-4 in Recipe 15.4, showed one way to embed SVG into the web page. This
approach currently only works with XHTML pages, served as application/xml
+xhtml. HTML5 adds native support to SVG in HTML, so in the future you’ll also be
able to embed SVG directly into HTML files, though currently only Firefox 3.6 supports
this, and only with HTML5 enabled.

336 | Chapter 15: Creating Media Rich and Interactive Applications

You can enable HTML5 support in Firefox 3.6 (and up, until it’s the
default) by typing about:config into the address bar, and setting the
html5.enable preference to true. Note, though, that this is very cutting-
edge and unstable.

Example 15-5 shows a second way to add SVG to a web page, and how to access the
SVG element(s) from script in HTML.

Example 15-5. Accessing SVG in an object element from script

<!DOCTYPE html>
<head>
<title>SVG in Object</title>
<meta charset="utf-8" />
</head>
<body>
<object id="object" data="rect.svg"
style="padding: 20px; width: 600px; height: 600px">
<p>No SVG support</p>
</object>
<script type="text/javascript">

 var object = document.getElementById("object");
 object.onload=function() {
 var svgdoc;

 // get access to the SVG document object
 try {

 svgdoc = object.contentDocument;
 } catch(e) {
 try {

 svgdoc = object.getSVGDocument();

 } catch (e) {
 alert("SVG in object not supported in your environment");
 }
 }

 if (!svgdoc) return;
 var r = svgdoc.rootElement;

 // get SVG element and modify
 var square = svgdoc.getElementById('square');
 square.onclick = function() {

 //SVG supports namespaces
 var width = parseFloat(square.getAttributeNS(null,"width"));
 width-=50;
 square.setAttributeNS(null,"width",width);
 var color = square.getAttributeNS(null,"fill");
 if (color == "blue") {

15.5 Accessing SVG from Web Page Script | 337

 square.setAttributeNS(null,"fill","yellow");
 square.setAttributeNS(null,"stroke","green");
 } else {
 square.setAttributeNS(null,"fill","blue");
 square.setAttributeNS(null,"stroke","red");
 }
 }
 }
</script>

</body>

In addition to the different approaches to get the SVG document, you also have to
handle browser differences in how the onload event handler works. Firefox and Opera
fire the onload event handler for the window after all the document contents have loa-
ded, including the SVG in the object element. However, Safari and Chrome, probably
because of the shared WebKit core, fire the window.onload event handler before the SVG
has finished loading.

In the example code, the object is accessed in script after it has loaded, and the
object.onload event handler is then accessed to get the SVG document and assigned
the function to the onclick event handler.

15.6 Emulating SVG in Internet Explorer
Problem
You want the SVG in your object element, or embedded in the page, to be visible to
Internet Explorer users.

Solution
Use a library, such as SVGWeb, to facilitate the display of SVG.

If the SVG is incorporated into the page via an object element, use the following syntax:

<!--[if IE]>
<object src="graphic.svg" classid="image/svg+xml"
width="200" height="200"
id="svgObject">
<![endif]-->
<!--[if !IE>-->
<object data="graphic.svg" type="image/svg+xml width="200"
height="200"
id="svgObject">
<!--<![endif]-->
</object>

338 | Chapter 15: Creating Media Rich and Interactive Applications

The conditional comments are necessary in order for SVGWeb to do its magic correctly.
Embedded SVG is much simpler. Just add the SVGWeb library, and enclose the SVG
within a script element:

<script type="image/svg+xml">
 <svg...>
 ...
 </svg>
</script>

Discussion
Currently, there is no support for SVG in Internet Explorer. Microsoft has committed
to supporting SVG and XHTML in IE9, due out sometime in 2011. Until then, we can
use a library such as SVGWeb.

SVGWeb works by emulating the SVG in Flash. Since Flash is more or less ubiquitous
on most people’s sites, most folks won’t have to install any additional plug-in.

To incorporate SVGWeb into your web pages and applications, once you’ve down-
loaded the source and unzipped it, load the src directory to your web, and include a
link to the SVGWeb JavaScript in your web pages:

<script src="src/svg.js" data-path="src/"></script>

This tag assumes that the SVGWeb code is still in the src directory, and that the libraries
are not in the same directory as your web pages. If the libraries are in a different location,
you need to provide the data-path custom data attribute and point to the relative lo-
cation of the libraries.

Download SVGWeb and view manuals and other help at http://code
.google.com/p/svgweb/. Ample SDK is another excellent library that pro-
vides SVG support for IE, originally created by Sergey Ilinsky.

See Also
Recipe 15.7 discusses how SVGWeb works across browsers and in HTML.

15.7 Enable Interactive SVG Embedded in HTML
Problem
You want to embed SVG directly into an HTML page without having to use XHTML.

15.7 Enable Interactive SVG Embedded in HTML | 339

http://code.google.com/p/svgweb/
http://code.google.com/p/svgweb/
http://www.amplesdk.com/

Solution
You have two options: you can use HTML5 to create the web page and wait until SVG
in HTML is supported in all of your targeted browsers. Or you can use a JavaScript
library, such as SVGWeb, to wrap your SVG:

<script type="image/svg+xml">
 <svg...>
 ...
 </svg>
</script>

Discussion
Previously, to embed SVG directly into a web page, you had to use XHTML rather than
HTML. With HTML5, SVG is now supported in HTML, but the support for this change
is still limited.

I introduced SVGWeb in Recipe 15.6 to enable SVG support in Internet Explorer. The
library also provides support for embedding SVG directly into HTML pages. Until
there’s more widespread support for SVG in HTML5 documents (currently only sup-
ported by Firefox 3.6 and up), you should use a library such as SVGWeb.

If you are embedding SVG directly in HTML5, there is one major difference you need
to be aware of: there is no namespace support in HTML5. The SVG namespace is bound
to the svg element, as the MathML namespace is bound to the math element, but support
for these and other SVG and MathML elements is hardcoded into the HTML5 speci-
fication rather than gracefully integrated because of namespace support.

This can affect your JavaScript application. If the SVG you embed in the page contains
other namespaced elements, you can’t use namespace functions in order to access the
elements. Example 15-6 more fully demonstrates these concerns.

Example 15-6. SVG embedded in HTML5 served as text/html

<!DOCTYPE html>
<head>
<title>SVG</title>
<meta charset="utf-8" />

<script>

 // set element onclick event handler
 window.onload=function () {
 var circle = document.getElementById('redcircle');

 // onclick event handler, change circle radius
 circle.onclick = function() {
 var r = parseInt(this.getAttributeNS(null,"r"));
 r-=10;
 circle.setAttributeNS("","r",r);
 var dc =

340 | Chapter 15: Creating Media Rich and Interactive Applications

 document.getElementsByTagNameNS("http://purl.org/dc/elements/1.1/",
 "title");
 for (var i = 0; i < dc.length; i++) {
 var str = dc.item(i).namespaceURI + " " +
 dc.item(i).prefix + " " + dc.item(i).localName + " " +
 dc.item(i).textContent;
 alert(str);
 }
 }
 }
</script>
</head>
<body>
<h1>SVG</h1>
<p>This is <code>text/html</code>!</p>
<h2>SVG</h2>
<svg id="svgelem"
 height="800" xmlns="http://www.w3.org/2000/svg">
 <circle id="redcircle" cx="300" cy="300" r="300" fill="red" />
 <metadata>
 <rdf:RDF xmlns:cc="http://web.resource.org/cc/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#
">
 <cc:Work rdf:about="">
 <dc:title>Sizing Red Circle</dc:title>
 <dc:description></dc:description>
 <dc:subject>
 <rdf:Bag>
 <rdf:li>circle</rdf:li>
 <rdf:li>red</rdf:li>
 <rdf:li>graphic</rdf:li>
 </rdf:Bag>
 </dc:subject>
 <dc:publisher>
 <cc:Agent rdf:about="http://www.openclipart.org">
 <dc:title>Testing RDF in SVG</dc:title>
 </cc:Agent>
 </dc:publisher>
 <dc:creator>
 <cc:Agent>
 <dc:title id="title">Testing</dc:title>
 </cc:Agent>
 </dc:creator>
 <dc:rights>
 <cc:Agent>
 <dc:title>testing</dc:title>
 </cc:Agent>
 </dc:rights>
 <dc:date></dc:date>
 <dc:format>image/svg+xml</dc:format>
 <dc:type rdf:resource="http://purl.org/dc/dcmitype/StillImage"/>
 <cc:license rdf:resource="http://web.resource.org/cc/PublicDomain"/>
 <dc:language>en</dc:language>
 </cc:Work>

15.7 Enable Interactive SVG Embedded in HTML | 341

 <cc:License rdf:about="http://web.resource.org/cc/PublicDomain">
 <cc:permits rdf:resource="http://web.resource.org/cc/Reproduction"/>
 <cc:permits rdf:resource="http://web.resource.org/cc/Distribution"/>
<cc:permits
rdf:resource="http://web.resource.org/cc/DerivativeWorks"/>
 </cc:License>
 </rdf:RDF>
 </metadata>
 </svg>
</body>

In the example, an SVG element is embedded into an HTML5 web page that is served
as text/html. Clicking the red circle changes the circle dimensions, using the namespace
versions of document.getElementsByTagName, passing in null as the namespace. The
script also accesses all Dublin Core namespaced (dc) titles in the SVG, and displays
them in alerts.

When the circle is clicked, it resizes, but nothing is printed out. How can this be? The
JavaScript doesn’t have any errors, and there’s obviously Dublin Core namespaced
titles in the page.

The big disconnect is the page is served as HTML, and the namespaces only work
correctly in an XML-based format, like XHTML. If I were to make one seemingly small
change in the code, from:

var dc =
document.getElementsByTagNameNS("http://purl.org/dc/elements/1.1/",
"title");

to:

var dc = document.getElementsByTagName("dc:title");

I would get a reference to all four dc:title elements in the SVG metadata section.
However, there are still problems.

If I were to convert the example into XHTML by adding an html element with the default
namespace before the head element:

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

Then add an ending HTML tag, and wrap the scripting block in a CDATA section:

<script>
//<![CDATA[
...
//]]>
</script>

And then run the application, I would get the dc:title values using the original
document.getElementsByTagNS, but the alert message is different than for the HTML
result. Here’s an example, from the XHTML application:

http://purl.org/dc/elements/1.1/dc title Sizing Red Circle

342 | Chapter 15: Creating Media Rich and Interactive Applications

The equivalent from the HTML application is:

http://www.w3.org/2000/svg null dc:title Sizing Red Circle

Returning to the code, these values are printed out via the following two lines of code:

var str = dc.item(i).namespaceURI + " " + dc.item(i).prefix + " " +
dc.item(i).localName + " " + dc.item(i).textContent;
alert(str);

Where the two environments differ, drastically, is that all of the elements within the
SVG element are included within the SVG namespace when the page is loaded as
HTML. In the XHTML version, they’re included in the proper namespace. So, the very
first property printed, the element’s namespaceURI, contains different values because of
the different namespace support.

The next property, the item’s prefix, is null in the HTML version. That’s expected,
because if the application doesn’t understand namespaces, it doesn’t understand that
dc:title is both prefix and element name. The localName property is also different. In
the XHTML version, this is the element name minus the prefix, which is title. In the
HTML version, the localName is dc:title—the prefix becomes just another part of the
local name.

The only property where both applications return the same value is the textContent of
the title.

For the most part, the namespace issue shouldn’t be a problem if you’re using pure
SVG in your web page, without any elements from other namespaces. Of course, a lot
of SVG we find “in the wild” have namespaced elements, including license information
that we need to keep with the image. Still, we shouldn’t have too many problems,
because we’re mainly going to want to access the SVG elements from client-side Java-
Script, rather than the licenses or other namespaced elements.

There is another option, and this is where SVGWeb steps in and solves more than one
problem. Not only does SVGWeb enable the support of embedded SVG within an
HTML document (and not just HTML5 documents), but it corrects the namespace
problems.

I added the SVGWeb library into Example 15-6, the HTML document, and wrapped
the SVG element in a script tag, with the SVG MIME type:

<script src="svgweb/src/svg.js" data-path="svgweb/src/"></script>
...
<script type="image/svg+xml">
 <svg id="svgelem"
 height="800" xmlns="http://www.w3.org/2000/svg">
 ...
 </svg>
</script>

Now when I try the same application, the results I get from the SVGWeb-assisted
HTML page are identical to the results I get for the XHTML page. I can use the

15.7 Enable Interactive SVG Embedded in HTML | 343

namespace version of DOM methods, such as document.getElementsByTagNameNS, and
get the same results.

However, the application doesn’t work with IE8. The reason is that when using
SVGWeb with an SVG-enabled browser, such as Safari or Opera, SVGWeb creates the
SVG within a XML context, but it is still SVG. However, with IE8, SVGWeb creates
the graphic as Flash, not SVG.

Because SVGWeb is creating the SVG as Flash, we also have to move the namespace
definitions to the outer SVG element:

<svg id="svgelem"
 height="800"
 xmlns="http://www.w3.org/2000/svg"
 xmlns:cc="http://web.resource.org/cc/"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 ...
</svg>

Event handling is also managed through SVGWeb, which means we’re going to get
unexpected results when using the older DOM Level 0 event handling:

circle.onclick=function() {
...
}

Instead, SVGWeb provides cross-browser addEventListener functionality, both for the
window object and for all SVG elements. And, instead of capturing the load event for
the window, you’ll capture a specialized event, SVGLoad:

window.addEventListener("SVGLoad",functionName,false);

Because the SVGWeb-enabled addEventListener function is implemented using IE’s
attachEvent for IE8, the application also doesn’t have access to this, for object context.
The external element reference is used instead.

Here’s the finished scripting block, which encompasses all of these changes and works
in IE8 as well as Safari, Chrome, Opera, and Firefox:

<script>

 // set element onclick event handler
 window.addEventListener('SVGLoad', function () {
 var circle = document.getElementById("redcircle");

 // onclick event handler, change circle radius
 circle.addEventListener('click', function(evt) {

 // reference circle, rather than this
 var r = parseInt(circle.getAttribute("r"));
 r-=10;
 circle.setAttribute("r",r);

 var dc = document.getElementsByTagNameNS("http://purl.org/dc/elements/1.1/",

344 | Chapter 15: Creating Media Rich and Interactive Applications

 "title");

 for (var i = 0; i < dc.length; i++) {
 var str = dc.item(i).namespaceURI + " " +
dc.item(i).prefix + " " +
 dc.item(i).localName + " " + dc.item(i).textContent;
 alert(str);
 }
 }, false);
 }, false);
</script>

Now the application works in all target browsers, including correct handling of the
namespaces.

See Also
See where to get SVGWeb and how to install it in Recipe 15.6. You’ll want to read the
Issues section of the documentation before beginning your project.

See Recipe 11.2 for more on using document.getElementsByTagNameNS() and namespa-
ces. The issues associated with attachEvent and this are covered in Recipe 7.5.

15.8 Using the Math Functions to Create a Realistic, Ticking
Analog Clock in SVG
Problem
You want to embed an animated analog clock into your site’s sidebar.

Solution
Use SVG to create the clock, utilizing both the Date object and the Math objects, in
addition to a timer to manage the clock hands. The JavaScript to manage the hands is
a derivative of other applications that also implement analog clocks, such as Java app-
lets from long ago:

 <script>
 var seconds = document.getElementById("seconds");
 var minutes = document.getElementById("minutes");
 var hours = document.getElementById("hours");

 function setClock(date) {
 var s = (date.getSeconds() + date.getMilliseconds() / 1000) *
 Math.PI / 30;
 var m = date.getMinutes() * Math.PI / 30 + s / 60;
 var h = date.getHours() * Math.PI / 6 + m / 12;

 seconds.setAttribute("x2", 0.90 * Math.cos(s));
 seconds.setAttribute("y2", 0.90 * Math.sin(s));

15.8 Using the Math Functions to Create a Realistic, Ticking Analog Clock in SVG | 345

http://codinginparadise.org/projects/svgweb/docs/UserManual.html#known_issues

 minutes.setAttribute("x2", 0.65 * Math.cos(m));
 minutes.setAttribute("y2", 0.65 * Math.sin(m));
 hours .setAttribute("x2", 0.40 * Math.cos(h));
 hours .setAttribute("y2", 0.40 * Math.sin(h));
 }

 setInterval("setClock(new Date())", 1000);
 </script>

Discussion
The animated analog clock is my own version of “Hello, World” in SVG. (Mine and
several other people, because if you search on “SVG analog clock,” you’ll find several
very attractive and interesting variations.) I like that it makes use of many unique as-
pects of SVG, as well as other JavaScript objects, such as Date and Math. Depending on
how fancy you make it, the amount of code is small enough to not strain bandwidth,
and the animation is simple enough not to task the CPU.

You don’t have to implement the second hand for the clock, though I think it adds
more realism. The hands are straight lines that are the same length. With each iteration
of the timer, the orientation of the lines changes, using the Math.cos and Math.sin
methods. The values for these methods are derived from a formula that makes use of
values accessed from the Date object, and modified using Math.PI.

Once you have the clock orientation and the hands, you can go to town on decorating
the clock. Figure 15-3 shows one of my favorite clock designs. A basic clock can be
found in Example 15-7. All it does is create a clock with tick marks and hands—consider
it a drawing board.

Example 15-7. Very basic clock mechanism, just needing to be prettied up

<?xml version="1.0"?>
<svg version="1.1" xmlns="http://www.w3.org/2000/svg"
viewBox="0 0 3 3">
 <defs>
 <style type="text/css">
 path {
 stroke: black;
 stroke-width: 0.02;
 fill: none;
 }
 line {
 stroke-linecap: round;
 }

 #seconds {
 stroke: red;
 stroke-width: 0.01;
 }
 #minutes {
 stroke: black;
 stroke-width: 0.03;

346 | Chapter 15: Creating Media Rich and Interactive Applications

 }
 #hours {
 stroke: black;
 stroke-width: 0.03;
 }
 </style>
 </defs>
 <g transform="rotate(-90) translate(-1.3,1.3) ">

 <circle cx="0" cy="0" r="1.0" fill="white" />

 <!-- decorative border -->
 <circle cx="0" cy="0" r="1.0" fill-opacity="0"
 stroke-width="0.02" stroke="black" />

 <!-- clock hands -->
 <line id="hours" x1="0" y1="0" x2="0.70" y2="0" stroke-width="1"/>
 <line id="minutes" x1="0" y1="0" x2="0.85" y2="0"/>
 <line id="seconds" x1="0" y1="0" x2="0.90" y2="0"/>
 </g>
 <script>
 var seconds = document.getElementById("seconds");
 var minutes = document.getElementById("minutes");
 var hours = document.getElementById("hours");

 function setClock(date) {
 var s = (date.getSeconds() + date.getMilliseconds() / 1000) *
 Math.PI / 30;
 var m = date.getMinutes() * Math.PI / 30 + s / 60;
 var h = date.getHours() * Math.PI / 6 + m / 12;

 seconds.setAttribute("x2", 0.90 * Math.cos(s));
 seconds.setAttribute("y2", 0.90 * Math.sin(s));
 minutes.setAttribute("x2", 0.65 * Math.cos(m));
 minutes.setAttribute("y2", 0.65 * Math.sin(m));
 hours .setAttribute("x2", 0.40 * Math.cos(h));
 hours .setAttribute("y2", 0.40 * Math.sin(h));
 }

 setInterval("setClock(new Date())", 1000);
 </script>
</svg>

15.9 Integrating SVG and the Canvas Element in HTML
Problem
You want to use the canvas element and SVG together within a web page.

15.9 Integrating SVG and the Canvas Element in HTML | 347

Solution
One option is to embed both the SVG and the canvas element directly into the X/HTML
page (we’ll stick with XHTML for now), and then access the canvas element from script
within SVG:

 <canvas id="myCanvas" width="400px" height="100px">
 <p>canvas item alternative content</p>
 </canvas>

 <svg id="svgelem"
 height="400" xmlns="http://www.w3.org/2000/svg">
 <title>SVG Circle</title>

 <script type="text/javascript">
 <![CDATA[
 window.onload = function () {
 var context =
document.getElementById("myCanvas").getContext('2d');

 context.fillStyle = 'rgba(0,200,0,0.7)';
 context.fillRect(0,0,100,100);

 };
]]>
 </script>

Figure 15-3. Basic clock, decorated with eye candy and text

348 | Chapter 15: Creating Media Rich and Interactive Applications

 <circle id="redcircle" cx="300" cy="100" r="100" fill="red" stroke="#000" />
 </svg>

Or you can embed the canvas element as a foreign object directly in the SVG:

 <svg id="svgelem"
 height="400" xmlns="http://www.w3.org/2000/svg"
xmlns:xhtml="http://www.w3.org/1999/xhtml">
 <title>SVG Circle with metadata</title>

 <script type="text/javascript">
 <![CDATA[
 window.onload = function () {
 var context2 = document.getElementById("thisCanvas").getContext('2d');
 context2.fillStyle = "#ff0000";
 context2.fillRect(0,0,200,200);
 };
]]>
 </script>

 <foreignObject width="300" height="150">
 <xhtml:canvas width="300" height="150" id="thisCanvas">
 alternate content for browsers that do not support Canvas
 </xhtml:canvas>
 </foreignObject>
 <circle id="redcircle" cx="300" cy="100" r="100" fill="red" stroke="#000" />
 </svg>

Discussion
When the SVG element is embedded into the current web page, you can access HTML
elements from within the SVG. However, you can also embed elements directly in SVG,
using the SVG foreignObject element. This element allows us to embed XHTML,
MathML, RDF, or any other XML-based syntax.

In both solutions, I was able to use document.getElementById. However, if I wanted to
manipulate the elements using other methods, such as document.getElementsByTag
Name, I had to be careful about which version of the method I use. For instance, I can
use getElementsByTagName for the outer canvas element, but I would need to use the
namespace version of the method, getElementsByTagNameNS, for the contained canvas
element, passing in the XHTML namespace included in the SVG element:

var xhtmlnx = "http://www.w3.org/1999/xhtml";
var context = document.getElementsByTagNameNS(xhtmlns,
 'canvas')[0].getContext('2d');
context.fillStyle = '#0f0';
context.fillRect(0,0,100,100);

Once you have the canvas context, you use the element like you would from script
within HTML: add rectangles, draw paths, create arcs, and so on.

Why would you use both at the same time? Each has its own advantages. One use of
SVG and Canvas together is to provide a fallback for the canvas element, since the SVG

15.9 Integrating SVG and the Canvas Element in HTML | 349

writes to the DOM and persists even if JavaScript is turned off, while the canvas element
does not.

The canvas element is also faster in frame-type animations. However, the performance
advantages you get with the canvas element lessen as you increase the size of the display.
SVG scales beautifully.

15.10 Turning on WebGL Support in Firefox and WebKit/Safari
Problem
You want to jump into the world of 3D.

Solution
Both Firefox nightly (Minefield) and the WebKit nightly have support for WebGL, a
cross-platform 3D graphics system derived from the OpenGL effort, and making use
of the canvas element. You will have to turn on support for both.

For Firefox, access the configuration options page by typing about:config into the ad-
dress bar. Once past the warning page, find the webgl.enabled_for_all_sites option,
and change the value to true.

For WebKit, open a Terminal window and type this at the command line:

defaults write com.apple.Safari WebKitWebGLEnabled -bool YES

Discussion
The world of 3D development in browsers is both old and new. Years ago, we had
support for various forms of 3D development, such as VRML. However, most imple-
mentations required a plug-in, and they weren’t the best-performing functionalities.

Today, there’s two different 3D approaches: WebGL, which is an effort being devel-
oped and promoted by the Khronos Group, a consortium of media companies; X3D,
developed by the Web3D group, which is a descendant of the older VRML effort.

The differences between the two is that WebGL is JavaScript-based, with the image
developed on the canvas element, while X3D is based in XML:

<Transform>
 <Shape>
 <Appearance>
 <Material diffuseColor="0 1 0"/>
 </Appearance>
 <Cylinder height="0.1" radius="0.5"/>
 </Shape>
</Transform>

The Khronos Group is working on creating a browser-based runtime that will enable
X3D to run on WebGL, and there is discussion ongoing about some form of integration

350 | Chapter 15: Creating Media Rich and Interactive Applications

between X3D and HTML5. However, from a scripter’s point of view, we’re primarily
interested in WebGL.

See Also
Mozilla has a nice WebGL support page, with tutorials and demos at https://developer
.mozilla.org/en/WebGL. The WebKit blog also has a nice introduction to WebGL in
WebKit at http://webkit.org/blog/603/webgl-now-available-in-webkit-nightlies/. There’s
also a website devoted to WebGL at http://learningwebgl.com/blog/. The Khronos
Group website is at http://www.khronos.org/webgl/. The X3D for Developers site is at
http://www.web3d.org/x3d/.

15.11 Running a Routine When an Audio File Begins Playing
Problem
You want to provide an audio file and then pop up a question or other information
when the audio file begins or ends playing.

Solution
Use the new HTML5 audio element:

<audio id="meadow" controls>
 <source src="meadow.mp3" type="audio/mpeg3"/>
 <source src="meadow.ogg" type="audio/ogg" />
 <source src="meadow.wav" type="audio/wav" />
<p>Meadow sounds</p>
</audio>

and capture its end or play event:

function manageEvent(eventObj, event, eventHandler) {
 if (eventObj.addEventListener) {
 eventObj.addEventListener(event, eventHandler,false);
 } else if (eventObj.attachEvent) {
 event = "on" + event;
 eventObj.attachEvent(event, eventHandler);
 }
}

window.onload=function() {
 var meadow = document.getElementById("meadow");
 manageEvent(meadow,"play",aboutAudio);
}

then display the information:

function aboutAudio() {
 var txt = document.createTextNode("This audio file was a recording
 from the Shaw Nature Reserve in Missouri");
 var div = document.createElement("div");

15.11 Running a Routine When an Audio File Begins Playing | 351

https://developer.mozilla.org/en/WebGL
https://developer.mozilla.org/en/WebGL
http://webkit.org/blog/603/webgl-now-available-in-webkit-nightlies/
http://learningwebgl.com/blog/
http://www.khronos.org/webgl/
http://www.web3d.org/x3d/

 div.appendChild(txt);
 div.setAttribute("role","alert");
 document.body.appendChild(div);
}

Discussion
HTML5 added two new media elements: audio and video. These simple-to-use controls
provide a way to play audio and video files without having to use Flash.

In the solution, the audio element’s controls Boolean attribute is provided, so the con-
trols are displayed. The element has three source children elements, providing support
for three different types of audio files: WAV, MP3, and Ogg Vorbis. The use of the
source element allows different browsers to find the format (codec) that they support.
For the audio element, the browser support is:

• Firefox (3.5 and up) only supports WAV and Ogg Vorbis

• Opera (10.5) only supports WAV (at this time)

• Chrome supports MP3 and Ogg Vorbis

• Safari supports MP3 and WAV

IE8 does not support the audio element, but IE9 will, and will most likely only support
MP3 and WAV. However, a link to the WAV file is provided as a fallback, which means
people using a browser that doesn’t support audio can still access the sound file. I could
have also provided an object element, or other fallback content.

The new media elements come with a set of methods to control the playback, as well
as events that can be triggered when the event occurs. In the solution, the ended event
is captured and assigned the event handler aboutAudio, which displays a message about
the file after the playback is finished. Notice that though I’m using a DOM Level 0
event handler with the window load event, I’m using DOM Level 2 event handling with
the audio element. The reason is that at the time I wrote this, making an assignment to
the element’s onplay (or onended) event did not work. However, I could use the DOM
Level 2 event handler and the inline event handler without a problem:

<audio id="meadow" src="meadow.wav" controls
onended="alert('All done')">
<p>Meadow sounds</p>
</audio>

It’s interesting seeing the appearance of the elements in all of the browsers that currently
support them. There is no standard look, so each browser provides its own interpre-
tation. You can control the appearance by providing your own playback controls and
using your own elements/CSS/SVG/Canvas to supply the decoration.

352 | Chapter 15: Creating Media Rich and Interactive Applications

See Also
See Recipe 15.12 for a demonstration of using the playback methods and providing
alternative visual representations for the new media elements, as well as providing a
different form of fallback.

15.12 Controlling Video from JavaScript with the video
Element
Problem
You want to embed video in your web page, and not use Flash. You also want a con-
sistent look for the video control, regardless of browser and operating system.

Solution
Use the new HTML5 video element:

<video id="meadow" poster="purples.jpg" >
 <source src="meadow.m4v" type="video/mp4"/>
 <source src="meadow.ogv" type="video/ogg" />
 <object width="425" height="344">
 <param name="movie"
value="http://www.youtube.com/v/CNRTeSoSbgg&hl=en_US&fs=1&"></param>
 <embed src="http://www.youtube.com/v/CNRTeSoSbgg&hl=en_US&fs=1&"
type="application/x-shockwave-flash"
 allowscriptaccess="always" allowfullscreen="true" width="425"
height="344">
 <p>Audio slideshow from Shaw Nature Center</embed></object>
</video>

And provide controls for it via JavaScript, as shown in Example 15-8. Buttons are used
to provide the video control, and text in a div element is used to provide feedback on
time during the playback.

Example 15-8. Providing a custom control for the HTML5 video element

<!DOCTYPE html>
<head>
<title>Meadow Video</title>
<script>

function manageEvent(eventObj, event, eventHandler) {
 if (eventObj.addEventListener) {
 eventObj.addEventListener(event, eventHandler,false);
 } else if (eventObj.attachEvent) {
 event = "on" + event;
 eventObj.attachEvent(event, eventHandler);
 }
}

15.12 Controlling Video from JavaScript with the video Element | 353

window.onload=function() {

 // events for buttons
 manageEvent(document.getElementById("start"),"click",startPlayback);
 manageEvent(document.getElementById("stop"),"click",stopPlayback);
 manageEvent(document.getElementById("pause"),"click",pausePlayback);

 // setup for video playback
 var meadow = document.getElementById("meadow");
 manageEvent(meadow,"timeupdate",reportProgress);

 // video fallback
 var detect = document.createElement("video");
 if (!detect.canPlayType) {
 document.getElementById("controls").style.display="none";
 }
}

// start video, enable stop and pause
// disable play
function startPlayback() {
 var meadow = document.getElementById("meadow");
 meadow.play();
 document.getElementById("pause").disabled=false;
 document.getElementById("stop").disabled=false;
 this.disabled=true;
}

// pause video, enable start, disable stop
// disable pause
function pausePlayback() {
 document.getElementById("meadow").pause();
 this.disabled=true;
 document.getElementById("start").disabled=false;
 document.getElementById("stop").disabled=true;
}

// stop video, return to zero time
// enable play, disable pause and stop
function stopPlayback() {
 var meadow = document.getElementById("meadow");
 meadow.pause();
 meadow.currentTime=0;
 document.getElementById("start").disabled=false;
 document.getElementById("pause").disabled=true;
 this.disabled=true;
}

// for every time divisible by 5, output feedback
function reportProgress() {
 var time = Math.round(this.currentTime);
 var div = document.getElementById("feedback");
 div.innerHTML = time + " seconds";
}

354 | Chapter 15: Creating Media Rich and Interactive Applications

</script>

</head>
<body>
<video id="meadow" poster="purples.jpg" >
 <source src="meadow.m4v" type="video/mp4"/>
 <source src="meadow.ogv" type="video/ogg" />
 <object width="425" height="344">
 <param name="movie"
value="http://www.youtube.com/v/CNRTeSoSbgg&hl=en_US&fs=1&"></param>
 <embed src="http://www.youtube.com/v/CNRTeSoSbgg&hl=en_US&fs=1&"
type="application/x-shockwave-flash"
 allowscriptaccess="always" allowfullscreen="true" width="425"
height="344">
 <p>Audio slideshow from Shaw Nature Center</embed></object>
</video>
<div id="feedback"></div>
<div id="controls">
<button id="start">Play</button>
<button id="stop">Stop</button>
<button id="pause">Pause</button>
</controls>
</body>

Discussion
The new HTML5 video element, as with the HTML5 audio element, can be controlled
with its own built-in controls, or you can provide your own, as shown in Exam-
ple 15-8. The media elements support the following methods:

play
Starts playing the video

pause
Pauses the video

load
Preloads the video without starting play

canPlayType
Tests if the user agent supports the video type

The media elements don’t support a stop method, so I emulated one by pausing video
play and then setting the video’s currentTime attribute to 0, which basically resets the
play start time. The only browser this didn’t work in was Chrome. It worked in Opera
10.5, Firefox 3.5, and WebKit/Safari.

I also used currentTime to print out the video time, using Math.round to round the time
to the nearest second, as shown in Figure 15-4.

15.12 Controlling Video from JavaScript with the video Element | 355

Figure 15-4. Playing a video using the video control, displaying the number of seconds of video

The video control is providing two different video codecs: H.264 (.mp4), and Ogg
Theora (.ogv). Firefox, Opera, and Chrome support Ogg Theora, but Safari/WebKit
only supports the H.264 formatted video. However, by providing both types, the video
works in all of the browsers that support the video element. For the browsers that
currently don’t support video, such as IE, the fallback YouTube video is provided, and
if that doesn’t work, then there’s text. In addition, if the video element is not supported,
the video controls are hidden.

The video and audio controls are inherently keyboard-accessible. If you do replace
the controls, you’ll want to provide accessibility information with your replacements.
The video control doesn’t have built-in captioning, but work is underway to provide
the API for captioning.

356 | Chapter 15: Creating Media Rich and Interactive Applications

Microsoft has stated it will support the video element in IE9, and the
H.264 codec.

See Also
For more on the new video/audio elements, see Opera’s introduction, Safari/Web
Kit’s, and Mozilla’s.

A good place for more information on Ogg Theora is the Theora Cookbook.

At the time this book entered production, Google had released another video codec,
WebM, for royalty free access. Several browsers have promised to support this codec.
For more information, see the WebM Project site.

15.12 Controlling Video from JavaScript with the video Element | 357

http://dev.opera.com/articles/view/introduction-html5-video/
http://webkit.org/blog/140/html5-media-support/
http://webkit.org/blog/140/html5-media-support/
https://developer.mozilla.org/En/Using_audio_and_video_in_Firefox
http://en.flossmanuals.net/TheoraCookbook/
http://www.webmproject.org/

CHAPTER 16

JavaScript Objects

16.0 Introduction
Your JavaScript applications can consist entirely of functions and variables—both local
and global—but if you want to ensure ease of reuse, compactness of code, and effi-
ciency, as well as code that plays well with other libraries, you’re going to need to
consider opportunities to encapsulate your code into objects.

Luckily, working with objects in JavaScript isn’t much more complicated than working
with functions. After all, a JavaScript function is an object, and all objects are, techni-
cally, just functions.

Confused yet?

Unlike languages such as Java or C++, which are based on classes and class instances,
JavaScript is based on prototypal inheritance. What prototypal inheritance means is
that reuse occurs through creating new instances of existing objects, rather than in-
stances of a class. Instead of extensibility occurring through class inheritance, proto-
typal extensibility happens by enhancing an existing object with new properties and
methods.

Prototype-based languages have an advantage in that you don’t have to worry about
creating the classes first, and then the applications. You can focus on creating appli-
cations, and then deriving the object framework via the effort.

It sounds like a mishmash concept, but hopefully as you walk through the recipes you’ll
get a better feel for JavaScript’s prototype-based, object-oriented capabilities.

ECMAScript and all its variations, including JavaScript, isn’t the only
prototype-based language. The Wikipedia page on prototype-based lan
guages, lists several.

359

http://en.wikipedia.org/wiki/Prototype-based_programming
http://en.wikipedia.org/wiki/Prototype-based_programming

See Also
Several of the recipes in this book are based on new functionality that was introduced
in ECMAScript 5. You can access the complete ECMAScript 5 specification (a PDF) at
http://www.ecmascript.org/docs/tc39-2009-043.pdf.

Note that the implementation of the new functionality is sketchy. I’ll point out browser
support as I go.

16.1 Defining a Basic JavaScript Object
Problem
You want to create a custom, reusable JavaScript object.

Solution
Define a new object explicitly using functional syntax, and then create new instances,
passing in the data the object constructor is expecting:

function Tune (song, artist) {
 this.title = song;
 this.artist = artist;
 this.concat=function() {
 return this.title + "-" + this.artist;
 }
}

window.onload=function() {
 var happySong = new Array();
 happySong[0] = new Tune("Putting on the Ritz", "Ella Fitzgerald");

 // print out title and artist
 alert(happySong[0].concat());
}

Discussion
As you can see from the solution, there is no class description, as you might expect if
you’ve used other languages. A new object is created as a function, with three members:
two properties, title and artist, and one method, concat. You could even use it like
a function:

Tune("test","artist");

However, using the object like a function, as compared to using it as an object con-
structor, has an odd and definitely unexpected consequence.

The new keyword is used to create a new Tune instance. Values are passed into the object
constructor, which are then assigned to the Tune properties, title and artist, via the
this keyword. In the solution, this is a reference to the object instance. When you

360 | Chapter 16: JavaScript Objects

http://www.ecmascript.org/docs/tc39-2009-043.pdf

assign the property values to the object instance, you can then access them at a later
time, using syntax like happySong[0].title. In addition, the Tune object’s concat meth-
od also has access to these properties.

However, when you use Tune like a regular function, this doesn’t represent an object
instance, because there isn’t any. Instead, this references the owner of the Tune func-
tion, which in this case, is the global window object:

// treating Tune like a function
Tune("the title", "the singer");
alert(window.concat()); // lo and behold,
 // "the title the singer" prints out

Completely unexpected and unwelcome behavior.

To summarize: to create a new object type, you can create a function with both prop-
erties and methods. To ensure the properties are assigned to the correct object, treat
the object like a constructor using the new operator, rather than as a function. The
this keyword establishes ownership of the properties, which is the Tune object instance,
if the function is used as an object constructor and not a regular function.

See Also
See Recipe 16.2 for more information about the role this plays with JavaScript objects.

16.2 Keeping Object Members Private
Problem
You want to keep one or more object properties private, so they can’t be accessed
outside the object instance.

Solution
When creating the private data members, do not use the this keyword with the
member:

function Tune(song,artist) {
 var title = song;
 var artist = artist;
 this.concat = function() {
 return title + " " + artist;
 }
}

window.onload=function() {

 var happySongs = new Array();
 happySongs[0] = new Tune("Putting on the Ritz", "Ella Fitzgerald");

 try {

16.2 Keeping Object Members Private | 361

 // error
 alert(happySongs[0].title);
 } catch(e) {
 alert(e);
 }

 // prints out correct title and artist
 alert(happySongs[0].concat());
}

Discussion
Members in the object constructor (the function body), are not accessible outside the
object unless they’re assigned to that object using this. If they’re attached to the object
using the var keyword, only the Tune’s inner function, the concat method, can access
these now-private data members.

This type of method—one that can access the private data members, but is, itself,
exposed to public access via this—has been termed a privileged method by Douglas
Crockford, the father of JSON (JavaScript Object Notation). As he himself explains (at
http://www.crockford.com/javascript/private.html):

This pattern of public, private, and privileged members is possible because JavaScript
has closures. What this means is that an inner function always has access to the vars and
parameters of its outer function, even after the outer function has returned. This is an
extremely powerful property of the language [. . . .] Private and privileged members can
only be made when an object is constructed. Public members can be added at any time.

