

Table of Contents

Chapter 1. using ajax.. 1
Section 1.1. Web pages: the old-fashioned approach... 2
Section 1.2. Web pages reinvented... 3
Section 1.3. So what makes a page "Ajax"?... 5
Section 1.4. Rob's Rock 'n' Roll Memorabilia... 6
Section 1.5. Ajax and rock 'n' roll in 5 steps.. 12
Section 1.6. Step 1: Modify the XHTML.. 14
Section 1.7. Step 2: Initialize the JavaScript... 16
Section 1.8. Step 3: Create a request object.. 20
Section 1.9. Step 4: Get the item's details... 22
Section 1.10. Let's write the code for requesting an item's details... 24
Section 1.11. Always make sure you have a request object before working with it.. 25
Section 1.12. The request object is just an object... 26
Section 1.13. Hey, server... will you call me back at displayDetails(), please?... 27
Section 1.14. Use send() to send your request.. 28
Section 1.15. The server usually returns data to Ajax requests.. 30
Section 1.16. Ajax is server-agnostic.. 31
Section 1.17. Use a callback function to work with data the server returns... 35
Section 1.18. Get the server's response from the request object's responseText property.. 36
Section 1.19. Goodbye traditional web apps... 38
Section 1.20. AjaxAcrostic... 39

Chapter 1. using ajax

Chapter 1. using ajax
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

this is a new chapter 1

using ajax1

Web Apps for a New
Generation

Tired of waiting around for your page to reload?

Ajax

more interactive, more responsive, easier

to use

Chapter 1. using ajax Page 1 Return to Table of Contents

Chapter 1. using ajax
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

2 Chapter 1

Web pages: the old-fashioned approach
With traditional web pages and applications, every time a user clicks on
something, the browser sends a request to the server, and the server responds
with a whole new page. Even if your user’s web browser is smart about
caching things like images and cascading style sheets, that’s a lot of traffic
going back and forth between their browser and your server... and a lot of
time that the user sits around waiting for full page refreshes.

The user clicks
something on
your page.

The browser sends a request to the server.

The server sends back

a whole new page,
with all the changed

information.
The user clicks
something else.

The browser sends another request to the server.

And the server
sends back another
whole page...

Most of the time, only a single line or image is
changing... but there’s still a complete page refresh.

old-fashioned web apps

Chapter 1. using ajax Page 2 Return to Table of Contents

Chapter 1. using ajax
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 3

using ajax

Web pages reinvented

This time, your page’s code creates
a special request object that the
browser sends to the server.

The server updates
the request object...

...and your code tells the
browser to update only the
parts of the page that
have changed.

Using Ajax, your pages and applications only ask the server for what they

really need—just the parts of a page that need to change, and just the parts

that the server has to provide. That means less traffic, smaller updates, and

less time sitting around waiting for page refreshes.

With Ajax, the browser only sends and receives
the parts of a page that need to change.

The user clicks
something.

Sometimes the browser doesn’t have to
talk to the server at all.

The browser calls a function in
your script file.

The script tells the browser
how to update the page... all
without a page refresh.

The script can update the
image without the server-side
program at all!

request

request

With Ajax, the user doesn
’t

have to suffer pag
e flickers

or lots of waiting around...

they can even keep
 using the

page while the request is

being processed.

function
getDetails {
 ...
}

function
getDetails {
 ...
}

Chapter 1. using ajax Page 3 Return to Table of Contents

Chapter 1. using ajax
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

4 Chapter 1

Ajax is a new way of using
existing technologies.
Ajax isn’t a whole new technology that you
have to learn, like CSS or JavaScript, or a set
of graphics techniques you’ll need to crack
open PhotoShop to accomplish. Ajax is just a
new way of thinking about how to do what
you’re already doing, using technologies
you probably already know.

<html>
...
</html>

function
getDetails {
 ...
}

#mystyle{
...
}

XHTML files style sheetsscripts other
resources

The browser sends
requests and gets
responses from a
web server.

Your page can use images, Flash animations, Silverlight, or anything else you want or need.

Most web programmers and designers are already
using some, or even all, of these technologies.

ajax is a methodology

Chapter 1. using ajax Page 4 Return to Table of Contents

Chapter 1. using ajax
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 5

using ajax

So what makes a page “Ajax” ?

Ajax is a way of designing and building web pages that are as interactive and
responsive as desktop applications. So what does that mean for you? You
handle things at the client’s browser whenever you can. Your pages make
asynchronous requests that allow the user to keep working instead
of waiting for a response. You only update the things on your pages that
actually change. And best of all, an Ajax page is built using standard Internet
technologies, things you probably already know how to use, like:

Q: Doesn’t Ajax stand for “Asynchronous JavaScript and
XML”?

A: Sort of. Since lots of pages that are considered “Ajax”
don’t use JavaScript or XML, it’s more useful to define Ajax as a
way of building web pages that are as responsive and interactive
as desktop applications, and not worry too much about the exact
technologies involved.

Q: What exactly does “asynchronous” mean?

A: In Ajax, you can make requests to the server without
making your user wait around for a response. That’s called an
asynchronous request, and it’s the core of what Ajax is all
about.

Q: But aren’t all web pages asynchronous? Like when
a browser loads an image while I’m already looking at the
page?

A: Browsers are asynchronous, but the standard web page
isn’t. Usually when a web page needs information from a
server-side program, everything comes to a complete stop until
the server responds... unless the page makes an asynchronous
request. And that’ what Ajax is all about.

Q: But all Ajax pages use that XMLHttpRequest object,
right?

A: Nope. Lots do, and we’ll spend a couple of chapters
mastering XMLHttpRequest, but it’s not a requirement. In
fact, lots of apps that are considered Ajax are more about user
interactivity and design than any particular coding technique.

Ajax applications also use a few things that have been around for a while but
may be new to you, like:

We’ll look at all of
these in detail before we’re through.

XHTML

Cascading Style Sheets

JavaScript

The XmlHttpRequest

XML & JSON

The DOM

An asynchronous
request is a
request that
occurs behind
the scenes.

Your users can
keep working
while the
request is
taking place.

Chapter 1. using ajax Page 5 Return to Table of Contents

Chapter 1. using ajax
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

6 Chapter 1

Rob’s Rock ‘n’ Roll Memorabilia
Meet Rob. He’s put all his savings into an online rock n’ roll

memorabilia store. The site looks great, but he’s still been getting

tons of complaints. Customers are clicking on the thumbnail images

on the inventory page, but the customers’ browsers are taking forever

before they show information about the selected item. Some of

Rob’s users are hanging around, but most have just stopped coming

to Rob’s online shop altogether.

This pane
contains
thumbnails of
the items Rob
has for sale.

When the user clicks
an item, a bigger
picture of the image
is displayed here...

...and the details
about the item
are shown here.

Ajax pages only talk to the
server when they have to...
and only about what the
server knows.
The problem with Rob’s site isn’t that

his server is too slow, but that his pages

are sending requests to the server all
the time... even when they don’t need to.

rob needs your help

Chapter 1. using ajax Page 6 Return to Table of Contents

Chapter 1. using ajax
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 7

using ajax

The user clicks
a thumbnail.

The browser sends
the selected item’s ID
to the server.

The server sends
back a new page,
with the selected
item’s information.

The browser sends
the new item’s ID
to the server.

The server sends
back another whole
new page.The user gets

tired of waiting
and does
something else...

The user clicks
another thumbnail.

Here’s what Rob’s online store does right now. What’s
wrong with this picture?

How would Ajax change this diagram? Write down what
you think should happen on Rob’s site.

Chapter 1. using ajax Page 7 Return to Table of Contents

Chapter 1. using ajax
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

8 Chapter 1

The user clicks
a thumbnail.

Clicking an image calls a JavaScript function.

The function also
changes the image
to match the
selected item.

The function creates a request object that asks the server for a description of the item.

The browser sends the
request object to the server, asynchronously, behind the scenes.

The browser requests the new image
from the server... but that’s not
something your page worries about.

Only the part
of the page that
actually changed
is updated... but
the user still sees
a new image and
the selected item’s
description.

Asynchronous requests allow more than one thing to happen at the same time.

Only the part of a web page that needs to change gets updated.

The page isn’t frozen while the server is returning data to the browser.

request

request

Your job was to think about how Ajax could help save
Rob’s site... and his business. With Ajax, we can completely
remove all the page refreshes on his inventory page. Here’s
what that would look like:

The server returns the new image and a response to the request to the user’s browser.

function
getDetails {
 ...
}

asynchronous apps do more than one thing at once

Chapter 1. using ajax Page 8 Return to Table of Contents

Chapter 1. using ajax
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 9

using ajax

Put a checkmark next to the benefits that you think Ajax
can provide to your web applications.

The browser can request multiple things from the server at the same time.

Browser requests return a lot faster.

Colors are rendered more faithfully.

Only the parts of the page that actually change are updated.

Server traffic is reduced.

Pages are less vulnerable to compatibility issues.

The user can keep working while the page updates.

Some changes can be handled without a server round-trip.

Your boss will love you.

Only the parts of the page that actually change are updated.

Chapter 1. using ajax Page 9 Return to Table of Contents

Chapter 1. using ajax
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

10 Chapter 1

Remember, not every page is going to see all these benefits...

The browser can request multiple things from the server at the same time.

Browser requests return a lot faster.

Colors are rendered more faithfully.

Only the parts of the page that actually change are updated.

Server traffic is reduced.

Pages are less vulnerable to compatibility issues.

The user can keep working while the page updates.

Some changes can be handled without a server round-trip.

Your boss will love you.

Only the parts of the page that actually change are updated.

This is only true sometimes. The speed of a request and response depends on what the server is returning. And it’s possible to build Ajax pages that are slower than traditional pages.

Color rendering is dictated by
the user’s monitor, not your app.

Because Ajax pages rely on technologies in addition to XHTML, compatibility issues can actually be a bigger problem with Ajax. Test, test, test your apps on the browsers your users have installed.

If you use Ajax in a way that helps your apps, the boss
will love you. But you shouldn’t use Ajax everywhere...
more on that later.

It’s possible to make smaller, more focused requests with Ajax. Be careful,
though... it’s also easy to make a lot more requests-and increase traffic-
because you can make all of those requests asynchronously.

Sometimes you want a user to wait on the server’s response, but that doesn’t mean you
can’t still use Ajax. We’ll look at synchronous vs. asynchronous requests more in Chapter 5.

Handling things at the browser can make your web
application feel more like a desktop application.

Yes, this is the second time this shows up in the list. It’s that important!

With asynchronous requests, you can make sure the browser works behind the
scenes, and avoid interrupting your users with full-page refreshes.

?

ajax app benefits

Chapter 1. using ajax Page 10 Return to Table of Contents

Chapter 1. using ajax
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 11

using ajax

Howard
everyone

Q: First you said Ajax was the web reinvented. Now it’s
increasing server traffic. Which is it?

A: Sometimes it’s both! Ajax is one way to make requests, get
responses, and build responsive web apps. But you’ve still got to be
smart when deciding whether an asynchronous request or a regular
synchronous request would be a better idea.

Q: How do I know when to use Ajax and asynchronous
requests, and when not to?

A: Think about it like this: if you want something to go on while
your user’s still working, you probably want an asynchronous request.
But if your user needs information or a response from your app
before they continue, then you want to make them wait. That usually
means a synchronous request.

Q: So for Rob’s online store, since we want users to keep
browsing while we’re loading product images and descriptions,
we’d want an asynchronous request. Right?

A: Exactly. That particular part of Rob’s app—checking out
different items—shouldn’t require the user to wait every time they
select a new item. So that’s a great place to use Ajax and make an
asynchronous request.

Q: And how do I do that?

A: Good question. Turn the page, and let’s get down to actually
using Ajax to fix up Rob’s online store.

Chapter 1. using ajax Page 11 Return to Table of Contents

Chapter 1. using ajax
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

12 Chapter 1

Ajax and rock ‘n’ roll in 5 steps
Let’s use Ajax to fix up Rob’s online store, and get his impatient customers back.

We’ll need to make some changes to the existing XHTML page, code some

JavaScript, and then reference the script in our XHTML. When we’re done, the

page won’t need to reload at all, and only the things that need to change will get

updated when users click on the thumbnail images.

Here’s what we’re going to do:

Modify the XHTML web page
We need to include the JavaScript file we’re going to write and

add some divs and ids, so our JavaScript can find and work

with different parts of the web page.

11

Write a function to initialize the page
When the inventory page first loads, we’ll need to run some JavaScript

to set up the images, get a request object ready, and make sure the

page is ready to use.

22

thumbnails.js will contain the JavaScript code we write for handling clicks on the thumbnail images and talking to Rob’s server to get detailed information about each item.

window.onload = initPage;
function initPage() {

 // setup the images
 // create a request object
}

This tells the
browser to run the
initPage() function
as soon as the page
loads up.

We’ll write code in initPage() to initialize
all the thumbnail images, and set up
onClick event handlers for each image.

thumbnails.js

function
getDetails {
 ...
}

thumbnails.js

function
getDetails {
 ...
}

<html>
...
</html>

inventory.html
We’ll use a <script> tag

 to

reference thumbnails.js in

our XHTML page.

We’ll group the
thumbnails into
a <div>, so our
JavaScript can
locate them on the
page easily.

rob’s ajax road map

Chapter 1. using ajax Page 12 Return to Table of Contents

Chapter 1. using ajax
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 13

using ajax

Write a function to create a request object
We need a way to talk to the server and get details about each piece of

memorabilia in Rob’s inventory. We’ll write a function to create a request object to

let our code talk to the server; let’s call it createRequest(). We can use that

function whenever a thumbnail is clicked to get a new request started.

33

Get an item’s details from the server
We’ll send a request to Rob’s server in getDetails(),

telling the browser what to do when the server responds.

44

Display the item’s details
We can change the image to display in getDetails(). Then, we

need another function, displayDetails(), to update the item’s

description when the server responds to our requests.

55

getDetails() will call the createRequest()
function to get a request object.

createRequest() returns a request object for our onclick function to use.

createRequest() is a
utility function we’ll
use over and over. It
creates a basic, generic
request object.

request

All we need to do to update the image is change that image’s src property. The browser will handle everything else for us.

request

onclick events
trigger the
getDetails()
function.

The request object has
information about what
code should run when the
server responds.

The event handler changes
out the image...

...and another function
we’ll write can take the
server’s information and
display it on the web page.

thumbnails.js

function
getDetails {
 ...
}

thumbnails.js

function
getDetails {
 ...
}

thumbnails.js

function
getDetails {
 ...
}

thumbnails.js

function
createReq {
 ...
}

getDetails() createRequest()

getDetails()

displayDetails()

Chapter 1. using ajax Page 13 Return to Table of Contents

Chapter 1. using ajax
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

14 Chapter 1

<html>
...
</html>

inventory.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Rob's Rock 'n' Roll Memorabilia</title>
 <link rel="stylesheet" href="css/default.css" />

</head>
<body>
 <div id="wrapper">
 <img src="images/logotypeLeft.png" alt="Rob's Rock 'n' Roll Memorabilia"
 width="394" height="91" id="logotypeLeft" />
 <img src="images/logotypeRight.png" alt="Rob's Rock 'n' Roll Memorabilia"
 width="415" height="92" id="logotypeRight" />
 <div id="introPane">
 <p>Are you looking for the perfect gift for the rock fan in your life?
 Maybe you want a guitar with some history behind it, or a conversation
 piece for your next big shindig. Look no further! Here you'll find all
 sorts of great memorabilia from the golden age of rock and roll.</p>
 <p>Click on an image to the left for more details.</p>
 </div>
 <div id="thumbnailPane">
 <img src="images/itemGuitar.jpg" width="301" height="105" alt="guitar"
 title="itemGuitar" id="itemGuitar" />
 <img src="images/itemShades.jpg" alt="sunglasses" width="301" height="88"
 title="itemShades" id="itemShades" />
 <img src="images/itemCowbell.jpg" alt="cowbell" width="301" height="126"
 title="itemCowbell" id="itemCowbell" />
 <img src="images/itemHat.jpg" alt="hat" width="300" height="152"
 title="itemHat" id="itemHat" />
 </div>
 <div id="detailsPane">

 <div id="description"></div>
 </div>
 </div>
</body>
</html>

Step 1: Modify the XHTML
Let’s start with the easy part, the XHTML and CSS that

create the page. Here’s Rob’s current version of the inventory

page with a few additions we’ll need:

You need to add a
reference to thumbnails.js.
That’s the script we’ll be
writing in this chapter.

It’s time to get the samples and get going.

Download the examples for the book at

www.headfirstlabs.com, and find the chapter01
folder. Now open the inventory.html file in a text

editor, and make the changes shown above.

This <div> holds the sm
all,

clickable images.

This <div> is where details about each item should go.

We’ll put item
details in here with
our JavaScript.

modify rob’s xhtml page

Chapter 1. using ajax Page 14 Return to Table of Contents

Chapter 1. using ajax
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 15

using ajax

body {
 background: #333;
 font-family: Trebuchet MS, Verdana, Helvetica, Arial, san-serif;
 margin: 0;
 text-align: center;
}

p { font-size: 12px; line-height: 20px; }
a img { border: 0; }

#wrapper {
 background: #750505 url('../images/bgWrapper.png') 8px 0 no-repeat;
 border: solid #300;
 border-width: 0 15px 15px 15px;
 height: 700px;
 margin: 0 auto;
 ...etc...

This is the cascading
style sheet for Rob’s
page. We’ll use the id
values on the <div>
elements to style the
page, and also later in
our JavaScript code.

To Do
Modify the XHTML

Initialize the page

Create a request object
Get the item’s details
Display the details

Here’s a short
version of the steps

from pages 12 and
13 that we can use
to work through
Rob’s page.

#detail {
...
}

rocknroll.css

Start out with no item detail and a blank area for the item’s description to go in when
something’s selected.

There’s a lot more CSS... you can see the complete file by downloading the examples from the Head First Labs web site.

Chapter 1. using ajax Page 15 Return to Table of Contents

Chapter 1. using ajax
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

16 Chapter 1

To Do
Modify the XHTML

Initialize the page
Create a request object
Get the item’s details
Display the details

Step 2: Initialize the JavaScript

We need to create the thumbnails.js file, and add a JavaScript

function to set up the initial event handlers for each thumbnail image in

the inventory. Let’s call that function initPage(), and set it to run

as soon as the user’s window loads the inventory page.

The initPage() function should get called as soon as the browser creates all the objects on the page.

initPage() sets up the onclick
behavior for each of the
thumbnails in the inventory.

To set up the onclick behavior for the thumbnails,

the initPage() function has to do two things:

Find the thumbnails on the page
The thumbnails are contained in a div called “thumbnailPane,” so we can find that

div, and then find each image within it.

11

Build the onclick event handler for each thumbnail
Each item’s full-size image is named with the title of the thumbnail image

plus “-detail”. For example, the detail image for the thumbnail with the title

FenderGuitar is FenderGuitar-detail.png. That lets us work out the

name of the image in our JavaScript.

The event handler for each thumbnail should set the src tag for the detail image (the

one with an id of “itemDetail”) to the detail image (for example, FenderGuitar-
detail.png). Once you’ve done that, the browser will automatically display the

new image using the name you supplied.

22

thumbnails.js

function
initPage {
 ...
}

window.onload occurs first

Chapter 1. using ajax Page 16 Return to Table of Contents

Chapter 1. using ajax
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 17

using ajax

Code Magnets
The code for the initPage function is all scrambled up on the fridge. Can
you put back the pieces that fell off? Remember to set an event handler
to run the initPage() function when the user’s window loads, too.

}

window.onload = initPage;

function initPage() {

thumb
s = d

ocume
nt.ge

tElem
entBy

Id("t
humbn

ailPa
ne").

getEl
ement

sByTa
gName

("IMG
");

for
 (v

ar
i=0

; i
<th

umb
s.l

eng
th;

 i+
+)

{

image = thumbs[i];

detailURL = 'images/' + this.title + '-detail.jpg';

// find the full
-size image name

// set the handler for
 each image

// find the thumbnai
ls on the page

// creat
e the on

click fu
nction

image.onclick = function() {

document.getEl
ementById("ite

mDetail").src
= detailURL;

getDetails(thi
s.title);

}
}

In an event handler, like onclick,
you can get a reference to the
object the event occurred on
with the “this” keyword.

Chapter 1. using ajax Page 17 Return to Table of Contents

Chapter 1. using ajax
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

18 Chapter 1

}

thumbs = document.getElementById("thumbnailPane").getE
lementsByTagName("img");

document.getElementById("itemDetail").src = detailURL;

getDetails(this.title);

Code Magnet Solution

window.onload = initPage;

function initPage() {

for (var i=0; i<thumbs.length; i++) {

image = thumbs[i];

detailURL = 'images/' + this.title + '-detail.jpg';

// find the full-size image name

// set the handler for
 each image

// find the thumbnai
ls on the page

// create the onclic
k function

image.onclick = function() {

All these “get...” functions use
the DOM to look up something
on the XHTML page.

We want to do this once
for every thumbnail.

JavaScript lets you define functions without giving them an explicit name.

Don’t forget all the
closing brackets, or your
JavaScript won’t run.

}

}

This sets initPage() up to

run once the user’s browser

loads the page.

These are the same ids we used in the CSS to style the page.

Clicking on a thumbnail changes the

detail image’s src attribute, an
d then

the browser displays the new image.

This function is
run whenever a
thumbnail image
is clicked.

Don’t worry too much about this now... we’ll talk about the DOM in detail a bit later.

When an image is clicked, that

image’s title is used to figure ou
t

the detail image’s URL.

initPage() sets up the page

Chapter 1. using ajax Page 18 Return to Table of Contents

Chapter 1. using ajax
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 19

using ajax

Test Drive
Create thumbnails.js, add the initPage() function, and
give the inventory page a whirl.
Create a file named thumbnails.js in a text editor. Add the code
shown on page 18, and then load inventory.html in your browser.
initPage() should run when the page loads, and you’re ready to try
out the detail images...

Click here....

...and an image is displayed here.

To Do
Update the XHTML

Initialize the JavaScript
Create a request object
Get the item’s details
Display the details

You can check another

item off the To Do list

for Rob’s inventory page.

The item’s details won’t show up yet, but the right image should appear.

Chapter 1. using ajax Page 19 Return to Table of Contents

Chapter 1. using ajax
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

20 Chapter 1

function createRequest() {
try {

 request = new XMLHttpRequest();

} catch (tryMS) {
 try {
 request = new ActiveXObject("Msxml2.XMLHTTP");

 } catch (otherMS) {
 try {
 request = new ActiveXObject("Microsoft.XMLHTTP");
 } catch (failed) {
 request = null;
 }
 }

}

return request;
}

Step 3: Create a request object
When users click on an item’s image, we also need to send a request

to the server asking for that item’s detailed information. But before we

can send a request, we need to create the request object.

The bad news is that this is a bit tricky because different browsers

create request objects in different ways. The good news is that we can

create a function that handles all the browser-specific bits.

Go ahead and create a new function in thumbnails.js called

createRequest(), and add this code:

This line tries to create a new request object, but it won’t work for every browser type.

That didn’t work either,
so try one more thing.

If the code gets here, nothing
worked. Return a null so that
the calling code will know there
was a problem.

This either returns a
request object, or “null”
if nothing worked.

Ready Bake
Code

To Do
Modify the XHTML

Initialize the page

Create a request object
Get the item’s details
Display the details

Ready Bake code is code

that you can just type

in and use... but don’t

worry, you’ll understand

all of this in just anot
her

chapter or two.

The first approach failed, so try ag
ain

using a different type of object.

thumbnails.js

function
createReq {
 ...
}

request objects are browser-specific

Chapter 1. using ajax Page 20 Return to Table of Contents

Chapter 1. using ajax
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 21

using ajax

Q: Am I supposed to understand all of this?

A: No, you’re not. For now, just try to get a general idea of how
all this looks and the way the pieces fit together. Focus on the big
picture, and then we’ll start to fill in the gaps in later chapters.

Q: So what’s an XMLHttpRequest?

A: XMLHttpRequest is what most browsers call the
request object that you can send to the server and get responses
from without reloading an entire page.

Q: Well, if that’s an XMLHttpRequest, what’s an
ActiveXObject?

A: An ActiveXObject is a Microsoft-specific
programming object. There are two different versions, and
different browsers support each. That’s why there are two
different code blocks, each trying to create a different version of
ActiveXObject.

Q: And the request object is called XMLHTTP in a Microsoft
browser?

A: That’s the type of the object, but you can call your variable
anything you’d like; we’ve been using request. Once you
have the createRequest() function working, you
never have to worry about these different types again. Just call
createRequest(), and then assign the returned value to
a variable.

Q: So my users don’t need to be using a specific browser?

A: Right. As long as their browsers have JavaScript enabled,
your users can be running any browser they want.

Q: What if they don’t have JavaScript enabled?

A: Unfortunately, Ajax applications require JavaScript to run.
So users who have JavaScript disabled aren’t going to be able
to use your Ajax applications.The good news is that JavaScript is
usually enabled by default, so anyone who has disabled JavaScript
probably knows what they’re doing, and could turn JavaScript
support back on if they wanted to use your Ajax app.

function
createReq {
 ...
}

function
createReq {
 ...
}

function
createReq {
 ...
}

Chapter 1. using ajax Page 21 Return to Table of Contents

Chapter 1. using ajax
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

22 Chapter 1

To Do
Modify the XHTML

Initialize the page

Create a request object
Get the item’s details
Display the details

Ready Bake
Code

Step 4: Get the item’s details

Once a user clicks on an item in the inventory, we need to send a request

to the server and ask for the description and details for that item. We’ve

got a request object, so here is where we can use that.

And it turns out that no matter what data you need from the server, the

basic process for making an Ajax request always follows the same pattern:

Get a request object
We’ve already done the work here. We just need to call

createRequest() to get an instance of the request

object and assign it to a variable.

request

imageID=escape(imageName)

1

The createRequest() function returns a request object that our code in getDetails() can use to talk to the server.

Configure the request object’s properties
The request object has several properties you’ll need to set.

You can tell it what URL to connect to, whether to use GET

or POST, and a lot more... you need to set this all up before

you make your request to the server.

2

url="getDetails.php?imageId=" + imageID;

open("GET", url, true);

You can tell your request
object where to make its
request, include details
the server will need to
respond, and even indicate
that the request should
be GET or POST.

request

createRequest()

thumbnails.js

function
getDetails {
 ...
}

createRequest()

lots of ajax is just javascript

Chapter 1. using ajax Page 22 Return to Table of Contents

Chapter 1. using ajax
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 23

using ajax

request

mageID=escape(imageName)

+ imageID;

onreadystatechange=displayDetails;

request

Tell the request object what to do when the
server responds
So what happens when the server responds? The browser looks at

another property of the request object, called onreadystatechange.

This lets us assign a callback function that should run when the

server responds to our request.

3

onreadystatechange is just anothe
r

property of the request object w
e

can set in our code.

The property’s value should be the name of a function to run once the server’s given an answer to our request.

This function is
called a callback
function... it
gets “called
back” with the
server’s response.Make the request

Now we’re ready to send the request off to the server and get a response.

4

The user clicks an image...
...that calls a function
in thumbnails.js...

...which creates
and configures a
request object...

...and makes a request
to the server.

thumbnails.js

function
getDetails {
 ...
}

Chapter 1. using ajax Page 23 Return to Table of Contents

Chapter 1. using ajax
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

24 Chapter 1

function getDetails(itemName) {

request = createRequest();

if (request==null) {

 alert("Unable to create request");

 return;

 }

var url= "getDetails.php?ImageID=" +

 escape(itemName);

request.open("GET",url,true);

 request.onreadystatechange = displayDetails;

request.send(null);

}

Let’s write the code for

requesting an item’s details

Once we know what our function needs to do, it’s pretty
easy to write the code. Here’s how the steps map to
actual JavaScript in thumbnails.js:

Add the getDetails() function to
your version of thumbnails.js

request

createRequest()

request

imageID=escape(imageName)

url="getDetails.php?imageId=" + imageID;

open("GET", url, true);

request

mageID=escape(imageName)

ageID;

onreadystatechange=displayDetails;

request

Get a request object1

Configure the request2

Set the callback function3

Send the request4

The onclick handler for each inventory image calls this function and passes in the clicked img element’s title attribute, which is the name of the item the image represents.

We’ve got to check to make
sure the request object
isn’t null... that’s how
we know if there was a
problem creating the object.

escape() takes care of
any characters that
might be a problem in
a request URL string.

thumbnails.js

function
getDetails {
 ...
}

thumbnails.js

function
getDetails {
 ...
}

thumbnails.js

function
getDetails {
 ...
}

createRequest()

send a request

Chapter 1. using ajax Page 24 Return to Table of Contents

Chapter 1. using ajax
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 25

using ajax

thumbnails.js

function
getDetails {
 ...
}

thumbnails.js

function
getDetails {
 ...
}

Always make sure you have a request
object before working with it
The first thing getDetails() does is call createRequest()
to get a request object. But you’ve still got to make sure that object

was actually created, even though the details of that creation are

abstracted away in the createRequest() function:

If the browser doesn’t support
XMLHttpRequest objects,
createRequest() returns a null.

function getDetails(itemName) {

request = createRequest();
if (request==null) {

 alert("Unable to create request");
 return;
 }

var url= "getDetails.php?ImageID=" +

 escape(itemName);

request.open("GET",url,true);

 request.onreadystatechange = displayDetails;

request.send(null);

}

This line asks for an
instance of the request
object and assigns it to
the variable “request.”

createRequest() returns a
null if it can’t get a request
object. So if we wind up in
this bit of code, we know
something’s gone wrong. We’ll
display an error to the user
and exit the function.

request or

null

getDetails()

createRequest() returns a request object if it can obtain one.

And here’s how that looks in
our code...

Ready Bake
CodecreateRequest()

Chapter 1. using ajax Page 25 Return to Table of Contents

Chapter 1. using ajax
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

26 Chapter 1

function getDetails(itemName) {
request = createRequest();
if (request==null) {

 alert("Unable to create request");
 return;
 }

var url= "getDetails.php?ImageID=" +

 escape(itemName);

request.open("GET",url,true);

 request.onreadystatechange = displayDetails;
request.send(null);

}

We’re still working
on getting the
details for an item.

To Do
Modify the XHTML

Initialize the page

Create a request object
Get the item’s details
Display the details

The request object is just an object
A request object is just a “normal” JavaScript object, and that means you can
set properties on it and call methods. We can talk to the server by putting
information in the request object.

Let’s break open() down a bit...

request.open(
"GET"

url
true);

The open() method initializes the connection.

“GET” indicates how to
send the data (the other
option is “POST”).

This is the url for the server-
side script that will respond to
the request.

This means that the request should
be asynchronous. That is, the code
in the browser should continue to
execute while it’s waiting for the
server to respond.

These parameters tell the
request object how we want it to connect to the server.

This line tells the request object
the URL to call. We send along the
name of the item, so the server
knows which details to send.

Q: Are there other properties of the request object?

A: Sure. You’ve already seen onreadystatechange, and when you need to
send XML or more complicated data to the server, then there are several others you’ll use.
For now, though, we just need the open() method and onreadystatechange.

thumbnails.js

function
getDetails {
 ...
}

request objects are JavaScript objects

Chapter 1. using ajax Page 26 Return to Table of Contents

Chapter 1. using ajax
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 27

using ajax

Hey, server... will you call me back at
displayDetails(), please?
The properties of the request object tell the server what to do when it receives the

request. One of the most important is the onreadystatechange property, which

we’re setting to the name of a function. This function, referred to as a callback, tells

the browser what code to call when the server sends back information.

The getDetails()
function sends the

request object to
the server.

This is the line
that tells the
browser what code
to call when the
server responds to
the request.

But when the server
responds, the browser
calls displayDetails(),
not getDetails().

thumbnails.js

function
getDetails {
 ...
}

thumbnails.js

function
getDetails {
 ...
}

getDetails()

displayDetails()

Web Server

request

request

The server runs whatever program was indicated by the request object’s URL.

getDetails.php

The server responds with
data for the request.

function getDetails(itemName) {

request = createRequest();

if (request==null) {

 alert("Unable to create request");

 return;

 }

var url= "getDetails.php?ImageID=" +

 escape(itemName);

request.open("GET",url,true);

 request.onreadystatechange = displayDetails;
request.send(null);

}

This is a reference to a
function, not a function
call. So make sure you don’t
include any parentheses at
the end of the function
name.

Chapter 1. using ajax Page 27 Return to Table of Contents

Chapter 1. using ajax
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

28 Chapter 1

Use send() to send your request
All that’s left to do is actually send the request, and that’s easy... just use the

send() method on the request object.

...and this means you’re not sending any extra data with the request.

You can send data in your URL string.
The request object allows us to send all kinds of data in

a variety of ways. In getDetails(), the item name is

part of the URL string:

var url= "getDetails.php?ImageID=" +

 escape(itemName);

Since that’s part of the URL sent to the server, we don’t

need to send anything else to the server in the send()
method. Instead, we just pass null... which means

“nothing.”

thumbnails.js

function
getDetails {
 ...
}

function getDetails(itemName) {

 request = createRequest();

 if (request==null) {

 alert("Unable to create request");

 return;

 }

 var url= "getDetails.php?ImageID=" +

 escape(itemName);

 request.open("GET",url,true);

 request.onreadystatechange = displayDetails;

 request.send(null);
}

You’re sending the
request here...

Asynchronous
apps make
requests using
a JavaScript
object, not a
form submit.

send() your request to the server

Chapter 1. using ajax Page 28 Return to Table of Contents

Chapter 1. using ajax
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 29

using ajax

The server-side code is...
 ...on the server.
That sounds obvious, but lots of times, you

don’t have to (or even get to) write the code

your web application is talking to. Instead,

you work with an existing program, where

you know the inputs and outputs, or tell

another group what you need.

Not only that, but you might also have one

server-side program that’s written in PHP,

and another in ASP.NET... and other than

the URL, you don’t have to change your

JavaScript code at all. Take a look:

thumbnails.js

function
getDetails {
 ...
}

getDetails()

displayDetails()

Web Server

request

request

getDetails.php

This is what you need to worry

about... the JavaScript code and

the request object.

Even if this part of things is your
responsibility, it’s totally separate
from your Ajax front-end code.

All you really need to know about
the server is the script’s name and
what your request object sends and
gets from the server.

Chapter 1. using ajax Page 29 Return to Table of Contents

Chapter 1. using ajax
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

30 Chapter 1

The server usually returns data to Ajax requests

In a traditional web app, the server always responds to a request from the browser by

sending back a new page. The browser throws away anything that’s already displayed

(including any fields the user has filled in) when that new page arrives.

The browser sends a request
to a url, possibly sending
along some request data.

The server sends back an
entire page.

Traditional server-side interactions

The server may do some processing, or may just load and send some text, but it always returns a full web page.

The server always
does some processing
and sends back data...
sometimes HTML,
sometimes just raw
information.

In an Ajax app, the server can return a whole page, part of a page, or

just some information that will be formatted and displayed on a web

page. The browser only does what your JavaScript tells it to do.

Ajax server-side interactions

The server responds, and
the browser runs your
callback function.

thumbnails.js

function
getDetails {
 ...
}

getDetails()

displayDetails()

Web Server

request

request

getDetails.php

Our JavaScript can use the server’s data to update just part of the page.

Web Server

servers return just what you need

Chapter 1. using ajax Page 30 Return to Table of Contents

Chapter 1. using ajax
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 31

using ajax

Ajax is server-agnostic
Ajax doesn’t require any particular server technology. You can use
Active Server Pages (ASP), PHP, or whatever you need and have
access to. In fact, there’s no need to get into the details of the server-
side technology because it doesn’t change how you build your
Ajax apps.

Here’s all that Ajax really sees:

request
parameters

response

This is what we’ll send
to the server.

This is what the server needs to send back.

This is how
Ajax sees
server-side
interactions.

What parameter and response do we need for the interaction
with the server for Rob’s memorabilia page?

Answers on page 40.

Chapter 1. using ajax Page 31 Return to Table of Contents

Chapter 1. using ajax
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

32 Chapter 1

Test Drive
Code getDetails(), and fire up your web browser.
Make sure you’ve got getDetails() coded in your
thumbnails.js file. Load up Rob’s memorabilia page, and try
clicking on one of the inventory images.

test drive

Chapter 1. using ajax Page 32 Return to Table of Contents

Chapter 1. using ajax
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 33

using ajax

readyState

Below on the left are several properties of the request object. Can you

match each property to what it does, or what information it contains?

responseText

responseXML

status

statusText

Q: Can you explain what a callback
function is again?

A: A callback function is a function that
is executed when something else finishes.
In Ajax, it’s the function that’s called when
the server responds to a request object.
The browser “calls back” that function at a
certain time.

Q: So a callback executes when the
server’s finished with a request?

A: No, it’s actually called by the browser
every time the server responds to the
request, even if the server’s not totally
done with the request. Most servers
respond more than once to say that they’ve
received the request, that they’re working
on the request, and then, again, when
they’ve finished processing the request.

Q: Is that why the request property is
called onreadystatechange?

A: That’s exactly right. Every time the
server responds to a request, it sets the
readyState property of the request
object to a different value. So we’ll need to
pay close attention to that property to figure
out exactly when the server’s done with the
request we send it.

A number that represents the

current state of the request object.

Contains textual information

sent back by the server.

Contains information sent back

by the server in XML format.

A status code returned by the server

indicating, for example, success or that

a requested resource is missing.

The status code message returned

by the server, for example, “OK” for

status 202.

Chapter 1. using ajax Page 33 Return to Table of Contents

Chapter 1. using ajax
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

34 Chapter 1

The status code message returned

by the server, for example, “OK” for

status 202.readyState

Below on the left are several properties of the request object. Your job was

to match each property to what it does, or what information it contains.

responseText

responseXML

status

statusText

status and
statusText are
different versions of the same information.

This one indicates that a request
is finished, and it’s now okay to
process the server’s results.

This is empty unless the server sends back data in XML format.

This is empty unless the
server sends back data as
text (and not XML).

A number that represents the

current state of the request object.

Contains textual information

sent back by the server.

Contains information sent back

by the server in XML format.

A status code returned by the

server indicating, for example,

success or that a requested

resource is missing.

request object properties

Chapter 1. using ajax Page 34 Return to Table of Contents

Chapter 1. using ajax
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 35

using ajax

Use a callback function to work with
data the server returns
How do we show the textual description for each item? Let’s assume the

server will send the details about an item as pre-formatted text in the

responseText property of the request object. So we just need to get

that data and display it.

Our callback function, displayDetails(), needs to find the

XHTML element that will contain the detail information, and then set its

innerHTML property to the value returned by the server.

request
responseText

The server returns the details in the responseText property of the request object.

To Do
Modify the XHTML

Initialize the page

Create a request object
Get the item’s details
Display the details

thumbnails.js

function
getDetails {
 ...
}

displayDetails()

Our callback function can use
the response data... ...and update the web page with the requested item’s details.

Q: So the server calls displayDetails() when it’s finished with the request?

A: No, the browser actually does that. All the server does is update the readystate property of the request
object. Every time that property changes, the browser calls the function named in the onreadystatechange
property. Don’t worry, though, we’ll talk about this in a lot more detail in the next chapter.

Chapter 1. using ajax Page 35 Return to Table of Contents

Chapter 1. using ajax
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

36 Chapter 1

thumbnails.js

function
display
Details {
 ...
}

function displayDetails() {

 if (request.readyState == 4) {

 if (request.status == 200) {

 detailDiv = document.getElementById("description");

 detailDiv.innerHTML = request.responseText;

 }

 }

}

Get the server’s response from the
request object’s responseText property
The data we want is in the request object. Now we just need to get that

data and use it. Here’s what we need:

This line gets a reference to
the XHTML element we’ll
put the item details in.

This line puts the XHTML returned by the server into that element.

Q: What’s that readyState property?

A: That’s a number that indicates where
the server is in its processing. 0 is the initial
value, and when the server’s completed a
request, it’s 4.

Q: So that first statement just checks
to see if the server’s finished with the
request?

A: You got it.

Q: Why do we have to check that
every time?

A: Because the browser will run your
callback every time the ready state changes.
Since a server might set this value to 1 when

it receives the request, and to 2 or 3 as it’s
processing your request, you can’t be sure
the server’s done unless readyState
is equal to 4.

Q: And the status property?

A: That’s the HTTP status code, like 404
for forbidden, and 200 for okay. You want
to make sure it’s 200 before doing anything
with your request object.

Q: Why would the server set the
ready state to 4 when the status code is
something like 404?

A: Good question. We’ll talk about that in
the next chapter, but can you think of how a
request could be complete and still have a
status code that indicates a problem?

Q: Isn’t innerHTML a bad thing to use?

A: It is, but sometimes it’s also very
effective. We’ll look at better ways to change
a page when we get more into the DOM in
later chapters. For now, though, it works,
and that’s the most important thing.

Q: Am I supposed to be getting all
this? There’s sure a lot going on in that
callback function...

A: For now, just make sure you know
that the callback is where you can use the
server’s response. We’ll talk about callbacks,
ready states, and status codes a lot more in
Chapter 2.

It’s okay if all of
this isn’t completely
clear to you. We’ll
look at ready states
and status codes in
a lot more detail in
the next chapter.

responseText stores the server’s response

Chapter 1. using ajax Page 36 Return to Table of Contents

Chapter 1. using ajax
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 37

using ajax

Test Drive
Code your callback, and test out the inventory page.
Add displayDetails() to your thumbnails.js file. You should also make

sure that the server-side program with the inputs and outputs detailed on page 30

is running, and that the URL in your getDetails() method is pointing to that

program. Then fire up the inventory page and click on an item.

When you click on an item, you
should see both a larger image
of the item, and details about
it.. all without a page reload.

 Confused about getting your
server-side program working?

Flip to Appendix I for some help on

getting things working on the server.

