

Advance Praise for Head First PHP & MySQL

“PHP and MySQL are two of today’s most popular web development technologies, and this book shows
readers why. Building a site without them is now as unthinkable as doing web design without CSS. This
book is a great introduction and is laugh-out-loud funny. It’s the book I wish I had learned from.”

— Harvey Quamen, Associate Professor of English and Humanities Computing,
University of Alberta

“Everything we’ve come to accept about the drudgery of technical learning has been abandoned and in
its place an unusually fun method for learning is created. I have full confidence that the Head First series
will revolutionize the technical publishing industry, and that these new methods will be the eventual
standard. I bet my tech-phobic grandmother could pick up PHP and MySQL techniques after a single
reading. She’d probably even have a good time doing it!”

— Will Harris, Database Administrator, Powered By Geek

“Reading Head First PHP & MySQL is like taking a class from the ‘cool’ teacher. It makes you look
forward to learning.”

— Stephanie Liese, Web Developer

“Using images and humor the book is easy to digest and yet delivers real technical know-how.”

— Jereme Allen, Web Developer

“‘After a challenging, high-speed read-through and lots of quirky “Do This” projects, such as “My dog
was abducted by aliens” and the “Mismatch Dating Agency,” I can’t wait to add some real PHP power
to my web sites.”

— David Briggs, Software Engineer and Technical Author

Praise for Head First HTML with CSS & XHTML

“Eric and Elisabeth Freeman clearly know their stuff. As the Internet becomes more complex, inspired
construction of web pages becomes increasingly critical. Elegant design is at the core of every chapter here,
each concept conveyed with equal doses of pragmatism and wit.”

— Ken Goldstein, Executive Vice President & Managing Director, Disney Online

“The Web would be a much better place if every HTML author started off by reading this book.”

— L. David Baron, Technical Lead, Layout & CSS, Mozilla Corporation,
http://dbaron.org/

“I’ve been writing HTML and CSS for ten years now, and what used to be a long trial and error learning
process has now been reduced neatly into an engaging paperback. HTML used to be something you
could just hack away at until things looked okay on screen, but with the advent of web standards and
the movement towards accessibility, sloppy coding practice is not acceptable anymore... from a business
standpoint or a social responsibility standpoint. Head First HTML with CSS & XHTML teaches you how
to do things right from the beginning without making the whole process seem overwhelming. HTML,
when properly explained, is no more complicated than plain English, and the Freemans do an excellent
job of keeping every concept at eye-level.”

— Mike Davidson, President & CEO, Newsvine, Inc.

“Oh, great. You made an XHTML book simple enough a CEO can understand it. What will you
do next? Accounting simple enough my developer can understand it? Next thing you know we’ll be
collaborating as a team or something.”

—Janice Fraser, CEO, Adaptive Path

“This book has humor, and charm, but most importantly, it has heart. I know that sounds ridiculous
to say about a technical book, but I really sense that at its core, this book (or at least its authors) really
care that the reader learn the material. This comes across in the style, the language, and the techniques.
Learning – real understanding and comprehension – on the part of the reader is clearly top most in
the minds of the Freemans. And thank you, thank you, thank you, for the book’s strong, and sensible
advocacy of standards compliance. It’s great to see an entry level book, that I think will be widely read
and studied, campaign so eloquently and persuasively on behalf of the value of standards compliance in
web page code. I even found in here a few great arguments I had not thought of – ones I can remember
and use when I am asked – as I still am – ‘what’s the deal with compliance and why should we care?’
I’ll have more ammo now! I also liked that the book sprinkles in some basics about the mechanics of
actually getting a web page live - FTP, web server basics, file structures, etc.”

—Robert Neer, Director of Product Development, Movies.com

Praise for Head First JavaScript

“So practical and useful, and so well explained. This book does a great job of introducing a complete
newbie to JavaScript, and it’s another testament to Head First’s teaching style. Out of the other
JavaScript books, Head First JavaScript is great for learning, compared to other reference books the size of
a phone book.”

— Alex Lee, Student, University of Houston

“An excellent choice for the beginning JavaScript developer.”

— Fletcher Moore, Web Developer & Designer, Georgia Institute of Technology

“Yet another great book in the classic ‘Head First’ style.”

— TW Scannell

“JavaScript has long been the client-side engine that drives pages on the Web, but it has also long been
misunderstood and misused. With Head First JavaScript, Michael Morrison gives a straightforward and
easy-to-understand introduction of this language, removing any misunderstanding that ever existed and
showing how to most effectively use it to enhance your web pages.”

— Anthony T. Holdener III, Web applications developer, and the author of Ajax:
The Definitive Guide.

“A web page has three parts—content (HTML), appearance (CSS), and behaviour (JavaScript). Head First
HTML introduced the first two, and this book uses the same fun but practical approach to introduce
JavaScript. The fun way in which this book introduces JavaScript and the many ways in which it
reinforces the information so that you will not forget it makes this a perfect book for beginners to use to
start them on the road to making their web pages interactive.”

— Stephen Chapman, Owner Felgall Pty Ltd., JavaScript editor, about.com

“This is the book I’ve been looking for to recommend to my readers. It is simple enough for complete
beginners but includes enough depth to be useful to more advanced users. And it makes the process of
learning fun. This might just be the only JavaScript book you ever need.”

— Julie L Baumler, JavaScript Editor, BellaOnline.com

Other related books from O’Reilly

Learning PHP & MySQL

Web Database Applications with PHP and MySQL

Programming PHP

Learning MySQL

PHP in a Nutshell

PHP CookbookTM

PHP HacksTM

MySQL in a Nutshell

MySQL CookbookTM

Other books in O’Reilly’s Head First series

Head First JavaTM

Head First Object-Oriented Analysis and Design (OOA&D)

Head First HTML with CSS and XHTML

Head First Design Patterns

Head First Servlets and JSP

Head First EJB

Head First PMP

Head First SQL

Head First Software Development

Head First JavaScript

Head First Ajax

Head First Physics

Head First Statistics

Head First Rails

Head First Web Design

Head First Algebra

Beijing • Cambridge • K�ln • Sebastopol • Taipei • Tokyo

Lynn Beighley
Michael Morrison

Head First PHP & MySQL

Wouldn’t it be dreamy if there
was a PHP & MySQL book that

made databases and server-side
web programming feel like a
match made in heaven? It’s

probably just a fantasy...

Head First PHP & MySQL
by Lynn Beighley and Michael Morrison

Copyright © 2009 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (safari.oreilly.com). For more information, contact our corporate/institutional sales
department: (800) 998-9938 or corporate@oreilly.com.

Series Creators: Kathy Sierra, Bert Bates

Series Editor: Brett D. McLaughlin

Editor: Sanders Kleinfeld

Design Editor: Louise Barr

Cover Designers: Louise Barr, Steve Fehler

Production Editor: Brittany Smith

Proofreader: Colleen Gorman

Indexer: Julie Hawks

Page Viewers: Julien and Drew

Printing History:
December 2008: First Edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Head First series designations,
Head First PHP & MySQL, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

No hardwood floors, UFOs, Elvis look-alikes, or virtual guitars were harmed in the making of this book. But a
few broken hearts were mended thanks to some careful mismatching!

ISBN: 978-0-596-00630-3

[M]

Drew is, at this very moment, installing a new kitchen in Lynn’s new old house.

Michael’s nephew Julien
generously lent his
Superman powers to help
get this book finished.

For my parents, who frequently use web applications and are always
there for me.

 - Lynn Beighley

To Rasmus Lerdorf, who single-handedly sparked the language that
would eventually become PHP as we know it now. Enduring proof
that it really only takes one person to lead us all down a new, more
enlightened path.

 - Michael Morrison

viii

the author(s)

Author(s) of Head First PHP & MySQL

Lynn Beighley is a fiction writer stuck in a
technical book writer’s body. Upon discovering that
technical book writing actually paid real money, she
learned to accept and enjoy it. After going back to
school to get a Masters in Computer Science, she
worked for the acronyms NRL and LANL. Then she
discovered Flash, and wrote her first bestseller. A victim
of bad timing, she moved to Silicon Valley just before
the great crash. She spent several years working for
Yahoo! and writing other books and training courses.
Finally giving in to her creative writing bent, she moved
to the New York area to get an MFA in Creative Writing.
Her Head First-style thesis was delivered to a packed
room of professors and fellow students. It was extremely
well received, and she finished her degree, finished
Head First SQL, and just finished Head First PHP &
MySQL. Whew!

Lynn loves traveling, writing, and making up elaborate
background stories about complete strangers. She’s a
little scared of UFOs.

Michael Morrison has been an enthusiastic
contributor to the online world ever since he ran a BBS
on his Commodore 64 way back when being a nerd
was far less cool than it is these days. A few thousand
baud later, he still marvels at how far we’ve come, and
how fast. Michael doesn’t run a BBS anymore, but he’s
still very much involved in the modern equivalents and
the tools we use to build them. He spends most of his

“official” time writing about web-related technologies,
having authored or co-authored over fifty books ranging
from mobile game programming to XML. He entered
the Head First foray with Head First JavaScript, and hasn’t
looked back.

Michael is also the founder of Stalefish Labs (www.
stalefishlabs.com), an entertainment company
specializing in games, toys, and interactive media. And
he’s been known to actually spend time offline (gasp!)
skateboarding, playing ice hockey, and hanging out next
to his koi pond with his wife, Masheed. He even sleeps
every once in a while.

Michael Morrison

Lynn Beighley

table of contents

ix

Table of Contents (Summary)

Table of Contents (the real thing)

Your brain on PHP & MySQL. Here you are trying to learn something,

while here your brain is doing you a favor by making sure the learning doesn’t stick.

Your brain’s thinking, “Better leave room for more important things, like which wild

animals to avoid and whether underwater yoga is a bad idea.” So how do you trick

your brain into thinking that your life depends on knowing PHP and MySQL?

Intro

Who is this book for? xxviii

We know what you’re thinking xxix

Metacognition xxxi

Bend your brain into submission xxxiii

Read me xxxiv

The technical review team xxxvi

Acknowledgments xxxvii

 Intro xxvii

1 It’s Alive: Add Life to Your Static Pages 1

2 How It Fits Together: Connecting to MySQL 59

3 Creating Your Own Data: Create and Populate a Database 103

4 Your Application on the Web: Realistic and Practical Applications 159

5 When a Database Just Isn’t Enough: Working With Data Stored in Files 223

6 Assume They’re All Out to Get You: Securing Your Application 295

7 Remember Me?: Building Personalized Web Apps 345

7 Sharing is Caring: Eliminate Duplicate Code 417

8 Harvesting Data: Control Your Data, Control Your World 427

9 Better Living Through Functions: String and Custom Functions 501

10 Rules for Replacement: Regular Expressions 561

11 Drawing Dynamic Graphics: Visualizing Your Data... and More! 605

12 Interfacing to the World: Syndication and Web Services 657

i The Top Ten Topics (We Didn’t Cover): Leftovers 713

ii A Place to Play: Set Up a Development Environment 731

iii Get Even More: Extend Your PHP 749

½

table of contents

x

HTML is static and boring 2

PHP brings web pages to life 3

A form helps Owen get the whole story 5

Forms are made of HTML 6

The HTML form has problems 8

HTML acts on the client 10

PHP acts on the server 11

PHP scripts run on the server 12

Use PHP to access the form data 16

PHP scripts must live on a server! 18

The server turns PHP into HTML 22

A few PHP rules to code by 25

Finding the perfect variable name 26

Variables are for storing script data 31

$–POST is a special variable that holds form data 33

$–POST transports form data to your script 34

Creating the email message body with PH P 44

Even plain text can be formatted...a little 46

Newlines need double-quoted strings 47

Assemble an email message for Owen 48

Variables store the email pieces and parts 49

Sending an email message with PHP 50

Owen starts getting emails 53

Owen starts losing emails 54

It’s Alive1
add life to your static pages

You’ve been creating great web pages with HTML, and
a sprinkling of CSS. But you’ve noticed that visitors to your site can’t do

much other than passively look at the content on the pages. The communication’s

one-way, and you’d like to change that. In fact, you’d really like to know what your

audience is thinking. But you need to be able to allow users to enter information

into a web form so that you can find out what’s on their minds. And you need to be

able to process the information and have it delivered to you. It sounds as if you’re

going to need more than HTML to take your site to the next level.

Have you seen him?

table of contents

xi

How it fits together
Knowing how things fit together before you start building is
a good idea. You’ve created your first PHP script, and it’s working well. But getting

your form results in an email isn’t good enough anymore. You need a way to save the

results of your form, so you can keep them as long as you need them and retrieve them

when you want them. A MySQL database can store your data for safe keeping. But you

need to hook up your PHP script to the MySQL database to make it happen.

connecting to MySQL

2
Owen’s PHP form works well. Too well... 60

MySQL excels at storing data 61

Owen needs a MySQL database 62

Create a MySQL database and table 64

The INSERT statement in action 67

Use SELECT to get table data 70

Let PHP handle the tedious SQL stuff 73

PHP lets data drive Owen’s web form 74

Connect to your database from PHP 76

Insert data with a PHP script 77

Use PHP functions to talk to the database 78

Get connected with mysqli_connect() 80

Build the INSERT query in PHP 85

Query the MySQL database with PHP 86

Close your connection with mysqli–close() 87

$–POST provides the form data 91

Owen needs help sifting through his data 96

Owen’s on his way to finding Fang 98

The new report form is great, but
now I’m getting too many emails. I can’t
drink enough caffeine to go through
them all when I first receive them.

mysqli_query()

$query

dunno

Don Quayle

back in 1991
37 seconds

they looked like donkeys made out of metal...
shot

 me
with

 a t
hous

and
poin

ts o
f li

ght

yes
I really do love potatos.

dq@iwasvicepresiden
t.com

table of contents

xii

The Elvis store is open for business 104

Elmer needs an application 105

Visualize Elmer’s application design 106

It all starts with a table 109

Make contact with the MySQL server 110

Create a database for Elmer’s emails 111

Create a table inside the database 112

We need to define our data 113

Take a meeting with some MySQL data types 114

Create your table with a query 117

USE the database before you use it 120

DESCRIBE reveals the structure of tables 123

Elmer’s ready to store data 125

Create the Add Email script 126

The other side of Elmer’s application 133

The nuts and bolts of the Send Email script 134

First things first, grab the data 135

mysqli_fetch_array() fetches query results 136

Looping for a WHILE 139

Looping through data with while 140

You’ve got mail...from Elmer! 145

Sometimes people want out 146

Removing data with DELETE 147

Use WHERE to DELETE specific data 148

Minimize the risk of accidental deletions 149

MakeMeElvis.com is a web application 154

Creating your own data3
create and populate a database

You don’t always have the data you need.
Sometimes you have to create the data before you can use it. And sometimes

you have to create tables to hold that data. And sometimes you have to create

the database that holds the data that you need to create before you can use it.

Confused? You won’t be. Get ready to learn how to create databases and tables

of your very own. And if that isn’t enough, along the way, you’ll build your very first

PHP & MySQL application.

Dear Fellow Elvisonians,

Big sale this week at MakeMeElvi
s.com!

Genuine horse hair sideburns 20%
 off!

And don’t forget the “buy one, g
et one

free” leisure suits — only three
 days

left!

Big Sale!

Elmer’s customer mailing list:Anderson Jillian jill_anderson@breakneckpizza.com

w Kevin joffe@simuduck.com
Newsome Amanda aman2luv@breakneckpizza.com

Garcia Ed ed99@b0tt0msup.com

Roundtree Jo-Ann jojoround@breakneckpizza.com

Briggs Chris cbriggs@boards-r-us.com

Harte Lloyd hovercraft@breakneckpizza.com

Toth Anne AnneToth@leapinlimos.com

Wiley Andrew andrewwiley@objectville.net

Palumbo Tom palofmine@mightygumball.net

Ryan Alanna angrypirate@breakneckpizza.com

McKinney Clay clay@starbuzzcoffee.com

Meeker Ann annmeeker@chocoholic-inc.com

Powers Brian bp@honey-doit.com

Manson Anne am86@objectville.net

Mandel Debra debmonster@breakneckpizza.com

Tedesco Janis janistedesco@starbuzzcoffee.com

Talwar Vikram vikt@starbuzzcoffee.com

Szwed Joe szwedjoe@objectville.net

Sheridan Diana sheridi@mightygumball.net

Snow Edward snowman@tikibeanlounge.com

Otto Glenn glenn0098@objectville.net

Hardy Anne anneh@b0tt0msup.com

Deal Mary nobigdeal@starbuzzcoffee.com

Jagel Ann dreamgirl@breakneckpizza.com

Melfi James drmelfi@b0tt0msup.com

Oliver Lee leeoliver@weatherorama.com

Parker Anne annep@starbuzzcoffee.com

Ricci Peter ricciman@tikibeanlounge.com

Reno Grace grace23@objectville.net

Moss Zelda zelda@weatherorama.com

Day Clifford cliffnight@breakneckpizza.com

Bolger Joyce joyce@chocoholic-inc.com

Blunt Anne anneblunt@breakneckpizza.com

Bolling Lindy lindy@tikibeanlounge.com

Gares Fred fgares@objectville.net

Jacobs Anne anne99@objectville.net

This is taking too long. I’d
rather be spending my time
imitating Elvis, not sending
out emails manually.

table of contents

xiii

Your Application on the Web
Sometimes you have to be realistic and rethink your plans.
Or plan more carefully in the first place. When your application’s out there on the Web,

you may discover that you haven’t planned well enough. Things that you thought would

work aren’t good enough in the real world. This chapter takes a look at some real-world

problems that can occur as you move your application from testing to a live site. Along

the way, we’ll show you more important PHP and SQL code.

realistic and practical applications

4
Elmer has some irritated customers 160

Protecting Elmer from...Elmer 163

Demand good form data 164

The logic behind Send Email validation 165

Your code can make decisions with IF 166

Testing for truth 167

IF checks for more than just equality 168

The logic behind Send Email validation 171

PHP functions for verifying variables 172

Test multiple conditions with AND and OR 179

Form users need feedback 183

Ease in and out of PHP as needed 193

Use a flag to avoid duplicate code 194

Code the HTML form only once 195

A form that references itself 199

Point the form action at the script 200

Check to see if the form has been submitted 202

Some users are still disgruntled 206

Table rows should be uniquely identifiable 208

Primary keys enforce uniqueness 210

From checkboxes to customer IDs 215

Loop through an array with foreach 216

table of contents

xiv

Virtual guitarists like to compete 224

The proof is in the picture 225

The application needs to store images 226

Planning for image file uploads in Guitar Wars 231

The high score database must be ALTERed 232

How do we get an image from the user? 236

Insert the image filename into the database 238

Find out the name of the uploaded file 239

Where did the uploaded file go? 244

Create a home for uploaded image files 248

Shared data has to be shared 254

Shared script data is required 255

Think of require_once as "insert" 256

Order is everything with high scores 258

Honoring the top Guitar Warrior 261

Format the top score with HTML and CSS 262

Only small images allowed 267

File validation makes the app more robust 268

Plan for an Admin page 272

Generate score removal links on the Admin page 275

Scripts can communicate with each other 276

Of GETs and POSTs 278

GET, POST, and high score removal 280

Isolate the high score for deletion 283

Control how much you delete with LIMIT 284

When a database just isn’t enough5
working with data stored in files

Don't believe the hype...about databases, that is. Sure, they

work wonders for storing all kinds of data involving text, but what about binary

data? You know, stuff like JPEG images and PDF documents. Does it really make

sense to store all those pictures of your rare guitar pick collection in a database

table? Usually not. That kind of data is typically stored in files, and we'll leave it in

files. But it's entirely possible to have your virtual cake and eat it too—this chapter

reveals that you can use files and databases together to build PHP applications

that are awash in binary data.

table of contents

xv

Assume they’re all out to get you
Your parents were right: don’t talk to strangers. Or at least don’t

trust them. If nothing else, don’t give them the keys to your application data, assuming

they’ll do the right thing. It’s a cruel world out there, and you can’t count on everyone to

be trustworthy. In fact, as a web application developer you have to be part cynic, part

conspiracy theorist. Yes, people are generally bad and they’re definitely out to get you!

OK, maybe that’s a little extreme, but it’s very important to take security seriously and

design your applications so that they’re protected against anyone who might choose to

do harm.

securing your application

6
The day the music died 296

Where did the high scores go? 297

Securing the teeming hordes 299

Protecting the Guitar Wars Admin page 300

HTTP authentication requires headers 302

Header Exposed 304

Take control of headers with PHP 305

Authenticating with headers 306

Create an Authorize script 314

Guitar Wars Episode II : Attack of the High Score Clones 318

Subtraction by addition 319

Security requires humans 320

Plan for moderation in Guitar Wars 321

Make room for approvals with ALTER 322

Unapproved scores aren’t worthy 327

The million-point hack 330

Everything in moderation...? 331

How exactly did she do it? 333

Tricking MySQL with comments 334

The Add Score form was SQL injected 335

Protect your data from SQL injections 336

A safer INSERT (with parameters) 337

Form validation can never be too smart 339

Cease fire! 341

Good luck trying to slip any
falsified documents, er high
scores, by me. I’m thorough,
and I rarely make mistakes.

table of contents

xvi

They say opposites attract 346

Mismatch is all about personal data 347

Mismatch needs user log-ins 348

Prepping the database for log-ins 351

Constructing a log-in user interface 353

Encrypt passwords with SHA() 354

Comparing passwords 355

Authorizing users with HTTP 358

Logging In Users with HTTP Authentication 361

A form for signing up new users 365

What’s in a cookie? 375

Use cookies with PHP 376

Rethinking the flow of log-ins 379

A cookie-powered log-in 380

Logging out means deleting cookies 385

Sessions aren’t dependent on the client 389

Keeping up with session data 391

Renovate Mismatch with sessions 392

Log out with sessions 393

Complete the session transformation 398

Users aren’t feeling welcome 404

Sessions are short-lived... 406

...but cookies can last forever! 407

Sessions + Cookies = Superior log-in persistence 409

Remember me?7
building personalized web apps

No one likes to be forgotten, especially users of web
applications. If an application has any sense of “membership,” meaning that

users somehow interact with the application in a personal way, then the application

needs to remember the users. You’d hate to have to reintroduce yourself to

your family every time you walk through the door at home. You don’t have to

because they have this wonderful thing called memory. But web applications don’t

remember people automatically - it’s up to a savvy web developer to use the tools

at their disposal (PHP and MySQL, maybe?) to build personalized web apps that

can actually remember users.

table of contents

xvii

Sharing is caring
Umbrellas aren’t the only thing that can be shared. In any web

application you’re bound to run into situations where the same code is duplicated in

more than one place. Not only is this wasteful, but it leads to maintenance headaches

since you will inevitably have to make changes, and these changes will have to be

carried out in multiple places. The solution is to eliminate duplicate code by sharing

it. In other words, you stick the duplicate code in one place, and then just reference that

single copy wherever you need it. Eliminating duplicate code results in applications that

are more efficient, easier to maintain, and ultimately more robust.

eliminate duplicate code

1/2

Mismatch is in pieces 421

Rebuilding Mismatch from a template 422

Rebuild Mismatch with templates 424

Mismatch is whole again...and much better organized 426

7

index.php

startsession.php header.php

navmenu.php

footer.php

The footer provides content along the bottom of every Mismatch page, which
includes a copyright notice.

The header appears at the top of every Mismatch page, and
displays the application title as well as a page-specific title.

The navigation menu
appears just below the
header, and provides each
Mismatch page with a
consistent menu to navigate
between the main pages.

Every Mismatch page that’s
personalized to a user
requires log-in code that
keeps track of the user.

With so many other scripts helping
out, the index.php script is left to
focus solely on its unique role, which
is displaying the main user list.

table of contents

xviii

Making the perfect mismatch 428

Mismatching is all about the data 429

Model a database with a schema 431

Wire together multiple tables 436

Foreign keys in action 437

Tables can match row for row 438

One row leads to many 439

Matching rows many-to-many 440

Build a Mismatch questionnaire 445

Get responses into the database 446

We can drive a form with data 450

Generate the Mismatch questionnaire form 456

Strive for a bit of normalcy 462

When normalizing, think in atoms 463

Three steps to a normal database 465

Altering the Mismatch database 469

So is Mismatch really normal? 470

A query within a query within a query... 472

Let’s all join hands 473

Connect with dots 474

Surely we can do more with inner joins 475

Nicknames for tables and columns 477

Joins to the rescue 478

Five steps to a successful mismatch 485

Compare users for “mismatchiness” 487

All we need is a FOR loop 488

Harvesting data8
control your data, control your world

There’s nothing like a good fall data harvest. An abundance of

information ready to be examined, sorted, compared, combined, and generally

made to do whatever it is your killer web app needs it to do. Fulfilling? Yes. But like real

harvesting, taking control of data in a MySQL database requires some hard work and

a fair amount of expertise. Web users demand more than tired old wilted data that’s dull

and unengaging. They want data that enriches...data that fulfills...data that’s relevant.

So what are you waiting for? Fire up your MySQL tractor and get to work!

Horror movies

Horror movies

Sidney’s dislike of
horror movies leads
to a mismatch. Love ‘em.

Hate ‘em!

A mismatch!

mismatch_user

user_id
username

password

join_date

first_name

last_name

gender

birthdate

city

state

picture

mismatch_topic

topic_id
name

category

mismatch_response

response_id
response

user_id

topic_id

?
?

table of contents

xix

Better living through functions
Functions take your applications to a whole new level.
You’ve already been using PHP’s built-in functions to accomplish things. Now it’s time to

take a look at a few more really useful built-in functions. And then you’ll learn to build

your very own custom functions to take you farther than you ever imagined it was

possible to go. Well, maybe not to the point of raising laser sharks, but custom functions

will streamline your code and make it reusable.

string and custom functions

9
A good risky job is hard to find 502

The search leaves no margin for error 504

SQL queries can be flexible with LIKE 505

Explode a string into individual words 510

implode() builds a string from substrings 513

Preprocess the search string 519

Replace unwanted search characters 520

The query needs legit search terms 524

Copy non-empty elements to a new array 525

Sometimes you just need part of a string 528

Extract substrings from either end 529

Multiple queries can sort our results 532

Functions let you reuse code 536

Build a query with a custom function 537

Custom functions, how custom are they really? 538

SWITCH makes far more decisions than IF 542

Give build_query() the ability to sort 545

We can paginate our results 548

Get only the rows you need with LIMIT 549

Control page links with LIMIT 550

Keep track of the pagination data 551

Set up the pagination variables 552

Revise the query for paginated results 553

Generate the page navigation links 554

Putting together the complete Search script 557

The complete Search script, continued... 558

table of contents

xx

Risky Jobs lets users submit resumes 562

Decide what your data should look like 566

Formulate a pattern for phone numbers 569

Match patterns with regular expressions 570

Build patterns using metacharacters 572

Fine-tune patterns with character classes 579

Check for patterns with preg_match() 584

Standardize the phone number data 591

Get rid of the unwanted characters 592

Matching email addresses can be tricky 596

Domain suffixes are everywhere 598

Use PHP to check the domain 599

Email validation: putting it all together 600

Rules for replacement10
regular expressions

String functions are kind of lovable. But at the same time,
they’re limited. Sure, they can tell the length of your string, truncate it,

change certain characters to other certain characters. But sometimes you need

to break free and tackle more complex text manipulations. This is where regular

expressions can help. They can precisely modify strings based on a set of

rules rather than a single criterion.

First Name: Jimmy

Last Name: Swift

Email: JS@sim-u-duck.com

Phone: 636 4652

Desired Job: Ninja

I got an error and
then entered my entire
phone number. And
then I got a ninja job!

First Name: Jimmy
Last Name: Swift
Email: JS@sim-u-duck.com

Phone: (555) 636 4652
Desired Job: Ninja

table of contents

xxi

Drawing dynamic graphics
Sure, we all know the power of a good query and a bunch of
juicy results. But query results don’t always speak for themselves. Sometimes

it’s helpful to cast data in a different light, a more visual light. PHP makes it possible

to provide a graphical representation of database data: pie charts, bar charts,

Venn diagrams, Rorschach art, you name it. Anything to help users get a grip on the

data flowing through your application is game. But not all worthwhile graphics in PHP

applications originate in your database. For example, did you know it’s possible to

thwart form-filling spam bots with dynamically generated images?

visualizing your data...and more!

11
Guitar Wars Reloaded: Rise of the Machines 606

No input form is safe 607

We need to separate man from machine 608

We can defeat automation with automation 611

Generate the CAPTCHA pass-phrase text 613

Visualizing the CAPTCHA image 614

Inside the GD graphics functions 616

Drawing text with a font 620

Generate a random CAPTCHA image 623

Returning sanity to Guitar Wars 625

Add CAPTCHA to the Add Score script 627

Five degrees of opposability 630

Charting mismatchiness 631

Storing bar graph data 632

Reading between the lines with the master of charts 635

From one array to another 636

Build an array of mismatched topics 638

Formulating a bar graphing plan 639

Crunching categories 640

Doing the category math 641

Bar graphing basics 644

Draw and display the bar graph image 647

Individual bar graph images for all 650

Mismatch users are digging the bar graphs 653

Add score, add score,
add score, add score,
add score, add score...

This is ridiculous. I can’t
possibly moderate all
these posts, most of which
appear to be bogus. I don’t
even know what a frowney is!

table of contents

xxii

Owen needs to get the word out about Fang 658

Push alien abduction data to the people 659

RSS pushes web content to the people 660

RSS is really XML 661

From database to newsreader 666

Visualizing RSS 669

What makes a newsman tick 671

Dynamically generate an RSS feed 672

Link to the RSS feed 676

A video is worth a million words 678

Pulling web content from others 680

Syndicating YouTube videos 681

Make a YouTube video request 682

Owen is ready to build a REST request 686

YouTube speaks XML 690

Deconstruct a YouTube XML response 694

Visualize the XML video data 695

Access XML data with objects 696

From XML elements to PHP objects 697

Drill into XML data with objects 698

Not without a namespace! 699

Fang sightings are on the rise 701

Lay out videos for viewing 702

Format video data for display 703

Interfacing to the world12
syndication and web services

It’s a big world out there, and one that your web
application can’t afford to ignore. Perhaps more importantly, you’d

rather the world not ignore your web application. One excellent way to tune the

world in to your web application is to make its data available for syndication, which

means users can subscribe to your site’s content instead of having to visit your

web site directly to find new info. Not only that, your application can interface to

other applications through web services and take advantage of other people’s data

to provide a richer experience.

Some email clients support “push” content,
allowing you to receive web site updates
the same way you receive email messages.

Many regular web
browsers also let you
browse “push” content
that quickly reveals
the latest news posted
to a web site.

Even mobile devices provide
access to “push” content
that is automatically
delivered when something
on a web site changes.

table of contents

xxiii

The Top Ten Topics (we didn’t cover)
Even after all that, there’s a bit more. There are just a few more things

we think you need to know. We wouldn’t feel right about ignoring them, even though

they only need a brief mention. So before you put the book down, take a read through

these short but important PHP and MySQL tidbits. Besides, once you’re done here, all

that’s left are a couple short appendices... and the index... and maybe some ads... and

then you’re really done. We promise!

leftovers

i
#1. Retrofit this book for PHP4 and mysql functions 714

#2. User permissions in MySQL 716

#3. Error reporting for MySQL 718

#4. Exception handling PHP errors 719

#5. Object-oriented PHP 721

#6. Securing your PHP application 723

#7. Protect your app from cross-site scripting 725

#8. Operator precedence 727

#9. What’s the difference between PHP 5 and PHP 6 728

#10. Reusing other people’s PHP 730

Dataville
Savings & Loan

table of contents

xxiv

Create a PHP development environment 732

Find out what you have 732

Do you have a web server? 733

Do you have PHP? Which version? 733

Do you have MySQL? Which version? 734

Start with the Web Server 735

PHP installation steps 737

Installing MySQL 738

Steps to Install MySQL on Windows 739

Enabling PHP on Mac OS X 742

Steps to Install MySQL on Mac OS X 742

Moving from production to a live site 744

Dump your data (and your tables) 745

Prepare to use your dumped data 745

Move dumped data to the live server 746

Connect to the live server 747

A place to playii
set up a development environment

You need a place to practice your newfound PHP and
MySQL skills without making your data vulnerable on the
web. It’s always a good idea to have a safe place to develop your PHP application

before unleashing it on the world (wide web). This appendix contains instructions for

installing a web server, MySQL, and PHP to give you a safe place to work and practice.

Web server

Database server

Server computer

table of contents

xxv

Extending your PHP 750

And on the Mac... 753

Get even moreiii
extend your php

Yes, you can program with PHP and MySQL and create
great web applications. But you know there must be more to it. And

there is. This short appendix will show you how to install the mysqli extension and

GD graphics library extension. Then we’ll mention a few more extensions to PHP

you might want to get. Because sometimes it’s okay to want more.

Grab the version of
mysqli to match your
version of PHP.

You should see
php_gd2.dll and
php_mysqli.dll

xxvii

how to use this book

Intro

In this section we answer the burning question: “So

why DID they put that in a PHP & MySQL book?”

I can’t believe
they put that in
a PHP & MySQL

book.

xxviii intro

how to use this book

Who is this book for?

Who should probably back away from this book?

If you can answer “yes” to all of these:

If you can answer “yes” to any of these:

this book is for you.

this book is not for you.

[Note from marketing: this book is for anyone with a credit card.]

Are you a web designer with HTML or XHTML experience
and a desire to take your web pages to the next level?

11

Do you want to go beyond simple HTML pages to learn,
understand, and remember how to use PHP and
MySQL to build web applications?

22

Do you prefer stimulating dinner party conversation to
dry, dull, academic lectures?

33

Are you completely unfamiliar with basic
programming concepts like variables and loops?

(But even if you’ve never programmed before, you’ll
probably be able to get the key concepts you need from
this book.)

11

Are you a kick-butt PHP web developer looking for a
reference book?

22

Are you afraid to try something different? Would you
rather have a root canal than mix stripes with plaid? Do
you believe that a technical book can’t be serious if it
creates an alien abduction database?

33

you are here 4 xxix

the intro

“How can this be a serious PHP and MySQL book?”

“What’s with all the graphics?”

“Can I actually learn it this way?”

Your brain craves novelty. It’s always searching, scanning, waiting for something
unusual. It was built that way, and it helps you stay alive.

So what does your brain do with all the routine, ordinary, normal things you
encounter? Everything it can to stop them from interfering with the brain’s
real job—recording things that matter. It doesn’t bother saving the boring
things; they never make it past the “this is obviously not important” filter.

How does your brain know what’s important? Suppose you’re out for a
day hike and a tiger jumps in front of you, what happens inside your head
and body?

Neurons fire. Emotions crank up. Chemicals surge.

And that’s how your brain knows...

This must be important! Don’t forget it!
But imagine you’re at home, or in a library. It’s a safe, warm, tiger-free zone.
You’re studying. Getting ready for an exam. Or trying to learn some tough
technical topic your boss thinks will take a week, ten days at the most.

Just one problem. Your brain’s trying to do you a big favor. It’s trying
to make sure that this obviously non-important content doesn’t clutter
up scarce resources. Resources that are better spent storing the really
big things. Like tigers. Like the danger of fire. Like how to quickly
hide the browser window with the YouTube video of space alien
footage when your boss shows up.

And there’s no simple way to tell your brain, “Hey brain, thank you
very much, but no matter how dull this book is, and how little I’m
registering on the emotional Richter scale right now, I really do want
you to keep this stuff around.”

We know what you’re thinking

We know what your brain is thinking

Your brain thinks THIS is important.

Your brain t
hinks

THIS isn’t worth

saving.

Great. Only 750
more dull, dry,
boring pages.

UFO footage on YouTube is
obviously more interesting
to your brain than some
computer book.

xxx intro

how to use this book

We think of a “Head First” reader as a learner.

So what does it take to learn something? First, you have to get it, then make sure

you don’t forget it. It’s not about pushing facts into your head. Based on the

latest research in cognitive science, neurobiology, and educational psychology,

learning takes a lot more than text on a page. We know what turns your brain on.

Some of the Head First learning principles:

Make it visual. Images are far more memorable than words alone, and make learning much

more effective (up to 89% improvement in recall and transfer studies). It also makes things

more understandable. Put the words within or near the graphics they relate to,

rather than on the bottom or on another page, and learners will be up to twice as likely to

solve problems related to the content.

Use a conversational and personalized style. In recent studies,

students performed up to 40% better on post-learning tests if the content spoke

directly to the reader, using a first-person, conversational style rather than taking

a formal tone. Tell stories instead of lecturing. Use casual language. Don’t take

yourself too seriously. Which would you pay more attention to: a stimulating dinner

party companion, or a lecture?

Get the learner to think more deeply. In other words, unless you actively flex your

neurons, nothing much happens in your head. A reader has to be motivated, engaged, curious,

and inspired to solve problems, draw conclusions, and generate new knowledge. And for that,

you need challenges, exercises, and thought-provoking questions, and activities that involve

both sides of the brain and multiple senses.

Get—and keep—the reader’s attention. We’ve all had the “I really want to learn

this but I can’t stay awake past page one” experience. Your brain pays attention to things that

are out of the ordinary, interesting, strange, eye-catching, unexpected. Learning a new, tough,

technical topic doesn’t have to be boring. Your brain will learn much more quickly if it’s not.

Touch their emotions. We now know that your ability to remember something is largely

dependent on its emotional content. You remember what you care about. You remember when you

feel something. No, we’re not talking heart-wrenching stories about a boy and his dog. We’re talking

emotions like surprise, curiosity, fun, “what the...?” , and the feeling of “I Rule!” that comes when you

solve a puzzle, learn something everybody else thinks is hard, or realize you know something that

“I’m more technical than thou” Bob from engineering doesn’t.

Small correction. We actually do have a
heart-wrenching story about a boy and
his dog - the dog was abducted by aliens,
and you’ll be helping the boy find him!

user_id = 1

Error!
Pass-phrase unknown.

you are here 4 xxxi

the intro

Metacognition: thinking about thinking
I wonder how

I can trick my brain
into remembering
this stuff...

If you really want to learn, and you want to learn more quickly and more
deeply, pay attention to how you pay attention. Think about how you think.
Learn how you learn.

Most of us did not take courses on metacognition or learning theory when we
were growing up. We were expected to learn, but rarely taught to learn.

But we assume that if you’re holding this book, you really want to learn how
to build database-driven web sites with PHP and MySQL. And you probably
don’t want to spend a lot of time. If you want to use what you read in this
book, you need to remember what you read. And for that, you’ve got to understand
it. To get the most from this book, or any book or learning experience, take
responsibility for your brain. Your brain on this content.

The trick is to get your brain to see the new material you’re learning as
Really Important. Crucial to your well-being. As important as a tiger.
Otherwise, you’re in for a constant battle, with your brain doing its best to
keep the new content from sticking.

So just how DO you get your brain to treat PHP &
MySQL like it was a hungry tiger?
There’s the slow, tedious way, or the faster, more effective way. The
slow way is about sheer repetition. You obviously know that you are able to learn
and remember even the dullest of topics if you keep pounding the same thing into your
brain. With enough repetition, your brain says, “This doesn’t feel important to him, but he
keeps looking at the same thing over and over and over, so I suppose it must be.”

The faster way is to do anything that increases brain activity, especially different
types of brain activity. The things on the previous page are a big part of the solution,
and they’re all things that have been proven to help your brain work in your favor. For
example, studies show that putting words within the pictures they describe (as opposed to
somewhere else in the page, like a caption or in the body text) causes your brain to try to
makes sense of how the words and picture relate, and this causes more neurons to fire.
More neurons firing = more chances for your brain to get that this is something worth
paying attention to, and possibly recording.

A conversational style helps because people tend to pay more attention when they
perceive that they’re in a conversation, since they’re expected to follow along and hold up
their end. The amazing thing is, your brain doesn’t necessarily care that the “conversation”
is between you and a book! On the other hand, if the writing style is formal and dry, your
brain perceives it the same way you experience being lectured to while sitting in a roomful
of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning…

Neuron, schmeuron.
Some of us are here
to rock!

xxxii intro

how to use this book

Here’s what WE did:
We used pictures, because your brain is tuned for visuals, not text. As far as your brain’s
concerned, a picture really is worth a thousand words. And when text and pictures work
together, we embedded the text in the pictures because your brain works more effectively
when the text is within the thing the text refers to, as opposed to in a caption or buried in the
text somewhere.

We used redundancy, saying the same thing in different ways and with different media types,
and multiple senses, to increase the chance that the content gets coded into more than one area
of your brain.

We used concepts and pictures in unexpected ways because your brain is tuned for novelty,
and we used pictures and ideas with at least some emotional content, because your brain
is tuned to pay attention to the biochemistry of emotions. That which causes you to feel
something is more likely to be remembered, even if that feeling is nothing more than a little
humor, surprise, or interest.

We used a personalized, conversational style, because your brain is tuned to pay more
attention when it believes you’re in a conversation than if it thinks you’re passively listening
to a presentation. Your brain does this even when you’re reading.

We included more than 80 activities, because your brain is tuned to learn and remember
more when you do things than when you read about things. And we made the exercises
challenging-yet-do-able, because that’s what most people prefer.

We used multiple learning styles, because you might prefer step-by-step procedures, while
someone else wants to understand the big picture first, and someone else just wants to see
an example. But regardless of your own learning preference, everyone benefits from seeing the
same content represented in multiple ways.

We include content for both sides of your brain, because the more of your brain you
engage, the more likely you are to learn and remember, and the longer you can stay
focused. Since working one side of the brain often means giving the other side a chance
to rest, you can be more productive at learning for a longer period of time.

And we included stories and exercises that present more than one point of view,
because your brain is tuned to learn more deeply when it’s forced to make evaluations and
judgments.

We included challenges, with exercises, and by asking questions that don’t always have
a straight answer, because your brain is tuned to learn and remember when it has to work at
something. Think about it—you can’t get your body in shape just by watching people at the
gym. But we did our best to make sure that when you’re working hard, it’s on the right things.
That you’re not spending one extra dendrite processing a hard-to-understand example,
or parsing difficult, jargon-laden, or overly terse text.

We used people. In stories, examples, pictures, etc., because, well, because you’re a person.
And your brain pays more attention to people than it does to things.

Try this!

Horror movies

Horror movies

A mismatch!

Test Drive

DON’T
TRUST
THIS

SMILE!

you are here 4 xxxiii

the intro

So, we did our part. The rest is up to you. These tips are a
starting point; listen to your brain and figure out what works
for you and what doesn’t. Try new things.

Drink water. Lots of it.
Your brain works best in a nice bath of fluid.
Dehydration (which can happen before you ever
feel thirsty) decreases cognitive function.

Make this the last thing you read before
bed. Or at least the last challenging thing.

Write a lot of code!
There’s only one way to learn to program: writing
a lot of code. And that’s what you’re going to
do throughout this book. Coding is a skill, and the
only way to get good at it is to practice. We’re going
to give you a lot of practice: every chapter has
exercises that pose problems for you to solve. Don’t
just skip over them—a lot of the learning happens
when you solve the exercises. We included a solution
to each exercise—don’t be afraid to peek at the
solution if you get stuck! (It’s easy to get snagged on
something small.) But try to solve the problem before
you look at the solution. And definitely get it working
before you move on to the next part of the book.

Listen to your brain.

Feel something.
Your brain needs to know that this matters. Get
involved with the stories. Make up your own
captions for the photos. Groaning over a bad joke
is still better than feeling nothing at all.

Pay attention to whether your brain is getting
overloaded. If you find yourself starting to skim
the surface or forget what you just read, it’s time
for a break. Once you go past a certain point, you
won’t learn faster by trying to shove more in, and
you might even hurt the process.

Talk about it. Out loud.
Speaking activates a different part of the brain.
If you’re trying to understand something, or
increase your chance of remembering it later, say
it out loud. Better still, try to explain it out loud
to someone else. You’ll learn more quickly, and
you might uncover ideas you hadn’t known were
there when you were reading about it.

Part of the learning (especially the transfer to
long-term memory) happens after you put the
book down. Your brain needs time on its own, to
do more processing. If you put in something new
during that processing time, some of what you
just learned will be lost.

Read the “There are No Dumb Questions”
That means all of them. They’re not optional
sidebars—they’re part of the core content!
Don’t skip them.

Slow down. The more you understand,
the less you have to memorize.
Don’t just read. Stop and think. When the
book asks you a question, don’t just skip to the
answer. Imagine that someone really is asking
the question. The more deeply you force your
brain to think, the better chance you have of
learning and remembering.

Cut this out and stick it on your refrigerator.

Here’s what YOU can do to bend
your brain into submission

Do the exercises. Write your own notes.
We put them in, but if we did them for you,
that would be like having someone else do
your workouts for you. And don’t just look at
the exercises. Use a pencil. There’s plenty of
evidence that physical activity while learning
can increase the learning.

1

2

3

4

5

6

7

8

9

PHP and MySQL let you build real-world
web applications - don’t forget to upload
them and try them out on a real web server.

xxxiv intro

how to use this book

Read Me
This is a learning experience, not a reference book. We deliberately stripped out everything
that might get in the way of learning whatever it is we’re working on at that point in the
book. And the first time through, you need to begin at the beginning, because the book
makes assumptions about what you’ve already seen and learned.

We begin by teaching simple programming concepts and database
connection basics, then more complicated PHP functions
and MySQL statements, and finally more complex application
concepts.
While it’s important to create applications that allow users to add data to and retrieve data
from your web application, before you can do that you need to understand the syntax of
both PHP and MySQL. So we begin by giving you PHP and MySQL statements that
you can actually try yourself. That way you can immediately do something with PHP and
MySQL, and you will begin to get excited about them. Then, a bit later in the book, we
show you good application and database design practices. By then you’ll have a solid grasp
of the syntax you need, and can focus on learning the concepts.

We don’t cover every PHP and MySQL statement, function, or
keyword.
While we could have put every single PHP and MySQL statement, function, and keyword
in this book, we thought you’d prefer to have a reasonably liftable book that would teach
you the most important statements, functions, and keywords. We give you the ones you
need to know, the ones you’ll use 95 percent of the time. And when you’re done with this
book, you’ll have the confidence to go look up that function you need to finish off that
kick-ass application you just wrote.

We support PHP 5 and MySQL 5.0.
Because so many people still use PHP 4 or 5, we avoid any PHP 4, 5, or 6 specific code
wherever possible. We suggest you use PHP 5 or 6 and MySQL 5 or 6 while learning the
concepts in this book. In developing this book, we focused on PHP 5 and MySQL 5, while
making sure our code was compatible with later versions.

You need a web server that supports PHP.
PHP has to be run through a web server to work correctly. You need Apache or some other
web server installed on your local machine or a machine to which you have some access
so that you can run MySQL commands on the data. Check out Appendixes ii and iii for
instructions on how to install and extend PHP and MySQL.

You can actually use PHP 4
with this book by making a
few modifications to the
code. Check them out in #1
of Appendix i.

you are here 4 xxxv

the intro

We use MySQL.
While there’s Standard SQL language, in this book we focus on the particular syntax
of MySQL. With only a few syntax changes, the code in this book should work with
Oracle, MS SQL Server, PostgreSQL, DB2, and quite a few more Relational Database
Management Systems (RDBMSs) out there. You’ll need to look up the particular PHP
functions and syntax if you want to connect to these other RDBMSs. If we covered
every variation in syntax for every command in the book, this book would have many
more pages. We like trees, so we’re focusing on MySQL.

The activities are NOT optional.

The exercises and activities are not add-ons; they’re part of the core content of the book.
Some of them are to help with memory, some are for understanding, and some will help
you apply what you’ve learned. Don’t skip the exercises. The crossword puzzles are
the only thing you don’t have to do, but they’re good for giving your brain a chance to
think about the words and terms you’ve been learning in a different context.

The redundancy is intentional and important.
One distinct difference in a Head First book is that we want you to really get it. And we
want you to finish the book remembering what you’ve learned. Most reference books
don’t have retention and recall as a goal, but this book is about learning, so you’ll see some
of the same concepts come up more than once.

The examples are as lean as possible.
Our readers tell us that it’s frustrating to wade through 200 lines of an example looking
for the two lines they need to understand. Most examples in this book are shown within
the smallest possible context, so that the part you’re trying to learn is clear and simple.
Don’t expect all of the examples to be ultra robust, or always complete—they are written
specifically for learning, and aren’t necessarily fully-functional.

We’ve placed all of the example code and applications on the Web so you can copy and
paste parts of them into your text editor or MySQL Terminal, or upload them as-is to
your own web server for testing. You’ll find it all at
http://www.headfirstlabs.com/books/hfphp/

The Brain Power exercises don’t have answers.
For some of them, there is no right answer, and for others, part of the learning
experience of the Brain Power activities is for you to decide if and when your answers
are right. In some of the Brain Power exercises, you will find hints to point you in the
right direction.

Several of the examples
are full-blown web
applications that do some pretty powerful things.

xxxvi intro

the review teamthe review team

Jereme Allen is a senior level web developer with
experience utilizing state of the art technologies to
create web applications. He has nine plus years of
experience utilizing PHP, MySQL, as well as various
other frameworks, operating systems, programming
languages and development software.

David Briggs is a technical author and software
localization engineer living in Birmingham, England.
When he’s not being finicky about how to guide users
through a particularly tricky piece of software, he likes
nothing better than to get out in the local park with his
wife, Paulette, and Cleo, the family dog.

Will Harris spends his days running an IT department
that provides services to 11 companies on 4 continents,
and he is the Vice President of the Las Vegas PASS
(Professional Association for SQL Server) chapter. At
night, he hops into a phone booth and puts on his
web 2.0 suit, helping the designers and developers
at Powered By Geek ensure that their data platforms
are flexible, portable, maintainable, and FAST, using
MySQL and Rails. He also enjoys spending time with
his wife, Heather, his beautiful children, Mara and Ellie,
and his dog, Swiper.

Stephanie Liese is a technical trainer and web
developer in Sacramento, California. When she isn’t
extolling the virtues of standards compliant code or
debugging a CSS layout, you will find her sweating it out
in a hot yoga class.

If Steve Milano isn’t slinging code for The Day Job™
or playing punk rock with his band, Onion Flavored
Rings, in some unventilated basement, he’s probably
at home with his laptop, neglecting feline companion,
Ralph, and human companion, Bianca.

Harvey Quamen gave up a computer programming
career to join the jet-setting, paparazzi-filled, high
profile world of academia. He’s currently an Associate
Professor of English and Humanities Computing at
the University of Alberta, where he teaches courses
on cyberculture, 20th-century literature, and web
development—including PHP and MySQL.

Chris Shiflett is the Chief Technology Officer of
OmniTI, where he leads the web application security
practice and guides web development initiatives. Chris
is a thought leader in the PHP and web application
security communities—a widely-read blogger at
shiflett.org, a popular speaker at industry conferences
worldwide, and the founder of the PHP Security
Consortium. His books include Essential PHP Security
(O’Reilly) and HTTP Developer’s Handbook (Sams).

Technical Reviewers:

Will Harris Stephanie LieseDavid Briggs

Chris ShiflettHarvey Quamen

Steve MilanoJereme Allen
The technical review team

you are here 4 xxxvii

the intro

The O’Reilly team:

Thanks to Lou Barr for her phenomenal design skill,
making this book such a visual treat.

Thanks also to Brittany Smith for all her hard work
at the last minute, and to Caitrin McCullough for
getting the example web sites up and running. And to
Laurie Petrycki for having faith that we could write
another great Head First book.

And more:

Finally, a big thanks goes out to Elvis Wilson for putting
together the alien YouTube videos for Chapter 12. Excellent
job! Especially seeing as how he’s merely a simple caveman
art director.

Acknowledgments
Our editors:

Many thanks go to Brett McLaughlin for the awesome
storyboarding session that got us on the right track, and his ruthless
commitment to cognitive learning.

The book would not exist if not for the heroic effort, patience, and
persistence of Sanders Kleinfeld. He always managed to catch
the balls, or was it cats, we were juggling when we inevitably dropped
one (or three!), and we appreciate it. We hope he gets a chance to put
his feet up for a couple of days before taking on another project as
difficult as this one.

Lou Barr

Brett McLaughlin

Sanders Kleinfeld

xxxviii intro

safari books online

Safari® Books Online
When you see a Safari® icon on the cover of your favorite
technology book that means the book is available online
through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current
information. Try it for free at http://safari.oreilly.com.

this is a new chapter 1

Just let her tell me
I’m boring now...

add life to your static pages1

It’s Alive

You’ve been creating great web pages with HTML, and a
sprinkling of CSS. But you’ve noticed that visitors to your site can’t do much other

than passively look at the content on the pages. The communication’s one-way, and you’d

like to change that. In fact, you’d really like to know what your audience is thinking. But

you need to be able to allow users to enter information into a web form so that you can

find out what’s on their minds. And you need to be able to process the information and

have it delivered to you. It sounds as if you’re going to need more than HTML to take

your site to the next level.

2 Chapter 1

Web server

Client web
browser

The web server is
limited to serving
up one static HTML
page after another.

The HTML code in these pages is determined
when the web developer
creates the pages.

Static HTML pages are only changed

when a web developer edits a .html file

and uploads it to their web server.

HTML is static and boring
HTML’s great for creating web pages, that much we already know. But
what about when you need web pages that actually do something?
Suppose you need to search a database or send an email... what then?
HTML falls short because it’s a pretty lifeless language, designed for
displaying information that never changes.

The web server’s a big part of the problem with lifeless HTML
since it serves as nothing more than a boring delivery mechanism.
A browser requests a page, the server responds with HTML, end
of story. To turn web sites into interactive web applications,
the web server has to take on a new, more dynamic role... a role
made possible by PHP.

With pure HTML
web pages, the server
simply serves up
static HTML that can
only display content.

HTML is great if you just
want to share a picture of
your pet... but not so great
if you want to interact
with visitors to your site.

Hello?

sometimes just HTML isn’t enough

These people
are looking for
interaction!

you are here 4 3

add life to your static pages

Web server

Client web
browser

The browser still receives
regular HTML web pages,
but the code’s been
dynamically generated by
PHP on the server.

PHP stores and retrieves data from a database
and incorporates the
data into the HTML
code that it generates.

MySQL
Database

PHP scripts are stored on the web server, where they’re processed and then delivered to the browser as HTML pages.

The HTML code in these
pages is generated by PHP
and can change dynamically
depending on what the web
application needs.

Dynamic HTML pages change
in response to programmatic
logic in PHP scripts, making
them incredibly flexible.

PHP brings web pages to life
PHP allows you to manipulate web page content on the server just
before a page is delivered to the client browser. It works like this:
A PHP script runs on the server and can alter or generate HTML
code at will. An HTML web page is still delivered to the browser,
which doesn’t know or care that PHP is involved in tweaking the
HTML on the server.

With a little help from the server!

With PHP in the
mix, the web server
is able to dynamically
generate HTML web
pages on the fly.

PHP

PHP scripts contain both
HTML code and PHP script
code that determines how the
HTML code’s manipulated.

4 Chapter 1

Have you seen him?

Dogs in space
Meet Owen. Owen’s lost his dog, Fang. But finding his dog isn’t
just a matter of searching the neighborhood. You see, Fang was
abducted by aliens, which expands Owen’s search to the entire
galaxy. Owen knows some HTML and CSS, and he thinks a
custom web site may help solve his problem by allowing other
people to share their own alien abduction experiences.

But to get information from others, Owen’s going to need a
web form that’s capable of receiving user input, lots of it, and
notifying him about it. Not a problem—HTML has plenty of
tags for whipping together web forms.

Details are sketchy, but we do
know that Fang was whisked
into the sky in a beam of light.

Owen knows some HTML and CSS and thinks he might be able to use the web to help track down his dog, Fang.

sending out an (internet) sos

you are here 4 5

add life to your static pages

Owen wants a physical
description of the aliens.

Owen hopes someone will
answer yes, that they saw
Fang on the alien spacecraft.

Any additional
comments can
go here.

Here’s the field for the
visitor’s email address.

Owen wants to receive an
email message when the
user submits the form.

A form helps Owen get the whole story
Owen’s new web site, AliensAbductedMe.com, aims to connect Owen
with alien abductees who might be able to shed some light on Fang’s
disappearance. Owen knows he needs an HTML form to solicit
abduction stories from visitors and that it must find out if they’ve run
into Fang during their interstellar journeys. But he needs your help
getting it up and running. Here’s what he has in mind for the form.

What do you think of Owen’s HTML form?
Can you think of any problems Owen might face when he tries to gather
alien abduction data using this form? Go ahead, jot down your thoughts.

This form is pure 100%
Grade A HTML!

6 Chapter 1

<p>Share your story of alien abduction:</p>

<form method="post" action="mailto:owen@aliensabductedme.com">

 <label for="firstname">First name:</label>

 <input type="text" id="firstname" name="firstname" />

 <label for="lastname">Last name:</label>

 <input type="text" id="lastname" name="lastname" />

 <label for="email">What is your email address?</label>

 <input type="text" id="email" name="email" />

 <label for="whenithappened">When did it happen?</label>

 <input type="text" id="whenithappened" name="whenithappened" />

 <label for="howlong">How long were you gone?</label>

 <input type="text" id="howlong" name="howlong" />

 <label for="howmany">How many did you see?</label>

 <input type="text" id="howmany" name="howmany" />

 <label for="aliendescription">Describe them:</label>

 <input type="text" id="aliendescription" name="aliendescription" size="32" />

 <label for="whattheydid">What did they do to you?</label>

 <input type="text" id="whattheydid" name="whattheydid" size="32" />

 <label for="fangspotted">Have you seen my dog Fang?</label>

 Yes <input id="fangspotted" name="fangspotted" type="radio" value="yes" />

 No <input id="fangspotted" name="fangspotted" type="radio" value="no" />

 <img src="fang.jpg" width="100" height="175"

 alt="My abducted dog Fang." />

 <label for="other">Anything else you want to add?</label>

 <textarea id="other" name="other"></textarea>

 <input type="submit" value="Report Abduction" name="submit" />

</form>

If you need a refresher on
creating HTML forms, check
out Chapter 14 of Head First
HTML with CSS & XHTML.

This value tells the server how
to send the data. It will be
“post” or “get”. We’ll explain
the difference a bit later.

Owen will get the contents of this form sent to him at this email address - change Owen’s email address to
yours to test out the form.

The form is bracketed with
open and close <form> tags.

The submit button tells the form to execute
the form action.

The type attribute tells the
form action to expect text.

Input tags tell the form
to expect information.

No surprises here - the form
is pure, 100% HTML code!

Forms are made of HTML
Owen’s Report an Abduction form is built entirely out of HTML tags and
attributes. There are text fields for most of the questions, radio buttons to
find out if his visitor saw Fang, and a text area for additional comments.
And the form is set up to deliver form data to Owen’s email address.

“mailto” is a protocol that allows
form data to be delivered via email.

owen’s form html

you are here 4 7

add life to your static pages

Try out the Report an Abduction form.
Download the code for the Report an Abduction web page from
the Head First Labs web site at
 www.headfirstlabs.com/books/hfphp. It’s in the
chapter01 folder. The folder contains Owen’s web form in
report.html, as well as a style sheet (style.css) and an
image of Fang (fang.jpg).

Open the report.html page in a text editor and change
Owen’s email address to yours. Then open the page in a web
browser, enter some alien abduction information in the form,
and click the Report Abduction button.

So, what do you think? Did you receive the form data
as an email message in your Inbox?

The HTML form doesn’t know
how to actually send an email
message, so it delegates the task
to the user’s own email program.

Submitting the form
results in the form data
getting emailed...sort of.

style.css

fang.jpgreport.html

Test Drive

The form data isn't sent to
Owen unless the user manually
sends the weird looking email.

8 Chapter 1

When I click the button, it opens
my email program, Outlook, and
doesn’t have anything I just spent
15 minutes typing in the form!

I saw something like this in the
Subject field: ?When=&Where=.
I’m confused.

I had a blank email to fill out. All
my carefully typed answers from

the form were ignored. Someone
should abduct this stupid form!

Nothing happened because my
web browser has no default
email client... whatever that is.

The HTML form has problems
Owen’s Report an Abduction form is up and running, but he doesn’t get
much information from users. Is Fang’s abduction really such an isolated
incident... or is something wrong with his form? Let’s see what the users
have to say about it.

Somehow Owen’s form is extracting more frustration than information from visitors to his site.

mailto = bad idea

What’s going on here? Do you have any ideas
about how to fix the form?

you are here 4 9

add life to your static pages

Yes. The HTML form code is fine, but mailto isn’t a good
way to deliver form data.
Owen’s form is perfectly fine until the user clicks the Report Abduction
button. At that point you rely on mailto to package up the form data in
an email. But this email doesn’t get sent automatically—it’s created in the
default email program on the user’s computer instead. And the real kicker...
the user has to send the email themselves in order for the data to get
sent to you! So you have no control over the email delivery, meaning that it
may or may not successfully make the trip from your web form through their
browser to their email client and back to you as an email message. Not good.

You need a way to take control of the delivery of the web form. More
specifically, you need PHP to package the form data into an email message,
and then make sure it gets sent. This involves shifting your attention from the
client (HTML, mailto, etc.) to the server (PHP).

The form looks OK. Does the
problem have something to
do with that mailto part?

The form’s wonderful
until you click Report
Abduction - then all
bets are off!

10 Chapter 1

Owen’s web server
software runs
here, also known
as a SERVER.

Your computer’s
browser software
runs here, also
known as a CLIENT.

The browser requests Owen’s web
page, which includes the form.

The server returns
the HTML code
for the web page.

The user fills out the
form and submits it.

Here you go.
I’d like Owen’s Report an
Abduction web page, please.

The server never
touches the data
entered into web
forms that use mailto.

Um, I don’t get
involved here.Now, I’d like to submit

Owen’s form with the data
the user entered, please <form action

= "mailto: ...

The form action tag tells
the browser to ask the
user’s email program to
create an email.

The user’s email program
creates an email with the
form data - it’s up to the user
to actually send it to Owen.

HTML acts on the CLIENT
Owen’s form is written in pure HTML with a mailto form
action that attempts to send the form data via email. Although
the report.html web page comes from a web server, it’s
filled out and processed entirely on the user’s web browser.

The server’s role here is limited to just delivering the web
page to the browser. When the user submits the form, the
browser (client!) is left to its own devices to work out how to get
the form data sent via email. The client isn’t equipped to deliver
form data—that’s a job for the server.

1

2

3

4

5

client-side versus server-side

Owen may or
may not get
the email.

you are here 4 11

add life to your static pages

I process the
form information
and send the
email myself.

I’d like Owen’s Report an
Abduction web page, please.

Now, I’d like to submit
Owen’s Report an
Abduction form, please.

PHP acts on the SERVER
PHP lets you take control of the data a user types into the form by
emailing it to you transparently. The user types his abduction story
into the form, hits the Report Abduction button, and he’s done! The PHP
code creates the email message, sends it to you, and then generates a web
page confirmation for the user.

Owen is guaranteed to get
a nicely formatted email.Check the boxes for where you think a PHP script belongs:

Client Server Both Neither

The browser asks for
Owen’s web page.

The server responds with the
HTML code for the web page.

1

2

Here you go.

User fills out and submits the form, passing
form data to a PHP script on the server.

3

<form action =

"report.php" ...

The server sends an HTML
confirmation to the browser.

5

The PHP script generates
an HTML confirmation
page and emails the form
data to Owen.

4

12 Chapter 1

PHP scripts run on the server
PHP code runs on the server and is stored in PHP scripts that
usually have a .php file extension. PHP scripts often look a lot like
normal HTML web pages because they can contain both HTML
code and CSS code. In fact, when the server runs a PHP script the
end result is always pure HTML and CSS. So every PHP script
ultimately gets turned into HTML and CSS once it’s finished
running on the server.

Let’s take a closer look at how a PHP script changes the flow of
Owen’s web form.

The client web browser requests an HTML web
page, in this case, the Report an Abduction form.

1

php is a server-side language

The server returns the HTML web page.2

The user fills out the form and submits it,
causing the browser to pass along the form
data to a PHP script on the server.

3

report.html

Clicking Report Abduction
submits the form data to
the PHP script on the server.

you are here 4 13

add life to your static pages

The server runs the PHP script,
which sends an email and generates
an HTML confirmation web page.

The server returns a pure HTML web page
that was generated by the PHP script.

The browser displays the
confirmation web page.

4

5

6

report.php

report.php

Although the page name shows up with a .php name in the browser, it’s pure HTML at this point.The PHP script
runs on the server!

Owen receives
the email.

The user sees
a confirmation
web page.

The email is
delivered to
Owen’s Inbox.

7

PHP is a server-side programming
language - it runs on a web server.

14 Chapter 1

Okay. But what actually
causes a PHP script to
get run on the server?

A form element’s action attribute is what connects a
form to a PHP script, causing the script to run when
the form is submitted.
Forms are created using the HTML <form> tag, and every <form>
tag has an action attribute. Whatever filename you set the action
attribute to is used by the web server to process the form when it is
submitted. So if Owen’s PHP script is named report.php, then the
<form> tag that connects it to the form looks like this:

<form action = "report.php" method = "post">

This is the
filename of your
PHP script.

When the user clicks the Report Abduction button in the form, the form
action causes the report.php script to be run on the server to
process the form data.

report.php

<html>
<head>
 <title>Aliens Abducted Me - Report an Abduction</title> </head>
<body>
 <h2>Aliens Abducted Me - Report an Abduction</h2> <link rel="stylesheet" type="text/css" href="style.css" /> </head>
<body>
 <h2>Aliens Abducted Me - Report an Abduction</h2>
 <p>Share your story of alien abduction:</p> <form method="post" action="report.php"> <label for="firstname">First name:</label> <input type="text" id="firstname" name="firstname" />

The action attribute of
the <form> tag is what
causes the PHP script to
run on the server when
the form is submitted.

the form action attribute

report.html

you are here 4 15

add life to your static pages

Q: What does PHP stand for?

A: PHP is an acronym that originally stood for Personal Home Pages.
Somewhere along the way the acronym was changed to mean PHP:
Hypertext Processor. The latter is considered a recursive acronym
because it references itself—the acronym (PHP) is inside the acronym.
Clever? Confusing? You decide!

Q: Even though my web browser shows that a web page has a
name that ends in .php, it’s still pure HTML? How is that?

A: It’s possible because the page originates as PHP code on the
server but is transformed into HTML code before making its way to the
browser. So the server runs the PHP code and converts it into HTML code
before sending it along to the browser for viewing. This means that even
though a .php file contains PHP code, the browser never sees it—it only
sees the HTML code that results from running the PHP code on the server.

Q: But don’t all web pages originate on the server, even pure
HTML pages in .html files?

A: Yes. All of the files for a web site are stored on the server—.html,
.css, .php, etc. But they aren’t all processed by the server. HTML and

CSS files, as well as image files, are sent directly to the client browser
without worrying about what’s actually inside them. PHP files are different
because they contain code that’s processed and run on the web server.
It’s not the PHP code that’s sent to the browser, it’s the results of running
the PHP code that are sent, and these results are pure HTML and CSS.

16 Chapter 1

Use PHP to access the form data
So Owen needs a PHP script that can get the alien abduction form
information to him more reliably than the mailto technique. Let’s create it.
Don’t worry about understanding everything yet—we’ll get to that:

<html>

<head>

 <title>Aliens Abducted Me - Report an Abduction</title>

</head>

<body>

 <h2>Aliens Abducted Me - Report an Abduction</h2>

<?php

 $when_it_happened = $_POST['whenithappened'];

 $how_long = $_POST['howlong'];

 $alien_description = $_POST['description'];

 $fang_spotted = $_POST['fangspotted'];

 $email = $_POST['email'];

 echo 'Thanks for submitting the form.
';

 echo 'You were abducted ' . $when_it_happened;

 echo ' and were gone for ' . $how_long . '
';

 echo 'Describe them: ' . $alien_description . '
';

 echo 'Was Fang there? ' . $fang_spotted . '
';

 echo 'Your email address is ' . $email;

?>

</body>

</html>

PHP scripts
often start out
looking a lot like
HTML web pages.

It’s perfectly normal
for a PHP script to
include regular HTML
tags and attributes.

Just like a normal web page,
this PHP script finishes up by
closing out open HTML tags.

Ah, here’s where
things get
interesting - this
is the beginning
of the actual
PHP code.

This chunk of PHP
code grabs the
form data so that
it can be displayed
as part of a
confirmation page.

Here we use
PHP to generate
HTML code from
the form data.

This entire block of
script code is PHP...the
rest of the script is
normal HTML.

your first php script

you are here 4 17

add life to your static pages

Change Owen’s form to use a PHP script to process
the form data.
Create a new text file called report.php, and enter all of the code on
the facing page. This is the script that will process Owen’s web form.

The PHP script isn’t connected to the form yet, so open the
report.html page in a text editor and change the form action to
report.php instead of mailto.

<form action = "report.php" method = "post">

Open the report.html page in a web browser, enter some alien
abduction information in the form, and click Report Abduction.

Depending on your browser,
you may see a web page with
some weird text in it, or
possibly just the PHP source
code for the report.php script.

Do you think this is how the PHP script is supposed to work?
Write down why or why not, and what you think is going on.

report.html style.css
fang.jpgreport.php

Test Drive

18 Chapter 1

PHP scripts must live on a server!
Unless you happen to have a web server running on your local computer,
the report.php script can’t run when you submit the Report an
Abduction form. Remember, PHP is a programming language, and it
needs an environment to run in. This environment is a web server with
PHP support. PHP scripts and web pages that rely on the scripts must
be placed on a real web server, as opposed to just opening a script
directly from a local file system.

PHP scripts must be
run on a web server
or they won’t work.

Web browsers
know nothing about
PHP and, therefore,
have no ability to
run PHP scripts.

Web servers with PHP
support are equipped to run
PHP scripts and turn them
into HTML web pages that
browsers can understand.

Unlike HTML web pages, which can
be opened locally in a web browser,
PHP scripts must always be “opened”
through a URL from a web server.

A quick way to tell if a web page is being delivered by a web server is to look for the URL starting with “http:”. Web pages opened as local files always start with “file:”.

This PHP script
is just a bunch of
meaningless code to
the web browser.

The web server
understands this
PHP code and
runs the script!

If you do have a web server installed locally and it has
PHP support, then you can test out PHP scripts directly on your local computer.

putting php scripts on the server

you are here 4 19

add life to your static pages

 If you don’t have PHP
installed on your web
server, check out
Appendix ii.

You’ll find instructions here for getting PHP
up and running on your web server.

Get your PHP scripts to the server
It’s perfectly fine to create and edit PHP scripts on your local computer. But
you need to put the files on a web server to run them. PHP files are often
placed alongside HTML files on a web server. There’s nothing magical
about putting PHP scripts on a web server—just upload them to a place
where your web pages can access them. Uploading files to a web server
requires the help of a utility, such as an FTP (File Transfer Protocol) utility.

Q: How do I know if my web server has PHP installed?

A: You could ask your web administrator or web hosting company, or you
could just perform a little test yourself. Create a text file called test.php
and enter the following code into it:

 <?php
 phpinfo();
 ?>

Now upload test.php to your web server, and then enter its URL into
a web browser. If PHP is installed on your server, you’ll see lots of detailed
information about PHP, including its version. Bingo!

root

www

report.phpreport.html fang.jpgstyle.css

Uploading your PHP scripts to a web server isn’t enough—that
web server must also have PHP installed on it. Some web servers
include PHP by default, some don’t.

This code asks PHP
to display information
about itself.

Most PHP scripts
appear alongside other
files in the same folder
on the web server.

There’s usually one
folder on the web
server where most,
if not all, web files
are stored.

Images are sometimes
stored in their own folder
on the web server for
organizational reasons...
but not in this case.

Remember to delete phpinfo()
script when you're done, so
no one else can see it.

20 Chapter 1

Upload the Report an Abduction files to a web server,
and try out the form...again.
Upload report.html, report.php, style.css, and fang.
jpg to a web server that has PHP installed. Enter the URL of the
report.html page into your browser, fill out the form with alien
abduction information, and click the Report Abduction button. report.html style.css

fang.jpgreport.php

The PHP script works! It
displays form data in a
confirmation web page.

test drive your php script

Test Drive

you are here 4 21

add life to your static pages

Cool. Now you just need to add
some PHP code to take care of
emailing the form data.

That’s right. The report.php script’s still missing
code to email the alien abduction data to Owen.
But that’s not a problem because PHP offers a function, a pre-built
chunk of reusable code, that you can use to send email messages.
You just need to figure out what the email message needs to say
and then use PHP to create and send it.

Time out! We don’t even know how the
original report.php script works, and now
we’re charging ahead into sending emails.
This is like majorly overwhelming...hello!?

It’s true. Doing more with PHP requires
knowing more about PHP.
So in order to add email functionality to Owen’s
report.php script, you’re going to have to dig a
little deeper into PHP and get a solid handle on how
the script works up to this point.

22 Chapter 1

how php code turns into html

The server turns PHP into HTML
A big part of understanding how a PHP script works is getting a handle on
what happens to the script when it runs on the server. Most PHP scripts
contain both PHP code and HTML code, and the PHP’s run and turned
into HTML before the server passes the whole thing off as HTML to the
client web browser. In Owen’s report.php script, PHP code generates
most of the HTML content in the body of the confirmation page. The
HTML code surrounding it is delivered unchanged.

</body>
</html>

<?php
 $when_it_happened = $_POST['whenit

happened'];

 $how_long = $_POST['howlong'];

 $alien_description = $_POST['alien
description'];

 $fang_spotted = $_POST['fangspotte
d'];

 $email = $_POST['email'];

 echo 'Thanks for submitting the fo

rm.
';

 echo 'You were abducted ' . $when_
it_happened;

 echo ' and were gone for ' . $how_
long . '
';

 echo 'Describe them: ' . $alien_de
scription . '
';

 echo 'Was Fang there? ' . $fang_sp
otted . '
';

 echo 'Your email address is ' . $e
mail;

?>

<html>
<head>
 <title>Aliens Abducted Me - Report

 an Abduction</title>

</head>
<body>
 <h2>Aliens Abducted Me - Report an

 Abduction</h2>

report.php

This HTML code is passed along unchanged to the browser.

More static HTML code, which the server passes along to the browser with no changes.

This PHP code is run by the
server and generates HTML
code containing data that
was entered into the form.

you are here 4 23

add life to your static pages

 </body>
</html>

 Thanks for submitting the form.
 You were abducted last November and were gone for 11 hours
 Describe them:

 Was Fang there? no

 Your email address is alfn@theyreallgreen.com

<html>
<head>
 <title>Aliens Abducted Me - Report an Abduction</title> </head>
<body>
 <h2>Aliens Abducted Me - Report an Abduction</h2>

report.php

The end result of the PHP
script is a pure HTML web
page that was dynamically
generated on the server.

This HTML code is created
on-the-fly by the PHP
script, which allows it to do
cool things like blend in form
data that was just entered.

Static - it doesn’t change. Dynamic - it changes every time someone submits the form!

24 Chapter 1

<html>
<head>
 <title>Aliens Abducted Me - Report an Abduction</title>
</head>
<body>
 <h2>Aliens Abducted Me - Report an Abduction</h2>

Deconstructing Owen’s PHP script
The report.php script is triggered by the Report an Abduction form, and
its job(at the moment) is to take the form data and generate a confirmation
web page. Let’s see how.

The first chunk of code is pure HTML. It just sets up the page we’re building,
including a few HTML tags required of all pages.

Yes, this HTML code is
pretty minimal - ideally
you’d have a DOCTYPE,
<meta> tag, etc., but
we’re keeping things
simple here.

<?php

 $when_it_happened = $_POST['whenithappened'];
 $how_long = $_POST['howlong'];
 $alien_description = $_POST['description'];
 $fang_spotted = $_POST['fangspotted']
 $email = $_POST['email'];

 echo 'Thanks for submitting the form.
';
 echo 'You were abducted ' . $when_it_happened;
 echo ' and were gone for ' . $how_long . '
';
 echo 'Describe them: ' . $alien_description . '
';
 echo 'Was Fang there? ' . $fang_spotted . '
';
 echo 'Your email address is ' . $email;

?>

</body>
</html>

Here’s where things start to get interesting. We’re ready to break out of
HTML code and into PHP code. The <?php tag opens a section of PHP
code—everything following this tag is pure PHP.

This code grabs the form data and stores it away in individual variables so
that we can easily access it later. PHP variables allow you to store values, be
they numbers, text, or other kinds of data.

Now we’re talking! Here the variables we just created are put to work
by inserting them into dynamically generated HTML code. The echo
command outputs HTML code that gets returned directly to the web browser.

The ?> tag matches up with <?php and closes up a section of PHP code.
From here on, we’re back to normal HTML code.

Now wrap up the page by closing out the HTML tags we opened earlier.

Each line of PHP code assigns the data from a form field
to a new variable.

From here on, we’re dealing with
PHP code...at least until we get
to the closing ?> tag.

This PHP code blends
variables into HTML
code that’s output to
the browser.

This ends the PHP code - after this we’re back to normal HTML.

Don’t forget, we’re generating an HTML
web page, so wrap up the HTML code.

report.php

anatomy of owen’s php script

you are here 4 25

add life to your static pages

A few PHP rules to bylive

If there is any PHP code in a web page, it’s a good idea to
name the file on the web server with .php, not .html.

Every PHP statement must end with a semicolon (;).

PHP code is always enclosed by <?php and ?>.

If your code ever breaks, check to make sure you haven’t forgotten a semicolon. It happens more often than you’d think.

Owen’s report.php script reveals a few fundamental rules of the PHP
language that apply to all PHP scripts. Let’s take a look at them.

code

<?php

 ...

?>

Your PHP code
goes here.

Most PHP scripts are just HTML web pages with PHP code thrown in - these tags tell the server what code is PHP.

echo 'Thanks for submitting the form.
';

The semicolon lets PHP
know that this is the
end of a statement.

report.php

This isn’t a deal breaker, but it’s
a good idea to name PHP scripts
with a .php file extension.

PHP variable names must begin with a dollar sign ($).

$email = $_POST['email'];

The dollar sign clearly
identifies a PHP variable, which stores information
within a PHP script.

Given the variables used in the report.php script, do you see
any other PHP rules pertaining to variables? Write ‘em down!

26 Chapter 1

A variable name must be at least one character in length.
Not counting the $ character, which is required of every variable name.

The first character must be a dollar sign ($).

variable naming rules

Finding the perfect variable name
In addition to starting with a $, PHP variable names are also are
case-sensitive. But that’s not all—there are other important rules
governing how you name variables. Some of these rules are syntax
rules, meaning your code will break if you ignore them, while other
rules are just good ideas passed down from wise old PHP coders.

Let’s start with the official rules that will absolutely cause problems
if you ignore them when naming variables. Follow these rules to
create legal variable names.

A variable is a
container that you
can store data in,
and every variable
has a unique name.

The first character after the dollar sign can be a letter
or an underscore (_), and characters after that can be
a letter, an underscore, or a number.

Spaces and special characters other than _ and $ are
not allowed in any part of a variable name.

These rules will stop your code working if you don’t follow them, but
there are a couple more rules that are good to follow as more of a
coding convention. These rules help make PHP code a little more
consistent and easier to read.

Separate words in a multi-word variable name
with underscores.

Use all lowercase for variable names.

These last two rules won’t break your code if you ignore them, and you’ll
certainly run across PHP code that doesn’t adhere to them yet works just
fine. This is because they are just a stylistic convention—but they will
serve you well as you begin creating and naming variables of your own.

$email

$how_long

$when-it happened
$what_they_did

$fang-spotted

alien_descript
ionLegal

Legal

Legal
Illegal! Hyphens
aren’t allowed in
PHP variable names. Illegal! PHP variable

names must start
with a dollar sign ($).

Illegal! PHP variable
names can’t contain
hyphens or spaces.

PHP variable
names must begin
with a dollar
sign, and cannot
contain spaces.

$

Got it!

you are here 4 27

add life to your static pages

Q: Does it matter whether I put PHP
commands in uppercase or lowercase?

A: Yes and no. For the most part, PHP
isn’t case-sensitive, so you can get away
with mixing the case of most commands.
That means you can use echo, ECHO,
or EchO when echoing content. However,
as a matter of convention, it’s a very good
idea to be consistent with case in your
scripts. Most PHP coders prefer lowercase
for the vast majority of PHP code, which is
why you’ll see echo used throughout the
example code in the book.

Q: So even if it’s a bad coding
convention, I can mix and match the case
of PHP code?

A: No, not entirely. The huge exception
to the case insensitivity of PHP is variable
names, which apply to data storage locations
that you create. So let’s take the $email
variable used in the Report an Abduction
script as an example. This variable name
is case-sensitive, so you can’t refer to it as
$EMAIL or $eMail. All variable names
in PHP are case-sensitive like this, so it’s
important to name variables carefully and
then reference them consistently in your
code. More on variable names in just a
moment.

Q: Is it really OK to put both PHP and
HTML code in the same file?

A: Absolutely. In fact, in many cases it’s
absolutely necessary to do so.

Q: Why would I want to do that?

A: Because the whole idea behind a web
server is to serve up HTML web pages to
browsers. PHP doesn’t change that fact.
What PHP allows you to do is change the
HTML content on the fly with things like
today’s date, data pulled from a database,
or even calculated values such as the order
total in a shopping cart. So PHP allows
you to manipulate the HTML that goes into
web pages, as opposed to them just being
created statically at design time. It’s very
common to have HTML code for a page with
PHP code sprinkled throughout to plug in
important data or otherwise alter the HTML
programmatically.

Q: Does PHP code embedded in an
HTML file have to be on its own line, or
can I embed it in an HTML line, like as
part of an HTML tag attribute?

A: Other than needing to place your PHP
code within the <?php and ?> tags, there
are no restrictions in how you embed it in
HTML code. In fact, it’s often necessary to
wedge a piece of PHP code into the middle
of HTML code, like when you’re setting the
attribute of an HTML tag. This is a perfectly
legitimate usage of PHP.

Q: I’ve seen PHP code that’s enclosed
by <? as the start tag instead of <?php.
Is that right?

A: Not really. Technically speaking, it’s
legal, but it isn’t recommended. A server
setting must be enabled for the short open
tag (<?) to work. The usual <?php tag
always works, so it’s better to use that and
know that your code will just work.

Q: If a web server always returns pure
HTML code to a client browser, why do
URLs show the PHP script name, like
webpage.php?

A: Remember that every web page is
the result of a two-sided communication
involving a request from the client browser
and a response from the web server. The
URL is the basis of the request, while the
content returned from the server is the
response. PHP scripts are requested just
like normal HTML web pages through URLs
entered into the browser or linked from other
pages, or as form actions. That explains why
the URL for a PHP “page” shows the name
of the PHP script.

The other half of the equation is the
response from the server, which is the
resulting code that’s generated by the PHP
script. Since most PHP scripts generate
HTML code, it makes sense that the code
is HTML and not PHP. So it’s no accident
that a URL references a .php file on a server,
which causes PHP code to be executed on
the server, ultimately resulting in pure HTML
content being returned to the browser.

Q: Can PHP variables store any other
kinds of data?

A: Absolutely. You can use variables to
store Boolean (true/false) data. And numeric
data can be either integer or floating-point
(decimal). There are also arrays, which store
a collection of data, as well as objects, which
associate a collection of data with code that
is used to manipulate the data. Arrays are
covered a little later in this chapter, while
objects are tackled in Chapter 12. There
is also a special data type called NULL,
which represents no value. For example, a
variable that hasn’t been assigned a value is
considered NULL.

28 Chapter 1

add owen’s missing data

Either PHP’s memory isn’t all
that good or there’s something
wrong with the script... there’s
some form data missing.

An alien description
was clearly entered
into the form...

...but the description is noticeably missing in the confirmation web page.

you are here 4 29

add life to your static pages

There’s a problem with the alien description form data in Owen’s
report.php script. Circle the lines of code that you think relate to
the problem, and write down what they do. Any idea what’s wrong?

<html>

<head>

 <title>Aliens Abducted Me - Report an Abduction</title>

</head>

<body>

 <h2>Aliens Abducted Me - Report an Abduction</h2>

<?php

 $when_it_happened = $_POST['whenithappened'];

 $how_long = $_POST['howlong'];

 $alien_description = $_POST['description'];

 $fang_spotted = $_POST['fangspotted']

 $email = $_POST['email'];

 echo 'Thanks for submitting the form.
';

 echo 'You were abducted ' . $when_it_happened;

 echo ' and were gone for ' . $how_long . '
';

 echo 'Describe them: ' . $alien_description . '
';

 echo 'Was Fang there? ' . $fang_spotted . '
';

 echo 'Your email address is ' . $email;

?>

</body>

</html>

report.php

30 Chapter 1

There’s a problem with the alien description form data in Owen’s
report.php script. Circle the lines of code that you think relate to
the problem, and write down what they do. Any idea what’s wrong?

<html>

<head>

 <title>Aliens Abducted Me - Report an Abduction</title>

</head>

<body>

 <h2>Aliens Abducted Me - Report an Abduction</h2>

<?php

 $when_it_happened = $_POST['whenithappened'];

 $how_long = $_POST['howlong'];

 $alien_description = $_POST['description'];

 $fang_spotted = $_POST['fangspotted']

 $email = $_POST['email'];

 echo 'Thanks for submitting the form.
';

 echo 'You were abducted ' . $when_it_happened;

 echo ' and were gone for ' . $how_long . '
';

 echo 'Describe them: ' . $alien_description . '
';

 echo 'Was Fang there? ' . $fang_spotted . '
';

 echo 'Your email address is ' . $email;

?>

</body>

</html>

This line of code grabs
the alien description from
the HTML form field and
stores it in a PHP variable
named $alien_description.

This code combines the alien
description with some other text
and HTML code, and outputs all
of it to the browser.

For some reason the $alien_description
variable appears to be empty...not good.

report.php

sharpen solution

you are here 4 31

add life to your static pages

One way to fix the script would be to just assign the exact string
we’re expecting to the $alien_description variable, like this:

$alien_description

Variables are for storing script data
PHP variables are storage containers that store information kinda
like how a cup stores a beverage. Since the $alien_description
variable is empty, we know that the form data is never making its way
into it. So the $alien_description variable remains empty
despite our attempt to assign data to it.

$alien_description

li
tt
le
 g
re
en
 m
en

$alien_description = 'little green men';

This code works in that it most definitely stores the text 'little
green men' in the $alien_description variable. But we
solved one problem by creating another one—this code causes the
alien description to always be the same regardless of what the user
enters into the form.

Pieces of text in PHP, also
known as strings, must always be enclosed by quotes, either single quotes or double quotes.

The equal sign tells PHP to
assign the value on the right
to the variable on the left.

This is the name
of the variable.

Unfortunately,
our cup is
currently empty.

We’re looking for a cup
that overfloweth with
an alien description!

Somehow the assignment of alien description form data to
the $alien_description variable is coming up empty.

$alien_description = $_POST['description'];

What do you think this code is doing wrong?

32 Chapter 1

all about $_POST

The problem obviously has something
to do with that $_POST thingy. But
I have no idea what it is.

The problem does have to do with $_POST, which is a
mechanism used to pass along form data to a script.
The dollar sign at the beginning of $_POST is a clue... $_POST is a
storage container! More specifically, $_POST is a collection of storage
locations used to hold data from a web form. In Owen’s case, it holds all
the data that gets sent to our report.php script when someone fills out
the form and clicks the Report Abduction button. So in order to access
the form data and do anything with it, we have to go through $_POST.
Remember this code?

$when_it_happened = $_POST['whenithappened'];

$how_long = $_POST['howlong'];

$alien_description = $_POST['description'];

$fang_spotted = $_POST['fangspotted'];

$email = $_POST['email'];

So the data in each field of the Report an Abduction form is accessed
using $_POST. But what exactly is $_POST... a variable?

The piece of form data holding the duration of the abduction is assigned to the variable $how_long.Same deal here, except
the email form data is
being grabbed and stored
away in the $email variable.

you are here 4 33

add life to your static pages

How do you think the $_POST superglobal
works? How can it store multiple values
from all those text boxes on Owen’s form?

$–POST is a special variable that holds form data
$_POST is a special variable that is known as a superglobal because it is built into
PHP and is available throughout an entire script. $_POST already exists when your
script runs—you don’t create it like you do other PHP variables.

<html>
<head>
 <title>Aliens Abducted Me - Report an Abduction</title> </head>
<body>
 <h2>Aliens Abducted Me - Report an Abduction</h2>
<?php
 $when_it_happened = $_POST['whenithappened']; $how_long = $_POST['howlong'];
 $alien_description = $_POST['description']; $fang_spotted = $_POST['fangspotted']
 $email = $_POST['email'];

 echo 'Thanks for submitting the form.
'; echo 'You were abducted ' . $when_it_happened; echo ' and were gone for ' . $how_long . '
'; echo 'Describe them: ' . $alien_description . '
'; echo 'Was Fang there? ' . $fang_spotted . '
'; echo 'Your email address is ' . $email; ?>

</body>
</html>

The $_POST superglobal
holds each piece of data
entered into the form.

11
 h
ou
rs

$_POST[’howlong’]

...
<form method="post" act

ion="report.php">

 ...

The $_POST superglobal is directly tied to the form submission
method used by the HTML form. If the method’s set to post, then
all of the form data gets packaged into the $_POST superglobal,
where each piece of data can be plucked out and used as needed.

The form submission method
determines how the form data
is supplied to the PHP script.

The name “howlong” comes from the name attribute of the
<input> tag for this form field.

report.php

report.html

34 Chapter 1

$_POST is an array

The $_POST
array is filled
with the
values the user
entered into
the form.

<p>Share your story of alien abduction:</p>
<form method="post" action="report.php">
 <label for="firstname">First name:</label>
 <input type="text" id="firstname" name="firstname" />

 <label for="lastname">Last name:</label>
 <input type="text" id="lastname" name="lastname" />

 <label for="email">What is your email address?</label>
 <input type="text" id="email" name="email" />

 <label for="whenithappened">When did it happen?</label>
 <input type="text" id="whenithappened" name="whenithappened" />

 <label for="howlong">How long were you gone?</label>
 <input type="text" id="howlong" name="howlong" />

 <label for="howmany">How many did you see?</label>
 <input type="text" id="howmany" name="howmany" />

 <label for="aliendescription">Describe them:</label>
 <input type="text" id="aliendescription" name="aliendescription" size="32" />

 <label for="whattheydid">What did they do to you?</label>
 <input type="text" id="whattheydid" name="whattheydid" size="32" />

 <label for="fangspotted">Have you seen my dog Fang?</label>
 Yes <input id="fangspotted" name="fangspotted" type="radio" value="yes" />
 No <input id="fangspotted" name="fangspotted" type="radio" value="no" />

 <img src="fang.jpg" width="100" height="175"
 alt="My abducted dog Fang." />

 <label for="other">Anything else you want to add?</label>
 <textarea name="other"></textarea>

 <input type="submit" value="Report Abduction" name="submit" />
</form>

$–POST transports form data to your script
$_POST is a special kind of PHP storage container known as an array,
which stores a collection of variables under a single name. When someone
submits Owen’s form, the data they’ve typed into the form fields is stored in
the $_POST array, whose job is to pass the data along to the script.

Each element in the $_POST array corresponds to a piece of data entered
into a form field. To access the data for a specific form field, you use the
name of the field with $_POST. So the duration of an abduction is stored
in $_POST['howlong']. The HTML code for Owen’s form reveals how
form names relate to data stored in $_POST.

Al
f

Na
de
r

al
fn
@t
..
.

la
st
..
.

11
 h
ou
rs

do
ze
ns

li
tt
le
..
.

...

The name of the form
field determines how
it is accessed within
the $_POST array.

‘firstname’

$_POST

‘lastname’

‘email’
‘whenithappened’

‘howlong’

‘howmany’

‘aliendescription’

All of the form data
is accessible through
the $_POST array.

you are here 4 35

add life to your static pages

Scratch through the code in report.php that is causing the alien
description to come up blank, and then write down how to fix it.
Hint: Use the HTML form code on the facing page to help isolate the
problem.

<html>

<head>

 <title>Aliens Abducted Me - Report an Abduction</title>

</head>

<body>

 <h2>Aliens Abducted Me - Report an Abduction</h2>

<?php

 $when_it_happened = $_POST['whenithappened'];

 $how_long = $_POST['howlong'];

 $alien_description = $_POST['description'];

 $fang_spotted = $_POST['fangspotted']

 $email = $_POST['email'];

 echo 'Thanks for submitting the form.
';

 echo 'You were abducted ' . $when_it_happened;

 echo ' and were gone for ' . $how_long . '
';

 echo 'Describe them: ' . $alien_description . '
';

 echo 'Was Fang there? ' . $fang_spotted . '
';

 echo 'Your email address is ' . $email;

?>

</body>

</html>

report.php

Remember, earlier
we isolated the
problem down to
these two lines
of code.

36 Chapter 1

sharpen solution

Scratch through the code in report.php that is causing the alien
description to come up blank, and then write down how to fix it.
Hint: Use the HTML form code on the facing page to help isolate the
problem.

<html>

<head>

 <title>Aliens Abducted Me - Report an Abduction</title>

</head>

<body>

 <h2>Aliens Abducted Me - Report an Abduction</h2>

<?php

 $when_it_happened = $_POST['whenithappened'];

 $how_long = $_POST['howlong'];

 $alien_description = $_POST['description'];

 $fang_spotted = $_POST['fangspotted']

 $email = $_POST['email'];

 echo 'Thanks for submitting the form.
';

 echo 'You were abducted ' . $when_it_happened;

 echo ' and were gone for ' . $how_long . '
';

 echo 'Describe them: ' . $alien_description . '
';

 echo 'Was Fang there? ' . $fang_spotted . '
';

 echo 'Your email address is ' . $email;

?>

</body>

</html>

report.php

‘aliendescription’

The name of the form
field in report.html is
“aliendescription”, which
doesn’t match the name
used in $_POST.

We need to change $_POST
so that the form field name
is correct: ‘aliendescription’.

...
<input type="text" id="

aliendescription" name=
"aliendescription" size

="32" />

...

report.html

you are here 4 37

add life to your static pages

Fix the script and test it out.
Change the broken line of code in report.php, and then upload it
to your web server. Open the report.html page in your browser, fill
out the form with alien abduction information, and click the Report
Abduction button to submit it to the newly repaired script.

The confirmation
page now correctly
shows the form
data for the alien
description!

Awesome. But you know,
we’re still missing some
form data...

Test Drive

38 Chapter 1

There’s some data entered into Owen’s Report an Abduction
form that we aren’t currently using. Remember, this data
contains vital information about an alien abduction that could
lead Owen back to his lost dog, Fang. So we need to grab all of
the abduction data and store it away in PHP variables.

 ...
 <form method="post" action="report.php">

 <label for="firstname">First name:</label>

 <input type="text" id="firstname" name="firstname" />

 <label for="lastname">Last name:</label>

 <input type="text" id="lastname" name="lastname" />

 <label for="email">What is your email address?</label>

 <input type="text" id="email" name="email" />

 <label for="whenithappened">When did it happen?</label>

 <input type="text" id="whenithappened" name="whenithappened" />

 <label for="howlong">How long were you gone?</label>

 <input type="text" id="howlong" name="howlong" />

 <label for="howmany">How many did you see?</label>

 <input type="text" id="howmany" name="howmany" />

 <label for="aliendescription">Describe them:</label>

 <input type="text" id="aliendescription" name="aliendescription" size="32" />

 <label for="whattheydid">What did they do to you?</label>

 <input type="text" id="whattheydid" name="whattheydid" size="32" />

 <label for="fangspotted">Have you seen my dog Fang?</label>

 Yes <input id="fangspotted" name="fangspotted" type="radio" value="yes" />

 No <input id="fangspotted" name="fangspotted" type="radio" value="no" />

 <img src="fang.jpg" width="100" height="175"

 alt="My abducted dog Fang." />

 <label for="other">Anything else you want to add?</label>

 <textarea id="other" name="other"></textarea>

 <input type="submit" value="Report Abduction" name="submit" />

 </form>
</body>
</html>

revise owen’s php script

Write PHP code to create four new variables that store the missing
form data: $name, $how_many, $what_they_did, and $other.
Hint: Create the $name variable so that it stores the user’s full name.

report.html

The report.php script
currently ignores five
different pieces of
form data. Shocking!

The <input> tag for
each form field holds
the key to accessing
form data from PHP.

you are here 4 39

add life to your static pages

echo 'Thanks for submitting the form.
';

echo 'You were abducted ' . $when_it_happened;

echo ' and were gone for ' . $how_long . '
';

echo 'Describe them: ' . $alien_description . '
';

echo 'Was Fang there? ' . $fang_spotted . '
';

echo 'Your email address is ' . $email;

Your work is not quite done. The confirmation web page
generated by the PHP script needs to use those new variables
to display more information about the alien abduction.

We need to go from this...
...to this! Notice how much
more information is displayed.

Using all of the variables you just created except $name,
finish the missing code below that generates a more informed
confirmation page.

The user’s name isn’t critical to
the confirmation page, although
we’ll need it later when we send
an abduction email to Owen.

40 Chapter 1

There’s some data entered into Owen’s Report an Abduction
form that we aren’t currently using. Remember, this data
contains vital information about an alien abduction that could
lead Owen back to his lost dog, Fang. So we need to grab all of
the abduction data and store it away in PHP variables.

 ...
 <form method="post" action="report.php">

 <label for="firstname">First name:</label>

 <input type="text" id="firstname" name="firstname" />

 <label for="lastname">Last name:</label>

 <input type="text" id="lastname" name="lastname" />

 <label for="email">What is your email address?</label>

 <input type="text" id="email" name="email" />

 <label for="whenithappened">When did it happen?</label>

 <input type="text" id="whenithappened" name="whenithappened" />

 <label for="howlong">How long were you gone?</label>

 <input type="text" id="howlong" name="howlong" />

 <label for="howmany">How many did you see?</label>

 <input type="text" id="howmany" name="howmany" />

 <label for="aliendescription">Describe them:</label>

 <input type="text" id="aliendescription" name="aliendescription" size="32" />

 <label for="whattheydid">What did they do to you?</label>

 <input type="text" id="whattheydid" name="whattheydid" size="32" />

 <label for="fangspotted">Have you seen my dog Fang?</label>

 Yes <input id="fangspotted" name="fangspotted" type="radio" value="yes" />

 No <input id="fangspotted" name="fangspotted" type="radio" value="no" />

 <img src="fang.jpg" width="100" height="175"

 alt="My abducted dog Fang." />

 <label for="other">Anything else you want to add?</label>

 <textarea id="other" name="other"></textarea>

 <input type="submit" value="Report Abduction" name="submit" />

 </form>
</body>
</html>

$name = $_POST[‘firstname’] . ‘ ‘ . $_POST[‘lastname’];
$how_many = $_POST[‘howmany’];
$what_they_did = $_POST[‘whattheydid’];
$other = $_POST[‘other’];

Write PHP code to create four new variables that store the missing
form data: $name, $how_many, $what_they_did, and $other.
Hint: Create the $name variable so that it stores the user’s full name.

report.html

The report.php script
currently ignores five
different pieces of
form data. Shocking!

The <input> tag for
each form field holds
the key to accessing
form data from PHP.

The period allows you
to stick multiple strings
of text together as
one - a process known
as concatenation.

This space
separates
the first
and last
names.

owen’s revised php script

you are here 4 41

add life to your static pages

echo 'Thanks for submitting the form.
';

echo 'You were abducted ' . $when_it_happened;

echo ' and were gone for ' . $how_long . '
';

echo 'Describe them: ' . $alien_description . '
';

echo 'Was Fang there? ' . $fang_spotted . '
';

echo 'Your email address is ' . $email;

echo ‘Number of aliens: ‘ . $how_many . ‘
’;

echo ‘The aliens did this: ‘ . $what_they_did . ‘
’;

echo ‘Other comments: ‘ . $other . ‘
’;

Your work is not quite done. The confirmation web page
generated by the PHP script needs to use those new variables
to display more information about the alien abduction.

Using all of the variables you just created except $name,
finish the missing code below that generates a more informed
confirmation page.

The user’s name isn’t critical to
the confirmation page, although
we’ll need it later when we send
an abduction email to Owen.

The echo command is
used to output the
additional information to the browser as
HTML content.

Again, periods are used
to concatenate strings
and variables together.

The
 tags help
format the information

- don’t forget that
we’re using PHP to
create HTML.

We need to go from this...
...to this! Notice how much
more information is displayed.

42 Chapter 1

Tweak Owen’s script and try out the changes.
Add the code for the new variables to report.php, as well as the
code that echoes the variables to the browser as formatted HTML.
Then upload the script to your web server, open the report.html
page in your browser, and fill out the form with alien abduction
information. Finally, click the Report Abduction button to submit
the form and see the results.

Q: What actually happens when I concatenate multiple
strings together using periods?

A: Concatenation involves sticking more than one string
together to form a completely new string. The end result of
concatenating strings is always a single string, no matter how
many strings you started with. So when you concatenate strings
as part of an echo command, PHP combines the strings
together into one first, and then echoes that string to the browser.

Q: When I concatenate a variable with a string, does the
variable have to contain text?

A: No. Although concatenation always results in a string,
variables don’t have to contain strings in order for you to
concatenate them. So say a variable contains a number, PHP
converts the number to a string first and then concatenates it.

Q: What happens to PHP code on the browser?

A: Nothing. And that’s because PHP code is never seen by
a browser. PHP code runs on the server and gets turned into
HTML code that’s sent along to the browser. So the browser is
completely unaware of PHP’s existence—web pages arrive as
pure HTML and CSS.

Q: OK, so how exactly does the server turn PHP code
into HTML and CSS code?

A: First off, remember that by default the code in a PHP script
is assumed to be HTML code. You identify PHP code within a
script by placing it between <?php and ?> tags. The server
sees those tags and knows to run the code inside them as PHP,
and all of the code outside of those tags is passed along to the
browser as HTML.

Q: Right. But that still doesn’t explain how the PHP code
gets turned into HTML/CSS code. What gives?

A: Ah, that’s where the echo command enters the picture.
You can think of the echo command as outputting information
beyond the confines of the <?php and ?> tags. So the echo
command is the key to PHP’s ability to dynamically generate
HTML/CSS code. By concatenating strings of text with PHP
variables, you can construct HTML code on-the-fly, and then use
echo to output it to the browser as part of the resulting web
page. A good example of this is in Owen’s report.php
script when the
 tag is tacked on to the end of a piece
of text to generate a line break in HTML.

test drive owen’s php script

Test Drive

you are here 4 43

add life to your static pages

This email message can be generated from PHP code by putting together a
string that combines static text such as "Other comments:" with form
field data stored in variables.

Alf Nader was abducted last November and was gone for 11 hours.

Number of aliens: dozens

Alien description: little green men

What they did: asked me about UFO regulations

Fang spotted: no

Other comments: Please vote for me.

Similar to the
confirmation web page,
this email message
consists of static text
combined with form data.

The PHP script still needs to email the form data to Owen.
As it stands, the report.php script is grabbing the data from the Report
an Abduction form and generating an HTML confirmation page for the user.
But it’s not yet solving the original problem of emailing a message to Owen
when the form is submitted. He just wants to receive a simple text email
message that looks something like this:

The confirmation web page is
helpful to the user but it’s no
good to me. I still need the
form data sent to me in an email.

Write down how you’d put together an email message string
from static text and PHP variables.

44 Chapter 1

Creating the email message body with PHP
You’ve already seen how a period can be used in PHP code to concatenate
multiple strings of text together into a single string. Now you need to
use concatenation again to build an email message string with variables
sprinkled in among static text.

A long line of PHP code can be spanned
across multiple lines as long as you’re
careful about how you break up the code.

$msg = $name . ' was abducted ' . $when_it_happened . ' and was gone for ' . $how_long . '.' .

 'Number of aliens: ' . $how_many .

 'Alien description: ' . $alien_description .

 'What they did: ' . $what_they_did .

 'Fang spotted: ' . $fang_spotted .

 'Other comments: ' . $other;

This is really just one big line of
code divided across multiple lines.

The line of code is carefully extended by not breaking it in the middle of a string.

When a line of PHP code is
deliberately extended across multiple lines, it’s customary to indent the
lines after the first one to help you
see which lines belong together in
your code.

You still have to finish the entire
statement with a semicolon.

One problem with building such a large string is that it requires a huge line
of PHP code that’s difficult to read and understand. You can break the
PHP code across multiple lines to make it easier to follow. Just make sure to
separate the code in spots where the spacing doesn’t matter, like between
two concatenated strings, not in the middle of a string. Then put a
semicolon at the end of the last line of the code to finish the PHP statement.

$msg = $name . ' was abducted ' . $when_it_happened . ' and was gone for ' . $how_long . '.' .

'Number of aliens:' . $how_many . 'Alien description: ' . $alien_description . 'What they did: ' .

$what_they_did . 'Fang spotted: ' . $fang_spotted . 'Other comments: ' . $other;

Most text editors will
automatically wrap the
code to the next line even
if you don’t put in your
own line break (return).

Variables and static text are
concatenated into a single email message string using periods.

Remember, each variable
holds a string of text
that was pulled from the
Report an Abduction form.

building the message body in php

you are here 4 45

add life to your static pages

Ouch! This is NOT
what Owen had in
mind for his Abduction Report email messages.

Alf Nader was abducted last November and was gone for 11 hours.

Number of aliens: dozensAlien description: little green menWhat

they did: asked me about UFO regulationsFang spotted: noOther

comments: Please vote for me.

That PHP code sure is pretty. But
with no formatting, won’t the email
message be all jumbled together?

Yes. Just because the PHP code is organized nicely
doesn’t mean its output will automatically look good.
Organizing PHP code so that you can better understand it is completely
different than formatting the output of PHP code that users will see. You’ll
normally use HTML tags to format the output of PHP code since in most
cases PHP is used to dynamically generate a web page. But not in this case.

Here we’re generating an email message, which is plain text, not HTML. We
need to deal with the fact that the message currently looks like this:

How would you reformat the
plain text email message so
that it is easier to read?

Q: Is there a way to use HTML formatting in emails you send
from a PHP script?

A: There is. But it requires an additional step that involves setting
the content type header for the message. Headers and content
types are a bit beyond the scope of this discussion, which is why
we’re sticking with pure text email messages for Owen’s email
responses. You’ll learn more about headers in Chapter 6, so you’ll
definitely gain the knowledge to revisit HTML emails later.

46 Chapter 1

$msg = $name . ' was abducted ' . $when_it_happened . ' and was gone for ' . $how_long . '.\n' .

 'Number of aliens: ' . $how_many . '\n' .

 'Alien description: ' . $alien_description . '\n' .

 'What they did: ' . $what_they_did . '\n' .

 'Fang spotted: ' . $fang_spotted . '\n' .

 'Other comments: ' . $other;

Even plain text can be formatted... a little
Since Owen’s sending email messages as plain text with no HTML
formatting, he can’t just stick in
 tags to add line breaks where the
content’s running together. But he can use newline characters, which are
escaped as \n. So wherever \n appears in the email text, a newline will
be inserted, causing any content after it to start on the next line. Here’s the
new email message code with newlines added:

\n is used to place newline characters throughout the email message.

formatting text with php

The \n is appearing
as normal text
instead of a newline
character...not good.

Escape characters
in PHP start with
a backslash (\).

Alf Nader was abducted last November and was gone for 11 hours. \nNumber of aliens: dozens\nAlien description: little green men \nWhat they did: asked me about UFO regulations\nFang spotted: no\nOther comments: Please vote for me.

Newlines sound like a
great idea... too bad
that code doesn’t work.

Q: What exactly is an escape character?

A: An escape character is a character that's either difficult to type or
would otherwise cause confusion in PHP code. You may be familiar with
escape characters from HTML, where they're coded a little differently, like
© or © for the copyright symbol. PHP has a very small
set of escape characters that are helpful for escaping things that might
be confused with the PHP language itself, such as single quotes (\'),
double quotes (\"), and of course, newlines (\n).

you are here 4 47

add life to your static pages

$msg = "$name was abducted $when_it_happened and was gone for $how_long.\n" .

 "Number of aliens: $how_many\n" .

 "Alien description: $alien_description\n" .

 "What they did: $what_they_did\n" .

 "Fang spotted: $fang_spotted\n" .

 "Other comments: $other";

Newlines need double-quoted strings
The problem with Owen’s code is that PHP handles strings differently
depending on whether they’re enclosed by single or double quotes. More
specifically, newline characters (\n) can only be escaped in double-quoted
strings. So the Abduction Report email message must be constructed using
double-quoted strings in order for the newlines to work.

But there’s more to the single vs. double quote story than that. Single-quoted
strings are considered raw text, whereas PHP processes double-quoted
strings looking for variables. When a variable is encountered within a
double-quoted string, PHP inserts its value into the string as if the strings
had been concatenated. So not only is a double-quoted string necessary to
make the newlines work in the email message, but it also allows us to simplify
the code by sticking the variables directly in the string.

Concatenation is no longer
necessary since variables can
be referenced directly within
a double-quoted string.

Newline characters are now
interpreted properly thanks
to the double-quoted string.

There’s no need for a newline at
the very end since this is the
last line of the email message.

But we still need to break
the message into multiple
concatenated strings so that
the code's easier to read
across multiple lines.

Q: If double-quoted strings are so cool, why have we used
mostly single-quoted strings up until now?

A: Well, keep in mind that single-quoted strings are not
processed by PHP in any way, which makes them ideal for strings
that are pure text with no embedded variables. So we’ll continue
to use single-quoted strings throughout the book unless there is a
compelling reason to use a double-quoted string instead. The most
important thing about using single vs. double quotes around strings is
to try and be as consistent as possible.

Q: What happens if I need to use a single quote (apostrophe)
within a single-quoted string, as in 'He's lost!'?

A: This is where escape characters come in handy. To use a
single quote inside of a single-quoted string, just escape it as \',
like this: 'He\'s lost!'. The same applies to a double quote
inside of a double-quoted string—use \". You don’t have to escape
quotes when they don’t conflict, such as a single quote inside of a
double-quoted string: "He's lost!".

Q: So single-quoted strings support \' but not \n. How do I
know what escape characters I can use within single quotes?

A: Single-quoted strings only allow the \' and \\ escape
characters—all other escape characters can only be used in double-
quoted strings.

48 Chapter 1

Assemble an email message for Owen
With the body of the email message generated as a string, you can move on
to assembling the rest of Owen’s email. An email message is more than just a
message body—there are several different parts. Although some are optional,
the following pieces of information are used in pretty much all emails:

The message body.1

The message subject.2

Already done!

The sender’s email address (who the message is FROM).3

The recipient’s email address (who the message is TO).4

3 2

4

1

This is the kind of email message Owen hopes to receive upon someone
submitting an alien abduction report.

This is the user’s
email address, which is already stored away in the $email variable.

The user’s
email address

Owen’s email
address

Anything you want can
go here - it’s what will
appear as the subject of
the email in Owen’s inbox.

This can be a
static string.

This is Owen’s email
address, which can also
be a static string.

We’ve already constructed a string for the email body, which is stored in the $msg variable.
This sample email message reveals that most of the content is in the body of
a message, which you’ve already finished. All that’s left is coming up with a
message subject, “from” and “to” email addresses... and of course, somehow
using PHP to actually send the message!

assemble owen’s email

you are here 4 49

add life to your static pages

$msg = "$name was abducted $when_it_happened and was gone for $how_lon
g.\n" .

 "Number of aliens: $how_many\n" .

 "Alien description: $alien_description\n" .

 "What they did: $what_they_did\n" .

 "Fang spotted: $fang_spotted\n" .

 "Other comments: $other";

$to = 'owen@aliensabductedme.com';

$subject = 'Aliens Abducted Me - Abduction Report';

$email = $_POST['email'];

Variables store the email pieces and parts
We already have the message body stored in $msg, but we’re still missing
the message subject and “from” and “to” email addresses. The subject and
the “to” email address can just be set as static text in new variables, while the

“from” email address is already stored away in the $email variable thanks to
the form-handling code we wrote earlier in the chapter.

3

4

2

1

The message body.1

The message subject.2

The sender’s email address (who the message is FROM).3

The recipient’s email address (who the message is TO).4

All the email
information's
gathered and
ready to go!

50 Chapter 1

mail($to, $subject, $msg);

mail($to, $subject, $msg, 'From:' . $email);

Sending an email message with PHP
So you’re ready to write the PHP code to actually send the email
message to Owen. This requires PHP’s built-in mail() function,
which sends a message based on information you provide it.

These three pieces of information are required by the mail() function,
so you always need to provide them. The “from” email address isn’t
required but it’s still a good idea to include it. To specify the “from” field
when calling the mail() function, an additional function argument’s
required, along with some string concatenation.

Q: Is there anything else that can be
specified as part of an email message in
addition to the “from” email address?

A: Yes. You can also specify “copy” and
“blind copy” recipients in the same way as the
“from” recipient—just use 'Cc:' or 'Bcc:'
instead of 'From:'. If you want to specify
both a “from” and a “copy” recipient, you must
separate them with a carriage-return newline
character combination (\r\n), like this:

 "From:" . $from . "\r\nCc:" . $cc

The “to”
email address

The subject of
the message

The body of
the message

The text ‘From:’ must be
prepended to the email
address when specifying the
address of the email sender.

send the email with php

The PHP mail()
function sends an
email message from
within a script.

The period’s handy yet again for concatenating ‘From:’ with Owen’s email address.

$msg = "$name was abducted $when_it_happened and was gone fo
r $how_long.\n" .

 "Number of aliens: $how_many\n" .

 "Alien description: $alien_description\n" .

 "What they did: $what_they_did\n" .

 "Fang spotted: $fang_spotted\n" .

 "Other comments: $other";

$to = 'owen@aliensabductedme.com';

$subject = 'Aliens Abducted Me - Abduction Report';

$email = $_POST['email'];

Each piece of the email
message is provided to
the mail() function by
a variable.

That’s right, two escape
characters back-to-back!

We have to use double quotes
here since we're using the \r
and \n escape characters.

you are here 4 51

add life to your static pages

So how do we
actually use the
mail() function?

Just add the code that calls mail() to your script.
The line of code that calls the mail() function is all you need to send the
email message. Make sure this code appears in the script after the code that
creates the email variables, and you’re good to go. Here’s the complete code
for Owen’s report.php script, including the call to the mail() function.

<html>
<head>
 <title>Aliens Abducted Me - Report an Abduction</title> </head>
<body>
 <h2>Aliens Abducted Me - Report an Abduction</h2>
<?php
 $name = $_POST['firstname'] . ' ' . $_POST['lastname']; $when_it_happened = $_POST['whenithappened']; $how_long = $_POST['howlong'];
 $how_many = $_POST['howmany'];
 $alien_description = $_POST['aliendescription']; $what_they_did = $_POST['whattheydid']; $fang_spotted = $_POST['fangspotted']; $email = $_POST['email'];
 $other = $_POST['other'];

 $to = 'owen@aliensabductedme.com';
 $subject = 'Aliens Abducted Me - Abduction Report'; $msg = "$name was abducted $when_it_happened and was gone for $how_long.\n" . "Number of aliens: $how_many\n" . "Alien description: $alien_description\n" . "What they did: $what_they_did\n" . "Fang spotted: $fang_spotted\n" . "Other comments: $other";
 mail($to, $subject, $msg, 'From:' . $email);
 echo 'Thanks for submitting the form.
'; echo 'You were abducted ' . $when_it_happened; echo ' and were gone for ' . $how_long . '
'; echo 'Number of aliens: ' . $how_many . '
'; echo 'Describe them: ' . $alien_description . '
'; echo 'The aliens did this: ' . $what_they_did . '
'; echo 'Was Fang there? ' . $fang_spotted . '
'; echo 'Other comments: ' . $other . '
'; echo 'Your email address is ' . $email; ?>

</body>
</html>

report.php

Send the
email
message.

Generate an HTML web
page on the fly that
confirms the successful
form submission.

Make sure to change
this email address to
your own to test out
the script.

Assemble the
different pieces of
the email message
to be sent to Owen.

Grab all the form data
from the $_POST
array and stick it in
individual variables.

52 Chapter 1

the final test drive

 You may need to configure PHP on
your web server so it knows how
to send email.

If the mail() function doesn’t work for you,
the problem may be that email support isn’t

properly configured for your PHP installation. Check out
www.php.net/mail for details on how to configure
email features on your web server.

Finish up Owen’s script and then try it out.
Add the three new email variables ($to, $subject, and $msg) to the
report.php script, as well as the call to the mail() function. Make
sure the $to variable is set to your email address, not Owen’s! Upload
the script to your web server, open it in your browser, and fill out the
form with alien abduction information. Click the Report Abduction
button to submit the form. Wait a few seconds and then go check your
email Inbox for the message.

The form data
is successfully
formatted and sent
as an email message!

The dynamically
generated
confirmation page
still confirms the
form submission.

Test Drive

you are here 4 53

add life to your static pages

Owen starts getting emails
Owen is thrilled that he’s reliably receiving alien abduction information from
a web form directly to his email Inbox. Now he doesn’t have to worry if he
hears that someone saw his dog because he’ll have email addresses from
everyone who contacts him. And even better, he’ll be able to look through the
responses at his leisure.

Sally submits
the form.

Sally,
recently
abducted
by aliens.

<form action
= "report.php"
...

This is awesome!
With email abduction
reports like this, I
know I’ll find Fang.

The action attribute of the <form> tag causes the report.php script to process the form data.

The PHP script
dynamically
generates a
confirmation HTML
page.

The PHP script also generates an email message, and then sends it to Owen.

Owen is one happy
camper now that he’s
receiving alien abduction
emails through his form.

54 Chapter 1

This is not good. Look at all
these emails! I need some
way to get to the data when
I want to. And I need it in a
safe place so I don’t lose it.

Owen starts losing emails
The good news is that Owen’s getting emails now. The bad news is that he’s
getting lots and lots of emails. So many that he’s having difficulty keeping
track of them. His Inbox is packed, and he’s already accidentally deleted
some... Owen needs a better way to store the alien abduction data.

email overload

you are here 4 55

add life to your static pages

Got aliens on the brain? Shake them loose by matching each HTML
and PHP component to what you think it does.

A software application for viewing and interacting with web
pages that acts as the client side of web communications.

These tags are used to enclose PHP code so that the web
server knows to process it and run it.

A software application for delivering web pages that
acts as the server side of web communications.

A markup language used to describe the structure of
web page content that is viewed in a web browser.

All strings must be enclosed within these.

A type of PHP data storage that allows you to store
multiple pieces of information in a single place.

A storage location in a PHP script that has its own
unique name and data type.

A built-in PHP function that sends an email message.

A series of input fields on a web page that is used to
get information from users.

A name used to describe built-in PHP variables
that are accessible to all scripts.

A programming language used to create scripts that run
on a web server.

A built-in PHP array that stores data that has been
submitted using the “post” method.

A PHP command that is used to output content, such as
pure text or HTML code.

HTML

PHP

web form

browser

<?php ?>

variable

quotes

echo

$_POST

web server

array

superglobal

mail()

56 Chapter 1

Got aliens on the brain? Shake them loose by matching each HTML
and PHP component to what you think it does.

who does what solution

HTML

PHP

web form

browser

<?php ?>

variable

quotes

echo

$_POST

web server

array

superglobal

mail()

A software application for viewing and interacting with web
pages that acts as the client side of web communications.

These tags are used to enclose PHP code so that the web
server knows to process it and run it.

A software application for delivering web pages that
acts as the server side of web communications.

A markup language used to describe the structure of
web page content that is viewed in a web browser.

All strings must be enclosed within these.

A type of PHP data storage that allows you to store
multiple pieces of information in a single place.

A storage location in a PHP script that has its own
unique name and data type.

A built-in PHP function that sends an email message.

A series of input fields on a web page that is used to
get information from users.

A name used to describe built-in PHP variables
that are accessible to all scripts.

A programming language used to create scripts that run
on a web server.

A built-in PHP array that stores data that has been
submitted using the “post” method.

A PHP command that is used to output content, such as
pure text or HTML code.

Solution

you are here 4 57

add life to your static pages

PHP
A server-side scripting language
that lets you manipulate web page
content on the server before a
page is delivered to the client
browser.
PHP script
A text file that contains PHP
code to carry out tasks on a
web server.

variable
A storage container for a piece
of data. In PHP, variables must
start with a dollar sign, like this:
$variable_name.
$_POST

A special variable that holds form
data.

Your PHP & MySQL Toolbox
In Chapter 1, you learned how to
harness PHP to bring life to Owen’s

web form. Look at everything you’ve
learned already…

echo

The PHP command for sending output to the browser window. Its syntax is:
echo 'Hello World';

MySQL
An application that lets you store
data in databases and tables and
insert and retrieve information
using the SQL language.
SQL
A query language for
interacting with database
applications like MySQL.

array
A data structure that stores a set
of values. Each value has an index
that you can use to access it.
escape character
Used to represent characters in
PHP code that are difficult to
type or that might conflict with
other code, such as \n (newlines).

client-side
Interpreted solely by

 the client

web browser.

server-side
Interpreted by a web server, not

a client machine.

<?php ?>

These tags must surround all PHP code in your PHP scripts.
mail()

The PHP function for sending an email. It takes the email subject, email body text, and the destination email address as parameters (you can optionally specify a From address too).

CHAPT
ER 1

this is a new chapter 59

2 Connecting to MySQL

We have to plug in
the interweb before
we can connect the web
site configuraturer.

How it fits together
I’m not letting her
anywhere near my
web application.

Knowing how things fit together before you start
building is a good idea. You’ve created your first PHP script, and it’s

working well. But getting your form results in an email isn’t good enough anymore.

You need a way to save the results of your form, so you can keep them as long

as you need them and retrieve them when you want them. A MySQL database

can store your data for safe keeping. But you need to hook up your PHP script to

the MySQL database to make it happen.

60 Chapter 2

Owen’s PHP form works well. Too well...

The new report form is great, but
now I’m getting too many emails. I can’t
drink enough caffeine to go through
them all when I first receive them.

This is where a MySQL database can help...

Owen’s email script was fine when he was only
getting a few responses, but now he’s getting
lots of emails, far more than he can manage.
He’s accidentally deleted some without reading them. And some
are getting stuffed in his spam folder, which he never checks. In
fact, an email he’d be very interested in seeing is hidden away in
his spam folder right this moment... Owen needs a way to store
all the messages so he can look at them when he has time and
easily find ones related to Fang.

This lost alien abduction report mentions seeing a dog... this is information Owen desperately needs.It will take more
than a coffee
buzz for Owen to
keep up with all
the alien abduction
reports arriving in
his inbox.

Just in case you didn’t know, most people pronounce MySQL by spelling out the last three letters, as in “my-ess-que-el”.

Owen needs messages like this
safely stored in one place where
he can sift through them for
possible Fang sightings.

the pitfalls of emailing form data

you are here 4 61

connecting to MySQL

MySQL stores
data inside of
database tables.

MySQL databases are organized into tables, which store information as rows
and columns of related data. Most web applications use one or more tables
inside a single database, sort of like different file folders within a file cabinet.

The database itself is
often stored as files on a
hard drive, but it doesn’t
necessarily have to be.

A MySQL database server
can contain multiple databases.

A database
can contain
multiple tables.

With alien abduction data safely stored in a MySQL database, Owen can analyze
the reports from everyone who answered “yes” to the Fang question at his
convenience. He just needs to use a little SQL code to talk to the database server.

Web server

Database server

Server computer

Client browser
MySQL database

The database server
reads and writes data
from/to the database.

The web server processes web
page requests, runs PHP scripts,
and returns HTML content. Data

Web server

Database server

The “SQL” in MySQL stands for Structured Query Language.

MySQL excels at storing data
Owen really needs a way to store the alien abduction report data in a safe place
other than his email Inbox. What he needs is a database, which is kinda
like a fancy, ultra-organized electronic file cabinet. Since the information in a
database is extremely organized, you can pull out precisely the information you
need when you need it.

Databases are managed by a special program called a database server, in
our case a MySQL database server. You communicate with a database server
in a language it can understand, which in our case is SQL. A database server
typically runs alongside a web server on the same server computer, working
together in concert reading and writing data, and delivering web pages.

SQL is the query
language used
to communicate
with a MySQL
database.

62 Chapter 2

Owen needs a MySQL database
So it’s decided: MySQL databases are good, and Owen needs one to store
alien abduction data. He can then modify the report.php script to store
data in the table instead of emailing it to himself. The table will keep the data
safe and sound as it pours in from abductees, giving Owen time to sift through
it and isolate potential Fang sightings. But first things first... a database!

Creating a MySQL database requires a MySQL database server and a special
software tool. The reason is because, unlike a web server, a database server
has to be communicated with using SQL commands.

phpMyAdmin graphical tool

mysql> CREATE TABLE
aliens_abduction (

 first_name varc
har(30),

 last_name varch
ar(30),

 when_it_happene
d varchar(30),

 how_long varcha
r(30),

 how_many varcha
r(30),

 alien_descripti
on varchar(100),

 what_they_did v
archar(100),

 fang_spotted va
rchar(10),

 other varchar(1
00),

 email varchar(5
0)

);
Query OK, 0 rows aff

ected (0.14 sec)

File Edit Window Help MustFindFang

MySQL terminal

Creating MySQL
databases and
tables requires
communicating
with a MySQL
database server.

I’ve always heard the tool makes all
the difference in getting a job done
right. How do I know what MySQL tool
to use to create a database and table?

phpMyAdmin is a graphical
tool that allows you to
create databases and tables
through a web interface.

MySQL terminal is a command-line window that provides access to a command line where you can enter SQL commands.

Two popular MySQL tools are the MySQL terminal and phpMyAdmin.
Both tools let you issue SQL commands to create databases and tables, insert
data, select data, etc., but phpMyAdmin goes a step further by also providing
a point-and-click web-based interface. Some web hosting companies include
phpMyAdmin as part of their standard MySQL service, while the MySQL
terminal can be used to access most MySQL installations.

Owen needs a
MySQL tool to
create his new
alien abduction
database/table.

phpMyAdmin
is actually
written in PHP.

mysql can help owen

you are here 4 63

connecting to MySQL

You must have a MySQL database server installed before turning the page.
It’s impossible to help Owen without one! If you already have a MySQL database server installed
and working, read on. If not, turn to Appendix ii and follow the instructions for getting it installed.
If you’re using a web hosting service that offers MySQL, go ahead and ask them to install it. Several
pieces of information are required to access a MySQL database server. You’ll need them again later,
so now is a good time to figure out what they are. Check off each one after you write it down.

I can successfully access MySQL server using the MySQL terminal.

I can successfully access MySQL server using phpMyAdmin.

I can successfully access MySQL server using .

If you’ve found some
other MySQL tool that
works, write it down here.

My MySQL server location (IP address or hostname):

My database user name:

My database password:
If you’re afraid this book might fall into the wrong hands, feel free to skip writing this one down.

With your MySQL database server information in hand, all that’s left is confirming that the server
is up and running. Check one of the boxes below to confirm that you can successfully access your
MySQL server.

You need to check
all of these.

You only need
to check one
of these.

64 Chapter 2

mysql> CREATE DATABASE aliendatabase;
Query OK, 1 row affected (0.01 sec)

File Edit Window Help PhoneHome

mysql> USE aliendatabase;
Database changed

File Edit Window Help PhoneHome

Before you can create the table inside the database, you need to make sure
you’ve got our new database selected. Enter the command
 USE aliendatabase;

When you use the terminal,
you must put a semicolon
after each command.

The MySQL server usually responds to let
you know that a command was successful.

Create a MySQL database and table
Some MySQL installations already include a database. If yours doesn’t,
you’ll need to create one using the CREATE DATABASE SQL command
in the MySQL terminal. But first you need to open the MySQL terminal
in a command-line window—just typing mysql will often work. You’ll
know you’ve successfully entered the terminal when the command
prompt changes to mysql>.

To create the new alien abduction database, type
 CREATE DATABASE aliendatabase; like this:

CREATE TABLE aliens_abduction (
 first_name varchar(30),
 last_name varchar(30),
 when_it_happened varchar(30),
 how_long varchar(30),
 how_many varchar(30),
 alien_description varchar(100),
 what_they_did varchar(100),
 fang_spotted varchar(10),
 other varchar(100),
 email varchar(50)
);

This is an SQL command
that creates a new table.

All the other stuff is
detailed information
about what kinds of data can be stored in the table.

The SQL code to create a table is a little more involved since it has to spell
out exactly what kind of data’s being stored. Let’s take a look at the SQL
command before entering it into the terminal:

All SQL commands entered
into the MySQL terminal
must end with a semicolon.

creating databases and tables in mysql

you are here 4 65

connecting to MySQL

mysql> CREATE TABLE aliens_abduction (
 first_name varchar(30),
 last_name varchar(30),
 when_it_happened varchar(30),
 how_long varchar(30),
 how_many varchar(30),
 alien_description varchar(100),
 what_they_did varchar(100),
 fang_spotted varchar(10),
 other varchar(100),
 email varchar(50)
);
Query OK, 0 rows affected (0.14 sec)

File Edit Window Help PhoneHome

To actually create the new table, type the big CREATE TABLE command into
the MySQL terminal. (You can find the code for the command on the web at
www.headfirstlabs.com/books/hfphp.) After successfully entering
this command, you’ll have a shiny new aliens_abduction table.

The “Query OK”
response from the
MySQL server lets
you know the table
was created without
any problems.

CREATE TABLE aliens_abduction

 first_name varchar(30),

 last_name varchar(30),

 when_it_happened varchar(30),

 how_long varchar(30),

 how_many varchar(30),

 alien_description varchar(100),

 what_they_did varchar(100),

So the SQL tab of the phpMyAdmin application provides a way to issue
SQL commands just as if you were using the MySQL terminal.

After entering the SQL code, click
this button to
create the table.

Your MySQL installation may offer the phpMyAdmin web-based tool,
which lets you access your databases and tables graphically. You can use
the phpMyAdmin user interface to click your way through the creation of
a database and table, or enter SQL commands directly just as if you’re in
the MySQL terminal. Click the SQL tab in phpMyAdmin to access a text
box that acts like the MySQL terminal. You can enter the

same commands here
that you’d enter in
the MySQL terminal,
just click Go to
execute them.

66 Chapter 2

DATA

I’ve got a MySQL
database and table,
now how do I put
data into them?

You use the SQL INSERT statement to insert
data into a table.
The SQL language provides all kinds of cool statements
for interacting with databases. One of the more commonly
used statements is INSERT, which does the work of storing
data in a table.

Take a look at the statement below to see how the INSERT
works. Keep in mind that this statement isn’t an actual SQL
statement, it’s a template of a statement to show you the
general format of INSERT.

INSERT INTO table_name (column_name1, column_name2, ...)

 VALUES ('value1', 'value2', ...)

The SQL
keywords
INSERT INTO
begin the
statement.

The name of the table... in Owen’s case, it will be aliens_abduction.

This next part is a list of
your database column names,
separated by commas.

Another SQL
keyword, this one
signaling that the
values for the
columns follow.

This next part is a list of
the values to be inserted,
separated by commas.

The single quotes are
correct. Use them whenever you’re inserting text, even
if it’s a single character
like ‘M’ or ‘F’.

IMPORTANT: these need to be in the same order as the column names.

More column names
follow, with no comma
after the last one.

More quoted values
follow, with no comma
after the last one.

One of the most important things to note in this statement is that
the values in the second set of parentheses have to be in the same
order as the database column names. This is how the INSERT
statement matches values to columns when it inserts the data.

1

1 2

2

introducing the INSERT statement

you are here 4 67

connecting to MySQL

INSERT INTO aliens_abduction (first_name, last_name,

 when_it_happened, how_long, how_many, alien_description,

 what_they_did, fang_spotted, other, email)

 VALUES ('Sally', 'Jones', '3 days ago', '1 day', 'four',

 'green with six tentacles', 'We just talked and played with a dog',

 'yes', 'I may have seen your dog. Contact me.',

 'sally@gregs-list.net')

Your column names are in
the first set of parentheses
and divided by commas.

The values for each column are in the second set of parentheses and also divided by commas.

 Order matters!

The values to be
inserted must be listed in
exactly the same order
as the column names.

All of these values
contain text, not
numbers, so we
put single quotes
around each one.

Unlike PHP statements,
SQL statements don’t
end in a semicolon when
used in PHP code.

This is the name of the
table the data is being
inserted into, NOT the
name of the database.

first_name last_name when_it_happened how_long how_many alien_description what_they_did fang_spotted other email

aliens_abduction

Who’s really the funny
looking alien here?

The aliens_abduction table is shown below, but it doesn’t
have any data yet. Write Sally’s alien abduction data into the
table. It’s OK to write some of the data above the table and use
arrows if you don’t have room.

1 2

3 4 5 6

7 8 9 10

1 2 3 4 5

6 7

8 9

10

The INSERT statement in action
Here’s how an INSERT statement can be used to store alien
abduction data in Owen’s new aliens_abduction table.

These are the
column names.

68 Chapter 2

first_name last_name when_it_happened how_long how_many alien_description what_they_did fang_spotted other email

aliens_abduction

The aliens_abduction table is shown below, but it doesn’t
have any data yet. Write Sally’s alien abduction data into the
table. It’s OK to write some of the data above the table and use
arrows if you don’t have room.

Sally Jones 3 days ago 1 day

green with six tentacles We just talked and
played with a dog.

yes

I may have seen your
dog. Contact me.

sally@gregs-list.net

four

Q: I’m not sure I understand the difference between a
database and a table. Don’t they both just store data?

A: Yes. Tables serve as a way to divide up the data in a
database into related groups so that you don’t just have one
huge mass of data. It’s sort of like the difference between
throwing a bunch of shoes into a huge box, as opposed to
first placing each pair in a smaller box—the big box is the
database, the smaller shoeboxes are the tables. So data is
stored in tables, and tables are stored in databases.

Q: What exactly is the MySQL terminal? How do I find
it on my computer?

A: The MySQL terminal is a technique for accessing a
MySQL database server through a command-line interface.
In many cases the MySQL terminal is not a unique program,
but instead a connection you establish using the command
line from a “generic” terminal program, such as the terminal
application in Mac OS X. How you access the MySQL terminal
varies widely depending on what operating system you are
using and whether the MySQL server is local or remote
(located somewhere other than your computer). Appendix ii
has more details about how to go about accessing the MySQL
terminal.

Q: What about phpMyAdmin? Where can I find that?

A: Unlike the MySQL terminal, phpMyAdmin is a web-
based application that allows access to a MySQL database. It
is actually a PHP application, which is why you always access
it from a web server, as opposed to installing it as a local client
application. Many web hosting companies offer phpMyAdmin
as part of their standard MySQL hosting plan, so it may
already be installed for you. If not, you can download and
install phpMyAdmin yourself. It is available for free download
from www.phpmyadmin.net. Just remember that
it must be installed on a web server and configured to have
access to your MySQL databases, just like any other PHP and
MySQL application.

Q: I have both the MySQL terminal and phpMyAdmin
available. Which one should I use to access my database?

A: It’s totally a personal preference. The upside to
phpMyAdmin is that you can explore your databases and
tables visually without having to enter SQL commands. That
can be very handy once you get comfortable with SQL and
don’t want to manually enter commands for every little
thing. However, for now it’s a good idea to focus on really
understanding how to interact with your MySQL data using
SQL commands, in which case either tool works just fine.

solutions and no dumb questions

you are here 4 69

connecting to MySQL

Store an alien abduction sighting in your database
with an SQL INSERT statement.
Using a MySQL tool such as the MySQL terminal or the SQL tab of
phpMyAdmin, enter an INSERT statement for an alien abduction. As an
example, here’s the INSERT statement for Sally Jones’ abduction:

INSERT INTO aliens_abduction (first_name, last_name,

 when_it_happened, how_long, how_many, alien_description,

 what_they_did, fang_spotted, other, email)

 VALUES ('Sally', 'Jones', '3 days ago', '1 day', 'four',

 'green with six tentacles', 'We just talked and played with a dog',

 'yes', 'I may have seen your dog. Contact me.',

 'sally@gregs-list.net')

mysql> INSERT INTO aliens_abduction (first_name, last
_name,

 when_it_happened, how_long, how_many, alien_descrip
tion,

 what_they_did, fang_spotted, other, email)

 VALUES ('Sally', 'Jones', '3 days ago', '1 day', 'f
our',

 'green with six tentacles', 'We just talked and pla
yed with a dog',

 'yes', 'I may have seen your dog. Contact me.',

 'sally@gregs-list.net');

Query OK, 1 rows affected (0.0005 sec)

File Edit Window Help PugsInSpace

Executing the INSERT statement in the MySQL terminal results in a new row of data being added to the aliens_abduction table.

The INSERT statement appears to have succeeded. Write down
how you think we can confirm that the data was added.

Test Drive

70 Chapter 2

Use SELECT to get table data
Inserting data into a table is handy and all, but it’s hard not to feel a certain
sense of unease at the fact that you haven’t confirmed that the data actually
made its way into the table. It’s kind of like depositing money into a savings
account but never being able to get a balance. The SELECT statement is
how you “get the balance” of a table in a database. Or more accurately,
SELECT allows you to request columns of data from a table.

SELECT * FROM aliens_abduction

SELECT columns FROM table_name

Follow SELECT with a list of
the columns you want data for. A SELECT always takes place

with respect to a specific table, not a database in general.

SELECT first_name, last_name FROM aliens_abduction

The columns supplied to a SELECT statement must be separated by
commas. Regardless of how many columns a table has, only data in
the columns specified in SELECT is returned. This SELECT statement
grabs all of the first and last names of alien abductees from the
aliens_abduction table:

The FROM part of a SELECT
statement is how SELECT knows what
table we’ll be selecting data from.

The SQL
SELECT
statement
retrieves
columns of
data from
a table.Only the data for these

two columns is returned by
this SELECT statement.

The SELECT statement only retrieves data from the aliens_abduction table.

To check an INSERT, you need a quick way to look at all of the data in
a table, not just a few columns. The SELECT statement offers a shortcut for
just this thing:

The asterisk, or “star,” tells the
SELECT statement to get the data
for all of the columns in the table.

No list of columns is necessary because * means “get them all!”

introducing the SELECT statement

you are here 4 71

connecting to MySQL

Make sure the alien abduction INSERT statement
worked by SELECTing the table data.
Execute a SELECT query using a MySQL tool to view all of the contents
of the aliens_abduction table. Make sure the new row of data you
just inserted appears in the results.