See Also
See Recipe 6.5 for more on function closures. See Recipe 16.3 for more on adding public
members after the object has been defined.

16.3 Expanding Objects with prototype
You want to extend an existing object with a new method.

Solution
Use the Object prototype to extend the object:

Tune.prototype.addCategory = function(categoryName) {
 this.category = categoryName;
}

Discussion
Every object in JavaScript inherits from Object, and all methods and other properties
are inherited via the prototype object. It’s through the prototype object that we can

362 | Chapter 16: JavaScript Objects

http://www.crockford.com/javascript/private.html

extend any object, and that includes the built-in objects, such as String and Number.
Once an object has been extended via the prototype property, all instances of the object
within the scope of the application have this functionality.

In Example 16-1, the new object, Tune, is defined using function syntax. It has two
private data members, a title and an artist. A publicly accessible method, concat,
takes these two private data members, concatenates them, and returns the result.

After a new instance of the object is created, and the object is extended with a new
method and data member, the new method is used to update the existing object
instance.

Example 16-1. Instantiating a new object, adding values, and extending the object

<!DOCTYPE html>
<head>
<title>Tune Object</title>
<script>

 function Tune(song,artist) {
 var title = song;
 var artist = artist;
 this.concat = function() {
 return title + " " + artist;
 }
 }

window.onload=function() {
 // create instance, print out values
 var happySong = new Tune("Putting on the Ritz", "Ella Fitzgerald");

 // extend the object
 Tune.prototype.addCategory = function(categoryName) {
 this.category = categoryName;
 }

 // add category
 happySong.addCategory("Swing");

 // print song out to new paragraph
 var song = "Title and artist: " + happySong.concat() +
 " Category: " + happySong.category;
 var p = document.createElement("p");
 var txt = document.createTextNode(song);
 p.appendChild(txt);
 document.getElementById("song").appendChild(p);
}

</script>

</head>
<body>
<h1>Tune</h1>

16.3 Expanding Objects with prototype | 363

<div id="song">
</div>
</body>
</html>

Figure 16-1 shows the page after the new element and data have been appended.

Figure 16-1. Demonstration of custom JavaScript object after values printed out

The prototype property can also be used to override or extend external or global objects.
Before ECMAScript 5 added trim as a default method for the String object, applications
used to extend the String object by adding a trim method through the prototype object:

String.prototype.trim = function() {
 return (this.replace(/^[\s\xA0]+/, "").replace(/[\s\xA0]+$/, ""));
}

Needless to say, you’d want to use extreme caution when using this functionality with
global objects. Applications that have extended the String object with a homegrown
trim method may end up behaving differently than applications using the new standard
trim method.

Using prototype with your own objects is usually safe. The only time you may run into
problems is if you provide your objects as an external library, and others build on them.

16.4 Adding Getter/Setter to Objects
Problem
You want to provide property access to protected data.

Solution
Use the getter/setter functionality introduced with ECMAScript 3.1 with your (or out-
side) objects:

364 | Chapter 16: JavaScript Objects

function Tune() {
 var artist;
 var song;

 this.__defineGetter__("artist",function() {
 return artist});

 this.__defineSetter__("artist",function(val) {
 artist = "By: " + val});

 this.__defineGetter__("song",function() {
 return "Song: " + song});

 this.__defineSetter__("song",function(val) {
 song=val});
}

window.onload=function() {
 var happySong = new Tune();

 happySong.artist="Ella Fitzgerald";
 happySong.song="Putting on the Ritz";

 alert(happySong.song + " " + happySong.artist);
}

Discussion
We can add functions to our objects to get private data, as demonstrated in Rec-
ipe 16.2. However, when we use the functions, they are obvious functions. The getter/
setter functionality is a special syntax that provides property-like access to private data
members. The getter and setter functions provide an extra layer of protection for the
private data members. The functions also allow us to prepare the data, as demonstrated
with the solution, where the song and artist strings are concatenated to labels.

You can define the getter and setter functions within the object constructor, as shown
in the solution:

this.__defineGetter__("song",function() {
 return "Song: " + song});

this.__defineSetter__("song",function(val) {
 song=val});

You can also add a getter/setter with other objects, including DOM objects. To add a
getter/setter outside of the object constructor, you first need to access the object’s
prototype object, and then add the getter/setter functions to the prototype:

var p = Tune.prototype;

p.__defineGetter__("song",function() {
 return "Song: " + title});

16.4 Adding Getter/Setter to Objects | 365

p.__defineSetter__("song",function(val) {
 title=val});

You can also use getter/setters with “one-off” objects, used to provide JavaScript name-
spacing (covered later in the chapter):

var Book = {
 title: "The JavaScript Cookbook",
 get booktitle() {
 return this.title;
 },
 set booktitle(val) {
 this.title = val;
 }
};

Book.booktitle = "Learning JavaScript";

This approach can’t be used to hide the data, but can be used to control the display of
the data, or to provide special processing of the incoming data before it’s stored in the
data member.

The getter/setter functionality does not work in IE8 or earlier.

See Also
See Recipe 16.6 for demonstrations of the new ECMAScript 5 property methods. Rec-
ipe 16.11 covers JavaScript namespacing.

16.5 Inheriting an Object’s Functionality
Problem
When creating a new object type, you want to inherit the functionality of an existing
JavaScript object.

Solution
Use the concept of constructor chaining and the Function.apply method to emulate
traditional class inheritance behavior in JavaScript:

function oldObject(param1) {
 this.param1 = param1;
 this.getParam=function() {
 return this.param1;
 }
}

366 | Chapter 16: JavaScript Objects

function newObject(param1,param2) {
 this.param2 = param2;
 this.getParam2 = function() {
 return this.param2;
 }
 oldObject.apply(this,arguments);
 this.getAllParameters=function() {
 return this.getParam() + " " + this.getParam2();
 }
}

window.onload=function() {
 newObject.prototype = new oldObject();
 var obj = new newObject("value1","value2");

 // prints out both parameters
 alert(obj.getAllParameters());
}

Discussion
In the solution, we have two objects: the original, oldObject, and newObject that inherits
functionality from the older object. For this to work, a couple of things are happening.

First, in the constructor for newObject, an apply method is called on oldObject, passing
in a reference to the new object, and the argument array. The apply method is inherited
from the Function object, and takes a reference to the calling object, or the window
object if the value is null, and an optional argument array.

The second part of the inheritance is the line:

newObject.prototype=new oldObject();

This is an example of constructor chaining in JavaScript. What happens is when you
create a new instance of newObject, you’re also creating a new instance of oldObject, in
such a way that newObject inherits both the older object’s methods and property.

It is this combination of constructor chaining, which chains the constructors of the new
objects together, and the apply method, which passes both object context and data to
the inherited object, that implements inheritance behavior in JavaScript. Because of
this inheritance, the new object has access not only to its own property, param2, and
method, getParam2, but also has access to the old object’s param1 and getParam property
and method.

To see another example of JavaScript inheritance, Example 16-2 shows it working with
another couple of objects: a Book object and a TechBook object, which inherits from
Book. The lines that implement the inheritance are bolded.

16.5 Inheriting an Object’s Functionality | 367

Example 16-2. Demonstrating object inheritance in JavaScript

<!DOCTYPE html>
<head>
<title>Constructor Chaining</title>
<script type="text/javascript">

function Book (title, author) {
 var title = title;
 var author = author;
 this.getTitle=function() {
 return "Title: " + title;
 }
 this.getAuthor=function() {
 return "Author: " + author;
 }
}

function TechBook (title, author, category) {

 var category = category;
 this.getCategory = function() {
 return "Technical Category: " + category;
 }

 Book.apply(this,arguments);
 this.getBook=function() {
 return this.getTitle() + " " + author + " " + this.getCategory();
 }
}

window.onload=function() {

 // chain the object constructors
 TechBook.prototype = new Book();

 // get all values
 var newBook = new TechBook("The JavaScript Cookbook",
 "Shelley Powers", "Programming");
 alert(newBook.getBook());

 // now, individually
 alert(newBook.getTitle());
 alert(newBook.getAuthor());
 alert(newBook.getCategory());
}

</script>
</head>
<body>
<p>some content</p>
</body>

368 | Chapter 16: JavaScript Objects

Unlike the objects in the solution, all of the data members in both objects in Exam-
ple 16-2 are protected, which means the data can’t be directly accessed outside the
objects. Yet notice when all three Book properties—title, author, and category—are
printed out via the getBook method in the TechBook object, that TechBook has access to
the Book author and title properties, in addition to its own category. That’s because
when the new TechBook object was created, a new Book object was also created and
inherited by the new TechBook object. To complete the inheritance, the data used in the
constructor for TechBook is passed through the Book object using the apply method.

Not only can the TechBook object directly access the Book instance data, you can access
both of the Book object’s methods, getAuthor and getCategory, directly on the instan-
tiated TechBook object instance.

16.6 Extending an Object by Defining a New Property
Problem
You want to extend an existing object by adding a new property, but without changing
the object’s constructor function.

Solution
Use the new ECMAScript Object.defineProperty method to define one property:

Object.defineProperty(newBook, "publisher", {
 value: "O'Reilly",
 writable: false,
 enumerable: true,
 configurable: true});

Use the Object.defineProperties method to define more than one property:

Object.defineProperties(newBook, {
 "stock": {
 value: true,
 writable: true,
 enumerable: true,
 },
 "age": {
 value: "13 and up",
 writable: false
 }
 });

Discussion
Properties are handled differently in ECMAScript 5. Where before all you could do was
assign a value, now you have greater control over how an object’s properties are man-
aged. This greater control comes about through the provision for several new attributes

16.6 Extending an Object by Defining a New Property | 369

that can be assigned to a property when it’s created. These new attributes make up
what is known as the property descriptor object, and include:

writable
If true, property can be changed; otherwise, not.

configurable
If true, property can be deleted, or changed; otherwise, not.

enumerable
If true, property can be iterated.

The type of property descriptor can also vary. If the descriptor is a data descriptor,
another attribute is value, demonstrated in the solution and equivalent to the following:

someObject.newProperty = "somevalue";

If the descriptor is an accessor descriptor, the property has a getter/setter, similar to
what was covered in Recipe 16.4. A restriction when defining an accessor property is
that you can’t set the writable attribute:

 Object.defineProperty(TechBook, "category", {
 get: function () { return category; },
 set: function (value) { category = value; },
 enumerable: true,
 configurable: true});
var newBook = new TechBook(...);
newBook.publisher="O'Reilly";

You can also discover information about the property descriptor for a property with
the Object.getOwnPropertyDescription method. To use, pass in the object and the
property name whose property descriptor you wish to review:

var propDesc = Object.getOwnPropertyDescriptor(newBook,"category");
alert(propDesc.writable); // true if writable, otherwise false

The property has to be publicly accessible (not a private member). Easily view all of
the property attributes using the JSON object’s stringify method:

var val = Object.getOwnPropertyDescriptor(TechBook,"category");
alert(JSON.stringify(val)); // {"enumerable":true,"configurable":true}

If the property descriptor configurable attribute is set to true, you can change descrip-
tor attributes. For instance, to change the writable attribute from false to true, use
the following:

Object.defineProperty(newBook, "publisher", {
 writable: true});

The previously set attributes retain their existing values.

Example 16-3 demonstrates the new property descriptors, first on a DOM object, then
a custom object.

370 | Chapter 16: JavaScript Objects

Example 16-3. Trying out new object property methods

<!DOCTYPE html>
<head>
<title>Object Properties</title>
<script type="text/javascript">

// Book custom object
function Book (title, author) {
 var title = title;
 var author = author;
 this.getTitle=function() {
 return "Title: " + title;
 }
 this.getAuthor=function() {
 return "Author: " + author;
 }
}

// TechBook, inheriting from Book
function TechBook (title, author, category) {

 var category = category;
 this.getCategory = function() {
 return "Technical Category: " + category;
 }

 Book.apply(this,arguments);
 this.getBook=function() {
 return this.getTitle() + " " + author + " " + this.getCategory();
 }
}
window.onload=function() {

 try {

 // DOM test, WebKit bites the dust on this one
 var img = new Image();

 // add new property and descriptor
 Object.defineProperty(img, "geolatitude", {
 get: function() { return geolatitude; },
 set: function(val) { geolatitude = val;},
 enumerable: true,
 configurable: true});

 // test configurable and enumerable attrs
 var props = "Image has ";
 for (var prop in img) {
 props+=prop + " ";
 }
 alert(props);

 } catch(e) {
 alert(e);
 }

16.6 Extending an Object by Defining a New Property | 371

 try {
 // now we lose IE8

 // chain the object constructors
 TechBook.prototype = new Book();

 // add new property and property descriptor
 Object.defineProperty(TechBook, "experience", {
 get: function () { return category; },
 set: function (value) { category = value; },
 enumerable: false,
 configurable: true});

 // get property descriptor and print
 var val = Object.getOwnPropertyDescriptor(TechBook,"experience");
 alert(JSON.stringify(val));

 // test configurable and enumerable
 props = "TechBook has ";
 for (var prop in TechBook) {
 props+=prop + " ";
 }
 alert(props);

 Object.defineProperty(TechBook, "experience", {
 enumerable: true});

 props = "TechBook now has ";
 for (var prop in TechBook) {
 props+=prop + " ";
 }
 alert(props);

 // create TechBook instance
 var newBook = new TechBook("The JavaScript Cookbook",
"Shelley Powers", "Programming");

 // test new setter
 newBook.experience="intermediate";

 // test data descriptor
 Object.defineProperty(newBook, "publisher", {
 value: "O'Reilly",
 writable: false,
 enumerable: true,
 configurable: true});

 // test writable
 newBook.publisher="Some Other";
 alert(newBook.publisher);

 } catch(e) {
 alert(e);
 }
}

372 | Chapter 16: JavaScript Objects

</script>
</head>
<body>
<p>some content</p>
</body>

These methods are very new. At the time I wrote this recipe, they only work in nightly
builds for WebKit and Firefox (Minefield), and in a very limited sense with IE8.

The IE8 limitation is that the new property methods only work with DOM elements.
The Object.defineProperty method works with the Image element, but not with the
custom objects. However, using defineProperty on DOM elements causes an exception
in WebKit. None of the new property methods work with Opera. The Firefox Minefield
nightly and the Chrome beta were the only browsers that currently work with both
types of objects, as shown in Figure 16-2, which displays the Image object properties in
Firefox.

Figure 16-2. Displaying Image properties after adding a new property with defineProperty

16.6 Extending an Object by Defining a New Property | 373

After printing out the Image properties, a new property (experience) and property de-
scriptor are added to the TechBook custom object. The Object.getOwnPropertyDescrip
tor is called, passing in the TechBook object and the property name, experience. The
property descriptor object is returned, and the JSON.stringify method is used on the
object to print out the values:

{"enumerable":false,"configurable:true}

Next, the property descriptor values are tested. Currently, because the experience
property is not enumerable, the use of the for...in loop can’t enumerate through the
properties, and the result is:

Techbook has prototype

The new experience property’s enumerable attribute is then changed to true, because
the property descriptor for experience allows modification on descriptor values. Enu-
merating over the experience property now yields the following string for Firefox:

Techbook has prototype experience

However, Chrome does not pick up the prototype property. The next two lines of code
create a new instance of the TechBook object and adds an experience, which is then
printed out to demonstrate the success of the property.

The last code in the example adds another new property (publisher) and property
descriptor. This is a data property descriptor, which can also take a default value:
“O’Reilly”. The writable property descriptor is set to false, and configurable and enu-
merable descriptors are set to true. The code then tries to change the publisher value.
However, the original publisher value of O'Reilly prints out because the publisher
property writable attribute is set to false.

See Also
See Recipe 16.7 for more on property enumeration. Though not all browsers support
defineProperty and defineProperties yet, there are workarounds, as detailed by John
Resig in a nice article describing the new object property capabilities.

16.7 Enumerating an Object’s Properties
Problem
You want to see what properties an object has.

Solution
Use a specialized variation of the for loop to iterate through the properties:

for (var prop in obj) {
 alert(prop); // prints out the property name
}

374 | Chapter 16: JavaScript Objects

http://ejohn.org/blog/ecmascript-5-objects-and-properties/

or use the new ECMAScript 5 Object.keys method to return the names for all properties
that can be enumerated:

alert(Object.keys(obj).join(", "));

or use another new ECMAScript 5 method, Object.getOwnPropertyNames(obj), to get
the names of all properties, whether they can be enumerated or not:

var props = Object.getOwnPropertyNames(obj);

Discussion
For an object instance, newBook, based on the following object definitions:

 function Book (title, author) {
 var title = title;
 this.author = author;
 this.getTitle=function() {
 return "Title: " + title;
 }
 this.getAuthor=function() {
 return "Author: " + author;
 }
}

function TechBook (title, author, category) {

 var category = category;
 this.getCategory = function() {
 return "Technical Category: " + category;
 }

 Book.apply(this,arguments);
 this.getBook=function() {
 return this.getTitle() + " " + author + " " + this.getCategory();
 }
}

 // chain the object constructors
 TechBook.prototype = new Book();

 // create new tech book
 var newBook = new TechBook("The JavaScript Cookbook",
"Shelley Powers", "Programming");

using the for...in loop:

var str = "";
for (var prop in newBook) {
 str = str + prop + " ";
}

alert(str);

a message pops up with the following values:

getCategory author getTitle getAuthor getBook

16.7 Enumerating an Object’s Properties | 375

Neither the category property in TechBook nor the title property in Book are returned,
as these are private data members. When using WebKit nightly or Firefox Minefield,
the same result is returned when using the new Object.keys method:

alert(Object.keys(newBook).join(" "));

The same result is also returned, again with WebKit nightly or Firefox Minefield, when
using the new Object.getOwnPropertyNames method:

var props = Object.getOwnPropertyNames(newBook);
alert(props.join(" "));

However, if I add a property descriptor for the title property, making it enumerable:

// test data descriptor
Object.defineProperty(newBook, "title", {
 writable: true,
 enumerable: true,
 configurable: true});

When I enumerate over the properties again, this time the title displays among the
properties, even though it still can’t be accessed or reset directly on the object.

We can also use these same property enumerators over the object constructors (Book
or TechBook) or any of the built-in objects. However, the values we get back when we
enumerate over Book, as compared to the instance, newBook, do vary among the methods.
The for...in loop returns just one property, prototype, as does the Object.keys meth-
od. That’s because prototype is the only enumerable property for the Function object.
While newBook is an instance of Book, Book, itself is an instance of the Function object.

The Object.getOwnPropertyNames, however, returns the following set of properties for
Book:

arguments callee caller length name prototype

Unlike Object.keys and the for...in loop, Object.getOwnPropertyNames returns a list
of all properties, not just those that are enumerable. This leads to a new question: why
did Object.getOwnPropertyNames not return all of the properties for the newBook in-
stance? It should have picked up title before it was made enumerable, as well as
TechBook’s private member, category.

I added another property descriptor to newBook, this time for category, and this time
with enumerable set to false:

Object.defineProperty(newBook,"category", {
 writable: true,
 enumerable: false,
 configurable: true});

The category property isn’t listed when I use for...in or Object.keys, but this time it
is picked up by Object.getOwnPropertyNames.

It would seem that a property must either be publicly accessible, or have a property
descriptor for it to be picked up by Object.getOwnPropertyNames, at least for these earlier

376 | Chapter 16: JavaScript Objects

implementations of these new Object methods. I imagine the reason is to ensure con-
sistent results between older ECMAScript implementations and newer ones: defining
a property in older versions of ECMAScript is not the same as defining a property in
the newer version.

Speaking of ECMAScript 5 and new Object methods, support for the older for...in
loop is broad, but support for Object.keys and Object.getOwnPropertyNames, in addi-
tion to support for property descriptors, is sparse at this time. Opera does not support
defineProperty and the associated new ECMAScript 5 functionality. WebKit nightly
and the Chrome beta support all of the new functionality, while the Firefox nightly
(Minefield), supports Object.keys, but not getOwnPropertyNames. IE8’s coverage is limi-
ted because it only supports the new methods on DOM elements, such as Image, and
not on custom objects.

See Also
For more on property descriptors, see Recipe 16.6.

16.8 Preventing Object Extensibility
Problem
You want to prevent others from extending an object.

Solution
Use the new ECMAScript 5 Object.preventExtensions method to lock an object against
future property additions:

"use strict";

var Test = {
 value1 : "one",
 value2 : function() {
 return this.value1;
 }
};

try {
 Object.preventExtensions(Test);

 // the following fails, and throws an exception in Strict mode
 Test.value3 = "test";

} catch(e) {
 alert(e);
}

16.8 Preventing Object Extensibility | 377

Discussion
Covering Object.preventExtensions is a leap of faith on my part, as no browser has
implemented this new ECMAScript 5 functionality. However, by the time this book
hits the streets, I expect (hope) at least a couple of browsers will have implemented this
new feature.

The Object.preventExtensions method prevents developers from extending the object
with new properties, though property values themselves are still writable. It sets an
internal property, Extensible, to false. You can check to see if an object is extensible
using Object.isExtensible:

if (Object.isExtensible(obj)) {
 // extend the object
}

Though you can’t extend the object, you can edit existing property values, as well as
modify the object’s property descriptor.

See Also
Recipe 16.6 covers property descriptors.

Strict Mode
Another new ECMAScript 5 addition is demonstrated in the solution for Recipe 16.8:
the new Strict mode. You can now put an application within a strict operating mode,
which means that older, deprecated features are disabled or generate errors, and actions
that may not throw errors but are not advisable will throw errors. It’s a way of inherently
ensuring production-quality code.

The ECMAScript 5 specification details what happens in Strict mode throughout the
document. For instance, if you use the deprecated with statement, the application will
throw an error; the use of the delete operator with a variable, function argument, or
function will also generate an error; most uses of eval will generate errors, and so on.
Annex C of the ECMAScript 5 specification lists all of the Strict mode restrictions and
exceptions.

To turn Strict mode on, use the following at the top level of your code:

"use strict";

This includes quotes. Or, you can turn on Strict mode only within a function:

function somename() {
 "use strict";
};

When creating custom JavaScript objects, you can ensure their quality by using
Strict mode. Currently, no browsers support Strict mode, but all plan to eventually.

378 | Chapter 16: JavaScript Objects

16.9 Preventing Object Additions and Changes to Property
Descriptors
Problem
You want to prevent extensions to an object, but you also want to disallow someone
from changing the property descriptor for an object.

Solution
Use the new ECMAScript Object.seal method to seal the object against additions and
modification of its property descriptor:

"use strict";

 var Test = {
 value1 : "one",
 value2 : function() {
 return this.value1;
 }
 }

 try {
 // freeze the object
 Object.seal(Test);

 // the following would succeed
 Test.value2 = "two";

 // the following would fail, throw an error in Strict Mode
 Test.newProp = "value3";

 // so would the following
 Object.defineProperty(Title, "category", {
 get: function () { return category; },
 set: function (value) { category = value; },
 enumerable: true,
 configurable: true});
 } catch(e) {
 alert(e);
 }

Discussion
Like Object.preventExtension, covered in Recipe 16.8, the Object.seal method is an-
other new ECMAScript 5 method that has no browser implementation yet, but should,
knock on wood, by the time you read this book. Look for a first implementation in a
Safari nightly build or a Firefox Minefield build.

16.9 Preventing Object Additions and Changes to Property Descriptors | 379

The Object.seal method prevents extensions to an object, like Object.preventExten
sions, but also prevents any changes to the object’s property descriptor. To check if an
object is sealed, you would use the Object.isSealed method:

if (Object.isSealed(obj)) ...

See Also
Property descriptors are described in Recipe 16.6, and Object.preventExtensions is
covered in Recipe 16.8.

16.10 Preventing Any Changes to an Object
Problem
You’ve defined your object, and now you want to make sure that its properties aren’t
redefined or edited by other applications using the object.

Solution
Use the new ECMAScript 5 Object.freeze method to freeze the object against any and
all changes:

"use strict";
 var Test = {
 value1 : "one",
 value2 : function() {
 return this.value1;
 }
 }

try {
 // freeze the object
 Object.freeze(Test);

 // the following would throw an error in Strict Mode
 Test.value2 = "two";

 // so would the following
 Test.newProperty = "value";

 // and so would the following
 Object.defineProperty(Title, "category", {
 get: function () { return category; },
 set: function (value) { category = value; },
 enumerable: true,
 configurable: true});
} catch(e) {
 alert(e);
}

380 | Chapter 16: JavaScript Objects

Discussion
There are several new Object methods defined in ECMAScript 5 to provide better object
management in JavaScript. The least restrictive is Object.preventExtensions(obj), cov-
ered in Recipe 16.6, which disallows adding new properties to an object, but you can
change the object’s property descriptor, or modify an existing property value.

The next more restrictive method is Object.seal. The Object.seal(obj) method pre-
vents any modifications or new properties from being added to the property descriptor,
but you can modify an existing property value.

The most restrictive new ECMAScript 5 Object method is Object.freeze. The
Object.freeze(obj) method disallows extensions to the object, and restricts changes
to the property descriptor. However, Object.freeze also prevents any and all edits to
existing object properties. Literally, once the object is frozen, that’s it—no additions,
no changes to existing properties.

You can check to see if an object is frozen using the companion method,
Object.isFrozen:

if (Object.isFrozen(obj)) ...

No browser currently implements Object.freeze or Object.isFrozen, but this state
should change relatively soon.

See Also
Recipe 16.6 covers property descriptors, Recipe 16.8 covers Object.preventExten
sions, and Recipe 16.9 covers Object.seal.

16.11 One-Off Objects and Namespacing Your JavaScript
Problem
You want to encapsulate your library functionality in such a way as to prevent clashes
with other libraries.

Solution
Use an object literal, what I call a one-off object, to implement the JavaScript version
of namespacing. An example is the following:

var jscbObject = {

 // return element
 getElem : function (identifier) {
 return document.getElementById(identifier);
 },

 stripslashes : function(str) {

16.11 One-Off Objects and Namespacing Your JavaScript | 381

 return str.replace(/\\/g, '');
 },

 removeAngleBrackets: function(str) {
 return str.replace(/</g,'<').replace(/>/g,'>');
 }
};

var incoming = jscbObject.getElem("incoming");
var content = incoming.innerHTML;

var result = jscbObject.stripslashes(content);
result = jscbObject.removeAngleBrackets(result);

jscbObject.getElem("result").innerHTML=result;

Discussion
As mentioned elsewhere in this book, all built-in objects in JavaScript have a literal
representation in addition to their more formal object representation. For instance, an
Array can be created as follows:

var newArray = new Array('one','two','three');

or using the array literal notation:

var newArray = ['one','two','three'];

The same is true for objects. The notation for object literals is pairs of property names
and associated values, separated by commas, and wrapped in curly brackets:

var newObj = {
 prop1 : "value",
 prop2 : function() { ... },
 ...
};

The property/value pairs are separated by colons. The properties can be scalar data
values, or they can be functions. The object members can then be accessed using the
object dot-notation:

var tmp = newObj.prop2();

Or:

var val = newObj.prop1 * 20;

Or:

getElem("result").innerHTML=result;

Using an object literal, we can wrap all of our library’s functionality in such a way that
the functions and variables we need aren’t in the global space. The only global object
is the actual object literal, and if we use a name that incorporates functionality, group,
purpose, author, and so on, in a unique manner, we effectively namespace the func-
tionality, preventing name clashes with other libraries.

382 | Chapter 16: JavaScript Objects

This is the approach I use for every library, whether I create the library or use another,
such as jQuery, Dojo, Prototype, and so on. As we’ll see later in the book, object literal
notation is also the notation used by JSON, which is now formally a part of the EC-
MAScript 5 specification.

See Also
See Recipe 17.1 for a discussion related to packaging your code into a library for external
distribution. Also check out Chapter 19 for recipes related to JSON.

16.12 Rediscovering “this” with Prototype.bind
Problem
You want to control the scope assigned a given function.

Solution
Use the new ECMAScript 5 function bind method:

window.onload=function() {

 window.name = "window";

 var newObject = {
 name: "object",

 sayGreeting: function() {
 alert("Now this is easy, " + this.name);
 nestedGreeting = function(greeting) {
 alert(greeting + " " + this.name);
 }.bind(this);

 nestedGreeting("hello");
 }
 }

 newObject.sayGreeting("hello");
}

If the method isn’t supported in your target browser(s), extend the Function object with
the code popularized by the Prototype.js JavaScript library:

Function.prototype.bind = function(scope) {
 var _function = this;

 return function() {
 return _function.apply(scope, arguments);
 }
}

16.12 Rediscovering “this” with Prototype.bind | 383

Discussion
The this keyword represents the owner or scope of the function. The challenge asso-
ciated with this in current JavaScript libraries is that we can’t guarantee which scope
applies to a function.

In the solution, the literal object has a method, sayGreeting, which prints a message
out using an alert, and then maps another nested function to its property,
nestedGreeting.

Without the Function.bind method, the first message printed out would say, “Now
this is easy object”, but the second would say, “hello window”. The reason the second
printout references a different name is that the nesting of the function disassociates the
inner function from the surrounding object, and all unscoped functions automatically
become the property of the window object.

What the bind method does is use the apply method to bind the function to the object
passed to the object. In the example, the bind method is invoked on the nested function,
binding it with the parent object using the apply method.

bind is particularly useful for timers, such as setInterval. Example 16-4 is a web page
with script that uses setTimeout to perform a countdown operation, from 10 to 0. As
the numbers are counted down, they’re inserted into the web page using the element’s
innerHTML property. Since most browsers have not implemented Function.bind as a
standard method yet, I added the Function.prototype.bind functional code.

Example 16-4. Demonstration of the utility of Function.bind for timers

<!DOCTYPE html>
<head>
<title>Using bind with timers</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<style type="text/css">
#item { font-size: 72pt; margin: 70px auto;
 width: 100px;}
</style>

<script>

if (!Function.bind) {
 Function.prototype.bind = function(scope) {
 var _function = this;

 return function() {
 return _function.apply(scope, arguments);
 }
 }
}

window.onload=function() {
 var theCounter = new Counter('item',10,0);
 theCounter.countDown();

384 | Chapter 16: JavaScript Objects

}

function Counter(id,start,finish) {
 this.count = this.start = start;
 this.finish = finish;
 this.id = id;
 this.countDown = function() {
 if (this.count == this.finish) {
 this.countDown=null;
 return;
 }
 document.getElementById(this.id).innerHTML=this.count--;
 setTimeout(this.countDown.bind(this),1000);
 };

}
</script>
</head>
<body>
<div id="item">
10
</div>
</body>

If the line in bold text in the code sample had been the following:

setTimeout(this.countDown, 1000);

The application wouldn’t have worked, because the object scope and counter would
have been lost when the method was invoked in the timer.

16.13 Chaining Your Object’s Methods
Problem
You wish to define your object’s methods in such a way that more than one can be used
at the same time, like the following, which retrieves a reference to a page element and
sets the element’s style property:

document.getElementById("elem").setAttribute("class","buttondiv");

Solution
The ability to directly call one function on the result of another in the same line of code
is known as method chaining. It requires specialized code in whatever method you want
to chain.

16.13 Chaining Your Object’s Methods | 385

For instance, if you want to be able to chain the changeAuthor method in the following
object, you must also return the object after you perform whatever other functionality
you need:

function Book (title, author) {
 var title = title;
 var author = author;
 this.getTitle=function() {
 return "Title: " + title;
 }

 this.getAuthor=function() {
 return "Author: " + author;
 }

 this.replaceTitle = function (newTitle) {
 var oldTitle = title;
 title = newTitle;
 }

 this.replaceAuthor = function(newAuthor) {
 var oldAuthor = author;
 author = newAuthor;
 }
}

function TechBook (title, author, category) {

 var category = category;
 this.getCategory = function() {
 return "Technical Category: " + category;
 }

 Book.apply(this,arguments);
 this.changeAuthor = function(newAuthor) {
 this.replaceAuthor(newAuthor);
 return this;
 }
}

window.onload=function() {

try {

 var newBook = new TechBook("I Know Things", "Shelley Powers", "tech");
 alert(newBook.changeAuthor("Book K. Reader").getAuthor());

} catch(e) {
 alert(e.message);
}

}

386 | Chapter 16: JavaScript Objects

Discussion
The key to making method chaining work is to return a reference to the object at the
end of the method, as shown in the replaceAuthor method in the solution:

this.changeAuthor = function(newAuthor) {
 this.replaceAuthor(newAuthor);
 return this;
}

In this example, the line return this returns the object reference.

Chaining is extensively used within the DOM methods, as shown throughout this book,
when we see functionality such as:

var result = str.replace(/</g,'<').replace(/>/g,'>');

Libraries such as jQuery also make extensive use of method chaining:

$(document).ready(function() {
 $("#orderedlist").find("li").each(function(i) {
 $(this).append(" BAM! " + i);
 });
 });

If you examine the development version of jQuery (which is uncompressed and very
readable), you’ll see return this sprinkled all throughout the library’s methods:

// Force the current matched set of elements to become
// the specified array of elements
// (destroying the stack in the process)
// You should use pushStack() in order to do this,
// but maintain the stack

setArray: function(elems) {
 // Resetting the length to 0, then using the native Array push
 // is a super-fast way to populate an object with
 // array-like properties
 this.length = 0;
 push.apply(this, elems);

 return this;
 },

See Also
Chapter 17 provides an introduction to using jQuery in your JavaScript applications.

16.13 Chaining Your Object’s Methods | 387

CHAPTER 17

JavaScript Libraries

17.0 Introduction
JavaScript developers have never been luckier. Today, there are several very fine Java-
Script framework libraries we can use for our applications that take care of many of the
more tedious aspects of JavaScript development. In fact, you might be thinking about
why you would even need a book on just plain JavaScript, when you can use framework
libraries like Dojo, Ample SDK, Prototype, or jQuery (which I’m featuring later in this
chapter). Why put up with the hassle of cross-browser issues, or the minutiae of creating
and instantiating XMLHttpRequest object directly just to make a simple Ajax call?

I could reply that in order to use a framework library like jQuery to its best ability, you
need to understand what’s happening under the hood. This is a valid answer, because
if you don’t know what you can do with JavaScript, you won’t know what you can do
with a JavaScript framework library.

However, I have another, more philosophical reason why you need to understand the
basics of JavaScript, inspired in part by a short story by one of my favorite science fiction
writers, Isaac Asimov.

Isaac Asimov wrote a story, “The Feeling of Power,” in the 1950s. In the story, a simple
technician named Myron Aub astounds military, political, and scientific leaders with
his astonishing discovery: the ability to perform mathematical calculations using only
a person’s own mental ability, and a piece of paper and pencil.

In the future time in which Aub lives, people had become dependent on machines to
do all of their calculations; they had forgotten how to perform even the most basic
math. Asimov was inspired to write the story out of his growing concern about our
increasing mechanistic dependencies. When you consider that high schools no longer
teach basic mathematical procedures, such as how to compute a logarithm manually,
because of our use of calculators and computers, Asimov demonstrated remarkable
prescience with his story.

389

Now, I don’t think we’re in danger of forgetting how to code JavaScript from scratch,
or how to build our own libraries—at least, not in the near future. But why let the
framework library builders have all the fun with the language?

See Also
Directions for downloading jQuery are covered in a later section, but you can access
Ample SDK at http://www.amplesdk.com/, find Prototype.js at http://www.prototypejs
.org/, and check out Dojo Toolkit at http://www.dojotoolkit.org/. Another lightweight
framework is MooTools.

17.1 Packaging Your Code
Problem
You want to package your code into one or more JavaScript files.

Solution
If your code is in one big file, look for opportunities to extract reusable functionality
into self-contained objects in a separate library.

If you find you have a set of functions you repeat in all of your applications, consider
packaging them for reuse via an object literal. Transform the following:

function getElem(identifier) {
 return document.getElementById(identifier);
}

function stripslashes (str) {
 return str.replace(/\\/g, '');
}

function removeAngleBrackets(str) {
 return str.replace(/</g,'<').replace(/>/g,'>');
}

to:

var jscbObject = {

 // return element
 getElem : function (identifier) {
 return document.getElementById(identifier);
 },

 stripslashes : function(str) {
 return str.replace(/\\/g, '');
 },

 removeAngleBrackets: function(str) {

390 | Chapter 17: JavaScript Libraries

http://www.amplesdk.com/
http://www.prototypejs.org/
http://www.prototypejs.org/
http://www.dojotoolkit.org/
http://mootools.net/

 return str.replace(/</g,'<').replace(/>/g,'>');
 }
};

Discussion
In the solution, I’ve taken three functions in the global space and converted them into
three methods on one object. Not only does this reduce the clutter in the global space,
but it helps prevent clashes with similar-sounding function names in other libraries.

Even as functions, though, they’re a step up from code that’s hardcoded to a specific
use. For instance, if your code has the following to access a style property from an
element:

// get width
var style;
var elem = div.getElementById("elem");
if (elem.currentStyle) {
 style = elem.currentStyle["width"];
} else if (document.defaultView &&
document.defaultView.getComputedStyle) {
 style = document.defaultView.getComputedStyle(elem,null).
getPropertyValue("width");
}

Repeating this code in more than one function in your application can quickly bloat
the size of the JavaScript, as well as make it harder to read. Modularize the code by
extracting it into a reusable function, and eventually into a new member of your library
object literal:

var BBObjLibrary = {

 // get stylesheet style
 getStyle : function (obj, styleName) {
 if (obj.currentStyle)
 return obj.currentStyle[styleName];
 else if (document.defaultView &&
document.defaultView.getComputedStyle)
 return document.defaultView.getComputedStyle(obj,null).
getPropertyValue(styleName);
 return undefined;
 },
...
}

Even when you split your code into libraries of reusable objects, look for an opportunity
to modularize your code into layers of functionality.

I have one library, bb.js, that provides basic functionality such as event handling, ac-
cessing generic style elements, processing keyboard events, and so on. I have another
library, mtwimg.js, I use to provide image handling in a web page, similar to what the
popular library Lightbox 2 provides. The latter is built up on top of the former, so that

17.1 Packaging Your Code | 391

I don’t have to repeat the functionality in both libraries, but I also keep my bb.js library
small, and focused.

When I created a third library, accordion.js, which creates automatic accordion widgets
(also sometimes called collapsible sections), it was also built on the bb.js generic library,
considerably reducing the development time. More importantly, if I eventually decide
to drop support for my generic library in favor of another externally developed library,
such as Dojo, Prototype, or jQuery, though the internal functionality in accordion.js
and mtwimg.js has to change, the web pages that use both don’t, because the latter two
libraries’ outward-facing functionality isn’t affected. This is a concept known as refac-
toring: improving the efficiency of your code without affecting the external
functionality.

Oh, and while you’re at it: document your code. Though you may provide a minified
version of your code for production use, consider providing a nonminified, well-
documented version of your JavaScript libraries so that others can learn from your code,
the same as you’re able to learn from theirs.

See Also
Recipe 17.3 covers how to minify your JavaScript. Object literals are covered in Rec-
ipe 16.11. You can download Lightbox 2 at http://www.huddletogether.com/projects/
lightbox2/. Creating accordion sections is covered in Recipe 13.6.

17.2 Testing Your Code with JsUnit
Problem
You followed the good structuring practices outlined in Recipe 17.1 to create your
JavaScript objects. Now you want to thoroughly test your code before packaging it into
a library for distribution.