There are also some helpful server-side resources for the

book online at http://www.headfirstlabs.com.

Chapter 1. using ajax Page 37 Return to Table of Contents

Chapter 1. using ajax
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

38 Chapter 1

Goodbye traditional web apps...
Rob’s page is working more smoothly now, customers are coming
back in droves, and you’ve helped pair vintage leather with the
next-generation web.

...only changed the part of
the page that needed to
be updated.

Rob’s new, Ajax app:

...lets users keep viewing
the page while images
and descriptions are
loaded behind the scenes,
asynchronously.

...reduced the need for his
users to have super-fast
connections to use his site.

...reloaded the entire page
when a user clicked on an

Rob’s old, traditional web app:

...took a long time to load
because the entire page
had to be rendered by the
browser on every click.

...felt unresponsive because
the user had to wait on all
those page refreshes.

...lost Rob business, annoyed
his customers, and drained
his bank account.

Compare these benefits

with the list on page
10... they should look
pretty similar.

These aren’t problems that just Rob’s having. Almost all traditional web apps have these problems in some form or fashion.

ajax apps are peppy

Chapter 1. using ajax Page 38 Return to Table of Contents

Chapter 1. using ajax
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 39

using ajax

AjaxAcrostic
Take some time to sit back and give your right brain something to do. Answer

This is the language you use to script Ajax pages.

This type of function gets called when a process completes.

This request object property tells us when the server has finished processing.

If something goes wrong at the server, this property will tell us what.

The browser will put text that the server returns in this property.

If there’s a problem, we can get a description of it in this property.

47 48 49 50 51 52 53 54 55 56

35 36 37 38 39 40 41 42 43 44 45 46

29 30 31 32 33 34

19 20 21 22 23 24 25 26 27 28

11 12 13 14 15 16 17 18

1 2 3 4 5 6 7 8 9 10

49 1 31 45 13 54 10 29 23 39 33

15 51 8 14 22 19 28 37 9 39 40 34 8 3 44

31 9 38 14 8 6 26 46 8 39 40 24

Use the letters from the
blanks above to fill in the

se...

Chapter 1. using ajax Page 39 Return to Table of Contents

Chapter 1. using ajax
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

40 Chapter 1

request
item name

What parameter and response do we need to implement Rob’s
page?

We’ll send the server the name of the item, which is stored in the title attribute of that item’s image in the XHTML.

The server will send back the

formatted XHTML that

describes the item.

item details

From page 31

ajax is server-agnostic

Chapter 1. using ajax Page 40 Return to Table of Contents

Chapter 1. using ajax
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 41

using ajax

AjaxAcrostic Solution
Take some time to sit back and give your right brain something to do. Answer

This is the language you use to script Ajax pages.

This type of function get called when a process completes.

This request object property tells us when the server has finished processing.

If something goes wrong at the server, this property will tell us what.

The browser will put text that the server returns in this property.

If there’s a problem, we can get a description of it in this property.

47 48 49 50 51 52 53 54 55 56

S T A T U S T E X T

35 36 37 38 39 40 41 42 43 44 45 46

R E PS O N S E T E X T

29 30 31 32 33 34

S T A T U S

19 20 21 22 23 24 25 26 27 28

R E A D Y S T A T E

11 12 13 14 15 16 17 18

C A L L B A C K

1 2 3 4 5 6 7 8 9 10

J A V A S C R I P T

49

A
1

J
31

A
45

X
13

L
54

E
10

T
29

S
23

Y
39

O
33

U

15

B
51

U
8

I
14

L
22

D
19

R
28

E
37

S
9

P
39

O
40

N
34

S
8

I
3

V
44

E

31

A
9

P
38

P
14

L
8

I
6

C
26

A
46

T
8

I
39

O
40

N
24

S

Chapter 1. using ajax Page 41 Return to Table of Contents

Chapter 1. using ajax
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Table of Contents

Chapter 2. designing ajax applications... 1
Section 2.1. Mike's traditional web site sucks... 2
Section 2.2. Let's use Ajax to send registration requests ASYNCHRONOUSLY... 4
Section 2.3. Update the registration page.. 9
Section 2.4. Event Handlers Exposed.. 11
Section 2.5. Set the window.onload event handler... PROGRAMMATICALLY... 12
Section 2.6. Code in your JavaScript outside of functions runs when the script is read... 14
Section 2.7. What happens when.. 15
Section 2.8. And on the server.. 16
Section 2.9. Some parts of your Ajax designs will be the same... every time... 18
Section 2.10. createRequest() is always the same... 19
Section 2.11. Create a request object... on multiple browsers.. 22
Section 2.12. Ajax app design involves both the web page AND the server-side program... 24
Section 2.13. The request object connects your code to the web browser... 30
Section 2.14. You talk to the browser, not the server.. 31
Section 2.15. The browser calls back your function with the server's response.. 34
Section 2.16. Show the Ajax registration page to Mike.. 36
Section 2.17. The web form has TWO ways to send requests to the server now.. 37
Section 2.18. Let's create CSS classes for each state of the processing.. 40
Section 2.19. ...and change the CSS class with our JavaScript... 41
Section 2.20. Changes? We don't need no stinkin' changes!... 42
Section 2.21. Only allow registration when it's appropriate.. 43

Chapter 2. designing ajax applications

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

this is a new chapter 43

designing ajax applications2

Thinking Ajaxian

Welcome to Ajax apps—it’s a whole new web world.

think about your applications

differently

avoid making

mistakes rethinking design.

Chapter 2. designing ajax applications Page 1 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

44 Chapter 2

Mike’s traditional web site sucks
Mike’s got the hippest movie reviews going, and he’s taking his popular

opinions online. Unfortunately, he’s having problems with his registration

page. Users visit his site, select a username, type in a few other details, and

submit their information to get access to the review site.

The problem is that if the username’s taken, the server responds with the

initial page again, an error message... and none of the information the user

already entered. Worse, users are annoyed that after waiting for a new page,

they get nothing back but an error message. They want movie reviews!

Right now the user fills out the form and clicks the “Register” button... and then
waits, and hopes for the best.

Note from HR: Can we use a less offensive term? How about “consistently annoys every one of Mike’s users”?

Mike’s movie review site
looks great and has tons

of terrific reviews... but
only if users can get
signed up and past the
registration page.

Users shouldn’t have to f
ill out

eight fields to find out
 if the

data in the first field
is valid.

web app in need of ajax makeover

Chapter 2. designing ajax applications Page 2 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 45

designing ajax applications

Mike’s got real problems, but with one Ajax app under your belt, you should probably have some
ideas about what Mike needs. Take a look at the diagram of what happens with Mike’s app now,
and make notes about what you think should happen. Then, answer the questions at the bottom
of the page about what you’d do to help Mike out.

The server displays a
Welcome screen...

...or it re-displays
the screen with an
error message.

Everything the user

entered is gone… the

fields are all empty.

Web Server

A new user fills out the registration form1

The form is submitted to a web server2

or

3 A server-side program verifies and
validates the registration information...

4 ...and returns a new web page to the

What do you think is the single biggest problem with Mike’s site?

What would you do to improve Mike’s site?

Chapter 2. designing ajax applications Page 3 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

46 Chapter 2

Let’s use Ajax to send registration
requests ASYNCHRONOUSLY
Ajax is exactly the tool you need to solve the problem with Mike’s page. Right
now the biggest problem is that users have to wait for a full page refresh
to find out their requested username is already taken. Even worse, if they
need to select a different username, they’ve got to re-type all their other
information again. We can fix both of those problems using Ajax.

We’ll still need to talk to the server to find out whether a username has been
taken, but why wait until users finish filling out the entire form? As soon
as they enter a username, we can send an asynchronous request to the
server, check the username, and report any problems directly on the page—
all without any page reloads, and without losing the user’s other details.

Let’s check the requested username as soon as the user leaves the field.

The user can fill out the rest
of the form while the server
is checking the username.

You already know how
to send an asynchronous
request to the server.

The callback displays

an error only if
there’s a problem.
Meanwhile, the user’s

still working.

The server lets our callback function know if the
username is taken or okay to use.

request

request

Did you write down
something similar to this as
Mike’s biggest problem?

It’s okay if you didn’t think about sending the request as soon as the user types in their username... but bonus credit if you did!

Potential fan of Mike’s
online review site

JavaScript

function
callback {
 ...
}

asynchronous requests

Chapter 2. designing ajax applications Page 4 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 47

designing ajax applications

Don’t annoy your users... ever!
On the Internet, your competitors are only a

click away. If you don’t tell your users about a

problem right away, or if you ever make them

re-do something, you’re probably going to lose

them forever.

Mike’s site may not be a big moneymaker (yet), or

even seem that important to you... but it might to

his fans. One day a user you’re helping him not

annoy may land him a six-figure income writing

movie reviews for the New York Times. But Mike

won’t ever know if his site is hacking his users off.

That’s where your Ajax skills can help.

Don't annoy your users
If there’s a problem with
your web app, let your users
know about it as quickly
and clearly as possible. And

you should never throw away
anything the user has already done, even
if something happened that they (or you)
weren’t expecting.

Important Ajax design principle

Q: That design principle isn’t really Ajax-
specific, is it?

A: Nope, it applies to all web applications,
... in fact, to all types of applications. But with
Ajax apps, especially asynchronous requests,
lots of things can go wrong. Part of your job
as a good Ajax programmer is to protect your
users from all those things, or at least let them
know what’s going on if and when they do
happen.

Chapter 2. designing ajax applications Page 5 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

48 Chapter 2

It’s time to get to work on Mike’s site. Below are 5 steps that you’ll need to execute to get
his site working, but the details about each step are missing, and the ordering is a mess.
Put the steps in order, and write a sentence or two about exactly what should happen on
each step.

Verify the requested username??

Set up event handlers for the web form’s fields
??

Create and configure a new request object??

Report any problems with the requested username??

Update the registration page’s XHTML and CSS??

plan mike’s app

Chapter 2. designing ajax applications Page 6 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 49

designing ajax applications

After you’ve got your steps in order, take a look at the two diagrams below that describe
some of the interactions in an Ajax version of Mike’s app. See if you can fill in the blanks so
that the diagrams are complete and the annotations are accurate.

The JavaScript function creates and

 the object.

The request object tells
the what
 the user chose.

The returns a value indicating
whether the has been .

The function updates the page to show success or failure without .

The event triggers a call to our JavaScript.

request

username

request

0

validation.js

validation.js

We can show a little
iconic checkmark to
give the user some
visual feedback.

Chapter 2. designing ajax applications Page 7 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

50 Chapter 2

Update the registration page’s XHTML and CSS
We’ll need to add <script> elements to the registration form to
reference the JavaScript code we’ll be writing.

11

Create and configure a new request object
We can use the same createRequest() function from Chapter 1 to
create the request, and then we’ll add the user’s requested username to
the URL string to get that over to the server.

33

Verify the requested username
Once we’ve created a request object, we need to send it off to the
server to make sure that the requested username hasn’t been taken
by someone else. We can do this asynchronously, so the user can keep
filling in the page while the server’s checking on their username.

44

Report any problems with the requested username
When the request object returns, the callback function can update the
page to show whether the username check succeeded or failed.

55

Set up event handlers for the web form’s fields
We’ll need some initiational code to set up an onblur event for the
username field on the page. So when the user leaves that field, we’ll
start the request process.

22

Your job was to order the steps to build an Ajax-version of Mike’s movie review site, and fill in the
missing descriptions of each step. You also should have filled in the missing words in the diagrams.

Technically you can write the code for these steps in any order, but this is the flow that the app will follow and that we’ll use to update Mike’s app in this chapter.

The JavaScript function creates and

sends the request object.
The onblur event triggers a call to our JavaScript.

request

usernameThe request object tells
the server what
username the user chose.

The server returns a value indicating
whether the username has been accepted.

The callback function updates the page to show success or failure without losing any of the user’s information.

request

0

We skimmed this function
in the last chapter, but
we’ll look at it in detail
in this chapter.

validation.js

validation.js

asynchrony can reduce annoyances

Chapter 2. designing ajax applications Page 8 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 51

designing ajax applications

Update the registration page

<head>
 <title>Mike's Movies</title>
 <link href="movies.css" rel="stylesheet" type="text/css" />

</head>

The basic structure of Mike’s registration page is already in

place, so let’s go ahead and add a <script> tag to load

the JavaScript we’ll write. Then, we can set up the username

field on the web form to call a JavaScript function to make a

request to the server.

Just like in the last chapter, we’ll write
validation.js as we go through the chapter.

Download the registration page’s XHTML and CSS.

If you haven’t already done so, download the sample files for

the chapter from www.headfirstlabs.com. Look in the

Chapter2 folder for the file named registration.html,

and then add the script tag shown in bold.

Q: What’s the big deal? This is all
just like the rock and roll site from last
chapter, isn’t it?

A: So far, it is. But most Ajax apps start
with a few <script> tags and some
external JavaScript files.

Q: But we’re still just sending a
request and getting a response, right?

A: Sure. In fact, almost all Ajax apps can
be described that simply. But as you’ll see
as we get into the registration page, there
are actually two interactions possible: the
one we’re building to check a username, and
the Submit button the user will press when
they’ve filled out the form.

Q: What’s the big deal about that?

A: What do you think? Can you see any
problems with having two ways of making
two different requests to a web server?

Make these
changes in
registration.
html, Mike’s
registration page.

<html>
<script src=”...
js” />
<img
src=”siteLogo.
png” />
</html>

registration.html

Use an opening and
closing <script> tag.

Some browsers will error
out if you use a self-

closing <script> tag, like <script />.
Always use separate opening and
closing tags for <script>.

Chapter 2. designing ajax applications Page 9 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

52 Chapter 2

Separate your page’s content from its behavior.
We could call the JavaScript directly from the XHTML by, for

example, putting an onblur event in the username form field.

But that’s mixing the content of our page with its behavior.

The XHTML describes the content and structure of the

page: what data is on the page, like the user’s name and a

description of the movie review site, and how it’s organized. But

how a page reacts to the user doing something is that page’s

behavior. That’s usually where your JavaScript comes in. And

the CSS defines the presentation of your page: how it looks.

Keeping content, behavior, and presentation separate is a good

idea, even when you’re building a relatively simple page all by

yourself. And when you’re working on complex applications

that involve a lot of people, it’s one of the best ways to avoid

accidentally messing up somebody else’s work.

Separate your page's
content, behavior,
and presentation.

Whenever possible, try to keep
your page’s content (the XHTML)

separate from its behavior (JavaScript
and event handlers) and its presentation
(the CSS look-and-feel). Your sites will be
more flexible and easier to maintain and
update. You’ll hear some people

refer to this principle as
unobtrusive JavaScript.

separate content from presentation from behavior

Chapter 2. designing ajax applications Page 10 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 53

designing ajax applications

Head First: It’s good to have you with us, Event

Handler. We’ve got some really interesting questions

for you this week.

Event Handler: Really? I’m always eager to

respond to questions.

Head First: Actually, there’s this one question that

everyone’s been asking. Where exactly are you from?

Event Handler: Well, I hail from the land of

ECMA, which was—

Head First: Oh, no, I mean, where are you called
from?

Event Handler: Hmm... Well, I think the ECMA

folks might want their story told, but if you insist...

I usually get called from an XHTML form field or

a button, things like that. Sometimes from windows,

too.

Head First: So you’re called from XHTML pages?

Event Handler: Most of the time, that’s right.

Head First: That’s what I thought. Well, that settles

the dispute. You all heard it here first—

Event Handler: Wait, wait! What dispute?

Head First: Well, we had JavaScript calling in,

swearing he could call you. Something about

behavior calling behavior... it was really just

nonsense.

Event Handler: Oh, you must be talking about

assigning me programmatically. Very smart, that

JavaScript...

Head First: Programmatically? What does that

mean?

Event Handler: You see, I’m really just a property

at heart—

Head First: Uh oh, is this more about ECMA?

Event Handler: —that can be set with JavaScript.

No, now listen. You know about the DOM, right?

Head First: Well, not really... isn’t that a later

chapter?

Event Handler: Never mind. Look, everything on

a web page is just an object. Like fields and buttons,

they’re just objects with properties.

Head First: Okay, sure, we’ve met some fields

before. Nice folks. But Button, he never would return

our calls...

Event Handler: Well, anyway, events like onblur
or onload are tied to me through those properties.

Head First: You mean, like in XHTML when you

say onblur="checkUsername()" on an input

element?

Event Handler: Exactly! It’s just a property of

the input field. You’re just telling the browser what

function to run... you know, how to handle that

event.

Head First: I’m totally lost...

Event Handler: Well, you can use JavaScript to

assign a value to a property of an object, right?

Head First: So you’re saying that you don’t have to

just assign event handlers from an XHTML page?

Event Handler: Right! You can do it directly

in JavaScript code... and keep your content and

structure separate from your behavior.

Head First: Well, this is quite surprising. But how

do you get your JavaScript to run in the first place to

assign an event handler?

Event Handler: Well, that’s the trick. Any ideas?

Head First: I’m not sure. Let’s ask our audience...

Event Handlers Exposed
This week’s interview:
Where are you really from?

How can you get an initial piece of JavaScript to run
without referencing a function in your XHTML page?

Chapter 2. designing ajax applications Page 11 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

54 Chapter 2

First, a user points their browser at Mike’s registration page.

Then, the browser starts parsing the page, asking for
other files as they’re referenced.

The browser requests the
XHTML registration page...

http://headfirstlabs.com/.../registration.html

...and the server sends
back the page.

validation.js

bgContent.jpg

The browser asks for each file referenced in the XHTML...

...and the server sends
the requested files back
(in any order it wants).

bgContent.jpg

validation.js

Set the window.onload event handler...
PROGRAMMATICALLY
We want some JavaScript code to run when the registration
page loads, and that means attaching that code as the event
handler on one of the first page events, window.onload.

And we can do that programmatically by setting the onload
property of the window object. But how do we do that? Let’s
look at exactly what happens when the registration page is
requested by a user visiting Mike’s movie review site:

<html>
<script src="...
js" />
<img
src="bgContent.
jpg" />
</html>

registration.html

<html>
<script src="...
js" />
<img
src="siteLogo.
png" />
</html>

registration.html

onload happens first

Chapter 2. designing ajax applications Page 12 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 55

designing ajax applications

initPage()

window

If the file is a script, the browser parses the script, creates
objects, and executes any statements not in a function.

Finally, after all referenced files are loaded and parsed, the
browser triggers the window.onload event and calls any
function that’s registered to handle that event.

Some statements result
in objects being created.

Other statements
can set properties on
those objects.

Functions are
defined as well.
Statements in
functions aren’t
run until the
function is called.

Everything on
the page has been
displayed now...

...so the browser triggers onload.

onload = initPage

theImg

window

Everything on the XHTML page, like an image, is represented by an object.

The onload
property of the
window object
is set.

These assignments are
outside of any function,
so they’re run when the
JavaScript is first parsed.

onload = initPage

validation.js

validation.js

All of this happens b
efore

you can actually us
e the

page... so it’s light
ning fast!

Chapter 2. designing ajax applications Page 13 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

56 Chapter 2

window.onload = initPage;

function initPage(){
document.getElementById("username").onblur =

 checkUsername;
}

function checkUsername() {
// get a request object and send

 // it to the server
}

function showUsernameStatus() {
// update the page to show whether

 // the user name is okay
}

We want to set an event handler up to run as soon as a user loads the

registration page. So we need to assign a function to the onload
property of the window object.

And to make sure this event handler is assigned as soon as the page

loads, we just put the assignment code outside of any functions in

validation.js. That way, before users can do anything on the

page, the assignment happens.

This line tells the browser to call the
initPage function as soon as the elements on the page have been loaded.

This tells
the browser
to call the
checkUsername()
function when
the user leaves
the username
field on the form.

This is the
function that
will create
and send the
request object.
We’ll build this
a little later.

This will update the page
after the browser gets a
response from the server.

We’ll look at getElementByID in
detail in Chapters 5 and 6. For now,
you only need to understand that it
returns an element in the XHTML
page with the specified id.

Code in your JavaScript outside of
functions runs when the script is read

Create the initial version of validation.js.

Create a new file called validation.js in a text

editor, and add the function declarations shown above.

Remember to assign the initPage() function to the

window object’s onload property!

Here’s another case where
we’re assigning an event
handler programmatically.

This code isn’t in a function... it r
uns

as soon as the script file is read
by

the web browser.

validation.js

initialize mike’s registration page

Chapter 2. designing ajax applications Page 14 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 57

designing ajax applications

registration.html

When the browser loads the XHTML

file, the <script> tag tells it to load a

JavaScript file. Any code that’s outside of a

function in that script file will be executed

immediately, and the browser’s JavaScript

interpreter will create the functions,

although the code inside those functions

won’t run yet.

The window.onload statement isn’t in a

function, so it will be executed as soon as the

browser loads the validation.js script file.

The window.onload statement assigns the

initPage() function as an event handler. That

function will be called as soon as all the files the

XHTML refers to have been loaded but before

users can use the web page.

The initPage() function runs. It finds

the field with an id of “username.” Then, it

assigns the checkUsername() function to

the onblur event of that field.

This is the same as putting

onblur="checkUsername()" in the

XHTML. But our way is cleaner because it

separates the code (the JavaScript function)

from the structure and content (the XHTML).

What happens when...
There’s a lot going on in this step. Let’s go through it to make

sure everything’s happening exactly when we want it to.

First...

...and then...

...and finally... initPage() sets up the link between the username input field and an event handler.

validation.js

validation.js

registration.html

username.onblur

validation.js

initPage()

validation.js sets
window.onload
to call initPage()
when the onload
event occurs.

Even though these happen in sequence,
ALL of this occurs before users can
interact with the web page.

window.onload

Both the window.onload
assignment and the initPage() function are in validation.js.

Chapter 2. designing ajax applications Page 15 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

58 Chapter 2

username

“okay” or “denied”

We’re going to send the
user’s requested username

to the server.

The server will return “okay” if
the username is available, or
“denied” if the name has already
been taken.

request

And on the server...
Before we can test out all our work on Mike’s registration page,
we need to check out the server. What does the server need to get
from our request? What can we expect from the server?

 Server-side help is
online.

Remember, you can
get sample server-side

scripts and help with installing them
online at
http://www.headfirstlabs.com.

Q: What’s that window object again?

A: The window object represents the
user’s browser window.

Q: So window.onload runs as soon as
the user requests a page?

A: Not quite that fast. First, the browser
parses the XHTML and any files referenced
in the XHTML, like CSS or JavaScript. So
code in your scripts outside of functions
is run before the function specified in the
window.onload event.

Q: And that’s why I can assign a
function to window.onload in my script
file?

A: Exactly. Any scripts referenced in your
XHTML page are read before the onload
event triggers. Then, after onload
triggers, users can actually use your page.

Q: I thought you had to call JavaScript
code to get it to run. What gives?

A: Good question. You have to call code
in JavaScript functions to get it to run. But
any code that’s not in a function gets run as
soon as the browser parses that line of code.

Q: But we should probably test this
and make sure it works, right?

A: Right. Always test your application
designs before you assume they’re working.

Q: But nothing happens in this code.
How do I test it?

A: That’s another good question. If you
have code that doesn’t produce a visible
result, you may want to resort to the trusty
alert() function...

It doesn’t matter if the server’s
running PHP, ASP, or something else, as long as it responds to our

requests in the same way.

server-side requirements

Chapter 2. designing ajax applications Page 16 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 59

designing ajax applications

Test Drive
Take the new registration page for a spin.
Make sure you’ve made all the changes to registration.html and validation.js,
and then load the registration page up in your browser. Doesn’t look much different, does it?

The initPage() function doesn’t do anything visible, and checkUsername() function

doesn’t do anything at all yet... but we still need to make sure checkUsername() is actually

called when users enter a username and go to another field.

It’s a bit of a hack, but let’s add some alert() statements to our code to make sure the

functions we’ve written are actually getting called:

validation.js

Now try things out!

The alert() function gives

us some visual feedback...

now we know initPage() is

getting called...

...as well as
checkUsername()
when you enter a
username and leave
the form field.

window.onload = initPage;

function initPage(){
document.getElementById("username").onblur = checkUsername;
alert("Inside the initPage() function");

}

function checkUsername() {
// get a request object and send it to the server
alert("Inside checkUsername()");

}

function showUsernameStatus() {
// update the page to show whether the username is okay

}

Chapter 2. designing ajax applications Page 17 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

60 Chapter 2

Some parts of your Ajax designs
will be the same... every time
We’ve already used window.onload and an initPage()
function twice: once for Rob’s rock and roll store, and again for
Mike’s registration page. Next up is creating a request object that
works the same for the registration page as it did for Rob’s rock
and roll site.

In fact, lots of things in Ajax apps are the same. Part of your job,
though, is to build code so you don’t have to write those same bits
of code over and over again. Let’s see how creating and using a
request object looks in Mike’s movie review site:

request

Good application designers look for similarities and find ways to reuse code from other designs and applications.

validation.js

Your page loads up and
handles application-specific
tasks and initialization.

1

Application-specific JavaScript
gets called and needs to make
a request to a server.

2

A new request
object is created.

3

The request object is
configured with application
data and sent to the server.

4

Here’s the part that
’s the same

over and over again
 in every

Ajax application—creating the

request object.

Most of these detai
ls vary

from application to app
lication,

depending on funct
ionality,

layout, style, etc.

request

username

request = createRequest();

createRequest() {...}

Web Server

"okay"
"denied"

The server replies with

“okay” or “denied.”

The server returns a response
to the browser using the
request object.

5

reusability rocks

Chapter 2. designing ajax applications Page 18 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 61

designing ajax applications

createRequest() is always the same

function createRequest() {
try {

 request = new XMLHttpRequest();
} catch (tryMS) {

 try {
 request = new ActiveXObject("Msxml2.XMLHTTP");
 } catch (otherMS) {
 try {
 request = new ActiveXObject("Microsoft.XMLHTTP");
 } catch (failed) {
 request = null;
 }
 }
}

return request;
}

For this to be reusable, it can’t depend on a certain browser or application-specific details.

Remember, we have
to keep trying until
we find a syntax
that the browser
understands. This line sends the request back to the calling code.

Q: So what is this request object thing really called?

A: Most people call it an XMLHttpRequest, but that’s a real mouthful.
Besides, some browsers call it something different, like XMLHTTP. It’s really
easier to simply refer to it as a request object, and avoid being too browser-
specific. That’s how most everyone thinks about it anyway: as a request

We need a function to create a request object in almost
every Ajax application... and we’ve already got one. It’s
the createRequest() function you saw back in
Chapter 1, in fact. Let’s take a closer look at how this
function creates a request in all types of situations, with
all types of client browsers.

This handles lots of
browsers and, therefore,
lots of different users.

IE 5 on the Mac still doesn’t
work, even with this
browser-independent code.

Chapter 2. designing ajax applications Page 19 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

62 Chapter 2

Copy and paste is not good code reuse.
The createRequest() function for Mike’s movie site is

identical to the createRequest() function from Rob’s site

in Chapter 1. And copying that code from the script you wrote

in Chapter 1 into your new validation.js is a bad idea. If you

need to make a change, you’ll now have to make it in two places.

And what do you think will happen when you’ve got ten or

twenty Ajax apps floating around?

When you find code that’s common across your apps, take

that code out of application-specific scripts, and put it into a

reusable utility script. So for createRequest(), we can pull

it out of validation.js in the movie site and create a new

script. Let’s call it utils.js and start putting anything that’s

common to our apps into it.

Then, each new app we write can reference utils.js, as well

as a script for application-specific JavaScript.

requestvalidation.js

ernameuse

est = createRequest();

createRequest() {...}

"okay""
d"

The createRequest() function is

the same across all apps... s
o let’s

pull it out of valid
ation.js, and put

it into a new utility script we can

reuse in all our app
s.Most of this is application-specific... it can’t easily be reused.

utils.js

function
createReq {
 ...
}

avoid copy-and-paste

Chapter 2. designing ajax applications Page 20 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 63

designing ajax applications

Separate what's
the same across
applications, and
turn that code
into a reusable
set of functions.

Open up registration.html, and add a new <script> tag
referencing the new JavaScript, utils.js.

Create a new file and name it utils.js. Add the
createRequest() function from the last chapter, or from page 61,
into the script, and save your changes.

utils.js

function
createReq {
 ...
}

function createRequest() {
try {

 request = new XMLHttpRequest();
} catch (tryMS) {

 try {
 request = new ActiveXObject("Msxml2.XMLHTTP");
 } catch (otherMS) {
 try {
 request = new ActiveXObject("Microsoft.XMLHTTP");
 } catch (failed) {
 request = null;
 }
 }
}

return request;
}

<head>
 <title>Mike's Movies</title>
 <link href="movies.css" rel="stylesheet" type="text/css" />

 <script src="scripts/validation.js" type="text/javascript"></script>
</head>

<html>
<script src="...
js" />
<img
src="siteLogo.
png" />
</html>

registration.html

It’s usually a good idea to put your utility code first and your application-specific code second. Getting into habits like this will give all your code a familiar, organized feel.

If you’ve already added createRequest() to validation.js, be
sure to remove that function. createRequest() should only appear
in your utils.js script now.

Q: Why did you reference utils.js ahead of
validation.js?

A: Lots of times your application-specific
code will call your utilities. So it’s best to make
sure the browser parses your utility code before
it parses any code that might call those utilities.
Besides, it’s a nice way to keep things organized:
utilities first, application-specific code second.

Q: But I still don’t understand how
createRequest() actually works. What gives?

A: Good question. We’ve identified
createRequest() as reusable and
moved it into a utility script. That’s a good thing,
but we’ve still got to figure out what all that code
is actually doing.

Make each of
these changes
to your own
code, and check
off the boxes
as you go.

Chapter 2. designing ajax applications Page 21 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

64 Chapter 2

Create a request object... on multiple browsers
It’s time to break into JavaScript and figure out exactly what’s going on. Let’s walk

through exactly what each piece of createRequest() does, step by step.

Create the function
Start by building a function that any other code can call when it needs a request object.

11

function createRequest() {
// create a variable named "request"

}

Try to create an XMLHttpRequest for non-Microsoft browsers
Define a variable called request, and try to assign to it a new instance of the

XMLHttpRequest object type. This will work on almost all browsers except

Microsoft Internet Explorer.

22

function createRequest() {
 try {

 request = new XMLHttpRequest();
 } catch (tryMS) {

 // it didn't work, so we'll try something else
 }
}

Try to create an ActiveXObject for Microsoft browsers
In the catch block, we try to create a request object using the syntax that’s

specific to Microsoft browsers. But there are two different versions of the

Microsoft object libraries, so we’ll have to try both of them.

33

This function can
be called from
anywhere in our
application.

XMLHttpRequest
works on Safari,
Firefox, Mozilla,
Opera, and
most other
non-Microsoft
browsers.

Most versions of IE support this syntax...

...but some of them require
a different library.

No matter what syntax we use

to get it, the request object will

behave the same once we have an

instance of it. This insulates the
calling code from
all the messy
details of browser
compatibility.

All of this
code here...

...goes in here.

utils.js

function
createReq {
 ...
}

good apps work on multiple browsers

try {

} catch (otherMS) {
try {

 request = new ActiveXObject("Microsoft.XMLHTTP");
} catch (failed) {

 // that didn't work either--we just can't get a request object
}

}

Chapter 2. designing ajax applications Page 22 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 65

designing ajax applications

function createRequest() {
try {

 request = new XMLHttpRequest();
} catch (tryMS) {

 try {
 request = new ActiveXObject("Msxml2.XMLHTTP");
 } catch (otherMS) {
 try {
 request = new ActiveXObject("Microsoft.XMLHTTP");
 } catch (failed) {
 request = null;
 }
 }

}

return request;
}

If all else fails, return null
We’ve tried three different ways of obtaining a request object. If the parser
reaches this request block, that means they’ve all failed. So declare request as
null, and then let the calling code decide what to do about it. Remember, null
is the object you have when you don’t have an object.

44

request = null; Returning null puts the burden on the calling code, which can decide how to report an error.

For non-Microsoft
browsers

For the Internet
Explorer fans
out there

We could generate an error here, but we’ll let the calling code decide what to do if we can’t get a request object.

Different browsers use different
syntax to obtain a request object.
Your code should account for each
type of syntax, so your app works
in multiple browsers.

No matter what syntax you use
to get an instance of the request
object, the object itself always
behaves the same way.

Returning a null if you can’t get
an instance of the request object
lets the calling code decide what
to do. That’s more flexible than
generating an error.

This goes in the

final catch block
.

No matter what,
something’s
returned even if
it’s just a null value.

Put it together, and return request
All that’s left is to return request. If things went okay, request points to a request object.
Otherwise, it points to null:

55

Chapter 2. designing ajax applications Page 23 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

66 Chapter 2

Ajax app design involves both the web
page AND the server-side program
Even though there was already a web form for Mike’s registration page,

we’ve got to interact with that form to get the user’s username, and later on,

to update the page with an error message if the selected username’s taken.

And even though we’re letting someone else worry about writing the server-

side code, we’ve still got to know what to send to that code... and how to

send that information.

Take a look at the steps we need to perform to check a username for validity.

Most of these steps are about interacting with either the web form or a

server-side program:

Try to get a request object11

22

Get the username the user typed into the form33

Append the username to server url55

Tell the browser how to send the request to the server77

Send the request object88

Remember,
createRequest()
doesn’t handle
errors, so we’ll need
to do that ourselves.

These have to do with
getting the username
to the server.

This is the “callback.” We’ll
write it in a few pages.

Now we’re through until the request returns, and the browser gives it to the callback.

This is what the call to
createRequest() does.

characters for an HTTP request
44

This interacts with
the web form.

Here’s more server interaction.

Good Ajax design is mostly
about interactions. You've got
to interact with your users via
a web page, and your business
logic via server-side programs.

Tell the browser what function to call when the server
responds to the request

66

ajax is about interaction

Chapter 2. designing ajax applications Page 24 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 67

designing ajax applications

Code Magnets
Most of the code for the checkUsername() function is scrambled up
on the fridge. Can you reassemble it? The curly braces fell on the
floor, and they were too small to pick up. Feel free to add as many of
those as you need.

}

request = createRequest();

function checkUsername() {

if (request == null)

} els
e {

var url = "checkName.php?username=" + username;

request.onreadystatechange = showUsernameStatus;

request.open("GET", url, true);

request.
send(nul

l);

var theName = document.getElementById("username").value;

var username
 = escape(th

eName);

validation.js

alert("Unable to create request");

Chapter 2. designing ajax applications Page 25 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

68 Chapter 2

alert("Unable to create request");

}

request = createRequest();

function checkUsername() {

if (request == null)

} else {

var url = "checkName.php?username=" + username;

request.onreadystatechange = showUsernameStatus;

request.open("GET", url, true);

request.send(null);

}

First, we call our utility
function in utils.js to get
the request object.

If we get back a null,
the function failed...

...so we’ll tell the user.

The JavaScript escape function cleans up
what

the user entered, just in case there
 are things

like spaces or question marks in the text.

getElementById grabs the
element on the form with
the id “username.”

value is what the user actually typed in.

We’re appending the
username to the URL.

This is the callback that the browser
will send the request object to when
the server answers the request. This tells the browser how to send the

request. We’re using the “GET” form
method and sending it to the url
contained in the url variable. And “true”
means it’s going asynchronously-the user
can keep filling out the form while the
server checks their username.send() actually sends the

request object off to the
server. The null means
we’re not sending any other
information along with it.

var theName = document.getElementById("username").value;

var username = escape(theName);

Code Magnet Solutions
Most of the code for the checkUserName() function is scrambled
up on the fridge. Your job was to reassemble the code into a
working function.

utils.js

function
createReq {
 ...
}

validation.js

This code all belongs
 in

validation.js.

validate the requested username

Chapter 2. designing ajax applications Page 26 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 69

designing ajax applications

Q: What does that getElementById() thing do exactly?

A: We’ll talk about getElementById()a lot when we
look at the DOM in Chapters 5 and 6. For right now, all you need to
understand is that it returns a JavaScript object that represents an
XHTML element on a web page.

Q: And “value”? What’s that?

A: The getElementById() function returns a JavaScript
object that represents an XHTML element. Like all JavaScript objects,
the object the function returns has properties and methods. The
value property contains the text that the element contains, in this
case, whatever the user entered into the username field.

The JavaScript gets and
sends the request object via
createRequest() in utils.js.

The onblur event triggers a call to our JavaScript.

request

username

The request object tells
the server what
 username the user chose.

validation.js

What we’ve done so far...
Now we’ve got everything ready to make a request to the server
when a new username is entered in.

What we still need to do...
Now we’re just about ready to actually have the server respond to
our request: The server returns a value indicating

whether the username has been accepted.

The callback function updates the page to show success or

failure, without losing any of the user’s information.

request

okay
validation.js

utils.js

function
createReq {
 ...
}

Chapter 2. designing ajax applications Page 27 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

70 Chapter 2

Test Drive
Let’s make sure everything’s working before moving on...
The JavaScript still doesn’t update the page in any way, but we can use a few more alerts to

check that our checkUsername() function’s working the way we want.

Open validation.js in your editor, and add the code inside the checkUserName()
function that’s shown below. It’s the same as the magnet exercise you just did, but there are

a few more alerts added to help track what the browser’s doing.

Once you’ve entered the code, save the file, and load the page in your browser. Enter

anything you’d like in the username field, and you should see all these alerts displayed.

You should see an alert
indicating the request is
created, configured, and sent.

function checkUsername() {
request = createRequest();
if (request = null)

 alert("Unable to create request");
else
{

 alert("Got the request object");
 var theName = document.getElementById("username").value;
 alert("Original name value: " + theName);
 var username = escape(theName);
 alert("Escaped name value: " + username);
 var url = "checkName.php?username=" + username;
 alert("URL: " + url);
 request.onreadystatechange = userNameChecked;
 request.open("GET", url, true);
 request.send(null);

}
}

validation.js

These alerts are
like status messages
or debugging
information... they let
us know what’s going
on behind the scenes.

test drive

Chapter 2. designing ajax applications Page 28 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 71

designing ajax applications

Asynchronous apps behave differently than
traditional web apps, and your debugging has
to account for that.
Asynchronous applications don’t make you wait for a server’s

reply, and you don’t get an entire page back from the server. In

fact, most of the interactions between a web page and a server

in asynchronous apps are completely invisible to a user. If the

user’s web browser runs into a problem when it executes some

JavaScript, most of the time it will just stop, and you’ll have no

idea what happened.

Alerts are a good way to track down problems the browser

doesn’t tell you about. Alerts show you what the browser sees.

They let you know what’s going on in the background while

your users are happily typing away.

You can't usually rely on a server to tell you there's a
problem in asynchronous apps. It's YOUR job to figure out
if there's a problem, and respond to it in a useful manner.

You’ll want to take out al
l

these alerts once y
ou’ve

tracked down any problems.

Chapter 2. designing ajax applications Page 29 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

72 Chapter 2

request

The request object connects your code to
the web browser
All we have left to do is write the code that the browser will call when the

server responds to the request. That’s where the request object comes into

play. It lets us tell the browser what to do, and we can use it to ask the

browser to make a request to the server and give us the result.

But how does that actually happen? Remember, the request object is
just an ordinary JavaScript object. So it can have properties, and

those properties can have values. There are several that are pretty useful.

Which do you think we’ll need in our callback function?

The browser makes the
server’s response available
to your code through the
properties of the request object.

onreadystatechange

responseXML

status

onreadystatechange is the property we use
to tell the browser what function to call
when the server responds to a request.

If the server is sending back
data as XML, responseXML will
contain the XML tree that
contains the server’s response. The server’s response will be stored in responseText. This is usually text, but it might also be XML data.

The server will respond to your
request several times while it’s
working on it. The browser uses
the readyState property to tell
you where your request is in its
processing lifecycle.

readyState

status and statusText are used by the browser to tell your code the HTTP status that was returned by the server, such as 200 for “OK,” when the server thinks everything worked as it should, or 404 for “Not Found,” when the server couldn’t find the requested URL.

We’ll look more at XML
responses in Chapter 9.

request object properties

Chapter 2. designing ajax applications Page 30 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 73

designing ajax applications

You talk to the browser, not the server
Although it’s easy to talk about your code “sending a request object
to the server,” that’s not exactly what happens. In fact, you talk to the
web browser, not the server, and the browser talks to the server. The
browser sends your request object to the server, and the
browser translates the server’s response before giving that
response data back to your web page.

The browser
communicates with
the server using the
HTTP protocol.

web browser

The createRequest() function obtains an
instance of the request object from the browser.

The checkUsername() function uses
the send() method of the request
object to ask the browser to pass
the request on to the server.

When the server responds to the request, the browser sets the properties of the request object, and then sends the object to showUsernameStatus().

This happens several times.
You’ll use the readyState
property to check how
far along the server is in
responding to a request.

request

request

request

validation.js

validation.js

utils.js

function
createReq {
 ...
}

createRequest()

checkUsername()

showUsernameStatus()

web server

Chapter 2. designing ajax applications Page 31 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

74 Chapter 2

The browser uses the readystate property of the request
object to tell your callback function where a request is in its
lifecycle. Let’s take a look at exactly what that means.

request = createRequest();

This is the request object’s
ready state, stored in the
readyState property.

When the user leaves the usernam
e

field, the checkUserName() function

creates a request object.

When the request object’s
readyState is 4, the
showUsernameStatus()
callback function uses the
server’s response to update
the page.

Ready states up close

Connection
uninitialized

readyState0

validation.js

showUsernameStatus()

ready states

Chapter 2. designing ajax applications Page 32 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 75

designing ajax applications

request.open("GET", url, true);

request.send(null);

After this statement is executed, the request object knows how to connect, and what to connect to.

The server responds with a readyState
of 2 while it’s working on the request.
Response headers, which provide
information about the response, are
available along with a status code.

At this stage, data is
downloading into the request
object, but the response data’s
not quite ready to be used.