SELECT * FROM aliens_abduction

mysql> SELECT * FROM aliens_abduction;

+------------+-----------+------------------+----------+----------+--------------

| first_name | last_name | when_it_happened | how_long | how_many | alien_descrip
tion

+------------+-----------+------------------+----------+----------+--------------

| Sally | Jones | 3 days ago | 1 day | four | green with si
x tent

+------------+-----------+------------------+----------+----------+--------------

1 row in set (0.0005 sec)

File Edit Window Help HaveYouSeenHim

The SELECT query reveals a
single row of data stored in
the table.

These are the columns.

Below each column name is
the data for that column.

How many rows of data does your table have in it?

Test Drive

72 Chapter 2

mysql> INSERT INTO aliens_abduction (first_name, last_name, when_it_happened, how_long, how_many, alien_description, what_they_did, fang_spotted, other, email) VALUES ('Sally', 'Jones', '3 days ago', '1 day', 'four', 'green with six tentacles', 'We just talked and played with a dog', 'yes', 'I may have seen your dog. Contact me.', 'sally@gregs-list.net')); Query OK, 1 rows affected (0.0005 sec)

File Edit Window Help PugsInSpace

mysql> INSERT INTO aliens_abduction (first_name, last
_name,

 when_it_happened, how_long, how_many, alien_descrip
tion,

 what_they_did, fang_spotted, other, email)

 VALUES ('Don', 'Quayle', 'back in 1991', '37 second
s',

 'dunno', 'they looked like donkeys made out of meta
l with some kind

of jet packs attached to them',

 'shot me with a thousand points of light', 'yes',

 'I really do love potatos.',

 'dq@iwasvicepresident.com'));

Query OK, 1 rows affected (0.0005 sec)

File Edit Window Help Kang

mysql> INSERT INTO aliens_abduction (first_name, last
_name,

 when_it_happened, how_long, how_many, alien_descrip
tion,

 what_they_did, fang_spotted, other, email)

 VALUES ('Belita', 'Chevy', 'a few months ago', 'alm
ost a week',

 '27', 'clumsy little buggers, had no rhythm',

 'tried to get me to play bad music', 'no',

 'Looking forward to playing some Guitar Wars now th
at I'm back.',

 'belitac@rockin.net'));

Query OK, 1 rows affected (0.0005 sec)

File Edit Window Help PugsInSpace

mysql> INSERT INTO aliens_abduction (first_name, last_name, when_it_happened, how_long, how_many, alien_description, what_they_did, fang_spotted, other, email) VALUES ('Shill', 'Watner', 'summer of \'69', '2 hours', 'don\'t know',
 'there was a bright light in the sky, followed by a bark or two',
 'they beamed me toward a gas station in the desert', 'yes',
 'I was out of gas, so it was a pretty good abduction.', 'shillwatner@imightbecaptkirk.com'); Query OK, 1 rows affected (0.0005 sec)

File Edit Window Help Kodos

So you’re telling me I have to write an INSERT
statement every time I want to add a new alien
abduction report to my database? This MySQL
stuff suddenly isn’t looking so appealing.

It’s true, each insertion into a MySQL database
requires an INSERT statement.
And this is where communicating with a MySQL database purely
through SQL commands gets tedious. Sure there are lots of benefits
gained by storing Owen’s data in a database, as opposed to emails
in his Inbox, but managing the data manually by issuing SQL
statements in a MySQL tool is not a workable solution.

How do you think Owen’s MySQL data
insertion problem can be solved?

automating SQL commands with PHP

you are here 4 73

connecting to MySQL

Let PHP handle the tedious SQL stuff
The solution to Owen’s problem lies not in avoiding SQL but in
automating SQL with the help of PHP. PHP makes it possible to issue
SQL statements in script code that runs on the server, so you don’t need
to use a MySQL tool at all. This means Owen’s HTML form can call
a PHP script to handle inserting data into the database whenever it’s
submitted—no emails, no SQL tools, no hassle!

<?php
 $dbc = mysqli_connect('data.aliensabductedme.com', 'owen', 'aliensrool', 'aliendatabase')
 or die('Error connecting to MySQL server.');
 $query = "INSERT INTO aliens_abduction (first_name, last_name, " . "when_it_happened, how_long, how_many, alien_description, " . "what_they_did, fang_spotted, other, email) " . "VALUES ('Sally', 'Jones', '3 days ago', '1 day', 'four', " . "'green with six tentacles', 'We just talked and played with a dog', " . "'yes', 'I may have seen your dog. Contact me.', " . "'sally@gregs-list.net')";
 $result = mysqli_query($dbc, $query) or die('Error querying database.');
 mysqli_close($dbc);
?>

report.html

mysql> INSERT INTO alie
ns_abduction (first_nam

e, last_name,

 when_it_happened, how
_long, how_many, alien_

description,

 what_they_did, fang_s
potted, other, email)

 VALUES ('Sally', 'Jon
es', '3 days ago', '1 d

ay', 'four',

 'green with six tenta
cles', 'We just talked

and played with a dog',

 'yes', 'I may have se
en your dog. Contact me

.',

 'sally@gregs-list.net
');

Query OK, 1 rows affect
ed (0.0005 sec)

File Edit Window Help NanooNanoo

Without PHP, a manual SQL INSERT
statement is required to store each
alien abduction report in the database.

With PHP, a PHP script automatically
handles the INSERT when the form is
submitted.

report.php

The HTML form generates
an email that Owen receives
and must then manually add
to the database.

Owen creates an SQL INSERT
statement that inserts the data
from the email into the database.

The HTML form calls
a PHP script and asks
it to add the form
data to the database. The PHP script creates an INSERT

statement that inserts the form data
into the database...no Owen required!

74 Chapter 2

I get lonely,
okay?

PHP lets data drive Owen’s web form
PHP improves Owen’s alien abduction web form by letting a script send the
form data directly to a database, instead of sending it to Owen’s email
address and Owen entering it manually. Let’s take a closer look at exactly how
the application works now that PHP is in the picture.

Web server

Database server

Sally, still
recently
abducted
by aliens.

Sally fills out the alien abduction form
and presses the Report Abduction
button to submit it. The information
gets sent to the report.php script
on the web server.

1

Lots and lots and lots of other people
continue to submit the form too.2

The form in the
report.html web page calls
the report.php script on
the web server whenever
it’s submitted by a user.

report.html

how owen’s application can use php and mysql

you are here 4 75

connecting to MySQL

Owen’s report.php script connects to a
MySQL database and inserts the information from
each submission using SQL INSERT statements.

Not only does Owen need a script to put the data in the database, but he
also needs a script to search and view the data. In fact, this could serve as the
main page for his web site. The index.php script connects to the database,
retrieves alien abduction data, and shows it to Owen.

Owen has the
power to access
the data in
many new ways,
allowing him to
really focus on
finding his lost
dog, Fang.

5

4

3

report.php

Web server

Database server

index.php

Web server

Database server

The report.php script
communicates with the
MySQL server to insert data
into the aliens_abduction
table of the database.

The aliens_abduction table
stores alien abduction
reports as rows of data.

The index.php script retrieves data from
the aliens_abduction table so that it can
be formatted and shown to Owen.

The aliens_abduction table serves as a data source for the index.php script.

A database server is just
a program running on a
server computer, usually
alongside the web server.

76 Chapter 2

1

2

3

4

My MySQL server location (IP address or hostname):

My database user name:

My database password:

My database name:

Connect to your database from PHP
Before a PHP script can insert or retrieve data from a MySQL database, it
must connect to the database. Connecting to a MySQL database from PHP
is similar in many ways to accessing a database from a MySQL tool, and it
requires the same pieces of information. Remember the three checkboxes you
filled out earlier in the chapter? Here they are again, along with a new one for
the name of the database—go ahead and write them down one more time.

Your web hosting service or webmaster may tell you this, or if your web
server and MySQL database server are running on the same machine, you can use the word “localhost”.

The name of the database
you created earlier, which is
aliendatabase. If for some
reason you named your database
something else or decided to
use a database that was already
created, use that name instead.

Database server

report.php

index.php

localhost1
owen2

**********3
aliendatabase4

aliendatabase

aliens_abduction

The database name is
aliendatabase and is
necessary for a script
to communicate with
the database.

The table name is aliens_abduction,
and doesn’t enter the picture until
you start issuing SQL commands.

Any PHP script that
stores or retrieves data
from a MySQL database
must first establish a
connection with the
database using the four
pieces of information.

This is the
database and table
we just created.

The database server host location, username, password, and database name
are all required in order to establish a connection to a MySQL database from
a PHP script. Once that connection is made, the script can carry out SQL
commands just as if you were entering them manually in a MySQL tool.

Your own four pieces of
connection data will be
different than these.

making a mysql connection

you are here 4 77

connecting to MySQL

What do you think each of these PHP functions is doing in the script?

mysqli_connect()
mysqli_query()
mysqli_close()

<?php

 $dbc = mysqli_connect('data.aliensabductedme.com', 'owen', 'aliensrool', 'aliendatabase')

 or die('Error connecting to MySQL server.');

 $query = "INSERT INTO aliens_abduction (first_name, last_name, when_it_happened, how_long, " .

 "how_many, alien_description, what_they_did, fang_spotted, other, email) " .

 "VALUES ('Sally', 'Jones', '3 days ago', '1 day', 'four', 'green with six tentacles', " .

 "'We just talked and played with a dog', 'yes', 'I may have seen your dog. Contact me.', " .

 "'sally@gregs-list.net')";

 $result = mysqli_query($dbc, $query)

 or die('Error querying database.');

 mysqli_close($dbc);

?>

Be really careful with
the quotes and double
quotes here, as well
as spaces before and
after quotes!

These should be YOUR
four values, not Owen’s.

These functions require
your web server to have
PHP version 4.1 or greater.

You may be able to use ‘localhost’ for your
database location instead of a domain name.

Insert data with a PHP script
Issuing a MySQL query from PHP code first requires you to establish a
connection with the database. Then you build the query as a PHP string. The
query isn’t actually carried out until you pass along the query string to the
database server. And finally, when you’re finished querying the database, you
close the connection. All of these tasks are carried out through PHP script
code. Here’s an example that inserts a new row of alien abduction data:

Connect to the
MySQL database.

Build the INSERT query
as a string in PHP code.

Issue the INSERT query on the MySQL database.

78 Chapter 2

Hello? Calling
MySQL server,
you there?

Yes, I’m here.

I’ve got a big INSERT
statement to send, and it’s
stored in a PHP variable.

Use PHP functions to talk to the database
There are three main PHP functions used to communicate with a
MySQL database: mysqli_connect(), mysqli_query(), and
mysqli_close(). If you see a pattern it’s no accident—all of the
modern PHP functions that interact with MySQL begin with mysqli_.

Using these three functions typically involves a predictable sequence of steps.

Connect to a database with the mysqli_connect() function.
Provide the server location, username, and password to get permission to interact with the MySQL database
server. Also specify the database name since this is a connection to a specific database.

1

 Create an SQL query and store it as a string in a PHP variable.
To communicate with the database server, you have to use SQL commands. For example, an
INSERT statement is needed to add data to the aliens_abduction table. There’s nothing
special about the variable name we chose, but a straightforward name like $query works fine.

2

Database server

mysqli_connect()

Connected!

$query

The query is created as a string and stored in the $query variable.

An older set of PHP functions
that interact with MySQL
begin with mysql_, without
the “i”. The “i” stands for
“improved,” and the mysqli_
functions are now preferred.

mysqli_connect()

Connect to a MySQL database
using the four pieces of information
you already learned about.

mysqli_query()

Issue a query on a MySQL database,
which often involves storing or
retrieving data from a table.

mysqli_close()

Close a connection with a
MySQL database.

php’s three mysql connection functions

you are here 4 79

connecting to MySQL

<?php

 $dbc = mysqli_connect('data.aliensabductedme.com', 'owen', 'aliensrool', 'aliendatabase')

 or die('Error connecting to MySQL server.');

 $query = "INSERT INTO aliens_abduction (first_name, last_name, when_it_happened, how_long, " .

 "how_many, alien_description, what_they_did, fang_spotted, other, email) " .

 "VALUES ('Sally', 'Jones', '3 days ago', '1 day', 'four', 'green with six tentacles', " .

 "'We just talked and played with a dog', 'yes', 'I may have seen your dog. Contact me.', " .

 "'sally@gregs-list.net')";

 $result = mysqli_query($dbc, $query)

 or die('Error querying database.');

 mysqli_close($dbc);

?>

Database server

Hey, INSERT this
stuff in that table

you’ve got stored.

Done.

I’m done with
you. Goodbye.

Sheesh! Not even
a thank you.

 Issue the query with the mysqli_query() function.
Use the $query variable with the mysqli_query() function to talk to the MySQL database server and
add data to the aliens_abduction table. You have to tell mysqli_query() both the name of the
connection you created back in Step 1 and the name of the variable that holds your query from Step 2.

3

 Close the database connection with the mysqli_close() function.
Finally, mysqli_close() tells the MySQL database server that you are finished communicating with it.

4

Database server

mysqli_query()

Success!

This function executes your query, which is an INSERT statement to insert data into the table.

mysqli_close()

Connection closed.

Let’s take a closer look at each one of these PHP database
functions, starting with mysqli_connect()...

1

2

3

4

This is the name of your
connection variable. If something goes wrong,

this will send back a message
to you and stop everything.

This is an SQL INSERT query
that adds data to our database.

Here’s where we close the connection.

mysqli_query() is how PHP communicates with
the MySQL server. The code stored in the
$query variable is SQL code, not PHP code.

80 Chapter 2

 Assemble the query string.22

 Connect with mysqli_connect().11

 Close the connection with mysqli_close().44

 Execute the query with mysqli_query().33

Get connected with mysqli_connect()
For our PHP script to be able to create a connection to the database
with the mysqli_connect() function, you’ll need a few pieces of
information that you’re starting to get very familiar with. Yes, it’s the
same information you used earlier when working with the MySQL
terminal, plus the name of the database.

The name of your database
In our example, we’ve named the database aliendatabase. Yours will be
whatever name you decided to give it when you set it up earlier, or if your web
hosting company created your database for you, you’ll be using that name.

$dbc = mysqli_connect(
 'data.aliensabductedme.com',
 'owen',
 'aliensrool',
 'aliendatabase');

Username

Password

Location of
the database

Database name

Use this variable to perform
other actions on the database.

The result of calling the function is a database connection and a PHP
variable that you can use to interact with the database. The variable is
named $dbc in the example, but you can name it anything you like.

The mysqli_connect()
function treats the
location, username,
password, and
database name as
strings, so you must
quote them.

Who?

What?

Where?

The location of the database (a domain name, an IP
address or localhost)
In our example, we’re using the location of Owen’s (fictional) database. You
need to use the location of your own MySQL server. Often, this is localhost
if the database server is on the same machine as your web server. Your web
hosting company will be able to tell you this. It may also be an IP address or a
domain name like Owen’s, such as yourserver.yourisp.com.

Your username and password
You’ll need your own username and password for your own database server.
These will either be set up by you or given to you by your web hosting
company when MySQL is first installed. If you set up your own MySQL,
follow the instructions to give yourself a secure username and password.

The location, username, password, and name of the MySQL
database in the mysqli_connect() function must all have
quotes around them.

using mysqli_connect()

you are here 4 81

connecting to MySQL

Here are some examples of PHP database connection strings.
Look at each one and then write down whether or not it will work,
and how to fix it. Also circle any of the code you find problematic.

$dbc = mysqli_connect('data.aliensabductedme.com', 'owen', 'aliensrool',
 'aliendatabase');

$dbc = mysqli_connect('data.aliensabductedme.com', 'owen', 'aliensrool',
 "aliendatabase")

$fangisgone = mysqli_connect('data.aliensabductedme.com', 'owen', 'aliensrool',
 'aliendatabase');

$dbc = mysqli_connect('localhost', 'owen', 'aliensrool', 'aliendatabase');

$dbc = mysqli_connect('data.aliensabductedme.com', 'owen', '', 'aliendatabase');

$dbc = mysqli_connect('data.aliensabductedme.com', 'owen', 'aliensrool');
mysqli_select_db($dbc, 'aliendatabase');

82 Chapter 2

Here are some examples of PHP database connection strings.
Look at each one and then write down whether or not it will work,
and how to fix it. Also circle any of the code you find problematic.

This connection string will work.

This won’t work because it’s missing a semicolon. The double quotes will work just like the single quotes.

This will work, although it’s not a very good name for a database connection.

This will work, assuming the web server and database server are on the same machine.

This will work only if you set a blank password for the database. Not a good idea, though!
You should always have a password set for each database.

$dbc = mysqli_connect('data.aliensabductedme.com', 'owen', 'aliensrool',
 'aliendatabase');

$dbc = mysqli_connect('data.aliensabductedme.com', 'owen', 'aliensrool',
 "aliendatabase")

$fangisgone = mysqli_connect('data.aliensabductedme.com', 'owen', 'aliensrool',
 'aliendatabase');

$dbc = mysqli_connect('localhost', 'owen', 'aliensrool', 'aliendatabase');

$dbc = mysqli_connect('data.aliensabductedme.com', 'owen', '', 'aliendatabase');

$dbc = mysqli_connect('data.aliensabductedme.com', 'owen', 'aliensrool');
mysqli_select_db($dbc, 'aliendatabase');

Sorry, this is a trick question. In mysqli_connect(), that fourth item, the name of the database, is
optional. You can leave it out of the function and use mysqli_select_db() to specify the name of the
database instead. So this code is the same as if you had passed all four arguments to mysqli_connect().

You need a semicolon here to
terminate the PHP statement.

Not a very descriptive name for
a database connection.

This assumes the database server is located on
the same server computer as the web server.

An empty database password
is not a good idea.

Leaving off the fourth argument requires you to call mysqli_select_db() to select the database.

In this book, we’re using single quotes for PHP strings
and reserving double quotes for SQL queries.

sharpen solution

you are here 4 83

connecting to MySQL

This is where the PHP die() function comes in handy.
The PHP die() function terminates a PHP script and provides
feedback about code that failed. While it won’t reveal precisely what
went wrong, die() tells us that something’s up and that we need to fix
it. If something’s wrong with one of the four connection variables for
mysqli_connect(), or if the database server can’t be located, the
die() function will stop the rest of the PHP script from running and
show the error message in parentheses.

$dbc = mysqli_connect('data.aliensabductedme.com', 'owen', 'aliensrool', 'aliendatabase')
 or die('Error connecting to MySQL server.');

The die() function is called if the connection isn’t created.

This message is echoed to the web page if the connection fails.

If one of our four strings in the mysqli_connect()
function isn’t right, we’ll get feedback.

A semicolon isn’t necessary here
since “or die(...)” is technically a
continuation of a single statement.

It seems like it would be easy to screw
up one of the pieces of information used
to connect to the database. How do I
know for sure if the connection worked?

84 Chapter 2

Yes! Once you’ve made a database connection
with mysqli_connect(), you can issue SQL
queries directly from PHP.
Nearly everything you can do in the MySQL terminal you can
do in PHP code with the database connection you’ve now made.
It’s this connection that establishes a line of communication
between a PHP script and a MySQL database. For example,
now that Owen has a connection to his database, he can start
inserting data into the aliens_abduction table with the
mysqli_query() function and some SQL query code.

mysqli_query($dbc, $query)

mysql> INSERT INTO alie
ns_abduction (first_nam

e, last_name,

 when_it_happened, how
_long, how_many, alien_

description,

 what_they_did, fang_s
potted, other, email)

 VALUES ('Sally', 'Jon
es', '3 days ago', '1 d

ay', 'four',

 'green with six tenta
cles', 'We just talked

and played with a dog',

 'yes', 'I may have se
en your dog. Contact me

.',

 'sally@gregs-list.net
');

Query OK, 1 rows affect
ed (0.0005 sec)

File Edit Window Help UFO

The mysqli_query() function needs an SQL query stored in a PHP
string ($query) in order to carry out the insertion of alien abduction data.

The SQL query is passed to
mysqli_query() as a PHP string.

Remember, our goal is to
automate this INSERT
query using PHP code.

four

Sally
Jones

3 days ago 1 day

green with six tentaclesWe j
ust

talk
ed a

nd p
laye

d wi
th a

 dog

yes
I may have seen your dog. Contact me.

sally@gregs-list.ne
t

Okay, so we’ve got a PHP database
connection. Now what? Can we just
start issuing queries as if we’re
inside the MySQL terminal?

building queries in php

you are here 4 85

connecting to MySQL

Build the INSERT query in PHP
SQL queries in PHP are represented as strings, and it’s customary
to store a query in a string before passing it along to the
mysqli_query() function. Since SQL queries can be fairly long,
it’s often necessary to construct a query string from smaller strings
that span multiple lines of code. Owen’s INSERT query is a good
example of this:

$query = "INSERT INTO aliens_abduction (first_name, last_name, " .

 "when_it_happened, how_long, how_many, alien_description, " .

 "what_they_did, fang_spotted, other, email) " .

 "VALUES ('Sally', 'Jones', '3 days ago', '1 day', 'four', " .

 "'green with six tentacles', 'We just talked and played with a dog', " .

 "'yes', 'I may have seen your dog. Contact me.', " .

 "'sally@gregs-list.net')";

With the INSERT query stored in a string, you’re ready to pass it along to
the mysqli_query() function and actually carry out the insertion.

This is a PHP string variable that
now holds the INSERT query.

The query string is broken across multiple lines
to make the query more readable - the periods
tell PHP to turn this into one big string.

The period tells PHP to
tack this string onto the
string on the next line.

Since this entire piece
of code is PHP code,
it must be terminated
with a semicolon.

 Assemble the query string.22

 Connect with mysqli_connect().11

 Close the connection with mysqli_close().44

 Execute the query with mysqli_query().33

Q: Why is an INSERT into a
database called a query? Doesn’t “query”
mean we’re asking the database for
something?

A: Yes, “query” does mean you’re asking
for something...you’re asking the database
to do something. In MySQL database
applications, the word “query” is quite
general, referring to any SQL command
you perform on a database, including both
storing and retrieving data.

Q: Why isn’t the INSERT statement
just created as one big string?

A: Keep in mind that the INSERT
statement is stored as one big string, even
though it is created from multiple smaller
strings. Ideally, the INSERT statement
would be coded as a single string. But
like many SQL statements, the INSERT
statement is quite long and doesn’t fit on
a “normal” line of code. So it’s easier to
read the query string if it’s coded as smaller
strings that are glued together with periods.

Q: Is it really necessary to list the
column names when doing an INSERT?

A: No. You can leave off the column
names in the INSERT statement. In which
case, you must provide values for all of the
columns in the table in the same order that
they appear in the table structure. Knowing
this, it’s generally safer and more convenient
to specify the column names.

86 Chapter 2

mysqli_query(database_connection, query);

$dbc = mysqli_connect('data.aliensabductedme.com', 'owen', 'aliensrool', 'aliendatabase')

 or die('Error connecting to MySQL server.');

This is a database connection that’s already been established via the mysqli_connect() function.

This is the SQL query that
will be performed...the one
we stored in a string.

The database connection required by the mysqli_query() function
was returned to you by the mysqli_connect() function. Just in case
that’s a bit fuzzy, here’s the code that established that connection:

Query the MySQL database with PHP
The mysqli_query() function needs two pieces of information to
carry out a query: a database connection and an SQL query string.

The mysqli_query() function requires a database connection
and a query string in order to carry out an SQL query.

 Assemble the query string.22

 Connect with mysqli_connect().11

 Close the connection with mysqli_close().44

 Execute the query with mysqli_query().33

So you have a database connection ($dbc) and an SQL query ($query).
All that’s missing is passing them to the mysqli_query() function.

The connection to the
database was stored away
earlier in the $dbc variable.

Remember, these connection
variables will be different
for your database setup.

$result = mysqli_query($dbc, $query);

 or die('Error querying database.');

This code shows that calling the mysqli_query() function isn’t just a
one-way communication. The function talks back to you by returning a
piece of information that’s stored in the $result variable. But no actual
data is returned from the INSERT query—the $result variable just stores
whether or not the query issued by mysqli_query() was successful.

An SQL query
is a request
written in SQL
code that is
sent to the
database server.

The database
connection.

The query

The result of the query

the mysqli_query() function

you are here 4 87

connecting to MySQL

Close your connection with
mysqli–close()
Since we’re only interested in executing the single INSERT
query, the database interaction is over, at least as far as the
script is concerned. And when you’re done with a database
connection, you should close it. Database connections will
close by themselves when the user navigates away from the
page but, just like closing a door, it’s a good habit to close
them when you’re finished. The PHP mysqli_close()
function closes a MySQL database connection.

mysqli_close(database_connection);

mysqli_close($dbc);

This is where you pass the
database connection variable
that we’ve been using to
interact with the database.

It’s a good habit
to close a MySQL
database connection
when you’re
finished with it.

In the case of Owen’s script, we need to pass
mysqli_close() the actual database connection,
which is stored in the $dbc variable.

This variable holds a reference to the database connection, which was created by mysqli_connect() back when the connection was first opened.

 Assemble the query string.22

 Connect with mysqli_connect().11

 Close the connection with mysqli_close().44

 Execute the query with mysqli_query().33

But if database
connections are closed
automatically, why bother?

Database servers only have a certain number of
connections available at a time, so they must be
preserved whenever possible.
And when you close one connection, it frees that connection up so
that a new one can be created. If you are on a shared database, you
might only have five connections allocated to you, for example. And
as you create new database-driven applications, you’ll want to keep
your supply of available connections open as much as you can.

88 Chapter 2

Database connections need a location, a username, a
password, and a database name.

The mysqli_connect() function creates a
connection between your PHP script and the MySQL
database server.

The die() function exits the script and returns
feedback if your connection fails.

Issuing an SQL query from PHP code involves
assembling the query in a string and then executing it
with a call to mysqi_query().

Call the mysqli_close() function to close a
MySQL database connection from PHP when you’re
finished with it.

Q: Couldn’t you just put all the SQL code directly in the
mysqli_query() function in place of the $query
variable?

A: You could, but it gets messy. It’s just a bit easier to manage
your code when you store your queries in variables, and then use
those variables in the mysqli_query() function.

Q: Should the code that issues the INSERT query be doing
anything with the result?

A: Perhaps, yes. So far we’ve been using die() to terminate a
script and send a message to the browser if something goes wrong.
Eventually you may want to provide more information to the user
when a query’s unsuccessful, in which case you can use the result of
the query to determine the query’s success.

no dumb questions and bullet points

you are here 4 89

connecting to MySQL

Is this correct? Write down if you think this is what the script
should be doing, and why.

Replace the email code in Owen’s report.php script so that
it inserts data into the MySQL database, and then try it out.
Remove the code in the report.php script that emails form data to Owen. In its
place, enter the code that connects to your MySQL database, builds a SQL query
as a PHP string, executes the query on the database, and then closes the connection.

Upload the new report.php file to your web server, and then open the
report.html page in a browser to access the Report an Abduction form.
Fill out the form and click Report Abduction to store the data in the database.
Now fire up your MySQL tool and perform a SELECT query to view any
changes in the database.

<?php
 $dbc = mysqli_connect('data

.aliensabductedme.com', 'owen
', 'aliensrool', 'aliendataba

se')

 or die('Error connecting
to MySQL server.');

 $query = "INSERT INTO alien

s_abduction (first_name, last
_name, " .

 "when_it_happened, how_lo
ng, how_many, alien_descripti

on, " .

 "what_they_did, fang_spot
ted, other, email) " .

 "VALUES ('Sally', 'Jones'
, '3 days ago', '1 day', 'fou

r', " .

 "'green with six tentacle
s', 'We just talked and playe

d with a dog', " .

 "'yes', 'I may have seen
your dog. Contact me.', " .

 "'sally@gregs-list.net')"
;

 $result = mysqli_query($dbc

, $query)

 or die('Error querying da
tabase.');

 mysqli_close($dbc);

?>

Here’s the new PHP database code you’ve been working on. Don’t enter the <?php ?>
tags in report.php since you’re adding this code to a spot
in the script that’s already
inside the tags.

mysql> SELECT * FROM aliens_abduction;

+------------+-----------+------------------+----------+----------+--------------------------+ | first_name | last_name | when_it_happened | how_long | how_many | alien_description | +------------+-----------+------------------+----------+----------+--------------------------+ | Sally | Jones | 3 days ago | 1 day | four | green with six tentacles | | Sally | Jones | 3 days ago | 1 day | four | green with six tentacles | +------------+-----------+------------------+----------+----------+--------------------------+
2 rows in set (0.0005 sec)

File Edit Window Help IMissFangLots

Test Drive

90 Chapter 2

What PHP code can help us get the values
from Owen’s form into the INSERT query?

This is a big problem. The INSERT query needs to be
inserting the form data, not static strings.
The query we’ve built consists of hard coded strings, as opposed to being
driven from text data that was entered into the alien abduction form. In order
for the script to work with the form, we need to feed the data from the form
fields into the query string.

mysqli_query()

$query

The alien abduction form is where the user’s report data comes from.

dunno

Don Quayle

back in 1991
37 seconds

they looked like donkeys made out of metal...
shot

 me
with

 a t
hous

and
poin

ts o
f li

ght

yes
I really do love potatos.

dq@iwasvicepresiden
t.com

This form data needs
to make its way into
the $query string.

Hang on a second. Isn’t the whole point here to
take data from a form and store it in a database?
It looks like the query’s inserting the same data no
matter what gets entered into the form. I don’t see
how this PHP script automates anything.

use $_POST in the INSERT query

you are here 4 91

connecting to MySQL

$–POST provides the form data
The good news is that the report.php script already has the form
data stored away in variables thanks to the $_POST superglobal.
Remember this PHP code?

$name = $_POST['firstname'] . ' ' . $_POST['lastname'];

$when_it_happened = $_POST['whenithappened'];

$how_long = $_POST['howlong'];

$how_many = $_POST['howmany'];

$alien_description = $_POST['aliendescription'];

$what_they_did = $_POST['whattheydid'];

$fang_spotted = $_POST['fangspotted'];

$email = $_POST['email'];

$other = $_POST['other'];

The $_POST superglobal’s already being used to extract the data from each of Owen’s form fields and store it in variables.

So you already have the form data in hand, you just need to incorporate
it into the alien abduction INSERT statement. But you need to make a
small change first. Now that you’re no longer emailing the form data, you
don’t need the $name variable. You do still need the first and last name
of the user so that they can be added to the database—but you need the
names in separate variables.

Write the PHP code to create Owen’s INSERT query string that is stored in the $query
variable, making sure that it stores actual form data in the aliens_abduction table upon
being executed.

$first_name = $_POST['firstname'];

$last_name = $_POST['lastname'];

The user’s name is now stored in separate variables so that it can be inserted into distinct columns of the aliens_abduction table.

Remember, the name you
use for $_POST needs to
match up with the name of
an HTML form field.

92 Chapter 2

Write the PHP code to create Owen’s INSERT query string that is stored in the $query
variable, making sure that it stores actual form data in the aliens_abduction table upon
being executed.

$query = “INSERT INTO aliens_abduction (first_name, last_name, when_it_happened, how_long, “ .
 “how_many, alien_description, what_they_did, fang_spotted, other, email) “ .
 “VALUES (‘$first_name’, ‘$last_name’, ‘$when_it_happened’, ‘$how_long’, ‘$how_many’, “ .
 “’$alien_description’, ‘$what_they_did’, ‘$fang_spotted’, ‘$other’, ‘$email’)”;

The column names appear
in the SQL statement
exactly as they did before.

Instead of static data about Sally Jones’ abduction, now we insert whatever data the user entered into the form.

The order of the variables must
match the order of the column
names for the data to get stored
in the correct columns of the table.

Q: Do I have to create all those variables to store the
$_POST data? Can’t I just reference the $_POST data directly
into the $query string?

A: Yes, you can. There’s nothing stopping you from putting
$_POST directly in a query. However, it’s a good coding habit to
isolate form data before doing anything with it. This is because it’s
fairly common to process form data to some degree before inserting
it into a database. For example, there are clever ways for hackers to
try and hijack your queries by entering dangerous form data. You’ll
learn how to thwart such attempts in Chapter 6. To keep things
simple, this chapter doesn’t do any processing on form data, but that
doesn’t mean you shouldn’t go ahead and get in the habit of storing
form data in your own variables first before sticking it in a query.

Q: OK, so does it matter where you use single quotes versus
double quotes? Can I use single quotes around the whole query
and double quotes around each variable?

A: Yes, it matters. And no, you can’t use single quotes around the
whole query with double quotes around the variables. The reason
is because PHP treats strings differently depending on whether
they appear inside single quotes or double quotes. The difference
between the two is that single quotes represent exactly the text
contained within them, while some additional processing takes place
on the text within double quotes. This processing results in a variable
inside of double quotes getting processed and its value placed in the
string in lieu of the variable name. This is quite handy, and is why
double quotes are generally preferred for building SQL query strings.

Q: Couldn’t you just build query strings by concatenating the
variables with the SQL code?

A: Yes, and if you went the concatenation route, you could
certainly use single quotes instead of double quotes. But query
strings tend to be messy as it is, so anything you can do to make
them more readable is a good thing—embedding variables directly
in a double-quoted string instead of concatenating them with single
quotes definitely makes query strings easier to understand.

single and double quotes in php

you are here 4 93

connecting to MySQL

<?php

 $when_it_happened = $_POST['whenithappened'];
 $how_long = $_POST['howlong'];
 $how_many = $_POST['howmany'];
 $alien_description = $_POST['aliendescription'];
 $what_they_did = $_POST['whattheydid'];
 $fang_spotted = $_POST['fangspotted'];
 $email = $_POST['email'];
 $other = $_POST['other'];

 $dbc =

 $query = "INSERT INTO aliens_abduction (first_name, last_name, when_it_happened, how_long, " .
 "how_many, alien_description, what_they_did, fang_spotted, other, email) " .
 "VALUES ('$first_name', '$last_name', '$when_it_happened', '$how_long', '$how_many', " .
 "'$alien_description', '$what_they_did', '$fang_spotted', '$other', '$email')";

 $result =

 echo 'Thanks for submitting the form.
';
 echo 'You were abducted ' . $when_it_happened;
 echo ' and were gone for ' . $how_long . '
';
 echo 'Number of aliens: ' . $how_many . '
';
 echo 'Describe them: ' . $alien_description . '
';
 echo 'The aliens did this: ' . $what_they_did . '
';
 echo 'Was Fang there? ' . $fang_spotted . '
';
 echo 'Other comments: ' . $other . '
';
 echo 'Your email address is ' . $email;
?>

Let’s use everything we’ve learned to finish Owen’s form-handling PHP script so that it can
successfully store alien abduction data in a database. Finish the PHP code below to complete
the report.php script.

94 Chapter 2

<?php

 $when_it_happened = $_POST['whenithappened'];
 $how_long = $_POST['howlong'];
 $how_many = $_POST['howmany'];
 $alien_description = $_POST['aliendescription'];
 $what_they_did = $_POST['whattheydid'];
 $fang_spotted = $_POST['fangspotted'];
 $email = $_POST['email'];
 $other = $_POST['other'];

 $dbc =

 $query = "INSERT INTO aliens_abduction (first_name, last_name, when_it_happened, how_long, " .
 "how_many, alien_description, what_they_did, fang_spotted, other, email) " .
 "VALUES ('$first_name', '$last_name', '$when_it_happened', '$how_long', '$how_many', " .
 "'$alien_description', '$what_they_did', '$fang_spotted', '$other', '$email')";

 $result =

 echo 'Thanks for submitting the form.
';
 echo 'You were abducted ' . $when_it_happened;
 echo ' and were gone for ' . $how_long . '
';
 echo 'Number of aliens: ' . $how_many . '
';
 echo 'Describe them: ' . $alien_description . '
';
 echo 'The aliens did this: ' . $what_they_did . '
';
 echo 'Was Fang there? ' . $fang_spotted . '
';
 echo 'Other comments: ' . $other . '
';
 echo 'Your email address is ' . $email;
?>

Let’s use everything we’ve learned to finish Owen’s form-handling PHP script so that it can
successfully store alien abduction data in a database. Finish the code below to complete the
report.php script.

 mysqli_connect(‘data.aliensabductedme.com’, ‘owen’, ‘aliensrool’, ‘aliendatabase’)
 or die(‘Error connecting to MySQL server.’);

$first_name = $_POST[‘firstname’];
$last_name = $_POST[‘lastname’];

 mysqli_query($dbc, $query)
 or die(‘Error querying database.’);

mysqli_close($dbc);

The new name variables hold the first and last name of the user, as entered into the form.

You must connect to the database
and provide the proper connection
information before performing any
SQL queries from PHP.

The query is constructed as a PHP
string, making sure to use data
extracted from the form fields.

Execute the query on
the database - this
inserts the data!

Close the database connection.

Confirm the successful
form submission, just like
you did in the old script.

exercise solution

you are here 4 95

connecting to MySQL

Change Owen’s script to use actual form data when you do an INSERT.
Remove the $name variable in the report.php script, add the $first_name and
$last_name variables, and modify the $query variable to use form variables instead of
static text in the INSERT statement. Upload the new version of the script and then try it out
by submitting the form in the report.html page a few times, making sure to enter different
data each time.

mysql> SELECT * FROM aliens_abduction;

+------------+-----------+------------------+------------+------------+----------------------- | first_name | last_name | when_it_happened | how_long | how_many | alien_description +------------+-----------+------------------+------------+------------+----------------------- | Sally | Jones | 3 days ago | 1 day | four | green with six tentacl | Sally | Jones | 3 days ago | 1 day | four | green with six tentacl | Don | Quayle | back in 1991 | 37 seconds | dunno | they looked like donke | Shill | Watner | summer of '69 | 2 hours | don't know | there was a bright lig | Alf | Nader | last November | 11 hours | dozens | little green men +------------+-----------+------------------+------------+------------+-----------------------
5 rows in set (0.0005 sec)

File Edit Window Help BeamMeUp

Now use your MySQL tool to carry out a SELECT and view the contents of the
aliens_abduction table.

There’s an extra row
of data for Sally
Jones from before you
fixed the INSERT
query. Don’t worry,
you learn how to
remove unwanted data
in the next chapter.

The new alien
abduction
reports appear in
the table just as
you would expect!

Test Drive

96 Chapter 2

I’m really stoked that I’ve now got a
database automatically filled with alien
abduction reports submitted by users.
But it doesn’t help me isolate the
reports that might help me find Fang.

Owen needs a way to find specific data, such as alien
abductions where Fang was spotted.
You know what column of the database contains the information in
question: fang_spotted. This column contains either yes or no
depending on whether the abductee reported that they saw Fang. So what
you need is a way to select only the reports in the aliens_abduction
table that have a value of yes in the fang_spotted column.

You know that the following SQL query returns all of the data in the table:

Owen needs help sifting through his data
The new and improved report.php script is doing its job and automating
the process of adding alien abduction reports to the database. Owen can just
sit back and let the reports roll in... except that there’s a new problem. More
data isn’t exactly making it any easier to hone in on alien abduction reports
involving a potential Fang sighting.

SELECT * FROM aliens_abduction WHERE fang_spotted = 'yes'

SELECT * FROM aliens_abduction

The SQL SELECT statement lets you tack on a clause to control the data
returned by the query. It’s called WHERE, and you tell it exactly how you
want to filter the query results. In Owen’s case, this means only selecting
alien abduction reports where the fang_spotted column equals yes.

This clause reduces the data
returned by the query, yielding only
the data where the fang_spotted
column is set to yes.

This part of the SELECT
query stays the same - the
WHERE clause takes care of
whittling down the results.

The name of
the column

The value the
column must be set
to in order for
data to be selected

Remember, without the WHERE
clause, this causes all of the
data in the table to be selected.

adding WHERE to your SELECT

you are here 4 97

connecting to MySQL

Try out the SELECT query with a WHERE clause to find specific data.
Use a SELECT query with a WHERE clause in your MySQL tool to search for alien
abduction data that specifically involves Fang sightings.

mysql> SELECT * FROM aliens_abduction WHERE fang_spot
ted = 'yes';

+------------+-----------+------------------+--------

-------------------+------------+-

| first_name | last_name | when_it_happened | how_lon
g | how_many |

+------------+-----------+------------------+--------
-------------------+------------+-

| Sally | Jones | 3 days ago | 1 day
 | four |

| Sally | Jones | 3 days ago | 1 day
 | four |

| Don | Quayle | back in 1991 | 37 seco
nds | dunno |

| Shill | Watner | summer of '69 | 2 hours
 | don't know |

| Mickey | Mikens | just now | 45 minu
tes...and counting | hundreds |

+------------+-----------+------------------+--------
-------------------+------------+-

5 rows in set (0.0005 sec)

File Edit Window Help HaveYouSeenHim

All of these records
have the fang_spotted
column set to yes.

-----+--------------+--+
 | fang_spotted | other |
-----+--------------+--+
.net | yes | I may have seen your dog. Contact me. |
.net | yes | I may have seen your dog. Contact me. |
.com | yes | I really do love potatos. |
.com | yes | I was out of gas, so it was a pretty good abduction. |
.net | yes | I'm thinking about designing a helmet to thwart future abductions. |
-----+--------------+--+

Test Drive

98 Chapter 2

I’m famous!

Owen’s on his way to finding Fang
Thanks to PHP and its functions that interface to MySQL, Owen’s MySQL
database server receives the alien abduction data from an HTML form and
stores it in a database table. The data waits there safely in the table until
Owen gets a chance to sift through it. And when he’s ready, a simple SELECT
query is all it takes to isolate abduction reports that potentially involve Fang.

Web server

Database server

Owen, UFO buff and
lover of databases.

mysql> SELECT * FROM aliens_abduction WHERE fang_spot
ted = 'yes';

+------------+-----------+----------------------+----

-----------------------+------------

| first_name | last_name | when_it_happened | how
_long | how_many

+------------+-----------+----------------------+----
-----------------------+------------

| Sally | Jones | 3 days ago | 1 d
ay | four

| Don | Quayle | back in 1991 | 37
seconds | dunno

| Shill | Watner | summer of '69 | 2 h
ours | don't know

| Mickey | Mikens | just now | 45
minutes...and counting | hundreds

| James | Decola | sometime in the 70's | sev
eral years | plenty

+------------+-----------+----------------------+----
-----------------------+------------

5 rows in set (0.0005 sec)

File Edit Window Help TheDogIsOutThere

-----+--------------+--+
 | fang_spotted | other |
-----+--------------+--+
.net | yes | I may have seen your dog. Contact me. |
.com | yes | I really do love potatos. |
.com | yes | I was out of gas, so it was a pretty good abduction. |
.net | yes | I'm thinking about designing a helmet to thwart future abductions. |
.com | yes | I did see a dog, and bunches of beetles. |
-----+--------------+--+

Cool. Storing the data in a database
is sooo much better than email, and I
can now really focus on alien abductions
where Fang might’ve been seen.

owen’s mysql database is up and running

you are here 4 99

connecting to MySQL

Even though you haven’t seen it all put together yet, match each
HTML, PHP, and MySQL component to what you think it does.

This is the SQL code the PHP script passes to the
MySQL server.

The name of the database that contains the
aliens_abduction table.

This opens a connection between the PHP script and
the MySQL server so they can communicate.

This is where Owen collects data from the user.

This is another name for the software that runs MySQL
and all the databases and tables it contains.

This optional PHP function tells the database server
which database to use.

This is the name of Owen’s PHP script that processes
the data users enter into his report.html form.

This is where the data from the report.html form
will eventually end up being stored.

This HTML element is used by visitors to the site
when they finish filling out the form.

This PHP function closes a connection to the MySQL server.

This runs PHP scripts and returns HTML pages to browsers,
often communicating with a database along the way.

aliendatabase

aliens_abduction table

report.html

report.php

POST

web server

MySQL database server

Submit button

query

mysqli_connect()

mysqli_close()

mysqli_query()

mysqli_select_db()

The HTML form uses this request method to send the
data in the form to a PHP script.

This PHP function sends a query to the MySQL server.

100 Chapter 2

Even though you haven’t seen it all put together yet, match each
HTML, PHP, and MySQL component to what you think it does.

This is the SQL code the PHP script passes to the
MySQL server.

The name of the database that contains the
aliens_abduction table.

This opens a connection between the PHP script and
the MySQL server so they can communicate.

This is where Owen collects data from the user.

This is another name for the software that runs MySQL
and all the databases and tables it contains.

This optional PHP function tells the database server
which database to use.

This is the name of Owen’s PHP script that processes
the data users enter into his report.html form.

This is where the data from the report.html form
will eventually end up being stored.

This HTML element is used by visitors to the site
when they finish filling out the form.

This PHP function closes a connection to the MySQL server.

This runs PHP scripts and returns HTML pages to browsers,
often communicating with a database along the way.

aliendatabase

aliens_abduction table

report.html

report.php

POST

web server

MySQL database server

Submit button

query

mysqli_connect()

mysqli_close()

mysqli_query()

mysqli_select_db()

Solution

The HTML form uses this request method to send the
data in the form to a PHP script.

This PHP function sends a query to the MySQL server.

who does what solution

you are here 4 101

connecting to MySQL

Q: It’s pretty cool that I’ve learned how to insert data
into a MySQL table but I’m still a little confused about
how the table and its database were created. What gives?

A: Good question. It’s true that you need to understand
how to create your own tables, not just use code presented to
you. So far you’ve created a table without much understanding
of the CREATE TABLE syntax. That’s fine for Owen’s
single table, but when you need to create multiple tables of
your own design, it isn’t good enough. You’ll need to take a
closer look at the data you’re storing in new tables and think
about the best way to represent it. This is the main focus of
the next chapter... are you ready?

this is a new chapter 103

3 create and populate a database

Creating your own data
Not so fast,
Dexter. I need
some data first.

Are you Jamaican?
Because Jamaican
me crazy!

You don’t always have the data you need.
Sometimes you have to create the data before you can use it. And sometimes you have

to create tables to hold that data. And sometimes you have to create the database that

holds the data that you need to create before you can use it. Confused? You won’t be.

Get ready to learn how to create databases and tables of your very own. And if that isn’t

enough, along the way, you’ll build your very first PHP & MySQL application.

104 Chapter 3

Dear Fellow Elvisonians,

Big sale this week at MakeMeElvi
s.com!

Genuine horse hair sideburns 20%
 off!

And don’t forget the “buy one, g
et one

free” leisure suits — only three
 days

left!

Big Sale!

Elmer, the
undisputed
King of online
Elvis goods.

Elmer’s customer mailing list:Anderson Jillian jill_anderson@breakneckpizza.com

Joffe Kevin joffe@simuduck.com

Newsome Amanda aman2luv@breakneckpizza.com

Garcia Ed ed99@b0tt0msup.com

Roundtree Jo-Ann jojoround@breakneckpizza.com

Briggs Chris cbriggs@boards-r-us.com

Harte Lloyd hovercraft@breakneckpizza.com

Toth Anne AnneToth@leapinlimos.com

Wiley Andrew andrewwiley@objectville.net

Palumbo Tom palofmine@mightygumball.net

Ryan Alanna angrypirate@breakneckpizza.com

McKinney Clay clay@starbuzzcoffee.com

Meeker Ann annmeeker@chocoholic-inc.com

Powers Brian bp@honey-doit.com

Manson Anne am86@objectville.net

Mandel Debra debmonster@breakneckpizza.com

Tedesco Janis janistedesco@starbuzzcoffee.com

Talwar Vikram vikt@starbuzzcoffee.com

Szwed Joe szwedjoe@objectville.net

Sheridan Diana sheridi@mightygumball.net

Snow Edward snowman@tikibeanlounge.com

Otto Glenn glenn0098@objectville.net

Hardy Anne anneh@b0tt0msup.com

Deal Mary nobigdeal@starbuzzcoffee.com

Jagel Ann dreamgirl@breakneckpizza.com

Melfi James drmelfi@b0tt0msup.com

Oliver Lee leeoliver@weatherorama.com

Parker Anne annep@starbuzzcoffee.com

Ricci Peter ricciman@tikibeanlounge.com

Reno Grace grace23@objectville.net

Moss Zelda zelda@weatherorama.com

Day Clifford cliffnight@breakneckpizza.com

Bolger Joyce joyce@chocoholic-inc.com

Blunt Anne anneblunt@breakneckpizza.com

Bolling Lindy lindy@tikibeanlounge.com

Gares Fred fgares@objectville.net

Jacobs Anne anne99@objectville.net

Elmer has 328 email
addresses collected at this
point, with more every day.

These people
are on Elmer’s
email list, and
look forward
to looking more
like Elvis with
Elmer’s help.

Elmer writes this
email and copies
and pastes each
email address in
the “To” field.

The Elvis store is open for business
Elmer Priestley has opened his Elvis store, MakeMeElvis.com.
Demand has been huge. He’s sold a number of studded polyester
jump suits, many fake sideburns, and hundreds of pairs of
sunglasses.

Each time someone buys something, Elmer collects a new email
address. He uses these to send out newsletters about sales at
his store. Right now Elmer has to manually go through each
email address in his list and copy and paste to send out his email
advertising sales. It works, but it takes a lot of time and effort.

Elmer spends far too much time copying and pasting
emails into the “To” field of his client email application.
He wants to simplify the task of adding new email
addresses and sending out mass emails.

This is taking too long. I’d
rather be spending my time
imitating Elvis, not sending
out emails manually.

mailing-list app needed!

you are here 4 105

create and populate a database

Elmer needs an application
An application is a software program designed to fulfill a particular purpose
for its users. Elmer needs an application that will keep track of his email
address list and allow him to send out email to the people on the list by
clicking a single form button. Here’s how he wants it to work:

With this laundry list of application needs, it’s possible for Elmer to visualize
his application in all its glory...

Click a Submit button on the page, and the message
gets sent to the entire MakeMeElvis.com email list.

Go to a web page and enter an email message.

Let the email list build itself by allowing new
customers to sign up through a web form.

A web application is
a dynamic web site
that is designed to
fulfill a particular
purpose for its users.

The MakeMeElvis.com web application consists of two main components: a form to send
email messages to people on Elmer’s email list and a form to allow new customers to join the
email list. With these two forms in mind, sketch a design of Elmer’s application.

This email stuff sounds a lot like
Owen’s Alien Abduction application, but
the difference here is that Elmer’s
email list will build itself, and his email
messages will go out to the entire list.
Elmer’s app is all about automation!

106 Chapter 3

This is the
web form that
Elmer fills out.
to create and
send an email
to the list. Elmer’s email address list is

stored in a table in a database
on a MySQL database server.

This PHP script sends the email message to all the people on Elmer’s email list.

addemail.php

sendemail.php

sendemail.html

addemail.html

Web server

Database server

first_name last_name email

Jon Matthews jonathan@wishiwaselvis.com

Wendy Werlitz wwer@starbuzzcoffee.com

Joe Bob Franklin 2ksdgj@gregs-list.net

...

email_list

elvis_store

This form/script
combination allows users to
join Elmer’s email list.

The table name.

Visualize Elmer’s application design
It always help to visualize the design of an application before diving into the
development details. This means figuring out what web pages and scripts will
be involved, how they connect together, and perhaps most importantly, how
you’ll store the data in a MySQL database.

These people are on
Elmer’s email list, and
receive emails that he
sends to the list.

The database
name - yours may be different.

our mailing-list app design

you are here 4 107

create and populate a database

Joe: I don’t see how it really matters. We’re going to need the table and the script
before the application will work.

Frank: That’s true, but I think we should write the script first so we can test out the
PHP code before connecting it to the database.

Jill: But the PHP script’s entirely dependent on the database. It’ll be hard to test the
script if we don’t have a database for it to connect to.

Frank: Couldn’t we create the script but just leave out the specific code that connects
to the database? We could do everything but actually interact with the database. That
might still be helpful, right?

Joe: Not necessarily. Remember, the script’s only job is to take data entered into
an HTML form and stick it in a database. Or if it’s sending an email to the mailing
list, the script reads from the database and generates an email message for each user.
Either way, the database is critical to the script.

Jill: True, but we didn’t even think about the HTML form. Where does that fit into all of this? I’m thinking we need
to create the database before we can even think about writing the script.

Frank: That’s it! First we create the HTML form, then we figure out what data goes in the database, and when that’s
done we tie it all together with the script.

Joe: I’m not sure if that really makes sense. How can we create an HTML form when we aren’t 100% sure what
data we need to get from the user?

Jill: Joe’s right. The HTML form still leads back to us needing to have the data for the application figured out first.
The data drives everything, so we should probably build the database and table first, then the HTML form, and then
the script that reacts to the form submission.

Frank: I’m sold. Let’s do it!

Joe: I still think we probably need to come up with specific steps of how this application is going to come together...

So where do we begin in building a
PHP and MySQL application? Should we

write the PHP script and then create the table
to hold the data? Or should we make the table

first and then the script?

Frank Jill Joe

Write down the specific steps you think are involved in going
from design to implementation with MakeMeElvis.com.

108 Chapter 3

 Create a database and table for the
email list.
This table will hold the first names, last names, and
email addresses of everyone on Elmer’s mailing list.

11

 Create an Add Email web form and PHP
script for adding a new customer to the list.
Here’s where we’ll build a form and script that will allow
a customer to easily enter their first name, last name, and
email address, and then add them to the email list.

22

 Create a Send Email web form and PHP
script for sending an email to the list.
Finally, we’ll build a web form that will allow Elmer
to compose an email message and, more importantly,
a script that will take that message and send it to
everyone stored in his email list table.

33

We really need a plan of attack for putting together Elmer’s application. By breaking
it down into steps, we can focus on one thing at a time and not get overwhelmed.

elvis_store

addemail.php
addemail.html

sendemail.php
sendemail.html

planning the application

you are here 4 109

create and populate a database

A table

column1 column2 column3 column4

data data data data

data data data data

data data data data

data data data data

column1 column2 column3 column4 column5 column6
data data data data data data
data data data data data data
data data data data data data
data data data data data data

column1 column2 column3
data data data
data data data
data data data
data data data
data data data
data data data
data data data

Another
table

Some other table

column1 column2data
data

data
data

data
data

data
data

Another table

These are the rows.

These are the columns.

A database,
which is stored
by a MySQL
database server.

Think of a
database like
a container
that holds
information.

It all starts with a table
Actually, it all starts with a database, which is basically a container for storing
data. Remember, in the last chapter, how databases are divided internally into
more containers called tables.

Like days and weeks in a calendar, a table’s made up of columns and rows
of data. Columns consist of one specific type of data, such as “first name,”

“last name,” and “email.” Rows are collections of columns where a single row
consists of one of each column. An example of a row is

“Wendy, Werlitz, wwer@starbuzzcoffee.com.”

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

...

calendar
first_name last_name email

...
Jon Matthews jonathan@wishiwaselvis.comWendy Werlitz wwer@starbuzzcoffee.comJoe Bob Franklin 2ksdgj@gregs-list.net

email_list

Generally, all the tables in a database have some relationship to each other,
even if that affiliation is sometimes loose. It’s common for a web application
to consist of multiple tables that are connected to one another through their
data. But all the tables are still made up of columns and rows.

These data
structures are
both tables.

A column

A row

Tables store data in
a grid-like pattern
of columns and rows.

A database is
a container for
storing data in a
very structured way.

Q: Where’s database data actually
stored? Can I see the files?

A: Database data is typically stored in
files on a hard disk. And although you could
certainly look at them, they wouldn’t tell you
much. Database files are binary files that can’t
just be opened and looked at. That’s why we
have SQL—to allow us to peer into a database
and interact with the data stored within it.

110 Chapter 3

Make contact with the MySQL server
Elmer’s application design needs a database and a table. Most of the
day-to-day work of dealing with a database involves interacting with
tables, but you can’t just jump in and start creating tables without
creating a database to hold them first.

The CREATE DATABASE command is the SQL command used to
create a database. Once that’s done, you can move on to creating a
table with the CREATE TABLE command. But before you can
use either of those commands, you have to connect to your
MySQL database server. You did this back in the last chapter, and
it required a few pieces of important information.

As well as letting a PHP script make a connection to a database and
perform database actions, the database server location, username, and
password are the key to using the MySQL terminal or phpMyAdmin.
And these tools are pretty helpful for getting a database application off
the ground with the initial database and table creation.

Since creating a database and table for Elmer’s application only has
to happen once, it makes sense to use an SQL query to create them
manually. So fire up your MySQL tool of choice, and get ready to
knock out the first step of Elmer’s application, creating a database and
table for the email list.

The name’s Elmer.
That’s E-L-M-E-R...

A MySQL tool such as
the MySQL terminal lets you connect to a MySQL database server with
a valid server location,
username, and password.

Database server

 Create an Add Email web form
and PHP script for adding a new
customer to the list.

22

 Create a database and table for
the email list.

11

 Create a Send Email web form
and PHP script for sending an
email to the list.

33

You are here.

localhost

elmer

mysql>
File Edit Window Help UhHuhHuh

CREATE your database

you are here 4 111

create and populate a database

mysql> CREATE DATABASE elvis_store;

Query OK, 1 row affected (0.01 sec)

File Edit Window Help Don’tBeCruel

When you run SQL commands in the terminal, you always add a semicolon to the end...but not when you issue SQL queries through the PHP mysqli_query() function.

CREATE DATABASE database_name

 SQL statements only end with semicolons
when you use the terminal.

In your PHP code, your SQL statements don’t need
to end with a semicolon. The MySQL terminal is
different, however, and requires a semicolon at

the end of every SQL statement. This is because the terminal
is capable of running multiple SQL statements, whereas in PHP,
you only submit one statement at a time.

Create a database for Elmer’s emails
To create a new table and database for Elmer’s email list, first we need to
create the elvis_store database, which will hold the email_list table.
We’ll use SQL commands to create both. The SQL command used to create
a database is CREATE DATABASE, which you used briefly in the previous
chapter. Let’s look a bit closer at how it works.

CREATE
DATABASE
is the SQL
command used
to create a new
database.You need to specify the name of the new database after the command

CREATE DATABASE. Here’s the SQL statement to create Elmer’s database:

The name of the new
database to be created

CREATE DATABASE elvis_store

When you execue this statement on a MySQL database server, the
database will be created.

elvis_store

Creating the elvis_store database with the CREATE DATABASE
command results in a shiny new database but no table to actually store
data in yet...

The database is created,
but it can’t hold any
data without a table.

112 Chapter 3

Table rows are
horizontal, and
table columns
are vertical.

Create a table inside the database
You have to know what kind of data you want to store in a table before you
can create the table. Elmer wants to use the first and last names of people on
his email list to make the email messages he sends out a bit more personal.
Add that information to the email address, and Elmer’s email_list table
needs to store three pieces of data for each entry.

Each piece of data in a table goes in a column, which needs a name that
describes the data. Let’s use first_name, last_name, and email as our
column names. Each row in the table consists of a single piece of data for
each of these columns, and constitutes a single entry in Elmer’s email list.

elvis_store

Jon Matthews
jonathan@wishiwaselvis.com

Wendy Wurlitz
wwer@starbuzzcoffee.com

Joe Bob Franklin
2ksdg@gregs-list.net

mailinglist.txt

So now we know that the first name, last name, and email address of a
customer must be created as columns in the email_list table. Problem is,
MySQL tables are highly structured and expect you to provide more than just
the name of a column of data. You have to tell the database a bit more about
what kind of data you intend to store in the column.

Elmer’s old text file of email addresses can’t compare to
the structure and security of a database table.

The email_list table is one of
many tables that could be stored
in the elvis_store database.

first_name
last_name

email

Data columns in Elmer’s
new email_list table.

These are columns.
Our table has three.

These are rows. Each one contains a first name, last name, and email address for one person.

first_name last_name email

...

Jon Matthews jonathan@wishiwaselvis.com

Wendy Werlitz wwer@starbuzzcoffee.com

Joe Bob Franklin 2ksdgj@gregs-list.net

email_list

now CREATE your table

you are here 4 113

create and populate a database

id

1

2

3

4

Notice that product is the only text column in the products table.
There are also decimal numbers for price and integer numbers for
inventory and id. MySQL has its own names for each one of these
types of data, as well as a few more such as types for dates and times.

It’s important to use the appropriate data types when you create table
columns so that your tables are accurate and efficient. For example,
text data takes more room to store than integer data, so if
a column only needs to hold integers, it’s a smart practice to use an
integer data type for it. Also, if it knows what kind of data a column
holds, the web server won’t allow you to accidentally insert the wrong
type of data. So if you have a column that holds a date, you will receive
an error if you try to insert anything except a date in that column.

To create a table, you need
to know what type of data is
stored in each table column.

We need to define our data
When you create a table, you have to tell the MySQL server what type of
data each column will hold. Data types are required for all MySQL columns,
and each column in a table holds a particular type of data. This means some
columns may hold text, some may hold numeric values, some may hold time
or dates, and so on. MySQL has a variety of data types, and you need to
know which one suits your particular data. Let’s suppose Elmer has a table
named products that keeps track of the items for sale at his store:

This column contains text descriptions of each product in Elmer’s store.

The price column
contains decimal values.The id column contains unique ID values for each product in Elmer’s store.

The inventory column contains
an integer value for how many
of each item are in stock.

id product inventory price

1 Blue Suede Shoes 24 59.00

2 Polyester Pants with Sequins 16 23.50

3 Stick-On Sideburns 93 1.99

4 Elvis wig 7 48.00

...

products

product
Blue Suede Shoes

Polyester Pants with Sequins
Stick-On Sideburns

Elvis wig

inventory

24

16

93

7

price

59.00

23.50

1.99

48.00

Integer Number

Integer Number

Text

Decimal Number

Why do you think using different
data types is better than using
just text to store everything?

114 Chapter 3

This is VARCHAR, short for VARiable

CHARacter. He holds text data. He’s

flexible and can adapt to t
he length of

your data, storing only what you need

and not padding with extra spaces.

DATE keeps track of your dates. She doesn’t care about the time, though. She’s also got a fraternal twin, TIME, who doesn’t care what the date is.

Call him BLOB. He
likes large gobs of
binary data.

INT or INTEGER thinks numbers should be whole, but he’s not afraid of negative numbers. He can also store short integers, in which case he’s called a TINYINT.

CHAR or CHARACTER. She’s rigid
and prefers her data to be a set
length. She can be highly efficient
if you have text that’s always the
same length.

DEC, short for DECIMAL.

He’ll give you all the deci
mal

places you ask for, at le
ast

until he’s full.
Good friends with BLOB, her name is TEXT, and she’s great at storing huge amounts of text - much more than CHAR or VARCHAR.She goes by either

DATETIME or TIMESTAMP.
She keeps track of the date
and time.

Depending on your version of MySQL, the length can be 255 characters before MySQL 5.0.3, and up to 65,535 characters in 5.0.3 and later versions.

Take a meeting with some MySQL data types
These are a few of the most useful MySQL data types. Remember, you can use
any of them to describe the data stored within a particular column of table data.
It’s their job to store your data for you without mucking it up.

frequenly used mysql data types

you are here 4 115

create and populate a database

Data Type Description

Match each MySQL data type to each description of some data you
might store in a table.

Q: Why would I ever use a CHAR when a VARCHAR does
the same thing with more flexibility?

A: The answer is accuracy and efficiency. From a design
perspective, you should always design your tables to model your
data as rigidly as possible. If you know without a shadow of a
doubt that a state column will always hold exactly a two-character
abbreviation, then it makes sense to only allot two characters of
storage for it with CHAR(2). However, if a password column can
contain up to 10 characters, then VARCHAR(10) makes more
sense. That’s the design side of things. So CHAR is a little more
efficient than VARCHAR because it doesn’t have to keep track of
a variable length. Therefore, it’s more desirable when you know for
certain a text column has an exact length.

Q: Why do I need these numeric types like INT and DEC?

A: It all comes down to database storage and efficiency. Choosing
the best matching data type for each column in your table will reduce
the size of the table and make operations on your data faster. Storing
a number as an actual number (INT, DEC, etc.) instead of text
characters is usually more efficient.

Q: Is this it? Are these all the types?

A: No, but these are the most commonly used ones. We’ll get up
and running with these for now, rather than bogging things down by
looking at data types you may never need.

Your full name

A two letter state abbreviation

Cost of an Elvis wig: 48.99

How much money Elvis’s best-selling album made.

Date of alien abduction: 2/19/2004

Number of Elvis sideburns in stock: 93

Did you see Owen’s dog? Y or N

Your email address

When you eat dinner

How many aliens you saw when you were abducted

When Elvis was born

INT

CHAR(1)

DATE

TIME

VARCHAR(2)

DEC(4,2)

VARCHAR(60)

CHAR(2)

DATETIME

DEC(10,2)

116 Chapter 3

Data Type

Match each MySQL data type to each description of some data you
might store in a table.

Your full name

A two letter state abbreviation

Cost of an Elvis wig: 48.99

How much money Elvis’s best-selling album made.

Date of alien abduction: 2/19/2004

Number of Elvis sideburns in stock: 93

Did you see Owen’s dog? Y or N

Your email address

When you eat dinner

How many aliens you saw when you were abducted

When Elvis was born

INT

CHAR(1)

DATE

TIME

VARCHAR(2)

DEC(4,2)

VARCHAR(60)

CHAR(2)

DATETIME

DEC(10,2)

Description

These two numbers show
how many digits the
database should expect
in front of the decimal,
and how many after.

DEC is generally
used to store prices
in addition to other
decimal values.

When the length of a text value can
vary, VARCHAR is a good choice. Make
it long enough to hold whatever value
someone will probably need to store.

When you know
exactly how many
characters to
expect in a column,
use CHAR.

You may have answered
DATE here, but true
Elvisonians will know the exact date and time.

Not needed. Although it would work for the state abbreviation, CHAR(2) is a better choice because it’s usually a little more efficient.

There are arguably other
(potentially better) ways to
represent a yes/no value in
MySQL than using CHAR(1),
but this way’s straightforward
and reasonably efficient.

what’s my purpose? solution

you are here 4 117

create and populate a database

Write an SQL query to create Elmer’s email_list table with the three
required columns of data: first_name, last_name, and email.

Create your table with a query
We’ve got all the pieces that we need to create our table, even
a good name (email_list). We also have names for the
columns of data: first_name, last_name, and email.
All that’s missing is the data type for each column and an SQL
statement to tie it all together and create the table. The SQL
command to create your table is CREATE TABLE.

It begins with CREATE TABLE then your table name. Two
parentheses hold a comma separated list of all the column
names, each one followed by a data type. Here’s what the
command looks like:

CREATE TABLE table_name

(

 column_name1 column_type1,

 column_name2 column_type2,

 ...

)

More columns,
if needed

The column name

The data type
of the column

The table name

The CREATE
TABLE SQL
command is
used to create a
new table in a
database.

You don’t have to name your tables
and columns with an underscore
separating words but it’s a good
idea to be consistent with naming.

 Create an Add Email web form
and PHP script for adding a new
customer to the list.

22

 Create a database and table for
the email list.

11

 Create a Send Email web form
and PHP script for sending an
email to the list.

33

Yep, we’re still here...but
we’re almost ready to move on.

118 Chapter 3

Write an SQL query to create Elmer’s email_list table with the three
required columns of data: first_name, last_name, and email.

Here’s the SQL command to create
the table, notice the caps. Your table’s name should be lowercase

and have an underscore in place of
any spaces.

The name of the
column that stores
the email address.

The closing parenthesis closes the list of columns.

The opening parenthesis
opens the list of
columns to create.

CREATE TABLE email_list

(

 first_name VARCHAR(20),

 last_name VARCHAR(20),

 email VARCHAR(60)

)

Did both queries execute without a hitch? If not, write down
what you think might have gone wrong.

Create Elmer’s database and table.
Execute the CREATE DATABASE and CREATE TABLE queries using a MySQL
tool to create the elvis_store database and the email_list table within it.

CREATE DATABASE elvis_store

CREATE TABLE email_list(first_name VARCHAR(20), last_name VARCHAR(20), email VARCHAR(60))

This tells MySQL that the email column has a VARCHAR data type. The (60) means that the text it holds can be up to 60 characters long.

The comma separates the
columns being created.

Test Drive

test-drive your CREATE queries

you are here 4 119

create and populate a database

table database
Getting the cart horsein front of the

mysql> CREATE TABLE email_list
(
 first_name VARCHAR(20),
 last_name VARCHAR(20),
 email VARCHAR(60)
);
ERROR 1046 (3D000): No database selected

File Edit Window Help Oops

Hang on, something ain’t right here.
I entered the code to create the
table exactly like we drew it up...and
now I’m getting some weird error.

For some reason the CREATE TABLE
statement failed in the MySQL terminal.

The CREATE TABLE statement’s
fine but the MySQL terminal
doesn’t know which database it’s
being created in...not good.

Elmer’s all shook up because his CREATE TABLE
statement is flawless, yet the MySQL terminal’s
reporting an error. Q: What’s up with the weird -> prompt I get sometimes in the MySQL terminal?

A: The -> prompt indicates that you’re entering a single statement across multiple
lines—MySQL is basically telling you that it knows you’re still entering the same
statement, even though you’ve hit Return to break it out across more than one line.
Once you finish the statement and put the semicolon on the end, MySQL will execute it.

Elmer has a legitimate problem that has to do with the fact that the MySQL
terminal doesn’t automatically know which database you’re talking about when
issuing commands. Sure, it knows that you just created the elvis_store
database, but there could already be plenty of other databases stored on the
same server—it can’t just assume you’re talking about the one you just created.

Fortunately, there is a simple solution that involves telling the MySQL terminal
which database you want targeted by all subsequent statements...

120 Chapter 3

elvis_sightings

elvis_lyrics

elvis_fans

Once you pick a database to
USE, the other databases on the
database server are ignored...until
you choose to USE a different one.

USE the database before you use it
So that the CREATE TABLE statement will work, Elmer needs to
select the database in the MySQL terminal so that it knows
what database the new table belongs to. The USE command
chooses a database as the default database in the terminal,
meaning that all subsequent commands apply to that database.
Here’s how it works:

USE database_name

USE elvis_store

Elmer should specify his database name (elvis_store) in a
USE statement to select the database and access his new table.

The USE
command selects
a database as the
default database
for subsequent
SQL statements.

elvis_store

The USE command chooses the database you want to work with.

The name of the
database you’d
like to USE.

The USE command tells MySQL
what database you intend to use.

don’t forget the USE command!

you are here 4 121

create and populate a database

mysql> USE elvis_store;
Database changed
mysql> CREATE TABLE email_list
(
 first_name VARCHAR(20),
 last_name VARCHAR(20),
 email VARCHAR(60)
);
Your SQL query has been executed successfully (Query took 0.4481 sec)

File Edit Window Help LisaMarie

With the database selected
thanks to the USE command,
the table creation now
works with no problems.

The USE statement isn’t necessary
if you’re using a graphical SQL tool
such as phpMyAdmin - it requires you
to select the database graphically
before issuing SQL commands.

First USE Elmer’s database, then create the table.
Execute the USE query to select Elmer’s elvis_store database
in a MySQL tool, and then execute the CREATE TABLE query to
create the email_list table inside the database.

USE elvis_store

CREATE TABLE email_list(first_name VARCHAR(20), last_name VARCHAR(20), email VARCHAR(60))

The table creation
code is the same
as before - it just
needed the database
selected before it
would work.

Test Drive

122 Chapter 3

Oops! My CREATE TABLE
statement had a typo in it,
but it still got executed. Does
SQL have an undo option?

There isn’t exactly an undo option in SQL but it’s
certainly possible to fix mistakes.
However, first you need to find out exactly what kind of mistake has been
made in order to fix it. Suppose the email_list table looks like this:

first_naem last_name email

email_list

Circle what you think is wrong with this table. Any idea how
you might fix it?

the DESCRIBE command

you are here 4 123

create and populate a database

Under “Type” you see the data types we set for each column.

Under “Field” you
find the names of
each column.

mysql> DESCRIBE email_list;

+------------+-------------+------+-----+---------
+-------+

| Field | Type | Null | Key | Default
| Extra |

+------------+-------------+------+-----+---------
+-------+

| first_naem | varchar(30) | YES | | NULL
| |

| last_name | varchar(30) | YES | | NULL
| |

| email | varchar(60) | YES | | NULL
| |

+------------+-------------+------+-----+---------
+-------+

3 rows in set (0.02 sec)

File Edit Window Help Graceland

This is the name of
the table we want
to see described.

DESCRIBE reveals the structure of tables
Repairing a mistake in a table first involves finding the mistake. Even if you
don’t suspect a mistake, it’s never a bad idea to check your work. The SQL
DESCRIBE command analyzes the structure of a table, displaying a list of
column names, data types, and other information.

DESCRIBE table_name

DESCRIBE email_list

Plugging in Elmer’s table name gives us the following SQL statement:

MySQL is not case sensitive when
it comes to reserved words, such as data types, which is why you may
sometimes see them in lowercase.

Q: What’s up with those other
columns: Null, Key, Default, and Extra?

A: MySQL lets you set a number of
options for each column in your table. These
options control things like whether a column
can be left empty or if it has a default value.
We’ll explore these a bit later when they
become more critical to the application.

Q: So if I actually had data stored in
my table, would it show up here?

A: No. DESCRIBE only shows you the
table structure, not the data stored in it. But
don’t worry, you’ll see the data in your table
very soon... but first we have to learn how to
actually put data into the table.

Q: Can I look at the same table
structure using phpMyAdmin?

A: Yes. Graphical database tools such as
phpMyAdmin allow you to view the structure
of tables by issuing a DESCRIBE
statement or by clicking a visual view of a
table. It’s entirely up to you which kind of tool
you use to analyze your tables.

124 Chapter 3

mysql> DESCRIBE email_list;
+------------+-------------+------+-----+---------+-------+ | Field | Type | Null | Key | Default | Extra | +------------+-------------+------+-----+---------+-------+ | first_naem | varchar(30) | YES | | NULL | | | last_name | varchar(30) | YES | | NULL | | | email | varchar(60) | YES | | NULL | | +------------+-------------+------+-----+---------+-------+ 3 rows in set (0.02 sec)

File Edit Window Help Typo?

Actually, you do. You can’t recreate a table again with
CREATE TABLE once it’s been created.
Once you’ve created a table, it exists and can’t be overwritten by a
new CREATE TABLE query. If you want to recreate a table from scratch,
you’ll have to delete the existing one first, and then start over again.

In SQL, the DROP TABLE command is used to delete a table from a
database. It deletes the table and anything you’ve stored in it. Since no
data exists in a new table, we won’t lose anything by dropping it and
creating a new one with the first_name correction.

The first_name column
was accidentally misspelled
first_naem...oops!

DROP TABLE email_list

The name of the table
you’d like to delete
from the database.

The DROP TABLE command deletes a table AND all its data from the database.

I fixed the typo and tried to run the
CREATE TABLE query again. It didn’t
work. Surely I don’t have to delete the
typo’d table first... do I?

DROP your table

you are here 4 125

create and populate a database

Q: Hey, I have a copy of Head First SQL (great book, by the
way). In that book, every time you show the code for an SQL
statment, you put a semicolon after it. Why not here?

A: We’re glad you enjoyed Head First SQL. The difference is that
when you talk to MySQL directly, you need a semicolon so it knows
where the end of the statement is. That’s because it’s possible to
issue multiple statements to MySQL directly. In PHP, when you use
the mysqli_query() function, you only execute a single SQL
command at a time, so no semicolon is needed. But don’t forget that
you do still need a semicolon at the end of each PHP statement!

Q: So if my table has data in it and I drop it, all my data is
deleted too?

A: That is true. So drop tables with care!

Q: So if I need to change a table with data in it, I’m out of
luck?

A: Hey, no one is perfect. Everyone makes mistakes, and SQL
offers the ALTER statement to help us change existing tables. We’ll
talk about this command a bit later on in the book.

Elmer’s ready to store data
The CREATE DATABASE, USE, and CREATE TABLE SQL
commands were successfully used to create Elmer’s email list
database and table. Elmer couldn’t be more pleased, unless
maybe the table was already filled with eager customers.
That’s a job for PHP...

first_name last_name email

email_list

elvis_store

Nice. With the database
and table created, I’m
ready to start storing some
serious mailing list data.

The elvis_store database contains a single table, email_list.

The email_list table
consists of three columns
used to store the data
for Elmer’s email list.

126 Chapter 3

The addemail.php
script is run when
the form is submitted,
and its job is to
process the form
data and add the
customer to the email
list (database table).

Create the Add Email script
Elmer needs an HTML form that can collect names and email
addresses from customers. Once he has those, he can grab them with
a PHP script and store them in the email_list table. The web
form (addemail.html) requires three input fields and a button.
The form action is the most important code in the form since its job
is to pass along the form data to the addemail.php script we’re
about to create.

 ...
 <form method="post" a

ction="addemail.php">

 <label for="firstna
me">First name:</label>

 <input type="text"
id="firstname" name="fi

rstname" />

 <label for="lastnam
e">Last name:</label>

 <input type="text"
id="lastname" name="las

tname" />

 <label for="email">
Email:</label>

 <input type="text"
id="email" name="email"

 />

 <input type="submit
" name="submit" value="

Submit" />

 </form>

</body>
</html>

addemail.html

first_name last_name email

email_list

addemail.php
Web server

Database server

elvis_store

 Create an Add Email web form
and PHP script for adding a new
customer to the list.

22

 Create a database and table for
the email list.

11

 Create a Send Email web form
and PHP script for sending an
email to the list.

33

You are now here.

New customers are able to join Elmer’s email list (get added to his database) simply by using the web form.

The form action is what
connects the HTML web
form with the PHP script
(addemail.php) that
processes its data.

the addemail.php script

you are here 4 127

create and populate a database

The addemail.php script processes data from the Add Email form. The script should take
the data from the form, connect to the elvis_store database, and INSERT the data into
the email_list table. Help Elmer by first writing an example SQL query to insert a new
customer, and then use that query to finish the PHP script code.

<?php

 $dbc =

 $first_name = $_POST['firstn
ame'];

 $query =

 mysqli_query()

 echo 'Customer added.';

?>

addemail.php

Write an example query here that inserts data into Elmer’s table.

128 Chapter 3

The addemail.php script is called upon to process data from the Add Email form. The script
should take the data from the form, connect to the elvis_store database, and INSERT the
data into the email_list table. Help Elmer by first writing an example SQL query to insert a
new customer, and then use that query to finish the PHP script code.

If we wanted to be fancy here,
we could put a link back to our
form with an HTML <a> tag.

Here are the $_POST
array values that contain
the submitted information.

The example INSERT query is
rewritten as a PHP string that relies
on form data for the insertion.

INSERT INTO email_list (first_name, last_name, email)

 VALUES (‘Julian‘, ‘Oates‘, ‘julian@breakneckpizza.com‘)

<?php

 $dbc =

 $first_name = $_POST['firstn
ame'];

 $query =

 mysqli_query()

 echo 'Customer added.';

?>

mysqli_connect(‘data.makemeelvis.com’, ‘elmer’, ‘theking’, ‘elvis_store’)

or die(‘Error connecting to MySQL server.’);

$last_name = $_POST[‘lastname’];
$email = $_POST[‘email’];

“INSERT INTO email_list (first_name, last_name, email) “ .

“VALUES (‘$first_name’, ‘$last_name’, ‘$email’)”;

$dbc, $query
or die(‘Error querying database.’);

mysqli_close($dbc);

addemail.php

exercise solution

you are here 4 129

create and populate a database

Try out the Add Email form.
Download the code for the Add Email web page from the Head First Labs web
site at www.headfirstlabs.com/books/hfphp. It’s in the chapter03
folder. This code consists of Elmer’s web form in addemail.html, a style sheet
(style.css), and two images (elvislogo.gif and blankface.jpg).

Now create a new text file called addemail.php, and enter all of the code on
the facing page. This is the script that will process Elmer’s web form and add new
customers to the email_list table.

Upload all of these files to your web server and open the addemail.html page
in a web browser. Enter a new customer in the form, and click Submit.

mysql> SELECT * FROM email_list;

+------------+------------+---------------------------------+ | first_name | last_name | email | +------------+------------+---------------------------------+ | Julian | Oates | julian@breakneckpizza.com | +------------+------------+---------------------------------+
1 row in set (0.0005 sec)

File Edit Window Help BlueSuedeShoes

Check to see that the customer was added to the database by issuing a SELECT
query in a MySQL tool.

The insertion of
the new customer
to the email list is
confirmed by the
addemail.php script.

Don’t forget to
change the database
connection variables
to your own.

Test Drive

130 Chapter 3

Q: Is the star in the SQL SELECT command the
same thing as an asterisk?

A: Yes, it’s the same character on your keyboard, located
above the 8 key. Hit SHIFT at the same time as the 8 to type
one. But although it’s exactly the same character as asterisk,
in SQL lingo, it’s always referred to as a star. This is a good
thing, since saying “SELECT asterisk FROM…” is
not as easy as saying “SELECT star FROM…”.

Q: Are there other characters in SQL that have special
meaning like the star does?

A: While SQL does have other special, or reserved,
characters, the star is the only one you need to know about
for right now. More importantly for our immediate purposes,
it's the only one used in the SELECT part of an SQL
statement.

With Elmer’s email list starting to fill up, help him write some SQL
queries that he can use to find specific customer data.

Select all of the data for customers with a first name of Martin:

Select all of the columns for customers with a first name of Amber
and a last name of McCarthy:

Select only the last name for customers with a first name of Bubba:

Select the first name and last name for the customer with an
email address of ls@objectville.net.

test your SELECT skills

you are here 4 131

create and populate a database

File Edit Window Help Elvisrules

+------------+-------
-----+---------------

------------------+

| first_name | last_n
ame | email

 |

+------------+-------
-----+---------------

------------------+

| Julian | Oates
 | julian@breakne

ckpizza.com |

| Kevin | Jones
 | jones@simuduck

.com |

| Amanda | Sanche
z | sunshine@break

neckpizza.com |

| Bo | Wallac
e | bo@b0tt0msup.c

om |

| Amber | McCart
hy | amber@breaknec

kpizza.com |

| Cormac | Hurst
 | churst@boards-

r-us.com |

| Joyce | Harper
 | joyceharper@br

eakneckpizza.com |

| Stephen | Meyer
 | meyers@leapinl

imos.com |

| Martin | Wilson
 | martybaby@obje

ctville.net |

| Walt | Perala
 | walt@mightygum

ball.net |

| Shannon | Munyon
 | craftsman@brea

kneckpizza.com |

| Joe | Milano
 | joe_m@starbuzz

coffee.com |

| Bruce | Spence
 | bruce@chocohol

ic-inc.com |

| Pat | Risse
 | pr@honey-doit.

com |

| Bertie | Hender
son | bertieh@object

ville.net |

| Greg | Eckste
in | gregeck@breakn

eckpizza.com |

| Wilma | Wu
 | wilmawu@starbu

zzcoffee.com |

| Sam | Jaffe
 | samjaffe@starb

uzzcoffee.com |

| Louis | Shaffe
r | ls@objectville

.net |

| Bubba | Shakes
peare| bshakes@mighty

gumball.net |

| John | Doe
 | johndoe@tikibe

anlounge.com |

This isn't the end of
the table data...Elmer
just has a rapidly
growing mailing list!

But the email list can’t send itself.
Elmer’s still missing the other part of the web application, the part
that allows him to enter an email message and have it delivered to
everyone on the email list. To do this, he’ll need a new HTML form
and a PHP script to put it into action...

Very cool. Now that users
can subscribe to my email list
through a web page. The list
pretty much builds itself.

 Create an Add Email web form
and PHP script for adding a new
customer to the list.

22

 Create a database and table for
the email list.

11

 Create a Send Email web form
and PHP script for sending an
email to the list.

33
Step 2 is done!

132 Chapter 3

With Elmer’s email list starting to fill up, help him write some SQL
queries that he can use to find specific customer data.

SELECT * FROM email_list WHERE first_name = ‘Martin’

SELECT * FROM email_list WHERE first_name = ‘Amber’ AND last_name = ‘McCarthy’

SELECT first_name, last_name FROM email_list WHERE email = ‘ls@objectville.net’

SELECT last_name FROM email_list WHERE first_name = ‘Bubba’

Select all of the data for customers with a first name of Martin:

Select all of the columns for customers with a first name of Amber
and a last name of McCarthy:

Select only the last name for customers with a first name of Bubba:

Select the first name and last name for the customer with an
email address of ls@objectville.net.

The star selects all the
columns in the table.

This WHERE clause trims down the query results to only those customers with a first name of Martin.

Only the last_name column is
returned in the query results.

You specify multiple columns of result data
by separating the column names with commas.

The WHERE clause can be made dependent on multiple pieces of information, in this case a match for both a first name AND a last name.

sharpen your pencil solution

you are here 4 133

create and populate a database

 ...
 <form method="post" action="sendema

il.php">

 <label for="subject">Subject of e
mail:</label>

 <input type="text" id="subject" n
ame="subject" size="60" />

 <label for="elvismail">Body of em
ail:</label>

 <textarea id="elvismail" name="el
vismail" rows="8" cols="60"></textare

a>

 <input type="submit" name="submit
" value="Submit" />

 </form>
</body>
</html>

sendemail.html

The sendemail.php script
reads customers from
the database table
and sends Elmer’s email
message to each of them.

Web server

Database server

elvis_store

sendemail.php

The other side of Elmer’s application
Sending email messages to people on Elmer’s email list is similar in some
ways to adding people to the list because it involves an HTML web form
and a PHP script. The big difference, is that sending an email message to the
mailing list involves dealing with the entire contents of the email_list table,
whereas the addemail.php script only deals with one row of data.

 Create an Add Email web form
and PHP script for adding a new
customer to the list.

22

 Create a database and table for
the email list.

11

 Create a Send Email web form
and PHP script for sending an
email to the list.

33

Whew, we’re
finally on
the last step.

The Send Email web form
allows Elmer to enter a
subject and body of an
email message, and then send
it to his entire email list.

The form action
triggers the
sendemail.php script.

first_name last_name email

Julian Oates julian@breackneckpizza.com

Kevin Jones jones@simuduck.com

Amanda Sanchez sunshine@breakneckpizza.com

...

email_list

134 Chapter 3

The nuts and bolts of the Send Email script
The sendemail.php script must combine data from two different sources
to generate and send email messages. On the one hand, the script needs
to pull the names and email addresses of the email recipients from the
email_list table in the elvis_store database. But it also has to grab
the email subject and message body entered by Elmer into the Send Email
web form (sendemail.html). Let’s break down the steps involved.

first_name last_name email

Julian Oates julian@breackneckpizza.com

Kevin Jones jones@simuduck.com

Amanda Sanchez sunshine@breakneckpizza.com

...

email_list

sendemail.php

Julian Oates julian@breackneckpizza.comKevin Jones jones@simuduck.com
Amanda Sanchez sunshine@breakneckpizza.com

$_POST['elvismail']
$_POST['subject']

The script needs email data from the email_list table.

The email subject
and body are
delivered to the
script via the
$_POST superglobal.

Run a SELECT query on the email_list table.
The PHP mysqli_query() function runs a SELECT query to get the data for the email list. Since
we want all of the data in the table, we can use SELECT *.

22

Fetch the email data from the query result.
Running a query alone doesn’t provide access to data. We need to grab each row of data in the query
results in order to have access to the first name, last name, and email address of each customer.

33

Call the mail() function to send an email message to each
customer.
Sending the emails involves looping through each customer in the email
list, which corresponds to each row of data in the query results. The loop
we create here starts at the first row of data, then moves on to the second
row, and loops through the remaining rows of the data obtained by the
SELECT query. We stop when we reach the end of the data.

44

Use the $_POST array to get the email subject and message body from the form.
There’s nothing new here. Clicking the Submit button in the sendemail.html form sends the form
data to sendemail.php, where we capture it in variables with a little help from the $_POST array.

11

1

2

3
4

the sendemail.php script

you are here 4 135

create and populate a database

First things first, grab the data
We’re already pretty well versed in extracting data from forms in PHP,
so the first step is nothing new, just use the $_POST superglobal to store
away the email subject and message body in variables. While we’re at it,
let’s go ahead and store Elmer’s email address in a variable since we’ll
need it later when sending the emails.

$from = 'elmer@makemeelvis.com';

$subject = $_POST['subject'];

$text = $_POST['elvismail'];

$query = "SELECT * FROM email_list";

$result = mysqli_query($dbc, $query);

Here’s our query, which
selects all of the columns
from the email_list table.

A database connection is required
in order to submit a query - the
details of the connection are
stored in the $dbc variable.

The $query variable holds the
SQL query as a string of text.

mysqli_query executes the query using a connection variable ($dbc) and a query string ($query).

The remaining data required by the sendemail.php script comes from
Elmer’s MySQL database. Pulling customer data from the email_list
table data into the script requires a SELECT query. Unlike before when
we’ve used the MySQL terminal to issue a SELECT and look at table data,
this time we’re doing it in the sendemail.php script and issuing the
query with mysqli_query().

So all we have to do is go
through the query results in
the $result variable, right?

No, the $result variable doesn’t actually hold any query data.
If you try to echo the $result variable directly, you’ll see something like this:

Resource id #3

The $result variable stores an ID number for a MySQL resource, not the actual data
returned by the query. What happens is the MySQL server temporarily stores the results of
your query and gives them a resource number to identify them. You then use this resource
ID with the PHP mysqli_fetch_array() function to grab the data one row at a time.

The email message form data's
stored in variables, too.

Elmer’s email address is stored in a variable so that we know exactly where it is in case it ever needs to change.

136 Chapter 3

The mysqli_fetch_array()
function stores a row of
data in an array.

Each SQL query has its own resource ID
number that is used to access the data
associated with its results.

This function retrieves a row of data from the query results and stores it in an array.

The variable $row is an array that initially stores the first row of data from our results.

mysqli_fetch_array() fetches query results
Once our query executes, we can grab the results with the $result variable.
This variable's used with the mysqli_fetch_array() function to get the
data in the table one row at a time. Each row of data is returned as an array,
which we can store in a new variable named $row.

$row = mysqli_fetch_array($result);

Each time this code is executed by the web server, a row of data from
the query results gets stored in the $row array. You repeatedly call the
mysqli_fetch_array() function to step through each row of the
query results. So the first three calls to the mysqli_fetch_array()
function retrieve the first three rows of data from the table, storing each
column of the row as an item in the $row array.

julian@
breackneckpizza.comOatesJulian

$row = mysqli_fetch_array($result);

$row = mysqli_fetch_array($result);

$row = mysqli_fetch_array($result);

$row $row $row

first_name last_name email

Julian Oates julian@breackneckpizza.com

Kevin Jones jones@simuduck.com

Amanda Sanchez sunshine@breakneckpizza.com

...

email_list

Sanchez

Aman
da

su
ns

hi
ne

@
br

ea
kn

ec
kp

iz
za

.c
om

jones@
sim

uduck.com

Jones
Kevin

Each column of data is stored as an item in the $row array.

The $row variable is set as an array containing three elements, one for each of the three columns of data.

use mysqli_fetch_array() to get the query results

you are here 4 137

create and populate a database

As a test to make sure we can actually get the customer data a row at
a time, finish writing the PHP code to echo the first name, last name,
and email address of each customer in the email_list table.

$query = "SELECT * FROM email_list";

$result = mysqli_query($dbc, $query);

$row = mysqli_fetch_array($result);

138 Chapter 3

As a test to make sure we can actually get the customer data a row at
a time, finish writing the PHP code to echo the first name, last name,
and email address of each customer in the email_list table.

echo $row[‘first_name‘] . ‘ ‘ . $row[‘last_name’] . ‘ : ‘ . $row[‘email’] . ‘
‘;
 $row = mysqli_fetch_array($result);
echo $row[‘first_name‘] . ‘ ‘ . $row[‘last_name’] . ‘ : ‘ . $row[‘email’] . ‘
‘;
$row = mysqli_fetch_array($result);
echo $row[‘first_name‘] . ‘ ‘ . $row[‘last_name’] . ‘ : ‘ . $row[‘email’] . ‘
‘;
$row = mysqli_fetch_array($result);
echo $row[‘first_name‘] . ‘ ‘ . $row[‘last_name’] . ‘ : ‘ . $row[‘email’] . ‘
‘;
$row = mysqli_fetch_array($result);
echo $row[‘first_name‘] . ‘ ‘ . $row[‘last_name’] . ‘ : ‘ . $row[‘email’] . ‘
‘;
$row = mysqli_fetch_array($result);
echo $row[‘first_name‘] . ‘ ‘ . $row[‘last_name’] . ‘ : ‘ . $row[‘email’] . ‘
‘;
$row = mysqli_fetch_array($result);
echo $row[‘first_name‘] . ‘ ‘ . $row[‘last_name’] . ‘ : ‘ . $row[‘email’] . ‘
‘;
$row = mysqli_fetch_array($result);
echo $row[‘first_name‘] . ‘ ‘ . $row[‘last_name’] . ‘ : ‘ . $row[‘email’] . ‘
‘;
...

$query = "SELECT * FROM email_list";

$result = mysqli_query($dbc, $query);

$row = mysqli_fetch_array($result);

There is a better way—we need a loop.
A loop is a mechanism in the PHP language that repeats a chunk of
code until a certain condition’s been met, like running out of data.
So a loop can cycle through each row of data in a query result,
taking any action we want to each row along the way.

You have got to be kidding me. Repeating
the same two lines of code over and over
is about the dumbest thing I’ve ever seen.
Surely there’s a better way.

not the best solution

you are here 4 139

create and populate a database

while ($got_customers) {

 next_customer();

 ...

}

A while loop
repeats code while
a condition is met.

When we look to see if there are more customers, we’re testing a
condition. The condition is the code in the parentheses, and it always
poses a question that results in a yes/no answer. If it’s yes, or true, then
the action is performed. If it’s no, or false, then we quit the loop.

When we call next_customer() and proceed to help them, we’re
performing an action. The action is the code inside the curly braces,
which is repeated as long as the condition remains true. If the condition
ever goes false, the loop exits and the action is not repeated again.
Here’s the general format of a while loop:

The loop action takes place once each time through the loop.

Looping for a WHILE
A while loop is a loop specifically geared toward repeating code while a
certain condition is met. For example, you might have a variable in a
customer service application named $got_customers that keeps up with
whether or not customers are waiting to be helped. If $got_customers
is set to true, you know there are more customers, so you might call the
next_customer() function to get the next customer and help them.
Here’s how this scenario could be coded using a while loop:

while (test_condition) {

 action

}

How do you think a while
loop could be used to loop
through the customers in
Elmer’s email_list table?

As long as we still have
customers, keep on looping.

This is the code that
gets executed each
time through the loop.

Enclosing the loop code within
curly braces lets you execute as
many lines of code as you want.

A while loop lets us loop
through customers until
there aren’t any left!

The test condition always results
in true or false... keep looping
(true) or stop looping (false).

140 Chapter 3

while($row = mysqli_fetch_array($result)) {

 echo $row['first_name'] . ' ' . $row['last_name'] .

 ' : ' . $row['email'] . '
';

}

Looping through data with while
Applying a while loop to Elmer’s email data lets us access the
data a row at a time without duplicating any code. We know that
mysqli_fetch_array() can take a table row and put the
column values in the $row array, but the function by itself won’t get
through all of our data—it will store the first row and then stop. A
while loop can call mysqli_fetch_array() to go through
each row of result data, one at a time, until it reaches the end.

$row

Ju
li
an

Oa
te
s

ju
li
an
@b
re
ac
kn
ec
kp
iz
za
.c
om

$row

Ke
vi
n

Jo
ne
s

jo
ne
s@
si
mu
du
ck
.c
om

first_name last_name email

Julian Oates julian@breackneckpizza.com

Kevin Jones jones@simuduck.com

Amanda Sanchez sunshine@breakneckpizza.com

...

email_list 1st loop!

2nd loop!

The first time
through the
loop the $row
array holds the
first row of the
email_list table.

The second time through the loop the
$row array holds the second row of the
email_list table...see a pattern here?

More loops...

The while loop condition is the return
value of the mysqli_fetch_array()
function, which is interpreted as
true if data is available or false
if we’re all out of data.

The loop action consists
of an echo statement
that sticks the row data
together with a line
break at the end.

The loop
action gets
run each
time through the loop.

how while() works

you are here 4 141

create and populate a database

Julian Oates : julian@breakneckpizza.com Kevin Jones : jones@simuduck.com Amanda Sanchez : sunshine@breakneckpizza.com Bo Wallace : bo@b0tt0msup.com Amber McCarthy : amber@breakneckpizza.com Cormac Hurst : churst@boards-r-us.com Joyce Harper : joyceharper@breakneckpizza.com Stephen Meyer : meyers@leapinlimos.com Martin Wilson : martybaby@objectville.net Walt Perala : walt@mightygumball.net Shannon Munyon : craftsman@breakneckpizza.com Joe Milano : joe_m@starbuzzcoffee.com

The while loop
goes through
the table data,
row by row.
When it runs
out of rows of
data, it ends.

$row['email']

ju
li
an
@b
re
ac
kn
ec
kp
iz
za
.c
om

$row['first_name']

Ju
li
an

$row['last_name']
Oa
te
s+ ' ' + + ' : ' + + '
'

$row['email']

jo
ne
s@
si
mu
du
ck
.c
om

$row['first_name']

Ke
vi
n

$row['last_name']

Jo
ne
s+ ' ' + + ' : ' + + '
'

The echo statement inside the while loop takes the data in the $row array and outputs formatted HTML content.

The second time through the
loop the echo statements output another sequence of text, but
this time the data in the second row of the table is used.

An HTML line break
puts each row of
data on its own line
on the resulting page.

Each time through the loop, the
values stored in the $row array
change to reflect the current row
of data. Column names are used to
access the values in the array.

We don’t actually use a plus sign to add strings together - we use the dot operator.

The key used to access the array element must match a column name.

142 Chapter 3

 Create an Add Email web form
and PHP script for adding a new
customer to the list.

22

 Create a database and table for
the email list.

11

 Create a Send Email web form
and PHP script for sending an
email to the list.

33

Don’t forget, we still have
that last step to finish up.

Q: How exactly does the while loop know to keep looping? I
mean, a while loop's controlled by a true/false condition,
and mysqli_fetch_array() returns some kind of
resource ID, which is stored in $row... That sure doesn’t look
like a true/false test condition.

A: Good observation. As it turns out, PHP is fairly liberal when it
comes to how it interprets the “true” condition. In short, any value that
is not zero (0) or false is considered true for the sake of a test
condition. So when the mysqli_fetch_array() function
returns a row of data, the $row array is interpreted as true since
it isn’t set to 0 or false. And since the test condition is true, the
loop keeps on chugging. What’s interesting is what happens when no
more data’s available—the mysqli_fetch_array() returns
false, which terminates the loop.

Q: So I can control a while loop with any kind of data, not
just true/false values?

A: That’s correct. But keep in mind that ultimately the while
loop’s interpreting the data as true or false. So the important
thing to understand is what constitutes true or false when it
comes to the interpretation of other types of data. And the simple
answer is that anything other than 0 or false is always interpreted
as true.

Q: What happens to the while loop if no data is returned by
the mysqli_fetch_array() function?

A: If the query doesn’t result in any data, then the
mysqli_fetch_array() function returns false. And this
causes the while loop to never make it into the action code, not
even once.

Q: So it’s possible to have a loop that never loops?

A: Indeed it is. It’s also possible to have a loop that never stops
looping. Consider this while loop:

while (true) {

This is known as an infinite loop because the test condition never
causes the loop to exit. Infinite loops are a very bad thing.

A database is a container for storing data in
a highly structured manner.

Tables store data in a grid-like pattern of
columns and rows within a database.

The CREATE DATABASE SQL command
is used to create a new database.

The CREATE TABLE SQL command
creates a table within a database and
requires detailed information about the
columns of data within the table.

You can delete a table from a database with
the DROP TABLE SQL command.

The mysqli_fetch_array()
function retrieves a row of data from the
results of a database query.

A while loop repeats a chunk of PHP
code while a test condition is met.

no dumb questions about while()

you are here 4 143

create and populate a database

<?php
 $from = 'elmer@makemeelvis.c

om';

 $subject =

 ;

 $text =

 ;

 $dbc = mysqli_connect('data.

makemeelvis.com', 'elmer', 'th
eking', 'elvis_store')

 or die('Error connecting t
o MySQL server.');

 $query = "SELECT * FROM emai

l_list";

 $result = mysqli_query($dbc,
 $query)

 or die('Error querying dat
abase.');

 while($row = mysqli_fetch_ar

ray($result)) {

 $first_name = $row['first_
name'];

 $last_name = $row['last_na
me'];

 $msg = "Dear $first_name $

last_name,\n ";

 $to =

 ;

 mail(,

 , , 'From
:' .);

 echo 'Email sent to: ' .

 . '
';

 }

 mysqli_close($dbc);

?>

PHP & MySQL Magnets
Use the magnets below to finish the code for the Send Email script so that Elmer can start sending
emails to his customer list. As a refresher, here’s how the mail() function works:

mail(to, subject, msg, 'From:' . from);

subject [

'

'
]

elvismail

['

']
$

text
email

row

[' '

]

$

_POST

$

_POST

$
$

to

$subject
$

msg

$from

$

to

sendemail.php

144 Chapter 3

PHP & MySQL Magnets
Use the magnets below to finish the code for the Send Email script so that Elmer can start sending
emails to his customer list. As a refresher, here’s how the mail() function works:

mail(to, subject, msg, 'From:' . from);

<?php
 $from = 'elmer@makemeelvis.c

om';

 $subject =

 ;

 $text =

 ;

 $dbc = mysqli_connect('data.

makemeelvis.com', 'elmer', 'th
eking', 'elvis_store')

 or die('Error connecting t
o MySQL server.');

 $query = "SELECT * FROM emai

l_list";

 $result = mysqli_query($dbc,
 $query)

 or die('Error querying dat
abase.');

 while($row = mysqli_fetch_ar

ray($result)) {

 $first_name = $row['first_
name'];

 $last_name = $row['last_na
me'];

 $msg = "Dear $first_name $

last_name,\n ";

 $to = '

 ' ;

 mail(,

 , , 'From
:' .);

 echo 'Email sent to: ' .

 . '
';

 }

 mysqli_close($dbc);

?>

The email message body is constructed from the customer’s name and the form field email text.

The “email” column in the database
holds the email address of the
customer, which the message should
be addressed to.

The email recipient, message subject, and
message body, are passed into the mail()
function, along with Elmer’s “from” address.

A confirmation message is
echoed to the page with
the email address of each
customer who is mailed.

It’s generally not a good idea in terms of security to pass along user-input
directly to the mail() function without checking it first. Chapter 6 reveals some techniques for overcoming this problem.

Make sure to change this to
your own email address.

subject[' ']

elvismail[' ']

$ text

emailrow [' ']$

_POST$

_POST$

$ to $ subject $ msg $ from

$ to

The Subject form field is named
“subject”, which is the same name used
to access it in the $_POST array.

The email message text
is entered into the form
field named “elvismail”.

sendemail.php

the finished sendemail.php script

you are here 4 145

create and populate a database

I’ve sold out of blue
suede shoes...I’m rich!

You’ve got mail...from Elmer!
At last, Elmer can send out his MakeMeElvis.com sale emails to everyone on his
mailing list by using his new Send Email web form and PHP script. He can also
use the output from the script to confirm that each message is successfully being
sent. Each time the code in the script’s while loop executes, he sees “Email
sent to someone@somewhere.com” with the email address of the person in his
database. The end result is more exposure for his products, and for better or
worse, more Elvis look-alikes! The Send Email script

really does send emails to
the addresses stored in the
database, so be careful
when tinkering with it!

Send an email to the mailing list using the Send Email form.
Download the code for the Send Email web page from the Head First Labs web
site at www.headfirstlabs.com/books/hfphp. It’s in the chapter03
folder. Similar to the Add Email page you saw earlier, this code consists of a web
form in sendemail.html, a style sheet (style.css), and a couple of images
(elvislogo.gif and blankface.jpg).

Create a new text file called sendemail.php, and enter all of the code
on the facing page. Upload all of these files to your web server and open the
sendemail.html page in a web browser. Enter an email message in the form,
and click Submit.

Keep in mind that
your email address
will need to be on
the mailing list in
order for you to
receive a message.

Email sent to: julian@breakneckpizza.com
Email sent to: jones@simuduck.com
Email sent to: sunshine@breakneckpizza.com
Email sent to: bo@b0tt0msup.com
Email sent to: amber@breakneckpizza.com
Email sent to: churst@boards-r-us.com
Email sent to: joyceharper@breakneckpizza.com
Email sent to: meyers@leapinlimos.com
Email sent to: martybaby@objectville.net
Email sent to: walt@mightygumball.net
Email sent to: craftsman@breakneckpizza.com
Email sent to: joe_m@starbuzzcoffee.com
Email sent to: bruce@chocoholic-inc.com
Email sent to: pr@honey-doit.com
Email sent to: bertieh@objectville.net
Email sent to: gregeck@breakneckpizza.com
Email sent to: wilmawu@starbuzzcoffee.com
Email sent to: samjaffe@starbuzzcoffee.com
Email sent to: ls@objectville.net
Email sent to: bshakes@mightygumball.net

Test Drive

146 Chapter 3

It’s a fact of MySQL life—sometimes you need to remove data from
your database. Elmer needs to expand his application to delete users
from the email_list table.

Sometimes people want out
As with any blossoming new business, there are bumps in the road.
It seems some Elvis fans have jumped ship on the King and want
off Elmer’s mailing list. Elmer wants to oblige, but that means he
needs to remove the customers from his database.

Elmer’s not too happy
about losing customers, but
he wants to honor their
requests to be removed
from his mailing list.

I suppose not everyone’s cut
out to emulate The King. I need
to get these people off my list
so I can focus on the real fans.

Write down the new application components you think Elmer
is going to need to implement the Remove Email feature:

Dear Fellow Hip Swiveler,While I still enjoy Elvis’s spirited
moves, I’m just not into him
so much anymore. I now
prefer Liberace’s understated
showmanship and deft piano skills. Here’s my email

address(please remove me):lindy@tikibeanlounge.comYours Truly,
Liberace Lindy

Dear Elmer,

I do not wish to receive any

more sales emails for the Elvis

Store. I’m still a fan of Elvis, but

I can no longer look the part.

Please take me off of your list.

My email is cbriggs@boards-r-

us.com.

Thanks,

An Ex-Impersonator

Dear Sir,

After several allergic reactions to your authentic horse hair sideburns, I’ve decided that maybe looking like Elvis isn’t my “thing.” I do love a good cape but the sideburns are just too much. Please remove me from your email list.

Yours Truly,
Brian Powers
bp@honey-doit.com

our app needs delete functionality

you are here 4 147

create and populate a database

So we can never delete
anything from a table
without deleting everything?

No, not at all. DELETE can be used to pinpoint a specific
row or rows for deletion.
To precisely target the row or rows you want to delete with DELETE, you
need to tack on a WHERE clause. If you recall from using it with the SELECT
command, WHERE allows you to isolate specific rows in a query.

DELETE FROM table_name

Removing data with DELETE
To delete data from a table, we need a new SQL command, DELETE.
We’ll use DELETE in a new Remove Email script that deletes
customers’ data from Elmer’s mailing list. In fact, we need a new
script and a new web form to drive it... but first we need DELETE.

The DELETE SQL command removes rows of data from a table.
This makes it a command you should use very carefully since it’s
capable of wiping out a table full of data in the blink of an eye.
Knowing this, here’s the most dangerous form of DELETE, which
deletes every row from a table.

This is the name of
the table you want to
delete rows from.

Without any other qualifiers, the
DELETE command completely
empties a table of all its data.

 Create an Add Email web form
and PHP script for adding a new
customer to the list.

22

 Create a database and table for
the email list.

11

 Create a Send Email web form
and PHP script for sending an
email to the list.

33

DELETE FROM email_list WHERE first_name = 'Anne';

Suppose Elmer had 23 customers with a first name of Anne, 11 customers with
a last name of Parker, and one customer with the name Anne Parker. Write
down how many rows of data are deleted by each of these queries.

DELETE FROM email_list WHERE first_name = 'Anne' OR last_name = 'Parker';

DELETE FROM email_list WHERE last_name = Parker;

 Create a Remove Email web form
and PHP script for removing a
customer from the list.

44

Looks like we need a
new step...sometimes
design plans change!

148 Chapter 3

DELETE FROM email_list WHERE first_name = 'Anne'; 23

Suppose Elmer had 23 customers with a first name of Anne, 11 customers with
a last name of Parker, and one customer with the name Anne Parker. Write
down how many rows of data are deleted by each of these queries.

DELETE FROM email_list WHERE first_name = 'Anne' OR last_name = 'Parker'; 34

DELETE FROM email_list WHERE last_name = Parker; 0

A WHERE
clause narrows
down a query to
focus on specific
rows of data.

Use WHERE to DELETE specific data
By using a WHERE clause with the DELETE command, we target specific
rows of data for deletion, instead of emptying an entire table. The
WHERE clause lets us focus on just the row we want to remove, in this case
one of Elmer’s customers who wants to be removed from the mailing list.

The actual test within a WHERE clause performs a comparison that is
carried out against every row in the table. In this example, the equal
sign (=) tests each value in the email column to see which rows
are equal to "pr@honey-doit.com". If the value in the email
column of a row matches, then that row will be deleted.

DELETE FROM email_list

 WHERE email = 'pr@honey-doit.com'

This part of the WHERE clause
performs a test on every row to
see what rows match.

The name of a table column

The value to match

Trick question! The last name isn’t
quoted, so no rows are deleted - all
text values must be quoted.

Write down why you think the email column is used in the
WHERE clause, as opposed to first_name or last_name:

DELETE with WHERE

you are here 4 149

create and populate a database

A WHERE clause
in a DELETE
statement lets you
pinpoint the row
you want to remove.

Minimize the risk of accidental deletions
It’s important to understand that although any column name can be used
in a WHERE clause to match rows, there’s a very good reason why we chose
the email column for Elmer’s DELETE query. Consider that if more than
one row matches a WHERE clause, all of the matching rows will be deleted.
So it’s important for Elmer’s WHERE clause to pinpoint exactly the row
you want to delete.

What we’re really talking about is uniqueness. It’s fairly safe to assume that
email addresses are unique within the email_list table, whereas first
names and last names are not. You don’t want to create a WHERE clause
matching the first_name column to "Pat" just to delete a single
customer—you’ll end up deleting every customer named Pat! That’s why
Elmer’s WHERE clause is carefully crafted to look for a specific match with
the email column.

first_name last_name email

...

Joe Milano joe_m@starbuzzcoffee.com

Bruce Spence bruce@chocoholic-inc.com

Pat Risse pr@honey-doit.com

Bertie Henderson bertieh@objectville.net

Greg Eckstein gregeck@breakneckpizza.com

Wilma Wu wilmawu@starbuzzcoffee.com

Sam Jaffe samjaffe@starbuzzcoffee.com

Louis Shaffer ls@objectville.net

Bubba Shakespeare bshakes@mightygumball.net

John Doe johndoe@tikibeanlounge.com

Pat Grommet grommetp@simuduck.com

...

email_list

DELETE FROM email_list

 WHERE email = 'pr@honey-doit.com'

The DELETE query removes this row from the database...never to be seen again!

mysql> DELETE FROM email_list WHERE email = 'pr@honey-doit.com';
1 row deleted (0.005 sec)

File Edit Window Help ByeBye

If we used first_name in the WHERE clause instead of email, this user would accidentally get deleted.

Using the email column in the
WHERE clause helps to establish
uniqueness and reduce the risk
of accidentally deleting a row.

150 Chapter 3

That’s right. Deleting users by hand with individual
queries is no way to manage a mailing list.
Since Elmer will inevitably face users who want to be removed from
his mailing list in the future, it makes a lot of sense to develop a
web-based user interface for removing customers. An HTML web
form and PHP script should do the trick, not to mention a DELETE
FROM query with a little help from a WHERE clause...

Try out the DELETE command on Elmer’s database.
Fire up a MySQL tool and try a few DELETE commands to delete individual
rows of data from the email_list table based on customers’ email addresses.
Just make sure to include a WHERE clause on each DELETE statement so that
you don’t accidentally wipe out the whole table!

The DELETE command’s pretty
handy, but ideally we’d delete rows
of data using a web form and PHP
script, right?

Test Drive

test-drive the DELETE command

you are here 4 151

create and populate a database

Elmer has created a web form (removeemail.html) for deleting a customer from his
mailing list. All the form accepts is an email address, which is entered into an HTML form field
named email. Finish the code for Elmer’s removeemail.php script that’s called by the
form to carry out each customer removal.

This form field
is named “email”.

Clicking the Remove
button submits the form
as a POST request to
the PHP script.

<?php

 $dbc = mysqli_connect('data.makemeelvis.com', 'elmer', 'theking', 'elvis_store')

 or die('Error connecting to MySQL server.')

 mysqli_close($dbc);

?>

removeemail.html

removeemail.php

152 Chapter 3

Elmer has created a web form (removeemail.html) for deleting a customer from his
mailing list. All the form accepts is an email address, which is entered into an HTML form field
named email. Finish the code for Elmer’s removeemail.php script that’s called by the
form to carry out each customer removal.

This form field
is named “email”.

Clicking the Remove
button submits the form
as a POST request to
the PHP script.

<?php

 $dbc = mysqli_connect('data.makemeelvis.com', 'elmer', 'theking', 'elvis_store')

 or die('Error connecting to MySQL server.')

 mysqli_close($dbc);

?>

removeemail.html

$email = $_POST[‘email’];

$query = “DELETE FROM email_list WHERE email = ‘$email’”;
mysqli_query($dbc, $query)
 or die(‘Error querying database.’);

echo ‘Customer removed: ‘ . $email;

removeemail.php

Watch out for those quotes and
double quotes here! The double
quotes go around the whole SQL
query and the single quotes go around
the email address stored in $email.

The email form data in $_POST
is stored in a variable and then
used in the DELETE query.

Don’t forget to clean up by
closing the database connection.

It never hurts to confirm what happened, especially in the case of a database deletion.

the finished removeemail.php script

you are here 4 153

create and populate a database

Remove a customer from the mailing list using the
Remove Email form.
This is starting to feel a little familiar, eh? Download the code
for the Remove Email web page from the Head First Labs web
site at www.headfirstlabs.com/books/hfphp. It’s in
the chapter03 folder. This code consists of a web form in
removeemail.html, a style sheet (style.css), and a couple of
images (elvislogo.gif and blankface.jpg).

Create a new text file called removeemail.php, and enter all of
the code on the facing page. Upload all of these files to your web
server and open the removeemail.html page in a web browser.
Enter the email address of a customer in the form, and click Remove
to delete them from the database.

The script does the
dirty work of issuing the
DELETE query and then
confirming the deletion.

 Create an Add Email web form
and PHP script for adding a new
customer to the list.

22

 Create a database and table for
the email list.

11

 Create a Send Email web form
and PHP script for sending an
email to the list.

33

 Create a Remove Email web form
and PHP script for removing a
customer from the list.

44

Whew, we’re
finally finished!

Test Drive

154 Chapter 3

MakeMeElvis.com is a web application
It’s official. With the help of PHP and MySQL, Elmer’s MakeMeElvis.com
web site is now worthy of being called an application. Elmer can now store
data persistently in a MySQL database, and also interact with that data
through web forms. A combination of HTML pages, PHP scripts, and
embedded SQL queries allow Elmer to add and remove customers to/from
his email list (they can also add themselves), as well as send email messages
to the entire list.

sendemail.html

addemail.html

removeemail.html

Return to sender!
Please remove me from
the Elvis mailing list.

Viva PHP and MySQL! Now that’s a web
application. I can build my email list, send
out emails to all my customers, and even
prune the list...all from my web browser.

The Add Email
page adds new
customers to
Elmer’s email list.

The Send Email
page sends an
email to everyone
on the list with the
click of a button.

The Remove Email page removes
a customer from the email list.

addemail.php

sendemail.php

removeemail.php

the mailing-list app is complete!

you are here 4 155

create and populate a database

PHP&MySQLcross
When you’re finished perfecting Elmer’s dance moves, see
if you can hum along and finish this crossword puzzle.

Untitled Puzzle
Header Info 1

Header Info 2

etc...

1 2 3 4

5

6

7

8

9

10 11

12 13

Across
3. A MySQL database is divided into these.
5. A persistent, highly organized, data structure that is typically
stored in a file on a hard drive.
6. This conditional clause can be added to SQL statements to
control which rows are targeted.
8. This SQL command removes an entire table from a database.
9. Use this SQL command to choose rows from a table.
10. Use this MySQL data type to store a varying amount of text.
12. Within a MySQL table, this holds a specific type of data.
13. Keep doing something as long as a certain test condition
remains true.

Down
1. A MySQL data type that stores numbers without decimal
places.
2. Use this SQL command to look at the structure of a table.
4. When dynamic functionality is added to a web site via PHP
and MySQL, it becomes an
5. Use this SQL command to destroy rows within a table.
7. After creating a new database in a MySQL terminal, you must
issue this command before you can do anything with the
database.
11. A single collection of data in a table consisting of one of each
column.

Untitled Puzzle
Header Info 1

Header Info 2

etc...

1 2 3 4

5

6

7

8

9

10 11

12 13

Across
3. A MySQL database is divided into these.
5. A persistent, highly organized, data structure that is typically
stored in a file on a hard drive.
6. This conditional clause can be added to SQL statements to
control which rows are targeted.
8. This SQL command removes an entire table from a database.
9. Use this SQL command to choose rows from a table.
10. Use this MySQL data type to store a varying amount of text.
12. Within a MySQL table, this holds a specific type of data.
13. Keep doing something as long as a certain test condition
remains true.

Down
1. A MySQL data type that stores numbers without decimal
places.
2. Use this SQL command to look at the structure of a table.
4. When dynamic functionality is added to a web site via PHP
and MySQL, it becomes an
5. Use this SQL command to destroy rows within a table.
7. After creating a new database in a MySQL terminal, you must
issue this command before you can do anything with the
database.
11. A single collection of data in a table consisting of one of each
column.

156 Chapter 3

PHP&MySQLcross Solution
Untitled Puzzle

Header Info 1

Header Info 2

etc...

I
1

D
2

T
3

A
4

B L E S

N E P

T D
5

A T A B A S E P

E E C L

G L W
6

H E R E I

E E I U
7

C

D
8

R O P T A B L E B S A

E S
9

E L E C T

F I

V
10

A R C H A R
11

O

O O N

C
12

O L U M N W
13

H I L E

Across
3. A MySQL database is divided into these. [TABLES]
5. A persistent, highly organized, data structure that is typically
stored in a file on a hard drive. [DATABASE]
6. This conditional clause can be added to SQL statements to
control which rows are targeted. [WHERE]
8. This SQL command removes an entire table from a database.
[DROPTABLE]
9. Use this SQL command to choose rows from a table.
[SELECT]
10. Use this MySQL data type to store a varying amount of text.
[VARCHAR]
12. Within a MySQL table, this holds a specific type of data.
[COLUMN]
13. Keep doing something as long as a certain test condition
remains true. [WHILE]

Down
1. A MySQL data type that stores numbers without decimal
places. [INTEGER]
2. Use this SQL command to look at the structure of a table.
[DESCRIBE]
4. When dynamic functionality is added to a web site via PHP
and MySQL, it becomes an [APPLICATION]
5. Use this SQL command to destroy rows within a table.
[DELETEFROM]
7. After creating a new database in a MySQL terminal, you must
issue this command before you can do anything with the
database. [USE]
11. A single collection of data in a table consisting of one of each
column. [ROW]

php&mysqlcross solution

you are here 4 157

create and populate a database

while

A PHP looping construct that
allows you to repeat a section of
code as long as a certain condition
remains true. One particularly
handy usage of the while loop is
in looping through rows of data in
an SQL query result.

mysqli_fetch_array()

This built-in PHP function
retrieves a single row of data
from the results of a database
query. You can call this function
repeatedly to read row after row
of data.

Your PHP & MySQL Toolbox
Not only did you help Elmer get his
web application off the ground, but

you also developed some valuable PHP
and MySQL skills in this chapter. For
instance...

DROP TABLE tableName
This SQL statement drops an entire table from the database, meaning that the table is removed, along with any and all data stored within it.

DESCRIBE tableName

If you need to find out the structure of a table, this SQL statement is what you need. It doesn’t reveal any data, but it does show the column names and their respective data types.

DELETE FROM tableName

Use this SQL statement to
delete rows from a table.
Depending on how you use the
statement, you can delete
individual rows or multiple rows.

SELECT * FROM tableName

This SQL statement selects rows
from a table. When the star is
used (*), all of the columns for
the rows in the table are returned.
You can be more specific by listing
individual column names instead of
the * if you don’t want to get all
of the column data back from the
query.

WHERE

This SQL clause is used in

conjunction with other SQL

commands to build statem
ents

that target specific
 rows in a

table. For example, you can isolate

rows that have a column matching

a specific value.

CHAPT
ER 3

this is a new chapter 159

Your Application
on the Web

4 realistic and practical applications

Sometimes you have to be realistic and rethink your plans.
Or plan more carefully in the first place. When your application’s out there on the Web,

you may discover that you haven’t planned well enough. Things that you thought

would work aren’t good enough in the real world. This chapter takes a look at some

real-world problems that can occur as you move your application from testing to a

live site. Along the way, we’ll show you more important PHP and SQL code.

If I put a banana in my teacher’s
tailpipe, her car won’t start, so no exam.
But then the substitute might give the
test, so he gets a banana, too. But then
the substitute’s substitute...

160 Chapter 4

Elmer has some irritated customers
Elmer’s customer mailing list has grown by leaps and bounds, but his
emails have generated some complaints. The complaints vary, but they
all seem to involve customers receiving blank email messages or multiple
messages, neither of which is good. Elmer needs to figure out what’s
gone wrong and fix it. His business depends on it.

This ain't good. I wonder
if it has something to do
with that Send Email page...

Elmer knows he has a
problem, but he's going to
need some help figuring
out exactly what it is.

elmer needs a better mailing-list app!

you are here 4 161

realistic and practical applications

BE Elmer the email list manager
Your job is to play Elmer and figure out
how those blank emails are getting sent.
He suspects it has something to do with

the sendemail.html form.

sendemail.html

Write down what Elmer
thinks the problem is.

162 Chapter 4

BE Elmer the email list manager Solution
Your job is to play Elmer and figure out
how those blank emails are getting sent.
He suspects it has something to do with

the sendemail.html form.

sendemail.html

If I click the Submit button
without filling out a message
body, a blank email gets sent.

Write down what Elmer
thinks the problem is.

If the Submit button’s pressed
on the form with nothing in the
Body field, a blank email gets sent.
Come to think of it, an empty
Subject field is a problem too.

be elmer solution

you are here 4 163

realistic and practical applications

<?php
 $from = 'elmer@makemeelvis.com';
 $subject = $_POST['subject'];
 $text = $_POST['elvismail'];

 $dbc = mysqli_connect('data.makemeelvis.com', 'elmer', 'theking', 'elvis_store')
 or die('Error connecting to MySQL server.');

 $query = "SELECT * FROM email_list";
 $result = mysqli_query($dbc, $query)
 or die('Error querying database.');

 while ($row = mysqli_fetch_array($result)){
 $to = $row['email'];
 $first_name = $row['first_name'];
 $last_name = $row['last_name'];
 $msg = "Dear $first_name $last_name,\n$text";
 mail($to, $subject, $msg, 'From:' . $from);
 echo 'Email sent to: ' . $to . '
';
 }

 mysqli_close($dbc);
?>

The text in the form is retrieved
from $_POST[‘subject’] and $_
POST[‘elvismail’], and is saved in
$subject and $text, respectively…

Problem is, we use $text in our message whether the variable contains text or not...

…and we also use $subject
whether there’s text in
it or not.

Our Send Email script uses the text from the form to build an email, even if the user didn't enter anything.

Write down what you think should be changed in the
sendemail.php script code to fix the blank email problem:

Protecting Elmer from... Elmer
So “operator error’ is really the problem here—Elmer inadvertently
clicks Submit without entering the email information, and blank
emails get sent to the entire list. It’s never safe to assume a web form
will be used exactly the way it was intended. That’s why it’s up to
you, the vigilant PHP scripter, to try and head off these kinds of
problems by anticipating that some users will misuse your forms.

Let’s take a look at the code in our current sendemail.php
script to see how Elmer’s empty email messages are getting created.

164 Chapter 4

Demand good form data
Elmer’s Send Email form’s in need of validation, which is the process of checking
to make sure form data is OK before doing anything with it. Elmer already uses
validation even though he doesn’t call it that. Whenever he receives an order for
Elvis gear, he doesn’t just immediately fill it and send it out... he validates it first!

In the case of an order, Elmer first checks to see if the customer’s credit card is
valid. If so, he fills the order and gets it ready to ship. But then he has to check if
the customer’s shipping address is complete. If that checks out, then Elmer goes
ahead and sends out the order. A successful order for Elmer’s store always hinges on
the validation of the order data.

Validation means
making sure the
data you get is the
data you expect.

Elmer fills out and submits
the Send Email form.

If everything’s cool
with this data, I’ll send
out those emails.

The server sends an HTML response back
to the browser: either that the mail was
sent or that the form data was invalid.

The PHP script
validates the
data. If it’s
good, it sends
out the emails.
If not, it sends
an error back to
the client.

The form data is sent
to the Send Email
script on the server.

<form action =
 "sendemail.php"
 ...

1 2

3

4

Here you go, server.
I’m submitting Elmer’s
form data.

To solve Elmer’s blank email problem, we need to validate the form data delivered to
the sendemail.php script. This means the form data is submitted from the client
web page (sendemail.html) to the server, and the server (sendemail.php)
checks to make sure all the data is present. We can add code to sendemail.php
that examines the values in the text boxes and checks to make sure they aren’t empty.
If everything checks out OK, the script sends out the emails.

Elmer has to
validate the
credit card of
each customer
before filling
their order.

+ =

The order only
ships if the
credit card and
shipping address
are valid.

The shipping
address must
be complete.

sendemail.php needs validation

you are here 4 165

realistic and practical applications

Q: I’ve also heard of validating data on the client instead of
on the server. How does that work?

A: The web browser is considered the client, so client-side
validation would be any checking that occurs before the data’s
sent to the PHP script. Languages like JavaScript can do client-
side validation. If you’re interested in learning more , check out
Head First JavaScript, which discusses client-side validation in depth.

Q: So why use server-side validation instead of client-side?

A: If we validate on the client, only part of the problem’s solved.
Elmer could potentially browse directly to sendemail.php and
send out a blank email. But if we validate on the server, it solves both
problems. Blank data in the form will be detected as well as blank
data from the PHP script being directly loaded. This isn’t to say that
it's wrong to validate on the client. In fact, it's a very good idea. But
the server is the last line of defense for catching bad form data, so
server-side validation can’t be ignored.

With the help of validation, we can
make sure no emails are sent unless
both form fields contain data.

IF Subject contains text AND Body contains text

THEN send email

The logic behind Send Email validation
Elmer needs to validate the data he gets from the sendemail.html form before
he sends any emails. In fact, sending the emails should completely hinge on the
data validation. What we really need PHP to do is make a decision based on the
validity of the form data received by the sendemail.php script. We need code
that says, “if the data is valid, go ahead and send the emails.”

sendemail.html

We've been sending the emails without worrying about what, if anything, is entered in these form fields.

These two conditions must be met in order
for the data to be considered valid.

If both conditions are met,
everything's cool, and we
can send the emails out.

166 Chapter 4

The basic if statement has three parts:

 The if keyword
This starts off the statement.

11

 The test condition
The test condition, or conditional expression, is located in
parentheses right after the if keyword. Here’s where you put the
statement that you want to determine the validity, or truth, of.

22

 The action
The action of an if statement directly follows the test condition and
is enclosed in curly braces. Here’s where you put the PHP code you
want to execute if the condition is, in fact, true.

33

if (isValid($credit_card_num)) {

 fillOrder();

}

The statement
begins with if.

This ends the action
and the if statement.

This brace begins
the action section.

This is the condition. It's calling a
function to check and see if what's
stored in $credit_card_num is valid.

This is the action—what PHP will
execute if the condition is true.
You can have as many lines of
code here as you wish.

1

3

2

Your code can make decisions with IF
The PHP if statement lets your code make decisions based on whether or not
something is true. Consider Elmer’s orders again. Before filling an order, Elmer
must get paid, which means charging the customer’s credit card. If the customer
gave Elmer the wrong card number, he can’t fill the order. So Elmer performs a
kind of real-world validation on every order that goes like this:

If the customer’s credit card checks out, go ahead and fill the order.

We can translate this scenario to PHP code using the if statement, which is
designed to handle just this kind of decision making.

This hypothetical function returns true or false depending on the validity of the credit card.

the if statement

you are here 4 167

realistic and practical applications

Testing for truth
The heart of the if statement is its test condition, which is always
interpreted as either true or false. The test condition can be a variable,
a function call, or a comparison of one thing to another, as a few examples.
Elmer’s credit card validation relies on a function call as the test condition,
which means the value returned by the function is either true or false.

It’s quite common to use a comparison as a test condition, which typically
involves comparing a variable to some value. For example, maybe Elmer
wants to give a discount to customers who live in Nevada. He could create
an if statement that carries out a comparison on part of the shipping
address, like this:

if (isValid($credit_card_num)) {

 fillOrder();

}

IF credit card is valid

THEN fill order

The test condition
is true or false.

If the test condition is true, the action’s carried out.

if ($shipping_state == 'Nevada') {

 $total = $total * 0.9;

}

IF customer lives in Nevada

THEN apply discount

This test condition performs a comparison for equality, which involves two
equal signs (==). Equality comparisons aren’t just for variables and strings.
You can compare variables to numbers, variables to variables, and even
perform calculations.

($num_items == 10)

($shipping_address == $billing_address)

(2 + 2 == 4)

This is true if the $shipping_state
variable contains the text ‘Nevada'.

A 10% discount is applied
in the action if the test
condition is true.

Don't put quotes around numeric values.You can check to see if what is stored in one variable is equal to what is stored in another.

You can carry out math
operations in a test condition.

168 Chapter 4

$small_number = 2;

$big_number = 98065;

There are two ways to check if things are
not equal: <> and !=. These give you
the opposite results of an == equality test.

if ($small_number <> $big_number) { echo 'True'; }

if ($small_number != $big_number) { echo 'True'; }

The greater than sign (>) checks to see
if the value on the left is greater than the
value on the right. If so, the condition is
true, otherwise it’s false.

if ($small_number > $big_number) { echo 'True'; }

The less than sign (<) compares the value
on the left to the value on the right. If
the left value is smaller than the right, the
condition is true.

if ($small_number < $big_number) { echo 'True'; }

Greater than or equal to (>=) is like
greater than (>) except it also results in
true if the two values are equal.

if ($small_number >= $big_number) { echo 'True'; }

Less than or equal to (<=) is similar to
less than, except it’s also true if the values
are equal.

if ($small_number <= $big_number) { echo 'True'; }

This condition is false.

Both of these conditions
are true.

This condition is true.

This condition is false.

This condition is true.

How about strings?
Would (“dog” > “cat”) work?

Yes, you can compare strings in if test conditions.
They work based on the alphabet, with a being considered smaller
than (less than) z. Using greater than and less than can help you when
you need to present information in alphabetical order.

It's OK to write an if
statement entirely on a
single line as long as the
action is relatively simple.

IF checks for more than just equality
An if statement can check for more than just equality. The test condition in your
if statement can also check to see if a value is greater than another one. If it is,
the result of the condition is true, and the action code is executed. Here are a few
more tests you can use to control the decision of an if statement.

Start out with
these two variables.

comparing values in php

you are here 4 169

realistic and practical applications

BE the test condition in the if statement
Your job is to play the if test condition and decide if

you are true or false given the following variables.

($a_number == 3)

($another_number == "")

($favorite_song == "Trouble")

($my_name == '$your_name')

($my_name == "$your_name")

($your_name == $my_name)

($favorite_song == 'Trouble')

($a_number > 9)

($favorite_food = 'hamburger')

$my_name = 'Buster';

$a_number = 3;

$a_decimal = 4.6;

$favorite_song = 'Trouble';

$another_number = 0;

$your_name = $my_name;

true or false

true or false

true or false

true or false

true or false

true or false

true or false

true or false

true or false

170 Chapter 4

BE the test condition in the if statement Solution
Your job is to play the if test condition and decide if you are

true or false given the following variables.

($a_number == 3)

($another_number == "")

($favorite_song == "Trouble")

($my_name == '$your_name')

($my_name == "$your_name")

($your_name == $my_name)

($favorite_song == 'Trouble')

($a_number > 9)

($favorite_food = 'hamburger')

$my_name = 'Buster';

$a_number = 3;

$a_decimal = 4.6;

$favorite_song = 'Trouble';

$another_number = 0;

$your_name = $my_name;

true or false

true or false

true or false

true or false

true or false

true or false

true or false

true or false

true or false

Q: Okay, is a test condition the same thing we used to control while loops in Chapter 3?

A: It’s exactly the same. And even though we used it to tell us when we had remaining rows of
query data back in Chapter 3, we can devise more interesting test conditions for while loops by
using different kinds of comparisons. You’ll see that later in the book.

Because of those single quotes,
the condition is actually asking
if the string Buster equals
the string “$your_name”, not
the value contained in the
variable $your_name.

$a_number is 3, which is not greater than 9.

0 and an empty string evaluate as equal.

OK, this one’s tricky. Since
only one equal sign is used here,
it’s actually an assignment (=),
not a comparison (==). And
it ends up being true because
anything other than 0, NULL,
or false gets interpreted by
PHP as true.

Should be == if
we intended this
to be a comparison.

be the test condition solution

you are here 4 171

realistic and practical applications

IF $subject contains text AND $body contains text

THEN send email

The logic behind Send Email validation
Elmer needs to validate the data he gets from the sendemail.html form before
he sends any emails. In fact, sending the emails should completely hinge on the
data validation. What we really need PHP to do is make a decision based on the
validity of the form data received by the sendemail.php script. We need code
that says, "if the data is valid, go ahead and send the emails."

But first we need to grab the form data and store it in a couple of variables:

sendemail.html

$subject = $_POST['subject'];

$text = $_POST['elvismail'];

This form data is all we need to check and see if there is data in each
of the form fields. The logic might look something like this:

Both of these examples have a problem in that their logic requires
us to make two comparisons in a single if statement. One possible
solution is to use two if statements...

Or we could take the opposite approach and check to see if the form
fields are both empty, in which case we could display a warning to
the user:

IF $subject is empty AND $body is empty

THEN echo error message

Write two if statements that check to see if both the subject and message
body of Elmer's Send Email form are empty. Echo a warning message if
they're empty.

172 Chapter 4

$v1 = 'aloha';
$v2 = '';

if (isset($v1)) { echo '$v1 is set
'; }

if (empty($v1)) { echo '$v1 is empty
'; }

if (isset($v2)) { echo '$v2 is set
'; }

if (empty($v2)) { echo '$v2 is empty
'; }

if (isset($v3)) { echo '$v3 is set
'; }

if (empty($v3)) { echo '$v3 is empty
'; }

if ($subject == ' ') {
 if ($text == ' ') {
 echo ‘You forgot the email subject and body text.
';
 }
}

By nesting the second
if statement inside of
the first one, the code
is saying that both must
be true in order for the
echo statement to run.

Indentation helps to show where the inner if statement ends, and where
the outer if statement ends.

That's two single quotes, which
represent an empty string.

PHP functions for verifying variables
Using == to check for an empty string works, but there’s a better way that involves
built-in PHP functions. The isset() function tests to see if a variable exists, which
means that it’s been assigned a value. The empty() function takes things one
step further and determines whether a variable contains an empty value, which
PHP defines as 0, an empty string ('' or ""), or the values false or NULL. So
isset() only returns true if a variable has been assigned a value, while empty()
only returns true if a variable has been set to 0, an empty string, false, or NULL.

Let’s take a look at how these functions work:

$v1 contains a value.

$v2 is an empty string.
$v1 is not empty, it
contains text. So this
if condition is false.

Both $v1 and $v2 are considered to be
set, even though only $v1 has a value.

$v2 is set, even
though it contains
an empty string.

$v2 is empty
because the string it
contains is empty.

$v3 doesn’t exist. $v3 is considered
empty even though it doesn’t exist.

Only the shaded echo
code is executed!

Write two if statements that check to see if both the subject and message
body of Elmer's Send Email form are empty. Echo a warning message if
they're empty.

isset() and empty() functions

you are here 4 173

realistic and practical applications

That's half right. We're really just checking to make sure
the form data isn't empty, so empty() is what we need.
The $subject and $text variables are assigned values from the
$_POST['subject'] and $_POST['elvismail'] superglobals. If
you test these variables with isset(), it will always return true regardless
of whether or not they hold any actual text. In other words, isset()
doesn’t show you the difference between a blank form field and a filled out
one. The empty() function checks to see if a variable is actually empty,
which is what we need for form validation.

Q: So what’s the point of using isset() anyway?

A: The isset() function is extremely valuable when you
need to know if a piece of data exists. For example, you can check
if a form has been submitted via a POST request by passing the
isset() function $_POST. This ends up being an extremely
handy technique, as you find out a little later in the chapter.

I get it. We can use isset() and empty() to
validate the $subject and $text form data.

isset() checks that a
variable exists and is set.

empty() checks to see if a
variable has any contents.

Rewrite the two if statements that check to see if both the subject and
message body of Elmer's Send Email form are empty, but this time, use the
empty() function instead of == in the test conditions.

174 Chapter 4

if (empty($subject)) {
 if (empty($text)) {
 echo ‘You forgot the email subject and body text.
';
 }
}

A call to the empty()
function replaces the equality
operator (==) in each of the
if test conditions. The rest of the code is

the same as before.

if (!empty($subject)) {

 ...
}

The NOT operator (!)
turns true into false,
or false into true.

This condition asks, “Is the Subject
field not empty?" Or, does it have
data in it?

What if we need to only
take a certain action if a
form field is not empty? Is
there a notempty() function?