Solution
Use a tool like JsUnit to create test cases to formally test your library. If your library
contains an object method like the following:

function addAndRound(value1,value2) {
 return Math.round(value1 + value2);
}

JsUnit test cases could look like the following:

function testAddAndRound() {
 assertEquals("checking valid", 6, addAndRound(3.55, 2.33));
 assertNaN("checking NaN",addAndRound("three",
"Four and a quarter"));
}

392 | Chapter 17: JavaScript Libraries

http://www.huddletogether.com/projects/lightbox2/
http://www.huddletogether.com/projects/lightbox2/

Both tests would be successful: the first because the result of the function is equal to
the value 6, and both results are numbers; the second because the result of the function
call is NaN, which is what the test checks.

Discussion
Chapter 10 covered error handling and debugging using a variety of tools, depending
on your preferred development browser. Now, you’re ready to create more formal tests,
not only for your own use, but for others. These types of tests are called unit tests.

A good rule of thumb when it comes to unit testing is that every requirement or use
case for a library function (or object method) should have an associated test case (or
cases). The unit test checks that the requirement is met, and the library function per-
forms as expected. You can develop your own tests, but using something like JsUnit
simplifies the test writing.

The version of JsUnit I use is a JavaScript implementation of the well-
known JUnit testing software, and was developed by Edward Hieatt.
JsUnit can be downloaded at http://www.jsunit.net/, which also includes
links for documentation and examples.

Once you’ve downloaded, unzipped, and installed the JsUnit folder, preferably in a test
folder for your own application, create several test application pages to test your li-
brary’s functionality. Each page will contain a link to the JsUnit engine and your library.
If the JsUnit library is located in its folder direction in your development subdirectory,
link it as follows:

<script type="text/javascript" src="app/jsUnitCore.js"></script>
<script type="text/javascript" src="lib/myLibrary.js"></script>

Use the JsUnit methods in script in the page to perform the tests, and the JsUnit web
page, testRunner.html, to actually run the test. How the test functions are written are
based on JUnit testing methodology: the function names begin with test and can have
no parameters.

The JsUnit assertions used to write tests are:

assert ([comment],booleanValue)
Tests that a function returns a Boolean value.

assertTrue([comment],booleanValue)
Tests for true return.

assertFalse([comment], booleanValue)
Tests for false return.

assertEquals([comment], value1, value2)
Tests return result or variable for equality.

17.2 Testing Your Code with JsUnit | 393

http://www.jsunit.net/

assertsNotEquals ([comment],value1,value2)
Tests return result or variable against another value for nonequality.

assertNull([comment],value)
Tests for null value or return.

assertNotNull([comment],value)
Tests for nonnull value or return.

The first parameter in the functions—the comment—is optional. However, it does
make it much easier to determine which test fails if you can see a unique comment for
the test.

JsUnit supports other functions, such as setUp and tearDown, called before the tests are
started and after they have finished, respectively. There are also three functions, which
provide trace messages:

warn(message,[value])
Warning message, with optional value

inform(message,[value])
Information message, with optional value

debug(message,[value])
Debugging information, with optional value

Once you’ve created your test page, you run the tests within the testRunner.html page.
If some of the tests fail, errors will display under the test progress bar. If you double-
click the test, you can get the test fail information, as shown in Figure 17-1.

To see the JsUnit functionality in action, Example 17-1 contains a simple object with
three methods.

Example 17-1. Simple JavaScript object with methods

var BBTest = {
 concatWithSpace : function(string1, string2) {
 return string1 + " " + string2;
 },
 discoverNumber : function(string, number) {
 return string.indexOf(number);
 },
 divideNumbers : function (value1, value2) {
 return value1 / value2;
 },
 addAndRound : function(value1, value2) {
 return Math.round(value1 + value2);
 }
}

Example 17-2 is a JsUnit test page that tests the object methods.

394 | Chapter 17: JavaScript Libraries

Figure 17-1. A JsUnit test run with some failed tests

Example 17-2. JsUnit Test page to test methods for object in Example 17-1

<!DOCTYPE html>
<head>
<title>Testing Library</title>
<script src="jsunit/app/jsUnitCore.js"></script>
<script src="test.js"></script>
<script>

function testConcatWithSpace() {
 inform("Testing concatWithSpace");
 assertEquals("Checking equality", "Shelley
Powers",BBTest.concatWithSpace("Shelley","Powers"));
}

function testDiscoverNumber() {
 inform("Testing discoverNumber");
 assertEquals("Checking valid params",5,
BBTest.discoverNumber("found5value",5));
}

function testDivideNumbers() {
 inform("Testing divideNumbers");
 assertNaN("Checking numeric ops with no numbers",
BBTest.divideNumbers("five","2"));
 assertNotEquals("Checking not equals","5",
BBTest.divideNumbers(10,2));

17.2 Testing Your Code with JsUnit | 395

}

function testAddAndRound() {
 inform("Testing addAndRound");
 assertNaN("Checking NaN",BBTest.addAndRound("four",
"Three Quarter"));
 assertEquals("Checking correct values",6,
BBTest.addAndRound(2.33,3.45));
}

</script>

</head>
<body>
<p>Running tests of test.js. View source to see tests.</p>
</body>

Load the test page into the testRunner.html page, located within the jsUnit subdirectory.
All of the tests are successful, as shown in Figure 17-2.

Figure 17-2. Successful run of test page in Example 17-2

JsUnit can be managed manually, or can be integrated into an automated testing en-
vironment, including integration with Apache Ant.

396 | Chapter 17: JavaScript Libraries

17.3 Minify Your Library
Problem
You want to compactly package your code for wider distribution.

Solution
After you’ve optimized your library code and tested it thoroughly through unit testing,
compress it with a JavaScript optimizer.

Discussion
Once you’ve created your library, optimized it for efficiency, and run it through your
unit testing, you’re ready to prep your code for production use.

One preparation to make is to compress the JavaScript as much as possible, so the file
is small and loads quickly. JavaScript compression is handled through minify applica-
tions you can find online, such as the well-known JavaScript Compressor, created by
Dean Edwards, shown in Figure 17-3.

See Also
You can find JavaScript minifiers and compressors all over the Web by searching for
“compress JavaScript” or “JavaScript minify”. Dean Edwards’s JavaScript compression
tool can be found at http://javascriptcompressor.com/.

17.4 Hosting Your Library
Problem
You want to open source your code, but you don’t want to have to maintain the libraries
on your own server.

Solution
Use one of the source code hosts to host your code, and provide the tools to manage
collaboration with other developers.

Discussion
One of the beautiful things about JavaScript is that many of the libraries and applica-
tions are open source, which means that not only are they typically free to use, but you
can also adapt the library with your innovations, or even collaborate on the original. I
strongly encourage open sourcing your libraries as much as possible. However, unless

17.4 Hosting Your Library | 397

http://javascriptcompressor.com/

you have the resources to mount a public-facing source code control system, you’ll
want to use one of the sites that provide support for open source applications.

One source code host is Google Code, which contains a simple user interface to start
a new project and upload code. You can choose between two version control software
systems (Subversion and Mercurial), as well as one of a host of open source licenses.

There is a wiki component to each project where you can provide documentation, and
a way to provide updates for those interested in the project. The site also provides issue-
tracking software for people to file bugs, in addition to a Downloads link and a separate
link for source code.

The SVG-enabling software SVGWeb, mentioned in Chapter 15, is hosted in Google
Code. Figure 17-4 shows the front page for the project and the links to all of the
secondary support pages, including the Wiki, Downloads, Issues, Source, and so on.
There is no charge for hosting an application on Google Code.

Figure 17-3. Result of compressing the code from Example 17-1

398 | Chapter 17: JavaScript Libraries

http://code.google.com/hosting/

Another increasingly popular host for open source projects is github. Unlike Google
Code, there are limits to what is supported for a free account on the service, but Java-
Script libraries should not tax these limits. You shouldn’t be faced with costs, as long
as your projects are open source and publicly available. However, if you want to use
the service for a private collaboration with several others, this service is available at a
cost.

Figure 17-4. SVGWeb hosted at Google Code

As with Google Code, github supports source code control and collaboration from
several people, including records of issues, downloads, a wiki support page, and a nice
graphs page that provides graphics of language support, usage, and other interesting
indicators.

The very popular jQuery library is hosted on github, as shown in Figure 17-5, though
you download jQuery from its own domain.

17.4 Hosting Your Library | 399

http://github.com

Figure 17-5. The github page for the jQuery library

Source Forge used to be the place to host your open source software in
the past. However, the site blocks access to certain countries listed in
the United States Office of Foreign Assets Control sanction list, and has
fallen out of favor with many open source developers.

17.5 Using an External Library: Building on the jQuery
Framework
Problem
You want to create application-specific libraries without having to create your own
library of reusable routines.

Solution
Use one of the framework JavaScript libraries, such as Prototype, Dojo, or jQuery, in
order to provide the basic functionality you need, but isolate the use so that you can
swap frameworks if needed.

400 | Chapter 17: JavaScript Libraries

http://sourceforge.net/

Discussion
There are good reasons—aside from the time saved—for using an existing JavaScript
framework library such as jQuery. One is that the code is more robustly tested by several
people. Another is that you can tap into a community of support when you run into
problems in your applications.

I’m focusing primarily on jQuery because it is the library incorporated into most of the
applications I use, including Drupal, the Content Management System (CMS) I use at
my site. It’s also small, specific, modular, and relatively uncomplicated. However, li-
braries such as Prototype, Dojo, Mootools, and others are also good, and you should
examine each before making a decision.

Download jQuery from http://jquery.com/. You can access both a mini-
fied version of the library and an uncompressed developer version.

To use jQuery, include a link to the library before providing links to your own or other,
secondary libraries:

<script type="text/javascript" src="jquery.js"></script>

There are several application-specific libraries that are dependent on jQuery, so you
may want to check if they provide jQuery as part of their own installation.

One aspect of jQuery that differs from most of the examples in this book is that jQuery’s
“starting” point for script is not window.onload, as I’ve used with most of the code
samples. Instead, the jQuery library provides a page start routine that waits for DOM
elements to be loaded, but does not wait for images or other media to finish loading.
This beginning point is called the ready event, and looks like the following:

$(document).ready(function() {
 ...
});

The code snippet demonstrates a couple of other things about jQuery. First, notice the
dollar sign element reference: $(document). In jQuery, the dollar sign ($) is a reference
to the main jQuery class, and acts as a selector for all element access in the application.
If you’re working with jQuery, use the jQuery selector rather than code your own
element access, because the jQuery selector comes with prepackaged functionality es-
sential for jQuery to operate successfully.

The syntax you use when querying for page elements is the same as the syntax for the
querySelector and querySelectorAll methods, described in Chapter 11. It’s based on
CSS selector syntax for accessing a named element, such as the following:

#divOne{
 color: red;
}

17.5 Using an External Library: Building on the jQuery Framework | 401

http://jquery.com/

Using jQuery to access this element looks like this:

$("#divOne").click(function() {
 alert("Well Hi World!");
});

This code snippet returns a reference to the div element identified by divOne, and then
attaches a function to the element’s onclick event handler that prints out a message.

The code also demonstrates another fundamental aspect of jQuery—it makes heavy
use of method chaining. Method chaining is a way of appending methods one to another.
In the code, rather than return a reference to the div element and then attach the event
handler function to it, you attach the event handler directly to the element request.

There is extensive documentation and tutorials on using jQuery, so I’ll leave an in-
depth overview of jQuery for an off-book exercise. However, I did want to cover one
important aspect of using jQuery—or any framework library with your own
applications.

The key to making these work now and in the future is to wrap the library use in such
a way that you can swap one library out for another, without having to recode your
applications—or, at least, minimize the amount of recoding you would have to do.

Rather than use the jQuery ready event, create your own so you don’t build a higher-
level dependency on jQuery. Rather than use jQuery methods directly in your business
logic, use your own objects and methods, and call the jQuery methods within these.
By providing a layer of abstraction between the implementation of your application’s
business logic and the external framework library, if someday you stumble upon Frew,
the Wonder Library, you can swap out jQuery (or Prototype, or Dojo) and build on
Frew.

See Also
jQuery Cookbook by Cody Lindley (O’Reilly) is an excellent book providing a com-
prehensive overview and detailed how-tos for jQuery. It’s what I’m using to come up
to speed on this powerful little library, and provides the best coverage on writing jQuery
plug-ins (see Recipe 17.7).

See Recipe 11.4 for the use of the Selectors API and selector syntax. And see Rec-
ipe 16.13 for more on object method chaining.

17.6 Using Existing jQuery Plug-ins
Problem
You’ve made the decision to use jQuery as a framework. Now you want to incorporate
some jQuery plug-ins and ensure they don’t clash with your object libraries.

402 | Chapter 17: JavaScript Libraries

http://oreilly.com/catalog/9780596159788/

Solution
When you’ve found the plug-in(s) you want to use, check the documentation for all
methods and properties, not just those you’re interested in. Make sure that there isn’t
anything in the plug-in that can generate unwanted side effects when used in conjunc-
tion with your own application. Focus on using plug-ins that provide exactly what you
need, and only what you need. Try to avoid over-generic plug-ins. Also make sure there
aren’t name clashes between the external plug-in and any you’ve created yourself.

As an example of a single-purpose, tightly focused plug-in, the jQuery Validation plug-
in’s only purpose is to validate form field data. It can validate for Zip code, email ad-
dress, even credit card format. To use, annotate your form fields with specific classes,
such as required for required fields, or email to validate the field as email. An example
is the following, from the jQuery plug-in site:

<form class="cmxform" id="commentForm" method="get" action="">
 <fieldset>
 <legend>A simple comment form with submit validation and default
messages</legend>
 <p>
 <label for="cname">Name</label>
 *<input id="cname" name="name" size="25"
class="required" minlength="2" />
 </p>
 <p>
 <label for="cemail">E-Mail</label>
 *<input id="cemail" name="email" size="25"
class="required email" />
 </p>
 <p>
 <label for="curl">URL</label>
 <input id="curl" name="url" size="25" class="url"
value="" />
 </p>
 <p>
 <label for="ccomment">Your comment</label>
 *<textarea id="ccomment" name="comment" cols="22"
class="required"></textarea>
 </p>
 <p>
 <input class="submit" type="submit" value="Submit"/>
 </p>
 </fieldset>
 </form>

Then, in your script, make one function call:

j$("#commentForm").validate();

It doesn’t get simpler than that.

17.6 Using Existing jQuery Plug-ins | 403

Discussion
The plug-in in the solution, jQuery Validation, provides a small set of methods and
several events that you can capture in order to perform any additional validation. You
can also provide custom configuration for all displayed messages. Single-purpose,
tightly focused plug-ins with few methods that provide events that you can intercept
and customize for appearance should integrate well with your application.

Once integrated, though, you’ll also need to incorporate unit tests for the plug-in, in
addition to your own functions. You’ll also have to check for updates to the plug-ins,
and be aware of any issues and bugs. In particular, look for updates or potential prob-
lems with new releases of jQuery.

The Validation plug-in can be downloaded at http://docs.jquery.com/
Plugins/Validation. Look for jQuery plug-ins at http://plugins.jquery
.com/.

17.7 Convert Your Library to a jQuery Plug-in
Problem
You want to convert your library methods and functions into a jQuery plug-in for use
by others.

Solution
If you want your method to participate in the jQuery chain and be used with selectors,
assign your method to the jQuery.fn property:

jQuery.fn.increaseWidth = function() {
 return this.each(function() {
 var width = $(this).width() + 10;
 $(this).width(width);
 });
};

If your plug-in has one or more separate functions that do not need to participate in
the jQuery chain, or be attached to a selector, create a jQuery function directly on the
jQuery object:

jQuery.bbHelloWorld = function(who) {
 alert ("Hello " + who + "!");
};

If your function uses the jQuery dollar sign function ($) and you’re concerned that the
library could be used with other libraries that make use of $, wrap your function in an
anonymous function. Instead of using the following jQuery method approach:

404 | Chapter 17: JavaScript Libraries

http://docs.jquery.com/Plugins/Validation
http://docs.jquery.com/Plugins/Validation
http://plugins.jquery.com/
http://plugins.jquery.com/

jQuery.fn.flashBlueRed = function() {
 return this.each(function() {
 var hex = rgb2hex($(this).css("background-color"));
 if (hex == "#0000ff") {
 $(this).css("background-color", "#ff0000");
 } else {
 $(this).css("background-color", "#0000ff");
 }
 });
 };

use the following anonymous function syntax:

;(function($) {
 $.fn.flashBlueRed = function() {
 return this.each(function() {
 var hex = rgb2hex($(this).css("background-color"));
 if (hex == "#0000ff") {
 $(this).css("background-color", "#ff0000");
 } else {
 $(this).css("background-color", "#0000ff");
 }
 });
 };
})(jQuery);

Discussion
It’s relatively simple to create a jQuery plug-in once you understand the nuances of the
jQuery plug-in infrastructure.

If you’re interested in creating a jQuery method that can be used with a jQuery selector
and participate in the jQuery chain, you’ll use the first syntax shown in the solution:

jQuery.fn.increaseWidth = function() {
 return this.each(function() {
 var width = $(this).width() + 10;
 $(this).width(width);
 });
};

However, if you want to make use of the dollar sign function ($) within the code, but
still have the plug-in work within a multiple library setting, wrap the method in an
anonymous function:

;(function($) {
 $.fn.flashBlueRed = function() {
 return this.each(function() {
 var hex = rgb2hex($(this).css("background-color"));
 if (hex == "#0000ff") {
 $(this).css("background-color", "#ff0000");
 } else {
 $(this).css("background-color", "#0000ff");
 }
 });

17.7 Convert Your Library to a jQuery Plug-in | 405

 };
})(jQuery);

Notice the following line in both examples:

return this.each(function () {

This code is necessary to allow the method to work on whatever is returned by the
selector, regardless of whether it’s a single item or a group of items. The line begins the
code block that includes your actual method code.

Check out the semi-colon (;) just before the anonymous function. I picked this
trick up from Cody Lindley in jQuery Cookbook (O’Reilly). Putting the semicolon be-
fore the anonymous function ensures that the function won’t break if another plug-in
forgets to terminate a method or function with a semi-colon.

If you’re only interested in adding a jQuery function that isn’t part of the jQuery chain
or which makes use of a selector, use the jQuery function syntax:

jQuery.bbHelloWorld = function(who) {
 alert ("Hello " + who + "!");
};

Once you have created your plug-in code, package it in a separate file; to use the code,
all someone has to do is include the script, following the jQuery script.

An example of a plug-in file is shown in Example 17-3. This file has a couple of func-
tions, specific to converting an RGB value to a hexadecimal. All of the functions are
added to the jQuery object, and each is preceded by “bb”, to act as namespace for the
function.

The bbGetRGB function in the library is actually a function that exists as an internal (not
publicly exposed) function within the jQuery User Interface (UI) library. It was origi-
nally created by Blair Mitchelmore for the highlightFade jQuery plug-in. However, I
didn’t want to include the jQuery UI, so I just borrowed the function for the example.

Example 17-3. A jQuery plug-in

// Parse strings looking for color tuples [255,255,255]
// pulled from internal jQuery function
jQuery.bbGetRGB = function(color) {
 var result;

 // Check if we're already dealing with an array of colors
 if (color && color.constructor == Array && color.length == 3)
 return color;

 // Look for rgb(num,num,num)
 if (result = /rgb\(\s*([0-9]{1,3})\s*,\s*([0-9]{1,3})\s*,\s*([0-
9]{1,3})\s*\)/.exec(color))
 return [parseInt(result[1],10), parseInt(result[2],10),
parseInt(result[3],10)];

 // Look for rgb(num%,num%,num%)

406 | Chapter 17: JavaScript Libraries

http://oreilly.com/catalog/9780596159788/

 if (result = /rgb\(\s*([0-9]+(?:\.[0-9]+)?)\%\s*,\s*([0-9]+(?:\.
[0-9]+)?)\%\s*,\s*([0-9]+(?:\.[0-9]+)?)\%\s*\)/.exec(color))
 return [parseFloat(result[1])*2.55, parseFloat(result[2])*
2.55, parseFloat(result[3])*2.55];

 // Look for #a0b1c2
 if (result = /#([a-fA-F0-9]{2})([a-fA-F0-9]{2})([a-fA-F0-9]{2})/.
exec(color))
 return [parseInt(result[1],16), parseInt(result[2],16),
parseInt(result[3],16)];

 // Look for #fff
 if (result = /#([a-fA-F0-9])([a-fA-F0-9])([a-fA-F0-9])/.
exec(color))
 return [parseInt(result[1]+result[1],16), parseInt(result[2]+result[2],16),
parseInt(result[3]+result[3],16)];

 // Look for rgba(0, 0, 0, 0) == transparent in Safari 3
 if (result = /rgba\(0, 0, 0, 0\)/.exec(color))
 return colors['transparent'];

 // Otherwise, we're most likely dealing with a named color
 return colors[$.trim(color).toLowerCase()];
};

jQuery.bbPadHex = function (value) {
 if (value.toString().length == 1) {
 value = "0" + value;
 }
 return value;
};

jQuery.bbConvertRGBtoHex = function(rgbString) {
 var colors = $.bbGetRGB(rgbString);
 var red = $.bbPadHex(parseInt(colors[0]).toString(16));
 var green = $.bbPadHex(parseInt(colors[1]).toString(16));
 var blue = $.bbPadHex(parseInt(colors[2]).toString(16));

 return "#" + red + green + blue;
};

bbPadHex, bbConvertRGBtoHex, and bbGetRGB are added as jQuery functions, the
flashBlueRed method is wrapped in an anonymous function, and the increaseWidth
method is a straight jQuery method. Example 17-4 shows the two methods in action.
Notice how the increaseWidth method is chained to the flashBlueRed method, and both
work on the element returned with the jQuery selector.

17.7 Convert Your Library to a jQuery Plug-in | 407

Example 17-4. Web page and application that use the new plug-in

<!doctype html>
<html>
 <head>
 <style>
 #test
 {
 background-color: #0000ff;
 width: 500px;
 padding: 10px;
 color: #ffffff;
 font-weight: bold;
 font-size: larger;
 }
 </style>
 <script type="text/javascript" src="jquery.js"></script>
 <script type="text/javascript" src="basic.js"></script>

 <script type="text/javascript">

 $(document).ready(function() {
 $("#test").click(function() {
 $(this).flashBlueRed().increaseWidth();
 });
 });
 </script>
 </head>
 <body>
 <div id="test">
 hi, click me to change color
 </div>
 </body>
</html>

17.8 Safely Combining Several Libraries in Your Applications
Problem
You want to incorporate more than one external library, as well as your own, into one
application without each stepping all over the others.

Solution
The safest approach for using multiple libraries is to pick ones that are all based on the
same framework, such as using only libraries based on Dojo, Prototype, or jQuery, the
framework used in earlier recipes.

If that strategy doesn’t work, make sure the libraries all use good programming prac-
tices, and none are overriding functionality or event handling provided by the others.

408 | Chapter 17: JavaScript Libraries

Discussion
Regardless of library purpose, there are fundamental rules governing the behavior of
libraries that must be followed. Well-designed libraries do not do things like this:

window.onload=function() {...}

I use the DOM Level 0 window.onload event handler with the examples in the book
because it’s quick, simple, and doesn’t add a lot of code to the sample. However, if you
have one library that uses the old DOM Level 0 event handling, it will overwrite the
event capturing utilized by the other libraries and your own application. Well-designed
libraries don’t use DOM Level 0 event handling. Well-designed libraries also name-
space all of their functionality. You won’t find the following in a well-defined library:

function foo() { ... }
function bar() { ... }

Each function like this ends up in the global space, which increases the likelihood of
clashes with other libraries, and your own applications. Well-designed libraries use
object literals to namespace their functionality:

var BigObject = {
 foo : function () { },
 bar : function () { }
}

A library that plays well with other libraries and applications will not extend existing
objects via the prototype object. Yes, I know it’s a wonderful way of extending objects,
and fundamental to JavaScript, but you can’t control one library from overriding an-
other if both are extending the prototype property for the same object. Besides, if the
framework and external libraries you use don’t extend existing objects via the object’s
prototype, this leaves you free to play in your application.

Come to that, library builders should never assume that their library is the only one
used in a project.

Well-designed libraries provide event hooks so that you can hook into the library at
the points where it performs a major action. In Recipe 17.7, the jQuery plug-in descri-
bed in the solution provided event handler hooks you can use to provide your own
functionality before or after the plug-in’s validation routine.

Well-designed libraries provide good documentation of all of the publicly exposed bits,
including methods, properties, and events. You shouldn’t have to guess how to use the
library, or examine minute portions of the code, in order to figure out what you need
to do.

Well-designed libraries are well-tested, and provide a way to report bugs and view
existing bugs. If there’s a major security problem with an existing library, you need to
know about it. If there are minor bugs, you need to know about these, too. Libraries
that provide a subdirectory with self-tests rate high in my book.

17.8 Safely Combining Several Libraries in Your Applications | 409

Well-designed libraries provide nonminified, original source code. This isn’t
essential—just helpful, and something I look for in a library.

It goes without saying that a good library is one actively maintained, but it can’t hurt
to repeat this assertion. An even better library is one that’s open sourced, and main-
tained by a community of users—or is one you can maintain on your own, if the original
maintainer can no longer perform this action.

To summarize:

• A good library does not use DOM Level 0 event handling.

• A well-defined library uses object literals to namespace its functionality.

• A well-defined library introduces few global objects.

• Libraries that play well with others provide event hooks. Well-behaved libraries
also don’t extend existing objects via the prototype property.

• Solid libraries are well-tested, and hopefully provide these self-tests as deliverables.

• Stable libraries are actively maintained and, preferably, open sourced.

• Secure libraries provide documentation of known bugs and problems, and a way
to report on any bugs and problems you find.

• Usable libraries are well-documented. Bandwidth-friendly libraries are optimized
and compressed, though you can always compress the library yourself

• Confident libraries aren’t built on the assumption that no other library will be used.

For the most part, you should be able to find what you need and have it work with your
preferred framework. Be cautious when it comes to using a library that requires you
add a new framework, which then needs to coexist with another framework. However,
most well-built framework libraries could work with others.

As an example of framework coexistence, and since I’m focusing on jQuery in this
chapter, if you use jQuery, you can use another framework library, such as Prototype,
MooTools, or Dojo. The use of global namespaces should prevent name clashes. The
only exception to the namespace rule is the dollar sign ($), function, which is also used
by Prototype. You can override the use of the $ by adding the following, after all the
libraries have been loaded:

jQuery.noConflict();

Once you add this code, instead of:

$("#elem").fadeOut('slow');

use:

jQuery("#elem").fadeOut('slow');

There are other approaches, too, including assigning a new short character replace-
ment, but these are detailed in the jQuery documentation.

410 | Chapter 17: JavaScript Libraries

You can use most well-made framework libraries together, but there is tremendous
overlap in functionality between the libraries, and this overlap in functionality comes
with a cost: bandwidth to download the libraries. Try to avoid using more than one
framework library at a time. Find the one you like, and be prepared to commit to it for
some time to come.

See Also
The jQuery web page documenting how to use the framework with other libraries is at
http://docs.jquery.com/Using_jQuery_with_Other_Libraries.

17.8 Safely Combining Several Libraries in Your Applications | 411

http://docs.jquery.com/Using_jQuery_with_Other_Libraries

CHAPTER 18

Communication

18.0 Introduction
This book has explored a lot of subjects, but the functionality that revolutionized web
client development is (arguably) Ajax. With Ajax, we’re no longer dependent on the
slow, cumbersome round-trips and associated page load times that plagued early web-
sites. Now we can make an Ajax call, get some data, update the page—sometimes
without the user even being aware that the activity is happening.

Ajax is also a relatively uncomplicated functionality, at least compared to other Java-
Script functionality I’ve covered in the book. The main steps to an Ajax application are:

• Prepare the server-side API call.

• Make the call.

• Process the result.

Of course, there are interesting challenges that can occur at any time during these three
steps, but for a basic application, it really is just that simple.

Ajax is now joined by a new communication kid: the postMessage. This new function-
ality originated with HTML5, though it has since split off to its own specification. It’s
an uncomplicated functionality that allows for easy communication between a parent
and child window, even if the child window is located in another domain.

There are two other new communication APIs in work: Cross Origin
Resource Sharing (CORS) and the Web Sockets API. Both are being
developed in the W3C, and both are currently in Working Draft state:
CORS at http://www.w3.org/TR/access-control/ and Web Sockets at
http://dev.w3.org/html5/websockets/.

CORS is a way of doing cross-domain Ajax calls, and is currently im-
plemented in Firefox 3.5 and up, and Safari 4.x and up. The Web Sock-
ets API is a bidirectional communication mechanism, implemented only
in Chrome at this time.

413

http://www.w3.org/TR/access-control/
http://dev.w3.org/html5/websockets/

18.1 Accessing the XMLHttpRequest Object
Problem
You want to access an instance of the XMLHttpRequest object.

Solution
If you’re not concerned about support for IE6, you can use the following:

var xmlHttp = new XMLHttpRequest();

This works with all of the target browsers for this book, and is the only method I used
in examples in the book. However, if you must still support IE6 and you’re not using
one of the JavaScript libraries, you’ll need to use the following cross-browser code:

if (window.XMLHttpRequest) {
 xmlHttp = new XMLHttpRequest();
} else if (window.ActiveXObject) {
 xmlHttp = new ActiveXObject("Microsoft.XMLHTTP");
}

Discussion
Microsoft invented the XMLHttpRequest object as an ActiveX object. However, the
XMLHttpRequest object that we know and primarily use today, even in newer versions
of IE, evolved independently. There’s now an effort underway to standardize the object
within the W3C.

The XMLHttpRequest object isn’t very complicated. Here are the supported client appli-
cation methods, which are explored in more depth in the other recipes in this chapter:

open
Initializes a request. Parameters include the method (GET or POST), the request
URL, whether the request is asynchronous, and a possible username and password.
By default, all requests are sent asynchronously.

setRequestHeader
Sets the MIME type of the request.

send
Sends the request.

sendAsBinary
Sends binary data.

abort
Aborts an already sent request.

getResponseHeader
Retrieves the header text, or null if the response hasn’t been returned yet or there
is no header.

414 | Chapter 18: Communication

getAllResponseHeaders
Retrieves the header text for a multipart request.

All of our target browsers support the methods just listed. There’s also an additional,
frequently used method, overrideMimeType, not included in the list. I didn’t include it
because it’s not part of the XMLHttpRequest standardization process, and one browser
company doesn’t support it (Microsoft).

The overrideMimeType method is normally used to override the MIME type of the server
response., As an example, the following overrides whatever the server’s response is,
and the returned resource is treated as XML:

xmlhttp.overrideMimeType('text/xml');

Lack of support for overrideMimeType is an inconvenience but not a showstopper. Either
we’ll need to process the data according to MIME type or ensure that our server ap-
plications set the proper content header for the data. For instance, if we want to ensure
that our client application receives data as XML, we can use the following in a PHP
application:

header("Content-Type: text/xml; charset=utf-8");

There are also a number of properties supported by all browsers:

status
The HTTP result status of the request response.

statusText
The response text returned from the server.

readyState
The state of the request.

responseText
The text-based response to the request.

responseXML
The response to the request as an XML-based DOM object.

There are other properties, some proprietary and some not, but these are the ones we’re
concerned with in this book.

A major restriction associated with the XMLHttpRequest object is the same-origin security
restriction. This means that you can’t use XMLHttpRequest to make a service request to
an API in another domain.

See Also
Recipe 18.7 provides a solution and a discussion related to the same-origin restriction
with XMLHttpRequest. The W3C XMLHttpRequest draft specification can be found at http:
//www.w3.org/TR/XMLHttpRequest/.

18.1 Accessing the XMLHttpRequest Object | 415

http://www.w3.org/TR/XMLHttpRequest/
http://www.w3.org/TR/XMLHttpRequest/

18.2 Preparing the Data for Transmission
Problem
You want to process form data for an Ajax call rather than send the data via the usual
form submit process.

Solution
Access the data from form fields or other page elements:

var state = document.getElementById("state").value;

If the data is user-supplied, such as the data from a text field, encode the result using
the encodeURIComponent function, so any characters in the text that could impact on the
Ajax call are escaped:

var state = encodeURIComponent(document.getElementById("state").value);

You shouldn’t need to escape data from radio buttons, checkboxes, selections, or any
other form element in which your application controls the data, as you can make sure
those values are in the proper format.

Discussion
Depending on the type of action, data for an Ajax call can come from user-supplied
text, such as that typed into a text field. When it is, you’ll need to ensure that the data
can be used in the Ajax request by escaping certain characters, such as an ampersand
(&), plus sign (+), and equal sign (=).

The following string:

This is $value3 @value &and ** ++ another

Is encoded as:

This%20is%20%24value3%20%40value%20%26and%20**%20%2B%2B%20another

The spaces are escaped as %20, the dollar sign as %24, the ampersand as %26, and the
plus sign as %2B, but the alphanumeric characters and the reserved asterisk characters
are left alone.

Once escaped, the data can be attached as part of an Ajax request. If the Ajax request
is going to be a POST rather than a GET request, further encoding is needed—the
spaces should be encoded as pluses. Replace the %20 with +, following the call to
encodeURIComponent. You can package this functionality for reuse:

function postEncodeURIComponent(str) {
 str=encodeURIComponent(str);
 return str.replace(/%20/g,"+");
}

416 | Chapter 18: Communication

The escaping ensures that the Ajax request will be successfully communicated, but it
doesn’t ensure that the Ajax request is safe. All data input by unknown persons should
always be scrubbed to prevent SQL injection or cross-site scripting (XSS) attacks.
However, this type of security should be implemented in the server-side application,
because if people can put together a GET request in JavaScript, they can put together
a GET request directly in a browser’s location bar and bypass the script altogether. The
only time you need to scrub the input in JavaScript is if you’re planning on embedding
a user’s data directly back into the page.

18.3 Determining the Type of Query Call
Problem
You’re not sure whether to send your Ajax call as a GET or a POST.

Solution
For an update, send a POST request. Set the first parameter in the XMLHttpRequest open
method to POST, call the setRequestHeader to set the content-type, and send the request
parameters in the send method:

xmlhttp.open('POST',url,true);
xmlhttp.setRequestHeader("Content-Type",
"application/x-www-form-urlencoded");
xmlhttp.send(param);

For a query, send a GET request. The first parameter in the XMLHttpRequest open meth-
od is set to GET, the parameters are appended on to the URL for the request, and
null is passed as parameter in the send method:

url = url + "?" + param;
xmlhttp.open('GET',url,true);
xmlhttp.send(null);

Discussion
What the server component of the application is expecting has the most impact on your
request type decision. However, accepted practice is that a request for data should be
made with a GET, while an update should occur through a POST.

The request type practice used in Ajax is derived from RESTful guidelines (REST trans-
lates as REpresentational State Transfer). According to the guidelines, there are four
types of HTTP requests:

GET
Used for retrieving information, with parameters attached to the URL.

POST
Used for creating new data, and parameters are sent via function parameter.

18.3 Determining the Type of Query Call | 417

DELETE
Used for deleting data records, and parameters are sent via function parameter.

PUT
Used to send an update, and parameters are sent via function parameter.

There is broad support only for the GET and POST requests at this time, so I’ll focus
on these two.

A GET HTTP request is used to retrieve information, and the parameters are attached
to the URL in the request. A function that processes a GET request could look like the
following, which passes two parameters with the request:

function sendData(evt) {

 // cancel default form submittal
 evt = evt || window.event;
 evt.preventDefault();
 evt.returnValue = false;

 // get input data
 var one = encodeURIComponent(document.getElementById("one").value);
 var two = encodeURIComponent(document.getElementById("two").value);
 var params = "one=" + one + "&two=" + two;

 // prep request
 if (!http) {
 http = new XMLHttpRequest();
 }
 var url = "ajaxserver.php?" + params;
 http.open("GET", url, true)

 // callback function
 http.onreadystatechange=processResult;

 // make Ajax call with params
 http.send(null);
}

In the code snippet, two parameters are passed with the request. First, they’re escaped,
using encodeURIComponent. Next, they’re attached to the URL using RESTful GET
notation:

http://somecompany.com?param=value¶m2=value2

The parameters for the XMLHttpRequest open method are:

GET
A GET request

url
The URL for the service

true
Whether the operation is performed asynchronously

418 | Chapter 18: Communication

The optional third asynchronous parameter should always be set to true, or the page
blocks until the server request returns. This is not a cool thing to do to your page readers.

There are two other optional parameters not shown: username and password. If the
application is protected on the server side, the username and password can be used for
authentication.

A POST request with two parameters would look like the following:

function sendData(evt) {

 // cancel default form submittal
 evt = evt || window.event;
 evt.preventDefault();
 evt.returnValue = false;

 // get input data
 var one = encodeURIComponent(document.getElementById("one").value).
 replace(/%20/g,'+');
 var two = encodeURIComponent(document.getElementById("two").value).
 replace(/%20/g,'+');
 var params = "one=" + one + "&two=" + two;

 // prep request
 if (!http) {
 http = new XMLHttpRequest();
 }
 var url = "ajaxserver.php";
 http.open("POST", url, true)

 // set up Ajax headers
 http.setRequestHeader("Content-Type",
 "application/x-www-form-urlencoded");
 http.setRequestHeader("Content-length", params.length);
 http.setRequestHeader("Connection", "close");

 // callback function
 http.onreadystatechange=processResult;

 // make Ajax call with params
 http.send(params);
}

This code differs from the code for the GET request in several ways. The first is that
after encoding, the spaces in the parameters are converted from %20 to +. The second
is they’re concatenated into a parameter-formatted string, which is sent within the
send method.

The first parameter of the open method is set to POST, but the other two parameters are
the same as those sent with the GET request: the application URL and the asynchronous
flag.

Additional calls are made to the setRequestHeader method, to set Connection and
Content-length request headers. You can use it to send any HTTP request header, but

18.3 Determining the Type of Query Call | 419

you must provide the Content-Type for the POST—in this case, a multipart form re-
quest.

Both of the request approaches set the callback function for the Ajax object call’s
onreadystatechange event handler.

See Also
Recipe 18.1 covers how to get the XMLHttpRequest object, and Recipe 18.2 covers how
to encode parameters.

18.4 Adding a Callback Function to an Ajax Request
Problem
You want to process the result of an Ajax request, even if the result does an update
rather than a query.

Solution
When processing the Ajax request, before calling the XMLHttpRequest object’s send
method, assign the object’s onreadystatechange property to the callback function’s
name:

xmlhttp.open("GET", url, true);
xmlhttp.onreadystatechange=callbackFunction;
xmlhttp.send(null);

Discussion
The readyState attribute for the XMLHttpRequest object is updated based on the state of
the request. In order to check the state of the request, you need to assign the
onreadystatechange event handler to a callback function that is called every time the
ready state changes.

You should use onreadystatechange with every Ajax call, even one in which you’re
doing an update rather than processing a request. Without the callback function, you
have no way of knowing if the update operation was successful, and if not, what kind
of error occurred.

The readyState property has the values shown in Table 18-1 during the Ajax request.