Now the server’s finished
with the request, and the
data is ready to be used.

The server sends
responses back at
several points during
the process.

Connection
initialized

Request
being

processed

Getting
server

response

Server
response

ready

readyState1

readyState2

readyState3

readyState4

At readyState 1, the
request is ready to send.

Chapter 2. designing ajax applications Page 33 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

76 Chapter 2

function showUsernameStatus() {

if (request.readyState == 4) {

 if (request.status == 200) {

 if (request.responseText == "okay") {

 // if it's okay, no error message to show

 }

 else {

 // if there's a problem, we'll tell the user

 alert("Sorry, that username is taken.");

 }

 }

}

}

This is the function name we used for the onreadystatechange property. If the name doesn’t match exactly, the function won’t be called.
This if statement makes sure that
none of the rest of the code
runs unless the readystate is “4,”
meaning the server is finished.

The server sends a status of “200” if everything is okay.
responseText is
the text value
the server sends
back to us. If
it’s “okay,” the
username is free.

function checkUsername() {
request = createRequest();
...
request.onreadystatechange = showUsernameStatus;
...

}

The browser calls back your
function with the server’s response
Every time the response object’s readyState property
changes, the browser has to do something. And what does
it do? It runs the function assigned to the request object’s
onreadystatechange property:

In your callback function, you need to make sure that the
response is actually ready for you to use. You can check
the readyState property and the server status, and
then take action based on the server’s response:

validation.js

Every time the ready state of the response changes - which is every time the server updates the browser on the request its processing - the browser calls this function.

validation.js

This code goes in
validation.js, too.

the browser calls back your code

Chapter 2. designing ajax applications Page 34 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 77

designing ajax applications

Test Drive
Add the showUsernameStatus() function to validation.js,
and load the registration page in your browser.
Try entering any username except “bill” or “ted.” Your browser

should display all the alerts we added to test the initPage() and

checkUsername() functions.

Once you’re sure everything’s working, go ahead and remove all

those alert statements in checkUsername() that you added to

test the code. The only alerts that should be left are to report that a

request can’t be created, in checkUsername(), and to report a

username’s already taken, in showUsernameStatus().

This message should be displayed if you enter “bill” or “ted,” and then leave the username field. Someone with that username is already registered.

Now try entering “bill” or “ted” as the username. You should get the

error message that’s displayed by showUsernameStatus().

If you enter a valid

username, you’ll get

the alerts from your

debugging code, but

none indicate an erro
r.

Now that you’re sure the

interaction between your code

and the server works, you don’t

need those alert() d
ebugging

statements anymore.

Chapter 2. designing ajax applications Page 35 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

78 Chapter 2

Show the Ajax registration
page to Mike...
Everything works. But when you give all your code
to Mike, and he goes live with the new improved
registration page, there are still some problems:

What happened? Did all the work
you put into the registration page
get lost? Ignored?

What do YOU think?

does it work?

Chapter 2. designing ajax applications Page 36 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 79

designing ajax applications

The web form has TWO ways to send
requests to the server now
Suppose a user does just what you expect: they enter a username,

and while an asynchronous request is going to the server and

getting handled by the browser, your callback is running, and the

user’s filling out other information on the form. Everything works

great—just like you planned.

But suppose the user’s so eager to get to Mike’s review of Iron

Man that they put in their username, ignore everything else on the

form, and click “Register.” What happens then?

When the user leaves the username field, our code sends a request object to the server.

Before the server responds to
the verification request, the user

clicks Register, and the entire web

form is sent to the server.

The server doesn’t care that
our asynchronous request hasn’t
caused the user to change
their username. It just returns
a blank error page.

This is what we were trying to fix!

The user enters a username

An asynchronous request is sent to the

server to validate the username.

11

The user ignores the other fields and

clicks ‘Register,’ submitting the form.

22

The server returns a new page

The server replies to the form submit by

returning an (empty) error form.

33

request

An entire new page is returned
with none of the user’s information
filled in, but with an error about
the username being taken...

Even the alert box
saying the username was taken has gone missing!

Chapter 2. designing ajax applications Page 37 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

80 Chapter 2

Frank: Well, we can’t keep users from skipping over fields,

but maybe we can keep them from getting ahead of our

request.

Jill: You mean validating the username? Yeah, that’s perfect,

but how do we do that?

Frank: How about we just disable the Register button until

the server responds to the username validation request.

Jill: That would solve this problem, but it seems like we

need something more.

Frank: Like what? They’re submitting the form too soon,

so if we prevent the submission, the problem’s solved.

Jill: Well, don’t you think we need to give the user some

idea about what’s going on?

Frank: They’ll know what’s going on when we enable the

button. Until then, they should be filling out the form, not

trying to click ‘Register.’

Jill: But don’t you think that might be confusing? If the user

finishes filling out the form, or doesn’t want to fill it all out,

then they’re just going to be sitting there, stuck, and they

won’t know why.

Frank: Well, we need to let them know the application is

doing something. What about displaying a message?

Jill: Another alert? That’s just going to annoy them in a

different way. How about a graphic? We could display an

image when we send the request to the browser...

Frank: ...and another when their username’s verified.

Jill: Hey, and if we used an image to show whether the

username is okay or not, we could get rid of the alert when

there’s a problem with the username, too.

Frank: Perfect! Visual feedback without annoying popups.

I love it!

Frank

Jill

You can never
assume your users
will do things
exactly the way
you do... plan for
EVERYTHING!

expect the unexpected

Chapter 2. designing ajax applications Page 38 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 81

designing ajax applications

function checkUsername() {
document.getElementById("status").src = "images/inProcess.png";
request = createRequest();
...

}

function showUsernameStatus() {
...

 if (request.responseText == "okay") {
 document.getElementById("status").src = "images/okay.png";
 }
 else {

 alert("Sorry, that user name is taken.");
 document.getElementById("status").src = "images/inUse.png";
 ...
 }
 ...
}

Displaying this image tells the user
something’s going on.

Display an “In Progress” graphic during verification requests
When we send a request to the server to verify a username, we’ll display a graphic

next to the username field, telling the user what’s going on. That way, they’ll know

exactly what’s happening as they work through the form.

validation.js

getElementById is probably starting to look familiar. It lets you access an element on an XHTML page.

Display a status message upon verification
Once the request object returns, we can display another graphic in our

callback function. If the username is okay, the graphic indicates that;

otherwise, we’ll show an error icon.

This graphic is displayed
if the server says the
username is okay.

This graphic is shown if
the username is taken.

We can
ditch the
alert popup
in favor
of a nicer
graphical
icon.

validation.js

Make each
of these
changes to
your own
code, and
check off
the boxes as
you go.

Chapter 2. designing ajax applications Page 39 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

82 Chapter 2

... existing CSS ...
#username { padding: 0 20px 0 2px; width: 198px; }
#username.thinking { background: url("../images/inProcess.png"); }
#username.approved { background: url("../images/okay.png"); }
#username.denied { background: url("../images/inUse.png"); }

Try and keep your presentation
in your CSS, and your behavior in
your JavaScript.
Your XHTML stores structure and content.

Your CSS should handle presentation, like

images, colors, and font styles. And your

JavaScript should be about what your page

does: the page’s behavior. Mixing those

means that a designer won’t be able to change

an image because it’s in your code. Or a

programmer will have to mess with a page

author’s structure. That’s never a good thing.

It’s not always possible, but when you can,

keep your presentation in your CSS, and use

JavaScript to interact with the CSS rather than

affecting the presentation of a page directly.

Let’s create CSS classes for each
state of the processing...
Instead of changing an image directly, let’s put all the image

details in our CSS. Open up movies.css and add the

following CSS selectors:

#detail {
...
}

movies.css

Add these
four lines to
your CSS.

This first class just sets up the

location for the process icons...
...and these other three classes change out the image in that location.

These are the same images that we used in

our JavaScript, but now they’re in the CSS

with the rest of the presenta
tion.

separate, separate, separate

Chapter 2. designing ajax applications Page 40 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 83

designing ajax applications

...and change the CSS class with
our JavaScript
Now our JavaScript doesn’t need to know any image

names, paths, or anything about how the process icons

are being shown. Instead, we just need to know the three

CSS classes that represent each stage of processing.

function checkUsername() {
document.getElementById("status").src = "images/inProcess.png";

 document.getElementById("username").className = "thinking";
 request = createRequest();

...

function showUsernameStatus() {
...

 if (request.responseText == "okay") {
 document.getElementById("status").src = "images/okay.png";
 document.getElementById("username").className = "approved";
 }
 else {

 alert("Sorry, that user name is taken.");
 document.getElementById("status").src = "images/inUse.png";
 document.getElementById("username").className = "denied";
 }
 ...
}

validation.js

#username.thinking
#username.approved
#username.denied

In Progress...

Username is okay.

Username is taken.

Here are the three
CSS class names.

Now we can update our JavaScript (again). This

time we’ll just change the CSS class instead of

directly changing an image:

You can
change the
CSS class
using the
className
property of
an element.

Remember to remove the lines that changed the image directly.

Chapter 2. designing ajax applications Page 41 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

84 Chapter 2

Mike’s web
designer is
always full of
new ideas.

... existing CSS ...
#username {

All of this CSS changed. Now
there’s just one image being
moved around with the CSS.

Changes? We don’t need no stinkin’
changes!
Mike’s web designer made lots of changes... but she didn’t

change the names of the CSS classes for each stage of

processing. That means that all your JavaScript still
works, with no updates! When you separate your content

from your presentation, and separate both from your behavior,

your web application gets a lot easier to change.

In fact, the CSS can change anytime, and we don’t even need

to know about it. As long as those CSS class names stay the

same, our code will happily keep on working.

validation.js

Good separation
of content,
presentation, and
behavior makes
your application a
lot more flexible.

you rule

Chapter 2. designing ajax applications Page 42 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 85

designing ajax applications

By setting the disabled property to true, the user can fill in the fields, but they can’t press the submit button until we’re ready.

If the username’s taken,

make sure the Register
button stays disabled.

Disable the Register button
When a user first loads the page, the username hasn’t been checked. So

we can disable the Register button right away in our initialization code.

function initPage(){
document.getElementById("username").onblur = checkUsername;
document.getElementById("register").disabled = true;

}

validation.js
Enable the Register button
If the username is okay, the user’s ready to register, so we need to enable

the Register button. But if there’s a problem with the username, they need

to try again, so we should keep the Register button disabled. And just to

make things easier for the user, let’s move them back to the username field

if their username is rejected:

validation.js

Only allow registration when it’s appropriate
With process indicators in place, all that’s left is to disable the Register button

when the page loads, and then enable the button once a username’s okay.

That involves just a few more changes to validation.js:

function showUsernameStatus() {
...

 if (request.responseText == "okay") {
 document.getElementById("username").className = "approved";
 document.getElementById("register").disabled = false;
 }
 else {
 document.getElementById("username").className = "denied";
 document.getElementById("username").focus();
 document.getElementById("username").select();
 document.getElementById("register").disabled = true;
 ...
 }
 ...
}

This moves
the user
back to the
username
field.

If the username is okay, enable the Register button.

Chapter 2. designing ajax applications Page 43 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

86 Chapter 2

Make sure you’ve updated validation.js and mpovies.css,
and load up Mike’s registration page. Try it out to make
sure everything’s behaving like it should.

The submit button is disabled.

You can submit the
page now.

This graphic
tells you the
username is
okay.

When you enter a username,
this in progress graphic
should be displayed.

The image files referenced
in your CSS are in the
download folder from Head
First Labs.

check it out

Test Drive

Chapter 2. designing ajax applications Page 44 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 87

designing ajax applications

...prevents user mistakes by disabling buttons
that aren’t safe or appropriate to use, and
enables those buttons when they are useful.

Now Mike’s page...
...lets users keep working while their requested
usernames are verified by Mike’s server.

...doesn’t annoy his users with intrusive popups,
but still gives them useful visual feedback.

Mike’s happy...

..and now his fans can get to his movie reviews.

Along the way you started

thinking about applicat
ion

design in an entirely ne
w way...

going beyond a traditio
nal

request/wait/response model.

Chapter 2. designing ajax applications Page 45 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

88 Chapter 2

Word Search
Take some time to sit back and give your right brain
something to do. It’s your standard word search; all
of the solution words are from this chapter.

X A R S M O K E J U D H E

A C T I V E X O B J E C T

A V I O R S M A L T R S V

Q S L H O C L V J A R S L

J U Y O R U H A E A H A R

A M N N O N T L Y H E R A

Z O E U C S T F I D N E S

H P T K A H P I N L O L N

G E Y C C E R L O X L B R

A N I A H R E O A U D G R

O U N B E D Q B N R E A K

I N G L F A U R L O N S A

N D C L R I E F R I U D Y

A R E A D Y S T A T E S D

J E R C I C T H R I Z A R

Word list:

ActiveXObject
Asynchronous
Ajax
Cache
Callback
Null
Open
Readystate
Send
URL
XMLHttpRequest

word search

Chapter 2. designing ajax applications Page 46 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 89

designing ajax applications

showUsernameStatus()

Label Magnets
All the labels describing what’s going on in the new-and-
improved registration page fell to the ground. Can you
place the labels in the right place on the diagram?

request = createRe
quest();

request.send(null);

0

Not

initialized

1

Initialized

2

Response

in progress

3

Getting

response

4

Response

ready

When the user leaves a
field, an event function
creates a request object.

By the time this statement is executed, the request object knows how to connect and what to connect to.

At this stage, data is
downloading into the
request object, but it’s not
quite ready to be used yet.

The server sends responses back at several points during the process.

When readyState = 4, the callback function uses the server response to update the page.

The server responds with a
readyState of 2 while it’s working

on the problem. The status and
response headers are available.

The request object has been
created, but has no data
and no information in its
various properties.

Chapter 2. designing ajax applications Page 47 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

90 Chapter 2

showUsernameStatus()

The server sends responses back at several points during the process.

When readyState = 4, the callback function uses the server response to update the page.

Label Magnets Solution
All the labels describing what’s going on in the new-and-
improved registration page fell to the ground. Can you
place the labels in the right place on the diagram?

request = createRe
quest();

request.send(null);

0

Not

initialized

1

Initialized

2

Response

in progress

3

Getting

response

4

Response

ready

When the user leaves a
field, an event function
creates a request object.

By the time this statement
is executed, the request
object knows how to connect
and what to connect to.

At this stage, data is
downloading into the
request object, but it’s not
quite ready to be used yet.

The server responds with a
readyState of 2 while it’s working

on the problem. The status and
response headers are available.

The request object has been created, but has no data and no information in its various properties.

know your ready states

Chapter 2. designing ajax applications Page 48 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 91

designing ajax applications

Word Search Solution

X A R S M O K E J U D H E

A C T I V E X O B J E C T

A V I O R S M A L T R S V

Q S L H O C L V J A R S L

J U Y O R U H A E A H A R

A M N N O N T L Y H E R A

Z O E U C S T F I D N E S

H P T K A H P I N L O L N

G E Y C C E R L O X L B R

A N I A H R E O A U D G R

O U N B E D Q B N R E A K

I N G L F A U R L O N S A

N D C L R I E F R I U D Y

A R E A D Y S T A T E S D

J E R C I C T H R I Z A R

Word list:

ActiveXObject
Asynchronous
Ajax
Cache
Callback
Null
Open
Readystate
Send
URL
XMLHttpRequest

Chapter 2. designing ajax applications Page 49 Return to Table of Contents

Chapter 2. designing ajax applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Table of Contents

Chapter 3. javascript events... 1
Section 3.1. It all started with a downward-facing dog.. 2
Section 3.2. Ajax apps are more than the sum of their parts... 9
Section 3.3. Here's Marcy's XHTML... 10
Section 3.4. Events are the key to interactivity... 12
Section 3.5. Connect events on your web page to event handlers in your JavaScript... 15
Section 3.6. Use the window.onload event to initialize the rest of the interactivity on a web page.. 16
Section 3.7. Change those left-side images to be clickable... 21
Section 3.8. Use your XHTML's content and structure... 22
Section 3.9. Add the code for hideHint(), too... 25
Section 3.10. Tabs: an optical (and graphical) illusion.. 26
Section 3.11. Use a for... loop to cycle through the images... 27
Section 3.12. CSS classes are the key (again)... 28
Section 3.13. Ummm... but the tabs aren't <a>'s!.. 29
Section 3.14. This broke our JavaScript, too, didn't it?... 30
Section 3.15. Use a request object to fetch the class details from the server... 35
Section 3.16. Be careful when you have two functions changing the same part of a web page... 36
Section 3.17. When you need to change images in your script, think "change CSS classes" instead.. 41
Section 3.18. Links in XHTML are represented by <a> elements... 42
Section 3.19. We need a function to show an active button and hide a button, too.. 43

Chapter 3. javascript events

Chapter 3. javascript events
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

this is a new chapter 93

alive

javascript events3

Reacting to your users

Sometimes you need your code to react to other things going
on in your web application... events

something that happens

event handler

interactive web applications.

Sometimes you need your code to react to other things going
on in your web application... events

something that happens

event handler

interactive web applications.

Chapter 3. javascript events Page 1 Return to Table of Contents

Chapter 3. javascript events
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

94 Chapter 3

Beginner

This is where you
should start if
you’re new to yoga.

Intermediate

When the beginner
course isn’t a challenge,
try this one.

Advanced
Very challenging!

Schedule Enroll

It all started with a downward-facing dog...
Marcy’s just opened up a new yoga studio that caters to programmers and

techies. She wants a website that shows the different levels of classes she offers,

the times they’re available, and provides new customers a way to enroll in a

class... all in a cool, intuitive package. But she doesn’t have a clue how to build

that kind of site.... that’s where you come in.

To give you an idea of what she’s looking for, Marcy worked up a quick sketch of

what a page on her site needs to show her customers:

Marcy knows her customers, but doesn’t know how to build a site that caters to them... it looks like Ajax might be just the thing to handle her fast-paced, demanding programmer types.

Marcy offers three classes: beginner,
intermediate, and advanced.

Customers can enroll online.Marcy’s got a program from the studio she teaches at to handle the back-end logic for this.

Customers should be able to see the schedule
for each class... right now, Marcy has a button
for that functionality. But which class does
this show the schedule for?

Marcy has a
description of
each class, so
customers will
know what to
expect...
...and a sample
image from
each class, too.

marcy’s yoga vision

Chapter 3. javascript events Page 2 Return to Table of Contents

Chapter 3. javascript events
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 95

javascript events

Design Magnets
It’s time to turn Marcy’s rough design into something you’d like to see in your own web
browser (you’re a programmer too, remember?). At the bottom of the page are lots of
magnets representing parts of a potential web page. It’s your job to arrange these on
the web browser in a way that looks great. Also, see if you can design the site so when a
customer clicks on a class level, the description and a picture of just the selected class
is displayed.

In the rest of this
chapter, you’ll
build this site, so
think about what
Ajax lets you do:
change parts of the
page in real-time,
talk to the server
asynchronously, etc.

Beginner

Intermediate AdvancedWelcome

Beginner

Intermediate

Advanced

Introduction to Yoga

Just getting off the Twinkie diet?
This is the class for you.

Mon Tue Wed Thu Fri

5pm-6pm X X X

6pm-7pm X

8pm-9pm X

Enroll

Chapter 3. javascript events Page 3 Return to Table of Contents

Chapter 3. javascript events
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

96 Chapter 3

Beginner

Intermediate

Advanced

Welcome Beginner Intermediate Advanced

Introduction to Yoga

Just getting off the Twinkie diet?
This is the class for you.

Mon Tue Wed Thu Fri

5pm-6pm X X X

6pm-7pm X

8pm-9pm X

Enroll

These images
will display a
description of
the class when
the user rolls the
mouse over them. The “tabs” contain the class schedule. We’ll get that on

demand using a
request object.

...and a description
of the class will be
displayed here.

When the
schedule is
displayed, clicking
the Enroll button
will take the user
to a new page.

 Design Magnet Solution
Your job was to arrange the design magnets onto the web browser in a way that
looks great. Also, you should have designed the site so that when a customer clicks
on a class level, the schedule, description, and a picture of just the selected class
is displayed.

Our

Here’s where the Ajax came in... can we change out parts of the page without a reload? Of course...

* It’s okay if you came up with something a

bit different, or even A LOT different... as

long as you put together a dynamic design

that doesn’t require a reload to sho
w each of

the class schedules.

This chapter will be working off
the design shown here, but feel
free to change things up and
implement your design instead...

design marcy’s web site

Chapter 3. javascript events Page 4 Return to Table of Contents

Chapter 3. javascript events
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 97

javascript events

Beginner

Intermediate

Advanced

Welcome Beginner Intermediate Advanced

Introduction to Yoga

Just getting off the Twinkie diet?
This is the class for you.

Mon Tue Wed Thu Fri

5pm-6pm X X X

6pm-7pm X

8pm-9pm X

Enroll

Suppose you want to build the website shown on page 96. In the space below, make
notes about what should happen when customers click on different buttons, and what
interactions you think you’ll need between Marcy’s web page and the server.

The studio Marcy teaches at has server-side programmers that can build whatever
we need... but we’ve got to tell them what to build. What sort of server-side
programs will we need?

Web page

Web server

Chapter 3. javascript events Page 5 Return to Table of Contents

Chapter 3. javascript events
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

98 Chapter 3

The studio Marcy teaches at has server-side programmers that can build whatever we need... but we’ve got to tell
them what to build. What sort of server-side programs will we need?

Beginner

Intermediate

Advanced

Welcome Beginner Intermediate Advanced

Introduction to Yoga

Just getting off the Twinkie diet?
This is the class for you.

Mon Tue Wed Thu Fri

5pm-6pm X X X

6pm-7pm X

8pm-9pm X

Enroll

We need a program that takes a class name,
and brings up some sort of enrollment form. It sounds like Marcy’s got the form, so when users click a button,
we send a request to the server for enrollment in the selected class.
And what about the different class pages? We might need to request those from the server. Although something
seems funny about that... I’m not sure what yet...

Your job was to make notes about what should happen when customers click on different buttons,
and what interactions you think you’ll need between Marcy’s web page and the server.

Web page

Web server

There’s a tab for each class. When users click on a tab, it shows the description and schedule for that class.

This can just be a normal button...

but it’s got to figure out which

class is selected to send the righ
t

class to the server-side program.

An enrollment request has to go to
the server. But we don’t need Ajax
for that. That request can be a
normal synchronous request.

Each tab updates the
content part of the page.

Do we need to talk to the server for this?

These should show a description of the class. Should they change the content to the selected class, too?

It’s okay if you’re not sure ab
out

how everything will work. We can

always ask Marcy questions and

figure some things out as we go.

ajax is about interaction

Chapter 3. javascript events Page 6 Return to Table of Contents

Chapter 3. javascript events
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 99

javascript events

Q: I came up with something totally different for my solution.
Is that okay?

A: It is as long as you figured out that you need to make a request
to the server to enroll for each different yoga class, and realized that
each tab should bring up a class schedule and description. But some
details are still fuzzy. What do those buttons on the left do? And do we
need an asynchronous request to get information about each class?

Q: Are those tabs along the top of that drawing?

A: They sure are. Tabs are a great way to let users not only see
different options, but easily click on each option to find out more.

Q: XHTML doesn’t have a tab control. Do we have to buy a
third-party tool or something?

A: No, we’ll do it all using graphics, some nifty client-side
JavaScript, and a request object to fetch the schedule from the server.

Q: But there are some toolkits that do that stuff for you, right?
Why don’t we just use one of those?

A: Toolkits are great, but it’s much better to know what’s going
on underneath something like script.aculo.us or mootools. In this
chapter, you’ll build a simple tabbed control on your own... and then
when you want to use a toolkit, you’ll know what’s going on, instead of
depending on someone else to figure out your JavaScript for you.

And of course, when the toolkit you’re using doesn’t do just what you
want, you’ll be able to change it or write your own controls.

Q: This doesn’t look like much new... didn’t we do something
similar with the movie review site already?

A: That’s right, you did. Although in that case, there was a lot less
interactivity on the web page. Users signed up, and the page and your
code did everything else. On this site, we’ve got a lot more going on:
dealing with several different button presses, figuring out which button
was pressed... loads of new interactivity issues. That’s what most of
this chapter focuses on, in fact: events and interactivity.

script.aculo.us and mootools
are two popular JavaScript
toolkits for visual effect

s,
among other things.

Try not to rely on
any toolkit unless you
understand the code
behind that toolkit.
That way, when things
don’t work the way you
want, you can fix the
problems yourself.

Chapter 3. javascript events Page 7 Return to Table of Contents

Chapter 3. javascript events
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

100 Chapter 3

Ajax IS mostly JavaScript, events, and
lots of boring scripting!
Most apps that use asynchronous requests have a lot

more code that deals with web pages, objects on that

page, and doing basic JavaScript tasks. The actual

request object code may only be a callback function and

a few lines in an event handler.

But you really can’t break an application up into

“JavaScript” and “Ajax” and “CSS.” It all works together.

So even though you’ll be spending a lot of time in this

chapter working with XHTML and CSS and event

handlers, you’re really building Ajaxian applications:

responsive, user-friendly, modern web apps.

The more you know
about JavaScript,
XHTML, and CSS,
the more effective
and usable your
Ajax apps will be.

ajax involves lots of existing technologies

Chapter 3. javascript events Page 8 Return to Table of Contents

Chapter 3. javascript events
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 101

javascript events

Beginner

Intermediate

Advanced

Welcome Beginner Intermediate Advanced

Introduction to Yoga

Just getting off the Twinkie diet?
This is the class for you.

Mon Tue Wed Thu Fri

5pm-6pm X X X

6pm-7pm X

8pm-9pm X

Enroll

Web page

Web server

Assembling Marcy’s page involves

XHTML and CSS... and sometimes,

some really complex CSS, especially

for positioning elements on the page.

Sending the request to the server involves a JavaScript event handler, as well as a request object.Most of the event handling on t
he

buttons and tabs will be JavaScript,

and it won’t need a request object.
The main content pane for each
class is XHTML. We’ll get that
XHTML with an asynchronous
request, but the response from the
server is just more XHTML.

The XHTML is styled by CSS. So

there’s more presentation to d
eal

with.

Ajax apps are more than the sum of their parts
Ajax apps are really just a combination of lots of pretty simple technologies:

XHTML, CSS, JavaScript, and things like the DOM, which you’ll get to in a few

chapters. In fact, if you take a close look at Marcy’s app, most of the work is

not Ajax-specific. It’s XHTML, CSS, and JavaScript... with a little asynchronous

requesting added in just when it’s needed.

Chapter 3. javascript events Page 9 Return to Table of Contents

Chapter 3. javascript events
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

102 Chapter 3

Here’s Marcy’s XHTML...
Below is the XHTML for Marcy’s page... it’s already got a few references to

the JavaScript files we’ll need and several <div>s representing the different

parts of the page. Go ahead and download this page, along with the rest of

the Chapter 3 examples, from the Head First Labs web site.

<html>
<head>

<title>Yoga for Programmers</title>
<link rel="stylesheet" href="css/yoga.css" type="text/css" />

<script src="scripts/utils.js" type="text/javascript"></script>
<script src="scripts/schedule.js" type="text/javascript"></script>

</head>

<body>
 <div id="schedulePane">

 <div id="navigation">
 <img src="images/beginnersBtn.png" alt="Beginners Yoga"
 title="beginners" class="nav" />
 <img src="images/intermediateBtn.png" alt="Intermediate Yoga"
 title="intermediate" class="nav"/>

 <img src="images/advancedBtn.png" alt="Advanced Yoga"
 title="advanced" class="nav"/>

 </div>

 <div id="tabs">

 <img src="images/intermediateTabInactive.png"
 title="intermediate" class="tab" />

 </div>

 <div id="content">
 <h3>Click a tab to display the course schedule for the selected class</h3>
 </div>

</div>
</body>
</html>

utils.js is the utility file we
created in Chapter 2 with
createRequest().

We’ll be adding a few
new functions to utils.js
in this chapter.

The working section of the
page is wrapped in the
“schedulePane” div.

This div
contains the
images on the
left side of
the page.

This div contains the four graphics that represent the “tabs.”

Here’s where we need to update
the class information and display a
schedule for each class.

schedule.js will store the application-specific JavaScript.

classes.html, along with yoga.css and the images used by the Yoga web page, are all online at the Head First Labs web site.

<html>
<script src=”...
js” />
<img
src=”siteLogo.
png” />
</html>

classes.html

marcy’s xhtml page

Chapter 3. javascript events Page 10 Return to Table of Contents

Chapter 3. javascript events
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 103

javascript events

Test Drive
See what Marcy’s page looks like pre-Ajax.
Download the examples for Chapter 3 from the Head First Labs web site. Go ahead and

open up classes.html, and see what Marcy’s page looks like. There’s no interactivity

yet, and you may get a message letting you know that schedule.js can’t be found. That’s

okay, we’ll get to all that soon.

This looks a lot like the sketch on page 96. Now we just have to figure out the interactivity part.

These really
do look like
buttons... we’ll
have to make
sure they
react like users
expect them to.

These are just images that look
like tabs. It’s all just XHTML
and CSS.

Here’s where a description of
each class should appear.

Chapter 3. javascript events Page 11 Return to Table of Contents

Chapter 3. javascript events
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

104 Chapter 3

Events are the key to interactivity
Marcy’s page needs to react to her customers. She wants a different schedule

and description to appear when a customer clicks on a class, and we could

even highlight a menu item by using context-specific graphics.

All this adds up to an interactive web page. In programming terms,

“interactive” means that your page responds to specific events. And events

are just things that happen. Those things can be triggered by the user, your

code, the browser, or even a server:

web
browser

JavaScript

Some events will update your web page.

The browser generates a lot of events itself.

Events can happen when

the user does something...

...or when the
server responds
to a request.

You can generate some
events in your code.

The browser
handles a lot of
events directly...

...but will send some
events to your code if
you’ve set up handlers
for those events.

Lots of things trigger
events, and you can
register handlers in
your code that respond
to those events.

Lots of times, things that

happen on your pag
e trigger

events in the brow
ser.

Web server

Context-specific graphics
is just a fancy term for
changing a graphic when the
customer moves their mouse
over a menu option.

events = interactivity

Chapter 3. javascript events Page 12 Return to Table of Contents

Chapter 3. javascript events
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 105

javascript events

Use me when you want to scroll in on a

portion of an image when a user clicks a

certain spot of the image.

onclick

The names of most events give you a pretty good idea what they do.

Can you match the events to what they might be used for?

onfocus

onblur

Use me when you want to let a user know

about the input format for a selected text field.

Use me when you want to validate a

particular field every time data is entered

into that field.

onload

Use me when you want to give the user

popup instructions for a form before they

start using the form.

onmouseover

Use me when you want to change the color of

a menu item when a user hovers over the item.

onmouseout

Use me when you want to hide a submenu

when the user moves away from a menu item.

onsubmit

Use me when you want to validate a form

before its contents are processed by a server-

side program.

onresize

Use me when you want to let users know

that increasing the width of the browser

window could reduce their viewing

experience.

onerror

Use me when you want to provide audio

feedback when a user has images disabled.

Chapter 3. javascript events Page 13 Return to Table of Contents

Chapter 3. javascript events
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

106 Chapter 3

event roundup

You want to scroll in on a portion of an image

when a user clicks a certain spot of the image.

onclick

The names of most events give you a pretty good idea what they do.

Your job was to match the events to what they might be used for.

onfocus

onblur

You want to let a user know about the

input format for a selected text field.

You want to validate a particular field

every time data is entered into that field.

onload

You want to give the user popup instructions

for a form before they start using the form.

onmouseover

You want to change the color of a menu

item when a user hovers over the item.

onmouseout
You want to hide a submenu when the

user moves away from a menu item.

onsubmit

You want to validate a form before its contents

are processed by a server-side program.

onresize

You want to let users know that increasing the

width of the browser window could reduce

their viewing experience.

onerror

You want to provide audio feedback when an

image can’t be loaded.

Chapter 3. javascript events Page 14 Return to Table of Contents

Chapter 3. javascript events
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 107

javascript events

image.onmouseover = showHint;

Connect events on your web page to event
handlers in your JavaScript
You’ve already used the window.onload event to trigger lots of setup work
on web pages, and the onclick event to handle users clicking on an image.
We can use these events, as well as the onmouseover event, to connect
different parts of Marcy’s yoga page to JavaScript functions we’ll write.

initPage()

showHint()

showTab()

The functions you assign to events are called event handlers.

The window.onload event lets us set up a page
and assign other event handlers before the
user begins working with the page.

window.onload = initPage;

tab.onclick = showTab;

Since each tab is an image, we can simulate selecting a tab by attaching an event handler to each tab image’s onclick event.

onmouseover triggers when the

user moves their mouse over
something on a web page, like
an image.

On Marcy’s page, let’s show a helpful message, or hint, when users move their mouse over a class icon on the left.

All of these
functions will go
in our schedule.js
script... which we’ll start on in just a few pages.

Chapter 3. javascript events Page 15 Return to Table of Contents

Chapter 3. javascript events
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

108 Chapter 3

Use the window.onload event to initialize
the rest of the interactivity on a web page
You’ve already used window.onload twice to initialize a page. We need to

do the same thing in Marcy’s yoga page because...

Q: So when does window.onload get
called again?

A: Actually window.onload is an event.
The event occurs, or fires, once the XHTML
page has been read by the browser and all
the files that XHTML references have been
loaded.

Q: So when window.onload fires,
the browser runs that event’s handler
function?

A: Exactly.

Q: How does the browser know what
function to call?

A: The browser will call the function that
you assign to the onload property of
the window object. You set that property
just like any other JavaScript property: with
an equals sign. Just be sure you leave any
parentheses off the name of the function:
window.onload = initPage;

Q: And we assign that property
where?

A: The browser will run any code that isn’t
inside a function as soon as it encounters
that code. So just put the window.onload
assignment at the top of your JavaScript,
outside of any function, and the assignment
will happen before the user can interact with
your page.

Then, the browser will fire onload and run
the function you just assigned. That’s your
chance to set up the web page’s other
events.

Assigning event handlers
programmatically is one more way to
separate content from behavior.
Anytime you can keep your JavaScript separate

from your XHTML, you should. The same goes for

XHTML and CSS: keep them separate.

The best way to assign event handlers is by using

properties of the elements in your XHTML page, and

doing that assignment in a function that runs before the

user gets control of a page. window.onload is the

perfect event for just that.

initialize your events

Chapter 3. javascript events Page 16 Return to Table of Contents

Chapter 3. javascript events
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 109

javascript events

JavaScript Magnets
You need to initialize Marcy’s yoga page. Each left-side image and tab
should display information about the rolled-over class. Additionally,
clicking on a tab should select the class that’s clicked. See if you can use
the magnets below to build initPage(), as well as placeholders for the other
functions referenced. For now, the placeholders can just display alert boxes.

function initPage() {

HINT: One magnet goes
here, before initPage().

initPage
function initPage()

{

for (var i=0; i<images.length; i++)

{}

}}

{

var currentImage = images[i];

currentImage.onmouseover =

currentImage.onmouseout =

currentImage.onclick =

if (currentImage.className = "tab")

}

}} {
{

{

"
"

"

" "
"

alert(
alert(

alert(

function showHint()

function hideHint()

function showTab()

=

window.onload

;
;; ;

)
)

)

in showTab()

in hideHint()
in showHint()

showTab

hideHint showHint

;
;

;

* For now, Marcy just wants
the tabbed images clickable. The
images on the left side should
show a hint when the user rolls
a mouse over them, but they
shouldn’t do anything else.

var images = document.getElementById("schedulePane").getElementsByTagName("img"
);

Chapter 3. javascript events Page 17 Return to Table of Contents

Chapter 3. javascript events
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

110 Chapter 3

currentImage.onmouseover =

JavaScript Magnet Solution
Using the steps on page 16 and what you’ve learned about how events work
in JavaScript, can you re-create the initialization code for Marcy’s page?

window.onload

function initPage() {

var images = document.getElementById("schedulePane").getElementsByTagName("img"
);

for (var i=0; i<images.length; i++) {

}

}

This line sets the initPage() function to be called once the XHTML page has been completely loaded.

Did you remember this
opening brace?

Don’t worry too much about this one. We’ll
talk about all these getElement methods in
Chapters 5 and 6.

Loop over every
single
element, and
attach events
to each.

Did you remember
to close everything
off?

}

{

var currentImage = images[i];

currentImage.onmouseout =

if (currentImage.className = "tab")

currentImage.onclick =

function showHint()

Get a reference to the
current .

These functions can be
declared in any order. You just
need the declarations to avoid
a JavaScript error.

These events will happen when the
user moves the mouse over one of
the class thumbnails or a tab.

Remember not
to include the
parentheses. You
want to reference
the function, not
run it.

function hideHint()

}

}

function showTab()

alert(

alert(

alert("

"

"

}

= initPage ;

in showTab() "
) ;

in hideHint() ") ;

in showHint() ")
;

showTab

hideHint

showHint ;

;

;

When a mouse rolls over an image, show a hint...
...and hide the hint
when the user mouses
off of the image.

Right now Marcy only

wants the tab images to

be clickable.

magnet solutions

Chapter 3. javascript events Page 18 Return to Table of Contents

Chapter 3. javascript events
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 111

javascript events

Test Drive
Create schedule.js, and add the functions shown on the last page.
Don’t forget to assign initPage to the window.onload event, too. Then,
test things out in your web browser.
Roll your mouse over a tab. You should see an alert for showHint(), and then hideHint().

Try and click on a tab, too. Do you get a showTab() alert? What about clicking on an image

on the left? Nothing should happen there right now.

Click on a tab (it’s a

little tricky with all the

alert boxes popping up
).

You should get an aler
t

saying that the showTab()

function runs.

showHint() should run when
you mouse over a tab or an
image on the left.

Chapter 3. javascript events Page 19 Return to Table of Contents

Chapter 3. javascript events
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

112 Chapter 3

If a web page is confusing to YOU, it will
almost certainly be confusing to your users.
When you design and implement a site, you know how the
site is supposed to act. If the site’s confusing to you, then
users—without the benefit of the information you have—
will probably be even more confused.

Even when you don’t get to control the design of a site, like
with Marcy’s yoga page, you should still try and make the
site as unconfusing as possible. If that means turning some
images into buttons to avoid users clicking on those images
endlessly, then do it!

Sometimes you have to make a
choice between okay and better.
If you’re not in control of a site’s design,
you’re often stuck making the best decisions
based on an existing layout. With Marcy’s site,
she liked the design with tabs and images.

Your job, then, is to make the best decisions
based on what you’ve got. In this case, that
means two forms of navigation to avoid user-
confusion. Otherwise, non-clickable images on
the left might be construed as buttons.

This can even happen
when you design a site

that a customer loves.

Later on, you realize

there are some problems,

but the customer
doesn’t want to make

any changes because
they like what they’ve

already seen.

confusing web pages suck

Chapter 3. javascript events Page 20 Return to Table of Contents

Chapter 3. javascript events
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 113

javascript events

Change those left-side images
to be clickable
It’s a piece of cake to make the images on the left-
hand side of Marcy’s page clickable. In fact, all we
need to do is remove code:

schedule.js

function initPage() {

 var images =

 document.getElementById("schedulePane").getElementsByTagName("img");

 for (var i=0; i<images.length; i++) {

 var currentImage = images[i];

 currentImage.onmouseover = showHint;

 currentImage.onmouseout = hideHint;

 if (currentImage.className=="tab") {

 currentImage.onclick = showTab;

 }

 }

}

We don’t want just
the tabs to be
clickable... we want
all images, including
the left-hand ones,
to be clickable.

Don’t forget to remove

the closing brace.

Try it out... each
image should call
showTab() now.

Good web pages
aren’t confusing

A good web page is
as intuitive as possible.

If something looks like a button,
make it a button. And if part of a
site is confusing to you, the web
programmer, it’s probably even
more confusing to a user.

Chapter 3. javascript events Page 21 Return to Table of Contents

Chapter 3. javascript events
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

114 Chapter 3

Use your XHTML’s content and structure
showHint() is called when a user rolls their mouse over a tab or image.

But how do we know which tab or image is being rolled over? For that, we

need to take another look at Marcy’s XHTML:

title = "advanced"

The title attribute becomes a property of the JavaScript object that represents the element.

... XHTML for page head and body...

<div id="schedulePane">

 <div id="navigation">

 <img src="images/beginnersBtn.png" alt="Beginners Yoga"

 title="beginners" class="nav" />
 <img src="images/intermediateBtn.png" alt="Intermediate Yoga"

 title="intermediate" class="nav"/>
 <img src="images/advancedBtn.png" alt="Advanced Yoga"

 title="advanced" class="nav"/>
 </div>

 <div id="tabs">

 <img src="images/intermediateTabInactive.png"

 title="intermediate" class="tab" />

 </div>

<html>
<script src="...
js" />
<img
src="siteLogo.
png" />
</html>

classes.html

The tab graphics use
the same titles.

Each image has a title attribute that identifies the class level.

Every XHTML element is accessible in your
JavaScript code as an object
You’ve been using getElementById() to access the images in

Marcy’s XHTML page. That works because each element in the

XHTML is represented by the browser as an object you can manipulate

in your JavaScript.

Even better, all the attributes on an element are stored as properties on

the JavaScript object that represents that element. Since Marcy’s images

have titles, we can use those titles to figure out which image or tab was

selected and show the right hint.

xhtml is content and structure

Chapter 3. javascript events Page 22 Return to Table of Contents

Chapter 3. javascript events
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 115

javascript events

var welcomePaneShowing = ;

function showHint() {

 alert("in showHint()");

if (!) {

 return;

}

switch (this.) {

 case " ":

 var hintText = "Just getting started? Come join us!";

 break;

 case " ":

 var = "Take your flexibility to the next level!";

 break;

 case " ":

 var hintText =

 "Perfectly join your body and mind with these intensive workouts.";

 :

 var = "Click a tab to display the course schedule for the class";

}

 var contentPane = ("content");

 .innerHTML = "<h3>" + + "</h3>";

}

showHint() should display a short hint-style message about each class when a user
rolls their mouse over an image. But the hint should only appear if the welcome
tab is selected; if one of the classes is selected, hints are disabled. Your job is to
complete the code for showHint() that’s started below.