No, but there's an easy way to reverse the logic of any test
condition... the negation operator.
We know the test condition that controls an if statement always results in a value
of true or false. But what if our logic dictates that we need to check for the
reverse of what a condition gives us? For example, it would be helpful to know if
Elmer’s form fields are not empty before sending a bunch of emails with the form
data. Problem is, there is no notempty() function. The solution is the negation
operator (!), which turns true into false, or false into true. So !empty()
literally calls the empty() function and reverses its result, like this:

Rewrite the two if statements that check to see if both the subject and
message body of Elmer's Send Email form are empty, but this time, use the
empty() function instead of == in the test conditions.

the ! operator

you are here 4 175

realistic and practical applications

sendemail.html
<?php
 $from = 'elmer@makemeelvis.com';
 $subject = $_POST['subject'];
 $text = $_POST['elvismail'];

 if

 if

 $dbc = mysqli_connect('data.makemeelvis.com', 'elmer', 'theking', 'elvis_store')
 or die('Error connecting to MySQL server.');

 $query = "SELECT * FROM email_list";
 $result = mysqli_query($dbc, $query)
 or die('Error querying database.');

 while ($row = mysqli_fetch_array($result)) {
 $to = $row['email'];
 $first_name = $row['first_name'];
 $last_name = $row['last_name'];
 $msg = "Dear $first_name $last_name,\n$text";
 mail($to, $subject, $msg, 'From:' . $from);
 echo 'Email sent to ' . $to . '
';
 }
 mysqli_close($dbc);

?>

All my fields need
to have values.

Fill in the blanks in Elmer’s sendemail.php code so that email only gets sent
when both $subject and $text are not empty. Use if statements and the
empty() function.

176 Chapter 4

sendemail.html
<?php
 $from = 'elmer@makemeelvis.com';
 $subject = $_POST['subject'];
 $text = $_POST['elvismail'];

 if

 if

 $dbc = mysqli_connect('data.makemeelvis.com', 'elmer', 'theking', 'elvis_store')
 or die('Error connecting to MySQL server.');

 $query = "SELECT * FROM email_list";
 $result = mysqli_query($dbc, $query)
 or die('Error querying database.');

 while ($row = mysqli_fetch_array($result)) {
 $to = $row['email'];
 $first_name = $row['first_name'];
 $last_name = $row['last_name'];
 $msg = "Dear $first_name $last_name,\n$text";
 mail($to, $subject, $msg, 'From:' . $from);
 echo 'Email sent to ' . $to . '
';
 }
 mysqli_close($dbc);

?>

All my fields need
to have values.

We have to close off the action
part of both of the if statements.
The first brace ends the inner if
statement, and the second brace
ends the outer if statement.

The first condition
checks to see if
$subject is not empty...

...if not, good! Now we check to see if $text is not empty.
We had to put one if statement
inside the other one to make
this work. This is called nesting.

If either form data variable is
empty, one of the if statements
will be false, and none of the code
here will run, which means no blank
email will be sent out — just what
we wanted!

Fill in the blanks in Elmer’s sendemail.php code so that email only gets sent
when both $subject and $text are not empty. Use if statements and the
empty() function.

(!empty($subject)) {
 (!empty($text)) {

 }
}

The exclamation point
reverses the logic of
the empty() function.

sendemail.php—now with validation!

you are here 4 177

realistic and practical applications

See if the empty form field validation works.
Modify the code in sendemail.php to use if statements that check the form
field data before sending email messages. Upload the new version of the script to
your web server and open the sendemail.html page in a web browser. Make
sure to leave at least one of the form fields blank, and click Submit.

The body of the
message is empty,
which makes the form
data fail validation.

No email confirmations reveal
that nothing was sent, which is
what we want. But some kind
of warning message would be
more helpful than a blank page.

Test Drive

178 Chapter 4

Joe: I think you’re right. If we want to make sure all those fields are not empty, we’ll
have to nest an if statement for each field.

Frank: As long as we indent each line of code for each if statement, aren’t we OK?

Jill: Technically, yes. I mean, the code will certainly work no matter how many if’s we nest, but I’m worried about it
getting hard to understand with so much nesting. Just matching up curly braces accurately could be a problem.

Frank: That’s true. I think it’d also be a pain having to indent the action code so far... let’s see, that’s ten form fields,
giving us ten nested ifs with ten levels of indentation. Even if we just indent each if two spaces, that’s 20 spaces
before every line of action code. Yuck.

Joe: But if we indent with tabs, it cuts that in half—10 tabs versus 20 spaces isn’t so bad.

Jill: Guys, the issue isn’t really about the specific code used to indent the nested if’s. It’s just not a good coding
practice to nest if statements so deep. Think about it like this—we’re really talking about one logical test condition,

“are all our form fields non-empty?” The problem is, that test condition involves ten different pieces of data, causing
us to have to break it into ten separate if statements.

Frank: Ah, I see. So what we need is a way to test all ten pieces of form data in a single test condition, right?

Jill: Yup.

Joe: Then we could write one big test condition that checks all the form fields at once. Awesome!

Jill: Yeah, but we’re still missing the piece of the puzzle that lets us combine multiple comparisons within
a single test condition...

What if we had a bunch
of fields in the form? Would

we have to nest a bunch of if
statements to validate them all?

Frank Jill Joe

if (!empty($first_name)) {

 if (!empty($last_name)) {

 if (!empty($when_it_happened)) {

 if (!empty($how_long)) {

 if (!empty($how_many)) {

 ...

Owen's form from earlier in the
book is an example of how more
form fields result in a bunch of
messy nested if statements.

This much nesting
makes it hard to keep
track of curly braces.

cubicle conversation

you are here 4 179

realistic and practical applications

PHP logic
operators make
it possible to
structure more
elegant if
statements.

Test multiple conditions with AND and OR
You can build a test condition for an if statement with multiple checks by
connecting them with a logical operator. Let’s look at how it works with two
familiar conditions, !empty($subject) and !empty($text). This first
example involves two expressions joined by the logical AND operator, which is
coded using &&.

if ((!empty($subject)) && (!empty($text))) {

if ((!empty($subject)) || (!empty($text))) {

if (empty($subject) && (!empty($text))) {

if ((!empty($subject)) && empty($text)) {

The AND operator takes two true/false values and gives you true only if they
are both true; otherwise the result is false. So in this case both form fields must
be non-empty in order for the test condition to be true and the action code for the
if statement to run.

The logical OR operator, coded as ||, is similar to AND except that it results in
true if either of the true/false values is true. Here’s an example:

So the action code for this if statement is executed if either one of the form
fields is not empty. Things get even more interesting if you want to isolate one
form field as being empty but the other having data, like this:

Since this test condition uses AND, both expressions inside of the test condition
must be true in order for the action code to be run. This means the Subject
form field must be empty, but the Body field must have data. You can reverse this
check by moving the negation operator (!) to the other empty() function:

The AND (&&) and OR (||) logical operators make it possible to structure much
more powerful test conditions that would otherwise require additional, often messy,
if statements.

The extra parentheses help make it clear that the negation operator applies only to the empty() function.
The logical
AND operator.

This test condition is only true if both
$subject AND $text are not empty.

This test condition is true if either $subject OR $text are not empty.

Logical AND
is coded as &&,
while logical OR
is coded as ||.

$subject must be empty and
$text must be non-empty for
this test condition to be true.

This is true only if $subject isn't empty but $text is.

That's not the number eleven, it's two vertical pipes ||—just above backslash (\) on your keyboard.

180 Chapter 4

<?php
 $from = 'elmer@makemeelvis.com';
 $subject = $_POST['subject'];
 $text = $_POST['elvismail'];

 if (!empty($subject)) {
 if (!empty($text)) {

 $dbc = mysqli_connect('data.makemeelvis.com', 'elmer', 'theking', 'elvis_store')
 or die('Error connecting to MySQL server.');

 $query = "SELECT * FROM email_list";
 $result = mysqli_query($dbc, $query)
 or die('Error querying database.');

 while ($row = mysqli_fetch_array($result)) {
 $to = $row['email'];
 $first_name = $row['first_name'];
 $last_name = $row['last_name'];
 $msg = "Dear $first_name $last_name,\n$text";
 mail($to, $subject, $msg, 'From:' . $from);
 echo 'Email sent to ' . $to . '
';
 }

 mysqli_close($dbc);
 }
 }

?>

Rewrite the highlighted sections of the sendemail.php script so that it uses
logical operators in a single if test condition instead of nested if statements.

Here are our nested if statements.
Rewrite them using a single if
statement with logical operators.

These braces close the
two if statements.

eliminate the nested if statements

you are here 4 181

realistic and practical applications

Q: Does it matter what order you put two
conditions joined by && or || in an if statement?

A: Yes. The reason is because these two operators
are short-circuited whenever possible. What
this means is that if the first operand is enough to
determine the outcome of the expression, the second
operand is ignored. As an example, if the first operand
in an AND expression is false, this is enough to
cause the expression to be false regardless of the
second operand, so the second operand is ignored.
The same rule applies when the first operand in an OR
expression is true.

Q: I've seen PHP code that uses and and or
instead of && and ||. How do those work?

A: They’re virtually the same as && and ||.
There’s a slight difference in how they’re evaluated
relative to other operators, but if you're careful to use
parentheses to make your test conditions clear, then
there’s essentially no difference.

Make sure the logical operators in the Send Email script do
the same job as the nested if statements.
Modify the code in sendemail.php to use a single if statement that takes
advantage of logical operators to check the form field data before sending email
messages. Double-check the exercise solution on the following page if you aren’t
sure about the changes to make.

Upload the new version of the script to your web server and open the
sendemail.html page in a web browser. Make sure to leave at least one of
the form fields blank, and click Submit. Does the script still prevent the email
messages from being sent when a form field is blank?

Test Drive

182 Chapter 4

<?php
 $from = 'elmer@makemeelvis.com';
 $subject = $_POST['subject'];
 $text = $_POST['elvismail'];

 if (!empty($subject)) {
 if (!empty($text)) {

 $dbc = mysqli_connect('data.makemeelvis.com', 'elmer', 'theking', 'elvis_store')
 or die('Error connecting to MySQL server.');

 $query = "SELECT * FROM email_list";
 $result = mysqli_query($dbc, $query)
 or die('Error querying database.');

 while ($row = mysqli_fetch_array($result)) {
 $to = $row['email'];
 $first_name = $row['first_name'];
 $last_name = $row['last_name'];
 $msg = "Dear $first_name $last_name,\n$text";
 mail($to, $subject, $msg, 'From:' . $from);
 echo 'Email sent to ' . $to . '
';
 }

 mysqli_close($dbc);
 }
 }

?>

Rewrite the highlighted sections of the sendemail.php script so that it uses
logical operators in a single if test condition instead of nested if statements.

if ((!empty($subject)) && (!empty($text))) {

}

We can use AND to check for both conditions in one if statement.

Our single if statement means we
only need one closing curly brace.

Remember, && is how you actually
specify the AND logical operator.

The negation, or NOT operator (!), is used
to check for non-empty form fields.

All of the code inside the if statement should be un-indented one level since it now resides in a single if statement.

sendemail.php—now without nested if statements!

you are here 4 183

realistic and practical applications

The problem is that our code only reacts to a successful validation, in
which case it sends the email messages. But if the if statement turns out
being false (invalid form data), the code doesn’t do anything, leaving
Elmer in the dark about whether any emails were sent or what went wrong.
Here’s the abbreviated script code, which reveals the blank page problem:

Form users need feedback
Our sendemail.php code does a great job of validating the form data so that
no mail gets sent out if either the Subject or Body fields are left blank. But when
the validation fails, and no emails are sent out, the script doesn’t tell Elmer what
happened. He just gets a blank web page.

What happened? I tried
to use the new form and
all I got was a blank page.

<?php
 $from = 'elmer@makemeelvis.com';
 $subject = $_POST['subject'];
 $text = $_POST['elvismail'];

 if ((!empty($subject)) && (!empty($text))) {
 $dbc = mysqli_connect('data.makemeelvis.com', 'elmer', 'theking', 'elvis_store')
 ...
 mysqli_close($dbc);
 }
?>

Nothing at all happens if the if statement fails
to run the action code, which is why a blank page
is generated when there is missing form data.

Elmer sees this page when
he submits the form... and
he has no clue why!

We need to let Elmer know that there was a problem, ideally telling him
what form fields were blank so that he can try entering the message again.

184 Chapter 4

That won't work because code after the if statement
will always be executed.
Placing the echo statement after the if statement just means it runs after
the if statement, but it always runs regardless of the outcome of the if.
That’s not what we need. We need the echo statement to show an error
message only if the test condition of the if statement is false. You could
express our logic as this:

Not a problem. Just put an echo
statement after the closing
brace of the if statement.

The else clause executes code when an if test condition is false.

IF subject contains text AND body contains text

THEN send email

ELSE echo error message

The if statement offers an optional else clause that runs code in the event
that the test condition is false. So our error message echo code can go in
an else clause, in which case it only gets run when one of the form fields is
left empty. Just place the word else after the if statement, and then stick
the action code for it inside curly braces:

if ((!empty($subject)) && (!empty($text))) {

 ...

}

else {

 echo 'You forgot the email subject and/or body text.
';

} The code here only gets run if
the if statement turns out false.Just like the action code in an if, the code in an else is enclosed in curly braces.

This is a placeholder for
the code that sends the
email messages.

The else clause starts
right after the
closing curly brace
for the if statement.

the else clause

you are here 4 185

realistic and practical applications

Below is new code for Elmer’s sendemail.php script that uses if statements and else
clauses to provide feedback, but some of the code has gotten misplaced. Use the magnets to
replace the missing code.

<?php
 $from = 'elmer@makemeelvis.com';
 $subject = $_POST['subject'];
 $text = $_POST['elvismail'];

 }
 else {

 // We know we are missing $subject OR $text - let's find out which one

 echo 'You forgot the email subject.
';
 }
 else {

 echo 'You forgot the email body text.
';
 }
 }
 else {

 ...
 while ($row = mysqli_fetch_array($result)) {
 $to = $row['email'];
 $first_name = $row['first_name'];
 $last_name = $row['last_name'];
 $msg = "Dear $first_name $last_name,\n$text";
 mail($to, $subject, $msg, 'From:' . $from);
 echo 'Email sent to ' . $to . '
';
 }

 mysqli_close($dbc);
 }
 }
?>

// $subject is empty

// Everything is fine, send email

// We know both $subject AND $text are blank

empty($subject)

 ||

empty($text)

if (

)

 {

empty($subject)

 &&

empty($text)

if
(

)

 {

empty($subject)

if

()

 {

// $text is empty

186 Chapter 4

Below is new code for Elmer's sendemail.php script that uses if statements and else
clauses to provide feedback, but some of the code has fallen off. Use the magnets to replace the
missing code.

<?php
 $from = 'elmer@makemeelvis.com';
 $subject = $_POST['subject'];
 $text = $_POST['elvismail'];

 }
 else {

 // We know we are missing $subject OR $text - let's find out which one

 echo 'You forgot the email subject.
';
 }
 else {

 echo 'You forgot the email body text.
';
 }
 }
 else {

 ...
 while ($row = mysqli_fetch_array($result)) {
 $to = $row['email'];
 $first_name = $row['first_name'];
 $last_name = $row['last_name'];
 $msg = "Dear $first_name $last_name,\n$text";
 mail($to, $subject, $msg, 'From:' . $from);
 echo 'Email sent to ' . $to . '
';
 }

 mysqli_close($dbc);
 }
 }
?>

// Everything is fine, send email

empty($subject) || empty($text)if () {

empty($subject) && empty($text)if () {

At this point we’ve gone
through all the other
possibilities, so we know that
both form fields have values.

The outer if statement checks to see if both the subject and body are empty. If not, there are only three other possible scenarios: both are filled in, the subject is missing, or the body text is missing.

// We know both $subject AND $text are blank

// $subject is empty

empty($subject)if () {

// $text is empty

exercise solution

you are here 4 187

realistic and practical applications

All those nested if's and else's are making
the script hard to follow. I'd hate to ever
have to work on that script! It needs to
be simplified before someone gets hurt.

It's always a good idea to simplify
code whenever possible, especially
nested code that gets too deep.
Too many else clauses with nested if statements
can make your code hard to follow. Maybe that
wouldn’t matter if we never had to look at it again,
but that’s unlikely. If we ever needed to change
the form and add another field, validating it would
be trickier than it needed to be because it would
be hard to read the code and figure out where the
changes need to go.

188 Chapter 4

if (empty($subject) && empty($text)) {
 echo 'You forgot the email subject and body text.
';
} else {
 if (empty($subject) || empty($text)) {
 if (empty($subject) {
 echo 'You forgot the email subject.
';
 } else {
 echo 'You forgot the email body text.
';
 }
 } else {
 // Everything is fine. send the email
 }
}

BE the IF code
Your job is to play IF code and clean up the
messy nested IF's and ELSE's. Rewrite the
code to get rid of the nesting, but make

sure it still works correctly.

cleaner

Hint: You might not even need any elses!

Rewrite this code so
that it isn't nested.

clean the if code

you are here 4 189

realistic and practical applications

Try out the cleaner if code to make sure it works as expected.
Modify the code in sendemail.php to use if statements similar to those you just
wrote that simplify the if nesting. Flip to the solution on the following page if you
aren’t sure about the changes to make.

Upload the new version of the script to your web server and open the
sendemail.html page in a web browser. Experiment with the script by submitting
the form with form fields both blank and filled. Does the script display error messages

Q:Are a few levels of nesting really that
big of a deal?

A: It depends. If you’re writing some code
that only you will ever see and you think you’ll
remember exactly what every next line does in
six months time when you come back to it to
tweak it, nest away.
If on the other hand, you’d like to keep your
code as clean and logical as possible, you can
use any of the several logic operators you’ve
met so far.

Q: How does else work?

A: In an if...else statement, the
else matches anything and everything that
doesn’t match the if part.

Q: Hmm. Okay. Does that mean I
could nest if and else in existing
if...else statements?

A: Well, you could, but with all that nesting,
things would get complex pretty fast and we’re
trying to avoid nesting here!

Test Drive

190 Chapter 4

if (empty($subject) && empty($text)) {
 echo 'You forgot the email subject and body text.
';
} else {
 if (empty($subject) || empty($text)) {
 if (empty($subject) {
 echo 'You forgot the email subject.
';
 } else {
 echo 'You forgot the email body text.
';
 }
 } else {
 // Everything is fine. send the email
 }
}

BE the IF code Solution
Your job is to play IF code and clean up the
messy nested IF's and ELSE's. RRewrite
the code to get rid of the nesting, but make

sure it still works correctly.

cleaner

if (empty($subject) && empty($text)) {
 echo ‘You forgot the email subject and body text.
';
}
if (empty($subject) && (!empty($text))) {
 echo ‘You forgot the email subject.
';
}
if ((!empty($subject)) && empty($text)) {
 echo ‘You forgot the email body text.
';
}
if ((!empty($subject)) && (!empty($text))) {
 // Everything is fine. send the email
}

Here, we’re testing
to see if both the
$subject and $text
variables are empty.

And here, we’re
testing to see if
neither $subject nor
$text is empty.

This code checks to see if $subject is empty and $text is not empty.Here we’re testing
to see if $text is
empty and $subject
is not empty. If we didn’t use the AND (&&) to isolate

the non-empty subject/empty body text,
we could end up getting an extra feedback
message. Same thing goes for not empty
$subject and empty $text.

The NOT operator (!) checks for $subject and $text being non-empty.

the cleaned-up if code

you are here 4 191

realistic and practical applications

What would you do to improve the error handling
of the Send Email script to make it more helpful?.

I’m all shook up. When I forgot to
enter the subject in the form, I got this
page. But then, when I clicked the Back
button, I had to retype the whole message.

Validation in Elmer's Send Email script is working but
it could be a lot more helpful.
When the sendemail.php script detects missing form data, it displays
a message that information is missing, but that’s it. There’s no link back
to the original form, for example. And even worse, when Elmer navigates
back to the original form, the information he did enter is no longer there.
He has to retype both the subject and body of his email message.

This page tells Elmer
what he's missing...
but not much else.

192 Chapter 4

Displaying the form would definitely be helpful, as it would
save Elmer having to navigate back in his browser.
So in addition to echoing an error message when one of the form fields is empty,
we also need to regenerate the HTML form code from PHP by echoing it to the
browser. This code shows that PHP is capable of generating some fairly complex
HTML code:

It would be cool to show the form
along with the error message. Couldn’t
we just echo the form if the email

subject and body text are empty?

echo '<form method="post" action="sendemail.php">';

echo ' <label for="subject">Subject of email:</label>
';

echo ' <input id="subject" name="subject" type="text" ' .

 'size="30" />
';

echo ' <label for="elvismail">Body of email:</label>
';

echo ' <textarea id="elvismail" name="elvismail" rows="8" ' .

 'cols="40"></textarea>
';

echo ' <input type="submit" name="submit" value="Submit" />';

echo '</form>';

If you’re thinking this code looks a bit chaotic, that’s because it is. Just because
you can do something in PHP doesn’t mean you should. In this case, the added
complexity of echoing all that HTML code is a problem. This is a big enough chunk
of code that generating it via PHP with echo is really not a good option...

This indentation isn't
strictly necessary,
but it helps to see
the structure of the
original HTML code.

This PHP code generates the entire HTML
form, starting with the <form> tag.

Since HTML code is riddled
with double quotes, it's easier
to use single quotes to surround
strings of HTML code in PHP.

regenerating the HTML form code

you are here 4 193

realistic and practical applications

You can close
and open blocks
of PHP code to
output chunks of
HTML code in a
PHP script.

<?php
 $from = 'elmer@makemeelvis.com';
 $subject = $_POST['subject'];
 $text = $_POST['elvismail'];

 if (empty($subject) && empty($text)) {
 // We know both $subject AND $text are blank
 echo 'You forgot the email subject and body text.
';
?>

 <form method="post" action="sendemail.php">
 <label for="subject">Subject of email:</label>

 <input id="subject" name="subject" type="text" size="30" />

 <label for="elvismail">Body of email:</label>

 <textarea id="elvismail" name="elvismail" rows="8" cols="40"></textarea>

 <input type="submit" name="submit" value="Submit" />
 </form>

<?php
 }

 if (empty($subject) && (!empty($text))) {
 echo 'You forgot the email subject.
';
 }

 if ((!empty($subject)) && empty($text)) {
 echo 'You forgot the email body text.
';
 }

 if ((!empty($subject)) && (!empty($text))) {
 // Code to send the email
 ...
 }
?>

Ease in and out of PHP as needed
It’s sometimes easy to forget that a PHP script is really just an HTML web page that
is capable of holding PHP code. Any code in a PHP script that isn’t enclosed by
the <?php and ?> tags is assumed to be HTML. This means you can close a block
of PHP code and revert to HTML as needed, and then pick back up with a new
block of PHP code. This is an extremely handy technique for outputting a chunk of
HTML code that is unwieldy to generate through PHP echo statements... like our
Send Email form code.

This ?> tag
closes the PHP
block, returning
us to HTML.

The form is coded as normal
HTML since this code is
outside of PHP tags.

The <?php tag starts a new PHP block. Since we're still inside the if action, we have to close the if statement before continuing.

Write down anything you think might be limiting about this
code. How would you fix it?

Since we're still inside of the if
action, the HTML code is only output
if both form fields are empty.

194 Chapter 4

duplicate
The problem with the previous code is that it will have to drop out of PHP and
duplicate the form code in three different places (once for each validation error). We
can use a true/false variable known as a flag to keep track of whether or not
we need to output the form. Let’s call it $output_form. Then we can check the
variable later in the code and display the form if the variable is true.

So we need to start out the script with $output_form set to false, and then
only change it to true if a form field is empty and we need to show the form:

IF Subject is empty AND Body is empty

THEN echo error message, set $output_form to true

IF Subject is empty AND Body is NOT empty

THEN echo error message, set $output_form to true

IF Subject is NOT empty AND Body is empty

THEN echo error message, set $output_form to true

IF Subject is NOT empty AND Body is NOT empty

THEN send emails

IF $output_form is true

THEN show form

Initialize $output_form to false

Setting $output_form to false initially means the form won't get shown unless there is a validation problem that causes its value to change.

If a form field is left
blank, the $output_form
variable is set to true,
but the form isn't
displayed... yet!

These error
messages
are slightly
different to
indicate the
specific form
field(s) that
are empty.

If both form
fields check out
with data, go
ahead and send
the emails.

Last thing, check the $output_form
variable to see if the form needs
to be displayed. Either way, we only
need one copy of the HTML code.

Use a flag to avoid duplicate code

avoiding duplicate code with a flag

you are here 4 195

realistic and practical applications

Code the HTML form only once
Turning the new validation logic into PHP code involves creating and initializing
the new $output_form variable, and then making sure to set it throughout the
validation code. Most important is the new if statement at the end of the code that
only displays the form if $output_form is set to true.

<?php
 $from = 'elmer@makemeelvis.com';
 $subject = $_POST['subject'];
 $text = $_POST['elvismail'];
 $output_form = false;

 if (empty($subject) && empty($text)) {
 // We know both $subject AND $text are blank
 echo 'You forgot the email subject and body text.
';
 $output_form = true;
 }

 if (empty($subject) && (!empty($text))) {
 echo 'You forgot the email subject.
';
 $output_form = true;
 }

 if ((!empty($subject)) && empty($text)) {
 echo 'You forgot the email body text.
';
 $output_form = true;
 }

 if ((!empty($subject)) && (!empty($text))) {
 // Code to send the email
 ...
 }

 if ($output_form) {
?>

 <form method="post" action="sendemail.php">
 <label for="subject">Subject of email:</label>

 <input id="subject" name="subject" type="text" size="30" />

 <label for="elvismail">Body of email:</label>

 <textarea id="elvismail" name="elvismail" rows="8" cols="40"></textarea>

 <input type="submit" name="submit" value="Submit" />
 </form>

<?php
 }
?>

We create our new variable here and set it to false initially.

Set the variable to true if both
$subject and $text are empty so
that the form is shown.

Also set the variable to
true if $subject is empty.

And set the variable to
true if $text is empty.

This if statement checks the
$output_form variable and
displays the form if it is true.

The HTML code only appears once since we've crunched all the logic for displaying it into a single variable, $output_form.

Don't forget to jump
back into PHP code and
close the if statement.

By making HTML
code dependent on
an IF statement,
we avoid duplicate
code in our script.

We've dropped out of PHP code, but anything prior to the closing } is still considered part of the if action - in this case it's the HTML code for the form.

196 Chapter 4

The new form is better, but I still
have to retype the fields I had typed
in correctly, which is really annoying.

Submit

sendemail.html

Submit

sendemail.php

HTML alone can't preserve form data.
When Elmer submits the Send Email form with an empty field, the
sendemail.php script catches the error and generates a new form. But the
new form is pure HTML code, which can’t possibly know anything about any
data Elmer might have entered earlier. So we’re generating a clean new form as
part of the validation, which is wiping out any data Elmer might have entered.

Ack. We can’t get around the fact that a new form will have to be generated in
the PHP script. But we need a way to remember any data Elmer might have
already entered, and plug it back into the new form so that Elmer can focus
solely on filling out the form field that he accidentally left empty...

Submit!

Elmer accidentally
left this field blank.

The form is submitted
to the sendemail.php
script when Elmer clicks the Submit button.

Form data that
Elmer entered.

This error message lets
Elmer know he left a
form field empty.

All the fields
are now empty
because this is a
shiny new form.

the form data still disappears

you are here 4 197

realistic and practical applications

Draw what Elmer's form should look like after he submits it with only the
first form field filled out. Then write down how you think each of the two
files (HTML and PHP) should be altered to carry out this new functionality.

Submit

sendemail.htmlsendemail.php

198 Chapter 4

Draw what Elmer's form should look like after he submits it with only the
first form field filled out. Then write down how you think each of the two
files (HTML and PHP) should be altered to carry out this new functionality.

Submit

sendemail.htmlsendemail.php

If we display the form entirely in the PHP script,
we can do away with the HTML page by letting
the PHP script both show the form and process it.
In doing so, the PHP script can access and use any
data entered into the form, which is impossible in
pure HTML code.

The PHP script takes over the job of displaying
the form, both before and after submission. And
since the script has access to any form data that
has been entered, it can plug the data back into
the form when it is generated. This solves Elmer's
problem of having to re-enter form data he's
already filled out.

The error message
is still displayed...

... but the script
remembers data that
Elmer entered and inserts it back into the form.This field is still blank

because Elmer never
entered anything into it.

make the form “sticky”

you are here 4 199

realistic and practical applications

How do you think we can tweak Elmer’s
application to make the form fields sticky?

Sticky forms
remember the data
the user has already
correctly entered.

An HTML form
that is part of
the PHP script
that processes it
is known as self-
referencing.

A form that references itself
How can it be possible to remove sendemail.html from the Send Email form
equation? The answer is that we’re not actually eliminating any HTML code,
we’re just moving it to the PHP script. This is made possible by the fact that a PHP
script can contain HTML code just like a normal web page. So we can structure
our script so that it not only processes the form on submission but also displays the
form initially, which is all sendemail.html was doing.

The key to the sendemail.php script being able to fill the role left by
sendemail.html is the form action. Since the script itself now contains the
HTML form, the form action leads back to the script... a self-referencing form.

Submit

sendemail.php

To understand what’s going on here, think about the first time Elmer visits the page
(script). An empty form is generated as HTML code and displayed. Elmer fills out a
field of the form and clicks Submit. The script processes its own form, and displays
an error message if any data’s missing. More importantly, the script displays the form
again, but this time it includes any data Elmer has already entered. When a form’s
smart enough to remember data entered into it in prior submissions, it’s known as a
sticky form... the data sticks to it!

We no longer need sendemail.
html—users navigate directly to
the PHP script to use the form.

Submit!

The form data’s submitted to the same script, which processes it and displays the form again, but this time it remembers data already entered.

The script initially shows the form
and then processes it when it is
submitted. Processing the form
involves either sending emails or
displaying the form again with an
error message.

200 Chapter 4

<form action="<?php echo $_SERVER['PHP_SELF']; ?>" method="post">

This is a standard <form> tag that
happens to use POST to submit the
form data to the script.

Instead of hardcoding the name of our script,
we can tell it to reference itself by using the
$_SERVER[‘PHP_SELF'] superglobal.

$_SERVER[‘PHP_SELF’]
stores away the name of
the current script.

Point the form action at the script
As we’ve seen several times, the action attribute of the <form> tag is
what connects a form to a PHP script that processes it. Setting the action
of Elmer’s form to sendemail.php works just fine in allowing it to
process itself, which is the first step toward form stickiness. In fact, the
form already has its action attribute set to the script:

<form action="sendemail.php" method="post">

This code works, assuming you don’t ever rename the script and forget
to update the code. But there’s a better way that works no matter what
because it doesn’t rely on a specific script filename. It’s the built-in PHP
superglobal variable $_SERVER['PHP_SELF'], which stores the name
of the current script. You can replace the script URL in the form action to
$_SERVER['PHP_SELF'], and not ever have to worry about updating
anything if you ever need to rename the script.

The only catch is that $_SERVER['PHP_SELF'] is PHP code, which
means you have to echo its value so that it is output as part of the HTML
code, like this:

The action attribute of the <form> tag connects a form to the script that processes it, in this case the same sendemail.php script that holds the form.

Granted, using $_SERVER['PHP_SELF'] instead of the
script name isn’t an earth shattering improvement but it’s one
of the many little things you can do to make your scripts easier
to maintain over time.

make the form action self-referencing

you are here 4 201

realistic and practical applications

Try out the new self-referencing script with improved form
validation logic.
Modify the code in sendemail.php to use the $output_form variable to
selectively display the form as shown a few pages back. Also change the action
attribute of the <form> tag so that the form is self-referencing.

You no longer need the sendemail.html page on your web server, so feel free
to delete it. Then upload the new version of the sendemail.php script to your
web server and open the script in a web browser. How does it look?

Write down why you think the script is displaying an error
message the first time the form is shown:

For some reason the
script's showing an error
message even though the
form hasn't even been
submitted... not good.

Not only that but
it still isn't sticky.
We still have some
work to do!

First things first - we'll get to
the sticky stuff in a moment.

Test Drive

202 Chapter 4

Since every form has a Submit button, an easy way to check to see if a form has
been submitted is to see if there’s $_POST data for the Submit button. The data’s
just the label on the button, which isn’t important. What’s important is simply the
existence of $_POST['submit'], which tells us that the form has been submitted.
Just make sure that 'submit' matches up with the id attribute of the Submit
button in the form code.

if (isset($_POST['submit'])) {
 ...
}

This must match the name of the <input> tag for your Submit button.

Any code in here will only get executed
if the form’s been submitted.

Check to see if the form has been submitted
The problem is that the script can’t distinguish between the form being displayed
for the first time and it being submitted with incomplete data. So the script
reports missing data the very first time the form is displayed, which is confusing.
The question is, how can we check to see if the form is being submitted? If we
know that, we can make sure we only validate data on a submission.

Remember how, when a form is submitted using the POST method, its data is
stored away in the $_POST array? If the form hasn’t been submitted, then the
$_POST array isn’t filled with any data. Or to put it another way, the $_POST
array hasn’t been set. Any guess what function we could call to see if the
$_POST array’s been set?

The isset() function checks to see
if a variable has been set.

The $_POST
superglobal
allows us to
check and see if
a form has been
submitted.

Q: How does knowing if the form was submitted stop us from
accidentally displaying validation error messages?

A: The reason the error messages are being shown incorrectly
is because the script doesn't distinguish between the form being
submitted vs. being displayed for the first time. So we need a way
to tell if this is the first time the form is being shown, in which case
empty form fields are perfectly fine—it's not an error. We should only
validate the form fields if the form’s been submitted, so being able to
detect a form submission is very important.

Q: So why don't we check to see if real form data’s set,
instead of the Submit button?

A: It would work perfectly fine to check
$_POST['subject'] or $_POST['elvismail'],
but only for this particular form. Since every form has a Submit
button that can be consistently named submit, checking $_
POST['submit'] gives you a reliable way to check for form
submission in all of our scripts.

check for $_POST[‘submit’]

you are here 4 203

realistic and practical applications

The Send Email Script Up Close

<?php
 if (isset($_POST['submit'])) {
 $from = 'elmer@makemeelvis.com';
 $subject = $_POST['subject'];
 $text = $_POST['elvismail'];
 $output_form = false;

 if (empty($subject) && empty($text)) {
 // We know both $subject AND $text are blank
 echo 'You forgot the email subject and body text.
';
 $output_form = true;
 }

 if (empty($subject) && (!empty($text))) {
 echo 'You forgot the email subject.
';
 $output_form = true;
 }

 if ((!empty($subject)) && empty($text)) {
 echo 'You forgot the email body text.
';
 $output_form = true;
 }

 if ((!empty($subject)) && (!empty($text))) {
 // Code to send the email
 ...
 }
 }
 else {
 $output_form = true;
 }

 if ($output_form) {
?>

 <form method="post" action="<?php echo $_SERVER['PHP_SELF']; ?>">
 <label for="subject">Subject of email:</label>

 <input id="subject" name="subject" type="text" size="30" />

 <label for="elvismail">Body of email:</label>

 <textarea id="elvismail" name="elvismail" rows="8" cols="40"></textarea>

 <input type="submit" name="submit" value="Submit" />
 </form>

<?php
 }
?>

If the form’s never been submitted, we definitely need to show it!

We check the value of $_POST’'submit']. If the form has never been submitted, this will be unset.

This parenthesis closes the
first if, which tells us if
the form was submitted.

204 Chapter 4

Cool. So we can now detect the form
submission and show error messages
correctly. But we still haven't made
the form fields sticky, right?

That's right. Detecting the form submission is important, but
we still need to plug the sticky form data back into the form.
Knowing if the form’s been submitted is an important part of making it sticky, but it
isn’t the only part. The part we’re missing is taking any form data that was submitted
and plugging it back into the form as the form is being output. You can set an input
form field using the value attribute of the HTML <input> tag. For example, this
code presets the value of an input field using the value attribute:

<input name="subject" type="text" value="Fall Clearance!">

<input name="subject" type="text" value="<?php echo $subject; ?>">

But we don’t want to hardcode a specific value. We want to insert a piece of data
from a PHP variable. How is that possible? Remember that we’ve used echo to
dynamically generate HTML code from PHP in other situations. In this case, we can
use echo to generate a value for the value attribute from a PHP variable, like this:

This value is hardcoded - it's always
the same every time the form is shown.

Since we're switching to PHP to echo the
variable, we have to use a <?php tag.

The variable is echoed using
the familiar echo statement.

And to return back to
HTML, we close up the
PHP code with the ?> tag.

Elmer’s form can then be modified similarly to take advantage of sticky data:For a text area input field,
we echo the sticky data
in between the <textarea>
and </textarea> tags
instead of using the value
attribute.

make the form fields “sticky”

<form method="post" action="<?php echo $_SERVER['PHP_SELF']; ?>">
 <label for="subject">Subject of email:</label>

 <input id="subject" name="subject" type="text" size="30"
 value="<?php echo $subject; ?>"/>

 <label for="elvismail">Body of email:</label>

 <textarea id="elvismail" name="elvismail" rows="8" cols="40">
 <?php echo $text; ?></textarea>

 <input type="submit" name="submit" value="Submit" />
</form>

you are here 4 205

realistic and practical applications

Check to see how sticky Elmer's data really is.
Change the code in sendemail.php to check $_POST for the form submission,
as well as adding echo code to the form so that its fields are sticky. Upload the
new version of the script to your web server and open the script in a web browser.
Experiment with different form field values, including leaving one or both fields
empty, and submit it a few times.

Boy, that was dumb leaving the body of the
email blank. Thankfully, I’ll never do that again now

that the form is on top of things. And I don't have to
keep re-entering the same data to fix it either.

The Send Email script now
shows an error message when
Elmer leaves a form field
blank, but it remembers any
data he did enter.

Test Drive

206 Chapter 4

How can Elmer delete all but one of the multiple rows
in his table that have identical email addresses?

Some users are still disgruntled
Form validation has gone a long way toward dealing with Elmer’s frustrated
customers, particularly those who were receiving blank emails. But not everyone
is happy. It seems a few people are receiving duplicate emails... remember this guy
from earlier in the chapter?

Elmer knows he didn’t send a message more than once, leading him to suspect that
maybe some users have accidentally subscribed to his email list more than once. Not
a problem, just use the Remove Email page/script from the last chapter to remove
the user, right?

Unfortunately, it’s not that simple. Removing Elbert using his email address will
completely delete him from the email_list table, causing him to no longer
receive any email messages from Elmer. We need a way to only delete Elbert’s extra
rows from the table, making sure to leave one.

This customer is
frustrated because he
keeps receiving multiple
copies of Elmer's emails.

Using the Remove Email page
from the previous chapter would
remove the customer entirely
from Elmer's database, which is
not what we want.

when good DELETEs go bad

you are here 4 207

realistic and practical applications

Joe: Maybe our Add Email form should check for duplicate email addresses before
adding new users. That would fix it, right?

Frank: Excellent idea.

Jill: Yes, that would solve the problem moving forward, but it doesn’t help us deal with
duplicate email addresses that are already in the database.

Frank: Right. What if we tried to use a different column in the table to delete the
extra rows, like last_name?

Jill: I wondered about that, but using a last name is potentially even worse than an
email address. What if we wanted to delete someone named John Smith from our
mailing list, and we ran the following SQL code:

DELETE FROM email_list WHERE last_name = 'Smith'

Joe: We wouldn’t just delete John Smith from our table; we’d be deleting Will Smith, Maggie Smith, Emmitt Smith...

Frank: Wow, that wouldn’t be good. Last names are more likely to be common across rows than email addresses, and
first names would be even worse than that. We could lose dozens and dozens of rows with one simple query.

Jill: Exactly. We can’t risk using a WHERE clause that will delete rows we need to keep. We need to be certain we can
pinpoint just the ones we want to remove.

Joe: So what the heck do we do? We can’t use email, last_name, or first_name in our WHERE clause.

Frank: We’re out of columns in our table to use. Looks like we’re out of luck.

Jill: Not necessarily. What we really need is something to make each row of the table unique—then we could pinpoint
rows without any trouble. And just because we don’t currently have a column that has a unique value for each row
doesn’t mean we can’t add one.

Joe: A new column? But we’ve already decided on our table structure.

Frank: Yeah, but what we’ve got isn’t meeting our needs. You’re right that it would be better if we had realized this
beforehand, so we could have designed our table accordingly, but it’s not too late to fix what we’ve got.

Joe: OK, but what would we call our new column? What data would we put into it?

Jill: Well, since its purpose would be to uniquely identify each row in the table, we could call it identifier, or
maybe just id for short.

Frank: Nice, and we can fill the id column with a different ID number for each row, so when we execute our DELETE,
we’ll be removing rows based on a unique number, instead of an email address or surname.

Joe: Exactly. It’s really a great idea, isn’t it? I’m so glad I thought of it.

Frank Jill Joe

Hmm. The problem is that there are multiple rows
in the table but no way to distinguish them from each
other. Without a way to isolate them individually, any
DELETE we try to do will delete all of them.

208 Chapter 4

Table rows should be uniquely identifiable
Part of the whole idea of sticking something in a database is that later on you’d like
to look it up and do something with it. Knowing this, it’s incredibly important for
each row in a table to be uniquely identifiable, meaning that you can specifically
access one row (and only that row!). Elmer’s email_list table makes a dangerous
assumption that email addresses are unique. That assumption works as long as no
one accidentally subscribes to the mailing list twice, but when they do (and they will!),
their email address gets stored in the table twice... no more uniqueness!

When you don’t have a column of truly unique values in a table, you should
create one. MySQL gives you a way to add a unique integer column, also called a
primary key, for each row in your table.

What Elmer’s table contains now:

More than one person can have the
same first name, so this isn’t a good
choice for a unique column.

And while most of the
time email is unique, we
can’t count on that
always being the case.

first_name last_name email

Denny Bubbleton denny@mightygumball.net

Irma Werlitz iwer@aliensabductedme.com

Elbert Kreslee elbert@kresleesprockets.biz

Irma Kreslee elbert@kresleesprockets.biz

Same here, we can’t count
on unique last names.

id first_name last_name email

1 Denny Bubbleton denny@mightygumball.net

2 Irma Werlitz iwer@aliensabductedme.com

3 Elbert Kreslee elbert@kresleesprockets.biz

4 Irma Kreslee elbert@kresleesprockets.biz

We need a new column that contains a value
that is unique for every row in the table.

Now that this column contains a unique
value, we can be sure that every row in
our table is truly unique.

What Elmer’s table should contain:

Nothing in the structure
of this table guarantees
uniqueness among rows.

Duplicate data in other
columns no longer affects the uniqueness of rows
because the new id column takes care of that.

adding a primary key column to a table

you are here 4 209

realistic and practical applications

It's true that DROP TABLE would destroy Elmer's data. But
SQL has a another command that lets you make changes
to an existing table without losing any data.
It’s called ALTER TABLE, and we can use it to create a new column without
having to drop the table and destroy its data. Here’s what the general format of
an ALTER TABLE statement looks like for adding a new column to a table:

ALTER TABLE email_list ADD id INT NOT NULL AUTO_INCREMENT FIRST,

 ADD PRIMARY KEY (id)

This ALTER TABLE statement has a lot going on because primary keys have
to be created with very specific features. For example, NOT NULL tells MySQL
that there must be a value in the id column—you can never leave it blank.
AUTO_INCREMENT further describes the traits of the id column by causing it to
automatically get set to a unique numeric value when a new row is inserted. As its
name suggests, AUTO_INCREMENT automatically adds one to the last id value used
in a row and places this value into the id column when you INSERT a new row into
your table. Finally, PRIMARY KEY tells MySQL that each value in the id column is
unique, but there’s more to it than just uniqueness...

Hey genius, you know if we want to make
a change to the table structure, we have to
do a DROP TABLE and then recreate it from
scratch. Elmer's email data will be toast!

ALTER TABLE table_name ADD column_name column_type

We can use the ALTER TABLE command to add a new column to the
email_list table, which we’ll name id. We’ll give the id column a data type of
INT, since integers work great for establishing uniqueness. Some other information is
also required, as this code reveals:

The name of the
table to be altered.

The name of the new
column to be added.

The data type of
the new column.

The data type of
the column makes
it an INTeger.

This tells the MySQL server to add
1 to the value stored in this column
for each new row that’s inserted.

The name of the table
that we want to alter. We want to ADD a new

column, which we call id.

FIRST tells MySQL to make the new column
first in the table. This is optional, but it’s
good form to put your id column first.

This little chunk of
code tells MySQL
that the new
id column is the
primary key for the
table. More on that
in just a sec!

210 Chapter 4

Primary keys enforce uniqueness
A primary key is a column in a table that distinguishes each row in that table as
unique. Unlike normal columns, which could also be designed to be unique, only
one common can be made the primary key. This provides a clear choice for what
column to use in any queries that need to pinpoint specific rows.

In order to ensure this uniqueness for primary keys, MySQL imposes a bunch of
restrictions on the column that has been declared as PRIMARY KEY. You can think
of these restrictions as rules to be followed as you work with primary keys:

The data in a primary key can't be repeated.
Two rows should never have the same data in their primary keys. No exceptions—a
primary key should always have unique values within a given table.

A primary key is
a column in your
table that makes
each row unique.The five rules of primary keys:

A primary key must have a value.
If a primary key was left empty (NULL), then it might not be unique because other rows
could potentially also be NULL. Always set your primary keys to unique values!

The primary key must be set when a new row is inserted.
If you could insert a row without a primary key, you would run the risk of ending up with
a NULL primary key and duplicate rows in your table, which would defeat the purpose.

A primary key must be as efficient as possible.

A primary key should contain only the information it needs to be unique and nothing
more. That’s why integers make good primary keys—they allow for uniqueness without
requiring much storage.

The value of a primary key can’t be changed.
If you could change the value of your key, you’d risk accidentally setting it to a value you
already used. Remember, it has to remain unique at all costs.

2

1

3

4

5

id first_name last_name email

1 Denny Bubbleton denny@mightygumball.net

2 Irma Werlitz iwer@aliensabductedme.com

...

The id column in Elmer's table
doesn't have repeat data,
has a value for every row, is
automatically set when a new
row is inserted, is compact,
and doesn't change. Perfect!

all about primary keys

you are here 4 211

realistic and practical applications

mysql> SELECT * FROM email_list;

+------+------------+------------------+-------------

----------------+

| id | first_name | last_name | email
 |

+------+------------+------------------+-------------
----------------+

| 1 | Denny | Bubbleton | denny@mighty
gumball.net |

| 2 | Irma | Werlitz | iwer@aliensa
bductedme.com |

| 3 | Elbert | Kreslee | elbert@kresl
eesprockets.biz |

| 4 | Irma | Kreslee | elbert@kresl
eesprockets.biz |

| 5 | Don | Draper | draper@sterl
ing-cooper.com |

+------+------------+------------------+-------------
----------------+

5 rows in set (0.0005 sec)

File Edit Window Help Email

Alter Elmer's table and try out inserting a new row of
data with a primary key.
Using a MySQL tool such as the MySQL terminal or the SQL tab of
phpMyAdmin, enter the ALTER TABLE statement to add a primary key
column named id:

ALTER TABLE email_list ADD id INT NOT NULL AUTO_INCREMENT FIRST,

 ADD PRIMARY KEY (id)

INSERT INTO email_list (first_name, last_name, email)

 VALUES ('Don', 'Draper', 'draper@sterling-cooper.com')

SELECT * FROM email_list

Now insert a new customer to the database to see if the id column is
automatically set for the new row. Here’s an example of an INSERT
statement to use (notice the primary key isn’t mentioned):

Finally, issue a SELECT statement to view the contents of the table and
see the new primary key in all its glory! Just in case you’ve forgotten,
here’s the SELECT statement:

The new id column
is auto-incremented
so that it remains
unique for the new
row of data.

Test Drive

212 Chapter 4

Joe: The problem is that the user needs to pinpoint rows of data using the
primary key instead of the email address.

Frank: That’s right! So we just need to change the form so that the user enters the
ID of a customer instead of their email address. No problemo!

Jill: Actually, big problemo. The user has no way of knowing the ID of a customer
without somehow finding them in the database. In fact, the user doesn't know
anything about the database structure. Maybe what we need is to rethink the form
so that it lists out all the names and email addresses in a list with checkboxes next
to each one. Here, I’ll sketch it for you.

Frank: Nice sketch, but how does that help Elmer isolate a customer for deletion
using their ID?

Joe: Hmm. What if we stored the customer ID in the value of the checkbox. That
way it isn't actually visible, but the script can get to it.

Jill: That's a great idea. So we could generate the form automatically in a loop by
doing a SELECT to get all the data, and then creating each checkbox input field
from a row of query data.

Joe: Cool. But what happens when the Submit button is pressed? What does
$_POST have in it?

Frank: Hang on, Joe, we’ll get there in a minute. Let’s just start by building this
part of the script, the part that displays all the data from the table and writes out
those checkboxes...

Okay, so now every row in the table has a
unique primary key. How does that help? Elmer

still deletes based on email addresses.

John Doe johndoe@someemail.com

The value of the checkbox will
keep track of the id value.

cubicle conversation

you are here 4 213

realistic and practical applications

<img src="blankface.jpg" width
="161" height="350" alt="" sty

le="float:right" />

<img name="elvislogo" src="elv
islogo.gif" width="229" height

="32" border="0" alt="Make Me
Elvis" />

<p>Please select the email add
resses to delete from the emai

l list and click Remove.</p>

<form method="post" action="

 echo $_SERVER['PHP_
SELF']; ">

<?php
 $dbc = mysqli_connect('data.

makemeelvis.com', 'elmer', 'th
eking', 'elvis_store')

 or die('Error connecting t
o MySQL server.');

 // Display the customer rows

 with checkboxes for deleting

 $query = "SELECT * FROM emai
l_list";

 $result = mysqli_query($dbc,
 $query);

 while (= mysqli

_fetch_array($result)) {

 echo '<input type="checkbo

x" value="' .
 . '" name="todel

ete[]" />';

 echo

 ;

 echo ' ' .

 ;

 echo ' ' .

 ;

 echo '
';

 }

 mysqli_close($dbc);

?>

 <input type="submit" name="

 " value="Remove" />

</form>

PHP & MySQL Magnets
Use the magnets below to finish the missing code for the Remove Email script, which presents a series
of checkboxes for the customers in Elmer's database. Note that this code just creates the form; don't
worry about the code that performs the DELETE just yet.

removeemail.php

submit

id

$

[

]

' '

<?php

 ?>
row

first_name

$

[
]

'

'
row

last_name

$

[

]

'
'

row

email
$

[
]

'

'

row
$

row

214 Chapter 4

<img src="blankface.jpg" width
="161" height="350" alt="" sty

le="float:right" />

<img name="elvislogo" src="elv
islogo.gif" width="229" height

="32" border="0" alt="Make Me
Elvis" />

<p>Please select the email add
resses to delete from the emai

l list and click Remove.</p>

<form method="post" action="

 echo $_SERVER['PHP_
SELF']; ">

<?php
 $dbc = mysqli_connect('data.

makemeelvis.com', 'elmer', 'th
eking', 'elvis_store')

 or die('Error connecting t
o MySQL server.');

 // Display the customer rows

 with checkboxes for deleting

 $query = "SELECT * FROM emai
l_list";

 $result = mysqli_query($dbc,
 $query);

 while (= mysqli

_fetch_array($result)) {

 echo '<input type="checkbo

x" value="' .
 . '" name="todel

ete[]" />';

 echo

 ;

 echo ' ' .

 ;

 echo ' ' .

 ;

 echo '
';

 }

 mysqli_close($dbc);

?>

 <input type="submit" name="

 " value="Remove" />

</form>

PHP & MySQL Magnets Solution
Use the magnets below to finish the missing code for the Remove Email script, which presents a series
of checkboxes for the customers in Elmer's database. Note that this code just creates the form; don't
worry about the code that performs the DELETE just yet.

removeemail.php

submit

row id$ []' '

<?php
 ?>

row first_name$ []' '

row last_name$ []' '

row
email$ []' '

row$

You can name your Submit button anything you want - just be sure to remember the
name later if you decide to check $_POST to see if the form was submitted.

Inline PHP code still has
to be placed inside <?php
and ?> tags.

Each checkbox input
field is constructed from
a row of customer data.

The script doesn't actually
do any deleting yet. For
now it just presents a list
of checkboxes.

This is where the primary key
gets used in the checkbox -
we can use this later to delete
any checked customers.

This form is self-referencing!

php & mysql magnets solution

you are here 4 215

realistic and practical applications

The square brackets at
the end of the checkbox
name automatically put the
checkbox values in an array
we've named “todelete[]”.

The square brackets result in the creation of an array within $_POST that stores the
contents of the value attribute of every checked checkbox in the form. Since each
checkbox’s value attribute contains a primary key, each value in the todelete
array is the ID of the row in our table that needs to be deleted. This
makes it possible for us to loop through the todelete array and issue an SQL
query to delete each customer that is checked in the form.

I get it. We just use a while loop to cycle
through the todelete array and delete
each of the customers using their IDs.

From checkboxes to customer IDs
The checkbox code generated by the Remove Email script is simple HTML with
our primary key (id) stuffed into the value attribute of the <input> tag. There’s
one small, but very important change from ordinary checkbox HTML code, though.
You might have noticed square brackets ([]) at the end of the checkbox name—they
serve a vital purpose.

We could use a while loop but there’s a more elegant
solution using a different kind of loop.
The foreach loop is a special kind of loop designed specifically for cycling
through values stored in an array. All you need to do is specify the array
you’d like to loop through and a variable to store the values in, and PHP will
take care of iterating over them one by one... no test condition required!

echo '<input type="checkbox" value="' . $row['id'] . '" name="todelete[]">';

Each checkbox form field has the ID
of the customer stored away, which is
accessible through the $_POST superglobal.

Write down how you think a foreach loop might loop through
an array of Elmer’s customer IDs:

216 Chapter 4

foreach ($customers as $customer) {

 echo $customer;

};

$_POST['todelete']

Loop through an array with foreach
The foreach loop takes an array and loops through each element in the array
without the need for a test condition or loop counter. As it steps through each
element in the array, it temporarily stores the value of that element in a variable.
Assuming an array is stored in a variable named $customers, this code steps
through each one:

The $delete_id variable holds the value of each array element as the loop
progresses through them one at a time.

foreach ($_POST['todelete'] as $delete_id) {

 // Delete a row from the table

};

So if we want to loop through the customer IDs stored in the $_POST array in the
Remove Email script, we can use the following foreach code:

The array you want to
loop through appears first.

As the loop goes through each individual
element in the array, it will temporarily
store them in a variable with this name.

Inside of the loop, you can access each element
using the variable name you just provided.

Here the array is stored inside
of the $_POST superglobal,
and identified by “todelete". Each element of the array will be accessible through the variable $delete_id.

We can use $delete_id to delete each
of the customers from the database.

$delete_id

With the foreach loop now stepping through each of the checked checkboxes
in the Remove Email form, we just need to add code inside of the loop to issue a
DELETE query and actually delete each row from the email_list table.

We can use this variable
to access the ID of each
customer and then delete
them from the table.

We constructed this
array so that it only
holds customers that
were checked in the
Remove Email form.

anatomy of a foreach loop

you are here 4 217

realistic and practical applications

Finish the code for Elmer’s new and improved removeemail.php script so that it deletes
customers that have been checked in the form when the form is submitted.

 ...

 $dbc = mysqli_connect('data.makemeelvis.com', 'elmer', 'theking', 'elvis_store')

 or die('Error connecting to MySQL server.');

 // Delete the customer rows (only if the form has been submitted)

 if () {

 foreach ($_POST['todelete'] as $delete_id) {

 }

 echo 'Customer(s) removed.
';

 }

 // Display the customer rows with checkboxes for deleting

 $query = "SELECT * FROM email_list";

 $result = mysqli_query($dbc, $query);

 while ($row = mysqli_fetch_array($result)) {

 echo '<input type="checkbox" value="' . $row['id'] . '" name="todelete[]" />';

 echo $row['first_name'];

 echo ' ' . $row['last_name'];

 echo ' ' . $row['email'];

 echo '
';

 }

 mysqli_close($dbc);

?>

 <input type="submit" name="submit" value="Remove" />

</form> removeemail.php

218 Chapter 4

Finish the code for Elmer’s new and improved removeemail.php script so that it deletes
customers that have been checked in the form when the form is submitted.

 ...

 $dbc = mysqli_connect('data.makemeelvis.com', 'elmer', 'theking', 'elvis_store')

 or die('Error connecting to MySQL server.');

 // Delete the customer rows (only if the form has been submitted)

 if () {

 foreach ($_POST['todelete'] as $delete_id) {

 }

 echo 'Customer(s) removed.
';

 }

 // Display the customer rows with checkboxes for deleting

 $query = "SELECT * FROM email_list";

 $result = mysqli_query($dbc, $query);

 while ($row = mysqli_fetch_array($result)) {

 echo '<input type="checkbox" value="' . $row['id'] . '" name="todelete[]" />';

 echo $row['first_name'];

 echo ' ' . $row['last_name'];

 echo ' ' . $row['email'];

 echo '
';

 }

 mysqli_close($dbc);

?>

 <input type="submit" name="submit" value="Remove" />

</form> removeemail.php

Only delete
customers
if the form
has been
submitted! Use $delete_id to

choose the exact
customer to delete.

The code to generate the
customer checkboxes is the
same as you created it before.

$query = “DELETE FROM email_list WHERE id = $delete_id”;
mysqli_query($dbc, $query)
 or die(‘Error querying database.’);

isset($_POST['submit'])

the revised removeemail.php script

you are here 4 219

realistic and practical applications

Take Elmer's newly revamped Remove Email script for a spin.
Modify the code in the removeemail.php script so that it generates customer
checkboxes instead of using the old email text field. Then add the code to delete
customers whenever the form’s submitted. Also change the action attribute of
the <form> tag so that the form’s self-referencing.

Now that removeemail.php uses a self-referencing form, you no longer need
the removeemail.html page on your web server, so feel free to delete it. Then
upload the new version of removeemail.php to your web server and open the
script in a web browser. Check off a few customers and click Submit. The form
immediately changes to reflect the customer removal.

When you check off a customer
and click Submit, the customer’s
removed from the database.

The script confirms the
customer removal and also
updates the checklist - the
deleted customer is now gone.

Test Drive

220 Chapter 4

Elmer’s got a fully functioning application. He can add customers,
send out spectacular sale emails to just the customers who want to
receive them, and delete customers who have traveled to the dark
side, or just want to be removed from his list. Life is good.

T O

LAS VEGAS
N E V A D A

Totally digging my new
Remove Email form. Time
for a vacation. Viva Las
Vegas, baby!

viva makemeelvis.com!

you are here 4 221

realistic and practical applications

Your PHP & MySQL Toolbox
You bagged quite a few new PHP and
MySQL skills while taking Elmer's web

application to a whole new level...

ALTER TABLE

This SQL statement changes the structure of a table, such as adding a new column of data. This allows you to alter a table structurally without having to drop it and start over.

if, else

The PHP if statement makes
decisions based on whether or not
something is true. Give it a true/
false test condition and some
action code, and an if statement
will let you make all kinds of cool
decisions. An else clause can be
added to an if statement to give
it an alternate action.

==, <>, !=, <, >, ...

Comparison operators that can be
used to construct test conditions
that compare values to each other. These are often used to control
if statements and loops.

!

The negation operator, or NOT
operator, reverses a true/false
value. So true becomes false and
false becomes true.

&&, OR

These are logical operators that
are used to build expressions
involving true/false values.
Combining two values with &&
(AND) results in true only if both
values are true. Combining values
with || (OR) results in true if
either of the values is true.

foreach

A PHP looping construct that lets
you loop through an array one
element at a time without using a
test condition. Inside the loop, you
can access each element of the
array.

isset(), empty()

The built-in PHP isset() function tests to see if a variable exists, which means that it has been
assigned a value. The empty()
function takes things one step
further and determines whether a variable contains an empty value (0, an empty string, false, or
NULL).

CHAPT
ER 4

this is a new chapter 223

working with data stored in files5

When a database just
isn’t enough

You’ve got permission to
upload that to me, and I’ll
file it under delicious!

Don't believe the hype...about databases, that is. Sure, they work

wonders for storing all kinds of data involving text, but what about binary data? You

know, stuff like JPEG images and PDF documents. Does it really make sense to store

all those pictures of your rare guitar pick collection in a database table? Usually not. That

kind of data is typically stored in files, and we'll leave it in files. But it's entirely possible

to have your virtual cake and eat it too—this chapter reveals that you can use files and

databases together to build PHP applications that are awash in binary data.

I’ll file you in
the pest folder.

224 Chapter 5

Virtual guitarists like to compete
Apparently creating art for art’s sake isn’t always enough because players
of the hot new game Guitar Wars are quite enamored with competitive
virtual guitar playing. So much so that they regularly post their high scores
at the Guitar Wars web site, which you are now in charge of maintaining.
Problem is, there isn’t currently a good way to verify the scores.

This is so bogus. There's
no way all those scores are
real. I'd like to see proof!

Text can't be trusted
Right now players just post up their high scores purely as text, and there
have been lots of disputes over whose scores are valid and whose aren’t.
There’s only one way to put an end to all this bickering and crown a
legitimate Guitar Wars champion...

Belita, skeptical
Guitar Wars rocker.

With no way to verify, we can't know whose score is valid and whose isn't.

The Guitar Wars application allows users to add their own scores to the high score list.

guitar wars needs screenshots

you are here 4 225

working with data stored in files

Visual verification of a high score is what we need to determine who’s
for real and who isn’t. So the Guitar Wars application needs to allow
users to submit a screen shot of their high score when posting their
score. This means the high score list will not only be a list of scores,
names, and dates, but also a list of images (screen shots).

Eddie, rocker
wannabe and Guitar
Wars score faker.

With photo verification,
we find out that Eddie
is a Guitar Wars fraud!

Belita's score is
legit, thanks to her
submitted screen shot.

So you're saying I'm
actually going to have
to learn to play this
thing? Bummer.

rockin’The proof is in the
picture

226 Chapter 5

The application needs to store images
Currently, the Guitar Wars high score application keeps track of three
pieces of information: the date and time of a new score, the name of
the person submitting the score, and the score itself. This information is
entered through a form as part of the application’s user interface, after
which it gets stored in a MySQL database table called guitarwars.

The "add your own score"
link on the main Guitar
Wars page leads to the
Add Score page.

The Add Score page presents
a form for entering the name
and score (the date/time is
automatically entered as the
current date/time).

The new high score
is confirmed so that
the user knows it was
successfully added.

the guitar wars application design

you are here 4 227

working with data stored in files

guitarwars

id date name score

1 2008-04-22 14:37:34 Paco Jastorius 127650

2 2008-04-22 21:27:54 Nevil Johansson 98430

3 2008-04-23 09:06:35 Eddie Vanilli 345900

4 2008-04-23 09:12:53 Belita Chevy 282470

5 2008-04-23 09:13:34 Ashton Simpson 368420

6 2008-04-23 14:09:50 Kenny Lavitz 64930

After entering a name and
score and clicking Add, the
new score is confirmed and
added to the guitarwars
table in the database.

The newly added score
immediately appears on the
main Guitar Wars page.

This is the exact date
(and time) that a score
was submitted to the
Guitar Wars application.

The guitarwars table
also stores the name
and score for each
high score entry in
the database.

This ID is the primary
key for the database
and is automatically
generated for each row.

228 Chapter 5

The Guitar Wars high score application will have to change to accommodate uploadable image
files for high score screen shots. Circle and annotate the parts of the application that must
change to support user-submitted images.

This file doesn't
need to change, so
you don't have to
worry about it.

guitarwars
id date name score
1 2008-04-22 14:37:34 Paco Jastorius 127650
2 2008-04-22 21:27:54 Nevil Johansson 98430
3 2008-04-23 09:06:35 Eddie Vanilli 345900
4 2008-04-23 09:12:53 Belita Chevy 282470
5 2008-04-23 09:13:34 Ashton Simpson 368420
6 2008-04-23 14:09:50 Kenny Lavitz 64930

<html xmlns="http://www.w3
.org/1999/xhtml" xml:lang=

"en" lang="en">

<head>
 <title>Guitar Wars - Hig

h Scores</title>

 <link rel="stylesheet" t
ype="text/css" href="style

.css" />

</head>
<body>
 <h2>Guitar Wars - High S

cores</h2>

 <p>Welcome, Guitar Warri
or, do you have what it ta

kes to crack the

 high score list? If so,
just <a href="addscore.php

">add your own

 score.</p>

 <hr />

<?php
 // Connect to the databa

se

 $dbc = mysqli_connect('w
ww.guitarwars.net', 'admin

', 'rockit', 'gwdb');

 // Retrieve the score da

ta from MySQL

 $query = "SELECT * FROM
guitarwars";

 $data = mysqli_query($db
c, $query);

 // Loop through the arra

y of score data, formattin
g it as HTML

 echo '<table>';

 while ($row = mysqli_fet
ch_array($data)) {

 // Display the score d
ata

 echo '<tr><td class="s
coreinfo">';

 echo '<span class="sco
re">' . $row['score'] . '<

/span>
';

 echo 'Name:</s
trong> ' . $row['name'] .

'
';

 echo 'Date:</s
trong> ' . $row['date'] .

'</td></tr>';

 }
 echo '</table>';

 mysqli_close($dbc);

?>

</body>
</html>

The complete source code for the Guitar Wars
application is available for download from the
Head First Labs web site:

www.headfirstlabs.com/books/hfphp

Download It!

style.css

index.php

annotate the code

you are here 4 229

working with data stored in files

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en"> <head>
 <title>Guitar Wars - Add Your High Score</title>
 <link rel="stylesheet" type="text/css" href="style.css" /> </head>
<body>
 <h2>Guitar Wars - Add Your High Score</h2>

<?php
 if (isset($_POST['submit'])) {
 // Grab the score data from the POST
 $name = $_POST['name'];
 $score = $_POST['score'];

 if (!empty($name) && !empty($score)) {
 // Connect to the database
 $dbc = mysqli_connect('www.guitarwars.net', 'admin', 'rockit', 'gwdb');
 // Write the data to the database
 $query = "INSERT INTO guitarwars VALUES (0, NOW(), '$name', '$score')"; mysqli_query($dbc, $query);

 // Confirm success with the user
 echo '<p>Thanks for adding your new high score!</p>'; echo '<p>Name: ' . $name . '
'; echo 'Score: ' . $score . '</p>'; echo '<p><< Back to high scores</p>';
 // Clear the score data to clear the form
 $name = "";
 $score = "";

 mysqli_close($dbc);
 }
 else {
 echo '<p class="error">Please enter all of the information to add ' . 'your high score.</p>';
 }

 }
?>

 <hr />
 <form method="post" action="<?php echo $_SERVER['PHP_SELF']; ?>"> <label for="name">Name:</label><input type="text" id="name" name="name" value="<?php if (!empty($name)) echo $name; ?>" />
 <label for="score">Score:</label><input type="text" id="score" name="score" value="<?php if (!empty($score)) echo $score; ?>" /> <hr />
 <input type="submit" value="Add" name="submit" />
 </form>
</body>
</html>

addscore.php

230 Chapter 5

guitarwars
id date name score1 2008-04-22 14:37:34 Paco Jastorius 1276502 2008-04-22 21:27:54 Nevil Johansson 984303 2008-04-23 09:06:35 Eddie Vanilli 3459004 2008-04-23 09:12:53 Belita Chevy 2824705 2008-04-23 09:13:34 Ashton Simpson 3684206 2008-04-23 14:09:50 Kenny Lavitz 64930

The Guitar Wars high score application will have to change to accommodate uploadable image
files for high score screen shots. Circle and annotate the parts of the application that must
change to support user-submitted images.

<html xmlns="http://www.w3
.org/1999/xhtml" xml:lang=

"en" lang="en">

<head>
 <title>Guitar Wars - Hig

h Scores</title>

 <link rel="stylesheet" t
ype="text/css" href="style

.css" />

</head>
<body>
 <h2>Guitar Wars - High S

cores</h2>

 <p>Welcome, Guitar Warri
or, do you have what it ta

kes to crack the

 high score list? If so,
just <a href="addscore.php

">add your own

 score.</p>

 <hr />

<?php
 // Connect to the databa

se

 $dbc = mysqli_connect('w
ww.guitarwars.net', 'admin

', 'rockit', 'gwdb');

 // Retrieve the score da

ta from MySQL

 $query = "SELECT * FROM
guitarwars";

 $data = mysqli_query($db
c, $query);

 // Loop through the arra

y of score data, formattin
g it as HTML

 echo '<table>';

 while ($row = mysqli_fet
ch_array($data)) {

 // Display the score d
ata

 echo '<tr><td class="s
coreinfo">';

 echo '<span class="sco
re">' . $row['score'] . '<

/span>
';

 echo 'Name:</s
trong> ' . $row['name'] .

'
';

 echo 'Date:</s
trong> ' . $row['date'] .

'</td></tr>';

 }
 echo '</table>';

 mysqli_close($dbc);

?>

</body>
</html>

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en"> <head>
 <title>Guitar Wars - Add Your High Score</title>
 <link rel="stylesheet" type="text/css" href="style.css" /> </head>
<body>
 <h2>Guitar Wars - Add Your High Score</h2>

<?php
 if (isset($_POST['submit'])) {
 // Grab the score data from the POST
 $name = $_POST['name'];
 $score = $_POST['score'];

 if (!empty($name) && !empty($score)) {
 // Connect to the database
 $dbc = mysqli_connect('www.guitarwars.net', 'admin', 'rockit', 'gwdb');
 // Write the data to the database
 $query = "INSERT INTO guitarwars VALUES (0, NOW(), '$name', '$score')"; mysqli_query($dbc, $query);

 // Confirm success with the user
 echo '<p>Thanks for adding your new high score!</p>'; echo '<p>Name: ' . $name . '
'; echo 'Score: ' . $score . '</p>'; echo '<p><< Back to high scores</p>';
 // Clear the score data to clear the form
 $name = "";
 $score = "";

 mysqli_close($dbc);
 }
 else {
 echo '<p class="error">Please enter all of the information to add ' . 'your high score.</p>';
 }

 }
?>

 <hr />
 <form method="post" action="<?php echo $_SERVER['PHP_SELF']; ?>"> <label for="name">Name:</label><input type="text" id="name" name="name" value="<?php if (!empty($name)) echo $name; ?>" />
 <label for="score">Score:</label><input type="text" id="score" name="score" value="<?php if (!empty($score)) echo $score; ?>" /> <hr />
 <input type="submit" value="Add" name="submit" />
 </form>
</body>
</html>

The screen shot image
needs to be displayed
on the main page.

The screen shot image file must be obtained from form POST data.
You should validate to make sure the image filename isn't empty.

The image should be displayed
to the user to confirm success. Upon success, make sure the sticky

image form field gets cleared.

The form needs an
<input> tag for the
image file selection.

The table needs a
new column to store
the screen shot image
filename for each score.

The SQL query must
now insert the image
filename into the
guitarwars table.

This query takes a bit of a shortcut
by not specifying column names.

index.php

addscore.php

annotated guitar wars code

you are here 4 231

working with data stored in files

Planning for image file uploads in Guitar Wars
Although it may not seem like a big deal to add support for uploadable screen shot
images to Guitar Wars, the application must change in a variety of ways. For this
reason, it’s a good idea to have a plan of attack before diving into any code. Let’s nail
down the steps required to revamp the Guitar Wars high scores for screen shots.

 Use ALTER to add a screenshot column
to the table.
First off is the database, which needs a new column

for storing the name of each screen shot image file.

Since we plan on putting all image files in the same

folder, all we need to store in the database is the

filename itself (no path).

1

screenshot

 Change the Add Score form so that it uses a file input field to allow image file uploads.
The Add Score page already has a form for adding scores, so we need to modify that form and give it a file input field. This input field works in conjunction with the web browser to present the user with a user interface for selecting a file to upload.

2

 Write a query to INSERT the screen
shot image filename into the
screenshot column of the table.
The Add Score script that processes the form for
adding scores must also take into consideration the
new file input form field, and handle inserting a
screen shot image filename into the screenshot
column when inserting a new high score row into the
guitarwars table.

3

screenshot

phizsscore.gif

 Change the main Guitar Wars
page to show screen shot
images for the high scores.

Last on the laundry list of changes

involves the main index.php Guitar

Wars page, which must be changed to

actually show the screen shot image for

each high score that is displayed.

4

232 Chapter 5

The high score database must be ALTERed
In addition to a variety of PHP scripting tweaks, the image-powered
Guitar Wars application needs a new column in the guitarwars table
to store screen shot image filenames. Enter SQL, which offers a statement
called ALTER that is capable of modifying tables in all kinds of interesting
ways, including adding new columns of data. You used the ALTER
statement in the previous chapter to tweak Elmer’s email_list table,
but let’s recap how the command works.

The ALTER
statement is used to
change the structure
of a database.
The ALTER statement is often
followed by TABLE to indicate
that you're going to alter a table.
It's also possible to alter the
structure of the entire database
with ALTER DATABASE, but
that's another story.

ALTER TABLE guitarwars DROP COLUMN score

OK, maybe that’s a dangerous example since it reveals how to drop an
entire column from a table, data and all. Yet there certainly may be a
situation where you need to remove a column of data from a table. It’s
more likely that you need to add a column of data, as is the case with
Guitar Wars. This is made possible by ADD COLUMN , which is one of
several table alterations you can carry out with ALTER.

ADD COLUMN
Adds a new column to a table—just
specify the name of the column and its
type following ADD COLUMN.

ALTER TABLE guitarwars
ADD COLUMN age TINYINT

DROP COLUMN
Drops a column (and any data stored in it) from a table—just

specify the name of the column following DROP COLUMN.

ALTER TABLE guitarwars

DROP COLUMN age

CHANGE COLUMN
Changes the name and data type of a

column—just specify the name of the old

column, new column, and new data type

following CHANGE COLUMN.

ALTER TABLE guitarwars

CHANGE COLUMN score high_score INT

MODIFY COLUMN
Changes the data type or position of a column
within a table—just specify the name of the
column and its new data type following MODIFY
COLUMN. To change the position of a column,
specify the name of the column and its exact
position (FIRST is the only option here) or a
relative position (AFTER another existing column,
specified by name).

ALTER TABLE guitarwars
MODIFY COLUMN date DATETIME AFTER age

The DROP COLUMN statement drops an entire column from a table.

ALTER your table

you are here 4 233

working with data stored in files

id date name score screenshot

1 2008-04-22 14:37:34 Paco Jastorius 127650

2 2008-04-22 21:27:54 Nevil Johansson 98430

3 2008-04-23 09:06:35 Eddie Vanilli 345900

4 2008-04-23 09:12:53 Belita Chevy 282470

5 2008-04-23 09:13:34 Ashton Simpson 368420

6 2008-04-23 14:09:50 Kenny Lavitz 64930

guitarwars

Write an SQL statement that adds a new column named screenshot
to the guitarwars table. Make sure to give the new column a
suitable MySQL data type. Then write another SQL query to check the
structure of the table and make sure the column was successfully added.

Write the statement
that adds a column here.

Write the other
SQL statement here.

234 Chapter 5

id date name score screenshot

1 2008-04-22 14:37:34 Paco Jastorius 127650

2 2008-04-22 21:27:54 Nevil Johansson 98430

3 2008-04-23 09:06:35 Eddie Vanilli 345900

4 2008-04-23 09:12:53 Belita Chevy 282470

5 2008-04-23 09:13:34 Ashton Simpson 368420

6 2008-04-23 14:09:50 Kenny Lavitz 64930

guitarwars

ALTER TABLE guitarwars
ADD COLUMN screenshot varchar(64)

The ALTER statement adds a new screenshot column to the guitarwars table.

Since the column is new, it starts out empty (NULL) for existing rows in the table.

 Use ALTER to add a screenshot

column to the table.1
DONE

The ALTER statement
doesn't affect any of
the other table data.

ADD COLUMN indicates that
we want to alter the table by
adding a new column of data.

The name of the table to be
altered follows ALTER TABLE.

The name and data type of the new column are specified last in the SQL query - 64 characters are enough to accommodate most image filenames, although you can make the column even longer if you want to be extra safe.

DESCRIBE guitarwars

This statement displays
the structure of the table,
including the column names
and their data types.

The first
step is done!

Write an SQL statement that adds a new column named screenshot
to the guitarwars table. Make sure to give the new column a
suitable MySQL data type. Then write another SQL query to check the
structure of the table and make sure the column was successfully added.

sharpen your pencil solution

you are here 4 235

working with data stored in files

Add the screenshot column to the guitarwars table.
Using a MySQL tool, execute the ALTER statement to add the screenshot
column to the guitarwars table. Then issue the DESCRIBE statement to
take a look at the table structure and make sure the column was added.

mysql> DESCRIBE email_list;
+------------+-------------+------+-----+-------------------+----------------+ | Field | Type | Null | Key | Default | Extra | +------------+-------------+------+-----+-------------------+----------------+ | id | int(11) | NO | PRI | NULL | auto_increment | | date | timestamp | NO | | CURRENT_TIMESTAMP | | | name | varchar(32) | NO | | NULL | | | score | int(11) | NO | | | | | screenshot | varchar(64) | NO | | | | +------------+-------------+------+-----+-------------------+----------------+ 5 rows in set (0.03 sec)

File Edit Window Help OU812

Q: Do new columns added with
ALTER have to be added to the end of a
database table?

A: No, they can be added anywhere. But
keep in mind that the order of the columns
in a table isn't terribly important. In other
words, you can structure query results so
that data is organized in any order you want.
But maybe you like the sense of structural
order brought about by a specific ordering of
columns, in which case you may want to add
a column in an exact location. You can do
this by tacking on the keyword FIRST to
the ALTER query. Or use AFTER column
to place a column relative to another column:

ALTER TABLE guitarwars
ADD COLUMN age TINYINT AFTER name

If you don't specify where a new column is
added, it defaults to the end of the table.

Q: What happens to the existing high
score database rows of data after adding
the new screenshot column?

A: Since the ALTER statement only
affects the structure of a database, the new
screenshot column is empty for all
pre-existing rows of high scores. While it's
possible to populate the screenshot
column of future rows, pre-existing rows all
have an empty screenshot column.

Q: Can screen shot filenames still be
added to the pre-existing rows?

A: Yes, they definitely can, and you would
use the UPDATE SQL statement to do so.
There is nothing stopping you from manually
uploading image files to the web server and
then using UPDATE to fill in the screen
shot filenames for existing scores. But
remember that the whole idea here is user-
submitted image files, so it makes sense
to allow users to upload their own screen
shot images. And they can do exactly this
by using the improved image-powered Add
Score script you're about to build...

Issuing the DESCRIBE
statement reveals the
new screenshot column.

You can construct the
initial guitarwars table
by downloading the
example code for Guitar
Wars, and then executing
the SQL query found in
the file guitarwars.sql.

Test Drive

236 Chapter 5

How do we get an image from the user?
With a new column added to the high score database, we’re ready to
focus on allowing the user to upload an image file. But how exactly is that
possible? FTP? Mental telepathy? This actually leads back to the Add
Score form, where we can use a form field to allow the user to select an
image file to upload.

phizsscore.gif

So an input field helps the user find the file to be uploaded, then
what? The file upload form field also takes care of the selected
image getting uploaded to a folder on the server, where it can
then be displayed as part of the Guitar Wars high score list.

Is this file upload form field some kind of strange extension to
HTML? No, not at all. The HTML <input> tag supports
file form fields and works in conjunction with PHP to allow file
uploads. But before we get into the PHP side of things, let’s take a
closer look at the form field itself...

The specifics of this button are
controlled by the web browser
and the native operating
system. Usually it triggers a file
browser dialog box where the
user can navigate to find a file
on their hard drive.

Upon submitting the form, the binary image file is uploaded to the server.

A folder on the server
receives the image file
and stores it away.

Web server

The Add Score form is what allows
users to add a new high score to
the Guitar Wars high score list.

add images with the add score form

you are here 4 237

working with data stored in files

<form enctype="multipart/form-data" method="post" action="<?php echo $_SERVER['PHP_SELF']; ?>">

 <input type="hidden" name="MAX_FILE_SIZE" value="32768" />

 <label for="name">Name:</label>

 <input type="text" id="name" name="name" value="<?php if (!empty($name)) echo $name; ?>" />

 <label for="score">Score:</label>

 <input type="text" id="score" name="score" value="<?php if (!empty($score)) echo $score; ?>" />

 <label for="screenshot">Screen shot:</label>

 <input type="file" id="screenshot" name="screenshot" />

 <hr />

 <input type="submit" value="Add" name="submit" />

</form>

Establishes a maximum file size for file uploads, in this case 32 KB (32,768 bytes).

This form attribute tells the
form to use a special type
of encoding required for file
uploading - it affects how the
POST data is bundled and sent
when the form is submitted.

The actual file input field,
which ultimately relies on a
native operating system dialog
for file browsing and selection.

This is a self-
referencing form.

 Change the Add Score
form so that it uses a
file input field to allow
image file uploads.

2 DONE

The Add Score Form Up Close

238 Chapter 5

 Write a query to
INSERT the screen
shot image filename
into the screenshot
column of the table.

3

Insert the image into the database
Simply uploading an image file to the web server via a form isn’t enough.
We have to store the filename in the new screenshot column of the
database so that the image can be accessed and displayed. As it stands, the
Add Score script already inserts new high scores into the guitarwars
table using the SQL INSERT statement, but this statement doesn’t factor
in the new screenshot column:

filename

INSERT INTO guitarwars VALUES (0, NOW(), '$name', '$score', '$screenshot')

INSERT INTO guitarwars VALUES (0, NOW(), '$name', '$score')

Image filenames are
stored in the database
as part of an INSERT
statement.

id date name score screenshot
1 2008-04-22 14:37:34 Paco Jastorius 127650
2 2008-04-22 21:27:54 Nevil Johansson 98430
3 2008-04-23 09:06:35 Eddie Vanilli 345900
4 2008-04-23 09:12:53 Belita Chevy 282470
5 2008-04-23 09:13:34 Ashton Simpson 368420
6 2008-04-23 14:09:50 Kenny Lavitz 64930
7 2008-04-24 08:13:52 Phiz Lairston 186580 phizsscore.gif

guitarwars

Passing the screenshot
image filename along in
the INSERT statement
adds it to the database.

Since this SQL statement is inserting values without identifying the
column names for each, it must include a value for every column. But we
just added a new column, which means the query no longer works—it’s
missing a value for the new screenshot column. So adding a screen
shot image filename to the database as part of a new high score row
requires us to add a new value to the INSERT statement:

The MySQL NOW() function is used
to insert the current date/time.

The order of these values
matters since the INSERT
statement is assuming they
are in the same order as
the columns in the table.

DONE

The id column gets set automatically via AUTO_INCREMENT - the 0 is ignored, although the query does require a value here.

Rows of data inserted prior to the
addition of the screenshot column
don't have a screenshot filename.

The new INSERT statement results in the screenshot
filename getting inserted into the screenshot column.

store image filenames in the database

you are here 4 239

working with data stored in files

phizsscore.gif

$_FILES['screenshot']['name']

phizsscore.gif

image/gif

$_FILES['screenshot']['type']

$_FILES['screenshot']['size']

12244

$_FILES['screenshot']['tmp_name']
/tmp/phpE7qJky

$_FILES['screenshot']['error']

0

$screenshot = $_FILES['screenshot']['name'];

Find out the name of the uploaded file
The query looks good, but we still don’t know what the actual filename
of the image is. It’s fair to assume that the file input field in the form
somehow provides access to the filename, but how? The answer lies in a
built-in PHP superglobal variable named $_FILES, which is similar to
the $_POST superglobal we’ve used to access form data. Like $_POST,
$_FILES is an array, and within it is not only the name of the uploaded
file, but also some other information about the file that might prove useful.

The other information made available in the $_FILES variable is
certainly useful, but right this moment, we just need the name of the
image, which can be stored away in a local variable ($screenshot) and
used in the SQL INSERT statement.

This is the image file being uploaded thanks to the file input
field in the form.

The form passes some
useful information about
the file to the PHP
script via the $_FILES
superglobal variable.

<input type="file" name="screenshot" />

The $_FILES
built-in superglobal
variable provides
access to information
about uploaded files.

The name of the
uploaded file.

The MIME type of
the uploaded file,
in this case GIF.

The size (in bytes)
of the uploaded file.

The temporary
storage location of
the file on the server.

The error code for the file
upload; 0 indicates a success,
other values indicate failure.

240 Chapter 5

Wait a minute, we’re only
storing the name of the
image file in the database...
what about the file itself?

Data stored in external files is typically left in external files,
even in database applications.
In this case, the data is a collection of pixels that make up an image, which is stored
in an external file—a GIF, JPEG, or PNG image file. Databases excel at storing text
data, not raw binary data such as images, so it’s better to just store a reference to
an image in the database. This reference is the name of the image file.

Another reason images in web applications aren’t stored in databases is because it
would be much harder to display them using HTML code. Remember that HTML
code references images from external files using filenames. So generating an image
tag in HTML involves using an image filename, not raw image data.

phizsscore.gif

The HTML tag uses
the filename of an image
to reference the image file
on the web server.

Placing an image
on a web page only
requires a reference
to the image file.

The image
filename

keep external file data in external files

you are here 4 241

working with data stored in files

The main Guitar Wars page (index.php) still isn't displaying screen shot
images for the high scores. Finish the code so that it shows the images.

<?php

 // Connect to the database

 $dbc = mysqli_connect('www.guitarwars.net', 'admin', 'rockit', 'gwdb');

 // Retrieve the score data from MySQL

 $query = ;

 $data = mysqli_query($dbc, $query);

 // Loop through the array of score data, formatting it as HTML

 echo '<table>';

 while ($row = mysqli_fetch_array($data)) {

 // Display the score data

 echo '<tr><td class="scoreinfo">';

 echo '' . $row['score'] . '
';

 echo 'Name: ' . $row['name'] . '
';

 echo 'Date: ' . $row['date'] . '</td>';

 if (is_file() && filesize() > 0) {

 echo '<td></td></tr>';

 }

 else {

 echo '<td></td></tr>';

 }

 }

 echo '</table>';

 mysqli_close($dbc);

?>

242 Chapter 5

In a move to help simplify the code, we're not using “or
die()" to produce error messages and exit the script
when a mysqli function fails. You may want to continue
including this code in your own applications but we're
going to skip it from here on for the sake of brevity.

 Change the main
Guitar Wars page
to show screen
shot images for
the high scores.

4 DONE

The main Guitar Wars page (index.php) still isn't displaying screen shot
images for the high scores. Finish the code so that it shows the images.

<?php

 // Connect to the database

 $dbc = mysqli_connect('www.guitarwars.net', 'admin', 'rockit', 'gwdb');

 // Retrieve the score data from MySQL

 $query = ;

 $data = mysqli_query($dbc, $query);

 // Loop through the array of score data, formatting it as HTML

 echo '<table>';

 while ($row = mysqli_fetch_array($data)) {

 // Display the score data

 echo '<tr><td class="scoreinfo">';

 echo '' . $row['score'] . '
';

 echo 'Name: ' . $row['name'] . '
';

 echo 'Date: ' . $row['date'] . '</td>';

 if (is_file() && filesize() > 0) {

 echo '<td></td></tr>';

 }

 else {

 echo '<td></td></tr>';

 }

 }

 echo '</table>';

 mysqli_close($dbc);

?>

$row[“screenshot']$row[‘screenshot']
$row[‘screenshot']

“SELECT * FROM guitarwars”

The SQL statement that requests
scores doesn't change at all!

This function checks to see if a screen shot image file actually exists.

This function checks
to make sure the
screen shot image file
isn't an empty file.

The screenshot column of the database stores
the screen shot image for a given score.

sharpen your pencil solution

you are here 4 243

working with data stored in files

Test Drive
Add a new high score to Guitar Wars, complete with a
screen shot image.
If you haven’t already done so, download the Guitar Wars example code from the
Head First Labs web site at www.headfirstlabs.com/books/hfphp. It’s
in the chapter05 folder. The code consists of the main page (index.php), the
Add Score script (addscore.php), and a style sheet (style.css).

First you need to change the addscore.php script so that its Add Score form
supports file uploads. This includes adding new form fields, adjusting the <form>
tag, and checking to make sure the $screenshot variable isn’t empty. Then
incorporate the new high score INSERT query into the script.

Now shift to the index.php script, and add the new code from the facing page
so that it displays the screen shot image for each high score.

Upload all of these files to your web server and open the addscore.php page
in a web browser. Enter a new high score in the form, and click Submit. Then
navigate to the index.php page and take a look at the new score.

Why do you think the screen shot image doesn't
show up for the new score? What about for the
scores that were already in the database?

Something isn't right! The
image doesn't appear with
the new score as expected.

244 Chapter 5

index.php

Where did the uploaded file go?
The problem with the uploaded image not appearing is that we made an
assumption that the file would be uploaded to the same folder on the web
server as our PHP scripts. As it turns out, this assumption is dead wrong.
The Add Score form lets the user select a file from their own computer,
but the file is actually uploaded to a temporary folder on the server.
The temporary folder is created automatically on the server and usually
has a weird name with a bunch of random letters and numbers.

This presents a problem for our code in index.php because it
assumes the image is located in the main web folder:

phizsscore.gif

root

www tmp

phpE7qJky

mypics

phizsscore.gif

Client web
browser

Web server

This temporary
folder name and
location often
varies with each
PHP installation.

The screen shot
image file begins in
some folder on the
user's computer.

The Add Score script takes care of uploading the image file to a temporary folder on the server.

This code assumes the
image is stored in the
main web folder where
the PHP files are
stored...but it isn't!

addscore.php is
where this form
originates.

style.css
addscore.php

uploaded files are stored in a temporary folder

you are here 4 245

working with data stored in files

Yes! PHP lets you control where uploaded files are stored.
However, you can’t control the initial storage location of uploaded files with PHP,
which is why the location is considered temporary. But you can move a file to another
location after it has been uploaded. The PHP function move_uploaded_file()
accepts the source and destination locations for a file, and then takes care of the moving:

phizsscore.gif

root

tmp

phpE7qJky

phizsscore.gif

www

move_uploaded_file
()

Web server

The file is
moved from
a temporary
folder to a
permanent
folder.

This folder can be any folder
you choose on the web server,
just make sure you have
permission to write files to it.

move_uploaded_file($_FILES['screenshot']['tmp_name'], $target);

This is the
destination location
of the image
file, including the
permanent path
and filename.

This is the source location of
the image file, including the
temporary path and filename.

Storing images in a cryptic temporary folder
seems like an unnecessary hassle. Can we
control where the uploaded files are stored?

style.css
addscore.php

index.php

246 Chapter 5

Q: Can't I change the initial storage location of uploaded
files by modifying the php.ini file?

A: Yes. The PHP initialization file (php.ini) can be used to
change the initial storage location of uploaded files through the
upload_tmp_dir option. But if your application is hosted on
a virtual server, you may not have access to this file, which means
you'll have to move the file to your own folder via PHP script code.

 Q: Why is the initial upload folder called a "temporary"
folder? Does it go away after a file is moved?

A: No. The folder is "temporary" in a sense that it isn't intended
to serve as the final storage location for uploaded files. You can
think of it as a holding area where uploaded files are stored until
they are moved to their final storage location.

Q: Why can't I just leave a file in the temporary folder?

A: You can, in which case you'd need to add
$_FILES['screenshot']['tmp_name'] to
the path of the image to make sure it is found in the temporary
folder. But keep in mind that you don't typically control the name
or location of the folder. Even more important is the fact that
temporary folders can be automatically emptied periodically on
some systems. Another potential issue is that the temporary
upload folder may not be publicly accessible, so you won't be able
to reference uploaded files from HTML code, which is the whole
point in Guitar Wars and most other PHP applications. By moving
uploaded files out of the temporary upload folder, you can carefully
control exactly where they are stored and how they are accessed.

no dumb questions

you are here 4 247

working with data stored in files

OK, so now I know how to
move uploaded files around.
That's really special. But I
still don't have a clue where
they are supposed to go.

Every application needs an images folder.
OK, maybe "need" is a bit strong, but it’s important to organize the pieces
and parts of PHP applications as much as possible, and one way to do so
is to create folders for different components. Since uploaded images are
submitted by users, they aren’t something you typically have direct control
over, at least in terms of filenames and quantity. So it’s a good idea to
store them separately from other application files.

All this said, we need an images folder, where image files that are
uploaded to the Guitar Wars application are stored. This folder can also
serve as the storage location for any other images the application may use,
should the need arise.

images

The images folder isn't
actually any bigger than other
folders, but it helps organize
image files into one place.

248 Chapter 5

Create a home for uploaded image files
The images folder is just like any other folder on the web server except
that it must be placed somewhere beneath the main web folder for the
application. It’s usually fine to just place the folder directly beneath this
web folder, but you’re free to create a more complex folder hierarchy if
you want.

With the images folder created immediately beneath the main web
folder on the web server, it becomes possible to reference image files from
within PHP scripts like this:

phizsscore.gif

root

tmp

phpE7qJkyimages

phizsscore.gif

www

move_uploaded_file(

 $_FILES['screenshot']['tmp_name'],

 $target);

Web server$target = GW_UPLOADPATH . $screenshot;

 If your PHP application is
hosted anywhere other
than your local computer,
you'll need to use FTP to
create the images folder.

Use an FTP program to access the file
system of your web site and create the
images folder beneath the web folder of
the application.

The $target path is built out of a new constant we’re
going to add to the script called GW_UPLOADPATH, which
holds the path to our images folder. Like a variable, a
constant stores a piece of data. But the value of a constant
can’t change once it’s set. The image filename as entered
into the Add Score form is then concatenated to the
images path.

images/phizsscore.gif

This is the web folder for the
application where the PHP scripts
are stored, including index.php.

The images folder
is typically placed
just beneath the
web folder.

Uploaded image
files are moved to
the images folder,
where they can
be displayed via
HTML tags.

The image filename is
concatenated to the path.

style.css
addscore.php

index.php

make a folder for uploaded images

you are here 4 249

working with data stored in files

BE the uploaded image file
Your job is to play the role of an uploaded
screen shot image file and plot your path
through the Guitar Wars application.

Draw your path through
each part of the application,
making sure not to forget
the database. Think like an

uploaded file!

Start here!

$screenshot = $_FILES['screenshot']['name'];

mypics

phizsscore.gif

id date name score screenshot
1 2008-04-22 14:37:34 Paco Jastorius 127650
2 2008-04-22 21:27:54 Nevil Johansson 98430
3 2008-04-23 09:06:35 Eddie Vanilli 345900
4 2008-04-23 09:12:53 Belita Chevy 282470
5 2008-04-23 09:13:34 Ashton Simpson 368420
6 2008-04-23 14:09:50 Kenny Lavitz 64930
7 2008-04-24 08:13:52 Phiz Lairston 186580 phizsscore.gif

guitarwars

phizsscore.gif

root

tmp

phpE7qJkyimages

phizsscore.gif

www

move_uploaded_file()

INSERT INTO guitarwars VALUES (0, NOW(),
'$name', '$score', '$screenshot')

Client web
browser

Web server

GW_UPLOADPATH

250 Chapter 5

$screenshot = $_FILES['screenshot']['name'];

BE the uploaded image file solution
Your job is to play the role of an uploaded
screen shot image file and plot your path
through the Guitar Wars application.

Draw your path through
each part of the application,
making sure not to forget
the database. Think like an

uploaded file!

mypics

phizsscore.gif

phizsscore.gif

root

tmp

phpE7qJkyimages

phizsscore.gif

www

move_uploaded_file()

INSERT INTO guitarwars VALUES (0, NOW(),
'$name', '$score', '$screenshot')

Client web
browser

Web server

GW_UPLOADPATH

The GW stands for
Guitar Wars and indicates
that this is an application-
specific constant.

This folder is
on the user's
computer - you
have no control
over what it's
called or where
it's stored, and
neither do you
care.

You care a lot about the
name and location of this
folder because it is used
throughout Guitar Wars
to store and reference
uploaded image files.

After the file is uploaded
to the server and moved
to its final storage
location, its name gets
added to the database.

Whew!

First, the file is uploaded
using a file input form field. Second, the file is moved from

the temporary upload folder to
the permanent images folder.

Yep, this is a new step we
didn't plan on earlier -
your design must be flexible!

id date name score screenshot
1 2008-04-22 14:37:34 Paco Jastorius 127650
2 2008-04-22 21:27:54 Nevil Johansson 98430
3 2008-04-23 09:06:35 Eddie Vanilli 345900
4 2008-04-23 09:12:53 Belita Chevy 282470
5 2008-04-23 09:13:34 Ashton Simpson 368420
6 2008-04-23 14:09:50 Kenny Lavitz 64930
7 2008-04-24 08:13:52 Phiz Lairston 186580 phizsscore.gif

guitarwars

 Move the uploaded
image file from a
temporary upload
folder to a permanent
folder for images.

5
DONE

addscore.php

be the uploaded image file solution

you are here 4 251

working with data stored in files

Test Drive
Give uploaded screen shot images a permanent home in their own
image folder.
Modify the addscore.php script to use the GW_UPLOADPATH constant and store uploaded
screen shot images in the path it points to. Here’s a peek at the code that needs to change:

<?php
 // Define the upload path and maximum file size constants

 define('GW_UPLOADPATH', 'images/');

 if (isset($_POST['submit'])) {
 // Grab the score data from the POST
 $name = $_POST['name'];
 $score = $_POST['score'];
 $screenshot = $_FILES['screenshot']['name'];

 if (!empty($name) && !empty($score) && !empty($screenshot)) {

 // Move the file to the target upload folder

 $target = GW_UPLOADPATH . $screenshot;

 if (move_uploaded_file($_FILES['screenshot']['tmp_name'], $target)) {

 // Connect to the database
 $dbc = mysqli_connect('www.guitarwars.net', 'admin', 'rockit', 'gwdb');

 // Write the data to the database

 $query = "INSERT INTO guitarwars VALUES (0, NOW(), '$name', '$score', '$screenshot')";

 mysqli_query($dbc, $query);

 // Confirm success with the user
 echo '<p>Thanks for adding your new high score!</p>';

 echo '<p>Name: ' . $name . '
';

 echo 'Score: ' . $score . '
';

 echo '</p>';

 echo '<p><< Back to high scores</p>';

The index.php script is also affected by the GW_UPLOADPATH constant. Don’t forget to
change it as well. After making these changes, upload the scripts to your server and try adding
a high score again.

addscore.php

The uploaded screen
shot image is now visible
on the main page.

The “unverified" image
is displayed for older
scores that don't have
a screen shot image.

252 Chapter 5

Q: If the php.ini file can be
used to control the storage location of
uploaded files, why is it necessary to
move the file?

A: Because it isn't always possible to
change php.ini. For example, if you're
building a PHP application on a virtual
web server, you very likely won't be able to
change the settings in php.ini. And even if
you are able to change php.ini, you run the
risk of breaking your application if you ever
need to move it to another server. In other
words, the application will be dependent on
a path controlled by php.ini, as opposed to a
path controlled by your own PHP code.

Q: Why isn't the date something that
users can enter in Guitar Wars?

A: The date is an important part of a high
score in that it establishes when a score
was officially posted to the site. Like any
record, the first person to achieve a certain
score gets all the glory. Rather than trust a
user to tell us when they achieved their high
score, we can just use the post date/time
as the official recording of the score. This
eliminates bogus dates and lends more
credibility to the high score list. Users of
such a competitive application will always be
looking for an angle, so eliminate as many of
them as you can!
It is worth pointing out that the NOW()
function uses the time on the web server,
which may not be the same as the user's
local time. This shouldn't be a problem,
however, since all users are held to that
same server time.

Q: Isn't it possible for people to
overwrite each other's screen shot
images by uploading image files with the
same names?

A: Yes. The problem has to do with the
fact that the screen shot image stored on the
web server uses the exact same filename
provided by the user in the file upload form
field. So if two users upload image files with
the same filenames, the first user's image
will get overwritten by the second user's
image. Not good. One solution is to add a
degree of uniqueness to the image filename
on the server. A simple way to do this is to
add the current server time, in seconds, to
the front of the filename, like this:

$target = GW_UPLOADPATH . time() .
 $screenshot;

The result of this code is a filename of
1221634560phizsscore.gif instead of
phizsscore.gif, where 1221634560 is the
current time on the server expressed in
seconds.

Q: Could we have stored the actual
image data for an uploaded high score
screen shot in the Guitar Wars database?

A: Yes. Databases are very flexible and
allow you to store binary data within them.
However, the big problem in this case is that
Guitar Wars uses the uploaded images in
HTML code so that they can be displayed
on the main index.php page. The HTML
 tag is designed to reference an
image file stored on the web server, not
a chunk of binary image data stored in
a database. So even if you altered the
guitarwars table to hold binary image
data, you'd be facing a significant challenge
trying to get the data back into a format that
can be displayed using HTML code.

The ALTER statement is used to change the
structure of a MySQL database table, such as
adding a new column of data.

With a little help from PHP and MySQL, an HTML
<input> tag can be used to upload image files.

The superglobal variable $_FILES is where
PHP stores information about an uploaded file.

The standard PHP function move_uploaded_
file() allows you to move files around on the
web server and is critical for handling uploaded
files.

Most web applications benefit from having an
images folder for storing images used by the
application, especially those uploaded by users.

Databases are great for storing
text data, but it's usually
better for them to reference
binary data in external files.

There's nothing terribly special about the time returned by the time() function other than the fact that it sources unique numbers...the number it returns is always growing!

more no dumb questions

you are here 4 253

working with data stored in files

 // Define the upload path and maximum file size constants define('GW_UPLOADPATH', 'images/'); define('GW_MAXFILESIZE', 32768); // 32 KB

If the path changes, you have to change the code in
two places...duplicate code is a bad thing!
So within each of the index.php and addscore.php scripts, the
GW_UPLOADPATH constant works great. But the constant is duplicated
in each script, meaning that any change in the path must be updated in
each script. This kind of code duplication is bad design and should be
eliminated whenever possible.

 // Define the upload path cons
tant

 define('GW_UPLOADPATH', 'image
s/');

I like that the file upload path is stored
in a constant, but why is it created in
two places, index.php and addscore.php?
What happens if the path changes?

To solve the duplicate code
problem, we need to store the
GW_UPLOADPATH constant
in a single place. Would you
store it in index.php or
addscore.php? Why?

The constant is stored twice, meaning it has
to be maintained in two different places.

define('GW_UPLOADPATH', 'images/');

The GW_UPLOADPATH constant stores away the file upload path for screen shot images.

define() is used to
create constants.

The name of
the constant

The value of the constant,
which can never change...it's
constant!

addscore.php

index.php

254 Chapter 5

Shared data has to be shared
When it comes to data that is shared across multiple scripts in an
application, you need a way to store the data in one place and then pull
it into the different scripts. But that still doesn’t answer the question of
where exactly the data should go...?

You could store the data only in index.php...

 // Define the upload path constant
 define('GW_UPLOADPATH', 'images/');

...but then other scripts wouldn't have access to it.

Dude, where's
my data?

So storing shared script data in an existing script file doesn’t really work
because the data isn’t really shared any more. The answer lies in somehow
making the data accessible to multiple scripts but without directly storing
it in any of them.

GW_UPLOADPATH

Shared script data
needs to be accessible
throughout an
application without
code duplication.

How can you make the data accessible to both
scripts without storing it in either of them?

The solution to shared script data lies in include files, which are PHP
source code files that are inserted into other PHP files as needed.

addscore.php

index.php

addscore.phpindex.php

sharing script data with include files

you are here 4 255

working with data stored in files

Shared script data is required
Include files are very powerful because you create them once but then
reuse them as needed in other script files, effectively sharing the code
within. The GW_UPLOADPATH constant can be placed within an include
file to establish a collection of "application variables."

<?php
// Define application constants
define('GW_UPLOADPATH', 'images/');
?>

 require_once('appvars.php');

 require_once('appvars.php');

Q: Hey, aren't these application "variables" really constants?

A: Sometimes, yes. But that's OK. The point is not to split hairs
over variables vs. constants. Instead, we're just trying to establish a
common place to store shared script data within a given application.
And that place is a script file called appvars.php.

Q: Is code in shared script files limited to data?

A: No, not at all. Any PHP code can be placed in its own script
file and shared using the require_once statement. In fact, it's
very common for applications to share lots of functional code across
multiple script files. Not only is it common to use shared script files,
but it's often a great idea in terms of code organization.

Q: Why is the PHP statement to include script code called
require_once?

A: The name "include file" comes from a PHP statement called
include that is very similar to require_once. The
difference is that require_once results in an error if the
include file cannot be found—include won't reveal an error if
an include file is missing. Also, the "once" in require_once
means that it keeps a file from being accidentally included more
than once. You sometimes see include used instead of
require_once to include code that isn't as important, such
as pure HTML code that doesn't perform a critical purpose. PHP
also has include_once and require statements that are
variations on require_once and include.

Including appvars.php in other
scripts allows those scripts to
share the data in appvars.php.

The require_once statement takes care of including a script within another script.

Include files
allow you to
share code across
multiple scripts.

index.php

appvars.php

addscore.php

256 Chapter 5

Think of require_once as "insert"
Includes aren’t limited to one shared PHP file, and they can appear
anywhere you want within a script. You can think of the require_once
statement as an "insert" statement that gets replaced with the contents
of the script file it references. In the case of Guitar Wars, the database
connection variables could also benefit from being moved into an include
file. So the contents of two shared script files are inserted directly into
other script files at the points where they are required.

<?php
 // Define application cons

tants

 define('GW_UPLOADPATH', 'i
mages/');

?>

<?php
 // Define database connection constants define('DB_HOST', 'www.guitarwars.net'); define('DB_USER', 'admin');
 define('DB_PASSWORD', 'rockit');
 define('DB_NAME', 'gwdb');
?>

require_once('appva
rs.php');

require_once('connectvars.php');

The REQUIRE_ONCE statement inserts
shared script code into other scripts.

appvars.php

connectvars.php

This global variable holds
important application
data that both index.php
and addscore.php need.

Rather than duplicate
the database connection
variables in every script, we
can move them to an include
file and share them.

the require_once statement

you are here 4 257

working with data stored in files

<?php

 // Define application constants
 define('GW_UPLOADPATH', 'images/');

 // Define database connection constants
 define('DB_HOST', 'www.guitarwars.net');
 define('DB_USER', 'admin');
 define('DB_PASSWORD', 'chiefrocker');
 define('DB_NAME', 'guitarwarsdb');

 // Connect to the database
 $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME);

 // Retrieve the score data from MySQL
 $query = "SELECT * FROM guitarwars";
 $data = mysqli_query($dbc, $query);

 // Loop through the array of score data, formatting it as HTML
 echo '<table>';
 while ($row = mysqli_fetch_array($data)) {
 // Display the score data
 echo '<tr><td class="scoreinfo">';
 echo '' . $row['score'] . '
';
 echo 'Name: ' . $row['name'] . '
';
 echo 'Date: ' . $row['date'] . '</td>';
 if (is_file(GW_UPLOADPATH . $row['screenshot']) &&
 filesize(GW_UPLOADPATH . $row['screenshot']) > 0) {
 echo '<td><img src="' . GW_UPLOADPATH . $row['screenshot'] .
 '" alt="Score image" /></td></tr>';
 }
 else {
 echo '<td><img src="' . GW_UPLOADPATH . 'unverified.gif' .
 '" alt="Unverified score" /></td></tr>';
 }
 }
 echo '</table>';

 mysqli_close($dbc);
?>

Awesome! Now I
have access to the
shared data too.

Oops, another new step! Some
things are difficult to plan
for, so you have to be ready to
tweak your design ˝on the fly."

Move the file upload path

to a constant that is
shared via an include file.

6
DONE

index.php

addscore.php

Test Drive
Create two include files for Guitar Wars, and then share them among
the other scripts.
Create two new text files, appvars.php and connectvars.php, and enter the code for
them shown on the facing page. Then add require_once statements to index.php and
addscore.php so that both shared script files are included. Upload all of the scripts to your
web server and try out the Add Score form and main page to make sure they still work with the
new and improved include file organizational structure.

258 Chapter 5

Timing is everything with high scores
Guitar Wars is finally image-powered, allowing users to upload screen shot
images to help verify their high scores. While this is a major improvement
to the application, it hasn’t solved a problem that users have actually been
grumbling about for quite a while—the order of the scores on the main page.

I'm stoked on having the only score
with a screen shot image, but why is
my score at the bottom of the list?

Adding a new high score
now involves adding a
screen shot image...

...which looks great except
the scores aren't in order!

Phiz digs her screen
shot verification but
is a little miffed over
getting slotted at
the bottom of the
high score list despite
having a decent score.

It’s true, the scores aren’t in order. They are being displayed in whatever
order they’re stored in the database, which is entirely arbitrary. You should
never rely on the order that data is stored in a database unless order truly
doesn’t matter. In this case it does, so we need to impose some order on
the query results. The ORDER BY SQL statement makes such ordering
possible.

Order

the ORDER BY statement

you are here 4 259

working with data stored in files

PHP & MySQL Magnets
See if you can figure out how ORDER BY works by using the magnets below to create ordered
SELECT statements that result in the output below. Also circle which query you think represents
the best fix for Guitar Wars. Hint: ASC stands for ASCending and DESC stands for DESCending.

The query results are returned in
ascending alphabetical order by name.The query results are returned in

descending numerical order by score,
and then in ascending order by date.

mysql>

+-----+---------------------+------------------+-----

----+-------------------+

| id | date | name | scor
e | screenshot |

+-----+---------------------+------------------+-----
----+-------------------+

| 5 | 2008-04-23 09:13:34 | Ashton Simpson | 3684
20 | |

| 4 | 2008-04-23 09:12:53 | Belita Chevy | 2824
70 | |

| 3 | 2008-04-23 09:06:35 | Eddie Vanilli | 3459
00 | |

| 6 | 2008-04-23 14:09:50 | Kenny Lavitz | 649
30 | |

| 2 | 2008-04-22 21:27:54 | Nevil Johansson | 984
30 | |

| 1 | 2008-04-22 14:37:34 | Paco Jastorius | 1276
50 | |

| 7 | 2008-04-24 08:13:52 | Phiz Lairston | 1865
80 | phizsscore.gif |

+-----+---------------------+------------------+-----
----+-------------------+

7 rows in set (0.0005 sec)

File Edit Window Help YYZ

SELECT
*

FROM

guitarwars
ORDER BY

name ASC

;

mysql>

+-----+---------------------+------------------+---------+-------------------+ | id | date | name | score | screenshot | +-----+---------------------+------------------+---------+-------------------+ | 5 | 2008-04-23 09:13:34 | Ashton Simpson | 368420 | | | 3 | 2008-04-23 09:06:35 | Eddie Vanilli | 345900 | | | 4 | 2008-04-23 09:12:53 | Belita Chevy | 282470 | | | 7 | 2008-04-24 08:13:52 | Phiz Lairston | 186580 | phizsscore.gif | | 1 | 2008-04-22 14:37:34 | Paco Jastorius | 127650 | | | 2 | 2008-04-22 21:27:54 | Nevil Johansson | 98430 | | | 6 | 2008-04-23 14:09:50 | Kenny Lavitz | 64930 | | +-----+---------------------+------------------+---------+-------------------+
7 rows in set (0.0005 sec)

File Edit Window Help YYZ

SELECT *

FROMguitarwars
ORDER BY

score

ASC

;

date
DESC

,

260 Chapter 5

PHP & MySQL Magnets Solution
See if you can figure out how ORDER BY works by using the magnets below to create ordered
SELECT statements that result in the output below. Also circle which query you think represents
the best fix for Guitar Wars. Hint: ASC stands for ASCending and DESC stands for DESCending.

The query results are returned in
ascending alphabetical order by name.The query results are returned in

descending numerical order by score,
and then in ascending order by date.

mysql>

+-----+---------------------+------------------+-----

----+-------------------+

| id | date | name | scor
e | screenshot |

+-----+---------------------+------------------+-----
----+-------------------+

| 5 | 2008-04-23 09:13:34 | Ashton Simpson | 3684
20 | |

| 4 | 2008-04-23 09:12:53 | Belita Chevy | 2824
70 | |

| 3 | 2008-04-23 09:06:35 | Eddie Vanilli | 3459
00 | |

| 6 | 2008-04-23 14:09:50 | Kenny Lavitz | 649
30 | |

| 2 | 2008-04-22 21:27:54 | Nevil Johansson | 984
30 | |

| 1 | 2008-04-22 14:37:34 | Paco Jastorius | 1276
50 | |

| 7 | 2008-04-24 08:13:52 | Phiz Lairston | 1865
80 | phizsscore.gif |

+-----+---------------------+------------------+-----
----+-------------------+

7 rows in set (0.0005 sec)

File Edit Window Help YYZ

SELECT * FROM guitarwars ORDER BY name ASC ;

mysql>

+-----+---------------------+------------------+---------+-------------------+ | id | date | name | score | screenshot | +-----+---------------------+------------------+---------+-------------------+ | 5 | 2008-04-23 09:13:34 | Ashton Simpson | 368420 | | | 3 | 2008-04-23 09:06:35 | Eddie Vanilli | 345900 | | | 4 | 2008-04-23 09:12:53 | Belita Chevy | 282470 | | | 7 | 2008-04-24 08:13:52 | Phiz Lairston | 186580 | phizsscore.gif | | 1 | 2008-04-22 14:37:34 | Paco Jastorius | 127650 | | | 2 | 2008-04-22 21:27:54 | Nevil Johansson | 98430 | | | 6 | 2008-04-23 14:09:50 | Kenny Lavitz | 64930 | | +-----+---------------------+------------------+---------+-------------------+
7 rows in set (0.0005 sec)

File Edit Window Help YYZ

SELECT * FROM guitarwars ORDER BY score ASC ;dateDESC ,

The ordering by date is secondary and only applies
when there are two identical scores, which doesn't
happen here but is likely in a large enough data set.

The comma is required
to separate the two
levels of ordering.

This is the query we
need to fix Guitar Wars!

php & mysql magnets solution

you are here 4 261

working with data stored in files

Honoring the top Guitar Warrior
With the order of the scores fixed, it’s now possible to make an
unexpected improvement to the high score list by calling out the highest
scorer at the top of the list. The top scoring Guitar Warrior deserves a top
score header that clearly displays the highest, score, so there is no doubt
who the top Guitar Warrior is... and what score to gun for.

A top score header
clearly highlights the
top score, providing a
target for competing
Guitar Warriors.

Q: Many of the scores are still unverified? Isn't that a problem?

A: Yes it is. But it doesn't stop us from going ahead and calling
attention to the top score. It just means that we'll need to eventually
clean up the high score list by removing unverified scores. In fact, we'll
tackle the unverified high scores just as soon as we finish highlighting
the top score.

262 Chapter 5

Format the top score with HTML and CSS
The most important thing about the new high score header is that it be
clearly seen above all other scores in the high score list. This requires the
help of both HTML and CSS to add some visual flair. The header will be
generated as a row in the HTML table with a special CSS style applied
to it. This style, topscoreheader, must be added to the style.css
stylesheet for Guitar Wars.

.error {
 font-weight: bold;

 color: #FF0000;

}

.topscoreheader {
 text-align: center;

 font-size: 200%;

 background-color: #36407F;

 color: #FFFFFF;

}

.score {
 font-size:150%;
 color: #36407F;

}

.scoreinfo {
 vertical-align: top;

 padding-right:15px;

}

style.css

This style class is already being used to highlight data entry errors in the Add Score script.

These two style classes
already format each high
score on the main page.

Center the high
score in the header.

Make sure the font size
is cranked up higher than
the rest of the scores.

Use a dark background color
with white text to make
the high score really pop.

The index.php script already generates an HTML table containing the
high score list. Generating a header just for the top score involves isolating
the first score, which is guaranteed to be the top score since the list is now
in order. A while loop takes care of looping through the scores, so we
need to somehow count the scores, and only generate the header for the
first one...

adding a little css

you are here 4 263

working with data stored in files

 ...

 // Loop through the array of score data, formatting it as HTML

 echo '<table>';

 $i = 0;

 while ($row = mysqli_fetch_array($data)) {

 // Display the score data

 if () {

 }

 echo '<tr><td class="scoreinfo">';

 echo '' . $row['score'] . '
';

 echo 'Name: ' . $row['name'] . '
';

 echo 'Date: ' . $row['date'] . '</td>';

 if (is_file(GW_UPLOADPATH . $row['screenshot']) &&

 filesize(GW_UPLOADPATH . $row['screenshot']) > 0) {

 echo '<td><img src="' . GW_UPLOADPATH . $row['screenshot'] .

 '" alt="Score image" /></td></tr>';

 }

 else {

 echo '<td><img src="' . GW_UPLOADPATH . 'unverified.gif' .

 '" alt="Unverified score" /></td></tr>';

 }

 }

 echo '</table>';

 ...

Finish the code for the index.php Guitar Wars script so that it adds a formatted header
for the top score that uses the topscoreheader CSS style. Hint: Don't forget that the
top score header is part of the high score HTML table, which has two columns.

index.php

264 Chapter 5

 ...

 // Loop through the array of score data, formatting it as HTML

 echo '<table>';

 $i = 0;

 while ($row = mysqli_fetch_array($data)) {

 // Display the score data

 if () {

 }

 echo '<tr><td class="scoreinfo">';

 echo '' . $row['score'] . '
';

 echo 'Name: ' . $row['name'] . '
';

 echo 'Date: ' . $row['date'] . '</td>';

 if (is_file(GW_UPLOADPATH . $row['screenshot']) &&

 filesize(GW_UPLOADPATH . $row['screenshot']) > 0) {

 echo '<td><img src="' . GW_UPLOADPATH . $row['screenshot'] .

 '" alt="Score image" /></td></tr>';

 }

 else {

 echo '<td><img src="' . GW_UPLOADPATH . 'unverified.gif' .

 '" alt="Unverified score" /></td></tr>';

 }

 }

 echo '</table>';

 ...

$i is the variable that counts
through the high scores - we can
use it to isolate the first score.

If $i equals 0, we know it's the first (top!) score, so render the HTML
code for the header.

The topscoreheader
style class is stored
in style.css.

Finish the code for the index.php Guitar Wars script so that it adds a formatted header
for the top score that uses the topscoreheader CSS style. Hint: Don't forget that the
top score header is part of the high score HTML table, which has two columns.

index.php

echo ‘<tr><td colspan=“2” class=“topscoreheader”>Top Score: ’ .
 $row[‘score'] . ‘</td></tr>’;

$i == 0

$i++; Increment the counter at the end of the score loop - this code is the same as $i = $i + 1;.

exercise solution

you are here 4 265

working with data stored in files

Test Drive
Order the high scores and showcase the highest score of all.
Modify the index.php script to use the new ordered SELECT query, and then add
in the code that generates the top score header. Upload the new script to your web
server and open it in your browser to see the top score prominently displayed.

The highest score is
now shown loud and
clear at the top of
the high score list.

It's true, the unverified scores need to be dealt with.
But one thing at a time. It seems another problem has surfaced that is
preventing people from uploading their high score screen shots...

It's cool that the order is
fixed...but you know any of those
unverified scores could be bogus.

266 Chapter 5

ethelshugescore.pdf

Not only is this file huge
(much larger than 32 KB),
but it's not even an image!

Not only is the file huge, but it's not an image!
We have a problem in that our form is rejecting some files but not
telling users why. It’s actually good that the form is rejecting files, in
this case because they’re too big—remember we capped the file size
at 32 KB in the form code. But we need to be clear about telling the
user why. Not only that, but we don’t want users uploading files that
aren’t images. Adding validation to the Add Score form will allow us
to better control how files are uploaded.

So validation on the image file upload form (addscore.php)
serves two vital purposes. First, it can beef up the prevention
of large file uploads, providing users with notification that a file
can’t be larger than 32 KB. And secondly, it can stop people from
uploading files that aren’t images. The file upload form needs
validation for both file size and type.

I enter my high score and screen shot
image, but when I click the Add button
I just get a generic error message. I
can't figure out what's wrong.

This error message doesn't
tell the user much about
what went wrong with the
high score submission.

adding a size restriction for images

you are here 4 267

working with data stored in files

Only images allowed
So how exactly do we check the Add Score form and make sure uploaded
images adhere to a certain size and type? The answer lies in the built-in
$_FILES superglobal variable, which if you recall, is where we earlier
obtained the temporary storage location of the uploaded file so that it
could be moved to the images folder. Now we’re going to use it to grab
the size and MIME type of the file.

small

Write an if statement that checks to make sure a screen shot file
is an image, as well as checking to make sure it is greater than
0 bytes in size and less than the constant GW_MAXFILESIZE.
Assume the file size and type have already been stored in variables
named $screenshot_size and $screenshot_type.

if (

) {

application/pdf

$_FILES['screenshot']['type']

$_FILES['screenshot']['size']

1280472

The size of the file is over 1 MB, much
larger than our 32 KB limit (1,280,472
bytes is 1.22 MB, or 1,250 KB).

The type of the file is PDF, not an acceptable web image type, such as GIF, JPG, or PNG.

We don’t just want image files to be smaller than our 32 KB size limit, but
we also need them to be a file type that can be displayed as a web image.
The following MIME types are commonly used to represent web images:

$_FILES['screenshot']['type']

phizsscore.gif

jeanpaulsscore.jpg

jacobsscore.png

image/gif
GIF

image/png
PNG

image/jpeg

image/pjpeg

JPEG

or

High score screen
shot image files

268 Chapter 5

 (($screenshot_type == ‘image/gif’) || ($screenshot_type == ‘image/jpeg’) ||
 ($screenshot_type == ‘image/pjpeg’) || ($screenshot_type == ‘image/png’)) &&
 ($screenshot_size > 0) && ($screenshot_size <= GW_MAXFILESIZE))

if (

) {

File validation makes the app more robust
A little validation goes a long way toward making any PHP application
more intuitive and easier to use, not to mention safer from abuse. Now a
helpful error message lets the user know the exact constraints imposed on
uploaded image files.

<?php
// Define application consta

nts

define('GW_UPLOADPATH', 'ima
ges/');

define('GW_MAXFILESIZE', 327
68); // 32 KB

?>

Since the maximum file size now
appears in more than one place in
the Add Score script, it makes
sense to store it as a constant.

ethelshugescore.pdf phizsscore.gif

jeanpaulsscore.jpg

jacobsscore.png

This is ridiculous!

We don't see
any problem.

An error message helps
to explain exactly
what kind of files are
allowed for upload.

Some browsers
use this MIME
type to recognize
JPEG images.

Write an if statement that checks to make sure a screen shot file
is an image, as well as checking to make sure it is greater than
0 bytes in size and less than the constant GW_MAXFILESIZE.
Assume the file size and type have already been stored in variables
named $screenshot_size and $screenshot_type.

appvars.php

incorporating file validation in the app

you are here 4 269

working with data stored in files

 if (!empty($name) && !empty($
score) && !empty($screenshot)) {

 if ((($screenshot_type == '
image/gif') || ($screenshot_type

== 'image/jpeg') ||

 ($screenshot_type == 'ima
ge/pjpeg') || ($screenshot_type =

= 'image/png')) &&

 ($screenshot_size > 0) &&
 ($screenshot_size <= GW_MAXFILES

IZE)) {

 if ($_FILES['file']['erro
r'] == 0) {

 // Move the file to the
 target upload folder

 $target = GW_UPLOADPATH
 . $screenshot;

 if (move_uploaded_file(
$_FILES['screenshot']['tmp_name']

, $target)) {

 // Connect to the dat
abase

 $dbc = mysqli_connect
(DB_HOST, DB_USER, DB_PASSWORD, D

B_NAME);

 // Write the data to

the database

 $query = "INSERT INTO
 guitarwars VALUES (0, NOW(), '$n

ame', '$score', '$screenshot')";

 mysqli_query($dbc, $q
uery);

 // Confirm success wi

th the user

 echo '<p>Thanks for a
dding your new high score!</p>';

 echo '<p>Name
: ' . $name . '
';

 echo 'Score:<
/strong> ' . $score . '
';

 echo '<img src="' . G
W_UPLOADPATH . $screenshot . '" a

lt="Score image" /></p>';

 echo '<p><a href="ind
ex.php"><< Back to high sco

res</p>';

 // Clear the score da

ta to clear the form

 $name = "";

 $score = "";

 $screenshot = "";

 mysqli_close($dbc);

 }
 else {

 echo '<p class="error
">Sorry, there was a problem uplo

ading your screen shot image.</p>
';

 }
 }
 }
 else {
 echo '<p class="error">Th

e screen shot must be a GIF, JPEG
, or PNG image file no ' .

 'greater than ' . (GW_M
AXFILESIZE / 1024) . ' KB in size

.</p>';

 }

 // Try to delete the tempor

ary screen shot image file

 @unlink($_FILES['screenshot
']['tmp_name']);

 }
 else {
 echo '<p class="error">Plea

se enter all of the information t
o add your high score.</p>';

 }

The new and improved Add Score script now has image file validation.

The unlink() function deletes a file
from the web server. We suppress its
error reporting with @ in case the
file upload didn't actually succeed.

Since we're making the script more
robust, it's also a good idea to check
the $_FILES superglobal to make
sure there wasn't an upload error.

Display a descriptive
error if the file is the
wrong type or too large.

addscore.php

270 Chapter 5

Q: Why are there two different MIME types for JPEG
images?

A: This is a question better asked of browser vendors, who,
for some reason, decided to use different MIME types for
JPEG images. To make sure the JPEG file validation works
across as many browsers as possible, it's necessary to check
for both MIME types.

Q: Why is it necessary to check for image files larger
than 0 bytes? Aren't all images larger than 0 bytes?

A: In theory, yes. But it is technically possible for a 0 byte
file to get created on the server if the user specifies a file that
doesn't actually exist on their own computer. Just in case this
happens, addscore.php plays it safe and checks for an
empty file.

Q: Why is GW_MAXFILESIZE placed in
appvars.php even though it is only used in
addscore.php?

A: While it's true that appvars.php is intended for
storing script data that is shared across multiple script files, it
is also a good place to store any constant script data. In this
case, placing GW_MAXFILESIZE in appvars.php
makes it easier to find if you ever want to make the file upload
limit larger.

Q: How does that line of code with @unlink()
work?

A: The built-in PHP unlink() function deletes a file
from the web server, in our case the temporary image file that
was uploaded. Since it's possible that the upload failed and
there is no temporary image file, we suppress any potential
errors generated by unlink() by preceding it with an at
symbol (@). You can stick @ in front of any PHP function to
suppress its error reporting.

Test Drive
Add screen shot image file validation to the Add Score script.
Modify the addscore.php script to use the new image file validation code. Upload the script
to your web server and try out the Add Score form with both valid images and a few invalid
files (huge images and non-images).

test drive addscore.php

you are here 4 271

working with data stored in files

The high score list must be cleaned up.
With image file uploading tightened up thanks to validation, we can’t
ignore the problem of unverified scores any longer. New scores with
uploaded screen shot images shouldn’t play second fiddle to old scores
without screen shots that may or may not be valid. Guitar Wars needs a
way to remove old scores!

id date name score screenshot

1 2008-04-22 14:37:34 Paco Jastorius 127650

2 2008-04-22 21:27:54 Nevil Johansson 98430

3 2008-04-23 09:06:35 Eddie Vanilli 345900

4 2008-04-23 09:12:53 Belita Chevy 282470

5 2008-04-23 09:13:34 Ashton Simpson 368420

6 2008-04-23 14:09:50 Kenny Lavitz 64930

7 2008-04-24 08:13:52 Phiz Lairston 186580 phizsscore.gif

guitarwars

Unverified scores without
images need to be removed
from the database, pronto!

What about all those
unverified scores? They
haven't gone away, you know.

The current top score is not
verified, which doesn't instill
much confidence in other users.

Write down how you would go about cleaning up the
unverified scores in the high score list:

272 Chapter 5

Plan for an Admin page
Since we just need to remove some unverified scores from the database,
it’s perfectly reasonable to just fire up an SQL tool and manually remove
rows from the database with a few DELETE queries. But this may not be
the last time you’ll need to remove a score, and it’s no fun having to resort
to manual SQL queries to maintain a web application. The idea here is to
build an application that can be maintained with as little hassle as possible.

What we need is a page that only the web site administrator has access to
and can use to remove scores... an Admin page! But we need to be very
careful in making a clear distinction between what parts of Guitar Wars
are for the administrator and what parts are for users.

These pages are for users:

This page is only for the administrator:

The Admin page is
designed only for use by
the site administrator
- you wouldn't want end
users removing high scores. Clicking a “Remove"

link removes that
particular score.

Web applications
often include
pages for public
access, as well as
admin pages that
are only for site
maintenance.

The Add Score page and
main page of Guitar Wars are
designed for end users to submit
and view their high scores.

add an admin page

you are here 4 273

working with data stored in files

id date name score screenshot
1 2008-04-22 14:37:34 Paco Jastorius 127650
2 2008-04-22 21:27:54 Nevil Johansson 98430
3 2008-04-23 09:06:35 Eddie Vanilli 345900
4 2008-04-23 09:12:53 Belita Chevy 282470
5 2008-04-23 09:13:34 Ashton Simpson 368420
6 2008-04-23 14:09:50 Kenny Lavitz 64930
7 2008-04-24 08:13:52 Phiz Lairston 186580 phizsscore.gif

guitarwars

Write down what the Admin and Remove Score scripts need to do in order to accommodate
a score removal feature for Guitar Wars. Then draw how a score removal affects a row in the
guitarwars table and the screen shot image file associated with it.

root

images

www

Web server

removescore.php

admin.php

274 Chapter 5

id date name score screenshot
1 2008-04-22 14:37:34 Paco Jastorius 127650
2 2008-04-22 21:27:54 Nevil Johansson 98430
3 2008-04-23 09:06:35 Eddie Vanilli 345900
4 2008-04-23 09:12:53 Belita Chevy 282470
5 2008-04-23 09:13:34 Ashton Simpson 368420
6 2008-04-23 14:09:50 Kenny Lavitz 64930
7 2008-04-24 08:13:52 Phiz Lairston 186580 phizsscore.gif

guitarwars

Write down what the Admin and Remove Score scripts need to do in order to accommodate
a score removal feature for Guitar Wars. Then draw how a score removal affects a row in the
guitarwars table and the screen shot image file associated with it.

root

images

www

Web server

Although this particular example row is missing
a screen shot file, the Remove Score script
will need to delete the image file from the
server for scores that do have an image.

The admin.php script lists all of the high
score rows, each with a Remove link next to
it that passes information to the Remove
Score script.

The removescore.php script takes care
of the actual removal of the score from
the database, the deletion of the image
file from the server, and the display of
a confirmation message.

removescore.php

admin.php

exercise solution

you are here 4 275

working with data stored in files

<?php

 require_once('appvars.php');

 require_once('connectvars.php');

 // Connect to the database

 $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME);

 // Retrieve the score data from MySQL

 $query = "SELECT * FROM guitarwars ORDER BY score DESC, date ASC";

 $data = mysqli_query($dbc, $query);

 // Loop through the array of score data, formatting it as HTML

 echo '<table>';

 while ($row = mysqli_fetch_array($data)) {

 // Display the score data

 echo '<tr class="scorerow"><td>' . $row['name'] . '</td>';

 echo '<td>' . $row['date'] . '</td>';

 echo '<td>' . $row['score'] . '</td>';

 echo '<td><a href="removescore.php?id=' . $row['id'] . '&date=' . $row['date'] .

 '&name=' . $row['name'] . '&score=' . $row['score'] . '&screenshot=' .

 $row['screenshot'] . '">Remove</td></tr>';

 }

 echo '</table>';

 mysqli_close($dbc);

?>

<a href="removescore.php?id=5&
date=2008-04-23%2009:1

3:34&name=Ashton%20Simpson&sco
re=368420&screenshot="

This code generates an HTML link to
the removescore.php script, passing along
information about the score to be removed.

Generate score removal links on the Admin page
Although the Remove Score script is responsible for the actual score removal, we need an
Admin script that allows us to select a score to remove. The admin.php script generates a
list of high scores with Remove links for each one. These links pass along data about a given
score to the removescore.php script.

The URL to the Remove Score script
is doing more than just linking to the
script...it's also passing data to it!

admin.php

276 Chapter 5

Scripts can communicate with each other
In order for the Remove Score script to remove a high score, it must know
what score to remove. But that’s decided in the Admin script. This begs
the question, how does the Admin script tell the Remove Score script what
score to remove? This communication between scripts is accomplished by
packaging up the data as part of a "Remove" URL for each high score
shown on the Admin page. If you closely analyze the URL for a particular
score, you’ll notice that all the high score data is in there.

<a href="removescore.php?

 id=5&
 date=2008-04-23%2009:13:34&

 name=Ashton%20Simpson&

 score=368420&screenshot=">Re
move

The “Remove" URL links to the removescore.php script but also includes data for the row to be deleted.

OK, so data gets passed along through a URL, but how exactly does the
Remove Score script get its hands on that data? Data passed to a script
through a URL is available in the $_GET superglobal, which is an array
very similar to $_POST. Packaging data into a linked URL is the same as
using a GET request in a web form. In a traditional HTML GET request,
form data is automatically sent along to the form processing script
as part of the script’s URL. We’re doing the same thing by manually
building our own GET request as a custom URL.

Similar to $_POST, using the $_GET array to access the high score data
requires the name of each piece of data.

$_GET['name']

As
ht
on
 S
im
ps
on

$_GET['id']

5

$_GET['da
te']

20
08
-0
4-
23
%2
00
9:
13
:3
4

$_GET['scor
e']

36
84
20

The name of the piece of data is used to access it within the $_GET array.

The URL for a
script serves as a
handy way to pass
important data,
such as the ID of
a database row.

The URL of a
script can be
used to pass data
as a GET request.

Each piece of
data has a name
and a value, and
is separated from
other name/value
pairs by an
ampersand ($).

Clicking this link not only opens the
Remove Score script, but it also passes
along data to the script as a GET request.

introducing the GET request

you are here 4 277

working with data stored in files

$_GET

As
ht
on
 S
im
ps
on

5 20
08
-0
4-
23
%2
00
9:
13
:3
4

36
84
20

$_POST

Ph
iz
 L
ai
rs
to
n

18
65
80

ph
iz
ss
co
re
.g
if

I don't see what all the fuss is with
GET. Why can't you just pass the data
to the script using POST? That's how
you've done it up until now.

POST requests can only be initiated through a form,
while GET requests can be packaged as URLs.
Up until now we’ve always passed data to a script through a web form
where the script was listed as the action for the form’s Submit button.
When the user fills out the form and presses the Submit button, the form
data is packaged up and sent along to the form as a POST request.

The problem is that the Admin page doesn’t use a form to initiate the
Remove Score script. It just links to the script via a URL. So we need a
way to send along data to a script using nothing more than a URL. This
is where GET is particularly handy since it provides access to data that is
packaged in a URL as parameters. Similar to POST, the data that gets
passed along to the script through a GET request is available through a
superglobal, but it’s named $_GET instead of $_POST.

Web forms often
use POST requests
to submit data,
which is stored in
the $_POST array.

Passing data
through a URL is
accomplished with
GET, and the
data is stored in
the $_GET array.

278 Chapter 5

Of GETs and POSTs
The difference between GET and POST isn’t just form vs. URL since GET
requests can (and often are) used to submit form data as well. The real
distinction between GET and POST has to do with the intent of a request.
GET is used primarily to retrieve data from the server without affecting
anything on the server. POST, on the other hand, typically involves
sending data to the server, after which the state of the server usually
changes somehow in response to the data that was sent.

Typically used for data retrieval that
doesn’t change anything on the server. For small amounts of data, GET is also useful for directly sending data to the server in
a URL. Unlike POST, GET is primarily
suited to sending small amounts of data.

GETUsed to send data to the server that

somehow causes a change in the state of the

server, such as inserting data in a database.

Data can still be returned in a response.

Unlike GET, POST requests can only be

made through the action of a web form.

Also unlike GET, the data sent in a POST

request is hidden from view.

POST

The two types of
web requests, GET
and POST, control
how you shuttle data
between scripts.

Q: I've seen web forms that use GET. How does that work?

A: Both GET and POST have their place when it comes to web
forms. When creating a web form, the method attribute of the
<form> tag controls how the data is sent, while the action
attribute identifies the script to receive the data and process it:

<form method="post" action="addscore.php">

When the submit button is clicked to submit this
form, the addscore.php script is executed, and the form data is
passed along to it through the $_POST array. But you could've just
as easily written the <form> tag like this, in which case the data
would get passed along through the $_GET array:

<form method="get" action="addscore.php">

Q: Ah, so it doesn't matter which request method I use, GET
or POST?

A: Wrong. It matters quite a lot. GET is generally used for getting
data from the server, not changing anything on the server. So GET
is perfect for forms that make informational requests on the server
without altering the state of the server, such as selecting rows from a
database. POST, on the other hand, is best suited for requests that
affect the server's state, such as issuing an INSERT or DELETE
query that changes the database. Another distinction between GET
and POST is that data passed through a GET is visible in a URL,
while POST data is hidden, and, therefore, is a tiny bit more secure.

Q: How does this distinction between GET and POST factor
into the passing of data to a script through a URL?

A: Well, first of all, you can only pass data to a script through
a URL using a GET request, so POST is eliminated immediately.
Furthermore, since GET is intended purely for requests that don't
alter the state of the server, this means you shouldn't be doing any
INSERTs, DELETE FROMs, or anything else that will change
the database in a script that receives data through its URL.

GET vs POST

you are here 4 279

working with data stored in files

Tonight’s talk: GET and POST

GET:
So, word on the street is you've been saying all I'm
good for is asking questions but not really doing
anything with the answers. Is that true?

OK, so it's true that I'm not really intended to be
causing changes on the server such as deleting files
or adding database rows, but that doesn't mean I'm
not important.

True, but you're permanently connected to your
good buddy, Form, whereas Form and I are merely
casual acquaintances. I leave room for other friends,
such as URL.

Well, then I have a question for you. How exactly
do you take action when your little sidekick, Form,
isn't around? You know sometimes Page doesn't find
it necessary to go to the trouble of involving Form.

Calm down. I'm just pointing out that while I'm
geared toward retrieving data from the server, I'm
fairly flexible in how I can be used to do it.

Glad to hear it. It's been good talking to you...

POST:

Sure is. Let's face it, you don't have any real power,
just the ability to ask the server for something.

If you say so. All I know is not a whole lot would get
done without people like me making things happen
on the server. If the server was always stuck in the
same state, it would be pretty boring out there.

So you think your "circle of friends" somehow
overcomes your inability to take action? I doubt it.

Listen, Form is my friend, and long ago I made a
commitment not to do any requesting without him.
So judge my loyalty if you must, but I won't betray
my friend!

I'll give you that. You're alright by me.

280 Chapter 5

GET, POST, and high score removal
We’ve established that the removal of scores in Guitar Wars starts with
a "Remove" link on the Admin page that links to the Remove Score script.
We also know that score data can be passed through the link URL to the
Remove Score script. But we have a problem in that a GET request really
shouldn’t be changing anything on the server, such as deleting a score. A
possible solution is to not change anything on the server... yet. What if the
Remove Score script initially displayed a confirmation page before actually
removing a score from the database?