Table 18-1. Values of XMLHttpRequest readyState property

Value STATE Purpose

0 UNINITIALIZED open has not been called yet

1 LOADING send has not been called yet

2 LOADED send has been called

420 | Chapter 18: Communication

Value STATE Purpose

3 INTERACTIVE Downloading response is not completed

4 COMPLETED Request is complete

You should not set onreadystatechange if your request is synchronous, because the code
won’t continue until the request returns anyway—you can check the result of the op-
eration in the very next line of the code, if you’re so inclined.

I can’t stress strongly enough: please avoid synchronous Ajax calls.
Locking the page up until the request finishes is just not a good thing.

See Also
Recipe 18.5 covers how to check the status and results of an Ajax request.

18.5 Checking for an Error Condition
Problem
You want to check the status of the Ajax request.

Solution
In addition to checking the readyState property in the onreadystatechange event han-
dler, you can also check the XMLHttpRequest’s status:

function processResult() {
 if (http.readyState == 4 && http.status == 200) {
 document.getElementById("result").innerHTML=http.responseText;
 }
}

Discussion
The XMLHttpRequest’s status property is where the response to the request is returned.
You hope for a value of 200, which means the request is successful. If the request is
something else, such as 403 (forbidden) or 500 (server error), you can access the
XMLHttpRequest’s statusText property to get more detailed information:

function processResult() {
 if (http.readyState == 4 && http.status == 200) {
 document.getElementById("result").innerHTML=http.responseText;
 } else {
 alert(http.statusText);

18.5 Checking for an Error Condition | 421

 }
}

18.6 Processing a Text Result
Problem
You want to process HTML returned as text.

Solution
If you trust the server application, and the text is formatted to use immediately in the
page, the simplest approach is to assign the text to the innerHTML property of the element
where it should be placed:

function processResult() {
 if (http.readyState == 4 && http.status == 200) {
 document.getElementById("result").innerHTML=http.responseText;
 }
}

Discussion
If you’re writing both the server and client sides of the application, why make it hard
on yourself? Format the response in the server application in such a way that it can be
added into the web page using the easiest possible approach, and nothing is easier than
innerHTML.

However, if the response text isn’t formatted for immediate publication, you’ll have to
use String functions, possibly in combination with regular expressions, to extract the
data you need. If HTML formatting isn’t possible or desirable, and you have any control
of the server application, try to format it either as XML or JSON, both of which can be
more easily supported in the JavaScript environment.

See Also
See Recipe 19.1 for extracting information from an XML response. See Recipe 19.4 and
Recipe 19.5 for converting JSON formatted text into a JavaScript object. See Rec-
ipe 12.1 for an introduction to innerHTML.

18.7 Making an Ajax Request to Another Domain (Using JSONP)
Problem
You want to query for data using a web service API, such as the Netflix API or Twitter’s
API. However, the Ajax same-origin policy prevents cross-domain communication.

422 | Chapter 18: Communication

Solution
The most commonly used technique to solve the cross-domain problem, and the ap-
proach I recommend, is to create a server-side proxy application that is called in the
Ajax application. The proxy then makes the call to the other service’s API, returning
the result to the client application. This is safe, secure, and very efficient, because we
can clean the data before returning it to the Ajax application.

There is another approach: use JSONP (JSON, or JavaScript Object Notation, with
Padding) to workaround the security issues. I once used this approach to create a
mashup between Google Maps and a Flickr query result:

function addScript(url) {
 var script = document.createElement('script');
 script.type="text/javascript";
 script.src = url;
 document.getElementsByTagName('head')[0].appendChild(script);

The URL looked like the following, including a request to return the data formatted as
JSON, and providing a callback function name:

http://api.flickr.com/services/rest/?method=flickr.photos.search&user_id=xxx&api_ke
y=xxx&format=json&
jsoncallback=processPhotos

When the script tag is created, the request to Flickr is made, and since I passed in the
request for a JSON formatted result and provided a callback function name, that’s how
the return was provided. The callback string is similar to the following:

// assign photos globally, call first to load
function processPhotos(obj) {
 photos = obj.photos.photo;
 ...
}

The callback function would pass the data formatted as a JSON object in the function
argument.

Discussion
Ajax works within a protected environment that ensures we don’t end up embedding
dangerous text or code into a web page because of a call to an external application
(which may or may not be secure).

The downside to this security is that we can’t directly access services to external APIs,
such Flickr, Twitter, and Google. Instead, we need to create a server-side proxy appli-
cation, because server applications don’t face the cross-domain restriction.

The workaround is to use something like JSONP, demonstrated in the solution. Instead
of using XMLHttpRequest, we convert the request URL into one that we can attach to a
script’s src attribute, because the script element does not follow the same-origin

18.7 Making an Ajax Request to Another Domain (Using JSONP) | 423

policy. It couldn’t, or we wouldn’t be able to embed applications such as Google Maps
into the application.

If the service is amenable, it returns the data formatted as JSON, even wrapping it in a
callback function. When the script is created, it’s no different than if the function call
is made directly in our code, and we’ve passed an object as a parameter. We don’t even
have to worry about converting the string to a JavaScript object.

It’s a clever trick, but I don’t recommend it. Even with secure services such as Flickr
and Twitter, there is the remote possibility that someone could find a way to inject
JavaScript into the data via the client-side application for the service, which can cause
havoc in our own applications.

It’s better to be smart then clever. Use a proxy application, scrub the result, and then
pass it on to your client application.

See Also
Chapter 19 covers JSON in more detail.

18.8 Populating a Selection List from the Server
Problem
Based on a user’s actions with another form element, you want to populate a selection
list with values.

Solution
Capture the change event for the trigger form element:

document.getElementById("nicething").onchange=populateSelect;

In the event handler function, make an Ajax call with the form data:

var url = "nicething.php?nicething=" + value;
xmlhttp.open('GET', url, true);
xmlhttp.onreadystatechange = getThings;
xmlhttp.send(null);

In the Ajax result function, populate the selection list:

 if(xmlhttp.readyState == 4 && xmlhttp.status == 200) {
 var select = document.getElementById("nicestuff");
 select.length=0;
 var nicethings = xmlhttp.responseText.split(",");
 for (var i = 0; i < nicethings.length; i++) {
 select.options[select.length] =
new Option(nicethings[i],nicethings[i]);
 }
 select.style.display="block";
 } else if (xmlhttp.readyState == 4 && xmlhttp.status != 200) {

424 | Chapter 18: Communication

 document.getElementById('nicestuff').innerHTML =
'Error: Search Failed!';
 }

Discussion
One of the more common forms of Ajax is to populate a select or other form element
based on a choice made by the user. Rather than have to populate a select element
with many options, or build a set of 10 or 20 radio buttons, you can capture the user’s
choice in another form element, query a server application based on the value, and then
build the other form elements based on the value—all without leaving the page.

Example 18-1 demonstrates a simple page that captures the change event for radio
buttons within a fieldset element, makes an Ajax query with the value of the selected
radio button, and populates a selection list by parsing the returned option list. A comma
separates each of the option items, and new options are created with the returned text
having both an option label and option value. Before populating the select element,
its length is set to 0. This is a quick and easy way to truncate the select element—
removing all existing options, and starting fresh.

Example 18-1. Creating an on-demand select Ajax application

<!DOCTYPE html>
<head>
<title>On Demand Select</title>
<style>
#nicestuff
{
 display: none;
 margin: 10px 0;
}
#nicething
{
 width: 400px;
}
</style>
<script>

var xmlhttp;

function populateSelect() {

 var value;

 var inputs = this.getElementsByTagName('input');
 for (var i = 0; i < inputs.length; i++) {
 if (inputs[i].checked) {
 value = inputs[i].value;
 break;
 }
 }

 // prepare request

18.8 Populating a Selection List from the Server | 425

 if (!xmlhttp) {
 xmlhttp = new XMLHttpRequest();
 }
 var url = "nicething.php?nicething=" + value;
 xmlhttp.open('GET', url, true);
 xmlhttp.onreadystatechange = getThings;
 xmlhttp.send(null);
}
// process return
function getThings() {
 if(xmlhttp.readyState == 4 && xmlhttp.status == 200) {
 var select = document.getElementById("nicestuff");
 select.length=0;
 var nicethings = xmlhttp.responseText.split(",");
 for (var i = 0; i < nicethings.length; i++) {
 select.options[select.length] = new Option(nicethings[i],
nicethings[i]);
 }
 select.style.display="block";
 } else if (xmlhttp.readyState == 4 && xmlhttp.status != 200) {
 alert("No items returned for request");
 }
}

window.onload=function() {

 document.getElementById("submitbutton").style.display="none";
 document.getElementById("nicething").onclick=populateSelect;
}

</script>

</head>
<body>
<form action="backupprogram.php" method="get">
<p>Select one:</p>
<fieldset id="nicething">
<input type="radio" name="nicethings" value="bird" /><label
for="bird">Birds</label>

<input type="radio" name="nicethings" value="flower" /><label
for="flower">Flowers</label>

<input type="radio" name="nicethings" value="sweets" /><label
for="sweets">Sweets</label>

<input type="radio" name="nicethings" value="cuddles" />
<label for="cuddles">Cute Critters</label>
</fieldset>
<input type="submit" id="submitbutton" value="get nice things" />
<select id="nicestuff"></select>
</body>

The form does have an assigned action page, and a submit button that’s hidden when
the script is first run. These are the backup if scripting is turned off.

426 | Chapter 18: Communication

18.9 Using a Timer to Automatically Update the Page with
Fresh Data
Problem
You want to display entries from a file, but the file is updated frequently.

Solution
Use Ajax and a timer to periodically check the file for new values and update the display
accordingly.

The Ajax we use is no different than any other Ajax request. We’ll use a GET, because
we’re retrieving data. We put together the request, attach a function to the
onreadystatechange event handler, and send the request:

var url = "updatedtextfile.txt";
xmlhttp.open("GET", url, true);
xmlhttp.onreadystatechange=updateList;
xmlhttp.send(null);

The fact that we’re doing a direct request on a static text file might be new, but re-
member that a GET request is more or less the same as the requests we put into the
location bar of our browsers. If something works in the browser, it should successfully
return in an Ajax GET request...within reason.

In the code that processes the response, we just place the new text into a new unordered
list item and append it to an existing ul element:

// process return
function processResponse() {
 if(xmlhttp.readyState == 4 && xmlhttp.status == 200) {
 var li = document.createElement("li");
 var txt = document.createTextNode(xmlhttp.responseText);
 li.appendChild(txt);
 document.getElementById("update").appendChild(li);
 } else if (xmlhttp.readyState == 4 && xmlhttp.status != 200) {
 alert(xmlhttp.responseText);
 }
}

The new part is the timer. The timer is controlled with start and stop buttons. When
the start button is clicked the first time, the code disables the start button first, initiates
the first Ajax call, and then starts a timer. There’s a reason for this, as we’ll see in a
second:

// timer
function startTimer() {
 populateList();
 timer=setTimeout(timerEvent,15000);
}

18.9 Using a Timer to Automatically Update the Page with Fresh Data | 427

The reason we want to make the Ajax call first is that the timer function timerEvent
checks the readyState of the XMLHttpRequest object when it’s invoked. If the value is
not 4, which means the last request was completed, it doesn’t make another Ajax call.
We don’t want to have multiple requests out at the same time:

function timerEvent() {
 if (xmlhttp.readyState == 4) {
 populateList();
 }
 timer=setTimeout(timerEvent, 15000);
}

Lastly, we’ll add a cancel timer event. In this case we’re using a global timer variable,
but in a production application we want to use either an anonymous function to wrap
everything, or create an object literal to maintain both data and methods:

function stopTimer() {
 clearTimeout(timer);
}

Discussion
The key to using timers with Ajax calls is to make sure that the last call is completed
before making the next. By including a check on the XMLHttpRequest object’s ready
State property, if the value isn’t 4, we know to skip this Ajax call and just reset the
timer for the next go round. We can also put in a check for the request status, and
cancel the timer event altogether if we’re concerned about hitting a failing service, over
and over again.

When I ran the application that included the solution code, I changed the text file by
using the Unix echo command:

$ echo "This is working" > text.txt

And then watched as the text showed up on the page, as shown in Figure 18-1.

If you’re planning on using this form of polling with another service, such as against
the Twitter API, be aware that if you’re considered abusive of the service, you may get
kicked off. Check to see if there are restrictions for how often you can access a service
using the API.

Depending on the browser, you may run into caching issues if you access
the text.txt file locally. Providing a full URL should prevent this from
occurring.

A few years ago, there was interest in a push rather than pull type of Ajax communi-
cation. Encompassed under the coined term of Comet, the concept was that the server
would initiate the communication and push the data to the client, rather than the client
pulling the data from the server. Eventually, the concept led to work in the W3C on a

428 | Chapter 18: Communication

new JavaScript API called WebSockets. Currently only implemented in Chrome, Web-
Sockets enables bidirectional communication between server and client by using the
send method on the WebSocket object for communicating to the server, and then at-
taching a function to WebSocket’s onmessage event handler to get messages back from
the server, as demonstrated in the following code from the Chromium Blog:

 if ("WebSocket" in window) {
 var ws = new WebSocket("ws://example.com/service");
 ws.onopen = function() {
 // Web Socket is connected. You can send data by send() method.
 ws.send("message to send");
 };
 ws.onmessage = function (evt) { var received_msg = evt.data; ... };
 ws.onclose = function() { // websocket is closed. };
} else {
 // the browser doesn't support WebSocket.
}

Another approach is a concept known as long polling. In long polling, we initiate an
Ajax request as we do now, but the server doesn’t respond right away. Instead, it holds
the connection open and does not respond until it has the requested data, or until a
waiting time is exceeded.

See Also
See Recipe 14.8 for a demonstration of using this same functionality with an ARIA live
region to ensure the application is accessible for those using screen readers. The W3C
WebSockets API specification is located at http://dev.w3.org/html5/websockets/, and the

Figure 18-1. Demonstration of updates from polled Ajax calls

18.9 Using a Timer to Automatically Update the Page with Fresh Data | 429

http://dev.w3.org/html5/websockets/

Chrome introduction of support for WebSockets is at http://blog.chromium.org/2009/
12/web-sockets-now-available-in-google.html.

18.10 Communicating Across Windows with PostMessage
Problem
Your application needs to communicate with a widget that’s located in an iFrame.
However, you don’t want to have to send the communication through the network.

Solution
Use the new HTML5 postMessage to enable back-and-forth communication with the
iFrame widget, bypassing network communication altogether.

One or both windows can add an event listener for the new message event. To ensure
the event handling works with IE as well as Opera, Firefox, Safari, and Chrome, using
object detection:

function manageEvent(eventObj, event, eventHandler) {
 if (eventObj.addEventListener) {
 eventObj.addEventListener(event, eventHandler,false);
 } else if (eventObj.attachEvent) {
 event = "on" + event;
 eventObj.attachEvent(event, eventHandler);
 }
}

The sender window that has the iFrame prepares and posts the message to the widget
window:

function sendMessage() {
 try {
 var farAwayWindow =
document.getElementById("widgetId").contentWindow;
 farAwayWindow.postMessage(
"dragonfly6.thumbnail.jpg,Dragonfly on flower",
 'http://burningbird.net');
 } catch (e) {
 alert(e);
 }
};

Two parameters are required for the HTML5 implementation of postMessage: the first
is the message string; the second is the target window’s origin. If the iFrame window’s
source is something like http://somecompany.com/test/testwindow.html, then the
target origin would be http://somecompany.com. You could also use “*” for the target
origin. This is a wildcard, which means the value will match to any origin.

In the receiving window, an event listener picks up the message and responds accord-
ingly. In this example, the string is split on the comma (,); the first part of the string is

430 | Chapter 18: Communication

http://blog.chromium.org/2009/12/web-sockets-now-available-in-google.html
http://blog.chromium.org/2009/12/web-sockets-now-available-in-google.html

assigned the image element’s src property, and the second is assigned the image ele-
ment’s alt property:

function receive(e) {

 var img = document.getElementById("image");
 img.src = e.data.split(",")[0];
 img.alt = e.data.split(",")[1];

 e.source.postMessage("Received " + e.data, "*");
}

In the code, the widget window responds with a postMessage of its own, but uses the
wildcard origin. The widget window also doesn’t check to see what domain sent the
message. But when it responds, the host window checks origin:

function receive(e) {
 if (e.origin == "http://burningbird.net")
 ... does something with response message
}

Discussion
The postMessage functionality is based on listener/sender functionality. Exam-
ple 18-2 contains an example sender page. It contains an iFrame in which a requested
image is displayed when the cross-document communication finishes. When you click
on the web page, a message is posted to the listener to parse the message, find the name
for a photograph, and add the photograph to an img element in the page.

Example 18-2. Sender page

<!DOCTYPE html>
<head>
<title>Sender</title>
<script>

function manageEvent(eventObj, event, eventHandler) {
 if (eventObj.addEventListener) {
 eventObj.addEventListener(event, eventHandler,false);
 } else if (eventObj.attachEvent) {
 event = "on" + event;
 eventObj.attachEvent(event, eventHandler);
 }
}

window.onload=function() {

 manageEvent(document.getElementById("button1"),"click",sendMessage);
 manageEvent(window,"message",receive);

}

// make sure to change URL to your location
function sendMessage() {

18.10 Communicating Across Windows with PostMessage | 431

 try {
 var farAwayWindow =
document.getElementById("widgetId").contentWindow;
 farAwayWindow.postMessage(
"dragonfly6.thumbnail.jpg,Dragonfly on flower",
 'http://jscb.burningbird.net');
 } catch (e) {
 alert(e);
 }
};

// change URL to your location
function receive(e) {
 if (e.origin == "http://jscb.burningbird.net")
 alert(e.data);
}
</script>

</head>
<body>
<div><button id="button1">Load the photo</button></div>
<iframe src="example18-3.html" id="widgetId"></iframe>
</body>

Example 18-3 contains the listener page.

Example 18-3. Listener page

<!DOCTYPE html>
<head>
<title>Listener</title>
<script>

function manageEvent(eventObj, event, eventHandler) {
 if (eventObj.addEventListener) {
 eventObj.addEventListener(event, eventHandler,false);
 } else if (eventObj.attachEvent) {
 event = "on" + event;
 eventObj.attachEvent(event, eventHandler);
 }
}

window.onload=function() {

 manageEvent(window,"message",receive);

}

function receive(e) {

 var img = document.getElementById("image");
 img.src = e.data.split(",")[0];
 img.alt = e.data.split(",")[1];

 e.source.postMessage("Received " + e.data,

432 | Chapter 18: Communication

"http://burningbird.net");
}
</script>

</head>
<body>

</body>

Figure 18-2 shows the page after the successful communication.

Figure 18-2. Result of postMessage communication and loading an image

The new postMessage will soon be joined by a message channel capability, and both are
attuned to use with widgets. This capability enables a higher level of interactivity be-
tween the hosting window and the widget that wasn’t possible before, either because
of network activity or because of same-origin security restrictions.

The loosening of security restrictions is also a risk associated with postMessage. We can
help mitigate the risk by following some simple rules:

• Use the targetOrigin rather than the wildcard (*) when posting a message.

• Use the origin value in the return message object to ensure the sender is the ex-
pected agent.

• Check and double-check message data received. Needless to say, don’t pass it to
eval, and avoid plunking the data directly into a page using innerHTML.

Companies providing widgets can also add a layer of security. For instance, when a
person downloads a widget, he also registers the domain where the widget is used. This
is the same functionality that Google uses when you use the Google Maps API: you
register the domain where the map API is used, and if the domain differs, the API doesn’t
work.

18.10 Communicating Across Windows with PostMessage | 433

The widget company can use this to check the message’s origin, and also use this in-
formation when sending any postMessage response. In addition, the widget company
can use whatever precaution necessary with the sent data and respond in kind.

434 | Chapter 18: Communication

CHAPTER 19

Working with Structured Data

19.0 Introduction
Even though it’s primarily a client-side development tool, JavaScript has access to sev-
eral very sophisticated techniques and mechanisms for working with structured data.

Originally, most complex data management, particularly in relation to Ajax calls, was
based either in HTML fragments or XML. HTML fragments are still popular. When
returned from an Ajax request, the HTML formatted string can be used with
innerHTML in order to easily append the HTML into the page. Of course, you have to
trust the data you receive, and you can’t manipulate it until you actually insert the data
into the page. Either that, or use various String functions to parse pieces out of the
HTML string.

Data returned as XML is a richer option, because you can use the string to create a
separate document object, from which you can access individual elements, just like you
query the web page document now.

XML data is still widely supported, but another structure has gained a great deal of
popularity: JavaScript Object Notation, or JSON. It’s so popular that JSON has been
added to the most recent version of JavaScript, ECMAScript 5. JSON provides the
richness of XML but without the performance hit client-side processing of XML can
add.

JSON is basically the string serialization of JavaScript objects. Before ECMAScript 5,
you had to use the eval function to convert the string to an object . Unfortunately, using
the eval function on an unknown string is an application-security vulnerability. To
ensure the string was safe, the originator of JSON, Douglas Crockford, created a library
to process the JSON safely. The same functionality is now built into JavaScript.

Support for complex data extends beyond what is built into JavaScript. There are mul-
tiple approaches for annotating the web page elements with metadata that can be
accessed within the page and without. Two metadata approaches, RDFa and

435

Microformats, have widespread support, including specialized JavaScript libraries. I’ll
be touching on these later in the chapter.

19.1 Process an XML Document Returned from an Ajax Call
Problem
You need to prepare your Ajax application to deal with data returned formatted as
XML.

Solution
Access the returned XML via the responseXML property on the XMLHttpRequest object:

if (xmlHttpObj.readyState == 4 && xmlHttpObj.status == 200) {
 var citynodes = xmlHttpObj.responseXML.getElementsByTagName("city");
 ...
}

Discussion
When an Ajax request returns XML, it can be accessed as a document object via the
XMLHttpRequest object’s responseXML property. You can then use the query techniques
covered in earlier chapters, such as Chapter 11, to access any of the data in the returned
XML.

If the server-side application is returning XML, it’s important that it return a MIME
type of text/xml, or the responseXML property will be null. If you’re unsure whether the
API returns the proper MIME type, or if you have no control over the API, you can
override the MIME type when you access the XMLHttpRequest object:

if (window.XMLHttpRequest) {
 xmlHttpObj = new XMLHttpRequest();
 if (xmlHttpObj.overrideMimeType) {
 xmlHttpObj.overrideMimeType('text/xml');
 }
}

The overrideMimeType is not supported with IE, nor is it supported in the first draft for
the W3C XMLHttpRequest specification. If you want to use responseXML, either change
the server-side application so that it supports the text/xml MIME type, or convert the
text into XML using the following cross-browser technique:

if (window.DOMParser) {
 parser=new DOMParser();
 xmlResult = parser.parserFromString(xmlHttpObj.responseText,
 "text/xml");
} else {
 xmlResult = new ActiveXObject("Microsoft.XMLDOM");
 xmlResult.async = "false"
 xmlResult.loadXML(xmlHttpObj.responseText);

436 | Chapter 19: Working with Structured Data

}
var stories = xmlResult.getElementsByTagName("story");

Parsing XML in this way adds another level of processing. It’s better, if possible, to
return the data formatted as XML from the service.

See Also
The W3C specification for XMLHttpRequest can be found at http://www.w3.org/TR/
XMLHttpRequest/.

19.2 Extracting Pertinent Information from an XML Tree
Problem
You want to access individual pieces of data from an XML document.

Solution
Use the same DOM methods you use to query your web page elements to query the
XML document. As an example, the following will get all elements that have a tag name
of "story":

var stories = xmlHttpObj.responseXML.getElementsByTagName("story");

Discussion
Once you have the XML document, you can use the DOM methods covered in Chap-
ter 11 to query any of the data in the document via the Ajax responseXML property, or
even one that you’ve created yourself from scratch.

To demonstrate, Example 19-1 shows a PHP application that returns an XML result
when passed a category value. The application returns a list of stories by category, and
their associated URL. If the category string isn’t passed or the category isn’t found, the
application returns an error message that’s formatted in the same formatting as the
other values, except that the URL value is set to “none”. This ensures a consistent result
from the application.

It’s not a complicated application or a complex XML result, but it’s sufficient to dem-
onstrate how XML querying works. Notice that the header is instructed to return the
content with a MIME type of text/xml.

Example 19-1. PHP application that returns an XML result

<?php

 //If no search string is passed, then we can't search
 if(empty($_GET['category'])) {
 $result =
"<story><url>none</url><title>No Category Sent</title></story>";

19.2 Extracting Pertinent Information from an XML Tree | 437

http://www.w3.org/TR/XMLHttpRequest/
http://www.w3.org/TR/XMLHttpRequest/

 } else {
 //Remove whitespace from beginning & end of passed search.
 $search = trim($_GET['category']);
 switch($search) {
 case "CSS" :
 $result = "<story><url>
http://realtech.burningbird.net/graphics/css/opacity-returns-ie8
</url>" .
 "<title>Opacity returns to IE8</title></story>" .
 "<story>
<url>
http://realtech.burningbird.net/graphics/css/embedded-fonts-font-face
</url>" .
 "<title>Embedded Fonts with Font Face</title>
</story>";
 break;
 case "ebooks" :
 $result = "<story><url>
http://realtech.burningbird.net/web/ebooks/kindle-clipping-limits
</url>" .
 "<title>Kindle Clipping Limits</title></story>" .
 "<story><url>
http://realtech.burningbird.net/web/ebooks/kindle-and-book-freebies
</url>" .
 "<title>Kindle and Book Freebies</title></story>";
 break;
 case "video" :
 $result = "<story><url>
http://secretofsignals.burningbird.net/science/how-things-work/
video-online-crap-shoot</url>" .
 "<title>The Video Online Crap Shoot</title>
</story>" .
 "<story>
<url>http://secretofsignals.burningbird.net/toys-and-technologies/
gadgets/review-flip-ultra-camcorder</url>" .
 "<title>Review of the Flip Ultra Camcorder</title>
</story>" .
 "<story><url>
http://secretofsignals.burningbird.net/reviews/movies-disc/gojira

</url>" .
 "<title>Gojira</title></story>" .
 "<story><url>
http://secretofsignals.burningbird.net/reviews/movies-disc/
its-raging-squid</url>" .
 "<title>It's a Raging Squid</title></story>";
 break;
 case "missouri" :
 $result =
"<story><url>http://missourigreen.burningbird.net/times-past/
missouri/tyson-valley-lone-elk-and-bomb</url>" .
 "<title>Tyson Valley, a Lone Elk, and a Bomb</title>
</story>";
 break;
 default :

438 | Chapter 19: Working with Structured Data

 $result = "<story><url>none</url><title>No Stories Found</title></story>";
 break;
 }
 }

 $result ='<?xml version="1.0" encoding="UTF-8" ?>' .
 "<stories>" . $result . "</stories>";
 header("Content-Type: text/xml; charset=utf-8");
 echo $result;
?>

Example 19-2 shows a web page with a JavaScript application that processes a radio
button selection for a story category. The application forms an Ajax request based on
the category, and then processes the returned XML in order to output a list of stories,
linked with their URLs.

Example 19-2. JavaScript application to process story information from returned XML

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Stories</title>
<meta charset="utf-8" />
<script type="text/javascript">
//<![CDATA[

var xmlHttpObj;

window.onload=function() {
 var radios = document.forms[0].elements["category"];
 for (var i = 0; i < radios.length; i++) {
 radios[i].onclick=getStories;
 }
}

function getStories() {
 // category
 var category = encodeURIComponent(this.value);

 // ajax object
 if (window.XMLHttpRequest) {
 xmlHttpObj = new XMLHttpRequest();
 }

 // build request
 var url = "stories.php?category=" + category;
 xmlHttpObj.open('GET', url, true);
 xmlHttpObj.onreadystatechange = getData;
 xmlHttpObj.send(null);

}
function getData() {
 if (xmlHttpObj.readyState == 4 && xmlHttpObj.status == 200) {
 try {

19.2 Extracting Pertinent Information from an XML Tree | 439

 var result = document.getElementById("result");
 var str = "<p>";

 var stories =
xmlHttpObj.responseXML.getElementsByTagName("story");
 for (var i = 0; i < stories.length; i++) {
 var story = stories[i];
 var url = story.childNodes[0].firstChild.nodeValue;
 var title = story.childNodes[1].firstChild.nodeValue;
 if (url === "none")
 str += title + "
";
 else
 str += "" + title + "
";
 }

 // finish HTML and insert
 str+="</p>";
 result.innerHTML=str;
 } catch (e) {
 alert(e.message);
 }
 }
}
//]]>
</script>
</head>
<body>
<form id="categoryform">
CSS: <input type="radio" name="category" value="CSS" />

eBooks: <input type="radio" name="category" value="ebooks" />

Missouri: <input type="radio" name="category" value="missouri" />

Video: <input type="radio" name="category" value="video" />

</form>
<div id="result">
</div>
</body>
</html>

When processing the XML code, the application first queries for all story elements,
which returns a nodeList. The application cycles through the collection, accessing each
story element in order to access the story URL and the title, both of which are child
nodes. Each is accessed via the childNodes collection, and their data, contained in the
nodeValue attribute, is extracted.

The story data is used to build a string of linked story titles, which is output to the page,
as shown in Figure 19-1. Note that rather than use a succession of childNodes element
collections to walk the trees, I could have used the Selectors API to access all URLs and
titles, and then traversed both collections at one time, pulling the paired values from
each, in sequence:

var urls = xmlHttpObj.responseXML.querySelectorAll("story url");
var titles = xmlHttpObj.responseXML.querySelectorAll("story title");

440 | Chapter 19: Working with Structured Data

for (var i = 0; i < urls.length; i++) {
 var url = urls[i].firstChild.nodeValue;
 var title = titles[i].firstChild.nodeValue;
 if (url === "none")
 str += title + "
";
 else
 str += "" + title + "
";
 }
}

I could have also used getElementsByTagName against each returned story element—
anything that works with the web page works with the returned XML.

Figure 19-1. Processing XML: returning story titles and URLs from a server-side application

The try...catch error handling should catch any query that fails because the XML is
incomplete. In the example, the error is printed out in an alert—but you’ll want to use
friendlier and more helpful error handling.

The document returned in responseXML, or created using DOMParser, has
access to the XML DOM APIs, but not the HTML DOM APIs. For the
most part, this shouldn’t be a problem, as most of the functionality
you’ll use is based on the more generic XML DOM APIs.

See Also
Chapter 11 covers most of the DOM query techniques that work with the XML returned
via responseXML, as well as accessing the web page elements. Recipe 9.4 demonstrates
how to process radio button events, and Recipe 12.1 demonstrates how to use
innerHTML to update the web page contents.

19.2 Extracting Pertinent Information from an XML Tree | 441

Recipe 19.1 provides a way to process XML when it’s returned as text, via responseText.

19.3 Generate a JavaScript Object with JSON, Old-School Style
Problem
You need to convert the JSON text from an Ajax call into a JavaScript object.

Solution
Use the eval function to evaluate the string formatted as JSON, creating a JavaScript
object using the following syntax:

var jsonobj = '{"test" : "value1", "test2" : 3.44, "test3" : true}';
var obj = eval("(" + jsonobj + ")");
alert(obj.test2); // prints out 3.44

or the following:

var jsonobj = '{"test" : "value1", "test2" : 3.44, "test3" : true}';
eval("var obj="+jsonobj);
alert(obj.test);

Discussion
The solution presents a simple, three-property object created in JSON. To figure out
how to create JSON, think about how you create an object literal and just translate it
into a string.

If the object is an array:

var arr = new Array("one","two","three");

the JSON notation would be equivalent to the literal notation for the array:

"['one','two','three'];

If an object:

var obj3 = {
 prop1 : "test",
 result : true,
 num : 5.44,
 name : "Joe",
 cts : [45,62,13]};

the JSON notation would be:

{"prop1":"test","result":true,"num":5.44,"name":"Joe","cts":[45,62,13]}

Notice in JSON how the property names are in quotes, but the values are only quoted
when they’re strings. In addition, if the object contains other objects, such as an array,
it’s also transformed into its JSON equivalent. However, the object cannot contain
methods. If it does, an error is thrown. JSON works with data objects only.

442 | Chapter 19: Working with Structured Data

The two “old-school” techniques to generate objects from the JSON formatted string
use the eval method. The first assigns the object to a variable and requires that you
surround the JSON with parentheses:

var obj = eval ("(" + objJSON + ")");

The reason for the parentheses is so the eval statement treats the text as an object
initializer, rather than some other type of code.

The second approach is to include the variable assignment as the left side of the ex-
pression and the JSON as the right, within the eval method:

eval("obj=" + objJSON);

The result of the eval function is a JavaScript object, in which you can access values
directly:

alert(obj3.prop1); // prints out test

The use of JSON exploded with the growing popularity of Ajax. Rather than returning
plain text, HTML, or XML, applications could return a text string formatted as JSON,
and the text could be converted to a JavaScript object with one function call.

Of course, this meant that the JSON was inherently insecure. If you couldn’t trust in
the source of the string, you certainly couldn’t trust it to the eval method, which pro-
cesses whatever string is passed to it. To work around the insecurities of JSON, Douglas
Crockford, the father of JSON, created json2.js, a small library that provides a safe
version of eval. Once you include the library, you process the JSON using the following
syntax:

var obj = JSON.parse(objJSON);

Discover more variations of JSON syntax at http://www.json.org. The
site also includes a link to json2.js.

See Also
Until the built-in JSON capability is supported in all your site’s target browsers, you’ll
still need the old-school JSON techniques. However, using the json2.js library can em-
ulate a built-in JSON object, introduced in Recipe 19.5.

19.3 Generate a JavaScript Object with JSON, Old-School Style | 443

http://www.json.org

19.4 Parse a JSON Formatted String
Problem
You want to safely create a JavaScript object from JSON. You also want to replace the
numeric representation of true and false (0 and 1, respectively) with their Boolean
counterparts (false and true).

Solution
Parse the object with the new JSON built-in capability, added to browsers in ECMA-
Script 5. To transform the numeric values to their Boolean counterparts, create a
replacer function:

var jsonobj = '{"test" : "value1", "test2" : 3.44, "test3" : 0}';
var obj = JSON.parse(jsonobj, function (key, value) {
 if (typeof value == 'number') {
 if (value == 0)
 value = false;
 else if (value == 1) {
 value = true;
 }
 }
 return value;
 });

 alert(obj.test3); // prints false

Discussion
ECMAScript 5 added native support for JSON with the JSON object. It’s not a complex
object, as it only provides two methods: stringify and parse. Like Math, it’s a static
object that you use directly.

The parse method takes two arguments: a JSON formatted string and an optional
replacer function. This function takes a key/value pair as parameters, and returns either
the original value or a modified result.

In the solution, the JSON formatted string is an object with three properties: a string,
a numeric, and a third property, which has a numeric value but is really a Boolean with
a numeric representation: 0 is false, 1 is true.

To transform all 0, 1 values into false, true, a function is provided as the second
argument to JSON.parse. It checks each property of the object to see if it is a numeric.
If it is, the function checks to see if the value is 0 or 1. If the value is 0, the return value
is set to false; if 1, the return value is set to true; otherwise, the original value is
returned.

444 | Chapter 19: Working with Structured Data

The ability to transform incoming JSON formatted data is essential, especially if you’re
processing the result of an Ajax request or JSONP response. You can’t always control
the structure of the data you get from a service.

IE8 does not support the JSON object. Opera has placed some restrictions
on what can be supported in JSON: strings must be double quoted, and
there are no hexadecimal values and no tabs in strings.

See Also
See Recipe 19.5 for a demonstration of JSON.stringify.

19.5 Convert an Object to a Filtered/Transformed String with
JSON
Problem
You need to convert a JavaScript object to a JSON formatted string for posting to a web
application. However, the web application has data requirements that differ from your
client application.

Solution
Use the JSON.stringify method, passing in the object as first parameter and providing
a transforming function as the second parameter:

function convertBoolToNums(key, value) {
 if (typeof value == 'boolean') {
 if (value)
 value = 1;
 else
 value = 0;
 }
 return value;
};

window.onload=function() {

 var obj = {"test" : "value1", "test2" : 3.44, "test3" : false};
 var jsonobj = JSON.stringify(obj, convertBoolToNums, 3);

 alert(jsonobj); // test3 should be 0
}

19 5 Convert an Object to a Filtered/Transformed String with JSON | 445

Discussion
The JSON.stringify method takes three parameters: the object to be transformed into
JSON, an optional function or array used either to transform or filter one or more object
values, and an optional third parameter that defines how much and what kind of
whitespace is used in the generated result.

In the solution, a function is used to check property values, and if the value is a Boolean,
convert false to 0, and true to 1. The function results are transformed into a string if
the return value is a number or Boolean. The function can also act as a filter: if the
returned value from the function is null, the property/value pair are removed from the
JSON.

You can also use an array rather than a function. The array can contain strings or
numbers, but is a whitelist of properties that are allowed in the result. The following
code:

var whitelist = ["test","test2"];

var obj = {"test" : "value1", "test2" : 3.44, "test3" : false};
var jsonobj = JSON.stringify(obj, whitelist, 3);

would result in a JSON string including the object’s test and test2 properties, but not
the third property (test3):

{
 "test": "value1",
 "test2": 3.44
}

The last parameter controls how much whitespace is used in the result. It can be a
number representing the number of spaces or a string. If it is a string, the first 10 char-
acters are used as whitespace. If I use the following:

var jsonobj = JSON.stringify(obj, whitelist, "***");

the result is:

{
***"test": "value1",
***"test2": 3.44
}

The use of stringify with a replacer function worked with Safari 4, but did not suc-
cessfully transform the Boolean value with Firefox. At the time this was written, there
is an active bug for Firefox because the replacer function only works with arrays.

See Also
See Recipe 19.4 for a discussion on JSON.parse.

446 | Chapter 19: Working with Structured Data

19.6 Convert hCalendar Microformat Annotations
into a Canvas Timeline
Problem
You want to plot the events annotated with the hCalendar Microformat on a Canvas-
based graph. The hCalendar event syntax can differ, as the following two legitimate
variations demonstrate:

<p>
 Monkey Play Time
 on 2010-02-05
 at St. Louis Zoo.
</p>

<div class="vevent" id="hcalendar-Event">
 <abbr class="dtstart" title="2010-02-25">February 25th</abbr>,
 <abbr class="dtend" title="2010-02-26"> 2010</abbr>
 Event</div>

With one format, the dtstart class is on a span element; with the other format, the
dtstart class is on an abbr element.

Solution
Find all elements with a class of vevent:

var events = document.querySelectorAll("[class='vevent']");
var v = events;

Within each, find the element with a class of dtstart. There should only be one, and
there should always be one. By Microformat convention, if the dtstart element is an
abbr, the start date is found in a title attribute on the element. If the dtstart element
is a span, the start date is found in the element’s textContent, and is then split out of
the date string to find the actual day:

var days = new Array();
for (var i = 0; i < events.length; i++) {
 var dstart = events[i].querySelectorAll("[class='dtstart']");
 var dt;
 if (dstart[0].tagName == "SPAN") {
 dt = dstart[0].textContent; }
 else if (dstart[0].tagName == "ABBR") {
 dt = dstart[0].title;
 }
 var day = parseInt(dt.split("-")[2]);
 days.push(day);
}

The value is then used to graph the line in a canvas element.