This is a global variable: it’s outside
any functions. It should indicate if the
welcome pane is showing, which is the only
time we want to show hints.

Chapter 3. javascript events Page 23 Return to Table of Contents

Chapter 3. javascript events
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

116 Chapter 3

contentPane

Your job was to complete the showHint function to display a hint
based on the title of the image.

var welcomePaneShowing = ;

function showHint() {

 alert("in showHint()");

if (!) {

 return;

}

switch (this.) {

 case " ":

 var hintText = "Just getting started? Come join us!";

 break;

 case " ":

 var = "Take your flexibility to the next level!";

 break;

 case " ":

 var hintText =

 "Perfectly join your body and mind with these intensive workouts.";

 :

 var = "Click a tab to display the course schedule for the class";

}

 var contentPane = ("content");

 .innerHTML = "<h3>" + + "</h3>";

}

true

welcomePaneShowing

title

beginners

intermediate

advanced

hintText

hintText

hintText

getElementById

default

break;

When the page loads, the welcome
pane is showing. So we start out
with this set to true.

Make sure this variable is declared outside of initPage(), showHint(), or any other function.

If we’re not on the
welcome page, don’t do
anything. Just return.

“this” refers to whatever object
called this function. That’s the
image that the user rolled over.

“title” is the attribute of the XHTML page we want to check... so we access it with the “title” property of the image.

For each different
class level, we

want to set some hint text.

It’s always good practice to have a default in your switch statements. Our default can just be a generic instruction message.

All that’s left is to
 get

the <div> where the

content is shown, and

show the hint text.

schedule.js

complete showHint()

Chapter 3. javascript events Page 24 Return to Table of Contents

Chapter 3. javascript events
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 117

javascript events

Test Drive
Update schedule.js. Add a welcomePaneShowing variable, and update
the showHint() and hideHint() functions. Then try everything out.

function hideHint() {

 alert("in hideHint()");

if (welcomePaneShowing) {

 var contentPane = document.getElementById("content");

 contentPane.innerHTML =

 "<h3>Click a tab to display the course schedule for the class</h3>";

}

}

Add the code for hideHint(), too
The code for hideHint() is simple once showHint() is done. You just

need to grab the content pane, and set the hint text back to the default:

schedule.js

This is basically the reverse of showHint(). The function grabs the content <div> and sets the text to the default message.

Mouse over a tab or image on the left... you should see a helpful tip appear in the main content pane.

Chapter 3. javascript events Page 25 Return to Table of Contents

Chapter 3. javascript events
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

118 Chapter 3

Tabs: an optical (and graphical) illusion

Marcy likes the look and feel of tabs on her yoga page. While there are

lots of fancy toolkits that let you create tabs, a simple graphical trick is all

we need.

On the yoga page, we’ve got a main content pane that’s dark green. So

that color basically becomes the “active” color. The Welcome tab starts

out that color, and the other tabs are a lighter color, the “inactive” color: These tabs are inactive... they’re a lighter color.

The Welcome
tab is active:
it’s a darker
color.

The active color matches the color of
the main content pane.

To make a tab active, we need to change the

tab’s background to the “active” color

All we need to do to make a different tab active is change it to

the active color. Then, we can make the old active tab inactive by

changing it to the inactive color.

So suppose we’ve got two graphics for each tab: one with the tab

against an active background, and another with the tab against an

inactive background:

Inactive Active

CLICK

We’ve already got a showTab() function. So the

first thing that function should do is change the tab

image for the clicked-on tab.

Inactive Active

This is the
inactive tab.

Here’s the
same tab in an
active version.

the web is visual

Chapter 3. javascript events Page 26 Return to Table of Contents

Chapter 3. javascript events
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 119

javascript events

Use a for... loop to cycle through the images
You’ve already used the title property of the image objects in showHint() to

change the hint text. We need to do something similar in showTab(): figure out

which tab should be active, and change that tab to the active image. For all the other

tabs, we just want the inactive image.

function showTab() {

 alert("in showTab()");

var selectedTab = this.title;

var images = document.getElementById("tabs").getElementsByTagName("img");

for (var i=0; i<images.length; i++) {

 var currentImage = images[i];

 if (currentImage.title == selectedTab) {

 currentImage.src = "images/" + currentImage.title + "Top.png";

 } else {

 currentImage.src = "images/" + currentImage.title + "Down.png";

 }

}

}

This event handler has a LOT of
presentation-specific details.
showTab() now works directly with

image names, and it actually builds those

image names dynamically! So not only does

showTab() mix behavior with presentation

(the images), but it actually is depending on

the content of the XHTML page—the title of

each image—to figure out what presentation

to use.

There’s a real problem here. But what would

you do to fix the problem? Think about how

you would separate content, presentation, and

behavior before you turn the page.

Chapter 3. javascript events Page 27 Return to Table of Contents

Chapter 3. javascript events
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

120 Chapter 3

CSS classes are the key (again)
Marcy likes the look and feel of tabs on her yoga page. While there are
lots of fancy toolkits that let you create tabs, a simple graphical trick is all
we need.

For each tab, there are two possible states: active, which is the darker
color that matches the content pane, and inactive, which is the lighter,
unselected color. So we can build two CSS classes for each tab: one active,
and one inactive.

Open up yoga.css in your app’s css/ directory, and add these lines:

#tabs {
...
}

yoga.css

#tabs a#welcome.active {

 background: url('../images/welcomeTabActive.png') no-repeat;

}

#tabs a#welcome.inactive {

 background: url('../images/welcomeTabInactive.png') no-repeat;

}

#tabs a#beginners.active {

 background: url('../images/beginnersTabActive.png') no-repeat;

}

#tabs a#beginners.inactive {

 background: url('../images/beginnersTabInactive.png') no-repeat;

}

#tabs a#intermediate.active {

 background: url('../images/intermediateTabActive.png') no-repeat;

}

#tabs a#intermediate.inactive {

 background: url('../images/intermediateTabInactive.png') no-repeat;

}

#tabs a#advanced.active {

 background: url('../images/advancedTabActive.png') no-repeat;

}

#tabs a#advanced.inactive {

 background: url('../images/advancedTabInactive.png') no-repeat;

}

Each tab has an active class with the active image...

...and an inactive class with the inactive tab image.

There
are two
classes
for each
tab.

This CSS can
go anywhere in
yoga.css. It’s
up to you.

css is presentation

Chapter 3. javascript events Page 28 Return to Table of Contents

Chapter 3. javascript events
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 121

javascript events

... XHTML for page head, body, and schedulePane <div>...

 <div id="tabs">

 Welcome
 Beginners
 <a id="intermediate" title="intermediate" class="inactive"
 href="#">Intermediate
 Advanced

 <img src="images/intermediateTabInactive.png"

 title="intermediate" class="tab" />

 </div>

Ummm... but the tabs aren’t a ’s !
Did you notice what element the CSS is styling? #tab indicates a <div>
with an id of “tab.” That’s okay. But then, the CSS indicates it’s styling <a>
tags, with ids of “welcome,” “beginners,” and so on. That doesn’t match

Marcy’s XHTML page at all.

But that’s no big deal... we can change all the images on the XHTML page

to <a> tags to separate one more layer of content from presentation.

<html>
<script src="...
js" />
<img
src="siteLogo.
png" />
</html>

classes.html

Remove the direct references to images in the XHTML.

Each tab
is now
represented
by an <a>
element.

The elements still have a
title and an id.

Now we can indicate which
tabs are active, and which
are inactive.

Q: Why is the href set to “#”?

A: # references the current page. We don’t want the tabs to
take the user anywhere else, although later we’ll write code so that
clicking on a tab shows the selected class’s schedule.

Q: If we’re not taking the user anywhere, why use <a>
elements?

A: Because the tabs are ultimately links. They link to each class
schedule, even if it’s in a slightly non-traditional way. So the best
XHTML element for a link is <a>.

On the other hand, there are usually at least two or three ways to
do something on the Web. You could use a element, a
<div>, or even an image map. It’s really up to you. As long as you
can attach event handlers to the element, you’re good to go.

Chapter 3. javascript events Page 29 Return to Table of Contents

Chapter 3. javascript events
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

122 Chapter 3

window.onload = initPage;

var welcomePaneShowing = true;

function initPage() {

 var tabs =

 document.getElementById("tabs").getElementsByTagName("a");

 for (var i=0; i<tabs.length; i++) {

 var currentTab = tabs[i];

 currentTab.onmouseover = showHint;

 currentTab.onmouseout = hideHint;

 currentTab.onclick = showTab;

 }

 var images =

 document.getElementById("schedulePane").getElementsByTagName("img");

 for (var i=0; i<images.length; i++) {

 var currentImage = images[i];

 currentImage.onmouseover = showHint;

 currentImage.onmouseout = hideHint;

 currentImage.onclick = showTab;

 }

}

function showHint() {

 // showHint() stays the same

}

function hideHint() {

 // hideHint() stays the same

}

This broke our JavaScript, too, didn’t it?
We’ve got a nice, clean XHTML page and some CSS that truly controls

the presentation of the page. But now all that JavaScript that depended

on elements isn’t going to work. That’s okay, though, because even

though it worked before, it mixed images in with behavior... a real problem.

Let’s fix up our script, and separate all that presentation from the behavior

of the yoga page.

We need a new block here because iterating over images won’t get the tabs... they’re now <a> elements.

This code looks awfully similar to

the code up above, and we already

know that repeated code can be a

real trouble spot. We might need

to come back to this later.

We grab the tabs <div>,
and iterate over the
<a> elements.

This isn’t much different...
the events and handlers
are the same as when the
tabs were images.

javascript is behavior

Chapter 3. javascript events Page 30 Return to Table of Contents

Chapter 3. javascript events
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 123

javascript events

function showTab() {

 var selectedTab = this.title;

 var tabs = document.getElementById("tabs").getElementsByTagName("a");

 for (var i=0; i<tabs.length; i++) {

 var currentTab = tabs[i];

 if (currentTab.title == selectedTab) {

 currentTab.className = 'active';

 } else {

 currentTab.className = 'inactive';

 }

 }

}

schedule.js

No image names. Now we just change out the CSS classes. Much better!

This is the same loop as in

initPage(). We want all the

<a> tags in the tabs <
div>.

Test Drive
You’ve got a lot of changes to make. Update classes.html, yoga.css,
and schedule.js. Then, see if those tabs work... try clicking on each.

Click on a tab.

The selected tab should
become active...

...and the other tabs
should become inactive.

Chapter 3. javascript events Page 31 Return to Table of Contents

Chapter 3. javascript events
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

124 Chapter 3

The earlier you separate your content from
your presentation and behavior, the easier
that separation will be.
With Marcy’s site, we didn’t really think about content or
presentation early on, and it’s only when we were a few
functions into our behavior (the JavaScript) that we saw
problems. If we’d planned from the start to keep images out
of our code, and let our CSS handle all the presentation,
we’d have fewer changes to make to our JavaScript.

Still, even if you find problems late in the process, it’s almost
always better to do the work to really separate out content,
presentation, and behavior. Your app will be a lot better for
the work you put into it.

Q: So should I never have images in
my XHTML? That’s basically what we did
with the tabs, right? Pulled the
elements out of the XHTML?

A: That was part of it. But more
importantly, we used CSS to control whether
or not a button was active. What a button
looks like when it changes from active to
inactive is presentation, so that belongs in
the CSS.

It’s okay to have images in your XHTML;
just make sure that if those images are tied
to behavior, you get your CSS and code
involved, and keep those details out of your
XHTML.

Q: That CSS confused me. What does
“#tabs a#advanced.inactive” mean?

A: The # sign indicates an id. So
#tabs means “anything with an id of
‘tabs’.” In the XHTML, that’s the <div>
with an id of “tabs.”

Then, a#advanced means “for an <a>
element with an id of ‘advanced’.” So that’s
the <a> element with an id of “advanced”
nested within a <div> with an id of “tabs.”
And finally, the “.” indicates a class. So
a#advanced.inactive means the
<a> element with an id of “tabs” and a class
name of “advanced” (all under a <div>
with an id of “tabs”). That’s a mouthful, so if
you’re still unsure about the CSS, you might
want to pick up a copy of Head First HTML
with CSS & XHTML to help you out.

Q: Isn’t it sort of weird that all the
buttons on the left are images, but all the
tabs are <a> elements? Why aren’t we
using <a> elements for the buttons, too?

A: Good question. We’ll come back to
that, but anytime you notice things that seem
out of place, jot down a note to yourself. It
might be something worth looking at in more
detail.

Q: When I click a button on the left,
the tab also changes. Is that right?

A: What do you think? When you select
the “advanced” button, do you think the

“advanced” tab should become active?

separate your layers

Chapter 3. javascript events Page 32 Return to Table of Contents

Chapter 3. javascript events
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 125

javascript events

How should we store the details and schedule for each class? In an HTML file? In the
JavaScript? Why did you choose the format you did?

How would you replace the main content pane with the schedule and details for a
selected class?

Does your solution:

Separate the content of your page from its presentation?

Separate the content of your page from its behavior?

Separate the behavior of your page from its presentation?

Ajax is all about
INTERACTION. Your page
can interact with server-side
programs, elements within
itself, and even other pages.

We’ve gotten a lot done, but showTab() is still incomplete. We’ve
got to show the schedule for a selected class when a tab is
clicked on. Assume the schedule is an HTML description and a
table that shows the days of the week that the selected class is
available. There will also probably be an “Enroll button.”

Chapter 3. javascript events Page 33 Return to Table of Contents

Chapter 3. javascript events
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

126 Chapter 3

Jill: You mean X-HTML, right?

Joe: Well, yeah.

Frank: As an entire page? That’s no good... we don’t want

to recreate all the tabs and stuff for each class, do we?

Joe: Well, then how about an XHTML fragment. Like,

just the elements and text for the actual schedule and class

description.

Jill: Yeah, because there’s no way we want all that content

in our JavaScript. And if we use XHTML, we can use the

same CSS styles as in the main page.

Frank: But how do we load up that... what? XHTML

fragment—

Joe: Sure.

Frank: —okay, right. So how do we load it?

Joe: Well, the tabs are <a> elements. Maybe we put

the fragments in the href attributes instead of those #
symbols?

Frank: But that would replace the entire page. That’s no

good. Besides, it seems sort of slow...

Jill: Guys, what about using a request object?

Joe: What do you mean?

Jill: What if we use a request object to get the XHTML

fragment, and just set the content pane’s innerHTML to

the returned page?

Frank: Can you even do that?

Jill: Why not? Instead of requesting a server-side program,

we’ll just request the XHTML fragment we want.

Joe: And we can do it asynchronously, so there’s no waiting

or page refreshing!

ajax can request xhtml pages

Chapter 3. javascript events Page 34 Return to Table of Contents

Chapter 3. javascript events
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 127

javascript events

Use a request object to fetch the class
details from the server
The server doesn’t need to do any processing for Marcy’s page, but we can

still use a request object to grab the XHTML fragments for each class. This

is a request to the server, but it’s just for a page rather than a program. Still,

the details are the same as you’ve already seen.

We’ll build the code the same way we always do, using the

createRequest() function from utils.js and a callback to display

the results in the content pane. Here’s what we need:

function showTab() {

var selectedTab = this.title;

// set each tab's CSS class

var request = createRequest();

if (request==null) {

 alert("Unable to create request");

 return;

}

request.onreadystatechange = showSchedule;

request.open("GET", selectedTab + ".html", true);

request.send(null);

}

function showSchedule() {

if (request.readyState == 4) {

 document.getElementById("content").innerHTML =

 }

}

}

This is the part of the
showTab() function that
you’ve already written.

This time we’re sending the request obje
ct

to a page URL. So we need to name the

fragments beginner.html, intermediate.html,

and advanced.html.

The showSchedule()
callback function
is called when the
request returns.

The XHTML in the file is available in responseText. We can display the XHTML using the innerHTML property of the content page.

This is the same request creation code we’ve been using for talking to server-side programs

schedule.js

Chapter 3. javascript events Page 35 Return to Table of Contents

Chapter 3. javascript events
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

128 Chapter 3

Be careful when you have two functions
changing the same part of a web page
There’s a bug! Class schedules show up okay, but mousing over another tab

or button image hides the class schedule and replaces the content pane with

hint text. That doesn’t seem too intuitive...

Clicking a button or tab works
great: the class schedule is
retrieved and dropped into the
content pane. But then mousing over a button or tab replaces the schedule with a hint. That’s not right!

The class schedule and details load perfectly from XHTML fragments.

Make sure you have the class XHTML fragments.

XHTML fragments for each class are included in the

examples download from Head First Labs. Make sure

they’re named beginner.html, intermediate.
html, and advanced.html. They should be in the

same directory as your main page, classes.html.

Get it!

synchronize your asynchrony

Chapter 3. javascript events Page 36 Return to Table of Contents

Chapter 3. javascript events
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 129

javascript events

It’s time to finish up Marcy’s page. You need to change the JavaScript so that hints only
show when the welcome tab is active. If a class is selected, no hints should appear. Mark
up, cross out, and add to the code below to finish up schedule.js. To help you out, we’ve
only shown the parts of the script that you need to change or add to, and parts that are
relevant to those changes. Good luck!

var welcomePaneShowing = true;

function showHint() {

 if (!welcomePaneShowing) {

 return;

 }

 // code to show hints based on which tab is selected

}

function showTab() {

 var selectedTab = this.title;

 var tabs = document.getElementById("tabs").getElementsByTagName("a");

 for (var i=0; i<tabs.length; i++) {

 var currentTab = tabs[i];

 if (currentTab.title == selectedTab) {

 currentTab.className = 'active';

 } else {

 currentTab.className = 'inactive';

 }

 }

 var request = createRequest();

 if (request == null) {

 alert("Unable to create request");

 return;

 }

 request.onreadystatechange = showSchedule;

 request.open("GET", selectedTab + ".html", true);

 request.send(null);

}

Chapter 3. javascript events Page 37 Return to Table of Contents

Chapter 3. javascript events
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

130 Chapter 3

Your job was to finish up the code so that tabs selected classes
and turned off hints. Hints should only appear when the
Welcome tab is active.

var welcomePaneShowing = true;

function showHint() {

 if (!welcomePaneShowing) {

 return;

 }

 // code to show hints based on which tab is selected

}

function showTab() {

 var selectedTab = this.title;

 if (selectedTab == "welcome") {
 welcomePaneShowing = true;

 document.getElementById("content").innerHTML =

 "<h3>Click a tab to display the course schedule for the class</h3>";

 } else {
 welcomePaneShowing = false;

 }
 // everything else stayed the same!

}

This is the key variable. This should indicate if the welcome pane is showing. If it’s not, we don’t want to show any hints.

We’ve already got a check in showHint() for

the welcome pane... so we just need to make

sure this variable is set correctly.

Here’s the new code. First, we need to see if

the selected tab is the Welcome tab.

If so, we should update the
welcomePaneShowing variable.

If any other tab is selected, update
welcomePaneShowing to false. Now
no hints will show because of the if
statement in showHint().

You get bonus credit if you
figured this out. If the welcome
pane is selected, we need to
overwrite any class schedule with
the welcome message...

...otherwise, the welcome pane will have a class schedule, and it won’t even be clear which
class is showing!

Q: What if I didn’t catch the bit about changing the content pane back to the
welcome message when the Welcome tab is selected?

A: That’s okay. Make sure you add that code to your copy of schedule.js, though. One
way you can avoid missing things like that in the future is to always test your code. Load up
the yoga class page, and click and move the mouse around... does anything look funny? If
so, then make whatever changes you need to fix that problem.

This really
is a hack...
we’re putting
presentation
in our
JavaScript!
You’ll learn a
way to avoid
this when
you get into
the DOM in
Chapters 5
and 6.

finish showTab()

Chapter 3. javascript events Page 38 Return to Table of Contents

Chapter 3. javascript events
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

javascript events

Test Drive
Make sure you’ve got the XHTML fragments, the updated CSS, the
clean XHTML class page (with no presentation!), and your completed
copy of schedule.js. Load up Marcy’s web page, and give it a spin.

Clicking on a tab or button
selects the right class schedule
and description...

...and hints don’t cover up the class-specific information anymore.

Chapter 3. javascript events Page 39 Return to Table of Contents

Chapter 3. javascript events
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

132 Chapter 3

Marcy wants the images on the left
to change when users roll their mouse
over the image
It’s too bad Marcy didn’t let us know about this
earlier, but this still shouldn’t be too hard. So when
the page loads, the images should look one way, but
each time a user rolls their mouse over the button,
the image should change.

beginnersBtn.png

beginnersBtnActive.png

Mouse over

When the user “rolls
over” the image,
it changes to the
active version.

intermediateBtn.png

intermediateBtnActive.png

Mouse over

advancedBtn.png

advancedBtnActive.png

Mouse over

clients always have one more idea

Chapter 3. javascript events Page 40 Return to Table of Contents

Chapter 3. javascript events
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 133

javascript events

When you need to change images in your
script, think “change CSS classes” instead
Here’s another case where separation of presentation and behavior can be a big

issue. Before changing any code, think, “Is this a case where I’m going to have

to mix my behavior (my code) and my presentation (like images)?”

If it is, it’s time to restructure some things. The image buttons are really just like

the tabs. They just look like buttons instead of tabs. So let’s add some new CSS

classes for both button states: the normal button and the active button.

#navigation a {
 display: block; float: left;
 height: 0; margin: 0 0 10px 0;
 overflow: hidden; padding: 140px 0 0 0;
 width: 155px; z-index: 200;
}

#navigation a#beginners {
 background: url('../images/beginnersBtn.png') no-repeat;
}
#navigation a#beginners.active {
 background: url('../images/beginnersBtnActive.png') no-repeat;
}
#navigation a#intermediate {
 background: url('../images/intermediateBtn.png') no-repeat;
}
#navigation a#intermediate.active {
 background: url('../images/intermediateBtnActive.png') no-repeat;
}
#navigation a#advanced {
 background: url('../images/advancedBtn.png') no-repeat;
}
#navigation a#advanced.active {
 background: url('../images/advancedBtnActive.png') no-repeat;
}

Just like with the classes for
the tabs, these can go anywhere

in your CSS.

By default, buttons use
one image...

...and when a button
is active, it uses a
different image.

#tabs {
...
}

yoga.css

These rules apply to all the

<a>’s and handle positioning

and sizing.

Chapter 3. javascript events Page 41 Return to Table of Contents

Chapter 3. javascript events
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

134 Chapter 3

... XHTML for page head, body, etc...

 <div id="navigation">
 Beginners
 Intermediate
 Advanced
 <img src="images/beginnersBtn.png" alt="Beginners Yoga"
 title="beginners" class="nav" />
 <img src="images/intermediateBtn.png" alt="Intermediate Yoga"
 title="intermediate" class="nav"/>
 <img src="images/advancedBtn.png" alt="Advanced Yoga"
 title="advanced" class="nav"/>
 </div>

Links in XHTML are represented by
 a elements
Here’s another place where we can make some improvements to our

XHTML. Currently, the images are represented by tags, but

they really are functioning as linking buttons: you can click on one to

get a class schedule.

Let’s change each button to an <a>, which better represents

something you can click on to get to a different destination, in this

case a class schedule and description.

<html>
<script src=”...
js” />
<img
src=”siteLogo.
png” />
</html>

classes.html

Make sure to use the right ids and titles.

This text will get
covered up by the
button images.

Q: With the tabs, we had an inactive class and an
active class. But on the buttons, they’re in the XHTML
without a class, and then there’s a CSS “active” class
description with the active image. Why don’t we have
an inactive CSS class with these buttons, too?

A: Good question. With the tabs, there were two
distinct states: active (in the forefront) and inactive (in
the background). The buttons we have, though, really
have a normal state, where they sit flat, and an active
state, where the button is highlighted. So it seemed
more accurate to have a button (with no class), and then
assign that button the “active” class when it’s rolled over.
Uniformity is a good thing, though, so you could probably
use inactive and active classes if you felt strongly about it.

use the right elements

Chapter 3. javascript events Page 42 Return to Table of Contents

Chapter 3. javascript events
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 135

javascript events

We need a function to show an active
button and hide a button, too
Before we change any of schedule.js, let’s add two functions we know

we’ll need. First, we need a buttonOver() function to show the

active image for a button. That’s just a matter of changing a CSS class:

function buttonOver() {
 this.className = "active";
}

We can do just the opposite for when a user’s mouse rolls out of the

button’s area. We just need to change back to the default state, which

is no CSS class:

function buttonOut() {
 this.className = "";
}

When you initialize the page, you need to
assign the new event handlers
Now we need to assign the new functions to the right

events. buttonOver() should get assigned to a

button’s onmouseover event, and buttonOut() gets

assigned to a button’s onmouseout event.

We can also update the code to use the new <a>
elements that represent buttons instead of the older

 elements.

function initPage() {
 // code to deal with tabs

 var buttons =
 document.getElementById("navigation").getElementsByTagName("a");
 for (var i=0; i<buttons.length; i++) {
 var currentBtn = buttons[i];
 currentBtn.onmouseover = showHint;
 currentBtn.onmouseout = hideHint;
 currentBtn.onclick = showTab;
 currentBtn.onmouseover = buttonOver;
 currentBtn.onmouseout = buttonOut;
 }
}

In JavaScript,
an element is
represented by an
object. That object
has a property for
each event that
can occur on the
element that it
represents.

We’ve
changed the
array that
was called
images to
be called
buttons.

In our updated XHTML, we need all the <a> elements nested in the navigation <div>.

Here are our new event handlers.

When the mouse is over
a button, make it active.

When the mouse rolls out of a button, go back to
the default state.

Chapter 3. javascript events Page 43 Return to Table of Contents

Chapter 3. javascript events
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

136 Chapter 3

(the final) Test Drive
Everything should work! Make all the changes from the last few pages
to your XHTML, CSS, and JavaScript, and let’s impress Marcy with her
stunning new interactive class schedule page.

Roll over a button, and you
should get the active version
with a new image.

test drive

Chapter 3. javascript events Page 44 Return to Table of Contents

Chapter 3. javascript events
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 137

javascript events

What happened to the hints that were
attached to the button’s onmouseover
and onmouseout events?

What would YOU do to make sure that
Marcy’s customers get cool interactive
buttons AND helpful hints?

When you’ve got an idea, turn over to
Chapter 4, and let’s see how to take
your event handling skills to the next
level (literally).

Chapter 3. javascript events Page 45 Return to Table of Contents

Chapter 3. javascript events
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Table of Contents

Chapter 4. multiple event handlers.. 1
Section 4.1. An event can have only one event handler attached to it (or so it seems)... 2
Section 4.2. Event handlers are just properties.. 3
Section 4.3. A property can have only ONE value.. 3
Section 4.4. Assign multiple event handlers with addEventListener()... 4
Section 4.5. Your objects can have multiple event handlers assigned to a single event in DOM Level 2..................................... 6
Section 4.6. What's going on with Internet Explorer?... 10
Section 4.7. Internet Explorer uses a totally different event model... 11
Section 4.8. attachEvent() and addEventListener() are functionally equivalent... 11
Section 4.9. addEventHandler() works for ALL apps, not just Marcy's yoga page.. 16
Section 4.10. Let's update initPage() to use our new utility function... 17
Section 4.11. Use an alert() to troubleshoot.. 19
Section 4.12. So what else could be going wrong?.. 19
Section 4.13. Event handlers in IE are owned by IE's event framework, NOT the active page object.. 21
Section 4.14. attachEvent() and addEventListener() supply another argument to our handlers... 22
Section 4.15. We need to name the Event argument, so our handlers can work with it... 23
Section 4.16. You say target tomato, I say srcElement tomato.. 24
Section 4.17. So how do we actually GET the object that triggered the event?... 28

Chapter 4. multiple event handlers

Chapter 4. multiple event handlers
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

this is a new chapter 139

multiple event handlers4

Two’s company

A single event handler isn’t always enough.

clean, reusable code two bits of

functionality same event DOM

Level 2 single event.

A single event handler isn’t always enough.

clean, reusable code two bits of

functionality same event DOM

Level 2 single event.

Chapter 4. multiple event handlers Page 1 Return to Table of Contents

Chapter 4. multiple event handlers
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

140 Chapter 4

An event can have only one event

handler attached to it (or so it seems)

Marcy’s page has a problem. We’ve assigned two event handlers to

the onmouseover property of her image buttons:

Only the LAST event handler assigned gets run

When you assign two event handlers to the same event, only the last

event handler that’s assigned gets run. So on Marcy’s page, mousing

over a button triggers onmouseover. Then, that event runs the last

handler assigned to it: buttonOver().

function initPage() {
 // code to deal with tabs

 var buttons =
 document.getElementById("navigation").getElementsByTagName("a");
 for (var i=0; i<buttons.length; i++) {
 var currentBtn = buttons[i];
 currentBtn.onmouseover = showHint;
 currentBtn.onmouseout = hideHint;
 currentBtn.onclick = showTab;
 currentBtn.onmouseover = buttonOver;
 currentBtn.onmouseout = buttonOut;
 }
}

This is the same event: onmouseover for currentBtn. But we’re assigning both the showHint() handler...

...and the buttonOver() handler.

But there’s no hint an
ymore.

showHint() is not getting
run.

The image is changing when you roll
over a button, so buttonOver() is
getting called.

events are properties

Chapter 4. multiple event handlers Page 2 Return to Table of Contents

Chapter 4. multiple event handlers
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 141

multiple event handlers

currentBtn.
onmouseover =
 showHint;

JavaScript file

<a> element

currentBtn.
onmouseover =
 showHint;

currentBtn.
onmouseover =
 buttonOver;

JavaScript file

Event handlers are just properties
When you assign an event handler to an event on an XHTML element,

the handler becomes a property of the element, just like the id or title
properties of an <a> element:

id="advanced"

title="advanced"
onmouseover = showHint

The <a> object has properties: an id,
title, an href, and an onmouseover.
Each property has a name and a value.

A property can have only ONE value
If you assign a value to a property, that property has that single value. So

what happens when you assign another value to that property? The property

then has the new value, and the old value is gone:

First, the onmouseover
property is assigned
the value “hideImage.”

Then, the onmouseover property is assigned a new value, “buttonOver.” The value “buttonOver”
replaces the old value.

href="#"

<a> element

id="advanced"

title="advanced"onmouseover = showHint

href="#"onmouseover = buttonOver

<a
 id=""advanced"
 id="advanced"
 href="#"
 ...
/>

XHTML file

Chapter 4. multiple event handlers Page 3 Return to Table of Contents

Chapter 4. multiple event handlers
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

142 Chapter 4

Assign multiple event handlers with
addEventListener()
So far, we’ve been adding event handlers to elements by setting the event

property directly. That’s called the DOM Level 0 model. DOM stands

for the Document Object Model, and it’s how elements on a web

page get turned into objects our JavaScript code can work with.

But DOM Level 0 isn’t cutting it anymore. We need a way to assign

more than one handler to an event, which means we can’t just assign

a handler to an event property. That’s where DOM Level 2 comes in.

DOM Level 2 gives us a new method, called addEventListener(),

that lets us assign more than one event handler to an event.

Here’s what the addEventListener() method looks like:

currentBtn.addEventListener("mouseover", showHint, false);

Here’s the new method.
You can call this
method on any element
you have an object
representation for.

For the first argument, use the event name without the “on” in front.

The second argument is the
event handler. This should be a
function in your script, or you
can declare the function inline.

Ignore this
for now.

currentBtn.addEventListener("mouseover", buttonOver, false);

Add a second handler, using
addEventListener(), and
both handlers will get called

for the specified event.

addEventListener() registers an event handler

Chapter 4. multiple event handlers Page 4 Return to Table of Contents

Chapter 4. multiple event handlers
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 143

multiple event handlers

Q: DOM? What’s that?

A: DOM stands for the Document Object
Model. It’s a specification that defines how
the parts of a web page, like elements and
attributes, can be represented as objects
that your code can work with.

Q: And what does Level 0 mean?

A: Level 0 was actually an interpretation
of the DOM published before the DOM was
formalized. So it works with the DOM but
isn’t really part of it.

For your purposes, though, DOM Level
0 is what your browser uses to come up
with basic objects and properties for each
element in a web page. When you assign a
handler to an element’s onmouseover
property, you’re using DOM Level 0.

Q: What about DOM Level 1? Do I
need to worry about that?

A: Not right now. DOM Level 1 has to do
with how you move around in a document.
So DOM Level 1 lets you find the parent of
an element, or its second child. We’ll look at
DOM navigation quite a bit in Chapter 6.

Right now, though, you don’t really need
to worry too much about what level of the
DOM you’re using, except to make sure
your browser supports that level. All major
browsers support DOM Level 0 and Level 1,
which is why you can assign event handlers
programmatically using event properties like
onclick and onmouseover.

Q: And addEventListener() is part of
DOM Level 2?

A: Exactly. DOM Level 2 added a lot of
specifics about how events should work and
dealt with some XML issues that aren’t a
problem for us right now.

Q: So I can use addEventListener() to
add multiple events, and it will work with
all the browsers?

A: As long as they support DOM Level 2.
But there’s one major browser that doesn’t
support DOM Level 2... we’ll look at that in
just a minute.

Q: Couldn’t I just assign an array to
an event property, and give the property
multiple values that way?

A: That’s a good idea, but it’s the browser
that connects events to event handlers. If
you assigned an array of handler names to
an event property, the web browser wouldn’t
know what to do with that array.

That’s why DOM Level 2 was put into place:
it provides a standard way for browsers
to deal with multiple events. Ideally,
specifications standardize a process and
remove any possible guesswork.

Q: Why are the event property names
different than the names you pass to
addEventListener()?

A: That’s another great question. That’s
just the way the authors of the DOM
decided to handle event names. So if
you’re assigning an event property, use
onclick or onmouseover. With
addEventListener(), use
click and mouseover.

Q: What’s that last parameter you’re
sending to addEventListener()? And why
are you setting it to false?

A: That last parameter indicates whether
you want event bubbling (false) or
capturing (true). We’ll talk more about
capturing and bubbling in a bit, so don’t
worry about this too much. For now, always
pass false to addEventListener(),
which indicates you want event bubbling.

You can assign as
many handlers
as you want to
an event using
addEventListener().

addEventListener()
works in any web
browser that
supports DOM
Level 2.

Chapter 4. multiple event handlers Page 5 Return to Table of Contents

Chapter 4. multiple event handlers
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

144 Chapter 4

mouseover

showHint

mouseover

showHint
buttonOver

function
hideImage()
{
 // code
}

JavaScript file

function
showLogin()
{
 // code
}

JavaScript file

Your objects can have multiple event handlers

assigned to a single event in DOM Level 2

The most important thing that DOM Level 2 added to events is the ability for

an event to have more than one handler registered. You’ve already seen how

addEventListener() adds a handler to an event:

Event listeners
aren’t called in
any particular
order.

You might think
that the browser calls the
event handlers in the order
they’re added, but that’s not
guaranteed. Make sure that
your handlers don’t depend on
the order in which they’re called.

currentBtn.addEventListener("mouseover", showHint, false);

currentBtn.addEventListener("mouseover", buttonOver, false);

The browser runs every handler for an event when

that event is triggered

When an event is triggered by a mouse movement, the browser looks

up the right event. Then, the browser runs every event handler function

registered to that event:

mouseover

showHint
buttonOver

showHint()

buttonOver()

firefox and safari are dom level 2 browsers

Chapter 4. multiple event handlers Page 6 Return to Table of Contents

Chapter 4. multiple event handlers
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 145

multiple event handlers

It’s time to make some improvements to Marcy’s yoga page. Below is
the current code for initPage(). Your job is to cross out anything that
shouldn’t be in the code, and make any additions you think you need
to get the image button mouse events to work.

function initPage() {

 var tabs =

 document.getElementById("tabs").getElementsByTagName("a");

 for (var i=0; i<tabs.length; i++) {

 var currentTab = tabs[i];

 currentTab.onmouseover = showHint;

 currentTab.onmouseout = hideHint;

 currentTab.onclick = showTab;

 }

 var buttons =

 document.getElementById("navigation").getElementsByTagName("a");

 for (var i=0; i<buttons.length; i++) {

 var currentBtn = buttons[i];

 currentBtn.onmouseover = showHint;

 currentBtn.onmouseout = hideHint;

 currentBtn.onclick = showTab;

 currentBtn.onmouseover = buttonOver;

 currentBtn.onmouseout = buttonOut;

 }

}

schedule.js

Chapter 4. multiple event handlers Page 7 Return to Table of Contents

Chapter 4. multiple event handlers
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

146 Chapter 4

function initPage() {

 var tabs =

 document.getElementById("tabs").getElementsByTagName("a");

 for (var i=0; i<tabs.length; i++) {

 var currentTab = tabs[i];

 currentTab.onmouseover = showHint;

 currentTab.onmouseout = hideHint;

 currentTab.onclick = showTab;

 }

 var buttons =

 document.getElementById("navigation").getElementsByTagName("a");

 for (var i=0; i<buttons.length; i++) {

 var currentBtn = buttons[i];

 currentBtn.onmouseover = showHint;

 currentBtn.onmouseout = hideHint;

 currentBtn.onclick = showTab;

 currentBtn.onmouseover = buttonOver;

 currentBtn.onmouseout = buttonOut;

 }

}

schedule.js

Your job was to cross out anything that shouldn’t be in the code,
and make any additions you thought you’d need to get the image
button mouse events to work

currentBtn.addEventListener("mouseover", showHint, false);

currentBtn.addEventListener("mouseout", hideHint, false);

currentBtn.addEventListener("mouseout", buttonOut, false);

currentBtn.addEventListener("mouseover", buttonOver, false);

Both the mouseover and
mouseout events need two
handlers each.

Use false for each call right now... we’ll talk more about bubbling and capturing later.

Remember, the event names
are the same, but without
the “on” before the name.

You could have changed these to addEventListener(), but there’s really no reason to. They work fine as they are.

register multiple handlers with dom level 2

Chapter 4. multiple event handlers Page 8 Return to Table of Contents

Chapter 4. multiple event handlers
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 147

multiple event handlers

Test Drive
Change your copy of schedule.js, and fire up your web browser.
Try out the image buttons that now use addEventListener().
Does everything work?

Moving your mouse over the
intermediate image changes
the hint text...

...and updates the butt
on

image on the page.

Everything works! Let’s
have Marcy take a look.

and

What’s going on with Marcy’s browser?
What do you think is going wrong for Marcy? Why
isn’t the yoga app working?

Hint: Try
different
browsers out.

Chapter 4. multiple event handlers Page 9 Return to Table of Contents

Chapter 4. multiple event handlers
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

148 Chapter 4

What’s going on with Internet Explorer?
The yoga page works great on Firefox, Safari, and a lot of other browsers...

but something’s definitely wrong on Internet Explorer:

There’s a problem when you roll over

the images. IE reports an error...

something about a property or

method not being supported? You can’t control what
browsers your users are
working with.

It’s your job to
build cross-browser
applications... and
always test your code in
LOTS of browsers.

IE shows a little triangular icon in the bottom status bar. Double-click that triangle to see this error message.

internet explorer is NOT dom level 2

Chapter 4. multiple event handlers Page 10 Return to Table of Contents

Chapter 4. multiple event handlers
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 149

multiple event handlers

Internet Explorer uses a totally
different event model
Remember that addEventListener() only works on browsers

that support DOM Level 2? Well, Internet Explorer isn’t one of

those browsers. IE has its own event model and doesn’t support

addEventListener(). That’s why Marcy got an error trying the

yoga page out on IE.

Fortunately, IE provides a method that does the same thing as

addEventListener(). It’s called attachEvent():

This is the method that
adds the event handler in
Internet Explorer.

This time you keep the “on” at the beginning of the event name...

You still give the function the name
of the handler to run when the
event occurs. That mysterious “false” disappears in attachEvent().

currentBtn.attachEvent("onmouseover", showHint);

attachEvent() and addEventListener()
are functionally equivalent
Even though the syntax is different, these functions do exactly the
same thing. So you just need to use the right one for your users’

browsers.

currentBtn.attachEvent("onmouseover", showHint);

currentBtn.addEventListener("mouseover", showHint, false);

Use attachEvent()
for Internet
Explorer browsers.

Use
addEventListener()
for Firefox...

...Opera...

...as well as Safari and most other
modern browsers.

These are all DOM
Level 2 browsers.

Chapter 4. multiple event handlers Page 11 Return to Table of Contents

Chapter 4. multiple event handlers
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

150 Chapter 4

Q: So this is all about which browser
is better?

A: No, it’s just that not all browsers were
developed the same way. It wasn’t so long
ago that the DOM wasn’t a sure thing, and
Microsoft just decided to go in another
direction. IE isn’t better or worse than other
browsers; it’s just different.

Q: Yeah, but everyone knows IE’s a
pain. I mean, come on...

A: It’s true that lots of web developers
think that IE is hard to deal with. That’s just
because it uses some different syntax. But
look at things the other way: if you’ve been
writing code on IE all your life, then it’s really
Firefox, Safari and Opera that are a pain.

Either way, you’ve got to write web apps that
work on all major browsers, or you’re going
to miss out on a ton of users.

Q: Why does attachEvent() add the
“on” back to the event name?

A: That’s just the way IE decided to
implement that method.

Q: What about that last argument to
addEventListener()? Where did it go on
attachEvent()?

A: You may remember that the last
argument to addEventListener()
indicated whether you wanted event
bubbling (false) or event capturing
(true). IE only supports event bubbling, so
that argument isn’t needed.

We’ll come back to capturing and bubbling
once we’ve got Marcy’s app working on all
major browsers.