The confirmation page shows the score that is up for removal with a
simple Yes/No form. Selecting Yes and clicking the Submit button results
in the score being removed, while choosing No cancels the score removal.

Thinking in terms of GETs and POSTs, the Remove Score script can
display the confirmation page as a response to the GET request from the
Admin script. And since the confirmation itself is a form, it can issue its
own POST request when submitted. If the form is a self-referencing form,
the same script (removescore.php) can process the POST and carry
out the score removal. Here are the steps involved in this process:

The Remove Score script is initiated through a GET request by
the user clicking the "Remove" link on the Admin page.1

The Remove Score script uses the high score data stored in the
$_GET array to generate a removal confirmation form.

2

The Remove Score script is initiated again, this time, through a
POST request by the user submitting the confirmation form.

3

The Remove Score script deletes the score from the database
and also deletes the screen shot image file from the web server.4

A confirmation page gives the user a chance to confirm the high score removal instead of just removing it instantly.

It's entirely possible,
even helpful in some
cases, for the same
script to respond to
both GET and POST
requests.

how removescore.php will work

you are here 4 281

working with data stored in files

A
sh

to
n

Si
m

ps
on

36
84

20

This is the exact
same script reacting
differently depending
on whether it receives a
GET or POST request.

A GET request is used
to initiate the Remove
Score script and pass
along the high score data
through a URL.

A POST request is
used to initiate the
Remove Score script
(again!) and pass
along the high score
to be deleted.

The Remove Score script
deletes the score from the
database and its screen shot
file from the web server.

1

2

3

4

Let’s take a look at how the score removal process
unfolds through this series of steps...

$_GET

As
ht
on
 S
im
ps
on

5 20
08
-0
4-
23
%2
00
9:
13
:3
4

36
84
20

The screenshot data is
empty for this high score.

$_POST

5 As
ht
on
 S
im
ps
on

36
84
20

...

removescore.php

admin.php

removescore.php

282 Chapter 5

Q: How can the same script process both GET and POST requests?

A: It all has to do with how a script is invoked. In the case of the Remove
Score script, it is invoked in two different ways. The first way is when the
user clicks a "Remove" link on the Admin page, in which case a URL leads
them to the script. Since data is packaged into the URL, this is considered a
GET request. This GET request causes the script to generate a web form
whose action refers back to the same Remove Score script. So when the
user submits the form, the script is invoked a second time. But unlike the
first time, there is no fancy URL with data packaged into it and, therefore, no
GET request. Instead, the high score data is passed along through a POST
request and is, therefore, available in the $_POST array.

Q: So the manner in which the script is invoked actually determines
what it does?

A: Yes! When the script sees that data has been sent through a URL as a
GET request, it knows to display a confirmation form, as opposed to deleting
anything from the database. So the data sent along in the $_GET array
is used only within the confirmation page and has no lasting effect on the
server.
When the script sees that data is being delivered through a POST request,
the script knows that it can delete the data from the database. So it uses
the $_POST array to access the data and assemble a DELETE FROM
query that deletes the score. And since most high scores also have a screen
shot image file stored on the web server, the script also deletes that file.

more on GET and POST

you are here 4 283

working with data stored in files

Isolate the high score for deletion
With the score removal process laid out, we can now focus our attention
on the database side of things. The Remove Score script is responsible
for removing a high score, which means deleting a row from the database
of scores. If you recall, the SQL DELETE FROM statement allows us
to delete rows. But in order to delete a row, we must first find it. This is
accomplished by tacking a WHERE clause onto a query that uses DELETE
FROM. For example, this SQL query deletes the row with the name
column set to 'Ashton Simpson':

DELETE FROM guitarwars WHERE name = 'Ashton Simpson'

DELETE FROM guitarwars WHERE name = 'Ashton Simpson' AND score = '368420'

There’s a problem with this query, however. In a world full of millions of
Guitar Warriors, odds are there will be more than one Ashton Simpson.
This query doesn’t just delete a single row, it deletes all rows matching
the name 'Ashton Simpson'. The query needs more information in
order to delete the right row:

This query deletes rows
with a name column
matching ‘Ashton Simpson'.

The table name is required
by DELETE FROM to
know which table you're
deleting data from.

By matching the score in
addition to the name, the
deletion gets much more exact.

The AND operator changes
the query so that both the
name and score must match.

id date name score screenshot
1 2008-04-22 14:37:34 Paco Jastorius 127650
2 2008-04-22 21:27:54 Nevil Johansson 98430
3 2008-04-23 09:06:35 Eddie Vanilli 345900
4 2008-04-23 09:12:53 Belita Chevy 282470
5 2008-04-23 09:13:34 Ashton Simpson 368420
6 2008-04-23 14:09:50 Kenny Lavitz 64930
7 2008-04-24 08:13:52 Phiz Lairston 186580 phizsscore.gif

guitarwars

id date name score screenshot

1 2008-04-22 14:37:34 Paco Jastorius 127650

2 2008-04-22 21:27:54 Nevil Johansson 98430

3 2008-04-23 09:06:35 Eddie Vanilli 345900

4 2008-04-23 09:12:53 Belita Chevy 282470

5 2008-04-23 09:13:34 Ashton Simpson 368420

6 2008-04-23 14:09:50 Kenny Lavitz 64930

7 2008-04-24 08:13:52 Phiz Lairston 186580 phizsscore.gif

guitarwars

The name of the user
is the match used to
delete the high score.

Now that both the name and
score have to match, the odds of
accidentally deleting more than one
score are decreased dramatically.

284 Chapter 5

Control how much you delete with LIMIT
Using both the name and score columns as the basis for deleting a
row is good... but not good enough. Application development is about
minimizing risks at all cost, and there’s still a slight risk of deleting
multiple rows that match both the same name and score. The solution is
to force the query to only delete one row no matter what. The LIMIT
clause makes this happen:

The number following LIMIT lets MySQL know the maximum number
of rows to delete—in this case, one. So we’re guaranteed to never delete
more than one row with this query. But what if there were two Ashton
Simpsons with the same score? Sure, this is an unlikely scenario, but it’s
sometimes worth considering extreme scenarios when working out the
best design for an application.

For maximum safety, put a
limit on the number of rows
that can be deleted.

DELETE FROM guitarwars WHERE name = 'Ashton Simpson' AND score = '368420' LIMIT 1

id date name score screenshot

1 2008-04-22 14:37:34 Paco Jastorius 127650

2 2008-04-22 21:27:54 Nevil Johansson 98430

3 2008-04-23 09:06:35 Eddie Vanilli 345900

4 2008-04-23 09:12:53 Belita Chevy 282470

5 2008-04-23 09:13:34 Ashton Simpson 368420

6 2008-04-23 14:09:50 Kenny Lavitz 64930

7 2008-04-24 08:13:52 Phiz Lairston 186580 phizsscore.gif

...

523 2008-11-04 10:03:21 Ashton Simpson 368420 ashtonsscore.jpg

guitarwars

Write down what happens to this table when the DELETE
statement above is executed. How could you make sure the
right Ashton Simpson score is deleted?

Two high score
rows with the
exact same name
and score present
a problem for our
DELETE query.

putting a LIMIT on your DELETE

you are here 4 285

working with data stored in files

Would it be any better to use the ID of
the score in the WHERE clause of the
DELETE FROM query? It might help make
sure we delete the right score, no?

Yes, it would! The ID of a high score is the perfect way
to isolate the score for deletion.
Uniqueness is one of the main advantages of creating primary keys for your
tables. The id column in the guitarwars table is the primary key and
is, therefore, unique for each and every high score. By using this column
in the WHERE clause of the DELETE FROM query, we eliminate all doubt
surrounding which score we’re deleting. Here’s a new query that uses the id
column to help ensure uniqueness:

DELETE FROM guitarwars WHERE id = 5

DELETE FROM guitarwars WHERE id = 5 LIMIT 1

Trusting that the id column is indeed a primary key results in this code
safely deleting only one row. But what if you didn’t create the database, and
maybe uniqueness wasn’t properly enforced? Then a LIMIT clause might
still make some sense. The rationale is that if you intend for a query to only
affect one row, then say it in the query.

It’s never a bad idea to be very explicit with what you expect to be done in a
query, and in this case LIMIT adds an extra degree of safety to the DELETE
query.

The LIMIT clause explicitly
states that the query can't
delete more than one row.

Deleting data based on a
primary key helps to ensure
accuracy in isolating the
right row for deletion.

286 Chapter 5

PHP & MySQL Magnets
The removescore.php script is almost finished, but it is missing a few
important pieces of code. Use the magnets to plug in the missing
code and give Guitar Wars the ability to eradicate unwanted scores.

<html xmlns="http://www.w3.org/1
999/xhtml" xml:lang="en" lang="e

n">

<head>
 <meta http-equiv="Content-Type

" content="text/html; charset=ut
f-8"/>

 <title>Guitar Wars - Remove a
High Score</title>

 <link rel="stylesheet" type="t
ext/css" href="style.css" />

</head>
<body>
 <h2>Guitar Wars - Remove a Hig

h Score</h2>

<?php

 ('appvars.p

hp');

 ('connectva

rs.php');

 if (isset($_GET['id']) && isse

t($_GET['date']) && isset($_GET[
'name']) &&

 isset($_GET['score']) && iss

et($_GET[])) {

 // Grab the score data from

the GET

 $id = $_GET['id'];

 $date = $_GET['date'];

 $name = $_GET['name'];

 $score = $_GET['score'];

 = $_GET[

];

 }
 else if (isset($_POST['id']) &

& isset($_POST['name']) && isset
($_POST['score'])) {

 // Grab the score data from
the POST

 = $_POST[

];

 $name = $_POST['name'];

 $score = $_POST['score'];

 }
 else {
 echo '<p class="error">Sorry

, no high score was specified fo
r removal.</p>';

 }

 if (isset($_POST['submit'])) {

 if ($_POST['confirm'] ==

) {

 // Delete the screen shot

image file from the server

 @unlink(GW_UPLOADPATH . $s
creenshot);

 // Connect to the database

 $dbc = mysqli_connect(DB_H
OST, DB_USER, DB_PASSWORD, DB_NA

ME);

finish the removescore.php script

you are here 4 287

working with data stored in files

 // Delete the score data f
rom the database

 $query = "

 guitarwars WHERE
 LIMIT ";

 mysqli_query($dbc, $query)

;

 mysqli_close($dbc);

 // Confirm success with th

e user

 echo '<p>The high score of
 ' . $score . ' for ' . $name .

' was successfully removed.';

 }
 else {
 echo '<p class="error">The

 high score was not removed.</p>
';

 }
 }

 else if (isset() && i

sset() && isset(
) &&

 isset($score) && isset($scre

enshot)) {

 echo '<p>Are you sure you wa
nt to delete the following high

score?</p>';

 echo '<p>Name: </str
ong>' . $name . '
D

ate: ' . $date .

 '
Score: </st
rong>' . $score . '</p>';

 echo '<form method="post" ac
tion="removescore.php">';

 echo '<input type="radio" na
me="confirm" value="Yes" /> Yes

';

 echo '<input type="radio" na
me="confirm" value="No" checked=

"checked" /> No
';

 echo '<input type="submit" v
alue="Submit" name="submit" />';

 echo '<input type="hidden" n

ame= value="' .
 . '" />';

 echo '<input type="hidden" n

ame="name" value="' . $name . '"
 />';

 echo '<input type="hidden" n
ame="score" value="' . $score .

'" />';

 echo '</form>';

 }

 echo '<p><a href=

 ><< Back to admin page
</p>';

?>

</body>
</html>

require_once

require_once
'screenshot'

$screenshot
DELETE

FROM

"admin.p
hp"

'screenshot'

$id

'id'

'Yes'
$id

$id

"id"

1

$name

$date"id"

'id'
id

$id
=

$id

removescore.php

288 Chapter 5

PHP & MySQL Magnets Solution
The removescore.php script is almost finished, but it is missing a few
important pieces of code. Use the magnets to plug in the missing
code and give Guitar Wars the ability to eradicate unwanted scores.

<html xmlns="http://www.w3.org/1
999/xhtml" xml:lang="en" lang="e

n">

<head>
 <meta http-equiv="Content-Type

" content="text/html; charset=ut
f-8"/>

 <title>Guitar Wars - Remove a
High Score</title>

 <link rel="stylesheet" type="t
ext/css" href="style.css" />

</head>
<body>
 <h2>Guitar Wars - Remove a Hig

h Score</h2>

<?php

 ('appvars.p

hp');

 ('connectva

rs.php');

 if (isset($_GET['id']) && isse

t($_GET['date']) && isset($_GET[
'name']) &&

 isset($_GET['score']) && iss

et($_GET[])) {

 // Grab the score data from

the GET

 $id = $_GET['id'];

 $date = $_GET['date'];

 $name = $_GET['name'];

 $score = $_GET['score'];

 = $_GET[

];

 }
 else if (isset($_POST['id']) &

& isset($_POST['name']) && isset
($_POST['score'])) {

 // Grab the score data from
the POST

 = $_POST[

];

 $name = $_POST['name'];

 $score = $_POST['score'];

 }
 else {
 echo '<p class="error">Sorry

, no high score was specified fo
r removal.</p>';

 }

 if (isset($_POST['submit'])) {

 if ($_POST['confirm'] ==

) {

 // Delete the screen shot

image file from the server

 @unlink(GW_UPLOADPATH . $s
creenshot);

 // Connect to the database

 $dbc = mysqli_connect(DB_H
OST, DB_USER, DB_PASSWORD, DB_NA

ME);

require_once

require_once

'screenshot'

$screenshot

This script can be used
to remove any scores,
so the uploaded image
file must be deleted as
part of the removal.

Include the shared script
files but use required_once
since they are critical to
the score removal.

'screenshot'

$id 'id'

'Yes'

The script reacts differently
depending on whether the incoming
request is a GET or a POST.

The @ PHP error suppression directive prevents
errors from being displayed. This makes sense
for unlink() since we may be attempting to
delete a file that doesn't exist. In which case,
we don't want the user to see an error.

the finished removescore.php script

you are here 4 289

working with data stored in files

 // Delete the score data f
rom the database

 $query = "

 guitarwars WHERE
 LIMIT ";

 mysqli_query($dbc, $query)

;

 mysqli_close($dbc);

 // Confirm success with th

e user

 echo '<p>The high score of
 ' . $score . ' for ' . $name .

' was successfully removed.';

 }
 else {
 echo '<p class="error">The

 high score was not removed.</p>
';

 }
 }

 else if (isset() && i

sset() && isset(
) &&

 isset($score) && isset($scre

enshot)) {

 echo '<p>Are you sure you wa
nt to delete the following high

score?</p>';

 echo '<p>Name: </str
ong>' . $name . '
D

ate: ' . $date .

 '
Score: </st
rong>' . $score . '</p>';

 echo '<form method="post" ac
tion="removescore.php">';

 echo '<input type="radio" na
me="confirm" value="Yes" /> Yes

';

 echo '<input type="radio" na
me="confirm" value="No" checked=

"checked" /> No
';

 echo '<input type="submit" v
alue="Submit" name="submit" />';

 echo '<input type="hidden" n

ame= value="' .
 . '" />';

 echo '<input type="hidden" n

ame="name" value="' . $name . '"
 />';

 echo '<input type="hidden" n
ame="score" value="' . $score .

'" />';

 echo '</form>';

 }

 echo '<p><a href=

 ><< Back to admin page
</p>';

?>

</body>
</html>

DELETE FROM

"admin.php"

Provide a link back
to the Admin page to
improve navigation.

The id column is matched by the DELETE query, along with using a LIMIT of one row.

$id

$id"id"

1

$name $date

A few hidden form fields are
used to store the score data
so that it gets sent along as
part of the POST request.

The confirmation form
is only displayed if all
of these high score
variables are set.

We don't use $_SERVER['PHP_SELF'] here because it would include any data that had been passed through the URL query string as a GET. We want to make sure no GET data is passed along with this form - only POST data.

id $id=

"id"

'id'

$id

removescore.php

There were a few
magnets leftover.

290 Chapter 5

Test Drive
Add Remove Score and Admin scripts to Guitar Wars so that scores
can be removed.
Create two new text files, removescore.php and admin.php, and add the code to them
that you’ve just worked through. Upload the new scripts to your web server, and then open the
Admin script in your web browser. Click the "Remove" link for a score you’d like to get rid of,
and then confirm its removal on the Remove Score page. Return to the Admin page to make
sure the score is gone, and then go to the main Guitar Wars page (index.php) to see the
change there.

Unverified high scores,
those without screen shot
images, have now been
removed from the system.

The new Admin page
provides links to remove
unverified high scores.

The new Remove
Score page
takes care of
both confirming
and removing
unwanted scores.

The main Guitar
Wars page now
only shows verified
high scores.

The legit Guitar
Warriors are now
happy to see only
verified high scores.

There's only room in
this town for one top
rocker, and it's me!

Little Jacob, Guitar
Warrior rock prodigy

test drive the final guitar wars app

you are here 4 291

working with data stored in files

PHP&MySQLcross
Tired of uploading image files? How about uploading some
knowledge into a bunch of squares laid out in a puzzle?

Untitled Puzzle
Header Info 1

Header Info 2

etc...

1 2

3

4

5

6

7 8

9

10 11

12 13

Across
1. The type attribute of the <input> tag must be set to this for a
file upload form field.
4. It's usually a good idea to store uploaded application images
in an folder.
8. This SQL statement is used to change the structure of a table.
10. This SQL statement is used to put the results of a query in a
certain order.
11. Information about uploaded files is stored in the $_.....
superglobal variable.
12. This PHP statement is used to insert code from another
script.
13. It's a good idea to do this to newly uploaded files.

Down
2. To prevent a DELETE FROM statement from deleting more
than one row, use this SQL statement.
3. When a file is uploaded through a form, it is placed in a
folder on the web server.
5. When altering a table, this SQL command takes care of
adding a new column.
6. This PHP statement is used to create a constant.
7. Include files are very handy for data among several
script files.
9. This SQL statement is used as part of another statement to
order query results in descending order.

292 Chapter 5

PHP&MySQLcross Solution

Untitled Puzzle
Header Info 1

Header Info 2

etc...

F
1

I L
2

E

I T
3

I
4

M A G E S

I M

T P

A
5

O

D R D
6

S
7

D A
8

L T E R

H C R F D
9

A O
10

R D E R B Y F
11

I L E S

R L N S

I
12

N C L U D E M
13

O V E C

N M

G N

Across
1. The type attribute of the <input> tag must be set to this for a
file upload form field. [FILE]
4. It's usually a good idea to store uploaded application images
in an folder. [IMAGES]
8. This SQL statement is used to change the structure of a table.
[ALTER]
10. This SQL statement is used to put the results of a query in a
certain order. [ORDERBY]
11. Information about uploaded files is stored in the $_.....
superglobal variable. [FILES]
12. This PHP statement is used to insert code from another
script. [INCLUDE]
13. It's a good idea to do this to newly uploaded files. [MOVE]

Down
2. To prevent a DELETE FROM statement from deleting more
than one row, use this SQL statement. [LIMIT]
3. When a file is uploaded through a form, it is placed in a
folder on the web server. [TEMPORARY]
5. When altering a table, this SQL command takes care of
adding a new column. [ADDCOLUMN]
6. This PHP statement is used to create a constant. [DEFINE]
7. Include files are very handy for data among several
script files. [SHARING]
9. This SQL statement is used as part of another statement to
order query results in descending order. [DESC]

php&mysqlcross solution

you are here 4 293

working with data stored in files

This folder provides a convenient
location to store images for an
application, including images that
were uploaded by users.

images

Your PHP & MySQL Toolbox
Feel free to take a virtual bow. Not
only are you loved by virtual guitarists

worldwide, but you've also added quite
a few new skills to your PHP and MySQL
skillset: altering the structure of tables,
handling file uploads, controlling the
order of data, and removing data.

ALTER T
ABLE ta

ble

ADD COL
UMN col

umn typ
e

Use this SQL statement to add a

new column of data to a
n existing

database table
. The column is

added to the
end of the ta

ble

and is initially
empty for rows

that are alrea
dy in the data

base.

$_FILES

This built-in PHP superglobal
variable stores information about
files that have been uploaded
through a file input form. You can
use it to determine the filename,
the temporary storage location
of the file, the file size, and the
file type, among other things.

include, include_once,
require, require_once

These PHP statements allow
you to share script code across
multiple script files in an
application, eliminating duplicate
code and making the code easier
to maintain.

DELETE FROM table
WHERE column = match
LIMIT num

Use this SQL statement to
remove a row from a database
table. More than one match can
(and often should) be used to
improve the accuracy of the
deletion, not to mention limiting
the deletion to a single row.

ORDER BY column
This SQL statement orders the results of a query based on a certain column of data. Use ASC or DESC after the statement to sort the data in ascending or descending order. ASC is the default ordering for ORDER BY, and is, therefore, optional.

CHAPT
ER 5

this is a new chapter 295

securing your application6

Assume they’re all
out to get you

A short climb, a little
telephone rewiring, and this
little one-horse town won’t
know what hit it.

Your parents were right: don’t talk to strangers. Or at least

don’t trust them. If nothing else, don’t give them the keys to your application

data, assuming they’ll do the right thing. It’s a cruel world out there, and you can’t

count on everyone to be trustworthy. In fact, as a web application developer, you

have to be part cynic, part conspiracy theorist. Yes, people are generally bad,

and they’re definitely out to get you! OK, maybe that’s a little extreme, but it’s

very important to take security seriously and design your applications so

that they’re protected against anyone who might choose to do harm.

296 Chapter 6

The day the music died
Uh oh, our young virtual rock prodigy’s moment in the limelight
has been short-lived, as Jacob’s top Guitar Wars score is somehow
missing, along with all the other scores. It seems a diabolical force
is at work to foil the high score application and prevent Guitar
Warriors from competing online. Unhappy virtual guitarists are
unhappy users, and that can only lead to unhappy application
developers... you!

The main page is missing
high scores because
they’ve all been removed
from the database!

Guitar Wars top scorer Jacob, fighting mad at his top score disappearing from the high score list.

This isn’t fair! I worked
so hard to become the
best Guitar Warrior, and
now my score is gone.

Jacob’s musical weapon
of choice, a vintage
2005 Eradicaster.

guitar wars has been hacked

you are here 4 297

securing your application

Where did the high scores go?
We know that the main Guitar Wars page is empty, but does that mean the
database is empty too? A SELECT query can answer that question:

Somehow all of the high score rows of data have been deleted from the
Guitar Wars database. Could it be that maybe someone out there is using
our Remove Score script to do evil? We need to protect the scores!

A SELECT query reveals
that the guitarwars table
is completely empty—all
the scores are gone!

Circle which of the following techniques you could use to protect the Guitar
Wars high scores from bitter virtual guitar haters, and then write down why.

Password protect the Admin page so
that only people who know the password
(you!) can remove scores.

Check the IP address of the computer trying
to access the Admin page, and only allow
certain ones (yours!).

Create a user registration system,
and then only give some users (you!)
administrative privileges.

Eliminate the score removal feature
altogether.

mysql> SELECT * FROM guitarwars;

+-----+---------------------+------------------+---------+-------------------+ | id | date | name | score | screenshot | +-----+---------------------+------------------+---------+-------------------+ +-----+---------------------+------------------+---------+-------------------+
0 rows in set (0.0005 sec)

File Edit Window Help If6Was9

298 Chapter 6

Circle which of the following techniques you could use to protect the Guitar
Wars high scores from bitter virtual guitar haters, and then write down why.

Password protect the Admin page so
that only people who know the password
(you!) can remove scores.

Check the IP address of the computer trying
to access the Admin page, and only allow
certain ones (yours!).

Create a user registration system,
and then only give some users (you!)
administrative privileges.

Eliminate the score removal feature
altogether.

All of the techniques are
circled because they all solve
the problem, although some
are more viable than others.

Password protecting the Admin page is a good
quick and dirty solution because it’s not too
complicated and it secures the site quickly.

A user registration system with admin
privileges is a great solution but involves a fair
amount of planning and coding effort... Guitar
Wars needs security now!

Checking the IP address works but it makes
the site dependent upon your computer’s IP
address, which very well may change.

Removing the feature certainly solves this
specific problem, but if you recall, the removal
feature was originally added in the previous
chapter to make the site easier to maintain.

protecting guitar wars’ high scores

you are here 4 299

securing your application

DON’T
TRUST
THIS

SMILE!

id date name score screenshot

14 2008-05-01 20:36:07 Belita Chevy 282470 belitasscore.gif

15 2008-05-01 20:36:45 Jacob Scorcherson 389740 jascobsscore.gif

16 2008-05-01 20:37:02 Nevil Johansson 98430 nevilsscore.gif

17 2008-05-01 20:37:23 Paco Jastorius 127650 pacosscore.gif

18 2008-05-01 20:37:40 Phiz Lairston 186580 phizsscore.gif

19 2008-05-01 20:38:00 Kenny Lavitz 64930 kennysscore.gif

20 2008-05-01 20:38:23 Jean Paul Jones 243360 jeanpaulsscore.gif

guitarwars

Securing the teeming hordes
A simple and straightforward way to quickly secure the Guitar Wars high
scores is to use HTTP authentication to password protect the Admin page.
This technique actually involves both a user name and a password, but
the idea is to require a piece of secret information from an administrator
before they have access to restricted application features, such as the score
removal links.

When a page is secured using HTTP authentication, a window pops up
requesting the user name and password before access is allowed to the
protected page. In the case of Guitar Wars, you can limit access to the
Admin page to as few people as you want, potentially just you! The HTTP authentication window now stands between users and the Admin page.

High scores in the database
are now protected since the Admin page is protected.

HTTP authentication
provides a simple
way to secure a page
using PHP.

The “Remove” links
on the Admin page
are now only available
to the Guitar Wars
administrator.

300 Chapter 6

Protecting the Guitar Wars Admin page
HTTP authentication works like this: when a user tries to access a page
protected by authentication, such as our Admin page, they are presented
with a window that asks them for a user name and password.

$_SERVER['PHP_AUTH_PW']

$_SERVER['PHP_AUTH_USER']

The web browser uses a
window like this to request
a user name and password
before allowing access to a
protected page.

This variable stores the
password entered into the
authentication window.

This PHP superglobal variable
stores the user name entered
into the authentication window.

To keep things
simple, the
password isn’t
encrypted.

PHP enters the picture through its access to the user name and password
entered by the user. They are stored in the $_SERVER superglobal, which
is similar to other superglobals you’ve used ($_POST, $_FILES, etc.). A
PHP script can analyze the user name and password entered by the user
and decide if they should be allowed access to the protected page. Let’s
say we only allow access to the Admin page if the user name is “rock” and
the password is “roll.” Here’s how the Admin page is unlocked:

$_SERVER['PHP_AUTH_USER']

ro
ck

$_SERVER['PHP_AUTH_PW']

ro
ll

The Admin page is
only accessible if the
correct user name and
password are entered.

using http authentication

you are here 4 301

securing your application

When should the
authentication of the Admin
page actually take place?

Q: Is HTTP authentication really secure?

A: Yes. And no. It all depends on what you’re trying to accomplish with security.
Nothing is ever truly 100% secure, so we’re always talking about degrees of
security. For the purposes of protecting high scores in Guitar Wars, HTTP
authentication provides a reasonable level of security. You could add encryption to
the password to ramp that up a bit further. However, it’s probably not sufficient for
an application involving data that is more sensitive, such as financial data.

Q: What happens if the user name and password are entered incorrectly?

A: The browser emits a small electrical shock through the mouse. No, it’s
nothing that harsh. Usually a message is displayed letting users know that they’re
attempting to access a secure page that is apparently none of their business. It’s
ultimately up to you how grim you want this message to read.

Q: Does HTTP authentication require both a user name and password?
What if I only want to use a password?

A: You aren’t required to use both a user name and password. If you just want
a password, focus solely on checking the $_SERVER[‘PHP_AUTH_PW’] global
variable. More on how this variable is checked in just a moment...

Q: How exactly do you protect a page with HTTP authentication? Do you
call a PHP function?

A: Yes, you do. HTTP authentication involves establishing a line of
communication between the browser and the server through HTTP headers. You
can think of a header as a short little conversation between the browser and the
server. Browsers and servers use headers quite often to communicate outside of
the context of PHP, but PHP does allow you to send a header, which is how HTTP
authentication works. We’re about to dig a lot deeper into headers and their role in
HTTP authentication with PHP.

302 Chapter 6

index.php

HTTP/1.1 200 OK

Date: Thu, 01 May..
.

Server: Apache/2...

 ...

HTTP authentication requires headers
The idea behind HTTP authentication is that the server withholds a
protected web page, and then asks the browser to prompt the user for a
user name and password. If the user enters these correctly, the browser
goes ahead and sends along the page. This dialog between browser and
server takes place through headers, which are little text messages with
specific instructions on what is being requested or delivered.

Headers are actually used every time you visit a web page, not just when
authentication is required. Here’s how a normal, unprotected web page is
delivered from the server to the browser with the help of headers:

GET /index.php ...

Host: www.guitar...

Connection: close

 ...

Web server

Client web
browser

The browser requests
a page from the server
by sending a couple of
headers to identify the
file being requested
and the host name of
the server.

The server responds
with a collection of
headers, followed by
the requested page.

The browser receives
the headers and the
page, and renders the
HTML code for the page.

All web pages are
delivered with the
help of headers.

This collection of
headers constitutes
a web page request.

This group of
headers constitutes
a web page response.

When all is said and
done, the headers
help to successfully
deliver the requested
page to the browser.

1
2

3

authentication and headers

you are here 4 303

securing your application

HTTP/1.1 200 OK

Date: Thu, 01 May 2
008 11:22:09 GMT

Server: Apache/2.0.
54...

X-Powered-By: PHP/5
.2.5

Transfer-Encoding:
chunked

Content-Type: text/
html

GET /index.php HTTP/1.1
Host: www.guitarwars.net
Connection: close
User-Agent: Mozilla/5.0...
Accept-Charset: ISO-8859-1...
Cache-Control: no
Accept-Language: de,en;q=0.7...
...

index.php

Anatomy of
a header

Headers control precisely how and what kind of information is passed back and forth between
a web browser and web server. An individual header often consists of a name/value pair that
identifies a piece of information, such as the content type of a web page (HTML). A certain
group of headers is sent to the server as part of a web page request, and then another group
is returned to the browser as part of the response. Let’s take a closer look at these groups of
headers to find out exactly what is sent as the client and server communicate with each other.

Headers matter to us in regard to Guitar Wars because they provide the mechanism for
disrupting the delivery of a page from the server and requiring the user to enter a user name
and password before it can be delivered. In other words, you have to tweak the headers
returned by the server to protect a page with HTTP authentication.

Most individual headers
consist of a name/value
pair separated by a colon.

The first header
isn’t a name/value
pair—it’s the GET
request for the
page.This header specifies

the browser that is
doing the requesting.

The first header is the
server’s HTTP response.

This header tells the
browser that the content
is HTML code, as opposed
to say, plain text.

The HTML content for
the page is delivered
just after the headers.

1

2

3

304 Chapter 6

Head First: You seem to be grabbing a lot of attention
when it comes to authenticating web pages. Is it really
justified, or are you just looking for your fifteen minutes of
virtual fame?

Header: Oh, I’m justified alright. You more than likely
take for granted that I play a role in delivering every
single web page in existence. So I guess you could say the
web wouldn’t even work without me in the picture. I’ll be
around a lot longer than fifteen minutes, even if I do go
largely underappreciated.

Head First: So what exactly is this role you play?

Header: You have to understand that web browsers and
web servers aren’t people, so they can’t just call each other
up on the phone or send a text message.

Head First: OMG!

Header: Yeah, I know, it’s a little shocking but machines
just don’t communicate the same way people do. But
browsers and servers still have to communicate, and they
do so using me.

Head First: So how does that work?

Header: When someone types in a URL or clicks a link
on a web page, the browser assembles a GET request that
it sends to the server. This request is packaged into a series
of headers, each of which contains information about
the request. The headers hold information like the name
and host of the page being requested, the type of browser
doing the requesting, etc.

Head First: I still don’t see why that’s important.

Header: Well, do you think it’s important when you
tell the person at the coffee shop that you want a giganto
vanilla espressiato with skim milk?

Head First: Of course, they need to know what I want.

Header: That’s the same idea here. The browser tells
the server what it wants by packaging the request up and
sending it along in headers.

Head First: Interesting. But I heard that servers can send
headers as well. I thought servers just sent back web pages.

Header: Ah, good question. I am just as important on
the other side of the communication because the server
has to do more than just dump a bunch of content on the
browser. The browser wouldn’t have a clue what to do
with it without knowing a bit more.

Head First: Such as what?

Header: The type of the content, for one thing. That’s
probably the most important thing, but the server also
sends along other stuff like the size of the content, the
date and time of the delivery, and so on.

Head First: When does the web page itself get sent?

Header: Right after the server sends me to the browser,
it follows up with the actual content, be it HTML code,
PDF data, or image data such as a GIF or JPEG image.

Head First: OK, I’m starting to see how you work
in regard to normal web pages. But what about this
authentication stuff ?

Header: I play the same role for an authenticated web
page as I do for a normal web page except that I also take
care of letting the browser know that the page must be
authenticated. That way the browser can prompt the user
for authentication information.

Head First: You mean a user name and password?

Header: Exactly. And then it’s up to PHP code on the
server to decide if the user name and password match up,
in which case, the server can go ahead and send along the
rest of the page.

Head First: Fascinating. Thanks for the heads up.

Header: No problem. That’s just part of my job.

Header Exposed
This week’s interview:
What’s all the fuss about?

interview with a header

you are here 4 305

securing your application

<?php

 header('Content-Type: text/html');

 ...

?>

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en" >

 ...

</html>

The header() function immediately sends a header from the server to
the browser and must be called before any actual content is sent to the
browser. This is a very strict requirement—if even a single character or
space is sent ahead of a header, the browser will reject it with an error. For
this reason, calls to the header() function should precede any HTML
code in a PHP script:

header('Content-Type: text/html');

Even an errant space
before the <?php tag
would cause an error
in this example script.

The server sends this header to the browser for processing before attempting to send any of the HTML content in the page.

Spaces inside of the
<?php ?> tags aren’t
a problem because
they aren’t passed
along to the browser.

All this header stuff is fascinating,
but how do we actually use it to
protect pages with authentication?

Take control of headers with PHP
Using PHP, you can carefully control the headers sent by the server to the
browser, opening up the possibilities for performing header-driven tasks
such as HTTP authentication. The built-in header() function is how a
header is sent from the server to the browser from within a PHP script.

The header()
function lets you
create and send
a header from a
PHP script.

306 Chapter 6

Authenticating with headers
Authenticating the Guitar Wars Admin page using headers involves
crafting a very specific set of headers, two in fact, that let the browser
know to prompt the user for a user name and password before delivering
the page. These two headers are generated by PHP code in the Admin
script, and control the delivery of the page to the browser.

Client web
browser

Web server

HTTP authentication
headers are sent from the server to the browser.

The browser then
prompts the user
to enter a user
name and password.

Before delivering the guts
of the admin.php page to the
browser, the server processes
any headers for the page.

HTTP/1.1 401 Unauth
orized

WWW-Authenticate:

 Basic realm="Guit
ar Wars"

The two headers required to initiate authentication do two very
specific things:

WWW-Authenticate: Basic realm="Guitar Wars"

HTTP/1.1 401 Unau
thorized

This header lets the
browser know that the
user is not authorized
to view the page.

This header asks the browser
to attempt to authenticate
the user by prompting for a
user name and password.

The “basic realm” is just a phrase
used to uniquely identify this
particular authentication—it appears
in the authentication window.

Two specific headers
are required to request
the authentication of a
web page.

how header authentication works

you are here 4 307

securing your application

After processing the authentication headers, the browser waits for the
user to take action via the authentication window. The browser takes
a dramatically different action in response to what the user does...

If the user enters the correct user name and
password, and clicks Log In, the server sends
the HTML content of the admin.php page
to the browser. The browser displays the Admin
page, and the user can then remove scores just
like the previous unprotected version.

If the user enters the incorrect user name and
password, and clicks Log In, the server tells the
browser to prompt the user again. The browser
continues this process as long as the user
keeps entering incorrect user name/password
combinations. In other words, if they don’t
know the user name and password, their only
way out is to click Cancel.

If the user clicks the Cancel button to bail out of
the authentication, the server sends the browser a
page with a denial message, and nothing else—the
admin.php page is not sent. The denial message
is controlled by PHP code in the admin.php
script that is closely associated with the headers.
This code calls the PHP exit() function to
display a message and immediately exit the script:

The HTML content for the
Admin page is delivered after
the successful entry of the
user name and password.

If the user name
and password are
incorrectly submitted, the authentication
window just prompts
the user again.

An application has an opportunity
to exit the script and display a
custom denial message if a user
cancels out of the authentication.

Here’s the
realm!

exit('<h2>Guitar Wars</h2>Sorry, you must enter a valid ' .
 'user name and password to access this page.');

admin.php

308 Chapter 6

header

exit
"Guitar Wars"

_SERVER

[

PHP_AUTH_PW

'

'

]$

_SERVER

[

PHP_AUTH_USER
' '

]

$

username

password

$
$

$password

$username

PHP Magnets
The Guitar Wars Admin script is missing several important pieces
of PHP code that provide HTTP authentication. Use the magnets to
fill in the missing code and use headers to make the Admin page
secure. Hint: Some magnets may be used more than once.

<?php
 // User name and password for auth

entication

 = 'rock';

 = 'roll';

 if (!isset(

) ||

 !isset(

) ||

 ($_SERVER['PHP_AUTH_USER'] !=

) || ($_SERVER['PHP_A
UTH_PW'] !=)) {

 // The user name/password are inc

orrect so send the authentication h
eaders

 ('HTTP/1.1 401 Unaut

horized');

 ('WWW-Authenticate:

 Basic realm= ');

 ('<h2>Guitar Wars</h

2>Sorry, you must enter a valid use
r name and password to ' .

 'access this page.');

 }
?>

<html xmlns="http://www.w3.org/1

999/xhtml" xml:lang="en" lang="en
">

 ...
</html>

admin.php

finish the authentication code

you are here 4 309

securing your application

 Headers must
be the very
first thing sent
to the browser
in a PHP file.

Because headers must be
sent before any content, it is
extremely important to not
allow even a single space to
appear outside of PHP code
before calling the header()
function in a PHP script.

Indeed it is... headers aren’t just for security
Although authentication presents the immediate need for headers, they
are quite flexible and can do lots of other interesting things. Just call the
header() function with the appropriate name/value pair, like this:

The header is called a location header and redirects the current page to
a page called about.php on the same Guitar Wars site. Here we use a
similar header to redirect to the about.php page after five seconds:

<?php

 header('Refresh: 5; url=http://www.guitarwars.net/about.php');

 echo 'In 5 seconds you'll be taken to the About page.';

?>

This header is called a refresh header since it refreshes a page after
a period of time has elapsed. You often see the URL in such headers
reference the current page so that it refreshes itself.

One last header is called a content type header because it controls the
type of the content being delivered by the server. As an example, you can
force a page to be plain text, as opposed to HTML, by using the following
header when calling the header() function:

<?php

 header('Content-Type: text/plain');

 echo 'This text won't actually be bold.';

?>

In this example, the text echoed to the browser is displayed exactly as
shown with no special formatting. In other words, the server is telling the
browser not to render the echoed content as HTML, so the HTML tags
are displayed literally as text.

<?php

 header('Location: http://www.guitarwars.net/about.php');

?>

The content is delivered to
the browser as plain text.

The browser is
redirected to the
About page after
5 seconds.

The browser is
redirected to
the About page
upon receiving
this header.

I wonder if it’s possible
to send other kinds of
headers using PHP?

310 Chapter 6

PHP Magnets Solution
The Guitar Wars Admin script is missing several important pieces
of PHP code that provide HTTP authentication. Use the magnets to
fill in the missing code and use headers to make the Admin page
secure. Hint: Some magnets may be used more than once.

HTTP/1.1 401 Unauthorized WWW-Authenticate:
 Basic realm="Guitar Wars"

<?php
 // User name and password for auth

entication

 = 'rock';

 = 'roll';

 if (!isset(

) ||

 !isset(

) ||

 ($_SERVER['PHP_AUTH_USER'] !=

) || ($_SERVER['PHP_A
UTH_PW'] !=)) {

 // The user name/password are inc

orrect so send the authentication h
eaders

 ('HTTP/1.1 401 Unaut

horized');

 ('WWW-Authenticate:

 Basic realm= ');

 ('<h2>Guitar Wars</h

2>Sorry, you must enter a valid use
r name and password to ' .

 'access this page.');

 }
?>

<html xmlns="http://www.w3.org/1

999/xhtml" xml:lang="en" lang="en
">

 ...
</html>

admin.php

username

password

$

$

_SERVER [PHP_AUTH_USER' ']
$

_SERVER [PHP_AUTH_PW' ']
$

$username
$password

header

header

exit

"Guitar Wars"

The user-entered user name
and password are checked
against the required ones.

No HTML code is
delivered to the browser until after the headers are sent and processed.

The exit() function displays a denial message and
makes sure nothing else is sent to the browser in
the event of an authentication failure.

The two calls to the header()
function result in these headers
being sent to the browser.

The user name and password
are stored in variables at
the start of the script.

The $_SERVER superglobal
provides access to the
user name and password
entered by the user in the
authentication window.

the completed authentication code

you are here 4 311

securing your application

The Guitar Warriors are
stoked about the high
score application now
being safe and secure!

A user name
and password
now prevent
unauthorized
access to the
Admin page.

Scores can’t be removed
without authorization.

Test Drive
Add HTTP authorization to the Admin script.
Modify the admin.php script to use HTTP authentication so that only you have access to it.
Upload the script to your web server and then open it in your web browser. Try entering the
wrong user name and password first to see how access is restricted.

Q: When exactly does the exit() function get called in the
Guitar Wars Admin script?

A: Even though the exit() function appears in the PHP code
just below the two calls to the header() function, it’s only called
if the user cancels out of the authentication window by clicking the
Cancel button. If the authentication fails, the server doesn’t continue
executing past the two header() calls. Instead, it resends the
headers and tries again. Only if the user clicks Cancel does the
server make it to the exit() function, in which case it sends
along the content within the function call and nothing else. If the
authentication succeeds, exit() isn’t called because the script
never makes it inside the if statement—the code inside the if
statement is only executed if the user name and password aren’t set
or have been entered incorrectly.

Q: Does the “basic realm” of an HTTP authentication have
any real purpose?

A: Yes. It defines a security “zone” that is protected by a particular
user name and password. Once the user name and password
have been successfully entered for a given realm, the browser will
remember it and not continue to display the authentication window for
subsequent authentication headers in the same realm. In other words,
realms allow a browser to remember that you’ve met the security
requirements for a given collection of pages—just specify the same
realm for the authentication headers in the pages.

312 Chapter 6

OK, so maybe Guitar Wars is NOT secure
Talk about short-lived success. It didn’t take long at all for villainy to strike
again, blitzing the scores from Guitar Wars and yet again frustrating
hordes of competitive gamers. It seems that securing the Admin page
alone wasn’t enough since the Remove Score script can still be accessed
directly... if you know what you’re doing.

Nice try, Sparky!
Fortunately, I bookmarked
the link to the score removal
page and then doctored the
date a little. I wrote it down
on this huge board too.

It seems our Guitar Wars
villain’s figured out a
way around our attempt
at securing Guitar Wars.

Sure, it’s cryptic but the URL to
the removescore.php page does indeed
sidestep the secure admin.php page.

Ouch! The high scores
have disappeared
from the Guitar Wars
application again.

Write down how you think we can solve this latest attack, and
prevent high scores from being deleted:

another security problem…

http://www.guitarwars.net/
removescore.php?id=10&na
me=Jacob%20Scorcherson&
date=2008-05-01%2020:36:4
5&score=389740&
screenshot=jacobsscore.gif

you are here 4 313

securing your application

Joe: That makes sense. I mean, it worked fine for the Admin page.

Frank: That’s true. So all we have to do is put the same header authorization code in
the Remove Score script, and we’re good to go, right?

Jill: Yes, that will certainly work. But I worry about duplicating all that authorization
code in two places. What happens if later on we add another page that needs to be
protected? Do we duplicate the code yet again?

Joe: Code duplication is definitely a problem. Especially since there is a user name
and password that all the scripts need to share. If we ever wanted to change those,
we’d have to make the change in every protected script.

Frank: I’ve got it! How about putting the $username and $password variables
into their own include file, and then sharing that between the protected scripts. We
could even put it in an appvars.php include file for application variables.

Joe: I like where you’re headed but that solution only deals with a small part of the
code duplication. Remember, we’re talking about a decent sized little chunk of code.

We need to secure the Remove Score
script, and I’m pretty sure we can just use

HTTP authentication again.

Frank Jill Joe

Jill: You’re both right, and that’s why I think we need a new include file that stores away all of the
authorization code, not just the $username and $password variables.

Frank: Ah, and we can just include that script in any page we want to protect with HTTP authorization.

Joe: That’s right! We just have to make sure we always include it first thing since it relies on headers for
all the HTTP authorization stuff.

<?php
 // User name and password for authentication
 $username = 'rock';
 $password = 'roll';

 if (!isset($_SERVER['PHP_AUTH_USER']) || !isset($_SERVER['PHP_AUTH_PW']) || ($_SERVER['PHP_AUTH_USER'] != $username) || ($_SERVER['PHP_AUTH_PW'] != $password)) { // The user name/password are incorrect so send the authentication headers header('HTTP/1.1 401 Unauthorized');
 header('WWW-Authenticate: Basic realm="Guitar Wars"');
 exit('<h2>Guitar Wars</h2>Sorry, you must enter a valid user name and password to access this page.'); }
?>

<html>

admin.php

314 Chapter 6

<?php
 // User name and password for authentication
 $username = 'rock';
 $password = 'roll';

 if (!isset($_SERVER['PHP_AUTH_USER']) || !isset($_SERVER['PHP_AUTH_PW']) || ($_SERVER['PHP_AUTH_USER'] != $username) || ($_SERVER['PHP_AUTH_PW'] != $password)) { // The user name/password are incorrect so send the authentication headers header('HTTP/1.1 401 Unauthorized');
 header('WWW-Authenticate: Basic realm="Guitar Wars"'); exit('<h2>Guitar Wars</h2>Sorry, you must enter a valid user name and password to access this page.'); }
?>

<html>
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <title>Guitar Wars—High Scores Administration</title> <link rel="stylesheet" type="text/css" href="style.css" /> </head>
<body>
 <h2>Guitar Wars—High Scores Administration</h2>
 <p>Below is a list of all Guitar Wars high scores. Use this page to remove scores as needed.</p> <hr />

<?php
 require_once('appvars.php');
 require_once('connectvars.php');

 // Connect to the database
 $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME);
 // Retrieve the score data from MySQL
 $query = "SELECT * FROM guitarwars ORDER BY score DESC, date ASC"; $data = mysqli_query($dbc, $query);

 // Loop through the array of score data, formatting it as HTML echo '<table>';
 while ($row = mysqli_fetch_array($data)) {
 // Display the score data
 echo '<tr class="scorerow"><td>' . $row['name'] . '</td>'; echo '<td>' . $row['date'] . '</td>';
 echo '<td>' . $row['score'] . '</td>';
 echo '<td>Remove</td></tr>'; }
 echo '</table>';

 mysqli_close($dbc);
?>

</body>
</html>

Create an Authorize script
We already have all the code we need for a new Authorize script; it’s
just a matter of moving the code from admin.php to a new script
file (authorize.php), and replacing the original code with a
require_once statement.

We’re pulling this code
from admin.php so that
we can place it in its own
script file, authorize.php.

admin.php

creating authorize.php

you are here 4 315

securing your application

<?php
 // User name and password for au

thentication

 $username = 'rock';

 $password = 'roll';

 if (!isset($_SERVER['PHP_AUTH

_USER']) || !isset($_SERVER['P
HP_AUTH_PW']) ||

 ($_SERVER['PHP_AUTH_USER'] !
= $username) || ($_SERVER['PHP_

AUTH_PW'] != $password)) {

 // The user name/password are
incorrect so send the authentic

ation headers

 header('HTTP/1.1 401 Unauthor
ized');

 header('WWW-Authenticate: Ba
sic realm="Guitar Wars"');

 exit('<h2>Guitar Wars</h2>So
rry, you must enter a valid user

name and password to access this
 page.');

 }
?>

Since the Authorize script is shared, you’re guaranteed that the two pages have the same authentication realm, which means they share the same user name and password.

<?php
 require_once('authorize.php');
?>

<html>

<?php
 require_once('authorize.php');
?>

<html>

The shared Authorize script is included
at the very beginning of this script
since it calls the header() function.

The authentication code
in the Admin script is
replaced with a single
line of PHP code.

admin.php

removescore.php

authorize.php

PHP scripts can use headers to control how the server
delivers web content to the browser.

The built-in PHP header() function is used to send
headers to the browser, which can be used to redirect a
page, control the content type of a page, or request the
authentication of a page.

When headers are sent to the browser using the
header() function, calls to the header() function
must come before any other content is sent.

When a page is protected using HTTP authentication,
the user name and password entered by the user are
stored in the $_SERVER superglobal.

The “basic realm” of an HTTP authentication is a
security zone that gets associated with a specific user
name and password, allowing multiple pages to be
secured together.

The built-in PHP exit() function exits a PHP script,
preventing any code following it from being executed or
otherwise sent to the browser.

316 Chapter 6

Q: I still don’t fully understand how Ethel got around the security
in Guitar Wars. What did she do?

A: She capitalized on the weakness inherent in only protecting one page
(Admin) when the remove score feature really relies on two pages (Admin
and Remove Score). The Admin page presents a series of Remove links
that link to the Remove Score page. The specifics about which score to
remove are passed in the URL, allowing the Remove Score script to access
them through the $_GET superglobal. If you were able to put together a
legit URL for the Remove Score page, you could remove scores without
even going through the Admin page. That’s what Ethel did.

Q: But how did she know how to structure the URL to the Remove
Score page?

A: She’s pretty crafty, but this task didn’t require a genius. Remember
she mentioned bookmarking the Remove Score page back when the whole
site was unprotected. Well, a bookmark is just a URL, and she was able to
use it to construct a URL that directly accessed the Remove Score page
without having to go through the Admin page.

Q: OK, but the high scores had been re-entered since the previous
attack. Doesn’t that mean the old URLs wouldn’t work since the dates
are different?

A: Yes, that’s a very good point. But remember, Ethel is pretty clever.
She could easily look at the main Guitar Wars page and see the new dates,
which she then plugged into the old URL to remove the new scores without
any trouble. It’s important to never underestimate the ability of determined
people to reverse-engineer your PHP scripts and exploit weaknesses.

Q: Alright, so protecting both the Admin and Remove Score pages
stops Ethel, but don’t they now make it a total hassle to remove
scores legitimately?

A: No, not at all. Without the help of realms, it would definitely be a
hassle removing scores legitimately because you’d have to enter the user
name and password separately for the Admin and Remove Score pages.
But remember that a realm was established that is the same in both pages,
meaning that the pages fall under the same security zone. And once you
go through the authentication window for a page in a given realm, the user
name and password are remembered throughout the realm. The end result
is that successfully entering the user name and password once is sufficient
to unlock both pages.

security no dumb questions

Never underestimate the
ability of determined
people to reverse-engineer
your PHP scripts and
exploit weaknesses.

you are here 4 317

securing your application

Test Drive
Create the Authorize script and include it in the Admin and Remove
Score scripts to secure them.
Create a new text file called authorize.php, and enter the code for the Authorize script
into it. Then modify the admin.php script so that it includes the Authorize script instead
of the actual HTTP authentication code. Add the same require_once statement to
the beginning of the removescore.php script so that it is also protected by HTTP
authentication.

Upload all of the scripts to your web server and then try to open the Remove Score script
directly in your web browser. You may have to clear any previous HTTP authentication
sessions in your browser for it to prompt you again—most browsers remember an
authentication realm so that you don’t have to keep re-entering the user name and password.

Can you think of any other
ways the Guitar Wars high
score application is at risk?

http://www.guitarwars.net/removescore.php?
 id=10&
 name=Jacob%20Scorcherson&
 date=2008-05-01%2020:36:45&
 score=389740&
 screenshot=jacobsscore.gif

The Remove Score page is
protected regardless of
how the user gets to it.

A user name and password are
now required for both the
Admin and Remove Score pages.

This URL bypasses the
Admin page and accesses the
Remove Score page directly.

318 Chapter 6

id date name score screenshot
...

21 2008-05-01 20:36:07 Belita Chevy 282470 belitasscore.gif22 2008-05-01 20:36:45 Jacob Scorcherson 389740 jacobsscore.gif23 2008-05-01 20:37:02 Nevil Johansson 98430 nevilsscore.gif24 2008-05-01 20:37:23 Paco Jastorius 127650 pacosscore.gif25 2008-05-01 20:37:40 Phiz Lairston 186580 phizsscore.gif26 2008-05-01 20:38:00 Kenny Lavitz 64930 kennysscore.gif27 2008-05-01 20:38:23 Jean Paul Jones 243260 jeanpaulsscore.gif28 2008-05-01 21:14:56 Leddy Gee 308710 leddysscore.gif29 2008-05-01 21:15:17 T-Bone Taylor 354190 tbonesscore.gif30 2008-05-02 14:02:54 Ethel Heckel 500000 ethelsscore.gif

Sadly, happiness in the Guitar Wars universe didn’t last for long, as bogus scores
are showing up in the application in place of legitimate scores... and still inciting
rage throughout the Guitar Wars universe. Apparently it’s entirely possible to
disrupt the Guitar Wars high score list without removing scores. But how?

High Score

Ethel’s top score is clearly
suspect due to the poorly
doctored screen shot and
the fact that she happened
to score exactly 500,000.

Guitar Wars Episode II : Attack of the Clones

a fake score debacle

you are here 4 319

securing your application

Ethel realized she could
wreak plenty of Guitar Wars
havoc by simply submitting
bogus scores with doctored
screen shot images.

Write down how you would solve the problem of people being
able to post bogus high scores to the Guitar Wars application:

Oh yeah, it’s me... guilty as charged! All I
had to do was post my awesomely fake scores
with touched-up screen shots. Ah, it’s good to
be the top Guitar Warrior.

Subtraction by addition
Until now we’ve operated under the assumption that any high score submitted
with a screen shot image is considered verified. It’s now reasonably safe to say
this is not the case! And it’s pretty clear who the culprit is...

320 Chapter 6

Security requires humans
Even in this modern world we live in, sometimes you can’t beat a real
live thinking, breathing human being. In this case, it’s hard to beat a real
person when it comes to analyzing a piece of information and assessing
whether or not it is valid. We’re talking about moderation, where a human
is put in charge of approving content posted to a web application before it
is made visible to the general public.

Good luck trying to slip any
falsified documents, er high
scores, by me. I’m thorough,
and I rarely make mistakes.

Our fearless Guitar
Wars moderator... never
met a high score he
really and truly trusted.

With moderation, a new high score
gets added to the database but
doesn’t appear to the public until
a moderator approves it.

The Admin change adds an
“Approve” link to each new
high score so that it can
be approved.

Simply adding a new high
score doesn’t automatically
add it to the publicly visible
high score list anymore.

Guitar Wars could really use some human moderation. Sure, it’s still
possible that someone could carefully doctor a screen shot and maybe
still sneak a score by a human moderator. But it wouldn’t be easy, and it
doesn’t change the fact that moderation is a great deterrent. Keep in mind
that securing a PHP application is largely about prevention.

Human moderation
is an excellent way
to improve the
integrity of user-
submitted content.

guitar wars needs human moderation

you are here 4 321

securing your application

Plan for moderation in Guitar Wars
Adding a human moderation feature to Guitar Wars is significant because
it affects several parts of the application. The database must change, a new
script must be created to carry out an approval, the Admin page must add
an “Approve” link to each score, and finally, the main page must change to
only show approved scores. With this many changes involved, it’s important
to map out a plan and carry out each change one step at a time.

 Use ALTER to add an approved column
to the table.
Let’s start with the database, which needs a new

column for keeping up with whether or not a score

has been approved.

1

 Modify the Admin page to include an
“Approve” link for scores that have yet
to be approved.
The Approve Score script is a back-end script that
shouldn’t normally be accessed directly. Instead, it
is accessed through “Approve” links generated and
displayed on the Admin page—only unapproved
scores have the “Approve” link next to them.

3

id date name score screenshot approved

...

28 2008-05-01 21:14:56 Leddy Gee 308710 leddysscore.gif 0

29 2008-05-01 21:15:17 T-Bone Taylor 354190 tbonesscore.gif 0

30 2008-05-02 14:02:54 Ethel Heckel 500000 ethelsscore.gif 0

31 2008-05-02 20:32:54 Biff Jeck 314340 biffsscore.gif 0

32 2008-05-02 20:36:38 Pez Law 322710 pezsscore.gif 0

 Create an Approve Score script that
handles approving a new high score
(sets the approved column to 1).
With the database ready to accommodate high
score approvals, you need a script to actually handle
approving a score. This Approve Score script is
responsible for looking up a specific score in the
database and changing the approved column for it.

2

 Change the query on the main page to
only show approved scores.
The last step is to make sure all this approval stuff
gets factored into the main high score view. So the
main page of the application changes to only show
high scores that have been approved—without this
change, all the other approval modifications would
be pointless.

4

322 Chapter 6

The new approved column is a TINYINT that uses 0 to indicate
an unapproved score, or 1 to indicate an approved score. So all new
scores should start out with a value of 0 to indicate that they are
initially unapproved.

When a new column is
added, its approved
column is set to 0 so
that it starts out
unapproved.

ALTER TABLE guitarwars
ADD COLUMN approved TINYINT

 Use ALTER to add an
approved column to
the table.

1
DONE

The MySQL data type BOOL
is an alias for TINYINT, so
you can use either one.

Wait a minute. I don’t think you can just go
adding a column to the database without
changing the Add Score script—shouldn’t it
INSERT data into the new column?

It’s true, a new column means a new value in the INSERT query
in the Add Score script.
It’s important to not lose sight of the fact that a PHP application is a careful
orchestration of several pieces and parts: a database consisting of tables with rows and
columns, PHP code, HTML code, and usually CSS code. It’s not always immediately
apparent that changing one part requires changing another. Adding the new
approved column in the guitarwars table for the sake of the new Approve Score
script also requires modifying the INSERT query in the Add Score script:

INSERT INTO guitarwars
VALUES (0, NOW(), '$name', '$score','$screenshot', 0)

All newly inserted high score rows
have approved set to 0... unapproved!

Make room for approvals with ALTER
Adding the new approved column to the guitarwars table involves
a one-time usage of the ALTER TABLE statement, which is an SQL
statement we’ve used before.

id date name score screenshot approved
...

30 2008-05-02 14:02:54 Ethel Heckel 500000 ethelsscore.gif 0
31 2008-05-02 20:32:54 Biff Jeck 314340 biffsscore.gif 0
32 2008-05-02 20:36:38 Pez Law 322710 pezsscore.gif 0

add an approved column to the guitarwars table

you are here 4 323

securing your application

The Approve Score script is similar in structure to the Remove Score script
except that its job is to approve a score. Finish the missing code for the
Approve Score script, making sure to secure the page and only approve the
appropriate score based on score data passed through a URL.

<?php

 ;

?>

...

<?php

 require_once('appvars.php');

 require_once('connectvars.php');

 ...

 if (isset($_POST['submit'])) {

 if () {

 // Connect to the database

 $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME);

 // Approve the score by setting the approved column in the database

 $query = "UPDATE guitarwars SET ";

 mysqli_query($dbc, $query);

 mysqli_close($dbc);

 // Confirm success with the user

 echo

 }

 else {

 echo

 }

 }

 ...

 echo '<p><< Back to admin page</p>';

?>

...

324 Chapter 6

 Create an Approve
Score script that
handles approving
a new high score
(sets the approved
column to 1).

2

DONE

The Approve Score script is similar in structure to the Remove Score script
except that its job is to approve a score. Finish the missing code for the
Approve Score script, making sure to secure the page and only approve the
appropriate score based on score data passed through a URL.

<?php

 ;

?>

...

<?php

 require_once('appvars.php');

 require_once('connectvars.php');

 ...

 if (isset($_POST['submit'])) {

 if () {

 // Connect to the database

 $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME);

 // Approve the score by setting the approved column in the database

 $query = "UPDATE guitarwars SET ";

 mysqli_query($dbc, $query);

 mysqli_close($dbc);

 // Confirm success with the user

 echo

 }

 else {

 echo

 }

 }

 ...

 echo '<p><< Back to admin page</p>';

?>

...

require_once(‘authorize.php’)

approved = 1 WHERE id = ‘$id’

admin.php

Including the Authorize script is all that is required
to secure the Approve Score page with a user name
and password, but it must be done first thing in the
script since it relies on headers.

The ID must match
in order to carry
out the approval.

Setting the approved column
to 1 approves the score. Confirm the approval with

the user by showing the
approved score and name.

It’s important to reveal when a score cannot
be approved, similar to how other Guitar Wars
scripts report errors.

Provide a link back to the
Admin page for easier navigation.

‘<p>The high score of ‘ . $score . ‘ for ‘ . $name . ‘ was successfully approved.’;

‘<p class=”error”>Sorry, there was a problem approving the high score.</p>’;

$_POST[‘confirm’] == ‘Yes’

the completed approve score script

you are here 4 325

securing your application

Q: Why isn’t it necessary to pass along the screen shot
filename when approving a score?

A: Because the process of approving a high score only requires
enough information to look up a score row and then approve it. This
means you really only need enough data to hone in on a particular
row. The date, name, and score are enough to find a particular row
and set its approved column to 1.

Q: It seems kind of cryptic to use 0 and 1 in the approved
column. Are there other ways to represent this information?

A: Yes. The MySQL ENUM data type, which stands for
“enumerated,” allows you to create a column with a restricted list of
possible values. So instead of adding the approved column as
a TINYINT that is intended to be 0 or 1, you could add it as an
ENUM that can only have values of 'yes' and 'no', like this:
ALTER TABLE guitarwars
ADD COLUMN approved ENUM('yes', 'no')

The score data used to approve a score in the Approve Score script is passed
through “Approve” links that are generated in the Admin script. Finish the
missing code in the Admin script so that it generates these links.

...

 // Loop through the array of score data, formatting it as HTML

 echo '<table>';

 echo '<tr><th>Name</th><th>Date</th><th>Score</th><th>Action</th></tr>';

 while ($row = mysqli_fetch_array($data)) {

 // Display the score data

 echo '<tr class="scorerow"><td>' . $row['name'] . '</td>';

 echo '<td>' . $row['date'] . '</td>';

 echo '<td>' . $row['score'] . '</td>';

 echo '<td><a href="removescore.php?id=' . $row['id'] . '&date=' . $row['date'] .

 '&name=' . $row['name'] . '&score=' . $row['score'] .

 '&screenshot=' . $row['screenshot'] . '">Remove';

 if () {

 echo

 }

 echo '</td></tr>';

 }

 echo '</table>';

...
Hint: only unapproved scores
should have an “Approve” link.

326 Chapter 6

The score data used to approve a score in the Approve Score script is passed
through “Approve” links that are generated in the Admin script. Finish the
missing code in the Admin script so that it generates these links.

...

 // Loop through the array of score data, formatting it as HTML

 echo '<table>';

 echo '<tr><th>Name</th><th>Date</th><th>Score</th><th>Action</th></tr>';

 while ($row = mysqli_fetch_array($data)) {

 // Display the score data

 echo '<tr class="scorerow"><td>' . $row['name'] . '</td>';

 echo '<td>' . $row['date'] . '</td>';

 echo '<td>' . $row['score'] . '</td>';

 echo '<td><a href="removescore.php?id=' . $row['id'] . '&date=' . $row['date'] .

 '&name=' . $row['name'] . '&score=' . $row['score'] .

 '&screenshot=' . $row['screenshot'] . '">Remove';

 if () {

 echo

 }

 echo '</td></tr>';

 }

 echo '</table>';

...

$row[‘approved’] == ‘0’
‘ / <a href=”approvescore.php?id=’ . $row[‘id’] . ‘&date=’ . $row[‘date’] .

‘&name=’ . $row[‘name’] . ‘&score=’ . $row[‘score’] . ‘&screenshot=’ .
$row[‘screenshot’] . ‘>Approve’;

Check to see if the score is
unapproved before generating
the “Approve” link.

Generate the “Approve” link
so that the id, date, name,
score, and screen shot image
name are passed in the URL.

 Modify the Admin page to include an “Approve” link for scores that have
yet to be approved.

3

The “Approve” link ties
the Admin page to the
Approve Score page.

DONE

generating approve links

you are here 4 327

securing your application

Unapproved scores aren’t worthy
All the infrastructure is now in place for the moderation feature in the
Guitar Wars high score application. All that’s missing is the final step,
which is altering the main page to only show approved scores. This
involves tweaking the SQL SELECT query so that it only plucks out scores
whose approved column is set to 1 (approved). This is accomplished
with a WHERE statement.

 Change the query on
the main page to only
show approved scores.

4

DONE

SELECT * FROM guitarwars
WHERE approved = 1
ORDER BY score DESC, date ASC

id date name score screenshot approved
...

28 2008-05-01 21:14:56 Leddy Gee 308710 leddysscore.gif 129 2008-05-01 21:15:17 T-Bone Taylor 354190 tbonesscore.gif 130 2008-05-02 14:02:54 Ethel Heckel 500000 ethelsscore.gif 031 2008-05-02 20:32:54 Biff Jeck 314340 biffsscore.gif 132 2008-05-02 20:36:38 Pez Law 322710 pezsscore.gif 1

Use WHERE to
select rows based
on the value of a
certain column.

The addition of the WHERE statement to this query eliminates any scores
that haven’t been approved, which includes all new scores. This gives the
moderator a chance to look them over and decide whether they should be
removed or made visible to the public (approved).

If the approved column is set
to something other than 1,
the score won’t be displayed.

Only approved
scores show up
on the main page
(index.php) now.

328 Chapter 6

Test Drive
Create the Approve script and rework the rest of the Guitar Wars
application to use it.
Using a MySQL tool, issue the ALTER query to add the new approved column to the
guitarwars table. Then change the INSERT query in the addscore.php script to insert
a 0 in the approved column for new rows of data.

Now create a new text file called approvescore.php, and enter the code for the Approve
Score script into it. Then modify the admin.php script to include an “Approve” link for high
scores that have yet to be approved. And finally, change the SELECT query in index.php to
only show approved scores.

Upload all of the scripts to your web server, and open the main Guitar Wars page in your web
browser. Take note of the scores that are visible, and then open the Admin page. Click one of
the “Approve” links and continue along to approve the score. Then go back to the main page to
see if the score appears.

The new “Approve” links
on the Admin page
provide access to the
Approve Score page,
where individual scores
can be approved.

test drive approvescore.php

you are here 4 329

securing your application

Upon following through
with the score approval,
a confirmation message
is displayed.

The newly approved
score now appears on the
main Guitar Wars page.

A simple form requires a
confirmation before actually
approving the score.

330 Chapter 6

The million-point hack
The moderated version of Guitar Wars represents a significant security
improvement, but it’s far from bulletproof. It seems our wily infiltrator has
managed to find another weakness in the high score system and somehow sneak
her high scores past the moderator. Ethel must be stopped, permanently, in
order to restore trust throughout the Guitar Wars universe.

I’ve gotta be honest, I can’t
decide what’s more fun, playing
my accordion or making a
mockery of the Guitar Wars site!

Ethel can’t help but gloat over
her success now that she beat
the system yet again.

This is precisely
the kind of high
score the moderator
would’ve stopped
dead in its tracks...
yet there it is!

ethel strikes again

you are here 4 331

securing your application

id date name score screenshot approved21 2008-05-01 20:36:07 Belita Chevy 282470 belitasscore.gif 122 2008-05-01 20:36:45 Jacob Scorcherson 389740 jacobsscore.gif 123 2008-05-01 20:37:02 Nevil Johansson 98430 nevilsscore.gif 124 2008-05-01 20:37:23 Paco Jastorius 127650 pacosscore.gif 125 2008-05-01 20:37:40 Phiz Lairston 186580 phizsscore.gif 126 2008-05-01 20:38:00 Kenny Lavitz 64930 kennysscore.gif 127 2008-05-01 20:38:23 Jean Paul Jones 243260 jeanpaulsscore.gif 128 2008-05-01 21:14:56 Leddy Gee 308710 leddysscore.gif 129 2008-05-01 21:15:17 T-Bone Taylor 354190 tbonesscore.gif 131 2008-05-02 20:32:54 Biff Jeck 314340 biffsscore.gif 132 2008-05-02 20:36:38 Pez Law 322710 pezsscore.gif 133 2008-05-05 14:58:59 Ethel Heckel 1000000 ethelsscore2.gif 1

Everything in moderation... ?
Even though the moderator knows without a doubt that he never approved
Ethel’s high score submission, it nevertheless is there in plain view with
the approved column set to 1. We know the Add Score script sets the
approved column to 0 for new high scores because we just modified the
INSERT query in that script. Something just doesn’t add up!

How do you think Ethel’s bogus post got past the moderator?

The Guitar Wars
moderator can’t figure
out what happened.

How is that possible? I
know I never approved that
score. A million points!?

This score was never
approved by the
moderator yet its
approved column is
set to 1, resulting in
it being displayed.

332 Chapter 6

1000000', 'ethelsscore2.gif', 1) -- Ethel Heckel

ethelsscore2.gif

As it turns out, Ethel’s million-point hack had nothing to do with the
Approve Score form. Her mischief was completely isolated to the
Add Score form. Below is the exact form data that Ethel entered into
the Add Score form to carry out her hack. Enter the same form data
in your own form and add the score. What do you think is going on?

Don’t forget the space
after the -- here.

This can be any GIF or JPEG
image file that is under 32 KB.

try out ethel’s hack

you are here 4 333

securing your application

How exactly did she do it?
In order to understand what’s happening with this clever form attack, let’s
trace the flow of form data as it travels through the Add Score script.

The unusual contents of
the Score form field
get stored in the $score
variable, which ends up
making its way directly
into the INSERT query.

INSERT INTO guitarwars
VALUES (0, NOW(), '$name', '$score', '$screenshot', 0)

Using the exact form data shown on the facing page, write out
the full Add Score SQL query for the million-point attack. Make
sure to replace the variables in the query with the actual form
data. Annotate what you think is happening.

The Score form field expects a single numeric value, such as 1000000,
but instead it has several values enclosed in single quotes, separated by
commas, and then with a strange double-hyphen at the end. Very strange.

This strange data first gets stored in the $score variable, after which
it gets incorporated into the INSERT query. This just results in a
meaningless score, right? Or is something more sinister taking place here?

$_POST['score']

10
00
00
0'
,
'e
th
el
ss
co
re
2.
gi
f'
,
1)
 -
-

$score = $_POST['score'];

Ethel entered her high
score... plus a bunch of
other strange stuff!

$_POST['name']

Et
he
l
He
ck
el

$_POST['screenshot']

et
he
ls
sc
or
e2
.g
if

334 Chapter 6

Using the exact form data shown on the facing page, write out
the full Add Score SQL query for the million-point attack. Make
sure to replace the variables in the query with the actual form
data. Annotate what you think is happening.

INSERT INTO guitarwars

VALUES (0, NOW(), ‘Ethel Heckel‘, ‘1000000’, ‘ethelsscore2.gif’, 1) -- ’, ‘ethelsscore2.gif’, 0)

Ethel has somehow created her
own version of the query that
is superseding the original query.

Since the approved column
is last in the database
structure, it is being forced
to a value of 1... approved!

Tricking MySQL with comments
The real culprit in Ethel’s million-point attack is, strangely enough, SQL
comments. A double-hyphen (--) is used in SQL to comment out the
remainder of a line of SQL code. You must follow the double-
hyphen with a space for it to work (--), but everything after the
space is ignored. Now take a look at Ethel’s full query with that little
nugget of wisdom.

INSERT INTO guitarwars

VALUES (0, NOW(), 'Ethel Heckel', '1000000', 'ethelsscore2.gif', 1) -- ', 'ethelsscore2.gif', 0)

Is it making more sense? The comment effectively erased the remaining
SQL code so that it wouldn’t generate an error, allowing Ethel’s version
of the query to slip through without a snag. The end result is an instantly
approved new high score that the moderator never got a chance to catch.

The -- comment causes
the rest of the line of
SQL code to be ignored.

id date name score screenshot approved
...

33 2008-05-05 14:58:59 Ethel Heckel 1000000 ethelsscore2.gif 1

Ethel tricked the query
into approving her score.

That’s a weird looking query. The
screen shot filename appears twice,
and I don’t know what to make of that
double-hyphen... does the query work?

how sql injection works

you are here 4 335

securing your application

The Add Score form was SQL injected
Ethel’s attack is known as an SQL injection, and involves an
extremely sneaky trick where form data is used as a means to change
the fundamental operation of a query. So instead of a form field just
supplying a piece of information, such as a name or score, it meddles with
the underlying SQL query itself. In the case of Guitar Wars, Ethel’s SQL
injection used the Score field as a means of not only providing the score,
but also the screen shot filename, the approval value, and a comment at
the end to prevent the original SQL code from generating an error.

Q: Are there any other kinds of comments in SQL besides --?

A: Yes. Another variation on the single-line comment involves the
use of # instead of --, but still results in commenting out any SQL
code to the end of the line following the comment. SQL also supports
multi-line comments that are similar to PHP’s multi-line comments in
that you enclose commented code between /* and */.

Q: Would Ethel’s SQL injection attack have still worked if the
approved column wasn’t at the end of the table?

A: No, and that’s a really important point. This particular
INSERT query relies on the default ordering of columns in the table.
Tacking on 1 to the end of the query just happened to work because
approved is the last column, appearing immediately after the
screenshot column.

INSERT INTO guitarwars
VALUES (0, NOW(), '$name', '$score', '$screenshot', 0)

1000000', 'eth
elsscore2.gif'

, 1) --

Ethel Heckel

ethelsscore2.gif

Form fields are
a security weak
point for web
applications
because they allow
users to enter data.

336 Chapter 6

Protect your data from SQL injections
The real weakness that SQL injections capitalize on is form fields that
aren’t validated for dangerous characters. “Dangerous characters” are any
characters that could potentially change the nature of an SQL query, such
as commas, quotes, or -- comment characters. Even spaces at the end
of a piece of data can prove harmful. Leading or trailing spaces are easy
enough to eliminate with the built-in PHP function trim()—just run all
form data through the trim() function before using it in an SQL query.

But leading and trailing spaces aren’t the whole problem. You still have
the commas, quotes, comment characters, and on, and on. So in addition
to trimming form fields of extra spaces, we also need a way to find and
render harmless other problematic characters. PHP comes to the rescue
with another built-in function, mysqli_real_escape_string(),
which escapes potentially dangerous characters so that they can’t adversely
affect how a query executes. These characters can still appear as data in
form fields, they just won’t interfere with queries.

Putting the trim() and mysqli_real_escape_string()functions
together provide a solid line of defense against SQL injections.

$name = trim($_POST['name']);

$score = trim($_POST['score']);

$screenshot = trim($_FILES['screenshot']['name']);

$name = mysqli_real_escape_string($dbc, trim($_POST['name']));

$score = mysqli_real_escape_string($dbc, trim($_POST['score']));

$screenshot = mysqli_real_escape_string($dbc, trim($_FILES['screenshot']['name']));

The trim() function gets rid of leading and trailing spaces in this form data.

The mysqli_real_escape_string()
function converts dangerous
characters into an escaped
format that won’t adversely
affect SQL queries.

SQL injections can
be prevented by
properly processing
form data.

mysqli_real_escape_string() is
considered a database function, which
is why it requires you to pass it a
database connection variable, like the
one used when submitting queries.

Processing the three Guitar Wars form fields with the trim() and
mysqli_real_escape_string()functions greatly reduces the
chances of another SQL injection attack. But these two functions aren’t
enough—maybe there’s a way to make the query itself less vulnerable...

preventing sql injection

you are here 4 337

securing your application

A safer INSERT (with parameters)
Aside from exploiting weak form field protection, Ethel’s SQL injection also
relied on the fact that the approved column followed the screenshot
column in the database structure. That’s how she was able to get away with
just adding 1 onto the end of INSERT and have it go into the approved
column. The problem is that the INSERT query is structured in such a way
that it has to insert data into all columns, which adds unnecessary risk.

INSERT INTO guitarwars (date, name, score, screenshot)
VALUES (NOW(), '$name', '$score', '$screenshot')

INSERT INTO guitarwars
VALUES (0, NOW(), '$name', '$score', '$screenshot', 0)

When data is inserted into a table like this, the order of the data must line
up with the order of the columns in the table structure. So the fifth piece of
data will go into the screenshot column because it’s the fifth column in
the table. But it really isn’t necessary to explicitly insert the id or approved
columns since id is auto-incremented and approved should always be 0.
A better approach is to focus on inserting only the data explicitly required of
a new high score. The id and approved columns can then be allowed to
default to AUTO_INCREMENT and 0, respectively.

We need a restructured INSERT query that expects a list of columns prior to
the list of data, with each matching one-to-one. This eliminates the risk of the
approved column being set—it’s no longer part of the query. If this kind of
query looks familiar, it’s because you’ve used it several times in other examples.

An INSERT query
can be written so
that it nails down
exactly what values
go in what columns.

This version of the INSERT query spells out exactly
which column each piece of data is to be stored in,
allowing you to insert data without having to worry about
the underlying table structure. In fact, it’s considered
better coding style to use this kind of INSERT query so
that data is inserted exactly where you intend it to go, as
opposed to relying on the structural layout of the table.

NOW()

'$name'

'$score'

'$screenshot'

id date name score screenshot approved

...

Nothing can be
inserted into the
approved column
because it isn’t listed
as part of the query.

The id column can be left out
since it auto-increments anyway.

Ideally, we shouldn’t be setting the
id and approved columns since they
could just have default values.

338 Chapter 6

ALTER TABLE guitarwars
MODIFY COLUMN approved TINYINT
DEFAULT 0

Hang on a second. This is the first
I’ve heard of default values in MySQL
tables. Is that really possible?

Not only is it possible, but it’s a very good idea to
specify DEFAULT column values whenever possible.
The SQL DEFAULT command is what allows you to specify a default
value for a column. If a column has a default value, you can forego setting
it in an INSERT query and relax in the confidence of knowing that it will
automatically take on the default value. This is perfect for the approved
column in the guitarwars table. Now we just need to modify the table
one more time to set the default value for approved to 0 (unapproved).

DEFAULT results in the approved
column being automatically assigned
a value of 0 unless an INSERT
query explicitly sets it otherwise.

Since the approved column already exists, in this ALTER TABLE statement we have to use MODIFY COLUMN instead of ADD COLUMN.

You still have to specify the
type of the column—just make
sure it’s the same as when you
first added the column.

With the approved column now altered to take on a default value, the
new and improved INSERT query in the Add Score script can insert
high scores without even mentioning the approved column. This is
good design since there’s no need to explicitly insert a value that can be
defaulted, and it adds a small extra degree of security by not exposing the
approved column to a potential attack.

the DEFAULT command

you are here 4 339

securing your application

Form validation can never be too smart
One last step in minimizing the risks of SQL injection attacks involves
the form validation in the Add Score script. Before checking to see if the
screen shot file type or size is within the application-defined limits, the
three Add Score form fields are checked to make sure they aren’t empty.

if (!empty($name) && !empty($score) && !empty($screenshot)) {
 ...
}

There is nothing wrong with this code as-is, but securing an application
is often about going above and beyond the call of duty. Since the Score
field expects a number, it makes sense to not just check for a non-empty
value but for a numeric value. The PHP is_numeric() function
does just that by returning true if a value passed to it is a number, or
false otherwise. It’s consistently doing the little things, like checking for a
number when you’re expecting a number, that will ultimately make your
application as secure as possible from data attacks.

Whenever possible, insist on form data
being in the format you’ve requested.

Rewrite the Add Score form validation if statement to use the isnumeric() function so that
only a numeric score is allowed.

is_numeric(465730)

is_numeric('one million!')

is_numeric(0) is_numeric($score)

True!
False.

True or false depending
on whether or not the
user enters a number
into the Score field.

This if statement checks to make sure all of the form fields are non-empty.

340 Chapter 6

Test Drive
Beef up the handling of form data in the Add Score script.
Tweak the assignment of form data to variables in the addscore.php script so that the
trim() and mysqli_real_escape_string() functions are used to clean up the form
data. Then change the INSERT query so that it specifies both the column names and values,
eliminating the need to provide values for the id and approved columns. Also change the
if statement that validates the form fields so that it checks to make sure the score is numeric.

Finally, use a MySQL tool to run the ALTER query that defaults the approved column to 0.

Upload the new Add Score script to your web server, navigate to it in a web browser, and
then try the same SQL injection attack again.

Rewrite the Add Score form validation if statement to use the isnumeric() function so that
only a numeric score is allowed.

if (!empty($name) && is_numeric($score) && !empty($screenshot)) {
 ...
}

Now the Score
form field will only
accept numbers
and nothing else.

Form validation is a topic that
reaches far beyond database
security. Chapter 10 revisits form
validation in much more detail...

Sure, this error message
could be a bit more
specific, but it gets the
job done without adding
extra logic to the script.

test drive the new addscore.php

you are here 4 341

securing your application

Egad! Foiled again. Maybe
it’s time I just learned
how to play virtual guitar.

Cease fire!
It seems Ethel’s will to interfere with the Guitar Wars high scores has
finally been broken thanks to the improvements to the application that
render it immune to SQL injections. The reigning Guitar Wars champion
has responded by posting a new top score.

Relieved that high scores are now safe from outside interference, Jacob posts a new top score that will be tough to beat.

Finally! I’m back
at the top of the
high score list with
a jamming new score.

Resigned that she’d rather
join them than continue to
lose fighting them, Ethel
figures it might be time to
become a Guitar Warrior.

342 Chapter 6

header()

This built-in PHP function is used
to send a header from the server
to the browser, allowing you to
perform tasks such as redirecting
the page, specifying a certain
content type, or carrying out
HTTP authentication.

exit()

This built-in PHP function causes
a PHP script to stop immediately.
Once a script encounters the
exit() function, no additional
PHP code is executed and no
additional HTML code is delivered
to the browser.

Your PHP & MySQL Toolbox
In addition to taking the Guitar Wars
high score application to a new

level, you’ve acquired several new tools
and techniques. Let’s revisit the most
important ones.

$_SERVER

Among other things, this built-in PHP superglobal stores the user name and password entered by the user when attempting to access a page requiring HTTP authentication. You can check these against expected values to protect pages that need to be secured.

DEFAULT value

This SQL statement establishes the default value of a column in a table. If a new row is added and the column isn’t set, it will take on the default value.

is_numeric()

This built-in PHP function checks
to see if a value is a number. It
is useful for checking to see if a
numeric form field actually holds
a numeric value. trim(), my

sqli_real_

escape_str
ing()

These two built-in PHP functions

are handy for proces
sing form

data and preventing
problematic

characters from interfering with

SQL queries. The first function

trims leading and trailing
 spaces,

while the latter escap
es special

characters.

CH
AP

T
ER

 6
php&mysql toolbox

you are here 4 343

securing your application

Column/Value Query
A type of INSERT query where

columns and their respective values

are carefully matched to each

other, as opposed to relying
on

the order of the data matching

the structural order of the

columns in the table.

HTTP Authentication
A simple web security technique
that limits access to a web page
or script using a user name and
password. Although not intended
for highly sensitive security
applications, HTTP authentication
can be handy for quickly adding
a degree of security to a web
application.

Human Moderation
Everything in moderation! In this case, it means that a human being is often the best line of defense in identifying and eliminating unwanted content being posted by others. Automated security techniques are still important, but it’s hard to beat a living, breathing person with a brain!

SQL Injection
A security breach that involves an
evil-doer somehow compromising a
SQL query to gain unwarranted
access to a database. Most SQL
injections involve tricking a web
form into passing along dangerous
data directly to a dynamically
constructed query. So form
validation is often the solution.

Form Validation
The process of checking all of the data entered by a user into a form to ensure that it is in the expected format. In addition to making forms easier to use, validation can help make web applications more secure by not allowing users to enter bad data.

this is a new chapter 345

building personalized web apps7

Remember me?

No one likes to be forgotten, especially users of web
applications. If an application has any sense of “membership,” meaning that users

somehow interact with the application in a personal way, then the application needs to

remember the users. You’d hate to have to reintroduce yourself to your family every time

you walk through the door at home. You don’t have to because they have this wonderful

thing called memory. But web applications don’t remember people automatically—it’s up

to a savvy web developer to use the tools at their disposal (PHP and MySQL, maybe?) to

build personalized web apps that can actually remember users.

What’s your name again? Johnson, right.
Well, I’m showing no record of you, Mr. Jackson.
Are you sure you signed up for a warranty on
your cryogenic storage cell? Oh, I see, so you’re
calling from inside your cell right now. And what

was your name again?

346 Chapter 7

They say opposites attract
It’s an age-old story: boy meets girl, girl thinks boy is completely nuts, boy
thinks girl has issues, but their differences become the attraction, and
they end up living happily ever after. This story drives the innovative new
dating site, Mis-match.net. Mismatch takes the “opposites attract” theory
to heart by mismatching people based on their differences.

Problem is, Mismatch has yet to get off the ground and is in dire need of
a web developer to finish building the system. That’s where you come in.
Millions of lonely hearts are anxiously awaiting your completion of the
application... don’t let them down!

Mismatch users need to be able to interact with the site on a personal
level. For one thing, this means they need personal profiles where
they enter information about themselves that they can share with
other Mismatch users, such as their gender, birthdate, and location.

Sidney Kelsow
Female
1984-07-19
Tempe, AZ

Personal web applications

thrive on personal information,

which requires users to be

able to access an application

on a personal level.

Sidney loves reality TV,
yoga, and sushi, and is
hoping for a successful
mismatch.

Johan loves professional
wrestling, weightlifting, and
Spam, and is excited about
anyone who’ll reply to him.

Check out
these guns!

I can’t wait to
find my perfect
mismatch.

Johan Nettles
Male
1981-11-03
Athens, GA

a good mismatch is hard to find

you are here 4 347

building personalized web apps

Mismatch is all about personal data
So Mismatch is all about establishing connections through personal data.
These connections must take place within a community of users, each
of whom is able to interact with the site and manage their own personal
data. A database called mismatch_user is used to keep up with
Mismatch users and store their personal information.

How can Mismatch customize
the Edit Profile page for each
different user?

mismatch_user

user_id join_date first_name last_name gender birthdate city state picture

1 2008-04-17
09:43:11

Sidney Kelsow F 1984-07-19 Tempe AZ sidneypic.jpg

...

11 2008-05-23
12:24:06

Johan Nettles M 1981-11-03 Athens GA johanpic.jpg

...

This is the
Mismatch database.

Within the Mismatch
database, the
mismatch_user table
stores users and their
personal profile data.

In addition to viewing a user profile, Mismatch users can
edit their own personal profiles using the Edit Profile page.
But there’s a problem in that the application needs to know
which user’s profile to edit. The Edit Profile page somehow
needs to keep track of the user who is accessing the page.

The Edit and View
Profile pages need
to know whose
profile to access.

Each row of the
mismatch_user
table contains
personal data
for a single user.

Sidney Kelsow
Female
1984-07-19
Tempe, AZ

348 Chapter 7

Mismatch needs user log-ins
The solution to the Mismatch personal data access problem involves user
log-ins, meaning that users need to be able to log into the application.
This gives Mismatch the ability to provide access to information that
is custom-tailored to each different user. For example, a logged-in user
would only have the ability to edit their own profile data, although they
might also be able to view other users’ profiles. User log-ins provide the
key to personalization for the Mismatch application.

A user log-in typically involves two pieces of information, a username
and a password.

Username
The job of the username is to provide each
user with a unique name that can be used to
identify the user within the system. Users can
potentially access and otherwise communicate
with each other through their usernames.

Password
The password is responsible for providing
a degree of security when logging in users,
which helps to safeguard their personal data.
To log in, a user must enter both a username
and password.

sidneykjnettles

Passwords are extremely
sensitive pieces of data and
should never be made visible
within an application, even
inside the database.

Usernames typically consist of alphanumeric characters and are entirely up to the user.

User log-ins
allow web
applications to
get personal
with users.

A username and password allows a user to log in to the Mismatch
application and access personal data, such as editing their profile.

sidneyk

When a user logs in, the application is able to remember the user and provide a personalized experience.

The Edit Profile page
now indicates that
the user is logged in.

The user’s username and
password are all that is
required to let the application know who they are.

adding log-ins to mismatch

you are here 4 349

building personalized web apps

Come up with a user log-in gameplan
Adding user log-in support to Mismatch is no small feat, and it’s important
to work out exactly what is involved before writing code and running
database queries. We know there is an existing table that stores users, so
the first thing is to alter it to store log-in data. We’ll also need a way for
users to enter their log-in data, and this somehow needs to integrate with
the rest of the Mismatch application so that pages such as the Edit Profile
page are only accessible after a successful log-in. Here are the log-in
development steps we’ve worked out so far:

 Use ALTER to add username and
password columns to the table.
The database needs new columns for storing the

log-in data for each user. This consists of a username

and password.

1

username Build a new Log-In script that prompts the user to enter their username and password.
The Log In form is what will ultimately protect personalized pages in that it prompts for a valid username and password. This information must be entered properly before Mismatch can display user-specific data. So the script must limit access to personalized pages so that they can’t be viewed without a valid log-in.

2

Connect the Log-In script
to the rest of the Mismatch
application.
The Edit Profile and View Profile pages

of the Mismatch application should only

be accessible to logged in users. So we

need to make sure users log in via the

Log In script before being allowed to

access these pages.

3

password

350 Chapter 7

Before going any further, take a moment to tinker with the Mismatch
application and get a feel for how it works.
Download all of the code for the Mismatch application from the Head First Labs web site
at www.headfirstlabs.com/books/hfphp. Post all of the code to your web server
except for the .sql files, which contain SQL statements that build the necessary Mismatch
tables. Make sure to run the statement in each of the .sql files in a MySQL tool so that you
have the initial Mismatch tables to get started with.

When all that’s done, navigate to the index.php page in your web browser, and check out
the application. Keep in mind that the View Profile and Edit Profile pages are initially broken
since they are entirely dependent upon user log-ins, which we’re in the midst of building.

The complete source code for the Mismatch
application is available for download from the
Head First Labs web site:

www.headfirstlabs.com/books/hfphp

Download It!

The main Mismatch page allows
you to see the name and picture
of the latest users, but not much
else without being logged in.

These two links
lead into the
personalized parts
of the application.

mismatch setup

you are here 4 351

building personalized web apps

Prepping the database for log-ins
OK, back to the construction. The mismatch_user table already does
a good job of holding profile information for each user, but it’s lacking
when it comes to user log-in information. More specifically, the table is
missing columns for storing a username and password for each user.

Finish writing an SQL statement to add the username and
password columns to the table positioned as shown, with
username able to hold 32 characters, password able to hold
16 characters, and neither of them allowing NULL data.

mismatch_user

user_id username password join_date first_name last_name gender birthdate city state picture

Username and password data both consist of pure text, so it’s
possible to use the familiar VARCHAR MySQL data type for the
new username and password columns. However, unlike some
other user profile data, the username and password shouldn’t ever
be allowed to remain empty (NULL).

Q: Why can’t you just use user_id instead
of username for uniquely identifying a user?

A: You can if you want. In fact, the purpose of
user_id is to provide an efficient means of
uniquely identifying user rows. However, numeric
IDs tend to be difficult to remember, and users really
like being able to make up their own usernames for
accessing personalized web applications. So it’s
more of a usability decision to allow Johan to be able
to log in as “jnettles” instead of “11”. No one wants to
be relegated to just being a number!

mismatch_user

user_id join_date first_name last_name gender birthdate city state picture

The mismatch_user table needs columns for username and password in order to store user log-in data.

password

...

username

jnettles

baldpaul

dierdre

...

The username and password
columns contain simple
text data but should never
be allowed to go empty.

Few people would want to
try and remember a password
longer than 16 characters!

352 Chapter 7

Good point... passwords require encryption.
Encryption in Mismatch involves converting a password into
an unrecognizable format when stored in the database. Any
application with user log-in support must encrypt passwords so
that users can feel confident that their passwords are safe and
secure. Exposing a user’s password even within the database itself
is not acceptable. So we need a means of encrypting a password
before inserting it into the mismatch_user table. Problem is,
encryption won’t help us much if we don’t have a way for users
to actually enter a username and password to log in...

Finish writing an SQL statement to add the username and
password columns to the table positioned as shown, with
username able to hold 32 characters, password able to hold
16 characters, and neither of them allowing NULL data.

ALTER TABLE mismatch_user ADD username VARCHAR(32) NOT NULL AFTER user_id,

ADD password VARCHAR(16) NOT NULL AFTER username

mismatch_user

user_id username password join_date first_name last_name gender birthdate city state picture

The position of columns in a table doesn’t necessarily matter, although it can serve an organizational purpose in terms of positioning the most important columns first.

The AFTER statement controls where in the table new columns are added.

ALTER TABLE is used to add
new columns to an existing table.

The username column is
added first, so it’s OK
to reference it here.

 Use ALTER to add username and
password columns to the table.1

DONE

Surely you don’t just store a password in
the database as-is... don’t you also need
to encrypt a password before storing it?

sharpen your pencil solution

you are here 4 353

building personalized web apps

Q: So asterisks aren’t actually stored in the database, right?

A: That’s correct. The asterisks displayed in a password form
field simply provide visual security, preventing someone from
looking over your shoulder as you enter the password. When the
form is submitted, the password itself is submitted, not the asterisks.
That’s why it’s important for the password to be encrypted before
inserting it into the database.

Constructing a log-in user interface
With the database altered to hold user log-in data, we still need a way for
users to enter the data and actually log in to the application. This log-in
user interface needs to consist of text edit fields for the username and
password, as well as a button for carrying out the log-in.

mismatch_user

user_id username password ...

9 dierdre *******

10 baldpaul ******

11 jnettles ********

...

Username:
Password:

Log In

jnettles

The password field is
protected so that the
password isn’t readable.

Clicking the Log In button
makes the application check
the username and password
against the database.

If the username and
password check out, the
user is successfully logged in.

An application log-
in requires a user
interface for entering
the username and
password.

 If you’re worried about
how users will be able to
log in when we haven’t
assigned them user names
and passwords yet... don’t
sweat it.

We’ll get to creating user names and passwords
for users in just a bit. For now it’s important to lay
the groundwork for log-ins, even if we still have
more tasks ahead before it all comes together.

354 Chapter 7

'e511d793f532dbe0e0483538e11977f7b7c33b28'

SHA('tatlover')

Encrypt passwords with SHA()
The log-in user interface is pretty straightforward, but we didn’t address
the need to encrypt the log-in password. MySQL offers a function called
SHA() that applies an encryption algorithm to a string of text. The
result is an encrypted string that is exactly 40 hexadecimal characters
long, regardless of the original password length. So the function actually
generates a 40-character code that uniquely represents the password.

Since SHA() is a MySQL function, not a PHP function, you call it as
part of the query that inserts a password into a table. For example, this
code inserts a new user into the mismatch_user table, making sure to
encrypt the password with SHA() along the way.

mismatch_user

user_id username password ...

9 dierdre 08447b...

10 baldpaul 230dcb...

11 jnettles e511d7...

...

Username:
Password:

Log In

jnettles

INSERT INTO mismatch_user
 (username, password, join_date) VALUES ('jnettles', SHA('tatlover'), NOW())

The MySQL SHA()
function encrypts
a piece of text
into a unique 40-
character code.

This is the actual
password as entered into
the password form field.

The SHA() function encrypts the password into a
40-character hexadecimal code that gets stored
in the password column of the mismatch_user table.

The same SHA() function works on the other end of the log-in equation
by checking to see that the password entered by the user matches up with
the encrypted password stored in the database.

Instead of storing the actual password, we store the 40-character encrypted code.

The actual password

The SHA() function turns
an 8-character password
into a 40-character
encrypted string of text.

the sha() function

you are here 4 355

building personalized web apps

ALTER TABLE mismatch_user
 CHANGE password password VARCHAR(40) NOT NULL

Q: What does SHA() stand for?

A: The SHA() function stands for Secure
Hash Algorithm. A “hash” is a programming
term that refers to a unique, fixed-length string
that uniquely represents a string of text. In the
case of SHA(), the hash is the 40-character
hexadecimal encrypted string of text, which
uniquely represents the original password.

Q: Are there any other ways to encrypt
passwords?

A: Yes. MySQL offers another function similar
to SHA() called MD5() that carries out
a similar type of encryption. But the SHA()
algorithm is considered a little more secure than
MD5(), so it’s better to use SHA() instead.
PHP also offers equivalent functions (sha1()
and md5()) if you need to do any encryption in
PHP code, as opposed to within an SQL query.

Making room for the encrypted password
The SHA() function presents a problem for Mismatch since encrypted
passwords end up being 40 characters long, but our newly created
password column is only 16 characters long. An ALTER is in order to
expand the password column for storing encrypted passwords.

The size of the password column is changed
to 40 so that encrypted passwords will fit.

Decrypting passwords
Once you’ve encrypted a piece of information, the natural instinct is to
think in terms of decrypting it at some point. But the SHA() function is
a one-way encryption with no way back. This is to preserve the security
of the encrypted data—even if someone hacked into your database and
stole all the passwords, they wouldn’t be able to decrypt them. So how is it
possible to log in a user if you can’t decrypt their password?

You don’t need to know a user’s original password to know if they’ve
entered the password correctly at log-in. This is because SHA() generates
the same 40-character code as long as you provide it with the same
string of text. So you can just encrypt the log-in password entered by
the user and compare it to the value in the password column of the
mismatch_user table. This can be accomplished with a single SQL
query that attempts to select a matching user row based on a password.

Comparing

SELECT * FROM mismatch_user
 WHERE password = SHA('tatlover')

This is the password entered
by the user in order to log in.

The SHA() function is called to
encrypt the password so that it
can appear in the WHERE clause.

This SELECT query selects all rows in the mismatch_user
table whose password column matches the entered password,
'tatlover' in this case. Since we’re comparing encrypted versions of
the password, it isn’t necessary to know the original password. A query
to actually log in a user would use SHA(), but it would also need to
SELECT on the user ID, as we see in just a moment.

The SHA()
function provides
one-way
encryption—you
can’t decrypt
data that has
been encrypted.

356 Chapter 7

mysql> SELECT username FROM mismatch_user WHERE password = SHA('heyjoe');

+----------+
| username |
+----------+
| jimi |
+----------+

1 row in set (0.0005 sec)

File Edit Window Help OppositesAttract

Don’t forget to encrypt
the password by calling
the SHA() function.

For a successful log-in,
this must be the same
password used when
inserting the row.

Test Drive
Add the username and password columns to the
mismatch_user table, and then try them out.
Using a MySQL tool, execute the ALTER statement to add the
username and password columns to the mismatch_user table.

ALTER TABLE mismatch_user ADD username VARCHAR(32) NOT NULL AFTER user_id,
 ADD password VARCHAR(16) NOT NULL AFTER username

But our password column actually needs to be able to hold a 40-
character encrypted string, so ALTER the table once more to make room
for the larger password data.

ALTER TABLE mismatch_user
 CHANGE password password VARCHAR(40) NOT NULL

Now, to test out the new columns, let’s do an INSERT for a new user.

INSERT INTO mismatch_user
 (username, password, join_date) VALUES ('jimi', SHA('heyjoe'), NOW())

To double-check that the password was indeed encrypted in the database, take
a look at it by running a SELECT on the new user.

SELECT password FROM mismatch_user WHERE username = 'jimi'

And finally, you can simulate a log-in check by doing a SELECT on the
username and using the SHA() function with the password in a WHERE clause.

SELECT username FROM mismatch_user WHERE password = SHA('heyjoe')

Only one user matches the
encrypted password.

modifying mismatch_user

you are here 4 357

building personalized web apps

So the password is now encrypted,
but we still need to build a log-in form.
Could we just use HTTP authentication
since it requires a username and
password to access protected pages?

Yes! HTTP authentication will certainly
work as a simple user log-in system.
If you recall from the Guitar Wars high score application
in the last chapter, HTTP authentication was used
to restrict access to certain parts of an application by
prompting the user for a username and password. That’s
roughly the same functionality required by Mismatch,
except that now we have an entire database of possible
username/password combinations, as opposed to one
application-wide username and password. Mismatch
users could use the same HTTP authentication window;
however, they’ll just be entering their own personal
username and password.

The standard HTTP
authentication window, which is
browser-specific, can serve as
a simple log-in user interface.

358 Chapter 7

Authorizing users with HTTP
As Guitar Wars illustrated, two headers must be sent in order to restrict
access to a page via an HTTP authentication window. These headers
result in the user being prompted for a username and password in order to
gain access to the Admin page of Guitar Wars.

WWW-Authenticate: Basic realm="Guitar Wars"

HTTP/1.1 401 Unau
thorized

A username and password are
required in order to access
restricted pages in the Guitar
Wars application.

These two headers must be sent
in order to restrict access to a
page via HTTP authentication.

Unless a user enters the
correct username and
password, they cannot
see or use this page.

header('HTTP/1.1 401 Unauthorized');
header('WWW-Authenticate: Basic realm="Mismatch"');

HTTP authentication
requires us to send
two headers.

Sending the headers for HTTP authentication amounts to two lines of
PHP code—a call to the header() function for each header being sent.

This is the realm for the
authentication, which applies
to the entire application.

http authentication for mismatch

you are here 4 359

building personalized web apps

Circle the different parts of the Mismatch application that are impacted by the Log-In script
(login.php) and its usage of HTTP authentication to control access. Then annotate how
those application pieces are impacted.

mismatch_user

Here’s the
Log-In script.

viewprofile.php

login.php

index.php

editprofile.php

360 Chapter 7

Viewing and
editing profiles
is restricted,
meaning that only
logged in users can
access these pages.

mismatch_user

When a user logs in, their
username and password
are checked against the
database to ensure they
are a registered user.

The home page plays no
direct role in user log-ins
because it needs to remain
accessible by all.

If a row isn’t found that matches
the username and password, the Log
In script displays an error message
and prevents further access.

The Edit Profile page not
only relies on the Log In
script for restricted access,
but it also needs the username
in order to determine which
profile to edit.

Q: Why isn’t it necessary to include the home page when
requiring user log-ins?

A: Because the home page is the first place a user lands when
visiting the site, and it’s important to let visitors glimpse the site
before requiring a log-in. So the home page serves as both a teaser
and a starting point—a teaser for visitors and a starting point for
existing users who must log in to go any deeper into the application.

Q: Can logged-in users view anyone’s profile?

A: Yes. The idea is that profiles are visible to all users who log
in, but remain private to guests. In other words, you have to be a
member of Mismatch in order to view another user’s profile.

Q: How does password encryption affect HTTP
authentication?

A: There are two different issues here: transmitting a password
and storing a password. The SHA() MySQL function focuses on
securely storing a password in a database in an encrypted form. The
database doesn’t care how you transmitted the password initially, so
this form of encryption has no impact on HTTP authentication.
However, an argument could be made that encryption should also
take place during the transmission of the password when the HTTP
authentication window submits it to the server. This kind of encryption
is outside the scope of this chapter and, ultimately, only necessary
when dealing with highly sensitive data.

Circle the different parts of the Mismatch application that are impacted by the Log-In script
(login.php) and its usage of HTTP authentication to control access. Then annotate how
those application pieces are impacted.

viewprofile.phplogin.php

index.php

editprofile.php

exercise solution

you are here 4 361

building personalized web apps

Logging In Users with HTTP Authentication
The Log-In script (login.php) is responsible for requesting a username
and password from the user using HTTP authentication headers, grabbing
the username and password values from the $_SERVER superglobal, and
then checking them against the mismatch_user database before providing
access to a restricted page.

<?php
 require_once('connectvars.php');

 if (!isset($_SERVER['PHP_AUTH_USER']) || !isset($_SERVER['PHP_AUTH_PW'])) {
 // The username/password weren't entered so send the authentication headers
 header('HTTP/1.1 401 Unauthorized');
 header('WWW-Authenticate: Basic realm="Mismatch"');
 exit('<h3>Mismatch</h3>Sorry, you must enter your username and password to log in and access ' .
 'this page.');
 }

 // Connect to the database
 $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME);

 // Grab the user-entered log-in data
 $user_username = mysqli_real_escape_string($dbc, trim($_SERVER['PHP_AUTH_USER']));
 $user_password = mysqli_real_escape_string($dbc, trim($_SERVER['PHP_AUTH_PW']));

 // Look up the username and password in the database
 $query = "SELECT user_id, username FROM mismatch_user WHERE username = '$user_username' AND " .
 "password = SHA('$user_password')";
 $data = mysqli_query($dbc, $query);

 if (mysqli_num_rows($data) == 1) {
 // The log-in is OK so set the user ID and username variables
 $row = mysqli_fetch_array($data);
 $user_id = $row['user_id'];
 $username = $row['username'];
 }
 else {
 // The username/password are incorrect so send the authentication headers
 header('HTTP/1.1 401 Unauthorized');
 header('WWW-Authenticate: Basic realm="Mismatch"');
 exit('<h2>Mismatch</h2>Sorry, you must enter a valid username and password to log in and ' .
 'access this page.');
 }

 // Confirm the successful log-in
 echo('<p class="login">You are logged in as ' . $username . '.</p>');
?>

If the username and password haven’t been entered, send the authentication headers to prompt the user.

Grab the username
and password
entered by the user. Perform a query to

see if any rows match
the username and
encrypted password.

If a row matches, it means the
log-in is OK, and we can set the
$user_id and $username variables.

If no database row matches the username and password, send the authentication headers
again to re-prompt the user.

All is well at this point, so
confirm the successful log-in. Build a new Log-In script that

prompts the user to enter their
username and password.

2 DONE

362 Chapter 7

The Log-In script uses HTTP
authentication to prevent
unauthorized access to the View
Profile and Edit Profile pages.

This password is SHA() encrypted
and compared with the password
in the database to determine if
the log-in is allowed.

These two links lead to the protected
pages, which invoke the Log-In script
if a user isn’t logged in.

Test Drive
Create the new Log-In script, and include it in the View Profile
and Edit Profile scripts.
Create a new text file named login.php, and enter the code for the Log-In script in
it (or download the script from the Head First Labs site at www.headfirstlabs.
com/books/hfphp). Then add PHP code to the top of the viewprofile.php
and editprofile.php scripts to include the new Log-In script.

Upload all of the scripts to your web server, and then open the main Mismatch page
in a web browser. Click the View Profile or Edit Profile link to log in and access the
personalized pages. Of course, this will only work if you’ve already added a user with a
username and password to the database.

The home page is not protected by
the Log-In script, but it does serve
as the starting point for navigating
deeper into the application.

test drive mismatch

you are here 4 363

building personalized web apps

<?php
 require_once('login.php');
?>

<html>
<head>
 <title>Mismatch - View Profile</title>
 <link rel="stylesheet" type="text/css" href="style.css" /> </head>
<body>
 <h3>Mismatch - View Profile</h3>

<?php
 require_once('appvars.php');
 require_once('connectvars.php');

 // Connect to the database
 $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME);
 // Grab the profile data from the database
 if (!isset($_GET['user_id'])) {
 ...

<?php
 require_once('login.php');

?>

<html>
<head>
 <title>Mismatch - Edit Profile</

title>

 <link rel="stylesheet" type="tex
t/css" href="style.css" />

</head>
<body>
 <h3>Mismatch - Edit Profile</h3>

<?php
 require_once('appvars.php');

 require_once('connectvars.php');

 // Connect to the database

 $dbc = mysqli_connect(DB_HOST, D
B_USER, DB_PASSWORD, DB_NAME);

 if (isset($_POST['submit'])) {

 // Grab the profile data from
the POST

 ...

The Log-In script is included
first thing in the View Profile
and Edit Profile scripts to
enforce user log-ins.

Each user is now presented
with their very own customized
Mismatch experience.

Both pages signify the log-in
with a confirmation that is
provided by the Log-In script.

Connect the Log-In script to the
rest of the Mismatch application.3

Any Mismatch page that requires log-in support only has to include the login.php script at the very beginning of its code.

If the username and password
check out, then the user is
logged in, and the rest of the
page is allowed to load.

DONE

viewprofile.php

editprofile.php

364 Chapter 7

New Mismatch users need a way to sign up.
The new Mismatch Log-In script does a good job of using
HTTP authentication to allow users to log in. Problem is,
users don’t have a way to sign up—logging in is a problem
when you haven’t even created a username or password yet.
Mismatch needs a Sign-Up form that allows new users to
join the site by creating a new username and password.

I’d love to log in and start
working on my profile, but I
can’t figure out how to sign up.

Ruby loves horror movies, cube puzzles, and spicy food, but hates Mismatch at the moment for not letting her sign up and use the system.

Username?

Password?

mismatch needs a sign-up form

you are here 4 365

building personalized web apps

Username:
Password:

Sign Up

rubyr

Password: ********(retype)

mismatch_user

user_id username password ...

...

10 baldpaul d8a011...

11 jnettles e511d7...

12 rubyr 062e4a...

...

Clicking the Sign Up button
results in the application
adding the username and
password to the database.

Since the passwords are now
encrypted, they're secure even
when viewing the database.

A form for signing up new users
What does this new Sign-Up form look like? We know it needs to allow the
user to enter their desired username and password... anything else? Since
the user is establishing their password with the new Sign-Up form, and
passwords in web forms are typically masked with asterisks for security
purposes, it’s a good idea to have two password form fields. So the user enters
the password twice, just to make sure there wasn’t a typo.

So the job of the Sign-Up page is to retrieve the username and password
from the user, make sure the username isn’t already used by someone else,
and then add the new user to the mismatch_user database.

One potential problem with the Sign-Up script involves the user attempting
to sign up for a username that already exists. The script needs to be smart
enough to catch this problem and force the user to try a different username.
So the job of the Sign-Up page is to retrieve the username and password
from the user, make sure the username isn’t already used by someone else,
and then add the new user to the mismatch_user database.

The password is double-entered to
help eliminate the risk of an incorrect
password getting set for the user.

366 Chapter 7

<?php
 require_once('appvars.php');

 require_once('connectvars.php');

 // Connect to the database

 $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSW
ORD, DB_NAME);

 if (isset($_POST['submit'])) {

 // Grab the profile data from the POST

 = mysqli_real_escape_string($dbc,

 trim($_POST[' ']));

 = mysqli_real_escape_string($dbc

, trim($_POST[' ']));

 = mysqli_real_escape_string($dbc

, trim($_POST[' ']));

 if (!empty($username) && !empty($password1) && !

empty($password2) &&

 (==)) {

 // Make sure someone isn't already registered us

ing this username

 $query = "SELECT * FROM mismatch_user WHERE user

name = ' '";

 $data = mysqli_query($dbc, $query);

 if (mysqli_num_rows($data) == 0) {

 // The username is unique, so insert the data in
to the database

 $query = "INSERT INTO mismatch_user (username,
 password, join_date) VALUES " .

 "(' ', SHA(' '),

 NOW())";

 mysqli_query($dbc, $query);

 // Confirm success with the user

 echo '<p>Your new account has been successfully
 created. You\'re now ready to log in and ' .

 'edit your profile
.</p>';

 mysqli_close($dbc);

 exit();
 }

Don’t forget, you have to
escape an apostrophe if it
appears inside of single quotes.

PHP & MySQL Magnets
The Mismatch Sign-Up script uses a custom form to prompt the user
for their desired username and password. Problem is, the script code
is incomplete. Use the magnets below to finish up the script so new
users can sign up and join the Mismatch community.

Here’s the
Sign-Up form.

finish signup.php

you are here 4 367

building personalized web apps

 else {
 // An account already exists for this username,

 so display an error message

 echo '<p class="error">An account already exis
ts for this username. Please use a different ' .

 'address.</p>';

 = "";

 }
 }
 else {
 echo '<p class="error">You must enter all of the

 sign-up data, including the desired password ' .

 'twice.</p>';
 }
 }

 mysqli_close($dbc);

?>

<p>Please enter your username and desired password

 to sign up to Mismatch.</p>

<form method="post" action="<?php echo $_SERVER['
PHP_SELF']; ?>">

 <fieldset>
 <legend>Registration Info</legend>

 <label for="username">Username:</label>

 <input type="text" id=" " name="

 "

 value="<?php if (!empty()) echo

 ; ?>" />

 <label for=" ">Password:</label>

 <input type=" " id="

 " name=" " />

 <label for=" ">Password (retype):<

/label>

 <input type=" " id="

 " name=" " />

 </fieldset>
 <input type="submit" value="Sign Up" name="submi

t" />

</form>

signup.php

$username

$password2

$username

$username

$password1

$password2

$password1

$username

username

password1

password2

$password1

password1
password1password1

password

password2

password2

password2

password

username

username
$username

$username

368 Chapter 7

PHP & MySQL Magnets Solution
The Mismatch Sign-Up script uses a custom form to prompt the user
for their desired username and password. Problem is, the script code
is incomplete. Use the magnets below to finish up the script so new
users can sign up and join the Mismatch community.

<?php
 require_once('appvars.php');

 require_once('connectvars.php');

 // Connect to the database

 $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSW
ORD, DB_NAME);

 if (isset($_POST['submit'])) {

 // Grab the profile data from the POST

 = mysqli_real_escape_string($dbc,

 trim($_POST[' ']));

 = mysqli_real_escape_string($dbc

, trim($_POST[' ']));

 = mysqli_real_escape_string($dbc

, trim($_POST[' ']));

 if (!empty($username) && !empty($password1) && !

empty($password2) &&

 (==)) {

 // Make sure someone isn't already registered us

ing this username

 $query = "SELECT * FROM mismatch_user WHERE user

name = ' '";

 $data = mysqli_query($dbc, $query);

 if (mysqli_num_rows($data) == 0) {

 // The username is unique, so insert the data in
to the database

 $query = "INSERT INTO mismatch_user (username,
 password, join_date) VALUES " .

 "(' ', SHA(' '),

 NOW())";

 mysqli_query($dbc, $query);

 // Confirm success with the user

 echo '<p>Your new account has been successfully
 created. You\'re now ready to log in and ' .

 'edit your profile
.</p>';

 mysqli_close($dbc);

 exit();
 }

$password1

$password1 $password2

$username

$username

username$username

$password1

$password2

password1

password2

Confirm the successful
sign-up with the user,
and exit the script.

If no match is found, the
username is unique, so we can
carry out the INSERT.Either password could be used here

since they must be equal to get to this point.

Check to make sure that
none of the form fields
are empty and that
both passwords match.

Perform a query to see if
any existing rows match the
username entered.

Grab all of the user-entered data,
making sure to clean it up first.

Here’s the
Sign-Up form.

the completed signup.php

you are here 4 369

building personalized web apps

Q: Why couldn’t you just use HTTP authentication for signing
up new users?

A: Because the purpose of the Sign-Up script isn’t to restrict
access to pages. The Sign-Up script’s job is to allow the user to
enter a unique username and password, and then add them to the
user database. Sure, it’s possible to use the HTTP authentication
window as an input form for the username and password, but the
authentication functionality is overkill for just signing up a new user.
It’s better to create a custom form for sign-ups—then you get the
benefit of double-checking the password for data entry errors.

Q: So does the Sign-Up script log in users after they sign up?

A: No. And the reason primarily has to do with the fact that the
Log-In script already handles the task of logging in a user, and
there’s no need to duplicate the code in the Sign-Up script. The
Sign-Up script instead presents a link to the Edit Profile page, which
is presumably where the user would want to go after signing in. And
since they aren’t logged in yet, they are presented with the Log-In
window as part of attempting to access the Edit Profile page. So the
Sign-Up script leads the user to the Log-In window via the Edit Profile
page, as opposed to logging them in automatically.

 else {
 // An account already exists for this username,

 so display an error message

 echo '<p class="error">An account already exis
ts for this username. Please use a different ' .

 'address.</p>';

 = "";

 }
 }
 else {
 echo '<p class="error">You must enter all of the

 sign-up data, including the desired password ' .

 'twice.</p>';
 }
 }

 mysqli_close($dbc);

?>

<p>Please enter your username and desired password

 to sign up to Mismatch.</p>

<form method="post" action="<?php echo $_SERVER['
PHP_SELF']; ?>">

 <fieldset>
 <legend>Registration Info</legend>

 <label for="username">Username:</label>

 <input type="text" id=" " name="

 "

 value="<?php if (!empty()) echo

 ; ?>" />

 <label for=" ">Password:</label>

 <input type=" " id="

 " name=" " />

 <label for=" ">Password (retype):<

/label>

 <input type=" " id="

 " name=" " />

 </fieldset>
 <input type="submit" value="Sign Up" name="submi

t" />

</form>

signup.php

$username

password1

password1 password1password

password2

password2 password2password

username username

$username $username

The username is not
unique, so display an
error message.

Clear the $username
variable so that the
form field is cleared.

One or more of the form fields are empty, so display an error message.

370 Chapter 7

exit('<h2>Mismatch</h2>Sorry, you must enter a valid username and password to log in and ' .

 'access this page. If you aren\'t a registered member, please sign up.');

Give users a chance to sign up
We have a Sign-Up script, but how do users get to it? We need to let users
know how to sign up. One option is to put a “Sign Up” link on the main
Mismatch page. That’s not a bad idea, but we would ideally need to be able
to turn it on and off based on whether a user is logged in. Another possibility
is to just show a “Sign Up” link as part of the Log-In script.

When a new user clicks the “View Profile” or “Edit Profile” links on the main
page, for example, they’ll be prompted for a username and password by the
Log-In script. Since they don’t yet have a username or password, they will
likely click Cancel to bail out of the log-in. That’s our chance to display a link
to the Sign-Up script by tweaking the log-in failure message displayed by the
Log-In script so that it provides a link to signup.php.

Here’s the original log-in failure code:

exit('<h3>Mismatch</h3>Sorry, you must enter your username and password to log in and access ' .

 'this page.');

This code actually appears in two different places in the Log-In script: when
no username or password are entered and when they are entered incorrectly.
It’s probably a good idea to go ahead and provide a “Sign Up” link in both
places. Here’s what the new code might look like:

This code just shows a log-in
error message with no mention
of how to sign up for Mismatch.

This code is much more
helpful since it generates a link to the Sign-Up script so that the user can sign up.

Nothing fancy here, just
a normal HTML link to
the signup.php script.

adding a sign-up link

you are here 4 371

building personalized web apps

Sign-ups and log-ins turn an
impersonal application into a
community of interested users.

Ruby’s profile is
only accessible
after logging in.

HTTP authentication is used to log in Ruby based on her sign-up information.

Test Drive
Add Sign-Up functionality to Mismatch.
Create a new text file named signup.php, and enter the code for the Sign-Up script in
it (or download the script from the Head First Labs site at www.headfirstlabs.com/
books/hfphp). Then modify the login.php script to add links to the Sign-Up script for
users who can’t log in.

Upload the scripts to your web server, and then open the Sign-Up page in a web browser.
Sign up as a new user and then log in. Then edit your profile and view your profile to
confirm that the sign-up and log-in worked correctly. The application now has that
personalized touch that’s been missing.

Cool! I can log in
to Mismatch and
then edit and view my
personal profile.

372 Chapter 7

I share a computer with two
roommates, and I’d rather
they not have access to my
Mismatch profile. I need to
be able to log out!

Community web sites must allow users to log out so
that others can’t access their personal data from a
shared computer.
Allowing users to log out might sound simple enough, but it presents
a pretty big problem with HTTP authentication. The problem is that
HTTP authentication is intended to be carried out once for a given page
or collection of pages—it’s only reset when the browser is shut down. In
other words, a user is never “logged out” of an HTTP authenticated web
page until the browser is shut down or the user manually clears the HTTP
authenticated session. The latter option is easier to carry out in some
browsers (Firefox, for example) than others (Safari).

Once you log in, you
stay in until you
close the browser.

Even though HTTP authentication presents a handy and simple way to
support user log-ins in the Mismatch application, it doesn’t provide any
control over logging a user out. We need to be able to both remember
users and also allow them to log out whenever they want.

A log-out feature
would allow Sidney to
carefully control access
to her personal profile.

mismatch also needs to let users log out

you are here 4 373

building personalized web apps

Wouldn't it be dreamy if we could
remember the user without keeping them
logged in forever. Am I just a hopeless
PHP romantic?

374 Chapter 7

Client web
browser

Sometimes you just need a cookie
The problem originally solved by HTTP authentication is twofold: there
is the issue of limiting access to certain pages, and there is the issue of
remembering that the user entered information about themselves. The
second problem is the tricky one because it involves an application
remembering who the user is across multiple pages (scripts). Mismatch
accomplishes this feat by checking the username and password stored
in the $_SERVER superglobal. So we took advantage of the fact that
PHP stores away the HTTP authentication username and password in a
superglobal that persists across multiple pages.

Web server

HTTP authentication
stores data persistently
on the client but doesn’t
allow you to delete it
when you’re done.

$_SERVER['PHP_AUTH_PW']

$_SERVER['PHP_AUTH_USER']

But we don’t have the luxury of HTTP authentication anymore because
it can’t support log-outs. So we need to look elsewhere for user persistence
across multiple pages. A possible solution lies in cookies, which are
pieces of data stored by the browser on the user’s computer. Cookies are
a lot like PHP variables except that cookies hang around after you close
the browser, turn off your computer, etc. More importantly, cookies can
be deleted, meaning that you can eliminate them when you’re finished
storing data, such as when a user indicates they want to log out.

Cookies allow you to
persistently store small
pieces of data on the
client that can outlive
any single script... and
can be deleted at will!

Cookie data is stored on the user’s computer by their web browser. You
have access to the cookie data from PHP code, and the cookie is capable
of persisting across not only multiple pages (scripts), but even multiple
browser sessions. So a user closing their browser won’t automatically log
them out of Mismatch. This isn’t a problem for us because we can delete
a cookie at any time from script code, making it possible to offer a log-out
feature. We can give users total control over when they log out.

Store
cookie data

Retrieve
cookie data

The $_SERVER
superglobal stores
the username and
password persistently.

introducing cookies

you are here 4 375

building personalized web apps

What’s in a cookie?
A cookie stores a single piece of data under a unique name, much
like a variable in PHP. Unlike a variable, a cookie can have an expiration
date. When this expiration date arrives, the cookie is destroyed. So cookies
aren’t exactly immortal—they just live longer than PHP variables. You can
create a cookie without an expiration date, in which case it acts just like a
PHP variable—it gets destroyed when the browser closes.

Name
The unique name of the cookie

Value
The value stored in the cookie

Expiration date
The date when the cookie
expires... and meets its demise

Cookies allow you to store a string of text under a certain name, kind of
like a PHP text variable. It’s the fact that cookies outlive normal script
data that makes them so powerful, especially in situations where an
application consists of multiple pages that need to remember a few pieces
of data, such as log-in information.

Setting a cookie’s
expiration date far
into the future makes
it more permanent.

user_id = 1
12/08/2009

user_id = 1
username = sidneyk

01/01/3000

Q: What’s the big deal about cookies
being persistent? Isn’t data stored in a
MySQL database persistent too?

A: Yes, database data is most certainly
persistent. In fact, it’s technically much more
persistent than a cookie because there is
no expiration date involved—if you stick
data in a database, it stays there until you
explicitly remove it. The real issue in regard
to cookies and persistence is convenience.
We don’t need to store the current user’s ID
or username for all eternity just to allow them
to access their profile; we just need a quick
way to know who they are. What we really
need is temporary persistence, which might
seem like an oxymoron until you consider the
fact that we need data to hang around longer
than a page (persistent), but not forever.

Not providing an
expiration date at
all causes a cookie to
be deleted when the
browser is closed.

So Mismatch can mimic the persistence provided by the $_SERVER
superglobal by setting two cookies—one for the username and one for the
password. Although we really don’t need to keep the password around, it
might be more helpful to store away the user ID instead.

376 Chapter 7

PHP provides access to cookies through a function called setcookie()
and a superglobal called $_COOKIE. The setcookie() function is
used to set the value and optional expiration date of a cookie, and the
$_COOKIE superglobal is used to retrieve the value of a cookie.

Use

setcookie('username', 'sidneyk');

username = sidneyk

echo('<p class="login">You are logged in as ' . $_COOKIE['username'] . '.</p>');

The first argument
to setcookie() is the
name of the cookie.

The value to be stored
in the cookie is passed
as the second argument.

The PHP
setcookie() function
allows you to store
data in cookies.

The setcookie() function also accepts an optional third argument
that sets the expiration date of the cookie, which is the date upon which
the cookie is automatically deleted. If you don’t specify an expiration
date, as in the above example, the cookie automatically expires when the
browser is closed.

The name of the cookie is used to reference the cookie value
in the $_COOKIE superglobal.

The power of setting a cookie is that the cookie data persists across
multiple scripts, so we can remember the username without having to
prompt the user to log in every time they move from one page to another
within the application. But don’t forget, we also need to store away the
user’s ID in a cookie since it serves as a primary key for database queries.

setcookie('user_id', '1');

Cookies are always stored as
text, so even though the user
ID is a number, we store it in
a cookie as the string ‘1’.

user_id = 1

Bake cookies with PHP

the setcookie() function

you are here 4 377

building personalized web apps

Switching Mismatch to use cookies involves more than just writing a new
Log-Out script. We must first revisit the Log-In script and change it to use
cookies instead of HTTP authentication. Circle and annotate the parts of
the Log-In code that you think need to change to accommodate cookies.

<?php
 require_once('connectvars.php');

 if (!isset($_SERVER['PHP_AUTH_USER']) || !isset($_SERVER['PHP_AUTH_PW'])) { // The username/password weren't entered so send the authentication headers header('HTTP/1.1 401 Unauthorized');
 header('WWW-Authenticate: Basic realm="Mismatch"'); exit('<h3>Mismatch</h3>Sorry, you must enter your username and password to ' . 'log in and access this page. If you aren\'t a registered member, please ' . 'sign up.');
 }

 // Connect to the database
 $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME);
 // Grab the user-entered log-in data
 $user_username = mysqli_real_escape_string($dbc, trim($_SERVER['PHP_AUTH_USER'])); $user_password = mysqli_real_escape_string($dbc, trim($_SERVER['PHP_AUTH_PW']));
 // Look up the username and password in the database $query = "SELECT user_id, username FROM mismatch_user WHERE username = " . "'$user_username' AND password = SHA('$user_password')"; $data = mysqli_query($dbc, $query);

 if (mysqli_num_rows($data) == 1) {
 // The log-in is OK so set the user ID and username variables $row = mysqli_fetch_array($data);
 $user_id = $row['user_id'];
 $username = $row['username'];
 }
 else {
 // The username/password are incorrect so send the authentication headers header('HTTP/1.1 401 Unauthorized');
 header('WWW-Authenticate: Basic realm="Mismatch"'); exit('<h2>Mismatch</h2>Sorry, you must enter a valid username and password ' . 'to log in and access this page. If you aren\'t a registered member, ' . 'please sign up.');
 }

 // Confirm the successful log-in
 echo('<p class="login">You are logged in as ' . $username . '.</p>'); ?>

login.php

378 Chapter 7

Switching Mismatch to use cookies involves more than just writing a new
Log-Out script. We must first revisit the Log-In script and change it to use
cookies instead of HTTP authentication. Circle and annotate the parts of
the Log-In code that you think need to change to accommodate cookies.

<?php
 require_once('connectvars.php');

 if (!isset($_SERVER['PHP_AUTH_USER']) || !isset($_SERVER['PHP_AUTH_PW'])) { // The username/password weren't entered so send the authentication headers header('HTTP/1.1 401 Unauthorized');
 header('WWW-Authenticate: Basic realm="Mismatch"'); exit('<h3>Mismatch</h3>Sorry, you must enter your username and password to ' . 'log in and access this page. If you aren\'t a registered member, please ' . 'sign up.');
 }

 // Connect to the database
 $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME);
 // Grab the user-entered log-in data
 $user_username = mysqli_real_escape_string($dbc, trim($_SERVER['PHP_AUTH_USER'])); $user_password = mysqli_real_escape_string($dbc, trim($_SERVER['PHP_AUTH_PW']));
 // Look up the username and password in the database $query = "SELECT user_id, username FROM mismatch_user WHERE username = " . "'$user_username' AND password = SHA('$user_password')"; $data = mysqli_query($dbc, $query);

 if (mysqli_num_rows($data) == 1) {
 // The log-in is OK so set the user ID and username variables $row = mysqli_fetch_array($data);
 $user_id = $row['user_id'];
 $username = $row['username'];
 }
 else {
 // The username/password are incorrect so send the authentication headers header('HTTP/1.1 401 Unauthorized');
 header('WWW-Authenticate: Basic realm="Mismatch"'); exit('<h2>Mismatch</h2>Sorry, you must enter a valid username and password ' . 'to log in and access this page. If you aren\'t a registered member, ' . 'please sign up.');
 }

 // Confirm the successful log-in
 echo('<p class="login">You are logged in as ' . $username . '.</p>'); ?>

We no longer
need to
send HTTP
authentication
headers.

Instead of getting the username and
password from an authentication window,
we need to use a form with POST data.

We need to check for the
existence of a cookie to
see if the user is logged in
or not.

Here we need to set
two cookies instead of
setting script variables.

Since we can’t rely on the HTTP authentication window
for entering the username and password, we need to
create an HTML Log-In form for entering them.

The query doesn’t
have to change at all!

login.php

sharpen your pencil solution

you are here 4 379

building personalized web apps

Rethinking the flow of log-ins
Using cookies instead of HTTP authentication for Mismatch log-ins
involves more than just rethinking the storage of user data. What about
the log-in user interface? The cookie-powered log-in must provide its
own form since it can’t rely on the authentication window for entering a
username and password. Not only do we have to build this form, but we
need to think through how it changes the flow of the application as users
log in and access other pages.

Clicking the new
“Log In” link leads
to the Log-In page,
where a user can
enter their log-in
information to log in.

After successfully logging
in, the user is redirected
back to the home page,
where the menu now reveals
that they are logged in.

Restricted pages are
now accessible since
the user is logged in.

A new form takes the
place of the HTTP
authentication window
for entering the username
and password for log-ins.

The Log-Out script is
accessible via a link that is
part of the log-in status.

The main
navigation menu
includes a Log
Out link that
also shows the
username of the
logged in user.

When not logged in, the
latest members are
displayed as static names.

After logging in, the
latest member names
change to links to their
respective profile views.

Username:
Password:

Log In

sidneyk

index.php

viewprofile.php

index.php

380 Chapter 7

A cookie-powered log-in
The new version of the Log-In script that relies on cookies for log-in
persistence is a bit more complex than its predecessor since it must
provide its own form for entering the username and password. But it’s
more powerful in that it provides log-out functionality.

<?php
 require_once('connectvars.php');

 // Clear the error message
 $error_msg = "";

 // If the user isn't logged in, try to log them in
 if (!isset($_COOKIE['user_id'])) {
 if (isset($_POST['submit'])) {
 // Connect to the database
 $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME);

 // Grab the user-entered log-in data
 $user_username = mysqli_real_escape_string($dbc, trim($_POST['username']));
 $user_password = mysqli_real_escape_string($dbc, trim($_POST['password']));

 if (!empty($user_username) && !empty($user_password)) {
 // Look up the username and password in the database
 $query = "SELECT user_id, username FROM mismatch_user WHERE username = '$user_username' AND " .
 "password = SHA('$user_password')";
 $data = mysqli_query($dbc, $query);

 if (mysqli_num_rows($data) == 1) {
 // The log-in is OK so set the user ID and username cookies, and redirect to the home page
 $row = mysqli_fetch_array($data);
 setcookie('user_id', $row['user_id']);
 setcookie('username', $row['username']);
 $home_url = 'http://' . $_SERVER['HTTP_HOST'] . dirname($_SERVER['PHP_SELF']) . '/index.php';
 header('Location: ' . $home_url);
 }
 else {
 // The username/password are incorrect so set an error message
 $error_msg = 'Sorry, you must enter a valid username and password to log in.';
 }
 }
 else {
 // The username/password weren't entered so set an error message
 $error_msg = 'Sorry, you must enter your username and password to log in.';
 }
 }
 }
?>

<html>
<head>
 <title>Mismatch - Log In</title>
 <link rel="stylesheet" type="text/css" href="style.css" />
</head>
<body>
 <h3>Mismatch - Log In</h3>

Here’s the new
Log-In form.

Error messages are now stored in a variable and displayed, if necessary, later in the script.
Check the user_id cookie to
see if the user is logged in.

If the user isn’t logged
in, see if they’ve
submitted log-in data.

The user-entered data
now comes from form
POST data instead of
an authentication window.

Log in the user by setting
user_id and username cookies.

Redirect the user
to the Mismatch
home page upon a
successful log-in.

Set the error message
variable if anything is
wrong with the log-in data.

The Log-In script is now a full
web page, so it requires all the
standard HTML elements.

login.php

continues on the facing page...

login.php—now cookie-powered!

you are here 4 381

building personalized web apps

<?php
 // If the cookie is empty, show any error message and the log-in form; otherwise confirm the log-in
 if (empty($_COOKIE['user_id'])) {
 echo '<p class="error">' . $error_msg . '</p>';
?>

 <form method="post" action="<?php echo $_SERVER['PHP_SELF']; ?>">
 <fieldset>
 <legend>Log In</legend>
 <label for="username">Username:</label>
 <input type="text" id="username" name="username"
 value="<?php if (!empty($user_username)) echo $user_username; ?>" />

 <label for="password">Password:</label>
 <input type="password" id="password" name="password" />
 </fieldset>
 <input type="submit" value="Log In" name="submit" />
 </form>

<?php
 }
 else {
 // Confirm the successful log in
 echo('<p class="login">You are logged in as ' . $_COOKIE['username'] . '.</p>');
 }
?>

</body>
</html>

Q: Why is it necessary to store both
the user ID and username in cookies?

A: Since both pieces of information
uniquely identify a user within the Mismatch
user database, you could use either one for
the purpose of keeping up with the current
user. However, user_id is a better (more
efficient) user reference with respect to the
database because it is a numeric primary
key. On the other hand, user_id is fairly
cryptic and doesn’t have any meaning to the
user, so username comes in handy for letting
the user know they are logged in, such as
displaying their name on the page. Since
multiple people sometimes share the same
computer, it is important to not just let the
user know they are logged in, but also who
they are logged in as.

Q: Then why not also store the
password in a cookie as part of the log-in
data?

A: The password is only important for
initially verifying that a user is who they
claim to be. Once the password is verified as
part of the log-in process, there is no reason
to keep it around. Besides, passwords
are very sensitive data, so it’s a good idea
to avoid storing them temporarily if at all
possible.

Q: It looks as if the form in the
Log-In script is actually inside the if
statement? Is that possible?

A: Yes. In fact it’s quite common for PHP
code to be “broken up” around HTML code,
as is the case with the Log-In script. Just
because you close a section of PHP code
with ?>, doesn’t mean the logic of the code
is closed. When you open another section of
PHP code with <?php, the logic continues
right where it left off. In the Log-In script, the
HTML form is contained within the first if
branch, while the else branch picks up
after the form code. Breaking out of PHP
code into HTML code like this keeps you
from having to generate the form with a
bunch of messy echo statements.

If the user still isn’t logged
in at this point, go ahead
and show the error message.

These two form fields are used to enter the username and password for logging in.
Everything prior to this curly brace
is still part of the first if clause. If the user is logged in at

this point, just tell them so.

Finish the HTML code to
complete the Log-In web page.

382 Chapter 7

Navigating the Mismatch application
The new Log-In script changes the flow of the Mismatch application,
requiring a simple menu that appears on the home page (index.php).
This menu is important because it provides access to the different major
parts of the application, currently the View Profile and Edit Profile pages,
as well as the ability for users to log in, sign up, and log out depending on
their current log-in state. The fact that the menu changes based on the
user’s log-in state is significant and is ultimately what gives the menu its
power and usefulness.

The menu is generated by PHP code within the index.php script, and
this code uses the $_COOKIE superglobal to look up the username cookie
and see if the user is logged in or not. The user ID cookie could have also
been used, but the username is actually displayed in the menu, so it makes
more sense to check for it instead.

A different menu is shown
depending on whether the
username cookie is set.

This menu appears when a user is not logged in, giving them an opportunity to either log in or sign up.

The index.php script knows to show the
limited menu when
it can’t find the
username cookie.

username = ?

mismatch's dynamic menu

you are here 4 383

building personalized web apps

// Generate the navigation menu
if (isset($_COOKIE['username'])) {
 echo '❤ View Profile
';
 echo '❤ Edit Profile
';
 echo '❤ Log Out (' . $_COOKIE['username'] . ')';
}
else {
 echo '❤ Log In
';
 echo '❤ Sign Up';
}

The username cookie
determines which
menu is displayed

The user_id cookie isn’t
used for the different
menus but is still
important for Mismatch
user persistence.

The little heart symbols next to
each menu item are made possible
by this HTML entity, which is
supported on most browsers.

Menu for logged
in users

Menu for visitors
(users who aren’t
logged in)

The username
cookie also lets
the user know
who is logged in.

user_id = 1

username = sidneyk

384 Chapter 7

We really need to let users log out.
Cookies have made logging into Mismatch and navigating the site a bit
cleaner, but the whole point of switching from HTTP authentication to
cookies was to allow users to log out. We need a new Log-Out script that
deletes the two cookies (user ID and username) so that the user no longer
has access to the application. This will prevent someone from getting on
the same computer later and accessing a user’s private profile data.

Since there is no user interface component involved in actually logging
out a user, it’s sufficient to just redirect them back to the home page after
logging them out.

Hello, remember
me? I still really,
really need to log out.

Sidney is
still waiting
to log out...

The Log-Out script
deletes the user
log-in cookies and
redirects back to
the home page.

logout.php

log out users by deleting cookies

you are here 4 385

building personalized web apps

The Log-Out script for Mismatch is missing a few pieces of code. Write the missing code, making
sure that the log-in cookies get deleted before the Log-Out page is redirected to the home page.