19.6 Convert hCalendar Microformat Annotations into a Canvas Timeline | 447

Discussion
Microformats are both simple and complicated. They’re simple in that it’s easy to find
the data, but they’re complicated because the rules surrounding the data are very loose.
As the solution demonstrates, an hCalendar event start date can be recorded in span
elements or abbr elements; the dates are ISO 8601, but could be just dates, or datetime.

The advantage to working with Microformats using client-side JavaScript is that we
usually have some control over the format of the Microformats. For instance, if we have
a social-networking site where people are entering events, we have no control over what
events are created, but we do have control over the format and can ensure that it’s
consistent.

Once we know the form of the Microdata used in the page, it isn’t complicated to get
the data. For the most part, we’re retrieving elements based on class name, and making
queries on these elements’ subtrees for elements with different class names. Though
there are few rules to Microformats, there are rules. For instance, the hCalendar data
used in the solution has at least three rules: the outer element has a vevent class, there
must be a summary and a dtstart element, and if the dtstart element is a span, the
data is the textContent; if it is an abbr, the data is the title.

Since IE8 does not support textContent, the code performs a test for textContent. If it
isn’t found, then IE8 gets the text from the (IE-originated) innerText or innerHTML
property:

for (var i = 0; i < events.length; i++) {
 var dstart = events[i].querySelectorAll("[class='dtstart']");
 var dt;
 if (dstart[0].tagName == "SPAN") {
 if (dstart[0].textContent)
 dt = dstart[0].textContent;
 else
 dt = dstart[0].innerText;
 } else if (dstart[0].tagName == "ABBR") {
 dt = dstart[0].title;
 }
 var day = parseInt(dt.split("-")[2]);
 days.push(day);
}

Make sure to include the ExplorerCanvas excanvas.js library before your script, in
order to ensure the canvas element and commands work with IE:

<!--[if IE]><script src="excanvas.js"></script><![endif]-->

Example 19-3 pulls all of the components together into a full-page application, includ-
ing the Canvas drawing. The tick marks in the Canvas element are expanded to 10 times
their size to make them easier to see on the line. The page is an event calendar for a
month at the zoo.

448 | Chapter 19: Working with Structured Data

Example 19-3. Extracting Microformat events from page and charting them on a Canvas line graph

<!DOCTYPE html>
<head>
<title>Microformats</title>
<!--[if IE]><script src="excanvas.js"></script><![endif]-->
<script>

window.onload=function() {

 var events = document.querySelectorAll("[class='vevent']");
 var v = events;
 var days = new Array();
 for (var i = 0; i < events.length; i++) {
 var dstart = events[i].querySelectorAll("[class='dtstart']");
 var dt;
 if (dstart[0].tagName == "SPAN") {
 if (dstart[0].textContent)
 dt = dstart[0].textContent;
 else
 dt = dstart[0].innerText;
 } else if (dstart[0].tagName == "ABBR") {
 dt = dstart[0].title;
 }
 var day = parseInt(dt.split("-")[2]);
 days.push(day);
 }

 var ctx = document.getElementById("calendar").getContext('2d');

 // draw out
 days.sort(function(a,b) { return a - b});

 ctx.fillStyle="red";
 ctx.strokeStyle="black";

 ctx.beginPath();
 ctx.moveTo(0,100);
 ctx.lineTo(280,100);
 ctx.stroke();

 for (var i = 0; i < days.length; i++) {
 var x1 = days[i] * 10;
 var t1 = 70;
 var x2 = 5;
 var t2 = 30;
 ctx.fillRect(x1,t1,x2,t2);
 }
}

</script>
</head>
<body>
<div>
 <p>
 Monkey Play Time

19.6 Convert hCalendar Microformat Annotations into a Canvas Timeline | 449

 on 2010-02-05
 at St. Louis Zoo.

 </p>
</div>
<div class="vevent">
 <abbr class="dtstart" title="2010-02-25">February 25th</abbr>,
 <abbr class="dtend" title="2010-02-26"> 2010</abbr>
 Event
</div>
<p>

 Tiger Feeding
 on 2010-02-10
 at St. Louis Zoo.

</p>
<p>
 Penguin Swimming
 on 2010-02-20
 at St. Louis Zoo.

</p>
<div class="vevent">
 <abbr class="dtstart" title="2010-02-19">February 19th</abbr>,
 <abbr class="dtend" title="2010-02-26"> 2010</abbr>
 Sea Lion Show
</div>
<canvas id="calendar" style="width: 600px; height: 100px; margin: 10px; ">
 <p>Dates</p>
</canvas>
</body>

The application works in all of our target browsers, including IE8, as shown in Fig-
ure 19-2. IE7 does not support the querySelectorAll method.

See Also
For more on Microformats, see the Microformats website. See more on the canvas
element in Chapter 15, and more on ExplorerCanvas in Recipe 15.2.

19.7 Glean Page RDFa and Convert It into JSON Using rdfQuery
and the jQuery RDF Plug-in
Problem
You’re using Drupal 7, a Content Management System (CMS) that annotates the page
metadata with RDFa—Resource Description Framework (RDF) embedded into X/
HTML. Here’s an example of the type of data in the page (from the RDFa specification):

450 | Chapter 19: Working with Structured Data

http://microformats.org/

<h1>Biblio description</h1>
<dl about="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/"
id="biblio">
 <dt>Title</dt>
 <dd property="dc:title">
RDF Semantics - W3C Recommendation 10 February 2004</dd>
 <dt>Author</dt>
 <dd rel="dc:creator" href="#a1">

 <link rel="rdf:type" href="[foaf:Person]" />
 Patrick Hayes
 see <a rel="foaf:homepage"
href="http://www.ihmc.us/users/user.php?UserID=42">homepage

 </dd>
</dl>

You want to convert that RDFa formatted data into a JavaScript object, and eventually
into JSON for an Ajax call.

Figure 19-2. Microformat hCalendar application in IE

Solution
Use one of the RDFa JavaScript libraries, such as rdfQuery, which has the added ad-
vantage of being built on jQuery (the default JavaScript library used with Drupal). The

19.7 Glean Page RDFa and Convert It into JSON Using rdfQuery and the jQuery RDF Plug-in | 451

rdfQuery library also implements an RDFa gleaner, which is functionality that can take
a jQuery object and glean all of the RDFa from it and its subtree, automatically con-
verting the data into RDF triples and storing them into an in-memory database:

var triplestore = $('#biblio').rdf()
 .base('http://burningbird.net')
 .prefix('rdf','http://www.w3.org/1999/02/22-rdf-synax-ns#')
 .prefix('dc','http://purl.org/dc/elements/1.1/')
 .prefix('foaf','http://xmlns.com/foaf/0.1/');

Once you have the data, you can export a JavaScript object of the triples:

var data = triplestore.databank.dump();
And then you can convert that into JSON:
var jsonStr = JSON.stringify(d);

Discussion
RDF is a way of recording metadata in such a way that data from one site can be safely
combined with data from many others, and queried for specific information or used in
rules-based derivations. The data is stored in a format known as a triple, which is noth-
ing more than a simple subject-predicate-object set usually displayed as:

<http://www.example.org/jo/blog> foaf:primaryTopic <#bbq> .
<http://www.example.org/jo/blog> dc:creator "Jo" .

These triples basically say that the subject in this, a blog identified by a specific URL,
has a primary topic of “bbq,” or barbecue, and the creator is named Jo.

This is a book on JavaScript, so I don’t want to spend more time on RDFa or RDF. I’ll
provide links later where you can get more information on both. For now, just be aware
that we’re going to take that RDFa annotation in the page, convert it into a triple store
using rdfQuery, and then export it as a JavaScript object, and eventually JSON.

The RDFa, embedded into X/HTML, has the opposite challenges from Microformats:
the syntax is very regular and well-defined, but accessing the data can be quite chal-
lenging. That’s the primary reason to use a library such as rdfQuery.

In the solution, what the code does is use jQuery selector notation to access an element
identified by “biblio”, and then use the .rdf() gleaner to extract all of the RDFa out of
the object and its subtree and store it in an in-memory data store.

The solution then maps the prefixes for the RDFa: dc is mapped to http://purl.org/dc/
elements/1.1/, and so on. Once these two actions are finished, a dump of the store
creates a JavaScript object containing the triple objects extracted from the RDFa, which
are then converted into JSON using the JSON.stringify method. The resulting string
with the five derived triples looks like this:

{"http://www.w3.org/TR/2004/REC-rdf-mt-
20040210/":{"http://purl.org/dc/elements/1.1/title":[{"type":"literal",
"value":"RDF Semantics - W3C Recommendation 10 February
2004"}],"http://purl.org/dc/elements/1.1/creator":[{"type":"uri",
"value":

452 | Chapter 19: Working with Structured Data

http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/

"http://burningbird.net/jscb/data/rdfa.xhtml#a1"}]},
"http://burningbird.net/jscb/data/rdfa.xhtml#a1":
{"http://www.w3.org/1999/02/22-rdf-syntax-
ns#type":[{"type":"uri","value":"http://xmlns.com/foaf/0.1/Person"}],
"http://xmlns.com/foaf/0.1/name":[{"type":"literal","value":"Patrick
Hayes"}],"http://xmlns.com/foaf/0.1/homepage":[{"type":"uri",
"value":"http://www.ihmc.us/users/user.php?UserID=42"}]}}

Which converts into Turtle notation as:

<http://www.w3.org/TR/2004/REC-rdf-mt-20040210/> <http://purl.org/dc/elements/1.1/title>
 "RDF Semantics - W3C Recommendation 10 February 2004" .
<http://www.w3.org/TR/2004/REC-rdf-mt-20040210/>
<http://purl.org/dc/elements/1.1/creator>
<http://burningbird.net/jscb/data/rdfa.xhtml#a1> .
<http://burningbird.net/jscb/data/rdfa.xhtml#a1>
 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://xmlns.com/foaf/0.1/Person> .
<http://burningbird.net/jscb/data/rdfa.xhtml#a1>
<http://xmlns.com/foaf/0.1/name> "Patrick Hayes" .
<http://burningbird.net/jscb/data/rdfa.xhtml#a1>
<http://xmlns.com/foaf/0.1/homepage>
<http://www.ihmc.us/users/user.php?UserID=42> .

Once you have the string, you can use it in an Ajax call to a web service that makes use
of RDF or JSON, or both.

Example 19-4 combines the pieces of the solution into a full-page application in order
to more fully demonstrate how each of the components works together. The application
prints out the JSON.stringify data dump of the data and then prints out each trip
individually, converting the angle brackets of the triples first so that appending them
to the page won’t trigger an XHTML parsing error.

Example 19-4. Extracting RDFa from a page and embedding the data into the page

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:foaf="http://xmlns.com/foaf/0.1/" >
 <head profile="http://ns.inria.fr/grddl/rdfa/">
 <title>Biblio description</title>
<style type="text/css">
div { margin: 20px; }
</style>
 <script type="text/javascript" src="json2.js"></script>
 <script type="text/javascript" src="jquery.js"></script>
 <script type="text/javascript"
src="jquery.rdfquery.rdfa.min-1.0.js"></script>
 <script type="text/javascript">
 //<![CDATA[

 window.onload = function() {

 var j = $('#biblio').rdf()

19.7 Glean Page RDFa and Convert It into JSON Using rdfQuery and the jQuery RDF Plug-in | 453

 .base('http://burningbird.net')
 .prefix('rdf','http://www.w3.org/1999/02/22-rdf-synax-ns#')
 .prefix('dc','http://purl.org/dc/elements/1.1/')
 .prefix('foaf','http://xmlns.com/foaf/0.1/');

 var d = j.databank.dump();
 var str = JSON.stringify(d);
 document.getElementById("result1").innerHTML = str;

 var t = j.databank.triples();
 var str2 = "";
 for (var i = 0; i < t.length; i++) {
 str2 =
str2 + t[i].toString().replace(/</g,"<").replace(/>/g,">")
+ "
";
 }
 document.getElementById("result2").innerHTML = str2;
 }
 //]]>
 </script>
 </head>
 <body>
 <h1>Biblio description</h1>
 <dl about="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/"
id="biblio">
 <dt>Title</dt>
 <dd property="dc:title">
RDF Semantics - W3C Recommendation 10 February 2004</dd>
 <dt>Author</dt>
 <dd rel="dc:creator" href="#a1">

 <link rel="rdf:type" href="[foaf:Person]" />
 Patrick Hayes
 see <a rel="foaf:homepage"
href="http://www.ihmc.us/users/user.php?UserID=42">homepage

 </dd>
 </dl>
 <div id="result1"></div>
 <div id="result2"></div>
 </body>
</html>

Figure 19-3 shows the page after the JavaScript has finished. The application uses the
json2.js library for browsers that haven’t implemented the JSON object yet.

You can also do a host of other things with rdfQuery, such as add triples directly, query
across the triples, make inferences, and anything else you would like to do with RDF.

See Also
rdfQuery was created by Jeni Tennison. You can download it and read more docu-
mentation on its use at http://code.google.com/p/rdfquery/. When I used the library for

454 | Chapter 19: Working with Structured Data

http://code.google.com/p/rdfquery/

writing this section, I used it with jQuery 1.42. Another RDFa library is the RDFa
Parsing Module for the Backplane library.

For more information on RDF, see the RDF Primer. The RDFa Primer can be found at
http://www.w3.org/TR/xhtml-rdfa-primer/. There is a new effort to create an RDFa-in-
HTML specification, specifically for HTML5.

Figure 19-3. Running the RDFa extraction application in Opera

19.7 Glean Page RDFa and Convert It into JSON Using rdfQuery and the jQuery RDF Plug-in | 455

http://code.google.com/p/backplanejs/
http://code.google.com/p/backplanejs/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/xhtml-rdfa-primer/

CHAPTER 20

Persistence

20.0 Introduction
In the early years of web development, to keep a value around as users moved from
page to page, you’d have to make use of session persistence functionality built into the
environment, attach the data to the web page URL, or provide it in a hidden form field.
Of course, this persisted the data from page to page, but once you closed the browser,
the data was lost.

JavaScript added a third approach, a cookie, which could not only persist from page
to page, but cause the data to persist beyond the current session. With cookies, you
could not only access data such as login information throughout a website, but you
could close the browser and reopen it another day and still have access to the same data.

These techniques still exist, but now, because of the needs of more complex web ap-
plications, including applications that support offline functionality, browsers support
a variety of sophisticated data storage and persistence techniques.

No area of JavaScript has gone through more upheaval recently than persistence.
Whether it’s storing data between sessions or enabling access to information while
offline, complex new ideas have been spawned, supported by web pages and imple-
mentations, only to quietly fade away when something new and shiny appeared.

Probably one of the more famous examples of an idea that came and went is Google
Gears—an offline storage mechanism that generated considerable excitement in 2007
when it debuted, only to die a fairly quick and unexpected death when Google an-
nounced in November 2009 that it was dropping support for Gears in favor of the new
Web Applications/HTML5 persistence initiatives.

Fun new technology aside, the old approaches, such as using data encoding on an URL
or a cookie, still exist and still provide a service that some of the newer techniques don’t
provide: simplicity. This chapter touches on all of the techniques, from the old time to
the new, the simple to the complex.

457

Some of the methods explored in this chapter are cutting edge, based
on specifications that are still being developed. Use with caution.

See Also
For more on Google’s Gears decision, see the blog post at http://gearsblog.blogspot.com/
2010/02/hello-html5.html.

20.1 Attaching Persistent Information to URLs
Problem
You want to store a small fragment of information so that the information is available
to anyone accessing the page.

Solution
Persisting a fragment of information in a web page for general access by everyone is
dependent on the old school capability of attaching information to a URL. The infor-
mation can be passed as a page fragment:

http://somecompany.com/firstpage.html#infoasfragment

Discussion
JavaScript can be used to add a page fragment, though this is more of a way to store a
simple state than anything more complex:

http://somecompany.com/test.html#one

The data can also be encoded as parameters in a query string, which starts with a
question mark, followed by the parameters passed as key/value pairs separated by equal
signs, and separated from each other by ampersands:

http://somecompany.com?test=one&test=two

There are limits to lengths of URLs, and probably for numbers of GET pairs, but I
would hope we wouldn’t ever approach these limits. This also isn’t an approach you
would use in place of a cookie. For instance, if you want to capture user input into a
form, in case the users have to leave before finishing the form entries (or they acciden-
tally close their browser tab page), you should put this data into a cookie, which is more
secure, and more specific to the person.

Data encoding in the URL is more of a way to capture page state so that a person can
send a link to the page in that state to another person, or link it within a web page.
Example 20-1 demonstrates how something like data persistence via URL can work.

458 | Chapter 20: Persistence

http://gearsblog.blogspot.com/2010/02/hello-html5.html
http://gearsblog.blogspot.com/2010/02/hello-html5.html

In the web page, there are three buttons and one div element controlled by the action
of the buttons. One button moves the div element to the right, one button increases
the size of the element, and one button changes its color. As each button is clicked, the
div element is adjusted, and the newly applied CSS value is stored with the appropriate
button.

When the state of the page is changed, a link within the page is updated to reflect the
state of the page. Note that the actual window.location property and even the
window.location.search property is not changed. The reason is that the page reloads
as a security precaution when you update any component of window.location except
the hash value.

Allowing a person to change the URL in the location bar, which isn’t
reflected in the actual page, introduces the threat of spoofing—one page
masquerading as another in order to scam passwords and other confi-
dential information.

Now you can reload the page and have the script restore the page to the state in the
URL when it reloads—but that’s a lot of moving parts. In the example, we’ll just create
a static state link, and leave it at that.

Example 20-1. Using the URL and the query string to preserve state

<!DOCTYPE html>
<head>
<title>Remember me?</title>
<style>
#square
{
 position: absolute;
 left: 0;
 top: 100px;
 width: 100px;
 height: 100px;
 border: 1px solid #333;
 background-color: #ffff00;
}
div p
{
 margin: 10px;
}
</style>
<script>

 // found at http://www.netlobo.com/url_query_string_javascript.html
 function getQueryParam(name) {
 name = name.replace(/[\[]/,"\\\[").replace(/[\]]/,"\\\]");
 var regexS = "[\\?&]"+name+"=([^&#]*)";
 var regex = new RegExp(regexS);
 var results = regex.exec(window.location.href);

20.1 Attaching Persistent Information to URLs | 459

 if(results == null)
 return null;
 else
 return results[1];
 }

 window.onload=function() {

 // set up button
 document.getElementById("move").onclick=moveSquare;
 document.getElementById("size").onclick=resizeSquare;
 document.getElementById("color").onclick=changeColor;

 var move = getQueryParam("move");
 if (!move) return;

 var size = getQueryParam("size");
 var color = getQueryParam("color");

 // update element
 var square = document.getElementById("square");
 square.style.left=move + "px";
 square.style.height=size + "px";
 square.style.width=size + "px";
 square.style.backgroundColor="#" + color;

 // update data-state values
 document.getElementById("move").setAttribute("data-state",move);
 document.getElementById("size").setAttribute("data-state",size);
 document.getElementById("color").setAttribute("data-state",color);
 }

 function updateURL () {
 var move = document.getElementById("move").getAttribute("data-state");
 var color = document.getElementById("color").getAttribute("data-state");
 var size = document.getElementById("size").getAttribute("data-state");

 var link = document.getElementById("link");
 var path = location.protocol + "//" + location.hostname + location.pathname +
 "?move=" + move + "&size=" + size + "&color=" + color;
 link.innerHTML="<p>static state link</p>";

 }

 function moveSquare() {
 var move = parseInt(document.getElementById("move").getAttribute("data-
state"));
 move+=100;
 document.getElementById("square").style.left=move + "px";
 document.getElementById("move").setAttribute("data-state", move);
 updateURL();
 }

 function resizeSquare() {
 var size = parseInt(document.getElementById("size").getAttribute("data-

460 | Chapter 20: Persistence

state"));
 size+=50;
 var square = document.getElementById("square");
 square.style.width=size + "px";
 square.style.height=size + "px";
 document.getElementById("size").setAttribute("data-state",size);
 updateURL();
 }

 function changeColor() {
 var color = document.getElementById("color").getAttribute("data-state");
 var hexcolor;
 if (color == "0000ff") {
 hexcolor="ffff00";
 } else {
 hexcolor = "0000ff";
 }
 document.getElementById("square").style.backgroundColor="#" +
hexcolor;
 document.getElementById("color").setAttribute("data-state",hexcolor);
 updateURL();
 }

</script>
</head>
<body>
 <button id="move" data-state="0">Move Square</button>
 <button id="size" data-state="100">Increase Square Size</button>
 <button id="color" data-state="#ffff00">Change Color</button>
 <div id="link"></div>
 <div id="square">
 <p>This is the object</p>
 </div>
</body>

Figure 20-1 shows the web page after several changes to the square element, and after
the page is reloaded using the link.

See Also
Recipes 8.7 and 8.8 demonstrate how to use the location.hash property to store state
in the URL and return to that state when the page is reloaded. The query string routine
in the example is described at http://www.netlobo.com/url_query_string_javascript
.html.

20.1 Attaching Persistent Information to URLs | 461

http://www.netlobo.com/url_query_string_javascript.html
http://www.netlobo.com/url_query_string_javascript.html

20.2 Creating a Cookie to Persist Information Across Pages
Problem
You want to persist some information about or for the user within the existing browser
session.

Solution
If the amount of data is less than 4k in size, use a browser cookie. A cookie is a patterned
line of text that you assign to the document.cookie property:

document.cookie="cookiename=cookievalue; expires=date; path=path";

Discussion
Cookies are still one of the easiest, simplest, and most widely used persistent storage
technique for web pages today. They’re easy to set, safe, well understood by most
people who browse web pages, and require little overhead.

People can also turn cookie support off in their browsers, which means your application
has to work, regardless. In addition, the amount of data stored is small—less than 4k—
and doesn’t support complex data structures. There’s also the security restrictions as-
sociated with cookies: they’re domain-specific. Despite the restriction, though, cookies
are also insecure, as any data stored is done so in plain text. You don’t want to use
cookies to store passwords.

Figure 20-1. Page after reloading and using persistence through URL

462 | Chapter 20: Persistence

Read the article “Improving Persistent Login Cookie Best Practice” if
you’re interested in implementing “Remember Me” using cookies on
your site.

Cookies are created by assigning the cookie to the document.cookie property. The
cookie consists of a name/value pair, separated by an equal sign:

document.cookie="cookiename=cookievalue";

There are parameters that can follow the cookie/value pair, all separated by semi-colons
(;). The parameters are:

path=path (such as / or /subdir)
Defaults to the current location.

domain=domain (such as burningbird.net, for all subdomains, or a given subdomain,
missourigreen.burningbird.net)

Defaults to current host.

max-age=maximum age in seconds
Meant more for session-based short restrictions.

expires=date in GMTString-format
Defaults to expiring at end of session.

secure
Can only be transmitted via HTTPS.

Here’s an example. This cookie keyword is Language, with a value of JavaScript, set to
expire at a given time with expires, and with path set to the top-level domain:

Language=JavaScript; expires=Mon, 22 Feb 2010 01:00:59 GMT; path=/

If we wanted the cookie to expire when the browser closes, all we need do is leave off
the expires.

To retrieve the cookie, we have to retrieve the entire document.cookie property, which
returns all cookies set on the domain. The application needs to find all of the cookies,
and then look for a specific one. To erase the cookie, all we need do is set it with a past
date.

To demonstrate, Example 20-2 contains a web page that has two input fields, one for
the cookie name and one for the value. Clicking the Set Cookie button creates the
cookie; clicking the Get Cookie retrieves the value for the given cookie; clicking the
Erase Cookie button erases the cookie.

20.2 Creating a Cookie to Persist Information Across Pages | 463

http://jaspan.com/improved_persistent_login_cookie_best_practice

Example 20-2. Demonstrating cookies

<!DOCTYPE html>
<html dir="ltr" lang="en-US">
<head>
<title>Persisting via Cookies</title>
<style>
div
{
 margin: 5px;
}
</style>
<script>

// if cookie enabled
window.onload=function() {

 if (navigator.cookieEnabled) {
 document.getElementById("set").onclick=setCookie;
 document.getElementById("get").onclick=readCookie;
 document.getElementById("erase").onclick=eraseCookie;
 }

}

// set cookie expiration date in year 2010
function setCookie() {

 var cookie = document.getElementById("cookie").value;
 var value = document.getElementById("value").value;

 var futureDate = new Date();
 futureDate.setDate(futureDate.getDate() + 10);

 var tmp=cookie + "=" + encodeURI(value) + "; expires=" +
 futureDate.toGMTString() + "; path=/";
 document.cookie=tmp;
}

// each cookie separated by semicolon;
function readCookie() {

 var key = document.getElementById("cookie").value;

 var cookie = document.cookie;
 var first = cookie.indexOf(key+"=");

 // cookie exists
 if (first >= 0) {
 var str = cookie.substring(first,cookie.length);
 var last = str.indexOf(";");

 // if last cookie
 if (last < 0) last = str.length;

464 | Chapter 20: Persistence

 // get cookie value
 str = str.substring(0,last).split("=");
 alert(decodeURI(str[1]));
 } else {
 alert("none found");
 }
}

// set cookie date to the past to erase
function eraseCookie () {

 var key = document.getElementById("cookie").value;

 var cookieDate = new Date();
 cookieDate.setDate(cookieDate.getDate() - 10);

 document.cookie=key + "= ; expires="+cookieDate.toGMTString()+"; path=/";
}
</script>
</head>
<body>
<form>
<label for="cookie"> Enter cookie:</label> <input type="text" id="cookie" />

<label for="value">Cookie Value:</label> <input type="text" id="value" />

</form>
<div>
<button id="set">Set Cookie</button>
<button id="get">Get Cookie</button>
<button id="erase">Erase Cookie</button>
</div>
</body>

See Also
See Recipe 3.6 for how to access a future date.

20.3 Persisting Information Using the History.pushState
Method and window.onpopevent
Problem
You’ve looked at all the ways of handling the back button and controlling page state
for an Ajax application, and you’re saying to yourself, “There has to be a better way.”

Solution
There is a better way, a much better way...but it’s going to be some time before you’ll
be able to incorporate the technique into your applications: using HTML5’s new

20.3 Persisting Information Using the History.pushState Method and window.onpopevent | 465

history.pushState and history.replaceState methods to persist a state object, and the
window.onpopevent:

window.history.pushState({ page : page}, "Page " + page, "?page=" + page);
 ...

window.onpopstate = function(event) {
 // check for event.state, if found, reload state
 if (!event.state) return;
 var page = event.state.page;
}

Discussion
Addressing the significant problems Ajax developers have had with trying to persist
state through back button events or page reloads, HTML5 has new history object
methods, pushState and replaceState, to persist state information, and then an asso-
ciated window.onpopevent that can be used to restore the page state.

In the past, we had the ability to persist information regarding the page state, though
we’ve had to be conservative in how much data we persist. A popular approach, and
one demonstrated in Recipe 20.1, is to store the data in the page URL hash, which
updates the page history and can be pulled via JavaScript.

The problem with this approach is that updating the hash may update the history. If
you hit the back button, the URL with the hash shows in the location bar, but no event
is triggered so you can grab the data and restore the page. The workaround was to use
a timer to check for the new hash and then restore the page if a new hash was found.
Not an attractive solution, and one most of us decided just wasn’t worth trying.

Now, you can easily store any object that can be passed to JSON.stringify. Since the
data is stored locally, the early implementor, Firefox, limits the size of the JSON rep-
resentation to 640k. However, unless you’re recording the state of every pixel in the
page, 640k should be more than sufficient.

To see how the new event and methods work, Example 20-3 is a recreation of Exam-
ple 8-2, from Recipe 8.8. The changes to the application include the removal of the use
of the hash location fragment, which is replaced by history.pushState, and the
window.onpopstate event handler, both of which are highlighted in the code. There’s
one other minor change—in the functionOne function, also highlighted—and I’ll get
into the reason why after the example.

Example 20-3. Shows Example 8-2 from Recipe 8.8 converted to using the new history.pushState and
window.onpopstate event handler

<!DOCTYPE html>
<head>
<title>Remember me--new, and improved!</title>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<script>
 window.onload=function() {

466 | Chapter 20: Persistence

 document.getElementById("next").onclick=nextPanel;
 }

 window.onpopstate = function(event) {
 // check for event.state, if found, reload state
 if (!event.state) return;
 var page = event.state.page;
 switch (page) {
 case "one" :
 functionOne();
 break;
 case "two" :
 functionOne();
 functionTwo();
 break;
 case "three" :
 functionOne();
 functionTwo();
 functionThree();
 }
 }

 // display next panel, based on button's class
 function nextPanel() {
 var page = document.getElementById("next").getAttribute("data-page");
 switch(page) {
 case "zero" :
 functionOne();
 break;
 case "one" :
 functionTwo();
 break;
 case "two" :
 functionThree();
 }
 }
 // set both the button class, and create the state link, add to page
 function setPage(page) {
 document.getElementById("next").setAttribute("data-page",page);
 window.history.pushState({ page : page}, "Page " + page, "?page=" + page);
 }

 // function one, two, three - change div, set button and link
 function functionOne() {
 var square = document.getElementById("square");
 square.style.position="relative";
 square.style.left="0";
 square.style.backgroundColor="#ff0000";
 square.style.width="200px";
 square.style.height="200px";
 square.style.padding="10px";
 square.style.margin="20px";
 setPage("one");
 }

20.3 Persisting Information Using the History.pushState Method and window.onpopevent | 467

 function functionTwo() {
 var square = document.getElementById("square");
 square.style.backgroundColor="#ffff00";
 square.style.position="absolute";
 square.style.left="200px";
 setPage("two");
 }

 function functionThree() {
 var square = document.getElementById("square");
 square.style.width="400px";
 square.style.height="400px";
 square.style.backgroundColor="#00ff00";
 square.style.left="400px";
 setPage("three");
 }
</script>
</head>
<body>
<button id="next" data-page="zero">Next Action</button>
<div id="square" class="zero">
<p>This is the object</p>
</div>
</body>

In this example, the state object that is stored is extremely simple: a page property and
its associated value. The history.pushState also takes a title parameter, which is used
for the session history entry, and a URL. For the example, I appended a query string
representing the page. What is displayed in the location bar is:

http://somecom.com/pushstate.html?page=three

The history.replaceState method takes the same parameters, but modifies the current
history entry instead of creating a new one.

When using the browser back button to traverse through the created history entries,
or when hitting the page reload, a window.onpopstate event is fired. This is really the
truly important component in this new functionality, and is the event we’ve needed for
years. To restore the web page to the stored state, we create a window.onpopstate event
handler function, accessing the state object from the event passed to the window han-
dler function:

window.onpopstate = function(event) {
 // check for event.state, if found, reload state
 if (!event.state) return;
 var page = event.state.page;
 ...
 }

In the example, when you click the button three times to get to the third “page,” reload
the page, or hit the back button, the window.onpopstate event handlers fires. Perfect
timing to get the state data, and repair the page. Works beautifully, too. In the Firefox
Minefield edition, that is.

468 | Chapter 20: Persistence

One other change that had to be made to the older example, is that functionOne had
to be modified and the following style settings added:

square.style.position = "relative";
square.style.left = "0";

The reason is that unlike Example 8-2, which goes through a complete page reload, the
new state methods and event handler actually do preserve the state in-page. This means
the changes going from step one to step two (setting position to absolute and moving
the div element) have to be canceled out in the first function in order to truly restore
the page state. It’s a small price to pay for this lovely new functionality.

Again, the example only worked with the Firefox nightly. However, the back button
did seem to work with the WebKit nightly.

20.4 Using sessionStorage for Client-Side Storage
Problem
You want to easily store session information without running into the size and cross-
page contamination problems associated with cookies, and prevent loss of information
if the browser is refreshed.

Solution
Use the new DOM Storage sessionStorage functionality:

sessionStorage.setItem("name", "Shelley");
sessionStorage.city="St. Louis";
...
var name = sessionStorage,getItem("name");
var city = sessionStorage.city;
...
sessionStorage.removeItem("name");
sessionStorage.clear();

Discussion
One of the constraints with cookies is they are domain/subdomain-specific, not page-
specific. Most of the time, this isn’t a problem. However, there are times when such
domain specificity isn’t sufficient.

For instance, a person has two browser tabs open to the same shopping site and adds
a few items to the shopping cart in one tab. In the tab, the shopper clicks a button to
add an item because of the admonishment to add the item to the cart in order to see
the price. The shopper decides against the item and closes the tab page, thinking that
action is enough to ensure the item isn’t in the cart. The shopper then clicks the check-
out option in the other opened tag, assuming that the only items currently in the cart
are the ones that were added in that browser page.

20.4 Using sessionStorage for Client-Side Storage | 469

If the users aren’t paying attention, they may not notice that the cookie-based shopping
cart has been updated from both pages, and they’ll end up buying something they didn’t
want.

While it is true that many web users are savvy enough to not make this mistake, there
are many who aren’t; they assume that persistence is browser-page-specific, not nec-
essarily domain-specific. With sessionStorage (to paraphrase the famous quote about
Las Vegas), what happens in the page, stays in the page.

As an example of the differences between the cookies and the new storage option,
Example 20-4 stores information from a form in both a cookie and sessionStorage.
Clicking the button to get the data gets whatever is stored for the key in both, and
displays it in the page: the sessionStorage data in the first block, the cookie data in the
second. The remove button erases whatever exists in both.

Example 20-4. Comparing sessionStorage and cookies

<!DOCTYPE html>
<html dir="ltr" lang="en-US">
<head>
<title>Comparing Cookies and sessionStorage</title>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" >
<style>
div
{
 background-color: #ffff00;
 margin: 5px;
 width: 100px;
 padding: 1px;
}
</style>
<script>
 window.onload=function() {

 document.getElementById("set").onclick=setData;
 document.getElementById("get").onclick=getData;
 document.getElementById("erase").onclick=removeData;
 }

 // set data for both session and cookie
 function setData() {
 var key = document.getElementById("key").value;
 var value = document.getElementById("value").value;

 // set sessionStorage
 var current = sessionStorage.getItem(key);
 if (current) {
 current+=value;
 } else {
 current=value;
 }
 sessionStorage.setItem(key,current);

470 | Chapter 20: Persistence

 // set cookie
 current = getCookie(key);
 if (current) {
 current+=value;
 } else {
 current=value;
 }
 setCookie(key,current);
 }

 function getData() {
 try {
 var key = document.getElementById("key").value;

 // sessionStorage
 var value = sessionStorage.getItem(key);
 if (!value) value ="";
 document.getElementById("sessionstr").innerHTML="<p>" +
value + "</p>";

 // cookie
 value = getCookie(key);
 if (!value) value="";
 document.getElementById("cookiestr").innerHTML="<p>" +
value + "</p>";

 } catch(e) {
 alert(e);
 }
 }

 function removeData() {
 var key = document.getElementById("key").value;

 // sessionStorage
 sessionStorage.removeItem(key);

 // cookie
 eraseCookie(key);
 }
 // set session cookie
 function setCookie(cookie,value) {

 var tmp=cookie + "=" + encodeURI(value) + ";path=/";
 document.cookie=tmp;
 }

 // each cookie separated by semicolon;
 function getCookie(key) {

 var cookie = document.cookie;
 var first = cookie.indexOf(key+"=");

 // cookie exists
 if (first >= 0) {

20.4 Using sessionStorage for Client-Side Storage | 471

 var str = cookie.substring(first,cookie.length);
 var last = str.indexOf(";");

 // if last cookie
 if (last < 0) last = str.length;

 // get cookie value
 str = str.substring(0,last).split("=");
 return decodeURI(str[1]);
 } else {
 return null;
 }
 }

 // set cookie date to the past to erase
 function eraseCookie (key) {
 var cookieDate = new Date();
 cookieDate.setDate(cookieDate.getDate() - 10);
 var tmp=key +
"= ; expires="+cookieDate.toGMTString()+"; path=/";
 document.cookie=tmp;
 }
</script>
</head>
<body>
 <form>
 <label for="key"> Enter key:</label>
<input type="text" id="key" />

 <label for="value">Enter value:</label>
 <input type="text" id="value" />

 </form>
 <button id="set">Set data</button>
 <button id="get">Get data</button>
 <button id="erase">Erase data</button>
 <div id="sessionstr"><p></p></div>
 <div id="cookiestr"><p></p></div>
</body>

Load the example page (it’s in the book examples) in Firefox 3.5 and up. Add one or
more items to the same key value, and then click the button labeled “Get data”, as
shown in Figure 20-2.

Now, open the same page in a new tab window, and click the “Get data” button. The
activity results in a page like that shown in Figure 20-3.

In the new tab window, the cookie value persists because the cookie is session-specific,
which means it lasts until you close the browser. The cookie lives beyond the first tab
window, but the sessionStorage, which is specific to the tab window, does not.

Now, in the new tab window, add a couple more items to the key value, and click “Get
data” again, as shown in Figure 20-4.

472 | Chapter 20: Persistence

Figure 20-2. Showing current value for “apple” in sessionStorage and Cookie

Figure 20-3. Again, showing current value for “apple” in sessionStorage and Cookie, but in a new tab
window

Return to the original tab window, and click “Get data”. As you can see in Fig-
ure 20-5, the items added in the second tab are showing with the cookie, but not the
sessionStorage item.

20.4 Using sessionStorage for Client-Side Storage | 473

Figure 20-4. Adding more values to “apple” in new tab window

Figure 20-5. Returning to the original tab window and clicking “Get data” with “apple”

Lastly, in the original tab window, click the “Erase data” button. Figure 20-6 shows
the results of clicking “Get data” on the original window, while Figure 20-7 shows the
results when clicking “Get data” in the second tab window. Again, note the disparities
between the cookie and sessionStorage.

The reason for all of these images is to demonstrate the significant differences between
sessionStorage and cookies, aside from how they’re set and accessed in JavaScript.

474 | Chapter 20: Persistence

Hopefully, the images and the example also demonstrate the potential hazards involved
when using sessionStorage, especially in circumstances where cookies have normally
been used.

If your website or application users are familiar with the cookie persistence across tab-
bed windows, sessionStorage can be an unpleasant surprise. Along with the different

Figure 20-6. After clicking the “Erase data” button in the original tab window, and then clicking “Get
data”

Figure 20-7. Clicking “Get data” in the second window, after erasing data in first

20.4 Using sessionStorage for Client-Side Storage | 475

behavior, there’s also the fact that browser menu options to delete cookies probably
won’t have an impact on sessionStorage, which could also be an unwelcome surprise
for your users. Use sessionStorage with caution.

The sessionStorage object is currently supported in Firefox 3.5 and up, Safari 4.x and
up, and IE 8. There are some implementation differences for sessionStorage, but the
example shown in this recipe is consistently implemented across all environments.

One last note on sessionStorage, as it relates to its implementation. Both sessionStor
age and localStorage, covered in the next recipe, are part of the new DOM Storage
specification, currently under development by the W3C. Both are window object prop-
erties, which means they can be accessed globally. Both are implementations of the
Storage object, and changes to the prototype for Storage result in changes to both the
sessionStorage and localStorage objects:

Storage.prototype.someMethod = function (param) { ...};
...
localStorage.someMethod(param);
...
sessionStorage.someMethod(param);

Aside from the differences, covered in this recipe and the next, another major difference
is that the Storage objects don’t make a round trip to the server—they’re purely client-
side storage techniques.

See Also
For more information on the Storage object, sessionStorage, localStorage, or the
Storage DOM, consult the specification. See Recipe 20.5 for a different look at how
sessionStorage and localStorage can be set and retrieved, and other supported prop-
erties on both.