Q: So which one should I use?
addEventListener() or attachEvent()?

A: Good question. If you think about it and
look back at the createRequest()
function, you probably already know the
answer...

The browser wars are just part
of web development.
Like it or not, not all browsers are the
same. Besides, when Microsoft came up
with their own event model, it wasn’t that
obvious that the DOM Level 2 would take
off like it did.

And no matter how it all happened, you
can’t write off people who use IE... or
those who don’t.

In IE, event names
have “on” in front, for
example, “onclick” and
“onmouseover.”
In Firefox, Safari,
and Opera, event
names DON’T have
“on” in front: “click”
and “mouseover.”

welcome to browser wars

Chapter 4. multiple event handlers Page 12 Return to Table of Contents

Chapter 4. multiple event handlers
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 151

multiple event handlers

Utility Function Magnets
Just like with createRequest(), we need our event handling to work on
multiple browsers. Your job is to use the magnets below to build a utility
function for adding event handlers to events.

obj

function

obj

obj
eventName

eventName

eventName

(((

)
)

)
}

}

}

{

{

{

if

)

)

(

(

handler

handler

handler

if
else

document

document

.

.

.
.

attachEvent

addEventListener +

,

,

, ,

"on"

;
;

Hint: The expression (document.someFunction) returns true if a browser supports
running someFunction(), and returns false if that function isn’t supported.

addEventHandler

addEventListener attachEvent

;

false

Chapter 4. multiple event handlers Page 13 Return to Table of Contents

Chapter 4. multiple event handlers
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

152 Chapter 4

Q: Why didn’t we use a try...catch block this time?

A: We could have, but unlike createRequest(), this
function doesn’t need an error to know that something went wrong.
Using document.attachEvent and document.
addEventListener works just as well. Besides, the if...else
if block is a lot easier to read.

This is the syntax used by Internet Explorer.

This is the DOM
Level 2 syntax.

Utility Function Magnets Solutions
Your job was to figure out a way to get our event handling to run on
multiple browsers. You should have built a utility function for adding
event handlers to events.

addEventHandler

obj

function

obj

obj

eventName

eventName

eventName

(

(

(

)

)

)

}

}
}

{

{

{

if

)

)

(

(

handler

handler

handler

ifelse

document

document

.

.

.

.

attachEvent

addEventListener

+

,

,

,

,

"on"
;

;
addEventListener

attachEvent

, false

This function takes in the object that
this event applies to...

...the name of the event, like “click” or “mouseover”... ...and the handler function.

This will
only be true
for IE.

You could also have checked for addEventListener first... the order of the if/else-if doesn’t matter.

utility functions abstract browser differences

Chapter 4. multiple event handlers Page 14 Return to Table of Contents

Chapter 4. multiple event handlers
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 153

multiple event handlers

Chapter 4. multiple event handlers Page 15 Return to Table of Contents

Chapter 4. multiple event handlers
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

154 Chapter 4

addEventHandler() works for ALL apps,
not just Marcy’s yoga page
So where should you put your code for addEventHandler()?
We’ll use it in Marcy’s yoga page, but it’s really a utility function. It will
work for all our apps and in any browser. So go ahead and add your
new code to utils.js, so we can reuse it in later web apps we build.

utils.js

function
createReq {
 ...
}

Anytime you build
cross-browser utility
functions, store those
methods in scripts
that you can easily
reuse in your other
web applications.

function createRequest() {

 try {

 request = new XMLHttpRequest();

 } catch (tryMS) {

 try {

 request = new ActiveXObject("Msxml2.XMLHTTP");

 } catch (otherMS) {

 try {

 request = new ActiveXObject("Microsoft.XMLHTTP");

 } catch (failed) {

 request = null;

 }

 }

 }

 return request;

}

function addEventHandler(obj, eventName, handler) {
 if (document.attachEvent) {
 obj.attachEvent("on" + eventName, handler);
 } else if (document.addEventListener) {
 obj.addEventListener(eventName, handler, false);
 }
}

Just like createRequest(), addEventHandler() is useful in all our apps.

use utility functions frequently

Chapter 4. multiple event handlers Page 16 Return to Table of Contents

Chapter 4. multiple event handlers
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 155

multiple event handlers

Let’s update initPage() to use our new
utility function
Now we need to change initPage(), in schedule.js, to use
addEventHandler() instead of addEventListener(). Go
ahead and make the following changes to your copy of schedule.js:

function initPage() {

 var tabs =

 document.getElementById("tabs").getElementsByTagName("a");

 for (var i=0; i<tabs.length; i++) {

 var currentTab = tabs[i];

 currentTab.onmouseover = showHint;

 currentTab.onmouseout = hideHint;

 currentTab.onclick = showTab;

 }

 var buttons =

 document.getElementById("navigation").getElementsByTagName("a");

 for (var i=0; i<buttons.length; i++) {

 var currentBtn = buttons[i];

 addEventHandler(currentBtn, "mouseover", showHint);
 currentBtn.addEventListener("mouseover", showHint, false);

 addEventHandler(currentBtn, "mouseout", hideHint);
 currentBtn.addEventListener("mouseout", hideHint, false);

 currentBtn.onclick = showTab;

 addEventHandler(currentBtn, "mouseover", buttonOver);
 currentBtn.addEventListener("mouseover", buttonOver, false);

 addEventHandler(currentBtn, "mouseout", buttonOut);
 currentBtn.addEventListener("mouseout", buttonOut, false);

 }

}

schedule.js

Remove all the addEventListener() calls, as they only work on DOM Level 2 browsers.

addEventHandler() has to tak
e in

the button since it’
s not a method

on that button itse
lf.

Chapter 4. multiple event handlers Page 17 Return to Table of Contents

Chapter 4. multiple event handlers
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

156 Chapter 4

Test Drive
You should have addEventHandler() in utils.js and an updated
version of initPage() in schedule.js. Once you’ve made those
changes, try out the yoga page in Internet Explorer and a DOM
Level 2 browser, like Firefox or Safari.

Everything works
great in DOM Level 2
browsers. That means our
addEventHandler() utility
function does the right
thing for those browsers.

Uh oh... more trouble with IE.

But there’s no error
reported this time...

...even though neither the hints nor the image rollovers work.

test drive

Chapter 4. multiple event handlers Page 18 Return to Table of Contents

Chapter 4. multiple event handlers
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 157

multiple event handlers

Use an alert() to troubleshoot
Without any error messages, it’s hard to know exactly what’s

going on with Internet Explorer. Try putting in a few alert()
statements in the event handlers, though, and you’ll see they’re

getting called correctly.

So what else could be going wrong?
The event handlers are getting called, so that means that

addEventHandler() is working like it should. And we’ve already

seen that the code in the handlers worked before we added the

rollovers. So what else could be the problem?

What do you think the problem could be?
Can you figure out why the code

isn’t working like it should?

function buttonOver() {
 this.className = "active";
}

function buttonOut() {
 this.className = "";
}

We know these class names
are right... so what else
could be going wrong?

function buttonOver() {
 alert("buttonOver() called.");
 this.className = "active";
}

function buttonOut() {
 alert("buttonOut() called.");
 this.className = "";
}

Chapter 4. multiple event handlers Page 19 Return to Table of Contents

Chapter 4. multiple event handlers
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

158 Chapter 4

“this” refers to the owner of the
executing function.
The this keyword in JavaScript always

refers to the owner of the function that’s

executing. So if the method bark() was

called by an object called Dog, then this in

bark() would refer to the Dog object.

When you assign an event handler using

DOM Level 0, the element with the event

is the owner. So if you did tab.onclick
= showTab;, then in showTab(), this
would refer to the tab element. That’s why

showHint() and hideHint() worked

great in the last chapter.

this

tab

onclick = showTab;

function showTab() {

 var currentTab = this.title;
 // etc.

The this keyword refers
to the owner of the
function that’s running...
that’s the tab object.

In DOM Level 2, an event is still
the owner of its handlers
When you’re using DOM Level 2 browsers

like Firefox, Safari, or Opera, the event

handling framework sets the owner of

a handler to the object that handler is

responding to an event on. So you get the

same behavior as with DOM Level 1. That’s

why our handlers still work with DOM Level

2 browsers.

But what about IE?

“owner” and “caller” aren’t the
same. In a web environment, the
browser calls all the functions,
but objects representing
elements on the page are the
owners of those functions.

we want the owner of our handler

Chapter 4. multiple event handlers Page 20 Return to Table of Contents

Chapter 4. multiple event handlers
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 159

multiple event handlers

Event handlers in IE are owned by IE’s event

framework, NOT the active page object

You already know that IE doesn’t implement DOM Level 2. IE has its own

event handling framework. So in IE, the event framework owns the
handler functions, not the object on the XHTML page that was activated

with a click or mouse over. In other words, this in showTab() refers to the

IE event framework, not to a tab element on Marcy’s yoga web page.

tab

onclick = showTab;

function showTab() {

 var currentTab = this.title;
 // etc.

IE Event Handling
Framework

In IE, this in an event
handler that refers to
an object in the event
handling framework.

You can’t get back to the object on the page that the event was triggered on using this in IE.

Q: What object does this refer to in the
IE framework, then?

A: this always refers to the owner of
the function that’s currently running. So in an
event handler under IE’s event framework,
this points at one of the framework’s
objects.

It really doesn’t matter what that object is
because it’s not all that useful. What we
need is a way to get information about the
element that the event occurred on.

Q: But if this is how IE handles events,
how did our code work back in Chapter 3
on Internet Explorer?

A: Our code worked in IE because
we were just using DOM Level 0 syntax.
Anytime you assign a handler to a property,
like currentBtn.onmouseover
= showTab, that’s DOM Level 0.

But our code now is using
addEventListener() and
attachEvent(). That’s not DOM
Level 0, and now this doesn’t mean the
same thing as it did in that earlier code.

Q: Ok, great. So the page still doesn’t
work in Internet Explorer. What now?

A: Well, take a moment to think about
what exactly you need. It’s not so much the
this keyword that’s important, but the
information that keyword let us access.

What exactly do we need to know about in
our event handler functions?

Framework just means a set of objects or code that performs some task, like handling events on a web page.

Chapter 4. multiple event handlers Page 21 Return to Table of Contents

Chapter 4. multiple event handlers
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

160 Chapter 4

attachEvent() and addEventListener()
supply another argument to our handlers
One of the cooler things about JavaScript is that you don’t need to list all

the arguments that your functions take when you declare that function. So

even if your function declaration is showTab(), you can pass arguments

to showTab() when you call it.

Your event handlers get an Event object from
attachEvent() and addEventListener()
When you register an event handler using DOM Level 2 and

addEventListener(), or attachEvent() and IE, both

frameworks pass your event handlers an object of the Event type.

Your handlers can then use this object to figure out what object

on a page was activated by an event, and which actual event was

triggered.

There are two properties in particular that are really helpful to

know about. The first is type, which gives the name of the event

that was triggered, like “mouseover” or “click.” The second is

target, which gives you the target of the event: the object on the

page that was activated.

Event object

type

target

This is the name of the event that
occurred. It’s the same string that
you passed to addEventListener(), like
“mouseover” or “onload.”

This is the object the event
occurred on, like a tab or an
image on a web page.

function showTab() {

 var currentTab = this.title;

 // etc.

Even though there aren’t any objects listed here, showTab() could still be getting additional information when it’s called.

The bad thing about that is sometimes you miss out on

arguments that are passed to your function.

The target of an Event object

is equivalent to what you get

from the “this” keyword in

DOM Level 2 browsers.

Event objects
know what object
triggered them and
what type of event
they are.

We’ve got to replace “this” with something
that points to the object on the web page
that triggered this event.

So we need to
get access to the Event object in our handler functions.

we need an Event object

Chapter 4. multiple event handlers Page 22 Return to Table of Contents

Chapter 4. multiple event handlers
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 161

multiple event handlers

We need to name the Event argument, so
our handlers can work with it
You don’t have to list all the arguments a JavaScript function gets. But if

you want to actually use those arguments in the function, you do need to

list the arguments. First, we need to get access to the Event object in our

handlers, so we can figure out what object on a page triggered a call to our

handler. Then, we need to list the argument for that Event object:

function showHint(e) {
 // function code

}

function hideHint(e) {
 // function code

}

function showTab(e) {
 // function code

}

function buttonOver(e) {
 // function code

}

function buttonOut(e) {
 // function code

}

Event object

type

target

All of the event handlers in schedule.js should now take an extra argument.

DOM Level 2 browsers and
IE send an Event object to a
handler when it’s triggered.

this
or the Event

We’ll need to change most of our handler functions to use the Event object instead of “this.”

Chapter 4. multiple event handlers Page 23 Return to Table of Contents

Chapter 4. multiple event handlers
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

162 Chapter 4

You say tomato, I say tomato...
The good news is that both IE and DOM Level 2 browsers make the object that

triggered an event available. The bad news is that DOM Level 2 and IE use

different versions of the Event object, each with different properties.

In some cases, the Event object properties refer to the same thing, but the

property names are different. And to make matters worse, modern versions of

IE pass in an Event object, but earlier versions of IE make the Event object

available as a property of the window object.

Browsers that support DOM Level 2, like Firefox, Safari, and Opera,
pass an Event object to event handlers. The Event object has a
property named “target” that refers to the object that triggered the
event.

srcElement
Event

target
Event

Internet Explorer 7 passes an Event object to event handlers. The
Event object has a property named “srcElement” that refers to the
object that triggered the event.

Earlier versions of Internet Explorer provide the object that triggered an
event in a property named “srcElement,” available on the window object.

srcElement
window

target srcElement

myScript.js

myHandler(e)

myScript.js

myHandler(e)

myScript.js

myHandler(e)

Register

Register

Register

target points back at th
e

object that was activated.

srcElement is a property of window, not an Event object, in older versions of IE.

target or srcElement?

Chapter 4. multiple event handlers Page 24 Return to Table of Contents

Chapter 4. multiple event handlers
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 163

multiple event handlers

addEventListener()

So you think you really know your browsers? Here’s a quiz to help you check
your knowledge out for real. For each property, method, or behavior on the left,
check off all the boxes for the browsers that support that thing. Good luck!

Fir
efo

x
IE

7
Saf

ari
Oper

a
IE

5

srcElement

window.srcElement

addEventHandler()

attachEvent()

target

DOM Level 2

DOM Level 0

var currentTab = this.title;

Chapter 4. multiple event handlers Page 25 Return to Table of Contents

Chapter 4. multiple event handlers
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

164 Chapter 4

addEventListener()

So you think you really know your browsers? Here’s a quiz to help you check
your knowledge out for real. For each property, method, or behavior on the left,
you were to check off all the boxes for the browsers that support that thing.

Fir
efo

x
IE

7
Saf

ari
Oper

a
IE

5

srcElement

window.srcElement

addEventHandler()

attachEvent()

target

DOM Level 2

DOM Level 0

var currentTab = this.title;

This is a DOM Level 2
function. No IE.

All versions of IE have this property, but on different objects.

Only DOM Level 2
browsers support target.

This is our utility function, so
it works on all
browsers.

this is tricky. It works in all

browsers with DOM Level

0 events, but not in I
E if

attachEvent() is used.

Old versions of IE expose srcElement as a property of the window object.

internet explorer or dom level 2?

Chapter 4. multiple event handlers Page 26 Return to Table of Contents

Chapter 4. multiple event handlers
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 165

multiple event handlers

Q: So “this” always refers to the
function that called my function?

A: No, this refers to the owner of the
function. Sometimes that’s another bit of
code, but it also might be an object, like a
tab on a form that got clicked.

Q: But that’s not true in Internet
Explorer, right?

A: this still refers to the owner of a
function in IE. The difference is that when
you use attachEvent(), the owner
of your function is an object in IE’s event
handling framework and not an object on
your web page.

Q: So we shouldn’t ever use “this” in
Internet Explorer?

A: Actually, this is still a very useful
part of JavaScript, whether you’re using IE or
a DOM Level 2 browser. But if you’re writing
an event handler function, you’re probably
better off avoiding this. If you’re writing
an event handler that’s going to be called
using the IE event handling framework, via
attachEvent(), then you’ve got to
avoid using this.

Q: I’m still a little fuzzy on all this DOM
stuff. Can you explain that again?

A: DOM, or the Document Object Model,
is how a browser represents your page as
objects. JavaScript uses the DOM to work
with a web page. So every time you change
an element’s property or get an element with
getElementById(), you’re using
the DOM. That’s all you really need to know
right now, but we’re going to dig into the
DOM a lot more in just a few chapters.

Q: As long as I use addEventHandler(),
I don’t have to worry about all this DOM
stuff, though, right?

A: Well, you don’t have to
worry about whether you should
use attachEvent() or
addEventListener(). But as you’ll
see in Chapter 6, there’s still a lot of DOM
work you’ll end up doing.

addEventHandler() takes care
of registering an event handler to an event
in a browser-neutral way. In other words,
addEventHandler() works with all
modern browsers.

Q: And that’s why it’s in utils.js, right?
Because it’s a utility function?

A: Right. addEventHandler()
works for all browsers and many different
kinds of applications, not just Marcy’s yoga
page. So it’s best put into a reusable script,
like utils.js.

Q: But even if we use
addEventHandler(), we’ve still got these
issues with target and srcElement, right?

A: Right. IE 7 passes off to event
handlers an Event object with a
srcElement property that points
at the object that triggered the event.
Older versions of IE make that same
object available through the window.
srcElement property. DOM Level 2
browsers provide an Event object with
a property called target pointing to the
object that triggered an event.

Q: I’ve heard that object called an
“activated object” before. Is that the same
thing?

A: Yes. An activated object just means
an object that represents an element on a
web page that an event occurred on. So if an
image is clicked, the JavaScript object that
represents that image is the activated object.

Q: Since addEventHandler() took care
of adding events on all browsers, why
don’t we just build another utility function
to deal with all this target/srcElement
stuff?

A: Now that is a great idea!

The DOM provides
an object-based
model of your web
page that your code
can work with.
getElementById(),
the document object,
and the onclick
property are all
aspects of using the
DOM in your code.

Chapter 4. multiple event handlers Page 27 Return to Table of Contents

Chapter 4. multiple event handlers
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

166 Chapter 4

So how do we actually GET the object that

triggered the event?

The best way to deal with differences in how IE and DOM Level 2 browsers

handle events is another utility function. Our handler functions are now

getting Event objects, but what we really need is the activated object: the

object representation of the element on the page that the event occurred on.

So let’s build a utility function to take the event argument we get from those

browsers, and figure out and return the activated object:

function getActivatedObject(e) {

 var obj;

 if (!e) {

 // early version of IE

 obj = window.event.srcElement;

 } else if (e.srcElement) {

 // IE 7 or later

 obj = e.srcElement;

 } else {

 // DOM Level 2 browser

 obj = e.target;

 }

 return obj;

}

utils.js

function
createReq {
 ...
}

This function goes in utils.js along with createRequest() and addEventHandler().

Our handlers get an Event

object, so let’s pass that
 object

to this utility function.

Early versions of IE actually don’t send an object... ...which tells us to check the
srcElement property of the
window object.

IE 7 has a srcElement property, which is what we want on that browser.

DOM Level 2 browsers

provide the activat
ed object

in the target prop
erty of

the passed-in event.

utility functions... redux

Chapter 4. multiple event handlers Page 28 Return to Table of Contents

Chapter 4. multiple event handlers
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 167

multiple event handlers

You need to update Marcy’s code again. In all of the event handlers, you need to use
getActivatedObject() to get the activated object. You’ll also need to change the rest of those
methods to use the object returned from that function instead of this. There are a few other
changes you should already have made, too. Check off each task once you’re finished.

Update utils.js
Add the addEventHandler() and getActivatedObject() functions to the file.

addEventHandler() getActivatedObject()

Use addEventHandler() instead of addEventListener()
Use the generic addEventHandler() to abstract out DOM Level 2 and IE
event handling differences.

Update initPage() to only use addEventHandler()

Use getObject() instead of this
Update all your event handler functions to use getActivatedObject()
instead of the this keyword. You’ll need to make other changes to get those
functions working as well.

showHint() hideHint()

buttonOver() buttonOut()

showTab()

When you think you’re done, try things out for yourself. Then, turn the page to
see how we updated the code in schedule.js and utils.js.

Chapter 4. multiple event handlers Page 29 Return to Table of Contents

Chapter 4. multiple event handlers
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

168 Chapter 4

Your job was to complete the changes to schedule.js so that all the event handlers would take an
Event argument, and use the getObject() utility function from utils.js to figure out the activated
object. You should have also removed all references to this in your event handler functions.

window.onload = initPage;
var welcomePaneShowing = true;

function initPage() {
 var tabs =
 document.getElementById("tabs").getElementsByTagName("a");
 for (var i=0; i<tabs.length; i++) {
 var currentTab = tabs[i];
 currentTab.onmouseover = showHint;
 currentTab.onmouseout = hideHint;
 currentTab.onclick = showTab;
 }

 var buttons =
 document.getElementById("navigation").getElementsByTagName("a");
 for (var i=0; i<buttons.length; i++) {
 var currentBtn = buttons[i];
 addEventHandler(currentBtn, "mouseover", showHint);
 addEventHandler(currentBtn, "mouseout", hideHint);
 currentBtn.onclick = showTab;
 addEventHandler(currentBtn, "mouseover", buttonOver);
 addEventHandler(currentBtn, "mouseout", buttonOut);
 }
}

function showHint(e) {
 if (!welcomePaneShowing) {
 return;
 }
 var me = getActivatedObject(e);
 switch (me.title) {
 case "beginners":
 var hintText = "Just getting started? Come join us!";
 break;
 case "intermediate":
 var hintText = "Take your flexibility to the next level!";
 break;
 case "advanced":
 var hintText = "Perfectly join your body and mind " +
 "with these intensive workouts.";
 break;
 default:

Make sure you add the extra argument to all your event handler functions, so you can work with the object sent to those handlers.

You probably did this step
earlier. All the multiple
event handling situations
should now be setup with
addEventHandler().

Since these events have just a single handler, DOM Level 0 is fine.

avoid this in dom level 2

Chapter 4. multiple event handlers Page 30 Return to Table of Contents

Chapter 4. multiple event handlers
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 169

multiple event handlers

 var hintText = "Click a tab to display the course " +
 "schedule for the class";
 }
 var contentPane = document.getElementById("content");
 contentPane.innerHTML = "<h3>" + hintText + "</h3>";
}

function hideHint(e) {
 if (welcomePaneShowing) {
 var contentPane = document.getElementById("content");
 contentPane.innerHTML =
 "<h3>Click a tab to display the course schedule for the class</h3>";
 }
}

function showTab(e) {
 var selectedTab = this.title;
 var me = getActivatedObject(e);
 var selectedTab = me.title;
 if (selectedTab == "welcome") {
 welcomePaneShowing = true;
 document.getElementById("content").innerHTML =
 "<h3>Click a tab to display the course schedule for the class</h3>";
 } else {
 welcomePaneShowing = false;
 }

 // everything else is the same...
}

function buttonOver(e) {
 var me = getObject(e);
 me.classNameActivated = "active";
 this.className = "active";
}
function buttonOut(e) {
 var me = getActivatedObject(e);
 me.className = "";
 this.className = "";
}

It’s common to call the
object returned from
getObject() “me.”

The “me” variable stands in for “this.” The code stays almost exactly the same.

schedule.js

Chapter 4. multiple event handlers Page 31 Return to Table of Contents

Chapter 4. multiple event handlers
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

170 Chapter 4

Test Drive
It’s been a long journey, but you’re finally ready to test out Marcy’s
yoga page one more time. See if everything works in both IE browsers
AND DOM Level 2 browsers.

Firefox still works great with the new changes.

Yes! IE is working now, using
its own event handling.

Marcy’s finally satisfied
with the schedule page.

it really works!

Chapter 4. multiple event handlers Page 32 Return to Table of Contents

Chapter 4. multiple event handlers
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 171

multiple event handlers

This model uses object.event = handler syntax

Use this function to register an event in DOM Level 2

Use this function to register an event in Internet Explorer

This is what Marcy teaches

This is the object that triggered the event

This event happens when the user presses a key

EventAcrostic
Take some time to sit back and give your right brain something to

secret message where the numbers match.

555453525150494847

464544434241

403937 3836353433323130

29282726

25242322212019181716151413121110

987654321

2019

313913622

32 49535 2615 217

28161935 1815510

5141193719213429257402319

Chapter 4. multiple event handlers Page 33 Return to Table of Contents

Chapter 4. multiple event handlers
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

172 Chapter 4

This model uses object.event = handler syntax

Use this function to register an event in DOM Level 2

Use this function to register an event in Internet Explorer

This is what Marcy teaches

This is the object that triggered the event

This event happens when the user presses a key

EventAcrostic

D
1

O
2

M
3

L
4

E
5

V
6

E
7

L
8

0
9

A
10

D
11

D
12

E
13

V
14

E
15

N
16

T
17

L
18

I
19

S
20

T
21

E
22

N
23

E
24

R
25

Y
26

O
27

G
28

A
29

A
30

T
31

T
32

A
33

C
34

H
35

E
36

E
38

V
37

N
39

T
40

T
41

A
42

R
43

G
44

E
45

T
46

O
47

N
48

K
49

E
50

Y
51

D
52

O
53

W
54

N
55

E
22

V
6

E
13

N
39

T
31

A
10

N
55

D
1

L
18

H
35

I
19

N
16

G
28

I
19

S
20

T
32

H
35

E
5

K
49

E
15

Y
26

T
17

O
2

I
19

N
23

T
40

E
7

R
25

A
29

C
34

T
21

I
19

V
37

I
19

T
41

Y
51

you rule

Chapter 4. multiple event handlers Page 34 Return to Table of Contents

Chapter 4. multiple event handlers
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Table of Contents

Chapter 5. asynchronous applications... 1
Section 5.1. What does asynchronous really mean?... 2
Section 5.2. You've been building asynchronous apps all along.. 4
Section 5.3. But sometimes you barely even notice.. 5
Section 5.4. Speaking of more server-side processing... 6
Section 5.5. (More) Asynchrony in 3 easy steps... 9
Section 5.6. We need two password fields and a <div> for the cover images.. 10
Section 5.7. If you need new behavior, you probably need a new event handler function.. 15
Section 5.8. With ONE request object, you can safely send and receive ONE asynchronous request....................................... 24
Section 5.9. Asynchronous requests don't wait on anything... including themselves!.. 25
Section 5.10. If you're making TWO separate requests, use TWO separate request objects.. 26
Section 5.11. Asynchrony means you can't count on the ORDERING of your requests and responses...................................... 32
Section 5.12. A monitor function MONITORS your application... from OUTSIDE the action... 37
Section 5.13. You call a monitor function when action MIGHT need to be taken.. 38
Section 5.14. Status variables let monitors know what's going on.. 40
Section 5.15. And now for our last trick.. 44
Section 5.16. Synchronous requests block ALL YOUR CODE from doing anything... 46
Section 5.17. Use setInterval() to let JavaScript run your process, instead of your own code.. 49

Chapter 5. asynchronous applications

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

this is a new chapter 173

asynchronous applications5

It’s like renewing your
driver’s license

Are you tired of waiting around? Do you hate long delays?
You can do something about it with asynchrony!

asynchronous really means multiple

asynchronous requests monitor function

Are you tired of waiting around? Do you hate long delays?
You can do something about it with asynchrony!

asynchronous really means multiple

asynchronous requests monitor function

Chapter 5. asynchronous applications Page 1 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

174 Chapter 5

What does asynchronous really mean?
An asynchronous request means that you don’t have to wait around while a web

server is responding to that request. That means you’re not stuck: you can go on doing

what you want, and have the server let you know when it’s finished with your request. Let’s

take a view of this from 10,000 feet by first looking at what a synchronous request is, and

then comparing it to an asynchronous request:

A synchronous request for cola

This is your request: you’re
asking your trusty dog Rufus
to go GET you a cola.

You send your request...

An asynchronous request for cola

Like before, you make a request to
Rufus to GET you a cola. Except
this time, you tell him he’s an
asynchronous dog.

Once again, Rufus goes
after your cola. But
this time, Rufus is an
ASYNCHRONOUS dog...

i hate to wait

Chapter 5. asynchronous applications Page 2 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 175

asynchronous applications

Finally Rufus is on his way
back with your cola...

When you get the
response, you get
UN-stuck.

By the time Rufus gets
back, you’re on the 17th
green. Perfect time for
a break!

The result is the same:
you get your cola. The
difference is that you
weren’t completely stuck
while you were waiting for it.

And that means you can
do whatever you want
while he’s getting the
cola. You’re not stuck
like you were when he was
synchronous.

...but because it’s a
synchronous request, you
are totally and completely
STUCK until the response
comes back.

Chapter 5. asynchronous applications Page 3 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

176 Chapter 5

You’ve been building asynchronous
apps all along
Take a look back at the app you built for Mike’s Movies in Chapter

2. When a user types in their username and leaves that field, that

value gets sent to the server right away for validation. But the user

can fill out the rest of the form while that validation is happening.

That’s because we made the request to the server asynchronous.
checkUsername() gets called when a user leaves the username field.

Here’s where we
send a request to
the server. The server sends back response data,

like a readyState, status code, and

eventually the response itself.

This callback
runs every
time the server
responds with
new data.

function checkUsername() {
 document.getElementById("username").className = "thinking";
 request = createRequest();
 if (request == null)
 alert("Unable to create request");
 else {
 var theName = document.getElementById("username").value;
 var username = escape(theName);
 var url= "checkName.php?username=" + username;
 request.onreadystatechange = showUsernameStatus;
 request.open("GET", url, true);
 request.send(null);
 }
}

Remember this last argument to request.open()? It says, “Make this an asynchronous request. Don’t make the user wait on the server’s response.”

Validate Username

function showUsernameStatus() {
 if (request.readyState == 4) {

") {
 document.getElementById("username").className = "approved";
 document.getElementById("register").disabled = false;
 } else {
 document.getElementById("username").className = "denied";
 document.getElementById("username").focus();
 document.getElementById("username").select();
 document.getElementById("register").disabled = true;
 }
 }
 }
}

response data

All of the server processing, AND the callback, happens while the user is still filling out the form... no waiting around.

asynchronous apps

Chapter 5. asynchronous applications Page 4 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 177

asynchronous applications

But sometimes you barely even notice...
When you built Mike’s Movies, you probably barely noticed the asynchrony.

Requests to and from a server—especially when you’re developing, and there’s

not a lot of network traffic—hardly take any time at all.

Validate
Username

As soon as a user types in a
username and leaves the field,
checkUsername() gets called.

Not much time for typing
or golf here! The server
responds almost immediately.

You probably see the “okay” image right away, before you have time to type anything else.

The response time on
a live site will almost
always be slower than
on a test site.
The only way to know
for sure is to TEST
your app on the live site.

But the response time on a live site is almost always going to be

slower. There are more people competing for server resources, and

user machines and connections may not be as powerful and fast as

your development machine. And that doesn’t even take into account

how long it takes a server to respond. If the server’s querying a huge

database, or has to do lots of server-side processing, that slows the

request and response cycle down, too.

validation.js

checkUsername()

validation.js

showUsernameStatus()

response data

checkUsername() sends an asynchronous request to the server.

Chapter 5. asynchronous applications Page 5 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

178 Chapter 5

Speaking of more server-side processing...
Mike loves the page you built him and has some more ideas. His site’s

become popular, but some folks have been posting fake reviews under

other peoples’ usernames. Mike needs you to add a password field to the

registration form, verify the username and password asynchronously, and

keep unwanted users out of his system for good.

Mike’s got a server-side program that checks a password to make sure it’s at

least 6 characters long and contains at least one letter. That should be good

enough for his movie site.

Oh, and password verification...
Mike actually wants two password fields. The first password value will get

sent to the server for validation. The second field is for password re-entry.

The value in both password fields have to match. We’ll handle that at the

client’s browser.

And... how about some eye candy, too?
Mike’s not happy with how long it takes to get a user processed when the user

clicks the Register button. Since we can’t let users in until they are registered,

Mike’s got an idea: while the form is being submitted and processed, he

wants images from his collection of movies and posters to scroll by and whet

the user’s appetite for reviews on those items.

Mike wants to add password verification to the registration page.

The very-demanding

owner of Mike’s

Movies... Mike.

password check needed

Chapter 5. asynchronous applications Page 6 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 179

asynchronous applications

web server

There’s a lot to do on Mike’s site. Below, we’ve given you a screenshot of
what Mike’s final app should look like. It’s up to you to make notes about the
interactions that need to happen to add all the behavior Mike’s asking for.

Don’t forget about the server-side requirements! You’ll need two different
server-side processes for this version of Mike’s app. Label the arrows
below to indicate what you’re sending to the server, and what you think it
should send back in response.

request

request

What should we send to
the server?

What should the server
send back?

There are two
new password
fields. We’ll
need to add
those to Mike’s
XHTML.

Mike wants images of his reviewed movies at the bottom of the page.

What should be happening between the page and your JavaScript, and your JavaScript and the server?

Mike also lays
out his password
requirements in red
text. That’s just
more XHTML.

Chapter 5. asynchronous applications Page 7 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

180 Chapter 5

web server

There’s a lot to do on Mike’s site. Your job was to figure out the interactions
that have to occur to get all this behavior working like it should.

Were you able to figure out what our JavaScript needed to send to Mike’s
server, and what the server-side programs should send back?

request

request

username

“okay” or “denied” “okay” or “denied”

password

We still need to check the
username. So this is the same as
what we did back in Chapter 2.

We also need to send the password to Mike’s server for validation.

We can use the
same responses:
“okay” or “denied.”

We want to keep
everything we’ve already
got, so entering a username
still triggers validation.

When the user enters a password, we need to call a JavaScript function...
...that sends a request to th

e
server for password validation.

If the password’s not
valid, make the user re-
enter the password.

We can use JavaScript
to ensure that both
password fields match
before the user can
submit the form.

Once the user clicks the Register
button, we need to animate these
images... so maybe we’ll need to
submit the form using JavaScript?

what do we need to do?

Chapter 5. asynchronous applications Page 8 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 181

asynchronous applications

Update the XHTML page
1

(More) Asynchrony in 3 easy steps

We need to finish up Mike’s web page, and then add all the extra

interactions that he wants. Then, we’ve got to figure out a way to

submit his form and animate those images at the bottom.

Here’s how we’re going to take on the improved version of Mike’s

Movies in this chapter:

Update the XHTML page
We need to add two more password fields: one for entering a password,

and one for verifying that password. We’ll also need a section for putting

in those movie images.

11

Validate the user’s passwords
Then, we need to handle the user’s password. We’ve got to build a

handler function that takes a password, sends it to the server, and sets

up a callback that checks to see if the password was valid. Then we can

use the same icons we used on the username field to let the user know if

their password is valid.

22

Submit the form
Finally, we’ve got to build code to submit the form, and animate the

images along the bottom. We can attach that code to the Register

button’s click event instead of letting the form submit through a

normal XHTML Submit button.

33

Somewhere in here we should make sure both password fields match, too.

We need code to submit the
form since we’ve got to animate
the images at the same time.

Validate the passwords

2

Submit the form
3

Chapter 5. asynchronous applications Page 9 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

182 Chapter 5

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Mike's Movies</title>
 <link rel="stylesheet" href="css/movies.css" />
 <script src="scripts/utils.js" type="text/javascript"></script>
 <script src="scripts/validation.js" type="text/javascript"></script>
</head>
<body>
<div id="wrapper">
 <h1>Please register to access reviews:</h1>
 <form action="register.php" method="POST">

 <label for="username">Username:</label><input id="username"
 type="text" name="username" />
 <label for="password1">Password:</label><input id="password1"
 type="password" name="password1" />
 <label for=" ">Re-enter Password:</label><input id=" "
 type="password" name=" " />
 <li class="tip">Passwords must be 6 or more characters and
 contain a number.
 <label for="firstname">First Name:</label><input id="firstname"
 type="text" name="firstname" />
 <label for="lastname">Last Name:</label><input id="lastname"
 type="text" name="lastname" />
 <label for="email">Email:</label><input id="email"
 type="text" name="email" />

 <label for="genre">Favorite Genre:</label>
 <select name="genre" id="genre">
 <option value="Action">Action</option>
 <option value="Comedy">Comedy</option>
 <option value="Crime”>Crime</option>
 <option value="Documentary">Documentary</option>
 <option value="Drama">Drama</option>
 <option value="Horror">Horror</option>
 <option value="Musical">Musical</option>
 <option value="Romance">Romance</option>
 <option value="SciFi">Sci-Fi/Fantasy</option>

We need two password fields and a div

for the cover images

We’ve got to add a couple of password fields to the form, and then we also
need a <div> at the bottom to hold all those cover images. Here are the
changes you should make to your copy of registration.html:

Update the XHTML page
1

swords

We need two fields: one for the initial password, and one to verify the password.

Make the
type of these
“password” so
nobody can
see what users
are typing.

We’re using the same
scripts as before. We
can just add new code
to validation.js.

This label lays out
Mike’s password
requirements, and
the CSS styles it
to be red.

update the xhtml

Chapter 5. asynchronous applications Page 10 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 183

asynchronous applications

 <option value="Suspense">Suspense</option>
 <option value="Western">Western</option>
 </select>

 <label for="favorite">Favorite Movie:</label><input id="favorite"
 type="text" name="favorite" />
 <label for="tastes">Describe your movie tastes:</label><textarea
 name="tastes" cols="60" rows="2" id="tastes"></textarea>
 <label for="register"></label><input id="register"
 type="submit" value="Register" name="register" />

 </form>

 <div id="coverBar">

 </div>
</div>
</body>
</html>

Download the CSS and
graphics from Head First
Labs.

Go to the Head First Labs site

and download the examples

for Chapter 5. You’ll find

the cover graphics, as well as

a version of registration.html
that matches this XHTML, and a new

version of movies.css to go with the

new XHTML.

This is pretty straightforward.
We add a <div> with an id...

...and then a bunch of movie covers that Mike said he’s got reviews for.

Q: Why are you using style attributes on those
cover images? Isn’t mixing style into the XHTML a
really bad idea?

A: It is. But the only other option is to have a different
class for each image in that <div>. It’s good to try
and separate content from presentation, but if it makes
your XHTML and CSS a real mess, then you sometimes
have to break a rule to make your XHTML and CSS
manageable. Who wants to keep up with 10 or 15 different
CSS classes, one for each movie image?

Chapter 5. asynchronous applications Page 11 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

184 Chapter 5

Test Drive
Check out Mike’s Movies... with password and images.
Once you’ve made all the changes to registration.html, or downloaded the examples, open up
the page in your web browser. Make sure that all the cover images show up, and that there are
two password fields. You should also check that the username field still sends a request to the
server for validation, and that the Register button is disabled when the page first loads.

The username field
should still work. You
should be able to type
in a username, get an
In Progress icon, and
then either a check
mark or an X.

There should be
two password
fields. Also make
sure that only
asterisks appear
when you type in
these fields.

Here are all of
Mike’s movie
images... we can
animate and
scroll these later.

The Register
button should be
disabled right now.

test drive

Chapter 5. asynchronous applications Page 12 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 185

asynchronous applications

Procedure Magnets
By now, you should be pretty comfortable figuring out
how to tie an event on a page to a request for a server-side
program to process some data. Put the magnets under the
right task. Order doesn’t matter in most cases, so just match
the magnet to what that magnet helps you accomplish.

To handle an event:

To send a request object to the server:

Update the XHTML page
1

Validate the passwords

2

Create a function to register handlers to events.

Register each handler function to the correct event(s).

Write event handlers for each event you want to perform behavior on.

Obtain an instance of
a request object

Configure the reques
t object

Send the request object

Create a callb
ack function t

hat will be ca
lled when

the server res
ponds to the r

equest

Trigger the event registration function before the user can work with the web page.

With the XHTML
done, we can move on
to validating passwords.

Chapter 5. asynchronous applications Page 13 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

186 Chapter 5

Procedure Magnet Solution
Your job was to build a process for connecting an
event on a web page to a server-side program.

To handle an event:

Create a function to register handlers to events.

Register each handler function to the correct event(s).

Write event handlers for each event you
want to perform behavior on.

To send a request object to the server:

Obtain an instance of a request object

Configure the request object

Send the request object

Create a callback function that will be called when
the server responds to the request

Trigger the event registration function before
the user can work with the web page.

We’ve been calling this initPage().

Obtain a reference
to an object, and
then either assign
the handler to its
event property or use
addEventHandler() to register the handler to an event on that object.

Here’s where your event-specific
behavior occurs. Nothing works
without event handlers.

The statement “window.onload = initPage()”

makes sure event handlers are set u
p before

users can work with a page.

You can create
these in any order.
You just have
to have all four
things in place
before your code
will work.

These have to
happen in this
specific order.

createRequest() in utils.js handles this task.

You need to give the reques
t a

URL to send information to, and

a callback for the browser to call

when the server responds.

You use request.send()
for this.

This should take the server’s response and do something with that response.

exercise solution

Chapter 5. asynchronous applications Page 14 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 187

asynchronous applications

window.onload = initPage;

function initPage() {
 document.getElementById('username').onblur = checkUsername;
 document.getElementById(' ').onblur = checkPassword;
 document.getElementById('register').disabled = true;
}

function checkPassword() {
 // We'
}

If you need new behavior, you probably

need a new event handler function

We’ve got to validate a password once a user enters something in the
password form fields. So we need a new event handler to validate
passwords. We also need to register an onblur event handler for the
right password field.

validation.js already sets up event handlers in initPage(),
so we just need to add a new event handler assignment:

validation.js

All we need to do is assign another event handler, this time to the password2 field.

Why do you think checkPassword() is
registered to the password2 field, and not
the password1 field?

Q: Why didn’t you use addEventHandler()
to register the checkPassword() handler?

A: Because we’re only assigning one handler
to the password2 field. If we needed multiple
handlers for that field, then you would need
DOM Level 2 or IE’s attachEvent().
In those cases, you’d want to use
addEventHandler(). But since this is
a single handler on an event, we can stick with
DOM Level 0.