This code sets an expiration date 8 hours into the future, which means the
cookie will be automatically deleted in 8 hours. But we want to delete a
cookie immediately, which requires setting the expiration date to a time in
the past. The amount of time into the past isn’t terribly important—just
pick an arbitrary amount of time, such as an hour, and subtract it from
the current time.

setcookie('username', 'sidneyk', time() + (60 * 60 * 8));

setcookie('username', 'sidneyk', time() - 3600);

Minutes
Seconds HoursThe current time

Together, this expression
sets an expiration date
that is 8 hours from
the current time.

60 seconds * 60 minutes = 3600
seconds, which is 1 hour into the past.

To delete a
cookie, just set its
expiration date to
a time in the past.

Logging out means deleting cookies
Logging out a user involves deleting the two cookies that keep track of the
user. This is done by calling the setcookie() function, and passing an
expiration date that causes the cookies to get deleted at that time.

<?php

 // If the user is logged in, delete the cookie to log them out

 if () {

 // Delete the user ID and username cookies by setting their expirations to an hour ago (3600)

 }

 // Redirect to the home page

 $home_url = 'http://' . $_SERVER['HTTP_HOST'] . dirname($_SERVER['PHP_SELF']) . ' ';

 header('Location: ' . $home_url);

?>

386 Chapter 7

The Log-Out script for Mismatch is missing a few pieces of code. Write the missing code, making
sure that the log-in cookies get deleted before the Log-Out page is redirected to the home page.

Test Drive
Use cookies to add Log-Out functionality to Mismatch.
Modify the Mismatch scripts so that they use cookies to allows users to log in and out (or
download the scripts from the Head First Labs site at www.headfirstlabs.com/
books/hfphp. The cookie modifications involve changes to the index.php, login.php,
logout.php, editprofile.php, and viewprofile.php scripts. The changes
to the latter two scripts are fairly minor, and primarily involve changing $user_id and
$username global variable references so that they use the $_COOKIE superglobal instead.

Upload the scripts to your web server, and then open the main Mismatch page (index.php)
in a web browser. Take note of the navigation menu, and then click the “Log In” link and log
in. Notice how the Log-In script leads you back to the main page, while the menu changes to
reflect your logged in status. Now click “Log Out” to blitz the cookies and log out.

<?php

 // If the user is logged in, delete the cookie to log them out

 if () {

 // Delete the user ID and username cookies by setting their expirations to an hour ago (3600)

 }

 // Redirect to the home page

 $home_url = 'http://' . $_SERVER['HTTP_HOST'] . dirname($_SERVER['PHP_SELF']) . ' ';

 header('Location: ' . $home_url);

?> A location header results in the
browser redirecting to another page.

isset($_COOKIE[‘user_id’])

setcookie(‘user_id’, ‘’, time() - 3600);
setcookie(‘username’, ‘’, time() - 3600);

/index.php

Redirect to the
Mismatch home page,
which is constructed as
an absolute URL.

Only log out a user if they
are already logged in.

Set each cookie to an hour
in the past so that they
are deleted by the system.

the complete logout.php script

you are here 4 387

building personalized web apps

Q: So simply deleting the cookies is all that is required to log out?

A: Yes. Cookies are responsible for storing all of the log-in information for Mismatch (user ID and
username), so deleting them results in a complete log-out.

Q: Why are the cookies set to an hour in the past in order to be deleted? Is there
something significant about an hour?

A: No. A cookie is automatically deleted by the web browser once its expiration date/time passes.
So deleting a cookie involves setting the expiration to any time in the past. An hour (3600 seconds)
is just an arbitrary amount of time chosen to consistently indicate that we’re deleting a cookie.

I’m outta here
for now. See ya!

Logging in and
out of Mismatch
is now controlled
entirely by cookies.

Sidney is pleased
that she can log
out and know that
her Mismatch
profile can’t be
edited by anyone
while she’s away.

Cookies are
created to
remember the
user and log in.

Cookies are thrown
away to forget the
user and log out.

388 Chapter 7

Client web
browser

$_COOKIE

Who cares about
Jason? Don’t most people
have cookies enabled?

Yes, but web applications should be as accessible to
as many people as possible.
Some people just aren’t comfortable using cookies, so they opt for the
added security of having them disabled. Knowing this, it’s worth trying to
accommodate users who can’t rely on cookies to log in. But there’s more.
It turns out that there’s another option that uses the server to store
log-in data, as opposed to the client. And since our scripts are already
running on the server, it only makes sense to store log-in data there as well.

Uh-oh. I have cookies
disabled in my browser,
and I can’t log in. What
am I supposed to do?

Web server

Since cookies are disabled, the
Log-In script fails and just
sends the user back to the home
page without being logged in.

The attempted
log-in starts
here.

The server attempts
to set the user ID
and username cookies
on the browser.

The browser rejects the cookies, preventing the Log-In script from setting them.

Mismatch user Jason, lover of
hiking, body piercings, and Howard
Stern, has cookies disabled in his
browser, which presents a problem
for logging in.

storing user data on the server, instead of the client

you are here 4 389

building personalized web apps

Client web
browser

Sessions aren’t dependent on the client
Cookies are powerful little guys, but they do have their limitations, such
as being subject to limitations beyond your control. But what if we didn’t
have to depend on the browser? What if we could store data directly
on the server? Sessions do just that, and they allow you to store away
individual pieces of information just like with cookies, but the data gets
stored on the server instead of the client. This puts session data outside of
the browser limitations of cookies.

Web server

Sessions allow you to
persistently store small
pieces of data on the
server, independently
of the client.

Sessions store data in session variables, which are logically equivalent
to cookies on the server. When you place data in a session variable using
PHP code, it is stored on the server. You can then access the data in the
session variable from PHP code, and it remains persistent across multiple
pages (scripts). Like with cookies, you can delete a session variable at any
time, making it possible to continue to offer a log-out feature with session-
based code.

Store session data

Retrieve session data

Unlike cookies,
sessions store their
data on the server.

The browser doesn’t factor directly
into the storage of session data since
everything is stored on the server.

username = sidneykuser_id = 1

Surely there’s a catch, right? Sort of. Unlike cookies, sessions don’t
offer as much control over how long a session variable stores data.
Session variables are automatically destroyed as soon as
a session ends, which usually coincides with the user shutting
down the browser. So even though session variables aren’t stored
on the browser, they are indirectly affected by the browser since
they get deleted when a browser session ends.

There isn’t an expiration date associated
with session variables because they are
automatically deleted when a session ends.

Since session data is
stored on the server,
it is more secure and
more reliable than
data stored in cookies.
A user can’t manually delete session data using their browser, which can be a problem with cookies.

390 Chapter 7

The life and times of sessions
Sessions are called sessions for a reason—they have a very clear start
and finish. Data associated with a session lives and dies according to the
lifespan of the session, which you control through PHP code. The only
situation where you don’t have control of the session life cycle is when the
user closes the browser, which results in a session ending, whether you like
it or not.

You must tell a session when you’re ready to start it up by calling the
session_start() PHP function.

The PHP session_start()
function starts a session
and allows you to begin
storing data in session
variables.

session_start();

session_destroy();

Calling the session_start() function doesn’t set any data—its job
is to get the session up and running. The session is identified internally
by a unique session identifier, which you typically don’t have to concern
yourself with. This ID is used by the web browser to associate a session
with multiple pages.

This PHP function
starts a session.

Web server

When a session is
started, a session ID
is set that uniquely
identifies the session.

The session ID is used
behind the scenes to allow
multiple pages to share
access to session data.

The session ID isn’t destroyed until the session is closed, which
happens either when the browser is closed or when you call the
session_destroy() function.

The session_destroy()
function closes a session.

If you close a session yourself with this function, it doesn’t
automatically destroy any session variables you’ve stored. Let’s take
a closer look at how sessions store data to uncover why this is so.

This PHP function
ends a session.

This is the unique
session ID, which
is automatically
generated as part
of a new session.

login.php

editprofile.php
viewprofile.php

index.php
logout.php

tksf820j9hq7f9t7vdt5o1ceb2

Client web
browser

the session_start() and session_destroy() functions

you are here 4 391

building personalized web apps

username = sidneyk

Keeping up with session data
The cool thing about sessions is that they’re very similar to cookies in
terms of how you use them. Once you’ve started a session with a call to
session_start(), you can begin setting session variables, such as
Mismatch log-in data, with the $_SESSION superglobal.

$_SESSION['username'] = 'sidneyk';

echo('<p class="login">You are logged in as ' . $_SESSION['username'] . '.</p>');

$_SESSION = array();

if (isset($_COOKIE[session_name()])) {
 setcookie(session_name(), '', time() - 3600);
}

The name of the session
variable is used as an index into
the $_SESSION superglobal.

The value to be stored
is just assigned to the
$_SESSION superglobal.

The session variable is created and
stored on the server.

To access the session variable, just use the $_SESSION superglobal and the session variable name.

Unlike cookies, session variables don’t require any kind of special function
to set them—you just assign a value to the $_SESSION superglobal,
making sure to use the session variable name as the array index.

What about deleting session variables? Destroying a session via
session_destroy() doesn’t actually destroy session variables, so
you must manually delete your session variables if you want them to be
killed prior to the user shutting down the browser (log-outs!). A quick
and effective way to destroy all of the variables for a session is to set the
$_SESSION superglobal to an empty array.

This code kills all of the session variables in the current session.

But we’re not quite done. Sessions can actually use cookies behind the
scenes. If the browser allows cookies, a session may possibly set a cookie
that temporarily stores the session ID. So to fully close a session via PHP
code, you must also delete any cookie that might have been automatically
created to store the session ID on the browser. Like any other cookie, you
destroy this cookie by setting its expiration to some time in the past. All
you need to know is the name of the cookie, which can be found using the
session_name() function.

Destroy the session cookie
by setting its expiration
to an hour in the past.

First check to see
if a session cookie
actually exists.

If a session is using a
cookie to help remember
the session ID, then the
ID is stored in a cookie
named after the session.

Session variables
are not automatically
deleted when a
session is destroyed.

PH
PS
ES
SI
D
=
tk
sf
82
0j
..
.

392 Chapter 7

Renovate Mismatch with sessions
Reworking the Mismatch application to use a session to store log-in data
isn’t as dramatic as it may sound. In fact, the flow of the application
remains generally the same—you just have to take care of a little extra

bookkeeping involved in starting the session, destroying the
session, and then cleaning up after the session.

Log-in data is now
remembered using a session
instead of cookies.

session_start();

session_destroy();

If cookies are enabled, the
server creates one to hold
the session ID - otherwise
the ID is passed through
the URL of each page.

The session_start() function
gets things started by
opening a session.

Two session
variables are
created to store
the user ID and
username for the
log-in.

The session_destroy()
function ends the session,
preventing it from being
used in another page.

The session variables
are destroyed by
clearing out the
$_SESSION array.

If a cookie was used
to hold the session
ID, it is destroyed.

Start here!
how mismatch works with sessions

you are here 4 393

building personalized web apps

The Log-Out script for Mismatch is undergoing an overhaul to use sessions
instead of pure cookies for log-in persistence. Write the missing code to

“sessionize” the Log-Out script, and then annotate which step of the log-out
process it corresponds to.

Log out with sessions
Logging a user out of Mismatch requires a little more work with sessions
than the previous version with its pure usage of cookies. These steps must
be taken to successfully log a user out of Mismatch using sessions.

 Delete the session variables.1

Check to see if a session cookie
exists, and if so, delete it.2

Destroy the session.3

Redirect the user to the home page.4

OK, so this is a bonus step that isn’t strictly required to log the user out, but is helpful nonetheless.

You don’t know for certain
if a session cookie is being
used without checking.

<?php

 // If the user is logged in, delete the session vars to log them out

 session_start();

 if () {

 // Delete the session vars by clearing the $_SESSION array

 // Delete the session cookie by setting its expiration to an hour ago (3600)

 if (isset($_COOKIE[session_name()])) {

 }

 // Destroy the session

 }

 // Redirect to the home page

 $home_url = 'http://' . $_SERVER['HTTP_HOST'] . dirname($_SERVER['PHP_SELF']) . '/index.php';

 header('Location: ' . $home_url);

?>

394 Chapter 7

The Log-Out script for Mismatch is undergoing an overhaul to use sessions
instead of pure cookies for log-in persistence. Write the missing code to

“sessionize” the Log-Out script, and then annotate which step of the log-out
process it corresponds to.

<?php

 // If the user is logged in, delete the session vars to log them out

 session_start();

 if () {

 // Delete the session vars by clearing the $_SESSION array

 // Delete the session cookie by setting its expiration to an hour ago (3600)

 if (isset($_COOKIE[session_name()])) {

 }

 // Destroy the session

 }

 // Redirect to the home page

 $home_url = 'http://' . $_SERVER['HTTP_HOST'] . dirname($_SERVER['PHP_SELF']) . '/index.php';

 header('Location: ' . $home_url);

?>

$_SESSION = array();

isset($_SESSION[‘user_id’])

session_destroy();

setcookie(session_name(), ‘’, time() - 3600);

Even when logging out, you have
to first start the session in order
to access the session variables.

Now a session variable is used to check the log-in status instead of a cookie.

To clear out the session variables, assign the
$_SESSION superglobal an empty array.

If a session cookie exists, delete it by
setting its expiration to an hour ago.

Destroy the session with
a call to the built-in
session_destroy() function.

4

3

2

1

Redirect the user to the home page.4

Destroy the session.3

Check to see if a session cookie exists, and if so,
delete it.2

Delete the session variables.1

the "sessionized" logout.php

you are here 4 395

building personalized web apps

The move from cookies to sessions impacts more than just the Log-Out
script. Match the other pieces of the Mismatch application with how
they need to change to accommodate sessions.

No change since the script has no direct dependence on
log-in persistence.

Sessions are required to control the navigation menu.
Call the session_start() function to start the
session, and then change $_COOKIE references to
$_SESSION.

Sessions are required to remember who the user is. Call
the session_start() function to start the session,
and then change $_COOKIE references to $_SESSION.

signup.php

editprofile.php

viewprofile.php

index.php

login.php

connectvars.php

appvars.php

396 Chapter 7

The move from cookies to sessions impacts more than just the Log-Out
script. Match the other pieces of the Mismatch application with how
they need to change to accommodate sessions.

No change since the script has no direct dependence on
log-in persistence.

Sessions are required to control the navigation menu.
Call the session_start() function to start the
session, and then change $_COOKIE references to
$_SESSION.

Sessions are required to remember who the user is. Call
the session_start() function to start the session,
and then change $_COOKIE references to $_SESSION.

signup.php

editprofile.php

viewprofile.php

index.php

login.php

connectvars.php

appvars.php

Solution

how do i change solution

you are here 4 397

building personalized web apps

Q: The session_start()
function gets called in a lot of different
places, even after a session has been
started. Are multiple sessions being
created with each call to session_
start()?

A: No. The session_start()
function doesn’t just start a new session—it
also taps into an existing session. So when
a script calls session_start(),
the function first checks to see if a session
already exists by looking for the presence
of a session ID. If no session exists, it
generates a new session ID and creates the
new session. Future calls to session_
start() from within the same application
will recognize the existing session and use it
instead of creating another one.

Q: So how does the session ID
get stored? Is that where sessions
sometimes use cookies?

A: Yes. Even though session data gets
stored on the server and, therefore, gains
the benefit of being more secure and outside
of the browser’s control, there still has to be
a mechanism for a script to know about the
session data.

This is what the session ID is for—it uniquely
identifies a session and the data associated
with it. This ID must somehow persist on the
client in order for multiple pages to be part of
the same session. One way this session ID
persistence is carried out is through a cookie,
meaning that the ID is stored in a cookie,
which is then used to associate a script with
a given session.

Q: If sessions are dependent on
cookies anyway, then what’s the big deal
about using them instead of cookies?

A: Sessions are not entirely dependent
on cookies. It’s important to understand
that cookies serve as an optimization for
preserving the session ID across multiple
scripts, not as a necessity. If cookies are
disabled, the session ID gets passed from
script to script through a URL, similar to how
you’ve seen data passed in a GET request.
So sessions can work perfectly fine without
cookies. The specifics of how sessions
react in response to cookies being disabled
are controlled in the php.ini configuration
file on the web server via the session.
use_cookies, session.use_
only_cookies, and session.
use_trans_sid settings.

Q: It still seems strange that sessions
could use cookies when the whole point
is that sessions are supposed to be
better than cookies. What gives?

A: While sessions do offer some clear
benefits over cookies in certain scenarios,
they don’t necessarily have an either/or
relationship with cookies. Sessions certainly
have the benefit of being stored on the
server instead of the client, which makes
them more secure and dependable. So if you
ever need to store sensitive data persistently,
then a session variable would provide more
security than a cookie. Sessions are also
capable of storing larger amounts of data
than cookies. So there are clear advantages
to using sessions regardless of whether
cookies are available.

For the purposes of Mismatch, sessions offer
a convenient server-side solution for storing
log-in data. For users who have cookies
enabled, sessions provide improved security
and reliability while still using cookies as an
optimization. And in the case of users who
don’t have cookies enabled, sessions can
still work by passing the session ID through
a URL, foregoing cookies altogether.

HTTP authentication is handy for restricting access to
individual pages, but it doesn’t offer a good way to “log
out” a user when they’re finished accessing a page.

Cookies let you store small pieces of data on the client
(web browser), such as the log-in data for a user.

All cookies have an expiration date, which can be far
into the future or as near as the end of the browser
session.

To delete a cookie, you just set its expiration to a time in
the past.

Sessions offer similar storage as cookies but are stored
on the server and, therefore, aren’t subject to the same
browser limitations, such as cookies being disabled.

Session variables have a limited lifespan and are always
destroyed once a session is over (for example, when the
browser is closed).

398 Chapter 7

Complete the session transformation
Even though the different parts of Mismatch affected by sessions use
them to accomplish different things, the scripts ultimately require similar
changes in making the migration from cookies to sessions. For one, they
all must call the session_start() function to get rolling with
sessions initially. Beyond that, all of the changes involve moving from
the $_COOKIE superglobal to the $_SESSION superglobal, which is
responsible for storing session variables.

<?php
 session_start();

?>

All of the session-powered
scripts start out with a call to session_start() to get
the session up and running.

 // If the user isn't logged in, try t

o log them in

 if (!isset($_SESSION['user_id'])) {

 if (isset($_POST['submit'])) {

 // Connect to the database

 $dbc = mysqli_connect(DB_HOST, DB
_USER, DB_PASSWORD, DB_NAME);

 // Grab the user-entered log-in d

ata

 $user_username = mysqli_real_esca
pe_string($dbc, trim($_POST['username']

));

 $user_password = mysqli_real_esca
pe_string($dbc, trim($_POST['password']

));

 if (!empty($user_username) && !em

pty($user_password)) {

 // Look up the username and pas
sword in the database

 $query = "SELECT user_id, usern
ame FROM mismatch_user WHERE username =

 '$user_username' AND " .

 "password = SHA('$user_passwo
rd')";

 $data = mysqli_query($dbc, $que
ry);

 if (mysqli_num_rows($data) == 1

) {

 // The log-in is OK so set th
e user ID and username session vars, an

d redirect to the home page

 $row = mysqli_fetch_array($da
ta);

 $_SESSION['user_id'] = $row['
user_id'];

 $_SESSION['username'] = $row[
'username'];

 $home_url = 'http://' . $_SER
VER['HTTP_HOST'] . dirname($_SERVER['PH

P_SELF']) . '/index.php';

 header('Location: ' . $home_u
rl);

 }
 else {
 // The username/password are

incorrect so set an error message

 $error_msg = 'Sorry, you must
 enter a valid username and password to

 log in.';

 }
 }

The Log-In script uses sessions to remember the user ID and username for log-in persistence, and it does so by relying on the $_SESSION
superglobal instead of $_COOKIE.

login.php

migrating from cookies to sessions

you are here 4 399

building personalized web apps

 // Generate the navigation menu if (isset($_SESSION['username'])) { echo '❤ View Profile
'; echo '❤ Edit Profile
'; echo '❤ Log Out (' . $_SESSION['username'] . ')';
 }
 else {
 echo '❤ Log In
'; echo '❤ Sign Up'; }

 ...

 // Loop through the array of user data, formatting it as HTML echo '<h4>Latest members:</h4>'; echo '<table>';
 while ($row = mysqli_fetch_array($data)) { ...
 if (isset($_SESSION['user_id'])) { echo '<td>' . $row['first_name'] . '</td></tr>'; }
 else {
 echo '<td>' . $row['first_name'] . '</td></tr>'; }
 }
 echo '</table>';

 // Make sure the user is logged in before going any further.

 if (!isset($_SESSION['user_id'])) {

 echo '<p class="login">Please <a hr
ef="login.php">log in to access thi

s page.</p>';

 exit();
 }
 else {
 echo('<p class="login">You are logg

ed in as ' . $_SESSION['username'] .

 '. Log out</
a>.</p>');

 }

 ...

 if (!empty($first_name) && !empty

($last_name) && !empty($gender) && !emp
ty($birthdate) &&

 !empty($city) && !empty($state)
) {

 // Only set the picture column
if there is a new picture

 if (!empty($new_picture)) {

 $query = "UPDATE mismatch_use
r SET first_name = '$first_name', last_

name = '$last_name', " .

 "gender = '$gender', birthd
ate = '$birthdate', city = '$city', sta

te = '$state', " .

 "picture = '$new_picture' W
HERE user_id = '" . $_SESSION['user_id'

] . "'";

 }
 else {
 $query = "UPDATE mismatch_use

r SET first_name = '$first_name', last_
name = '$last_name', " .

 "gender = '$gender', birthd
ate = '$birthdate', city = '$city', sta

te = '$state' " .

 "WHERE user_id = '" . $_SES
SION['user_id'] . "'";

 }
 mysqli_query($dbc, $query);

The Mismatch home page uses
the $_SESSION superglobal
instead of $_COOKIE to access
log-in data while generating
the menu and choosing whether
or not to provide a link to the
“latest members” profiles.

Similar to the Log-In and home pages, the Edit Profile script now uses $_SESSION to access log-in data instead of $_COOKIE.

Although not shown,
the View Profile
script uses sessions
in much the same
way as Edit Profile.

index.php

viewprofile.php

editprofile.php

400 Chapter 7

Tonight’s talk: Cookie and session variable get down and
dirty about who has the best memory

Cookie:
There’s been a lot of talk around here among us
cookies about what exactly goes on over there on
the server. Rumor is you’re trying to move in on our
territory and steal data storage jobs. What gives?

That doesn’t make any sense to me. The browser is
a perfectly good place to store data, and I’m just the
guy to do it.

Uh, well, that’s a completely different issue. And
if the user decides to disable me, then clearly they
don’t have any need to store data.

So I suppose your answer is to store the data on the
server? How convenient.

Alright, Einstein. Since you seem to have it all
figured out, why is it that you still sometimes use me
to store your precious little ID on the browser?

Session variable:

Come on now, steal is a strong word. The truth is
sometimes it just makes more sense to store data on
the server.

What about when the user disables you?

Not true. The user often doesn’t even know a web
application is storing data because in many cases,
it is behind-the-scenes data, like a username. So if
you’re not available, they’re left with nothing.

Exactly. And the cool thing is that the user doesn’t
have the ability to disable anything on the server, so
you don’t have to worry about whether or not the
data is really able to be stored.

Er, well, most people really don’t know about that, so
there’s no need to get into it here. We can talk about
that off the record. The important thing is that I’m
always around, ready to store data on the server.

fireside chat between cookie and session variable

you are here 4 401

building personalized web apps

Cookie:
Come on, tell me how much you need me!

Oh I know you can, but the truth is you’d rather not.
And maybe deep down you really kinda like me.

Ah, so you’re going to resort to picking on the little
guy. Sure, I may not be able to store quite as much
as you, and I’ll admit that living on the client makes
me a little less secure. But it sure is more exciting!
And I have something you can only dream about.

Well, all that storage space and security you’re
so proud of comes at a cost... a short lifespan! I
didn’t want to be the one to have to tell you, but
your entire existence is hinging on a single browser
session. I think that’s how you got your name.

It’s simple. I don’t die with a session, I just expire.
So I can be set to live a long, full life, far beyond the
whim of some click-happy web surfer who thinks
it’s cute to open and close the browser every chance
he gets.

Problem is, those same scripters often set my
expiration to such a short period that I don’t really
get to experience the long life I truly deserve. I
mean, I...

Session variable:

Alright, I will admit that from time to time I do lean
on you a little to help me keep up with things across
multiple pages. But I can get by without you if I
need to.

Look, I don’t have any problem with you. I just wish
you were a little more secure. And you have that size
limitation. You know, not every piece of persistent
data is bite-sized.

Is that so? Do tell.

You mean you can go on living beyond a single
session? How is that possible?!

Wow. What a feeling that must be to experience
immortality. My only hope is that some slacker
scripter accidentally forgets to destroy me when he
closes a session... but the browser will still do me in
whenever it gets shut down.

Hello? Are you there? Geez, expiration is harsh.

402 Chapter 7

Very cool. It’s nice
being able to log in
even without cookies
turned on.

Thanks to sessions, users with cookies disabled can still log in and access
their personal profiles.

Test Drive
Change Mismatch to use sessions instead of cookies.
Modify the Mismatch scripts so that they use sessions instead of cookies to support
log-in persistence (or download the scripts from the Head First Labs site at www.
headfirstlabs.com/books/hfphp). The session modifications involve changes to the
index.php, login.php, logout.php, editprofile.php, and viewprofile.php
scripts, and primarily involve starting the session with a call to the session_start()
function and changing $_COOKIE superglobal references to use $_SESSION instead.

Upload the scripts to your web server, and then open the main Mismatch page (index.php) in
a web browser. Try logging in and out to make sure everything works the same as before. Unless
you had cookies disabled earlier, you shouldn’t notice any difference—that’s a good thing!

test drive the "sessionized" mismatch

you are here 4 403

building personalized web apps

 Sessions without cookies may not work if your
PHP settings in php.ini aren’t configured
properly on the server.

In order for sessions to work with cookies disabled, there
needs to be another mechanism for passing the session

ID among different pages. This mechanism involves appending the
session ID to the URL of each page, which takes place automatically if
the session.use_trans_id setting is set to 1 (true) in the php.ini
file on the server. If you don’t have the ability to alter this file on your
web server, you’ll have to manually append the session ID to the URL of
session pages if cookies are disabled with code like this:
<a href="viewprofile.php?<?php echo SID; ?>">view your profile

The SID superglobal holds the session
ID, which is being passed along
through the URL so that the View
Profile page knows about the session.

404 Chapter 7

Users are being logged out
of Mismatch without ever
clicking the “Log Out” link.

Users aren’t feeling welcome
Despite serving as a nice little improvement over cookies, something
about the new session-powered Mismatch application isn’t quite right.
Several users have reported getting logged out of the application despite
never clicking the “Log Out” link. The application doesn’t exactly feel
personal anymore... this is a big problem.

The home page is
presented to the
registered users as
if they are visitors
even though they
never logged out.

Frustrated
users are never
a good thing.

This isn’t the
message we
want Mismatch
to send its users.

Hey, we were logged in last time
we checked, and suddenly we’re all
logged out! What gives?

why the automatic logout?

you are here 4 405

building personalized web apps

What do you think is causing users to be
automatically logged out of Mismatch? Is
it something they’ve done inadvertently?

406 Chapter 7

Sessions are short-lived...
The problem with the automatic log-outs in Mismatch has to do with
the limited lifespan of sessions. If you recall, sessions only last as long as
the current browser instance, meaning that all session variables are killed
when the user closes the browser application. In other words, closing the
browser results in a user being logged out whether they like it or not. This
is not only inconvenient, but it’s also a bit confusing because we already
have a log-out feature. Users assume they aren’t logged out unless they’ve
clicked the Log Out link.

user_id = 1

Poof!

Even though you can destroy a session when you’re finished with it, you
can’t prolong it beyond a browser instance. So sessions are more of a short-
term storage solution than cookies, since cookies have an expiration date
that can be set hours, days, months, or even years into the future. Does
that mean sessions are inferior to cookies? No, not at all. But it does mean
that sessions present a problem if you’re trying to remember information
beyond a single browser instance... such as log-in data!

Session variables are
destroyed when the
user ends a session by
closing the browser.

The session variables
are destroyed along
with the session when
the browser is closed.

Logging in with sessions
results in the creation
of two session variables.

The session
variables are used
to remember the
identity of the user.

Once the session
variables are
destroyed, the user is
logged out...whether
they like it or not!

Whether sessions or cookies are used, logging in is what sets the persistent wheels in motion.

The user closes the
browser but may not
realize that they just
logged themselves out.

username = sidneyk

the lifespan of cookies and sessions

you are here 4 407

building personalized web apps

... but cookies can last forever!
Unlike session variables, the lifespan of a cookie isn’t tied to a browser
instance, so cookies can live on and on, at least until their expiration date
arrives. Problem is, users have the ability to destroy all of the cookies
stored on their machine with a simple browser setting, so don’t get too
infatuated with the permanence of cookies—they’re still ultimately only
intended to store temporary data.

Maybe not forever, but plenty long enough to outlast a session.

user_id = 1 time() + 2 hours

Poof!

The lifespan of a cookie
is determined by its
expiration date/time.

Similar to sessions,
cookies are created
at log-in.

Cookies are only
destroyed when
they expire. Cookies are destroyed

when they expire, giving
them a longer lifespan
than session variables.

username = sidneyk

time() + 2 hours

408 Chapter 7

So would it make sense to use both
sessions and cookies, where cookies
help keep users logged in for longer
periods of time? It would work for
users who have cookies enabled.

Yes, it’s not wrong to take advantage of the
unique assets of both sessions and cookies
to make Mismatch log-ins more flexible.
In fact, it can be downright handy. Sessions are better suited
for short-term persistence since they share wider support
and aren’t limited by the browser, while cookies allow you to
remember log-in data for a longer period of time. Sure, not
everyone will be able to benefit from the cookie improvement,
but enough people will that it matters. Any time you can
improve the user experience of a significant portion of your
user base without detracting from others, it’s a win.

As long as you’re not dealing with highly sensitive
data, in which case, the weak security of cookies
would argue for using sessions by themselves.

using cookies and sessions in tandem

you are here 4 409

building personalized web apps

user_id = 1 time() + 30 days

username = sidneyk

time() + 30 days

Sessions + Cookies = Superior log-in persistence
For the ultimate in log-in persistence, you have to get more creative and combine all of
what you’ve learned in this chapter to take advantage of the benefits of both sessions
and cookies. In doing so, you can restructure the Mismatch application so that it excels
at both short-term and long-term user log-in persistence.

Poof!

username = sidneyk

user_id = 1

When a user logs in, both session variables and cookies are set to store the user ID and username.

Closing the browser
results in the session
variables being destroyed,
but not the cookies.The next time the user

opens Mismatch, the cookies
are used to recreate the
session variables...voila!

Rather than keeping users
logged in forever, the cookies are destroyed 30 days later.

Start here!

The user
closes the
web browser,
killing the
session in
the process.

The expiration for
the cookies is set
to 30 days after
the initial log-in.

The log-in data stored
in the cookies is used to
reset the session variables.

username = sidneyk

user_id = 1

user_id = 1 time() + 30 days

username = sidneyk

time() + 30 days

410 Chapter 7

Q: So is short-term vs. long-term persistence the reason to choose
between sessions and cookies?

A: No. This happened to be the strategy that helped guide the design of the
Mismatch application, but every application is different, and there are other
aspects of sessions and cookies that often must be weighed. For example, the
data stored in a session is more secure than the data stored in a cookie. So
even if cookies are enabled and a cookie is being used solely to keep track of
the session ID, the actual data stored in the session is more secure than if it was
being stored directly in a cookie. The reason is because session data is stored on
the server, making it very difficult for unprivileged users to access it. So if you’re
dealing with data that must be secure, sessions get the nod over cookies.

Q: What about the size of data? Does that play a role?

A: Yes. The size of the data matters as well. Sessions are capable of storing
larger pieces of data than cookies, so that’s another reason to lean toward
sessions if you have the need to store data beyond a few simple text strings. Of
course, a MySQL database is even better for storing large pieces of data, so make
sure you don’t get carried away even when working with sessions.

Q: So why would I choose a session or cookie over a MySQL database?

A: Convenience. It takes much more effort to store data in a database, and
don’t forget that databases are ideally suited for holding permanent data. Log-in
data really isn’t all that permanent in the grand scheme of things. That’s where
cookies and sessions enter the picture—they’re better for data that you need to
remember for a little while and then throw away.

no dumb questions on cookies and sessions

you are here 4 411

building personalized web apps

$_SESSION

$_COOKIE

$_SESSION

$_SESSION

$_SESSION
$_SESSION

$_SESSION

$_COOKIE

$_COOKIE

$_COOKIE

$_COOKIE

$_SESSION

PHP Magnets

...
if (mysqli_num_rows($data) == 1) {

 // The log-in is OK so set the user ID and username
 session vars (and cookies),

 // and redirect to the home page

 $row = mysqli_fetch_array($data);

 ['user_id'] = $row['user_id'];

 ['username'] = $row['username'];

 setcookie('user_id', $row['user_id'], time() + (

60 * 60 * 24 * 30)); // expires in 30 days

 setcookie('username', $row['username'], time()
+ (60 * 60 * 24 * 30)); // expires in 30 days

 $home_url = 'http://' . $_SERVER['HTTP_HOST'] . d
irname($_SERVER['PHP_SELF']) . '/index.php';

 header('Location: ' . $home_url);

}
...

<?php
 // If the user is logged in, delete the session vars to log them out
 session_start();

 if (isset(['user_id'])) {

 // Delete the session vars by clearing the $_SESSION array

 = array();

 // Delete the session cookie by setting its expiration to an hour ago (3600)

 if (isset([session_name()])) {

 setcookie(session_name(), '', time() - 3600);
 }

 // Destroy the session
 session_destroy();
 }

 // Delete the user ID and username cookies by setting their expirations to an hour ago (3600) setcookie('user_id', '', time() - 3600);
 setcookie('username', '', time() - 3600);
 ...

<?php
 session_start();

 // If the session vars aren't set

, try to set them with a cookie

 if (!isset(['user

_id'])) {

 if (isset(['use

r_id']) && isset(['
username'])) {

 ['user_id'] =

 ['user_id'];

 ['username'] =

 ['username'];

 }
 }
?>
...

login.php

logout.php

index.php

The Mismatch application has been redesigned to
use both sessions and cookies for the ultimate in user
log-in persistence. Problem is, some of the code is

missing. Use the session and cookie magnets to add back the missing code.

412 Chapter 7

PHP Magnets
Solution
...
if (mysqli_num_rows($data) == 1) {

 // The log-in is OK so set the user ID and username
 session vars (and cookies),

 // and redirect to the home page

 $row = mysqli_fetch_array($data);

 ['user_id'] = $row['user_id'];

 ['username'] = $row['username'];

 setcookie('user_id', $row['user_id'], time() + (

60 * 60 * 24 * 30)); // expires in 30 days

 setcookie('username', $row['username'], time()
+ (60 * 60 * 24 * 30)); // expires in 30 days

 $home_url = 'http://' . $_SERVER['HTTP_HOST'] . d
irname($_SERVER['PHP_SELF']) . '/index.php';

 header('Location: ' . $home_url);

}
...

<?php
 // If the user is logged in, delete the session vars to log them out
 session_start();

 if (isset(['user_id'])) {

 // Delete the session vars by clearing the $_SESSION array

 = array();

 // Delete the session cookie by setting its expiration to an hour ago (3600)

 if (isset([session_name()])) {

 setcookie(session_name(), '', time() - 3600);
 }

 // Destroy the session
 session_destroy();
 }

 // Delete the user ID and username cookies by setting their expirations to an hour ago (3600) setcookie('user_id', '', time() - 3600);
 setcookie('username', '', time() - 3600);
 ...

<?php
 session_start();

 // If the session vars aren't set

, try to set them with a cookie

 if (!isset(['user

_id'])) {

 if (isset(['use

r_id']) && isset(['
username'])) {

 ['user_id'] =

 ['user_id'];

 ['username'] =

 ['username'];

 }
 }
?>
...

login.php

logout.php

index.php

The Mismatch application has been redesigned to use both sessions
and cookies for the ultimate in user log-in persistence. Problem is,
some of the code is missing. Use the session and cookie magnets to
add back the missing code.

$_SESSION

$_COOKIE
$_COOKIE

$_SESSION

$_SESSION

$_COOKIE

$_COOKIE

$_SESSION

$_SESSION

$_SESSION

$_SESSION

$_COOKIE

The new cookies are
set in addition to
the session variables.

Logging out now
requires deleting both
the session cookie and
the new log-in cookies.

If the user isn’t logged in
via the session, check to
see if the cookies are set.

This same cookie/session code
must also go in editprofile.php
and viewprofile.php.

Set the session variables
using the cookies.

php magnets solution

you are here 4 413

building personalized web apps

Combining cookies with sessions
adds longer term persistence to the
excellent short-term persistence
already made possible by sessions.

Oh well, I guess
you can’t win ‘em all.

Awesome! Mismatch now
remembers us regardless
of whether we close our

browsers or not.

Most users are thrilled
with how sessions and
cookies combine to
remember them better.

Using cookies to help make sessions better doesn’t help users who have cookies disabled... you can only do so much.

Test Drive
Change Mismatch to use both sessions and cookies.
Modify the Mismatch scripts so that they use both sessions and cookies to support
log-in persistence (or download the scripts from the Head First Labs site at www.
headfirstlabs.com/books/hfphp. This requires changes to the index.php,
login.php, logout.php, editprofile.php, and viewprofile.php scripts.

Upload the scripts to your web server, and then open the main Mismatch page (index.
php) in a web browser. Try logging in and then closing the web browser, which will cause
the session variables to get destroyed. Re-open the main page and check to see if you’re still
logged in—cookies make this possible since they persist beyond a given browser session.

414 Chapter 7

setcookie()

This built-in PHP function is used
to set a cookie on the browser,
including an optional expiration
date, after which the cookie is
destroyed. If no expiration is
provided, the cookie is deleted
when the browser is closed.

SHA(value)

This MySQL function encrypts a
piece of text, resulting in a string
of 40 hexadecimal characters.
This function provides a great
way to encrypt data that needs
to remain unrecognizable within
the database. It is a one-way
encryption, however, meaning that
there is no “decrypt” function.

Your PHP & MySQL Toolbox
You’ve covered quite a bit of
new territory in building a user

management system as part of the
Mismatch application. Let’s recap some
of the highlights.

$_COOKIE

This built-in PHP superglobal is used to access cookie data. It is an array, and each cookie is stored as an entry in the array. So accessing a cookie value involves specifying the name of the cookie as the array index.

session_destroy()

This built-in PHP function closes
a session, and should be called
when you’re finished with a
particular session. This function
does not destroy session variables;
however, so it’s important to
manually clean those up by clearing
out the $_SESSION superglobal.

session_start()

This built-in PHP function starts
a new session or re-starts a pre-
existing session. You must call this
function prior to accessing any
session variables.

$_SESSION

This built-in PHP superglobal is
used to access session data. It is
an array, and each session variable
is stored as an entry in the array.
So accessing the value of a session
variable involves specifying the
name of the variable as the array
index.

CH
AP

T
ER

 7
php & mysql toolbox

you are here 4 415

building personalized web apps

DescriptionPHP/MySQL Code

Several pieces of code from the Mismatch application have been pulled
out, and we can’t remember what they do. Draw lines connecting each
piece of code with what it does.

setcookie(session_name(), '', time() - 3600);

isset($_SESSION['user_id'])

empty($_COOKIE['user_id'])

SHA('$user_password')

setcookie('user_id', $row['user_id'])

$_SESSION = array()

session_destroy()

session_start()

Encrypt a user’s password into an
unrecognizable format.

Store a user’s unique ID in a cookie.

Destroy a session cookie by setting its
expiration to an hour in the past.

Use a session variable to determine if a user
is logged in or not.

Use a cookie to determine if a user is logged
in or not.

Destroy all session variables.

Close the current session.

Start a new session.

416 Chapter 7

DescriptionPHP/MySQL Code

Several pieces of code from the Mismatch application have been pulled
out, and we can’t remember what they do. Draw lines connecting each
piece of code with what it does.

setcookie(session_name(), '', time() - 3600);

isset($_SESSION['user_id'])

empty($_COOKIE['user_id'])

SHA('$user_password')

setcookie('user_id', $row['user_id'])

$_SESSION = array()

session_destroy()

session_start()

Encrypt a user’s password into an
unrecognizable format.

Store a user’s unique ID in a cookie.

Destroy a session cookie by setting its
expiration to an hour in the past.

Use a session variable to determine if a user
is logged in or not.

Use a cookie to determine if a user is logged
in or not.

Destroy all session variables.

Close the current session.

Start a new session.

who does what solution

this is a new chapter 417

eliminate duplicate code7 ½

Sharing is caring
It’s really quite simple, darling. By
sharing one umbrella, we eliminate
the need for two umbrellas, we
both still stay dry... and you get to
latch on to one handsome fella.

Handsome and smart!
Your shared umbrella
theory is pure genius.

Umbrellas aren’t the only thing that can be shared. In any web

application you’re bound to run into situations where the same code is duplicated in

more than one place. Not only is this wasteful, but it leads to maintenance headaches

since you will inevitably have to make changes, and these changes will have to be

carried out in multiple places. The solution is to eliminate duplicate code by sharing

it. In other words, you stick the duplicate code in one place, and then just reference

that single copy wherever you need it. Eliminating duplicate code results in applications

that are more efficient, easier to maintain, and ultimately more robust.

418 Chapter 7 ½

The Mismatch application has evolved since you last saw it, with improved navigation and a
more consistent look and feel. But these improvements have come at a cost... duplicate code.
Just by looking at the pages themselves, see if you can figure out what parts of Mismatch might
represent a duplicate code problem. Circle and annotate these application parts, and also write
down anything not visible that you think might also have code duplication issues.

index.php

locate the duplicate code

you are here 4 419

eliminate duplicate code

viewprofile.php

editprofile.php

420 Chapter 7 ½

The Mismatch application has evolved since you last saw it, with improved navigation and a
more consistent look and feel. But these improvements have come at a cost... duplicate code.
Just by looking at the pages themselves, see if you can figure out what parts of Mismatch might
represent a duplicate code problem. Circle and annotate these application parts, and also write
down anything not visible that you think might also have code duplication issues.

<?php
 session_start();

 // If the session vars aren't set, try to set them with a cookie if (!isset($_SESSION['user_id'])) { if (isset($_COOKIE['user_id']) && isset($_COOKIE['username'])) { $_SESSION['user_id'] = $_COOKIE['user_id']; $_SESSION['username'] = $_COOKIE['username']; }
 }
?>

The navigation menu
is identical across all
three pages.

The “Mismatch” title
appears on every page,
with only the detailed
page title varying
from page to page.

The page footer that holds
the copyright information
for the application is the
same everywhere.

All of the pages that rely on a user
log-in require the exact same session
start-up and log-in checking code.

index.php
viewprofile.php

editprofile.php

mismatch's duplicate code

you are here 4 421

eliminate duplicate code

Mismatch is in pieces
So the Mismatch application has some common elements that are
duplicated in the main script files at the moment. Why is this a big deal?
Because it makes the application difficult to maintain. What happens if
you decide to add a new page that requires a new menu item? You have to
go through and change the menu code in every script file to show the new
menu item. The same thing applies to the copyright notice.

The solution to the problem is to only store any given piece of information
once. Then if that code ever needs to change, you only change it in one
place. With that in mind, it’s possible to rethink the organization of
Mismatch in terms of reusable script components.

The startsession.php
script is responsible for starting
the session and checking to see
if the user is logged in.

The session starter

startsession.php

The header.php script
contains the title of the page,
which references a variable
to present a different title on
each page. The header also
includes standard HTML
boilerplate code and takes
care of chores such as linking
in the CSS style sheet.

The page header

header.php

The navmenu.php script
generates a navigation menu
for the application based on
whether the user is logged in
or not. The navigation menu
presents “Log In” or “Log
Out” links as needed.

The navigation menu

navmenu.php

The footer.php script
displays a copyright notice
for the application and closes
the HTML tags opened in
the header. So the header
and footer work as a pair that
must always be used together.

The page footer

footer.php

This component doesn’t result
in visible HTML code, but it
plays a vital role in managing
user log-ins throughout the
Mismatch application.

422 Chapter 7 ½

Rebuilding Mismatch from a template
OK, so we break apart Mismatch into multiple scripts, but how do we
put them back together? You’re already familiar with how include files
work, and those are part of the solution. But you have to think larger
than include files... you have to think in terms of templates, which
allow you to build a single page as a combination of multiple include
files. A template is like a blueprint for a page within an application where
everything but what is truly unique to that page comes from include files.

The template version of Mismatch involves breaking apart common
code into scripts that each play a very specific role, some responsible for
generating visual HTML code, some not. The idea is to distill as much
common functionality as possible into template include files, and then only
leave code in each application page that is completely unique to that page.

Templates allow a
PHP application to be
built out of reusable
script components.

index.php

startsession.php header.php

navmenu.php

footer.php

The footer provides content along the bottom of every Mismatch page, which
includes a copyright notice.

The header appears at the top of every Mismatch page, and
displays the application title as well as a page-specific title.

The navigation menu
appears just below the
header, and provides each
Mismatch page with a
consistent menu to navigate
between the main pages.

Every Mismatch page that’s
personalized to a user
requires log-in code that
keeps track of the user.

With so many other scripts helping
out, the index.php script is left to
focus solely on its unique role, which
is displaying the main user list.

mismatch needs a template

you are here 4 423

eliminate duplicate code

Q: What is a template exactly? Isn’t it just a bunch of include files?

A: Yes. A template is a collection of include files, but it’s a collection
designed specifically to separate an application into functional components.
The goal is to reduce a page down to what is truly unique about that page,
and only that page. So headers, footers, navigation menus, and any other
application pieces and parts that are the same or similar among more than
one page are ideal for inclusion in an application template. The end result
is that you place template code in PHP include files that are referenced by
other scripts that need them.
You can think of a template as a group of include files that go a step or
two beyond just reducing duplicate code—they actually help organize the
functionality of an application. Mismatch is a fairly simple example of how
to employ templates—larger, more complex PHP applications often employ
very sophisticated template systems.

Q: Doesn’t template code have to be exactly the same in order to be
shared across multiple scripts?

A: No. It’s perfectly acceptable for template code to just be similar, not
exact. The reason is because you can use variables to allow for some
degree of customization as a template is applied to different pages. The
page title in Mismatch is a perfect example of this. The page header
template is similar in every page in that it has a title that always begins with

“Mismatch - .” But the specific title is different, which is why a variable is
needed to provide a means of varying the title slightly among different pages.

424 Chapter 7 ½

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en"> <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<?php
 echo '<title>Mismatch - ' . $page_title . '</title>';
?>

 <link rel="stylesheet" type="text/css" href="style.css" /> </head>
<body>

<?php
 echo '<h3>Mismatch - ' . $page_title . '</h3>';
?>

Rebuild Mismatch with templates
The design work involved in breaking an application into template scripts
is usually worth the effort. You end up with a collection of tightly focused,
bite-size scripts, as well as dramatically simplified code in the main
application script files that are now dependent on the template scripts.

 <hr />
 <p class="footer">Copyright ©2008 Mismatch Enterprises, Inc.</p>
</body>
</html>

<?php
 // Generate the navigation menu

 echo '<hr />';
 if (isset($_SESSION['username'])) {

 echo 'Home d
84; ';

 echo 'View Pro
file ❤ ';

 echo 'Edit Pro
file ❤ ';

 echo 'Log Out (' .
$_SESSION['username'] . ')';

 }
 else {
 echo 'Log In

0084; ';

 echo 'Sign Up';

 }
 echo '<hr />';
?>

<?php
 session_start();

 // If the session vars are

n't set, try to set them wit
h a cookie

 if (!isset($_SESSION['user
_id'])) {

 if (isset($_COOKIE['user
_id']) && isset($_COOKIE['us

ername'])) {

 $_SESSION['user_id'] =
 $_COOKIE['user_id'];

 $_SESSION['username']
= $_COOKIE['username'];

 }
 }
?>

Start the
session.

Try to reset the
session variables
with cookies if
they aren’t set.

Start the official HTML
code with a DOCTYPE
and an <html> tag.

Build a custom page title
using the $page_title
variable, which is provided by
the script including this file.

Link in the
application
style sheet.

See if the user is
logged in, and then
generate the appropriate
navigation menu.

Display a copyright
notice and wrap up
the HTML code.

startsession.php

header.php

navmenu.php

footer.php

mismatch—now using templates!

you are here 4 425

eliminate duplicate code

<?php
 // Start the session
 require_once('startsession.php');

 // Insert the page header
 $page_title = 'Where opposites attract!';
 require_once('header.php');

 require_once('appvars.php');
 require_once('connectvars.php');

 // Show the navigation menu
 require_once('navmenu.php');

 // Connect to the database
 $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME);

 // Retrieve the user data from MySQL
 $query = "SELECT user_id, first_name, picture FROM mismatch_user WHERE first_name IS NOT NULL " .
 "ORDER BY join_date DESC LIMIT 5";
 $data = mysqli_query($dbc, $query);

 // Loop through the array of user data, formatting it as HTML
 echo '<h4>Latest members:</h4>';
 echo '<table>';
 while ($row = mysqli_fetch_array($data)) {
 if (is_file(MM_UPLOADPATH . $row['picture']) && filesize(MM_UPLOADPATH . $row['picture']) > 0) {
 echo '<tr><td><img src="' . MM_UPLOADPATH . $row['picture'] . '" alt="' . $row['first_name'] .
 '" /></td>';
 }
 else {
 echo '<tr><td><img src="' . MM_UPLOADPATH . 'nopic.jpg' . '" alt="' . $row['first_name'] .
 '" /></td>';
 }
 if (isset($_SESSION['user_id'])) {
 echo '<td>' . $row['first_name'] .
 '</td></tr>';
 }
 else {
 echo '<td>' . $row['first_name'] . '</td></tr>';
 }
 }
 echo '</table>';

 mysqli_close($dbc);
?>

<?php
 // Insert the page footer
 require_once('footer.php');
?>

The $page_title variable
determines the title of
the page that is displayed
within the page header.

The connection variables and application variables are still included from separate script files like before.

The footer finishes up the page,
and must appear last since it
closes up the HTML tags.

The startsession.php script must be
included first so that the session is
started and the remainder of the
script has access to session data.

The navigation menu is generated
after the header but before the
body of the page.

The non-template code is now
truly unique to the page, so
there's much less of it.

index.php

426 Chapter 7 ½

While the thought of ripping apart the Mismatch application into tiny pieces
might have been a bit unnerving, the end result is definitely worth the effort.
The application’s now spread across several new template (include) files, which
offer much better organization and maximize the sharing of script code. If you
need to change one of these pieces, just change one file and the effect cascades
throughout the entire application... that’s the power of templates!

much

The page footer
contains copyright
information for the
entire application... if
you need to change the
copyright notice, just
change it in one place!

The page header
includes boilerplate
HTML code and
the page title.

The session start-up
code is used by any
page that requires a
user log-in.

The navigation menu
provides handy links
to the major parts
of the application.

The startsession.php script
handles behind-the-scenes log-in
tasks, and doesn’t occupy any
visual space on the page.

startsession.php

header.php

navmenu.php

footer.php

Mismatch is whole again... and better organized

a well-designed php app

this is a new chapter 427

control your data, control your world8

Harvesting data
The way I see it, it’s all about data
management. First I sort the peas, then I
select a few potatoes, join them with some
celery and a few rows of corn kernels...
before you know it there’s a tasty stew!

There’s nothing like a good fall data harvest. An abundance of

information ready to be examined, sorted, compared, combined, and generally

made to do whatever it is your killer web app needs it to do. Fulfilling? Yes. But like real

harvesting, taking control of data in a MySQL database requires some hard work and

a fair amount of expertise. Web users demand more than tired old wilted data that’s dull

and unengaging. They want data that enriches... data that fulfills... data that’s relevant. So

what are you waiting for? Fire up your MySQL tractor and get to work!

428 Chapter 8

Making the perfect mismatch
The Mismatch application has a growing database of registered users
but they’re ready to see some results. We need to allow users to find their
ideal opposite by comparing their loves and hates against other users
and looking for mismatches. For every love mismatched against a hate, a
couple is that much closer to being the perfect mismatch.

Love tattoos
Love cowboy boots
Hate reality TV
Love horror movies
Love Spam
Love spicy food
Love Howard Stern
Hate Barbara Streisand
Love weightlifting
Hate hiking

Hate tattoos

Love cowboy boots

Love reality TV

Hate horror movies

Hate Spam

Love spicy food

Hate Howard Stern

Love Barbara Streisand

Hate weightlifting

Love hiking

I really hate horror movies.
And Spam, blech! But I do love
Barbara Streisand, and there’s
nothing better than a good hike...

Nothing warms my heart like a
good slasher flick coupled with a Spam
sandwich. As long as Barbara Streisand
doesn’t show up in the movie hiking!

Sidney’s list of loves and hates
contrasts starkly with Johan’s, making
the couple quite an effective mismatch.

Remember Johan, a lonely
heart in search of someone
who hates weightlifting as
much as he loves it?

Sidney has yet to
find her Mr. Right
but she has a hunch he’ll hate reality TV as much as she loves it.

looking for a love-hate relationship

you are here 4 429

control your data, control your world

Mismatching is all about the data
In order to carry out Mismatches between users, we must first figure out how
to organize the data that keeps up with what they love and hate. Knowing that
it’s going to be stored in a MySQL database isn’t enough. We need to organize
these love/hate topics so that they are more manageable, allowing users to
respond to related topics, indicating whether they love or hate each one.

Appearance

Tattoos

Cowboy boots

Food

Spam

Spicy food

People

Howard Stern

Barbara Streisand

Activities

Weightlifting

Hiking

Entertainment

Reality TV

Horror movies

Write down how you would organize the Mismatch data into
discrete groups of data that could be stored in a database:

Each individual topic gets
a love/hate response that
is matched up against the
responses of other users.

Similar topics are grouped
together, such as topics
related to appearance.

430 Chapter 8

Horror movies

Mismatching takes place
with respect to topics, such
as tattoos or spicy food,
each of which gets a user
response—love or hate.

Topics

A user describes themselves

for mismatching purposes

by responding to topics. An

individual response is just a

love/hate answer to a topic.

Responses

Reality TV

Horror movies

Categories are used to help
organize topics. Although
they don’t play a direct role
in determining a mismatch,
they will help make it easier
for users to enter responses.

Categories
Entertainment

Activities

Weightlifting

Hiking

Horror movies

How exactly does this data lead to a mismatch between two
users? We compare responses that users have made on each
topic. For example, since Sidney and Johan have opposite
responses to the topic “Horror movies,” we have a successful
mismatch on that particular topic. Figuring the best overall
mismatch for a given user involves finding the user who has
the most mismatched topics with them.

A mismatch!

Sidney’s dislike of
horror movies leads
to a mismatch.

Break down the Mismatch data
Coming up with a data model for an application such as Mismatch is
an extremely important step, as it controls an awful lot about how the
application is constructed. In the case of Mismatch, we can break down
its data needs into three interrelated pieces of data.

Love ‘em.Hate ‘em!

Categories are used to group together related Mismatch topics.

Topics form the guts
of the Mismatch
data, deciding what
parameters users can
be mismatched on.

Responses are the individual love/hate answers to each topic, and are specific to each Mismatch user.

a data model for mismatch

you are here 4 431

control your data, control your world

A description of the
data (the tables and
columns) in your
database, along with
any other related
objects and the way
they all connect is
known as a schema.

This way of looking at the structure of a table is a bit different than
what you’ve seen up until now. Tables have normally been depicted
with the column names across the top and the data below. That’s a
great way to look at individual tables and tables populated with data,
but it’s not very practical when we want to create a structural diagram
of multiple tables and how they relate to one another. And Mismatch
is already in need of multiple tables...

Creating a diagram of
a table lets you keep
the design of the table
separate from the data
that’s inside of it.

Model a database with a schema
In order to translate the data requirements of the Mismatch application
into an actual database design, we need a schema. A schema is a
representation of all the structures, such as tables and columns, in your
database, along with how they connect. Creating a visual depiction of
your database can help you see how things connect when you’re writing
your queries, not to mention which specific columns are responsible for
doing the connecting. As an example, let’s take a look at the schema
for the original Mismatch database from the previous chapter, which
consists of only a single table, mismatch_user.

mismatch_user

user_id
username

password

join_date

first_name

last_name

gender

birthdate

city

state

picture

The table name.

This symbol
indicates that the
column is a primary
key for the table.

Other columns in the table
are listed just as they appear
in the database structure.

432 Chapter 8

mismatch_topic
topic_id
name

category

mismatch_response

response_id
response
user_id
topic_id

The Mismatch database is in need of storage for user responses to love/hate topics, as well as
the topic names and their respective categories. Here are three different database designs for
incorporating categories, topics, and responses into the Mismatch database. Circle the schema
that you think makes the most sense, and annotate why.

mismatch_user
user_id

username
password
join_date
first_name
last_name

gender
birthdate

city
state

picture

mismatch_response

response_id response user_id topic_id

...

101 Love 11 1

102 Love 11 2

103 Hate 11 3

104 Love 11 4

...

mismatch_user

user_id username password ...

...

11 jnettles ******** ...

...

mismatch_topic
topic_id name category

1 Tattoos Appearance
2 Cowboy hats Appearance
3 Reality TV Entertainment
4 Horror movies Entertainment

...

1

category
topic

response

This is the new data introduced
by the need to keep up with
Mismatch users’ loves and hates.

pick the best mismatch schema

you are here 4 433

control your data, control your world

mismatch_user
user_id

username
password
join_date
first_name
last_name

gender
birthdate

city
state

picture

mismatch_response

response_id category topic response user_id

...

101 Appearance Tattoos Love 11

102 Appearance Cowboy boots Love 11

103 Entertainment Reality TV Hate 11

104 Entertainment Horror movies Love 11

...

mismatch_response

response_id
category

topic
response
user_id

mismatch_user

user_id username password ...

...

11 jnettles ******** ...

...

mismatch_user
user_id

username
password
join_date
first_name
last_name

gender
birthdate

city
state

picture
topic_id
response

mismatch_topic
topic_id
name

category

mismatch_user

user_id username password ... topic_id response

...

11 jnettles ******** ... 1 Love

11 jnettles ******** ... 2 Love

11 jnettles ******** ... 3 Hate

11 jnettles ******** ... 4 Love

...

mismatch_topic

topic_id name category

1 Tattoos Appearance

2 Cowboy hats Appearance

3 Reality TV Entertainment

4 Horror movies Entertainment

...

2

3

434 Chapter 8

The Mismatch database is in need of storage for user responses to love/hate topics, as well as
the topic names and their respective categories. Here are three different database designs for
incorporating categories, topics, and responses into the Mismatch database. Circle the schema
that you think makes the most sense, and annotate why.

mismatch_topic
topic_id
name

category

mismatch_response

response_id
response
user_id
topic_id

mismatch_user
user_id

username
password
join_date
first_name
last_name

gender
birthdate

city
state

picture

First off, it’s important to establish that the only new data
involved in a user giving love/hate responses are the responses
themselves - everything else in the database is fixed, at least
from the user’s perspective.

Who said simpler is always better? This
database schema stores responses in
their own table, separate from other
data that isn’t directly impacted by
the responses. There’s no duplication
due to responses because users,
categories, and topics are all outside of
the mismatch_response table.

mismatch_response

response_id response user_id topic_id

...

101 Love 11 1

102 Love 11 2

103 Hate 11 3

104 Love 11 4

...

mismatch_user

user_id username password ...

...

11 jnettles ******** ...

...

mismatch_topic
topic_id name category

1 Tattoos Appearance
2 Cowboy hats Appearance
3 Reality TV Entertainment
4 Horror movies Entertainment

...

1

There’s no duplicate
data for each
response, which is a
very good thing!

The original mismatch_user
table remains unchanged.

The mismatch_response table connects
users and topics together through
the user_id and topic_id columns.

The new mismatch_topic table stores topic names and their respective
categories.

mismatch’s best database schema

you are here 4 435

control your data, control your world

mismatch_user
user_id

username
password
join_date
first_name
last_name

gender
birthdate

city
state

picture

mismatch_response

response_id category topic response user_id

...

101 Appearance Tattoos Love 11

102 Appearance Cowboy boots Love 11

103 Entertainment Reality TV Hate 11

104 Entertainment Horror movies Love 11

...

mismatch_response

response_id
category

topic
response
user_id

The responses aren’t stored inside the user
table, which is great. But there’s a ton of
duplicate data since the categories and topics are
duplicated for each and every response.

mismatch_user

user_id username password ...

...

11 jnettles ******** ...

...

mismatch_user
user_id

username
password
join_date
first_name
last_name

gender
birthdate

city
state

picture
topic_id
response

mismatch_topic
topic_id
name

category

It’s not a bad idea to break
out the categories and topics
into their own table, but
we’re having to create a
user row for each and every
response. That leaves us with
4 Johans for 4 responses.
Not good!

mismatch_user

user_id username password ... topic_id response

...

11 jnettles ******** ... 1 Love

11 jnettles ******** ... 2 Love

11 jnettles ******** ... 3 Hate

11 jnettles ******** ... 4 Love

...

mismatch_topic

topic_id name category

1 Tattoos Appearance

2 Cowboy hats Appearance

3 Reality TV Entertainment

4 Horror movies Entertainment

...

2

3

The user data is horribly
duplicated for every response.

Categories and topics are duplicated for each response, which is crazy wasteful.

436 Chapter 8

Wire together multiple tables
Connecting tables together to form a cohesive system of data involves the
use of keys. We’ve used primary keys to provide a unique identifier
for data within a table, but we now need foreign keys to link a row in
one table to a row in another table. A foreign key in a table references the
primary key of another table, establishing a connection between the two
tables that can be used in queries.

The Mismatch schema from the previous exercise relies on a pair of
foreign keys in the mismatch_response table to connect response
rows to user and topic rows in other tables.

A foreign key is a
column in a table
that references
the primary key of
another table.

mismatch_user

user_id
username

password

join_date

first_name

last_name

gender

birthdate

city

state

picture

mismatch_topic

topic_id
name

category

mismatch_response

response_id
response

user_id

topic_id

This symbol shows that
the column is a foreign key
that references a primary
key in another table.

The mismatch_response and mismatch_topic tables work together to store love/hate responses to topics such as Appearance -> Cowboy boots and Activities -> Hiking.

Remember, this symbol identifies a primary key.

This primary key not only
uniquely identifies topics within
the mismatch_topic table, but it
also connects topics to responses
in the mismatch_response table.

This arrow show that the mismatch_user table is connected to the mismatch_response table via keys.

Without foreign keys, it would be very difficult to associate data
from one table with data in another table. And spreading data
out across multiple tables is how we’re able to eliminate duplicate
data and arrive at an efficicient database. So foreign keys play an
important role in all but the most simplistic of database schemas.

Large arrows show
primary keys connecting
to foreign keys to wire
together tables.

mismatch’s schema uses foreign keys

you are here 4 437

control your data, control your world

mismatch_response

response_id response
user_id topic_id

...

101 Love 11 1

102 Love 11 2

103 Hate 11 3

104 Love 11 4

...

mismatch_user

user_id username password ...

...

11 jnettles ******** ...

...

mismatch_topic
topic_id name category

1 Tattoos Appearance
2 Cowboy hats Appearance
3 Reality TV Entertainment
4 Horror movies Entertainment

...

As a primary key, user_id must be
unique within the mismatch_user
table. In fact, that’s its purpose
- providing a unique reference to
user rows.

The topic_id primary
key serves as a unique
index for rows in the
mismatch_topic table.

The topic_id foreign key
references topic rows
in the mismatch_topic
table, and isn’t unique
since many different
users will have responses
to the same topics.

The user_id foreign key serves as
a reference to user rows in the
mismatch_user table, allowing you
to know which user is associated
with a given response.

Within the mismatch_response table, you can find out more
information about the user who entered a response by looking up the
user_id in the mismatch_user table. Similarly, you can find out the
name of the topic for the response, as well as its category, by looking up the
topic_id in the mismatch_topic table.

Binding together tables with primary keys and foreign keys allows us to
connect the data between them in a consistent manner. You can even
structure your database so that primary keys and their respective foreign
keys are required to match up. This is known as referential integrity,
which is a fancy way of saying that all key references must be valid.

Foreign keys in action
It often helps to visualize data flowing into tables and connecting tables
to one another through primary and foreign keys. Taking a closer look at
the Mismatch tables with some actual data in them helps to reveal how
primary keys and foreign keys relate to one another.

Remember, each
row in this table
corresponds to a
Mismatch user.

Each row in this
table is a single
love/hate response
by a certain user.

Each row in this table is
the name/category of a
love/hate response, but
not the response itself.

The user_id foreign key ties
a response row to a user row
in the mismatch_user table. It
isn’t unique since a user can have
several love/hate responses.

438 Chapter 8

I understand that primary keys and foreign
keys connect multiple tables together, but
does the direction of the arrows between
keys in those diagrams mean anything?

?
?

Yes, the direction of the arrows tells us how rows in
each table relate to each other.
More specifically, they tell us how many rows in one table can have
matching rows in another table, and vice-versa. This is a critical
aspect of database schema design, and involves three different possible
patterns of data: one-to-one, one-to-many, and many-to-many.

Tables can match row for row
The first pattern, one-to-one, states that a row in Table A can have at
most ONE matching row in Table B, and vice-versa. So there is only one
match in each table for each row.

As an example, let’s say the Mismatch user table was separated into two
tables, one for just the log-in information (Table A) and one with profile
data (Table B). Both tables contain a user ID to keep users connected
to their profiles. The user_id column in the log-in table is a primary
key that ensures user log-in uniqueness. user_id in the profile table is
a foreign key, and plays a different role since its job is just to connect a
profile with a log-in.

ONLY ONE
of these rows

matches up
TO

Table A Table B

ONLY ONE
of these rows

mismatch_user_login

user_id username password join_date

...

9 dierdre 08447b... 2008-05...

10 baldpaul 230dcb... 2008-05...

11 jnettles e511d7... 2008-05...

12 rubyr 062e4a... 2008-06...

13 theking b4f283... 2008-06...

mismatch_user_profile
user_profile_id first_name last_name gender ... user_id

...
7 Johan Nettles M ... 11
8 Jason Filmington M ... 8
9 Paul Hillsman... M ... 10

...The tables have a
one-to-one relation
through user_id.

One-to-one, so
no arrowheads.

With respect to the two user_id columns, the log-in table is considered
a parent table, while the profile table is considered a child table—a table
with a primary key has a parent-child relationship to the table with the
corresponding foreign key.

types of relationships between tables

you are here 4 439

control your data, control your world

MANY
of these rows

matches up
TO

Table A Table B

ONE
of these rows

One row leads to many
One-to-many means that a row in Table A can have many matching rows
in Table B, but a row in Table B can only match one row in Table A. The
direction of the arrow in the table diagram always points from the table
with one row to the table with many rows.

Using the Mismatch database again, the current schema already takes
advantage of a one-to-many data pattern. Since a user is capable of
having many topic responses (love tattoos, hate hiking, etc.), there is a
one-to-many relationship between user rows and response rows. The
user_id column connects these two tables, as a primary key in
mismatch_user and a foreign key in mismatch_response.

mismatch_user

user_id username password ...

...

9 dierdre 08447b... ...

10 baldpaul 230dcb... ...

11 jnettles e511d7... ...

12 rubyr 062e4a... ...

13 theking b4f283... ...

mismatch_response
response_id response

user_id topic_id
...

101 Love 11 1
102 Love 11 2
103 Hate 11 3
104 Love 11 4

...

There is a
one-to-many
relationship
through
user_id.

Primary key.
Foreign key!

One-to-One:
exactly one
row of a
parent table
is related to
one row of
a child table.

One-to-Many:
exactly one row
of a parent
table is related
to multiple
rows of a
child table.

Q: How do I know whether rows in two
tables should have a one-to-one or one-to-many
relationship?

A: There will be a tendency to use one-to-many
patterns much more often than one-to-one, and
rightly so. It’s common to have a main (parent) table
containing primary data, such as users in Mismatch,
that connects to a secondary (child) table in a one-
to-many arrangement. This happens twice in the
Mismatch schema, where both users and topics have
a one-to-many relationship to responses.
In many cases, rows with a one-to-one relationship
in two tables can be combined into the same table.
However, there are certainly situations where it
makes sense to go with a one-to-one pattern, such
as the hypothetical user profile example on the facing
page, where there is a security motivation in moving a
portion of the data into its own table.

440 Chapter 8

mismatch_user

user_id username password ...

...

9 dierdre 08447b... ...

10 baldpaul 230dcb... ...

11 jnettles e511d7... ...

12 rubyr 062e4a... ...

13 theking b4f283... ...

mismatch_response
response_id response

user_id topic_id
...

81 Hate 9 1
82 Love 9 2
83 Love 9 3
84 Hate 9 4

...
101 Love 11 1
102 Love 11 2
103 Hate 11 3
104 Love 11 4

...

mismatch_topic
topic_id name category

1 Tattoos Appearance
2 Cowboy hats Appearance
3 Reality TV Entertainment
4 Horror movies Entertainment

...

Many-to-Many:
Multiple rows of
a parent table
are related to
multiple rows of
a child table.

One-to-many.

One-to-many.

MANY
of these rows

matches up
TO

Table A Table B

MANY
of these rows

Matching rows many-to-many
The third and final table row relationship data pattern is the
many-to-many relationship, which has multiple rows of data in Table A
matching up with multiple rows in Table B... it’s kinda like data overload!
Not really. There are plenty of situations where a many-to-many pattern
is warranted. Mismatch, perhaps? Let’s have a look.

Users and topics have a
many-to-many relationship
through the responses.

The many-to-many pattern in Mismatch is indirect, meaning that it takes
place through the mismatch_response table. But the pattern still exists.
Just look at how many of the same user_ids and topic_ids appear in
mismatch_response.

In addition to holding the response data, the mismatch_response table
is acting as what’s known as a junction table by serving as a convenient
go-between for the users and topics. Without the junction table, we would have
lots of duplicate data, which is a bad thing. If you aren’t convinced, turn back
to the schema exercise near the beginning of the chapter and take a closer
look at Design 2. In that design, the mismatch_topic table is folded into
the mismatch_response table, resulting in lots of duplicate data.

Many-to-many!

mismatch_response
is a junction table
that establishes a
relationship between
users and their
responses to topics.

the many-to-many relationship

you are here 4 441

control your data, control your world

NAME THAT RELATIONSHIP
In each of the tables below, there are circled columns that could be moved out into
their own tables. Write down if each of the columns is best represented by a one-to-one,
one-to-many, or many-to-many relationship with its original table, and then draw the
relationship as a line connecting the two tables with appropriate arrowheads.

RELATIONSHIP

mismatch_topic

topic_id
name

category

mismatch_user

user_id
...

address

employer

friends

friend user

address user

employer user

category topic

442 Chapter 8

NAME THAT RELATIONSHIP SOLUTION
In each of the tables below, there are circled columns that could be moved out into
their own tables. Write down if each of the columns is best represented by a one-to-one,
one-to-many, or many-to-many relationship with its original table, and then draw the
relationship as a line connecting the two tables with appropriate arrowheads.

RELATIONSHIP

mismatch_topic

topic_id
name

category

mismatch_user

user_id
...

address

employer

friends

friend user

address user

employer user

category topic

one-to-one

one-to-many

many-to-many

one-to-many

There’s only one street address
for any given user, which means
an address row has a one-to-one
relationship with a user row.

Multiple users could work for the same employer, resulting in a one-to-many relationship between an employer row and user rows.

Multiple users can have multiple
friends, meaning that friend rows
have a many-to-many relationship
with user rows.

Tables that have
a many-to-many
relationship
are typically
connected
through a junction
table, which isn’t
shown here.

Multiple topics can belong to the same category,
resulting in a one-to-many relationship between
a category row and topic rows. But a topic
can’t belong to more than one category.

name that relationship solution

you are here 4 443

control your data, control your world

Hold it right there! Take a second to get the Mismatch database
in order so that we can make mismatches.
Download the .sql files for the Mismatch application from the Head First Labs web site
at www.headfirstlabs.com/books/hfphp. These files contain SQL statements
that build the necessary Mismatch tables: mismatch_user, mismatch_topic, and
mismatch_response. Make sure to run the statement in each of the .sql files in a
MySQL tool so that you have the initial Mismatch tables to get started with.

When all that’s done, run a DESCRIBE statement on each of the new tables
(mismatch_topic and mismatch_response) to double-check their structures.
These tables factor heavily into the Mismatch PHP scripts we’re about to put together.

mysql> DESCRIBE mismatch_topic
;

+------------+-------------+--
----+-----+-------------------

+----------------+

| Field | Type | N
ull | Key | Default

| Extra |

+------------+-------------+--
----+-----+-------------------

+----------------+

| topic_id | int(11) | N
O | PRI |

| auto_increment |

| name | varchar(48) | N
O | |

| |

| category | varchar(48) | N
O | |

| |

+------------+-------------+--
----+-----+-------------------

+----------------+

3 rows in set (0.04 sec)

File Edit Window Help LoveIt

The topic_id foreign
key ties back to the
primary key in the
mismatch_topic table.

mysql> DESCRIBE mismatch_response;
+-------------+-------------+------+-----+-------------------+----------------+ | Field | Type | Null | Key | Default | Extra | +-------------+-------------+------+-----+-------------------+----------------+ | response_id | int(11) | NO | PRI | | auto_increment | | user_id | int(11) | NO | | | | | topic_id | int(11) | NO | | | | | response | tinyint(4) | NO | | | | +-------------+-------------+------+-----+-------------------+----------------+ 4 rows in set (0.05 sec)

File Edit Window Help HateIt

444 Chapter 8

mismatch_topic

topic_id name category

1 Tattoos Appearance

2 Gold chains Appearance

3 Body piercings Appearance

4 Cowboy boots Appearance

5 Long hair Appearance

6 Reality TV Entertainment

7 Professional
wrestling

Entertainment

8 Horror movies Entertainment

9 Easy listening music Entertinment

10 The opera Entertainment

11 Sushi Food

12 Spam Food

13 Spicy food Food

14 Peanut butter &
banana sandwiches

Food

15 Martinis Food

16 Howard Stern People

17 Bill Gates Peopel

18 Barbara Streisand People

19 Hugh Hefner People

20 Martha Stewart People

21 Yoga Activities

22 Weightlifting Activities

23 Cube puzzles Activities

24 Karaoke Activities

25 Hiking Activities

OK, so we have this wonderfully
designed database of users, categories,
topics, and responses. How is that going
to actually help us make a mismatch?

If you start with a well-designed database, every
other piece of the application puzzle becomes
that much easier to build and assemble.
Getting the database right when initially designing an application is
perhaps the best thing you can do to make the development process
run smoothly. It may seem like a lot of work up front plotting and
scheming about how best to store the data, but it will pay off in
the long run. Think about how much more difficult it would be to
rework the Mismatch database schema with it full of data.

That’s the big picture benefit of a good database design. Looking
at the Mismatch database specifically, we have a user table that is
populated by the users themselves through sign-ups and profile
edits, and we have a new topic table that contains enough categories
and topics to give some decent insight into a person. What we’re
still missing to make mismatches is a way to allow the user to enter
responses, and then store them away in the response table.

The full mismatch_topic table
contains 25 topics broken up
across 5 categories...it’s our
“5 dimensions of opposability!”

How would you turn this list of categories
and topics into a set of questions that
users can provide love/hate responses to?

using the database to build a questionnaire

you are here 4 445

control your data, control your world

Build a Mismatch questionnaire
So how exactly do we get love/hate responses from users for each Mismatch
topic? The answer is a questionnaire form that allows the user to choose “Love”
or “Hate” for each topic in the mismatch_topic table. This form can be
generated directly from the responses in the database, with its results getting
stored back in the database. In fact, the design of the questionnaire form involves
reading and writing responses from and to the mismatch_response table.
Here’s a peek at the questionnaire, along with the steps involved in building it.

Use INSERT to add empty response rows to the database the first time the user
accesses the form.
We’re going to generate the questionnaire form from data in the mismatch_response table, even when the
user has never entered any responses. This means we need to “seed” the mismatch_response table with
empty responses the first time a user accesses the questionnaire. Since the response column for these rows is
empty, neither the “Love” or “Hate” radio buttons are checked when the form is first presented to the user.

1

Use UPDATE to change response rows based on user responses on the form.

When users submit the questionnaire form, we must commit their personal responses to the database. Even

then, only responses with checked radio buttons should be updated. In other words, the database only

needs to know about the responses that have been answered.

2

 Use SELECT to retrieve the response data required to generate the questionnaire form.
In order to generate the questionnaire form, we need all of the responses for the logged-in user. Not only that, but we
need to look up the topic and category name for each response so that they can be displayed in the form—these names
are stored in the mismatch_topic table, not mismatch_response.

3

Generate the HTML questionnaire form from response data.

With the response data in hand, we can generate the HTML questionnaire form as a bunch of input fields,

making sure to check the appropriate “Love” or “Hate” radio buttons based on the user responses.

4

Each topic has a row in
the mismatch_response
table with a love/hate
response for the user.

Categories are
used to group
related topics
within the form.

446 Chapter 8

Get responses into the database
Although it might seem as if we should start out by generating the
questionnaire form, the form’s dependent on response data existing in the
mismatch_response table. So first things first: we need to “seed” the
mismatch_response table with rows of unanswered responses the
first time a user accesses the questionnaire. This will allow us to generate
the questionnaire form from the mismatch_response table without
having to worry about whether the user has actually made any responses.

mismatch_response

response_id response user_id topic_id

...

26 2 1 1

27 2 1 2

28 2 1 3

29 1 1 4

30 1 1 5

...

26 1 1

27 1 2

28 1 3

29 1 4

30 1 5

Although storing responses in the Mismatch database is ultimately a
two-step process, the first step (INSERT) only takes place once for each
user. Once the empty responses are added initially, all future changes to
the questionnaire are handled by the second step via SQL UPDATEs.

Responses in the
database are updated to
match user responses in
the questionnaire form.

INSERT

UPDATE

The responses are left blank the
first time the user visits the form.

So from the perspective of the questionnaire form, there’s always a row
of data in the mismatch_response table for each question in the
form. This means that when the user submits the questionnaire form,
we just update the rows of data for each response in the form.

The topics in the form are
initially unanswered since we
seeded mismatch_response
with empty responses.

Now that the user’s answered
some of the questions, we have
real response data to store in
the mismatch_response table.

putting responses into mismatch_response

you are here 4 447

control your data, control your world

...
 // If this user has never answered the questi

onnaire, insert empty responses into the databa
se

 $query = "SELECT * FROM mismatch_response WHE
RE user_id = '" . $_SESSION['user_id'] . "'";

 $data = mysqli_query($dbc, $query);

 if (($data) == 0) {

 // First grab the list of topic IDs from th

e topic table

 $query = "SELECT FROM mismatc

h_topic ORDER BY category_id, topic_id";

 $data = mysqli_query($dbc, $query);

 $topicIDs = array();

 while ($row = mysqli_fetch_array($data)) {

 array_push($topicIDs, $row['topic_id']);

 }

 // Insert empty response rows into the resp

onse table, one per topic

 foreach ($topicIDs as $topic_id) {

 $query = " mismatch_res

ponse " .

 "(,) VALUES

 ('" . $_SESSION['user_id']. "', '$topic_id')";

 mysqli_query($dbc, $query);

 }
 }

 // If the questionnaire form has been submitt

ed, write the form responses to the database

 if (isset($_POST['submit'])) {

 // Write the questionnaire response rows to
 the response table

 foreach ($_POST as $response_id => $respons
e) {

 $query = " mismatch_respons

e response = '$response' " .

 "WHERE = '$response_id

'";

 mysqli_query($dbc, $query);

 }
 echo '<p>Your responses have been saved.</p

>';

 }

...

PHP & MySQL Magnets
The following code takes care of inserting empty responses into the
mismatch_response table the first time a user visits the questionnaire
form. It also updates the responses when the user makes changes and
submits the form. Unfortunately, some of the code has fallen off and needs
to be replaced. Use the magnets to fix the missing code.

mysqli_num_rowsuser_id INSERT INTO
topic_id

UPDATESET
response_id

topic_id

448 Chapter 8

...
 // If this user has never answered the questi

onnaire, insert empty responses into the databa
se

 $query = "SELECT * FROM mismatch_response WHE
RE user_id = '" . $_SESSION['user_id'] . "'";

 $data = mysqli_query($dbc, $query);

 if (($data) == 0) {

 // First grab the list of topic IDs from th

e topic table

 $query = "SELECT FROM mismatc

h_topic ORDER BY category_id, topic_id";

 $data = mysqli_query($dbc, $query);

 $topicIDs = array();

 while ($row = mysqli_fetch_array($data)) {

 array_push($topicIDs, $row['topic_id']);

 }

 // Insert empty response rows into the resp

onse table, one per topic

 foreach ($topicIDs as $topic_id) {

 $query = " mismatch_res

ponse " .

 "(,) VALUES

 ('" . $_SESSION['user_id']. "', '$topic_id')";

 mysqli_query($dbc, $query);

 }
 }

 // If the questionnaire form has been submitt

ed, write the form responses to the database

 if (isset($_POST['submit'])) {

 // Write the questionnaire response rows to
 the response table

 foreach ($_POST as $response_id => $respons
e) {

 $query = " mismatch_respons

e response = '$response' " .

 "WHERE = '$response_id

'";

 mysqli_query($dbc, $query);

 }
 echo '<p>Your responses have been saved.</p

>';

 }

...

PHP & MySQL Magnets
The following code takes care of inserting empty responses into the
mismatch_response table the first time a user visits the questionnaire
form. It also updates the responses when the user makes changes and
submits the form. Unfortunately, some of the code has fallen off and needs
to be replaced. Use the magnets to fix the missing code.

mysqli_num_rows

user_id

INSERT INTO

topic_id

UPDATE SET

response_id

topic_id

The response row is
“unanswered” at this point
since the user hasn’t
actually chosen “love” or
“hate” on the form yet.

In order to generate an empty array of
responses, we first need to grab all of
the topics in the topic table.

All that changes when
the user submits the form
is the response column
of the response table, so
that’s all we update.

Check to see if the query returned
0 rows of data... no data!

php & mysql magnets solution

you are here 4 449

control your data, control your world

 Use SELECT to retrieve
the response data
required to generate
the questionnaire form.

3

Use INSERT to add empty response rows to the
database the first time the user accesses the form.

1

Use UPDATE to change response rows
based on user responses on the form.2

Generate the HTML questionnaire
form from response data.4

Bam! We just killed two
virtual birds with one stone, and now have the questionnaire script already half built.

DONE

DONE

But two steps are left
before we can start making
love connections with the
Mismatch questionnaire...

Q: What’s the deal with the array_push() function? I don’t
think we’ve used that one before.

A: We haven’t. And that’s because we haven’t needed to build an array
dynamically one element at a time. The array_push() function
tacks a new element onto the end of an array, causing the array to grow
by one. In the Mismatch code on the facing page, we’re using array_
push() to build an array of topic IDs from the mismatch_
topic table. This array is then used to insert blank responses into the
mismatch_response table... one for each topic.

450 Chapter 8

We can drive a form with data
It’s nothing new that web forms are used to retrieve data from users via
text fields, selection lists, radio buttons, etc., but it may not be all that
obvious that you can generate HTML forms from database data using
PHP. The idea with Mismatch is to dynamically generate an HTML
questionnaire form from response data. The Mismatch questionnaire
script makes the assumption that response data already exists, which
allows it to generate the form from data in the mismatch_response
table. We know this assumption is a safe one because we just wrote the
code to add empty responses the first time a user visits the form.

mismatch_response

response_id
response

user_id

topic_id
<form method="post" action="">
 <p>How do you feel about each topic?</p> <fieldset>
 <legend>Appearance</legend>
 <label for="76">Tattoos:</label><input type="radio" id="76" name="76" value="1" checked="checked"" />Love
 <input type="radio" id="76" name="76" value="2" " />Hate
 <label for="77">Gold chains:</label><input type="radio" id="77" name="77" value="1" checked="checked"" />Love
 <input type="radio" id="77" name="77" value="2" " />Hate
 <label for="78">Body piercings:</label><input type="radio" id="78" name="78" value="1" checked="checked"" />Love
 <input type="radio" id="78" name="78" value="2" " />Hate
 <label for="79">Cowboy boots:</label><input type="radio" id="79" name="79" value="1" checked="checked"" />Love
 <input type="radio" id="79" name="79" value="2" " />Hate
 <label for="80">Long hair:</label><input type="radio" id="80" name="80" value="1" checked="checked"" />Love
 <input type="radio" id="80" name="80" value="2" " />Hate
 </fieldset>
 <fieldset>
 <legend>Entertainment</legend> ...
</form>

HTML form code is
generated from data in the mismatch_response table.

The form reflects
the user’s
response choices
for each topic.

Data-driven forms
rely on data in a
MySQL database
to generate HTML
form fields.

Form fields are tied to
database rows by setting
the name of each field
to the primary key of
the database.

The response_id primary key is
used to uniquely identify HTML
form fields and associate each
field with a database row.

The checked attribute controls
the selection of radio buttons.

using data-driven forms

you are here 4 451

control your data, control your world

The Mismatch response questionnaire is generated from user responses that are stored in the
mismatch_response table. In order to generate the code for the HTML form, it’s necessary
to read these responses, making sure to look up the name of the topic and category for each
response from the mismatch_topic table. The following code builds an array of responses
with topics and categories by performing two queries: the first query grabs the responses for a
user, while the second query looks up the topic and category name for each response. Problem
is, some of the code is missing... fill in the blanks to get it working!

mismatch_topic

topic_id
name

category

mismatch_response

response_id
response

user_id

topic_id

// Grab the response data from the database to generate the form
$query = "SELECT response_id, topic_id, response FROM mismatch_response " .
 "WHERE user_id = '" . $_SESSION['user_id'] . "'";
$data = mysqli_query($dbc, $query);
$responses = array();
while ($row = mysqli_fetch_array($data)) {
 // Look up the topic name for the response from the topic table
 $query2 = " " .
 "WHERE topic_id = '" . $row['topic_id'] . "'";
 $data2 = mysqli_query($dbc,);
 if (mysqli_num_rows() == 1) {
 $row2 = mysqli_fetch_array($data2);
 $row['topic_name'] =
 $row['category_name'] =
 array_push($responses, $row);
 }
}

76 1 Love Tattoos Appearance

77 2 Love Gold chains Appearance

78 3 Love Body piercings Appearance

79 4 Love Cowboy boots Appearance

80 5 Love Long hair Appearance

81 6 Hate Reality TV Entertainment

82 7 Love Professional wrestling Entertainment

83 8 Love Horror movies Entertainment

...

Array of responses
complete with topics
and categories.

This PHP
function tells
you how many
rows of data
were returned as
query results.

452 Chapter 8

The Mismatch response questionnaire is generated from user responses that are stored in the
mismatch_response table. In order to generate the code for the HTML form, it’s necessary
to read these responses, making sure to look up the name of the topic and category for each
response from the mismatch_topic table. The following code builds an array of responses
with topics and categories by performing two queries: the first query grabs the responses for a
user, while the second query looks up the topic and category name for each response. Problem
is, some of the code is missing... fill in the blanks to get it working!

mismatch_topic

topic_id
name

category

mismatch_response

response_id
response

user_id

topic_id

// Grab the response data from the database to generate the form
$query = "SELECT response_id, topic_id, response FROM mismatch_response " .
 "WHERE user_id = '" . $_SESSION['user_id'] . "'";
$data = mysqli_query($dbc, $query);
$responses = array();
while ($row = mysqli_fetch_array($data)) {
 // Look up the topic name for the response from the topic table
 $query2 = " " .
 "WHERE topic_id = '" . $row['topic_id'] . "'";
 $data2 = mysqli_query($dbc,);
 if (mysqli_num_rows() == 1) {
 $row2 = mysqli_fetch_array($data2);
 $row['topic_name'] =
 $row['category_name'] =
 array_push($responses, $row);
 }
}

76 1 Love Tattoos Appearance

77 2 Love Gold chains Appearance

78 3 Love Body piercings Appearance

79 4 Love Cowboy boots Appearance

80 5 Love Long hair Appearance

81 6 Hate Reality TV Entertainment

82 7 Love Professional wrestling Entertainment

83 8 Love Horror movies Entertainment

...

Array of responses
complete with topics
and categories.

 Use SELECT to retrieve
the response data
required to generate
the questionnaire form.

3
DONE

SELECT name, category FROM mismatch_topic

$row2[‘name’];
$row2[‘category’];

$query2
$data2

The topic ID is used to
look up the topic and
category names from the
mismatch_topic table.

Make sure
there actually
is response data.

The array_push() function
adds (pushes) an item onto
the end of an array.

The topic name and category
name are added to the
response array by assigning
data from the second query.

It’s very important
to use new variables
to perform a second
(inner) query so
that the original
query isn’t affected.

The $responses
array serves as
a temporary
“table” of response
data to be used
to generate the
questionnaire form.

exercise solution

you are here 4 453

control your data, control your world

No and Yes, which is why it is important to use the
most efficient data type possible to store data in a
MySQL database.
When you think about it, a Mismatch response is more like a true/false
answer because it’s always either one value (love) or another one (hate).
Actually, a third value (unknown) can be useful in letting the application
know when the user has yet to respond to a particular topic. So we really
need to keep track of three possible values for any given response. This
kind of storage problem is ideal for a number, such as a TINYINT. Then
you just use different numeric values to represent each possible response.

Is the user response actually stored as
text in the database, as in “Love” and

“Hate”? If so, isn’t that inefficient?

Unknown = 0 Love = 1 Hate = 2
Minimizing the storage requirements of data is an important part of
database design, and in this case a subtle but important part of the
Mismatch application. These numeric responses play a direct role in the
generation of form fields for the Mismatch questionnaire.

The following code loops through the Mismatch response array
that you just created, generating an HTML form field for each

“Love” radio button. Fill in the missing code so that the form field
is initially checked if the response is set to love (1). Also, make
sure the value of the <input> tag is set accordingly.

foreach ($responses as $response) {
 ...
 if () {
 echo '<input type="radio" name="' . $response['response_id'] .
 '" value= checked= />Love ';
 }
 else {
 echo '<input type="radio" name="' . $response['response_id'] .
 '" value= />Love ';
 }
}

?

Don’t worry about the “Hate”
radio buttons for now - they’re
generated exactly the same way.

454 Chapter 8

The following code loops through the Mismatch response array
that you just created, generating an HTML form field for each

“Love” radio button. Fill in the missing code so that the form field
is initially checked if the response is set to love (1). Also, make
sure the value of the <input> tag is set accordingly.

foreach ($responses as $response) {
 ...
 if () {
 echo '<input type="radio" name="' . $response['response_id'] .
 '" value= checked= />Love ';
 }
 else {
 echo '<input type="radio" name="' . $response['response_id'] .
 '" value= />Love ';
 }
}

$response[‘response’] == 1
“1” “checked”

“1”

The “Love” radio button is checked
based on the value of the response
(1 represents love in the database).

The value of the <input> tag is set to “1” so that it will be easier to store the response in the database when the form is submitted.

If this response is set to love (1), check the radio button by setting its checked attribute to “checked”.

Leaving off checked=”checked”
results in the radio button
being unchecked if the response
isn’t set to love (1).

foreach ($responses as $response) {

 ...
 if ($response['response'] == 2) {

 echo '<input type="radio" name="' . $response['response
_id'] .

 '" value="2" checked="checked" />Hate ';

 }
 else {
 echo '<input type="radio" name="' . $response['response

_id'] .

 '" value="2" />Hate ';

 }
}

In case you’re curious, the code to generate the “Hate” radio buttons works exactly the same way - it just looks for a slightly different response... but there’s actually a cleaner way to generate both the “Love” and “Hate” radio buttons with less code...

sharpen your pencil solution

you are here 4 455

control your data, control your world

echo '<input type="radio" name="' . $response['response_id'] . '" value="1" ' .

 ($response['response'] == 1 ? 'checked="checked"' : '') . ' />Love ';

Speaking of efficiency...
Database efficiency isn’t the only kind of efficiency worth considering.
There’s also coding efficiency, which comes in many forms. One form
is taking advantage of the PHP language to simplify if-else statements.
The ternary operator is a handy way to code simple if-else
statements so that they are more compact.

The ternary
operator can be
used to code if-else
statements in a
more compact form.

The ternary operator is really just a shorthand way to write an if-else
statement. It can be helpful for simplifying if-else statements, especially
when you’re making a variable assignment or generating HTML code in
response to the if condition. Here’s the same “Love” radio button code
rewritten to use the ternary operator:

TestExpression ? Statement1 : Statement2

If TestExpression is true, Statement1 is executed.

If TextExpression is false,
Statement2 is executed.false

true

The checked attribute of the <input> tag is now generated using the ternary operator instead of an if-else statement.

? :

<input type="radio" name="279" value="1" checked="checked" />Love

If the response value stored in $response['response'] is equal to
1, then the checked attribute will get generated as part of the <input>
tag, resulting in the following checked “Love” radio button:

This true/false test controls the
outcome of the ternary operator.

On the other hand, a response value of anything other than 1 will prevent
the checked attribute from being generated, resulting in an <input>
tag for the “Love” radio button that is unchecked.

This part of the <input>
tag’s code is controlled
by the ternary operator.

456 Chapter 8

<?php
 // Start the session
 require_once('startsession.php');

 // Insert the page header
 $page_title = 'Questionnaire';
 require_once('header.php');

 require_once('appvars.php');
 require_once('connectvars.php');

 // Make sure the user is logged in before going any further.
 if (!isset($_SESSION['user_id'])) {
 echo '<p class="login">Please log in to access this page.</p>';
 exit();
 }

 // Show the navigation menu
 require_once('navmenu.php');

 // Connect to the database
 $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME);

 // If this user has never answered the questionnaire, insert empty responses into the database
 $query = "SELECT * FROM mismatch_response WHERE user_id = '" . $_SESSION['user_id'] . "'";
 $data = mysqli_query($dbc, $query);
 if (mysqli_num_rows($data) == 0) {
 // First grab the list of topic IDs from the topic table
 $query = "SELECT topic_id FROM mismatch_topic ORDER BY category_id, topic_id";
 $data = mysqli_query($dbc, $query);
 $topicIDs = array();
 while ($row = mysqli_fetch_array($data)) {
 array_push($topicIDs, $row['topic_id']);
 }

 // Insert empty response rows into the response table, one per topic
 foreach ($topicIDs as $topic_id) {
 $query = "INSERT INTO mismatch_response (user_id, topic_id) VALUES ('" . $_SESSION['user_id'] .
 "', '$topic_id')";
 mysqli_query($dbc, $query);
 }
 }

 // If the questionnaire form has been submitted, write the form responses to the database
 if (isset($_POST['submit'])) {
 // Write the questionnaire response rows to the response table
 foreach ($_POST as $response_id => $response) {
 $query = "UPDATE mismatch_response SET response = '$response' " .

Generate the Mismatch questionnaire form
We now have enough pieces of the Mismatch questionnaire form puzzle to use the
response array ($responses) we created earlier to generate the entire HTML
form. If you recall, this array was built by pulling out the current user’s responses
from the mismatch_response table. Let’s go ahead and see the questionnaire
generation code in the context of the full questionnaire.php script.

questionnaire.php

1

2

Include the template files that start the session and display the page header.

Restrict the page to
users who are logged in.

the full questionnaire.php script

you are here 4 457

control your data, control your world

 "WHERE response_id = '$response_id'";
 mysqli_query($dbc, $query);
 }
 echo '<p>Your responses have been saved.</p>';
 }

 // Grab the response data from the database to generate the form
 $query = "SELECT response_id, topic_id, response FROM mismatch_response WHERE user_id = '" .
 $_SESSION['user_id'] . "'";
 $data = mysqli_query($dbc, $query);
 $responses = array();
 while ($row = mysqli_fetch_array($data)) {
 // Look up the topic name for the response from the topic table
 $query2 = "SELECT name, category FROM mismatch_topic WHERE topic_id = '" . $row['topic_id'] .
 "'";
 $data2 = mysqli_query($dbc, $query2);
 if (mysqli_num_rows($data2) == 1) {
 $row2 = mysqli_fetch_array($data2);
 $row['topic_name'] = $row2['name'];
 $row['category_name'] = $row2['category'];
 array_push($responses, $row);
 }
 }

 mysqli_close($dbc);

 // Generate the questionnaire form by looping through the response array
 echo '<form method="post" action="' . $_SERVER['PHP_SELF'] . '">';
 echo '<p>How do you feel about each topic?</p>';
 $category = $responses[0]['category_name'];
 echo '<fieldset><legend>' . $responses[0]['category_name'] . '</legend>';
 foreach ($responses as $response) {
 // Only start a new fieldset if the category has changed
 if ($category != $response['category_name']) {
 $category = $response['category_name'];
 echo '</fieldset><fieldset><legend>' . $response['category_name'] . '</legend>';
 }

 // Display the topic form field
 echo '<label ' . ($response['response'] == NULL ? 'class="error"' : '') . ' for="' .
 $response['response_id'] . '">' . $response['topic_name'] . ':</label>';
 echo '<input type="radio" id="' . $response['response_id'] . '" name="' .
 $response['response_id'] . '" value="1" ' .
 ($response['response'] == 1 ? 'checked="checked"' : '') . ' />Love ';
 echo '<input type="radio" id="' . $response['response_id'] . '" name="' .
 $response['response_id'] . '" value="2" ' .
 ($response['response'] == 2 ? 'checked="checked"' : '') . ' />Hate
';
 }
 echo '</fieldset>';
 echo '<input type="submit" value="Save Questionnaire" name="submit" />';
 echo '</form>';

 // Insert the page footer
 require_once('footer.php');
?>

Each category is
created as a fieldset
to help organize
topics together.

Here the ternary
operator is used to
change the style
of the label for
unanswered topics.

Remember,
1 = love,
2 = hate.

Each topic is
created as a
label followed by
“Love” and “Hate”
radio buttons.

Grab the category of the
first response to get started
before entering the loop.

Each of these echo statements
generates a radio button - one
for “Love” and one for “Hate”.

Generate the HTML questionnaire
form from response data.4

DONE

3

4

458 Chapter 8

The complete source code for the Mismatch application is
available for download from the Head First Labs web site:

www.headfirstlabs.com/books/hfphp

Download It!

Test Drive
Try out the new Mismatch questionnaire.
Modify Mismatch to use the new Questionnaire script (or download the application from
the Head First Labs site at www.headfirstlabs.com/books/hfphp). This requires
creating a new questionnaire.php script, as well as adding a “Questionnaire” menu
item to the navmenu.php script so that users can access the questionnaire.

Upload the scripts to your web server, and then open the main Mismatch page (index.php)
in a web browser. Make sure you log in, and then click the “Questionnaire” menu item to
access the questionnaire. Notice that none of the topics have answers since this is your first
visit to the questionnaire. Answer the responses and submit the form. Return to the main
page, and then go back to the questionnaire once more to make sure your responses are
properly loaded from the database.

The Questionnaire
script allows users
to answer love/hate
questions and store the results in the database.

The topic questions in
the form are dynamically
generated from the
database - if you add new
topics, the form changes.

test out questionnaire.php

you are here 4 459

control your data, control your world

Q: How does the “Love” radio button code know that the
ternary operator result is a string?

A: The ternary operator always evaluates to one of the two
statements on each side of the colon based on the value (true or
false) of the test expression. If these statements are strings, then
the result of the ternary operator will be a string. That’s what makes
the operator so handy—you can insert it right into the middle of an
assignment or concatenation.

Q: Does the ternary operator make my script run faster?

A: No, probably not. The ternary operator is more about adding
stylistic efficiency to your code than performance efficiency, meaning
that it literally requires less script code. Sometimes it’s more concise
to use the ternary operator rather than a full-blown if-else
statement, even though the two are logically equivalent. Even so,
don’t get too carried away with the ternary operator because it can
make some code more difficult to understand if you’re attempting
to recast a complex if-else statement. The idea is to use the
ternary operator in places where eliminating an if-else can
actually help simplify the code, as opposed to making it more
complicated. This usually involves using the ternary operator to
selectively control a value being assigned to a variable or inserted
into an expression. In the case of the Mismatch radio buttons, the
latter approach was used to selectively control the insertion of an
HTML attribute (checked).

Q: How is it possible to generate the Mismatch questionnaire
form from the mismatch_response table when the user
has yet to respond to anything?

A: Excellent question. The questionnaire form has to deal with
two possible scenarios: the user is answering the questionnaire
for the first time or the user has already answered it and is revising
answers. In the first scenario, no responses have been made, so
the mismatch_response table has no data for this user yet.
But we still need to dynamically generate the form. We could use
the mismatch_topic table for this one-time form generation.
This won’t work for the second scenario, however, because this time
the form must be generated based on the user’s specific love/hate
responses; remember, the radio buttons for “Love” and “Hate” are
generated as part of the form. So we have a problem in that the code
to generate the form is completely different depending on whether
the users have answered the questionnaire. Not only that, but what if
they only answered a few questions? This gets messy in a hurry.
The solution taken by Mismatch is to pre-populate the
mismatch_response table with unanswered responses
the first time the user accesses the questionnaire. This
allows us to always generate the questionnaire form from the
mismatch_response table, and not worry about the
complication of generating the form differently based on whether
the users have responded before, or which specific topics they’ve
responded to. Sure, the form generation code still isn’t exactly trivial,
but it’s simpler than if we had not taken this approach.

Try this!

Add a new topic to your own mismatch_topic table with this SQL statement:11

INSERT INTO mismatch_topic
 (name, category) VALUES
 ('Virtual guitars', 'Activities')

View the questionnaire in the Mismatch application to see the new topic.33

Respond to the new topic, submit the form, and check out your saved response.44

Empty all the data from the mismatch_response table with this SQL statement:22

DELETE FROM mismatch_response

To simplify the code, Mismatch doesn’t adjust to new topics automatically, at least not when it comes to users who’ve already answered the questionnaire. So you’ll have to empty the mismatch_response table after adding a new topic.

460 Chapter 8

The data is now driving the form
It took some doing, but the Mismatch application dynamically generates
the questionnaire from responses stored in the database. This means
that any changes made to the database will automatically be reflected in
the form—that’s the whole idea of driving the user interface of a web
application from a database. But what happens when we have bad data?

This category
is misspelled,
resulting in its
own fieldset in
the form, which
is very confusing.

The form is generated so that
a category change results in
a new fieldset, which is why
yet another extra fieldset is
created here.

These three fieldsets should
just be one, so that all the
Entertainment topics are
grouped together.

mismatch_topic

topic_id

name

category

mismatch_response

response_id

response

user_id

topic_id

That form
is, like, really
confusing!

The data is driving the form’s fine, but something’s amiss. It appears
that one of the categories has been misspelled in the database, causing
the PHP code to generate a separate fieldset for it. This is a big problem
because it ruins the effect of using fieldsets to help organize the form and
make it easier to respond to topics.

dealing with bad database data

you are here 4 461

control your data, control your world

Frank: That’s easy. Just change the name of the category in the mismatch_topic table to the correct spelling.

Joe: But there’s more than one category misspelled. And now that I think about it, I’m not really understanding why
the category names have to be stored more than once.

Jill: I agree. We went to the trouble of eliminating duplicate data in designing the database schema, yet here we are
with a bunch of duplicate category names. Not only that, but we have a couple that aren’t even correct.

Frank: OK, what about just getting rid of category names and maybe referring to categories by number? Then you
wouldn’t run the risk of typos.

Joe: True, but we still need the category names as headings in the questionnaire form.

Jill: Maybe we can refer to categories by number without throwing out the names. That’s sort of what we’re doing
with topics already with the mismatch_topic table, right?

Joe: That’s right! We didn’t want to store a bunch of duplicate topic names in the mismatch_response table, so
we put the topic names into the mismatch_topic table, and tied topics to responses with numeric keys.

Frank: Are you saying we could solve the duplicate category name problem by creating a new category table?

Jill: That’s exactly what he’s saying. We can create a new mismatch_category table where each category
name is stored exactly one time. And then connect categories with topics using primary and foreign keys between
mismatch_topic and mismatch_category. Brilliant!

Frank Jill Joe

mismatch_topic

topic_id name category

...

8 Horror movies Entertainment

9 Easy listening music Entertinment

10 The opera Entertainment

11 Sushi Food

12 Spam Food

13 Spicy food Food

14 Peanut butter &
banana sandwiches

Food

15 Martinis Food

16 Howard Stern People

17 Bill Gates Peopel

18 Barbara Streisand People

...

We already know this misspelled
category is causing problems...

...and here’s another one causing
the same fieldset problem on
the questionnaire form.

OK, so one of the categories in the database
is misspelled, which is screwing up our form.
How do you guys think we should fix it?

462 Chapter 8

Strive for a bit of normalcy
The process of redesigning the Mismatch database to eliminate
duplicate data and break apart and connect tables in a logical and
consistent manner is known as normalization. Normalization
is a fairly deep database design topic that can be intimidating. But
it doesn’t have to be. There are enough simple database design
techniques we can graft from the basics of normalization to make
our MySQL databases much better than if we had just guessed at
how data should be laid out.

Here are some very broad steps you can take to begin the database
design process that will naturally lead to a more “normal” database:

1. Pick your thing, the one thing you want a
table to describe.

2. Make a list of the information you need to
know about your one thing when you’re
using the table.

3. Using the list, break down the information
about your thing into pieces you can use
for organizing the table.

Normalization means
designing a database to
reduce duplicate data and
improve the relationships
between data.

One fundamental concept in normalization is the idea of atomic
data, which is data broken down into the smallest form that makes
sense given the usage of a database. For example, the first_name
and last_name columns in the Mismatch database are atomic in
a sense that they break the user’s name down further than a single
name column would have. This is necessary in Mismatch because
we want to be able to refer to a user by first name alone.

It might not always be necessary for an application to break a full
name down into separate first and last columns, however, in which
case name by itself might be atomic enough. So as you’re breaking
down the “one thing” of a table into pieces, think about how the
data is going to be used, not just what it represents.

Atomic data is
data that has been
broken down into the
smallest form needed
for a given database.

What’s the main thing
you want your table to
be about?

How will you use this table?

How can you most easily
query this table?

normalizing your data

you are here 4 463

control your data, control your world

Does your table describe alien sightings, email list subscriptions, video game high scores, hopeless romantics?

Design your table to
be easy to query!

1. What is the one thing your
table describes?

2. How will you use the table to
get at the one thing?

3. Do your columns contain
atomic data to make
your queries short and to the point?

Q: Should I try to break my data down into the tiniest pieces
possible?

A: Not necessarily. Making your data atomic means breaking it
down into the smallest pieces that you need to create an efficient
table, not just the smallest possible pieces you can.
Don’t break down your data any more than you have to. if you don’t
need extra columns, don’t add them just for the sake of it.

Q:How does atomic data help me?

A: It helps you ensure that the data in your table is accurate.
For example, if you have a column for the street address of an
alien sighting, you might want to break the street address into two
columns: the number and the street. Then you can make sure that
only numbers end up in the number column.
Atomic data also lets you perform queries more efficiently because
the queries are easier to write, and take a shorter amount of time to
run, which adds up when you have a massive amount of data stored.

When normalizing, think in atoms
To help turn your database design brainstorms into actions, it’s helpful to
ask targeted questions of your data. This will help determine how the data
fits into a table, and if it has truly been broken down into its appropriate
atomic representation. No one ever said splitting the atom was easy, but
this list of questions can help.

Make sure data is only as small as it needs to be.

Making your data
atomic is the first
step in creating a
normal table.

464 Chapter 8

Why be normal, really?
If all this talk about nuclear data and normalcy seems a bit overkill
for your modest database, consider what might happen if your web
application explodes and becomes the next “big thing.” What if your
database grows in size by leaps and bounds in a very short period of time,
stressing any weaknesses that might be present in the design? You’d rather
be out shopping for your new dot-com trophy car than trying to come
up with a retroactive Band-aid fix for your data, which is increasingly
spiraling out of control. You yearn for some normalcy.

If you still aren’t convinced, or if you’re stuck daydreaming of that
canary yellow McLaren, here are two proven reasons to normalize your
databases:

1. Normal tables won’t have duplicate data,
which will reduce the size of your database.

2. With less data to search through, your
queries will be faster.

...small, efficient database good!

Huge bloated database bad...

Slow queries mired in duplicate data bad...

...speedy queries good!

Normalized databases
tend to be much
smaller than databases
with inferior designs.

It’s like they say,
“size is money!”

Uh, wait a minute, maybe
it’s “time is money!”

When it comes to
databases, speed is
always a good thing.

Normalization has
its benefits, namely
improvements in
database size and
speed.

virtues of normalization

you are here 4 465

control your data, control your world

Three steps to a normal database
You’ve pondered your data for a while and now have a keen appreciation
for why it should be normalized, but general ideas only get you so far.
What you really need is a concise list of rules that can be applied to any
database to ensure normalcy... kinda like a checklist you can work through
and use to make sure a database is sufficiently normal. Here goes:

Make sure your columns are atomic.
For a column to truly be atomic, there can’t be
several values of the same type of data in that
column. Similarly, there can’t be multiple columns
with the same type of data.

1

Give each table its own primary key.
A primary key is critical for assuring that data in a
table can be accessed uniquely. A primary key should
be a single column, and ideally be a numeric data
type so that queries are as efficient as possible.

2

Make sure non-key columns aren’t
dependent on each other.
This is the most challenging requirement of
normal databases, and one that isn’t always worth
adhering to strictly. It requires you to look a bit
closer at how columns of data within a given table
relate to each other. The idea is that changing the
value of one column shouldn’t necessitate a change
in another column.

3

love hate

cowboy boots, long hair,
reality TV, easy listening

music, the opera

tattoos, gold chains,
body piercings,

professional wrestling,
horror movies

...

tattoos, gold chains, body
piercings, cowboy boots,
long hair, professional

wrestling, horror movies

reality TV, easy listening
music, the opera

...

Several values of the same type of data are in the same column, and
there are also multiple columns
with the same data... big problem!

Without a primary key,
there’s no way to ensure
uniqueness between the
rows in this table.

Normalizing a
database involves
strictly adhering
to a series of
design steps.

1

2

3

username password ...

dierdre 08447b... ...

baldpaul 230dcb... ...

jnettles e511d7... ...

rubyr 062e4a... ...

theking b4f283... ...

username password ... city state zip picture

dierdre 08447b... ... Cambridge MA 02138 dierdrepic.jpg

baldpaul 230dcb... ... Charleston SC 29401 paulpic.jpg

jnettles e511d7... ... Athens GA 30601 johanpic.jpg

rubyr 062e4a... ... Conundrum AZ 85399 rubypic.jpg

theking b4f283... ... Tupelo MS 38801 elmerpic.jpg

The hypothetical ZIP code column is dependent on the city and state columns, meaning that changing one requires changing the others. To resolve the problem, we’ll need to break out the user’s location into its own table with the ZIP code as the primary key.

466 Chapter 8

The Mismatch database is in need of a normalization overhaul to solve the problem of duplicate
category names. Given the existing database structure, sketch a modified design that solves the
duplicate category problem, eliminating the risk of data entry errors. Make sure to annotate the
design to explain how it works.

mismatch_topic
topic_id

name
category

mismatch_response

response_id

response

user_id

topic_id

mismatch_user

user_id
username
password
join_date
first_name
last_name

gender
birthdate

city
state

picture

normalize the mismatch database

you are here 4 467

control your data, control your world

Q: How do I go about applying the third normalization step to Mismatch to fix the
hypothetical city/state/ZIP problem?

A: The solution is to break out the location of a user into its own table, and then
connect the mismatch_user table to the new table via a foreign key. So you
might create a table called mismatch_location that has a primary key named
location_id, along with columns to store the city and state for a user, for example.
Then the city and state columns are removed from mismatch_user and
replaced with a location_id foreign key. Problem solved! What makes this design
work is that the location_id column actually uses the ZIP code as the primary key,
alleviating the non-key dependency problem.

Q: Geez, that seems like a lot of work just to meet a picky database design
requirement. Is that really necessary?

A: Yes and no. The first two normalization steps really are non-negotiable because
atomic data and primary keys are critical to any good database design. It’s the third step
where you enter the realm of weighing the allure of an impeccable database design
against the practical realities of what an application really needs. In the case of the
Mismatch city/state/ZIP problem, it’s probably worth accepting for the sake of simplicity.
This isn’t a decision that should be taken lightly, and many database purists would argue
that you should rigidly adhere to all three normalization steps. The good news is that the
ZIP code column is purely hypothetical, and not actually part of the mismatch_user
table, so we don’t really have to worry about it.

Q: Even without the ZIP code column, wouldn’t city and state need to be moved
into their own tables to meet the third normalization step?

A: Possibly. It’s certainly true that you will end up with duplicate city/state data in the
mismatch_user table. The problem with breaking out the city and state without a
ZIP code is that you would have to somehow populate those tables with every city and
state in existence. Otherwise users would no doubt misspell some cities and you’d still end
up with problematic data. This is a good example of where you have to seriously weigh the
benefits of strict normalization against the realities of a practical application.
An interesting possible solution that solves all of the problems is to use a ZIP code in the
mismatch_user table instead of a city and state, and then look up the city and state
from a static table or some other web service as needed. That’s more complexity than we
need at the moment, so let’s just stick with the city and state columns.

468 Chapter 8

The Mismatch database is in need of a normalization overhaul to solve the problem of duplicate
category names. Given the existing database structure, sketch a modified design that solves the
duplicate category problem, eliminating the risk of data entry errors. Make sure to annotate the
design to explain how it works.

mismatch_topic
topic_id

name
category

mismatch_user

user_id
username
password
join_date
first_name
last_name

gender
birthdate

city
state

picture category_id

The new category table stores
category names separate from
topics, eliminating redundant data.

Each category row in the
new category table has a
one-to-many relationship with
topics in the topic table.

Instead of storing the actual
category name in each topic row,
we now just store a reference (ID)
to a row in the category table.

The rest of the
Mismatch database
remains unaffected
by the category/
topic changes.

Q: How exactly does the new mismatch_category
table solve the duplicate data problem?

A: The new table separates category names from the
mismatch_topic table, allowing them to be stored by
themselves. With categories stored in their own table, it’s no
longer necessary to duplicate their names—you just have a row for
each category, and these rows are then referenced by rows in the
mismatch_topic table. This means that category rows in the
mismatch_category table have a one-to-many relationship
with topic rows in the mismatch_topic table.

Q: So does that mean the mismatch_category table
only has five rows, one for each category?

A: Indeed it does: mismatch_category

category_id name

1 Appearance

2 Entertainment

3 Food

4 People

5 Activities

Each category
name is only
stored once!

mismatch_response

response_id

response

user_id

topic_id

mismatch_category

category_id

name

Remember, the mismatch_response
table is a junction table that
connects users with their
responses to topics.

the mismatch database—now normalized!

you are here 4 469

control your data, control your world

Altering the Mismatch database
In order to take advantage of the new schema, the Mismatch database
requires some structural changes. More specifically, we need to create a
new mismatch_category table, and then connect it to a new foreign
key in the mismatch_topic table. And since the old category
column in the mismatch_topic table with all the duplicate category
data is no longer needed, we can drop it.

CREATE TABLE mismatch_category (

 category_id INT NOT NULL AUTO_INCREMENT,

 name VARCHAR(48) NOT NULL,

 PRIMARY KEY (category_id)

)

ALTER TABLE mismatch_topic

DROP COLUMN category

ALTER TABLE mismatch_topic

ADD COLUMN category_id INT NOT NULL

mismatch_category

category_id
name

mismatch_topic
topic_id

name
category

category_id

mismatch_topic

topic_id name category_id

...

8 Horror movies 2

9 Easy listening music 2

10 The opera 2

11 Sushi 3

12 Spam 3

13 Spicy food 3

14 Peanut butter &
banana sandwiches

3

15 Martinis 3

16 Howard Stern 4

17 Bill Gates 4

18 Barbara Streisand 4

...

The new mismatch_category table must be populated with
category data, which is accomplished with a handful of INSERT
statements.

INSERT INTO mismatch_category (name) VALUES ('Appearance')

INSERT INTO mismatch_category (name) VALUES ('Entertainment')

INSERT INTO mismatch_category (name) VALUES ('Food')

INSERT INTO mismatch_category (name) VALUES ('People')

INSERT INTO mismatch_category (name) VALUES ('Activities')

The new category_id column must then be populated with
data to correctly wire the category of each topic to its appropriate
category in the mismatch_category table.

UPDATE mismatch_topic SET category_id = 3

 WHERE name = 'Martinis'

Create the new category table that will hold category names by themselves.

Drop the old category
column since we’re now going
to reference categories
from the category table.

Add a new category_id
foreign key to connect
each topic to a category
in the category table.

This ID should match the auto-
incremented ID for the category
from the mismatch_category table.

470 Chapter 8

mismatch_topic
topic_id

name

category_id

mismatch_user

user_id
username
password
join_date
first_name
last_name

gender
birthdate

city
state

picture

mismatch_response

response_id

response

user_id

topic_id

mismatch_category

category_id
name

So is Mismatch really normal?
Yes, it is. If you apply the three main rules of normalcy to each of the
Mismatch tables, you’ll find that it passes with flying colors. But even
if it didn’t, all would not be lost. Just like people, there are degrees of
normalcy when it comes to databases. The important thing is to attempt
to design databases that are completely normal, only accepting something
less when there is a very good reason for skirting the rules.

1

2

3

22

2

1

1

1

Throughout the database, names are stored in their most atomic form, and are never repeated
across multiple columns.

Without the hypothetical ZIP code dependency, the
user location columns no longer have dependency problems.

All of the tables have a numeric primary key to ensure uniqueness.

Make sure your columns are atomic.1

Give each table its own primary key.2

Make sure non-key columns aren’t
dependent on each other.

3

Test Drive
Create and populate the new mismatch_category database table.
Using a MySQL tool, execute the CREATE TABLE SQL command on the previous page
to add a new table named mismatch_category to the Mismatch database. Then issue
the INSERT statements to populate the table with category data. Now run the two ALTER
statements to modify the mismatch_topic table so that it has a category_id column.
Finally, UPDATE each row in the mismatch_topic table so that its category_id
column points to the correct category in the mismatch_category table.

Now run a SELECT on each of the tables just to make sure everything checks out.

test drive the normalized mismatch tables

you are here 4 471

control your data, control your world

mismatch_category
category_id

name
...
// Grab the response data from the database to

generate the form

$query = "SELECT response_id, topic_id, respons
e FROM mismatch_response " .

 "WHERE user_id = '" . $_SESSION['user_id'] .
"'";

$data = mysqli_query($dbc, $query);

$responses = array();

while ($row = mysqli_fetch_array($data)) {

 // Look up the topic name for the response fr
om the topic table

 $query2 = "SELECT name, category FROM mismatc
h_topic " .

 "WHERE topic_id = '" . $row['topic_id'] . "
'";

 $data2 = mysqli_query($dbc, $query2);

 if (mysqli_num_rows($data2) == 1) {

 $row2 = mysqli_fetch_array($data2);

 $row['topic_name'] = $row2['name'];

 $row['category_name'] = $row2['category'];

 array_push($responses, $row);

 }
}
...

Doesn’t the new Mismatch
table design affect the
queries that are being made in
the questionnaire script code?

Yes. In fact, most structural database changes require
us to tweak any queries involving affected tables.
In this case, changing the database design to add the new mismatch_
category table affects any query involving the mismatch_topic
table. This is because the previous database design had categories
stored directly in the mismatch_topic table. With categories broken
out into their own table, which we now know is a great idea thanks to
normalization, it becomes necessary to revisit the queries and code them
to work with an additional table (mismatch_category).

questionnaire.php

472 Chapter 8

A query within a query within a query...
One problem brought on by normalizing a database is that queries often
require subqueries since you’re having to reach for data in multiple tables.
This can get messy. Consider the new version of the query that builds the
response array to generate the Mismatch questionnaire form:

// Grab the response data from the database to generate the form
$query = "SELECT response_id, topic_id, response FROM mismatch_response " .
 "WHERE user_id = '" . $_SESSION['user_id'] . "'";
$data = mysqli_query($dbc, $query);
$responses = array();
while ($row = mysqli_fetch_array($data)) {
 // Look up the topic name for the response from the topic table
 $query2 = "SELECT name, category_id FROM mismatch_topic " .
 "WHERE topic_id = '" . $row['topic_id'] . "'";
 $data2 = mysqli_query($dbc, $query2);
 if (mysqli_num_rows($data2) == 1) {
 $row2 = mysqli_fetch_array($data2);
 $row['topic_name'] = $row2['name'];

 // Look up the category name for the topic from the category table
 $query3 = "SELECT name FROM mismatch_category " .
 "WHERE category_id = '" . $row2['category_id'] . "'";
 $data3 = mysqli_query($dbc, $query3);
 if (mysqli_num_rows($data3) == 1) {
 $row3 = mysqli_fetch_array($data3);
 $row['category_name'] = $row3['name'];
 array_push($responses, $row);
 }
 }
}

26 1 Love Tattoos Appearance

27 2 Love Gold chains Appearance

28 3 Love Body piercings Appearance

29 4 Love Cowboy boots Appearance

30 5 Love Long hair Appearance

31 6 Hate Reality TV Entertainment

32 7 Love Professional wrestling Entertainment

33 8 Love Horror movies Entertainment

...

mismatch_topic

topic_id
name

category_id

mismatch_response

response_id
response

user_id

topic_id

mismatch_category

category_id
name

We’re pulling
data from three
different tables,
which requires
three queries.

This new query uses the
category_id key to grab
the category name from
the category table.

More tables usually
lead to messier queries.

This is the temporary
response array, which
is used to generate
the Mismatch
questionnaire form.

This duplicate data isn’t a problem because it is extracted from a single source, the category table, and it isn’t being stored in duplicate.

Remember, this function tells
you how many rows of data
were returned by the query.

there must be a better way to perform queries!

you are here 4 473

control your data, control your world

Let’s all join hands
Yikes! Can anything be done about all those nested queries? The solution
lies in an SQL feature known as a join, which lets us retrieve results from
more than one table in a single query. There are lots of different kinds
of joins, but the most popular join, an inner join, selects rows from two
tables based on a condition. In an inner join, query results only include
rows where this condition is matched.

tables

A join grabs results
from multiple tables
in a single query.

SELECT mismatch_topic.topic_id, mismatch_category.name

 FROM mismatch_topic

 INNER JOIN mismatch_category

 ON (mismatch_topic.category_id = mismatch_category.category_id)

mismatch_category
category_id name

1 Appearance
2 Entertainment
3 Food
4 People
5 Activities

mismatch_topic

topic_id name category_id

1 Tattoos 1

2 Gold chains 1

3 Body piercings 1

4 Cowboy boots 1

5 Long hair 1

6 Reality TV 2

7 Professional wrestling 2

8 Horror movies 2

9 Easy listening music 2

10 The opera 2

11 Sushi 3

...

1 Appearance

2 Appearance

3 Appearance

4 Appearance

5 Appearance

6 Entertainment

7 Entertainment

8 Entertainment

...

The topic ID and category name are selected by the query - these columns are in two different tables.

The category table is
joined to the topic table
via an INNER JOIN.

The condition for the join is that
the category ID must match for
each row of data returned.

This column
controls
the join!

The first column of
results consists of topic
IDs from the topic table.

The second column
of the results
holds category
names from the
category table
that match up
with each topic ID.

This inner join successfully merges data from two tables that would’ve
previously required two separate queries. The query results consist of
columns of data from both tables.

The resulting data contains columns from both tables!

474 Chapter 8

the
Since joins involve more than one table, it’s important to be clear about
each column referenced in a join. More specifically, you must identify
the table for each column so that there isn’t any confusion—tables often
have columns with the same names, especially when it comes to keys. Just
preface the column name with the table name, and a dot. For example,
here’s the previous INNER JOIN query that builds a result set of topic
IDs and category names:

with

Dot notation allows
you to reference the
table a column belongs
to within a join.

Without the ability to specify the tables associated with the columns in this
query, we’d have quite a bit of ambiguity. In fact, it would be impossible
to understand the ON part of the query because it would be checking to
see if the category_id column equals itself, presumably within the
mismatch_topic table. For this reason, it’s always a good idea to be
very explicit about identifying the tables associated with columns when
building JOIN queries.

category_id

...

mismatch_topic

topic_id name category_id

1 Tattoos 1

2 Gold chains 1

3 Body piercings 1

...

mismatch_category
category_id name

1 Appearance
2 Entertainment
3 Food

...

category_id

Within a JOIN
query, this column
name is ambiguous!

Identifying the table
results in a more
explicit JOIN query.

The column name alone
tells us nothing about
what table it belongs to.

mismatch_category.
category_id

mismatch_topic.category_id

Don’t forget
the dot!

?

Connect dots

SELECT mismatch_topic.topic_id, mismatch_category.name

 FROM mismatch_topic

 INNER JOIN mismatch_category

 ON (mismatch_topic.category_id = mismatch_category.category_id)

This is the name
of the table.

This is the name of the column
within the table, separated from
the table name by a dot (period).

Here’s another table/
column reference that
uses the dot notation.

The dot!

This is where the dot really pays off - the column names are identical, resulting in total ambiguity without the table names.

using dot notation

you are here 4 475

control your data, control your world

Surely we can do more with inner joins
Inner joins don’t stop at just combining data from two tables. Since
an inner join is ultimately just a query, you can still use normal query
constructs to further control the results. For example, if you want to
grab a specific row from the set of joined results, you can hang a WHERE
statement on the INNER JOIN query to isolate just that row.

An INNER JOIN
combines rows from
two tables using
comparison operators
in a condition.

8 Entertainment

So what exactly does this query return? First remember that the WHERE
clause serves as a refinement of the previous query. In other words, it
further constrains the rows returned by the original INNER JOIN
query . As a recap, here are the results of the inner join without the
WHERE clause:

mismatch_topic

topic_id
name

category_id

mismatch_category

category_id
name

These two
columns control
the join between
the two tables.

This column refines
the results as part of a WHERE statement.

1 Appearance

2 Appearance

3 Appearance

4 Appearance

5 Appearance

6 Entertainment

7 Entertainment

8 Entertainment

...

The WHERE clause has the effect of whittling down this result set to a
single row, the row whose topic name equals 'Horror movies'. We
have to look back at the mismatch_topic table to see which row this is.

Category names are pulled from the
mismatch_category table.

Topic IDs are
extracted from the
mismatch_topic table.

mismatch_topic

topic_id name category_id

...

7 Professional wrestling 2

8 Horror movies 2

9 Easy listening music 2

... The WHERE clause constrains the
results of the join to a single row.This row

matches the
WHERE clause.

The original INNER JOIN
result set is chopped down to
this solitary row because of
the WHERE clause.

SELECT mismatch_topic.topic_id, mismatch_category.name

 FROM mismatch_topic

 INNER JOIN mismatch_category

 ON (mismatch_topic.category_id = mismatch_category.category_id)

 WHERE mismatch_topic.name = 'Horror movies'

476 Chapter 8

SELECT mismatch_topic.topic_id, mismatch_category.name

 FROM mismatch_topic

 INNER JOIN mismatch_category

 USING (category_id)

 WHERE mismatch_topic.name = 'Horror movies'

Rewrite ON with
USING for more
concise inner join
queries that match
on a common column.

All that is required is the
name of the column... no need
to specify equality with =.

Simplifying ON with USING
Remember that our goal is to simplify the messy Mismatch queries with
INNER JOIN. When an inner join involves matching columns with
the same name, we can further simplify the query with the help of
the USING statement. The USING statement takes the place of ON in an
INNER JOIN query, and requires the name of the column to be used in
the match. Just make sure the column is named exactly the same in both
tables. As an example, here’s the Mismatch query again:

Q: So a WHERE clause lets you constrain the results of a
JOIN query based on rows in one of the joined tables?

A: That’s correct. Keep in mind that the actual comparison taking
place inside a WHERE clause applies to the original tables, not
the query results. So in the case of the Mismatch example, the query
is retrieving data from two different tables that match on a certain
column that appears in both tables (category_id), and then
only selecting the row where the name column in mismatch_
topic is a certain value ('Horror movies'). So the
INNER JOIN takes place with respect to the category_id
column in, both tables but the WHERE clause refines the results
using only the name column in the mismatch_topic table.

Q: Could the WHERE clause in the Mismatch JOIN query be
based on the mismatch_category table instead?

A: Absolutely. The WHERE clause can restrict query results
based on either of the tables involved in the join. As an example, the
WHERE clause could be changed to look only for a specific category,
like this:

... WHERE mismatch_category.name = 'Entertainment'

This WHERE clause limits the result set to only include topics that
fall under the Entertainment category. So the WHERE clause doesn’t
affect the manner in which the tables are joined, but it does affect the
specific rows returned by the query.

SELECT mismatch_topic.topic_id, mismatch_category.name

 FROM mismatch_topic

 INNER JOIN mismatch_category

 ON (mismatch_topic.category_id = mismatch_category.category_id)

 WHERE mismatch_topic.name = 'Horror movies'

Since the ON part of the query relies on columns with the same name
(category_id), it can be simplified with a USING statement:

The name of each of the
columns is the same - only
the tables are different.

The column names
must be the same
in order to use the
USING statement
in an inner join.

simplifying queries with the USING statement

you are here 4 477

control your data, control your world

SELECT mt.name AS topic_name, mc.name AS category_name

 FROM mismatch_topic AS mt

 INNER JOIN mismatch_category AS mc

 USING (category_id)

 WHERE mt.topic_id = '11'

Nicknames for tables and columns
Our INNER JOIN query just keeps getting tighter! Let’s take it one step
further. When it comes to SQL queries, it’s standard to refer to table and
columns by their names as they appear in the database. But this can be
cumbersome in larger queries that involve joins with multiple tables—the
names can actually make a query tough to read. It’s sometimes worthwhile
to employ an alias, which is a temporary name used to refer to a table or
column in a query. Let’s rewrite the Mismatch query using aliases.

An alias allows you
to rename a table
or column within
a query to help
simplify the query
in some way.

When a column is
renamed with an alias,
the alias is what appears
in the query results.

Are aliases only good for writing more compact queries? No, there are
some situations where they’re downright essential! A join that would be
quite handy in the Mismatch application is retrieving both the topic name
and category name for a given topic ID. But the mismatch_topic
and mismatch_category tables use the same column name (name)
for this data. This is a problem because the result of combining these
two columns would leave us with ambiguous column names. But we can
rename the result columns to be more descriptive with aliases.

topic_name category_name
Sushi Food

mismatch_topic

topic_id
name

category_id mismatch_category

category_id
name

Selecting these two columns
in a join yields result columns
with the same name...not good!

The result columns now
have unique names that
are very descriptive.

The selected columns are now aliased with more descriptive names.

mt

mc

SELECT mt.topic_id, mc.name

 FROM mismatch_topic AS mt

 INNER JOIN mismatch_category AS mc

 USING (category_id)

 WHERE mt.name = 'Horror movies'

The code becomes a bit easier to read with the table names condensed into smaller aliases.
The AS keyword in SQL
creates an alias, in this case
for the mismatch_topic table.

The mismatch_category can
now be referred to simply as

“mc” thanks to this alias.Any reference to
the mismatch_topic
table can now be
shortened to “mt”.

478 Chapter 8

// Grab the response data from the database to generate the form
$query = "SELECT response_id, topic_id, response FROM mismatch_response " .
 "WHERE user_id = '" . $_SESSION['user_id'] . "'";
$data = mysqli_query($dbc, $query);
$responses = array();
while ($row = mysqli_fetch_array($data)) {
 // Look up the topic and category names for the response from the topic and category tables
 $query2 = "SELECT mt.name AS topic_name, mc.name AS category_name " .
 "FROM mismatch_topic AS mt " .
 "INNER JOIN mismatch_category AS mc USING (category_id) " .
 "WHERE mt.topic_id = '" . $row['topic_id'] . "'";
 $data2 = mysqli_query($dbc, $query2);
 if (mysqli_num_rows($data2) == 1) {
 $row2 = mysqli_fetch_array($data2);
 $row['topic_name'] = $row2['topic_name'];
 $row['category_name'] = $row2['category_name'];
 array_push($responses, $row);
 }
}

// Grab the response data from the database to generate the form
$query = "SELECT response_id, topic_id, response FROM mismatch_response " .
 "WHERE user_id = '" . $_SESSION['user_id'] . "'";
$data = mysqli_query($dbc, $query);
$responses = array();
while ($row = mysqli_fetch_array($data)) {
 // Look up the topic name for the response from the topic table
 $query2 = "SELECT name, category_id FROM mismatch_topic " .
 "WHERE topic_id = '" . $row['topic_id'] . "'";
 $data2 = mysqli_query($dbc, $query2);
 if (mysqli_num_rows($data2) == 1) {
 $row2 = mysqli_fetch_array($data2);
 $row['topic_name'] = $row2['name'];

 // Look up the category name for the topic from the category table
 $query3 = "SELECT name FROM mismatch_category " .
 "WHERE category_id = '" . $row2['category_id'] . "'";
 $data3 = mysqli_query($dbc, $query3);
 if (mysqli_num_rows($data3) == 1) {
 $row3 = mysqli_fetch_array($data3);
 $row['category_name'] = $row3['name'];
 array_push($responses, $row);
 }
 }
}

Joins to the rescue
So joins make it possible to involve more than one table in a query,
effectively pulling data from more than one place and sticking it in a single
result table. The Mismatch query that builds a response array is a perfect
candidate for joins since it contains no less than three nested queries for
dealing with multiple tables. Let’s start with the original code:

The last two queries in the code
are responsible for obtaining
the topic name and category
name from their respective
tables - one query per table.

With a join, it’s possible to
grab both the topic name and
category name in a single query.And here’s the new version of the code that uses a join:

The topic ID is used as
the basis for the main
query, but the category ID
controls the join itself.

Aliases are used to help
simplify the code.

Joins are more
efficient and
require less code
than nested queries.

rewriting the queries with joins

you are here 4 479

control your data, control your world

// Grab the response data from the database to generate the form
$query =

$data = mysqli_query($dbc, $query);
$responses = array();
while ($row = mysqli_fetch_array($data)) {
 array_push($responses, $row);
}

I don’t get it, you still have an extra
query that looks up the category
name. If joins are so great, why do
you still need two queries?

Following is code that is capable of retrieving response data from the database with one query, thanks
to the clever usage of joins. Be clever and write the SQL query that does the joining between the
mismatch_response, mismatch_topic, and mismatch_category tables.

We don’t still need two queries, at least not if we use
joins to their full potential.
It is possible to join more than two tables, which is what is truly required
of the Mismatch response array code. We need a single query that
accomplishes the following three things: retrieve all of the responses for
the user, get the topic name for each response, and then get the category
name for each response. The new and improved code on the facing
page accomplishes the last two steps in a single query involving a join
between the mismatch_topic and mismatch_category tables.
Ideally, a single query with two joins would kill all three birds with one
big join-shaped stone.

480 Chapter 8

// Grab the response data from the database to generate the form
$query =

$data = mysqli_query($dbc, $query);
$responses = array();
while ($row = mysqli_fetch_array($data)) {
 array_push($responses, $row);
}

Following is code that is capable of retrieving response data from the database with one query,
thanks to the clever usage of joins. Be clever and write the SQL query that does the joining
between the mismatch_response, mismatch_topic, and mismatch_category
tables.

 “SELECT mr.response_id, mr.topic_id, mr.response, ” .
 “mt.name AS topic_name, mc.name AS category_name ” .
 “FROM mismatch_response AS mr ” .
 “INNER JOIN mismatch_topic AS mt USING (topic_id) ” .
 “INNER JOIN mismatch_category AS mc USING (category_id) ” .
 “WHERE mr.user_id = ‘” . $_SESSION[‘user_id’] . “’”;

The first join brings
the topic table into
the query, allowing
it to source the
topic name using the
topic ID.

The second join wires the
category table into the query
using the category ID, allowing
us to access the category name.

Aliases are used
to help simplify
the query and
make it a bit
easier to read.

Q: What other kinds of joins are there?

A: Other types of inner joins include equijoins, non-equijoins, and
natural joins. Equijoins and non-equijoins perform an inner join based
on an equality or inequality comparison, respectively. You’ve already
seen several examples of equijoins in the Mismatch queries that
check for matching topic_id and category_id columns.
Since the matching involves looking for “equal” columns (the same
ID), these queries are considered equijoins.

Another kind of inner join is a natural join, which involves comparing
all columns that have the same name between two tables. So a
natural join is really just an equijoin, in which the columns used to
determine the join are automatically chosen. This automatic aspect
of natural joins makes them a little less desirable than normal inner
joins because it isn’t obvious by looking at them what is going on—
you have to look at the database structure to know what columns are
being used in the join.

Q: So all SQL joins are really just variations of inner joins?

A: No, there are lots of other joins at your disposal. The other
major classification of joins is collectively called outer joins, but
there are several different kinds of joins that are considered outer
joins. There are left outer joins, right outer joins, full outer joins, and
the seldom used but awe-inspiring triple helix ambidextrous join. OK,
that last one isn’t a real join, but it should be! The basic idea behind
an outer join is that rows in the joined tables don’t have to match in
order to make it into the join. So it’s possible to construct outer joins
that always result in rows from a table being selected regardless of
any matching conditions.

Outer joins can be just as handy as inner joins, depending on the
specific needs of a database application. To learn more about the
different kinds of joins and how they are used, take a look at
Head First SQL.

Store all the query
result data in the
$responses array.

exercise solution and no dumb questions

you are here 4 481

control your data, control your world

Test Drive
Revamp the Questionnaire script to grab the user’s response data
with a single query.
Modify the questionnaire.php script to use inner joins so that the queries that grab the
user’s response data are handled in a single query. Upload the new script to your web server,
and then navigate to the questionnaire in a web browser. If all goes well, you shouldn’t notice
any difference... but deep down you know the script code is much better built!

mismatch_topic

topic_id

name

category_id

mismatch_response

response_id

response

user_id

topic_id

mismatch_category

category_id

name

Ooh, I can’t wait to
finish the questionnaire
now that those weird
categories are gone!

The normalized Mismatch database is much less error-prone thanks to the new category table.

The Mismatch questionnaire is
dynamically generated from the
response, topic, and category
tables with the help of a couple
of joins behind the scenes.Now that data

isn’t duplicated
in the
database, the
form is much
more consistent,
and therefore
less confusing
to users.