20.5 Creating a localStorage Client-Side Data Storage Item
Problem
You want to shadow form element entries (or any data) in such a way that if the browser
crashes, the user accidentally closes the browser, or the Internet connection is lost, the
user can continue.

Solution
You could use cookies if the data is small enough, but that strategy doesn’t work in an
offline situation. Another, better approach, especially when you’re persisting larger
amounts of data or if you have to support functionality when no Internet connection
is present, is to use the new localStorage:

476 | Chapter 20: Persistence

http://dev.w3.org/html5/webstorage/

var value = document.getElementById("formelem").value;
If (value) {
 localStorage.formelem = value;
}
...
// recover
var value = localStorage.formelem;
document.getElementById("formelem").value = value;

Discussion
Recipe 20.4 covered sessionStorage, one of the new DOM Storage techniques. The
localStorage object interface is the same, with the same approaches to setting the data:

// use item methods
sessionStorage.setItem("key","value");
localStorage.setItem("key","value");

// use property names directly
sessionStorage.keyName = "value:
localStorage.keyName = "value";

// use the key method
sessionStorage.key(0) = "value";
localStorage.key(0) = "value:

and for getting the data:

// use item methods
value = sessionStorage.getItem("key");
value = localStorage.getItem("key");

// use property names directly
value = sessionStorage.keyName:
value = localStorage.keyName;

// use the key method
value = sessionStorage.key(0);
value = localStorage.key(0):

Both also support the length property, which provides a count of stored item pairs,
and the clear method (no parameters), which clears out all Storage (but Firefox only
supports clearing storage for localStorage). In addition, both are scoped to the HTML5
origin, which means that the data storage is shared across all pages in a domain, but
not across protocols (e.g., http is not the same as https) or ports.

The difference between the two is how long data is stored. The sessionStorage object
only stores data for the session, but the localStorage object stores data on the client
forever, or until specifically removed.

The sessionStorage and localStorage objects also support one event: the storage event.
This is an interesting event, in that it fires on all pages when changes are made to a
localStorage item. It is also an area of low-compatibility among browsers: you can

20.5 Creating a localStorage Client-Side Data Storage Item | 477

capture the event on the body or document elements for Firefox, on the body for IE, or
on the document for Safari.

Example 20-5 demonstrates a more comprehensive implementation than the use case
covered in the solution for this recipe. In the example, all elements of a small form have
their onchange event handler method assigned to a function that captures the change
element name and value, and stores the values in the local storage via localStorage.
When the form is submitted, all of the stored form data is cleared.

When the page is loaded, the form elements onchange event handler is assigned to the
function to store the values, and if the value is already stored, it is restored to the form
element. To test the application, enter data into a couple of the form fields—but, before
clicking the submit button, refresh the page. Without the use of localStorage, you’d
lose the data. Now, when you reload the page, the form is restored to the state it was
in before the page was reloaded.

Example 20-5. Using localStorage to back up form entries in case of page reload or browser crash

<!DOCTYPE html>
<html dir="ltr" lang="en-US">
<head>
<title>localstore</title>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" >
<style>
</style>
<script>
 window.onload=function() {
 try {
 var elems = document.getElementsByTagName("input");

 // capture submit to clear storage
 document.getElementById("inputform").onsubmit=clearStored;

 for (var i = 0; i < elems.length; i++) {

 if (elems[i].type == "text") {

 // restore
 var value = localStorage.getItem(elems[i].id);
 if (value) elems[i].value = value;

 // change event
 elems[i].onchange=processField;
 }
 } catch (e) {
 alert(e);
 }
 }

 // store field values
 function processField() {
 localStorage.setItem(window.location.href,"true");
 localStorage.setItem(this.id, this.value);

478 | Chapter 20: Persistence

 }

 // clear individual fields
 function clearStored() {
 var elems = document.getElementsByTagName("input");
 for (var i = 0; i < elems.length; i++) {

 if (elems[i].type == "text") {
 localStorage.removeItem(elems[i].id);
 }
 }
 }

</script>
</head>
<body>
 <form id="inputform">
 <label for="field1">Enter field1:</label> <input type="text" id="field1" />

 <label for="field2">Enter field2:</label> <input type="text" id="field2"
/>

 <label for="field3">Enter field1:</label> <input type="text" id="field3" />

 <label for="field4">Enter field1:</label> <input type="text" id="field4" />

 <input type="submit" value="Save" />
</body>

The size alloted for localStorage varies by browser, and some browsers, such as Firefox,
allow users to extend the Storage object limits.

The localStorage object can be used for offline work. For the form example, you can
store the data in the localStorage and provide a button to click when connected to the
Internet, in order to sync the data from localStorage to server-side storage.

See Also
See Recipe 20.4 for more on the Storage object, and on sessionStorage and
localStorage.

20.6 Persisting Data Using a Relational Data Store
Problem
You want a more sophisticated data store on the client than what’s provided with other
persistent storage methods, such as localStorage. You’d also like to use your mad SQL
skills.

20.6 Persisting Data Using a Relational Data Store | 479

Solution
You can use SQL in client applications, with some significant limitations. There is a
W3C Web SQL Database Working Draft for using a relational database such as SQLite
on the client, but support for the specification is provided only in WebKit browsers
(Safari and Chrome) and the latest Opera (10.5):

You can create a database:

var db = openDatabase("dbname","1.0", "Bird Database", 1024 * 1024);

and you can create tables, within a transaction:

db.transaction(function(tx)) {
 tx.executeSQL('CREATE TABLE birdTable(birdid INTEGER NOT NULL PRIMARY KEY
AUTOINCREMENT, birdname VARCHAR(20) NOT NULL)');

Then query on the tables:

db.transation(function(tx)) {
 tx.executeSQL('SELECT * birdTable', [], sqlFunction, sqlError);

var sqlFunction = function(tx,recs) {
 var rows = recs.rows;
 for (var i = 0; i < rows.length; i++) {
 alert(recs.rows.item(i).text);
}

Discussion
I hesitated to cover the Web SQL Database specification because the implementation
is limited, and the specification is currently blocked at the W3C. Only WebKit (and
Chrome and Safari) and Opera have made any progress with this implementation, and
there’s no guarantee that Mozilla or Microsoft will pick up on it, especially since the
specification is blocked.

It is an interesting concept, but it has significant problems. One is security, naturally.

In our current applications, the client part of the applications handles one form of
security, and the server component handles the other, including database security and
protection against SQL injection: attaching text on to a data field value that actually
triggers a SQL command—such as drop all tables, or expose private data. Now, with
client-side relational database support, we’re introducing a new set of security concerns
on the client.

Another concern is the increasing burden we put on client-side storage. Each new
innovation exposes new vulnerabilities, increases the size and complexity of our brows-
ers, and embeds all sorts of data on our machines. Yet the vast majority of JavaScript
applications don’t need to create their own version of Gmail, or a Photoshop-like paint
program.

480 | Chapter 20: Persistence

Then there’s the separation of a skill set. While it’s true that in small-to-medium shops,
the same people who develop the frontend application probably participate in the
server-side development, it’s not unusual in many shops to have the tasks handled by
different groups. So people who may not be terribly experienced at relational database
management might be tossing around SQL transactions (and believe me, relational
database application development is a dedicated skill).

From an implementation point of view, only SQLite is currently supported. One dif-
ference in implementations, if you have worked with server-side SQL applications, is
that client-side SQL is asynchronous by default. This means your application is not
blocked until the transaction completes, which provides its own challenge.

However, there’s nothing wrong with playing around with something new. If you’re
interested, pick up a browser that supports the functionality and give it a shot. However,
I would avoid production use until we’re sure this technology is going to have a life
beyond 2010.

See Also
The Web SQL Database specification can be found at http://dev.w3.org/html5/webda
tabase/.

20.6 Persisting Data Using a Relational Data Store | 481

http://dev.w3.org/html5/webdatabase/
http://dev.w3.org/html5/webdatabase/

CHAPTER 21

JavaScript Outside the Box

21.0 Introduction
I believe JavaScript is the most important programming language a web developer
should learn. Sure, you can learn Java or PHP, Python, Ruby, ASP.NET, or any other
programming environment or language, but one thing all these options share is that
eventually, one way or another, you’ll probably need to use JavaScript.

JavaScript is fun, too. You have to spend a considerable amount of time working on
architecture issues and setup issues in many of the other environments, but all you need
with JavaScript is a browser and a text-editing tool. When I say you can go from opening
your text editor to your first real JavaScript application in five minutes, I’m not exag-
gerating. Take the following file:

<!DOCTYPE html>
<head>
<title>Blank</title>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" >
</head>
<body>
</body>

Add the following script after the title element:

<script>
alert("Wow, that was easy!");
</script>

Open the page in any browser, and you’re done. The only thing simpler in application
development would be direct thought transference.

In the first 20 chapters of this book, I covered how to use JavaScript primarily to build
standard web applications, but that’s only part of the JavaScript story. JavaScript is an
important component of major frameworks such as Microsoft’s Silverlight, as well as
desktop development environments, such as Adobe AIR. JavaScript and JSON are the
baseline functionality for Apache’s new CouchDB, which features a JSON-enabled da-
tabase and query engine.

483

JavaScript is also used in many different applications and development environments,
some of which are only indirectly related to typical web page functionality.

In this chapter, I’m going to provide a sampling of out-of-the-box JavaScript uses that
exist today, touching on some of the more popular. By the time you’re done with the
chapter, you’ll understand why every developer needs to know JavaScript.

Wikipedia’s page on JavaScript includes one section titled “Uses outside
web pages,” which can be a good resource for seeing how JavaScript can
be used for something other than web applications.

21.1 Creating a Browser Add-0n, Plug-in, or Extension
Problem
You have an idea that would make a good browser add-on, plug-in, or extension, but
you want to leverage your JavaScript skills to make the application.

Solution
Use the browser’s plug-in SDK, Extension API, or other packaged functionality that
lets you use JavaScript to create the application.

Discussion
Not all browsers provide a relatively simple way to create browser add-ons, plug-ins,
or extensions. Opera doesn’t provide this functionality at all, and WebKit’s plug-in
architecture isn’t trivial. However, if you’re motivated, you should be able to use your
JavaScript skills to create any number of useful browser tools.

Creating Google Chrome extensions

A Google Chrome extension is the simplest development environment of all the brows-
ers. Your extension can consist of a manifest file, created in JSON, a download icon,
and then the extension web page and JavaScript. It’s uncomplicated, and it’s the envi-
ronment I recommend you try first, before developing an extension for other browsers.
You can run through the beginning tutorial and have your first Chrome extension
finished in an hour.

If, I should add, you can run Chrome in your environment at all, as Google also provides
limited platform support for its browser. Currently, the Google Chrome extension
environment only seems to work in Windows, though you can see about getting into
an early release program for Mac and Linux. Note that Chrome’s Mac support is for
Intel-based machines only.

484 | Chapter 21: JavaScript Outside the Box

http://en.wikipedia.org/wiki/JavaScript

If you can work with Chrome, your extension begins with a manifest file that uses JSON
and looks like:

{
 "name": "Hello World",
 "version": "1.0",
 "description": "Giving this a try",
 "browser_action": {
 "default_icon": "icon.png",
 "popup" : "popup.html"
 }
}

You’ll provide an extension name and description, provide the environments in which
you’ll work (“permissions”), such as Google or Flickr, and provide browser actions to
load pages or add icons.

The popup.html file for my first extension has a style section and a script section:

<style>
body {
 min-width:357px;
 overflow-x:hidden;
 background-color: #ff0000;
 color: #ffff00;
 font-weight: bold;
 font-size: 48px;
}

</style>

<script>
window.onload=function(){
 var txt = document.createTextNode("Hello World!");
 var div = document.createElement("div");
 div.appendChild(txt);
 document.body.appendChild(div);
}
</script>

After you create the manifest and application page, you’ll load the extension in Chrome
via the Tools menu, choosing Extensions. Make sure the Developer Tools are exposed,
and click the “Load unpacked extension…” button for the extension folder, as shown
in Figure 21-1. If all goes well, the icon shows in the toolbar.

If you click the icon, the extension pop-up should open, as shown in Figure 21-2.

Access the Google Chrome Extension Lab at http://code.google.com/
chrome/extensions/overview.html.

21.1 Creating a Browser Add-0n, Plug-in, or Extension | 485

http://code.google.com/chrome/extensions/overview.html
http://code.google.com/chrome/extensions/overview.html

Mozilla extensions

The Mozilla extensions for the organization’s applications, including Firefox and
Thunderbird, are reasonably uncomplicated to create, but even then, the number of
files you need in order to implement an add-on is a little awe-inspiring.

To assist the new extension developer, Mozilla provides a section on extensions, in-
cluding how to set up a development environment, what all of the files mean, and what
you need to bring your application together. There is also an Extension Wizard, which
can simplify your work.

The functionality for your Firefox add-on is going to be based, in part, on JavaScript,
though the environment may not be one you recognize. For instance, your extension
could consist of an XPCOM component, which has to be compiled using the Gecko
SDK.

Robert Nyman provided probably one of the cleanest tutorials on creating a Firefox
extension, including a no-nonsense description of what files are needed, and where
they are located. Once you plow through all of the files, you’ll find a JavaScript code
listing. Though the objects in the code are unfamiliar, the coding is not.

Figure 21-1. Loading a Chrome extension

486 | Chapter 21: JavaScript Outside the Box

The Mozilla Extensions site is at https://developer.mozilla.org/en/Exten
sions. The Extension Wizard can be found at http://ted.mielczarek.org/
code/mozilla/extensionwiz/. A tutorial on how to build XPCOM com-
ponents using JavaScript can be found at http://ted.mielczarek.org/code/
mozilla/extensionwiz/. Robert Nyman’s Extension tutorial can be found
at http://robertnyman.com/2009/01/24/how-to-develop-a-firefox-exten
sion/.

Creating a Greasemonkey script

Greasemonkey is a popular Firefox extension that simplifies the process of building
new functionality for the browser. Rather than going through the entire extension-
building process, you can create a Greasemonkey script using JavaScript, and not have
to worry about XUL, XPCOM, or intimidating file structures.

Mozilla recently released the first milestone release of the Jetpack SDK,
providing a simpler environment for creating Firefox extensions. Read
more about it and download the SDK at http://mozillalabs.com/jetpack/
2010/03/09/announcing-the-jetpack-sdk/.

Figure 21-2. Trying out my first Chrome extension

21.1 Creating a Browser Add-0n, Plug-in, or Extension | 487

https://developer.mozilla.org/en/Extensions
https://developer.mozilla.org/en/Extensions
http://ted.mielczarek.org/code/mozilla/extensionwiz/
http://ted.mielczarek.org/code/mozilla/extensionwiz/
http://ted.mielczarek.org/code/mozilla/extensionwiz/
http://ted.mielczarek.org/code/mozilla/extensionwiz/
http://robertnyman.com/2009/01/24/how-to-develop-a-firefox-extension/
http://robertnyman.com/2009/01/24/how-to-develop-a-firefox-extension/
http://mozillalabs.com/jetpack/2010/03/09/announcing-the-jetpack-sdk/
http://mozillalabs.com/jetpack/2010/03/09/announcing-the-jetpack-sdk/

A Greasemonkey script has a metadata section, which provides information about the
script. Following the metadata section is the application functionality. Here’s an ex-
ample of the beginning of a Greasemonkey script, from the popular YouTube Enhancer
Greasemonkey script:

// @name YouTube Enhancer
// @author GIJoe
// @license (CC) by-nc-sa
// @include http://*.youtube.*/*
// @include http://userscripts.org/scripts/show/33402*

This partial list of the metadata describes the name of the script and the author, provides
copyright information, and also several include rules. The include and exclude rules
determine if the script is run or not. If the include dependency isn’t met, the script isn’t
run; similarly, if what’s listed in the exclude rule is met, the script isn’t run. This pre-
vents running of script where it does no good, or may conflict with other
applications.

The code, though, is very familiar. The following is a snippet from the UnShortEmAll
Greasemonkey script, which unshortens the shortened URLs in Twitter:

var as = document.getElementsByTagName('a');
for (var i = 0; i < as.length; i++) {
 var a = as[i];
 if (isshort(a)) {
 unshorten(a);
 }
}
...
function unshorten(short_link) {
 GM_xmlHttpRequest({
 method: "HEAD",
 url: short_link, href,
 headers: {"User-Agent": "Mozilla/5.0", "Accept": "text/xml"},
 onload: function(response) {
 short_link.href=response.finalUrl;
 }
 });
}

The code looks familiar. What’s different is the objects, and how the objects are used.
However, we’ve used libraries before, and the objects are intuitive.

Download Greasemonkey from Greasespot. Get Greasemonkey scripts
at http://userscripts.org, and the YouTube Enhancer script at http://user
scripts.org/scripts/show/33042. The Greasemonkey Manual can be
found online at http://wiki.greasespot.net/Greasemonkey_Manual.

488 | Chapter 21: JavaScript Outside the Box

http://www.greasespot.net/
http://userscripts.org
http://userscripts.org/scripts/show/33042
http://userscripts.org/scripts/show/33042
http://wiki.greasespot.net/Greasemonkey_Manual

21.2 Creating Desktop and Mobile Widgets
Problem
You want to create a widget that can be run in a browser, on the desktop, or in a mobile
device.

Solution
Use a widget development toolset.

Discussion
The world is widget-crazy, and rightfully so. Rather than large cumbersome multipur-
pose applications, a widget is a small, friendly little bit of single-purpose functionality
that is easy on our eyes, wallets, and computer resources.

Widgets are especially attuned to the mobile environment, requiring little space and
providing simple or no required interaction—they just work, as the saying goes. More
importantly, widgets make use of existing technology, including HTML and JavaScript,
and minimize the esoteric file structures endemic to browser extensions and full-blown
phone applications.

Widgets can be defined for a specific environment, such as the desktop, or can easily
migrate from desktop to mobile. The difference is the toolset used.

Microsoft also supports HTML-based widgets in Vista and Windows 7
(http://www.microsoft.com/windows/windows-vista/features/sidebar
-gadgets.aspx). Yahoo! has a nice summary of desktop widgets at http:
//widgets.yahoo.net/blog/?p=16.

Developing Mac Dashboard widgets

Widgets came into their own when Apple released the Mac Dashboard, an environment
conducive to embedding small, single-purpose applications. Currently on my Mac’s
Dashboard, I have a weather widget, a clock, a calendar, and a countdown timer. Some
I downloaded, some I made.

The best environment for building Dashboard widgets is to use Apple’s Dashcode,
which comes bundled with Xcode 3.0 and up. Dashboard comes prebuilt with tem-
plates you can select from in order to short-cut the widget development effort. As
Figure 21-3 shows, there are a lot of different widget templates.

Once you’ve picked a template, you’ll get a project interface where you can change the
widget attributes, mark off completed workflow items, modify the graphics, include a
widget icon, and package the whole thing. You can also add in JavaScript and see the
existing script by clicking the View→Source Code menu option.

21 2 Creating Desktop and Mobile Widgets | 489

http://www.microsoft.com/windows/windows-vista/features/sidebar-gadgets.aspx
http://www.microsoft.com/windows/windows-vista/features/sidebar-gadgets.aspx
http://widgets.yahoo.net/blog/?p=16
http://widgets.yahoo.net/blog/?p=16

At any time in the development process, you can run the widget to see how it looks, as
shown in Figure 21-4 with a little book draft countdown widget I created. Notice the
JavaScript in the window in the background.

You can also use Dashcode to create a mobile Safari application.

Dashcode is installed with the XCode tool set, which you can either
install from your Mac discs or access from http://developer.apple.com.

The Opera Widgets development environment

Opera doesn’t have an add-on or extension API/SDK, but it does have a very nice widget
development environment. This isn’t surprising when you consider Opera’s focus on
its very popular mobile browser. However, you can also run Opera widgets as stand-
alone desktop applications, as long as Opera 10.2 or higher is installed somewhere on
your computer. Beginning with Opera 10.5, the widgets install as first-class citizens
(like a regular application).

Figure 21-3. Choosing a Dashboard widget template

490 | Chapter 21: JavaScript Outside the Box

http://developer.apple.com

Building an Opera widget is little different than building any other widget: you create
an HTML file for the widget, add script, a CSS stylesheet, and a configuration file (in
XML) to manage the packaging of the widget. Opera widgets can be downloaded and
installed and given chrome—more like an application than a widget.

I created a simple Opera widget, but instead of the traditional Hello World, decided
to print the date and time. I also added widget-like behavior to flip the widget when
the front is clicked, in order to show the back, and to return.

The HTML file is simple, and includes stylesheet and script inline:

<!DOCTYPE html>
<html>
 <head>
 <title>Date/Time</title>
 <style>
 body
 {
 background-color: #006600;
 color: #ffff00;
 font-weight: bold;
 font-size: 24px;

Figure 21-4. A snapshot of an in-progress Dashboard widget project

21 2 Creating Desktop and Mobile Widgets | 491

 }
 span
 {
 padding: 10px;
 }
 p a
 {
 color: #fff;
 }
 </style>
 <script type="text/javascript">
 window.addEventListener("load", function () {
 // print out date
 var dt = new Date();
 var dtStr = dt.toDateString();
 document.getElementById("date").innerHTML=dtStr;

 // time
 var timeStr = dt.toTimeString();
 document.getElementById("time").innerHTML=timeStr;

 }, false);
 </script>
 </head>
 <body>
 <div id="datetime">
</div>
 </body>
</html>

One very nice thing about developing for a specific browser and environment, is you
don’t have to worry about cross-browser support, and can use something like
addEventListener for the window load event without worrying about IE. I could have
also split the style into a stylesheet and the script into a script file—separate or inline,
makes no difference.

The config.xml file is also simple, just providing some basic information about the
widget and the widget author:

<?xml version='1.0' encoding='UTF-8'?>
<widget>
 <widgetname>Date and Time</widgetname>
 <description>Prints out current date and time</description>
 <width>440</width>
 <height>200</height>
 <author>
 <name>Shelley Powers</name>
 <email>shelleyp@burningbird.net</email>
 <link>http://burningbird.net</link>
 <organization>Burningbird</organization>
 </author>
 <id>
 <host>burningbid.net</host>
 <name>DateTime</name>
 <revised>2010-03</revised>

492 | Chapter 21: JavaScript Outside the Box

 </id>
</widget>

To package the widget, all we need do is zip it up and change the file extension
to .wgt. When downloaded and double-clicked, the widget is installed and run, as
shown in Figure 21-5.

Figure 21-5. My little Opera widget on my Mac desktop

Of course, this is a simple widget, without chrome (which can be added), or controls
(ditto), and it doesn’t update the time with a timer. But it does demonstrate how simple
it can be to create a working widget.

There are any number of widget SDKs and instructions for making both desktop and
mobile widgets. Among those I thought most interesting are the following:

• The Opera Widget Developer Community.

• The W3C’s Widget Packaging and Configuration specification is in Candidate
Recommendation state.

• The Yahoo! Konfabulator SDK. The site also provides a widget converter.

• Microsoft has provided a how-to on creating widgets for Windows Mobile 6.5.
Windows Mobile 7 should be released towards the end of 2010.

21 2 Creating Desktop and Mobile Widgets | 493

http://dev.opera.com/articles/widgets
http://www.w3.org/TR/widgets/
http://widgets.yahoo.com/tools/
http://msdn.microsoft.com/en-us/library/dd721906.aspx

• The Mobile Safari Web Application Tutorial at Apple.

• Widgetbox is a commercial site that provides tools and hosting for widgets. You
can use the site’s free services, or sign up for a Pro account.

• Create Google Gadgets (widgets) for Google Desktop.

21.3 Creating JavaScript Applications for the iPhone, Android,
and BlackBerry with PhoneGap
Problem
You want to develop a smart phone application using JavaScript.

Solution
For many different platforms, including the iPhone, Android, and BlackBerry, use
PhoneGap to create the application with HTML and JavaScript,.

Discussion
Smart phone development requires a commitment of both time and money. No matter
how clever the tools you use, you’ll need to test your application in a real device, and
therein lies the cost. In addition, setting up the development environment and becom-
ing familiar with the SDKs and plug-ins, as well as with PhoneGap, is not a trivial
undertaking. However, smart phone applications are a hot commodity now, as well as
an interesting environment, and can be worth both the time and the cost.

PhoneGap provides a way to develop an application once in HTML and JavaScript,
and port that application to the three smart phone environments: iPhone, Android,
and BlackBerry (and Windows Mobile, Palm, and so on). What it doesn’t provide is a
way to work around any environment restrictions, such as having to have a Mac Intel
machine in order to develop for the iPhone.

If you don’t have a Mac Intel machine, though, you can still try out the tool for other
phones, even if at first you don’t have the phones for testing. PhoneGap provides an
emulator, as does Android and BlackBerry. BlackBerry provides a variety of simulators
for every type of device.

You’ll need to install the Eclipse development environment, but this application is freely
available for most environments. You’ll also need to download either the BlackBerry
or Android SDKs, and/or Eclipse plug-ins. It does take a nontrivial amount of time
getting to know the environments, the files, and how everything holds together.

Once you’ve met these background requirements, you’re back on familiar ground: us-
ing HTML, CSS, and JavaScript. For instance, the following code snippet (from the

494 | Chapter 21: JavaScript Outside the Box

http://developer.apple.com/safari/library/documentation/AppleApplications/Conceptual/Dashcode_UserGuide/Contents/Resources/en.lproj/MakingaWebApp/MakingaWebApp.html
http://www.widgetbox.com/
http://code.google.com/apis/desktop/

book Building iPhone Apps with HTML, CSS, and JavaScript, by Jonathan Stark, pub-
lished by O’Reilly) demonstrates using jQuery for building an iPhone application:

if (window.innerWidth && window.innerWidth <= 480) {

 $(document).ready(function(){
 $('#header ul').addClass('hide');
 $('#header').append('<div class="leftButton"
 onclick="toggleMenu()">Menu</div>');
 });
 function toggleMenu() {
 $('#header ul').toggleClass('hide');
 $('#header .leftButton').toggleClass('pressed');
 }
}

As you can see, once you get past all of the framework issues, the JavaScript is little
different than what you use for your web applications.

See Also
Download PhoneGap and find the help wiki at http://phonegap.com/. You can also
separately download the PhoneGap emulator, which runs on Adobe AIR. I found the
emulator to be helpful when it came to debugging how my many websites look on
various mobile devices.

Another helpful tool for jQuery development for the iPhone is jQTouch, a jQuery plug-
in developed by David Kaneda to simplify converting HTML pages into iPhone
applications. The plug-in comes with prebuilt animations, as well as event handling
specific to iPhones, such as swipe detection. You can download the plug-in and see
documentation at http://www.jqtouch.com/. Jonathan Stark provides a how-to tutorial
on using jQTouch on YouTube at http://www.youtube.com/watch?v=6X4K2MQsSeI.

Eclipse can be downloaded from http://www.eclipse.org. The Android development
environment can be found at http://developer.android.com/sdk/index.html, and the
BlackBerry at http://na.blackberry.com/eng/developers/.

If you have the bucks to ensure you have the development machine, the iPhone devel-
opment center is at http://developer.apple.com/iphone/. If you are interested in iPhone
development, I recommend Building iPhone Apps with HTML, CSS, and JavaScript by
Jonathan Stark (O’Reilly). Jonathan provides a chapter on using PhoneGap for iPhone
development.

21.3 Creating JavaScript Applications for the iPhone, Android, and BlackBerry with PhoneGap | 495

http://oreilly.com/catalog/9780596805791/
http://phonegap.com/
http://www.jqtouch.com/
http://www.youtube.com/watch?v=6X4K2MQsSeI
http://www.eclipse.org
http://developer.android.com/sdk/index.html
http://na.blackberry.com/eng/developers/
http://developer.apple.com/iphone/
http://oreilly.com/catalog/9780596805791/

21.4 Enhancing Tools with JavaScript
Problem
You have a favorite tool, such as Photoshop or Adobe Bridge, or a favorite application,
such as OpenOffice. You want to add an extension or macro that takes a set of behaviors
written in JavaScript and integrates it into the product.

Solution
A quick search online is going to show if you can extend your favorite tools, utilities,
and applications with JavaScript. In most cases, you already have the tools you need.

Discussion
When we hear JavaScript, we think web, and forget that JavaScript is a compact,
easy-to-learn language being incorporated as the basic scripting language for many
applications.

In this section, we’ll look at how JavaScript can be used to extend, enhance, or package
reusable functionality, and then be integrated into two different applications.

Working with the Adobe Bridge SDK and the ExtendScript Toolkit

JavaScript can be used with the Adobe Creative Suite (CS) products, using the Adobe
Bridge SDK and the ExtendScript Toolkit (ESTK) that’s installed with the Suite. There
are SDKs currently available for CS3 and CS4. You can use any editor for the JavaScript,
but the ESTK allows you to build and test within the environment in which the scripts
run.

The easiest way to get started with writing scripts for the Creative Suite products is to
open it and take a close look at the samples provided with the SDK and Creative Suite
installations, most likely under a subdirectory labeled Scripting Guide. Both the SDK
and the CS come with extensive documentation.

For the Adobe Bridge SDK, the JavaScript samples are located in the sdksamples/java-
script subdirectory. I picked one called ColorPicker.jsx, and double-clicked the file to
open it within the ESTK, as shown in Figure 21-6.

The Photoshop script files have a specialized ESTK file extension, .jsx, but they contain
regular JavaScript. The sample code is well documented and easy to follow. Utilizing
the advice in the CS3 Scripting Guide, I created a PhotoShop version of Hello World
with the following JavaScript:

// Remember current unit settings and then set units to
// the value expected by this script
var originalUnit = preferences.rulerUnits
preferences.rulerUnits = Units.INCHES

496 | Chapter 21: JavaScript Outside the Box

// Create a new 2x4 inch document and assign it to a variable
var docRef = app.documents.add(8, 8)

// Create a new art layer containing text
var artLayerRef = docRef.artLayers.add()
artLayerRef.kind = LayerKind.TEXT

// Set the contents of the text layer.
var textItemRef = artLayerRef.textItem
textItemRef.contents = "Hello, World from Shelley!"

// Release references
docRef = null
artLayerRef = null
textItemRef = null

// Restore original ruler unit setting
app.preferences.rulerUnits = originalUnit

Figure 21-6. Opening the ColorPicker JavaScript file in the ExtendScript Toolkit

I saved the file as helloworld.jsx in the CS3 Photoshop→Presets→Scripts subdirectory,
and when I started Photoshop and selected File→Scripts, my helloworld script was
displayed in the menu that opened. Clicking it opened a very plain document with my
simple message.

21.4 Enhancing Tools with JavaScript | 497

As you can see, the JavaScript is simple, but you do have to spend a significant amount
of time becoming familiar with the Adobe CS environment and objects.

You can download the Adobe Bridge SDK from the Photoshop Devel
oper Center.

Creating an OpenOffice macro

Most office-like tools provide some form of extensibility, though not all applications
allow JavaScript. OpenOffice, which is the tool I’m using to write this book, allows us
to write macros using JavaScript within the ScriptingFramework architecture.

A JavaScript macro is created in its own subdirectory, with a parcel-descriptor.xml file
providing a descriptor for the macro. A very simple example is my own modified version
of the Hello World JavaScript macro that is installed with Open Office. The descriptor
looks as follows:

?xml version="1.0" encoding="UTF-8"?>

<parcel language="JavaScript" xmlns:parcel="scripting.dtd">

 <script language="JavaScript">
 <locale lang="en">
 <displayname value="Shelley's Hello World"/>
 <description>
 Adds the the string "Hello World, from Shelley!"
into the current text doc.
 </description>
 </locale>
 <functionname value="helloworldfromshelley.js"/>
 <logicalname value="ShelleyHelloWorld.JavaScript"/>
 </script>

</parcel>

Pretty simple and intuitive: a display name, a description, the function name (which is
the filename), and a logical name. The JavaScript is almost as simple:

/ Hello World in JavaScript
importClass(Packages.com.sun.star.uno.UnoRuntime);
importClass(Packages.com.sun.star.text.XTextDocument);
importClass(Packages.com.sun.star.text.XText);
importClass(Packages.com.sun.star.text.XTextRange);

//get the document from the scripting context
oDoc = XSCRIPTCONTEXT.getDocument();

//get the XTextDocument interface
xTextDoc = UnoRuntime.queryInterface(XTextDocument,oDoc);

//get the XText interface

498 | Chapter 21: JavaScript Outside the Box

http://www.adobe.com/devnet/photoshop/sdk/
http://www.adobe.com/devnet/photoshop/sdk/

xText = xTextDoc.getText();

//get an (empty) XTextRange interface at the end of the text
xTextRange = xText.getEnd();

//set the text in the XTextRange
xTextRange.setString("Hello World, from Shelley!");

All macros have access to the OpenOffice API through the XScriptContext object,
shown highlighted in the code snippet, which provides an interface between the macro
and the OpenOffice documents.

Once both of the files were created, I uploaded my macro subdirectory to the Open-
Office macro subdirectory, and when I clicked on Tools→Macros→Organize
Macros→JavaScript, the dialog opened, showing my newly installed Macro, as in
Figure 21-7.

Figure 21-7. OpenOffice dialog showing my newly created JavaScript macro

Running the macro creates a line of text in the top of the document that says, “Hello
World from Shelley!”

Simple, true, but the line could have easily contained the typical header for all of your
letters, preformatted and ready to insert into the page by clicking a key that is bound
to the macro.

21.4 Enhancing Tools with JavaScript | 499

The OpenOffice Writing Macros page can be found at http://wiki.serv
ices.openoffice.org/wiki/Documentation/DevGuide/Scripting/Writing
_Macros.

21.5 Creating Efficient Desktop Applications with
Web Workers and the File API
Problem
You’re interested in adding the necessary functionality so that your browser-based on-
line application can function as a full-featured desktop application.

Solution
In addition to using many of the other technologies covered earlier in the book, add
four new capabilities to your JavaScript/CSS/HTML-based application: application
cache, so your site can function offline; geolocation, if your application is mobile-based;
direct file access through the File API; and Web Workers, for efficient concurrent
processing.

Application cache isn’t JavaScript-specific, and the geolocation API requires specialized
equipment for testing, so I’m going to focus on the File API and Web Workers in this
recipe.

Discussion
The File API bolts on to the existing input element file type, used for file uploading.
In addition to the capability of uploading the file to the server via a form upload, you
can now access the file directly in JavaScript, and either work with it locally or upload
the file using the XMLHttpRequest object.

There are three objects in the File API:

FileList
A list of files to upload via input type="file".

File
Information about a specific file.

FileReader
Object to asynchronously upload the file for client-side access.

Each of the objects has associated properties and events, including being able to track
the progress of a file upload (and provide a custom progress bar), as well as signaling
when the upload is finished. The File object can provide information about the file,
including file size and MIME type. The FileList object provides a list of File objects,

500 | Chapter 21: JavaScript Outside the Box

http://wiki.services.openoffice.org/wiki/Documentation/DevGuide/Scripting/Writing_Macros
http://wiki.services.openoffice.org/wiki/Documentation/DevGuide/Scripting/Writing_Macros
http://wiki.services.openoffice.org/wiki/Documentation/DevGuide/Scripting/Writing_Macros

because more than one file can be specified if the input element has the multiple at-
tribute set. The FileReader is the object that does the actual file upload.

Example 21-1 is an application that uses all three objects in order to upload a file as
text, and embed the text into the web page. In the example, I’m using it to access
uncompressed ePub book chapters. Since ePub chapter files are valid XHTML, I can
use the built-in XML Parser object, DOMParser, to process the file.

Example 21-1. Uploading an ePub chapter into a web page

<!DOCTYPE html>
<head>
<title>ePub Reader</title>
<meta charset="utf-8" />
<style>
#result
{
 width: 500px;
 margin: 30px;
}
</style>
<script>

window.onload=function() {

 var inputElement = document.getElementById("file");
 inputElement.addEventListener("change", handleFiles, false);
}

function handleFiles() {
 var fileList = this.files;
 var reader = new FileReader();
 reader.onload = loadFile;
 reader.readAsText(fileList[0]);
}

function loadFile() {

 // look for the body section of the document
 var parser = new DOMParser();
 var xml = parser.parseFromString(this.result,"text/xml");
 var content = xml.getElementsByTagName("body");

 // if found, extract the body element's innerHTML
 if (content.length > 0) {
 var ct = content[0].innerHTML;
 var title = document.getElementById("bookTitle").value;
 title = "<h2>" + title + "</title>";
 document.getElementById("result").innerHTML = title + ct;
 }
}
</script>
</head>
<body>

21 5 Creating Efficient Desktop Applications with Web Workers and the File API | 501

<form>
<label for="title">Title:</label>
<input type="text" id="bookTitle" /></br >

<label for="file">File:</label> <input type="file" id="file" />

</form>
<div id="result"></div>
</body>

Figure 21-8 shows the page with a chapter of one of my books loaded.

Figure 21-8. Using the File API to read a chapter of an ePub book

The File API is still a work in progress, and only Firefox 3.6 and up support it. However,
it’s an intriguing functionality that’s also necessary for an application to be considered
a “desktop” application—if you want to be able to upload and work with files when
your application is currently offline. It’s also pretty handy for other uses.

502 | Chapter 21: JavaScript Outside the Box

The File API is a W3C effort. You can read the latest draft at http://www
.w3.org/TR/FileAPI/. Read Mozilla’s coverage at https://developer.mozil
la.org/en/Using_files_from_web_applications.

The last new technology I’m going to cover in this book is Web Workers. Before I get
into the new functionality, though, I want to provide a brief introduction to multi-
threaded development.

In a language such as Java, you can create multiple threads of execution, which can
operate concurrently. Computers and operating systems have long had the ability to
support multiple threads, switching the necessary resources among the threads as nee-
ded, demonstrated in Figure 21-9. Handled correctly, threads can make your applica-
tion run faster and more efficiently. Multithreaded development also provides the
functionality necessary to ensure the threads are synced, so the applications are accu-
rate, too.

Figure 21-9. Example of concurrent threads, from the Thread Wikipedia entry

In the past, a major difference between JavaScript and these multithreaded program-
ming languages is that JavaScript runs within a single thread of execution. Even when
a timer fires, the associated event falls into the same queue as other pending events.
This single-execution-thread queue is why you can’t absolutely depend on the precise-
ness of a JavaScript timer. With Web Workers, introduced as one of the W3C WebApps
1.0 specifications, for better or worse, this all changes.

21 5 Creating Efficient Desktop Applications with Web Workers and the File API | 503

http://www.w3.org/TR/FileAPI/
http://www.w3.org/TR/FileAPI/
https://developer.mozilla.org/en/Using_files_from_web_applications
https://developer.mozilla.org/en/Using_files_from_web_applications

I say “for better or worse” because thread-based development has always been a two-
edged sword in most development environments. If they’re not properly managed,
multithreaded applications can crash and burn rather spectacularly. Of course, with
most of the other multithreaded environments, you also have more control over the
creation and destruction of threads. Web Workers provides threaded development,
but at a higher, hopefully safer level.