Update the XHTML page
1

Validate the passwords

2

Chapter 5. asynchronous applications Page 15 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

188 Chapter 5

We need to check the passwords against each
other before sending them to the server for
validation. So we can’t do anything until the user’s
entered a password for both password fields.

Why do you think checkPassword() is registered to the password2
field, and not the password1 field?

Your answer doesn’t have to be exactly

the same, but it should be pretty close.

When there’s
a value for the first password field, we could send a request to the server...

...but then what
do we do if the
second password
field doesn’t
match? Our
request would be
meaningless.

We really need to check and see if both fields match first, and then send the password to the server for validation.

two passwords?

Chapter 5. asynchronous applications Page 16 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 189

asynchronous applications

It’s time to write some code. Using what you’ve already figured out, plus the hints below,
you should be able to write the code for the checkPassword() event handler and the
showPasswordStatus() callback. Take your time... you can do it.

Hints:

shows an X.

The program on the server that validates passwords is at

Write the code fo
r checkPassword()

and a callback c
alled

showPasswordStatus() her
e:

A callback runs when the server returns a response to your request. An
event handler runs when a certain event on your page occurs.

Chapter 5. asynchronous applications Page 17 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

190 Chapter 5

Your job was to write the code for the checkPassword() event handler and the
showPasswordStatus() callback. See how close your solution is to ours.

function checkPassword() {

 var password1 = document.getElementById("password1");

 var password2 = document.getElementById("password2");

 password1.className = "thinking";

 // First compare the two passwords

 if ((password1.value == "") || (password1.value != password2.value)) {

 password1.className = "denied";

 return;

 }

 // Passwords match, so send request to server

 var request = createRequest();

 if (request == null) {

 alert("Unable to create request");

 } else {

 var password = escape(password1.value);

 var url = "checkPass.php?password=" + password;

 request.onreadystatechange = showPasswordStatus;

 request.open("GET", url, true);

 request.send(null);

 }

}

Since we’ll use these field
elements a lot, it makes sense
to put them both into variables.

As soon as we start, we need to

show the “in progress” icon.

Then, we need to compare the
values of the two fields.

First, make sure the password1

field isn’t empty.

If the non-empty passwords don’t match,
show an error and stop processing.

This is pretty standard. Get a request object, and make sure it’s good to use.

We can use either password
field’s value... we know
they’re the same now.

We’re making this an
asynchronous request. That will
be really important later...

Set the callback.

send a password request

Chapter 5. asynchronous applications Page 18 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 191

asynchronous applications

function showPasswordStatus() {

 if (request.readyState == 4) {

 if (request.status == 200) {

 var password1 = document.getElementById("password1");

 if (request.responseText == "okay") {

 password1.className = "approved";

 document.getElementById("register").disabled = false;

 } else {

 password1.className = "denied";

 password1.focus();

 password1.select();

 document.getElementById("register").disabled = true;

 }

 }

 }

}

Update the XHTML page
1

Validate the passwords

2
Make sure this function name
exactly matches the value of the
onreadystatechange property of
the request object.

If we get a response of “okay”, show the check mark icon for the password1 field.

Remember to
enable the
Register button!

If the password’s not valid,
change the CSS class...

...move to the password1 field...

...and highlight the password1 field.

Since the password isn’t valid,

we can’t let the user reg
ister,

so disable that button.

Q: Should we be sending a password as part of a GET
request? Is that safe?

A: Great question! We’ll talk a lot more about GET, and how
secure it is, in Chapter 12. For now, just focus on the details of
asynchrony, and we’ll look at securing Mike’s users’ passwords
a bit better later on.

Q: I tried this out, and I think there are some problems...

A: Really? What were they? What do you think caused them?
Try out our code, and see what you get. Are there things you
would change or improve? Try entering in just a username, or
just valid passwords. What do you see happening?

Chapter 5. asynchronous applications Page 19 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

192 Chapter 5

Test Drive
How does Mike’s page look and behave?
Make the changes to validation.js that we did, or use your own version (as long as it

does the same basic things). Then, try the page out. What’s happening? Do you think our code

works, or are there problems?

The username field still works... that’s good.

Hmmm.... the first password
field has an X. What
exactly does that mean? Is
it totally clear to users? We
may have to come back to
that a little later.

test drive

Chapter 5. asynchronous applications Page 20 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 193

asynchronous applications

BE the USER
Your job is to play like you’re one of
Mike’s potential customers... and a fast-
typing one, at that. Try and figure out

what happens when someone
types in a username, and
then quickly moves to
typing a password in both of

the password fields.

Type in a
username...

...and then quickly type in
your password, once...

...and then again.

Finally, tab out
of the second
password field
to trigger the
checkPassword()
event handler.

Does anything strange happen? What’s
going on? What do you think might be
causing the problem?

really fast

Chapter 5. asynchronous applications Page 21 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

194 Chapter 5

BE the USER Solution
Your job was to play like you’re one of
Mike’s potential customers... and a fast-
typing one, at that. Try and figure out

what happens when someone
types in a username, and
then quickly moves to
typing a password in both of

the password fields.

Your instructions

Type in a
username...

...and then quickly type in
your password, once...

...and then again.

Finally, tab out
of the second
password field
to trigger the
checkPassword()
event handler.

The results

The username field
shows the “In
Progress” icon. So far,
so good.

Once both
passwords are
in, the password
field moves to “In
Progress.” That’s
good, too.

The password
status changes to
okay or denied, so
that’s okay, but...

The username
request never
returns! The field still shows the “In Progress” icon.

really fast
be the fast user

Chapter 5. asynchronous applications Page 22 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 195

asynchronous applications

It’s time to figure out what’s going on with our asynchronous
requests. Below is the request variable named “request”, as well as
the server. Your job is to draw and label the interactions that are
going on between the checkUsername(), showUsernameStatus(),
checkPassword(), and showPasswordStatus() functions.

validation.js

checkUsername()

validation.js

showUsernameStatus()

validation.js

checkPassword()

validation.js

showPasswordStatus()

Web server

onreadystatechange =
__________________;

request

onreadystatechange =
__________________;

request

In JavaScript, two objects that
share the same name share
everything, including property values.

What order are these being called in? How does that affect the request object?

Chapter 5. asynchronous applications Page 23 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

196 Chapter 5

With ONE request object, you can safely send

and receive ONE asynchronous request

Both checkUsername() and checkPassword() use the same request object.

Because both use the variable name request, it’s just a single object being used

by both. Take a close look at what happens when you’re just making a single

request, and there’s no password validation involved:

The checkUserName
event handler creates
a request object. The browser sends the request to the server.

The showUsernameStatus()
callback is looking for
“okay”, so it updates the
page correctly.

validation.js

checkUsername()

validation.js

showUsernameStatus()

onreadystatechange =
__________________;

request

Web server

showUsernameStatus

"okay"

The server returns
its response.

The browser calls the function
specified in the request object’s
onreadystatechange property.

The username gets validated and the right icon shows up.

Update the XHTML page
1

Validate the passwords

2

Remember, all these

problems came up when

we tried to validate

users’ passwords.

one request object for one request

Chapter 5. asynchronous applications Page 24 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 197

asynchronous applications

validation.js

checkUsername()

validation.js

showUsernameStatus()

validation.js

checkPassword()

validation.js

showPasswordStatus()

Web server

onreadystatechange =
__________________;

request

onreadystatechange =
__________________;

request

showUsernameStatus

showPasswordStatus

Asynchronous requests don’t wait on
anything... including themselves!
But what happens when there are two requests sharing the same request object?

That object can only store one callback function to deal with server responses.

That means that you could have two totally different server responses being

handled by the same callback... and that might not be the right callback.

The username validation
process starts out the sa

me

as before... no problems yet.

But before the username
request is handled,
checkPassword() is called... due
to a fast typer, for example.

checkPassword() changes the
value

of onreadystatech
ange and sends

its request to the
 server.

Now there are TWO requests pending, but only one callback function assigned: showPasswordStatus().
"okay"

"okay"

Both the response
to the username and
the response to the
password are sent to
showPasswordStatus().

showUsernameStatus() never gets called, so the icon for that field never gets changed. It stays in “In Progress” forever.

We have no way of knowing which

response is for what request!What if the server response
for username is “denied” and
for password, it’s “okay”?
What would happen then?

showUsernameStatus

Chapter 5. asynchronous applications Page 25 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

198 Chapter 5

If you’re making TWO separate requests, use
TWO separate request objects
The problem is that we’re using a single request object to make two aynchronous

requests. And what does asynchrony mean? That those requests won’t wait on a

browser or server to get moving. So we end up overwriting one request’s data with

data from another request.

But what if we have two asynchronous requests? The two requests won’t wait on

each other, or make the user wait around, but each request object will have its own

data instead of having to share.

validation.js

checkUsername()

validation.js

showUsernameStatus()

validation.js

checkPassword()

validation.js

showPasswordStatus()

Web server

onreadystatechange =
__________________;

request1

onreadystatechange =
__________________;

request2

showUsernameStatus

showPasswordStatus

"okay"

"okay"

This is request1, the first request, for usernames. It gets its own set of properties and values.

The requests are separate,
so the browser knows where
each response should go.

The password request uses
another request object, request2. This request has a

different callback
function assigned to it.

request2 has its own callback,

and the browser knows the

right function to call when the

server responds.

two request objects for two requests

Chapter 5. asynchronous applications Page 26 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 199

asynchronous applications

You should be ready to update your code to use two request objects. You’ll have to change
code in validation.js in several different places. See if you can find them all. For username-
related requests, use the variable name usernameRequest. For password-related requests, use
passwordRequest. When you think you’ve got them all, turn the page.

Q: What does any of this have to do
with asynchrony?

A: Well, think about this: what if the
request to validate usernames was not
asynchronous? Then there’d be no way that
the password request could get sent before
the username request completed. So this
problem wouldn’t exist in a synchronous
environment.

Q: Wouldn’t it be easier to just make
the username request synchronous?

A: It would be easier, but would that be
the best application? Then users would have
to wait for their username to get processed.
Then, and only then, could they move on to
the password field. Sometimes the easiest
technical solution is actually the worst
usability solution.

Q: Why do the two request variables
share property values? Isn’t each
declared locally within separate
functions?

A: It looks that way, but request
is actually first defined in the
createRequest() function. Not
only that, but request is defined in
createRequest() without the var
keyword. Any variable declared in JavaScript
inside a function, but without the var
keyword, becomes a global variable.

Q: So why not just use the var
keyword in createRequest() to fix all of
this? Wouldn’t that make request local?

A: Good question, but that would cause
a different set of problems. If request is
local, then how would a callback function get
access to the request object? The callbacks
need request to be global, so they can
access the variable and its property values.

Q: So how does assigning request to
two other variable names help?

A: In JavaScript, assignment is handled
by copying, and not by reference. So when
you assign one variable to another value, the
new variable gets a copy of the assigned
variable. Consider this code:
var a = 1;
var b = a;
b = 2;
alert("a = " + a);
alert("b = " + b);
You might expect both values to be 2, right?
But they’re not. When JavaScript interprets
var b = a;, it creates a new variable
named b, and puts a copy of a into that
variable. So no matter what you do to b, it
won’t change a.

In the case of the request object, if you
create two variables and assign request
to both, you’ll get two copies of the original
request object. That’s two independent
request objects that won’t affect each other.
That’s just what we want.

Q: Wow, this is kind of hairy. I’m still
confused... what should I do?

A: You may want to pick up a good
JavaScript book, like Head First JavaScript
or JavaScript: The Definitive Guide, for
more on variable scope and assignment in
JavaScript. Or you may want to just follow
along, and pick up what you’re a little unsure
about as you go.

JavaScript considers
any variable outside a
function, or a variable
declared without the
var keyword, to be
GLOBAL. That variable
can be accessed by any
function, anywhere.

Chapter 5. asynchronous applications Page 27 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

200 Chapter 5

Change all the variable names in checkUserName(), showUsernameStatus(),
checkPassword() and showPasswordStatus() fuctions in the registration.js file.

two from one

It’s very
important to
remove this
var... we need
usernameRequest
to be global, so
the callback can
reference this
variable.

We’re using usernameRequest for the request object related to username checks.

Set properties and send the request
just like you did before.

Here’s why
you needed
usernameRequest
to be global: this
callback also has
to access the
same object.

function checkUsername() {
 document.getElementById("username").className = "thinking";
 var usernameRequest = createRequest();
 if (usernameRequest == null)
 alert("Unable to create request");
 else {
 var theName = document.getElementById("username").value;
 var username = escape(theName);
 var url= "checkName.php?username=" + username;
 usernameRequest.onreadystatechange = showUsernameStatus;
 usernameRequest.open("GET", url, true);
 usernameRequest.send(null);
 }
}
function showUsernameStatus() {
 if (usernameRequest.readyState == 4) {
 if (usernameRequest.status == 200) {
 if (usernameRequest.responseText == "okay") {
 document.getElementById("username").className = "approved";
 document.getElementById("register").disabled = false;
 } else {
 document.getElementById("username").className = "denied";
 document.getElementById("username").focus();
 document.getElementById("username").select();
 document.getElementById("register").disabled = true;
 }
 }
 }
}
function checkPassword() {
 var password1 = document.getElementById("password1");
 var password2 = document.getElementById("password2");
 password1.className = "thinking";

Chapter 5. asynchronous applications Page 28 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 201

asynchronous applications

 // First compare the two passwords
 if ((password1.value == "") || (password1.value != password2.value)) {
 password1.className = "denied";
 return;
 }

 // Passwords match, so send request to server
 var passwordRequest = createRequest();
 if (passwordRequest == null) {
 alert("Unable to create request");
 } else {
 var password = escape(password1.value);
 var url = "checkPass.php?password=" + password;
 passwordRequest.onreadystatechange = showPasswordStatus;
 passwordRequest.open("GET", url, true);
 passwordRequest.send(null);
 }
}
function showPasswordStatus() {
 if (passwordRequest.readyState == 4) {
 if (passwordRequest.status == 200) {
 var password1 = document.getElementById("password1");
 if (passwordRequest.responseText == "okay") {
 password1.className = "approved";
 document.getElementById("register").disabled = false;
 } else {
 password1.className = "denied";
 password1.focus();
 password1.select();
 document.getElementById("register").disabled = true;
 }
 }
 }
}

Just like
with the
other request
variable, do
not use the
var keyword.

Now this code has no
chance of overwriting
properties of the username
request object.

passwordRequest is used for all
password-related requests.

Chapter 5. asynchronous applications Page 29 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

202 Chapter 5

Validation requires both
VERIFICATION and RESTRICTION.
Verification is making sure that a certain
piece of data is okay for your system to accept.
Restriction is not allowing a user to do
something until that verification is complete.
Good validation combines both of these
components.

When we wrote the first version of Mike’s
page, we disabled the Register button in the
initPage() function, and re-enabled it once
the server validated the user’s username. So we
verified the username and restricted the Register
button.

But now there’s another level of validation: we
have to make sure the user’s password is okay.
Something’s going wrong, though... even if a
password is rejected, the Register button is getting
enabled, and users can click the button.

Validation requires
verification AND
restriction.

In asynchronous applications,
it’s not enough to just verify

data entered by the user. While that
verification is occurring, you have to
restrict the user from doing things that
depend upon verification.

Q: How is enabling the Register button part of
restriction? That doesn’t make sense...

A: Restriction is the process of not letting a user
do something until verification is complete. So part
of the restriction process is enabling a button or
activating a form. In fact, the end of every restriction
process is the lifting of that restriction.

verify and restrict

Chapter 5. asynchronous applications Page 30 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 203

asynchronous applications

Right now, we disable the Register button in initPage()...

function initPage() {

 document.getElementById("username").onblur = checkUsername;

 document.getElementById("password2").onblur = checkPassword;

 document.getElementById("register").disabled = true;
}

The movie page works correctly at the beginning. When the page loads,

the Register button is disabled:

...and enable the button in the callback functions
We enabled the Register button in the two callback functions,

showUsernameStatus() and showPasswordStatus(). But

we’re still getting incorrect actions on the form.

if (usernameRequest.responseText == "okay") {
 document.getElementById("username").className = "approved";
 document.getElementById("register").disabled = false;
} else {
 // code to reject username and keep Register disabled
}

This button is disabled... we
(correctly) make sure users
can’t do anything until
they’ve got a valid username
and password.

Both of these callbacks enable the

Register button only when their

verification successfully completes.

But the Register button is still getting

enabled when the username is valid, and

the password isn’t. What gives?

showUsernameStatus()

if (passwordRequest.responseText == "okay") {
 password1.className = "approved";
 document.getElementById("register").disabled = false;
} else {
 // code to reject username and keep Register disabled
}

showPasswordStatus()

Chapter 5. asynchronous applications Page 31 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

204 Chapter 5

Asynchrony means you can’t count on the
ORDERING of your requests and responses
When you send asynchronous requests, you can’t be sure of the order that the
server will respond to those requests. Suppose that a request to verify a username
is sent to the server. Then, another request is sent, this time to verify a password.
Which one will return first? There’s no way of knowing!

validation.js

checkUsername()

validation.js

showUsernameStatus()

validation.js

checkPassword()

validation.js

showPasswordStatus()

Web server

onreadystatechange =
__________________;

request1

onreadystatechange =
__________________;

request2

showUsernameStatus

showPasswordStatus

"okay"

"okay"

This request can get sent first...

...but that doesn’t guarantee the response from the server will be the first response the browser gets.

This request might get sent second...

...and still be the first response sent
back to the browser.

Never count on the ORDER or SEQUENCE of
requests and responses in asynchronous applications.

you can’t count on order

Chapter 5. asynchronous applications Page 32 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 205

asynchronous applications

Can you figure out at least one sequence of requests and
responses that would result in the Register button being enabled
when either the username or the password is invalid? Draw or list
the steps that would have to occur for that to happen.

Chapter 5. asynchronous applications Page 33 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

206 Chapter 5

Here are two different sequences where the Register button
ended up enabled when it shouldn’t be. Did you come up with
one of these? Or something similar?

validation.js

checkUsername()

validation.js

checkPassword()

validation.js

showUsernameStatus()

Web server

The Register
button always
starts out
disabled.The user enters a valid username.11

22

33

and enables the Register button.

44

If the two passwords don’t match, there’s no request to the server... so there’s an almost instant denied result.

The server returns its
response after the
passwords have already
been denied.

The end result is a
valid username, invalid
password, and enabled
Register button.

username or password?

Chapter 5. asynchronous applications Page 34 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 207

asynchronous applications

validation.js

checkUsername()

validation.js

showUsernameStatus()

validation.js

showPasswordStatus()

The user enters an invalid username.11

response and sets the username field
22

The user enters two matching passwords, and the 33

mark... and enables the Register button.

44

Web server

validation.js

checkPassword()

This time, you get an
invalid username, a
valid password, and an
enabled Register button.

This request and
response were
fielded before
the password
request started.

The Register
button always
starts out
disabled.

Chapter 5. asynchronous applications Page 35 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

208 Chapter 5

neither

Good usability is a pain to create.
No matter how you cut it, building an application

that’s highly usable is hard work. In this case, we

added asynchrony to make Mike’s registration

page more usable. Users can keep typing in their

information while the server’s validating their

username and password.

But now all that asynchrony is creating some

problems. What we need is a way to know when

both the username and password are valid. Then—

and only then—we can enable the Register

button. We need a way to monitor the status of

each field and make sure something happens only

when both fields are approved.

usability is hard

Chapter 5. asynchronous applications Page 36 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 209

asynchronous applications

validation.js

checkUsername()

validation.js

showUsernameStatus()

validation.js

checkPassword()

validation.js

showPasswordStatus()

Web server

onreadystatechange =
__________________;

request1

onreadystatechange =
__________________;

request2

showUsernameStatus

showPasswordStatus

"okay"

"okay"

validation.js

checkFormStatus()

A monitor function MONITORS your
application... from OUTSIDE the action
We need a monitor function. That’s a function that monitors certain variables or

parts of an application, and then takes action based on the things it’s monitoring.

checkFormStatus() is a monitor
function. It watches what’s going on
with the rest of the application.

Because checkFormStatus() isn’t a callback or directly involved in requests and responses, it can see what’s going on with both requests and responses.

Can you figure out what a checkFormStatus() monitor function should do? You’ll also need to call
that function. Where in your code should that happen? If you’re not sure, think about it for a while...
and then turn the page for a few helpful hints.

Chapter 5. asynchronous applications Page 37 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

210 Chapter 5

You call a monitor function when action

MIGHT need to be taken

Monitor functions are usually used to update a part of an application or page that

depends on several variables. So you call the monitor when you think it might be

time to update a page... like when a username or password comes back approved.

if (usernameRequest.responseText == "okay") {
 document.getElementById("username").className = "approved";
 document.getElementById("register").disabled = false;
} else {
 // code to reject username and keep Register disabled
}

showUsernameStatus()

if (passwordRequest.responseText == "okay") {
 password1.className = "approved";
 document.getElementById("register").disabled = false;
} else {
 // code to reject password and keep Register disabled
}

showPasswordStatus()

Right now, the username and password callbacks directly

update the Register button’s status

The problem we’re having now is that in showUsernameStatus() and

showPasswordStatus(), we’re updating the Register button. But neither of

those functions really have all the information they need to update that button.

This enabling is being
done with incomplete

information! The username callback doesn’t

check to see if the
password is valid, and the

password callback doesn’t
 check to see if the

username is valid. The result: the butto
n gets

enabled when it shouldn’t be.

monitor your users

Chapter 5. asynchronous applications Page 38 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 211

asynchronous applications

Let’s have the callbacks run the monitor function...
So instead of directly changing the button status, we can change our callback

functions to run the monitor function. That way, it’s not up to either callback to

figure out what status the Register button should be in.

showUsernameStatus()

showPasswordStatus()

Remove the lines in both
callbacks that updated
the status of the
Register button.

Now both callbacks
should call the
monitor function,
checkFormStatus().

if (usernameRequest.responseText == "okay") {
 document.getElementById("username").className = "approved";
 document.getElementById("register").disabled = false;
 checkFormStatus();
} else {
 // code to reject username and keep Register disabled
}

if (passwordRequest.responseText == "okay") {
 password1.className = "approved";
 document.getElementById("register").disabled = false;
 checkFormStatus();
} else {
 // code to reject username and keep Register disabled
}

...and let the monitor function update the Register
button
Since the monitor function is separate from either the username or

password checks, it can get all the information it needs. The monitor

function can check the username and password fields, and make the

right decision about what status the Register button should be set to.

validation.js

checkFormStatus()

The monitor function
decides whether Register
should be disabled...

...or enabled.

This function gets called

every time a username or

password is accepted.

Chapter 5. asynchronous applications Page 39 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

212 Chapter 5

Status variables let monitors know

what’s going on

We’re ready to write a monitor function to set the status of the Register

button’s disabled property, and now both callbacks call that

monitor. All that’s left is to have those callbacks set some status variables,

indicating whether the username and password are valid. The monitor

function can use those variables to figure out what to do when it’s called.

Here’s the complete code for Mike’s app, with a new monitor function:

We need two new global variables. usernameValid is the current status of the username, and passwordValid is the current status of the password.

We don’t want
to change the
status of the
Register button
in either of the
if/else branches.

We need
to update
usernameValid
for both
possible server
responses.

Since we need to call the
 monitor

function in either
 case, it’s easier t

o

leave it outside th
e if/else statement.

This is easy to forget about, but if the passwords don’t match, we need to update the passwordValid status variable.

Update the XHTML page
1

Validate the passwords

2

Believe it or not, we’re
still working on getting the
password functionality right.

We’re using var, but
we’re declaring these
outside of any function.
That means they’re
global variables.

monitors check status

window.onload = initPage;
var usernameValid = false;
var passwordValid = false;
function initPage() { // initPage stays the same }
function checkUsername() { // checkUsername stays the same }

function showUsernameStatus() {
 if (usernameRequest.readyState == 4) {
 if (usernameRequest.status == 200) {
 if (usernameRequest.responseText == "okay") {
 document.getElementById("username").className = "approved";
 document.getElementById("register").disabled = false;
 usernameValid = true;
 } else {
 document.getElementById("username").className = "denied";
 document.getElementById("username").focus();
 document.getElementById("username").select();
 document.getElementById("register").disabled = true;
 usernameValid = false;
 }
 checkFormStatus();
 }
 }
}

function checkPassword() {
 var password1 = document.getElementById("password1");
 var password2 = document.getElementById("password2");
 password1.className = "thinking";

 // First compare the two passwords
 if ((password1.value == "") || (password1.value != password2.value)) {
 password1.className = "denied";
 passwordValid = false;

Chapter 5. asynchronous applications Page 40 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 213

asynchronous applications

None of our code should set the
status of the Register button
except for the monitor.

...and then call the
monitor function.

This is just like the username callback. Update the global status variable for password...

All this function has to do
is check the two status
variables...

...and set
the Register
button’s status
accordingly.

validation.js

Explicitly set the button to disabled, in
 case there

was a valid username or password before, but now

there’s a change that makes one of those invalid.

 checkFormStatus();
 return;
 }

 // Passwords match, so send request to server
 passwordRequest = createRequest();
 if (passwordRequest == null) {
 alert("Unable to create request");
 } else {
 var password = escape(password1.value);
 var url = "checkPass.php?password=" + password;
 passwordRequest.onreadystatechange = showPasswordStatus;
 passwordRequest.open("GET", url, true);
 passwordRequest.send(null);
 }
}

function showPasswordStatus() {
 if (passwordRequest.readyState == 4) {
 if (passwordRequest.status == 200) {
 var password1 = document.getElementById("password1");
 if (passwordRequest.responseText == "okay") {
 password1.className = "approved";
 document.getElementById("register").disabled = false;
 passwordValid = true;
 } else {
 password1.className = "denied";
 password1.focus();
 password1.select();
 document.getElementById("register").disabled = true;
 passwordValid = false;
 }
 checkFormStatus();
 }
 }
}

function checkFormStatus() {
 if (usernameValid && passwordValid) {
 document.getElementById("register").disabled = false;
 } else {
 document.getElementById("register").disabled = true;
 }
}

Chapter 5. asynchronous applications Page 41 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

214 Chapter 5

Test Drive
Finally! But does it all work?
Make sure your version of validation.js matches the version shown on the last two pages. You

should have two new global variables, an updated version of checkPassword(), two

updated callback functions, and a new monitor function, checkFormStatus().

Load everything up. Try out the scenarios you worked out for the exercise from page 205. Do

they still break the page? If not, you’ve solved Mike’s asynchrony problems!

With a valid username and invalid password, Register is disabled.

When the username isn’t good, but the

password is, we’re still getting a disabled

Register button. Perfect!

test drive

Chapter 5. asynchronous applications Page 42 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 215

asynchronous applications

Q: Can you explain what a monitor
function is again?

A: Sure. A monitor function is just a
function that monitors your application. So
for Mike’s registration page, the monitor
function is monitoring the state of the
username and password variables, and
it’s changing the form to match the current
status.

Q: I thought monitor functions usually
ran automatically, like at set intervals.

A: Sometimes they do. In systems
where you have a lot more threading
capability—the ability to run a process in
the background—it’s common to have a
monitor function execute periodically. Then,
you don’t have to explicitly call the monitor,
which is what we do in the username and
password callbacks.

Q: Why didn’t you declare
usernameValid and passwordValid in
initPage()?

A: You could do that. But if you
do declare the variables inside
initPage(), be sure not to use the
var keyword. usernameValid and
passwordValid need to be global
variables.

Variables declared outside of any function
(with or without var) are global. Variables
declared inside a function, but without var,
are also global. And variables declared
inside a function, with var, are local. It’s a
bit confusing, that’s for sure.

In fact, that’s why they’re left outside of any
function: it makes it a little clearer that those
two variables are global, and not local to any
particular function.

Q: So then why aren’t
usernameRequest and passwordRequest
declared there also?

A: That’s actually a good idea, and you
might want to make that change. In our code,
we left them in checkUsername()
and checkPassword() because
that’s where those variables were originally
created (back when they were both called
request).

Q: Couldn’t I set the status of the
username and password1 fields in my
monitor function, too?

A: You sure could. In fact, that’s probably
a good idea. That would mean that there’d
be less CSS class-changing happening all
over the code. Most of that display logic
would be handled by the monitor, which

is already dealing with the display of the
Register button.

Anytime you can consolidate (or refactor)
code without a lot of ill consequences, it’s a
good idea. Cleaner code is easier to modify
and maintain.

Q: Just adding in a password field
sure made things complicated. Is that
normal?

A: In asynchronous apps, adding an
additional asynchronous request is usually
pretty tricky. The thing that added a lot
of complexity to Mike’s app wasn’t the
additional password fields, but the additional
request we needed to make to deal with
those fields.

Q: And this is all just so users can
keep typing instead of waiting?

A: It sure is. You’d be surprised at how
impatient web users are (or maybe you
wouldn’t!). Typing in a username, waiting
for the username to get validated, typing in
a password, and then also waiting for the
password to get validated... that’s a lot of
waiting. It’s even worse that after all that
waiting, the user still has to fill out the rest of
the form.

Saving a couple of seconds here and
there really adds up on the Web. In fact, it
might be the difference between keeping a
customer and losing them.

Q: So what about form submits?
There’s going to be waiting there, too,
right?

A: Now you’re getting ahead! But that’s
exactly what Mike was thinking when he
asked for scrolling images...

Refactoring code is
pulling out common
parts and putting
those parts into
a single, easily-
maintainable function
or method. Refactoring
makes code easier to
update and maintain.

Chapter 5. asynchronous applications Page 43 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

216 Chapter 5

And now for our last trick...

Mike’s got one last request. When users click the Register button,

the images along the bottom should begin to scroll while the

form is processing. This gives the user something interesting to

watch while they’re waiting on Mike’s registration logic.

Fortunately, this shouldn’t be too difficult. Here’s what we need

to do to put this into action:

Instead of letting
the form submit
via a “submit”
button, let’s
assign a click
handler to the
Register button.

Update the XHTML page
1

Validate the passwords

2

Submit the form
3And now we know the Register button works right.

Let’s create a new function,
registerUser(), to call scrollImages() and submit the form.

We can abstract the
code for animating
the images into
another function,
scrollImages(), and call
that when we need to
scroll the images.

validation.js

registerUser()

validation.js

scrollImages()

eye candy

Chapter 5. asynchronous applications Page 44 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 217

asynchronous applications

Do you think the request to submit the form to Mike’s server should be synchronous or asynchronous?

Synchronous Asynchronous

Why?

Does your choice above have any affect on the scrolling of the images along the bottom of the page?

The answers to these questions are spread out over the rest of the chapter, so you’ll have to keep reading to find out if you got these right.

Chapter 5. asynchronous applications Page 45 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

218 Chapter 5

 <label for="favorite">Favorite Movie:</label><input id="favorite"
 type="text" name="favorite" />
 <label for="tastes">Describe your movie tastes:</label><textarea
 name="tastes" cols="60" rows="2" id="tastes"></textarea>
 <label for="register"></label><input id="register"
 type="button" value="Register" name="register" />

 </form>

 <!-- Cover images -->
</div>
</body>
</html>

Synchronous requests block ALL YOUR

CODE from doing anything

When you send an entire form off to be processed, you usually want that

request to be synchronous. That’s because you don’t want users to change

that data while the server is working with it.

But Mike wants scrolling images while the user is waiting on the server. That

means you need your code to run while the server is working on a response. So

even though the request would ideally be synchronous, you need it to be an

asynchronous request to fulfill image-loving Mike’s needs.

This isn’t a perfect solution, but lots of times you’ve got to make this sort of

choice: satisfying the client’s needs even when the result is a little less than

ideal. Mike’s willing to let users mess around with the form, if they really

want to, while their request is being processed. He figures they won’t do

that, though, because of the scrolling images. They’ll be too busy thinking

about which movie review they want to check out when they’re logged in.

Update the XHTML page
1

Validate the passwords

2

Submit the form
3

First, we no longer need a “submit” button

A “submit” button in XHTML submits a form. And since we no

longer need the Register button to submit the form, we can make it

a normal button. Then, we can submit the form in our JavaScript.

<html>
<script src=”...
js” />
<img
src=”siteLogo.
png” />
</html>

registration.html

We need a regular button now, not a submit button.

The original version of our XHTML was
shown way back on page 182.

synchrony blocks

Chapter 5. asynchronous applications Page 46 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 219

asynchronous applications

function initPage() {
 document.getElementById("username").onblur = checkUsername;
 document.getElementById("password2").onblur = checkPassword;
 document.getElementById("register").disabled = true;
 document.getElementById("register").onclick = registerUser;
}

validation.js

Second, we need to register a new event handler

for the button’s onclick event

Now we need to attach an event handler to that button. We’ll call

the function we want to run registerUser(), and we can

make the assignment in initPage():

Third, we need to send an ASYNCHRONOUS

request to the server

Finally, we need a new event handler function. This function needs

to get a new request object, and send it to the server. And this

should be an asynchronous request, so we can animate and scroll

those images while the user is waiting.

function registerUser() {
 document.getElementById("register").value = "Processing...";
 registerRequest = createRequest();
 if (registerRequest == null) {
 alert("Unable to create request.");
 } else {
 var url = "register.php?username=" +
 escape(document.getElementById("username").value) + "&password=" +
 escape(document.getElementById("password1").value) + "&firstname=" +
 escape(document.getElementById("firstname").value) + "&lastname=" +
 escape(document.getElementById("lastname").value) + "&email=" +
 escape(document.getElementById("email").value) + "&genre=" +
 escape(document.getElementById("genre").value) + "&favorite=" +
 escape(document.getElementById("favorite").value) + "&tastes=" +
 escape(document.getElementById("tastes").value);
 registerRequest.onreadystatechange = registrationProcessed;
 registerRequest.open("GET", url, true);
 registerRequest.send(null);
 }
}

validation.js

Assign the new
callback we’ll
write to the
Register button’s
onclick event.

This is all
new code.

Let’s change the text on the button to provide a little information to the user.

Create another
request object... ...and configure the object’s properties.

It’s tempting to make this synchronous,
but that would block the image scrolling
we’re going to add in a few pages.

Chapter 5. asynchronous applications Page 47 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

220 Chapter 5

Usability is in the eye of the
beholder... err... the client.
Sometimes clients do things that don’t make sense

to you. That’s why they’re paying the bills, and

you’re collecting the checks. You can suggest

alternatives to your client, but at the end of the day,

you’re going to be a lot happier if you just build the

client what they ask for.

In Mike’s case, he wants to entice users with

reviews available on his site, so he wants

images to scroll while users are waiting on their

registration request. That makes his form a little

less usable, though. Now, instead of waiting on a

response, users can actually type over their entries.

That could create some confusion about what

information Mike’s system actually registered for

that user.

Then again, Mike will probably just call you later

when he realizes that for himself... and that’s not

altogether a bad thing, is it?

You can suggest
alternative ideas
to your clients, but
ultimately, you
should almost
ALWAYS build
what the client
asked for... even
if you don’t agree
with their decisions.

Q: Could I disable all the fields while the images
are scrolling?

A: That’s a great idea! Why don’t you take some
time now to do that. Mike will love that he gets scrolling,
and you’ll still keep the nice usability you’ve built into
the registration page so far. We won’t show that code,
though, so consider it a little extra-credit project.

the customer is king

Chapter 5. asynchronous applications Page 48 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 221

asynchronous applications

Use setInterval() to let JavaScript run your
process, instead of your own code
setInterval() is a handy method that lets you pass in a function, and have

the JavaScript interpreter run your code over and over, every so often. Since it’s the

interpreter running your code, the function you send setInterval() will run

even while your code is busy doing other things like, say, registering a user.

To use setInterval(), you pass it a function to execute and the interval at

which the function should be called, in milliseconds. The method returns a token,

which you can use to modify or cancel the process.

Here’s setInterval() in action.

This is the token that
you can use to cancel the
interval. setInterval() is the

method itself.

The first argument to setInterval() is
the statement to be evaluated. In this
case, we want it to call the function
called scrollImages. You leave off the
parentheses so that JavaScript will
actually reference the function, not
just run it once.

This tells JavaScript how often to execute the statement. We’ve chosen 40 milliseconds, which is a good average rate to scroll something.

You can use any valid JavaScript here,
including an anonymous function.

Q: Is the function you pass to
setInterval() a callback?

A: Yes. Every time the interval you set
passes, the function you pass in here will be
called back by the browser.

Q: So do you write that function just
like the callback for a request object?

A: Well, there isn’t a request object
involved, and so you don’t need to check any
readyState or status properties.
And there’s no server response to evaluate.
So you just need a JavaScript function that
does something every time it’s called.

Q: So I can do anything inside a
setInterval() callback that I can do in
JavaScript?

A: Yes, that’s right. There’s no limitation
on what you can do inside the function.

Q: Why do you use the parentheses
when you specify the function?

A: Because you’re not setting a property,
like you do when you assign an event
handler. You’re actually passing code to
the JavaScript interpreter. The interpreter
will then execute that code every time the
interval elapses.

Q: How many times does the callback
happen?

A: Until you cancel the timer. You can do
that with clearInterval().

1 second is 1000
milliseconds.

You can pass any
JavaScript function to
setInterval(), and have it
run automatically at pre-
determined intervals.

Chapter 5. asynchronous applications Page 49 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

222 Chapter 5

setInterval() is essentially JavaScript’s
version of multi-threading.
Some programming languages, like C# and JavaScript,
allow you to specify that a function be executed on a
separate thread. If the computer has more than one CPU,
two different threads might actually execute simultaneously.
On most computers, the operating system executes one
thread for a short time, then switches to another thread,
then back. It’s sort of like driving and talking on a cell
phone, without the risk of plowing into the guy in the big
SUV to your left.

In our case, the JavaScript interpreter is able to
do two things more or less at once: keep executing
scrollImages() every few seconds, and deal with the
asynchronous request from our code to Mike’s web server.

multi-threading?

Chapter 5. asynchronous applications Page 50 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 223

asynchronous applications

You’re in the home stretch now. There are just a few things left to do to finish up Mike’s
registration page... and you’re going to do them all right now. Here’s your list of things to take
care of before turning the page:

Add the following Ready-Bake Code for scrolling the cover images to

validation.js.

function scrollImages() {
 var coverBarDiv = document.getElementById("coverBar");
 var images = coverBarDiv.getElementsByTagName("img");
 for (var i = 0; i < images.length; i++) {
 var left = images[i].style.left.substr(0,
 images[i].style.left.length - 2);
 if (left <= -86) {
 left = 532;
 }
 images[i].style.left = (left - 1) + "px";
 }
} Ready Bake

Code

Find all
the images.

For each image, figure out what its current
position is using the

“left” attribute of its style property...

...and then move the image

just a bit further
to the

left (or loop it aro
und).

Add a line to the Register button’s event handler callback that tells the

JavaScript interpreter to run scrollImages() every 50 milliseconds.

Write a callback function for the asynchronous registration request.

When the callback gets a response from the server, it should replace the

“wrapper” <div>’s content with the server’s response. You can assume

the server returns an XHTML fragment suitable for display.

Test your code out before turning the page. You can do this!

Make sure you’ve got the CSS from the
Chapter 5 examples. The earlier version
of Mike’s CSS doesn’t have styles for
the cover images.

We don’t explain this code because it’s standard
JavaScript. You can use it safely, though... and dig
into Head First JavaScript for more details.

Chapter 5. asynchronous applications Page 51 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

224 Chapter 5

Your job was to complete Mike’s registration page. Did you figure everything out? Here’s how
we finished up the page.

validation.js

function registerUser() {

 t = setInterval("scrollImages()"
 document.getElementById("register").value = "Processing...";

 registerRequest = createRequest();

 if (registerRequest == null) {

 alert("Unable to create request.");

 } else {

 var url = "register.php";

 registerRequest.onreadystatechange = registrationProcessed;

 registerRequest.open("GET", url, true);

 registerRequest.send(null);

 }

}

function registrationProcessed() {
 if (registerRequest.readyState == 4) {

 document.getElementById('wrapper').innerHTML =

 }
 }
}

function scrollImages() {

 var coverBarDiv = document.getElementById("coverBar");

 var images = coverBarDiv.getElementsByTagName('img');
 for (var i = 0; i < images.length; i++) {

 var left = images[i].style.left.substr(0, images[i].style.left.length - 2);

 if (left <= -86) {

 left = 532;

 }

 images[i].style.left = (left - 1) + 'px';
 }

}

Here’s where we
start the animation.

This is the Ready
Bake Code from the
last page. It handles
scrolling the images.

This callback is
pretty simple. It
gets a response
and replaces the
content of main
<div> on the page
with that response.

exercise solution

Chapter 5. asynchronous applications Page 52 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 225

asynchronous applications

Test Drive
Let’s show Mike what we’ve done.
It’s been a long, fast ride since all Mike cared about was validating usernames. We’ve added a
lot... let’s show him what we’ve come up with.

The images scroll
to the left as the
user waits...

...and the server’s
response shows up
right where it should.

The images keep scrolling, too, since we haven’t cancelled the timer or changed pages. Nice!

Chapter 5. asynchronous applications Page 53 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

226 Chapter 5

Word Search

X P R S M O K E J U D H E

A A L A V R E T N I T E S

A S I O R E M A L T R T V

Q S L X H A N D L E R S L

C W Y O R U H A E A Y E R

A O N N O N T L B N E U A

L R E U C S T F C L N Q S

L D T K A H P H N L E E N

B E Y C C E R L R X L R R

A N I T H O E O A E D G R

C U N B N D Q B N R A A K

K N G O F E U R L O N D A

N D U L R I V F R I U D Y

A S E A D I V E A T E S D

J E R C I C T H R I Z A R

Word list:

setInterval
Asynchronous
Synchronous
DIV
Handlers
Callback
Thread
Password
Event
Request
Enable

Take some time to sit back and give your right brain something to do. See if

word search

Chapter 5. asynchronous applications Page 54 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 227

asynchronous applications

Tonight’s talk: Asynchronous and Synchronous
applications go toe-to-toe

Synchronous:
Hey there, long time, no talk.