482 Chapter 8

Sidney’s
questionnaire
is filled out,
stored, and
ready to use
for mismatching.

I filled out my questionnaire,
now where’s my mismatch?
I’m waiting...

Mismatch now remembers user responses but it doesn’t
yet do anything with them...like finding a mismatch!
The collection of user response data only gets us halfway to a successful
mismatch. The Mismatch application is still missing a mechanism for firing
Cupid’s arrow into the database to find a love connection. This involves
somehow examining the responses for all the users in the database to see who
matches up as an ideal mismatch.

time to play matchmaker

you are here 4 483

control your data, control your world

Figuring out an ideal mismatch sounds
pretty complicated given all those
categories, topics, and responses. Are
you sure that’s really doable?

It’s definitely doable; we just need a consistent
means of calculating how many mismatched
topics any two users share.
If we come up with a reasonably simple way to calculate how many
mismatched topics any two users share, then it becomes possible to
loop through the user database comparing users. The person with
the highest number of mismatches for any given user is that user’s
ideal mismatch!

Write down how you would go about calculating the “mismatchability”
of two users using data stored in the Mismatch database:

+ = Mismatch!

484 Chapter 8

Love is a numbers game
If you recall, mismatch responses are stored in the mismatch_
response table as numbers, with 0, 1, and 2 all having special meaning
in regard to a specific response.

Unknown = 0 Love = 1 Hate = 2
?

This is the data used to calculate a mismatch between two users, and
what we’re looking for specifically is a love matching up with a hate or a
hate matching up with a love. In other words, we’re looking for response
rows where response is either a 1 matched against a 2 or a 2 matched
against a 1.

28 2 1 3

29 1 1 4

30 1 1 5

278 1 11 3

279 1 11 4

280 1 11 5

mismatch_response

response_id
response

user_id

topic_id

281 2 11 531 1 1 5

A match!

A match!

The second column in these rows is the response, which can be 0 (unanswered), 1 (love), or 2 (hate).

We’re still missing a handy way in PHP code to determine when a
mismatch takes place between two responses. Certainly a couple of if-
else statements could be hacked together to check for a 1 and a 2, and
then a 2 and a 1, but the solution can be more elegant than that. In either
scenario, adding together the two responses results in a value of 3. So we
can use a simple equation to detect a mismatch between two responses.

If ResponseA + ResponseB = 3, we have a mismatch!
So finding a love connection really does boil down to simple math. That
solves the specifics of comparing individual matches, but it doesn’t address
the larger problem of how to actually build the My Mismatch script.

A love (1) matched up with a hate (2) for the
same topic (Reality TV) results in a mismatch.

the (mis)matchmaking logic

you are here 4 485

control your data, control your world

 Grab the user’s responses from the
mismatch_response table, making sure
to join the topic names with the results.

1

Five steps to a successful mismatch
Finding that perfectly mismatched someone isn’t just a matter of
comparing response rows. The My Mismatch script has to follow a set
of carefully orchestrated steps in order to successfully make a mismatch.
These steps hold the key to finally satisfying users and bringing meaning to
their questionnaire responses.

Initialize the mismatch search results,
including the variables that keep up
with the “best mismatch.”

2

Loop through the user table comparing other people’s responses to the user’s responses. This involves comparing responses for every person in the database to the user’s corresponding responses. A “score” keeps up with how many opposite responses the user shares with each person.

3

After each cycle through the loop, see if the

current mismatch is better than the best

mismatch so far. If so, store this one as the

new “best mismatch,” making sure to store

away the mismatched topics as well.

4

Make sure a “best mismatch” was found,
then query to get more information about
the mismatched user, and show the results.

5

486 Chapter 8

Prepare for the mismatch search
Step 1 falls under familiar territory since we’ve already written some
queries that perform a join like this. But we need to store away the user’s
responses so that we can compare them to the responses of other users
later in the script (Step 3). The following code builds an array, $user_
responses, that contains the responses for the logged in user.

$query = "SELECT mr.response_id, mr.topic_id, mr.response, mt.name
AS topic_name " .

 "FROM mismatch_response AS mr " .

 "INNER JOIN mismatch_topic AS mt " .

 "USING (topic_id) " .

 "WHERE mr.user_id = '" . $_SESSION['user_id'] . "'";

$data = mysqli_query($dbc, $query);

$user_responses = array();

while ($row = mysqli_fetch_array($data)) {

 array_push($user_responses, $row);

}

This query uses a JOIN to select all of the
responses for the user.

When this loop finishes, the
$user_responses array will hold
all of the user’s responses.

A while loop is used to go
through each row of the query
results, building an array of
user responses in the process.

$mismatch_score = 0;

$mismatch_user_id = -1;

$mismatch_topics = array();

This array holds the topics that
are mismatched between two users.

This variable holds the mismatch score between two users - the highest score ultimately results in a mismatch.
This is the user ID of the person who is being checked as a potential mismatch...
when the search is complete, this variable holds the ID of the best mismatch.

Step 2 of the My Mismatch script construction process involves setting up
some variables that will hold the results of the mismatch search. These
variables will be used throughout the My Mismatch script as the search for
the best mismatch is carried out:

If this variable is still set to -1 after
the search, we know there wasn’t a
mismatch - this can only happen when
no other users have answered the
questionnaire, which is very unlikely.

 Grab the user’s responses from the mismatch_response table, making sure to join the topic names with the results.

1

Initialize the mismatch search results,

including the variables that keep up

with the “best mismatch.”
2

DONE

DONE

get user responses and initialize search results

you are here 4 487

control your data, control your world

Compare users for “mismatchiness”
The next mismatching step requires looping through every user, and
comparing their responses to the responses of the logged in user. In
other words, we’re taking the logged in user, or mismatcher (Sidney,
for example), and going through the entire user table comparing
her responses to those of each mismatchee. We’re looking for the
mismatchee with the most responses that are opposite of the mismatcher.

Where to begin? How about a loop that steps through the $user_
responses array (mismatcher responses)? Inside the loop we compare
the value of each element with comparable elements in another
array that holds the mismatchee responses. Let’s call the second array
$mismatch_responses.

foreach (...) { while (...) {

1 1 Hate Tattoos

2 2 Hate Gold chains

3 3 Hate Body piercings

4 4 Love Cowboy boots

5 5 Love Long hair

6 6 Love Reality TV

7 7 Hate Professional wrestling

8 8 Hate Horror movies

...

$user_responses

76 1 Love Tattoos
77 2 Love Gold chains
78 3 Love Body piercings
79 4 Love Cowboy boots
80 5 Love Long hair
81 6 Hate Reality TV
82 7 Love Professional wrestling
83 8 Love Horror movies

...

$mismatch_responses

Won’t work! Could work, but not
exactly ideal.

The challenge here is that we need a loop that essentially loops through
two arrays at the same time, comparing respective elements one-to-one. A
foreach loop won’t work because it can only loop through a single array,
and we need to loop through two arrays simultaneously. A while
loop could work, but we’d have to create a counter variable and manually
increment it each time through the loop. Ideally, we need a loop that
automatically takes care of managing a counter variable so that we can
use it to access elements in each array.

We need to loop through these two arrays
simultaneously, comparing responses to the same
topics to see if they are the same or different.

This array holds responses from
the logged in user, the mismatcher.

This array holds responses
from another user in the
database, the mismatchee.

This array changes as the mismatcher is compared to different mismatchees.

488 Chapter 8

Step 3 of the My Mismatch script involves comparing two users by looping through each of their
responses, and calculating a “score” based on how many responses are mismatched. Given the
following pieces of data, finish writing the for loop that calculates this score.

$user_responses

The array of responses for the user.

$mismatch_responses

The array of responses for the
potential mismatched user.

$score

The mismatch score to be
calculated inside the loop.

All we need is a FOR loop
PHP offers another type of loop that offers exactly the functionality we
need for the My Mismatch response comparisons. It’s called a for loop,
and it’s great for repeating something a certain amount of known times.
For example, for loops are great for counting tasks, such as counting
down to zero or counting up to some value. Here’s the structure of a for
loop, which reveals how a loop can be structured to step through an array
using a loop counter variable ($i).

for ($i = 0; $i < count($user_responses); $i++) {

 ...

}

Only perform another loop
cycle if the test evaluates to
true, that is, if $i is less than
the number of user responses.

Test condition

Update the loop counter
by adding 1 to $i.

Update

The count() function returns a
count of the number of elements
in an array, which serves as part
of the loop’s test condition.

Update the loop
counter by adding
1 to it - this is
the same as saying
$i = $i + 1.

Initialize the
loop counter to a value before the
looping begins.

Any code placed inside the
curly braces gets run each
time through the loop.

for ($i = 0; $i < count($user_responses); $i++) {

 if (+ ==) {

 array_push($topics, $user_responses[$i]['topic_name']);

 }

}

introducing the for loop

Start the loop with
the counter, $i, at 0.

Initialization

you are here 4 489

control your data, control your world

Q: Why not just use a foreach loop to calculate the score
instead of a for loop?

A: Although a foreach loop would work perfectly fine for looping
through all of the different responses, it wouldn’t provide you with
an index ($i) at any given iteration through the loop. This index is
important because the code is using it to access both the array of user
responses and the array of mismatch responses. A foreach loop
would eliminate the need for an index for one of the two arrays, but not
both. So we need a regular for loop with an index that can be used
to access similar elements of each array.

Q: What’s the purpose of storing the mismatched responses in
their own array?

A: The array of mismatched responses is important in letting the
users know exactly how they compared topically with their ideal
mismatch. It’s not enough to just share the identity of the ideal
mismatch person—what is even better is also sharing the specific
topics the user mismatched against that person. This helps give the
mismatch result a little more context, and lets the users know a bit
more about why this particular person is truly such a great mismatch
for them.

Q: In Step 5 of the Mismatch script, how would there ever not
be a best mismatch for any given user?

A: Although unlikely, you have to consider the scenario where there
is only one user in the entire system, in which case there would be no
one else to mismatch that user against.

490 Chapter 8

Step 3 of the My Mismatch script involves comparing two users by looping through each of their
responses, and calculating a “score” based on how many responses are mismatched. Given the
following pieces of data, finish writing the for loop that calculates this score.

1 1 Hate Tattoos

2 2 Hate Gold chains

3 3 Hate Body piercings

4 4 Love Cowboy boots

5 5 Love Long hair

6 6 Love Reality TV

7 7 Hate Professional wrestling

8 8 Hate Horror movies

...

$user_responses

76 1 Love Tattoos
77 2 Love Gold chains
78 3 Love Body piercings
79 4 Love Cowboy boots
80 5 Love Long hair
81 6 Hate Reality TV
82 7 Love Professional wrestling
83 8 Love Horror movies

...

$mismatch_responses

for ($i = 0; $i < count($user_responses); $i++) {

 if (+ ==) {

 array_push($topics, $user_responses[$i]['topic_name']);

 }

}

The score is incremented
for each mismatched
response found.

A mismatch consists of a
love (1) matched with a
hate (2), so adding them
together always results in
a 3 if there is a mismatch.The loop counter is

used to step through
each user response.

Each mismatched topic
is added to an array so that it can be displayed to the user when
revealing the mismatch.

$score += 1;
$user_responses[$i][‘response’] $mismatch_responses[$i][‘response’] 3

17

$score

The $score variable ends
up being in the range 0
(no mismatches) to the
total number of topics
(complete mismatch).

Remember, the number of user responses is the same as the number of total topics since the responses come straight from the questionnaire.

Loop through the user table comparing other people’s responses to the user’s responses.

3 DONE

exercise solution

you are here 4 491

control your data, control your world

...

// Only look for a mismatch if the user has questionnaire responses stored

$query = "SELECT * FROM mismatch_response WHERE user_id = '" . $_SESSION['user_id'] . "'";

$data = mysqli_query($dbc, $query);

if (mysqli_num_rows($data) != 0) {

 // First grab the user's responses from the response table (JOIN to get the topic name)

 $query = "SELECT mr.response_id, mr.topic_id, mr.response, mt.name AS topic_name " .

 "FROM mismatch_response AS mr " .

 "INNER JOIN mismatch_topic AS mt " .

 "USING (topic_id) " .

 "WHERE mr.user_id = '" . $_SESSION['user_id'] . "'";

 $data = mysqli_query($dbc, $query);

 $user_responses = array();

 while ($row = mysqli_fetch_array($data)) {

 array_push($user_responses, $row);

 }

 // Initialize the mismatch search results

 $mismatch_score = 0;

 $mismatch_user_id = -1;

 $mismatch_topics = array();

...

Finishing the mismatching
The shiny new loop that calculates a mismatch score is part of a larger
script (mymismatch.php) that takes care of finding a user’s ideal
mismatch in the Mismatch database, and then displaying the information.

Hang on, there’s plenty more - turn the page!

mymismatch.php

This script finds a
user’s perfect mismatch!

It’s only possible to find a mismatch for a user
who has responded to the questionnaire.

A familiar JOIN is used to
retrieve the topic name
when SELECTing the user’s
questionnaire responses.

The $user_responses array holds
all of the responses for the user.

These variables keep track
of the mismatch search as
it progresses.

1

2

492 Chapter 8

 // Loop through the user table comparing other people's responses to the user's responses

 $query = "SELECT user_id FROM mismatch_user WHERE user_id != '" . $_SESSION['user_id'] . "'";

 $data = mysqli_query($dbc, $query);

 while ($row = mysqli_fetch_array($data)) {

 // Grab the response data for the user (a potential mismatch)

 $query2 = "SELECT response_id, topic_id, response FROM mismatch_response " .

 "WHERE user_id = '" . $row['user_id'] . "'";

 $data2 = mysqli_query($dbc, $query2);

 $mismatch_responses = array();

 while ($row2 = mysqli_fetch_array($data2)) {

 array_push($mismatch_responses, $row2);

 }

 // Compare each response and calculate a mismatch total

 $score = 0;

 $topics = array();

 for ($i = 0; $i < count($user_responses); $i++) {

 if (((int)$user_responses[$i]['response']) + ((int)$mismatch_responses[$i]['response']) == 3) {

 $score += 1;

 array_push($topics, $user_responses[$i]['topic_name']);

 }

 }

 // Check to see if this person is better than the best mismatch so far

 if ($score > $mismatch_score) {

 // We found a better mismatch, so update the mismatch search results

 $mismatch_score = $score;

 $mismatch_user_id = $row['user_id'];

 $mismatch_topics = array_slice($topics, 0);

 }

 }

 ...

This query grabs all of
the users except the
user being mismatched.

For each user, this query
grabs the questionnaire
responses for comparing
as a potential mismatch.

Here’s the for loop that
calculates the mismatch score
for a potential mismatch.

If this user is a better
mismatch than the best
mismatch so far, then set
him as the best mismatch.

3

4

The text response (‘2’, for example)
is cast to an integer (2) so that it
can be added and compared

This function extracts a “slice” of an array.
In this case we’re just using it to copy the
$topics array into $mismatch_topics.

We’re still inside that first if
statement from the previous page,
and there’s still more code...

This curly
brace
marks the
end of the
main while
loop.

DONE

the full mymismatch.php script

you are here 4 493

control your data, control your world
 // Make sure a mismatch was found

 if ($mismatch_user_id != -1) {

 $query = "SELECT username, first_name, last_name, city, state, picture FROM mismatch_user " .

 "WHERE user_id = '$mismatch_user_id'";

 $data = mysqli_query($dbc, $query);

 if (mysqli_num_rows($data) == 1) {

 // The user row for the mismatch was found, so display the user data

 $row = mysqli_fetch_array($data);

 echo '<table><tr><td class="label">';

 if (!empty($row['first_name']) && !empty($row['last_name'])) {

 echo $row['first_name'] . ' ' . $row['last_name'] . '
';

 }

 if (!empty($row['city']) && !empty($row['state'])) {

 echo $row['city'] . ', ' . $row['state'] . '
';

 }

 echo '</td><td>';

 if (!empty($row['picture'])) {

 echo '
';

 }

 echo '</td></tr></table>';

 // Display the mismatched topics

 echo '<h4>You are mismatched on the following ' . count($mismatch_topics) . ' topics:</h4>';

 foreach ($mismatch_topics as $topic) {

 echo $topic . '
';

 }

 // Display a link to the mismatch user's profile

 echo '<h4>View ' .

 $row['first_name'] . '\'s profile.</h4>';

 }

 }

}

else {

 echo '<p>You must first answer the questionnaire before you can
' .

 'be mismatched.</p>';

 }

...

Before displaying the
mismatch results, make
sure a “best mismatch”
was actually found.

5
DONE

Query for the mismatched user’s information so we can display it.

Display the
user’s name.

Show the user’s
city and state.

Don’t forget to
generate an tag
with the user’s picture!

It’s important to show
what topics actually
resulted in the mismatch.

Finally, we provide a link to
the mismatched user’s profile
so that the logged in user can
find out more about him.

494 Chapter 8

Test Drive
Find your perfect Mismatch!
Modify Mismatch to use the new My Mismatch script (or download the application from
the Head First Labs site at www.headfirstlabs.com/books/hfphp). This requires
creating a new mymismatch.php script, as well as adding a “My Mismatch” menu item to
the navmenu.php script so that users can access the script.

Upload the scripts to your web server, and then open the main Mismatch page (index.php)
in a web browser. Make sure you log in and have filled out the questionnaire, and then click
the “My Mismatch” menu item to view your mismatch.

Johan’s My
Mismatch page
reveals Sidney
as his perfect
opposite.

When Sidney visits
the My Mismatch
page, she sees Johan,
her ideal mismatch.

I had no clue I’d be so
attracted, yet I can’t
resist the Johan!

We’re so different
in all the right ways...
what a babe.

make a mismatch!

you are here 4 495

control your data, control your world

Database Schema Magnets
Remember the Guitar Wars application from eons ago? Your job is to study the
Guitar Wars database, which could use some normalization help, and come up
with a better schema. Use all of the magnets below to flesh out the table and
column names, and also identify the primary and foreign keys.

guitarwars_score

guitarwars
date
name
score

screenshot
approved

Here’s the original
Guitar Wars database,
which stores high
scores that are
submitted by users.

The database drives
the display of
scores on the main
Guitar Wars page.

Here’s the new and improved
schema you need to build out
with the magnets... good luck!

score_id

player_id

date

score

screenshot
approved

guitarwars_player

player_id

first_namelast_name

496 Chapter 8

Database Schema Magnets Solution
Remember the Guitar Wars application from eons ago? Your job is to study the
Guitar Wars database, which could use some normalization help, and come up
with a better schema. Use all of the magnets below to flesh out the table and
column names, and also identify the primary and foreign keys.

Redundant user name
data is solved by creating
a new table that stores
player names, and then
connects to the score
table through a key.

Each player’s
name is now
broken down into
first and last
name to be more
atomic, and it is
only stored once
no matter how
many high scores
they post.

A one-to-many
relationship
between players
and high scores!

The score table
references
players via a
new foreign key.

The tables have new
names since they serve
more specific purposes.

3
The Guitar Wars database didn’t
have any dependent column problems.

guitarwars_score

guitarwars
date
name
score

screenshot
approved

The database drives
the display of
scores on the main
Guitar Wars page.

score_id

player_id

date

score

screenshot

approved

guitarwars_player

player_id

first_name

last_name

The new score_id
column serves as
a much needed
primary key for
the score table.

2

2

1

Make sure your columns are atomic.1

Give each table its own primary key.2

Make sure non-key columns aren’t
dependent on each other.

3

Here are the rules one
more time, just to make
sure you didn’t forget!

Since the same user is capable of posting
multiple high scores, the name column
results in redundant data... not good!

The table is missing
a primary key, which
is an important
part of any
normalized database.

database schema magnets solution

you are here 4 497

control your data, control your world

PHP&MySQLcross
Concerned that your own perfect mismatch is still out
there waiting to be found? Take your mind off it by
completing this crossword puzzle.Untitled Puzzle

Header Info 1

Header Info 2

etc...

1 2 3

4

5 6

7

8 9

10

11

12 13

Across
1. A representation of all the structures, such as tables and
columns, in your database, along with how they connect.
4. This happens when multiple rows of a table are related to
multiple rows of another table.
5. This allows you to convert between different PHP data types.
7. Use this to combine results from one table with the results of
another table in a query.
10. The process of eliminating redundancies and other design
problems in a database.
11. You can shorten some if-else statements with this handy
little operator.
12. When one row of a table is related to multiple rows in
another table.

Down
1. A join makes it possible to get rid of these.
2. A column in a table that references the primary key of another
table.
3. When a form is generated from a database, it is considered
---- ------.
6. It's not nuclear, it's just data in the smallest size that makes
sense for a given database.
8. Rows in two tables have this relationship when there is
exactly one row in one table for every row in the other.
9. One of these can help greatly in figuring out the design of a
table.
13. A temporary name used to reference a piece of information
in a query.

Untitled Puzzle
Header Info 1

Header Info 2

etc...

1 2 3

4

5 6

7

8 9

10

11

12 13

Across
1. A representation of all the structures, such as tables and
columns, in your database, along with how they connect.
4. This happens when multiple rows of a table are related to
multiple rows of another table.
5. This allows you to convert between different PHP data types.
7. Use this to combine results from one table with the results of
another table in a query.
10. The process of eliminating redundancies and other design
problems in a database.
11. You can shorten some if-else statements with this handy
little operator.
12. When one row of a table is related to multiple rows in
another table.

Down
1. A join makes it possible to get rid of these.
2. A column in a table that references the primary key of another
table.
3. When a form is generated from a database, it is considered
---- ------.
6. It's not nuclear, it's just data in the smallest size that makes
sense for a given database.
8. Rows in two tables have this relationship when there is
exactly one row in one table for every row in the other.
9. One of these can help greatly in figuring out the design of a
table.
13. A temporary name used to reference a piece of information
in a query.

Untitled Puzzle
Header Info 1

Header Info 2

etc...

1 2 3

4

5 6

7

8 9

10

11

12 13

Across
1. A representation of all the structures, such as tables and
columns, in your database, along with how they connect.
4. This happens when multiple rows of a table are related to
multiple rows of another table.
5. This allows you to convert between different PHP data types.
7. Use this to combine results from one table with the results of
another table in a query.
10. The process of eliminating redundancies and other design
problems in a database.
11. You can shorten some if-else statements with this handy
little operator.
12. When one row of a table is related to multiple rows in
another table.

Down
1. A join makes it possible to get rid of these.
2. A column in a table that references the primary key of another
table.
3. When a form is generated from a database, it is considered
---- ------.
6. It's not nuclear, it's just data in the smallest size that makes
sense for a given database.
8. Rows in two tables have this relationship when there is
exactly one row in one table for every row in the other.
9. One of these can help greatly in figuring out the design of a
table.
13. A temporary name used to reference a piece of information
in a query.

498 Chapter 8

PHP&MySQLcross Solution

Untitled Puzzle
Header Info 1

Header Info 2

etc...

1 2 3

4

5 6

7

8 9

10

11

12 13

Across
1. A representation of all the structures, such as tables and
columns, in your database, along with how they connect.
4. This happens when multiple rows of a table are related to
multiple rows of another table.
5. This allows you to convert between different PHP data types.
7. Use this to combine results from one table with the results of
another table in a query.
10. The process of eliminating redundancies and other design
problems in a database.
11. You can shorten some if-else statements with this handy
little operator.
12. When one row of a table is related to multiple rows in
another table.

Down
1. A join makes it possible to get rid of these.
2. A column in a table that references the primary key of another
table.
3. When a form is generated from a database, it is considered
---- ------.
6. It's not nuclear, it's just data in the smallest size that makes
sense for a given database.
8. Rows in two tables have this relationship when there is
exactly one row in one table for every row in the other.
9. One of these can help greatly in figuring out the design of a
table.
13. A temporary name used to reference a piece of information
in a query.

Untitled Puzzle
Header Info 1

Header Info 2

etc...

S
1

C H E M A F
2

D
3

U M
4

A N Y T O M A N Y

B C
5

A
6

S T R T

Q T E A

U J
7

O I N I D

O
8

E M D
9

G R

N
10

O R M A L I Z A T I O N N I

E I C A K V

T E G E E

O S T
11

E R N A R Y N

O A

N O
12

N E T O M A
13

N Y

E L

I

A

S

Across
1. A representation of all the structures, such as tables and
columns, in your database, along with how they connect.
[SCHEMA]
4. This happens when multiple rows of a table are related to
multiple rows of another table. [MANYTOMANY]
5. This allows you to convert between different PHP data types.
[CAST]
7. Use this to combine results from one table with the results of
another table in a query. [JOIN]
10. The process of eliminating redundancies and other design
problems in a database. [NORMALIZATION]
11. You can shorten some if-else statements with this handy
little operator. [TERNARY]
12. When one row of a table is related to multiple rows in
another table. [ONETOMANY]

Down
1. A join makes it possible to get rid of these. [SUBQUERIES]
2. A column in a table that references the primary key of another
table. [FOREIGNKEY]
3. When a form is generated from a database, it is considered
---- ------. [DATADRIVEN]
6. It's not nuclear, it's just data in the smallest size that makes
sense for a given database. [ATOMIC]
8. Rows in two tables have this relationship when there is
exactly one row in one table for every row in the other.
[ONETOONE]
9. One of these can help greatly in figuring out the design of a
table. [DIAGRAM]
13. A temporary name used to reference a piece of information
in a query. [ALIAS]

php&mysqlcross solution

you are here 4 499

control your data, control your world

Normalization
Normalization is the process of altering the design of a database to reduce duplicate data and improve the placement of and relationships between data. The goal is to produce a robust design that holds up well to growing data.

Your PHP & MySQL Toolbox
Quite a few new MySQL database
techniques were uncovered in this

chapter, not to mention a few new PHP
tricks. Let’s do a quick recap!

? :

The ternary operator is a PHP
construct that works like a really
compact if-else statement. It
is handy for performing simple
choices based on a true/false
expression.

INNER JOIN

This kind of join combines data

from two tables that have

matching rows. Unlike a normal

query, a join allows you to grab

data from more than one table,

which is extremely helpful when

a database consists o
f multiple

tables.

Schemas and Diagrams
A schema is a representation of
all the structures (tables, columns,
etc.) in your database, along with
how they connect. A diagram is a
visual depiction of your database,
including details about the
specific columns responsible for
connecting tables.

Foreign Key
A column in a table that is used
to link the table to another table. A foreign key in a child table
typically connects to a primary
key in a parent table, effectively linking rows between the two
tables.

AS name

This SQL statement establishes an alias, which is a name used to identify a piece of data within a query. Aliases are often used to simplify queries by shortening long table and column names. They can also be used to rename result data when the original table column isn’t specific enough.

for (...)

A loop that is ideally suited
to looping based on a specific
number of iterations. Create a
for loop by initializing a counter,

establishing a test condition, and
specifying how the counter is to
be updated after each iteration.

CHAPT
ER 8

this is a new chapter 501

9 string and custom functions

Better living through
functions

Functions take your applications to a whole new level.
You’ve already been using PHP’s built-in functions to accomplish things. Now

it’s time to take a look at a few more really useful built-in functions. And then

you’ll learn to build your very own custom functions to take you farther than you

ever imagined it was possible to go. Well, maybe not to the point of raising laser

sharks, but custom functions will streamline your code and make it reusable.

Now that I have this engineering
degree, there’s no stopping me. I’ll find
a lair, raise some laser sharks, and blow
up the moon. Then maybe I’ll get married
and settle down.

502 Chapter 9

riskyjobs
job_id title description city state zip company date_posted1 Matador Bustling dairy farm... Rutland VT 05701 Mad About Milk Dairies 2008-03-11 10:51:242 Paparazzo Top celebrity... Beverly Hills CA 90210 Diva Pursuit, LLC 2008-03-24 10:51:243 Shark Trainer Training sharks to do... Orlando FL 32801 SharkBait, Inc. 2008-04-28 03:12:454 Firefighter The City of Dataville... Dataville OH 45490 City of Dataville 2008-05-22 12:34:175 Voltage Checker You’ll be out in the... Durham NC 27701 Shock Systems, LLC 2008-06-28 11:16:306 Crocodile Dentist Do you love animals... Everglades City FL 34139 Ravenous Reptiles 2008-07-14 10:51:247 Custard Walker We need people... Albuquerque NM 87101 Pie Technologies 2008-07-24 10:54:058 Electric Bull Repairer Hank’s Honky Tonk... Hoboken NJ 07030 Hank’s Honky Tonk 2008-07-27 11:22:28

...

The riskyjobs table contains
job titles and descriptions,
along with location
information and the posting
date of each job.

Each job posting is
uniquely identified by
the job_id primary key.

A good risky job is hard to find
The Internet startup, RiskyJobs.biz, is designed to help companies find
the right people to fill their riskiest jobs. The business model is simple: for
each risky job we can fill with the right candidate, we get a commission.
The more successful matches, the bigger our profit.

Risky Jobs needs help improving its site’s job-search functionality. Right
now, there’s a database full of risky jobs just waiting to be discovered by
the right people. Let’s take a look at the Risky Jobs search form and the
underlying database of available jobs.

This simple search form calls a script that searches the riskyjobs table.

The Risky Jobs search
form triggers a query
on the riskyjobs table
that searches for
matching jobs.

Show the
search results!

riskyjobs needs search functionality on its site

you are here 4 503

string and custom functions

I’m ready to live my dream and
become a matador...but my Risky
Jobs search is coming up empty!

When the Risky Jobs form is submitted, the search string is stored in
the variable $user_search, which is plugged into the following
SQL query to do the actual searching. Write down how many rows
in the riskyjobs database on the facing page will be found as a
result of Ernesto’s search.

$search_query = "SELECT job_id, title, state, description FROM riskyjobs " .

 "WHERE title = '$user_search'";

$result = mysqli_query($dbc, $search_query);

Write your answer here!

Ernesto, our fearless bullfighter,
is seeing red because his job
search isn’t producing any results.

504 Chapter 9

This variable contains whatever is entered into the text box.

When the Risky Jobs form is submitted, the search string is stored in
the variable $user_search, which is plugged into the following
SQL query to do the actual searching. Write down how many rows
in the riskyjobs database on page 502 will be found as a result
of Ernesto’s search.

$search_query = "SELECT job_id, title, state, description FROM riskyjobs " .

 "WHERE title = '$user_search'";

$result = mysqli_query($dbc, $search_query);

0

Zip, zero, nada! The problem is
that our query is too exacting
- the exact text entered by the
user must match.

A WHERE clause with an
= means that the two
strings being compared
must match exactly.

See the problem? This query is only going to match rows in the table
where the title column contains the exact text “Bull Fighter Matador”.
The job with the title “Matador” isn’t matched, and neither are

“Firefighter” or “Electric Bull Repairer”. OK, maybe it’s good those last
two were missed, but the search still isn’t working as intended. And it’s not
the mixed case that presents the problem (MySQL searches are by default
case-insensitive), it’s the fact that the entire search string must be an
exact match due to the equality (=) operator in the WHERE clause.

The case of the search term
doesn’t matter because the
MySQL WHERE clause is
case-insensitive by default.

The search leaves no margin for error
The SELECT query in the Risky Jobs script is very rigid, only resulting in
a match if the two strings being compared are identical. This presents a
problem for our job search because people need to be able to enter search
terms that match job listings even if the job title isn’t an exact match.

Let’s go back to Ernesto’s search, which results in a query that searches
the title column of the riskyjobs table for the text “Bull Fighter
Matador”:

SELECT job_id, title, description FROM riskyjobs

WHERE title = 'Bull Fighter Matador'
The = operator requires an exact match
when comparing two strings for equality.

we need our queries to be more flexible

you are here 4 505

string and custom functions

The keyword LIKE lets
you look for matches that
aren’t exactly the same as
the word in quotes... and
still case-insensitive.

The % signs are wildcards; they stand in for any other characters before or after the word.

Geek BitsGeek Bits

SQL has another wildcard character that can
be used with LIKE. It’s the underscore (_), and
it represents a single character. Consider the
following LIKE clause:

LIKE '_ _ _ _fighter%'

It’s saying: “Find the string “fighter” with any
four characters in front of it, and any characters
after it.” This would match ”bullfighter” and

“firefighter” but not “streetfighter”.

LIKE clauses typically work in conjunction with
wildcard characters, which are stand-ins for
characters in the data we’re matching. In SQL,
the percent sign (%) wildcard stands for any group
of zero or more characters. Placing this wildcard
in a query before and after a search term, as in
the SELECT statement above, tells SQL to return
results whenever the term appears somewhere in
the data, no matter how many characters appear
before or after it.

SQL queries can be flexible with LIKE
What we really need is a way to search the database for a match on any
portion of a search string. SQL lets us do just that with the LIKE keyword,
which adds flexibility to the types of matches returned by a WHERE clause.
You can think of LIKE as a more forgiving version of the = operator.
Take a look at the following query, which uses LIKE to match rows where
the word “fighter” appears anywhere in the title column:

SELECT job_id, title, description FROM riskyjobs

WHERE title LIKE '%fighter%'

Firefighter
Prize Fighter

FightErnestoPlease

LIKE makes it much easier to find matches, especially when you need
to match the search string as part of a larger word or phrase. Check out
these examples of strings that match up with the above query:

506 Chapter 9

Time out! Take a moment to familiarize yourself with the Risky Jobs
database... and try out a few searches.
Download the riskyjobs.sql file for the Risky Jobs application from the Head First
Labs web site at www.headfirstlabs.com/books/hfphp. This file contains SQL
statements that build and populate the riskyjobs table with sample data.

After you’ve executed the statements in riskyjobs.sql in a MySQL tool, try out a few
queries to simulate job searches. Here are some to get you started.

The complete source code for the Risky Jobs
application is available for download from the
Head First Labs web site:

www.headfirstlabs.com/books/hfphp

Download It!

SELECT * FROM riskyjobs

SELECT job_id, title, description FROM riskyjobs

WHERE title = 'Bull Fighter Matador'

SELECT job_id, title, description FROM riskyjobs

WHERE description LIKE '%animals%'

This query selects all columns for
all jobs in the riskyjobs table.

This query grabs the job ID, title, and description for jobs where the title is exactly “Bull Fighter Matador”.

This query uses LIKE
to find jobs with the
word “animals” anywhere
in the job description.

riskyjobs code setup

you are here 4 507

string and custom functions

LIKE Clause Magnets
A bunch of LIKE clauses are all scrambled up on the fridge.
Can you match up the clauses with their appropriate results?
Which magnets won’t be matched by any of the LIKE clauses?

LIKE '% T%'LIKE '%er'

Pet Food Tester

Shark Finder
Cow Tipper

Cliff Diver

Snake Charmer

Cat Herder
Crash Test Dummy

LIKE '%test %' LIKE '%Tipper Cow%'

LIKE '%ma%'LIKE '%do_'

LIKE 'c%'

Matador

Human Cannonball

Team Mascot

Rodeo Clown

Politician

Some may have
multiple answers.

508 Chapter 9

SQL queries are case-
insensitive, so words starting
with either lowercase or
uppercase ‘c’ are matched by
this query.

These are the
unmatched phrases.

Only one character
after “do”.

LIKE Clause Magnets Solution
A bunch of LIKE clauses are all scrambled up on the fridge. Can
you match up the clauses with their appropriate results? (Some
may have multiple answers.) Which magnets won’t be matched by
any of the LIKE clauses?

LIKE '% T%'
LIKE '%er'

Pet Food Tester

Shark Finder

Cow Tipper

Cliff Diver
Snake Charmer

Cat Herder

Pet Food Tester

Cow Tipper
Crash Test Dummy

LIKE '%test %'

Crash Test Dummy

LIKE '%Tipper Cow%'

LIKE '%ma%'

LIKE '%do_'

LIKE 'c%'

There has to be a
space in front of the
“T” for this to match.

Case doesn’t
matter.

Cow Tipper
Cliff Diver

Cat Herder
Matador

Human Cannonball

Team Mascot

Rodeo Clown

Politician

This LIKE clause didn’t
have any matches.

Anything ending in
“er” matches this.

The letters “ma” appearing anywhere give us a match.

LIKE clause magnets solution

you are here 4 509

string and custom functions

Handy indeed! We just need to figure out how
to match each of the individual keywords in the
search phrase.
Taking what people type in the Risky Jobs search field and matching it
exactly won’t always work. The search would be much more effective
if we searched on each search term entered, as opposed to searching
on the entire search phrase. But how do you search on multiple terms?
We could store each of the search terms in an array, and then tweak
the SELECT query to search for each keyword individually.

That last LIKE clause, LIKE '%Tipper Cow%',
doesn’t match anything because “Tipper” and “Cow”
don’t show up together as a phrase. It sure would
be handy to break up search phrases into individual
keywords and then search on each of the keywords.

Our search would work much better
if it looked for “Tipper” and “Cow”
individually instead of “Tipper Cow”
as one exact phrase.

510 Chapter 9

$search_words = explode(' ', 'Tipper Cow');

$user_search = $_GET['usersearch'];

$search_words = explode(' ', $user_search);

The explode() function stores
each word in $user_search in an
array called $search_words.

This parameter is the text we want “exploded.”

The $search_words variable
now stores the array of
search terms that we’ll then
feed into an SQL query.

The explode() function chops a string into
an array of substrings based on a common
separator, also known as a delimiter.

This parameter tells explode() what
separates the substrings within the string, in
this case a space. You can specify one or more
characters, which are called the delimiter.

The explode() function requires two parameters. The first is the
delimiter, which is a character or characters that indicates where to
break up the string. We’re using a space character as our delimiter, which
means the search string is broken everywhere a space appears. The
delimiter itself is not included in the resulting substrings. The second
parameter is the string to be exploded.

Explode a string into individual words
To make Risky Jobs search functionality more effective, we need a way to
break apart users’ search strings when they enter multiple words in the
form field. The data our risky job seekers enter into the search form is
text, which means we can use any of the built-in PHP string functions to
process it. One extremely powerful function is explode(), and it breaks
apart a string into an array of separate strings. Here’s an example:

The explode() function
breaks a string into an
array of substrings.

Incorporating the array of search terms into Risky Jobs involves adding
a line of code before we run the query on the Risky Jobs database. Now,
if someone enters “Tipper Cow” into the search field, this code breaks it
into two words and stores each word in an array ($search_words).

$search_words

Ti
pp
er

Co
w

Ti
pp
er
 C
owThe space delimiter

controls how the
string is exploded.

Each substring is
stored as a distinct
array element.

explode()

the php explode() function

you are here 4 511

string and custom functions

In order to incorporate the exploded search terms into the Risky Jobs application, we have to
plug each of the terms into an SQL SELECT query using LIKE and OR. For example, here’s
what a query would look like for Ernesto’s earlier search on “Bull Fighter Matador”:

SELECT * FROM riskyjobs

 WHERE description LIKE '%Bull%' OR description LIKE '%Fighter%' OR

 description LIKE '%Matador%'

Now suppose we used the following PHP code to attempt to assemble this query from the search
data entered by the user into the Risky Jobs search form:

$search_query = "SELECT * FROM riskyjobs";

$where_clause = '';

$user_search = $_GET['usersearch'];

$search_words = explode(' ', $user_search);

foreach ($search_words as $word) {

 $where_clause .= " description LIKE '%$word%' OR ";

}

if (!empty($where_clause)) {

 $search_query .= " WHERE $where_clause";

}

Write down the SQL query generated by this code
when Ernesto enters “Bull Fighter Matador” as his
search, and then annotate any problems you think
it might have.

We’re now searching the job description instead of the title since the description has more information to match.

512 Chapter 9

In order to incorporate the exploded search terms into the Risky Jobs application, we have to
plug each of the terms into an SQL SELECT query using LIKE and OR. For example, here’s
what a query would look like for Ernesto’s earlier search on “Bull Fighter Matador”:

SELECT * FROM riskyjobs

 WHERE description LIKE '%Bull%' OR description LIKE '%Fighter%' OR

 description LIKE '%Matador%'

Now suppose we used the following PHP code to attempt to assemble this query from the search
data entered by the user into the Risky Jobs search form:

$search_query = "SELECT * FROM riskyjobs";

$where_clause = '';

$user_search = $_GET['usersearch'];

$search_words = explode(' ', $user_search);

foreach ($search_words as $word) {

 $where_clause .= " description LIKE '%$word%' OR ";

}

if (!empty($where_clause)) {

 $search_query .= " WHERE $where_clause";

}

Write down the SQL query generated by this code
when Ernesto enters “Bull Fighter Matador” as his
search, and then annotate any problems you think
it might have.

SELECT * FROM riskyjobs

 WHERE description LIKE ‘%Bull%’ OR description LIKE ‘%Fighter%’ OR

 description LIKE ‘%Matador%’ OR

We’re now searching the job description instead of the title since the description has more information to match.

There’s an extra OR at the end of
the query, which will make it fail!

Each LIKE clause ends with
an OR to link it with the
next one, which works great
except for the very last one.

Make sure the WHERE clause isn’t empty
before appending it to the search query.

This operator concatenates one string
onto the end of another string.

exercise solution

you are here 4 513

string and custom functions

implode() builds a string from substrings
What we really need to do is only put OR between the LIKEs in our
WHERE clause, but not after the last one. So how exactly can that be
done? How about a special case inside the loop to see if we’re on the last
search term, and then not include OR for that one? That would work but
it’s a little messy. A much cleaner solution involves a function that does the
reverse of the explode() function. The implode() function takes an
array of strings and builds a single string out of them.

But how does that help the dangling OR problem in our query? Well,
implode() lets you specify a delimiter to stick between the strings when
combining them together. If we use ' OR ' as the delimiter, we can
construct a WHERE clause that only has OR between each LIKE clause.

Rewrite the PHP code that generates the Risky Jobs SELECT query so
that it fixes the dangling OR problem by using the implode function.

$where_clause = implode(' OR ', $where_list);

This must be an array
of strings that you
want to join together.

This is the delimiter that is wedged between each of the strings when they are stuck together as one.

The implode() function
returns a single string.

514 Chapter 9

$where_list

de
sc
ri
pt
io
n
LI
KE
 '
%B
ul
l%
'

de
sc
ri
pt
io
n
LI
KE
 '
%F
ig
ht
er
%'

de
sc
ri
pt
io
n
LI
KE
 '
%B
ul
l%
'
OR
 d
es
cr
ip
ti
on
 L
IK
E
'%
Fi
gh
te
r%
'
OR
 d
es
cr
ip
ti
on
 L
IK
E
'%
Ma
ta
do
r%
'

de
sc
ri
pt
io
n
LI
KE
 '
%M
at
ad
or
%'

Rewrite the PHP code that generates the Risky Jobs SELECT
query so that it fixes the dangling OR problem by using the
implode function.

implode()

The result of the
implosion is several
LIKE clauses joined
together with ORs.In order to use the

implode() function, we
first build an array
of LIKE clauses and
store them in the
$where_list array.

$where_clause

$search_query = “SELECT * FROM riskyjobs”;
$where_list = array();
$user_search = $_GET[‘usersearch’];
$search_words = explode(‘ ’, $user_search);
foreach ($search_words as $word) {
 $where_list[] = “description LIKE ‘%$word%’”;
}
$where_clause = implode(‘ OR ’, $where_list);

if (!empty($where_clause)) {
 $search_query .= “ WHERE $where_clause”;
}

The delimiter passed to implode() is “OR” with a space on each side of it.

Since implode() accepts an array of strings to be joined together, we have to build an array of LIKE clauses.

When used like this, the [] operator
acts the same as the array_push()
function - it adds a new element
onto the end of an array.

sharpen your pencil solution

you are here 4 515

string and custom functions

Test Drive
Take the Risky Jobs search form for a spin.
Download the Risky Jobs application from the Head First Labs site at www.
headfirstlabs.com/books/hfphp. The search.php script contains
the query generation code you just worked through, and is used to process the
search data entered into the form in the search.html page.

Upload the script and other Risky Jobs files to your web server, and then
open the search form (search.html) in a web browser. Try a few different
searches to see how your query generation code fares. Make sure to try
Ernesto’s “Bull Fighter Matador” search, which is a good test of the new
implode() code.

Ernesto doesn’t immediately see his perfect risky job, but he’s definitely making progress now that the search script looks for each individual search term.

So many jobs to choose from! I don’t
think I’m up for prize fighting or
repairing electric bulls, but think I might
find my dream job here... eventually.

516 Chapter 9

The search terms clearly
show a search for a tightrope
walker in the circus, but the
results aren’t exactly a match.

Are the
search terms
to blame or
are there
really no jobs
for tightrope
walkers?

I’m a tightrope walker. I visited
your site and didn’t get back any
good jobs even though I entered
exactly the right search terms.

Tightrope walker Selma
isn’t having as much
luck with the Risky
Jobs search form.

can the search be improved?

you are here 4 517

string and custom functions

Write down the SQL query generated when Selma enters
“tightrope, walker, circus” as her search, and then annotate any
problems you think it might have.

518 Chapter 9

SELECT * FROM riskyjobs

 WHERE description LIKE ‘%tightrope,%’ OR description LIKE ‘%walker,%’ OR

 description LIKE ‘%circus%’

Write down the SQL query generated when Selma enters
“tightrope, walker, circus” as her search, and then annotate any
problems you think it might have.

$search_words

ti
gh
tr
op
e,

wa
lk
er
,

ti
gh
tr
op
e,
 w
al
ke
r,
 c
ir
cu
s

explode()

ci
rc
us

The commas are considered part
of the search terms instead of
separators between the terms.

The only search
term that is actually
matching jobs is “circus”
because it doesn’t have
a comma accidentally
stuck onto it.

The explode()
function uses
spaces as
delimiters but
it totally misses
the commas.

I don’t see what the big deal is. Just call
the explode() function twice - first to get
rid of spaces and then to get rid of commas.

The explode() function lets you explode a single
string into substrings, but in this case we already
have substrings.
The first call to the explode() function leaves us with multiple
strings stored in an array, so there’s isn’t a single string left to
explode. And attempting to explode each string in the array would
likely just create more problems. Instead of trying to solve the
delimiter problem with multiple calls to explode(), we need to
preprocess the search string to get it down to a single delimiter
before we ever even call explode(). Then it can do what it does
best—break apart the string using one delimiter.

preprocessing the search strings

you are here 4 519

string and custom functions

Preprocessing data
allows us to remove
unwanted characters
and make the data
easier to process.

Preprocess the search string
We want to hand the explode() function a string that it can break apart
cleanly in one shot. How do we do that? By making sure that explode()
only has to worry with a single delimiter, such as a space character. This
means we need to preprocess the search string so that each search term
is separated by a space, even if the user entered commas.

tightrope, walker, circus

tightrope walker circus

$search_words

ti
gh
tr
op
e

wa
lk
er

ci
rc
us

Q: Can we use more than one character as the delimiter when
exploding the search string?

A: Yes, you can specify any number of characters to serve as your
delimiter, but that’s not the same as specifying different delimiters,
and won’t solve our problem here.
If we used explode(', ', $user_search) to break
apart our string, it would use a combined comma and space as a
delimiter, and would work if someone entered “tightrope, walker,
circus”. But it would fail if someone entered “tightrope walker circus”.
In that case, we’d be left with one long string—not good.

Q: Can we just delete the commas instead of turning them
into spaces?

A: That will work only if users separate their search terms
with both a comma and a space, which we can’t count on. If we
deleted commas, we’d run the risk of turning “tightrope,walker” into

“tightropewalker”, which probably wouldn’t match anything in the Risky
Jobs database.

We need to turn this...

...into this...

...so that explode()
gives us this!

No more commas!

520 Chapter 9

After this code runs, the variable $clean_string will contain the string
“tightrope walker circus”.

Everywhere that a comma appears in this
string, it will be replaced with a space.

Replace unwanted search characters
If you think about it, preprocessing the Risky Jobs search string is a lot like
using find-and-replace in a word processor. In our case, we want to find
commas and replace them with spaces. PHP’s str_replace() lets you
do just that by supplying it three parameters: the text you want to find, the
text you want to replace it with, and the string you want to perform the
find-and-replace on. Here’s an example of str_replace() in action:

$clean_search = str_replace(',', ' ', 'tightrope, walker, circus');

Do you see anything suspicious about the results of
the str_replace() function? Do you think replacing
commas with spaces will work like we want?

This is the substring
you want to replace...

...and this is the string that
gets inserted in its place.

$clean_search = str_replace('thousands', 'hundreds',

 'Make thousands of dollars your very first month. Apply now!');

The third parameter is the string
that will be changed. We’re adding
a little truth to the advertising by
replacing “thousands” with “hundreds”.

But what about those commas in the search string? The str_
replace() function works just as well at replacing individual characters:

Remember, this is the
substring you’re replacing...

...and this is the string
you’re replacing it with.

the php str_replace() function

you are here 4 521

string and custom functions

$search_words

$search_words

$search_words

$search_words

bull,matador cape

bull , matador cape

bull,matador, cape

2 spaces!

$clean_search = str_replace(',', ' ', $user_search);

$search_words = explode(' ', $clean_search);

Given the PHP code below, show what the output of the $search_words array will be
for each of the following search strings. Make sure to write in data for the appropriate array
elements, and scratch through elements if the $search_words array ends up being shorter.

3 spaces!

bull matador cape

522 Chapter 9

These two array elements are
actually empty because of those
two extra spaces between matador
and cape in the search string.

Again, two empty elements, because the comma is
replaced with a space

3 spaces!

$search_words

bul
l

ma
ta

do
r

cap
e

$search_words

$search_words

$search_words

bul
l

ma
ta

do
r

cap
e

bul
l

ma
ta

do
r

cap
e

bul
l

ma
ta

do
r

cap
e

bull,matador cape

bull matador cape

bull , matador cape

bull,matador, cape

2 spaces!

$clean_search = str_replace(',', ' ', $user_search);

$search_words = explode(' ', $clean_search);

Given the PHP code below, show what the output of the $search_words array will be
for each of the following search strings. Make sure to write in data for the appropriate array
elements, and scratch through elements if the $search_words array ends up being shorter.

This array only has
three elements.

exercise solution

you are here 4 523

string and custom functions

So we’re all set now that
we’re preprocessing the
search string, right?

Uh, no. Preprocessing gets rid of unwanted characters,
but unfortunately, it doesn’t result in an array containing
all good search terms.
Remember, our goal is to end up with a string where each search term
is separated by exactly the same delimiter, a space. Take another look at
what happened in the last three examples on the facing page. Some of
the elements in the $search_words array are empty. If we try to build
our WHERE clause with the empty search elements, we might end up with
something like this:

SELECT * FROM riskyjobs
 WHERE description LIKE '%bull%' OR
 description LIKE '%matador%' OR
 description LIKE '% %' OR
 description LIKE '% %' OR
 description LIKE '%cape%'Those single spaces will

match every single space in each job description. They are a real problem. But those spaces
won’t match
anything, right?

Wrong! They will match everything.
If there’s a space anywhere in a job description (which is
pretty much a given), this query will match it and return it
as a result. So every job in the Risky Jobs database will be
matched by this query. We need to get rid of those empty
array elements before we construct the SQL query in order
to make the search script useful again.

524 Chapter 9

Here’s the original array that contains the search terms and empty elements caused by extra spaces.

The new array is shorter
because it only has real search
terms in it - no empties!

The query needs legit search terms
The good news it that it’s not too difficult to clean up our search terms
before using them in a query. We’ll need to create a new array that only
contains the real search terms. So we’ll copy all the non-empty elements
from our first array into the second array, and then use that array to
construct the SELECT query.

To construct the new array, we can use a foreach loop to cycle through
each element in the original array, and then use an if statement to find
non-empty elements. When we find a non-empty element, we just add it
to the new array. Here’s what this process looks like:

$search_words

bu
ll

ma
ta
do
r

ca
pe

$final_search_words

bu
ll

ma
ta
do
r

ca
pe

We need to add code to
our script that builds a
new array containing only
non-empty search terms.

These two empty array
elements must go!

stripping out empty search terms

you are here 4 525

string and custom functions

Loop through each element of
the $search_word array. If the
element is not empty, put it in the
array named $final_search_words.

This is nothing new - replace
commas with spaces using
str_replace().

This is the same code you’ve
seen that builds the WHERE
clause of the search query,
but this time it uses the new
$final_search_words array that
contains no empty elements.

Will this search give our
users the results they’re
looking for?

$search_query = "SELECT * FROM riskyjobs";

// Extract the search keywords into an array
$clean_search = str_replace(',', ' ', $user_search);
$search_words = explode(' ', $clean_search);
$final_search_words = array();
if (count($search_words) > 0) {
 foreach ($search_words as $word) {
 if (!empty($word)) {
 $final_search_words[] = $word;
 }
 }
}

// Generate a WHERE clause using all of the search keywords
$where_list = array();
if (count($final_search_words) > 0) {
 foreach($final_search_words as $word) {
 $where_list[] = "description LIKE '%$word%'";
 }
}
$where_clause = implode(' OR ', $where_list);

// Add the keyword WHERE clause to the search query
if (!empty($where_clause)) {
 $search_query .= " WHERE $where_clause";
}

Copy non-empty elements to a new array
Now let’s look at the code that will copy the non-empty elements from our
$search_words array to the new $final_search_words array.

After checking to make sure there is at least one search term in the
$search_words array, the foreach loop cycles through the array
looking for non-empty elements. When it finds a non-empty element, it
uses the [] operator to add the element onto the end of the $final_
search_words array. This is how the new array is assembled.

Then what? Well, then we generate the SELECT query just as before,
except now we use the $final_search_words array instead of
$search_words:

This code gives us a search query that no longer has empty elements.
Here’s the new query for the search “bull, matador, cape”:

SELECT * FROM riskyjobs
 WHERE description LIKE '%bull%' OR
 description LIKE '%matador%' OR
 description LIKE '%cape%'

526 Chapter 9

Test Drive
Update the Search script to preprocess the user search string.
Update the search.php script to use the explode() and implode() functions
to preprocess the user search string and generate a more robust SELECT query. Then
upload the script to your web server and try out a few searches.

Selma’s “tightrope,
walker, circus”
search now appears
to be finding more
relevant jobs.

test out search.php

you are here 4 527

string and custom functions

I’m getting job listings, but I’m getting
huge descriptions for each job. I don’t need
that much information. I may have to try
hazardpays.com, where they show only part of
the job, and I can see more listings per page.

Although Risky Jobs is doing much better at finding
jobs, the huge job descriptions are a bit much.
What’s really irking Selma is her inability to see more job listings in her
browser without doing a bunch of scrolling. It isn’t necessary to show
the entire description of each job in the search results. Ideally, we really
need to show part of the description of each job, maybe just the first
few sentences.

Write down how you think we could trim the job descriptions
so that they aren’t quite so huge in the search results:

528 Chapter 9

This is the original string
we want to extract a
substring from.

This specifies where to start the substring...
...and this is how many
characters to return.

Sometimes you just need part of a string
Since the lengths of the job descriptions in the Risky Jobs database vary
quite a bit and some are quite long, we could clean up the search results
by chopping all the descriptions down to a smaller size. And to keep from
confusing users, we can just stick an ellipsis (...) on the end of each one to
make it clear that they’re seeing only part of each description.

The PHP substr() function is perfect for extracting part of a string.
You pass the “substring” function the original string and two integers.
The first integer is the index of where you want the substring to start,
and the second integer is its length, in characters. Here’s the syntax:

substr(string, start, length)

The PHP substr()
function allows
you to extract a
portion of a string.

When it comes to the substr() function, you can think of a string
as being like an array where each character is a different element.
Consider the following string:

Are you a practioner of the lost art of cat juggling?

0 1 2 3 4 5 6 7 8 9...

$job_desc = 'Are you a practioner of the lost art of cat juggling? ';

Similar to elements in an array, each character in this string has an index,
starting at 0 and counting up until the end of the string.

... 50 51 52

We can use these character indexes with the substr() function to
grab portions of the string:

substr($job_desc, 4, 3)

substr($job_desc, 49)

substr($job_desc, 0, 3)

substr($job_desc, 0, 9)

you

ing?

Are

Are you a

Start at 4, go
for 3 characters.

Start at 49, and since
we left off the second
argument, it means go to
the end of the string.

the php subst() function

you are here 4 529

string and custom functions

Extract substrings from either end
The substr() function is not limited to grabbing substrings from the
start of a string. You can also extract characters starting from the end of a
string. The extraction still works left to right; you just use a negative index
to identify the start of the substring.

Below is PHP code that generates an HTML table for the Risky
Jobs search results. Finish the missing code, whose task is to limit
the job description text to 100 characters, and also trim down the
date posted text to only show the month, day, and year.

echo '<table border="0" cellpadding="2">';

echo '<td>Job Title</td><td>Description</td><td>State</td><td>Date Posted</td>';

while ($row = mysqli_fetch_array($result)) {

 echo '<tr class="results">';

 echo '<td valign="top" width="20%">' . $row['title'] . '</td>';

 echo '<td valign="top" width="50%">' . . '...</td>';

 echo '<td valign="top" width="10%">' . $row['state'] . '</td>';

 echo '<td valign="top" width="20%">' . . '</td>';

 echo '</tr>';

}

echo '</table>';

Here are a couple of examples:

substr($job_desc, -53, 7)

substr($job_desc, -9)

Are you

juggling?

Start at -53, then
grab 7 characters.

Start at -9 and take
the rest of the string.

Are you a practitioner of the lost art of cat juggling?

-53 -52 -51 -50 -3 -2 -1

530 Chapter 9

Below is PHP code that generates an HTML table for the Risky
Jobs search results. Finish the missing code, whose task is to limit
the job description text to 100 characters, and also trim down the
date posted text to only show the month, day, and year.

echo '<table border="0" cellpadding="2">';

echo '<td>Job Title</td><td>Description</td><td>State</td><td>Date Posted</td>';

while ($row = mysqli_fetch_array($result)) {

 echo '<tr class="results">';

 echo '<td valign="top" width="20%">' . $row['title'] . '</td>';

 echo '<td valign="top" width="50%">' . . '...</td>';

 echo '<td valign="top" width="10%">' . $row['state'] . '</td>';

 echo '<td valign="top" width="20%">' . . '</td>';

 echo '</tr>';

}

echo '</table>';

substr($row[‘description’], 0, 100)

substr($row[‘date_posted’], 0, 10)

Stick an ellipsis on the end to indicate
that this is only part of the description.

All of the date_posted data starts
with MM-DD-YYYY, which takes
up exactly 10 characters.

Geek BitsGeek Bits

It’s possible to skip the PHP substr() function and
limit the job description data in the SQL query itself. You
use a very similar MySQL function called SUBSTRING()
that accepts the same arguments as substr(). The
only difference is that the starting index starts at 1
instead of 0. So grabbing the first 100 characters of the
job description looks like this:

SELECT SUBSTRING(job_description, 1, 100)
 FROM riskyjobs;

The advantage of sticking with the PHP function is that
we have both the partial job description and the full job
description available to us. If we use MySQL, we only
get the partial job description, and would have to make
another query to get the full description.

Q: Does substr() work on numeric values?

A: No, it operates strictly on strings. However, If
you have a number stored as a CHAR, VARCHAR,
or TEXT, when you retrieve it via SQL, it’s treated
by PHP as a string, not a number, so you can use a
substr() function on it.

Q: What if your length value is longer than the
string? Will it return a string with spaces at the end
to make it match the length value?

A: It will return the entire string. But it won’t pad the
end of the string with spaces to change the length. For
example, the following code will return the string “dog”:
substr('dog', 0, 10)

sharpen your pencil solution

you are here 4 531

string and custom functions

I’d really like to see the results
sorted by date posted, or
maybe by state. I really want to
find a matador job in Vermont.

How can we change the page layout and query to
allow us to sort by date posted, state, or job title?

Test Drive
Tweak the Search script to limit the text displayed for job
descriptions and dates posted.
Modify the search.php script so that it uses the PHP substr() function
to trim down the job description and date posted text for the search results.
Then upload the script to your web server and test it out with a few searches.

Selma is pleased now that
she can see job search results without having to scroll through humongous job descriptions.

The posting date is also a bit
easier to read now that it only
shows the date and not the
date and time.

532 Chapter 9

We can use these links to reload the same Search script but with a query that sorts
the results according to the link clicked. We already know how to use ORDER BY
to structure a query with sorted results. If we create different SQL queries to
ORDER BY each individual column, we can allow the user to sort the search results
alphabetically by job title, description, or state, or chronologically by date posted.

Here is the SQL query to sort results alphabetically by job description:

Users can hone in on certain jobs by sorting the results based on these headings. We can turn the headings into links that allow our users to click on them to sort the job listings.

Multiple queries can sort our results
In order to allow visitors to sort their search results, we need a way for
them to identify how they want their results ordered. Maybe a form... or
a button? It’s actually way simpler than that. We can use HTML to turn
each of the column headings in the search result table into links. Users
can click a link to indicate which column they want to sort the results by.

SELECT * FROM riskyjobs
 WHERE description LIKE '%Bull%' OR description LIKE '%Fighter%' OR
 description LIKE '%Matador%'
 ORDER BY description

This sorts the results of the
query on job descriptions in
ascending alphabetical order.

adding sort functionality to search results

you are here 4 533

string and custom functions

Write three different queries that sort the Risky Jobs results
according to job title, state, and date posted. Assume the user
has typed in the search string “window, washer, skyscraper”.

How could we rewrite these queries if you wanted to see the job titles and states in
reverse order? What about the newest jobs first?

534 Chapter 9

Write three different queries that sort the Risky Jobs results
according to job title, state, and date posted. Assume the user
has typed in the search string “window, washer, skyscraper”.

How could we rewrite these queries if you wanted to see the job titles and states in
reverse order? What about the newest jobs first?

SELECT * FROM riskyjobs
 WHERE description LIKE ‘%window%’ OR description LIKE ‘%washer%’ OR
 description LIKE ‘%skyscraper%’
 ORDER BY job_title

SELECT * FROM riskyjobs
 WHERE description LIKE ‘%window%’ OR description LIKE ‘%washer%’ OR
 description LIKE ‘%skyscraper%’
 ORDER BY state

SELECT * FROM riskyjobs
 WHERE description LIKE ‘%window%’ OR description LIKE ‘%washer%’ OR
 description LIKE ‘%skyscraper%’
 ORDER BY date_posted

SELECT * FROM riskyjobs
 WHERE description LIKE ‘%window%’ OR description LIKE ‘%washer%’ OR
 description LIKE ‘%skyscraper%’
 ORDER BY job_title DESC

SELECT * FROM riskyjobs
 WHERE description LIKE ‘%window%’ OR description LIKE ‘%washer%’ OR
 description LIKE ‘%skyscraper%’
 ORDER BY state DESC

SELECT * FROM riskyjobs
 WHERE description LIKE ‘%window%’ OR description LIKE ‘%washer%’ OR
 description LIKE ‘%skyscraper%’
 ORDER BY date_posted DESC

The default for
ORDER BY is
ASCending order, which
is the same as saying
ORDER job_title ASC.

We might want
these if we’ve
already ordered
one of the
columns and the
user clicks on it
again to reverse
the order.

ORDER BY sorts the search query results

you are here 4 535

string and custom functions

It seems like a lot of redundant code
will be needed to generate all those
queries. Can’t we avoid having the same
query generation code repeated three,
or even six times?

This might look like a lot of work, but we already have most of the code
written. We just need to turn it into a function. But before we do that, let’s
take a look at how to put together custom functions...

 Preprocess the search keywords, and store them in an array.11

 Check to see if the sort parameter has a value. If it does,
tack on an ORDER BY clause.

55

 Create a WHERE clause containing all of the search
keywords.

44

 Get rid of any empty search keywords.33

 Optionally take a sort parameter that tells the function
what column to sort by.

22

 Return the newly formed query.66

Yes. While it’s true that we’ll need to run a different
query when a user clicks a different link, it’s possible
construct a single query based on the link clicked.
The first time the results are displayed, no links have been clicked so
we don’t have to worry about sorting. We can just take the keywords
submitted into our form and build a query without an ORDER BY. The
results are displayed with clickable headings, each of which links back to
the script, but with a different sort order. So each link consists of a URL
with the original keywords and a parameter named sort that indicates
which order the results should be in.

What would really help in pulling this off is if we create our very own
custom function that takes information about how to sort the job data,
and returns a string with the WHERE clause and ORDER BY in place. Our
new custom function takes a look at the sort parameter to figure out
how to sort the search results. Here are the steps the function has to follow:

536 Chapter 9

To create a custom
function, you begin it with
the word “function”.

A set of parentheses follow the function
name. You can send one or more values into your
function as arguments, each separated by a
comma - in this case, there’s just one value.

This is whatever you
decide you want to name
your function - make it
as descriptive as possible.

Curly braces indicate where the function code should go, just like in a loop or if statement.

When you’re ready to use a custom function, just call it by name and enter
any values that it expects in parentheses. If the function is designed to
return a value, you can assign it to a new variable, like this:

We pass in a string,
“tightrope, walker, circus”.

The function returns
a new string with the
commas replaced by spaces.

Functions let you reuse code
A function is a block of code separate from the rest of your code that
you can execute wherever you want in your script. Until now, you’ve
used built-in functions that PHP has already created. explode(),
substr(), and mysqli_query() are all functions that are predefined
by PHP and can be used in any script.

But you can also write your own custom functions to provide features
not supplied by the language. By creating a custom function, you can use
your own code again and again without repeating it in your script. Instead,
you just call the function by name when you want to run its code.

Following is an example of a custom function called replace_
commas() that replaces commas with spaces in a string:

function replace_commas($str) {

 $new_str = str_replace(',', ' ', $str);

 return $new_str;

}

$clean_search = replace_commas('tightrope, walker, circus');

Custom functions
allow you to
organize a chunk
of PHP code by
name so that it can
be easily reused.

A function can return a value to
the code that called it - in this
case we return the altered string.

writing custom php functions

you are here 4 537

string and custom functions

Actually, this is new. Here’s where we
return the new query so the code that
called the function can use it.

Nothing new
inside the
function!

We’re passing into the function
the $user_search array we
created from the data
entered into the search form.

This is the value from the
search form the user submitted.This lets us capture the value

our function returns, in this
case our new search query.

Build a query with a custom function
We’ve already written much of the code we need to create the custom
function that generates a Risky Jobs search query. All that’s left is dropping
the code into a PHP function skeleton. Here’s the custom build_
query() function:

function build_query($user_search) {
 $search_query = "SELECT * FROM riskyjobs";

 // Extract the search keywords into an array
 $clean_search = str_replace(',', ' ', $user_search);
 $search_words = explode(' ', $clean_search);
 $final_search_words = array();
 if (count($search_words) > 0) {
 foreach ($search_words as $word) {
 if (!empty($word)) {
 $final_search_words[] = $word;
 }
 }
 }

 // Generate a WHERE clause using all of the search keywords
 $where_list = array();
 if (count($final_search_words) > 0) {
 foreach($final_search_words as $word) {
 $where_list[] = "description LIKE '%$word%'";
 }
 }
 $where_clause = implode(' OR ', $where_list);

 // Add the keyword WHERE clause to the search query
 if (!empty($where_clause)) {
 $search_query .= " WHERE $where_clause";
 }

 return $search_query;
}

The build_query() function returns a complete SQL query based on
the search string passed into it via the $user_search argument. To use
the function, we just pass along the search data entered by the user, and
then store the result in a new string that we’ll call $search_query:

$search_query = build_query($user_search);

538 Chapter 9

Head First: Look, we’re all wondering one thing:
what’s so wrong with redundant code? I mean
really, it’s easy to create, you just copy and paste
and boom. You’re done.

Custom Function: Oh, don’t get me started
about redundant code. It’s just plain ugly and
makes your code more difficult to read. That’s
bad enough. But there is a much much more
important reason to avoid redundant code.

Head First: Yes?

Custom Function: Well, what if something
changes in your code? That happens pretty often.

Head First: So what? Things change all the time.
You just go in and you fix it.

Custom Function: But what if the thing that
changed was in your redundant code? And was
in five, or maybe ten places throughout your
application?

Head First: I don’t see a problem. You’d just find
them and change them all. Done.

Custom Function: Fine, okay. But what if
you missed changing it in one place? You’re only
human, you programmers. If you missed it, you
might have a very tough time tracking it down.

Head First: Sure, I guess that could happen. But
how do you help?

Custom Function: Ah, but that’s the beauty
that is me. If that code had been in a function, you
could have changed it once. Just once. Bim bam
boom and done.

Head First: I have to admit, that’s pretty
compelling. But I still don’t see why I should go
out of my way to use you. I mean, you’re pretty
limited, right? You can only use strings.

Custom Function: Whoa! Wait a sec there,
buckaroo! I can take any data type you care to
send me. As long as the code inside me handles
that data the way it should, I can use any data
you want me to. Heck, I used an array in that last
example. That’s pretty darn sophisticated, I’d say.

Head First: But you returned a string.

Custom Function: I can return whatever you
want. It’s all about making the most of what I
offer and using me correctly.

Head First: That’s another thing. You’re so
demanding. You have to have data passed in.

Custom Function: Where are you getting these
crazy ideas? You can call me with no variables if
you want, and if I’m set up that way. If you don’t
want to send me data, don’t write any variables in
the parentheses next to my name when you create
me. Although I can’t think of many reasons why
you wouldn’t want to pass data to me. And get
data back out again with a return statement.

Head First: We’re all out of time. Thanks for the
time.

Custom Function: Don’t mention it. I live
to serve. Or is that serve to live? Or serve liver?
Something like that.

Custom Functions Exposed
This week’s interview:
Custom functions: how custom are
they really?

Custom Functions Exposed
This week’s interview:
Custom functions: how custom are
they really?

interview with a custom function

you are here 4 539

string and custom functions

Absolutely. We can pass the build_query() function two
parameters instead of just one.
We’re already passing the function the $user_search argument, which
contains the user’s search terms. Now we need another argument, $sort, that
indicates how to sort the data. The new $sort argument needs to control the
order of data returned by the query in the six ways we came up with back on
page 535: sorting by the job_title, state, and date_posted columns of
the riskyjobs table in both ascending and descending order.

We could store the actual ORDER BY strings in $sort to indicate the sort order.
Or we could use the numbers 1 through 6 to represent each of the sorts, like this:

$sort == 1 ➡ ORDER BY job_title

$sort == 2 ➡ ORDER BY job_title DESC

$sort == 3 ➡ ORDER BY state

$sort == 4 ➡ ORDER BY state DESC

$sort == 5 ➡ ORDER BY date_posted

$sort == 6 ➡ ORDER BY date_posted DESC

But aren’t integers more cryptic when reading through your code? Without
helpful comments, yes, but there’s a more important reason to go with integers
here. If we used ORDER BY strings, our data would show up in the URL of the
script as part of each heading link. This would inadvertently reveal our table’s
column names, which you’d rather not make public for security reasons.

There’s not much point in
sorting by job description,
as alphabetical order
doesn’t mean much there.

We just arbitrarily
chose these numbers
and the meaning that
each one has. There
are no special rules
about it other than to
use them consistently.

Test Drive
Modify the Search script to use the build_query() function.
Create the new build_query() function in the search.php script, making
sure to replace the original code with a call to the new function. Upload the script
to your web server and try out a search in a web browser to make sure it works OK.

That new custom build_query() function is cool,
but it doesn’t yet sort the search results. Could
we add in another parameter that does that?

540 Chapter 9

OK, I get how the new $sort argument
works, but how do we know which value
for $sort to pass into our function?
Doesn’t the user have to tell us that?

Yes, users must specify how to sort the search results, just as
they specify the search terms themselves.
The good news is we already know how we want to implement this functionality: we’re
going to turn the column headings on our results page into hyperlinks. When a user
clicks on a given heading, like “State,” we’ll pass the number for sorting by state into
our build_query() function.

But we still have to get the sort order from the link to the script. We can do this when
generating custom links for the headings by tacking on a sort parameter to the URL:

$sort_links .= '<td><a href = "' . $_SERVER['PHP_SELF'] .

 '?usersearch=' . $user_search . '&sort=3">State</td>';

We want to reload the page when users
click a column heading to sort results, so
we make this a self-referencing form.

Our build_query() function needs the user’s search keywords to display results, so we pass that in the URL.
We pass along sort data to indicate the
desired sorting of the search. Since this
is the state link, “sort” is equal to 3.

When the results page is generated, each heading link (except “Job Description”) has its
own customized URL, including a sort value for how the results should be sorted.

Ordering by description
wouldn’t tell us much so
there’s no reason to turn it
into a sort link.

The search results are generated as
part of an HTML table, which is
why there’s a <td> tag here.

letting users specify the type of sort

you are here 4 541

string and custom functions

Joe: Normally, the same heading would allow the user to sort in either ascending or
descending order.

Jill: That’s right. Each time they click a heading it just reverses the order.

Frank: Doesn’t that mean we now have to somehow keep up with the state of the
headings each time the user clicks them because they now have to link differently
depending on what link they currently hold.

Joe: I don’t see what you mean.

Frank: Well, the headings don’t always do the same sort. For example, if you click the
“Job Title” heading and it sorts the results by ascending job titles, then the link must
change to now sort on descending job titles the next time it is clicked.

Jill: That’s right. But keep in mind that each type of sort has a number in the link
URL to let the script know what kind of sort to carry out. And since we’re generating
those links, we can control exactly what sort numbers get put in them.

Joe: I see. So the challenge for us is to somehow structure our code to be able to
generate the correct link based on the current state of the sort, right?

Frank: Ah, I’ve got it! Isn’t that something we can solve with a few if statements? I
mean, that’s the kind of decision making they’re good for, right?

Joe: Yes, that would work but we’re talking about several decisions involving the exact
same piece of data, the sort type. It would really be nice if we could come up with a
better way to make those decisions other than a bunch of nested if-else statements.

Jill: That’s a great point, and it’s a perfect opportunity to try out a new statement I
heard about. The switch statement lets you make multiple decisions, way more than
two, based solely on a single value.

Frank: That sounds great. Let’s give it a try.

Joe: I agree. Anything to avoid complicated if-else statements. Those things give
me a headache!

Jill: Yeah, me too. I think the switch statement might just be the ticket...

Frank Jill Joe

Hmm. I see how those links work for
the first three queries, but what about
the other three ORDER BYs that sort in
descending order? Where do they go?

542 Chapter 9

switch ($benefit_code) {

case 1:

 $benefits = 'Major medical, 10 sick days';

 break;

case 2:

 $benefits = 'Death and dismemberment only, one month paid leave';

 break;

case 3:

case 4:

 $benefits = 'Good luck!';

 break;

default:

 $benefits = 'None.';

}

echo 'We offer four comprehensive benefits packages';

echo 'The plan you have selected: ' . $benefits;

SWITCH makes far more decisions than IF
The switch statement offers an efficient way to check a value and execute
one of several different blocks of code depending on that value. This
is something that would require a small army of if-else statements,
especially in situations involving quite a few options.

Instead of writing nested if-else statements to check for each possible
value, you instead write a switch statement that has a case label
corresponding to each possible value. At the end of each case label, you
put the statement break;, which instructs PHP to drop out of the entire
switch statement and not consider any other cases. This ensures that
PHP will execute the code in no more than one case.

Let’s take a look at an example that uses switch:

A SWITCH statement
contains a series of
CASE labels that
execute different code
blocks depending on
the value of a variable.

This is the value the switch
statement is checking - it
controls the entire switch.

If you need to do the same thing for two
or more values, just leave off the break
statement until you reach the last value.

Any values stored in $benefit_code
other than 1, 2, 3, or 4 will cause
the default code to execute.

This code is only
executed when
$benefit_code is 1.

The break statement
tells PHP to drop out of
the switch statement.

Not really. There are only three
packages since 3 and 4 are both the
same thanks to 3 not having a break.

the php switch statement

you are here 4 543

string and custom functions

 generate_sort_links($user_search, $sort) {

 $sort_links = '';

 ($sort) {

 case 1:

 $sort_links .= '<td><a href = "' . $_SERVER['PHP_SELF'] . '?usersearch=' . $user_search .

 '&sort= ">Job Title</td><td>Description</td>';

 $sort_links .= '<td><a href = "' . $_SERVER['PHP_SELF'] . '?usersearch=' . $user_search .

 '&sort= ">State</td>';

 $sort_links .= '<td><a href = "' . $_SERVER['PHP_SELF'] . '?usersearch=' . $user_search .

 '&sort= ">Date Posted</td>';

 case 3:

 $sort_links .= '<td><a href = "' . $_SERVER['PHP_SELF'] . '?usersearch=' . $user_search .

 '&sort= ">Job Title</td><td>Description</td>';

 $sort_links .= '<td><a href = "' . $_SERVER['PHP_SELF'] . '?usersearch=' . $user_search .

 '&sort= ">State</td>';

 $sort_links .= '<td><a href = "' . $_SERVER['PHP_SELF'] . '?usersearch=' . $user_search .

 '&sort= ">Date Posted</td>';

 case 5:

 $sort_links .= '<td><a href = "' . $_SERVER['PHP_SELF'] . '?usersearch=' . $user_search .

 '&sort= ">Job Title</td><td>Description</td>';

 $sort_links .= '<td><a href = "' . $_SERVER['PHP_SELF'] . '?usersearch=' . $user_search .

 '&sort= ">State</td>';

 $sort_links .= '<td><a href = "' . $_SERVER['PHP_SELF'] . '?usersearch=' . $user_search .

 '&sort= ">Date Posted</td>';

 $sort_links .= '<td><a href = "' . $_SERVER['PHP_SELF'] . '?usersearch=' . $user_search .

 '&sort= ">Job Title</td><td>Description</td>';

 $sort_links .= '<td><a href = "' . $_SERVER['PHP_SELF'] . '?usersearch=' . $user_search .

 '&sort= ">State</td>';

 $sort_links .= '<td><a href = "' . $_SERVER['PHP_SELF'] . '?usersearch=' . $user_search .

 '&sort= ">Date Posted</td>';

 }

 return ;

}

Risky Jobs has a new function called generate_sort_links() that allows users to sort
search results by clicking on the result headings. Unfortunately, it’s missing some important
code. Finish the code for the function. And don’t forget the numbers for each search type:
1 = ascending job title, 2 = descending job title, 3 = ascending state, 4 = descending state,
5 = ascending date posted, and 6 = descending date posted.

This is the default set of headings that should
appear when the user hasn’t chosen a sort method.

544 Chapter 9

 generate_sort_links($user_search, $sort) {

 $sort_links = '';

 ($sort) {

 case 1:

 $sort_links .= '<td><a href = "' . $_SERVER['PHP_SELF'] . '?usersearch=' . $user_search .

 '&sort= ">Job Title</td><td>Description</td>';

 $sort_links .= '<td><a href = "' . $_SERVER['PHP_SELF'] . '?usersearch=' . $user_search .

 '&sort= ">State</td>';

 $sort_links .= '<td><a href = "' . $_SERVER['PHP_SELF'] . '?usersearch=' . $user_search .

 '&sort= ">Date Posted</td>';

 case 3:

 $sort_links .= '<td><a href = "' . $_SERVER['PHP_SELF'] . '?usersearch=' . $user_search .

 '&sort= ">Job Title</td><td>Description</td>';

 $sort_links .= '<td><a href = "' . $_SERVER['PHP_SELF'] . '?usersearch=' . $user_search .

 '&sort= ">State</td>';

 $sort_links .= '<td><a href = "' . $_SERVER['PHP_SELF'] . '?usersearch=' . $user_search .

 '&sort= ">Date Posted</td>';

 case 5:

 $sort_links .= '<td><a href = "' . $_SERVER['PHP_SELF'] . '?usersearch=' . $user_search .

 '&sort= ">Job Title</td><td>Description</td>';

 $sort_links .= '<td><a href = "' . $_SERVER['PHP_SELF'] . '?usersearch=' . $user_search .

 '&sort= ">State</td>';

 $sort_links .= '<td><a href = "' . $_SERVER['PHP_SELF'] . '?usersearch=' . $user_search .

 '&sort= ">Date Posted</td>';

 $sort_links .= '<td><a href = "' . $_SERVER['PHP_SELF'] . '?usersearch=' . $user_search .

 '&sort= ">Job Title</td><td>Description</td>';

 $sort_links .= '<td><a href = "' . $_SERVER['PHP_SELF'] . '?usersearch=' . $user_search .

 '&sort= ">State</td>';

 $sort_links .= '<td><a href = "' . $_SERVER['PHP_SELF'] . '?usersearch=' . $user_search .

 '&sort= ">Date Posted</td>';

 }

 return ;

}

If $sort is 1, it means we’ve already
sorted by job title, so now we need
to re-sort it in descending order.

If $sort hasn’t been set yet or if it’s 2,
4, or 6, we should display the original links
that sort the data in ascending order.

Risky Jobs has a new function called generate_sort_links() that allows users to sort
search results by clicking on the result headings. Unfortunately, it’s missing some important
code. Finish the code for the function. And don’t forget the numbers for each search type:
1 = ascending job title, 2 = descending job title, 3 = ascending state, 4 = descending state,
5 = ascending date posted, and 6 = descending date posted.

2

3

5

1

4

3

1

3

6

1

3

5

default:

break;

break;

break;

$sort_links

switch

function

the completed generate_sort_links() function

you are here 4 545

string and custom functions

function build_query($user_search, $sort) {
 $search_query = "SELECT * FROM riskyjobs";

 ...

 // Add the keyword WHERE clause to the search query
 if (!empty($where_clause)) {
 $search_query .= " WHERE $where_clause";
 }

 // Sort the search query using the sort setting
 switch ($sort) {
 // Ascending by job title
 case 1:
 $search_query .= " ORDER BY title";
 break;
 // Descending by job title
 case 2:
 $search_query .= " ORDER BY title DESC";
 break;
 // Ascending by state
 case 3:
 $search_query .= " ORDER BY state";
 break;
 // Descending by state
 case 4:
 $search_query .= " ORDER BY state DESC";
 break;
 // Ascending by date posted (oldest first)
 case 5:
 $search_query .= " ORDER BY date_posted";
 break;
 // Descending by date posted (newest first)
 case 6:
 $search_query .= " ORDER BY date_posted DESC";
 break;
 default:
 // No sort setting provided, so don't sort the query
 }

 return $search_query;
}

We’re now passing in the $sort
argument to our function, in
addition to $user_search.

Here are the code additions to build_query(). This
switch statement checks the value of $sort and adds the corresponding ORDER by statement to the end of the search query.

We return $search_query as before, only this time with an ORDER BY clause at the end.

When users load the results
page without clicking a
column heading, $sort will be
empty, so as a default we
won’t sort the results at all.

Give build_query() the ability to sort
We now have two functions to handle Risky Jobs searches. build_
query() constructs an SQL query based on search terms entered by the
user, and generate_sort_links() generates hyperlinks for the search
result headings that allow the user to sort the results. But build_query()
isn’t quite finished since the query it generates doesn’t yet sort. The function
needs to append an ORDER BY clause to the query. But it has to be the
correct ORDER BY clause, as determined by a new $sort argument:

546 Chapter 9

Test Drive
Revamp the Search script to use the two new custom functions.
Create the new generate_sort_links() function in the search.php script,
and then add the new code to the build_query() function so that it generates a
query with sorted results. Don’t forget to actually call the generate_sort_links()
function in the script in place of the code that echoes the result headings.

Upload the script to your web server, open the search.html page in a browser, and
try doing a search. Now click the headings above the search results to sort the jobs based
on the different data. Make sure to click the same heading more than once to swap
between ascending and descending order.

The generate_sort_links()
function generates the
clickable column headings,
including the packaging of
sort options into the URL
of each link.

The build_query() function takes the search terms
the user entered, explodes the query into an array,
cleans out any empty strings in the array, and
builds an SQL query with the terms and an ORDER
BY corresponding to the sort value, if any.

Now I can see the oldest
jobs, the ones where they are
getting truly desperate to hire
a matador in Vermont.

test out the revised search.php scirpt

you are here 4 547

string and custom functions

How do other sites avoid having lots
of search results on a single page?

But sometimes I try a
broader search and the
results are overwhelming.

This is an awful lot
of job listings to try
and take in at once.

548 Chapter 9

Pagination
breaks query
results into sets,
and displays
each set on its
own web page.

Each page shows five results,
along with links to access the
other pages of results. Users
can easily click through each
page and avoid having to scroll.

These links allow users
to navigate through
multiple pages.

That’s great, but how do we break up
our results into groups like that? Our
SQL query returns all the results that
match the search string.

We need a query that will return just a
subset of the results, not all of them.
Luckily, SQL already gives us a way to do that: the
LIMIT clause. Let’s revisit LIMIT and see how we
can use it to split our results up into groups of five...

We can paginate our results
We’re displaying all of our results on a single page right now, which is a
problem when a search matches lots of jobs. Instead of forcing users to
scroll up and down a huge page to see all the job matches, we can use
a technique called pagination to display the search results. When you
paginate results, you break the collection of job matches into groups, and
then display each group on a separate web page, like this:

The current
page is not a
link - this is the
second page of
job results.

use pagination to display a subset of results

you are here 4 549

string and custom functions

Get only the rows you need with LIMIT
The key to controlling which rows we display on any given page is to add
another clause to our search query, a LIMIT clause. To get a maximum of
five rows, we add LIMIT 5 to the end of our query, like this:

SELECT * FROM riskyjobs

 ORDER BY job_title

 LIMIT 5

Only return the first five
matches no matter how many
matches are actually found.

Without a WHERE clause, this
query returns all the jobs in the
database, which is equivalent to
searching with no search terms.

If you recall, we use the custom build_query() function to create our
Risky Jobs query. To force it to only display the first five matches, we just
concatenate LIMIT 5 to the end of the query string after it’s built:

$query = build_query($user_search, $sort);

$query = $query . " LIMIT 5";

This works well for getting the first five rows of results, but what about the
next five rows, and the five rows after that? To pull out rows deeper in the
result set, we have to change our LIMIT up a bit. But how? LIMIT 10
would get the first 10 rows, so that wouldn’t work. We need to get rows
6 through 10, and to do that we use LIMIT with different syntax. When
you add two arguments to LIMIT, the first arguments controls how many
rows you skip, and the second argument controls how many rows you get
back. For example, here’s how you get rows 11 through 25, which would
be the third page of results:

$query = build_query($user_search, $sort);

$query = $query . " LIMIT 10, 5";

Custard Walker ...
Shark Trainer ...

Voltage Checker ...
Antenna Installer ...

Elephant Proctologist ...
Airplane Engine Cleaner ...

Matador ...
Paparazzo ...

Tightrope Walker ...
Crocodile Dentist ...

Mime ...
Pet Food Tester ...

Toreador ...
Electric Bull Repairer ...

Firefighter ...
...

Adding a LIMIT clause to the end of a
query limits the number of rows returned
by the query, in this case to five rows.

The first argument tells LIMIT how many rows
to skip - the first ten.

The second argument
controls how many rows
are returned - five,
same as earlier.

LIMIT controls
what and how many
rows are returned
by an SQL query.

550 Chapter 9

Sort of. We need a different LIMIT depending on the
page and link, but we can generate it instead of
writing multiple queries.
All we need to do is modify our build_query() function a little
further to add the correct LIMIT at the end of the query it constructs.

Control page links with LIMIT
An important part of pagination is providing links that allow the user to
move back and forth among the different pages of results. We can use the
LIMIT clause to set up the naviagation links for the bottom of each page
of results. For example, the “next” and “previous” links each have their
own LIMIT. The same thing applies to the numeric links that allow the
user to jump straight to a specific page of results.

Here are the LIMIT clauses for the first three pages of search results,
along with LIMITs for some of the page links:

LIMIT 0, 5 LIMIT 5, 5 LIMIT 10, 5

LIMIT 5, 5LIMIT 15, 5LIMIT 5, 5

No problemo. We just need to write
a bunch of queries with a different
LIMIT on each one, right?

use LIMIT to help paginate results

you are here 4 551

string and custom functions

Compute the number of pages, $num_pages, using $total divided

by $results_per_page. So for any given search, there is a total of

$total matching rows, but they are displayed a page at a time, with

each page containing $results_per_page matches. There are

$num_pages pages, and the current page is identified by $cur_page.

$num_pages

Keep track of the pagination data
In order to add the new pagination functionality to build_query(),
we need to set up and keep track of some variables that determine which
search results to query and show on a given page. These variables are also
important in determining how the navigation links at the bottom of the
page are generated.

Get the current page, $cur_page , from the script

URL via $_GET. If no current page is passed through

the URL, set $cur_page to the first page (1).

$cur_page

This is the number of results per page, which you choose
based on the look and feel of the page, and how many search
results fit nicely on the page with the layout. This is where
the second argument to the LIMIT clause comes from.

$results_per_page

Compute the number of rows to skip before the rows on the current page

begin, $skip. This variable is what controls where each page begins in

terms of results, providing the first argument to the LIMIT clause.

$skip

Run a query that retrieves all the rows with no LIMIT,
and then count the results and store it in $total. In
other words, this is the total number of search results.

$total

552 Chapter 9

// Grab the sort setting and search keywords from the URL using GET

$sort = $_GET['sort'];

$user_search = $_GET['usersearch'];

// Calculate pagination information

$cur_page = isset($_GET['page']) ? $_GET['page'] : 1;

$results_per_page = 5; // number of results per page

$skip = (($cur_page - 1) * $results_per_page);

Get the
current page,
$cur_page
from the
URL via GET.
If there’s no
current page,
set $cur_page
to 1.

Compute the number of the
first row on the page, $skip.

Set the number of
results per page.

Default to the first
page if the page
number isn’t set.

Set up the pagination variables
Most of the pagination variables can be set up purely through
information provided via the URL, which is accessible through the
$_GET superglobal. For example, the $sort, $user_search, and
$cur_page variables all flow directly from GET data. We can then
use these variables to calculate how many rows to skip to get to the
first row of data, $skip. The $results_per_page variable is a
little different in that we just set it to however many search results we
want to appear on each page, which is more of a personal preference
given the layout of the results page.

We’re still missing a couple of important variables: $total and
$num_pages. These variables can only be set after performing
an initial query to find out how many matches are found in the
database. Once we know how many matches we have, it’s possible
to set these variables and then LIMIT the results...

Get the sort order,
which is an integer
in the range 1 to 6.

Grab the search string that the user entered
into the form.

This calculation results in 0
for page 1, 5 for page 2, 10
for page 3, etc.

setting up variables needed for pagination

you are here 4 553

string and custom functions

// Query to get the total results

$query = build_query($user_search, $sort);

$result = mysqli_query($dbc, $query);

$total = mysqli_num_rows($result);

$num_pages = ceil($total / $results_per_page);

// Query again to get just the subset of results

$query = $query . " LIMIT $skip, $results_per_page";

$result = mysqli_query($dbc, $query);

while ($row = mysqli_fetch_array($result)) {

 echo '<tr class="results">';

 echo '<td valign="top" width="20%">' . $row['title'] . '</td>';

 echo '<td valign="top" width="50%">' . substr($row['description'], 0, 100) . '...</td>';

 echo '<td valign="top" width="10%">' . $row['state'] . '</td>';

 echo '<td valign="top" width="20%">' . substr($row['date_posted'], 0, 10) . '</td>';

 echo '</tr>';

}

echo '</table>';

This query retrieves all
the rows with no LIMIT.

Compute number of pages by dividing the total
number of rows by the number of results per
page, and then rounding up the result.

The ceil() function rounds
a number up to the nearest integer - the “ceiling”.

mysqli_num_rows() returns a
count of how many total rows
were returned by the query.

Issue a second query, but
this time LIMIT the
results to the current page.

Revise the query for paginated results
Now that we’ve got our variables set up, we need to revise the Search
script so that instead of querying for all results, it queries for just the
subset of results we need for the page the user is currently viewing. This
involves first doing a query so that the $total variable can be set and
the $num_pages variable can be calculated. Then we follow up with a
second query that uses $skip and $results_per_page to generate
a LIMIT clause that we add to the end of the query. Here’s the revised
section of the search.php script with these new additions highlighted:

Store away the total number of rows with a call to the
mysqli_num_rows() function.

Skip this
many rows... ...and return

this many rows.

554 Chapter 9

Generate the page navigation links
So we’ve set up some variables and built a new SQL query that returns a
subset of results for the page. All that’s left to do is to generate the page
navigation links for the bottom of the sarch results page: the “previous”
link, numerical links for each page of results, and the “next” link. We
already have all the information we need to put together the links. Let’s go
over it again to make sure it’s clear how it will be used.

if ($num_pages > 1) {

 echo generate_page_links($user_search, $sort, $cur_page, $num_pages);

}

OK, we know what information we need in order to generate the page
navigation links, so we’re ready to crank out the PHP code to make it
happen. This code could just be dropped into the search.php script,
but what if we put it in its own custom function? That way the main script
code that generates the search results can be much simpler, requiring
only a single line of code to generate the page links—a call to to this new
function, which we’ll call generate_page_links().

The only catch is that we don’t want this function to get called if there
is only one page of results. So we need to do a check on the number of
pages before calling the new generate_page_links() function.
Here’s how we can perform the check and call the function, making sure
to pass along the required information as function arguments:

$user_search

Every page link still has to know what the

user is actually searching for, so we have to

pass along the search terms in each link URL.

$cur_page
The page navigation links are entirely dependent
on the current page, so it’s very important that it
get packaged into every link URL.

$num_pages

We need to know how many pages there are
in order to generate links for each of them.

$sort

The sort order also factors into the pagination

links because the order has to be maintained or

else the pagination wouldn’t make any sense.

First check to make sure there is
more than one page of search results;
otherwise, don’t generate the page links.

Pass along the search string, sort order, current page, and total number of pages to use in generating the page links.

creating the navigation links

you are here 4 555

string and custom functions

function generate_page_links($user_search, $sort, $cur_page, $num_pages) {
 $page_links = '';

 // If this page is not the first page, generate the "previous" link

 if () {

 $page_links .= '<a href="' . $_SERVER['PHP_SELF'] .
 '?usersearch=' . $user_search .
 '&sort=' . $sort .

 '&page=' . () . '"><- ';

 }
 else {
 $page_links .= '<- ';
 }

 // Loop through the pages generating the page number links
 for ($i = 1; $i <= $num_pages; $i++) {

 if () {

 $page_links .= ' ' . $i;
 }
 else {
 $page_links .= ' <a href="' . $_SERVER['PHP_SELF'] .
 '?usersearch=' . $user_search .
 '&sort=' . $sort .
 '&page=' . $i . '"> ' . $i . '';
 }
 }

 // If this page is not the last page, generate the "next" link

 if () {

 $page_links .= ' <a href="' . $_SERVER['PHP_SELF'] .
 '?usersearch=' . $user_search .
 '&sort=' . $sort .
 '&page=' . ($cur_page + 1) . '">->';
 }
 else {
 $page_links .= ' ->';
 }

 return $page_links;
}

PHP & MySQL Magnets
The generate_page_links() function is almost finished, but it’s missing a few pieces of code. Use
the magnets to plug in the missing code and give Risky Jobs the ability to generate page navigation links.

$cur_page

==

$i

$cur_page

<

$num_pages

$cur_page

>

1

$cur_page

-

1

The “previous” link appears
as a left arrow, as in “<-”.

The “next” link appears as
a right arrow, as in “->”.

556 Chapter 9

function generate_page_links($user_search, $sort, $cur_page, $num_pages) {
 $page_links = '';

 // If this page is not the first page, generate the "Previous" link

 if () {

 $page_links .= '<a href="' . $_SERVER['PHP_SELF'] .
 '?usersearch=' . $user_search .
 '&sort=' . $sort .

 '&page=' . () . '"><- ';

 }
 else {
 $page_links .= '<- ';
 }

 // Loop through the pages generating the page number links
 for ($i = 1; $i <= $num_pages; $i++) {

 if () {

 $page_links .= ' ' . $i;
 }
 else {
 $page_links .= ' <a href="' . $_SERVER['PHP_SELF'] .
 '?usersearch=' . $user_search .
 '&sort=' . $sort .
 '&page=' . $i . '"> ' . $i . '';
 }
 }

 // If this page is not the last page, generate the "Next" link

 if () {

 $page_links .= ' <a href="' . $_SERVER['PHP_SELF'] .
 '?usersearch=' . $user_search .
 '&sort=' . $sort .
 '&page=' . ($cur_page + 1) . '">->';
 }
 else {
 $page_links .= ' ->';
 }

 return $page_links;
}

PHP & MySQL Magnets Solution
The generate_page_links() function is almost finished, but it’s missing a few pieces of code. Use
the magnets to plug in the missing code and give Risky Jobs the ability to generate page navigation links.

$cur_page == $i

$cur_page < $num_pages

$cur_page > 1

$cur_page - 1

The “previous” link appears
as a left arrow, as in “<-”.

The “next” link appears as
a right arrow, as in “->”.

The link to a
specific page is just
the page number.

We still have to pass
along the user search
data and the sort
order in each link URL.

Make sure each page link points back to the same script - we’re just passing a different page
number with each link.

the completed generate_page_links() function

you are here 4 557

string and custom functions

<?php
 // This function builds a search query from the search keywords and sort setting
 function build_query($user_search, $sort) {
 ...

 return $search_query;
 }

 // This function builds heading links based on the specified sort setting
 function generate_sort_links($user_search, $sort) {
 ...

 return $sort_links;
 }

 // This function builds navigational page links based on the current page and
 // the number of pages
 function generate_page_links($user_search, $sort, $cur_page, $num_pages) {
 ...

 return $page_links;
 }

 // Grab the sort setting and search keywords from the URL using GET
 $sort = $_GET['sort'];
 $user_search = $_GET['usersearch'];

 // Calculate pagination information
 $cur_page = isset($_GET['page']) ? $_GET['page'] : 1;
 $results_per_page = 5; // number of results per page
 $skip = (($cur_page - 1) * $results_per_page);

 // Start generating the table of results
 echo '<table border="0" cellpadding="2">';

 // Generate the search result headings
 echo '<tr class="heading">';
 echo generate_sort_links($user_search, $sort);
 echo '</tr>';

Grab the sort order and search
string that were passed through
the URL as GET data.

Initialize the pagination variables
since we’ll need them in a moment
to LIMIT the query and build the
pagination links.

Putting together the complete Search script
And finally we arrive at a complete Risky Jobs Search script that displays the
appropriate search results based on the user’s search terms, generates clickable
result heading links for sorting, paginates those results, and generates page
navigation links along the bottom of the page.

We’ve already built these functions,
so there’s no need to rehash every
line of their code here.

search.php

Hang on,
there’s more!

Call the generate_sort_links()
function to create the links for the
result headings, and then echo them.

558 Chapter 9

 // Connect to the database
 require_once('connectvars.php');
 $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME);

 // Query to get the total results
 $query = build_query($user_search, $sort);
 $result = mysqli_query($dbc, $query);
 $total = mysqli_num_rows($result);
 $num_pages = ceil($total / $results_per_page);

 // Query again to get just the subset of results
 $query = $query . " LIMIT $skip, $results_per_page";
 $result = mysqli_query($dbc, $query);
 while ($row = mysqli_fetch_array($result)) {
 echo '<tr class="results">';
 echo '<td valign="top" width="20%">' . $row['title'] . '</td>';
 echo '<td valign="top" width="50%">' . substr($row['description'], 0, 100) . '...</td>';
 echo '<td valign="top" width="10%">' . $row['state'] . '</td>';
 echo '<td valign="top" width="20%">' . substr($row['date_posted'], 0, 10) . '</td>';
 echo '</tr>';
 }
 echo '</table>';

 // Generate navigational page links if we have more than one page
 if ($num_pages > 1) {
 echo generate_page_links($user_search, $sort, $cur_page, $num_pages);
 }

 mysqli_close($dbc);
?>

The complete Search script, continued...

Keep things tidy by closing the database connection.

Call the generate_page_links()
function to generate the page
links, and then echo them.

Q: Do we really have to pass the search, sort, and pagination
information into generate_page_links()?

A: Yes. And the reason has to do with the fact that well-designed
functions shouldn’t manipulate data outside of their own code. So a
function should only access data passed to it in an argument, and
then only make changes to data that it returns.

Q: OK, so what about echoing data? Why doesn’t
generate_page_links() just echo the links?

A: Same problem. By echoing data to the browser, the function
would be effectively reaching beyond itself to make a change
somewhere else. It’s much harder to debug and maintain functions
when it isn’t clear what data they change. The solution is to always
return the data affected by a function, and then do whatever you want
with the data returned by the function, outside of the function.

Here’s the LIMIT clause
we created to query only
a subset of job results.

And here’s the code we wrote that trims down the job description and date posted using the substr() function.

Call the build_query() to build the SQL job search query.

the final search.php

you are here 4 559

string and custom functions

Test Drive
Finish the Risky Jobs Search script.
Add the new generate_page_links() function to the search.php script, making sure to
also add the code that calls it after checking to see if there is more than one page of results. Also
create and initialize the variables used as arguments to the function. And don’t forget to update
the query code so that it uses LIMIT to pull out the correct subset of results for each page.

When all that’s done, upload the new search.php script to your web server, and then open the
search.html page in a web browser. Try a few searches, making sure to search on some terms
that will end up with lots of results so that the new pagination features kick in. For maximum
result pages, do a search with an empty search form.

Don’t forget, the complete source code for the Risky Jobs application
is available for download from the Head First Labs web site:

www.headfirstlabs.com/books/hfphp

Download It!

At last, I’ve found my
dream job! Vermont,
here I come.

Ernesto has found a job with
the perfect amount of risk!

560 Chapter 9

Your PHP & MySQL Toolbox
The Risky Jobs Search script required
quite a few new PHP and MySQL

techniques. Let’s recap some of the
most important ones.

LIKE

Use LIKE to look for data within
an SQL query without necessarily
requiring an identical match. Put
a % in front of and/or after a
search term to let LIKE know
that the term can have other
characters surrounding it.

Custom function
A chunk of PHP code organized
into a named, reusable package.
The idea is to isolate code that
performs a certain task so that
it can be reused with minimal
effort and code duplication.

explode(), implode()
The PHP explode() function breaks a string apart into an array of substrings that are separated by a common delimiter, such as a space or comma. implode() does the opposite - it builds a single string from an array of strings, inserting a delimiter between them.

substr()

This PHP function extracts a
portion of a string based on
arguments you supply it. You can
grab the beginning of a string,
the end of a string, or some piece
in between.

str_replace()

Call this PHP function to do a
find-and-replace on a string
of text, replacing one character
or sequence of characters with
another.

switch-case

A PHP decision-making construct that allows you to execute one of many groups of code based on a single value. If you find yourself with a bunch of nested if-else statements, you may find that you can code it more efficiently as a switch statement.

LIMIT

The LIMIT clause lets you control
exactly how many rows are
returned by an SQL query. Not
only that, but LIMIT can skip
rows in the result set, allowing
you to isolate a subset of results.

CH
AP

T
ER

 9
php & mysql toolbox

this is a new chapter 561

10 regular expressions

Rules for replacement

String functions are kind of lovable. But at the same time,
they’re limited. Sure, they can tell the length of your string, truncate it, and change

certain characters to other certain characters. But sometimes you need to break free and

tackle more complex text manipulations. This is where regular expressions can help.

They can precisely modify strings based on a set of rules rather than a single criterion.

Mrs. Blatt replaced the
class hamster! Did she
think we wouldn’t notice?

562 Chapter 10

Our job seeker information is stored in a table that can be searched
by employers, recruiters, and headhunters to identify potential new
employees. But there’s a problem… the data entered into the form
apparently can’t be trusted!

First Name: Four FingersLast Name:McGrawEmail: four@gregs-listnetPhone: 555-098
Desired Job: Knife Juggler

Risky Jobs lets users submit resumes
Riskyjobs.biz has grown.The company now lets job seekers enter their
resumes and contact information into a web form so that our Risky Jobs
employers can find them more easily. Here’s what the form looks like:

First Name: Jimmy

Last Name: Swift

Email: JS@sim-u-duck.com

Phone: 636 4652

Desired Job: Ninja

First, I couldn’t get a ninja because his phone
number is missing, and now my email to this knife
juggler has bounced. I’ve pretty much had it with
the bad data in the Risky Jobs resume bank.

The new Risky Jobs Registration
form allows job candidates to enter
information about themselves so that
potential employers can find them.In addition to

normal contact
information, a Risky
Jobs candidate must
also enter their
desired job, as well
as their resume.

Employers can search the Risky Jobs candidate database and then contact people to possibly hire
them... assuming enough contact information has been entered!

risky jobs is getting bad data

you are here 4 563

regular expressions

Below is some of the code for the registration.php script, which displays and processes
the user data entered into the form to register a new job candidate. Annotate what you think is
wrong with the code, and how it could be changed to resolve the bad data problem.

<?php
 if (isset($_POST['submit'])) {
 $first_name = $_POST['firstname'];
 $last_name = $_POST['lastname'];
 $email = $_POST['email'];
 $phone = $_POST['phone'];
 $job = $_POST['job'];
 $resume = $_POST['resume'];
 $output_form = 'no';

 if (empty($first_name)) {
 // $first_name is blank
 echo '<p class="error">You forgot to enter your first name.</p>';
 $output_form = 'yes';
 }

 if (empty($last_name)) {
 // $last_name is blank
 echo '<p class="error">You forgot to enter your last name.</p>';
 $output_form = 'yes';
 }

 if (empty($email)) {
 // $email is blank
 echo '<p class="error">You forgot to enter your email address.</p>';
 $output_form = 'yes';
 }

 if (empty($phone)) {
 // $phone is blank
 echo '<p class="error">You forgot to enter your phone number.</p>';
 $output_form = 'yes';
 }

 ...
 }
 else {
 $output_form = 'yes';
 }

 if ($output_form == 'yes') {
?>

...

Continuing validating non-empty job and resume fields.

Show the form.

564 Chapter 10

Below is some of the code for the registration.php script, which displays and processes
the user data entered into the form to register a new job candidate. Annotate what you think is
wrong with the code, and how it could be changed to resolve the bad data problem.

<?php
 if (isset($_POST['submit'])) {
 $first_name = $_POST['firstname'];
 $last_name = $_POST['lastname'];
 $email = $_POST['email'];
 $phone = $_POST['phone'];
 $job = $_POST['job'];
 $resume = $_POST['resume'];
 $output_form = 'no';

 if (empty($first_name)) {
 // $first_name is blank
 echo '<p class="error">You forgot to enter your first name.</p>';
 $output_form = 'yes';
 }

 if (empty($last_name)) {
 // $last_name is blank
 echo '<p class="error">You forgot to enter your last name.</p>';
 $output_form = 'yes';
 }

 if (empty($email)) {
 // $email is blank
 echo '<p class="error">You forgot to enter your email address.</p>';
 $output_form = 'yes';
 }

 if (empty($phone)) {
 // $phone is blank
 echo '<p class="error">You forgot to enter your phone number.</p>';
 $output_form = 'yes';
 }

 ...
 }
 else {
 $output_form = 'yes';
 }

 if ($output_form == 'yes') {
?>

...

The script checks for empty
form fields, which is good, but
some of the form fields have
more specialized data that must
adhere to a certain format.

An email address has a very specific
format that we should enforce before
accepting form data from the user.

Same thing with a phone number - the
user’s form submission shouldn’t be allowed
unless we can be certain that their phone
number is in the correct format.

What we really need is a way to verify
email addresses and phone numbers, the
two fields in the form that have a
specific format. For the other fields it’s
OK to just make sure they aren’t empty.

There isn’t much else we can
check in regard to first and
last names, so this code is fine.

Four Fingers McGraw left a dot out
of his email address near the end - the
form should catch those kind of errors!

Jimmy Swift
didn’t provide an
area code with
his phone number,
which the form
should’ve demanded.

Continuing validating non-empty job and resume fields.

Show the form.

exercise solution

you are here 4 565

regular expressions

Why don’t we use some string
functions to fix the bad data?
Can’t we use str_replace() to
add in the missing data?

You can fix some data with string functions but they don’t
help much when data must fit a very specific pattern.
String functions are well suited to simple find-and-replace operations. For
example, if users submitted their phone numbers using dots to separate
the blocks of digits instead of hyphens, we could easily write some str_
replace() code to substitute in hyphens in their place

But for anything that we can’t possibly know, like the area code of Jimmy Swift’s
phone number, we need to ask the person who submitted the form to clarify.
And the only way we can know that he’s missing an area code is to understand
the exact pattern of a phone number. What we really need is more advanced
validation to ensure that things like phone numbers and email addresses are
entered exactly right.

OK, but can’t we still use string
functions to do this validation?

String functions really aren’t useful for more than the
most primitive of data validation.
Think about how you might attempt to validate an email address using string
functions. PHP has a function called strlen() that will tell you how many
characters are in a string. But there’s no predefined character length for data
like email addresses. Sure, this could potentially help with phone numbers
because they often contain a consistent quantity of numbers, but you still have
the potential dots, dashes, and parentheses to deal with.

Getting back to email addresses, their format is just too complex for string
functions to be of much use. We’re really looking for specific patterns of
data here, which requires a validation strategy that can check user data against
a pattern to see if it’s legit. Modeling patterns for your form data is at the heart
of this kind of validation.

566 Chapter 10

First Name: Jimmy

Last Name: Swift

Email: JS@sim-u-duck.com

Phone: 636 4652

Desired Job: Ninja

Why doesn’t
anyone call?

Decide what your data should look like
Our challenge is to clearly specify exactly what a given piece of form
data should look like, right down to every character. Consider Jimmy’s
phone number. It’s pretty obvious to a human observer that his number is
missing an area code. But form validation isn’t carried out by humans; it’s
carried out by PHP code. This means we need to “teach” our code how
to look at a string of data entered by the user and determine if it matches
the pattern for a phone number.

Coming up with such a pattern can be a challenge, and it involves
really thinking about the range of possibilities for a type of data. Phone
numbers are fairly straightforward since they involve 10 digits with
optional delimiters. Email addresses are a different story, but we’ll worry
about them a bit later in the chapter.

Q: I’m still not sure I see why I can’t
just stick with isset() and empty()
for our form validation.

A: These two functions will tell you
whether or not someone who submitted a
form put data in a text field, but they won’t
tell you anything about the actual data
they entered. As far as the empty()
function is concerned, there’s absolutely no
difference between a user entering “(707)
827-700” or “4FG8SXY12” into the phone
number field in our form. This would be a
huge problem for sites like Risky Jobs, which
depends on reliable data to get in touch with
job candidates.

Q: If isset() and empty()
won’t work, can’t we simply have
someone check the data after it goes into
the database?

A: You can, but by then it’s often too late
to fix the bad data. If a phone number is
missing an area code, we need to ask the
user to clarify things by resubmitting the data
in that form field.
If you wait until later and check the data
once it’s already in the database, you may
have no way of contacting the user to let
them know that some of their data was
invalid. And since the user probably won’t
realize they made a mistake, they won’t
know anything’s wrong either.

So, the best plan of action is to validate
the users form data immediately when they
submit the form. That way you can display
an error message and ask them to fill out the
form again.

Q: So then how do you decide whether
the data the user entered is valid or not?

A: That depends on what kind of data
it is. Different types of information have
different rules that they need to follow:
what kind of characters they contain, how
many characters they have, what order
those characters are in. So you need to
communicate those rules in your PHP code.
Let‘s take a closer look at the rules
governing phone numbers...

It’s easy for a human to
look and see that Jimmy
forgot his area code, but not so trivial making the same “observation” from PHP code.

define what your data should look like

you are here 4 567

regular expressions

Write down all the different ways you can think of to represent a
phone number.

What are some rules that are reasonable to expect your users to follow when
filling out your form? For example, phone numbers should not contain letters.

Here’s a rule to
get you started. We could insist on rules such as only digits and all 10 digits must

be run together

568 Chapter 10

Spaces, dashes, right and
left parentheses, and
sometimes periods can
show up in phone numbers.

There are so many possible
patterns. How can we make
rules to cover all of them?

There are some things we know for sure about phone
numbers, and we can use those things to make rules.
First, they can’t begin with 1 (long distance) or 0 (operator). Second, there
should be 10 digits. And even though some people might have clever
ways to represent their phone numbers with letters, phone numbers are
esentially numbers—10 digits when we include an area code.

Write down all the different ways you can think of to represent a
phone number.

What are some rules that are reasonable to expect your users to follow when
filling out your form? For example, phone numbers should not contain letters.

It’s even possible to include letters
in a phone number, although this is
stretching the limits of what we
should consider a valid number.

Or we could tell the people filling out the form that their number
must look like (555)636-4652. It’s up to us to make the rules.

We could break the number into three form fields, one for area code, one
for the first three digits, and the final one for the last four digits.

555 636 4652
(555) 636-4652
(555)636-4652
(555) 6364652
555636-4652
555 636-4652
555.636.4652
5556364652
555-636-4652
555 ME NINJA

We could insist on rules such as only digits and all 10 digits must be
run together

Here’s a rule to
get you started.

sharpen your pencil solution

you are here 4 569

regular expressions

###-###-#### We’ve chosen 3 digits, a
dash, the next 3 digits, a
dash, and the final 4 digits.

555-636-46521

5556364652

636-46521

555-636-4652

This is missing digits, a dash, and the dash that’s there seems out of place.

Q: Do I have to use that pattern for
matching phone numbers?

A: That’s what we’re using for Risky Jobs
because it’s pretty standard, but when you’re
designing your own forms you should pick
one that makes sense to you. Just keep in
mind that the more commonly accepted the
pattern is, the more likely users will follow it.

Q: Couldn’t I just tell users to enter
a pattern like ########## and then use
PHP’s string functions to make sure the
data contains 10 numeric characters?

A: You could, and that would be sufficient
if that was the pattern your users expected.
Unfortunately, it’s not really a very good
pattern because most people don’t run their
phone number together like that when filling
out forms. It’s a bit non-standard, which
means users won’t be used to it, and will be
less likely to follow it.

Q: So? It’s my pattern, I can do what I
want, right?

A: Sure, but at the same time you want
your users to have a good experience.
Otherwise they’ll quit visiting your site.

Q: OK, so couldn’t I use three text
fields for the phone number: one for area
code, then three digits in the second, and
then the last four digits in the third. Then
I could use PHP's string functions.

A: Yes, you could, and some sites do
that. But being able to match patterns gives
you more flexibility. And matching patterns is
useful for lots more things than just making
sure your user enters the right pattern for
a phone number, as you’ll see later in this
chapter.

Formulate a pattern for phone numbers
To go beyond basic validation, such as empty() and isset(), we need to
decide on a pattern that we want our data to match. In the case of a phone
number, this means we need to commit to a single format that we expect
to receive from the phone field in our form. Once we decide on a phone
number format/pattern, we can validate against it.

Following is what is likely the most common phone number format in
use today, at least for domestic U.S. phone numbers. Committing to this
format means that if the phone number data users submit doesn’t match
this, the PHP script will reject the form and display an error message.

Valid!

This has
no dashes.

There’s an
extra digit! This one matches our

pattern perfectly.

570 Chapter 10

Regular expressions
are rules used to
match patterns in
one or more strings.

 /^\d\d\d\d\d\d\d\d\d\d$/

This part is easy. All regular
expressions begin and end
with forward slashes.

The carat means to
start matching at the
beginning of the string.

\d stands for digit. The
first character in the
string must be a digit...

...and each one of these
means the same thing, to look
for another digit, 10 total.

This dollar sign
says that the
string must end.

This means the same thing as
the pattern above. {10} is a
shorthand way to say 10 digits.

/^\d{10}$/

There’s also a more concise way of writing this same regular
expression, which makes use of curly braces. Curly braces are
used to indicate repetition:

Match patterns with regular expressions
PHP offers a powerful way to create and match patterns in text. You can
create rules that let you look for patterns in strings of text. These rules
are referred to as regular expressions, or regex for short. A regular
expression represents a pattern of characters to match. With the help of
regular expressions, you can describe in your code the rules you want your
strings to conform to in order for a match to occur.

As an example, here’s a regular expression that looks for 10-digits in a row.
This pattern will only match a string that consists of a 10 digit number.
If the string is longer or shorter than that, it won’t match. If the string
contains anything but numbers, it won’t match. Let’s break it down.

introducing regular expressions

you are here 4 571

regular expressions

It’s true, regular expressions are cryptic and often
difficult to read... but they are very powerful.
Power often comes at a cost, and in the case of regular expressions,
that cost is learning the cryptic syntax that goes into them. You won’t
become a master of regular expressions overnight, but the good news
is you don’t have to. You can do some amazingly powerful and useful
things with regular expressions, especially when it comes to form field
validation, with a very basic knowledge of regular expressions. Besides,
the more you work with them and get practice breaking them down
and parsing them, the easier they’ll be to understand.

Yeah, regular expressions
are really clear. About as
clear as mud.

572 Chapter 10

These metacharacters are cool, but what if you really want a specific
character in your regex? Just use that character in the expression.
For example, if you wanted to match the exact phone number

“707-827-7000”, you would use the regex /707-827-7000/.

Build patterns using metacharacters
Being able to match digits in a text string using \d is pretty cool, but if
that’s all the functionality that regular expressions provided, their use
would be sorely limited. Just matching digits isn’t even going to be enough
for Risky Jobs phone number validation functionality, as we’re going to
want to be able to match characters like spaces, hyphens, and even letters.

Luckily, PHP’s regex functionality lets you use a bunch more special
expressions like \d to match these things. These expresions are called
metacharacters. Let’s take a look at some of the most frequently used
regex metacharacters.

Looks for the end of a string. You can use this metacharacter with ^ to bookend your match, specifying exactly where it will start and finish. For example, /^\w{5}\s\d{3}$/ will match “Nanny 411”, but not “Nanny 411 is great” or “Call Nanny 411”.

$

As you saw on the previous page, this metacharacter

looks for a digit. It will match any number from 0 to 9.

Keep in mind, on its own, \d matches just one digit, so

if you wanted to match a two-digit number, you’d need

to use either \d\d or \d{2}.

\d

Looks for any alphanumeric character—in other words, either a letter or a number. It will match one character from the following: a–z and A–z (both uppercase and lowercase letters), as well as 0–9 (just like \d) .

\w

Looks for whitespace. This doesn’t mean just the space character you get on the screen when you hit the Space bar; \s also matches a tab character, or a newline or carriage return. Again, keep in mind that \s will only match one of these characters at a time. If you wanted to match exactly two space characters in a row, you’d need to use \s\s or \s{2}.

\s

We saw the caret metacharacter on the previous page

as well. It looks for the beginning of a string, so you

can use it to indicate that a match must happen at

the start of a text string, rather than anywhere in the

string. For example, the regex /^\d{3}/ will match

the string “300 applications”, but not the string “We

received 300 applications”.

^

The period metacharacter, matches any one

character, except a newline. It’ll match a letter or

digit, just like \w, as well as a space or tab, like \s.

.

Metacharacters let
us describe patterns
of text within a
regular expression.

common regex metacharacters

you are here 4 573

regular expressions

String it matchesRegex

Match each different phone number regular expression with the phone
number that it matches.

/^\d{3}\s\d{7}$/

/^\d{3}\s\d{3}\s\d{4}$/

/^\d{3}-\d{3}-\d{4}$/

/^\d{10}$/

/^\d{3}\s\w\w\s\w{5}$/

/^\d{3}\d{3}-\d{4}$/ 555636-4652

555 ME NINJA

555 6364652

555 636 4652

5556364652

555-636-4652

574 Chapter 10

Match each of the phone number regular expressions with the phone
number that it matches.

This is the pattern Risky Jobs
needs to match phone numbers in
the form ###-###-####.

The \w metacharacters in
this pattern match letters.

This pattern is all digits, so it
can only match a phone number with no spaces or hyphens.

/^\d{3}\s\d{7}$/

/^\d{3}\s\d{3}\s\d{4}$/

/^\d{3}-\d{3}-\d{4}$/

/^\d{10}$/

/^\d{3}\s\w\w\s\w{5}$/

/^\d{3}\d{3}-\d{4}$/ 555636-4652

555 ME NINJA

555 6364652

555 636 4652

5556364652

555-636-4652

Solution

who does what solution

you are here 4 575

regular expressions

BE the Regular Expression
Your job is to play the role of regular
expression, and either accept or reject phone
numbers for Risky Jobs users. Check the

box of phone numbers that you
deem valid, and leave the others
unchecked. Annotate why any
invalid numbers are invalid.

/^\d{3}-\d{3}-\d{4}$/

555-612-8527-8724

(555) 935-2659

555-441-9005 555.903.6386

(555)672-0953 555-343-8263

Surfing can be quite
risky, especially
when you work as
professional shark bait!

This is the phone
number regular
expression - be it!

576 Chapter 10

/^\d{3}-\d{3}-\d{4}$/

555-612-8527-8724

(555) 935-2659

555-441-9005 555.903.6386

(555)672-0953 555-343-8263

This is the phone
number regular
expression - be it!

BE the Regular Expression Solution
Your job is to play the role of regular
expression, and either accept or reject phone
numbers for Risky Jobs users. Check the

box of phone numbers that you
deem valid, and leave the others
unchecked. Annotate why any
invalid numbers are invalid.

Parentheses aren’t
allowed, and
neither are spaces.

No parentheses, please.

Our regular
expression requires
dashes, not dots.

Whoa, there’s an
extra four numbers
on this one. Is that
an office extension?

be the regex solution

you are here 4 577

regular expressions

A quantifier
specifies how
many times a
metacharacter
should appear.

/^\d{10}$/ This says “a digit should show up 10 times in a row.”

Here, curly braces act as a quantifier to say how many times the preceding digit should
appear. Let’s take a look at some other frequently used quantifiers.

Sometimes people add additional digits to
their telephone numbers, like a four-digit
extension at the end. Is there any way
we can match these patterns, too?

Yes, but the key is to specify such a pattern as optional in your
regular expression.
If we changed our regex to /^d{3}-\d{3}-\d{4}-d{4}$/, we’d be requiring our
string to have a four-digit extension at the end, and we’d no longer match phone numbers
like “555-636-4652”. But we can use regular expressions to indicate that parts of the
string are optional. Regexes support a feature called quantifiers that let you specify
how many times characters or metacharacters should appear in a pattern. You’ve
actually already seen quantifiers in action in regexes like this:

So, if we wanted to match those optional digits at the end of our phone number, we
could use the following pattern:

/^\d{3}-\d{3}-\d{4}(-\d{4})?$/

The question mark makes
the hyphen and the last
four digits optional.

Surround the section
the quantifier applies
to in parentheses.

When there are two numbers in the curly braces,

separated by a comma, this indicates a range

of possible times the preceding character or

metacharacter should be repeated. Here we’re

saying it should appear 2, 3, or 4 times in a row.

{min,max}

The preceding character or
metacharacter must appear
one or more times.

+

The preceding character or
metacharacter must appear
once or not at all.

?

The character or metacharacter

can appear one or more

times... or not at all.

*

578 Chapter 10

You forgot one thing.
U.S. phone numbers
can’t begin with 0 or 1.

You’re absolutely right. 0 connects you to an
operator, and 1 dials long distance.
We simply want the area code and number. We need to make
sure the first digit is not 1 or 0. And to do that, we need a
character class.

Character classes let you match characters from a specific set of
values. You can look for a range of digits with a character class.
You can also look for a set of values. And you can add a caret to
look for everything that isn’t in the set.

To indicate that a bunch of characters or metacharacters
belongs to a character class, all you need to do is surround them
by square brackets, []. Let’s take a look at a few examples of
character classes in action:

A character class
is a set of rules
for matching a
single character.

[0-2]

[A-D]

This matches a range of numbers. It will
match 0, 1, or 2.

This will match A, B, C, or D.

This carat has a different meaning when it’s used
inside a character class. Instead of saying, “the
string must start with...”, the caret means “match
everything except...”

This will match everything except b, c, d, e, or f.

In a character class, the
^ means “don’t match”.

[^b-f]

Write a regular expression that matches international phone
numbers:

using character classes

you are here 4 579

regular expressions

/^[2-9]\d{2}-\d{3}-\d{4}$/

The character class says our
first character must be any
digit from 2 to 9, inclusive.

…and we’re looking for
two more digits that can
be any value from 0-9...

…followed by
three more
digits....

...and a dash and the
last 4 digits.

The ^ and $ specify that our regex
must encompass the whole text
string we’re matching. In other
words, the string can’t contain any
other characters that don’t belong
to the phone number.

Q: So character classes let you specify a range of characters
that will match the text string.

A: Yes, a character class lets you specify in your regular
expression that any member of a specified set of characters will
match the text string, instead of just one.
For example, the character class [aeiou] will match one
instance of any lowercase vowel, and the class [m-zM-Z] will
match one instance of any letter in the second half of the alphabet,
lowercase or uppercase.
And the character class [0-9] is equivalent to the metacharacter
\d, which is really just a shorthand way of saying the same thing.

Q: Don’t I need to put spaces or commas in between the
characters or ranges I specify in character classes?

A: No, if you do that, those extra characters will be interpreted as
part of the set of characters that should match the text string.
For example, the character class
[m-z, M-Z]

would match not only uppercase and lowercase letters from m to z,
but also a comma or space, which is probably not what you want.

Q: What if I want to match a character in a character class
more than once? Like one or more vowels consecutively.

A: Just add a quantifier after the character class. The expression
/[aeiouAEIOU]+/ will match one or more vowels in a row.

Q:I thought quantifiers only applied to the character that
immediately preceded them.

A: Usually that’s the case, but if a quantifier directly follows a
character class, it applies to the whole class.
And if you want to make a quantifier apply to a whole series of
characters that aren’t in a character class, you can surround these
characters with parentheses to indicate that they should be grouped
together. As an example, the regular expression /(hello)+/
will match one or more consecutive instances of the word “hello” in a
text string.

Q: What if I wanted to match two different spellings of a word,
like “ketchup” or “catsup”?

A: You can use the vertical-pipe character (|) in your regular
expressions to indicate a set of options to choose from.
So, the regular expression /(ketchup|catsup|catchup)/
will match any one of the three most common spelling variants of the
word.

Fine-tune patterns with character classes
With the help of character classes, we can refine our regular expression for
phone numbers so that it won’t match invalid digit combinations. That way,
if someone accidentally enters an area code that starts with 0 or 1, we can
throw an error message. Here’s what our new-and-improved regex looks like:

580 Chapter 10

/^(\d{3})\d{3}-\d{4}$/(555)636-4652

These will simply be
treated like a group.

Instead, both the opening and closing parentheses need to be
preceded by backslashes to indicate that they should be interpreted as
actual parentheses:

/^\(\d{3}\)\d{3}-\d{4}$/

Now PHP knows that these
are literal parentheses.

What about putting characters like periods or question
marks in a regular expression. If I type those in, won’t PHP
think they’re metacharacters or quantifiers and screw up
processing my regex?

If you want to use reserved characters in your regular
expression, you need to escape them.
In regular expression syntax, there are a small set of characters that are given
special meaning, because they are used to signify things like metacharacters,
quantifiers, and character classes. These include the period (.), the question
mark (?), the plus sign (+), the opening square bracket ([), opening and closing
parentheses, the caret (^), the dollar sign ($), the vertical pipe character (|), the
backslash (\), the forward slash (/), and the asterisk (*).

If you want to use these characters in your regular expression to signify their
literal meaning instead of the metacharacters or quantifiers they usually
represent, you need to “escape” them by preceding them with a backslash.

For example, if you wanted to match parentheses in a phone number, you
couldn’t just do this:

(555)636-4652

escaping reserved characters

you are here 4 581

regular expressions

Come up with a string that will match each pattern shown.

/^[3-6]{4}/ /^([A-Z]\d){2}$/

Suppose we want to expand the Risky Jobs validation scheme for phone numbers to allow users to
submit their numbers in a few more formats. Write a single regular expression that will match ALL of
the following text strings, and won’t allow a 0 or 1 as the first digit. Your pattern should only allow digits,
parentheses, spaces, and dashes.

555-636-4652
(555)-636-4652 (555) 636-4652

555 636-4652

582 Chapter 10

/^[3-6]{4}/ /^([A-Z]\d){2}$/

Any string that starts with four digits in the
range 3, 4, 5, or 6 will match. These will all match:
“5533”, “3546 is a number.”, “6533xyz”

String must
begin with... 3 through 6... and repeat that

character class
four times.

String must
begin with...

and then
end.

an uppercase
letter... and a

digit... twice...

Any string that starts with an uppercase
letter and then a digit and then another
uppercase letter and digit and then ends:
“B5C9”, “R2D2”

/ ^ \ (? [2 - 9] \ d { 2 } \) ? [- \ s] \ d { 3 } - \ d { 4 } $ /

String must
begin with...

and then
end.an optional open parenthesis, which may appear 0 or 1 times....

2 through 9...

and a
digit...

twice...

an optional close
parenthesis...

a hyphen or a space...

and a digit,
three times...

another
hyphen

and a digit,
four times...

Come up with a string that will match each pattern shown.

Suppose we want to expand the Risky Jobs validation scheme for phone numbers to allow users to
submit their numbers in a few more formats. Write a single regular expression that will match ALL of
the following text strings, and won’t allow a 0 or 1 as the first digit. Your pattern should only allow digits,
parentheses, spaces, and dashes.

555-636-4652
(555)-636-4652 (555) 636-4652

555 636-4652

exercise solution

you are here 4 583

regular expressions

I’ve pretty much had it with the bad
data in the Risky Jobs resume bank.
What good do these expressions do
me if we don’t use them in some way?

Risky Jobs needs to put
regular expressions to
work validating form data!

584 Chapter 10

preg_match($regex, $my_string)

preg_match('/^\d{3}-\d{2}-\d{4}$/', '555-02-9983')

This string matches the
regex, and the function will
return 1.

You can put the actual pattern in the function like this, but usually it’s best to store it in a variable.

Your regex goes here. The function
expects a string, which means the regex
should be surrounded by single quotes.

The string you are checking
for a match goes here.

Returns an integer: 1 if the
string matches the pattern,
and 0 if it doesn’t.

Here’s an example of the preg_match() function in action, using a
regex that searches a text string for a four-character pattern of alternating
uppercase letters and digits:

When regexes are passed to preg_match(),
they should be enclosed in quotes.

We can take advantage of the preg_match() function to enable more
sophisticated validation functionality in PHP scripts by building an if
statement around the return value.

if (preg_match('/^\d{3}-\d{2}-\d{4}$/', '555-02-9983')) {

 echo 'Valid social security number.';

} else {

 echo 'That social security number is invalid!';

}

The preg_match() function
is nested in the condition,
so its result determines
what code will run.

If the match is successful, preg_match() returns true, which signifies to PHP that the condition is true. So, this code is run.

If the match is not successful,
preg_match() returns false, which
makes the condition evaluate to
false. So, this code is run.

Check for patterns with preg_match()
We haven’t been developing patterns just for the fun of it. You can use
these patterns with the PHP function preg_match(). This function
takes a regex pattern, just like those we’ve been building, and a text string.
It returns false if there is no match, and true if there is.

the php preg_match() function

you are here 4 585

regular expressions

Rewrite the highlighted portion of the Risky Jobs PHP script for checking the Registration form
data below to validate the text entered into the phone field using preg_match() instead of
empty(). Use the regex you created earlier in the preg_match() function.

if (empty($phone)) {

 // $phone is blank

 echo '<p class="error">Your phone number is invalid.</p>';

 $output_form = 'yes';

}

586 Chapter 10

if (!preg_match(‘/^\(?[2-9]\d{2}\)?[-\s]\d{3}-\d{4}$/’, $phone)) {
 // $phone is not valid
 echo ‘<p class=“error”>Your phone number is invalid.</p>’;
 $output_form = ‘yes’;

Rewrite the highlighted portion of the Risky Jobs PHP script for checking the Registration form
data below to validate the text entered into the phone field using preg_match() instead of
empty(). Use the regex you created earlier in the preg_match() function.

if (empty($phone)) {

 // $phone is blank

 echo '<p class="error">Your phone number is invalid.</p>';

 $output_form = 'yes';

}

Our phone number regular
expression from before.

Instead of empty(), we use a preg_match to validate the phone number. We precede it with the not operator (!), because we want to throw an error whenever the data entered DOESN’T match the pattern.

The echo needs to be changed a
bit, since we’re not only checking
to make sure data is entered,
but that it matches a standard
phone number pattern.

We set $output_form
to ‘yes’, just as before.

I got an error and
then entered my entire
phone number. And
then I got a ninja job!

First Name: Jimmy
Last Name: Swift
Email: JS@sim-u-duck.com

Phone: (555) 636 4652
Desired Job: Ninja

exercise solution

}

you are here 4 587

regular expressions

Test Drive
Check for valid phone numbers in the Risky Jobs Registration script.
Download the registration.php script from the Head First Labs site at www.
headfirstlabs.com/books/hfphp, along with the Risky Jobs style sheet (style.css)
and images (riskyjobs_title.gif and riskyjobs_fireman.png). Then modify
the registration.php script so that it uses the preg_match() function to validate
phone numbers against the phone number regular expression. Make sure to tweak the error
message so that users know the phone number is invalid, not just empty.

Upload the changed script to your web server, and then open it in a web browser. Try entering
a few phone numbers with varying formats, and notice how the script catches the errors.

Not just empty
phone numbers!

The complete source code for the Risky Jobs
application is available for download from the
Head First Labs web site:

www.headfirstlabs.com/books/hfphp

Download It!

Now we can’t accidentally
enter bad phone numbers.
That should keep us from
missing job opportunities!

The script now displays
an error message when
a phone number is
entered incorrectly, in
this case with periods
instead of hyphens.

588 Chapter 10

preg_replace($pattern, $replacement, $my_string)

The string we’re doing the find-and-replace to.
We need to find these
unwanted characters.

When we find an
unwanted character, we
want to turn it into this.

$new_year = preg_replace('/200[0-9]/', '2010', 'The year is 2009.');

Here’s an example of the preg_replace() function in action:

Every time a year from
2000-2009 is found
in our string, it will be
replaced by 2010.

When a match is
found, it will be
replaced with 2010.

This regex tells
preg_replace to look
for a match for 2000
through 2009.

Hmm. If our regex matches multiple patterns for
the phone number, isn’t the text going to be in all
different formats in our database? That’s not good.
I think we need to standardize this stuff.

Just because you’re permitting data to be input in all
different formats doesn’t necessarily mean you want your
data stored in all those formats.
Luckily, there’s another regex function that’ll let us take the valid phone number
data submitted by Risky Jobs’s users and make all of it conform to just one
consistent pattern, instead of four.

The preg_replace() function goes one step beyond the preg_match()
function in performing pattern matching using regular expressions. In addition
to determining whether a given pattern matches a given string of text, it allows
you to supply a replacement pattern to substitute into the string in place of the
matched text. It’s a lot like the str_replace() function we’ve already used,
except that it matches using a regular expression instead of a string.

The result of the preg_replace() function, our revised text string after the find-and-replace is complete, is stored in $new_year.

the php preg_replace() function

you are here 4 589

regular expressions

Standardize the phone number data entered into the Risky Jobs form by writing in each of the
following numbers in the phone column of the database table below. Make sure to use a format
that stores as little data as possible to represent a user’s phone number.

phone
...

555-612-8527-8724

(555) 935-2659

555-441-9005

555.903.6386

(555)672-0953

555-343-8263

590 Chapter 10

Standardize the phone number data entered into the Risky Jobs form by writing in each of the
following numbers in the phone column of the database table below. Make sure to use a format
that stores as little data as possible to represent a user’s phone number.

phone
...

5559352659
5556720953
5553438263
5554419005
5559036386
5556128527

555-612-8527-8724

(555) 935-2659

555-441-9005

555.903.6386

(555)672-0953

555-343-8263

The cleanest way to
store a phone number
is to strip out
everything but the
numeric digits.

exercise solution

you are here 4 591

regular expressions

This will match phone numbers that fall into these four patterns:

###-###-####

(###)-###-####

(###) ###-####

###-####

/^\(?[2-9]\d{2}\)?[-\s]\d{3}-\d{4}$/

##########

/[\(\)\-\s]/
open parenthesis

closing parenthesis dash space

While these formats are easily interpreted by people, they make it difficult
for SQL queries to sort results the way we want. Those parentheses will
most likely foil our attempts to group phone numbers by area code, for
example, which might be important to Risky Jobs if we want to analyze
how many of the site’s users came from a specific geographical location.

To make these kinds of queries possible, we need to standardize phone
numbers to one format using preg_replace() before we INSERT
data into the database. Our best bet is to get rid of all characters except
numeric digits. That way, we simply store 10 digits in our table with no
other characters. We want our numbers to be stored like this in the table:

We want to reformat
our data from this…

…to this.

This leaves us with four characters to find and replace. We want to find
and remove open and closing parentheses, spaces, and dashes. And we
want to find these characters no matter where in the string they are, so we
don’t need the starting carat (^) or ending dollar sign ($). We know we’re
looking for any one of a set, so we can use a character class. The order of
the search doesn’t matter. Here’s the regex we can use:

Standardize the phone number data
Right now, Risky Jobs is using the following regular expression to validate
the phone numbers users submit via their registration form:

Standardizing
your data gives
you better SQL
query results.

592 Chapter 10

$new_phone = preg_replace('/[\(\)\-\s]/', '', $phone);

Match these
characters... ...and replace them with an empty string.

We store the results of our
find-and-replace in this
new phone number variable.

Perform this replacement on the text string in $phone.

Get rid of the unwanted characters
Now that we have our pattern that finds those unwanted characters, we
can apply it to phone numbers to clean them up before storing them in
the database. But how? This is where the preg_replace() function
really pays off. The twist here is that we don’t want to replace the
unwanted characters, we just want them gone. So we simply pass an
empty string into preg_replace() as the replacement value. Here’s an
example that finds unwanted phone number characters and replaces them
with empty strings, effectively getting rid of them:

###-###-####

(###)-###-####

(###) ###-####

###-####

##########

phone
...

5559352659

5556720953

5553438263

5554419005

5559036386

5556128527

preg_replace()

All of these phone number formats are considered valid, and are
accepted by the Registration form.

Each phone number is standardized
into this format so that the
phone numbers all have an identical
format within the database.

stripping characters with preg_replace()

you are here 4 593

regular expressions

I don’t know, it seems kinda like overkill
to worry about having 10 digit strings in
our database. Couldn’t we just insist that
users type that in in the first place?

Sure, but it would end up causing problems later since
phone number queries won’t work as expected.
Most users are accustomed to entering phone numbers with some
combination of dashes (hyphens), parentheses, and spaces, so attempting
to enforce pure numeric phone numbers may not work as expected. It’s
much better to try and meet users halfway, giving them reasonably flexible
input options, while at the same time making sure the data you store is as
consistent as possible.

Besides, we’re only talking about one call to preg_replace() to solve
the problem, which just isn’t a big deal. If we were talking about writing
some kind of custom function with lots of code, it might be a different story.
But improving the usability and data integrity with a single line of code is
a no-brainer!