To create a web worker, all you need do is call the Worker object constructor, passing
in the URI for a script file to run:

var theWorker = new Worker("background.js");

You can also assign a function to the web worker’s onmessage event handler, and
onerror event handler:

theWorker.onmessage = handleMessage;
theWorker.onerror = handleError;

To communicate with the web worker, use the postMessage method, providing any data
it needs:

theWorker.postMessage(dataObject);

In the web worker, an onmessage event handler receives this message, and can extract
the data from the event object:

onmessage(event) {
 var data = event.data;
 ...
}

If the web worker needs to pass data back, it also calls postMessage. The function to
receive the message in the main application is the event handler function assigned to
the web worker’s onmessage event handler:

theWorker.onmessage= handleMessage;

The function can extract any data it’s expecting from the event object.

Normally the script you’d run would be a computationally intensive script, with results
that aren’t immediately needed. Mozilla’s example for web workers demonstrates a
script that computes a Fibonacci sequence. It reminded me of the recursive function I
demonstrated in Chapter 6, the one that reversed arrays.

In Example 21-2, I converted the reversed array function into a web worker JavaScript
routine. In the JavaScript library, an onmessage event handler function accesses the data
from the event object—the array to reverse—and passes it to the reversed array func-
tion. Once the function finishes, the web worker routine calls postMessage, sending the
resulting string back to the main application.

504 | Chapter 21: JavaScript Outside the Box

Example 21-2. Using web worker JavaScript to reverse an array and return the resulting string

// web worker thread - reverses array
onmessage = function(event) {

 var reverseArray = function(x,indx,str) {
 return indx == 0 ? str :
reverseArray(x,--indx,(str+= " " + x[indx]));;
 }

 // reverse array
 var str = reverseArray(event.data, event.data.length, "");

 // return resulting string to main application
 postMessage(str);
};

I copied and modified the application in Example 21-1 to Example 21-3. When the
application retrieves the uploaded file and extracts the body element, it splits the content
into an array based on the space character. The application sends the array through to
the reversed array web worker. Once the web worker finishes, the data is retrieved and
output to the page.

Example 21-3. The ePub reader in Example 21-1, using a web worker to reverse the content

<!DOCTYPE html>
<head>
<title>ePub Reader</title>
<meta charset="utf-8" />
<style>
#result
{
 width: 500px;
 margin: 30px;
}
</style>
<script>

window.onload=function() {

 var inputElement = document.getElementById("file");
 inputElement.addEventListener("change", handleFiles, false);
}

function handleFiles() {
 var fileList = this.files;
 var reader = new FileReader();
 reader.onload = loadFile;
 reader.readAsText(fileList[0]);
}

function loadFile() {

 // look for the body section of the document
 var parser = new DOMParser();

21 5 Creating Efficient Desktop Applications with Web Workers and the File API | 505

 var xml = parser.parseFromString(this.result,"text/xml");
 var content = xml.getElementsByTagName("body");

 // if found, extract the body element's innerHTML
 if (content.length > 0) {
 var ct = content[0].innerHTML;
 var ctarray = ct.split(" ");
 var worker = new Worker("reverse.js");
 worker.onmessage=receiveResult;
 worker.postMessage(ctarray);
 }
}

function receiveResult(event) {
 document.getElementById("result").innerHTML = event.data;
}
</script>
</head>
<body>
<form>
<label for="file">File:</label> <input type="file" id="file" />

</form>
<div id="result"></div>
</body>

As you can see in Figure 21-10, the results are interesting. Not very useful—except they
demonstrate that the web worker performs as expected, and quickly, too.

Firefox 3.6 is the only browser that supports both File API and Web Workers at the
time this was written. WebKit, and WebKit-based browsers, Safari and Chrome, sup-
port Web Workers. To test the result in the WebKit browsers, I converted the main
application to work on a statically created array, rather than an uploaded file:

window.onload=function() {

 var ctarray = ["apple","bear","cherries","movie"];
 var worker = new Worker("reverse.js");
 worker.onmessage=receiveResult;
 worker.postMessage(ctarray);
}

function receiveResult(event) {
 document.getElementById("result").innerHTML = event.data;
}

I ran the application in Firefox and then in Safari, and ended up with unexpected results,
as shown in Figure 21-11.

The Firefox results are what I would expect: the array entries are reversed, and the
entries converted to a string. The result from Safari, though, is unexpected: every char-
acter within the string is reversed, including the commas between the array elements.

506 | Chapter 21: JavaScript Outside the Box

Figure 21-10. Reversed array from uploaded file displayed in page

Running the application again, but this time in the newest WebKit nightly build, the
results match the Firefox result. What happened with Safari 4 is that postMessage didn’t
serialize the object correctly when it transmitted the object to the web worker routine.
The newer WebKit nightly shows that this bug was fixed, and the object is now seri-
alized correctly.

However, to ensure that objects are passed correctly, regardless of browser version, we
can use JSON.stringify on any object before we send it, and JSON.parse on any data
that we receive, in order to ensure the object is handled correctly regardless of browser
and browser version:

window.onload=function() {

 var ctarray = ["apple","bear","cherries","movie"];
 var worker = new Worker("reverse2.js");
 worker.onmessage=receiveResult;
 worker.postMessage(JSON.stringify(ctarray));
}

21 5 Creating Efficient Desktop Applications with Web Workers and the File API | 507

function receiveResult(event) {
 document.getElementById("result").innerHTML = event.data;
}

In the web worker, we use JSON.parse to restore the serialized version of the object:

// web worker thread - reverses array
onmessage = function(event) {

 var reverseArray = function(x,indx,str) {
 return indx == 0 ? str :
reverseArray(x,--indx,(str+= " " + x[indx]));;
 }

 // reverse array
 var obj = JSON.parse(event.data);
 var str = reverseArray(obj, obj.length, "");

 // return resulting string to main application
 postMessage(str);
};

Figure 21-11. Interesting—and differing—results when running application in Firefox and Safari

Now the application works the same in Firefox 3.6 and Safari 4. The application should
also work with Chrome. Web workers don’t work with Opera 10.5, or IE8. However,
both browsers should support web workers, and hopefully the File API, in an upcoming
version.

508 | Chapter 21: JavaScript Outside the Box

See Also
See Recipe 6.6 for a description of the array reversal recursive function. The
postMessage method is introduced in Recipe 18.10, and JSON is covered in Recipes
19.4 and 19.5.

21 5 Creating Efficient Desktop Applications with Web Workers and the File API | 509

Index

Symbols
&& (logical AND) operator, 11
> (angle bracket)

greater than operator, 7
replacing with named entities, 36

>= (greater than or equal to) operator, 7
< (angle bracket)

less than operator, 7
replacing with named entities, 36

<= (less than or equal to) operator, 7
* (asterisk), 232

in regular expressions, 23, 25
\ (backslash)

for escape sequences, 15
in regular expressions, 22

!= (inequality) operator, 6
!== (strict inequality) operator, 6
{ } (braces) in regular expressions, 23
[] (brackets)

for arrays, 69
in regular expressions, 23

^ (caret) in regular expressions, 23
$ (dollar sign) in regular expressions, 27

$& pattern, 33
$ (dollar sign)

in regular expressions, 23
. (dot)

dot notation, 118
in regular expressions, 25

== (equality) operator, 5
=== (strict equality) operator, 6
-- (decrement) operator, 58
() (parentheses) in regular expressions, 24, 32–

34

% (modulo) operator, 230
|| (conditional OR) operator, 120
+ (addition) operator, 3

in regular expressions, 23
+= (assignment) operator, 3
++ (increment) operator, 58
? (question mark)

in regular expressions, 23, 27
ternary operator, 120

' (single quotes) for strings, 1
" (double quotes) for strings, 1
/ (slash) for RegExp objects, 22

A
abort method (XMLHttpRequest), 414
abs method (Math), 57
accessibility, 297–324

adding to page overlays, 308–312
alert messages, 300–302
collapsible form sections, 312–316
flashing color, to signal action, 316–320
hiding or showing page sections, 299–300
highlighting invalid form fields, 302–307
of live regions, 323–324
with tabbed page applications, 320–323

accessor descriptors, 370
accidental closures, 105
accordion widgets, 278, 312–316
acos method (Math), 57
actions (browser), confirming, 144
add-ons, creating, 484–488
addEventListener method, 123, 344
adding elements

adding paragraphs to divs, 248
and then adding text, 249–251

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

511

to end to page, 246–247
before existing elements, 242–246
with innerHTML property, 241–242

+ (addition) operator, 3
additions value (aria-relevant attribute), 324
Adobe Bridge SDK, 496–498
Ajax, 413–434

accessing XMLHttpRequest objects, 414–
415

adding callback functions to requests, 420–
421

checking request status, 421
converting JSON text into objects, 442–

443
determining type of query call, 417–420
making requests to other domains, 422–

424
periodic page updates, 427–430
populating selection lists from server, 424–

426
preparing data for transmission, 416–417
processing returned XML documents, 436–

437
processing text results, 422

alert messages, 181, 300–302
alert pop up boxes, 144
alert value (ARIA role attribute), 301
alerts, for debugging, 181–182
all property (document element), 213
all value (aria-relevant attribute), 324
&& (logical AND) operator, 11
analog clock, building, 345–346
Android applications, building, 494–495
> (angle bracket)

greater than operator, 7
replacing with named entities, 36

>= (greater than or equal to) operator, 7
< (angle bracket)

less than or equal to operator, 7
replacing with named entities, 36

<= (less than or equal to) operator, 7
anonymous functions, 93, 98, 100

with timer calls, 52
wrapping global variables with, 112–113

appCodeName property (Navigator), 146
appendChild method, 246–247
appending elements to page end, 246–247
Apple Mac Dashboard widgets, 489–490
application caching, 500

application performance profiling, 190–194
applications, enhancing with JavaScript, 496–

499
apply method (Function), 366–369
appName property (Navigator), 146
appVersion property (Navigator), 146
arc method (canvas), 332
arcs, calculating length of, 67–68
area of web page window, 270–271
arguments, functions, 95–96

complex data objects as, 96–98
currying (see currying)
functions as, 100–101
recursive algorithms, 101–103
validating, 95

arguments objects (functions), 96
aria-atomic attribute, 324
ARIA attributes

for live regions, 323–324
with tabbed page applications, 320–323

aria-dropeffect property, 139
aria-expanded attribute, 313, 314
aria-grabbed property, 139
aria-hidden attribute, 299, 313
aria-invalid attribute, 303
aria-labeledby attribute, 313, 320
aria-live attribute, 324
aria-multiselect attribute, 313
aria-relevant attribute, 324
arithmetic operators, with Date objects, 49
Array objects (see arrays)
Array objects, nested (see multidimensional

arrays)
arrays, 69–91

applying functions against each element,
82–83

to create new array, 83–84
associative, to store form data, 88–91
of elements, by class name, 231–232
filtering to create subarrays, 84–85
joining elements into strings, 73–74
looping through elements of, 71
multidimensional, 71–73

flattening into single dimension, 79–80
NodeList collections vs., 216
printing out, 70
searching through, 78–79

for removal or replacement, 80–82
sorting (ordering) elements of

512 | Index

alphabetically, 74–75
FIFO (first-in, first out), 75–76
LIFO (last-in, first-out), 76–77

subsets of, creating arrays for, 77–78
validating contents of, 86–87

article elements
accessing all images in, 221–222
styling in older browsers, 247

articles, accessing all images in, 222–226
asin method (Math), 57
assertions, JsUnit, 393
+= (assignment) operator, 3
Assistive Technology (AT) devices (see

accessibility)
associative arrays, 88–91
* (asterisk), 232

in regular expressions, 23, 25
AT devices (see accessibility)
atan method (Math), 57
atan2 method (Math), 57
attachEvent method, 123
attribute minimization, 253
attributes

adding to elements, 251–252
ARIA (see accessibility)
collecting elements that share, 232–233
getting information contained in, 237–238
removing from elements, 253–254
testing for Boolean attributes, 252–253

audio (see rich media)
audio elements, 326, 351–353
automatic garbage collection, 105
availWidth property (Screen), 149

B
\b in regular expressions, 23
\B in regular expressions, 23
Back button

alternative to, 465–469
preserving state for, 156–157

/ (backslash)
for escape sequences, 15
in regular expressions, 22

!= (inequality) operator, 6
!== (strict inequality) operator, 6
beginPath method (canvas), 330
bezierCurveTo method (canvas), 332
bind method (Prototype), 383
BlackBerry applications, building, 494–495

_blank URL, 145
block value (CSS display property), 276
blur events, 116

with form elements, 162
body elements, 211

appending elements to page bottom, 246–
247

bookmarking dynamic pages, 153–156
Boolean attributes, testing for, 252–253
border property (bounding rectangle), 272
bottom property (bounding rectangle), 272
{ } (braces) in regular expressions, 23
[] (brackets)

for arrays, 69
in regular expressions, 23

breadcrumbs in CMS templates, 150–152
breakpoints

with Firebug, 188–190
with IE’s Developer Tools, 196–197

browser add-ons, creating, 484–488
browser information, getting, 145–146
Browser Object Model (BOM), 143
browser objects, 143
browsers, using, 143–157

basing image dimensions on page size, 149–
150

bookmarking dynamic pages, 153–156
breadcrumbs in CMS templates, 150–152
confirming user actions, 144
creating new basic windows, 144–145
getting information about browser, 145–

146
preserving state for Back and Refresh, 156–

157
stylesheets, based on color support, 147–

149
styling new elements in old browsers, 247
warning about leaving page, 146–147

browsing context, 143
bulleted lists, applying striping theme to, 230–

231
button elements, 162

C
caching calculations (memoization), 109–112
callback functions, 82
canceling events, 116, 125–126
canceling form submission upon invalid data,

167–168

Index | 513

cancelPropagation method, 128
canPlayType method (media elements), 355
canvas elements, 325, 326–328

converting hCalendar Microformat
annotations into, 447–450

dynamic line charts, 330–333
implementing in IE, 328–330
integrating with SVG in HTML, 347–350

capitalization (see case)
^ (caret) in regular expressions, 23
case (capitalization)

comparing strings and, 5
converting, 5
ignoring in pattern matching, 26
uppercase greater than lowercase, 7

catch statements, for exception handling, 182
ceil method (Math), 57
chaining constructors, 366
chaining methods, 236, 385–387, 402
change events, 116
characters, 14

(see also strings)
breaking strings into individual, 14
capitalization of (see case)
escape sequences for, 15
matching in regular expressions, 23
pattern matching (see regular expressions)
special, in regular expressions, 23

checkbox elements, 162
finding all checked, 233–234

checked options, finding all, 233–234
:checked pseudoclass, 233
childNodes collection, 215, 256, 440
Chrome extensions, building, 484–485
Chrome (Google), debugging in, 208–209
circles that fit page elements, 65–67
circular arcs, calculating length of, 67–68
class name, collecting elements by, 231–232
className property (HTMLElement), 244
clearRect method (canvas), 327
click events, 116

with form elements, 162
click location (mouse), capturing, 119–122
client-side storage

cookies (see cookies)
localStorage objects, 476–479
relational data stores, 479–481
sessionStorage objects, 469–476

ClientRect objects, 272

clientWidth property, 271
cloneNode method, 257
closePath method (canvas), 331
closures, 105

(see also currying)
CMS templates, breadcrumbs in, 150–152
code, packaging into files, 390–392
code compression with minify, 397
collapsible form sections, 277–280, 312–316
colorDepth property (Screen), 147
colors

changing stylesheets based on support of,
147–149

flashing, to signal action, 316–320
generating randomly, 60–61

columns, table, summing all elements in, 234–
236

Comet concept (Ajax communication), 428
comma-delimited strings, breaking apart, 13–

14
communication APIs (see Ajax; postMessage

functionality)
comparing strings, 5–8
comparison operators, 6
compressing code with minify, 397
concat method (Array), 80
concatenating strings, 3–4

with other data types, 4
concurrent form submissions, preventing, 169–

171
|| (conditional OR) operator, 120
configurable attribute (objects), 370
confirm pop up boxes, 144
confirming user actions, 144
Console panel (Firebug), 191
constructor chaining, 366–369
constructors, 360
controls attribute (audio element), 352
cookie collection (document element), 212
cookie property (document), 462, 463
cookieEnabled property (Navigator), 146
cookies, 457, 462–465
CORS (Cross Origin Resource Sharing) API,

413
cos method (Math), 57, 346
createAttribute method, 251–252
createElement method, 64

adding elements before other elements,
242–246

514 | Index

creating shims with, 247
createElementNS method, 245
createTextNode method, 64, 249
CSS style properties

changing for elements, 264–267
getting information about, 238–240

CSS tab (Firebug), 186
{ } (braces) in regular expressions, 23
currentStyle objects, 240
currentTime attribute (video element), 355
currying, 104, 107–108

D
\d in regular expressions, 23, 27
\D@ in regular expressions, 23
Dashboard Widgets (Apple), 489–490
data-* attributes, 285
data descriptors, 370
data persistence (see persistence)
date and time, 39–53

converting ISO 8601 string to Date, 45–47
creating Date object from data, 47–48
elapsed time, tracking, 49
function closures with timers, 52–53
future dates, 48
ISO 8601 formatted dates, 43–44
printing today’s date, 41–42
printing UTC date and time, 42–43
realistic analog clock, building, 345
recurring timers, 50–51
timeouts, triggering, 49–50

Date objects, 39–40
arithmetic operators with, 49
building analog clock with, 345
calculating time between, 49
converting ISO 8601 strings to, 45–47
creating from data, 47–48

datetime command, 42
dblclick events, 116
debug function (JsUnit), 394
debugging, 177

checking for function errors, 180–181
checking values of variables, 181–182
custom useful exceptions, 184–185
with Firebug, 185–188
with Google’s Chrome (WebKit), 208–209
with IE’s Developer Tools, 194–196

using breakpoints, 196–197
with Opera’s Dragonfly, 198–200

using breakpoints, 201
profiling application performance, 190–

194
with Safari’s development tools, 201–205

using breakpoints, 207–208
using breakpoints, 188–190

decimal numbers, converting to hexadecimals,
59

declarative functions, 93, 94
-- (decrement) operator, 58
__defineGetter__ method, 365
defineProperty method (Object), 369, 373
__defineSetter__ method, 365
degrees, converting with radians, 64–65

calculating arc lengths, 67–68
DELETE requests, about, 418
deleting (removing)

attributes from elements, 253–254
event listeners, 125
paragraphs from pages, 260–261
specific array elements, 80–82
unwanted textarea input, 129–132

desktop widgets, creating, 489–494
Developer Tools (Internet Explorer), 194–196

using breakpoints, 196–197
dimensions (see size)
dimensions of images, basing on page, 149–

150
disabled property, with form elements, 161
disabled scripting, handling, 177–180
disabling form elements, 161

after radio button events, 164
display property (CSS), 172, 276

aria-hidden property with, 299
div elements, 211

adding paragraphs to, 248
and then adding text, 249–251

highlighting first paragraphs in, 227–230
as page overlays, 281–283

adding keyboard accessibility to, 308–
312

document elements, 143, 211
accessing, 214–216
forms collection, 160

documenting code, 392
documentView property (document element),

271
$ (dollar sign), 27

$& pattern, 33

Index | 515

in regular expressions, 23
DOM inspector (Firebug), 186
DOM Level 0 event handling, 116, 124
DOM Level 1 specification, 213
DOM Level 2 event handling, 116, 122–125
domain= parameter (cookies), 463
DOMException exceptions, 185
DOMNodeInserted event, 117
DOMNodeRemoved event, 117
. (dot) in regular expressions, 25
dot notation, 118
" (double quotes) for strings, 1
drag-and-drop (HTML5), 132–140
drag events, 136
dragend events, 136
dragenter events, 136, 138
draggable attribute, 135
dragleave events, 136
Dragonfly (Opera), 198–200

using breakpoints, 201
dragover events, 136, 138
dragstart events, 135, 136
drop events, 136
dtstart class, 447
duplicate form submissions, preventing, 169–

171
dynamic line charts (canvas), 330–333
dynamic pages

bookmarking, 153–156
preserving state for Back and Refresh, 156–

157
dynamic runtime functions, 98–100
dynamic selection lists, 173–176

E
E property (Math), 56
elapsed time, tracking, 49
elements

accessing all images in, 221–222
using Selectors API, 222–226

adding attributes to, 251–252
changing CSS style properties of, 264–267
collecting by shared attribute, 232–233
creating arrays of, by class name, 231–232
finding parent elements for, 226
getting attribute information for, 237–238
getting CSS style information for, 238–240
hiding or showing page sections, 299–300
hiding until needed, 276–277

using tabs (divided content), 284–289,
320–323

HTML5, styling in older browsers, 247
measuring size of, 272–273
moving within page, 254
overflow, 269
positions of (on page), 273–276
removing attributes from, 253–254
removing from pages, 260–261
replacing with footnote bullets, 254–257
testing for Boolean attributes, 252–253

elements, adding
adding paragraphs to divs, 248

and then adding text, 249–251
to end to page, 246–247
before existing elements, 242–246
with innerHTML property, 241–242

elements property (form element), 212
embedding SVG into HTML pages, 339–345
empty strings, checking for, 10–12
emulating canvas, 329
emulating SVG in IE, 338–339
encodeURI method, 160
encodeURIComponent method, 160, 416
enhancing applications with JavaScript, 496–

499
enumerable attribute (objects), 370
enumering object properties, 374–377
== (equality) operator, 5
=== (strict equality) operator, 6
Error Console (Dragonfly), 198
Error Console (Safari), 203
error handling, 177

checking for function errors, 180–181
custom useful exceptions, 184–185
graceful, 182–183
managing when JavaScript is off, 177–180

Error objects, 183
errors, about, 177
errors in forms, highlighting, 302–307
errors with AJax requests, checking for, 421
escape sequences, 15
eval method, 442, 443
EvalError errors, 184
event listeners, 116

stopping listening, 125
Event objects, 120
EventException exceptions, 185
events, 115–142

516 | Index

canceling, 116, 125–126
capturing mouse-click information, 119–

122
flashing color, to signal action, 316–320
with forms

acting on radio button clicks, 164–166
capturing form data, 161–163

generic reusable handler functions, 122–
125

HTML5 drag-and-drop, 132–140
keyboard events, 116, 129–132
keyboard listening, 308–312
live regions, accessibility of, 323–324
propagating through nested elements, 126–

129
running functions after page load, 117–118
Safari orientation events, 140–142

every method (Array), 86
exceptions, 184–185
exp method (Math), 57
expires= parameter (cookies), 463
explorercanvas library, 329
ExtendScript Toolkit (ESTK), 496–498
extensibility, object

adding methods, 362–364
adding properties, 369–374
preventing, 377–378
preventing property descriptor changes,

379–380
extensions, creating, 484–488
external libraries, using, 400–402

combining libraries, 408–411
extracting data from XML documents, 437–

442

F
factorials, 101
fades, to signal action, 316–320
Fibonacci Sequence, 101, 110
fields, form (see see forms)
FIFO (first-in, first out), 75–76
File API, 500–509
file elements (forms), 163
File objects (File API), 500
FileList objects (File API), 500
fileName property (Error), 183
FileReader objects (File API), 500
fillRect method (canvas), 327
filter method (Array), 85

filtering arrays, 84–85
finally statements, for exception handling, 183
finding (see searching)
Firebox, Greasemonkey scripts for, 487–488
Firebug debugger, 185–188

using breakpoints, 188–190
Firebox, debugging in, 185–188

profiling application performance, 190–
194

using breakpoints, 188–190
Firefox, WebGL support in, 350–351
Firefox extensions, building, 486
:first-child selector (CSS), 229
:first-of-type selector (CSS), 227
flashing color, to signal action, 316–320
flattening multidimensional arrays, 79–80
floor method (Math), 57, 60
fn property (jQuery), 404
focus events, 116

with form elements, 162
footnote bullets, replacing links with, 254–

257
for...in loops, 374
forEach method (Array), 82
foreignObject elements (SVG), 349
form data, processing for Ajax calls, 416–417
forms, 159–176

accessing text input values, 159–161
acting upon radio button clicks, 164–166
capturing data upon events, 161–163
collapsible sections for, 277–280, 312–316
disabling and enabling elements, 161

after radio button events, 164
dynamic selection lists, 173–176
hiding and displaying elements, 171–173
highlighting invalid fields, 302–307
multiple submissions, preventing, 169–171
with no JavaScript support, 177–180
storing data in associative arrays, 88–91
validating input for

based on format, 166–167
canceling invalid data submission, 167–

168
forms collection (document element), 160,

212
frame elements, 143
freeze method (Object), 380
Function.apply method, 366–369
function closers with timers, 52–53

Index | 517

function closures, 103–106, 105
(see also currying)

function constructors, 93
function literals (function expressions), 94,

100
Function objects, 93, 98
function scope, 104
function statements, 93, 94
functions, 93–113

anonymous, wrapping global variables with,
112–113

applying against array elements, 82–83
to create new array, 83–84

controlling scope of, 383–385
creating, 94
currying, 104, 107–108
dynamic runtime functions, 98–100
errors in, checking for, 180–181
memoization (caching calculations), 109–

112
passing as function arguments, 100–101
passing complex objects to, 96–98
passing data to/from, 95–96
recursion, 101–103
remembering data among, 103–106
running after page load, 117–118
running repetitively, 50–51

future dates, scheduling, 48

G
\g flag (regular expressions), 26, 28
garbage collection, function closures and, 105
generalized currying functions, 107–108
geolocation API, 500
geometry

calculating arc lengths, 67–68
circles that fit page elements, 65–67

gesture events, 117
GET requests, 417–420
getAllResponseHeaders method

(XMLHttpRequest), 415
getAttribute method, 237
getAttributeNS method, 238
getBoundingClientRect method (element),

272, 273
getComputedStyle method (window element),

240
getDate method (Date), 39, 48
getDay method (Date), 39

getElementById method (document element),
214, 215

getElementsByClassName method
creating arrays of objects with, 231–232

getElementsByClassName method (document
element), 214

getElementsByTagName method (document
element), 214, 216, 218, 222

summing table row/column elements, 235
getFullYear method (Date), 39, 48
getHours method (Date), 39, 48
getMilliseconds method (Date), 39, 48
getMinutes method (Date), 39, 48
getMonth method (Date), 40
getOwnPropertyDescription method (Object),

370
getOwnPropertyDescriptor method, 374
getOwnPropertyNames method (Object), 375,

376
getResponseHeader method

(XMLHttpRequest), 414
getSeconds method (Date), 40, 48
getSVGDocument method, 336
getter/setter functionality, 364–366
getTime method (Date), 40
getTimezoneOffset method (Date), 40
getUTCDate method (Date), 40
getUTCDay method (Date), 40
getUTCFullYear method (Date), 40
getUTCHours method (Date), 40
getUTCMilliseconds method (Date), 40
getUTCMinutes method (Date), 40
getUTCMonth method (Date), 40
getUTCSeconds method (Date), 40
github host, 399
global search flag (\g), 26, 28
global variables, 58

function closures to avoid, 103–106
wrapping in anonymous functions, 112–

113
Google Chrome extensions, building, 484–

485
Google Code host, 398
Google Gears, 457
Google’s Chrome, debugging in, 208–209
Greasemonkey scripts, 487–488
> (greater than) operator, 7
>= (greater than or equal) operator, 7

518 | Index

H
hasAttribute method, 238, 252
hash maps (hash tables), 91
hash property (location element), 151, 153
hCalendar Microformat annotations, 447–450
head elements, 211
height (see size)
height attribute (canvas element), 327
height property (bounding rectangle), 272
hexadecimal numbers, converting to decimals,

59
hidden attribute, 277
hiding form elements, 171–173
hiding page elements, 276–277

collapsing sidebars, 292–295
using tabs (divided content), 284–289

ARIA accessibility with, 320–323
hiding page sections, 299–300
highlighting

actions with color flashes, 316–320
all instances of pattern, 28–31
first paragraph of div elements, 227–230

history elements, 143
host property (location element), 151
hosting libraries as open source, 397–399
hostname property (location element), 151
hover-based pop-up windows, 289–292
href property (location element), 151
HTML, embedding SVG into, 339–345

integrating with canvas, 347–350
HTML, processing Ajax text results as, 422
html elements, 211
HTML tab (Firebug), 186
HTML tags, replacing with named entities, 36
HTML5 drag-and-drop, 132–140
HTML5 postMessage API, 430–434
HTML5 shims, 247
HTMLElement objects, 244
hyperlinks, replacing links with, 254–257
-- (decrement) operator, 58

I
\i flag (regular expressions), 26
id attribute (form element), 213
image dimensions, basing on page, 149–150
image elements

accessing all in article, 221–222
using Selectors API, 222–226

accessing all in page, 216–221
images collection (document element), 212
++ (increment) operator, 58
incremental counters, 57–58
index (array elements), 70
indexOf method (Array), 78, 80
indexOf method (String), 8, 9
!= (inequality) operator, 6
inform function (JsUnit), 394
inherit value (CSS display property), 276
inheritance, objects, 366–369
inline-block value (CSS display property), 276
inline CSS values, getting, 240
inner functions, 104
innerHeight property (window element), 270
innerHTML property, 241–242, 244
innerHTML property, 422
input, form (see forms)
input, validating (see validating)
input elements, finding all checked, 233–234
insertBefore method, 244, 248, 254
inserting elements

adding paragraphs to divs, 248
and then adding text, 249–251

at end to page, 246–247
before existing elements, 242–246
with innerHTML property, 241–242

Internet Explorer’s Developer Tools, 194–196
using breakpoints, 196–197

iPhone applications, building, 494–495
iPhoneOrientation events, 141
isExtensible method (Object), 378
isFrozen method (Object), 381
isNaN function, 181
ISO 8601 formatted dates, 43–44

converting string to Date object, 45–47

J
JavaScript, handling when disabled, 177–180
JavaScript Compressor, 397
join method (Array), 73–74
jQuery.fn property, 404
jQuery framework, 399, 400–402

converting libraries to plug-ins, 404–407
RDF plug-in, 450–455
using jQuery plug-ins, 402–404

jQuery Validation plug-in, 403
JSON (JavaScript Object Notation), 435

converting objects to strings, 445–446

Index | 519

converting RDFa into, 450–455
generating JavaScript objects with, 442–

443
parsing JSON-formatted strings, 444–445

JSONP (JSON with Padding), 423
JsUnit, testing code with, 392–396

K
keyboard events, 116, 129–132

with textarea elements, 162
keyboard listening, page overlays with, 308–

312
keydown events, 130
keypress events, 130

with form elements, 162
keys method (Object), 375, 376
keyup events, 130
-khtml-user-drag CSS setting, 135

L
language property (Navigator), 146
lastIndex property (RegExp), 30
lastIndexOf method (Array), 78
lastIndexOf method (String), 9
left-padding strings, 19–20
left property (bounding rectangle), 272, 273
length property (NodeList), 216
length property (String), 11
< (less than) operator, 7
<= (less than or equal) operator, 7
libraries, 389–411

combining several, 408–411
converting to jQuery plug-ins, 404–407
external, using, 400–402
hosting as open source, 397–399
JsUnit, testing code with, 392–396
minify, to compress code, 397
packaging code into files, 390–392
using existing jQuery plug-ins, 402–404

LIFO (last-in, first-out), 76–77
line charts (canvas), 330–333
line feed (\n), 16

matching in regular expressions, 23
lineNumber property (Error), 183
lines in textareas, processing, 16–17
links, replacing links with, 254–257
links collection (document element), 212
listeners (see event listeners)

listener/sender functionality, 431
literals, 1
live regions, accessibility of, 323–324
LN10 property (Math), 56
LN2 property (Math), 56
load events, 115
load method (media elements), 355
localeCompare method (String), 8
localStorage objects, 476–479
location data for elements, 273–276
location elements, 143, 150

bookmarking dynamic pages, 153
log method (Math), 57
LOG10E property (Math), 56
LOG2E property (Math), 56
&& (logical AND) operator, 11
long polling, 429
loops through array elements, 71
lowercase (see case)

M
\m flag (regular expressions), 26
Mac Dashboard widgets, 489–490
map method (Array), 83
match method (String), 26
matching (see regular expressions)
math, 55

(see also numbers)
calculating arc lengths, 67–68
converting degrees and radians, 64–65
finding circles that fit page elements, 65–

67
summing column of numbers, 62–64

Math objects, 56–57
building clock with, 345–346

max-age= parameter (cookies), 463
max method (Math), 57
media (see rich media)
media attribute, 148
@media rule, 149
memoization (caching calculations), 109–112
message property (Error), 183
meta elements, 211
method chaining, 236, 385–387, 402
methods, object

creating, 362–364
keeping private, 361–362
preventing any changes to, 380–381

520 | Index

Microformat annotations (hCalendar), 447–
450

microformats, working with, 448
Microsoft OpenOffice macros, creating, 498–

500
mimeTypes collection (Navigator), 146
min method (Math), 57
mobile development, 140
mobile phone applications, building, 494–495
mobile widgets, creating, 489–494
modularizing code, 391
% (modulo) operator, 230
mouse events, 116

capturing mouse-click information, 119–
122

hover-based pop-up windows with, 289–
292

with textarea elements, 162
mouse gesture events, 117
moving elements within pages, 254
Mozilla extensions, building, 486
multidimensional arrays, 71–73

flattening into single dimension, 79–80
multimedia (see rich media)
multiple form submissions, preventing, 169–

171

N
\n (new line) character, 16

matching in regular expressions, 23
name attribute (form element), 213
name property (Error), 183
named entities, 36
@namespace statement, 224
namespace variations

adding attributes to elements, 252
creating elements or attributes, 245
element queries and, 218, 224
embedding SVG into HTML, 340

namespaceURI property, 225
namespacing your JavaScript, 381–383
NaN property (Number), 56
NaN value, 181
navigator elements, 143, 145
negation (:not) pseudoselector, 224
nested elements, propagating events through,

126–129
Netflix-style pop-up windows, 289–292
Network page (Dragonfly), 200

new keyword, 360
new line (\n), 16

matching in regular expressions, 23
NodeList collection, 216
nodes, DOM, 211
nonempty strings, checking for, 10–12
nonbreaking space character, 19
none value (CSS display property), 276
noscript elements, 178
:not pseudoselector, 224
:nth-child pseudoclass, 230
Number objects, 55
numbers, 55–68

concatenating with strings, 4
converting decimals to hexadecimals, 59
converting degrees and radians, 64–65

calculating arc lengths, 67–68
converting strings into, 61–62
dates (see date and time)
incremental counters, 57–58
matching in regular expressions, 23, 27
random, generating, 59–60–61
social security numbers, validating, 26–28
sorting array elements numerically, 74
summing column of, 62–64

NVDA screen reader, 297

O
objects, 359–387

adding getter/setter functionality, 364–366
adding new properties, 369–374
chaining methods, 385–387
creating, 360–361
enumerating properties of, 374–377
expanding with prototype, 362–364
as function arguments, 96–98
inheriting functionality of, 366–369
members of, keeping private, 361–362
one-off objects, 381–383
preventing any changes to, 380–381
preventing extensibility of, 377–378
preventing property descriptor changes,

379–380
Office applications, creating macros for, 498–

500
offset, element, 273
onblur event

accessing form element data, 162
highlighting invalid form fields, 303

Index | 521

onchange event
accessing form element data, 162
highlighting invalid form fields, 302

onclick events, 119–122
one-off objects, 381–383
onfocus event, accessing form element data,

162
onload events, 117–118
onmessage event handler (WebSocket), 429
onmouseout event, for hover-based pop-up

windows, 289
onmouseover event, for hover-based pop-up

windows, 289
onpopevent event handler, 465–469
onreadystatechange property

(XMLHttpRequest), 420
open method (window element), 145
open method (XMLHttpRequest), 414, 418
open sourcing code, 397–399
OpenOffice macros, creating, 498–500
Opera widgets, creating, 490–494
Opera’s Dragonfly, 198–200

using breakpoints, 201
operators, overloaded, 3
Orca screen reader, 297
ordering

array elements (see sorting arrays)
orientation events (Safari), 140–142
outer functions, 104
overflow property, 269
overlays for pages, 281–283

adding keyboard accessibility to, 308–312
overloaded operators, defined, 3
overrideMimeType method

(XMLHttpRequest), 415, 436

P
p elements, 211

finding parent element for, 226
highlighting first in each div, 227–230
inserting new, 248

and adding text to, 249–251
moving within page, 254
removing from pages, 260–261

packaging code into files, 390–392
padding property (bounding rectangle), 272
padding strings, 19–20
page elements (see elements)
page fragments, 458–461

page overlays, 281–283
adding keyboard accessibility to, 308–312

page space, 269–295
collapsible form sections, 277–280, 312–

316
collapsible sidebars, 292–295
hiding elements until needed, 276–277
hover-based pop-up windows, 289–292
measuring area of window, 270–271
overlays for pages, 281–283

adding keyboard accessibility to, 308–
312

position data for page elements, 273–276
using tabs (divided content), 284–289

ARIA accessibility with, 320–323
pages (web pages)

accessing all images in, 216–221
automatic periodic updates, 427–430
circles sized to fit, 65–67
detecting page loads, 117–118
dynamic

bookmarking, 153–156
preserving state for Back and Refresh,

156–157
embedding SVG into HTML, 339–345
hiding or showing sections of, 299–300
integrating SVG and canvas in, 347–350
modifying image dimensions for, 149–150
moving elements within, 254
positions of elements on, 273–276
removing paragraphs from, 260–261
using tabs (divided content), 284–289

ARIA accessibility with, 320–323
warning about leaving, 146–147
when JavaScript is off, 177–180

paragraphs (see p elements)
parcel-descriptor.xml files, 498
() (parentheses) in regular expressions, 24, 32–

34
parent elements, finding, 226
parentNode property, 215, 226
parse method (JSON), 444
parseFloat function, 62
parseInt function, 61
parsing JSON-formatted strings, 444–445
partial functions, 104
password elements, 162
path method (canvas), 330
path= parameter (cookies), 463

522 | Index

pathname property (location element), 151
pattern matching (see regular expressions)
pause method (media elements), 355
% (modulo) operator, 230
performance of application, profiling, 190–

194
. (period)

dot notation, 118
in regular expressions, 25

periodic page updates, 427–430
persistence, 457–481

adding persistent information to URLs,
458–461

cookies, 462–465
localStorage objects, 476–479
pushState method and onpopevent, 465–

469
relational data stores, 479–481
sessionStorage objects, 469–476

phone applications, building, 494–495
phone numbers, validating, 166–167
PhoneGap, 494–495
photosensitive epilepsy, 319
PI property (Math), 56, 65
|| (conditional OR) operator, 120
platform property (Navigator), 146
play method (media elements), 355
plug-ins, creating, 484–488
plug-ins, jQuery (see jQuery framework)
plugins collection (Navigator), 146
+ (plus) in regular expressions, 23
+ (addition) operator, 3
+= (assignment) operator, 3
++ (increment) operator, 58
polite value (aria-live attribute), 324
pop method (Array), 76
pop-up windows, 289–292
port property (location element), 151
position data for elements, 273–276
POST requests, 417–420
POST requests, about, 417, 419
postfix operators, 58
postMessage API, 430–434
pow method (Math), 57
prefix operators, 58
preventDefault method, 126, 168
preventExtensions method (Object), 377, 381
primitive data types, 1
printing arrays, 70

private members of objects, 361–362
privileged methods, 362
processing XML documents, 436–437
product property (Navigator), 146
profiling application performance, 190–194
prompt pop up boxes, 144
properties, object

adding new, 369–374
enumerating (listing), 374–377
getter/setter functionality, 364–366
keeping private, 361–362
preventing any changes to, 380–381
preventing property descriptor changes,