I’m a busy guy, you know? And I don’t let anything

get in the way of paying attention to the user I’m

serving.

They’ll get their turn, too. Sometimes it’s much

better to take care of one thing at a time, and then

move on to the next job. Slow and steady...

Just because I don’t let people interrupt me while

I’m working—

One-track mind? I just make sure I finish what I

start.

I don’t seem to get too many complaints.

Hey, enjoy your 15 minutes of fame, bro. I’ve seen

fads like you come and go a million times.

Asynchronous:

No kidding. Every time I call you, I get a busy signal.

But what about all your other users? They’re just left

waiting around?

You can say that again!

Hey, I can listen and talk, all at the same time.

You’re the one with the one-track mind.

Sure, but what if that takes 10 seconds? Or 10

minutes? Or an hour? Do you really think people

enjoy that little hourglass whirling around?

Yeah, well, I’d love to sit around like this all day, but

my users don’t like to wait on me. That’s more your

department, isn’t it?

I bet you thought U2 was a one-hit wonder, too. I’m

not going anywhere—except to make the Web a hip

place again. See you when I see you...

Chapter 5. asynchronous applications Page 55 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

228 Chapter 5

Word Search Solution

X P R S M O K E J U D H E

A A L A V R E T N I T E S

A S I O R E M A L T R T V

Q S L X H A N D L E R S L

C W Y O R U H A E A Y E R

A O N N O N T L B N E U A

L R E U C S T F C L N Q S

L D T K A H P H N L E E N

B E Y C C E R L R X L R R

A N I T H O E O A E D G R

C U N B N D Q B N R A A K

K N G O F E U R L O N D A

N D U L R I V F R I U D Y

A S E A D I V E A T E S D

J E R C I C T H R I Z A R

Word list:

setInterval
Asynchronous
Synchronous
DIV
Handlers
Callback
Thread
Password
Event
Request
Enable

exercise solution

Chapter 5. asynchronous applications Page 56 Return to Table of Contents

Chapter 5. asynchronous applications
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Table of Contents

Chapter 6. the document object model.. 1
Section 6.1. You can change the CONTENT of a page.. 2
Section 6.2. ...or you can change the STRUCTURE of a page.. 3
Section 6.3. Browsers use the Document Object Model to represent your page... 4
Section 6.4. Here's the XHTML that you write.. 6
Section 6.5. ...and here's what your browser sees... 7
Section 6.6. Your page is a set of related objects.. 9
Section 6.7. Let's use the DOM to build a dynamic app... 16
Section 6.8. You start with XHTML.. 18
Section 6.9. appendChild() adds a new child to a node... 27
Section 6.10. You can locate elements by name or by id.. 28
Section 6.11. Interiew with a new parent.. 31
Section 6.12. Can I move the clicked tile?... 32
Section 6.13. You can move around a DOM tree using FAMILY relationships... 34
Section 6.14. A DOM tree has nodes for EVERYTHING in your web page... 44
Section 6.15. The nodeName of a text node is "#text"... 46
Section 6.16. Did I win? Did I win?.. 50
Section 6.17. But seriously... did I win?... 51

Chapter 6. the document object model

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

this is a new chapter 229

the document object model6

Web Page Forestry

Wanted: easy-to-update web pages.
Document

Object Model

Wanted: easy-to-update web pages.
Document

Object Model

trees

Chapter 6. the document object model Page 1 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

230 Chapter 6

You can change the CONTENT of a page...
So far, most of the apps we’ve built have sent requests, gotten a response,
and then used that response to update part of a page’s content.

In this app, we changed the contents of this <div>.

The structure of this page

didn’t change, even thoug
h

the content did.

Here’s another case where
we changed the innerHTML
property of a <div>.

That’s the content
changing, not the
structure of the page.

We also swapped out a couple of CSS

classes... but that’s still w
ithin the existing

structure of the page’s X
HTML.

content or structure?

Chapter 6. the document object model Page 2 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 231

the document object model

...or you can change the STRUCTURE of a page
But what if you need to do more than just change the content of a <div> or replace

the label on a button? What if an image needs to actually move on a page? How

would you accomplish that?

browser

Your users can’t change your XHTML.
The structure of your page is defined in your

XHTML, and people viewing your pages definitely

can’t mess around with that structure. Otherwise,

all the work you’d put into your pages would be a

total waste of time.

The browser CAN change your
web page’s structure
You’ve already seen that the browser lets you

interact with a server-side program, grab

elements from a page, and even change

properties of those elements. So what about

the structure of a page?

Well, the browser can change that, too. In fact,

think about it like this: in a lot of ways, the

structure of your page is just a property of

the page itself. And you already know how to

change an object’s properties...

Chapter 6. the document object model Page 3 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

232 Chapter 6

Browsers use the Document Object Model to

represent your page

The browser doesn’t see your XHTML as a text file with a bunch of letters and

angle brackets. It sees your page as a set of objects, using something called the

Document Object Model, or DOM.

And everything in the DOM begins with the document object. That object

represents the very “top level” of your page:

Most people call this the DOM for short.

document

<html>
<script src=”...
js” />
<img
src=”siteLogo.
png” />
</html>

classes.html

The document object is just an OBJECT

You’ve actually used the DOM, and in particular the document object, several

times. Every time you look up an element, you use document:

The document object
contains the structure
of your page, which is
defined in your XHTML. The style and even the code attached to your structure is also represented in the DOM.

#tabs {
...
}

yoga.css

schedule.js

var tabs =

 document.getElementById("tabs").getElementsByTagName("a");

In fact, every time you treat an element on a page like an object and set

properties of that object, you’re working with the DOM. That’s because the

browser uses the DOM to represent every part of your web page.

currentTab.onmouseover = showHint;

currentTab.onmouseout = hideHint;

currentTab.onclick = showTab;

document

The document object
getElementById() is a method of the document object.

It’s the DOM that lets browsers

work with parts of a page as

JavaScript objects with properties.

document object model

Chapter 6. the document object model Page 4 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 233

the document object model

The document object... Up Close
Everything in the web browser’s model of your web page can be
accessed using the JavaScript document object. You’ve already seen the
getElementById() and getElementsByTagName() methods, but there’s a
lot more that you can do with the document object.

document

You can grab the <html> root element from an XHTML

document using the documentElement property:

var htmlElement = docum
ent.documentElement;

The root element in an XHTML

file is always <html>

Get the root element of a document

You can use various create… methods on the document object to add elements and text to

your page:

var myImage = document.createElement("img");

var favShow = document.createTextNode("Bones"
);

Create new parts of a page

This creates a new element. You can create text

and add it anywhere on

your page.

You’ve already seen how getElementByID() makes it a piece
of cake to find an element in your web page using the element’s idattribute:

var tabElement =
document.getElementById("tabs").value;

Find an element by its “id” attribute

This gets the element with an id of “tabs.”

If you want all the elements of a certain type, for example, all the images, you can use getElementsByTagName(). This returns an array, so you’ll need to loop through the array to get a particular element:

var allDivs =
document.getElementsByTagName("div");

var firstPara =
document.getElementsByTagName("p") [0];

Find nodes by their tag type

This returns all the <div> elements.

Get all the <p> elements… …and return just the first one in the array.

Chapter 6. the document object model Page 5 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

234 Chapter 6

Here’s the XHTML that you write...
When you’re creating a web page, you write XHTML to represent the structure

and content of your page. Then you give that XHTML to the browser, and the

browser figures out how to represent the XHTML on the screen. But if you want

to change your web page using JavaScript, you need to know exactly how the

browser sees your XHTML.

Suppose you’ve got this simple XHTML document:

<html>
<head>

 <title>Webville Tree Farm</title>
</head>
<body>

 <h1>Webville Tree Farm</h1>
<p>Welcome to the Webville Tree Farm. We're still learning
about CSS, so pardon our plain site. We just bought

Head First HTML with CSS & XHTML, though, so expect
great things soon.</p>
<p>You can visit us at the corner of Binary Boulevard and
DOM Drive. Come check us out today!</p>

</body>
</html>

All the bolded tags define the structure of your document.

The text between the tags is
the content of your document.

xhtml to dom

Chapter 6. the document object model Page 6 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 235

the document object model

...and here’s what your browser sees
The browser has to make some sense of all that markup, and organize it in a way

that allows the browser—and your JavaScript code—to work with the page. So the

browser turns your XHTML page into a tree of objects:

“Welcome to the Webville Tree
Farm. We’re still learning about

CSS, so pardon our plain site. We
just bought”

a

“Head First HTML with CSS &
XHTML”

p
“, though, so expect great things soon.”

“Webville Tree Farm”

h1

title

head

html

“Webville Tree Farm”

p

body

“You can visit us at the corner of
Binary Boulevard and DOM Drive.

Come check us out today!”These are all the different pa
rts

of the DOM tree. But how are

they connected? And are they in

any particular order?

YOU

Chapter 6. the document object model Page 7 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

236 Chapter 6

The browser organizes your page into a tree
structure, with a root and branches.
When a browser loads an XHTML page, it starts out with

the <html> element. Since this is at the “root” of the page,

<html> is called the root element.

Then, the browser figures out what elements are directly

nested within <html>, like <head> and <body>. These

branch out from the <html> element, and they have a

whole set of elements and text of their own. Of course, the

elements in each branch can have branches and children of

their own…until an entire page is represented.

Eventually, the browser gets to a piece of markup that has

nothing beneath it, like the text in a <p> element or an

 element. These pieces of markup with nothing under

them are called leaves. So your entire page ends up being

one big tree to the web browser.

So let’s look at that tree structure again, but this time, with

some lines added to make the connections between the

markup a little clearer.

the dom is relational

Chapter 6. the document object model Page 8 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 237

the document object model

<html>
<head>

 <title>Webville Tree Farm</title>
</head>
<body>

 <h1>Webville Tree Farm</h1>
<p>Welcome to the Webvill Tree Farm. We're still learning

about CSS, so pardon our plain site. We just bought

Head First HTML with CSS & XHTML</
a>, though, so expect great things soon.</p>
<p>You can visit us at the corner of Binary Boulevard and DOM
Drive. Come check us out today!</>

</body>
</html>

Your page is a set of related objects

Both text and elements are
represented in the tree..

Each bit of markup can have any number of children.

<html> is the root element. Everything else branches out from it.

Here’s the XHTML that this tree represents.

Eventually, the tree ends in leaves,
which often are just pieces of
text in the HTML.

Sometimes an
element has
several children…

…and other times, an element has only one child.

“Welcome to the Webville Tree Farm.
We’re still learning about CSS, so

pardon our plain site. We just bought ” a

“Head First HTML with CSS & XHTML”

p

“, though, so expect great things soon.”

“Webville Tree Farm”
h1

title

head

html

“Webville Tree Farm”

p

body “You can visit us at the corner of
Binary Boulevard and DOM Drive.

Come check us out today!”

Chapter 6. the document object model Page 9 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

238 Chapter 6

Q: Do I need to use a request object to write JavaScript code
that uses the DOM?

A: Nope. The browser handles creation of the DOM tree and
exposes all the methods of the document object automatically. In fact,
even when you’re not writing JavaScript at all, browsers still use the
DOM to represent your page.

Q: So if the DOM doesn’t use a request object, is it really part
of Ajax?

A: Depends who you talk to. Ajax is really just a way of thinking
about web pages, and a whole slew of other technologies, that helps
you achieve interactive pages in really usable ways. So the DOM is
definitely a part of that. You’ll use the DOM a lot in the next couple of
chapters to build interactive and usable apps.

Q: What about all that DOM Level 0 and DOM Level 2 stuff?
Am I going to have trouble with Internet Explorer again?

A: All modern browsers are compatible with the World Wide Web
Consortium’s (W3C) DOM specification, but the specification leaves
some decisions up to the browser designer. The designers of IE
made a different decision about how to build the DOM tree than a lot
of the designers of other major browsers. But it’s not a big problem,
and with a few more utility functions, your code will work on all major
browsers, including Internet Explorer.

Q: It looks like you called some parts of the markup
“children.” So an element can have “child elements”?

A: Yes. When the browser organizes your XHTML into a tree, it
begins with the root element, the element that surrounds everything
else. Then, that element has an element within it, like <head> or
<body>. Those can be called nested elements, but in DOM, they’re
called child elements.
In fact, you can think of the DOM tree as a family tree, with family
terms applying everywhere. For example, the <head> element is
the parent of the <title> element, and most <a> elements have
children: the text label for the link.

Q: You’re throwing a bunch of new terms around. How am I
supposed to keep up with all of this?

A: It’s not as hard as it seems. Just keep the idea of a family tree
in mind, and you shouldn’t have any trouble. You’ve been using
terms like root, branch, and leaf for years. As for parent and child,
anytime you move away from the root, you’re moving towards a child.
The only term that may be totally new to you is “node,” and we’re just
about to take a look at that…

parents and children

Chapter 6. the document object model Page 10 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 239

the document object model

Write Your Own Web Dictionary
What good is looking at a bunch of definitions? This is Head First, and we want your brain
working, not just your eyes. Below are several entries from a Web Dictionary, with some of the
words in each definition removed. Your job is to complete each entry by filling in the blanks.

no children
other markup
element

child
text
contains

children
collection
<body>

under
single
no

contained
document
<html>

Here are the words you should use to fill in the blanks.

node: Any piece of markup, such as an element
or text. The <a> element is an node, while
the “Head First HTML with CSS & XHTML” text is
a node.leaf: A piece of markup that

has such as
an element with text
content, like , or textual
data. Also known as: leaf node.

child: Any piece of markup that is
by another piece of markup. The text “Head
First HTML with CSS & XHTML” is the
of the <a> element, and the <p>s in this markup
are of the <body> element.
Also known as: child node

branch: A branch is a of
elements and content. So the “body” branch
is all the elements and text the
<body> element in the tree.

root element: The element in
a that all
other elements. In XHTML, the root
element is always .

parent: Any piece of markup that
contains . <h1> is the
parent of the text “Webville Tree
Farm,” and <html> is the parent of
the element. Also known as:
parent element, parent node.

html

body

p

a

“Head First HTML with CSS & XHTML”

p
h1

“Webville Tree Farm”

Chapter 6. the document object model Page 11 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

240 Chapter 6

It’s time to load markup trees into your brain. Below is an XHTML document. Your job is
to figure out how a web browser organizes this markup into a tree structure. On the right
is the tree, ready for you to fill in its branches and the relationships between each piece.
To get you started, we’ve provided spaces for each piece of markup; be sure you’ve filled
each space with an element or text from the XHTML markup before showing off your
DOM tree to anyone else!

<html>
<head>

 <title>Binary Tree Selection</title>
</head>
<body>

 <p>Below are two binary tree options:</p>
 <div>

Our depth-first trees are great for folks who
are far away.

</div>
<div>
Our breadth-first trees are a favorite for
nearby neighbors.

</div>
<p>You can view other products in the
Main Menu. </p>

</body>
</html>

build your own dom

Chapter 6. the document object model Page 12 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 241

the document object model

This one is tricky. See if you can figure it out. *Hint: It’s text, and it’s short.

html

title

p

a

em

“Our”

“depth-first”

div

“Below are two binary
tree options:”

div

Go ahead and draw lines in connecting

the different elements and the text.

Make sure you get all thos
e family

relationships right!

Answers on page 243.

Chapter 6. the document object model Page 13 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

242 Chapter 6

Write Your Own Web Dictionary
Below are several entries from a Web Dictionary, with some of the words in each definition
removed. Your job was to complete each entry by filling in the blanks.

node: Any piece of markup, such as an element
or text. The <a> element is an node, while
the “Head First HTML with CSS & XHTML” text is
a node.leaf: A piece of markup that

has such as
an element with text
content, like , or textual
data. Also known as: leaf node.

child: Any piece of markup that is
by another piece of markup. The text “Head
First HTML with CSS & XHTML” is the
of the <a> element, and the <p>s in this markup
are of the <body> element.
Also known as: child node

branch: A branch is a of
elements and content. So the “body” branch
is all the elements and text the
<body> element in the tree.

root element: The element in
a that all
other elements. In XHTML, the root
element is always .

parent: Any piece of markup that
contains . <h1> is the
parent of the text “Webville Tree
Farm”, and <html> is the parent of
the element. Also known as:
parent element, parent node.

html

body

h1

“Webville Tree Farm”

p

a

“Head First HTML with CSS & XHTML”

single
element

text
no children

no

contained

child

children

collection

underother markup

<body>

document contains

<html>

p

nodes and relationships

Chapter 6. the document object model Page 14 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 243

the document object model

html

title

p

a

em

“Our”

“depth-first”

div

“Below are two binary
tree options:”

trees are great for folks that
are far away

breadth-first

trees are a favorite for
nearby neighbors

em div

Our you can view our other
products in the

Main Menu

Binary Tree Selection

body

head

p
.

Your job was to build a DOM tree from the XHTML on page 240. You also
should have drawn in the connections between the different elements and
text. How did you do?

Even text as small
as a period gets
represented in a
DOM tree.

Every element or piece of text has only a single parent.

You’ll have text
at different
“levels” of the
tree... some
within <div>s
or <p>s, and
some within
s or <a>s.

Chapter 6. the document object model Page 15 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

244 Chapter 6

Let’s use the DOM to build a dynamic app
Now that we know a bit about the DOM, we can use that knowledge to make

our apps do even more interesting things. Let’s take on a project for the Webville

Puzzle Company. They’ve been working on a bunch of new web-based games,

and they need help with their online Fifteen Puzzle.

We want to let users move these numbered “tiles” around within the puzzle.

We’re not replacing content, we’re moving it
In a Fifteen Puzzle, you can move a tile into the empty space, which then creates

a new empty space. Then you can move another tile into that new empty space,

and so on. There’s always one empty space, and the goal is to get all the numbers

lined up in sequential order, like this:

The empty space can be

anywhere, as long as the

numbers are in order.

The numbers begin at 1 and go in sequence to 15. This is a winning board.

Clicking on a tile next
to an

empty space moves that tile into

the empty space.

dynamic puzzles, anyone?

Chapter 6. the document object model Page 16 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 245

the document object model

any

We need to move those tiles around...
and that requires the DOM.
This is a perfect example of needing the DOM. We

don’t want to just change the content of a table, or

replace some text on a button or in a <p>. Instead, we

need to move around the images that represent a tile.

Webville Puzzles is using a table with four rows and four

columns to represent their board. So we might need to

move an image in the third row, fourth column to the

empty space in the third row, third column. We can’t

just change the innerHTML property of a <div> or

<td> to get that working.

What we need is a way to actually grab an , and

move it within the overall table. And that’s where the

DOM comes in handy. And, as you’ll soon see, this is

exactly the sort of thing that Ajax apps have to do all the

time: dynamically change a page.

All Ajax apps
need to respond
DYNAMICALLY
to users.
The DOM lets you
CHANGE a page
without reloading
that page.

Chapter 6. the document object model Page 17 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

246 Chapter 6

You start with XHTML...
To really understand how the DOM helps out, let’s take a look at Webville

Puzzles’ XHTML, and see what the browser does with that XHTML. Then we

can figure out how to use the DOM to make the page do what we want.

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Webville Puzzles</title>
 <link rel="stylesheet" href="css/puzzle.css" type="text/css" />

</head>
<body>
 <div id="puzzle">
 <h1 id="logo">Webville Puzzles</h1>
 <div id="puzzleGrid">
 <table cellspacing="0" cellpadding="0">
 <tr>
 <td id="cell11">

 </td>
 <td id="cell12">

 </td>
 <td id="cell13">

 </td>
 <td id="cell14">

 </td>
 </tr>
 <tr>
 <td id="cell21">

 </td>
 <td id="cell22">

 </td>
 <td id="cell23">

 </td>
 <td id="cell24">

 </td>
 </tr>
 ... etc ...
 </table>
 </div>
 </div>
</body>
</html>

<html>
<script src=”...
js” />
<img
src=”siteLogo.
png” />
</html>

fifteen-puzzle.html

The XHTML for the puzzle is

in fifteen-puzzle.html. You can

download the source from the

Head First Labs website.

There’s no JavaScript
yet, but we’ll need
some soon. Go ahead
and add a reference to
fifteen.js, which we’ll
build throughout this
chapter.

The puzzle is
represented by a
<table> element.

Each table cell is labeled with an id.

Each tile is a
single within a single table cell.

The empty tile is

also an image.

puzzle xhtml

Chapter 6. the document object model Page 18 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 247

the document object model

Q: There isn’t any request being made in this puzzle, is
there?

A: No, at least not right now. The program is all client-side.

Q: So this isn’t Ajax at all, is it?

A: Well, that gets back to the “What is Ajax?” question. If
you think Ajax apps are only ones that make requests using
XMLHttpRequest, then this isn’t an Ajax app. But if you think
of Ajax apps more as responsive, JavaScript-driven apps that are
very usable, then you might decide otherwise.
Either way, this app is really all about controlling the DOM... and
that’s something that will help your Ajax programming, no matter
what you think constitutes an Ajax app.

Go ahead and draw what you think the DOM tree for fifteen-
puzzle.html looks like. This time, though, you don’t have to put
the root element at the base of the tree. You can put it anywhere
you want: the top, the bottom, or to one side.

Chapter 6. the document object model Page 19 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

248 Chapter 6

title “Webville Puzzles”

img

This is a text
node object.

Although this doesn’t
look much like a tree
anymore, you can still
see the root, branches,
and leaves... and how
all these nodes are
related to each other.

<html> is the root
element of the
DOM tree.

Order is still preserved, as elements and text appear in exactly the same order as they do in the XHTML markup.

All these objects are element
nodes because they represent
XHTML elements.

script

head link

html

div

body

div

h1

table

“Webville Puzzles”

td

imgtd

imgtd

imgtd

tr

Your job was to draw out a DOM tree for the fifteen-puzzle.html’s
XHTML structure and content. Here’s what we did... we started with the
root element on the top-left, and worked our way down. Did you come
up with something similar?

There are actually four <tr>’s. The other three are just like this one, with four <td>’s, each with an as a child element of each <td>.

Each represents a
single tile in the puzzle.

the puzzle’s dom tree

Chapter 6. the document object model Page 20 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 249

the document object model

The exercises just keep coming! This time, you’ve got to swap
two particular nodes in the DOM tree structure below. Your job
is to write out exactly what steps you’d take. Don’t worry about
method names, just write out what you’d do.

tr

td

img

td

img

td

img

td

img

td

img

td

img

td

img

td

img

td

img

td

img

td

img

td

img

tr

img imgimgimg

td td td td

table

tr tr

You can draw a
DOM tree however
you want... just
make sure it’s clear
and readable.

Your job is to
figure out what to
do to switch this
tile...

...with this one.

Assume you know which table cell was clicked on, and you also
know the destination table cell. What would you do?

1.

2.

3.

4.

5.

 ...etc...
You can use as many
steps as you need.

You can write things like “Get the first child of the current element” or “Find all the elements named ‘img’.”

Hint: see if you can u
se the

word “parent” at lea
st once...

maybe even twice!

Chapter 6. the document object model Page 21 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

250 Chapter 6

Your job was to write out exactly what steps you’d take. Assume
you know which table cell was clicked on, and you also know the
destination table cell. What would you do?

Get the child of the selected table cell
You could use getElementsByTagName(), but we know that the
 representing the clicked-on tile is the child of the selected cell.
So we can use the DOM to get that child element.

11

td

img

We know the table
cell that was clicked
on, so that’s our
starting point.

We can get to this by getting the child of the selected <td> with the DOM.

Clicked-on cell

Get the child of the destination table cell
Once we start swapping things around, it’s going to be harder to keep
the selected separate from the destination . So before
we start moving things around, let’s get a reference to the in the
destination <td>, too.

22

td

img

Destination cell
td

img

Clicked-on cell

We’ve already got a reference to this element.

We can get a
reference to this
, too.

We just need to get the child of the destination <td>.

Clicked-on

Destination

move that

Chapter 6. the document object model Page 22 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 251

the document object model

Add the clicked on as a child of the new
destination table cell.
We need to move the in the selected cell to the destination cell.
So we can just add the clicked-on to the destination <td>’s list
of children.

33

td

im

Clicked-on cell

td

img

Destination cell

imgWe don’t want this
 to be under
the clicked-on
table cell anymore.

We can add
this
to the
destination
<td>’s list
of children.

Once we’ve added thi
s

to the destina
tion <td>,

we’ve moved the

to a new location in th
e

DOM tree.

Add the in the destination cell as a child of the
originally clicked-on table cell.
Now for the other part of the swap. We need to move the destination
 under the <td> that was originally clicked on. Here’s why we got
the reference to this in step 2: since there are two child ’s
under the destination <td>, having a reference already makes this easy.

44

td

img

Clicked-on cell

td

im

Destination cell

img

Clicked-on

Clicked-on
Destination

Destination

We add this to the child list of the originally clicked-on <td>.

Now the images
are swapped.

much

Chapter 6. the document object model Page 23 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

252 Chapter 6

Do you want to CHANGE an element or
MOVE an element? There’s a big difference.
You could definitely write code that simply swaps out the

values of the two ’s src properties, like this:

var tmp = selectedImage.src;
 selectedImage.src = destinationImage.src;
 destinationImage.src = tmp;
The problem with this is that you’re actually just changing

the properties of an image, and not moving those images

around on the page.

So what’s the big deal with that? Well, what about the other

properties of each image? Remember that each
had an alt attribute?

<img src="images/14.png" alt="14"
 width="69" height="69" />
If you change the src attribute, you’re only changing a

part of the . The rest would stay the same... and

then the alt attribute would not match the image!

This code
swaps the
textual src
property of
two images.

The alt, width, and height are properties of this image, just like its src attribute.

src = "images/14.png"
alt = "14"

If you change the src property, then the image (tile #2) won’t match the alt attribute (“14”).
What you need to do is swap the entire

 objects. That way, each keeps its

properties. The image doesn’t change, but the

location of that in the DOM tree (and on

the visual representation of the page) does.

change or move?

Chapter 6. the document object model Page 24 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 253

the document object model

JavaScript & DOM Magnets
You’ve already figured out what needs to happen to swap two tiles. Now
it’s time to turn those general steps into actual code. Below is the skeleton
for a new function, swapTiles(). But all the pieces of code have fallen to the
ground... can you figure out how to complete the function?

function swapTiles(_______________, ______________) {

 ________________ = _______________.______________;

 ________________ = _______________.______________;

 ________________.______________(_______________);

 ________________.______________(_______________);

}

selectedImage
selectedImage

selectedCell
selectedCell

selectedCell

destinationCell

destinationCell
destinationCell

destinationImage

destinationImage firstChild

firstChild

appendChild

appendChild

Chapter 6. the document object model Page 25 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

254 Chapter 6

JavaScript & DOM Magnet Solutions
It’s time to turn those general steps from page 250 into actual code. Below
is the skeleton for a new function, swapTiles(). Your job was to put the pieces
of code into a working function.

function swapTiles(_______________, _________________) {

 ________________ = _______________.______________;

 ________________ = _______________.______________;

 ________________.______________(_______________);

 ________________.______________(_______________);

}

selectedImage

selectedImage

selectedCell

selectedCell

selectedCell

destinationCell

destinationCell

destinationCell

destinationImage

destinationImage

firstChild

firstChild

appendChild

appendChild

Every node has a parentNode property...
but the parentNode property is read-only.
Every node in a DOM tree—that’s elements, text, even

attributes—has a property called parentNode. That

property gives you the parent of the current node. So for

example, the parent node of an in a table cell is the

enclosing <td>.

But in the DOM, that’s a read-only property. So you can get

the parent of a node, but you can’t set the parent. Instead,

you have to use a method like appendChild().

This gets a reference to the two images to swap...

...and this swaps
the two images.

parentNode is read-only

Chapter 6. the document object model Page 26 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 255

the document object model

appendChild() adds a new child to a node
appendChild() is a method used to add a new child node to an element. So
if you run destinationCell.appendChild(selectedImage), you’re
adding the selectedImage node to the children that destinationCell
already has:

td

im

selectedCell
td

img

destinationCell

img

selectedImagedestinationImage

destinationCell.appendChild(selectedImage)

Every node has a set of children, ranging from zero to who knows how many.

A new child gets a new parent... automatically
When you assign a node a new child, that new child’s parentNode property is
automatically updated. So even though you can’t change the parentNode property
directly, you can move a node, and let the DOM and your browser handle
changing the property for you.

Q: So I can use all the DOM methods
from my JavaScript automatically?

A: That’s mostly right. There are a few
exceptions that we’ll look at soon, but for the
most part, the DOM is yours to use from any
JavaScript code you’re writing.

Q: And a DOM tree is made up of
nodes, like elements and text, right?

A: Right, but don’t forget about attributes,
too. A node is pretty much anything that can
appear on a page, but the most common
nodes are elements, attributes, and text.

Q: And a node has a parent and
children?

A: All nodes have parents, but not all
nodes have children. Text and attribute
nodes have no children, and an empty
element with no content has no children.

Q: What’s the parent of the root
element?

A: The document object. That’s why
you can use the document object to find
anything in your web page.

Q: Are there other methods to add
child nodes like appendChild()?

A: There sure are. We’ll be looking at lots
of those in the next chapter.

Q: Why is this better than changing
out the src property of an ?

A: Because you don’t want to modify
the image displayed; you want to move
that image to a new cell. If you wanted an
image to stay the same, with its alt tag
and height and title, you’d change
the src property. But we want to move the
image, so we use the DOM.

appendChild() adds nodes to the end of the parent’s list of children.

Chapter 6. the document object model Page 27 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

256 Chapter 6

You can locate elements by name or by id
If you think about your page as a collection of nodes in a DOM tree,
methods like getElementById() and getElementsByTagName()
make a lot more sense.

You use getElementById() to find a specific node anywhere in the tree,
using the node’s id. And getElementsByTagName() finds all elements
in the tree, based on the node’s tag name.

These ovals represent the attribute nodes. An attribute node has a name and value.

id="puzzle"

title “Webville Puzzles”

img

script

head link

html

div

body

div

s"

dd

imgdd

imgdd

imgdd

tr

cellspacing="0"

id="puzzleGrid"

table

id="id cell11"

69"
es/07.png"es/07.
69"

"i
alt=

"i

Each <td> has an id...

...and each
has several
attributes of
its own.

document.getElementsByTagName("img");

Watch the
“s” in your
method
names.

getElementById()
is Element, without
an “s”, because it
returns one element.
getElementsByTagName
is Elements, with an “s”,
because it can return more
than one element.

This gets a single element
based on its unique id value.

This gets zero or more elements based on the tag name of those elements.

document.getElementById(“puzzleGrid”);

name or id?

Chapter 6. the document object model Page 28 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 257

the document object model

Go ahead and write the code for an initPage() function. You need to make sure that every time
a table cell is clicked on, an event handler called tileClick() gets run. We’ll write the code for
tileClick() later, but you may want to build a test version with an alert() statement to make sure
your code works before turning the page.

Here are a few questions to get your left brain into gear. Answer
each before turning the page... and once you’re done, you might
want to double-check your code for initPage() above, too.

1. Should the event handler for moving a tile be on the table cell
or the image within that cell?

2. Why did you make the choice you did?

3. How can we figure out if an empty tile was clicked on?

4. How can we figure out the destination cell for a tile?

table cell (<td>) image ()

Answers on the next page.

Answers on page 261.

Chapter 6. the document object model Page 29 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

258 Chapter 6

Your job was to write an initPage() function that set up the event handlers for the Fifteen Puzzle.
What did you come up with? Here’s what we did:

window.onload = initPage;

function initPage() {
 var table = document.getElementById("puzzleGrid");
 var cells = table.getElementsByTagName("td");
 for (var i=0; i<cells.length; i++) {
 var cell = cells[i];
 cell.onclick = tileClick;
 }
}

function tileClick() {
 alert("You clicked me!");
}

We built a simple event handler to test things out.

Remember to assign the initPage()
function to the window.onload event.

First, we locate the <div> with the table and cells we want to attach handlers to.

We want every <td> in that table.
For each cell...

...assign tileClick() to the
onclick event.

Test Drive
Add initPage(), tileClick(), and swapTiles() to a script called fifteen.
js. Be sure you reference the file in your XHTML, and try out the
Fifteen Puzzle with the event handlers on each table cell.

Click a cell...

...and you should get an alert box.

test drive

Chapter 6. the document object model Page 30 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 259

the document object model

Q: Why do you have the puzzleGrid id on a
<div>, and not on the <table> itself?

A: DOM Level 2 browsers and Internet Explorer
handle tables, and CSS styles applied to those
tables, pretty differently. The easiest way to get a
page with a table looking similar on IE and Firefox,
Safari, etc., is to style a <div> surrounding a
<table>, instead of the <table> itself.
Since it’s easiest to style an element with an id,
we put the puzzleGrid id on the <div> we wanted
to style: the one surrounding the <table> cell.

Q: So that’s why you used getElementById()
to find that <div>, and not the actual <table>?

A: Right. We could have put an id on the
<table>, too, but it’s not really necessary. The
only thing in the puzzleGrid <div> is the table we
want, along with all those clickable cells. So it was
easier to just find the <div>, and then find all the
<td>’s within that.

Head First: So I hear you’re a new parent, <td>?

<td>: That’s right. I’ve got a sweet little to call my own.

Head First: So is this your first child?

<td>: Well, it depends on who you ask. Some browsers say that

 is my first child, but others think I’ve got a lot of empty

children floating around.

Head First: Empty children?

<td>: Yup. You know, empty spaces, carriage returns. It’s

nothing to worry about.

Head First: Nothing to worry about? That sounds pretty

serious... you might have more children, and that’s no big deal?

<td>: Relax, it’s all in how you handle it. Most people just skip

over all those nothings to get to my flashy little .

Head First: This is all pretty confusing. Do you think our

audience really understands what you’re talking about?

<td>: If they don’t know, I’ll bet they will soon. Just wait and see.

Head First: Well... hmmm... I guess... I guess that’s all for now.

Hopefully we’ll make some sense of all this, and get back to you

soon, faithful listeners.

Table Cells Exposed
This week’s interview:
Interview with a new parent

Table Cells Exposed
This week’s interview:
Interview with a new parent

Chapter 6. the document object model Page 31 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

260 Chapter 6

Can I move the clicked tile?
Now that the basic structure is in place, it’s time to get the puzzle working.

Since a tile can only be moved to the empty square, the first thing we need

to figure out is, “Where’s the empty square?”

For any clicked-on tile, there are six different possibilities for where the

empty tile is. Suppose the user clicked the “10” tile on the board below:

The user
clicked the
“10 tile.”

The empty square could be to the left.
In this case, the tile to the left has an “8” in it.

1

The empty square could be below.
It’s not below “10.” There’s a “2” there.

2

The empty square could be to the right.
A “1” is to the right of “10.”

3

The empty square could be above.
In this case, the empty square is above “10.”

4

There are two more possible situations related to the position of
the empty tile. Can you figure out what they are?

5

6

Answers on page 265.

where’s the empty tile?

Chapter 6. the document object model Page 32 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 261

the document object model

Joe: Why? The user’s clicking on “7,” not the second tile on the third row.

Frank: Well, they’re clicking on the table cell that image is in, too.

Jill: So suppose we put the handler on the image. And then when a user clicks

on the image...

Joe: ...we swap that image out with the empty square...

Jill: Right. But the handler’s attached to the image, not the table cell.

Frank: Oh. I see.

Joe: What? I don’t get it.

Frank: The event handler would move with the image. So every time an image

gets moved, the event handler moves with it.

Joe: So?

Frank: Well, we’re going to use the DOM to figure out where the empty square is in relation to the

clicked-on image, right?

Joe: I guess so. What’s that got to do with the handler on the image?

Frank: If the handler’s on the image, we’ll constantly have to be getting the image’s parent. If the

handler’s on the cell, we can avoid that extra step. We can just check the cells around the clicked-on cell.

Jill: Exactly! We don’t need to move to the image’s parent cell in our handler.

Joe: So all this is to avoid one line of code? Just asking the image for its parent?

Jill: One line of code for every click. That could be hundreds of clicks... or even thousands! Have you

ever worked one of those puzzles? It takes some time, you know.

Joe: Wow. I’m not even that clear on how we’d find the empty square in the first place...

Here are a few questions to get your left brain into gear. Answer
each before turning the page... and once you’re done, you might
want to double-check your code for initPage() above, too.

1. Should the event handler for moving a tile be on the table cell
or the image within that cell?

2. Why did you make the choice you did?

3. How can we figure out if an empty tile was clicked on?

4. How can we figure out the destination cell for a tile?

table cell (<td>) image ()

Chapter 6. the document object model Page 33 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

262 Chapter 6

You can move around a DOM tree using FAMILY
relationships
Suppose you wanted to find out the parent of an or get a reference to the next <td>
in a table. A DOM tree is all connected, and you can use the family-type properties of the

DOM to move around in the tree.

parentNode moves up the tree, childNodes gives you an element’s children, and you can

move between nodes with nextSibling and previousSibling. You can also get an

element’s firstChild and lastChild. Take a look:

table

div

tr tr tr tr

table.parentNode

table.firstChild
table.childNodes

table.lastChild

td td td td

table.firstChild.firstChild

document.getElementById("puzzleGrid").firstChild

This gets a reference to
the <div> with an id of
“puzzleGrid,” and then
gets that element’s
first child.

childNodes returns an array of all the child nodes on an element node.

nextSibling returns the next node
in the same order that the nodes
were declared in your XHTML.

You can chain these properties
to go as deep as you need.

Careful! If your code uses lots of these double- and triple-nestings, it gets pretty hard to read.

parentNode is read only. You can
get a node’s parent, but you can’t
change that parent directly.

There’s also a previousSibling property for moving the other direction in the tree.

all in the family

Chapter 6. the document object model Page 34 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 263

the document object model

Below is a DOM tree and some JavaScript statements. In the JavaScript,
each letter is a variable that represents the matching node in the DOM
tree. Can you figure out which node each statement refers to?

document.getElementById("y");

g.parent;

document.getElementById("y").nextSibling;

a.firstChild;

c.previousSibling;

d.firstChild.lastChild;

c.parent.parent;

b

a

d

f

c

e

g

id="x"

id="y"

Chapter 6. the document object model Page 35 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

264 Chapter 6

Below is a DOM tree and some JavaScript statements. In the
JavaScript, each letter is a variable that represents the matching
node in the DOM tree. Can you figure out which node each
statement refers to?

document.getElementById("y");
g.parent;
document.getElementById("y").nextSibling;
a.firstChild;

c.previousSibling;

d.firstChild.lastChild;
c.parent.parent;

c
d

null
f
d
c
b

This is a tricky one. Remember
that the order of elements in
the DOM tree reflects the order
they’re declared in the XHTML.
Since there is no sibling below c,
JavaScript returns a null.

b

a

d

f

c

e

g

id="x"

id="y"

Use descriptive names for your elements
and your id attributes.
When you’re writing XHTML, the element names

are already pretty clear. Nobody’s confused about

what <div> or means. But you should still use

descriptive ids like “background” or “puzzleGrid.” You

never know when those ids will show up in your code,

and make your code easier to understand... or harder.

The clearer your element names and ids, the clearer your

code will be to you and other programmers.

use meaningful element ids!

Chapter 6. the document object model Page 36 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 265

the document object model

The empty square isn’t next to the tile.
Only tiles next to an empty square can be swapped.

5

The empty square was clicked on.
In this case, no tiles should be moved.

6

There were two more possibilities for where an empty tile could
be on a puzzle grid. Did you figure out what they were?

We’ve got to make sure a tile isn’t
surrounded by other non-empty
tiles. If it is, it’s locked and can’t
be moved.

It’s possible the tile clicked is the
empty tile. That shouldn’t cause a
swap to occur, either.

The user
clicked the
“10 tile.”

The empty square could be to the left.
In this case, the tile to the left has an “8” in it.

1

The empty square could be below.
It’s not below “10.” There’s a “2” there.

2

The empty square could be to the right.
A “1” is to the right of “10.”

3

The empty square could be above.
In this case, the empty square is above “10.”

4

Chapter 6. the document object model Page 37 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

266 Chapter 6

It’s time to get busy building the rest of the Fifteen Puzzle Code. Here’s your assignment:

Write a cellIsEmpty() function.
Given a node representing a <td>, figure out if the image in that cell is the

empty image. To help you out, here’s the XHTML for the empty cell:

11

<td id="cell22">

</td>

Here’s part of the function to get you started:

function cellIsEmpty(cell) {
 var image =
 if ()
 return true;
 else
 return false;
}

cell is a node in the browser’s DOM
tree that represents a <td>.

Look for an empty cell in the tileClick() event handler.
Let’s start building tileClick(), the event handler we attached to each

table cell. First, we need to check for an empty cell. If the clicked-on cell

was empty, let’s show a message indicating the user needs to click on a

different tile.

22

function tileClick() {
 if (cellIsEmpty()) {
 alert("Please click on a numbered tile.");

 }
}

move the tiles

Chapter 6. the document object model Page 38 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 267

the document object model

Figure out what row and column was clicked.
Here’s the XHTML for a couple of cells in the puzzle:

33

 <td id="cell13">

 </td>
 <td id="cell14">

 </td>
</tr>
<tr>
 <td id="cell21">

 </td>
 ... etc ...

Given this (and the rest of the XHTML, on page 246), can you figure out

how to get the row and column of the clicked on tile?

var currentRow = this. . ;

var currentCol = this. . ;

Hint: you’ll need to use
JavaScript’s charAt(int position)

function at least once.

For the string “cows
gone wild,” charAt(2)
returns “w.”

Finish up the tileClick() event handler.
Once we’ve made sure that the empty tile wasn’t clicked, and gotten the

current row and column, you have everything you need. Your job is to

handle the 5 remaining possible situations for where the empty square is,

and then if possible, swap the selected tile with the empty square.