594 Chapter 10

Test Drive
Clean up phone numbers in the Registration script.
Modify the registration.php script to clean up phone numbers by adding
the following lines of code to the script, right after the line that thanks the user for
registering with Risky Jobs:

$pattern = '/[\(\)\-\s]/';

$replacement = '';

$new_phone = preg_replace($pattern, $replacement, $phone);

echo 'Your phone number has been registered as ' . $new_phone . '.</p>';

Upload the script to your web server, and then open it in a web browser. Fill out the
form, making sure to enter a phone number with extra characters, such as (707) 827-
7000. Submit the form and check out the results.

Try out a few other variations on the number, like these: 707.827.7000, (707)-827-7000,
707 827-7000. Notice how the regular expression and preg_replace() get rid of
the extra characters.

The phone number
is crunched
down to just the
numbers - no
extra characters!

test out registration.php

you are here 4 595

regular expressions

First Name: Four FingersLast Name:McGrawEmail: four@gregs-listnetPhone: 555-098
Desired Job: Knife Juggler

Similar to phone numbers, email addresses
have enough of a format to them that we should
be validating for more than just being empty.
Just like with validating phone numbers earlier, we first need to
determine the rules that valid email addresses must follow. Then
we can formalize them as a regular expression, and implement
them in our PHP script. So let’s first take a look at what exactly
makes up an email address:

LocalName@DomainPrefix.DomainSuffix

We know email addresses must
contain these two characters.

These will contain alphanumerics, where LocalName is at least one character and DomainPrefix is at least two characters.

This is usually
3 alphanumeric
characters.

See if you can come up with a regular expression that
is flexible enough to match the email addresses to the
right. Write it below:

My email to this knife juggler just bounced.
I can’t believe this stupid form lets people
enter email addresses that don’t even work!

cube_lovers@youcube.c
a

aviator.howard@bannerocity.com

rocky@i-rock.biz

The email
address is
missing a
period!

596 Chapter 10

/^\w+/

Starts with... ...one or more alphanumeric
characters.

This would allow any alphanumeric character in the local name, but
unfortunately, it doesn’t include characters that are also legal in email
addresses.

Believe it or not, valid email addresses can contain any of these
characters in the LocalName portion, although some of them can’t be
used to start an email address:

!$&*-=^`|~#%‘+/?_ {}

/^[a-zA-Z0-9][a-zA-Z0-9\._\-&!?=#]*/

First character should
be one of these.

The rest of the
characters can be
any of these…

! $ & * - = ^ ` | ~ # % ' + / ? _ { }

If we want to allow users to register that have email addresses containing these characters,
we really need a regex that looks something more like this:

All these characters
can appear in the
LocalName part of an
email address.

…and we can have zero
or more of them.

This won’t match every single valid LocalName, as we’re
still skipping some of the really obscure characters, but it’s
very practical to work with and should still match the email
addresses of most of Risky Jobs users.

Matching email addresses can be tricky
It seems like it should be pretty simple to match email addresses,
because at first glance, there don’t appear to be as many restrictions on
the characters you can use as there are with phone numbers.

For example, it doesn’t seem like too big of a deal to match the
LocalName portion of an email address (everything before the @ sign).
Since that’s just made up of alphanumeric characters, we should be
able to use the following pattern:

a regex for email addresses

you are here 4 597

regular expressions

This email stuff is easy. We just use the
same pattern we used for the local name
to validate the domain name... no big deal!

That would work for part of the domain, the prefix,
but it wouldn’t account for the suffix.
While the domain prefix can contain pretty much any combination of
alphanumerics and a few special characters, just like the LocalName, the
restrictions on domain suffixes are much more stringent.

Most email addresses end in one of a few common domain suffixes:
.com, .edu, .org, .gov, and so on. We’ll need to make sure email
addresses end in a valid domain suffix, too.

Q: What if I want to allow every possible valid email address?

A: You can, and if it makes sense for your web site you certainly
should. But sometimes it’s best to take commonly accepted formats
and not necessarily accept every possible variation. You need to
decide what 99.9% of your users will have as their emails and be
willing to not validate the remaining .1% simply for the sake of more
streamlined code. Validation is really a trade-off between what’s
allowed and what is practical to accept.

If you do want to implement more robust email validation on your
site, you can find some great open source (i.e., free) PHP code here:
http://code.google.com/p/php-email-address-validation/.

Q: Won’t people get angry at me if they have an email
address I refuse to validate?

A: Possibly, but most people willl not have crazy email addresses.
Most online email services have their own restrictive rules that keep
users from creating crazy, although valid, email addresses like:
"_i'm crazy"@gregs-list.net.

Validation is often a trade-off
between what’s allowed and
what is practical to accept.

598 Chapter 10

.com

.us

.mobi

.net

.org

.info

.biz

.tv
.gb.com

.us.com

.eu.com

.la.cc

.uk.com

.ru.com

.am

.ws
.ms

.fm

.bz .de.com

.gs

.vg
.name

.eu

.de

.be
.at

.co.uk

.org.uk.me.uk
.za.com

.uk.net
.gb.net

.qc.com

.com.mx

.se.com .se.net

.hu.com

.tc

.no.com

.sa.com

.br.com

.uy.com

.org.nz

.tw

.co.nz

.net.nz

.jpn.com

.kr.com

.cn.com.cn .es

.in

.museum

.aero

.arpa

We could do that, and it would work.
But there’s an easier way. Instead of keeping track
of all the possible domains and having to change
our code if a new one is added, we can check the
domain portion of the email address using the
PHP function checkdnsrr(). This function
connects to the Domain Name System, or DNS,
and checks the validity of domains.

Geek BitsGeek Bits

The Domain Name
System is a distrubuted
data service that
provides a worldwide
directory of domains
and their IP addresses. It
makes the use of domain
names possible. Without
DNS, we’d be typing
208.201.239.36 instead of
oreilly.com.

Domain suffixes are everywhere
In addition to super-common domain suffixes that you see quite frequently,
like .com and .org, there are many, many other domain suffixes that
are valid for use in email addresses. Other suffixes recognized as valid by
the Domain Name System (DNS) that you may have seen before include
.biz and .info. In addition, there’s a list of suffixes that correspond to
different countries, like .ca for Canada and .tj for Tajikistan.

Here is a list of just a few possible domain suffixes. This is not all of them.

Some of those domains are only two letters
long. Some have 2 or 3 letters, and a period
and then two or three letters. Some are even
4 and 5 letters long. So do we need to keep a
list of them and see if there’s a match?

Even I wouldn’t
want to juggle all
of those domains.

matching domain suffixes

you are here 4 599

regular expressions

checkdnsrr('headfirstlabs.com')

Returns 1 if it’s a real domain
or 0 if it’s not.

checkdnsrr() expects a string
containing a domain name. This is
everything after the @ sign.

 If you’re running PHP on a Windows server,
this command won’t work for you.

Instead, you can use this code:

function win_checkdnsrr($domain,$recType='') {
 if (!empty($domain)) {
 if ($recType=='') $recType="MX";
 exec("nslookup -type=$recType $domain",$output);
 foreach($output as $line) {
 if (preg_match("/^$domain/", $line)) {
 return true;
 }
 }
 return false;
 }
 return false;
}

This exec commands calls
an external program
running on the server to
check the domain.

Just for fun, try echoing $line just after
the foreach. You’ll see something like this:

Server: 68.87.64.146Address:
68.87.64.146#53Non-authoritative answer:
oreilly.com mail exchanger = 20 smtp1.
oreilly.com.

Use PHP to check the domain
PHP provides the checkdnsrr() function for checking whether a
domain is valid. This method is even better than using regular expressions
to match the pattern of an email address, because instead of just
checking if a string of text could possibly be a valid email domain, it
actually checks the DNS records and finds out if the domain is actually
registered. So, for example, while a regular expression could tell you that
lasdjlkdfsalkjaf.com is valid, checkdnsrr() can go one step
further and tell you that, in fact, this domain is not registered, and that we
should probably reject sdfhfdskl@lasdjlkdfsalkjaf.com if it’s
entered on our registration form.

The syntax for checkdnsrr() is quite simple:

This is only an issue if your web server is Windows. If you’re using a Windows computer to build your web site, but you’re actually posting it to a UNIX/Linux server, then this is not a problem.

600 Chapter 10

 Use preg_match() to determine whether the LocalName portion of our email
address contains a valid pattern of characters.

We can use the following regex to do so:

/^[a-zA-Z0-9][a-zA-Z0-9\._\-&!?=#]*@/

11

The email must start with an alphanumeric character, and then can contain any number of alphanumerics and certain special characters.

This time, we’ll also search for
an at symbol (@), to make sure
our email address contains one
before the domain.

Note that there’s no
dollar sign at the end
of this regex, as there
will be characters
following the @.

 If validation of the LocalName fails, echo an error to the user and reload the form.22

 If validation of the LocalName succeeds, pass the domain portion of the text string
users submitted to checkdnsrr().

33

 If checkdnsrr() returns 0, then the domain is not registered, so we echo an error
to the user and reload the form.

44

 If checkdnsrr() returns 1, then the domain is registered, and we can be fairly
confident that we’ve got a valid email address. We can proceed with validating the rest
of the fields in the form.

55

Email validation: putting it all together
We now know how to validate both the LocalName portion of an email
address using regular expressions, and the domain portion of an email
address using checkdnsrr(). Let’s look at the step-by-step of how
we can put these two parts together to add full-fledged email address
validation to Risky Jobs’s registration form:

email validation in five steps

you are here 4 601

regular expressions

if (!preg_match(' ', $email)) {

 // $email is invalid because LocalName is bad

 echo 'Your email address is invalid.
';

 $output_form = 'yes';

}

else {

 // Strip out everything but the domain from the email

 $domain = preg_replace(' ', ,);

 // Now check if $domain is registered

 if () {

 echo 'Your email address is invalid.
';

 $output_form = 'yes';

 }

}

Below is new PHP code to validate users’ email addresses, but some pieces have disappeared.
Fill in the blanks to get the code up and running.

602 Chapter 10

if (!preg_match(' ', $email)) {

 // $email is invalid because LocalName is bad

 echo 'Your email address is invalid.
';

 $output_form = 'yes';

}

else {

 // Strip out everything but the domain from the email

 $domain = preg_replace(' ', ,);

 // Now check if $domain is registered

 if () {

 echo 'Your email address is invalid.
';

 $output_form = 'yes';

 }

}

Below is new PHP code to validate users’ email addresses, but some pieces have disappeared.
Fill in the blanks to get the code up and running.

preg_match() locates matches for
patterns in strings.

preg_replace() changes matching
strings.

Quantifiers allow you to control how many
times a character or set of characters can
appear in a row.

You can specify a set of characters to allow in
your pattern using a character class.

In your pattern, \d, \w, and \s are stand-
ins for digits, alphanumeric characters, and
whitespace, respectively.

checkdnsrr() checks the validity of
domain names.

[a-zA-Z0-9][a-zA-Z0-9\._\-&!?=#]*@/

” $email

!checkdnsrr($domain)

Our regex for matching the LocalName portion of
an email address, ending in an at symbol.

To strip out the LocalName and at
symbol, specify the empty string (”)
as the replacement string.

Perform the replacement
on the $email value.

!checkdnsrr() returns true if
the domain isn’t registered.

If you’re on a Windows server, don’t forget to include the
code for win_checkdnsrr(),
and then call it here.

/^[a-zA-Z0-9][a-zA-Z0-9\._\-&!?=#]*@/

exercise solution

you are here 4 603

regular expressions

That’s it, I filled my quota
of risky jobs. Nothing to
do now but add up all the
money I just made.

With the help of validation in the Risky Jobs Registration form, it’s no longer a problem getting in touch with promising job candidates, and filling job openings in record time.

Test Drive
Add email validation to the Risky Jobs Registration script.
Use the code on the facing page to add email validation to the registration.php
script. Then upload the script to your web server, and open it in a web browser. Try
submitting an invalid email address, and notice how the new regular expression code
rejects the form submission, and displays an error message to explain what happeened.

An error message points out that the user’s
email address is invalid (it has a space instead of an @ symbol).

604 Chapter 10

Your PHP & MySQL Toolbox
Looking for patterns in text can
be very handy when it comes to

validating data entered by the user into
web forms. Here are some of the PHP
techniques used to validate data with the
help of regular expressions:

\d, \w, \s, ^, $,
 ...

Regular expressions are created
using metacharacters, which
represent text expressions such as
three numeric digits (\d\d\d) or
whitespace (\w).Regular expression

Rules that are used to match patterns of text in strings. PHP includes functions that allow you to use regular expressions to check a string for a certain pattern, as well as find-and-replace patterns of text within a string.

Character class
A set of rules for matching a single character within a regular expression. For example, [A-D] matches the characters A, B, C, or D.

preg_match()

This PHP function checks a string

of text to see if it matches a

regular expression. The function

returns true if there was a match,

or false if not.

preg_replace()

Use this PHP function to replace a substring within a string based on a regular expression. The function does a find-and-replace using a regular expression for the find, and replacing with a string you provide it.

checkdnserr()

This PHP function checks a domain
name to see if it actually exists.
This is handy when validating an
email address because you want to
make sure that the domain part
of the email is real.

CH
AP

T
ER

 10
php & mysql toolbox

this is a new chapter 605

visualizing your data... and more!11

Drawing dynamic graphics
Hold still. Wait, stop moving. Now
look directly at me and smile. No, not
you, your data. OK, let’s try crossing
your columns and tilting your primary
key just a bit to the left. Ah, perfect!

Sure, we all know the power of a good query and a bunch of
juicy results. But query results don’t always speak for themselves. Sometimes

it’s helpful to cast data in a different light, a more visual light. PHP makes it possible

to provide a graphical representation of database data: pie charts, bar charts,

Venn diagrams, Rorschach art, you name it. Anything to help users get a grip on the

data flowing through your application is game. But not all worthwhile graphics in PHP

applications originate in your database. For example, did you know it’s possible to

thwart form-filling spam bots with dynamically generated images?

606 Chapter 11

Guitar Wars Reloaded: Rise of the Machines
The future is now. Robots have already been let loose in the virtual world and
there isn’t much to stop them other than some PHP coding vigilance. The robots
are spam bots, which troll the Web for input forms that allow them to inject
advertisements. These robots are chillingly efficient and care nothing about the
intended usage of the forms they attack. Their one and only goal is to overrun
your content with theirs in a bloodthirsty conquest of ad revenue for their masters.
Sadly, the Guitar Wars high score application has fallen prey to the bots.

Spam bots excel at mindless repetition, in this case
filling out and submitting form after form of Guitar Wars
high score data that really contains ads instead of scores.

All web forms are
at risk of attack
from spam bots.

It’s nothing personal; the bots just want access to your users’ eyeballs for ad revenue.

Add score, add score,
add score, add score,
add score, add score...

attack of the spambots!

you are here 4 607

visualizing your data… and more!

No input form is safe
Fortunately for Guitar Wars, the spam bot attacks remain invisible to the end
user thanks to the human moderation feature that was added back in Chapter
6. However, the human moderator is now being completely overwhelmed by
the huge volume of spam bot posts, making it tough to sift through and approve
legitimate high scores. Human moderation is a great feature, but humans are at
a disadvantage when facing an automated adversary that never gets tired.

This is ridiculous. I can’t
possibly moderate all
these posts, most of which
appear to be bogus. I don’t
even know what a frowney is!

Human moderation of high score posts clearly isn’t enough. We really need a
way to prevent robots from being able to submit scores—head them off at the
pass, so to speak. But this involves somehow discerning between an automated
piece of software and a human with a real brain... a tricky problem, but one that
can be solved.

Our fearless Guitar Wars moderator has found himself in a losing battle with bots that never tire of posting bogus spam scores.

Write down three questions you would ask to distinguish
between a real human and the artificial brain of a robot:

608 Chapter 11

We need to separate man from machine
In order to figure out how to detect a real human on the other side of the Guitar
Wars Add Score page, you have to first assess what exactly a spam bot is doing
when filling out the form with bogus data.

The problem with the Add Score form is that it does nothing to prevent
automated submissions, meaning that any reasonably crafty bot programmer
can create a bot that repeatedly fills the form with ad data and submits it.
Sure, it never makes it to the front page of the Guitar Wars site thanks to the
moderation feature, but it in many ways renders moderation useless because the
human moderator is left manually removing hundreds of bogus ad posts.

The form needs a new verification field that must be entered successfully in
order for the score to submit. And the specific verification of this field needs to
be something that is easy for a real human but difficult for a machine.

The Add Score form
needs a new field
that requires human
verification before
allowing a high score
to be submitted.

The Guitar Wars
database is being
inundated with bogus
high scores because the
spam bots are abusing
the Add Score form. The Add Score

form has nothing to
distinguish between a
real human post and an automated robotic post.

It’s nothing for a spam bot script to repeatedly blast a form with data tens, hundreds, even thousands of times... yikes!

guitar wars: for humans only

you are here 4 609

visualizing your data… and more!

Following are some ideas for form fields that could potentially be used to prevent spam bots
from submitting forms. Circle the form fields you think would simply and successfully allow
only human form submissions, making sure to annotate why.

What was Elvis’ favorite food?

Are you a robot? Yes No

Retinal scan: Look into your web cam and click

Thumbprint scan: Press your thumb down and click

What is the result of 7 + 5?

Enter the letters displayed: kdyqmc

Enter the letters displayed: kdyqmc

What kind of animal is this?

610 Chapter 11

Are you a robot? Yes No

Following are some ideas for form fields that could potentially be used to prevent spam bots
from submitting forms. Circle the form fields you think would simply and successfully allow only
human form submissions, making sure to annotate why.

What was Elvis’ favorite food?

Retinal scan: Look into your web cam and click

Thumbprint scan: Press your thumb down and click

What is the result of 7 + 5?

Enter the letters displayed: kdyqmc

Enter the letters displayed: kdyqmc

What kind of animal is this?

Too easy to guess - even
with just a 50% success
rate through guessing,
you’d end up with a ton
of bogus high score posts.

Definitely difficult for robots but
potentially difficult for some humans
as well. Not everyone knows Elvis loved
peanut butter and banana sandwiches.
This would also require a hefty database
of trivia questions and answers.

Excellent bot
stopper but
technically difficult
and expensive to
implement.

Not bad, assuming the
pass-phrase letters appear as
an image and not text, but
potentially thwarted by bots
smart enough to use optical
character recognition (OCR).

Simple and effective, most bots
aren’t smart enough to parse
mathematical expressions - let’s
just hope most humans are!

Deceptively effective - bots struggle
at interpreting the content of images.
But it does require a database of
images and answers. A nifty improvement

on the other
pass-phrase verifier
where the letters are
obscured with lines
and dots to confuse
bots with OCR.Not quite as much

trouble as retinal
scanning but still
requires special
hardware and software.

Remember Fang,
the dog that was
abducted by aliens
earlier in the book?

exercise solution

you are here 4 611

visualizing your data… and more!

We can defeat automation with automation
A test to verify that the entity on the other side of a form is a real person is
known as CAPTCHA, which stands for Completely Automated Public Turing
Test to Tell Computers and Humans Apart. That’s a long-winded way of
referring to any “test” on a form that is ideally passable only by a human. Lots
of interesting CAPTCHAs have been devised, but one of the most enduring
involves generating a random pass-phrase that the user must enter. To help
prevent craftier bots with optical character recognition (OCR) from beating the
system, the pass-phrase letters are distorted or partially obscured with random
lines and dots.

Enter the letters displayed: dpmyta

Since the letters in the pass-phrase are
randomly generated, the phrase is different
every time the form is displayed.

A CAPTCHA is
a program that
protects a web site
from automated
bots by using a
test of some sort.

Random lines and dots help to obscure the text just enough to thwart optical character recognition, while still allowing humans to discern it.

A normal text field is used
to allow the user to enter
the CAPTCHA pass-phrase.

A CAPTCHA form field is just like any other form field except that its
whole purpose is to prevent a form from being submitted unless the
CAPTCHA test has been successfully completed. So unlike other form
fields, which typically pass along data to the server upon submission, a
CAPTCHA field is verified and used to control the submission process.

Enter the letters displayed: owdysqqwerty?

Enter the letters displayed: owdysqowdysq

Since the spam bot can’t
make out the pass-phrase,
all it can do is guess.

Identifying the
pass-phrase successfully
is easy for a real human. Pass!

Fail!

It’s very important for the CAPTCHA pass-phrase to be displayed on
the form as an image and not just text; otherwise bots would have a
much easier time figuring out the text.

612 Chapter 11

Q: That image CAPTCHA with the dog is really cool. Could I
use that instead of a pass-phrase CAPTCHA?

A: Absolutely. Just keep in mind that you’ll need to maintain a
database of images and descriptions of what they are, because one
of the keys to any successful CAPTCHA is variety. A good CAPTCHA
should have a deep enough repository of content that a form rarely
displays the same test twice. That’s the benefit of pass-phrase
CAPTCHA: since the pass-phrase is generated from random letters,
it’s very unlikely the exact same test will appear twice to any given
user, even with lots of repeated attempts.

Q: How does CAPTCHA impact the visually impaired? What if
they can’t pass a visual CAPTCHA test?

A: Visual CAPTCHAs aren’t the best answer for users who are
visually impaired. An ideal CAPTCHA solution might involve an audio
alternative to visual CAPTCHAs. For example, there is an audio
CAPTCHA where a series of numbers are read aloud, after which the
user must enter them to pass the test. But the same problem exists,
where crafty bots use voice recognition to defeat such CAPTCHAs,
which is why some of them use highly distorted audio that sounds a
little creepy. Audio CAPTCHAs are similar technically to image

CAPTCHAs in that they require a database of audio clips and
their respective answers. There are services that offer flexible
CAPTCHAs that utilize both image and audio CAPTCHAs, such as
www.captcha.net. Such services are excellent in terms of offering the
latest in CAPTCHA technology, but they typically don’t integrate quite
as seamlessly as a custom CAPTCHA that is tailored specifically to
your web application.

Q: But there are also people who have poor eyesight and are
also hearing impaired. What about them?

A: Ultimately, CAPTCHA is all about weighing the reward of
thwarting spam bots against the risk of alienating some users. Similar
to viruses and anti-virus software, spam bots and CAPTCHAs
will likely continue to play a cat and mouse game where bots are
created to defeat a certain CAPTCHA, requiring a more sophisticated
CAPTCHA, and on and on. Caught in the crossfire are users who
may be left out due to the limited accessibility of some CAPTCHAs.
It’s up to the individual web developer to weigh the risks of a bot
attack against the potential loss of users who may not be able
to access parts of the site protected by CAPTCHA. If it’s any
consolation, keep in mind that the most sophisticated bots typically
aim for large targets with huge ad revenue upside, meaning that you
may not encounter a truly evil bot until your site grows to the point of
being a big enough target for high-powered bots.

PHP has graphics capabilities that can dynamically
generate images you can then display using HTML code.
With the help of a graphics library called GD (Graphics Draw), our PHP scripts
can dynamically generate images in popular formats such as GIF, JPEG, and PNG,
and either return them to a web browser for display or write them to a file on the
server. This capability of PHP is extremely important because there is no notion
of being able to “draw” on a web page purely through HTML. PHP allows you to

“draw” on a portion of a page by performing graphics operations on an image, and
then displaying that image on the page using the familiar tag.

OK, so a CAPTCHA pass-phrase has to
be displayed as an image with random
lines and dots. That’s fine, but how in the
world can that be created with PHP? PHP
can only generate HTML code, right?

no dumb questions: captcha edition

you are here 4 613

visualizing your data… and more!

This built-in function converts a number to its ASCII
character equivalent. As an example, the number 97
is the ASCII code for the lowercase letter 'a'. So
calling chr(97) returns the single character 'a'.

chr()

Generate the CAPTCHA pass-phrase text
Before we can even think about the graphical side of a pass-phrase CAPTCHA,
we need to figure out how to generate the random pass-phrase itself, which
begins as a sequence of text characters. A pass-phrase can be any number of
characters, but somewhere in the range of six to eight characters is usually
sufficient. We can use a constant for the pass-phrase length, which allows us to
easily change the number of pass-phrase characters later if need be.

// Generate the random pass-phrase
$pass_phrase = "";
for ($i = 0; $i < CAPTCHA_NUMCHARS; $i++) {
 $pass_phrase .= chr(rand(97, 122));
}

define('CAPTCHA_NUMCHARS', 6);
A CAPTCHA pass-phrase six
characters long is probably sufficient
to stop bots without annoying humans.

So how exactly do we go about generating a random string of text that is
six characters long? This is where two built-in PHP functions enter the story:
rand() and chr(). The rand() function returns a random number in the
range specified by its two arguments, while chr() converts a numeric ASCII
character code into an an actual character. ASCII (American Standard Code
for Information Interchange) is a standard character encoding that represents
characters as numbers. We only need ASCII character codes in the range 97-
122, which map to the lowercase letters a-z. If we generate a code in this range
six times, we’ll get a random six-character pass-phrase of lowercase letters.

The rand() function
returns a random integer
within a certain range.

The pass-phrase is
constructed one random
character at a time.

Loop once for every
character in the pass-phrase.

This code will eventually
go into its own reusable
script file, captcha.php.

This built-in function returns a random integer

number, either within a specified range or between

0 and the built-in constant RAND_MAX (server

dependent). To obtain a random number within a

certain range, just pass the lower and upper limits

of the range as two arguments to rand().

rand()

$pass_phrase

ow
dy
sq

614 Chapter 11

Visualizing the CAPTCHA image
With the random pass-phrase nailed down, we can move on to generating an
image consisting of the pass-phrase text along with random lines and dots to
help obscure the text from bots. But where to start? The first thing to do is
decide what size the CAPTCHA image should be. Knowing that this image
will be displayed on a form next to an input field, it makes sense to keep it fairly
small. Let’s go with 100×25, and let’s put these values in constants so that the
image size is set in one place, and therefore easy to change later if necessary.

define('CAPTCHA_WIDTH', 100);
define('CAPTCHA_HEIGHT', 25);

// Create the image
$img = imagecreatetruecolor(CAPTCHA_WIDTH, CAPTCHA_HEIGHT);

// Set a white background with black text and gray graphics
$bg_color = imagecolorallocate($img, 255, 255, 255); // white
$text_color = imagecolorallocate($img, 0, 0, 0); // black
$graphic_color = imagecolorallocate($img, 64, 64, 64); // dark gray

// Fill the background
imagefilledrectangle($img, 0, 0, CAPTCHA_WIDTH, CAPTCHA_HEIGHT, $bg_color);

// Draw some random lines
for ($i = 0; $i < 5; $i++) {
 imageline($img, 0, rand() % CAPTCHA_HEIGHT, CAPTCHA_WIDTH,
 rand() % CAPTCHA_HEIGHT, $graphic_color);
}

// Sprinkle in some random dots
for ($i = 0; $i < 50; $i++) {
 imagesetpixel($img, rand() % CAPTCHA_WIDTH,
 rand() % CAPTCHA_HEIGHT, $graphic_color);
}

// Draw the pass-phrase string
imagettftext($img, 18, 0, 5, CAPTCHA_HEIGHT - 5, $text_color,
 'Courier New Bold.ttf', $pass_phrase);

// Output the image as a PNG using a header
header("Content-type: image/png");
imagepng($img);

The size of the CAPTCHA image is
stored in constants to make it easier
to adjust the size later if desired.

Drawing the CAPTCHA image involves calling several functions in the GD
library, all of which operate on an image in memory. In other words, you create
an image in memory, then you draw on it, and then when you’re all finished,
you output it to the browser so that it can be displayed.

This code creates colors
to be used by the other GD functions.

Drawing a dynamic
image in PHP
requires using GD
library functions.

drawing a captcha

you are here 4 615

visualizing your data… and more!

Client web
browser

Web server

owdysq

Newly created images start off with a blank black background. Say that three times really fast: “blank black background!”

We need a white
background to draw the
CAPTCHA graphics on.

First draw some
random lines.

Add in some random
dots for some
additional “texture.”

Draw the text in a
darker color over the
lines and dots.

Finally, return the
image as a PNG to
the browser.

Once the browser receives the
image, it can display it using
a normal HTML tag.

owdysq

616 Chapter 11

Inside the GD graphics functions
The magic behind CAPTCHA image creation is made possible by the GD
graphics library, which you’ve already learned offers functions for dynamically
drawing graphics to an image using PHP code. Let’s examine some of these
functions in more detail as they relate to generating a CAPTCHA image.

imagecreatetruecolor()

This function creates a blank image in
memory ready to be drawn to with other
GD functions. The two arguments to
imagecreatetruecolor() are the width
and height of the image. The image starts out
solid black, so you’ll typically want to fill it
with a background color, such as white, before
drawing anything. You can do this by calling the
imagefilledrectangle() function. The
return value of imagecreatetruecolor()
is an image identifier, which is required as
the first argument of most GD functions to
identify the image being drawn.

imagecolorallocate()

Use this function to allocate a color for use in
other drawing functions. The first argument is
the image resource identifier, followed by three
arguments representing the three numeric
components of the RGB (Red-Green-Blue) color
value. Each of these values is in the range 0–255.
The return value is a color identifier that
can be used to specify a color in other drawing
functions, often as the last argument.

width

height

Red: (255, 0, 0).

Medium green: (0, 128, 0).

Blue: (0, 0, 255).

New images are
initially created with
black backgrounds.

$img = imagecreatetruecolor(CAPTCHA_WIDTH, CAPTCHA_HEIGHT);

$text_color = imagecolorallocate($img, 0, 0, 0);

The width of the
new image, in pixels. The height

of the image.

The function returns an
image identifier that is
required by other drawing
functions to actually draw
on the image.

The return value is a color identifier that you can use in other drawing functions to control the color being used, such as the color of CAPTCHA text.

The identifier of the image
the color will be used with.

The red, green, and blue
components of the color,
in this case black.

This code creates an image that is 100x25 in size thanks to our constants.

gd graphics functions

you are here 4 617

visualizing your data… and more!

imageline()

Call this function to draw a line between two coordinates (x1,y1 and x2,y2).
The coordinates are specified relative to the upper-left corner of the image,
and the line is drawn in the color passed as the last argument to the function.

imagesetpixel()
This function draws a single pixel at a specified
coordinate within the image. Coordinates start
at 0,0 in the upper left corner of the image, and
increase to the right and down. Like most GD
functions, the pixel is drawn using the color that
is passed as the last argument to the function.

x1,y1

x2,y2

x,y

0,0

width,height

The coordinate system for
most GD function calls starts
in the upper-left corner of
the image and increases down
and to the right.

imagesetpixel($img, rand() % CAPTCHA_WIDTH, rand() % CAPTCHA_HEIGHT, $graphic_color);

imageline($img, 0, rand() % CAPTCHA_HEIGHT,
 CAPTCHA_WIDTH, rand() % CAPTCHA_HEIGHT, $graphic_color);

imagerectangle()

Draw a rectangle starting at one point (x1,y1) and ending at
another point (x2,y2), in a certain specified color. The two points
and the color are provided as the second through sixth arguments
of the function, following the image identifier argument.

x1,y1

x2,y2

imagefilledrectangle()

Similar to imagerectangle(), this function
draws a rectangle whose interior is filled with the
specified color.

x1,y1

x2,y2

The image (identifier)
the pixel is being
drawn on.

The XY coordinate of the pixel, relative
to the upper-left corner of the image,
which in this case ends up being a random
location within the CAPTCHA image.

The color (identifier)
of the pixel.

The XY coordinate of the start of the line, in this case along the left edge of the CAPTCHA image.

The XY end point of the line, which here lies
on the right edge of the CAPTCHA image.

imagefilledrectangle($img, 0, 0, CAPTCHA_WIDTH, CAPTCHA_HEIGHT, $bg_color);

The imagerectangle()
function takes the
exact same arguments
as imagefilledrectangle().

The XY coordinates of the
start and end points - here it
fills the entire CAPTCHA image.

618 Chapter 11

imagepng()

When you’re all finished drawing to an image,
you can output it directly to the client web
browser or to a file on the server by calling
this function. Either way, the end result is an
image that can be used with the HTML
tag for display on a web page. If you elect to
generate a PNG image directly to memory
(i.e., no filename), then you must also call the
header() function to have it delivered to the
browser via a header.

imageellipse()

For drawing circles and ellipses, this function
accepts a center point and a width and height.
A perfect circle is just an ellipse with an equal
width and height. The color of the ellipse/circle
is passed as the last argument to the function.

imagefilledellipse()
Need a filled ellipse instead? Just call
imagefilledellipse(), which works
the same as imageellipse() except the
specified color is used to fill the ellipse instead of
outline it.

x,y

width

height

myimage.png

x,y

width

height

An image can be output
directly to the browser or to an image file on the server.

The GD graphics functions continued...

imagefilledellipse($img, 0, 0, 320, 240, $color);

Both imageellipse() and
imagefilledellipse() take
the same arguments.

The XY coordinate
of the center of
the ellipsis.

The width and height of the
ellipse - set these the same
to draw a perfect circle.

imagepng($img);

You can pass a filename as an optional second argument - without it, the function generates an image in memory that can be passed back to the browser in a header.

The function returns
true or false depending
on whether the image
was successfully created.

The image identifier
that you’ve been using in
other draw functions.

owdysq

Ellipses aren’t used
in the CAPTCHA
image but they’re
still quite handy!

gd graphics functions: part deux

you are here 4 619

visualizing your data… and more!

imagedestroy()

It takes system resources to work with images
using the GD library, and this function takes care
of cleaning up when you’re finished working
with an image. Just call it after you output the
image with imagepng() to clean up.

Cleaning up after your images is
a good idea to keep the server
from wasting resources after
you’re finished with them.

imagestring()

This function draws a string of text using PHP’s
built-in font in the color specified. In addition
to the image resource identifier, you pass the
function the size of the font as a number (1–5),
along with the coordinate of the upper left corner
of the string, the string itself, and then the color.

imagestringup()

Similar to imagestring(), this function
draws a string of text using the built-in font,
but it draws the text vertically, as if it were
rotated 90 degrees counterclockwise. The
function is called with the same arguments as
imagestring().

Sample text
x,y

A number in the range 1-5 sets the size of the font used to draw the string of text, with 5 being the largest size.

S
a
m
p
l
e

t
e
x
t

x,y

Text drawn with
imagestringup() is rotated 90
degrees counter-clockwise so
that it appears vertically.

The built-in font is adequate
for basic text drawing but is
limited in terms of its size.

imagedestroy($img);
Similar to imagepng(), this
function returns true upon
success, or false otherwise.

The identifier of the image you want to destroy.

Always try to pair up a call
to this function with each
image that you create so
that all images are destroyed.

imagestring($img, 3, 75, 75, 'Sample text', $color);

This is the string of text to be drawn.
The XY coordinate
of the upper-left
corner of the string.

The font size of the
string, in the range 1 to 5.

The color of
the text.

Always free up images in
memory with imagedestroy()
once you’ve output them.

620 Chapter 11

Sample text

imagettftext()

For drawing truly customized text, place a TrueType font file on
your web server and then call this function. Not only do you get to
use any font of your choosing, but you also get more flexibility in the
size of the font and even the angle at which the text is drawn. Unlike
imagestring(), the coordinate passed to this function specifies
the “basepoint” of the first character in the text, which is roughly the
lower-left corner of the first character.

This function does require you to place a TrueType font file on your
server, and then specify this file as the last argument. TrueType font
files typically have a file extension of .ttf.

Geek BitsGeek Bits

If you’d like to take a stab at creating your very
own TrueType font to further customize your
CAPTCHA, check out www.fontstruct.com. It’s
an online font-building community including a
web-based tool for creating custom fonts.

x,y

Highly customized text drawing
requires a TrueType font and
the imagettftext() function.

Unlike imagestring(), the
coordinate used to draw text
with imagettftext() is at the
lower-left corner of the text.

Drawing text with a font
The imagestring() function is easy to use for drawing but it’s fairly limited
in terms of the control you have over the appearance of the text. To really get
a specific look, you need to use a TrueType font of your own. The CAPTCHA
pass-phrase image is a good example of this need, since the characters must
be drawn fairly large and ideally in a bold font. To get such a custom look,
you need the help of one last GD graphics function, which draws text using a
TrueType font that you provide on the server.

imagettftext($img, 18, 0, 5, CAPTCHA_HEIGHT - 5, $text_color,
 'Courier New Bold.ttf', $pass_phrase);

Use the imagettftext()
function to draw highly
customized text with your
own TrueType font.

Courier New Bold.ttf

You must place the TrueType font
file on your web server so that the
GD graphics library can find it.

The actual text being drawn.

The XY coordinate
of the lower left
corner of the text.

The size of the font,
usually specified in “points.”

The angle of the font,
specified in counter-clockwise
degrees (0 is normal text).

the imagettftxt() function

Match each piece of PHP graphics drawing code to the graphical
image that it generates. Assume the image ($img) and colors
($black_color, $white_color, and $gray_color) have
already been created.

DRAWS

imagefilledrectangle($img, 10, 10, 90, 60, $gray_color);
imagesetpixel($img, 30, 25, $black_color);
imagesetpixel($img, 70, 25, $black_color);
imageline($img, 35, 45, 65, 45, $black_color);
imagefilledrectangle($img, 45, 50, 55, 90, $gray_color);

imageellipse($img, 45, 45, 70, 70, $black_color);
imagefilledellipse($img, 75, 75, 30, 30, $gray_color);
imagesetpixel($img, 10, 10, $black_color);
imagesetpixel($img, 80, 15, $black_color);
imagesetpixel($img, 20, 15, $black_color);
imagesetpixel($img, 90, 60, $black_color);
imagesetpixel($img, 20, 80, $black_color);
imagesetpixel($img, 45, 90, $black_color);

imagefilledrectangle($img, 10, 10, 90, 90, $gray_color);
imagefilledellipse($img, 50, 50, 60, 60, $white_color);
imagefilledrectangle($img, 40, 40, 60, 60, $black_color);

imagefilledrectangle($img, 25, 35, 75, 90, $black_color);
imageline($img, 10, 50, 50, 10, $black_color);
imageline($img, 50, 10, 90, 50, $black_color);
imagefilledrectangle($img, 45, 65, 55, 90, $white_color);
imageline($img, 0, 90, 100, 90, $black_color);

imageline($img, 15, 15, 50, 50, $black_color);
imageline($img, 15, 85, 50, 50, $black_color);
imageline($img, 50, 50, 85, 50, $black_color);
imagefilledellipse($img, 15, 15, 20, 20, $gray_color);
imagefilledellipse($img, 15, 85, 20, 20, $gray_color);
imagefilledellipse($img, 50, 50, 20, 20, $gray_color);
imagefilledellipse($img, 85, 50, 20, 20, $gray_color);

imagecolorallocate($img, 0, 0, 0); imagecolorallocate($img, 255, 255, 255);

imagecolorallocate($img, 128, 128, 128);

you are here 4 621

visualizing your data… and more!

622 Chapter 11

Match each piece of PHP graphics drawing code to the graphical
image that it generates. Assume the image ($img) and colors
($black_color, $white_color, and $gray_color) have
already been created.

DRAWS

imagefilledrectangle($img, 10, 10, 90, 60, $gray_color);
imagesetpixel($img, 30, 25, $black_color);
imagesetpixel($img, 70, 25, $black_color);
imageline($img, 35, 45, 65, 45, $black_color);
imagefilledrectangle($img, 45, 50, 55, 90, $gray_color);

imageellipse($img, 45, 45, 70, 70, $black_color);
imagefilledellipse($img, 75, 75, 30, 30, $gray_color);
imagesetpixel($img, 10, 10, $black_color);
imagesetpixel($img, 80, 15, $black_color);
imagesetpixel($img, 20, 15, $black_color);
imagesetpixel($img, 90, 60, $black_color);
imagesetpixel($img, 20, 80, $black_color);
imagesetpixel($img, 45, 90, $black_color);

imagefilledrectangle($img, 10, 10, 90, 90, $gray_color);
imagefilledellipse($img, 50, 50, 60, 60, $white_color);
imagefilledrectangle($img, 40, 40, 60, 60, $black_color);

imagefilledrectangle($img, 25, 35, 75, 90, $black_color);
imageline($img, 10, 50, 50, 10, $black_color);
imageline($img, 50, 10, 90, 50, $black_color);
imagefilledrectangle($img, 45, 65, 55, 90, $white_color);
imageline($img, 0, 90, 100, 90, $black_color);

imageline($img, 15, 15, 50, 50, $black_color);
imageline($img, 15, 85, 50, 50, $black_color);
imageline($img, 50, 50, 85, 50, $black_color);
imagefilledellipse($img, 15, 15, 20, 20, $gray_color);
imagefilledellipse($img, 15, 85, 20, 20, $gray_color);
imagefilledellipse($img, 50, 50, 20, 20, $gray_color);
imagefilledellipse($img, 85, 50, 20, 20, $gray_color);

I’m an android,
not a robot.

Solution

who draws what solution

you are here 4 623

visualizing your data… and more!

Generate a random CAPTCHA image
Putting all the CAPTCHA code together results in the brand-new captcha.
php script, which takes care of generating a random pass-phrase and then
returning a PNG image to the browser.

<?php
 session_start();

 // Set some important CAPTCHA

 constants

 define('CAPTCHA_NUMCHARS', 6
); // number of characters in p

ass-phrase

 define('CAPTCHA_WIDTH', 100)
; // width of image

 define('CAPTCHA_HEIGHT', 25)
; // height of image

 // Generate the random pass-p

hrase

 $pass_phrase = "";

 for ($i = 0; $i < CAPTCHA_NUMC
HARS; $i++) {

 $pass_phrase .= chr(rand(97
, 122));

 }

 // Store the encrypted pass-p

hrase in a session variable

 $_SESSION['pass_phrase'] = s
ha1($pass_phrase);

 // Create the image

 $img = imagecreatetruecolor(
CAPTCHA_WIDTH, CAPTCHA_HEIGHT

);

 // Set a white background with

 black text and gray graphics

 $bg_color = imagecoloralloca
te($img, 255, 255, 255); // w

hite

 $text_color = imagecolorallo
cate($img, 0, 0, 0); // bla

ck

 $graphic_color = imagecolora
llocate($img, 64, 64, 64); //

 dark gray

 // Fill the background

 imagefilledrectangle($img, 0
, 0, CAPTCHA_WIDTH, CAPTCHA_HE

IGHT, $bg_color);

 // Draw some random lines

 for ($i = 0; $i < 5; $i++) {

 imageline($img, 0, rand() %
CAPTCHA_HEIGHT, CAPTCHA_WIDTH

, rand() % CAPTCHA_HEIGHT, $gr
aphic_color);

 }

 // Sprinkle in some random dot

s

 for ($i = 0; $i < 50; $i++) {

 imagesetpixel($img, rand()
% CAPTCHA_WIDTH, rand() % CAPT

CHA_HEIGHT, $graphic_color);

 }

 // Draw the pass-phrase strin

g

 imagettftext($img, 18, 0, 5,
CAPTCHA_HEIGHT - 5, $text_colo

r, "Courier New Bold.ttf", $pa
ss_phrase);

 // Output the image as a PNG us
ing a header

 header("Content-type: image/
png");

 imagepng($img);

 // Clean up
 imagedestroy($img);

?>

captcha.php

Create constants to hold the
number of characters in the
CAPTCHA and the width and
height of the CAPTCHA image.

Although you could store the encrypted pass-phrase in the database, it’s simpler to just stick it in a session variable - we have to store it so the Add Score script can access it.

Generate a PNG image based
on everything that has been
drawn.

The PNG image is
actually delivered
to the browser
through a header.

Some versions of the GD
graphics library require a relative path to the font file, such as

“./Courier New Bold.ttf”.

Finish up by destroying the image
from memory (it still gets sent
to the browser via the header).

The captcha.php script is
completely self-contained - you can open it in your browser and view the image that it generates.

624 Chapter 11

Test Drive
Create the CAPTCHA script and try it out.
Create a new text file named captcha.php, and enter the code for the CAPTCHA
script from the previous page (or download the script from the Head First Labs site at
www.headfirstlabs.com/books/hfphp).

Upload the script to your web server, and then open it in a web browser. You’ll
immediately see the CAPTCHA image with the random pass-phrase in the browser.
To generate a new random pass-phrase, refresh the browser.

Refreshing the CAPTCHA
script results in a new
random pass-phrase image
being generated.

Each CAPTCHA image generated consists of six random characters with some extra lines and dots
for added “background noise.”

try out captcha.php

you are here 4 625

visualizing your data… and more!

Returning sanity to Guitar Wars
Now that we’ve conjured up your inner PHP artist with some GD functions
and a CAPTCHA image, it’s time to use the CAPTCHA image to rescue the
Guitar Wars moderator from the spam bot assault. There are actually a few
steps involved in solving the bot problem with a pass-phrase CAPTCHA. The
good news is we’ve already knocked out two of them: generating the random
pass-phrase and drawing the CAPTCHA image. Let’s knock out the remaining
steps to make Guitar Wars officially bot-free!

These robots are
making me crazy! I
need help stopping
them now!

Generate a random pass-phrase.1

Draw a CAPTCHA image using the pass-phrase.2

Display the CAPTCHA image on the Guitar Wars
Add Score form and prompt the user to enter the
pass-phrase.

3

Verify the pass-phrase against the user input.4

The Guitar Wars
moderator is so
frazzled that
he’s lashing out at
imaginary robots - he
needs a solution now!

Already done!

Drawing complete!

Complete Step 3 of the Guitar Wars Add Score CAPTCHA by writing the HTML code for a new
Verification text input form field that prompts the user to enter the CAPTCHA pass-phrase.
Make sure to give it a label, and follow it with an tag that displays the CAPTCHA image
generated by the captcha.php script.

626 Chapter 11

The CAPTCHA
image is
displayed on the
form next to
a verification
text input field.

The “source” of the image is the
name of the PHP script that
dynamically generates the CAPTCHA image. This works because the
captcha.php script returns an
image directly to the browser via
imagepng() and a header.

Complete Step 3 of the Guitar Wars Add Score CAPTCHA by writing the HTML code for a new
Verification text input form field that prompts the user to enter the CAPTCHA pass-phrase.
Make sure to give it a label, and follow it with an tag that displays the CAPTCHA image
generated by the captcha.php script.

<label for=“verify”>Verification: </label>
<input type=“text” id=“verify” name=“verify” value=“Enter the pass-phrase.” />

Display the CAPTCHA image on the Guitar Wars
Add Score form and prompt the user to enter the
pass-phrase.

3

A <label> tag is used
to label the new
Verification text field.

This text field is where
the user will enter the
pass-phrase revealed in
the CAPTCHA image.

Finished! One more step to go.

exercise solution

you are here 4 627

visualizing your data… and more!

Add CAPTCHA to the Add Score script
On the client side of the equation, the addscore.php script contains the
new Verification text field with the CAPTCHA image beside it. The most
important change, however, is the new if statement in the Add Score script
(Step 4) that checks to make sure the user-entered pass-phrase matches the
CAPTCHA pass-phrase.

<?php
 session_start();

?>

<html>
<head>
 <title>Guitar Wars -

 Add Your High Score</
title>

 <link rel="styleshee
t" type="text/css" hr

ef="style.css" />

</head>
<body>
 <h2>Guitar Wars - Add

 Your High Score</h2>

<?php
 require_once('appva

rs.php');

 require_once('conne
ctvars.php');

 if (isset($_POST['su

bmit'])) {

 // Connect to the da
tabase

 $dbc = mysqli_conne
ct(DB_HOST, DB_USER,

DB_PASSWORD, DB_NAME)
;

 // Grab the score da

ta from the POST

 $name = mysqli_real
_escape_string($dbc,

 trim($_POST['name'])
);

 $score = mysqli_rea
l_escape_string($dbc

, trim($_POST['score'
]));

 $screenshot = mysql
i_real_escape_string

($dbc, trim($_FILES['
screenshot']['name']

));

 $screenshot_type =
$_FILES['screenshot'

]['type'];

 $screenshot_size =
$_FILES['screenshot'

]['size'];

 // Check the CAPTCHA

 pass-phrase for verif
ication

 $user_pass_phrase =
 sha1($_POST['verify'

]);

 if ($_SESSION['pass
_phrase'] == $user_pa

ss_phrase) {

 ...
 else {
 echo '<p class="er

ror">Please enter the
 verification pass-ph

rase exactly as shown.
</p>';

 }
 }
?>

 <hr />
 <form enctype="multi

part/form-data" metho
d="post" action="<?ph

p echo $_SERVER['PHP_
SELF']; ?>">

 <input type="hidden
" name="MAX_FILE_SIZE

" value="<?php echo GW
_MAXFILESIZE; ?>" />

 <label for="name">N
ame: </label>

 <input type="text"
id="name" name="name"

 value="<?php if (!emp
ty($name)) echo $name

; ?>" />

 <label for="score">
Score: </label>

 <input type="text"
id="score" name="scor

e" value="<?php if (!e
mpty($score)) echo $s

core; ?>" />

 <label for="screens
hot">Screen shot: </l

abel>

 <input type="file"
id="screenshot" name=

"screenshot" />

 <label for="verify"
>Verification: </labe

l>

 <input type="text"
id="verify" name="ver

ify" value="Enter the
 pass-phrase." />

 <img src="captcha.p
hp" alt="Verification

 pass-phrase" />

 <hr />
 <input type="submit

" value="Add" name="s
ubmit" />

 </form>
</body>
</html>

4

This is where the CAPTCHA script

was “wired” to the Add Score script

in Step 3, resulting in t
he CAPTCHA

image being displayed on t
he page.

This is where the encrypted

pass-phrase is read from a session

variable and checked to
see if the

user entered it correctly
.

addscore.php

4 Check to
make sure
the user
entered
the correct
CAPTCHA
pass-phrase.

We’re all done!

628 Chapter 11

Test Drive
Modify the Add Score script to support CAPTCHA.
Change the addscore.php script so that it has a new Verification form field, as well
as using the captcha.php script to display a CAPTCHA image. Also add the code
to check and make sure the user entered the correct pass-phrase before adding a score.

Upload both scripts to your web server, and then open addscore.php in a web
browser. Try to add a new score without entering a CAPTCHA pass-phrase. Now try
again after entering the pass-phrase displayed in the CAPTCHA image.

Ahh, it’s good
to be human.

A constantly changing CAPTCHA pass-phrase makes it tough for automated bots to spam the Guitar Wars form.

Our human moderator
finally gets some peace
thanks to a little
automation of our own!

test drive addscore.php with captcha functionality

you are here 4 629

visualizing your data… and more!

Q: Can I use the GD functions to
create images in formats other than PNG?

A: Yes. The imagegif() and
imagejpeg() functions work very
similarly to imagepng() but create GIF
and JPEG images, respectively.

Q: Can the image creation functions
create images with transparency?

A: Yes! There is a function called
imagecolortransparent()
that sets a color as a transparent color
within an image. This must be a color
that you’ve already created using the
imagecolorallocate() function.
After setting the color as transparent,
anything drawn with that color in the image
will be considered transparent. To generate
the image with transparency, just call
imagegif() or imagepng(); you
can’t use imagejpeg() because JPEG
images don’t support transparency.

Q: When using imagepng() to
output a PNG image directly to the client
browser, where is the .png file for the
image stored, and what is its name?

A: There is no .png file for the image,
and the reason is because the image isn’t
stored in a file. Instead, the imagepng()
function generates a binary PNG image in
memory on the server and then delivers it
directly to the browser via a header. Since
the image data is created and sent directly
to the browser, there’s no need to store it in
an image file.

Q: Is that why I’m able to put the name
of the CAPTCHA script directly in the
src attribute of an tag?

A: That’s correct. Referencing a PHP
script in the src attribute of an
tag, as was done with the captcha.php
script in Guitar Wars, results in the image
being delivered directly by the script. This is
in contrast to the normal way the
tag works, where the name of an image
file is specified in the src attribute. Since
the script is sourcing the image directly to
the browser through a header (by way of
the imagepng() function), no file is
involved. And the browser knows to connect
the image from the header to the
tag because the script is specified in the
src attribute.

Pass-phrase...
pass-phrase...
Does not compute!

Error!
Pass-phrase unknown. Pass-what?

All web forms are at risk of attack from spam bots, but
all spam bots are at risk from clever PHP programmers
who use techniques such as CAPTCHA to thwart them.

GD is a standard PHP graphics library that allows you
to dynamically create images and then draw all kinds of
different graphics and text on them.

The createtruecolorimage() GD function is
used to create a blank image for drawing.

To output a PNG image to the browser or to a file on the
server, call the imagepng() GD function.

When you’re finished working with an image, call
imagedestroy() to clean up after it.

630 Chapter 11

Five degrees of opposability
Since Mismatch is a community of registered (human!) users, spam bots haven’t
been a problem. However, users want a little more out of the mismatch feature
of the site, primarily the “five degrees of opposability” that they’ve been hearing
about. Mismatch users want more than just a list of topics for their ideal
mismatch—they want some visual context of how those topics break down for
each major category of “mismatchiness.”

I see a bunch of topics, but I don’t
really know how we mismatch in different
categories. I was sold on the “five degrees
of opposability,” but I can’t even see how
they relate to my mismatch. What gives?

The list of mismatched topics
is interesting and all, but
users really want a more
visual perspective on how they
mismatch with each other.

Mismatch’s
“five degrees
of opposability”
involves measuring
mismatched topics
by category.

Belita is a visual
person, and wants to
see more than just a
list of topics for her
perfect mismatch.

visualizing mismatch's data

you are here 4 631

visualizing your data… and more!

Charting mismatchiness
If you recall, Mismatch includes a categorized questionnaire where users selcet
Love or Hate for a variety of topics. These responses are what determine the
topics for an ideal mismatch. When presenting a user’s ideal mismatch, the My
Mismatch script displays a list of mismatched topics that it builds as an array
from the Mismatch database. But users now want more than a list of topics...
they want a visual categorized breakdown of their “mismatchiness,” perhaps in
the form of a bar graph?

Tattoos

Cowboy boots

Long hair

Reality TV

Horror movies

Easy listening music

The opera

Sushi

Spicy food

Peanut butter &
banana sandwiches

Martinis

Bill Gates

Hugh Hefner

Yoga

Weightlifting

Cube puzzles

Karaoke

Hiking

We somehow need
to turn this list of
topics into a bar
graph of categories.

Draw a bar graph for the Mismatch data that
visually shows the “five degrees of opposability” for
Belita and Jason. Annotate what the information in
the bar graph means.

632 Chapter 11

1

2

3

4

5

Ap
pea

ran
ce

En
te

rt
ain

me
nt

Fo
od

Peo
ple

Ac
tiv

iti
es

Although there are lots of different ways you could
visualize the mismatch data, a bar graph isn’t a bad option
since the categories have an equal number of topics each.

Each bar represents the
number of mismatches in a
given category of topics.

Value 1 Value 2 Value 3 ...

Heading 1 Heading 2 Heading 3 ...

Range

$graph_data = array(
 array("Heading 1", $value1),
 array("Heading 2", $value2),
 array("Heading 3", $value3),
 ...);

Each bar in a
bar graph has
both a heading
and a value - the
value here is 5.

The height of a bar reflects the magnitude of the value for a heading.

The range of a bar graph establishes
the possible values
for each bar.

Storing bar graph data
When it comes down to it, the data behind a bar graph is perhaps even
more important than the graphics. Knowing that a bar graph is really just a
collection of headings and values, we can view the data for a bar graph as a two-
dimensional array where the main array stores the bars, while each sub-array
stores the heading/value pair for each bar.

Each sub-array stores the
heading and value for a
given bar in the bar graph.

Each item in the main array
corresponds to a single bar.

Bar 1 Bar 2 Bar 3 Bar 4

Draw a bar graph for the Mismatch data that visually shows the “five degrees of opposability”
for Belita and Jason. Annotate what the information in the bar graph means.

storing graph data in arrays

you are here 4 633

visualizing your data… and more!

The database schema for the Mismatch application is shown below. Circle all of the pieces
of data that factor into the dynamic generation of the “five degrees of opposability” bar graph,
making sure to annotate how they are used to create the graph.

mismatch_topic
topic_id

name

category_id

mismatch_user

user_id
username
password
join_date
first_name
last_name

gender
birthdate

city
state

picture

mismatch_response

response_id

response

user_id

topic_id

mismatch_category

category_id
name

Q: Does a bar graph have to be fed with a two-dimensional
array of data?

A: No, not at all. But keep in mind that each bar in a bar graph
typically involves two pieces of information: a heading and a value.
And each bar graph consists of multiple bars, so a two-dimensional

array is a logical and efficient way to store data for use in populating
a bar graph. As the old saying goes, “If you only see one solution,
you really don’t understand the problem.” In this case, the problem
is how to best store the data that is injected into a bar graph, and
one particular solution that works out pretty well is a two-dimensional
array. Of course, the challenge still remaining is how exactly to build
this two-dimensional array of Mismatch category totals. The first step
is to isolate what data in the database factors into the solution.

634 Chapter 11

The database schema for the Mismatch application is shown below. Circle all of the pieces
of data that factor into the dynamic generation of the “five degrees of opposability” bar graph,
making sure to annotate how they are used to create the graph.

mismatch_topic
topic_id

name

category_id

mismatch_user

user_id
username
password
join_date
first_name
last_name

gender
birthdate

city
state

picture

mismatch_response

response_id

response

user_id

topic_id

mismatch_category

category_id
name

The user_id column is used to
query for questionnaire responses so that the best mismatch for a user can be determined.

The response_id column is used to
match up responses for two users
to determine if they are set to
opposite values - a mismatch!

The topic_id column serves as the go-between for categories and
responses, which is what allows
you to figure out the category
of each mismatched response.

The category_id column is used to
associate a category with a topic, which leads to a mismatched response. The
name of the category is important for providing headings for the bar graph.

The bar graph ultimately
requires a count of how many
mismatches there are for each
category; the count is the
value for a given bar, while the
category name is its heading.

exercise solution

you are here 4 635

visualizing your data… and more!

Head First: So you’re the guy people call when they
need a visual representation of some data. Is that right?

Bar Graph: Oh yeah. I’m adept at all facets of data
visualization, especially the rectangular variety.

Head First: So your drawing capabilities are limited
mostly to rectangles?

Bar Graph: I’d say “limited” is a strong word in this
case. It’s one of those deals where simpler is better—
people just seem to relate to the bars, maybe because
they’re used to seeing things measured that way. You
know, like the little meter on mobile phones that tells you
how good your signal is. “Can you hear me now?” I love
that.

Head First: Right. But I’ve also seen some pretty
effective graphs that are round. Makes me think
comforting thoughts... like apple pie, know what I mean?

Bar Graph: I know where you’re headed, and I’m
fully aware of Pie Chart. Look, it’s two different ways of
thinking about the same thing. Pie Chart sees the world in
curves; I see it a bit straighter, that’s all.

Head First: But don’t people inherently relate better to
pie than a bunch of bars?

Bar Graph: No, they don’t. At least people who
aren’t hungry don’t. You see, Pie Chart is really good
at revealing parts of a whole, where the data being
represented adds up to something that matters, like 100%,
32 teams, or 50 states. There are 50 states, right?

Head First: Yes. Well, assuming you count Washington,
D.C. as a “capital district” and places like Puerto Rico
and Guam as “territories.” But anyway, I see what you’re
saying about Pie Chart being more about revealing parts
of a whole, but don’t you do the same thing?

Bar Graph: Yes, but keep in mind that I’m much more
flexible than Pie Chart. You can add as many bars to me
as you want and I have no problem at all showing them.

The more you add to Pie Chart, the smaller the slices
have to get. At some point the parts get hard to visualize
because of the whole. All that matters with me is that the
bars all have values that can show up on the same scale.

Head First: What does that mean?

Bar Graph: Well, it’s difficult for me to graph things that
have wildly different values, unless of course, you don’t
mind the bars being dramatically different. Where I really
excel is at showing the difference between values that are
within the same range. For example, maybe you want
to use me to show the price of gasoline over a one-year
period, in which case all the values would be within a
reasonably constrained range, like within a few dollars of
each other.

Head First: You sure about that?

Bar Graph: I know, the price of gasoline seems like a
wildly varying value, but not really within the realm of
what I deal with.

Head First: So you’ve seen some wild stuff, eh?

Bar Graph: You wouldn’t believe some of it. I once
had a guy who built a web application that kept up with
how many miles he dragged his mouse in a given month.
He blogged about it constantly, and used me to chart his
“travels.” Pretty crazy but people loved it.

Head First: So is that where you fit into the web
picture—providing visual glimpses into people’s data?

Bar Graph: Yeah, I guess so. Anytime I can drop into
a page and provide some eye appeal to data that might
otherwise be a little dull and hard to grasp, I consider it a
good day.

Head First: Glad to hear it. Hey, I appreciate you
sharing your thoughts, and I hope we can do this again.

Bar Graph: It was my pleasure. And don’t worry, you’ll
be seeing me around.

Bar Graph Exposed
This week’s interview:
Reading between the lines with the
master of charts

Bar Graph Exposed
This week’s interview:
Reading between the lines with the
master of charts

636 Chapter 11

From one array to another
When we last left off at Mismatch, we had a list of topics that corresponded
to mismatches between two users. More specifically, we really have an array
of topics. Problem is, the bar graph we’re trying to draw isn’t about topics
per se—it’s about the categories that are associated with the topics. So we’re
one level removed from the data we actually need. It appears that some additional
SQL querying is in order. Not only do we need the array of mismatched topics,
but we also need a similar, parallel array of mismatched categories.

Appearance

Appearance

Appearance
Entertainment
Entertainment
Entertainment
Entertainment

Food

Food

Food

Food

People

People

Activities

Activities

Activities

Activities

Activities

$query = "SELECT mr.response_id, mr.topic_id, mr.response,
 mt.name AS topic_name, mc.name AS category_name " .
 "FROM mismatch_response AS mr " .
 "INNER JOIN mismatch_topic AS mt USING (topic_id) " .
 "INNER JOIN mismatch_category AS mc USING (category_id) " .
 "WHERE mr.user_id = '" . $_SESSION['user_id'] . "'";

An alias is used to eliminate
confusion when referring
to the name column of the
mismatch_category table.

A multiple join connects
the category table to
the response table so
that the category name
can be extracted.

...

Tattoos Appearance

Gold chains Appearance

Body piercings Appearance

Cowboy boots Appearance

Long hair Appearance

Reality TV Entertainment

Professional wrestling Entertainment

Horror movies Entertainment

Easy listening music Entertainment

The opera Entertainment

Sushi Food

Spam Food

Spicy food Food

Peanut butter &
banana sandwiches

Food

Martinis Food

Howard Stern People

Bill Gates People

Barbara Streisand People

Hugh Hefner People

...

topic_name category_name

The additional join in this query causes the category name corresponding to
each response topic to be tacked on to the result data, ultimately making its
way into the $user_responses array. But remember, we need only the
mismatched categories, not all of the categories. We need to build another
array containing just the mismatched categories for the responses.

The new “column” of
mismatch result data
holds the category
name of every response.

But we’re still falling short of our goal of building
an array of mismatched categories. To do that, we
need to revisit the code that builds the array of
mismatched topics...

We need to extract
only the category
names of mismatched
responses into an array.Back in Chapter 8,

the $user_responses
two-dimensional array
was created and filled
with result data
corresponding to the
current user’s responses.

We still need a new array
holding only the mismatched
response categories for this
pair of users.

$user_responses

building an array for categories

you are here 4 637

visualizing your data… and more!

Test Drive
Try out the new query to grab mismatched topics and categories.
Using a MySQL tool, issue the following query to SELECT mismatched topics and categories
for a specific user. Make sure to specify a user ID for a user who not only exists in the database,
but who also has filled out the Mismatch questionnaire form:

SELECT mr.response_id, mr.topic_id, mr.response,
 mt.name AS topic_name, mc.name AS category_name
 FROM mismatch_response AS mr
 INNER JOIN mismatch_topic AS mt USING (topic_id)
 INNER JOIN mismatch_category AS mc USING (category_id)
 WHERE mr.user_id = 3;

mysql> SELECT mr.response_id, mr.topic_id, mr.response, mt.name AS topic_name, mc.name AS category_name FROM mismatch_response AS mr
 INNER JOIN mismatch_topic AS mt USING (topic_id) INNER JOIN mismatch_category AS mc USING (category_id) WHERE mr.user_id = 3;

+-------------+----------+----------+------------------------+---------------+ | response_id | topic_id | response | topic_name | category_name | +-------------+----------+----------+------------------------+---------------+ | 26 | 1 | 1 | Tattoos | Appearance | | 27 | 2 | 2 | Gold chains | Appearance | | 28 | 3 | 1 | Body piercings | Appearance | | 29 | 4 | 2 | Cowboy boots | Appearance | | 30 | 5 | 1 | Long hair | Appearance | | 31 | 6 | 2 | Reality TV | Entertainment | | 32 | 7 | 1 | Professional wrestling | Entertainment | | 33 | 8 | 1 | Horror movies | Entertainment | | 34 | 9 | 2 | Easy listening music | Entertainment |

File Edit Window Help Oppose

The user ID must be for a
valid user who has answered
the Mismatch questionnaire.

Notice that the results of this query
match up with the $user_responses array
on the facing page, which is what we want. It’s always a good idea to test out a query in a MySQL tool

before sticking it in PHP code.

638 Chapter 11

$categories = array();
for ($i = 0; $i < count($user_responses); $i++) {
 if ($user_responses[$i]['response'] + $mismatch_responses[$i]['response'] == 3) {
 $score += 1;
 array_push($topics, $user_responses[$i]['topic_name']);
 array_push($categories, $user_responses[$i]['category_name']);
 }
}

Build an array of mismatched topics
We now have a query that performs a multiple join to grab the category
of each response in addition to the topic, which is then extracted into the
$user_responses array. Remember that another similar query also grabs
data for each other user in the database so that mismatch comparisons can be
made. So $user_responses holds the response data for the user logged
in to Mismatch, while $mismatch_responses holds one of the other
users in the system. This allows us to loop through all of the users and update
$mismatch_responses for each mismatch user comparison.

We’re already using these two arrays to score mismatches and build an array
of mismatched topics. We can now add a new line of code to also construct
an array of mismatched categories—this array contains the category of
each mismatched topic between two users.

An array of mismatched
categories is built by storing
away the category associated
with each mismatched response.

This is the same code from the earlier version of
Mismatch, except now it builds an array of mismatched
categories in addition to the array of topics.

When all is said and done, the
$categories array contains one
category for each and every mismatch.

This code results in an array containing only the mismatched categories.

Q: I’m a little confused. What’s the difference between a
MySQL result set and a PHP array?

A: One big difference is access. A result set is only made available
a row of data at a time, while an array can hold multiple “rows” of
data thanks to multiple dimensions. Extracting a result set into a
two-dimensional array lets us move through rows of data efficiently
without having to constantly go back to the database server to fetch
and re-fetch rows. This doesn’t work with huge sets of data, as you’d
be creating huge arrays, but in the case of Mismatch responses, the
arrays are never larger than the total number of topics in the system.

Q: Don’t we still need to count how many times a category
was mismatched in order to generate the bar graph?

A: Yes. An array of mismatched categories is not enough.
Remember that the idea behind the Mismatch bar graph is that each
bar represents a mismatched category, and the height of the bar
represents how many times the category was mismatched. So we
need to come up with a count of how many times each category was
mismatched. But it’s probably worth taking a step back to formulate a
general plan of attack...

building an array for topics

you are here 4 639

visualizing your data… and more!

Formulating a bar graphing plan
With an array of mismatched categories and a bunch of big ideas about how
to use it to generate a bar graph image for the My Mismatch page, we’re still
missing a plan. As it turns out, there are only three steps required to dynamically
generate the bar graph, and we’ve already knocked out one of them.

Query the Mismatch database for mismatched
category names.

1

Calculate the mismatch totals for each category.2

Draw the bar graph using the categorized
mismatch totals.

3

To complete Step 2 of our plan, we somehow need to take the array of
mismatched categories and turn it into a set of category totals, meaning
a count of how many times each category appears in the mismatched
category array. If you recall, this is precisely the kind of data required to
drive a bar graph, where the categories are the headings and the count for
each category is the value of each bar. A two-dimensional array can be
used to combine categories and totals into a single data structure.

This step provides
us with the list of
mismatched categories.

The list of categories
needs to be converted into
a list of category totals.

With the category totals in
hand, we can get down to
the fun part of drawing the
bar graph with GD functions.

Appearance 3

Entertainment 4

Food 4

People 2

Activities 5

Ap
pea

ran
ce

En
te

rt
ain

me
nt

Fo
od

Peo
ple

Ac
tiv

iti
es

This array contains each
category name along
with how many times it
was mismatched.

A
pp

ea
ra

nc
e

3

En
te

rta
in

m
en

t
4

Fo
od

4

Pe
op

le
2

A
ct

iv
iti

es
5

Looking at the new categories array from a different angle reveals how it is used to feed data to the bar graph.

The new mismatched category data is
exactly what we need for the bar graph.

Rotate!

Once this array of category totals is built, we’ll be ready to move on to Step 3
and actually use some GD functions to crank out the bar graph visuals.

640 Chapter 11

Crunching categories
The challenge now is to get the array of categories totaled up and put into a
two-dimensional array of headings and values. We have an array of mismatched
categories stored in the $categories array. We need to build a new array
called $category_totals that contains one entry for each category, along
with the number of mismatches for each.

How would you go about totaling the mismatched
categories in the $categories array to build the
two-dimensional $category_totals array?

Appearance

Appearance

Appearance
Entertainment
Entertainment
Entertainment
Entertainment

Food

Food

Food

Food

People

People

Activities

Activities

Activities

Activities

Activities

Appearance 3

Entertainment 4

Food 4

People 2

Activities 5

We need to
go from this...

...to this!

The total number of occurrences of a category in the $categories array appears as a total in the $category_totals array.

$categories

$category_totals

some array math

you are here 4 641

visualizing your data… and more!

$category_totals = array(array($mismatch_categories[0], 0));

foreach ($mismatch_categories as $category) {

}

Doing the category math
Moving from a one-dimensional array of mismatched categories to a two-
dimensional array of category totals is a bit trickier than you might think at first
glance. For this reason, it’s helpful to work through the solution in pseudocode
before actually cranking out any PHP. Pseudocode frees you from syntactical
details and allows you to focus on the core ideas involved in a particular coding
solution.

Create a new two-dimensional array to store the category totals, making sure to
initialize the first element with the first mismatched category and a count of 0.

Loop through the array of mismatched categories. For each category in the array...

Is the last element in the category totals array a different category than the
current mismatched category?

Yes! This is a new category so add it to the category totals array
and initialize its count to 0.

No. This is another instance of the current category, so increment
the count of the last element in the category totals array.

The product of this code is a two-dimensional array of category totals where the
main array holds a single category, while each sub-array contains the category
name and its value.

Translate the pseudocode to finish the real PHP code that builds a two-dimensional array of
Mismatch category data called $category_totals.

642 Chapter 11

$category_totals

Calculate the
mismatch totals
for each category.

2

We can now safely scratch
this step off the list,
leaving us only with the
drawing of the bar graph.

The $category_totals variable now holds precisely the data needed to generate a bar graph for the mismatched categories.

EntertainmentAppearance

43

PeopleFood

24

Activities

5

Appearance 3

Entertainment 4

Food 4

People 2

Activities 5

This is the end
result of this code.

Translate the pseudocode to finish the real PHP code that builds a two-dimensional array of
Mismatch category data called $category_totals.

 if ($category_totals[count($category_totals) - 1][0] != $category) {
 array_push($category_totals, array($category, 1));
 }
 else {
 $category_totals[count($category_totals) - 1][1]++;
 }

$category_totals = array(array($mismatch_categories[0], 0));

foreach ($mismatch_categories as $category) {

}

Arrays are zero-indexed, so
the last element in an array
is always count() minus one.

This is a new category, so add it to the array of category totals as a new sub-array consisting of the category name and an initial count of 1.

The increment operator (++)
is applied to the second
element in the sub-array,
which is the category count.

exercise solution

you are here 4 643

visualizing your data… and more!

Q: What happens to the category total code if the categories in the $mismatch_categories array
aren’t in order?

A: Big problems. The code is entirely dependent upon the categories in the $mismatch_categories
array being in order. This is revealed in how the code assumes that any change in the category is the start of a new
category, which works as long as categories are grouped together. Fortunately, the query in the Questionnaire script
that originally selects topics for insertion into the mismatch_response table is smart enough to order the
responses by category.

SELECT topic_id FROM mismatch_topic ORDER BY category_id, topic_id

This query is the one that first grabs topics from the database and then inserts them as empty responses for a given
user. This ensures that user responses are stored in the database ordered by category, which allows the category
total code to work properly.

Q: But isn’t it risky writing code that is dependent upon the order of data stored in a database table?

A: Yes and no. Remember that this database is entirely controlled by script code that you write, so the order of
the data really only changes if you write script code that changes it. Even so, an argument could certainly be made
for ordering the join query in the My Mismatch script by category to make absolutely sure that the mismatched
category list is in order.

644 Chapter 11

Bar graphing basics
With a shiny new two-dimensional array of mismatched category data burning a
hole in your pocket, it’s time to get down to the business of drawing a bar graph.
But rather than focus on the specifics of drawing the Mismatch bar graph, why
not take a more generic approach? If you design and create an all-purpose bar
graph function, it’s possible to use it for Mismatch and have it at your disposal
for any future bar graphing needs. In other words, it’s reusable. This new
function must perform a series of steps to successfully render a bar graph from a
two-dimensional array of data.

Range

He
ad

ing
 1

He
ad

ing
 2

He
ad

ing
 3

...

Value 1

Value 2 Value 3

...

mymismatchgraph.png

Create the image.11

Create the colors you’ll be using to draw the graphics and text.22

Fill the background with a background color.33

Draw the bars and headings.44

Draw a rectangle around the entire bar graph.55

Draw the range up the left side of the graph.66

Write the bar graph to an image file.77

Clean up by destroying the image.88

1

7 8

2

3

4

5

6

The number of bars is
determined by the length
of the array of data.

The width of each bar and
the spacing between bars
must be calculated based on
the width of the bar graph
and the number of bars.

The value of each bar
must be within the
maximum range specified
when calling the function.

drawing a bar graph

you are here 4 645

visualizing your data… and more!

PHP Magnets
The My Mismatch script contains a new draw_bar_graph() function that takes care of drawing a bar
graph given a width, height, a two-dimensional array of graph data, a maximum value for the range, and
a filename for the resulting PNG image. Use the magnets to add the missing GD drawing function calls.

imagecreatetruecolor

imagecolorallocate
imagefilledrectangle

imagestringup imagerectangle

imagestring
imagepng

imagedestroy

imagecolorallocate
imagecolorallocate

imagecolorallocate

imagefilledrectangle

function draw_bar_graph($width, $height, $
data, $max_value, $filename) {

 // Create the empty graph image

 $img = ($width, $height);

 // Set a white background with black text an

d gray graphics

 $bg_color = ($img, 255, 255, 255); // white

 $text_color = ($img, 255, 255, 255); // white

 $bar_color = ($img, 0, 0, 0); // black

 $border_color = ($img, 192, 192, 192); // light gray

 // Fill the background

 ($img, 0, 0, $width, $height, $bg_col

or);

 // Draw the bars
 $bar_width = $width / ((count($data) * 2) +

1);

 for ($i = 0; $i < count($data); $i++) {

 ($img, ($i * $bar_width * 2) + $bar_width, $

height,

 ($i * $bar_width * 2) + ($bar_width * 2), $

height - (($height / $max_value) * $data[$i]
[1]), $bar_color);

 ($img, 5, ($i * $bar_width * 2) + ($bar_widt

h), $height - 5, $data[$i][0],

 $text_color);
 }

 // Draw a rectangle around the whole thing

 ($img, 0, 0, $width - 1, $height - 1, $border_

color);

 // Draw the range up the left side of the gra

ph

 for ($i = 1; $i <= $max_value; $i++) {

 ($img, 5, 0, $height - ($i * ($height /

 $max_value)), $i, $bar_color);

 }

 // Write the graph image to a file

 ($img, $filename, 5);

 ($img);

}

1

2

3

4

5

6

7

8

646 Chapter 11

PHP Magnets Solution
The My Mismatch script contains a new draw_bar_graph() function that takes care of drawing a bar
graph given a width, height, a two-dimensional array of graph data, a maximum value for the range, and
a filename for the resulting PNG image. Use the magnets to add the missing GD drawing function calls.

function draw_bar_graph($width, $height, $
data, $max_value, $filename) {

 // Create the empty graph image

 $img = ($width, $height);

 // Set a white background with black text an

d gray graphics

 $bg_color = ($img, 255, 255, 255); // white

 $text_color = ($img, 255, 255, 255); // white

 $bar_color = ($img, 0, 0, 0); // black

 $border_color = ($img, 192, 192, 192); // light gray

 // Fill the background

 ($img, 0, 0, $width, $height, $bg_col

or);

 // Draw the bars
 $bar_width = $width / ((count($data) * 2) +

1);

 for ($i = 0; $i < count($data); $i++) {

 ($img, ($i * $bar_width * 2) + $bar_width, $

height,

 ($i * $bar_width * 2) + ($bar_width * 2), $

height - (($height / $max_value) * $data[$i]
[1]), $bar_color);

 ($img, 5, ($i * $bar_width * 2) + ($bar_widt

h), $height - 5, $data[$i][0],

 $text_color);
 }

 // Draw a rectangle around the whole thing

 ($img, 0, 0, $width - 1, $height - 1, $border_

color);

 // Draw the range up the left side of the gra

ph

 for ($i = 1; $i <= $max_value; $i++) {

 ($img, 5, 0, $height - ($i * ($height /

 $max_value)), $i, $bar_color);

 }

 // Write the graph image to a file

 ($img, $filename, 5);

 ($img);

}

1

2

3

4

5

6

7

8

imagecreatetruecolor

imagefilledrectangle

imagestringup

imagerectangle

imagestring

imagepng

imagedestroy

imagecolorallocate

imagefilledrectangle

imagecolorallocate

imagecolorallocate

imagecolorallocate

First create a blank new image for drawing.

Create some
colors to use for
drawing the parts
of the bar graph.

Clear the background to get it ready for the bar graph graphics.

Draw a bar as a
filled rectangle.

Draw the heading for the bar as a
string of text oriented vertically.

Draw a rectangle around
the entire bar graph.

Draw the range up the left side
of the graph as normal horizontal
strings of text.

Write the image to a PNG file

with the specified filename and a

compression level of 5 (medium).
Destroy the image in
memory to clean up.

The folder on the server where the file is to be written
must be writeable in order for this function to work.

php magnets solution

you are here 4 647

visualizing your data… and more!

Draw and display the bar graph image
The draw_bar_graph() function makes it possible to dynamically generate
a bar graph image, provided you give it the proper information. In the case of
the Mismatch bar graph, this involves sending along a suitable width and height
that works on the My Mismatch page (480×240), the two-dimensional array of
mismatched category data, 5 as the maximum range value (maximum number
of mismatch topics per category), and a suitable upload path and filename for
the resulting bar graph image. After calling the function, the image is generated
and suitable for display using an HTML tag.

Q: Why does the draw_bar_graph() function write the
bar graph image to a file instead of just returning it directly to the
browser?

A: Because the function isn’t contained within its own script that
can return an image through a header to the browser. Remember,
the only way to return a dynamically generated image directly to
the browser is for a script to use a header, meaning that the entire
purpose of the script has to be the generation of the image.

Q: So then why isn’t the draw_bar_graph() function
placed in its own script so that it can return the bar graph image
directly to the browser using a header?

A: While it is a good idea to place the function in its own script
for the purposes of making it more reusable, there is still a problem
when it comes to returning an image via a header. The problem
has to do with how you reuse code. When code is included in a
script using include, include_once, require, or
require_once, the code is dropped into the script as if it had

originally existed there. This works great for code that doesn’t do
anything that manipulates the browser. But sending a header impacts
the output of a script, which can be problematic for included code.
It’s not that you can’t send a header from included code; you’ve
actually done so in earlier examples. The problem is that you have
to be extremely careful, and in some cases it isn’t safe to assume
that headers haven’t already been sent. The My Mismatch script, for
example, can’t return an image to the browser because its job is to
output HTML code containing mismatch results. Including script code
that dynamically generates and returns an image would cause a
header conflict.

Q: OK, so can I just reference the bar graph code like the
captcha.php script from Guitar Wars. That seemed to work
fine without an include, right?

A: Yes, it did, and it referenced the captcha.php script
directly from the src attribute of an tag. The problem here
is that we have a lot of data that needs to be passed to the bar graph
code, and this would be very cumbersome to try and pass via GET or
POST.

echo '<h4>Mismatched category breakdown:</h4>';

draw_bar_graph(480, 240, $category_totals, 5, MM_UPLOADPATH . 'mymismatchgraph.png');

echo '
';

Appearance 3
Entertainment 4

Food 4
People 2

Activities 5 mymismatchgraph.png

1

2

3

4

5

Ap
pea

ran
ce

En
te

rt
ain

me
nt

Fo
od Peo
ple

Ac
tiv

iti
es

The image file generated by this function call is named
mymismatchgraph.png, and is stored on the web server in the path identified by MM_UPLOADPATH.

The same path and image
filename are specified in the src
attribute of the tag.

With the help of a reusable function, it’s possible to go from database data to a bar graph stored in an image file.

648 Chapter 11

Test Drive
Create the My Mismatch script and try it out.
Create a new text file named mymismatch.php, and enter the code for the My Mismatch
script (or download the script from the Head First Labs site at www.headfirstlabs.com/
books/hfphp). Also add a new menu item for My Mismatch to the navmenu.php script.

Upload the scripts to your web server, and then open the main Mismatch page (index.php)
in a web browser. Log in if you aren’t already logged in, and the click “My Mismatch” on the
main navigation menu. Congratulations, this is your ideal mismatch!

Now that’s what I’m talking
about! The visual category
breakdown is all I needed to
see to know Jason’s the one.

Draw the bar graph using the
categorized mismatch totals.

3

The bar graph fits
neatly on the My
Mismatch page along
with the list of
mismatched topics.

The topics have
been reformatted
into a table to
make room for
the bar graph.

test out mismatch, now with bar graphs

you are here 4 649

visualizing your data… and more!

How would you change the Mismatch
code to ensure that users don’t share
the same bar graph image?

mymismatchgraph.png

A single image is
continuously regenerated
for every user’s My
Mismatch bar graph.

So I’m curious, how are we able to store
the My Mismatch bar graph image in
a single file when a unique image is
generated for every different user?

A bit of luck, as it turns out.
It’s true, there is only one bar graph image at any given time, no matter how
many users there are. This could present a problem if two users ever happen
to view the My Mismatch page at the exact same moment. We run the risk of
generating separate images for the two people and then trying to write them to a
single image file.

This problem is probably fairly isolated in reality, but as Mismatch grows in
popularity and expands to thousands and thousands of users, it could become
significant. The fact that each one of the users thinks of the bar graph image as
their own is a clue that there’s a weakness in the single image bar graph design.

Here we clearly have three
different bar graph images
in view, but we know only one
image file is used to store them.

650 Chapter 11

Individual bar graph images for all
The solution to the shared bar graph image problem lies in generating multiple
images, one for every user, in fact. But we still need to ensure that each of
these images is tied to exactly one user and no more. That’s where a familiar
database design element comes into play... the primary key! The primary key
for the mismatch_user table, user_id, uniquely identifies each user, and
therefore provides an excellent way to uniquely name each bar graph image and
also associate it with a user. All we have to do is prepend the users’ IDs to the
filename of their bar graph image.

mismatch_user

user_id username password ...

1 sidneyk 745c52...

2 nevilj 12a20b...

3 alexc 676a66...

4 sdaniels 1ff915...

5 ethelh 53a56a...

6 oklugman df00f3...

7 belitac 7c19dd...

8 jasonf 3da70c...

9 dierdre 08447b...

10 baldpaul 230dcb...

11 jnettles e511d7...

12 rubyr 062e4a...

13 theking b4f283...

14 miltonj c1a5e7...

15 mledbetter 04fc2a...

16 owenb 36be76...

5-mymismatchgraph.png

13-mymismatchgraph.png

16-mymismatchgraph.png

mymismatchgraph.png

Giving each of the users
their own unique bar graph
image eliminates sharing a
single image throughout
the entire application.

One bar graph image
for all users just won’t
cut it in the long run.

The user_id column of the
user table is prepended to the
filename of each user’s bar
graph image, assuring uniqueness.

The user_id column
serves as the primary
key for the user table.

a bar graph for every user

you are here 4 651

visualizing your data… and more!

Below is the Mismatch code that dynamically generates a bar graph image and then displays
it on the page. Rewrite the code so that it generates a unique image for each user. Hint: use
$_SESSION['user_id'] to build a unique image filename for each user.

Q: Is there any advantage to outputting dynamically
generated images as PNG images versus GIFs or JPEGs?

A: No, none beyond the reasons you would choose one image
format over another for static images. For example, GIFs and PNGs
are better for vector-type graphics, whereas JPEGs are better for
photorealistic graphics. In the case of Mismatch, we’re dealing with
vector graphics, so either PNG or GIF would work fine. PNG happens
to be a more modern image standard, which is why it was used, but
GIF would’ve worked too. To output a GD image to a GIF and JPEG,
respectively, call the imagegif() and imagejpeg()
functions.

Q: How do I know what compression level to use when
outputting PNG images to a file?

A: The compression level settings for the imagepng()
function enter the picture when outputting a PNG image to a file, and
they range from 0 (no compression) to 9 (maximum compression).
There are no hard rules about how much compression to use when,
so you may want to experiment with different settings. Mismatch uses
5 as the compression level for the bar graphs, which appears to be a
decent tradeoff between quality and efficiency.

Q: Are there file storage issues introduced by generating a
bar graph image for each user?

A: No, not really. This question relates back to the compression
level question to some degree, but it’s unlikely that you’ll overwhelm
your server with too many or too huge files unless you really go crazy
generating thousands of large image files. As an example, consider
that the Mismatch bar graph images average about 2 KB each, so
even if the site blows up and has 50,000 users, you’re talking about a
grand total of 100 MB in bar graph images. Granted, that’s a decent
little chunk of web hosting space, but a site with 50,000 users should
be generating plenty of cash to offset that kind of storage.

echo '<h4>Mismatched category breakdown:</h4>';

draw_bar_graph(480, 240, $category_totals, 5, MM_UPLOADPATH . 'mymismatchgraph.png');

echo '
';

652 Chapter 11

Below is the Mismatch code that dynamically generates a bar graph image and then displays
it on the page. Rewrite the code so that it generates a unique image for each user. Hint: use
$_SESSION['user_id'] to build a unique image filename for each user.

echo ‘<h4>Mismatched category breakdown:</h4>’;
draw_bar_graph(480, 240, $category_totals, 5,
 MM_UPLOADPATH . $_SESSION[‘user_id’] . ‘-mymismatchgraph.png’);
echo ‘<img src=”’ . MM_UPLOADPATH . $_SESSION[‘user_id’] . ‘-mymismatchgraph.png” ’ .
 ‘alt=“Mismatch category graph” />
’;

The unique image filename follows the form X-mymismatchgraph.png, where X is the ID of the user.

The standard file upload
path is still used to
ensure that the image
is stored in the desired
place on the server.

The same image filename is used
when setting the src attribute
of the tag for the bar
graph image in HTML code.

Make sure this folder on the
server is writeable so that the
image file can be written.

Test Drive
Change the My Mismatch script to generate unique bar graph images.
Modify the My Mismatch script so that it generates a unique bar graph image for each user.
Upload the mymismatch.php script to your web server, and then open it in a web browser.
The page won’t look any different, but you can view source on it to see that the bar graph
image now has a unique filename.

echo '<h4>Mismatched category breakdown:</h4>';

draw_bar_graph(480, 240, $category_totals, 5, MM_UPLOADPATH . 'mymismatchgraph.png');

echo '
';

exercise solution

We can use the user ID
that we already have stored
away in a session variable.

you are here 4 653

visualizing your data… and more!

Mismatch users are digging the bar graphs
With the shared bar graph image problem solved, you’ve helped eliminate
a potential long-term performance bottleneck as more and more users join
Mismatch and take advantage of the “five degrees of opposability” graph. Each
user now generates their own unique bar graph image when viewing their ideal
mismatch. Fortunately, this fix took place behind the scenes, unbeknownst to
users, who are really taking advantage of the mismatch data in the hopes of
making a love connection.

5-mymismatchgraph.png

16-mymismatchgraph.png

13-mymismatchgraph.png

Each user’s mismatch
bar graph image is now
stored in its own file.

Owen has already lined up
a date with his mismatch,
and is gearing up for a
night on the town.

Elmer is perfecting
a few new dance
moves to share with
his ideal mismatch.

Ethel has some minor doubts about all this “opposites
attract” business, but she’s
willing to give it a go.

654 Chapter 11

imagecreatetrueco
lor()

This function is part of the
GD graphics library, and is
used to create a new image for
drawing. The image is initially
created in memory, and isn’t
output for display purposes until
calling another function, such as
imagepng().

Your PHP & MySQL Toolbox
Dynamic graphics open up all kinds
of interesting possibilities in terms

of building PHP scripts that generate
custom images on the fly. Let’s recap
what makes it all possible.

imageline(),
imagerectangle(), ...
The GD graphics library offers lots of functions for drawing graphics primitives, such as lines, rectangles, ellipses, and even individual pixels. Each function operates on an existing image that has already been created with
imagecreatetruecolor().

CAPTCHA
A program that protects a web
site from automated spam bots
by using a test of some sort. For
example, a CAPTCHA test might
involve discerning letters within a
distorted pass-phrase, identifying
the content of an image, or
analyzing an equation to perform
a simple mathematical computation.

GD library
A set of PHP functions that are used to draw graphics onto an image. The GD library allows you to dynamically create and draw on images, and then either return them directly to the browser or write them to image files on the server.

imagestring(),
imagestringup(),
imagettftext()

The GD graphics library also allows you to draw text, either with a built-in font or with a TrueType font of your own choosing.

imagedestroy()

After drawing to an image and
outputting it as desired, it’s
a good idea to destroy the
resources associated with it by
calling this function.

imagepng()

When you’re finished drawing
to an image using GD graphics
functions, this function outputs
the image so that it can be
displayed. You can choose to
output the image directly to the
web browser or to an image file
on the server.

CH
AP

T
ER

 11
php & mysql toolbox

you are here 4 655

visualizing your data… and more!

PHP&MySQLcross
When you could actually use a robot, they’re nowhere to
be found. Oh well, your analog brain is up to the challenge
of solving this little puzzle.

Untitled Puzzle
Header Info 1

Header Info 2

etc...

1 2 3

4

5

6 7

8

9

10

11 12 13

14

Across
1. This PHP graphics function draws a line.
6. The visual used to show how mismatched users compare on
a categorized basis.
7. To generate custom bar graph images for each user in
Mismatch, this piece of information is used as part of the image
filename.
8. Mismatch uses this kind of array to store bar graph data.
10. Give it two points and this graphics function will draw a
rectangle.
11. If you want to draw text in a certain font, call the image...text
() function.
13. Always clean up after working with an image in PHP by
calling this function.
14. Call this graphics function to create a new image.

Down
2. The name of PHP's graphics library.
3. Call this function to output an image as a PNG.
4. Owen's ideal mismatch.
5. Mismatch uses a bar graph to compare users based upon
"five degrees of".
9. A test used to distinguish between people and automated
spam bots.
12. When PHP outputs an image, the image is either sent
directly to the client browser or stored in a

Untitled Puzzle
Header Info 1

Header Info 2

etc...

1 2 3

4

5

6 7

8

9

10

11 12 13

14

Across
1. This PHP graphics function draws a line.
6. The visual used to show how mismatched users compare on
a categorized basis.
7. To generate custom bar graph images for each user in
Mismatch, this piece of information is used as part of the image
filename.
8. Mismatch uses this kind of array to store bar graph data.
10. Give it two points and this graphics function will draw a
rectangle.
11. If you want to draw text in a certain font, call the image...text
() function.
13. Always clean up after working with an image in PHP by
calling this function.
14. Call this graphics function to create a new image.

Down
2. The name of PHP's graphics library.
3. Call this function to output an image as a PNG.
4. Owen's ideal mismatch.
5. Mismatch uses a bar graph to compare users based upon
"five degrees of".
9. A test used to distinguish between people and automated
spam bots.
12. When PHP outputs an image, the image is either sent
directly to the client browser or stored in a

656 Chapter 11

PHP&MySQLcross Solution
Untitled Puzzle

Header Info 1

Header Info 2

etc...

I
1

M A G
2

E L I
3

N E

D M

R
4

A

U O
5

G

B
6

A R G R A P H U
7

S E R I D

Y P P

T
8

W O D I M E N S I O N A L

C
9

S G

I
10

M A G E R E C T A N G L E

P B

T
11

T F
12

I
13

M A G E D E S T R O Y

C I L

H L I

I
14

M A G E C R E A T E T R U E C O L O R

Y

Across
1. This PHP graphics function draws a line. [IMAGELINE]
6. The visual used to show how mismatched users compare on
a categorized basis. [BARGRAPH]
7. To generate custom bar graph images for each user in
Mismatch, this piece of information is used as part of the image
filename. [USERID]
8. Mismatch uses this kind of array to store bar graph data.
[TWODIMENSIONAL]
10. Give it two points and this graphics function will draw a
rectangle. [IMAGERECTANGLE]
11. If you want to draw text in a certain font, call the image...text
() function. [TTF]
13. Always clean up after working with an image in PHP by
calling this function. [IMAGEDESTROY]
14. Call this graphics function to create a new image.
[IMAGECREATETRUECOLOR]

Down
2. The name of PHP's graphics library. [GD]
3. Call this function to output an image as a PNG. [IMAGEPNG]
4. Owen's ideal mismatch. [RUBY]
5. Mismatch uses a bar graph to compare users based upon
"five degrees of". [OPPOSABILITY]
9. A test used to distinguish between people and automated
spam bots. [CAPTCHA]
12. When PHP outputs an image, the image is either sent
directly to the client browser or stored in a [FILE]

php&mysqlcross solution

this is a new chapter 657

syndication and web services12

Interfacing to the world
This is amazing. Instead of
having to travel around asking
people what’s going on, we can get
news delivered to us... brilliant!

Indeed. Technology
brings the world to our
ink-smudged fingertips!

It’s a big world out there, and one that your web application
can’t afford to ignore. Perhaps more importantly, you’d rather the world

not ignore your web application. One excellent way to tune the world in to your web

application is to make its data available for syndication, which means users can subscribe

to your site’s content instead of having to visit your web site directly to find new info. Not

only that, your application can interface to other applications through web services and

take advantage of other people’s data to provide a richer experience.

658 Chapter 12

Owen needs to get the word out about Fang
One of the big problems facing any web site is keeping people coming back.
It’s one thing to snare a visitor, but quite another to get them to come back
again. Even sites with the most engaging content can fall off a person’s radar
simply because it’s hard to remember to go visit a web site regularly. Knowing
this, Owen wants to offer an alternative means of viewing alien abduction
reports—he wants to “push” the reports to people, as opposed to them having
to visit his site on a regular basis.

Owen hopes that more exposure for the
site will increase his odds of finding Fang.

It looks like Fang's been
spotted a few times but this
information hasn’t led Owen
to Fang’s location.

The Report an Abduction
form is working great,
but Owen thinks the site
needs more exposure.

Alien abduction
reports are up but
Fang is still missing!

Since you last saw Owen,
he's created a main page
for viewing user-submitted alien abduction reports.

spreading the word beyond owen's web site

you are here 4 659

syndication and web services

Owen’s virtual team of alien abduction content viewers will hopefully increase the chances of him finding Fang.

Pushing web
content to users is
a great way to help
gain more exposure
for a web site.

Push alien abduction data to the people
By pushing alien abduction content to users, Owen effectively creates
a virtual team of people who can help him monitor abduction reports.
With more people on the case, the odds of identifying more Fang
sightings and hopefully homing in on Fang’s location increase.

Some email clients support “push” content,
allowing you to receive web site updates
the same way you receive email messages.

Many regular web
browsers also let you
browse “push” content
that quickly reveals
the latest news posted
to a web site.

Even mobile devices provide
access to “push” content
that is automatically
delivered when something
on a web site changes.

Owen isn’t exactly
sure how to push
content to users but
he really likes the idea.

660 Chapter 12

RSS pushes web content to the people
The idea behind posting HTML content to the Web is that it will be viewed by
people who visit a web site. But what if we want users to receive our web content
without having to ask for it? This is possible with RSS, a data format that allows
users to find out about web content without actually having to visit a site.

RSS is kinda like the web equivalent of a digital video recorder
(DVR). DVRs allow you to “subscribe” to certain television shows, automatically
recording every episode as it airs. Why flip channels looking for your favorite
show when you can just let the shows come to you by virtue of the DVR? While
RSS doesn’t actually record anything, it is similar to a DVR in that it brings web
content to you instead of you having to go in search of it.

By creating an RSS feed for his alien abduction data, Owen wants to notify
users when new reports are posted. This will help ensure that people stay
interested, resulting in more people combing through the data. The cool thing is
that the same database can drive both the web page and the RSS feed.

HTML is
for viewing;
RSS is for
syndicating.

RSS offers a view on web data that is delivered to users automatically as new
content is made available. An RSS view on a particular set of data is called an
RSS feed, or newsfeed. Users subscribe to the feed and receive new content
as it is posted to the web site—no need to visit the site and keep tabs.

To view an RSS feed, all a person needs is an RSS newsreader. Most popular
web browsers and email clients can subscribe to RSS feeds. You just provide the
newsreader with the URL of the feed, and it does all the rest.

Even though the web page is dynamically generated from database data, you have to revisit it to see if new data has been posted.

A newsreader allows you
to subscribe to newsfeeds,
which contain news items
that are derived from web
site content.

Here, the newsreader
built into the Safari web
browser is being used.

use RSS to syndicate your site

you are here 4 661

syndication and web services

RSS is really XML
RSS is like HTML in that it is a plain text markup language that
uses tags and attributes to describe content. RSS is based on XML,
which is a general markup language that can be used to describe
any kind of data. XML’s power comes from its flexibility—it doesn’t
define any specific tags or attributes; it just sets the rules for how tags
and attributes are created and used. It’s up to specific languages such
as HTML and RSS to establish the details regarding what tags and
attributes can be used, and how.

In order to be proficient with RSS, you must first understand the
ground rules of XML. These rules apply to all XML-based languages,
including RSS and the modern version of HTML known as XHTML.
These rules are simple but important—your XML (RSS) code won’t
work if you violate them! Here goes:

XML is a markup
language used to
describe any kind
of data.

RSS is a markup
language used to
describe web content
for syndication.

Empty tags that have no content must be coded with a space
and a forward slash at the end before the closing brace.

All attribute values must be enclosed in double quotes.

Tags that contain content must appear as matching pairs.
<p>Phone home!</p>

<p>Phone home!

Incorrect! There’s no matching end-tag.

Incorrect! The empty tag needs a
space and a forward slash before the >.

Incorrect! The attribute must be enclosed in double quotes.

Correct.

Correct.

Unlike PHP, which allows you
to use double or single quotes
in most situations, XML is
rigid in only allowing double
quotes for attribute values.

Correct.

662 Chapter 12

Q: Why is RSS so much better than someone just coming to
my web site?

A: If people regularly visited your web site to seek out the latest
content, then RSS wouldn’t be any better than simply displaying
content on your web site. But most people forget about web sites,
even ones they like. So RSS provides an effective means of taking
your web content directly to people, as opposed to requiring them to
seek it out.

Q: What does RSS stand for?

A: Nowadays RSS stands for Really Simple Syndication.
Throughout its storied history there have been several different
versions, but the latest incarnation of RSS (version 2.0) stands for
Really Simple Syndication, which is all you need to worry about.

Q: So what does RSS consist of?

A: RSS is a data format. So just as HTML is a data format that
allows you to describe web content for viewing in a web browser,
RSS is a data format that describes web content that is accessible
as a news feed. Similar to HTML, the RSS data format is pure text,
and consists of tags and attributes that are used to describe the
content in a newsfeed.

Q: Where do I get an RSS reader?

A: Most web browsers have a built-in RSS reader. Some email
clients even include RSS readers, in which case RSS news items
appear as email messages in a special news feed folder. There are
also stand-alone RSS readers available.

no dumb questions about rss

you are here 4 663

syndication and web services

Below is RSS code for an Aliens Abducted Me news feed. Annotate the highlighted code to
explain what you think each tag is doing.

<?xml version="1.0" encoding="utf-8"?>

<rss version="2.0">

 <channel>

 <title>Aliens Abducted Me - Newsfeed</title>

 <link>http://aliensabductedme.com/</link>

 <description>Alien abduction reports from around the world courtesy of Owen and his

 abducted dog Fang.</description>

 <language>en-us</language>

 <item>

 <title>Belita Chevy - Clumsy little buggers, had no rh...</title>

 <link>http://www.aliensabductedme.com/index.php?abduction_id=7</link>

 <pubDate>Sat, 21 Jun 2008 00:00:00 EST</pubDate>

 <description>Tried to get me to play bad music.</description>

 </item>

 <item>

 <title>Sally Jones - green with six tentacles...</title>

 <link>http://www.aliensabductedme.com/index.php?abduction_id=8</link>

 <pubDate>Sun, 11 May 2008 00:00:00 EST</pubDate>

 <description>We just talked and played with a dog</description>

 </item>

 ...

 </channel>

</rss>

664 Chapter 12

Below is RSS code for an Aliens Abducted Me news feed. Annotate the highlighted code to
explain what you think each tag is doing.

<?xml version="1.0" encoding="utf-8"?>

<rss version="2.0">

 <channel>

 <title>Aliens Abducted Me - Newsfeed</title>

 <link>http://aliensabductedme.com/</link>

 <description>Alien abduction reports from around the world courtesy of Owen and his

 abducted dog Fang.</description>

 <language>en-us</language>

 <item>

 <title>Belita Chevy - Clumsy little buggers, had no rh...</title>

 <link>http://www.aliensabductedme.com/index.php?abduction_id=7</link>

 <pubDate>Sat, 21 Jun 2008 00:00:00 EST</pubDate>

 <description>Tried to get me to play bad music.</description>

 </item>

 <item>

 <title>Sally Jones - green with six tentacles...</title>

 <link>http://www.aliensabductedme.com/index.php?abduction_id=8</link>

 <pubDate>Sun, 11 May 2008 00:00:00 EST</pubDate>

 <description>We just talked and played with a dog</description>

 </item>

 ...

 </channel>

</rss>

This line of code isn’t a tag - it’s an XML “directive” that identifies this document as containing XML code.
This <title> tag applies to
the channel as a whole.

The link for a channel usually
points to the web site
associated with the newsfeed.

Every channel needs a
description to explain what
kind of news it offers.Newsfeeds can be created in different languages - this tag establishes the language of a channel.

The name of the alien abductee and the
alien description data are combined to
serve as the title of each news item.

The link for an
individual news item
typically points to
the full content for
the item on the web
site associated with
the newsfeed.

The date specified in the
<pubDate> tag adheres to
the RFC-822 date/time
format, which is a standard
for representing a detailed
date and time as text.Every XML tag must have a

start-tag and an end-tag
- this end-tag closes the
RSS document.

This RSS document only contains a
single channel, which is perfectly fine
if you don’t need to break up news
items into different categories.

annotated rss code

you are here 4 665

syndication and web services

Yes, sort of. But you don’t typically create XML code
by hand, and it often doesn’t get stored in files.
It’s true that XML can and often does get stored in files. But with RSS
we’re talking about dynamic data that is constantly changing, so it doesn’t
make sense to store it in files—it would quickly get outdated and we’d
have to continually rewrite the file. Instead, we want XML code that is
generated on-the-fly from a database, which is how the HTML version
of the main Aliens Abducted Me page already works. So we want to use
PHP to dynamically generate RSS (XML) code and return it directly to
an RSS newsreader upon request.

OK, so RSS is really XML, which means
it’s just a bunch of tags. That seems easy
enough. So all we have to do to create a
newsfeed is just create an XML file, right?

666 Chapter 12

From database to newsreader
In order to provide a newsfeed for alien abduction data, Owen needs to
dynamically generate RSS code from his MySQL database. This RSS code
forms a complete RSS document that is ready for consumption by RSS
newsreaders. So PHP is used to format raw alien abduction data into the
RSS format, which is then capable of being processed by newsreaders and
made available to users. The really cool part of this process is that once the
newsfeed is made available in RSS form, everything else is automatic—it’s up to
newsreaders to show updated news items as they appear.

aliens_abduction

abduction_id first_name last_name when_it_happened how_long how_many alien_description what_they_did ...

1 Alf Nader 200-07-12 one week at least 12 It was a big non-
recyclable shiny

disc full of...

Swooped
down from the

sky and...

...

2 Don Quayle 1991-09-14 37
seconds

dunno They looked like
donkeys made
out of metal...

I was sitting
there eating a

baked...

3 Rick Nixon 1969-01-21 nearly 4
years

just one They were pasty
and pandering,
and not very...

Impeached
me, of course,

then they
probed...

4 Belita Chevy 2008-06-21 almost a
week

27 Clumsy little
buggers, had no

rhythm.

Tried to get me
to play bad

music.

5 Sally Jones 2008-05-11 1 day four green with six
tentacles

We just talked
and played
with a dog

<?xml version="1.0" encoding="utf-8"?> <rss version="2.0">
 <channel>
 <title>Aliens Abducted Me - Newsfeed</title> <link>http://aliensabductedme.com/</link> <description>Alien abduction reports from around the world courtesy of Owen and his abducted dog Fang.</description> <language>en-us</language>

 <item>
 <title>Belita Chevy - Clumsy little buggers, had no rh...</title> <link>http://www.aliensabductedme.com/index.php?abduction_id=7</link> <pubDate>Sat, 21 Jun 2008 00:00:00 EST</pubDate> <description>Tried to get me to play bad music.</description> </item>
 ...

An RSS newsreader
is designed to
consume the data
made available by
an RSS newsfeed.

The newsreader
knows how
to interpret
individual news
items in XML
code and show
them to the user.

PHP is used
to generate an
RSS newsfeed
document from a
MySQL database.

Each individual news
item has its own
section in the RSS
newsfeed document.

Each newsreader presents
news items in its own
unique way - here news
items are shown in much
the same way as email
messages.

This newsreader is built
into the standard Mail
application in Mac OS X.
Many other popular email
applications also include
built-in newsreaders.

rss newsreaders explained

you are here 4 667

syndication and web services

<rss>

<channel>

<cronkite>

<title>

<language>

<link>

<description>

<pubDate>

<item>

Creating RSS feeds is all about understanding the RSS language,
which means getting to know the tags that are used to describe news
items. Match each RSS tag to its description.

This tag has nothing to do with RSS. But it sure sounds like a
cool name for a piece of news data!

This tag represents a single channel in an RSS feed, and acts as
a container for descriptive data and individual news items.

This tag stores the title of a channel or news item, and is
typically used within the <channel> and <item> tags.

Used to provide a brief description of a channel or news item,
appearing within either the <channel> and <item> tags.

Encloses an entire RSS feed—all other tags must appear inside
of this tag.

This tag always contains a URL that serves as the link for a
channel or news item.

Represents an individual news item, or story, which is further
described by child elements.

The publication date is an important piece of information for
any news item, and this tag is used to specify it.

This tag applies to a channel, and specifies the language used
by the channel, such as en-us (U.S. English).

668 Chapter 12

<rss>

<channel>

<cronkite>

<title>

<language>

<link>

<description>

<pubDate>

<item>

Creating RSS feeds is all about understanding the RSS language,
which means getting to know the tags that are used to describe news
items. Match each RSS tag to its description.

This tag has nothing to do with RSS. But it sure sounds like a
cool name for a piece of news data!

This tag represents a single channel in an RSS feed, and acts as
a container for descriptive data and individual news items.

This tag stores the title of a channel or news item, and is
typically used within the <channel> and <item> tags.

Used to provide a brief description of a channel or news item,
appearing within either the <channel> and <item> tags.

Encloses an entire RSS feed—all other tags must appear inside
of this tag.

This tag always contains a URL that serves as the link for a
channel or news item.

Represents an individual news item, or story, which is further
described by child elements.

The publication date is an important piece of information for
any news item, and this tag is used to specify it.

This tag applies to a channel, and specifies the language used
by the channel, such as en-us (U.S. English).

Every RSS feed
consists of at
least one channel,
which is basically a
group of related
news items.

The <title>, <link>, <pubDate>, and
<description> tags are used within
<item> to describe a news item.

This tag is only
used in channels.

This tag only applies
to news items.

The <rss> tag is the “root” tag for an RSS
document - all other tags must appear inside of it.

Solution

who does what solution

you are here 4 669

syndication and web services

XML

aliens_abduction

abduction_id first_name last_name when_it_happened how_long how_many alien_description what_they_did ...

...

14 Shill Watner 2008-07-05 2 hours don’t know There was a
bright light in the

sky...

They beamed
me toward a
gas station...

...

Below is a brand-new alien abduction report that has been added to the aliens_abduction
database. Write the XML code for an RSS <item> tag for this abduction report, making sure to
adhere to the RSS format for newsfeeds.

rss

channel

linktitle descriptionpubDate linktitle descriptionpubDate

item item
linktitle languagedescription

You already learned that XML code consists of tags, which are also sometimes
referred to as elements, that form parent-child relationships within the
context of a complete XML document. It is very helpful to be able to visualize
this parent-child relationship as you work with XML code. As an example, the
RSS document on the facing page can be visualized as a hierarchy of elements,
kind of like a family tree for newsfeed data, with parent elements at the top
fanning out to child elements as you work your way down.

The topmost element is
the root of the document,
which means it is the parent
of all other elements.

The title, link,
pubDate, and
description elements for a given news item appear as children of the item element.

The title, link, description, and
language elements for a channel appear alongside the news items as children of the channel element.

RSS
Visualizing

670 Chapter 12

Q: Is XML case-sensitive?

A: Yes, the XML language is case-sensitive, so it matters whether
text is uppercase or lowercase when specifying XML tags and
attributes. A good example is the RSS <pubDate> tag, which
must appear in mixed case with the capital D. Most XML tags are
either all lowercase or mixed-case.

Q: What about whitespace? How does it fit into XML?

A: First of all, whitespace in XML consists of carriage returns
(\r), newlines (\n), tabs (\t), and spaces (' '). The majority
of whitespace in most XML documents is purely for aesthetic
formatting purposes, such as indenting child tags. This “insignificant”
whitespace is typically ignored by applications that process XML
data, such as RSS news readers. However, whitespace that appears
inside of a tag is considered “significant,” and is usually rendered
exactly as it appears. This is what allows things like poems that have
meaningful spacing to be accurately represented in XML.

Q: Can an RSS feed contain images?

A: Yes. Just keep in mind that not every news reader is able
to display images. Also, in RSS 2.0 you can only add an image
to a channel, not individual news items. You add an image to a
channel using the 

exercise solution

you are here 4 671

syndication and web services

Head First: So I hear that when people are looking for
news on the Web, they turn to you. Is that true?

RSS: I suppose it depends on what you consider “news.”
I’m mainly about packaging up information into a format
that is readily accessible to newsreaders. Now whether
that content is really news or not... that’s something I can’t
control. That’s for people to decide.

Head First: Ah, so by “newsreaders,” you mean
individual people, right?

RSS: No, I mean software tools that understand what
I am and how I represent data. For example, a lot of
email programs support me, which means that you can
subscribe to a newsfeed and receive updates almost like
receiving email messages.

Head First: Interesting. So then how are you different
than email?

RSS: Oh, I’m a lot different than email. For one thing,
email messages are sent from one person to another, and
are usually part of a two-way dialog. So you can respond
to an email message, get a response back, etc. I only
communicate one way, from a web site to an individual.

Head First: How does that make it a one-way
communication?

RSS: Well, when a person elects to receive a newsfeed
by subscribing to it in their newsreader software, they’re
basically saying they want to know about new content that
is posted on a given web site. When new content actually
gets posted, I make sure it gets represented in such a way
that the news reader software knows about it and shows
it to the person. But they aren’t given an opportunity
to reply to a news item, which is why it’s a one-way
communication from a web site to an individual.

Head First: I see. So what are you exactly?

RSS: I’m really just a data format, an agreed-upon
way to store content so that it can be recognized and
consumed by news readers. Use me to store data, and
newsreaders will be able to access it as a newsfeed.

Head First: OK, so how are you different than HTML?

RSS: Well, we’re both text data formats that are
ultimately based on XML, which means we both use tags
and attributes in describing data. But whereas HTML is
designed specifically to be processed and rendered by web
browsers, I’m designed to be processed and rendered by
newsreaders. You could say that we provide different views
on the same data.

Head First: But I’ve seen where some web browsers can
display newsfeeds. How does that work?

RSS: Good question. As it turns out, some web browsers
include built-in newsreaders, so they are really two tools
in one. But when you view a newsfeed in a web browser,
you’re looking at something completely different than an
HTML web page.

Head First: But most newsfeeds link to HTML web
pages, correct?

RSS: That’s right. So I work hand in hand with HTML
to provide better access to web content. The idea is that
you use me to learn about new content without having
to go visit a web site directly. Then if you see something
you want to find out more about, you click through to the
actual page. That’s why each news item has a link.

Head First: So you’re sort of a preview for web pages.

RSS: Yeah, kinda like that. But remember that I come
to you, you don’t have to come to me. That’s what people
really like about me—I keep them from having to revisit
web sites to keep tabs on new content.

Head First: I see. That is indeed convenient. Thanks for
clarifying your role on the Web.

RSS: Hey, glad to do it. Stay classy.

RSS Revealed
This week’s interview:
What makes a newsman tick

672 Chapter 12

Generate the static RSS code required to finish up the document,
including closing </channel> and </rss> tags.

66

 Loop through the data generating RSS code for each news item.55

 Query the aliens_abduction database for alien abduction data.44

 Set the content type of the document to XML.11

Dynamically generate an RSS feed
Understanding the RSS data format is all fine and good, but Owen still needs
a newsfeed to take alien abduction reports to the people. It’s time to break
out PHP and dynamically generate a newsfeed full of alien abduction data
that has been plucked from Owen’s MySQL database. Fortunately, this can be
accomplished by following a series of steps:

<?php header('Content-Type: text/xml'); ?>

<?php echo '<?xml version="1.0" encoding="utf-8"?>'; ?>

<rss version="2.0">
 <channel>
 <title>...
 <link>...
 <description>...
 <language>...

abduction_id

first_name
last_name

when_it_happened alien_description

what_they_did

The resulting newsfeed
isn’t stored in a file but
it is an XML document.

<item>
 <title>...
 <link>...
 <pubDate>...
 <description>...
</item>

 </channel>
</rss>

This code isn’t affected by
the database - it’s always
the same for this newsfeed.

We have to set the content type of the RSS document to XML by using a header.

This code contains data extracted from the database, and therefore must be carefully generated.

Before generating the
RSS code for news
items, we must query
the MySQL database
for alien abduction data.

 Generate the XML directive to indicate that this is an XML document.22

 Generate the static RSS code that doesn’t come from the database,
such as the <rss> tag and the channel information.

33

generate rss with php

you are here 4 673

syndication and web services

<?php header('Content-Type: te
xt/xml'); ?>

<?php echo '<?xml version="1.0"
 encoding="utf-8"?>'; ?>

<rss version="2.0">

 <title>Aliens Abducted Me - N

ewsfeed</title>

 http://aliensab

ductedme.com/

 <description>Alien abduction

 reports from around the world c
ourtesy of Owen

 and his abducted dog Fang.</
description>

 en-us

<?php
 require_once('connectvars.ph

p');

 // Connect to the database

 $dbc = mysqli_connect(DB_HOST
, DB_USER, DB_PASSWORD, DB_NAME

);

 // Retrieve the alien sighting

 data from MySQL

 $query = "SELECT abduction_id,
 first_name, last_name, " .

 "DATE_FORMAT(when_it_happen
ed,'%a, %d %b %Y %T') AS when_it

_happened_rfc, " .

 "alien_description, what_the
y_did " .

 "FROM aliens_abduction " .

 "ORDER BY when_it_happened

 ";

 $data = mysqli_query($dbc, $qu

ery);

 // Loop through the array of al

ien sighting data, formatting i
t as RSS

 while ($row = mysqli_fetch_arr
ay($data)) {

 // Display each row as an RSS
item

 echo ' ';

 echo ' <title>' . $row['firs

t_name'] . ' ' . $row['last_name
'] . ' - ' .

 substr($row['alien_descrip
tion'], 0, 32) . '...</title>';

 echo ' <link>http://www.alie
nsabductedme.com/index.php?abd

uction_id=' .

 $row[' '] .

 '</link>';

 echo ' ' . $row

['when_it_happened_rfc'] . ' '
. date('T') . ' '

;

 echo ' <description>' . $row

['what_they_did'] . '</descrip
tion>';

 echo '</item>';
 }
?>

 </channel>

6

5

4

3

2
1

newsfeed.php

PHP & MySQL Magnets
Owen’s Aliens Abducted Me RSS newsfeed script (newsfeed.php) is missing some important code.
Carefully choose the appropriate magnets to finish the code and dynamically generate the newsfeed.

& XML!

<channel>
<link></link>

<language>

</language>

<item>

</rss>

</pubDate>

<pubDate>

</channel>

</item>

<rss>DESC

ASC
first_name

last_name
abduction_id

674 Chapter 12

<?php header('Content-Type: te
xt/xml'); ?>

<?php echo '<?xml version="1.0"
 encoding="utf-8"?>'; ?>

<rss version="2.0">

 <title>Aliens Abducted Me - N

ewsfeed</title>

 http://aliensab

ductedme.com/

 <description>Alien abduction

 reports from around the world c
ourtesy of Owen

 and his abducted dog Fang.</
description>

 en-us

<?php
 require_once('connectvars.ph

p');

 // Connect to the database

 $dbc = mysqli_connect(DB_HOST
, DB_USER, DB_PASSWORD, DB_NAME

);

 // Retrieve the alien sighting

 data from MySQL

 $query = "SELECT abduction_id,
 first_name, last_name, " .

 "DATE_FORMAT(when_it_happen
ed,'%a, %d %b %Y %T') AS when_it

_happened_rfc, " .

 "alien_description, what_the
y_did " .

 "FROM aliens_abduction " .

 "ORDER BY when_it_happened

 ";

 $data = mysqli_query($dbc, $qu

ery);

 // Loop through the array of al

ien sighting data, formatting i
t as RSS

 while ($row = mysqli_fetch_arr
ay($data)) {

 // Display each row as an RSS
item

 echo ' ';

 echo ' <title>' . $row['firs

t_name'] . ' ' . $row['last_name
'] . ' - ' .

 substr($row['alien_descrip
tion'], 0, 32) . '...</title>';

 echo ' <link>http://www.alie
nsabductedme.com/index.php?abd

uction_id=' .

 $row[' '] .

 '</link>';

 echo ' ' . $row

['when_it_happened_rfc'] . ' '
. date('T') . ' '

;

 echo ' <description>' . $row

['what_they_did'] . '</descrip
tion>';

 echo '</item>';
 }
?>

 </channel>

6

5

4

3

2
1

newsfeed.php

PHP & MySQL Magnets Solution
Owen’s Aliens Abducted Me RSS newsfeed script (newsfeed.php) is missing some important code.
Carefully choose the appropriate magnets to finish the code and dynamically generate the newsfeed.

& XML!

<channel>

<link>
</link>

<language> </language>

<item>

</pubDate>
<pubDate>

</channel>
</item><rss>

DESC

ASC
first_name last_name

abduction_id

</rss>

Similar to the header we used earlier
in the CAPTCHA example to output
a PNG image, this header causes the
script to output an XML document.

php & mysql & xml magnets solution

you are here 4 675

syndication and web services

Test Drive
Add the RSS Newsfeed script to Aliens Abducted Me.
Create a new text file named newsfeed.php, and enter the code for Owen’s RSS
Newsfeed script from the Magnets exercise a few pages back (or download the script from
the Head First Labs site at www.headfirstlabs.com/books/hfphp).

Upload the script to your web server, and then open it in a newsreader. Most web browsers
and some email clients allow you to view newsfeeds, so you can try those first if you don’t
have a stand-alone newsreader application. The Newsfeed script should display the latest
alien abductions pulled straight from the Aliens Abducted Me database.

If your browser has
trouble viewing the
newsfeed, try using
feed:// in the URL
instead of http://.

The newsfeed looks
great, but how do
site visitors find out
about it?

Just provide a link to it from the home page.
Don’t forget that newsfeed.php is nothing more than a PHP script. The
only difference between it and most of the other PHP scripts you’ve seen
throughout the book is that it generates an RSS document instead of an
HTML document. But you still access it just as you would any other PHP
script—just specify the name of the script in a URL. What Owen is missing
is a way to share this URL with people who visit his site. This is accomplished
with very little effort by providing a syndication link, which is just a link
to the newsfeed.php script on Owen’s server.

The newsfeed.php
script generates
an RSS newsfeed
document that can
be viewed by any
RSS newsreader.

676 Chapter 12

Link to the RSS feed
It’s important to provide a prominent link to the newsfeed for a web site because
a lot of users will appreciate that you offer such a service. To help aid users in
quickly finding an RSS feed for a given site, there is a standard icon you can use
to visually call out the feed. We can use this icon to build a newsfeed link at the
bottom of Owen’s home page (index.php).

<p>

 <img style="vertical-align:top; border:none"
 src="rssicon.png" alt="Syndicate alien abductions" />
 Click to syndicate the abduction news feed.

</p>

A standard RSS
icon is available to
make it clear to
users that you offer
an RSS newsfeed.

rssicon.png

This icon is available in all
kinds of different sizes
and image formats, but
the look and feel of it is
always the same.

To download a collection of RSS icons in different colors and formats, check out www.feedicons.com.

The URL of the newsfeed is just the
newsfeed.php script, which works as long
as the script is stored in the same folder
as the main web page below.

A prominent link on the
main Aliens Abducted
Me page offers visitors
a quick way to access
Owen’s newsfeed.

The HTML newsfeed link
includes both an RSS icon
and descriptive text.

providing an rss link

you are here 4 677

syndication and web services

Test Drive
Add the newsfeed link to the Aliens Abducted Me home page.
Modify the index.php script for Aliens Abducted Me to display the newsfeed link
near the bottom of the page. Also download the rssicon.png image as part of the
code from this chapter from the Head First Labs site at www.headfirstlabs.com/
books/hfphp.

Upload the index.php script and rssicon.php image to your web server, and then
open the script in a web browser. Click the new link to view the RSS newsfeed.

With all these
abductions going on,
I’m always on the
lookout for aliens.

I haven’t seen Fang, but
these reports are amazing.

Chloe, an avid Aliens Abducted Me
newsfeed reader, thinks she might
have seen Fang in a YouTube video.

Thanks to
RSS, new alien
abduction reports
are “pushed” to
subscribers without
them having to
visit the Aliens
Abducted Me web
site directly.

I wonder if that’s the
same dog I saw on that
YouTube video...

678 Chapter 12

picture thousand
After a newsfeed subscriber alerted Owen to a YouTube video with a dog in it
that resembles Fang, Owen realized that he’s going to have to use additional
technology to expand his search for Fang. But how? If Owen could incorporate
YouTube videos into Aliens Abducted Me, his users could all be on the lookout
for Fang. Not only that, but he really needs to come up with a way to avoid
constantly doing manual video searches on YouTube.

video million

YouTube is an amazing tool for
gathering alien abduction evidence
in my search for Fang... but it’s a
drag having to painstakingly search
for new alien abduction videos.

Could this be Fang?

Owen thinks
video may hold
the final answer to finding Fang.

Although YouTube holds a lot of
promise for helping Owen in his quest
to find Fang, he currently has to do
an awful lot of manual video searching.

A is worth a words

add youtube content to owen's site

you are here 4 679

syndication and web services

Wouldn’t it be dreamy if I could see
videos directly on Aliens Abducted Me
rather than having to search on YouTube?
If only there was a way I could just go to a
web page and have the search already done
for me. But that’s nothing but a dream...

Try this!

Visit Owen’s YouTube videos at www.youtube.com/user/aliensabductedme.11

Watch a few of the alien abduction videos that Owen has found.
Do you think the dog in the videos is Fang?

22

680 Chapter 12

Pulling web content from others
The idea behind an RSS newsfeed is that it pushes your content to others
so that they don’t have to constantly visit your web site for new content. This is
a great way to make it more convenient for people to keep tabs on your site, as
Owen has found out. But there’s another side to the web syndication coin, and
it involves pulling content from another site to place on your site. So you
become the consumer, and someone else acts as the content provider. In Owen’s
case of showing YouTube videos on his site, YouTube becomes the provider.

Aliens Abducted Me is
the consumer of videos.

YouTube is the
provider of videos.

It’s important to understand that Owen doesn’t just want to embed a specific
YouTube video or a link to a video. That’s easy enough to accomplish by simply
cutting and pasting HTML code from YouTube. He wants to actually perform
a search on YouTube videos and display the results of that search. So Aliens
Abducted Me needs to perform a real-time query on YouTube data, and then
dynamically display the results. This allows Owen and his legion of helpful Fang
searchers to keep up-to-the-minute tabs on alien abduction videos that have
been posted to YouTube.

Videos that are the
result of a YouTube alien
abduction search are
returned by YouTube and
fed into Owen’s main page.

The design of the Aliens Abducted Me
home page will need to change slightly to
make room for the video search results.

Video thumbnail
images go here!

pulling content is different than pushing content

you are here 4 681

syndication and web services

 Process the response data and format it as HTML code.44

 Issue the video request to YouTube.22

 Build a request for YouTube videos.11

Web server

Syndicating YouTube videos
In order to source videos from YouTube, we must learn exactly how YouTube
makes videos available for syndication. YouTube offers videos for syndication
through a request/response communication process where you make a
request for certain videos and then receive information about those videos in a
response from YouTube’s servers. You are responsible for both issuing a request
in the format expected by YouTube and handling the response, which includes
sifting through response data to get at the specific video data you need (video
title, thumbnail image, link, etc.).

Following are the steps required to pull videos from YouTube and display them:

Client web
browser

YouTube
web serverThe browser initially

asks the web server
for the main page. The PHP script requests

video data from the
YouTube server.

The YouTube server
returns an XML document
containing video data.

The PHP script processes
the video data and returns a
formatted HTML web page.

This XML document
contains detailed
information about
the videos requested.

In addition to querying the MySQL
database for alien abduction data,
the PHP script now also processes
the YouTube video response.

The final web page
that is delivered to the
browser is pure HTML.

This request is often in
the form of a URL. YouTube uses

XML to respond
to video requests.

Syndicating videos
from YouTube
involves issuing
requests and
handling responses.

 Receive YouTube’s response data containing information about the videos.33

1

2

34

682 Chapter 12

Make a YouTube video request
Pulling videos from YouTube and incorporating them into your own web pages
begins with a request. YouTube expects videos to be queried through the use of
a REST request, which is a custom URL that leads to specific resources, such
as YouTube video data. You construct a URL identifying the videos you want,
and then YouTube returns information about them via an XML document.

The details of the URL for a YouTube request are determined by what videos
you want to access. For example, you can request the favorite videos of a
particular user. In Owen’s case, the best approach is probably to perform a
keyword search on all YouTube videos. The URL required for each of these
types of video REST requests varies slightly, but the base of the URL always
starts like this:

Q: What does REST stand for?

A: REpresentational State Transfer.
This is definitely one of those acronyms
that sounds way fancier and more
technical than it really is. The main idea
behind REST is that web resources
should be accessible through unique
links, which means you should be able
to access “RESTful” data simply by
constructing a URL for it. In terms of
YouTube, it means that you can perform
video queries purely through a URL that
contains the search criteria.

http://gdata.youtube.com/feeds/api/

 Request videos by user

Requesting the favorite videos for a particular YouTube user involves adding
onto the base URL, and also providing the user’s name on YouTube.

http://gdata.youtube.com/feeds/api/users/username/favorites

To request the favorite videos for the user elmerpriestley, use the following URL:

http://gdata.youtube.com/feeds/api/users/elmerpriestley/favorites

 Request videos with a keyword search

A more powerful and often more useful YouTube video request is to carry out
a keyword search that is independent of users. You can use more than one
keyword as long as you separate them by forward slashes at the end of the URL.

http://gdata.youtube.com/feeds/api/videos/-/keyword1/keyword2/...

To request the favorite videos for the keywords “elvis” and “impersonator,” use
the following URL:

http://gdata.youtube.com/feeds/api/videos/-/elvis/impersonator

The user name of a YouTube
user provides access to that
user’s favorite videos.

The result of this REST
request are the favorite
videos for the YouTube
user elmerpriestley.

Multiple keywords can be used
in a video search by separating them with forward slashes.

Here the search keywords
“elvis” and “impersonator” are
used to search for videos.

This base URL is used for
all YouTube REST requests.

The keywords are case-insensitive, so “elvis”, “Elvis”, and “eLvIs” all give you the same result.

The URL starts the same as
requesting by user but here you
use “videos” instead of “users”.

Don’t forget the
slashes and the hyphen!

introducing REST requests

you are here 4 683

syndication and web services

BE the YouTube REST Request
Your job is to get inside the mind of YouTube and
become a video REST request. Use the magnets
below to assemble video REST requests for the

following YouTube videos, and then
try them out in your web browser.

alien

abduction

headfirstmork

-
/

All videos that match the keyword “Roswell”:

All videos that match the keywords “alien” and “abduction”:

All videos tagged as favorites for the user headfirstmork:

videos

users

ufo

dog

sighting

All videos that match the keywords “ufo”, “sighting”, and “dog”:

All videos tagged as favorites for the user aliensabductedme:

aliensabducted
me favorites

http://gdata.youtube.com/feeds/api/ You may need to use
some of the magnets
more than once.

Roswell

Area 51

684 Chapter 12

BE the YouTube REST Request Solution
Your job is to get inside the mind of YouTube
and become a video REST request. Use the
magnets below to assemble video REST

requests for the following
YouTube videos, and then try
them out in your web browser.

All videos that match the keyword “Roswell”:

All videos that match the keywords “alien” and “abduction”:

All videos tagged as favorites for the user headfirstmork:

All videos that match the keywords “ufo”, “sighting”, and “dog”:

All videos tagged as favorites for the user aliensabductedme:

-http://gdata.youtube.com/feeds/api/ videos / /

/http://gdata.youtube.com/feeds/api/ /users aliensabductedme favorites

http://gdata.youtube.com/feeds/api/

-http://gdata.youtube.com/feeds/api/ videos / / alien / abduction

-http://gdata.youtube.com/feeds/api/ videos / / /ufo dogsighting /

The URL for a user’s favorites requires
the word “users” here instead of “videos”.

This is the name of the
user whose favorite
videos you want to access.

The URL ends with
the word “favorites”.

Each of the search keywords
appear at the end of the URL, and
are separated by forward slashes.

The same base YouTube URL is
used for all of the REST requests. The single keyword

appears last in the URL.

Roswell

//users headfirstmork favorites

You may have used
some of the magnets
more than once.

Area 51

This magnet wasn’t used... it’s a conspiracy!

be the youtube REST request solution

you are here 4 685

syndication and web services

Q: How is REST different than, say, a GET request?

A: It’s not. Any time you’ve used a GET request, such as simply
requesting a web page, you’re using REST. You can think of a normal
web page as a REST resource in that it can be accessed via a URL,
and GET is the REST “action” used to access the resource. Where
REST gets more interesting is when it is used to build queries, such
as YouTube video requests. In this case you’re still dealing with REST
requests but they are querying a database for data instead of simply
requesting a static web page.

Q: Does the order of arguments matter when performing a
YouTube keyword search?

A: Yes. The first keywords are given a higher precedence than later
keywords, so make sure to list them in order of decreasing importance.

Q: When there are multiple matches for a video search, how
does YouTube determine what videos to return?

A: YouTube keyword video requests return videos based on search
relevance, meaning that you will get the videos that best match the
keywords, regardless of when the videos were posted to YouTube.

686 Chapter 12

Owen is ready to build a REST request
Since Owen’s goal is to scour YouTube for alien abduction videos that might
have Fang in them, a keyword search makes the most sense as the type of REST
request to submit to YouTube. There are lots of different keyword combinations
that could be used to search for possible Fang videos, but one in particular will
help home in on videos related specifically to Fang:

The last two keywords help to make sure you find the alien abduction videos related to Owen and Fang!

http://gdata.youtube.com/feeds/api/videos/-/alien/abduction/head/first

While you probably wouldn’t reference the title of a book series when
carrying out a normal YouTube video search, it just so happens to be a
good idea in this particular case. Let’s just say it’s a coincidence that a
lot of alien abduction videos have been made by Head First fans! With a
REST request URL in hand, Owen can scratch off Step 1 of the YouTube
video syndication process.

alien abduction

head first

I’m ready to see
some video results...

 Process the response data and format it
as HTML code.

44

 Issue the video request to YouTube.22

 Build a request for YouTube videos.11

 Receive YouTube’s response data
containing information about the videos.

33

The first step is knocked
out thanks to the
YouTube request URL.

building a REST request

you are here 4 687

syndication and web services

http://gdata.youtube.com/feeds/api/videos/-/alien/abduction/head/first

Test Drive
Try out Owen’s YouTube request URL.
Enter Owen’s YouTube request URL in a web browser:

What does the browser show? Try viewing the source of the page to take a look at the
actual code returned by YouTube.

The web browser views the XML data returned by the YouTube response as a newsfeed, except in this case each item is actually a video.

688 Chapter 12

Requesting videos from YouTube by typing a
URL into a web browser is neat and all, but
what does that have to do with PHP? Why can’t
we access the video results from a script?

We can, we just need a PHP function that allows us
to submit a REST request and receive a response.
The built-in PHP function simplexml_load_file() lets us submit
REST requests that result in XML responses, such as YouTube requests/
responses. The function actually loads an XML document into a PHP
object, which we can then use to drill down into the XML data and
extract whatever specific information is needed. So how does that impact
Owen’s YouTube video request? Check out this code, which creates a
constant to hold a YouTube URL, and then issues a REST request using
the simplexml_load_file() function:

define('YOUTUBE_URL', 'http://gdata.youtube.com/feeds/api/videos/-/alien/abduction/head/first');

$xml = simplexml_load_file(YOUTUBE_URL);

 Don’t sweat it if you don’t
know what an object is,
especially in the context of PHP.

A PHP object is a special data type
that allows data to be packaged together with functions
in a single construct. All you need to know for now
is that it’s much easier to process XML data in PHP
by using objects. You’ll learn more about how this is
possible in just a bit.

Although not strictly necessary, it’s
generally a good idea to store static URLs
in constants so that you know where to
change them if the need ever arises.

 Process the response data and format it
as HTML code.

44

 Issue the video request to YouTube.22

 Build a request for YouTube videos.11

 Receive YouTube’s response data
containing information about the videos.

33

These two steps
are now done!

The SimpleXML extension to PHP, which offers the simplexml_load_file() function, was added to PHP in version 5. So prior versions of PHP don’t have built-in support for XML processing.

making REST requests in a php script

you are here 4 689

syndication and web services

<?xml version='1.0' encoding='UTF-8'?
>

<feed xmlns='http://www.w3.org/2005/A
tom'

 xmlns:openSearch='http://a9.com/-/s
pec/opensearchrss/1.0/'

 xmlns:gml='http://www.opengis.net/g
ml'

 xmlns:georss='http://www.georss.org
/georss'

 xmlns:media='http://search.yahoo.co
m/mrss/'

 xmlns:batch='http://schemas.google.
com/gdata/batch'

 xmlns:yt='http://gdata.youtube.com/
schemas/2007'

 xmlns:gd='http://schemas.google.com
/g/2005'>

 <id>http://gdata.youtube.com/feeds/
api/users/aliensabductedme/favorites<

/id>

 <updated>2008-08-01T20:37:48.798Z</
updated>

 <category scheme='http://schemas.go
ogle.com/g/2005#kind' term='http://gd

ata.youtube.com/schemas/2007#video'/>

 <title type='text'>Favorites of ali
ensabductedme</title>

 <logo>http://www.youtube.com/img/pi
c_youtubelogo_123x63.gif</logo>

 <link rel='related' type='applicati
on/atom+xml' href='http://gdata.youtu

be.com/feeds/api/users/aliensabducted
me'/>

 <link rel='alternate' type='text/ht
ml' href='http://www.youtube.com/prof

ile_favorites?user=aliensabductedme'/
>

 <link rel='http://schemas.google.co
m/g/2005#feed' type='application/atom

+xml' href='http://gdata.youtube.com/
feeds/api/users/aliensabductedme/favo

rites'/>

 <link rel='http://schemas.google.co
m/g/2005#batch' type='application/ato

m+xml' href='http://gdata.youtube.com
/feeds/api/users/aliensabductedme/fav

orites/batch'/>

 <link rel='self' type='application/
atom+xml' href='http://gdata.youtube.

com/feeds/api/users/aliensabductedme/
favorites?start-index=1&max-resul

ts=25'/>

 <author>
 <name>aliensabductedme</name>

 <uri>http://gdata.youtube.com/fee
ds/api/users/aliensabductedme</uri>

 </author>
 <generator version='2.0' uri='http:

//gdata.youtube.com/'>YouTube data AP
I</generator>

 <openSearch:totalResults>9</openSea
rch:totalResults>

 <openSearch:startIndex>1</openSearc
h:startIndex>

 <openSearch:itemsPerPage>25</openSe
arch:itemsPerPage>

 <entry>
 <id>http://gdata.youtube.com/feed

s/api/videos/_6Uibqf0vtA</id>

 <published>2006-06-20T07:49:05.00
0-07:00</published>

 <updated>2008-08-01T09:19:58.000-
07:00</updated>

 <category scheme='http://gdata.yo
utube.com/schemas/2007/keywords.cat'

term='sightings'/>

 <category scheme='http://gdata.yo
utube.com/schemas/2007/keywords.cat'

term='ca'/>

 <category scheme='http://gdata.yo
utube.com/schemas/2007/keywords.cat'

term='51'/>

 <category scheme='http://schemas.
google.com/g/2005#kind' term='http://

gdata.youtube.com/schemas/2007#video'
/>

 <category scheme='http://gdata.yo
utube.com/schemas/2007/keywords.cat'

term='area'/>

 <category scheme='http://gdata.yo
utube.com/schemas/2007/keywords.cat'

term='aliens'/>

 <category scheme='http://gdata.yo
utube.com/schemas/2007/keywords.cat'

term='alien'/>

 <category scheme='http://gdata.yo
utube.com/schemas/2007/categories.cat

' term='Travel' label='Travel & E
vents'/>

 <category scheme='http://gdata.yo
utube.com/schemas/2007/keywords.cat'

term='california'/>

 <category scheme='http://gdata.yo
utube.com/schemas/2007/keywords.cat'

term='nevada'/>

 <category scheme='http://gdata.yo
utube.com/schemas/2007/keywords.cat'

term='ufo'/>

 <category scheme='http://gdata.yo
utube.com/schemas/2007/keywords.cat'

term='sighting'/>

 <title type='text'>UFO Sighting i
n Yosemite Park near Area 51</title>

 <content type='text'>I went on a
trip to Yosemite Park in 2002. Yosemi

te Park is very close to the border b
etween California and Nevada, and clo

se to Area 51. In the

evening, on my way out of the park, I
 was driving down a winding road, whe

n I saw a small ball of light high up
 in the sky, with a large halo of lig

ht surrounding it,

and a long twirled trail behind it. I
 video taped it for a few seconds, an

d then I grapped my camera to take so
me photos as well, in case the video

camera didn't capture

it well enough. Unfortunately it was
too dark for the photo camera, so the

 pictures didn't come out. All I have
 is the video I took before and after

 I took the photos.