379–380
property descriptor objects, 370
protocol property (location element), 151
prototypal inheritance, 359, 366–369
Prototype.js library, 89, 383–385
prototype objects, 362–364

adding getter/setter functions to, 365
prototype property, 18, 363, 364
prototype property (Array), 83
pruneParagraph function, 260
push method (Array), 75, 76
pushState method (History), 465–469
PUT requests, about, 418

Q
quadraticCurveTo method (canvas), 332
querySelector method, 214, 223

finding parent elements with, 226
universal selector (*) with, 232

querySelectorAll method, 62, 214, 223
collecting elements by class name, 231–232
highlight first paragraphs of divs, 227
striping unordered lists, 230
summing table row/column elements, 234–

236
universal selector (*) with, 232

? (question mark)
in regular expressions, 27
ternary operator, 120

queues, 75
quirks mode, 271
' (single quotes) for strings, 1
" (double quotes) for strings, 1

Index | 523

R
radians, converting with degrees, 64–65

calculating arc lengths, 67–68
radio buttons clicks, acting on, 164–166
radiobutton elements, 162

performing actions after events, 164–166
radix parameter, parseInt function, 61
random color generation, 60–61
random method (Math), 57, 60
random number generation, 59–60
RangeError errors, 184
RangeException exceptions, 185
RDF plug-in, 450–455
RDF (Relational Data Framework), about, 452
RDFa, converting into JSON, 450–455
rdfQuery, 450–455
ready event, 401
readyState property (XMLHttpRequest), 420,

428
readyState property (XMLHttpRequest), 415
recurring timers, 50–51
recursion, 101
recursive algorithms, 101–103
refactoring code, 392
ReferenceError errors, 184
Refresh button, preserving state for, 156–157
RegExp literals, 22
RegExp objects, 24
regular expressions, 21–38

finding all instances of pattern, 28–31
replacing certain substrings, 31–32
replacing HTML with named entities, 36
searching for special characters, 37–38
with String.split method, 14
swapping order of strings, 32–34
testing for contained substrings

case-insensitive matching, 25–26
case-sensitive matching, 24–25

trimming strings of whitespace, 35–36
validating social security numbers, 26–28

relational data stores, 479–481
reload events, 116
removals value (aria-relevant attribute), 324
removeAttribute method, 253
removeAttributeNS method, 254
removeChild method, 260, 262
removeEventListener method, 125
removing (see deleting (removing))
replace method (String), 31

special patterns for, 33
replacer functions, 444
replaceState method (history), 466
replacing

array elements, 80–82
substrings with other substrings, 31–32

requests, Ajax (see XMLHttpRequest objects)
resource window (Safari), 205
responseText property (XMLHttpRequest),

415
responseXML property (XMLHttpRequest),

415, 436
REST guidelines, 417
return statements, 95
return values, functions, 95–96
RGB values, random, 60
rich media, 325–357

accessing SVG from page scripts, 335–338
adding JavaScript to SVG, 333–335
building analog clock, 345–346
controlling video from JavaScript, 353–357
embedding SVG into HTML pages, 339–

345
emulating SVG in IE, 338–339
integrating SVG and canvas, 347–350
running routine with audio file, 351–353
using canvas (see canvas elements)
WebGL support, 350–351

right-padding strings, 19–20
right property (bounding rectangle), 272
role attribute (ARIA), 301
round method (Math), 57
rows, table

adding, 257–260
deleting, 262–264
summing all elements in, 234–236

S
\s in regular expressions, 23
\S in regular expressions, 24
Safari, WebGL support in, 350–351
Safari orientation events, 140–142
Safari’s development tools, 201–205

using breakpoints, 207–208
same-origin security restriction, 415
saving (see storing (saving))
scheduling future dates, 48
scope, function, 104, 383–385
screen elements, 143, 147

524 | Index

modifying images to fit page, 149–150
screen readers, 297

(see also accessibility)
Script Debugger (IE), 197
script elements, 211

adding JavaScript to SVG, 333
scripting, handling when disabled, 177–180
scripts, accessing SVG from, 335–338
Scripts panel (Dragonfly), 201
scroll events, 116
seal method (Object), 379, 381
search property (location element), 151
searching

array elements, 78–79
filtering to create subarrays, 84–85
for removal or replacement, 80–82

with regular expressions (see regular
expressions)

for special characters, 37–38
strings, for substrings, 8–9

secure parameter (cookies), 463
select event (textarea element), 162
selection elements (forms), 162
selection lists

dynamic, 173–176
populating from server, 424–426

Selectors API, 223
send method (XMLHttpRequest), 414
sendAsBinary method (XMLHttpRequest),

414
sessionStorage objects, 469–476
setAttribute method, 135, 251–252, 264
setDate method (Date), 40, 48
setFullYear method (Date), 40, 48
setHours method (Date), 40, 48
setInterval method (Window), 41

function closures with timers, 52–53
recurring timers, 50–51

setMilliseconds method (Date), 40, 48
setMinutes method (Date), 40, 48
setMonth method (Date), 40
setRequestHeader method

(XMLHttpRequest), 414, 417
setSeconds method (Date), 40, 48
setTime method (Date), 40
setTimeout method (Window), 41, 49–50

function closures with timers, 52–53
Settings panel (Dragonfly), 198
setUp function (JsUnit), 394

setUTCDate method (Date), 40
setUTCFullYear method (Date), 40
setUTCHours method (Date), 40
setUTCMilliseconds method (Date), 40
setUTCMinutes method (Date), 40
setUTCMonth method (Date), 40
shapes, creating with canvas elements, 326–

328
shift method (Array), 75, 76
shims, HTML5, 247
shorthand assignment (+=) operator, 3
sidebar, collapsing or resizing, 292–295
sin method (Math), 57, 346
' (single quotes) for strings, 1
size

canvas elements, 327
of elements, measuring, 272–273
of window, measuring, 270–271

/ (slash) for RegExp objects, 22
slice method (Array), 77
smart phone development, 494–495
Snippet Editor (Safari), 204
social security numbers, validating, 26–28
some method (Array), 86
sort method (Array), 74
sorting arrays

alphabetically, 74–75
FIFO (first-in, first out), 75–76
LIFO (last-in, first-out), 76–77

sound (see audio elements; rich media)
Source Forge, 400
space (whitespace)

matching in regular expressions, 23
nonbreaking space character, 19
trimming from form data, 162
trimming from strings, 17–19

using regular expressions, 35–36
space on web pages (see page space)
span elements, to collapse sidebars, 292–295
special characters

inserting into strings, 15–16
searching for, 37–38

special characters in regular expressions, 23
splice method (Array), 80
split method (String), 10, 13

for parsing dates, 45
parsing lines of textareas, 16

spoofing, 459
SQL for persistence, 479–481

Index | 525

sqrt method (Math), 57
SQRT1_2 property (Math), 56
SQRT2 property (Math), 56
srcElement property, 129
stack property (Error), 183
stacks, 76
static functions, 94
status property (XMLHttpRequest), 415, 421
statusText property (XMLHttpRequest), 415,

421
Step Into control (Firebug), 189
Step Out control (Firebug), 189
Step Over control (Firebug), 189
stopping listening for events, 125
stopPropagation method, 127
Storage objects, 476
storing (saving)

data across multiple functions, 103–106
form data in associative arrays, 88–91

=== (strict equality) operator, 6
!== (strict inequality) operator, 6
Strict mode, 378
String objects, 2
stringify method, 370, 445, 452
strings, 1–20

comma-delimited, breaking apart, 13–14
comparing, 5–8
concatenating two or more, 3–4
concatenating with other data types, 4
converting to numbers, 61–62
empty, checking for, 10–12
extracting substrings from, 9–10
inserting special characters into, 15–16
joining array elements into, 73–74
JSON-formatted

converting objects to, 445–446
parsing, 444–445

left- or right-padding, 19–20
lines of textarea, processing, 16–17
pattern matching (see regular expressions)
replacing with strings, 31–32
searching for substrings, 8–9
swapping order of, 32–34
testing for contained substrings

case-insensitive matching, 25–26
case-sensitive matching, 24–25

trimming whitespace from, 17–19
using regular expressions, 35–36

striping theme for unordered lists, 230–231

stroke method (canvas), 331
strokeRect method (canvas), 327
structured data, 435–455

extracting information from XML
documents, 437–442

processing XML documents, 436–437
style objects, 239
style properties

changing for elements, 264–267
getting information about, 238–240

styles for HTML elements, in older browsers,
247

stylesheets, changing based on color support,
147–149

subarrays
creating arrays from, 77–78
filtering arrays to create, 84–85

submit elements, 162
submit events, 116
submitting forms (see forms)
substrings

of comma-delimited strings, 13–14
extracting from strings, 9–10
replacing with other substrings, 31–32
searching for, 8–9
swapping order of, 32–34
testing strings for

case-insensitive matching, 25–26
case-sensitive matching, 24–25

summing numbers, 62–64
summing table elements, 234–236
.svg files, 334
SVG (Scalar Vector Graphics)

access from web page scripts, 335–338
adding JavaScript to, 333–335
defined, 325
embedding into HTML pages, 339–345
emulating in IE, 338–339
integrating with canvas in HTML, 347–350

SVGWeb library, 338, 398
SyntaxError errors, 184

T
\t (tab) character, 16

matching in regular expressions, 24
tab character, 16

matching in regular expressions, 24
tab role (ARIA), 313, 316, 320
tabindex property, 309, 311

526 | Index

tables
adding rows to, 257–260
deleting rows from, 262–264
summing elements in rows/columns, 234–

236
tablist role (ARIA), 313, 316, 320
tabpanel role (ARIA), 313, 320
tabs (divided content), 284–289

ARIA accessibility with, 320–323
tearDown function (JsUnit), 394
ternary (?) operator, 120
test method (RegExp), 24
testing code with JsUnit, 392–396
text elements (forms), 162
text input (forms), accessing, 159–161
text results to Ajax requests, processing, 422
text value (aria-relevant attribute), 324
textareas

events for, 162
lines in, processing, 16–17
observing character input for, 129–132

textInput events, 130
TextRectangle objects, 272
this context, 163
this keyword, 360, 383–385

keeping object members private, 361–362
throw statements, 184
throwing exceptions, 184
Thunderbird extensions, building, 486
time (see date and time; tiers)
timed page updates, 427–430
timeouts, 49–50
timerEvent function, 428
timers, 41

function closures with, 52–53
incremental counters in code, 57–58
recurring, 50–51
triggering timeouts, 49–50

title elements, 211
today’s date, printing, 41–42
toISOString method (Date), 44
toLowerCase method (String), 5
tools, extending with JavaScript, 496–499
top property (bounding rectangle), 272, 273
toString method, 1, 59
touch swiping events, 117
toUpperCase method (String), 5
tr elements

adding to tables, 257–260

deleting from tables, 262–264
summing all elements in, 234–236

trigonometric methods (Math object), 57, 65
trim method (String), 17, 35
trimming strings of whitespace, 17–19

using regular expressions, 35–36
triples, RDF, 452
try statements, for exception handling, 182
TypeError errors, 185
typeof operator, 11

U
undefined array elements, 70
undefined data type, 11
Unicode sequences, 16
unit testing, 393
universal selector (*), 232
unload events, 115

warnings when leaving pages, 147
unordered lists, applying striping theme to,

230–231
uppercase (see case)
URIError errors, 185
URLs, adding persistent information to, 458–

461
user error, about, 177
user input, form (see forms)
user input, validating (see validating)
userAgent property (Navigator), 146
UTC date and time, printing, 42–43
UTCString method (Date), 42

V
validating

array contents, 86–87
checking for function errors, 180–181
with forms

based on format, 166–167
canceling invalid data submission, 167–

168
dynamic selection lists, 173–176
preventing multiple submissions, 169–

171
function arguments (input), 95
highlighting invalid form fields, 302–307
with jQuery Validation plug-in, 403
social security numbers, 26–28

value attribute (objects), 370

Index | 527

valueOf method, 11, 12
variable values, checking, 181–182
vendor property (Navigator), 146
video (see rich media)
video elements, 326, 353–357
visibility property (CSS), 172, 276
VoiceOver screen reader, 297

W
\w in regular expressions, 23
\W in regular expressions, 23
warn function (JsUnit), 394
Watch panel (Firebug), 190
Web Inspector (Safari), 203
web page elements (see elements)
web page space (see page space)
web pages (see document elements; pages)
web-safe colors, 148
Web Sockets API, 413, 429
Web Workers, 500–509
WebGL (Web Graphics Library), 326, 350–

351
WebKit (Google)

debugging with, 208–209
WebGL support in, 350–351

.wgt files, 493
while loop, iterating through arrays with, 71
whitespace, 269

(see also page space)
matching in regular expressions, 23
nonbreaking space character, 19
trimming from form data, 162
trimming from strings, 17–19

using regular expressions, 35–36
widgets, creating, 489–494
width (see size)
width attribute (canvas element), 327
width property (bounding rectangle), 272
width property (Screen), 149
window area, measuring, 270–271
window elements, 143

creating new stripped-down, 144–145
open method, 145

window space (see page space)
windows, communicating across, 430–434
Windows-Eyes, 297
words, 32

(see also strings)
swapping order of, 32–34

writable attribute (objects), 370

X
X3D, 326
XML documents

extracting pertinent information from, 437–
442

processing, 436–437
XMLHttpRequest objects

accessing, 414–415
adding callback functions to, 420–421
checking for error conditions, 421
making requests to other domains, 422–

424
XScriptContext objects, 499

528 | Index

About the Author
Shelley Powers has been working with and writing about web technologies—from the
first release of JavaScript to the latest graphics and design tools—for more than 15
years. Her recent O’Reilly books have covered the semantic web, Ajax, JavaScript, and
web graphics. She’s an avid amateur photographer and web development aficionado.

Colophon
The animal on the cover of JavaScript Cookbook is a little (or lesser) egret (Egretta
garzetta). A small white heron, it is the old world counterpart to the very similar new
world snowy egret. It is the smallest and most common egret in Singapore, and its
original breeding distribution included the large inland and coastal wetlands in warm
temperate parts of Europe, Asia, Africa, Taiwan, and Australia. In warmer locations,
most birds are permanent residents; northern populations, including many European
birds, migrate to Africa and southern Asia. They may also wander north after the
breeding season, which presumably has led to this egret’s range expansion.

The adult Little Egret is 55–65 cm long with an 88–106 cm wingspan. It weighs 350–
550 grams. Its plumage is all white. It has long black legs with yellow feet and a slim
black bill. In the breeding season, the adult has two long nape plumes and gauzy plumes
on the back and breast, and the bare skin between its bill and eyes becomes red or blue.
Juvenile egrets are similar to nonbreeding adults but have duller legs and feet. Little
egrets are the liveliest hunters among herons and egrets, with a wide variety of techni-
ques: they may patiently stalk prey in shallow waters; stand on one leg and stir the mud
with the other to scare up prey; or, better yet, stand on one leg and wave the other
bright yellow foot over the water’s surface to lure aquatic prey into range. The birds
are mostly silent, but make various croaking and bubbling calls at their breeding col-
onies and produce a harsh alarm call when disturbed.

The little egret nests in colonies, often with other wading birds, usually on platforms
of sticks in trees or shrubs, in reed beds, or in bamboo groves. In some locations, such
as the Cape Verde Islands, the species nests on cliffs. In pairs they will defend a small
breeding territory. Both parents will incubate their 3–5 eggs for 21–25 days until hatch-
ing. The eggs are oval in shape and have a pale, nonglossy, blue-green color. The young
birds are covered in white down feathers, are cared for by both parents, and fledge after
40 to 45 days. During this stage, the young egret stalks its prey in shallow water, often
running with raised wings or shuffling its feet. It may also stand still and wait to ambush
prey. It eats fish, insects, amphibians, crustaceans, and reptiles.

The cover image is from Cassell’s Natural History. The cover font is Adobe ITC Gara-
mond. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed;
and the code font is LucasFont’s TheSansMonoCondensed.

	Table of Contents
	Preface
	Audience, Assumptions, and Approach
	Target Browsers
	Sample Code Conventions
	Approach
	Organization

	Conventions Used in This Book
	Using Code Examples
	How to Contact Us
	Safari® Books Online
	Acknowledgments

	Chapter 1. Working with JavaScript Strings
	1.0 Introduction
	A String Primitive
	A String Object
	See Also

	1.1 Concatenating Two or More Strings
	Problem
	Solution
	Discussion

	1.2 Concatenating a String and Another Data Type
	Problem
	Solution
	Discussion

	1.3 Conditionally Comparing Strings
	Problem
	Solution
	Discussion
	See Also

	1.4 Finding a Substring in a String
	Problem
	Solution
	Discussion
	See Also

	1.5 Extracting a Substring from a String
	Problem
	Solution
	Discussion
	See Also

	1.6 Checking for an Existing, Nonempty String
	Problem
	Solution
	Discussion

	1.7 Breaking a Keyword String into Separate Keywords
	Problem
	Solution
	Discussion
	See Also

	1.8 Inserting Special Characters
	Problem
	Solution
	Discussion

	1.9 Processing Individual Lines of a textarea
	Problem
	Solution
	Discussion
	See Also

	1.10 Trimming Whitespace from the Ends of a String
	Problem
	Solution
	Discussion
	See Also

	1.11 Left- or Right-Pad a String
	Problem
	Solution
	Discussion
	See Also

	Chapter 2. Using Regular Expressions
	2.0 Introduction
	A RegExp Literal
	RegExp As Object
	See Also

	2.1 Testing Whether a Substring Exists
	Problem
	Solution
	Discussion

	2.2 Testing for Case-Insensitive Substring Matches
	Problem
	Solution
	Discussion

	2.3 Validating a Social Security Number
	Problem
	Solution
	Discussion
	See Also

	2.4 Finding and Highlighting All Instances of a Pattern
	Problem
	Solution
	Discussion
	See Also

	2.5 Replacing Patterns with New Strings
	Problem
	Solution
	Discussion
	See Also

	2.6 Swap Words in a String Using Capturing Parentheses
	Problem
	Solution
	Discussion

	2.7 Using Regular Expressions to Trim Whitespace
	Problem
	Solution
	Discussion

	2.8 Replace HTML Tags with Named Entities
	Problem
	Solution
	Discussion

	2.9 Searching for Special Characters
	Problem
	Solution
	Discussion

	Chapter 3. Dates, Time, and Timers
	3.0 Introduction
	The Date Object
	JavaScript Timers

	3.1 Printing Out Today’s Date
	Problem
	Solution
	Discussion

	3.2 Printing Out the UTC Date and Time
	Problem
	Solution
	Discussion
	See Also

	3.3 Printing Out an ISO 8601 Formatted Date
	Problem
	Solution
	Discussion
	See Also

	3.4 Converting an ISO 8601 Formatted Date to a Format Acceptable to the Date Object
	Problem
	Solution
	Discussion

	3.5 Creating a Specific Date
	Problem
	Solution
	Discussion

	3.6 Scheduling a Future Date
	Problem
	Solution
	Discussion

	3.7 Tracking Elapsed Time
	Problem
	Solution
	Discussion

	3.8 Creating a Timeout
	Problem
	Solution
	Discussion
	See Also

	3.9 Creating Recurring Timers
	Problem
	Solution
	Discussion

	3.10 Using Function Closures with Timers
	Problem
	Solution
	Discussion
	See Also

	Chapter 4. Working with Numbers and Math
	4.0 Introduction
	The Number Object and Number Literal
	The Math Object

	4.1 Keeping an Incremental Counter
	Problem
	Solution
	Discussion
	See Also

	4.2 Converting a Decimal to a Hexadecimal Value
	Problem
	Solution
	Discussion
	See Also

	4.3 Creating a Random Number Generator
	Problem
	Solution
	Discussion

	4.4 Randomly Generating Colors
	Problem
	Solution
	Discussion
	See Also

	4.5 Converting Strings in a Table to Numbers
	Problem
	Solution
	Discussion

	4.6 Summing All Numbers in a Table Column
	Problem
	Solution
	Discussion
	See Also

	4.7 Converting Between Degrees and Radians
	Problem
	Solution
	Discussion

	4.8 Find the Radius and Center of a Circle to Fit Within a Page Element
	Problem
	Solution
	Discussion
	See Also

	4.9 Calculating the Length of a Circular Arc
	Problem
	Solution
	Discussion
	See Also

	Chapter 5. Working with Arrays and Loops
	5.0 Introduction
	5.1 Looping Through an Array
	Problem
	Solution
	Discussion

	5.2 Creating a Multidimensional Array
	Problem
	Solution
	Discussion

	5.3 Creating a String from an Array
	Problem
	Solution
	Discussion

	5.4 Sorting an Array
	Problem
	Solution
	Discussion

	5.5 Store and Access Values in Order
	Problem
	Solution
	Discussion

	5.6 Store and Access Values in Reverse Order
	Problem
	Solution
	Discussion

	5.7 Create a New Array as a Subset of an Existing Array
	Problem
	Solution
	Discussion

	5.8 Searching Through an Array
	Problem
	Solution
	Discussion
	See Also

	5.9 Flatten a Multidimensional Array
	Problem
	Solution
	Discussion

	5.10 Search and Remove or Replace Array Elements
	Problem
	Solution
	Discussion
	See Also

	5.11 Applying a Function Against Each Array Element
	Problem
	Solution
	Discussion
	See Also

	5.12 Applying a Function to Every Element in an Array and Returning a New Array
	Problem
	Solution
	Discussion
	See Also

	5.13 Creating a Filtered Array
	Problem
	Solution
	Discussion
	See Also

	5.14 Validating Array Contents
	Problem
	Solution
	Discussion
	See Also

	5.15 Using an Associative Array to Store Form Element Names and Values
	Problem
	Solution
	Discussion
	See Also

	Chapter 6. Building Reusability with JavaScript Functions
	6.0 Introduction
	6.1 Creating a Block of Reusable Code
	Problem
	Solution
	Discussion

	6.2 Passing Single Data Values to and from a Function
	Problem
	Solution
	Discussion
	See Also

	6.3 Passing Complex Data Objects to a Function
	Problem
	Solution
	Discussion

	6.4 Creating a Dynamic Runtime Function
	Problem
	Solution
	Discussion
	See Also

	6.5 Passing a Function As an Argument to Another Function
	Problem
	Solution
	Discussion
	See Also

	6.6 Implementing a Recursive Algorithm
	Problem
	Solution
	Discussion
	See Also

	6.7 Create a Function That Remembers Its State
	Problem
	Solution
	Discussion
	See Also

	6.8 Improving Application Performance with a Generalized Currying Function
	Problem
	Solution
	Discussion
	See Also

	6.9 Improve Application Performance with Memoization (Caching Calculations)
	Problem
	Solution
	Discussion
	See Also

	6.10 Using an Anonymous Function to Wrap Global Variables
	Problem
	Solution
	Discussion
	See Also

	Chapter 7. Handling Events
	7.0 Introduction
	Some Common Events
	Event History and New Event Handling
	New Events, New Uses
	See Also

	7.1 Detecting When the Page Has Finished Loading
	Problem
	Solution
	Discussion
	See Also

	7.2 Capturing the Location of a Mouse Click Event Using the Event Object
	Problem
	Solution
	Discussion
	See Also

	7.3 Creating a Generic, Reusable Event Handler Function
	Problem
	Solution
	Discussion
	Creating a universal stop-listening function

	7.4 Canceling an Event Based on Changed Circumstance
	Problem
	Solution
	Discussion

	7.5 Preventing an Event from Propagating Through a Set of Nested Elements
	Problem
	Solution
	Discussion

	7.6 Capturing Keyboard Activity
	Problem
	Solution
	Discussion
	See Also

	7.7 Using the New HTML5 Drag-and-Drop
	Problem
	Solution
	Discussion
	See Also

	7.8 Using Safari Orientation Events and Other Mobile Development Environments
	Problem
	Solution
	Discussion
	See Also

	Chapter 8. Browser Pieces
	8.0 Introduction
	8.1 Ask the Web Page Reader to Confirm an Action
	Problem
	Solution
	Discussion

	8.2 Creating a New, Stripped-Down Browser Window
	Problem
	Solution
	Discussion

	8.3 Finding Out About the Browser Accessing the Page
	Problem
	Solution
	Discussion
	See Also

	8.4 Warning the Web Page Reader About Leaving a Page
	Problem
	Solution
	Discussion

	8.5 Changing Stylesheets Depending on Color Support
	Problem
	Solution
	Discussion
	See Also

	8.6 Modifying Image Dimensions Depending on Page Size
	Problem
	Solution
	Discussion
	See Also

	8.7 Creating Breadcrumbs in a CMS Template Page
	Problem
	Solution
	Discussion

	8.8 Bookmarking a Dynamic Page
	Problem
	Solution
	Discussion
	See Also

	8.9 Preserving State for Back Button, Page Refresh
	Problem
	Solution
	Discussion
	See Also

	Chapter 9. Form Elements and Validation
	9.0 Introduction
	9.1 Accessing Form Text Input Values
	Problem
	Solution
	Discussion
	See Also

	9.2 Dynamically Disabling and Enabling Form Elements
	Problem
	Solution
	Discussion
	See Also

	9.3 Getting Information from a Form Element Based on an Event
	Problem
	Solution
	Discussion
	See Also

	9.4 Performing an Action When a Radio Button Is Clicked
	Problem
	Solution
	Discussion
	See Also

	9.5 Checking for a Valid Phone Number
	Problem
	Solution
	Discussion
	See Also

	9.6 Canceling a Form Submission
	Problem
	Solution
	Discussion
	See Also

	9.7 Preventing Duplicate Form Submissions
	Problem
	Solution
	Discussion

	9.8 Hiding and Displaying Form Elements
	Problem
	Solution
	Discussion
	See Also

	9.9 Modifying a Selection List Based on Other Form Decisions
	Problem
	Solution
	Discussion
	See Also

	Chapter 10. Debugging and Error Handling
	10.0 Introduction
	10.1 Gracefully Handling No JavaScript Support
	Problem
	Solution
	Discussion
	See Also

	10.2 Checking for Errors in Functions
	Problem
	Solution
	Discussion

	10.3 Using an Alert for Simple Debugging
	Problem
	Solution
	Discussion

	10.4 Catching an Error and Providing Graceful Error Handling
	Problem
	Solution
	Discussion

	10.5 Initiating Manageable Errors
	Problem
	Solution
	Discussion

	10.6 Using Firebug with Firefox
	Problem
	Solution
	Discussion
	See Also

	10.7 Setting a Breakpoint and Examining Data with Firebug
	Problem
	Solution
	Discussion

	10.8 Firefox and the Console
	Problem
	Solution
	Discussion
	See Also

	10.9 Using IE’s Built-in Debugger
	Problem
	Solution
	Discussion
	See Also

	10.10 Setting a Breakpoint with IE Developer Tools
	Problem
	Solution
	Discussion

	10.11 Opera’s Dragonfly
	Problem
	Solution
	Discussion
	See Also

	10.12 Setting a Breakpoint with Dragonfly
	Problem
	Solution

	10.13 Turning on Safari’s Development Tools
	Problem
	Solution
	Discussion
	See Also

	10.14 Setting a Breakpoint with Safari’s Debugger
	Problem
	Solution
	Discussion

	10.15 Debugging in Chrome
	Problem
	Solution
	Discussion
	See Also

	Chapter 11. Accessing Page Elements
	11.0 Introduction
	The DOM Level 0 Document
	The Standardized DOMs
	See Also

	11.1 Access a Given Element and Find Its Parent and Child Elements
	Problem
	Solution
	Discussion

	11.2 Accessing All Images in the Web Page
	Problem
	Solution
	Discussion
	Namespace Variation
	See Also

	11.3 Discover All Images Within an Article
	Problem
	Solution
	Discussion
	See Also

	11.4 Discover all Images in Articles Using the Selectors API
	Problem
	Solution
	Discussion
	Namespace Variation
	See Also

	11.5 Finding the Parent Element for a Group of Elements
	Problem
	Solution
	Discussion
	See Also

	11.6 Highlighting the First Paragraph in Every Element
	Problem
	Solution
	Discussion
	See Also

	11.7 Apply a Striping Theme to an Unordered List
	Problem
	Solution
	Discussion
	See Also

	11.8 Creating an Array of All Elements of a Given Class
	Problem
	Solution
	Discussion
	See Also

	11.9 Finding All Elements That Share an Attribute
	Problem
	Solution
	Discussion
	See Also

	11.10 Finding All Checked Options
	Problem
	Solution
	Discussion
	See Also

	11.11 Summing All the Values in a Table Row
	Problem
	Solution
	Discussion
	See Also

	11.12 Get Element Attributes
	Problem
	Solution
	Discussion
	See Also

	11.13 Get Style Information for an Element
	Problem
	Solution
	Discussion
	See Also

	Chapter 12. Creating and Removing Elements and Attributes
	12.0 Introduction
	See Also

	12.1 Using innerHTML: A Quick and Easy Approach to Adding Content
	Problem
	Solution
	Discussion

	12.2 Inserting Elements Before Existing Page Elements
	Problem
	Solution
	Discussion
	Namespace Variation
	See Also

	12.3 Appending a New Element to the End of a Page
	Problem
	Solution
	Discussion

	12.4 Triggering Older Versions of IE to Style New Elements
	Problem
	Solution
	Discussion
	See Also

	12.5 Inserting a New Paragraph
	Problem
	Solution
	Discussion
	See Also

	12.6 Adding Text to a New Paragraph
	Problem
	Discussion
	See Also

	12.7 Adding Attributes to an Existing Element
	Problem
	Solution
	Discussion
	Namespace Variation

	12.8 Testing for a Boolean Attribute
	Problem
	Solution
	Discussion
	See Also

	12.9 Removing an Attribute
	Problem
	Solution
	Discussion
	See Also

	12.10 Moving a Paragraph
	Problem
	Solution
	Discussion
	See Also

	12.11 Replacing Links with Footnote Bullets
	Problem
	Solution
	Discussion

	12.12 Adding Rows to an Existing Table
	Problem
	Solution
	Discussion
	See Also

	12.13 Removing a Paragraph from a div Element
	Problem
	Solution
	Discussion

	12.14 Deleting Rows from an HTML Table
	Problem
	Solution
	Discussion
	See Also

	12.15 Changing the Element’s CSS Style Properties
	Problem
	Solution
	Discussion
	See Also

	Chapter 13. Working with Web Page Spaces
	13.0 Introduction
	13.1 Determining the Area of the Web Page
	Problem
	Solution
	Discussion
	See Also

	13.2 Measuring Elements
	Problem
	Solution
	Discussion

	13.3 Locating Elements in the Page
	Problem
	Solution
	Discussion
	See Also

	13.4 Hiding Page Sections
	Problem
	Solution
	Discussion
	See Also

	13.5 Creating Collapsible Form Sections
	Problem
	Solution
	Discussion
	See Also

	13.6 Adding a Page Overlay
	Problem
	Solution
	Discussion
	See Also

	13.7 Creating Tab Pages
	Problem
	Solution
	Discussion
	See Also

	13.8 Creating Hover-Based Pop-up Info Windows
	Problem
	Solution
	Discussion
	See Also

	13.9 Collapsing or Resizing the Sidebar
	Problem
	Solution
	Discussion

	Chapter 14. Creating Interactive and Accessible Effects with JavaScript, CSS, and
 ARIA
	14.0 Introduction
	See Also

	14.1 Displaying a Hidden Page Section
	Problem
	Solution
	Discussion
	See Also

	14.2 Creating an Alert Message
	Problem
	Solution
	Discussion
	See Also

	14.3 Highlighting Form Field with Missing or Incorrect Data
	Problem
	Solution
	Discussion
	See Also

	14.4 Adding Keyboard Accessibility to a Page Overlay
	Problem
	Solution
	Discussion
	See Also

	14.5 Creating Collapsible Form Sections
	Problem
	Solution
	Discussion
	See Also

	14.6 Displaying a Flash of Color to Signal an Action
	Problem
	Solution
	Discussion
	See Also

	14.7 Adding ARIA Attributes to a Tabbed Page Application
	Problem
	Solution
	Discussion
	See Also

	14.8 Live Region
	Problem
	Solution
	Discussion
	See Also

	Chapter 15. Creating Media Rich and Interactive Applications
	15.0 Introduction
	See Also

	15.1 Creating Basic Shapes in Canvas (Using the canvas Element)
	Problem
	Solution
	Discussion
	See Also

	15.2 Implementing Canvas Applications in IE
	Problem
	Solution
	Discussion

	15.3 Creating a Dynamic Line Chart in Canvas
	Problem
	Solution
	Discussion
	See Also

	15.4 Adding JavaScript to an SVG File
	Problem
	Solution
	Discussion

	15.5 Accessing SVG from Web Page Script
	Problem
	Solution
	Discussion

	15.6 Emulating SVG in Internet Explorer
	Problem
	Solution
	Discussion
	See Also

	15.7 Enable Interactive SVG Embedded in HTML
	Problem
	Solution
	Discussion
	See Also

	15.8 Using the Math Functions to Create a Realistic, Ticking Analog Clock in SVG
	Problem
	Solution
	Discussion

	15.9 Integrating SVG and the Canvas Element in HTML
	Problem
	Solution
	Discussion

	15.10 Turning on WebGL Support in Firefox and WebKit/Safari
	Problem
	Solution
	Discussion
	See Also

	15.11 Running a Routine When an Audio File Begins Playing
	Problem
	Solution
	Discussion
	See Also

	15.12 Controlling Video from JavaScript with the video Element
	Problem
	Solution
	Discussion
	See Also

	Chapter 16. JavaScript Objects
	16.0 Introduction
	See Also

	16.1 Defining a Basic JavaScript Object
	Problem
	Solution
	Discussion
	See Also

	16.2 Keeping Object Members Private
	Problem
	Solution
	Discussion
	See Also

	16.3 Expanding Objects with prototype
	Solution
	Discussion

	16.4 Adding Getter/Setter to Objects
	Problem
	Solution
	Discussion
	See Also

	16.5 Inheriting an Object’s Functionality
	Problem
	Solution
	Discussion

	16.6 Extending an Object by Defining a New Property
	Problem
	Solution
	Discussion
	See Also

	16.7 Enumerating an Object’s Properties
	Problem
	Solution
	Discussion
	See Also

	16.8 Preventing Object Extensibility
	Problem
	Solution
	Discussion
	See Also

	16.9 Preventing Object Additions and Changes to Property Descriptors
	Problem
	Solution
	Discussion
	See Also

	16.10 Preventing Any Changes to an Object
	Problem
	Solution
	Discussion
	See Also

	16.11 One-Off Objects and Namespacing Your JavaScript
	Problem
	Solution
	Discussion
	See Also

	16.12 Rediscovering “this” with Prototype.bind
	Problem
	Solution
	Discussion

	16.13 Chaining Your Object’s Methods
	Problem
	Solution
	Discussion
	See Also

	Chapter 17. JavaScript Libraries
	17.0 Introduction
	See Also

	17.1 Packaging Your Code
	Problem
	Solution
	Discussion
	See Also

	17.2 Testing Your Code with JsUnit
	Problem
	Solution
	Discussion

	17.3 Minify Your Library
	Problem
	Solution
	Discussion
	See Also

	17.4 Hosting Your Library
	Problem
	Solution
	Discussion

	17.5 Using an External Library: Building on the jQuery Framework
	Problem
	Solution
	Discussion
	See Also

	17.6 Using Existing jQuery Plug-ins
	Problem
	Solution
	Discussion

	17.7 Convert Your Library to a jQuery Plug-in
	Problem
	Solution
	Discussion

	17.8 Safely Combining Several Libraries in Your Applications
	Problem
	Solution
	Discussion
	See Also

	Chapter 18. Communication
	18.0 Introduction
	18.1 Accessing the XMLHttpRequest Object
	Problem
	Solution
	Discussion
	See Also

	18.2 Preparing the Data for Transmission
	Problem
	Solution
	Discussion

	18.3 Determining the Type of Query Call
	Problem
	Solution
	Discussion
	See Also

	18.4 Adding a Callback Function to an Ajax Request
	Problem
	Solution
	Discussion
	See Also

	18.5 Checking for an Error Condition
	Problem
	Solution
	Discussion

	18.6 Processing a Text Result
	Problem
	Solution
	Discussion
	See Also

	18.7 Making an Ajax Request to Another Domain (Using JSONP)
	Problem
	Solution
	Discussion
	See Also

	18.8 Populating a Selection List from the Server
	Problem
	Solution
	Discussion

	18.9 Using a Timer to Automatically Update the Page with Fresh Data
	Problem
	Solution
	Discussion
	See Also

	18.10 Communicating Across Windows with PostMessage
	Problem
	Solution
	Discussion

	Chapter 19. Working with Structured Data
	19.0 Introduction
	19.1 Process an XML Document Returned from an Ajax Call
	Problem
	Solution
	Discussion
	See Also

	19.2 Extracting Pertinent Information from an XML Tree
	Problem
	Solution
	Discussion
	See Also

	19.3 Generate a JavaScript Object with JSON, Old-School Style
	Problem
	Solution
	Discussion
	See Also

	19.4 Parse a JSON Formatted String
	Problem
	Solution
	Discussion
	See Also

	19.5 Convert an Object to a Filtered/Transformed String with JSON
	Problem
	Solution
	Discussion
	See Also

	19.6 Convert hCalendar Microformat Annotations into a Canvas Timeline
	Problem
	Solution
	Discussion
	See Also

	19.7 Glean Page RDFa and Convert It into JSON Using rdfQuery and the jQuery RDF Plug-in
	Problem
	Solution
	Discussion
	See Also

	Chapter 20. Persistence
	20.0 Introduction
	See Also

	20.1 Attaching Persistent Information to URLs
	Problem
	Solution
	Discussion
	See Also

	20.2 Creating a Cookie to Persist Information Across Pages
	Problem
	Solution
	Discussion
	See Also

	20.3 Persisting Information Using the History.pushState Method and window.onpopevent
	Problem
	Solution
	Discussion

	20.4 Using sessionStorage for Client-Side Storage
	Problem
	Solution
	Discussion
	See Also

	20.5 Creating a localStorage Client-Side Data Storage Item
	Problem
	Solution
	Discussion
	See Also

	20.6 Persisting Data Using a Relational Data Store
	Problem
	Solution
	Discussion
	See Also

	Chapter 21. JavaScript Outside the Box
	21.0 Introduction
	21.1 Creating a Browser Add-0n, Plug-in, or Extension
	Problem
	Solution
	Discussion
	Creating Google Chrome extensions
	Mozilla extensions
	Creating a Greasemonkey script

	21.2 Creating Desktop and Mobile Widgets
	Problem
	Solution
	Discussion
	Developing Mac Dashboard widgets
	The Opera Widgets development environment

	21.3 Creating JavaScript Applications for the iPhone, Android, and BlackBerry with PhoneGap
	Problem
	Solution
	Discussion
	See Also

	21.4 Enhancing Tools with JavaScript
	Problem
	Solution
	Discussion
	Working with the Adobe Bridge SDK and the ExtendScript Toolkit
	Creating an OpenOffice macro

	21.5 Creating Efficient Desktop Applications with Web Workers and the File API
	Problem
	Solution
	Discussion
	See Also

	Index