The ball of light with the huge halo

moved across the sky, leaving a trail
. After about 2 minutes the ball of l

ight disappeared, and only the trail
remained. The trail

was illuminated and still brightly vi
sible even when the surrounding sky w

as already pitch black.

A few minutes later several Air Force

 jets appeared and circled in the sky
 where the light had disappeared.</co

ntent>

 <link rel='alternate' type='text/
html' href='http://www.youtube.com/wa

tch?v=_6Uibqf0vtA'/>

 <link rel='http://gdata.youtube.co
m/schemas/2007#video.responses' type=

'application/atom+xml' href='http://g
data.youtube.com/feeds/api/videos/_6U

ibqf0vtA/responses'/>

 <link rel='http://gdata.youtube.c
om/schemas/2007#video.related' type='

application/atom+xml' href='http://gd
ata.youtube.com/feeds/api/videos/_6Ui

bqf0vtA/related'/>

 <link rel='self' type='applicatio
n/atom+xml' href='http://gdata.youtub

e.com/feeds/api/users/aliensabductedm
e/favorites/_6Uibqf0vtA'/>

 <author>
 <name>gaspirtz</name>

 <uri>http://gdata.youtube.com/f
eeds/api/users/gaspirtz</uri>

 </author>
 <media:group>

 <media:title type='plain'>UFO S
ighting in Yosemite Park near Area 51

</media:title>

 <media:description type='plain'
>I went on a trip to Yosemite Park in

 2002. Yosemite Park is very close to
 the border between California and Ne

vada, and close to

Area 51. In the evening, on my way ou
t of the park, I was driving down a w

inding road, when I saw a small ball
of light high up in the sky, with a l

arge halo of light

surrounding it, and a long twirled tr
ail behind it. I video taped it for a

 few seconds, and then I grapped my c
amera to take some photos as well, in

 case the video

camera didn't capture it well enough.
 Unfortunately it was too dark for th

e photo camera, so the pictures didn'
t come out. All I have is the video I

 took before and

after I took the photos.

The ball of light with the huge halo

moved across the sky, leaving a trail
. After about 2 minutes the ball of l

ight disappeared, and only the trail
remained. The trail

was illuminated and still brightly vi
sible even when the surrounding sky w

as already pitch black.

A few minutes later several Air Force

 jets appeared and circled in the sky
 where the light had disappeared.</me

dia:description>

 <media:keywords>51, alien, alie
ns, area, ca, california, nevada, sig

hting, sightings, ufo</media:keywords
>

 <yt:duration seconds='50'/>

 <media:category label='Travel &
amp; Events' scheme='http://gdata.you

tube.com/schemas/2007/categories.cat'
>Travel</media:category>

 <media:content url='http://www.
youtube.com/v/_6Uibqf0vtA' type='appl

ication/x-shockwave-flash' medium='vi
deo' isDefault='true' expression='ful

l' duration='50' yt:

format='5'/>
 <media:content url='rtsp://rtsp

2.youtube.com/ChoLENy73wIaEQnQvvSnbiK
l_xMYDSANFEgGDA==/0/0/0/video.3gp' ty

pe='video/3gpp' medium='video' expres
sion='full'

duration='50' yt:format='1'/>

 <media:content url='rtsp://rtsp
2.youtube.com/ChoLENy73wIaEQnQvvSnbiK

l_xMYESARFEgGDA==/0/0/0/video.3gp' ty
pe='video/3gpp' medium='video' expres

sion='full'

duration='50' yt:format='6'/>

 <media:player url='http://www.y
outube.com/watch?v=_6Uibqf0vtA'/>

 <media:thumbnail url='http://im
g.youtube.com/vi/_6Uibqf0vtA/2.jpg' h

eight='97' width='130' time='00:00:25
'/>

 <media:thumbnail url='http://im
g.youtube.com/vi/_6Uibqf0vtA/1.jpg' h

eight='97' width='130' time='00:00:12
.500'/>

 <media:thumbnail url='http://im
g.youtube.com/vi/_6Uibqf0vtA/3.jpg' h

eight='97' width='130' time='00:00:37
.500'/>

 <media:thumbnail url='http://im
g.youtube.com/vi/_6Uibqf0vtA/0.jpg' h

eight='240' width='320' time='00:00:2
5'/>

 </media:group>

 <yt:statistics viewCount='2528356
' favoriteCount='1931'/>

 <gd:rating min='1' max='5' numRat
ers='1648' average='4.17'/>

 <gd:comments>

 ...

Awesome... an even bigger problem!
What on earth do we do with all that
messy XML data? There’s no way a
PHP script can make sense of all that.

Oh, but there is! The XML code returned by YouTube
isn’t really as messy as it looks... you just have to
know where to look.

This is the XML file
returned by the
simplexml_load_file()
function, which
consists of YouTube
XML data for the
videos requested.

690 Chapter 12

<?xml version='1.0' encoding='UTF-8'?>
<feed xmlns='http://www.w3.org/2005/Atom'
 xmlns:openSearch='http://a9.com/-/spec/opensearchrss/1.0/'
 xmlns:gml='http://www.opengis.net/gml'
 xmlns:georss='http://www.georss.org/georss'
 xmlns:media='http://search.yahoo.com/mrss/'
 xmlns:batch='http://schemas.google.com/gdata/batch'
 xmlns:yt='http://gdata.youtube.com/schemas/2007'
 xmlns:gd='http://schemas.google.com/g/2005'>
 <id>http://gdata.youtube.com/feeds/api/users/aliensabductedme/favorites</id>
 <updated>2008-07-25T03:22:37.001Z</updated>
 <category scheme='http://schemas.google.com/g/2005#kind'
 term='http://gdata.youtube.com/schemas/2007#video'/>
 <title type='text'>Favorites of aliensabductedme</title>
 ...
 <entry>
 <id>http://gdata.youtube.com/feeds/api/videos/_6Uibqf0vtA</id>
 <published>2006-06-20T07:49:05.000-07:00</published>
 ...
 <media:group>
 <media:title type='plain'>UFO Sighting in Yosemite Park near Area 51</media:title>
 <media:description type='plain'>I went on a trip to Yosemite Park in 2002. Yosemite Park is very
 close to the border between California and Nevada, and close to Area 51...</media:description>
 <media:keywords>51, alien, aliens, area, ca, california, nevada, sighting, sightings,
 ufo</media:keywords>
 <yt:duration seconds='50'/>
 <media:category label='Travel & Events'
 scheme='http://gdata.youtube.com/schemas/2007/categories.cat'>Travel</media:category>
 <media:content url='http://www.youtube.com/v/_6Uibqf0vtA' type='application/x-shockwave-flash'
 medium='video' isDefault='true' expression='full' duration='50' yt:format='5'/>
 <media:content url='rtsp://rtsp2.youtube.com/ChoLENy73wIaEQnQvvSnbiKl_xMYDSANFEgGDA==/0/0/0/video.3gp'
 type='video/3gpp' medium='video' expression='full' duration='50' yt:format='1'/>
 <media:content url='rtsp://rtsp2.youtube.com/ChoLENy73wIaEQnQvvSnbiKl_xMYESARFEgGDA==/0/0/0/video.3gp'
 type='video/3gpp' medium='video' expression='full' duration='50' yt:format='6'/>
 <media:player url='http://www.youtube.com/watch?v=_6Uibqf0vtA'/>
 <media:thumbnail url='http://img.youtube.com/vi/_6Uibqf0vtA/2.jpg' height='97' width='130'
 time='00:00:25'/>
 <media:thumbnail url='http://img.youtube.com/vi/_6Uibqf0vtA/1.jpg' height='97' width='130'
 time='00:00:12.500'/>
 <media:thumbnail url='http://img.youtube.com/vi/_6Uibqf0vtA/3.jpg' height='97' width='130'
 time='00:00:37.500'/>
 <media:thumbnail url='http://img.youtube.com/vi/_6Uibqf0vtA/0.jpg' height='240' width='320'
 time='00:00:25'/>
 </media:group>
 <yt:statistics viewCount='2478159' favoriteCount='1897'/>
 <gd:rating min='1' max='5' numRaters='1602' average='4.17'/>
 <gd:comments>
 <gd:feedLink href='http://gdata.youtube.com/feeds/api/videos/_6Uibqf0vtA/comments'
 countHint='4426'/>
 </gd:comments>
 </entry>
 <entry>
 <id>http://gdata.youtube.com/feeds/api/videos/XpNd-Dg6_zQ</id>
 <published>2006-11-19T16:44:43.000-08:00</published>
 ...
 </entry>
</feed>

YouTube speaks XML
The video response from YouTube isn’t exactly a DVD packaged up in a shiny
box and delivered to your front door. No, it’s an XML document containing
detailed information about the videos you requested, not the videos themselves.

Although there’s a lot going on in this XML code, one thing to home in on is that each individual video appears inside of an <entry> tag.

YouTube responds
to video requests
with XML data that
describes the videos.

This <entry> tag starts another video
within the XML response data.

the request returns xml

you are here 4 691

syndication and web services

Study the highlighted XML code for the YouTube response on the facing
page and answer the following questions. You might just know more
about YouTube’s video XML format than you thought at first glance!

1. What is the title of the video?

2. What are three keywords associated with the video?

3. How long is the video, in seconds?

4. To what YouTube video category does the video belong?

5. How many times has the video been viewed?

6. What average rating have users given the video?

692 Chapter 12

Study the highlighted XML code for the YouTube response on page 690
and answer the following questions. You might just know more about
YouTube’s video XML format than you thought at first glance!

1. What is the title of the video?

2. What are three keywords associated with the video?

3. How long is the video, in seconds?

4. To what YouTube video category does the video belong?

5. How many times has the video been viewed?

6. What average rating have users given the video?

UFO Sighting in Yosemite Park near Area 51

51, aliens, nevada

50

Travel & Events

2478159

4.17

<media:title type='plain'>UFO Sighting in Yosemite Park near Ar
ea 51</media:title>

<media:keywords>51, alien, aliens, area, ca, california, nevada, sighting, sightings, ufo</media:keywords>

<yt:duration seconds='50'/>

<yt:statistics viewCount='2478159' favoriteCount='1897'/>

<media:category label='Travel & Events'

 scheme='http://gdata.youtube.com/schemas/2007/categories.cat'>Tra
vel</media:category>

<gd:rating min='1' max='5' numRaters
='1602' average='4.17'/>

XML encodes some characters
using special codes, such as $amp;,
which represents an ampersand ($).

sharpen your pencil solution

Wow, that's a lot of
views... nearly 2.5 million!

you are here 4 693

syndication and web services

Hmm, I’m a little confused with those XML tags
that have two names separated by a colon. Is that
somehow a way to organize tags? And what about
the weird & code in the video category?

The unusual XML code uses namespaces and entities,
which help organize tags and encode special characters.
When you see an XML tag that has two names separated by a colon, you’re
looking at a namespace, which is a way of organizing a set of tags into
a logical group. The purpose of namespaces is to keep tags with the same
name from clashing when multiple XML vocabularies are used in the same
document. As an example, consider the following two XML tags:

<media:title type='plain'>UFO Sighting in Yosemite Park near
Area 51</media:title>

<title type='text'>Favorites of aliensabductedme</title>

Without the media namespace in the second <title> tag, it would be impossible
to tell the two tags apart if they appeared in the same XML code. So you can think
of a namespace as a surname for tags—it helps keep an XML document full of

“first names” from clashing by hanging a “last name” on related tags. The YouTube
response code uses several different namespaces, which means it is using several
different XML languages at once—namespaces allow us to clearly tell them apart.

To ensure uniqueness, an XML namespace is always associated with a URL. For
example, the media namespace used in YouTube XML data is established within
the <feed> tag like this:

& < > " '&= <= >= "= '=

Namespaces are
named groups of
XML tags, while
entities are used
to encode special
characters within
XML documents. xmlns:media='http://search.yahoo.com/mrss/'

The other strange thing in the YouTube XML code is &, which is XML’s way
of representing the ampersand character (&). This is an XML entity, a symbolic
way of referencing a special character, such as &, <, or >, all of which have special
meaning within XML code. Following are the five predefined XML entities that you
will likely encounter as you delve deeper into XML code:

This URL isn’t actually a web page - it’s just a unique identifier for a namespace.

It may seem odd that a Yahoo!
namespace appears in YouTube
XML code - it just means that
YouTube relies partly on an XML
data format created by Yahoo!.

694 Chapter 12

<entry>
 <id>http://gdata.youtube.com/feeds/api/videos/_6Uibqf0vtA</id>
 <published>2006-06-20T07:49:05.000-07:00</published>
 ...
 <media:group>
 <media:title type='plain'>UFO Sighting in Yosemite Park near Area 51</media:title>
 <media:description type='plain'>I went on a trip to Yosemite Park in 2002. Yosemite Park is very
 close to the border between California and Nevada, and close to Area 51...</media:description>
 <media:keywords>51, alien, aliens, area, ca, california, nevada, sighting, sightings,
 ufo</media:keywords>
 <yt:duration seconds='50'/>
 <media:category label='Travel & Events'
 scheme='http://gdata.youtube.com/schemas/2007/categories.cat'>Travel</media:category>
 <media:content url='http://www.youtube.com/v/_6Uibqf0vtA' type='application/x-shockwave-flash'
 medium='video' isDefault='true' expression='full' duration='50' yt:format='5'/>
 <media:content url='rtsp://rtsp2.youtube.com/ChoLENy73wIaEQnQvvSnbiKl_xMYDSANFEgGDA==/0/0/0/video.3gp'
 type='video/3gpp' medium='video' expression='full' duration='50' yt:format='1'/>
 <media:content url='rtsp://rtsp2.youtube.com/ChoLENy73wIaEQnQvvSnbiKl_xMYESARFEgGDA==/0/0/0/video.3gp'
 type='video/3gpp' medium='video' expression='full' duration='50' yt:format='6'/>
 <media:player url='http://www.youtube.com/watch?v=_6Uibqf0vtA'/>
 <media:thumbnail url='http://img.youtube.com/vi/_6Uibqf0vtA/2.jpg' height='97' width='130'
 time='00:00:25'/>
 <media:thumbnail url='http://img.youtube.com/vi/_6Uibqf0vtA/1.jpg' height='97' width='130'
 time='00:00:12.500'/>
 <media:thumbnail url='http://img.youtube.com/vi/_6Uibqf0vtA/3.jpg' height='97' width='130'
 time='00:00:37.500'/>
 <media:thumbnail url='http://img.youtube.com/vi/_6Uibqf0vtA/0.jpg' height='240' width='320'
 time='00:00:25'/>
 </media:group>
 <yt:statistics viewCount='2478159' favoriteCount='1897'/>
 <gd:rating min='1' max='5' numRaters='1602' average='4.17'/>
 <gd:comments>
 <gd:feedLink href='http://gdata.youtube.com/feeds/api/videos/_6Uibqf0vtA/comments'
 countHint='4426'/>
 </gd:comments>
 </entry>

Deconstruct a YouTube XML response
Once you get to know the structure of a YouTube response, extracting the video
data you need is pretty straightforward. In addition to understanding what tags
and attributes store what data, it’s also important to understand how the tags
relate to one another. If you recall from earlier in the chapter when analyzing
an RSS feed, an XML document can be viewed as a hierarchy of elements. The
same is true for the XML data returned in a YouTube video response.

One important clue toward understanding the video data buried in this XML code is
the different namespaces being used. The media namespace accompanies most of
the tags specifically related to video data, while the yt namespace is used solely with
the <statistics> tag. Finally, comments are enclosed within the <comments>
tag, which falls under the gd namespace. These namespaces will matter a great deal
when you begin writing PHP code to find specific tags and their data.

The <title> tag contains
the title of the video.

In this code, the tag is named “title“ and the namespace is “media”.

The keywords
for the video.

The length of the
video, in seconds.

The YouTube
category for
the video.

The link to
the video on
YouTube.

A thumbnail image of
the video, for previewing.

The average user
rating of the video.

The number of times the
video has been viewed.The “gd” namespace stands for Google

Data, and includes tags defined by
Google for representing various kinds
of data - YouTube is part of Google.

anatomy of a youtube xml response

you are here 4 695

syndication and web services

Visualize the XML video data
Earlier in the chapter when working with RSS code, it was revealed that an
XML document can be visualized as a hierarchy of elements (tags) that have a
parent-child relationship. This relationship becomes increasingly important as
you begin to process XML code and access data stored within it. In fact, it can
be an invaluable skill to be able to look at an XML document and immediately
visualize the relationship between the elements. Just remember that any element
enclosed within another element is a child, and the enclosing element is its
parent. Working through the XML code for the YouTube video on the facing
page results in the following visualization.

Q: Why do I even need to worry about namespaces?

A: Because XML code generated by others often involves
namespaces, which affects how you access XML elements
programmatically. As you’re about to find out, the namespace
associated with an element directly affects how you find the element
when writing PHP code that processes XML data. So the namespace
must be factored into code that is attempting to grab the data for a
given element.

Q: How do I know if a tag is part of a namespace?

A: Although it’s possible to have a default namespace that doesn’t
explicitly appear in the code for a tag, in most cases you’ll see
the namespace right there in the tag name, so the tag is coded as
<media:title> instead of just <title>. The name to the
left of the colon is always the namespace.

An element is just
an abstract way
of thinking of an
XML tag and the
data it contains.

The XML data is organized
into a hierarchy of
elements (tags).

The significance of this hierarchy of elements is that you can navigate
from any element to another by tracing its path from the top of the
hierarchy. So, for example, if you wanted to obtain the title of the video,
you could trace its path like this:

The entry element is the
topmost element in this
particular chunk of XML code.

entry group titleNavigating to an element in an XML document involves following the path from parent to child.

...

...

entry

group

title keywordsdescription duration category content content player thumbnail thumbnail

publishedid statistics rating comments

feedLink...

696 Chapter 12

Access XML data with objects
There are lots of different ways to work with XML data with PHP, and one of
the best involves objects. An object is a special PHP data type that combines
data and functions into a single construct. But what does that have to do with
XML? The entire hierarchy of elements in an XML document is contained
within a single variable, an object. You can then use the object to drill down into
the data and access individual elements. Objects also have methods, which are
functions that are tied to an object, and let us further manipulate the object’s
data. For an object that contains XML data, methods let us access the collection
of child elements for an element, as well as its attributes.

children()

SimpleXMLElement

attributes()

feed

category

entry

updated

id

Objects are a special
PHP data type that
combine data and
functions together.

define('YOUTUBE_URL', 'http://gdata.youtube.com/feeds/api/videos/-/alien/abduction/head/first');

$xml = simplexml_load_file(YOUTUBE_URL);

You’ve already seen how to create this XML object for Owen’s
alien abduction YouTube keyword search:

This code results in a variable named $xml that contains all of the XML
YouTube video data packaged into a PHP object. To access the data you use
object properties, which are individual pieces of data stored within an object.
Each property corresponds to an XML element. Take a look at the following
example, which accesses all of the entry elements in the document:

$entries = $xml->entry;

This code accesses all the entry elements in the XML data using a property.
Since there are multiple entry elements in the data, the $entries variable
stores an array of objects that you can use to access individual video entries.
And since we’re now dealing with an array, each video <entry> tag can be
accessed by indexing the array. For example, the first <entry> tag in the
document is the first item in the array, the second tag is the second item, etc.

Each element in an
XML document can be
accessed as a property
of an XML object.

A SimpleXMLElement object has methods that allow you to find out more about elements, such as their child elements and attributes.

This function creates a PHP
object of type SimpleXMLElement
containing all of the XML data in
the YouTube video response.

By specifying the name of the element (entry), you can grab all of the elements that are in the XML data.

The type of PHP object that
is used to store and manipulate
XML data is SimpleXMLElement.

The -> operator lets you access
a property within an object.

$entries

...

All of the video entries are
stored in the $entries array.

Remember, this function
requires PHP version 5 or later.

all about php objects

you are here 4 697

syndication and web services

From XML elements to PHP objects
When it comes to XML data and PHP objects, you’re really dealing with
a collection of objects. Remember that stuff about visualizing an XML
document as a hierarchy of elements? Well, that same hierarchy is realized as a
collection of objects in PHP. Take a look:

entry
id

published

group statistics

rating

comments

description

title

keywords

duration

category

content
content player

thumbnail

thumbnail

feedLink

When viewed through the lens of
an XML object, the hierarchy
of XML elements becomes a
nested collection of objects.

The rating object
is a child object
of the entry
object because
the <rating> tag
is a child tag of
<entry>.

This element hieararchy/object collection stuff forms the basis of understanding
how to dig through XML data in PHP. With the relationship between individual
pieces of XML data in mind, it becomes possible to write code that navigates
through the data. Then we can isolate the content stored in a particular tag or
attribute down deep in an XML document.

The duration object is a
child of the group object
since the <duration> tag
is a child tag of <group>.

Most of the interesting
content for a YouTube video
is contained within child
objects of the group object.

...

...

entry

group

title keywordsdescription duration category content content player thumbnail thumbnail

publishedid statistics rating comments

feedLink...

698 Chapter 12

echo $entry->group->title;

Drill into XML data with objects
Getting back to Owen, our goal is to pull out a few pieces of information for
videos that are returned as part of the XML YouTube response. We know how
to retrieve the XML data into a PHP object using the simplexml_load_
file() function, but most of the interesting data is found down deeper in this
data. How do we navigate through the collection of objects? The answer is the
-> operator, which is used to reference a property or method of an object. In the
case of an XML object, the -> operator accesses each child object. So this code
displays the title of a video entry stored in a variable named $entry:

This code relies heavily on the relationship between the title, group, and
entry objects, which form a parent-child relationship from one to the next.

entry
group

title

The -> operator references a child object from a parent object. So title is
a child of group, which is a child of entry. Remember that the -> operator
can be used to access both properties and methods. One method that comes in
particularly handy is the attributes() method, which is able to pluck out
the value of an XML attribute for a given element.

$attrs = $entry->group->duration->attributes();

echo $attrs['seconds'];

This code drills down to the duration element and then grabs all of its attributes
and stores them in the $attrs variable, which is an array of all the attributes.
The value of the seconds attribute is then retrieved from the array.

entry
group

duration attributes()

$attrs['seconds']

50

Here the -> operator is used to drill down through nested child objects to access the title object.

The title object is a
child of the group
object, which is a child
of the entry object.

The attributes() method obtains an array of attributes for an
object (element).

A specific attribute value
can be retrieved by using
the name of the attribute
as the array key.

accessing object data

you are here 4 699

syndication and web services

Not without a namespace!
There’s a small problem with the code on the facing page that accesses XML
data using objects, and it has to do with namespaces. If you recall, namespaces
act as surnames for tags by organizing them into meaningful collections. So
in a YouTube response, the <duration> tag is actually coded as <yt:
duration>, and the title for a video is coded as <media:title>, not
<title>. When an element is associated with a namespace, you can’t just
reference it by tag name in PHP code. Instead, you have to first isolate it by
namespace by calling the children() method on the parent object.

$media = $entry->children('http://search.yahoo.com/mrss/');

$yt = $media->children(' ');

$attrs = ;

echo $attrs[' '];

$title = $media->group->title;

This code retrieves all the child objects of the video entry whose namespace is
http://search.yahoo.com/mrss/. But that’s the URL for a namespace,
not the namespace itself. This URL is located in the <feed> tag at the start of
the XML document. This is where you’ll find all the namespaces being used.

<feed xmlns='http://www.w3.org/2005/Atom'
 xmlns:openSearch='http://a9.com/-/spec/opensearchrss/1.0/'
 xmlns:gml='http://www.opengis.net/gml'
 xmlns:georss='http://www.georss.org/georss'
 xmlns:media='http://search.yahoo.com/mrss/'
 xmlns:batch='http://schemas.google.com/gdata/batch'
 xmlns:yt='http://gdata.youtube.com/schemas/2007'
 xmlns:gd='http://schemas.google.com/g/2005'>

This code reveals how each namespace is associated with a URL. More
specifically, it shows how the media and yt namespaces are specified for use in
the document. This is all you need to find tags related to these two namespaces.

Once you’ve isolated the child elements for a particular namespace by calling the
children() method on the parent element, you can then resume accessing
child objects with the -> operator. For example, this code obtains the video title
from the <media:group> tag:

Using the namespace information and PHP code above, finish the
PHP code that gets the duration (in seconds) of a video clip.

Namespaces make
it a bit trickier to
access elements
within XML data.

Use the children()
method to isolate
all elements
associated with a
namespace.

The children() method
returns an array
containing all of the child
elements that are within
the specified namespace.

All tags starting with “<media:”
belong to this namespace.

This namespace is for
tags starting in “<yt:”.

The <title> tag is a child
of the <media:group> tag.

700 Chapter 12

$yt = $media->children(' ');

$attrs = ;

echo $attrs[' '];

Using the namespace information and PHP code above, finish the
PHP code that gets the duration (in seconds) of a video clip.

seconds
$yt->duration->attributes()

http://gdata.youtube.com/schemas/2007
This is the URL for
the namespace as
listed in the <feed>
tag at the beginning
of the document.

The name of the attribute is
used as the key for accessing
the attribute array.

Grab all of the attributes
for the <yt:duration> tag.

Q: How is an object different than an array? Don’t arrays also
store collections of data?

A: Yes. Arrays and objects are actually a lot alike. But one huge
difference is that objects can have executable code attached to
them in the form of methods. Methods are pretty much the same
as functions except that they are tied to an object, and are usually
designed to work specifically with the data stored in an object. Arrays
are purely about storing a set of related data, and have no notion of
methods. Additionally, array elements are accessed by specifying
the index or key of an element inside square brackets ([]), while
object properties and methods are accessed by name using the ->
operator.

Q: What exactly is an object? Is it like a normal variable?

A: Yes. An object is exactly like any other variable in PHP; it’s just
that it is able to store more complex data. So instead of just storing
a string of text or a number, an object is able to store a combination
of strings, numbers, etc. The idea is that by combining related data
together with functions that act on them, the overall design and
coding of applications becomes more logical.

Q: So how do objects help in processing XML data?

A: Objects help in regard to XML data processing because they
are able to model the element hierarchy of an XML document in
nested child objects. The benefit to this approach is that you can
navigate through child objects using the -> operator and access
whatever data you need.

Q: I thought the -> operator was for accessing object
properties. How does it allow me to access a child object?

A: The reason is that when dealing with XML objects in PHP, child
objects are actually stored as properties. So when you use the ->
operator to access a child object, you really are just accessing a
property. The SimpleXMLElement object is what makes this
possible.

Q: Hang on, what’s the SimpleXMLElement object?

A: Every object in PHP has a specific data type, meaning that
“object” is really a generic term. So when you create an object,
you’re creating an object of a specific type that is designed to
accomplish a specific task. In the case of XML, the object type is
SimpleXMLElement, and it is automatically returned by the
simplexml_load_file() function. In other words, calling
the simplexml_load_file() function results in the
creation of an object of type SimpleXMLElement.

Q: What do I need to know about SimpleXMLElement?

A: Surprisingly, not a whole lot. The main thing to know is that
it exposes the elements in an XML document as properties, and
that these properties lead to child objects that themselves are
instances of the SimpleXMLElement object, and so on. The
SimpleXMLElement object also has methods that allow you
to access data within an element, such as children() and
attributes().

no dumb questions on objects

you are here 4 701

syndication and web services

Fang sightings are on the rise
While Owen has been busy brushing up on XML and figuring out how to
communicate with YouTube, Fang has been busy. Numerous video sightings
have turned up with the little guy apparently serving as a tour guide for his
alien abductors. Owen is ready to finish up the YouTube script, get some videos
showing on the Aliens Abducted Me home page, and find his lost dog.

 Process the response data and format it
as HTML code.

44

 Issue the video request to YouTube.22

 Build a request for YouTube videos.11

 Receive YouTube’s response data
containing information about the videos.

33

This XML stuff is fascinating but I
have a dog to find. I keep hearing
rumors about new Fang sightings on
YouTube... I really need to get those
videos on my home page.

The good news is that Owen is almost finished with the YouTube script. In fact,
all that’s left is to finish processing the XML data and format it as HTML code.

Knock out this step
and the youtube.php
script will be done!

Draw how you would format YouTube response data as videos
along the bottom of the main Aliens Abducted Me page:

702 Chapter 12

Lay out videos for viewing
The idea behind the youtube.php script is that it will be included in the main
index.php script for Aliens Abducted Me. This means that the youtube.
php script needs to take care of submitting a video request, processing the XML
response, and formatting the individual videos so that they are displayed via
HTML in such a way that they can coexist with the alien abduction reports that
are already on the main page. A good way to accomplish this is to arrange the
videos horizontally along the bottom of the page.

Arranging the videos horizontally on the main page keeps them from detracting
too much from the alien abduction reports. Also, we’re talking about arranging
the video thumbnail images, not the videos themselves, so users will have to
click a thumbnail to visit YouTube and see the actual video. It would eat up too
much screen real estate to attempt to show multiple videos large enough to be
embedded directly on the Aliens Abducted Me page.

Five video thumbnails is a decent
number to arrange horizontally
without taking up too much room.

Video Video Video Video Video

The youtube.php
script will be
included so that
the videos appear
just below the alien
abduction reports.

These are the videos
dynamically accessed from
YouTube as XML data.

This row of video thumbnail images
is what the youtube.php script is
responsible for generating.

This is a good spot to
show the row of video
thumbnails so that visitors
can easily access them.

arranging the youtube videos

you are here 4 703

syndication and web services

Format video data for display
Although a video thumbnail image is certainly one of the most important
pieces of information when assessing whether or not a video is worth
watching, it isn’t the only data useful for Owen’s YouTube script. For example,
the title of a video could hold some important information about the nature
of the video—like whether it might include a dog. The length of the video
could also be helpful. And of course, we need the URL of the video link to
YouTube so that the user can click on a video thumbnail to actually view a
video. So the following information is what we need to extract from the XML
data in the YouTube response:

Title
Length Link

Thumbnail

This data forms the basis for the HTML code that displays a horizontal row of
videos. In fact, each video in the row ends up looking like this:

Title Length LinkThumbnail

In the YouTube response data, the length of a video is specified in the seconds
attribute of the <yt:duration> tag. Unfortunately, most people don’t think
in terms of total seconds because we’re accustomed to times being specified in
minutes and seconds. For example, it isn’t immediately obvious that 330 seconds
is a five-and-a-half-minute video—you have to do the math for the value to
make sense as a length of time. Knowing this, it’s a good idea to go ahead and
do the math for users when displaying the length of a video, converting seconds
into minutes and seconds.

Geek BitsGeek Bits

It isn’t necessary to factor in hours in the video
length calculation because YouTube doesn’t currently
allow videos longer than 10 minutes to be posted.

Length

5 minutes, 30 seconds

330 seconds

More intuitive and easier
for users to understand.

Several pieces of video
data are required in
order to place YouTube
videos on a web page.

This link leads to the video
on YouTube, and is followed
whenever the video title, length,
or thumbnail image is clicked.

That is, unless you’re part of the YouTube Director program, in which case you can
post videos longer
than 10 minutes.

704 Chapter 12

The youtube.php script uses PHP code to grab the top five matches for an alien abduction
YouTube video search. It then displays thumbnail images for those videos in a horizontal row,
with links to the actual videos on YouTube. Fill the missing code for the script, using the example
YouTube XML video response data on the facing page as a guide.

<?php

 define('YOUTUBE_URL', 'http://gdata.youtube.com/feeds/api/videos/-/alien/abduction/head/first');

 define('NUM_VIDEOS', 5);

 // Read the XML data into an object

 $xml = (YOUTUBE_URL);

 $num_videos_found = count();

 if ($num_videos_found > 0) {

 echo '<table><tr>';

 for ($i = 0; $i < min($num_videos_found, NUM_VIDEOS); $i++) {

 // Get the title

 $entry = $xml->entry[$i];

 $media = $entry->children('http://search.yahoo.com/mrss/');

 $title = $media->group-> ;

 // Get the duration in minutes and seconds, and then format it

 $yt = $media->children('http://gdata.youtube.com/schemas/2007');

 $attrs = $yt->duration->attributes();

 $length_min = floor($attrs[' '] / 60);

 $length_sec = $attrs[' '] % 60;

 $length_formatted = $length_min . (($length_min != 1) ? ' minutes, ':' minute, ') .

 $length_sec . (($length_sec != 1) ? ' seconds':' second');

 // Get the video URL

 $attrs = $media->group->player-> ();

 $video_url = $attrs['url'];

complete the youtube.php script

you are here 4 705

syndication and web services

 // Get the thumbnail image URL

 $attrs = $media-> ->thumbnail[0]->attributes();

 $thumbnail_url = $attrs['url'];

 // Display the results for this entry

 echo '<td style="vertical-align:bottom; text-align:center" width="' . (100 / NUM_VIDEOS) .

 '%">' . . '
' .

 $length_formatted . '
</td>';

 }

 echo '</tr></table>';

 }

 else {

 echo '<p>Sorry, no videos were found.</p>';

 }

?>

Feel free to
reference this
example XML code
while writing the
missing PHP code.

 ...
 <entry>
 <id>http://gdata.youtube.com/feeds/api/videos

/_6Uibqf0vtA</id>

 <published>2006-06-20T07:49:05.000-07:00</pub
lished>

 ...
 <media:group>
 <media:title type='plain'>UFO Sighting in Yose

mite Park near Area 51</media:title>

 <media:description type='plain'>I went on a tri
p to Yosemite Park in 2002. Yosemite Park is very

 close to the border between California and Neva
da, and close to Area 51...</media:description>

 <media:keywords>51, alien, aliens, area, ca, ca
lifornia, nevada, sighting, sightings,

 ufo</media:keywords>
 <yt:duration seconds='50'/>
 <media:category label='Travel & Events'

 scheme='http://gdata.youtube.com/schemas/20
07/categories.cat'>Travel</media:category>

 <media:content url='http://www.youtube.com/v/
_6Uibqf0vtA' type='application/x-shockwave-flas

h'

 medium='video' isDefault='true' expression='
full' duration='50' yt:format='5'/>

 <media:content url='rtsp://rtsp2.youtube.com/
ChoLENy73wIaEQnQvvSnbiKl_xMYDSANFEgGDA==/0/0/0/

video.3gp'

 type='video/3gpp' medium='video' expression=
'full' duration='50' yt:format='1'/>

 <media:content url='rtsp://rtsp2.youtube.com/
ChoLENy73wIaEQnQvvSnbiKl_xMYESARFEgGDA==/0/0/0/

video.3gp'

 type='video/3gpp' medium='video' expression=
'full' duration='50' yt:format='6'/>

 <media:player url='http://www.youtube.com/wat
ch?v=_6Uibqf0vtA'/>

 <media:thumbnail url='http://img.youtube.com/
vi/_6Uibqf0vtA/2.jpg' height='97' width='130'

 time='00:00:25'/>
 <media:thumbnail url='http://img.youtube.com/

vi/_6Uibqf0vtA/1.jpg' height='97' width='130'

 time='00:00:12.500'/>
 <media:thumbnail url='http://img.youtube.com/

vi/_6Uibqf0vtA/3.jpg' height='97' width='130'

 time='00:00:37.500'/>
 <media:thumbnail url='http://img.youtube.com/

vi/_6Uibqf0vtA/0.jpg' height='240' width='320'

 time='00:00:25'/>
 </media:group>
 <yt:statistics viewCount='2478159' favoriteCou

nt='1897'/>

 <gd:rating min='1' max='5' numRaters='1602' ave
rage='4.17'/>

 <gd:comments>
 <gd:feedLink href='http://gdata.youtube.com/f

eeds/api/videos/_6Uibqf0vtA/comments'

 countHint='4426'/>
 </gd:comments>
 </entry>
 <entry>
 ...
 </entry>
 ...

The title of the video.

The duration (length) of
the video, in seconds.

The URL of
the video link
on YouTube.

The URL of
a thumbnail
image (preview)
of the video.

706 Chapter 12

The youtube.php script uses PHP code to grab the top five matches for an alien abduction
YouTube video search. It then displays thumbnail images for those videos in a horizontal row,
with links to the actual videos on YouTube. Fill in the missing code for the script, using the
example YouTube XML video response data on the facing page as a guide.

Grab the video link (URL) from the url
attribute of the <media:player> tag.

<?php

 define('YOUTUBE_URL', 'http://gdata.youtube.com/feeds/api/videos/-/alien/abduction/head/first');

 define('NUM_VIDEOS', 5);

 // Read the XML data into an object

 $xml = (YOUTUBE_URL);

 $num_videos_found = count();

 if ($num_videos_found > 0) {

 echo '<table><tr>';

 for ($i = 0; $i < min($num_videos_found, NUM_VIDEOS); $i++) {

 // Get the title

 $entry = $xml->entry[$i];

 $media = $entry->children('http://search.yahoo.com/mrss/');

 $title = $media->group-> ;

 // Get the duration in minutes and seconds, and then format it

 $yt = $media->children('http://gdata.youtube.com/schemas/2007');

 $attrs = $yt->duration->attributes();

 $length_min = floor($attrs[' '] / 60);

 $length_sec = $attrs[' '] % 60;

 $length_formatted = $length_min . (($length_min != 1) ? ' minutes, ':' minute, ') .

 $length_sec . (($length_sec != 1) ? ' seconds':' second');

 // Get the video URL

 $attrs = $media->group->player-> ();

 $video_url = $attrs['url'];

simplexml_load_file

$xml->entry

title

seconds
seconds

attributes

Owen’s YouTube
keyword search URL.

The number of videos to be
displayed is stored as a constant.

The simplexml_load_file()
function is used to request
the XML data from YouTube.

Check to see how many videos
were actually returned by
YouTube by counting the
number of <entry> tags.

Loop through the
video data one
entry at a time.

Grab all of the children for this
entry that are in the Yahoo!
media namespace, media.

Extract the title of the
video entry, which is stored
in the <media:title> tag.

Grab all of the children
for this entry that are in
the YouTube namespace, yt.Get the duration of the

video in seconds from the
<yt:duration> tag, and
then convert it to minutes.

the completed youtube.php

you are here 4 707

syndication and web services

 // Get the thumbnail image URL

 $attrs = $media-> ->thumbnail[0]->attributes();

 $thumbnail_url = $attrs['url'];

 // Display the results for this entry

 echo '<td style="vertical-align:bottom; text-align:center" width="' . (100 / NUM_VIDEOS) .

 '%">' . . '
' .

 $length_formatted . '
</td>';

 }

 echo '</tr></table>';

 }

 else {

 echo '<p>Sorry, no videos were found.</p>';

 }

?>

 ...
 <entry>
 <id>http://gdata.youtube.com/feeds/api/videos

/_6Uibqf0vtA</id>

 <published>2006-06-20T07:49:05.000-07:00</pub
lished>

 ...
 <media:group>
 <media:title type='plain'>UFO Sighting in Yose

mite Park near Area 51</media:title>

 <media:description type='plain'>I went on a tri
p to Yosemite Park in 2002. Yosemite Park is very

 close to the border between California and Neva
da, and close to Area 51...</media:description>

 <media:keywords>51, alien, aliens, area, ca, ca
lifornia, nevada, sighting, sightings,

 ufo</media:keywords>
 <yt:duration seconds='50'/>
 <media:category label='Travel & Events'

 scheme='http://gdata.youtube.com/schemas/20
07/categories.cat'>Travel</media:category>

 <media:content url='http://www.youtube.com/v/
_6Uibqf0vtA' type='application/x-shockwave-flas

h'

 medium='video' isDefault='true' expression='
full' duration='50' yt:format='5'/>

 <media:content url='rtsp://rtsp2.youtube.com/
ChoLENy73wIaEQnQvvSnbiKl_xMYDSANFEgGDA==/0/0/0/

video.3gp'

 type='video/3gpp' medium='video' expression=
'full' duration='50' yt:format='1'/>

 <media:content url='rtsp://rtsp2.youtube.com/
ChoLENy73wIaEQnQvvSnbiKl_xMYESARFEgGDA==/0/0/0/

video.3gp'

 type='video/3gpp' medium='video' expression=
'full' duration='50' yt:format='6'/>

 <media:player url='http://www.youtube.com/wat
ch?v=_6Uibqf0vtA'/>

 <media:thumbnail url='http://img.youtube.com/
vi/_6Uibqf0vtA/2.jpg' height='97' width='130'

 time='00:00:25'/>
 <media:thumbnail url='http://img.youtube.com/

vi/_6Uibqf0vtA/1.jpg' height='97' width='130'

 time='00:00:12.500'/>
 <media:thumbnail url='http://img.youtube.com/

vi/_6Uibqf0vtA/3.jpg' height='97' width='130'

 time='00:00:37.500'/>
 <media:thumbnail url='http://img.youtube.com/

vi/_6Uibqf0vtA/0.jpg' height='240' width='320'

 time='00:00:25'/>
 </media:group>
 <yt:statistics viewCount='2478159' favoriteCou

nt='1897'/>

 <gd:rating min='1' max='5' numRaters='1602' ave
rage='4.17'/>

 <gd:comments>
 <gd:feedLink href='http://gdata.youtube.com/f

eeds/api/videos/_6Uibqf0vtA/comments'

 countHint='4426'/>
 </gd:comments>
 </entry>
 <entry>
 ...
 </entry>
 ...

The title of the video.

The duration (length) of
the video, in seconds.

The URL of
the video link
on YouTube.

The URL of
a thumbnail
image (preview)
of the video.

Format the video results as a table cell with the video title, length, and
thumbnail image.

group

$thumbnail_url
$title

Extract the first thumbnail image
URL from the url attribute of the
<media:thumbnail> tag.

 Process the response data and format it
as HTML code.

44

 Issue the video request to YouTube.22

 Build a request for YouTube videos.11

 Receive YouTube’s response data
containing information about the videos.

33

Finished!

708 Chapter 12

Test Drive
Add the YouTube script to Aliens Abducted Me.
Create a new text file named youtube.php, and enter the code for Owen’s YouTube script from the
previous two pages (or download the script from the Head First Labs site at www.headfirstlabs.
com/books/hfphp). You still need to plug the script into the index.php script to turn YouTube
videos loose on the main Aliens Abducted Me page. Here are the two lines of PHP code to do it:

echo '<h4>Most recent abduction videos:</h4>';

require_once('youtube.php');

Including the
youtube.php
script in the
main page is
all it takes to
add the row of
alien abduction
videos.

I think I know
where Fang is...

YouTube videos
have helped
Owen narrow
Fang’s location.

Upload the scripts to your web server, and then open index.php in a web
browser. The bottom of the page should show a dynamically generated row
of YouTube video links that are related to alien abductions.

aliensabductedme—now with youtube videos!

you are here 4 709

syndication and web services

St
art

 he
re!

Please
help me
find Fang.

710 Chapter 12

Thank you
PHP and
MySQL!

you found fang!

you are here 4 711

syndication and web services

Your PHP & MySQL Toolbox
With Fang now accounted for, it’s
possible to reflect a little on what all

it took to track him down. As it turns out,
PHP and MySQL required some help from
a few other technologies.

XML
A generic markup language used to
provide a predictable structure to
data. There are many different
markup languages built from XML,
such as XHTML and RSS. The
idea is that you create a set of
tags specific to whatever data
you’re storing as XML.

REST
A means of accessing information

on the web purely through
URLs. REST allows you to make

powerful data requests simply by

creating a URL. Such requests are

often referred to as “RESTful”

requests.

RSS
An XML-based language used to
store syndicated content, such as
news stories. RSS allows web sites
to make their data available to
other applications and web sites
for syndication, and allows you
to take advantage of data made
available by other sites.

simplexml_load_file()
This built-in PHP function loads an XML file from a URL, and then makes the resulting XML data accessible through an object.

SimpleXMLElement

A built-in PHP object that
is used to access XML data.
This object is returned by the
simplexml_load_file() function,
and contains the entire document
hierarchy of an XML document.

Namespace
A way of organizing a set of XML tags into a logical group, sort of like how your last name organizes your family into a named group. A namespace is always associated with a URL, which ensures uniqueness among all other namespaces.

CHAPT
ER 12

712 Chapter 12

page goal header

The End.

this is an appendix 713

appendix i: leftovers

The Top Ten Topics
(we didn’t cover)

Even after all that, there’s a bit more. There are just a few more

things we think you need to know. We wouldn’t feel right about ignoring them,

even though they only need a brief mention. So before you put the book down,

take a read through these short but important PHP and MySQL tidbits. Besides,

once you’re done here, all that’s left are a couple short appendices... and the

index... and maybe some ads... and then you’re really done. We promise!

714 Appendix i

#1. Retrofit this book for PHP4 and mysql functions

retrofit your php code

With the exception of XML functions in Chapter 12, most of the code in this book will run on
PHP 4 servers with only a little modification. We’ve used the mysqli family of functions in this
book, which are only available in PHP 4.1 and later, and since the library has to be manually
installed, some servers won’t support mysqli.

Mysqli functions are generally faster, but this really only begins to matter when your database
becomes huge. Small or average databases won’t be perceptibly slower with the older mysql
functions. This section is designed to tell you how to retrofit your mysqli functions to work as
mysql functions with older versions of PHP.

If you see:

$dbc = mysqli_connect(localhost, 'mork', 'fromork');

mysqli_select_db($dbc, 'alien_database');

you’ll use:

$dbc = mysql_connect(localhost, 'mork', 'fromork');

mysql_select_db('alien_database', $dbc);

In general, you just remove the i from mysqli, making it mysql, and then swap the order of
the arguments so that the database connection variable ($dbc in this example) appears last.

But it gets a little trickier when the mysqli_connect() function sidesteps mysqli_
select_db() and uses a database name. There’s nothing quite like that in the mysql family of
functions. For the single mysqli_connect() function that uses a database name, you’ll need
two mysql functions.

If you see:

$dbc = mysqli_connect(localhost, 'mork', 'fromork', 'alien_database');

you’ll need to use two commands:

$dbc = mysql_connect(localhost, 'mork', 'fromork');

mysql_select_db('alien_database', $dbc);

The database connection variable
is not the first argument here,
as it is with mysqli_select_db().

Here the database is
selected as part of making
the connection - something
that isn’t possible in one
step with mysql functions.

With mysql functions, it always takes
two function calls to establish a
connection with a specific database.

This connection variable is
also known as a database
connection “link.”

you are here 4 715

leftovers

Here’s how mysql and mysqli functions match up.

Close MySQL
connection

mysqli_close(conn) mysqli_close(conn)

Open a
connection to a
MySQL server

mysql_connect(host, username,
password)

You must use mysql_select_db() to
select a database.

mysqli_connect(host, username,
password, database)

You don’t need mysqli_select_db() to
select a database.

Return the text
of the error
message from
previous MySQL
operation

mysql_error(conn) mysqli_error(conn)

Escape a string mysql_escape_string(string, conn)

The order of arguments is opposite, expects
the string, then the connection (link).

mysqli_escape_string(conn, string)

Expects the connection (link) followed by the
string.

Fetch a result row
as an associative
array, a numeric
array, or both

mysql_fetch_row(result) mysqli_fetch_row(result)

Get number of
rows in result

mysql_num_rows(result) mysqli_num_rows(result)

Execute a
MySQL query

mysql_query(conn, query) mysqli_query(conn, query)

Escape special
characters in a
string

mysql_real_escape_string(string,
conn)

The order of arguments is opposite, expects
the string, then the connection (link).

mysqli_real_escape_string(conn,
string)

Expects the connection (link) followed by the
string.

Select a MySQL
database

mysql_select_db(dbname, conn)

The order of arguments is opposite, expects
the string, then the connection (link).

mysqli_select_db(conn, dbname)

Expects the connection (link) followed by the
string.

716 Appendix i

#2. User permissions in MySQL
Suppose you’ve created a web application that only allows visitors to SELECT data from your table. You perform
queries on your data using a specific database, and MySQL gives you power over your data.

But consider this: the login and password you use in your mysqli connection string would, if connected directly to the
database via the MySQL terminal or GUI, allow the user to INSERT, UPDATE, and DELETE data.

If your application doesn’t need to do those things, there’s no reason why the user/password you are using to connect
with needs to be able to. With MySQL, you can limit the access to your database. You can tell MySQL to only allow
the user to SELECT. Or SELECT and INSERT. Or any combination you need.

And what’s even more impressive, you can control access to specific tables. For example, if your application only works
with a table called alien_info and doesn’t need access to the cyborg_info table, you can limit it.

First, you may want to create an entirely new user/password to be used for your application. You can do this in the
MySQL terminal:

mysql> CREATE USER alienguy IDENTIFIED BY 'aliensRsc4ry';
Query OK, 0 rows affected (0.07 sec)

File Edit Window Help Aliens!

mysql> USE alien_database;
Database changed

mysql> GRANT SELECT, INSERT ON alien_info TO alienguy;
Query OK, 0 rows affected (0.03 sec)

File Edit Window Help TheyLive

Then you can use the MySQL GRANT command to control what alienguy can do to your database. If
he only needed to SELECT and INSERT data into your database, this would work:

You can set very specific user privileges, even control what your user
can do to a specific column. To learn more, check out Head First SQL.

If you don’t like using the MySQL terminal to create users and set privileges, you
can download and install a handy program caled MySQLAdministrator. Get it
here: http://dev.mysql.com/downloads/gui-tools/5.0.html.

setting mysql user permissions

The MySQL Administrator lets you control your user accounts and what each user account can access
in your database. It even allows you to specify which kind of queries that user can perform on each
table in your database. To control the access every user has to each table and each query, open the
MySQL Administrator application, and click on the Accounts tab.

Here’s the interface and an overview of how to control what each user can do. First, create an account:

This is your user list. You can create new users to specifically set the control each has for a given application. Select the one you want to modify here.

Here is your list of tables in a given database.
Select the one your application is using.

If you look
through this list,
you’ll recognize
the main MySQL
statements you’ve
seen in this
book. Select only
the ones your
application needs
to work.

Then use this
button to add
a new account.

After you give your
new user a name and a
password, click this to
GRANT him privileges.

First, click Accounts.

4 717

leftovers

718 Appendix i

#3. Error reporting for MySQL
In many of our code examples, you’ll see lines like this:

mysqli_connect(localhost, 'mork', 'fromork') or die ('Could not connect.')

When this command fails, the words “Could not connect.” are displayed on the web page. It tells us that
something went wrong, but it doesn’t give us information beyond that.

Fortunately, PHP offers a function, mysql_error(), that will give us a clue as to exactly what went
wrong. Consider this code where we are trying to connect to a MySQL server that doesn’t exist:

<?php
 mysqli_connect('badhostname', 'mork', 'fromork') or die (mysqli_error());
?>

Unknown MySQL server host 'badhostname' (1)

This will return clear information as to what actually went wrong when the mysqli_connect()
function fails. You can also use mysqli_error() with other mysqli functions:

<?php
 $dbc = mysqli_connect('localhost', 'mork', 'fromork');
 mysqli_select_db($dbc, 'alien_database');
 echo mysqli_error($dbc) . '
';
 mysqli_select_db($dbc, 'alien_database');
 mysqli_query($dbc, "SELECT * FROM alien_info");
 echo mysqli_error($dbc);
?>

Here’s the output:

Here are some other error messages you might see:

Table 'test.no_such_table' doesn’t exist

Can't create table

Can't create database 'yourdatabase'; database exists

Can't drop database 'yourdatabase(; database doesn't exist

There are dozens more, and it would be a waste of paper to list them here. Browse on over to this site to
get more information:

http://dev.mysql.com/doc/refman/5.0/en/error-messages-server.html

If you’re retrofitting your mysql functions, as mentioned in #1, you can use
mysql_error() instead of mysqli_error().

Here’s the error
message you’ll see.

We try to connect
to a database
that doesn’t exist.

We try to
SELECT from
a table that
doesn’t exist.

mysql error reporting

you are here 4 719

leftovers

#4. Exception handling PHP errors

<?php

 function checkBalance($balance) {

 if($balance < 1000) {

 throw new Exception("Balance is less than $1000.");

 }

 return true;

 }

 try {

 checkBalance(999);

 echo 'Balance is above $1000.';

 }

 catch(Exception $e) {

 echo 'Error: ' . $e->getMessage();

 }

?>

When the code runs, you’ll see this:

Error: Balance less than $1000.

We check our
balance here.

Here’s the feedback we’ll
send out if our balance is
less than 1000.

The “try” block is used
to test our value without
ending the code flow.

If our exception occurs, we
execute the code in this block.
In this case, we echo our message.

Exception handling allows you to change the normal flow of your code
and execute a special block of code when a specific exception occurs.
PHP 5 and 6 offer exception handling. Here’s a brief introduction.

Let’s say you want to withdraw $200 bucks from an ATM.

But maybe you’re required to have a minimum balance of $1000,
and this withdrawal will put you under $1000. That isn’t allowed.

Transaction failed!

Here’s how this scenario might play out in PHP code with the
help of exception handling to catch the failure.

720 Appendix i

Exception handling consists of three blocks of code:

#4. Exception handling PHP errors (cont.)

<?php

 function checkBalance($balance) {

 if($balance < 1000) {

 throw new Exception("Balance is less than $1000.");

 }

 return true;

 }

 try {

 checkBalance(999);

 echo 'Balance is above $1000.';

 }

 catch(Exception $e) {

 echo 'Error: ' . $e->getMessage();

 }

?>

1. Try - This block is where you check to see if your value is what you expect it to be.

If it is, everything is great, and your code continues on its way. If not, an exception has
ocurred. In programmerese, an exception is “thrown.”

And when something is thrown, there needs to be something to catch it. If there is an
exception, the “catch” block code is executed. If not, the code will continue as normal.

2. Throw - The “throw” commands
the “catch” block and sends it an error
message. Each “throw” has at least
one “catch.”

3. Catch - An object is created
with the exception information.
More information on objects, on
the facing page.

exception handling in php

you are here 4 721

leftovers

#5. Object-oriented PHP
Object-oriented languages use a very different progamming model than their procedural
counterparts. You’ve been using PHP procedurally, but it also has an object-oriented side.
Instead of a chronological step-by-step set of instructions, particular structures become
objects. Objects include not only a definition of your data, but also all the
operations that can be performed on it. When you use object-oriented PHP, you
create and work with objects.

Before we discuss why you might want to use OO PHP, let’s write some:

Write your class.

class Song
{
 var $title;
 var $lyrics;

 function Song($title, $length) {
 $this->title = $title;
 $this->lyrics = $lyrics;
 }

 function sing() {
 echo 'This is called ' . $this->title . '.
';
 echo 'One, two, three...' . $this->lyrics;
 }
}

$shoes_song = new Song('Blue Suede Shoes', 'Well it\'s one for the money...');
$shoes_song->sing();

These are instance
variables.

This is a method that uses the
instance variables of the object.

This sets the title
and lyrics of a song
when we create one.

Song

title, lyrics

sing()

This is our Song
class that defines
our object.

Create a new object.2
Our new song has the value “Blue
Suede Shoes” for its name.

Here’s where we call the sing() method for our object.
Your song can sing itself!3

When you run this code, you get this:

But if you can just write the echo
code without all the object stuff,
why use OO PHP?

There are some great reasons...

1

722 Appendix i

#5. Object-oriented PHP (cont.)
Instead of a chronological step-by-step set of instructions, your data structures
become objects. Objects include not only a definition of your data,
but also all the operations that can be performed on it. In our Song
example, we set the title and lyrics of the song inside the class, and we create
the sing() method inside the class. If we needed to add more functionality
to our Song object, we’d add new methods and variables to our Song class.
For example, if we wanted the songwriter for each song to be associated with
each song object, we could add that as a variable in our class.

The power of OO really shines as an application grows. Suppose we decided
to use the Song class as part of a karaoke application with hundreds or even
thousands of individual song objects, all with their own unique titles, lyrics, and
songwriters. Now let’s say someone wants to choose from only songs that were
written by Elvis. All we’d have to do is look at the songwriter instance variable
of each object.

And to actually feed the lyrics to the karaoke application? We could just call the
sing() method on each song object when it is being performed. Even though
we’re calling the exact same method on each object, it is accessing data unique
to each of the objects.

So two big advantages of using Object Oriented PHP are:
Objects can be easily reused. They are designed to be independent of the code
where they are used and can be reused as needed.

The code is easier to understand and maintain. If a data type needs to change,
the change occurs only in the object, nowhere else in the code.

A big disadvantage is that, in general, OO code can be longer and take more
time to write. If you simply need to display the lyrics from one song, then
writing a small procedural program might be your best bet. But if you think
you might want to build that online karaoke app, consider diving further into
object-oriented PHP.

object-oriented php

you are here 4 723

leftovers

There are some simple steps you can follow to protect your PHP scripts from those
nefarious hackers that are crouched over their keyboards waiting for you to slip up.

#6. Securing your PHP application

 Remove phpinfo() references. When you first start building PHP
applications on new web servers, you’ll probably create a script that
contains the phpinfo() function, so you can see what version of PHP
you are using and if it has MySQL support, along with a list of other
installed libraries. It’s fine to check with phpinfo(), but you should
remove that function after you’ve taken a look. If you don’t, any hacker
out there who discovers a new PHP vulnerability will be able to see if
your site is susceptible to it.

11

 If you aren’t using a web hosting service and have access to the php.ini
file, there are a few changes you can make to it to further secure your
PHP applications. Ironically, the location of your php.ini file can be
found by using phpinfo():

22

Here’s the path
to your php.ini file.
After you write
it down, remember
to delete the
phpinfo() function.

There’s more
sensitive
information
further down
on the page.

724 Appendix i

Here are some specific settings you should consider changing in the php.ini file.
Open the file in a text editor, make the changes, save them, and then restart your web
server.

safe_mode = On

When you turn on safe_mode, no PHP scripts can be called by another script with
a different owner on the same web server. Obviously, if you need to allow scripts from
other owners to call yours, you can’t use this setting.

open_basedir = directory[:...]

This restricts the scripts and files that PHP will be able to execute or access to this
directory and subdirectories beneath it.

expose_php = Off

With this set to On, every web browser that visits your site will be sent header
information that reveals information about you PHP server. Turning it off hides that
information and makes your server a little less exposed.

display_errors = Off

Once you’ve developed your application and are running it on your live web server, you
don’t need to see all those error messages. Hopefully, you’ve already addressed errors,
but sometimes things slip through the cracks. To hide the error messages from site
visitors, set this to Off.

log_errors = On

This sends your errors to an error log. When you want to check your application
for errors, this is a good place to begin. With display_errors set to Off and
log_errors set to On, you’ll be able to see problems, but your site’s visitors won’t.

error_log = filename

You’ll have to check with your particular web server software to locate this file. This is
where your errors will be written when log_errors is set to On.

#6. Securing your PHP application (cont.)

php security measures

you are here 4 725

leftovers

#7. Protect your app from cross-site scripting
You may have heard of cross-site scripting sometimes
referred to as XSS. Cross-site scripting is an attack against
a web app where script code is passed to your form
processing script and hijacks your output. It’s a big security
problem in PHP web apps. Let’s take a look at precisely
what it is and how to defend against it.

Cross-site scripting usually takes advantage of sites that
display user-submitted data. Any data you get from your
users and display could potentially be corrupt and cause
visitors to your site to be vulnerable to a hacker.

Using an XSS attack, a hacker can do any number of
things. One of the worse is to redirect your results page to
a page on a site under their control that might ask the user
for further information. Your user might not notice that
he’s no longer on your site, and since he trusts your site, he
might willingly submit sensitive information directly on
the attackers server.

Here’s how it might happen on the Guitar Wars site:

Ethel, instead of submitting her name in the Name
field on the form, types in some JavaScript code. In the
example, she’s using the window.location function
to redirect the browser to her own site. And since she
controls her own site, she can show the visitor anything
she wants, including a site that looks just like Guitar Wars.
She could do something even more nefarious with sites
that expect people to submit more important information
than high scores, such as financial information.

There are other, even more insidious things that she could
do, including stealing cookies or presenting the user with
a screen that appeared to be a login screen. As soon as the
user logs in, she has his username and password and can
pretend to be him back on the original site.

So how do you avoid cross-site scripting attacks on your
web applications?

You thought you
foiled me. I’m going
to hijack your site,
and you’re going down!

<script language=”
javascript”>window.
location=”http://ethelrulz.
com”;</script>

If Ethel can’t cheat,
she’ll redirect the scores page to her own site
with cross-site scripting.

All she has to do is submit
this code in the name field
on the form. When someone
views the score, their
browser will be redirected
to her web site with this
JavaScript code.

726 Appendix i

Fortunately, if you are validating your data, you are already on the road to protecting your
application. You’ve already learned how to do just that in Guitar Wars. Here are three
guidelines that will keep your applications safe:

Validate everything
Any data that you receive, such as form input, needs to be validated so that hacker code is
detected before it can harm your application. If you assume the data is bad until you prove that
it’s not through validation, you’ll be much safer.

Built-in PHP functions can help
Use built-in PHP functions such as strip_tags() to help you sanitize external data.
strip_tags() is a great function that removes any html tags from a string. So if you use
strip_tags() on Ethel’s $_POST['name'], you’ll end up with this:

window.location='http://ethelrulz.com'

While this is still not a name, it won’t actually redirect the browser because the important
JavaScript tags have been removed.

Data is guilty until proven innocent
Start with the most restrictive validation you can, and then only ease up if you have to. For
example, if you begin by accepting only numbers in a phone number field, then start allowing
dashes or parentheses, you’ll be much safer than if you allowed any alphanumeric characters
in the first place. Or in the case of Guitar Wars, if we don’t allow anything except letters in
the name field, we’ll never even get the less than sign (<) that opens Ethel’s evil JavaScript code.
Regular expressions (Chapter 10) can go a long way toward making sure only the exact data you
want is allowed.

#7. Protect your app from cross-site scripting (cont.)

preventing cross-site scripting

you are here 4 727

leftovers

#8. Operator precedence
Consider this line of code.

$marbles = 4 / 2 - 1;

The value stored by $marbles could be either 1 or 4. We can’t tell from the code, but we can assume
certain rules of precedence. By precedence, we mean the order in which they are executed.
Operators in PHP are carried out in a certain order. In the example above, the division will take place
before the subtraction does, so $marbles will equal 1.

Depending on what we need our code to output, we could have written it two different ways

$marbles = (4 / 2) - 1;
$marbles = 4 / (2 - 1);

In the first expression, we divide 4 by 2 and then subtract 1. In the second case, we subtract 1 from 2 and
then divide 4 by the resulting 1. Using parentheses allow you to precisely control the order of operations.
But knowing the precedence of operators in PHP can help you figure out what’s going on in a complex
expression. And, trust us, it will help you debug your code when you’ve forgotten to use parentheses.

Before we get to the PHP operator precedence list, here’s another reason why you should use parentheses.
Consider this:

$marbles = 4 - 3 - 2;

No precedence rules apply here. The result could be either 3 or -1. This is pretty confusing when you’re
writing code. Instead, it’s better to code with parentheses, like in these two lines:

$marbles = 4 - (3 - 2);
$marbles = (4 - 3) - 2;

Now the list, from highest precedence (evaluated first) to lowest (evaluated last).

It will be -1.

It will be 1.

Operator Operator Type
++ -- increment/decrement
*/ % arithmetic
+ - . arithmetic and string
< <= > >= <> comparison
== != === !== comparison
&& logical
|| logical
= += -= *= /= .= %= &= |= ^=
<<= >>=

assignment

and logical
xor logical
or logical

Comparison
operators, like
those you use in IF
statements, also
have a precedence.

728 Appendix i

More Unicode support
Suppose your application needed to output text in Greek.

Consider the kinds of things you sometimes have to do with strings, such as needing
to know the length of them or sorting them. It’s straightforward in English, but
when you are working with characters in other languages, string operations become
more complicated.

Unicode is a set of characters and technologies to encode them. In Unicode, the
Greek character that looks like a triangle has a specific numeric value assigned to
it, along with other characters in other languages. Unicode is a standard, which
means it receives wide support from major technology providers. In Unicode, every
character has a unique number, no matter what language, program, or platform
is used. Before the advent of PHP 5, PHP had no real support for Unicode. PHP
6 has enhanced support for Unicode strings in its functions and functions built
specifically for creating and decoding Unicode.

#9. What’s the difference between PHP 5 and PHP 6
As of the writing of this book, PHP 5 is the latest production version of PHP. But PHP 6 is
being worked on and is available for developers here: http://snaps.php.net/.

The differences between PHP 4 and 5 are much greater than between 5 and 6. In many
ways, 6 offers a refinement of the object-oriented features introduced in 5. Other changes
include more support for XML and Unicode.

It’s all Greek to us.

php 5 versus php 6

you are here 4 729

leftovers

OO refinements, XML support, and other changes
PHP 5 offers an object-oriented programming model but still allows for the
mingling of procedural style. PHP 6 moves farther into the object-oriented
realm. One of the biggest changes here is that dynamic functions will no longer
be permitted to be called with static syntax. There are any number of small, but
important, changes to the way PHP handles its OO code that make it more
consistent with other OO languages such as C++ and Java.

A few other changes are:

Both XML Reader and XML Writer will be extensions in PHP 6, making it
easier to work with XML files.

The register_globals, magic_quotes, and safe_mode options in
the php.ini file will no longer be available.

The ereg extension, which provided another way to build regular expressions,
is removed. Fortunately, the same preg_match() code covered in this book
will be the main way to build regular expressions in PHP 6.

A 64-bit integer type will be added.

Multi-dimensional arrays will be able to use foreach.

Version 6 of PHP is, more than anything, a version that cleans up and refines
the language.

■

■

■

■

■

■

#9. What’s the difference between PHP 5 and PHP 6 (cont.)

None of the code in this
book uses dynamic functions,
so you don't have to worry
about any of the code not
working in PHP 6.

730 Appendix i

#10. Reusing other people’s PHP
It’s not always necessary to write your own PHP code from scratch.
Sometimes it’s best to reuse someone else’s. The following are several
popular and highly successful PHP-based software packages that you
should consider using if you have a need and would prefer not reinventing
the PHP wheel. Oh, and they’re all free!

Drupal
One of the most impressive PHP projects to date, Drupal is
a powerful content management system that can be used to
build just about any kind of content-driven web site. NASA,
The Onion, the Electronic Frontier Foundation, and Popular
Science all use Drupal for their web sites. It’s flexible enough
to build just about anything that is heavy on content. Check it
out at http://drupal.org/.

phpBB
A category killer in the realm of online message boards
(forums), phpBB is easy-does-it when it comes to building your
own forum. It is extremely flexible and hard to beat at the one
thing it does so well—managing threaded discussions. Find
out more at http://www.phpbb.com/.

Coppermine Gallery
If image hosting is what you have in mind, Coppermine
Gallery is the PHP application to check out. In an era of
Flickr, Photobucket, Shutterfly, and Snapfish, hosting your
own photo library sounds downright quaint. But with control
comes power, and if you want complete control over your
photos, take a look at Coppermine Gallery at
http://coppermine-gallery.net/.

WordPress
One of the heavy hitters in the blogosphere, WordPress is
PHP-based blogging software that lets you build and maintain
a blog with minimal hassle. There’s lots of competition out
there, so you might want to do some exploring, but you could
do worse than to pick WordPress if you’re launching a blog.
Download it at http://wordpress.org/.

Hold it right there! Why
bother learning PHP if
you’re just going to reuse
other people’s code?

Because reusing code isn’t always
as simple as it sounds—sometimes it
requires PHP skills.
Many PHP software packages still require
customization, and that often requires some strong
PHP development skills. Not only that, but you
may elect to only reuse a small component of
someone else’s code, or not reuse it at all. Either
way, by having PHP knowledge, you have options,
and options are always a good thing!

popular php apps

Another really nice
PHP-based content
management system is
Joomla!, which you can
learn about at
http://www.joomla.org/.

this is an appendix 731

appendix ii: set up a development environment

A place to play

He thinks I’m a great cook,
but I hide all my mistakes
before he sees them.

You need a place to practice your newfound PHP and
MySQL skills without making your data vulnerable on
the web. It’s always a good idea to have a safe place to develop your

PHP application before unleashing it on the world (wide web). This appendix

contains instructions for installing a web server, MySQL, and PHP to give you

a safe place to work and practice.

732 Appendix ii

Before trying to install any of the pieces of the PHP development puzzle,
your best bet is to first evaluate what you already have installed. Let’s take
a look at the three pieces and how you can tell what’s already on your
system.

The platform of your local computer makes a big difference when it
comes to what’s already installed. For example, Mac OS X has a web
server installed by default, while most Windows computers do not.

Before you can put your finished application on the web, you need to
develop it. And it’s never a good idea to develop your web application on
the Web where everyone can see it. You can install software locally
that lets you build and test your application before you put it
online.

There are three pieces of software you’ll need on your local computer to
build and test PHP applications:

1. A web server

2. PHP

3. A MySQL database server

PHP isn’t a server; it’s a set of rules that your web server understands
that allow it to interpret PHP code. Both the web server and the MySQL
server are executable programs that run on a computer.

Keep in mind that we’re talking about setting up your local computer as
a web server for PHP development. You’ll ultimately still need an online
web server to upload your finished application to so that other people
can access and use it.

Find out what you have

Create a PHP development environment

NOTE: This appendix
covers Windows 2000, XP,
Vista, Windows Server
2003/2008, or other 32-bit
Windows operating system.
For Mac, it applies to Mac
OS X 10.3.x or newer.

Web server

Database server

Server computer

The MySQL database
server is often installed
on the same computer
as the web server
software - in this case
your local computer!

PHP is installed as part
of the web server and
allows the web server
to run PHP scripts.

In a PHP development
environment, your local
computer acts as a server
computer for the purposes
of running PHP scripts.

Web server software such as
Apache is required to serve
up PHP scripts as web pages.

installing php & mysql locally

you are here 4 733

set up a development environment

Do you have a web server?

Do you have PHP? Which version?

You probably already have a web server if you are using a newer PC or
Mac. To find out quickly on either system, open a brower window and
type http://localhost in the address bar. If you get an introductory
page, that means your web browser is alive and well on you local machine.

If you have a web server, you can check to see if you have PHP installed very easily, as
well as which version you have. Create a new script named info.php and type this in it:

<?php phpinfo(); ?>

Save this file to the directory your web server uses. On Windows it’s typically:

C: inetpub/wwwroot/

On the Mac, it’s usually something like:

/Users/yourname/sites/

If you try to open this file in your browser by typing http://localhost/info.php,
you’ll see something like this if you have PHP installed:

If you have a Windows
machine with IIS, you might
see something like this.

If you have a Mac or Windows machine with the Apache web server installed, you might see something like this.

Here’s the version of
PHP you have installed.

734 Appendix ii

$ cd /usr/local/mysql

$ mysql
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 3
Server version: 5.0.51b MySQL Community Server (GPL)
Type 'help;' or '\h' for help. Type '\c' to clear the buffer.
mysql>

File Edit Window Help IHeartPHP

Do you have MySQL? Which version?

To determine if you have MySQL on the Mac, open your terminal and type:

cd /user/local/mysql

If the command works, you have MySQL installed. To check the version, type:

mysql

If this
command
succeeds, it
means MySQL
is installed.

Here’s the version
of MySQL you
have installed.

On Windows, you can tell by opening the Control Panel --> Administrative Tools --> Services:

Here’s where
you’ll see MySQL.

The MySQL Terminal
is also known as the
MySQL “monitor.”

checking your mysql version

you are here 4 735

set up a development environment

Start with the Web Server
Depending on the version of Windows you have, you can download Microsoft’s Internet
Information Server (IIS), or the open source Apache web server. If you need a server on
the Mac, you should probably go with Apache since it’s already installed.

Here’s a brief overview of installing Apache on Windows:

Head over to http://httpd.apache.org/download.cgi

If you’re using Windows, we suggest you download the apache_
2.2.9-win32-x86-no_ssl-r2.msi file. This will
automatically install Apache for you after you download and double
click it.

Grab this version and double click
on it after you’ve downloaded it.

Next you’ll see the Installation Wizard. Most of
the instructions are straightforward, and you can
accept the default choices.

Choose the domain your
computer is on. If you
don’t have one, you can
enter localhost.

Your best bet is to choose the
typical installation option.

You can usually choose
the default directory for
installation of the software.

736 Appendix ii

Apache installation... concluded
You’re nearly finished. Click Install and wait a minute or so for
the installation to complete. That’s it!

Your web server is set to start automatically when you start up your computer.
But you can control it using the Services panel by stopping and starting it in
the the Control Panel --> Administrative Tools --> Services dialogue
where it will now show up.

PHP installation

Go to http://www.php.net/downloads.php.

Just as with Apache, if you’re using Windows, we suggest you download the
Windows installer version, php-5.2.6-win32-installer.msi. This
will automatically install PHP for you after you download and double click it.

This is the .msi Windows
installer version.

After you click the file,
click one of the locations
and download it.

After you’ve downloaded the file,
double click it. Click the Run
button to begin the installation.

installing php

you are here 4 737

set up a development environment

PHP installation steps

It starts with a basic Setup.
Accept the License
Agreement to continue.

Selecting the default installation
folder is usually a good idea.

Careful on this screen. If you’re using Apache, select the right version.
If you’re using IIS, you will probably select the IISAPI module. Check
with your particular software to determine exactly what you need.

This next screen is also tricky. You need to scroll down under
Extensions and choose MySQLi. This will enable you to use the
built in PHP mysqli functions that we use throughout this book!

Scroll down below “Extensions” and click on
MySQLi. Click on the “Entire feature” choice.

738 Appendix ii

You still need MySQL, so let’s work through the downloading and installing of
MySQL. The official name for the free version of the MySQL RDBMS server
these days is MySQL Community Server.

The following is a list of steps for installing MySQL on Windows and Mac OS X.
This is not meant to replace the excellent instructions found on the MySQL web
site, and we strongly encourage you to go there and read them! For much
more detailed directions, as well as a troubleshooting guide, go here:

You’ll also like the MySQL Query Browser we talked about. There, you can type
your queries and see the results inside the software interface, rather than in a
console window.

http://dev.mysql.com/doc/refman/6.0/en/windows-installation.html

Instructions and Troubleshooting

Get version 6.0 or newer.

Installing MySQL

That’s it. Click on Install, then
Done to close the installer.

Now try looking at your http://
localhost/info.php file in your web
browser and see what version is showing up.

PHP installation steps... concluded

installing mysql on windows

you are here 4 739

set up a development environment

Steps to Install MySQL on Windows
 Go to:

http://dev.mysql.com/downloads/mysql/6.0.html

and click on the MySQL Community Server download button.

11

 Choose Windows from the list.22

You may have to scroll down a little.

The top one!

Get version 5.0 or newer.

740 Appendix ii

 Under Windows downloads, we recommend that you choose the
Windows ZIP/Setup.EXE option because it includes an installer that
greatly simplifies the installation. Click on Pick a Mirror.

33

 You’ll see a list of locations that have a copy you can download; choose the
one closest to you.

44

 When the file has finished downloading, double-click to launch it. At this
point, you will be walked through the installation with the Setup Wizard.
Click the Next button.

55

When you’ve double-clicked the file and the Setup Wizard dialog appears, click the Next button.

Download your installer

Make sure
you pick the
.EXE option.

installing mysql on windows (continued)

you are here 4 741

set up a development environment

 You’ll be asked to choose Typical, Complete, or Custom. For our
purposes in this book, choose Typical.

You can change the location on your computer where MySQL will be
installed, but we recommend that you stay with the default location:

C:\Program Files\MySQL\MySQL Server 6.0

Click the Next button.

66

 You’ll see the Ready to Install” dialog with the Destination Folder
listed. If you’re happy with the destination directory, click Install.
Otherwise, go Back, Change the directory, and return here.

Click Install.

77

Pick a destination folder

Click “Install” and you’re done!

742 Appendix ii

If you are running Mac OS X Server, a version of MySQL should already be
installed.

Before you begin, check to see if you already have a version installed. Go to
Applications/Server/MySQL Manager to access it.

Steps to Install MySQL on Mac OS X

 Go to:

http://dev.mysql.com/downloads/mysql/6.0.html

and click on the MySQL Community Server Download button.

11

You may have to
scroll down a bit.

installing mysql on mac os x

PHP is included on Macs with OS X version 10.5+ (Leopard), but it's not enabled
by default. You have to access the main Apache configuration file and comment
out a line of code in order to get PHP going. This file is called http.conf, and
is a hidden file located down inside the Apache install folder.

You're looking for the following line of code, which has a pound symbol (#) in
front of it to comment it out:

Enabling PHP on Mac OS X

#LoadModule php5_module libexec/apache2/libphp5.so

You need to remove the pound symbol and restart the server to enable PHP. The
http.conf document is owned by "root," which means you'll have to enter your
password to change it. You'll probably also want to tweak the php.ini file so that
Apache uses it. For more detailed information about how to carry out these steps
and enable PHP, visit http://foundationphp.com/tutorials/php_
leopard.php.

you are here 4 743

set up a development environment

 Choose Mac OS X (package format) from the list.22

 Choose the appropriate package for your Mac OS X version.
Click on Pick a Mirror.

33

 You’ll see a list of locations that have a copy you can download; choose the
one closest to you.

44

 When the file has finished downloading, double-click to launch it. You can now open
a Terminal window on your Mac and type:

shell> cd /usr/local/mysql

shell> sudo ./bin/mysqld_safe

(Enter your password, if necessary)

(Press Control-Z)

shell> bg

(Press Control-D or enter exit to exit the shell)

If you’re using a GUI tool such as phpMyAdmin, check its documentation for how to
access it once MySQL is successfully installed.

55

You’ll have to scroll down to get to it!

744 Appendix ii

Moving from production to a live site
You’ve spent days or weeks working on your site, and you feel it’s ready to go
live. To move your PHP and MySQL site from your local computer to the web
requires a little planning and a few specific techniques.

First, you need to make sure that the place your site is going has the same
versions of PHP and MySQL you expect. If not, you may need to make your
code to match what is available. Most of the code in this book is portable, but
you may need to retrofit your PHP code back to the mysql functions, as opposed
to the mysqli functions we use in this book. If that’s the problem, check out #1
of The Top Ten Topics (we didn’t cover) for more information.

If the software on your live site is compatible, then moving your site over is
simple. Here are the steps:

1. Upload the PHP files from your production server to the web directory on your
live server. Keep the file structure intact, and make sure you don’t lose any
folders you might have created to contain your included files.

2. Do a database dump (which we’ll show you in a moment) to get the MySQL
statements you need to create your tables and the INSERT statements you need
to move your data from the table on the production server to the live server.

3. Log in to your live database where you can run the CREATE and INSERT
MySQL statements to move your data from your local site to the live site.

4. Modify any database connection code in your PHP files to point at the live
database server. If you don’t change this, your live code will try to connect to
your production site and won’t be able to connect.

You need to get at
the structure of
your tables and the
data stored in them.
Here’s how:

Your PHP files need to
be FTP'ed to the web
directory of your live site.

Your SQL dump will
give you the exact
syntax of your
CREATE TABLE
statements and
INSERT statements.

Change those mysqli_connect() statements
to point at your MySQL server associated
with your live site, along with the correct
username and password to get you connected.

making your site live

you are here 4 745

set up a development environment

Dump your data (and your tables)
You’ve FTP'ed your PHP files to the live server, but your data is still not on the
live site’s MySQL server. When your table is full of data, the idea of moving it
to another MySQL server can be daunting. Fortunately, bundled with MySQL
is the MySQLdump program, which gives you an easy way to recreate the
CREATE TABLE statement that can recreate your table and all the INSERT
statements with the data in your table. You simply need to use the MySQLdump
program. To make a copy of your data that you can move to another MySQL
server, type this in your terminal:

$ mysqldump
Usage: mysqldump [OPTIONS] database [tables]

OR mysqldump [OPTIONS] --databases [OPTIONS] DB1 [DB2 DB
3...]

OR mysqldump [OPTIONS] --all-databases [OPTIONS]

For more options, use mysqldump --help

$mysqldump riskyjobs jobs > riskyjobstable.sql

File Edit Window Help DumpYourData

This sends the CREATE TABLE statement for the jobs table to a text file
we just created named riskyjobsttable.sql. If you leave off the
>riskyjobstable.sql part, then the CREATE TABLE and INSERT
statements will simply scroll by you on the screen in your terminal. Try it to
see what we mean. It’s not very useful, but you’ll see all your data fly by, nicely
formatted in INSERT statements.

Once you’ve sent all that data to your new file using the greater than sign, you
can grab that file and use the contents as MySQL queries at your hosting site
to move your tables and your data.

Get ready to move your data by running a CREATE DATABASE statement on your
live MySQL statement. Then run a USE DATABASE on your new database. Now
you are ready to move your data from your production server to your live server.

Prepare to use your dumped data

746 Appendix ii

Move dumped data to the live server
You’ve created a file called riskyjobstable.sql that contains
MySQL statements that create your table and insert data into it. The
file riskyjobstable.sql probably looks a bit like this:

-- MySQL dump 10.11
--
-- Host: localhost Database: riskyjobs
-- --
-- Server version 5.0.51b

/*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT
*/;
--
-- Table structure for table `jobs`
--

DROP TABLE IF EXISTS `jobs`;
CREATE TABLE `jobs` (
 `job_id` int(11) NOT NULL auto_increment,
 `title` varchar(200) default NULL,
 `description` blob,
 `city` varchar(30) default NULL,
 `state` char(2) default NULL,
 `zip` char(5) default NULL,
 `co_id` int(11) default NULL,
 PRIMARY KEY (`job_id`)
) ENGINE=MyISAM AUTO_INCREMENT=14 DEFAULT CHARSET=utf8;

--
-- Dumping data for table `jobs`
--

LOCK TABLES `riskyjobs` WRITE;
/*!40000 ALTER TABLE `riskyjobs` DISABLE KEYS */;
INSERT INTO `riskyjobs` VALUES (8,'Custard Walker','We need
people willing to test the theory that you can walk on
custard.\r\n\r\nWe\'re going to fill a swimming pool with
custard, and you\'ll walk on it. \r\n\r\nCustard and other
kinds of starchy fluids are known as non-Newtonian fluids.
They become solid under high pressure (your feet while you
walk) while remaining in their liquid form otherwise.\r\n\r\
nTowel provided, own bathing suit, a must.\r\n\r\nNote: if
you stand on for too long on the custard\'s surface, you will
slowly sink. We are not liable for any custard sinkages;

These are
all comments,
you can
ignore them.

The
mysqldump
always writes
a DROP
statement to
start with
a clean slate
before doing
a CREATE
and INSERT.

Mysqldump
makes
a single
INSERT
statement
that
inserts
every row
in the
table.

Here’s the CREATE TABLE statement.

You can ignore this LOCK
statement and copy and
paste starting at the
INSERT statement.

If you know there isn’t a table
named “jobs” where you are creating
this one, you can ignore this command.

riskyjobstable.sql

putting mysql data on the live server

you are here 4 747

set up a development environment

Connect to the live server

Take the entire text of the .sql file and paste it into your MySQL terminal
or the query window of your MySQL graphical client (like phpMyAdmin).
This performs the queries in the file. In the case of the example on this page, the dumped file
contains a CREATE TABLE statement and an INSERT statement. Along the way, the dumped file
tells your MySQL server to drop any existing table and to LOCK (or keep anyone from using) the
table while you INSERT the new data.

You’ve moved your PHP files to your live site. You’ve taken your table
structures as CREATE TABLE statements and your data as a massive
INSERT statement from the mysqldump and executed them on your live
web server, so your data has been moved.

There’s a small step left. The PHP code you FTP'ed to your live web site
isn’t connecting to your live MySQL server.

You need to change the connection string in your mysqli_connect()
function to point to your live MySQL server. Anywhere in your PHP code
where you call the mysqli_connect() function, you’ll need to change it.

$dbc = mysqli_connect('localhost', 'myusername', 'mypassword', 'mydatabase')

 or die('Error connecting to MySQL server.');

This will be the name or IP address of your live site. It will only be “localhost” if your MySQL server is on the same machine as your PHP pages. And these will be the username and password that allow you to connect to your live MySQL server.That’s it!

You’ve copied your FTP files to your web server,

you’ve dumped your tables and data into a .sql file,

you’ve run the queries in the .sql file on your live MySQL server,

and you’ve changed your PHP file to call your live MySQL server database.

Your site should now be live!

■

■

■

■

This will be the name
of the database you
created on your live
server.

this is an appendix 749

appendix iii: extend your php

Get even more
I know I have everything

any run-of-the-mill,
heartbreakingly beautiful,
fiendishly clever femme fatale
needs, but it’s not enough.

Yes, you can program with PHP and MySQL and create
great web applications. But you know there must be more to it. And

there is. This short appendix will show you how to install the mysqli extension

and GD graphics library extension. Then we’ll mention a few more extensions

to PHP you might want to get. Because sometimes it’s okay to want more.

750 Appendix iii

You probably already have both the mysqli and GD modules on your computer. And
even if you don’t, adding them is relatively easy. We’ll show you how to check to see
what you have, if you’re missing one of them, how to get it, and how to activate one or
both modules.

It starts with checking to see what you have.

This book discusses installing both the mysqli and GD modules on Windows. In this
section, we’ll show you how to see what modules you have, how to get GD or mysqli
if you are missing them, and how to install them in Windows. Unfortunately, installing
these modules on a Mac or Linux system is kinda tricky. More on that at the end of
this appendix.

If you’re using Windows, you’re in luck

Extending your PHP

 First, figure out if GD or
mysqli is on your system. To
do that, begin by navigating to
the directory where the PHP
extensions are installed. They
are typically in the C:/PHP/
ext directory, although the
path may be different on
your machine. Open the ext
directory and look for php_
gd2.dll and php_mysqli.
dll. In general, these are
installed with PHP 5 and later,
and simply need to be activated.
If you have them, great, move
on to step 3. If not, go to step 2.

11

You should see
php_gd2.dll and
php_mysqli.dll

NOTE: This appendix covers Windows 2000, XP, Vista, Windows
Server 2003/2008, or other 32-bit Windows operating system.

installing new php modules

you are here 4 751

extend your php

 If you’re missing either php_mysqli.dll or php_gd2.dll, you’ll have to get it.
Chances are you already have both DLLs on your machine, but if you don’t, you can find
php_gd2.dll at: http://www.libgd.org/Downloads. Download it and copy it
to the folder ext under your PHP install. In our examples, it’s located at C:/PHP/ext.

You can get the mysqli extension from MySQL.com. First, browse to http://www.
mysql.com. Click on Downloads (along the top) --> Connectors (it’s in the left
menu) --> MySQL native driver for PHP --> Download php_mysqli.dll for
PHP 5.2.1 (Windows) (Make sure this is your version).

22

Grab the version of
mysqli to match your
version of PHP.

 By now you should have
php_mysqli.dll and
php_gd2.dll copied to your
/PHP/ext folder. We need to tell
our php.ini file to use these
DLLs. To do that, browse to the
directory it’s in, and open the file
in a text editor.

33

Sometimes your PHP install
ends up in the Program
Files\PHP directory. Find
your php.ini file and open it
for the next step.

752 Appendix iii

 Dig through your php.ini file and locate
the lines:

extension=php_gd2.dll

and

extension=php_mysqli.dll

If either of these have semicolons (;) or
pound signs (#) in front of them, that
means they are commented out. Remove
them and save your file.

44

Delete the semicolons from in
front of these two lines if they
have them. Then save your file.

 The last step is to restart your Apache web
server so that the changes you made to
your php.ini file will take effect. To do
this, go to your Windows Control Panel,
double-click on Administrative Tools,
then click Services. You should see this:

55

Click the Apache service, then click
on Restart from the menu on the
left. The next time you try to use the
GD or mysqli functions, they should
work correctly.

Select Apache and then click the Restart link.

installing new php modules (continued)

you are here 4 753

extend your php

And on the Mac...
Unfortunately, it’s quite a bit more difficult. Adding modules on the Mac
means recompiling the PHP source code and passing in arguments to add in
the modules you want. There are simply too many possible combinations of
Mac operating systems and PHP versions to include in this short appendix.
There is a terrific guide that may help you install the GD module located here:

http://macoshelp.blogspot.com/2008/02/adding-gd-library-for-mac-os-x-leopard.html

It will only work if you have the right OS X version (Leopard), and the right
PHP version (5). If you don’t, or the instructions don’t work for you, you may
want to dig through the comments on that site and on the original GD website,
http://www.libgd.org/, for more detailed and specific installation
instructions for your flavor of OS X and PHP.

For help in adding mysqli to your Mac version of PHP, which also means
recompiling PHP, we recommend the instructions here:

http://dev.mysql.com/downloads/connector/php-mysqlnd/

Keep in mind that this complication of
installing the GD and mysqli extensions
only applies if you’re trying to run a
web server on a Mac, such as a local
development server. But if you’re just
using a Mac to write PHP code that
is being uploaded and tested on some
other server, it’s not an issue.

this is the index 755

Index

Symbols
! (NOT operator) 174, 221

$ (dollar sign) 25, 26

$_COOKIE variable 376, 382, 414

$_FILES variable 239, 252, 293
upload errors 269

$_GET 276

$_POST 32–36, 55–56, 134, 276
array 34
providing form data to MySQL database 91–94
seeing if form has been submitted 202
superglobal 33

$_SERVER['PHP_SELF'] 200, 289

$_SERVER variable 342
securing applications 300

$_SESSION variable 391, 395–396, 414

$i counting variable 264

$ metacharacter 572

$result variable 135

% (percent sign) wildcard 505

&& (AND operator) 179, 221

* (asterisk) 70, 130

-> operator 698, 700

-> prompt 119

. (period) 40, 41

/* and */ 335

; (semicolon) 125
MySQL 64, 67
PHP 25
SQL statements 111

< (less than) 168, 221

<> (not equal) 168, 221

== (equal signs) 167

> (greater than) 168, 221

>= (greater than or equal to) 168, 221

<?php> tag 16, 24, 55–56
spaces inside 305

<? tag 27

@ PHP error suppression 269, 288

\ (backslash) 46

\d metacharacter 572

\n (newline characters) 47

\s metacharacter 572

\w metacharacter 572

^ metacharacter 572

_ (underscore) 26

_ (underscore) wildcard 505

|| (OR operator) 179, 221

A
accidental deletions 149

action attribute 14

ADD COLUMN statement 232, 293

addemail.php script 126–131

Add Score Form Up Close 237

admin pages 272–278
protecting 300
score removal links 275
securing application, authenticating Admin page

with headers 306

alias 477, 499

756 Index

the index

Alien Abduction site 658–712
assembling email message 48
connecting to MySQL database 60–102
deconstructing PHP script 24
getting emails 53
HTML web form 5–9
losing emails 54
problems with HTML form 8–9
problems with web form 29–30
RSS syndication 660–676
Test Drive 7, 17, 20, 37, 42, 52

adding newsfeed link 677
adding YouTube script 708
from data and INSERT statement 95
inserting data into MySQL database 89
INSERT statement 69
RSS Newsfeed script 675
selecting all content 71
WHERE clause 97
YouTube request URL 687

variables 31
YouTube video syndication 678–712

laying out videos for display 702–703
REST request 686–687

ALTER statement 125, 235, 252

ALTER TABLE command 209, 221, 232, 293, 322

Anatomy of a header 303

AND operator (&&) 179

Apache, installing on Windows 735–736

apostrophe 47

application design 106

applications
defined 105
personalized (see personalized web apps)

array_push() function 449

arrays 34, 55–56
looping through with foreach 216
MySQL result sets versus PHP arrays 638
versus objects 700

arrows (schema symbol) 436
direction 438

AS keyword 499

asterisk (*) 70, 130

atomic data 462–463
normalization 465

authenticating with headers 306–307

Authorize script 314–317

AUTO_INCREMENT 209

B
backslash (\) 46

Bar Graph Exposed 635

bar graphs 632–635
basics 644
drawing and displaying 647
file storage issues 651
formulating plan 639–641
generating individual 650

BLOB data type 114

 tags 41, 46

browser 55

built-in functions 536

Bullet Points
$_FILES variable 252
$_SERVER variable 315
ALTER statement 252
CAPTCHA 629
character class 602
checkdnsrr() function 602
cookies 397
CREATE DATABASE command 142
CREATE TABLE command 142
database connections 88
die() function 88
DROP TABLE command 142
exit() function 315
GD (Graphics Draw) 629
header() function 315
headers 315
HTTP authentication 397

you are here 4 757

the index

images folder 252
<input> tag 252
metacharacters 602
move_uploaded_file() function 252
mysqli_close() function 88
mysqli_connect() function 88
mysqli_fetch_array() function 142
mysqli_query() function 88
preg_match() function 602
preg_replace() function 602
quantifiers 602
sessions 397
session variables 397
while loop 142

C
CAPTCHA 611–624, 654

GD (Graphics Draw) 614–615
functions 616–620

generating random image 623
Guitar Wars 625–629
pass-phrase text 613
Test Drive 624

Guitar Wars Add Score script 628
CASE labels 542–544

CHANGE COLUMN command 232

character class 578–579, 602, 604

CHARACTER data type 114

CHAR data type 114–116

checkboxes 215

checkdnsrr() function 599, 602, 604
warning 599

children() method 699

child table 438

chr() function 613

client-side 57

clients, HTML 10

code reuse 730

coding efficiency 455

collection of objects 697

column/value query 337–338

column names 112

columns 109
alias 477
default column values 337–338
non-key column dependencies 465

commands and upper/lowercase 27

comments
double-hyphen (--) 334
multi-line 335
tricking MySQL with 334

community web sites 347, 372

concatenating strings and variables 41–43

conditionals 166–170

conditional tests 139

content type header 309

cookies 374–388
defined 374
deleting 385–387
lifespan 406–410
migrating to sessions 398–399
parts of 375
plus sessions 409
sessions without 403
size of data 410
storing user ID and username 381
user log-ins 380–381
using cookies rather than HTTP authentication 379
using with PHP 376
versus HTTP authentication 374
versus sessions 400–401

Coppermine Gallery 730

counting variable 264

CREATE DATABASE command 64, 110, 111

CREATE TABLE command 64–65, 110, 117–118

cross-site scripting 725–726

758 Index

the index

custom functions 535–560
building queries with 537–539
pagination 548–554

LIMIT clause 549–550
page navigation links 554
revising results 553
tracking pagination data 551
variables 552

value of 536

Custom Functions Exposed 538

D
data, controlling 427–500

alias 477
data-driven forms 450–460
joins (see joins)
normalization 462–468

data, defining 113

data-driven forms 450–460
efficient data types 453

database connection strings 81–82

database name 76

databases 61
diagrams of tables (see schemas)
joining tables (see joins)
location 63
Many-to-Many relationship 438–440
normalization 462–468

benefits 464
three steps 465

One-to-Many relationship 438–439
One-to-One relationship 438–439
password 63
referential integrity 437
structural changes and queries 471
user name 63
versus tables 68

databases, creating and populating 103–158
-> prompt 119
addemail.php script 126–131

ALTER statement 125
column names 112
columns 109
CREATE DATABASE command 110, 111
CREATE TABLE command 110, 117–118
creating database and table 108–125
data types 113, 114
defining data 113
DELETE command 147–153

accidental deletions 149
WHERE clause 148–149

DESCRIBE command 123
DROP TABLE command 124
getting started 107
mail() function 134
making contact with MySQL server 110
queries 117–118
rows 109, 112
SELECT * FROM command 134, 135
SELECT command, asterick 130
semicolons (;) 125
sendemail.php script 133–145

$_POST array 134
$result variable 135
mysqli_fetch_array() function 135–142
mysqli_query() function 135

storing database data 109
tables

creating inside database 112–113
defined 109
structure 123

USE command 120–121

database server 61, 75, 99–100

database tables (see tables)

data stored in files 223–294
external files 240
getting images from users 236
GW_UPLOADPATH constant 253
images, storing 225–252
images folder 247–248

FTP program 248

you are here 4 759

the index

initial storage location of uploaded files 245
inserting image filenames 238–239
overwriting files 252
php.ini file, storage location for uploaded files 252
plannning for image file uploads 231

Step 1 234
Step 2 237
Step 3 238
Step 4 242
Step 5 250
Step 6 257

temporary folders 244
validation

error messages 268–270
image file uploads 266–270

data types 113, 114
efficient 453

DATE data type 114–116

DATETIME data type 114–116

DEC data type 114

decision logic 166–170

default column values 337–338

DEFAULT statement 342

DELETE command 147–153, 157
accidental deletions 149
WHERE clause 148–149

DELETE FROM statement 283–285, 293
LIMIT clause 284, 289

deleting files from web server 269

DESCRIBE command 123, 157

development environment, setting up 731–748
building and testing PHP applications 732
connecting to live server 747
dumping data and tables 745
installing Apache on Windows 735–736
moving from production to live site 744
MySQL

identifying version 734
installing on Mac OS X 742–743

installing on Windows 739–742
moving dumped data to live server 746–747
preparing to use dumped data 745

PHP
identifying version 733
installing 736–738

web servers, identifying 733

diagrams, database 431, 499

die() function 83, 88

display_errors 724

dollar sign ($) 25, 26

Domain Name System (DNS) 598

domain suffixes 598–599

dot notation 474

double-hyphen (--) comment 334

double-quoted strings 47

double quotes 77
versus single quotes 92

Download It!
Guitar Wars 228
Mismatch application 350, 458
Risky Jobs application 587

DROP COLUMN command 232

DROP TABLE command 124, 157

Drupal 730

duplicate code 194

duplicate code, eliminating 417–426
templates 422–425

dynamic graphics (see visualizing data)

dynamic HTML pages 3

E
echo command 24, 41, 55–56

regenerating forms in PHP with 192

else clause 184–190, 221

Elvis store project 104–158, 160–222
addemail.php script 126–131

760 Index

the index

Elvis store project (continued)

application design 106
deleting checked off customers 217–218
empty email messages 163
planning 108
preserving form data 196–201
sendemail.php script 133–145

feedback 183–186
logic behind 171
validation 163–165

Test Drive
addemail.php script 129
cleaner if code in sendemail.php 189
creating database and table 118
customer checkboxes 219
DELETE command 150
logical operators 181
primary keys 211
removing customer from mailing list 153
self-referencing script 201, 205
sending email using Send Email form 145
Use command 121
validating sendemail.php 177

validation 164–165

email address pattern 595–600
domain suffixes 598–599

emails
assembling 48
empty 163
formatting and sending via PHP 43–52

 tags 46
creating message body in PHP 44
double-quoted strings 47
escape characters 46
HTML formatting 45
newline characters (\n) 47
storing email pieces and parts in variables 49

getting 53
losing 54
mail() function 50–51
sending form data using HTML 10
sending form data using PHP 11

empty() function 172–178, 221, 566

empty email messages 163

entities (XML) 693

ENUM data type 325

equal signs (==) 167

equijoins 480

error_log 724

error handling, exception handling PHP errors 719–720

error messages 268–270
suppressing 269, 288

error reporting for MySQL 718

escape characters 46

escaping characters (regular expressions) 580–582

exception handling PHP errors 719–720

exit() function 307, 311, 315, 342

explode() function 510, 518, 560

expose_php 724

extending PHP 749–753

F
Fireside Chats

cookies versus sessions 400–401
GET and POST 279

flags 194

foreach loops 215–218, 221
arrays 216

foreign keys 436–437, 499
in action 437
(see also primary keys)

for loops 488–489, 499

formatting and sending emails via PHP 43–52

 tags 46
creating message body in PHP 44
double-quoted strings 47
escape characters 46
HTML formatting 45

you are here 4 761

the index

newline characters (\n) 47
storing email pieces and parts in variables 49

forms 10, 55–56
$_POST 32–36

providing form data to MySQL database 91–94
$_SERVER['PHP_SELF'] 200
<form> tags 6
<input> tags 6
accessing form data with PHP scripts 16
action attribute 14

 tags 41
data-driven 450–460
get method 6
<input> tags 6, 38
isset() function 202
mailto 6, 9
making HTML form dependent on if statements 195
PHP scripts 11

MySQL queries 73–75
sending form data as email 9–14

Post method 6
preserving form data 196–201
regenerating in PHP with echo 192
seeing if form has been submitted 202
self-referencing 199–201, 204–205
spam bot attacks 607
submit button 6
type attribute 6
validation 339

<form> tags 6
action attribute 14

FROM part of SELECT statement 70

FTP (File Transfer Protocol) utility 19

G
GD (Graphics Draw) 612–620

CAPTCHA 614–615
functions 616–620
imagecolorallocate() function 616
imagecreatetruecolor() function 616
imagedestroy() function 619

imageellipse() function 618
imagefilledellipse() function 618
imagefilledrectangle() function 617
imageline() function 617
imagepng() function 618
imagerectangle() function 617
imagesetpixel() function 617
imagestring() function 619
imagestringup() function 619
imagettftext() function 620

Geek Bits
CAPTCHA 620
Domain Name System 598
SUBSTRING() function 530
video length calculation 703

get method 6

GET requests 276–282
(see also $_GET)

graphics, dynamic (see visualizing data)

graphics library 612

greater than (>) 168

greater than or equal to (>=) 168

Guitar Wars 224–294, 606–630
admin pages 272–278

protecting 300
score removal links 275

altering high score database 232
CAPTCHA 625–629
Download it! 228
formatting top score 262
getting images from users 236
images folder 247–248
inserting image filenames 238–239
isolating high score for deletion 283–285
plannning for image file uploads 231

Step 1 234
Step 2 237
Step 3 238
Step 4 242
Step 5 250
Step 6 257

762 Index

the index

Guitar Wars (continued)
securing application 296–344

Admin page security 316
authenticating Admin page with headers 306
Authorize script 314–317
form attack 330–333
HTTP authentication 299–303
human moderation (see human moderation)
SQL injection attack protection 336
ways to protect applications 297–298

Test Drive
adding CAPTCHA to Add Score script 628
adding high scrore with image 243
adding screenshot column 235
Admin script HTTP authorization 311
Authorize script 317
create the Approve script 328–329
handling of form data in Add Score script 340
images folder 251
include files 257
removescore.php and admin.php 290
screen shot image file validation 270
showcasing highest score 265

top scoring Guitar Warrior 261–265
unverified scores 271
validating image file uploads 266–270

GW_MAXFILESIZE constant 253, 267–270

GW_UPLOADPATH constant 253

H
header() function 305, 342

Header Exposed 304

headers 302–309
Anatomy of a header 303
authenticating with headers 306–307
content type header 309
location header 309
refresh header 309
Watch it! 309

hidden form fields 289

hostname 63

HTML 55–56
clients 10
dynamic HTML pages 3
lifeless language 2
mixing PHP and HTML in same file 27
PHP code 15
sending form data as emails 10
switching between PHP and 193
working with PHP 3

HTTP authentication 299–303, 343, 397
authenticating with headers 306–307
basic realm 311
headers 302–309
password encryption 360
user log-ins 357–361
using cookies rather than 379
versus cookies 374

human moderation 320–321, 343
ALTER TABLE statement 322
Step 1 322
Step 2 324
Step 3 326
Step 4 327

I
if statements 166–170, 221

cleaner code 188–190
else clause 184–190
making HTML form dependent on 195
nested 178, 187
ternary operator 455, 459
test conditions 168

imagecolorallocate() function 616

image compression levels 651

imagecreatetruecolor() function 616, 654

imagedestroy() function 619, 654

imageellipse() function 618

imagefilledellipse() function 618

imagefilledrectangle() function 617

you are here 4 763

the index

imageline() function 617, 654

imagepng() function 618, 654

imagerectangle() function 617, 654

images
placing on web pages 240
RSS feed 670

images, storing 225–252
getting images from users 236
initial storage location of uploaded files 245
inserting image filenames 238–239
planning for image file uploads 231
temporary folders 244

imagesetpixel() function 617

images folder 247–248, 252, 293

imagestring() function 619, 654

imagestringup() function 619, 654

imagettftext() function 620, 654

 tags 240

implode() function 513, 560

include_once statement 293

include files 254–255, 293

initial storage location of uploaded files 245

inner joins 473, 475, 499

<input> tags 6, 38, 230, 252

INSERT INTO statement 66

INSERT statement 66–67, 85, 238, 337
Test Drive 69

INT or INTEGER data type 114–116

IP address 63

is_numeric() function 342

isset() function 172–174, 202, 221, 566

J
joins 473–481

dot notation 474
equijoins 480

inner joins 473, 475
natural joins 480
non-equijoins 480
outer joins 480
USING keyword 476

JPEG images and MIME types 270

junction table 440

K
keys 436–437

(see also foreign keys; primary keys)

L
less than (<) 168

less than or equal to (<=) 168

LIKE clause 505–509, 560

LIMIT clause 293, 549–550, 560
DELETE FROM statement 284, 289

location header 309

log-ins (see user log-ins)

log_errors 724

logging out users 384–387
sessions 393–394

logical operators 179–182, 221
order 181

lowercase 27

M
mail() function 50–51, 55–56, 134

configuring server 52

mailto 6, 9, 10

Many-to-Many relationship 438–440

markup language 661

MD5() function 355

metacharacters 572–577, 602, 604
quantifiers 577

764 Index

the index

MIME types for JPEG images 270

Mismatch application 346–416, 428–500
charting mismatchiness 630–652

bar graphing basics 644
building an array for categories 636–638
drawing and displaying bar graph 647
formulating bar graphing plan 639–641
generating individual bar graphs 650
storing bar graph data 632–633

community of users 347
cookie-powered user log-ins 380–381
cookies (see cookies)
data-driven forms 450–454
data breakdown 430
Download It! 350, 458
eliminating duplicate code 418–426
joins 478
logging out users 385–387
migrating from cookies to sessions 398–399
(mis)matchmaking logic 484–489

comparing users 487
five steps to successful mismatch 485
for loop 488
preparing search 486

mymismatch.php script 491–493
navigating new Log-In script 382–383
navigation menu 421
normalizing database 469–470
page footer 421
page header 421
questionnaire 445–459

generating form 456–457
getting responses into database 446
planning steps 445
Step 1 449, 456
Step 2 449, 456
Step 3 457
Step 4 457

sessions 392
logging out users 393–394

session starter 421
signing up new users 365–371
storing user data on server (see sessions)

templates 422–426
Test Drive

adding sign-up functionality 371
adding username and password 356
changing cookies to sessions 402
creating My Mismatch script 648
grabbing mismatched topics and categories 637
logging out users 386–387
login.php script 362–363
mismatch_category database table 470
My Mismatch script 494
Questionnaire script 458
Questionnaire script with single query 481
updating My Mismatch script 652
using sessions and cookies 413

user log-ins 348–363
gameplan 349
passwords 348
prepping database for 351
username 348

user log-ins (see user log-ins)

MODIFY COLUMN command 232

move_uploaded_file() function 245, 249, 250, 252

multi-line comments 335

MySQL 57
dumping data and tables 745
error reporting 718
identifying version 734
installing on Mac OS X 742–743
installing on Windows 739–742
moving dumped data to live server 746–747
preparing to use dumped data 745
Query Browser 738
user permissions 716–717

MySQL, connecting to 61–102
$_POST, providing form data 91–94
closing connections 87
CREATE DATABASE command 64
CREATE TABLE command 64–65
database name 76
database server 75
FROM part of SELECT statement 70

you are here 4 765

the index

inserting data with PHP scripts 77
INSERT INTO statement 66
INSERT statement 66–67

Test Drive 69
mysql>prompt 64
password 63, 76
PHP database connection strings 81–82
PHP functions 78–88

connecting with mysqli_connect() 80–82
die() 83, 88
mysqli_close() 78–79, 87, 99
mysqli_connect() 78–84, 99–100
mysqli_query() 78–79, 86, 99
mysqli_select_db() 82, 99–100

PHP scripts 76
PHP scripts and forms 73–75
queries 78–79, 84–86, 99–100

assembling query string 85–86
executing 86

requirements 62–63
SELECT statement

asterisk (*) 70
selecting all content 70–71
WHERE clause 96–97

server location 63, 76
sifting through data 96–97
tables 75
USE command 64
user name 63, 76
VALUES keyword 66

order of values 66–67
mysql>prompt 64

mysqli_close() function 78–79, 87, 99

mysqli_connect() function 78–84, 99–100
connecting with 80–82

mysqli_fetch_array() function 135–142, 157
while loop 139–142

mysqli_query() function 78–79, 86, 88, 99, 125, 135

mysqli_real_escape_string() function 336, 340, 342

mysqli_select_db() function 82, 99–100

mysqli functions, retrofitting to work as mysql functions
714–715

MySQL result sets versus PHP arrays 638

MySQL server, making contact with 110

MySQL terminal 62, 68, 110
-> prompt 119
semicolons 111

N
namespaces (XML) 693, 695, 699, 711

naming variables 26

natural joins 480

newline characters (\n) 47

newsfeed 660

No Dumb Questions
$_POST 92
-> operator 700
-> prompt 119
<? tag 27
Admin page security 316
ALTER statement 125, 235
array_push() function 449
atomic data 463
bar graphs 633, 647
CAPTCHA 612, 629
character classes 579
CHAR data type 115
commands and upper/lowercase 27
concatenating strings and variables 42
concatenating variables 92
cookies 375

deleting 387
storing user ID and username 381

database relationships 439
databases versus tables 68
DESCRIBE command 123
die() function 88
double-quoted strings 47
dynamically generated images 651
else clause 189
empty() function 566
ENUM data type 325

766 Index

the index

No Dumb Questions (continued)
escape characters 46
exit() function 311
for loops 489
form was submitted 202
GD (Graphics Draw) functions 629
GET and POST 278, 282
GW_MAXFILESIZE 270
HTML formatting in emails you send from a PHP

script 45
HTTP authentication 301

basic realm 311
image compression levels 651
initial storage location of uploaded files 246
INSERT statement 85
isset() function 173, 566
joins 476, 480
logical operator order 181
MIME types for JPEG images 270
mismatch_category table 468
mixing PHP and HTML in same file 27
mysqli_fetch_array() 142
mysqli_query() function 88
MySQL result sets versus PHP arrays 638
MySQL terminal 68
namespaces (XML) 695
normalization 467
Null, Key, Default, and Extra 123
numeric data types 115
objects versus arrays 700
overwriting files 252
pagination 558
password encryption 360
phone number pattern 569
php.ini file 252
PHP code and HTML code 15
phpMyAdmin 68
require_once 255
REST 682, 685
RSS 662
RSS feed and images 670
RSS reader 662
search string 519

SELECT command 130
semicolons 125
session_start() function 397
sessions 397
SHA() function 355
shared script files 255
short-term versus long-term persistence 410
Sign-Up script 369
SimpleXMLElement object 700
single quote (apostrophe) 47
single quotes versus double quotes 92
size of data and persistence 410
SQL comments 335
SQL injection attack 335
storing database data 109
substr() function 530
templates 423
temporary folders 246
ternary operator 459
test conditions 170
unverified scores 261
UPDATE command 235
user_id 351
validation 165
valid email addresses 597
VARCHAR data type 115
variables 27, 255
visual security 353
what PHP stands for 15
XML 670

non-equijoins 480

normalization 462–468, 499
atomic data 465
benefits 464
non-key column dependencies 465
primary keys 465
three steps 465

not equal (<>) 168

NOT NULL 209

NOT operator (!) 174, 221

NOW() function 238

you are here 4 767

the index

O
object-oriented PHP 721–722

objects 688, 696–700
accessing XML with 696
collection of 697
drilling into XML data with objects 698
versus arrays 700

One-to-Many relationship 438–439

One-to-One relationship 438–439

ON keyword 476

open_basedir 724

operator precedence 727

ORDER BY clause 258, 293, 532–534, 545–546

OR operator (||) 179

outer joins 480

overwriting files 252

P
pagination 548–554

LIMIT clause 549–550
page navigation links 554
revising results 553
tracking pagination data 551
variables 552

parent table 438

passwords 348
comparing 355
encryption 352

SHA() function 354–356
HTTP authentication

password encryption 360
visual security 353

percent sign (%) wildcard 505

period (.) 40, 41

period metacharacter 572

persistence
sessions plus cookies 409
short-term versus long-term 410
temporary 375
user 383

personalized web apps 345–416
community web sites 347

security 372
cookies (see cookies)
logging out users 385–387
signing up new users 365–371
storing user data on server (see sessions)
user log-ins (see user log-ins)
(see also Mismatch application)

phone number pattern 568–569, 573–577
getting rid of unwanted characters 592
standardizing 591

PHP 55–56
browsers 42
building and testing applications 732
checking if installed on server 19
database connection strings 81–82
difference between versions 5 and 6 728
exception handling PHP errors 719–720
extending 749–753
identifying version 733
installing 736–738
mixing PHP and HTML in same file 27
object-oriented 721–722
rules 25
securing applications 723–724
sending form data as email 9–14
servers 11
switching between HTML and 193
what PHP stands for 15
working with HTML 3

PHP&MySQLcross 155–156, 291–292, 497–498,
655–656

PHP & MySQL Toolbox
! (NOT operator) 221
$_COOKIE 414

768 Index

the index

PHP & MySQL Toolbox (continued)
$_FILES 293
$_POST 57
$_SERVER 342
$_SESSION 414
&& (AND operator) 221
< (less than) 221
<> (not equal) 221
<?php ?> 57
== (equal signs) 167
> (greater than) 221
>= (greater than or equal to) 221
|| (OR operator) 221
ADD COLUMN statement 293
ALTER TABLE command 221, 293
array 57
AS keyword 499
CAPTCHA 654
character class 604
checkdnsrr() function 604
client-side 57
column/value query 343
custom functions 560
DEFAULT statement 342
DELETE command 157
DELETE FROM statement 293
DESCRIBE command 157
diagrams, database 499
DROP TABLE command 157
echo 57
else clause 221
empty() function 221
escape character 57
exit() function 342
explode() function 560
foreach loops 221
foreign keys 499
for loops 499
form validation 343
GD library 654
header() function 342
HTTP authentication 343

human moderation 343
if statements 221
imagecreatetruecolor() function 654
imagedestroy() function 654
imageline() function 654
imagepng() function 654
imagerectangle() function 654
images folder 293
imagestring() function 654
imagestringup() function 654
imagettftext() function 654
implode() function 560
include_once statement 293
inner joins 499
is_numeric() function 342
isset() function 221
LIKE clause 560
LIMIT clause 293, 560
logical operators 221
mail() 57
metacharacters 604
MySQL 57
mysqli_fetch_array() function 157
mysqli_real_escape_string() function 342
namespaces (XML) 711
normalization 499
ORDER BY statement 293
PHP 57
PHP script 57
preg_match() function 604
preg_replace() function 604
regular expressions 604
require_once statement 293
require statement 293
REST request 711
RSS 711
schemas 499
SELECT * FROM command 157
server-side 57
session_destroy() function 414
session_start() function 414
setcookie() function 414

you are here 4 769

the index

SHA() function 414
simplexml_load_file() function 711
SimpleXMLElement object 711
SQL 57
SQL injection 343
str_replace() function 560
substr() function 560
switch-case 560
ternary operator 499
trim() function 342
variable 57
WHERE clause 157, 293
while loop 157
XML 711

php.ini file 252
securing applications 723–724

PHP 4 714–715

phpBB 730

.php extension 25

PHP functions 78–88
verifying variables 172–178

phpinfo() references 723

phpMyAdmin 62, 65, 68

PHP scripts
accessing form data 16
action attribute 14
connecting to MySQL 76, 77
deconstructing AliensAbductedMe.com 24
forms and MySQL queries 73–75
running on servers 18
servers 12–13
servers translating 22–23
transferring to server 19

post method 6

POST requests 276–282
(see also $_POST)

precedence 727

preg_match() function 584–586, 602, 604

preg_replace() function 588–590, 602, 604

preprocessing data 518–519

preserving form data 196–201

primary keys 209–211, 436–437
five rules 210
normalization 465
(see also foreign keys)

pseudocode 641

pulling content from another site 680
(see also YouTube video syndication)

pushing web content 659
RSS (see RSS syndication)

Q
quantifiers 577, 602

queries 78–79, 84–86, 99–100, 117–118
assembling query string 85–86
building queries with custom functions 537–539
executing 86
legitimate search terms 524–525
multiple tables 472
SQL query 86
structural changes to databases 471

quotes 47, 55–56, 77
single quotes versus double quotes 92

R
rand() function 613

referential integrity 437

refresh header 309

regex 570

regular expressions 561–604
character class 578–579, 604
checkdnsrr() function 599, 604

warning 599
defined 570
email address pattern 595–600

domain suffixes 598–599
escaping characters 580–582

770 Index

the index

regular expressions (continued)
metacharacters 572–577, 604
phone number pattern 568–569, 573–577

getting rid of unwanted characters 592
standardizing 591

preg_match() function 584–586, 604
preg_replace() function 588–590, 604
quantifiers 577
reserved characters 580–582
validation trade-offs 597

removeemail.php, deleting checked off customers
217–218

removing data 147–153
accidental deletions 149

request/response communication process 681

require_once statement 255–257, 288, 293

require statement 293

reserved characters (regular expressions) 580–582

REST request 682–687, 711
building 686

retrofitting mysqli functions to work as mysql functions
714–715

reusing code 730

reverse-engineering scripts 316

Risky Jobs application 502–560, 562–604
build_query() function 537–539

page navigation links 554
pagination 548–554
pagination variables 552
revising pagination results 553
sorting 545–546
tracking pagination data 551

complete search script 557–558
Download It! 587
Test Drive

build_query() function 539
checking for valid phone numbers 587
cleaning up phone numbers in the Registration

script 594
email validation 603
explode() and implode() functions 526

generate_sort_links() function 546
limiting text displayed for job descriptions and

dates posted 531
search form 515
search script 559

rows 109, 112
uniquely identifiable 208–211

RSS 711

RSS feed 660
dynamically generated 672
images 670
linking to 676

RSS icon 676

RSS newsreader 660, 662
from database to 666

RSS Revealed 671

RSS syndication 660–676
dynamically generated RSS feed 672
from database to RSS newsreader 666
linking to RSS feed 676
XML 661, 669

S
safe_mode 724

schemas 431–435, 499
arrows (symbols) 436

direction 438
scripts

communicating with each other 276
include files 254–255
require_once statement 255–257
reverse-engineering 316
shared script data 254–255

securing applications 295–344
$_SERVER variable 300
Authorize script 314–317
CAPTCHA 611–624

GD (Graphics Draw) 614–615
generating random image 623
pass-phrase text 613

you are here 4 771

the index

community web sites 372
content type header 309
cookies (see cookies)
cross-site scripting 725–726
default column values 337–338
form validation 339
GD (Graphics Draw) 612–620
GD graphics functions 616–620
header() function 305
HTTP authentication 299–303

authenticating with headers 306–307
basic realm 311
headers 302–309

human moderation 320–321
Step 1 322
Step 2 324
Step 3 326
Step 4 327

INSERT (with parameters) 337
location header 309
PHP 723–724
refresh header 309
reverse-engineering scripts 316
spaces inside of <?php ?> tags 305
spam bots 606
SQL injection 335–340
tricking MySQL with comments 334
using cookies rather than HTTP authentication 379
ways to protect applications 297–298

SELECT * FROM command 134, 135, 157

SELECT statement
asterisk (*) 70, 130
FROM 70
selecting all content 70–71
WHERE clause 96–97

self-referencing forms 199–201, 204–205

semicolon (;) 125
MySQL 64, 67
PHP 25
SQL statements 111

sendemail.php script 133–145
$_POST array 134
$result variable 135
feedback 183–186
logic behind 171
mail() function 134
mysqli_fetch_array() function 135-142

while loop 139–142
mysqli_query() function 135
self-referencing script 201, 205
validation 163–165

Send Email Script Up Close 203

server-side 57

servers 55–56
checking if PHP is installed 19
identifying 733
installing Apache on Windows 735–736
PHP 11
PHP scripts 12–13

running on 18
transferring PHP scripts to 19
translating PHP scripts 22–23

session_destroy() function 390, 392, 414

session_start() function 390, 392, 395–397, 414

sessions 388–403
lifespan 406–410
logging out 393–394
migrating from cookies 398–399
plus cookies 409
size of data 410
versus cookies 400–401
without cookies 403

session variables 389, 391, 397, 406

setcookie() function 376, 414
logging out users 385–386

SHA() function 354–356, 414
comparing passwords 355

shared script data 254–255

772 Index

the index

SID superglobal 403

signing up new users 365–371

simplexml_load_file() function 688, 698, 711

SimpleXMLElement object 700, 711

simplify code 187–190

single quotes 47, 77
versus double quotes 92

sorting query results 532–534, 540–541, 545–546

spaces and variable names 26

spaces inside of <?php ?> tags 305

spam bots 606
CAPTCHA 611–624

special characters and variable names 26

SQL 57, 61

SQL injection 335–340, 343

SQL query 86

SQL statements and semicolons (;) 111

sticky forms 199–201, 204–205

storing user data on server (see sessions)

str_replace() function 520, 560

string functions 510–535
explode() function 510, 518
implode() function 513
str_replace() function 520
substr() function 528–530

strings, manipulating
concatenating strings and variables 40–42
LIKE clause 505–509
preprocessing data 518–519
queries with legitimate search terms 524–525
replacing unwanted characters 520
sorting query results 532–534, 540–541
string functions (see string functions)
substrings 528–530
WHERE clause 523
wildcard characters 505
(see also regular expressions)

strip_tags() function 726

submit button 6

substr() function 528–530, 560

SUBSTRING() function 530

substrings 528–530

superglobal 33, 55–56

suppressing error messages 269

SWITCH statement 542–544

syndication
RSS (see RSS syndication)
YouTube video (see YouTube video syndication)

T
tables 61, 75

alias 477
child 438
CREATE TABLE command 64
creating inside database 112–113
defined 109
diagrams of (see schema)
joins (see joins)
junction 440
multiple tables and queries 472
parent 438
primary keys (see primary keys)
structure 123
uniquely identifiable rows 208–211
versus databases 68

templates 422–425

temporary folders 244

temporary persistence 375

ternary operator 455, 459, 499

test conditions 166–170

testing a condition 139

testing multiple conditions 179–182

TEXT data type 114

TIME data type 114–116

you are here 4 773

the index

TIMESTAMP data type 114–116

TINYINT type 322

transferring PHP scripts to server 19

trim() function 336, 340, 342

type attribute 6

U
underscore (_) 26

underscore (_) wildcard 505

uniquely identifiable 208–211

unlink() function 269

UPDATE command 235

uppercase 27

USE command 64, 120–121

user_id 351

user log-ins 348–363
constructing interface 353
gameplan 349
HTTP authentication 357–361

password encryption 360
passwords 348

encryption 352
SHA() function 354–356
visual security 353

prepping database for 351
username 348
using cookies rather than HTTP authentication 379

user log-outs 384–387
sessions 393–394

username 348

user permissions in MySQL 716–717

user persistence 383

USING keyword 476

V
validation 164–165

error messages 268–270
suppressing 269, 288

flags and duplicate code 194
forms 339
if statements 166–170

cleaner code 188–190
else clause 184–190
making HTML form dependent on 195
nested 178, 187
test conditions 168

image file uploads 266–270
logical operators 179–182

order 181
logic behind 165
PHP functions for verifying variables 172–178
regular expressions (see regular expressions)
sendemail.php 171
server-side versus client side 165
testing multiple conditions 179–182
trade-offs 597

VALUES keyword 66
order of values 66–67

VARCHAR data type 114–116

variable names 25
finding perfect 26

variables 24, 26, 27, 31, 55–56, 255
$i counting variable 264
concatenating strings and variables 41–42
session 389, 391, 397, 406
storing email pieces and parts 49
superglobal 33

video length calculation 703

visualizing data 630–652
bar graphs

basics 644
building an array for categories 636–638
drawing and displaying 647
file storage issues 651

774 Index

the index

visualizing data, bar graphs (continued)
formulating plan 639–641
generating individual 650
storing data 632–633

dynamically generated images 651
image compression levels 651

visual security 353

W
Watch it!

checkdnsrr() function 599
FTP program 248
headers 309
mail() function 52
order of values 67
sessions without cookies 403
SQL statements and semicolons (;) 111

web applications
defined 105
personalized (see personalized web apps)

web content
pulling from another site 680

(see also YouTube video syndication)
pushing 659

RSS (see RSS syndication)
web forms (see forms)

web requests 276

web servers (see servers)

WHERE clause 96–97, 157, 293
DELETE command 148–149
empty search elements 523
inner joins 475

while loop 139–142, 157

wildcards 505

WordPress 730

X
XML 711

accessing with objects 696
collection of objects 697
drilling into XML data with objects 698
dynamically generated RSS feed 672
entities 693
hierarchy of elements 695
namespaces 693, 699
RSS syndication 661, 669
YouTube video syndication 690

deconstructing response 694
XSS attack 725

Y
YouTube video syndication 678–712

laying out videos for display 702–703
request/response communication process 681
REST request 682–687

building 686
simplexml_load_file() function 688, 698
video length calculation 703
XML 690

deconstructing response 694
entities 693
hierarchy of elements 695
namespaces 693

	Head First PHP & MySQL
	Author(s) of Head First PHP & MySQL
	Table of Contents
	how to use this book: Intro
	Who is this book for?
	We know what you’re thinking
	We know what your brain is thinking
	Metacognition: thinking about thinking
	Here’s what WE did:
	Here’s what YOU can do to bend your brain into submission
	Read Me
	The technical review team
	Acknowledgments
	Safari(R) Books Online

	1 add life to your static pages: It’s Alive
	HTML is static and boring
	PHP brings web pages to life
	Dogs in space
	A form helps Owen get the whole story
	Forms are made of HTML
	The HTML form has problems
	HTML acts on the CLIENT
	PHP acts on the SERVER
	PHP scripts run on the server
	Use PHP to access the form data
	PHP scripts must live on a server!
	Get your PHP scripts to the server
	The server turns PHP into HTML
	Deconstructing Owen’s PHP script
	A few PHP rules to code by
	Finding the perfect variable name
	Variables are for storing script data
	$_POST is a special variable that holds form data
	$_POST transports form data to your script
	Creating the email message body with PHP
	Even plain text can be formatted... a little
	Newlines need double-quoted strings
	Assemble an email message for Owen
	Variables store the email pieces and parts
	Sending an email message with PHP
	Owen starts getting emails
	Owen starts losing emails
	Your PHP & MySQL Toolbox

	2 Connecting to MySQL: How it fits together
	Owen’s PHP form works well. Too well...
	MySQL excels at storing data
	Owen needs a MySQL database
	Create a MySQL database and table
	The INSERT statement in action
	Use SELECT to get table data
	Let PHP handle the tedious SQL stuff
	PHP lets data drive Owen’s web form
	Connect to your database from PHP
	Insert data with a PHP script
	Use PHP functions to talk to the database
	Get connected with mysqli_connect()
	Build the INSERT query in PHP
	Query the MySQL database with PHP
	Close your connection with mysqli_close()
	$_POST provides the form data
	Owen needs help sifting through his data
	Owen’s on his way to finding Fang

	3 create and populate a database: Creating your own data
	The Elvis store is open for business
	Elmer needs an application
	Visualize Elmer’s application design
	It all starts with a table
	Make contact with the MySQL server
	Create a database for Elmer’s emails
	Create a table inside the database
	We need to define our data
	Take a meeting with some MySQL data types
	Create your table with a query
	Getting the table in front of the database
	USE the database before you use it
	DESCRIBE reveals the structure of tables
	Elmer’s ready to store data
	Create the Add Email script
	The other side of Elmer’s application
	The nuts and bolts of the Send Email script
	First things first, grab the data
	mysqli_fetch_array() fetches query results
	Looping for a WHILE
	Looping through data with while
	You’ve got mail...from Elmer!
	Sometimes people want out
	Removing data with DELETE
	Use WHERE to DELETE specific data
	Minimize the risk of accidental deletions
	MakeMeElvis.com is a web application
	Your PHP & MySQL Toolbox

	4 realistic and practical applications: Your Application on the Web
	Elmer has some irritated customers
	Protecting Elmer from... Elmer
	Demand good form data
	The logic behind Send Email validation
	Your code can make decisions with IF
	Testing for truth
	IF checks for more than just equality
	The logic behind Send Email validation
	PHP functions for verifying variables
	Test multiple conditions with AND and OR
	Form users need feedback
	Ease in and out of PHP as needed
	Use a flag to avoid duplicate code
	Code the HTML form only once
	A form that references itself
	Point the form action at the script
	Check to see if the form has been submitted
	Some users are still disgruntled
	Table rows should be uniquely identifiable
	What Elmer’s table contains now:
	What Elmer’s table should contain:

	Primary keys enforce uniqueness
	The five rules of primary keys:

	From checkboxes to customer IDs
	Loop through an array with foreach
	Your PHP & MySQL Toolbox

	5 working with data stored in files: When a database just isn't enough
	Virtual guitarists like to compete
	Text can't be trusted

	The proof is in the picture
	The application needs to store images
	Planning for image file uploads in Guitar Wars
	The high score database must be ALTERed
	How do we get an image from the user?
	Insert the image filename into the database
	Find out the name of the uploaded file
	Where did the uploaded file go?
	Create a home for uploaded image files
	Shared data has to be shared
	Shared script data is required
	Think of require_once as "insert"
	Order is everything with high scores
	Honoring the top Guitar Warrior
	Format the top score with HTML and CSS
	Only small images allowed
	File validation makes the app more robust
	Plan for an Admin page
	Generate score removal links on the Admin page
	Scripts can communicate with each other
	Of GETs and POSTs
	GET, POST, and high score removal
	Isolate the high score for deletion
	Control how much you delete with LIMIT
	Your PHP & MySQL Toolbox

	6 securing your application: Assume they're all out to get you
	The day the music died
	Where did the high scores go?
	Securing the teeming hordes
	Protecting the Guitar Wars Admin page
	HTTP authentication requires headers
	Take control of headers with PHP
	Authenticating with headers
	OK, so maybe Guitar Wars is NOT secure

	Create an Authorize script
	Guitar Wars Episode II : Attack of the High Score Clones
	Subtraction by addition
	Security requires humans
	Plan for moderation in Guitar Wars
	Make room for approvals with ALTER
	Unapproved scores aren’t worthy
	The million-point hack
	Everything in moderation... ?
	How exactly did she do it?
	Tricking MySQL with comments
	The Add Score form was SQL injected
	Protect your data from SQL injections
	A safer INSERT (with parameters)
	Form validation can never be too smart
	Cease fire!
	Your PHP & MySQL Toolbox

	7 building personalized web apps: Remember me?
	They say opposites attract
	Mismatch is all about personal data
	Mismatch needs user log-ins
	Come up with a user log-in gameplan
	Prepping the database for log-ins
	Constructing a log-in user interface
	Encrypt passwords with SHA()
	Comparing passwords
	Making room for the encrypted password

	Authorizing users with HTTP
	Logging In Users with HTTP Authentication
	A form for signing up new users
	Give users a chance to sign up
	Sometimes you just need a cookie
	What’s in a cookie?
	Use cookies with PHP
	Rethinking the flow of log-ins
	A cookie-powered log-in
	Navigating the Mismatch application
	Logging out means deleting cookies
	Sessions aren’t dependent on the client
	The life and times of sessions
	Keeping up with session data
	Renovate Mismatch with sessions
	Log out with sessions
	Complete the session transformation
	Users aren’t feeling welcome
	Sessions are short-lived...
	... but cookies can last forever!
	Sessions + Cookies = Superior log-in persistence
	Your PHP & MySQL Toolbox

	7 1/2 eliminate duplicate code: Sharing is caring
	Mismatch is in pieces
	Rebuilding Mismatch from a template
	Rebuild Mismatch with templates
	Mismatch is whole again... and much better organized

	8 control your data, control your world: Harvesting data
	Making the perfect mismatch
	Mismatching is all about the data
	Break down the Mismatch data
	Model a database with a schema
	Wire together multiple tables
	Foreign keys in action
	Tables can match row for row
	One row leads to many
	Matching rows many-to-many
	Build a Mismatch questionnaire
	Get responses into the database
	We can drive a form with data
	Speaking of efficiency...
	Generate the Mismatch questionnaire form
	The data is now driving the form
	Strive for a bit of normalcy
	When normalizing, think in atoms
	Why be normal, really?
	Three steps to a normal database
	Altering the Mismatch database
	So is Mismatch really normal?
	A query within a query within a query...
	Let’s all join tables
	Connect with dots
	Surely we can do more with inner joins
	Simplifying ON with USING
	Nicknames for tables and columns
	Joins to the rescue
	Love is a numbers game
	Five steps to a successful mismatch
	Prepare for the mismatch search
	Compare users for "mismatchiness"
	All we need is a FOR loop
	Finishing the mismatching
	Your PHP & MySQL Toolbox

	9 string and custom functions: Better living through functions
	A good risky job is hard to find
	The search leaves no margin for error
	SQL queries can be flexible with LIKE
	Explode a string into individual words
	implode() builds a string from substrings
	Preprocess the search string
	Replace unwanted search characters
	The query needs legit search terms
	Copy non-empty elements to a new array
	Sometimes you just need part of a string
	Extract substrings from either end
	Multiple queries can sort our results
	Functions let you reuse code
	Build a query with a custom function
	SWITCH makes far more decisions than IF
	Give build query() the ability to sort
	We can paginate our results
	Get only the rows you need with LIMIT
	Control page links with LIMIT
	Keep track of the pagination data
	Set up the pagination variables
	Revise the query for paginated results
	Generate the page navigation links
	Putting together the complete Search script
	The complete Search script, continued...
	Your PHP & MySQL Toolbox

	10 regular expressions: Rules for replacement
	Risky Jobs lets users submit resumes
	Decide what your data should look like
	Formulate a pattern for phone numbers
	Match patterns with regular expressions
	Build patterns using metacharacters
	Fine-tune patterns with character classes
	Check for patterns with preg_match()
	Standardize the phone number data
	Get rid of the unwanted characters
	Matching email addresses can be tricky
	Domain suffixes are everywhere
	Use PHP to check the domain
	Email validation: putting it all together
	Your PHP & MySQL Toolbox

	11 visualizing your data... and more!: Drawing dynamic graphics
	Guitar Wars Reloaded: Rise of the Machines
	No input form is safe
	We need to separate man from machine
	We can defeat automation with automation
	Generate the CAPTCHA pass-phrase text
	Visualizing the CAPTCHA image
	Inside the GD graphics functions
	The GD graphics functions continued...
	Drawing text with a font
	Generate a random CAPTCHA image
	Returning sanity to Guitar Wars
	Add CAPTCHA to the Add Score script
	Five degrees of opposability
	Charting mismatchiness
	Storing bar graph data
	From one array to another
	Build an array of mismatched topics
	Formulating a bar graphing plan
	Crunching categories
	Doing the category math
	Bar graphing basics
	Draw and display the bar graph image
	Individual bar graph images for all
	Mismatch users are digging the bar graphs
	Your PHP & MySQL Toolbox

	12 syndication and web services: Interfacing to the world
	Owen needs to get the word out about Fang
	Push alien abduction data to the people
	RSS pushes web content to the people
	RSS is really XML
	From database to newsreader
	Visualizing RSS
	Dynamically generate an RSS feed
	Link to the RSS feed
	A video is worth a million words
	Pulling web content from others
	Syndicating YouTube videos
	Make a YouTube video request
	Owen is ready to build a REST request
	YouTube speaks XML
	Deconstruct a YouTube XML response
	Visualize the XML video data
	Access XML data with objects
	From XML elements to PHP objects
	Drill into XML data with objects
	Not without a namespace!
	Fang sightings are on the rise
	Lay out videos for viewing
	Format video data for display
	Your PHP & MySQL Toolbox
	The End.

	appendix i: leftovers: The Top Ten Topics (we didn't cover)
	#1. Retrofit this book for PHP4 and mysql functions
	#2. User permissions in MySQL
	#3. Error reporting for MySQL
	#4. Exception handling PHP errors
	#4. Exception handling PHP errors (cont.)
	#5. Object-oriented PHP
	#5. Object-oriented PHP (cont.)
	So two big advantages of using Object Oriented PHP are:

	#6. Securing your PHP application
	#6. Securing your PHP application (cont.)
	#7. Protect your app from cross-site scripting
	#7. Protect your app from cross-site scripting (cont.)
	Validate everything
	Built-in PHP functions can help
	Data is guilty until proven innocent

	#8. Operator precedence
	#9. What’s the difference between PHP 5 and PHP 6
	More Unicode support

	#9. What’s the difference between PHP 5 and PHP 6 (cont.)
	OO refinements, XML support, and other changes

	#10. Reusing other people’s PHP
	Drupal
	phpBB
	Coppermine Gallery
	WordPress

	appendix ii: set up a development environment: A place to play
	Create a PHP development environment
	Find out what you have
	Do you have a web server?
	Do you have PHP? Which version?
	Do you have MySQL? Which version?
	Start with the Web Server
	Apache installation... concluded
	PHP installation
	PHP installation steps
	PHP installation steps... concluded
	Installing MySQL
	Instructions and Troubleshooting

	Steps to Install MySQL on Windows
	Download your installer
	Pick a destination folder
	Click "Install" and you’re done!

	Enabling PHP on Mac OS X
	Steps to Install MySQL on Mac OS X
	Moving from production to a live site
	Dump your data (and your tables)
	Prepare to use your dumped data
	Move dumped data to the live server
	Connect to the live server

	appendix iii: extend your php: Get even more
	Extending your PHP
	If you’re using Windows, you’re in luck

	And on the Mac...

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