To get you started, here’s the code to check above the selected tile:

44

 // Check above

 if (currentRow > 1) {

 var testRow = Number(currentRow) - 1;

 var testCellId = "cell" + testRow + currentCol;

 var testCell = document.getElementById(testCellId);

 if (cellIsEmpty(testCell)) {

 swapTiles(this, testCell);

 return;

 }

 }

Only check
above if we’re
not on row 1.

The id of the cell
above is “cell,” and
then (currentRow -1),
and then the current
column number.

Number converts text
into a numeric format.

Get the test cell
based on its id...

...and then swap out the current
cell and the empty square.

...see if it’s the empty
square...

The rest of tileClick() is up to you. Refer back to the different

possibilities you have to handle from page 265, and good luck!

If we swapped tiles, we’re done!

JavaScript automatically turns these numbers into strings when they’re added together with another string.

Chapter 6. the document object model Page 39 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

268 Chapter 6

Your job was to build the cellIsEmpty() function, and then complete the clickTile() event
handler. Did you figure everything out? Here’s what we did:

function cellIsEmpty(cell) {

 var image = cell.firstChild;

 if (image.alt == "empty")

 return true;

 else

 return false;

}

function tileClick() {

 if (cellIsEmpty(this)) {

 alert("Please click on a numbered tile.");

 return;

 }

 var currentRow = this. id . charAt(4) ;

 var currentCol = this. id . charAt(5) ;

 // Check above

 if (currentRow > 1) {

 var testRow = Number(currentRow) - 1;

 var testCellId = "cell" + testRow + currentCol;

 var testCell = document.getElementById(testCellId);

 if (cellIsEmpty(testCell)) {

 swapTiles(this, testCell);

 return;

 }

The first child of each
table cell is its .

The empty image has an alt
tag of “empty.”

imgtd
pty.png"

alt="empty"

“this” in tileClick() is the activated object. That’s the clicked-on tile.
Be sure to return if the
empty tile was clicked on.

td
id="cell21"

The id of each table c
ell

gives the row, and then

the column.

did you move them?

Chapter 6. the document object model Page 40 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 269

the document object model

 }

 // Check below

 if (currentRow < 4) {

 var testRow = Number(currentRow) + 1;

 var testCellId = "cell" + testRow + currentCol;

 var testCell = document.getElementById(testCellId);

 if (cellIsEmpty(testCell)) {

 swapTiles(this, testCell);

 return;

 }

 }

 // Check to the left

 if (currentCol > 1) {

 var testCol = Number(currentCol) - 1;

 var testCellId = "cell" + currentRow + testCol;

 var testCell = document.getElementById(testCellId);

 if (cellIsEmpty(testCell)) {

 swapTiles(this, testCell);

 return;

 }

 }

 // Check to the right

 if (currentCol < 4) {

 var testCol = Number(currentCol) + 1;

 var testCellId = "cell" + currentRow + testCol;

 var testCell = document.getElementById(testCellId);

 if (cellIsEmpty(testCell)) {

 swapTiles(this, testCell);

 return;

 }

 }

 // The clicked-on cell is locked

 alert("Please click a tile next to an empty cell.");

}

Each of these cases-below, left, and right-follow the same pattern.

Make sure that we’re not on the bottom row.

Get the cell one row down,
in the same column.

If the target cell is empty, do a swap.

Now we’re looking side-to-
side. Make sure we’re not
in the leftmost column.

Find the cell one column over, in the same row.

See if that cell is empty.
If so, swap and return.

If we got here, the clicked-on
tile isn’t empty, and it’s not next
to an empty square.

Let’s give the user some feedback, so they know what to do.

Chapter 6. the document object model Page 41 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

270 Chapter 6

Q: Wow, that was a lot of code. Am I
supposed to understand all that?

A: It is a lot of code, but if you walk
through things step by step, it should all
make sense to you. There’s not a lot of new
stuff in there, but there’s definitely more
DOM and positioning than you’ve done up to
this point.

Q: And all of this is DOM code?

A: Well, there’s really no such thing as
DOM code. It’s all JavaScript, and lots of it
does use the DOM.

Q: So which parts use the DOM?

A: Anytime you use a property that
moves around the tree, you’re using the
DOM in some form. So firstChild
and previousSibling are
DOM properties. But code that uses
getElementById() is also using
the DOM because that’s a property on the
document object. document is the
top-level object of a browser’s DOM tree.

Q: Is it safe to assume the id of a table
cell has the row and column in it?

A: If you have control of the XHTML, like
we do, it’s safe. Since the Webville Puzzles
company set up their XHTML so that table
cells had those handy ids, we were able to
figure out a cell’s position by its id. If you had
a different setup, you might need to figure
out the cell’s position relative to other cells
and rows.

Q: We could do that with the DOM, too,
right?

A: You bet. You’d probably be
using some sort of counter, as well as
previousSibling to figure out how
many <td>’s over you are. And you’d need
parentNode and similar properties to
see which row you were on.

Q: So this DOM stuff can get pretty
complex, can’t it?

A: It can, very fast. Although lots of times,
you’ll only need to get as complex as we had
to for the Fifteen Puzzle. In fact, with just the
properties you’ve already learned, you’re
halfway to being a DOM master!

Q: Halfway? What’s the other half?

A: So far, we’ve only moved around
nodes in the DOM. In the next chapter, we’ll
look at creating new nodes and adding those
to the tree on the fly.

Q: Back to that code... so the
firstChild of a table cell is always the
image in that cell?

A: That’s the way cellIsEmpty()
is written right now, yes. Can you think of a
case where an image would not be the first
child of a table cell?

Q: If an image isn’t the first child of a
table cell, that screws things up, doesn’t
it?

A: It sure does.

Q: Well, didn’t we do the same thing
in swapTiles(), back on page 254? We
assume the image is the firstChild there,
too, right?

A: Exactly right. So would that
assumption ever be false?

Q: Who’s asking the questions here,
anyway?

A: Maybe we should actually test out the
fifteen puzzle, and see what happens.

The DOM is great
for code that
involves positioning
and moving nodes
around on a page.

the dom lets you move things

Chapter 6. the document object model Page 42 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 271

the document object model

Test Drive
Open your copy of fifteen.js, and add the code for cellIsEmpty() and
tileClick(). Make sure you’ve got initPage() and swapTiles() working,
too. Load things up. Does the puzzle work?

No matter what tile
you click, you get
this alert message.

In Internet Explorer,
you can usually click
one tile before you
get this message.

Here’s the XHTML for each table cell in the fifteen puzzle web page:

Is there any difference between that XHTML and this fragment:

Take a close look at swapTiles() and cellIsEmpty(). Do you see a problem related to the
difference in the two XHTML fragments shown above?

<td id="cell22">

</td>

<td id="cell22"></td>

Chapter 6. the document object model Page 43 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

272 Chapter 6

 <table cellspacing="0" cellpadding="0">
 <tr>
 <td id="cell11">

 </td>
 <td id="cell12">

 </td>
 <td id="cell13">

 </td>
 <td id="cell14">

 </td>
 </tr>
 ... etc ...
 </table>

A DOM tree has nodes for EVERYTHING

in your web page

Most XHTML pages don’t have every element, from the opening

<html> to the closing </html> crammed onto one line. That would

be a real pain to read. Instead, your page is full of spaces, tabs, and

returns (sometimes called “end-of-lines”):

← ←

There are some
inconsistencies in
how browsers treat
whitespace. Never
assume a browser will
always ignore, or always
represent, whitespace.

←
←

←
←

←

←
←

←
←

← ←
←←
←

You’ve got returns, or end-of-lines, to split up the page and make it easier to read.

You also
have spaces
or tabs for
indentation.

Those spaces are nodes, too

Even though those spaces are invisible to you, the browser tries to figure

out what to do with them. Usually they get represented by text nodes in

your DOM tree. So a <table> node might have lots of text nodes full

of spaces in addition to all the <tr> children you’d expect.

The bad news is that not all browsers do things the same way. So

sometimes you get empty text nodes, and sometimes you don’t. It’s

up to you to account for these text nodes, but you can’t assume they’ll

always be there. Sounds a bit confusing, doesn’t it?

what about whitespace?

Chapter 6. the document object model Page 44 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 273

the document object model

#text

One browser might create a DOM tree for your page
that looks like this:

Another browser might create a different
DOM tree for the same XHTML:

img

table

td

imgtd

imgtd

imgtd

tr

This is what we’ve been building code to handle. There’s no whitespace, just table rows and cells, and the images in those cells.

There are spaces
between the <tr>’s
and the <td>’s, and

between the <td>’s

and the ’s, but

those spaces aren’t
represented in this

img

table

td

td

td

tr

#text

#text

#text

img

#text

#text

img

#text

#text

There’s more that goes

on... there are a lot
of

nodes when whitespace

is represented.

There are spaces before the <tr>, so there’s a text node here.

There’s text before and after
an , so each <td> has a
whitespace text node...

...then the actual node...

...and then another
whitespace text node.

Chapter 6. the document object model Page 45 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

274 Chapter 6

The nodeName of a text node is “#text”
A text node always has a nodeName property with a value of “#text.” So you

can find out if a node is a text node by checking its nodeName:

nodeName = "#text"

nodeName = "img"

nodeName = "#text"

#text img

table

td

td

td

tr

#text

#text

#text

img

#text

#text

img

#text

#text

Element nodes have a
nodeName that’s the
same as their tag name.

The nodeName of text

nodes is simply “#text”.

swapTiles() and cellIsEmpty() don’t take whitespace
nodes into account
The problem with our code is that our functions are assuming that the

 in a table cell is the first child of a <td>:

function swapTiles(selectedCell, destinationCell) {

 selectedImage = selectedCell.firstChild;

 destinationImage = destinationCell.firstChild;

 selectedCell.appendChild(destinationImage);

 destinationCell.appendChild(selectedImage);

}

This will only work if the first child is an element.

img

td #text

#textBut what if the first
child of a <td> is a
whitespace text node?

text nodes

Chapter 6. the document object model Page 46 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 275

the document object model

We’ve got to deal with browsers that are creating whitespace
nodes in their DOM trees. See if you can fill in the blanks to fix up
the swapTiles() and cellIsEmpty() functions below:

function swapTiles(selectedCell, destinationCell) {

 selectedImage = selectedCell.firstChild;

 while (selectedImage._______________ == _________) {

 selectedImage = selectedImage._______________;

 }

 destinationImage = destinationCell.firstChild;

 while (destinationImage._______________ == _________) {

 destinationImage = destinationImage._______________;

 }

 selectedCell.appendChild(destinationImage);

 destinationCell.appendChild(selectedImage);

}

function cellIsEmpty(cell) {

 var image = cell.firstChild;

 while (image.___________ == ____________) {

 image = image.______________;

 }

 if (image.alt == "empty")

 return true;

 else

 return false;

}

Q: If the nodeName of a text node is always “#text”, how can
I get the text in that node?

A: Text nodes store the text they represent in a property called
nodeValue. So the nodeValue for a whitespace node would be

"" (an empty value), or possibly " " (two spaces).

Q: Shouldn’t we be checking to see if text nodes have a
nodeValue of whitespace, then?

A: In the table cells in the fifteen puzzle, there’s no need to check
the nodeValue. Since we only care about nodes, we
don’t care about anything else. So we can skip over any node that’s
a text node.

Chapter 6. the document object model Page 47 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

276 Chapter 6

Were you able to figure out how to skip over the whitespace text
nodes in cellIsEmpty() and swapTiles()?

function swapTiles(selectedCell, destinationCell) {

 selectedImage = selectedCell.firstChild;

 while (selectedImage._______________ == _________) {

 selectedImage = selectedImage._______________;

 }

 destinationImage = destinationCell.firstChild;

 while (destinationImage._______________ == _________) {

 destinationImage = destinationImage._______________;

 }

 selectedCell.appendChild(destinationImage);

 destinationCell.appendChild(selectedImage);

}

function cellIsEmpty(cell) {

 var image = cell.firstChild;

 while (image.___________ == ____________) {

 image = image.______________;

 }

 if (image.alt == "empty")

 return true;

 else

 return false;

}

nodeName

nodeName

nodeName

"#text"

"#text"

"#text"

nextSibling

nextSibling

nextSibling

All three of these cases use the same
basic pattern: as long as the current
node is text, go to the next node.

We can find out if we’ve got a text node by comparing the nodeName to “#text”.

If we’ve got a text node, move
to the next sibling and try again.

Make sure you’ve got open-quote,
then the # symbol, then text,
then close quote.

Check for a text node, and use D
OM

methods to move to the next node if

we’ve got text.

skip text nodes (sometimes)

Chapter 6. the document object model Page 48 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 277

the document object model

Test Drive
Update your versions of swapTiles() and cellIsEmpty(). Try the puzzle
again... you should be able to move tiles around without a problem.

Now the tiles work.
Whitespace or not, browsers
get to the image, and skip
over whitespace nodes.

Try this out in se
veral

browsers... it should w
ork in

all of them.

Chapter 6. the document object model Page 49 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

278 Chapter 6

Did I win? Did I win?
All that’s left is to figure out when a player’s won. Then, every time two tiles are

swapped, we can check this function to see if the board is in order. If it is, the

player’s solved the puzzle.

Here’s a puzzleIsComplete() function that uses the names of each image

to see if all the tiles are in order:

function puzzleIsComplete() {

 var tiles = document.getElementById("puzzleGrid").getElementsByTagName("img");

 var tileOrder = "";

 for (var i=0; i<tiles.length; i++) {

 var num = tiles[i].src.substr(-6,2);

 if (num != "ty")

 tileOrder += num;

 }

 if (tileOrder == "010203040506070809101112131415")

 return true;

 return false;

}

First, we get all the tags in the grid.

We iterate over each tile image. If you go back 6 characters from the end of the src of the image, you’ll be at the image name: 02.png or empty.png.

We don’t care about the empty image... we ignore it. Since the two characters returned by substr() for the empty image are “ty”, check for that and ignore it.

We want just the numeric part, so that’s 2
from -6 characters back.

If it’s not the empty image, add the number (as a string) to our hash string.

If the numbers are in order, the puzzle’s complete.

Q: substr(-6, 2)? I don’t get it.

A: A negative number means start at the
end of the string, and count back. Since “02.
png” is 6 characters, we want to go back
from the end of the string by 6 characters.
Then, we want 2 characters of that
substring, so we get “02” or “15.” So you use
substr(-6,2).

Q: What in the world is that weird
number you’re comparing the hash string
to?

A: It’s just every number in the puzzle, in
order: 01, then 02, then 03, and so on, all
the way to 15. Since the hash represents the
orders of the tiles, we’re comparing them to
a string that represents the tiles in order.

Q: But what about the empty tile?

A: It doesn’t matter where the empty
tile is as long as the numbers are in order.
That’s why we drop the empty tile from being
part of the hash string.

winning is the only thing

Chapter 6. the document object model Page 50 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 279

the document object model

But seriously... did I win?
There’s even a special class that Webville Puzzles put in their CSS

for showing a winning animation. The class is called “win,” and

when the puzzle is solved, you can set the <div> with an id of

“puzzleGrid” to use this class and display the animation.

That means we just need to check if the puzzle is solved every time

we swap tiles.

function swapTiles(selectedCell, destinationCell) {

 selectedImage = selectedCell.firstChild;

 while (selectedImage.nodeName == "#text") {

 selectedImage = selectedImage.nextSibling;

 }

 destinationImage = destinationCell.firstChild;

 while (destinationImage.nodeName == "#text") {

 destinationImage = destinationImage.nextSibling;

 }

 selectedCell.appendChild(destinationImage);

 destinationCell.appendChild(selectedImage);

 if (puzzleIsComplete()) {
 document.getElementById(“puzzleGrid”).className = “win”;
 }
}

Every time we swap tiles, we need to

see if the new arrangement makes the

puzzle complete.

If the puzzle’s solved, change the CSS class for the puzzleGrid <div>.

Test Drive
You need to add the puzzleIsComplete() function to your JavaScript,
and update swapTiles(). Then, try everything out. But you’ve got to
solve the puzzle to see the winning animation...

 ...good luck!

Chapter 6. the document object model Page 51 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

280 Chapter 6

The DOM is just a tool, and you won’t
use it all the time... or sometimes, all
that much.
You’ll rarely write an application that is mostly

DOM-related code. But when you’re writing your

JavaScript, and you really need that next table cell, or

the containing element of an image, then the DOM

is the perfect tool.

And, even more importantly, without the DOM,

there’s really no way to get around a page, especially

if every element on your page doesn’t have an id
attribute. The DOM is just one more tool you can

use to take control of your web pages.

In the next chapter, you’re going to see how the

DOM lets you do more than just move things

around... it lets you create elements and text on the

fly, and put them anywhere on the page you want.

The DOM is a great
tool for getting
around within a
web page.
It also makes it easy
to find elements
that DON’T have
an id attribute.

the dom is a tool

Chapter 6. the document object model Page 52 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 281

the document object model

This method returns a specific element based on its ID

This property returns all the children of an element

This element property represents the element’s container

The browser translates this into an element tree

This is what the browser creates for you

This element gives you access to the whole tree

DOMAcrostic
Take some time to sit back and give your right brain something to do.

secret message.

987654321

25242322212019181716

1514131210

292826 27

373635343332

3130

5251504948474645

49 27 33 51 2045 22 752 17 825 41 35 28

13 26 33 25 10 2 344839

32 27 1 4313 46 30 34

403938 434241 44

Chapter 6. the document object model Page 53 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

282 Chapter 6

This method returns a specific element based on its ID

This property returns all the children of an element

This element property represents the element’s container

The browser translates this into an element tree

This is what the browser creates for you

This element gives you access to the whole tree

G E T E L E M N
98

E
7654321

T B Y

C H I L D

I D

N O D E S
25242322212019181716

1514131210

M A R K
292826

U
27

P

P A R E N

D

T

O M
4039

37

38

3635343332

3130

T R E
434241

E

D O C U M E N T
5251504948474645

44

M
49

A
27

S
25

T
41

E
35

R
28

T
52

H
17 8

E D
45

O
22

M
7

A
33

N
51

D
20

Y
13

U
48

O
39

M
26

A
33

S
25

T
10

E
2

R
34

Y
13

O
46

U
30

R
34

P
32

A
27

G
1

E
43

DOMAcrostic
Your job was to answer the questions up top, and then use the answer letters to

This property is an array of nodes.

A node that has children
“contains” those children.

The document object contains everything else in the DOM tree.

exercise solution

Chapter 6. the document object model Page 54 Return to Table of Contents

Chapter 6. the document object model
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Table of Contents

Chapter 7. manipulating the DOM... 1
Section 7.1. Webville Puzzles... the franchise... 2
Section 7.2. Woggle doesn't use table cells for the tiles... 6
Section 7.3. The tiles in the XHTML are CSS-positioned... 7
Section 7.4. "We don't want TOTALLY random letters..."... 9
Section 7.5. Our presentation is ALL in our CSS... 11
Section 7.6. We need a new event handler for handling tile clicks... 13
Section 7.7. Start building the event handler for each tile click... 14
Section 7.8. We can assign an event handler in our randomizeTiles() function.. 14
Section 7.9. Property values are just strings in JavaScript... 15
Section 7.10. We need to add content AND structure to the "currentWord"<div>... 18
Section 7.11. Use the DOM to change a page's structure.. 18
Section 7.12. Use createElement() to create a DOM element... 19
Section 7.13. You have to TELL the browser where to put any new DOM nodes you create.. 20
Section 7.14. We need to disable each tile. That means changing the tile's CSS class.. 28
Section 7.15. ...AND turning OFF the addLetter() event handler.. 28
Section 7.16. Submitting a word is just (another) request... 30
Section 7.17. Our JavaScript doesn't care how the server figures out its response to our request... 30
Section 7.18. Usability check: WHEN can submitWord() get called?.. 35

Chapter 7. manipulating the DOM

Chapter 7. manipulating the DOM
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

this is a new chapter 283

manipulating the DOM7

My wish is your command

Sometimes you just need a little mind control.

taking control of a DOM tree

you add

a new element remove an element

banish that

troublesome innerHTML property

without

Sometimes you just need a little mind control.

taking control of a DOM tree

you add

a new element remove an element

banish that

troublesome innerHTML property

without

DOM

not

not

Chapter 7. manipulating the DOM Page 1 Return to Table of Contents

Chapter 7. manipulating the DOM
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

284 Chapter 7

Webville Puzzles... the franchise
All the cool kids have been playing the Fifteen Puzzle you developed for Webville

Puzzles. The company’s been making so much on subscription fees that they want

a new puzzle... and they’ve come to you to build the interactivity.

This time, the company wants something a little more educational: Woggle, an

online word generation game. They’ve already built the XHTML, and even know

exactly how they want the puzzle to work.

Here’s the initial Woggle page:

The game starts out by
creating a 4-by-4 grid of
letters. The letters should
be random each time.

Players can click letters to “build” words in this word pane.

Players can
submit the
word to see
if it’s valid...

...and get a score
for the word: 1
point for vowels,
2 points for
consonants.

A tile can only be used a single time
in each word. Once the tile’s used, it
shouldn’t be selectable until a new
word is started.

Used words get
added to this box.

webville puzzles

Chapter 7. manipulating the DOM Page 2 Return to Table of Contents

Chapter 7. manipulating the DOM
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 285

manipulating the dom

There’s a lot to build to get Woggle working, and of course the company wants their new app
working immediately. Before you dig into the XHTML and CSS, think about what tasks are involved,
and what JavaScript each one will need.Try and list each basic task for which you’ll need to write
code, and then make notes about what tools and techniques you might use for that task.

Task 1:
 Notes:

Task 2:
 Notes:

Task 3:
 Notes:

Task 4:
 Notes:

Task 5:
 Notes:

Chapter 7. manipulating the DOM Page 3 Return to Table of Contents

Chapter 7. manipulating the DOM
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

286 Chapter 7

Your job was to figure out the basic tasks we’d need to take care of to get Woggle working.
Here’s what we came up with. You might have some differences in your details, but make
sure you got these same core ideas down in some form or fashion.

Task 1: Set up the game board with random tiles

 Notes: We need a way to come up with a random set of letters.

 Then we’ve got to display the right image for each letter on the

 4x4 game board. This probably should all be done in an initPage()

 type of function.

Each
board
should be
different.

We can name these images something related to the letter they represent... so when we know what letter we want, we can display the right image.

woggle.js

initPage()

randomizeTiles()

As usual, we’ll need
an initPage() to set
up event handlers
and the basic page.

Let’s build
a function,
randomizeTiles(),
to handle creating
the tile grid.

Task 2: Clicking on a tile adds the letter to the current word.

 Notes: We need an event handler on each tile. The handler

 should figure out what letter was clicked, and add it to the “current

 word” box over on the right. Then the tile that was clicked should

 be disabled in the grid.

Clicking a letter
does two things:

1. The letter
gets added to
the “current
word” box.

2. The letter is
disabled in the grid.

woggle.js

tPage()g ()
les()

g ()

addLetter()

We’ll need an event
handler. Let’s call
it addLetter().

four tasks

Chapter 7. manipulating the DOM Page 4 Return to Table of Contents

Chapter 7. manipulating the DOM
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 287

manipulating the dom

Task 3: Users can submit words to the server.

 Notes: When a user clicks “Submit Word,” the current word

 is sent to the server-side program. We’ll also need to register

 a callback to deal with the server’s response.

woggle.js

itPage()g ()
les()

g ()

submitWord()

submitWord() can set
up and send a server-
side program request.

onreadystatechange =
updateScore;

request
word = userWord;

We can create a request, and
 pass the

server the current word and a callback

to run when the server responds.

Task 4: Update the score using the server’s response.

 Notes: When the server responds, we’ve got to update the score,

 and add a valid word to the “used words” box. We’ve also got to

 remove the word from the “current word” box and enable the

 tiles again.

woggle.js

itPage()g ()
les()

g ()

updateScore()

One more function...
our callback.

Valid words get
added to this box...

...and the score gets updated
with each valid word.

Each time
a word’s
accepted, all
the tiles are
enabled for
a new word.

Chapter 7. manipulating the DOM Page 5 Return to Table of Contents

Chapter 7. manipulating the DOM
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

288 Chapter 7

Woggle doesn’t use table cells for the tiles
Now that we’ve got a plan, let’s look at the XHTML for the Woggle game. The

designers at Woggle have heard some bad things about tables, so the page is structured a

bit differently. Each tile is represented by an <a> element this time, instead of being in a

table cell. Better for them, but that might mean a little more work for us.

Here’s what the XHTML looks like:

<html>
<head>
 <title>Webville Puzzles</title>
 <link rel="stylesheet" href="css/puzzle.css" type="text/css" />

 </head>
<body>
 <div id="background">
 <h1 id="logotype">Webville Puzzles</h1>
 <div id="letterbox">

 </div>
 <div id="currentWord"></div>
 <div id="submit">Submit Word</div>
 <div id="wordListBg">
 <div id="wordList"></div>
 </div>
 <div id="score">Score: 0</div>
 </div>
</body>
</html>

<html>
<script src=”...
js” />
<img
src=”siteLogo.
png” />
</html>

woggle-puzzle.html

You should go ahead and add
these script references. We’ll
use utils.js for creating a
request object...

...and woggle.js is the script we’ll build for our puzzle-specific functions.

Each set of 4 <a>’s
represents one row in the
puzzle grid.

Here’s where the current
word will go...

...and the “Submit Word”
button will go here.

There’s a place for words already used...

...and finally, the score.

css positioning

Chapter 7. manipulating the DOM Page 6 Return to Table of Contents

Chapter 7. manipulating the DOM
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 289

manipulating the dom

The tiles in the XHTML are CSS-positioned
Instead of putting the tiles inside of a table, each <a> element that represents

a tile is given a general class (“tile”) and then a specific class, indicating where

on the board it is (for example, “t21”):

“tile” is a general CSS class
that applies to all tiles in
the grid.

This is for the specific tile. 2 is the row, and 1 is the
column. So this is the first
column in the second row.

The CSS then uses both the general “tile” class

and the specific tile class (“t21”, “t42”, etc.) to style

and position the tiles.

/* tile defaults */
#letterbox a.tile {
 background: url('../images/tiles.png') 120px 80px no-repeat;
 height: 80px;
 position: absolute;
 width: 80px;
}

/* tile positioning */
#letterbox a.t11 { top: 3px; left: 3px; }
#letterbox a.t12 { top: 3px; left: 93px; }
#letterbox a.t13 { top: 3px; left: 183px; }
#letterbox a.t14 { top: 3px; left: 273px; }
... etc ...

#letterbox
{
}
a.tile {
}

puzzle.css

This CSS sets the position
for each individual <a> that represents a tile.

There’s an entry in the CSS
for each tile... 16 in all.

This CSS class applies to all tiles,

so each element with a “tile” class

gets these properties.

Download the XHTML and CSS for Woggle.

Visit www.headfirstlabs.com, and find the

chapter07 folder. You’ll see the XHTML and CSS for

Woggle. You should add the <script> tags to woggle-
puzzle.html, and get ready to dig into some code.

Chapter 7. manipulating the DOM Page 7 Return to Table of Contents

Chapter 7. manipulating the DOM
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

290 Chapter 7

Q: CSS-positioned? I’m not sure I
know what that means.

A: CSS-positioned just means that
instead of relying on the structure of your
XHTML to position something on a page,
CSS is used instead. So if you want to
CSS-position an <a> element, you give
that element a class or id, and then in
your CSS, set its left, right, top,
and/or bottom properties, or use the
position and float CSS attributes.

Q: Is that better than using tables?

A: A lot of people think so, especially web
designers. By using CSS, you’re relying
on your CSS to handle presentation and
positioning, rather than the way cells in a
table line up. That’s a more flexible approach
to getting your page to look like you want.

Q: So which should I use? Tables or
CSS-positioning?

A: Well, you really can’t go wrong with
CSS-positioning, because it’s the easiest
approach to getting things to look the same
across browsers.
But more importantly, you should be able
to write code that works with tables or CSS
positioning. You can’t always control the
pages you write code for, so you need to be
able to work with lots of different structures
and types of pages.

Q: I don’t understand how the CSS
positioning actually worked, though. Can
you explain that again?

A: Sure. Each tile is represented by
an <a> in the XHTML. And each <a>
has a class attribute, and actually has
two classes: the general class, “tile,” and
a specific class representing that tile, like

“t32.” So the class for the tile on the third row,
second column would be “tile t32.”
Then, in the CSS, there are two selectors
applied to each tile: the general rule, “tile,”
and the specific selector for a tile, like “t32.”
So you have selectors like a.tile, and
a.t32. Both of those selectors get applied
to a tile with a class of “tile t32.”
The general rule handles common properties
for all tiles, like height and width and look.
The specific selector handles that tile’s
position on the page.

Q: Why are <a>’s used for the tiles?
They’re not links, right?

A: No, not really. That’s just what Webville
Puzzles used (maybe they’ve been checking
out the tabs on Marcy’s yoga site). It really
doesn’t matter what you use, as long as
there’s one element per tile, and you can
position that element in the CSS.
There are a few considerations that using
an <a> brings up for our event handlers,
though, and we’ll look at those a bit later.

Q: I don’t see a button for “Submit
Word.” There’s just a <div>. What gives?

A: You don’t have to have an actual form
button to make something look like a button.
In this case, the Webville Puzzle designers
are using a <div> with a background
image that looks like a button for the “Submit
Word” button. As long as we attach an event
handler to that <div> to capture clicks, we
can treat it like a button in our code, too.

You should be
able to write
code to work with
ALL TYPES of
pages... even if the
structure of those
pages isn’t how
YOU would have
done things.

be flexible

Chapter 7. manipulating the DOM Page 8 Return to Table of Contents

Chapter 7. manipulating the DOM
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 291

manipulating the domUpdate scoreSubmit wordHandle tile clicksSet up board

Here are the tasks from page 286. First,
we need to set up the board.

Let’s get started. First, you need to build an
initPage() and randomizeTiles() function. Here’s
what you know:

1. There’s a class for each lettered tile in puzzle.
css. The class for tile “a,” for example, is called

“la” (the letter “l” for letter, plus the letter the tile
represents).

2. Webville Puzzles has faxed you a letter
frequency table. There are 100 entries, with
each letter represented the number of times
out of 100 it typically appears. You need
to represent that table as an array in your
JavaScript. There should be 100 entries, where
each entry is a single letter.

3. Randomly choosing a letter from the
frequency table is like choosing a letter based
on the frequency in which it appears in a word.

4. Math.floor(Math.random()*2000) will return a
random number between 0 and 1999.

5. You’ll need to use getElementById() and
getElementsByTagName() each at least once.

Try to complete both initPage() and
randomizeTiles() before you turn the page.
Good luck!

“We don’t want TOTALLY random letters...”
The guys in the puzzle labs at Webville Puzzles just called. They’ve decided

they don’t want totally random letters for the board after all. Instead, they want

letters to appear according to a letter frequency chart they’re faxing over... that

way, common letters like “e” and “t” show up in the grid a lot more often than

uncommon ones like “z” and “w.”

Letter # of times appears out of 100

a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z

8
1
3
3
12
2
2
6
7
1
1
4
2
6
8
2
6
6
8
3
2
2
1
1
2
1

Thanks,

Webville Puzzle
s

Here’s what the guys faxed over to you.

Given 100 random
letters from
actual English
words, “e” appears
about 12 times.

Chapter 7. manipulating the DOM Page 9 Return to Table of Contents

Chapter 7. manipulating the DOM
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

292 Chapter 7

Your job was to use the information on page 291 to write code for
initPage() and randomizeTiles(). You also may have come up with
some other JavaScript outside of those functions... how did you do?

window.onload = initPage;

var frequencyTable = new Array(
 "a", "a", "a", "a", "a", "a", "a", "a", "b", "c", "c", "c", "d", "d", "d",
 "e", "e", "e", "e", "e", "e", "e", "e", "e", "e", "e", "e", "f", "f", "g",
 "g", "h", "h", "h", "h", "h", "h", "i", "i", "i", "i", "i", "i", "i", "j",
 "k", "l", "l", "l", "l", "m", "m", "n", "n", "n", "n", "n", "n", "o", "o",
 "o", "o", "o", "o", "o", "o", "p", "p", "q", "q", "q", "q", "q", "q", "r",
 "r", "r", "r", "r", "r", "s", "s", "s", "s", "s", "s", "s", "s", "t", "t",
 "t", "u", "u", "v", "v", "w", "x", "y", "z");

function initPage() {
 randomizeTiles();
}

function randomizeTiles() {

 var tiles = document.getElementById("letterbox").getElementsByTagName("a");

 for (i = 0; i < tiles.length; i++) {

 var index = Math.floor(Math.random() * 100);

 var letter = frequencyTable[index];

 tiles[i].className = tiles[i].className + ' l' + letter;
 }
}

Did you remember this line? We’ve got to
call initPage() to get anything working.

Here’s how we represented the letter frequency table. Each
letter appears in the array the number of times out of 100
it shows up in the frequency table Webville Puzzles faxed us.

We made this a global variable. A
ny function in our

JavaScript can use this table
 now.

All initPage() does right
now is call randomizeTiles()
to set up the puzzle grid.

First, we grab all the <a> elements in the letterbox <div>.

For each tile, we get a random
index between 0 and 99...

...and choose a letter from the letter frequency table.

Next, we change the class name of the tile. To
do this, keep the existing class name...

...and then add “l” plus the letter chosen, like “la” for letter a, or “lw” for letter w.

Update scoreSubmit wordHandle tile clicksSet up board

woggle.js

function
initPage {
 ...
}

Put this
JavaScript into a
new file, woggle.js.

We separate each class
name with a space.

set up the board

Chapter 7. manipulating the DOM Page 10 Return to Table of Contents

Chapter 7. manipulating the DOM
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 293

manipulating the dom

Our presentation is ALL in our CSS
By using class names instead of directly inserting ’s into the XHTML,

we’ve kept our JavaScript behavior totally separate from the presentation,

content, and structure of the page. So suppose that for the tile in the second

row, first column, the random index returned by Math.floor(Math.
random() * 100) was 4.

The fifth entry in frequencyTable is “a”, so that tile should be an “a.” But

instead of having our code insert the “a” image directly, and deal with image

URLs, it just adds to the class of that tile:

This part was already in the page’s XHTML for the tile.

This part gets added by
randomizeTiles().

Now we use the CSS to say how that letter is displayed:

/* tile letters */
#letterbox a.la { background-position: 0px 0px; }
#letterbox a.lb { background-position: -80px 0px; }
#letterbox a.lc { background-position: -160px 0px; }
#letterbox a.ld { background-position: -240px 0px; }
#letterbox a.le { background-position: -320px 0px; }
... etc ...

#letterbox
{
}
a.tile {
}

puzzle.css

Now the designers have options
Since all the presentation is in the CSS, the designers of the page can do

whatever they want to show the tiles. They might use a different background

image for each letter. In the case of Woggle, though, the designers have

used a single image for all tiles, tiles.png. tiles.png, It actually has

every lettered tile in it, each in just the right size. That image is set as the

background image in the selector for the a.tile class.

Then, in each letter-specific class, like a.la or a.lw, they’ve adjusted

the position of the image so the right portion of that single image displays.

Depending on the position, you get a different letter. And the designers can

change the CSS anytime they want a new look... all without touching
your code.

This is how we handled the “In
Progress” and “Denied” image
back in Chapter 5.

You can check out the CSS selector
for a.tile back on page 289.

Array indices are zero-based, so index “4” points to the 5th item (a, a, a, a, a).

5th item

Chapter 7. manipulating the DOM Page 11 Return to Table of Contents

Chapter 7. manipulating the DOM
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

294 Chapter 7

Update scoreSubmit wordHandle tile clicksSet up board

Test Drive
Try out your early version of Woggle.
Download the samples files, and make sure you’ve added a reference to

woggle.js in your version of woggle-puzzle.html. Then, load

the Woggle main page in your browser... and load it again... and again...

Each time you reload,

you get a new set of

letters to work with.

These look right: lots of N’s and H’s, not so many Q’s and Y’s.

test drive

Chapter 7. manipulating the DOM Page 12 Return to Table of Contents

Chapter 7. manipulating the DOM
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 295

manipulating the dom

We need a new event handler for
handling tile clicks
Next up, we need to assign an event handler to the tiles on the grid. The

handler needs to do several things:

Figure out which letter was clicked.
All our handler will know about is the <a> element on the page that

was clicked. From that, we’ve got to figure out which letter is shown on

the tile that the clicked-upon <a> represents.

11

Add a letter to the current word box.
Once we know what letter was selected, we’ve got to add that letter to

the current word box in the “currentWord” <div>.

22

Update scoreSubmit wordSet up board Handle tile clicks

Disable the clicked-on letter.
We’ve also got to keep the tile that was clicked from being clicked again.

So we need to disable the letter. There’s a CSS class for that, called

“disabled,” that works with the “tile,” “t23,” and “lw” classes already on

each title.

33

This class handles
formatting for all tiles.

This class represents
the position of the tile.

This class represents
the letter that’s shown.

There are actually a couple of things
missing from the list above... can you
figure out what they are?

Chapter 7. manipulating the DOM Page 13 Return to Table of Contents

Chapter 7. manipulating the DOM
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

296 Chapter 7

function addLetter() {
 // Figure out which letter was clicked

 // Add a letter to the current word box

 // Disable the clicked-on letter
}

Update scoreSubmit wordSet up board Handle tile clicks

We can assign an event handler in

our randomizeTiles() function

Now let’s go ahead and hook up our handler to each tile. We’re

already iterating over all the tiles in randomizeTiles(), so

that seems like a good place to assign our event handler:

Start building the event handler for

each tile click

The best way to write a big chunk of code is to take things one

step at a time. First, let’s build a skeleton for our handler. That’s

just a function block with a name, so we can hook everything up

and test out code as we go.

Add this function to woggle.js: We’ll fill in each piece of
this function as we go.

The best way
to write a large
piece of code is
to take things one
step at a time.

Get each piece
of code working
BEFORE moving
on to the next
piece of code.

woggle.js

function
initPage {
 ...
}

woggle.js

function
initPage {
 ...
}

function randomizeTiles() {
 var tiles = document.getElementById("letterbox")
 .getElementsByTagName("a");
 for (i = 0; i < tiles.length; i++) {
 var index = Math.floor(Math.random() * 100);
 var letter = frequencyTable[index];
 tiles[i].className = tiles[i].className +
 ' l' + letter;
 tiles[i].onclick = addLetter;
 }
}

Now we can start testing our event
handler as we write it.

a little random chaos

Chapter 7. manipulating the DOM Page 14 Return to Table of Contents

Chapter 7. manipulating the DOM
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 297

manipulating the dom

Property values are just strings in JavaScript
So far, we’ve mostly used the className property of an object to change a CSS

class. For Woggle, we actually added classes to that property... but what if we want

to read that value? Suppose the second tile on the third row represents the letter “b.”

That tile would have a className value that looks like this:

Third row
Second column

Letter “b”

So we’ve got a className property that has the letter of the

tile that’s represented... how can we get to that letter? Fortunately,

JavaScript has a lot of useful string-handling utility functions:

substring(startIndex, endIndex) returns a

string from startIndex to endIndex, based on

an existing string value.substring
var foo = "foolish".substring(0,3);
var is = "foolish".substring(4,6);

foo has the value “foo.”

is has the value “is.”

split(splitChar) splits a string into pieces
separated by splitChar. The pieces are
returned in an array.

split
var pieces = "Decide,Commit,Succeed".split(",");alert(pieces[2] + "," + pieces[1] + "," + pieces[0]);

This will output “Succeed,Commit,Decide.”

What code would you write to get the letter represented by
the clicked-on tile?

Chapter 7. manipulating the DOM Page 15 Return to Table of Contents

Chapter 7. manipulating the DOM
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

298 Chapter 7

What code would you write to get the letter represented
by the clicked-on tile?

var tileClasses = this.className.split(" ");

var letterClass = tileClasses[2];
var tileLetter = letterClass.substring(1, 2);

Split the classes from each other
using the space character.

The letter class is the third class, so that’s index 2 using a zero-based index.

We want a single character (length of
1), starting at index 2 in letterClass. So
that’s letterClass.substring(1, 2).

Here’s a typical tile element.
tile lb

lb

b
Here’s what
we want!

Update scoreSubmit wordSet up board Handle tile clicks

Test Drive
Test out your letter recognition.
Add the code above to your addLetter() function, and also add an

alert() statement to display the value of tileLetter at the end of

the function. Then reload Woggle and see if everything’s working...

Clicking a tile should trigger addLetter(), which figures out which letter was clicked.

[0] [1]

manipulate those strings

Chapter 7. manipulating the DOM Page 16 Return to Table of Contents

Chapter 7. manipulating the DOM
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 299

manipulating the dom

Now you’ve got to take the clicked-on letter, and add it into the currentWord <div>. How would
you do that? Oh, and by the way... you can’t use the innerHTML property on this one!

innerHTML forces you to mix XHTML
syntax into your script... and offers you
no protection from silly typos, either.
Anytime you set the innerHTML property on an

element, you’re directly inputting XHTML into a page.

For example, in Marcy’s yoga page, here’s where we

inserted XHTML directly into a <div> with JavaScript:

But that <h3> is XHTML. Anytime you directly type

XHTML into your code, you’re introducing all sorts

of potential for typos and little mistakes (like forgetting

a closing tag for a <p>). In addition to that, different

browsers sometimes treat innerHTML in different ways.

If at all possible, you should never change content or

presentation directly from your code. Instead, rely on

CSS classes to change presentation, and ... what can

you use from your code to change structure without
introducing typos or misplaced end tags? Figure out the

answer to that, and you’re well on your way to a solution

for the exercise above.

Chapter 7. manipulating the DOM Page 17 Return to Table of Contents

Chapter 7. manipulating the DOM
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

300 Chapter 7

#text

Use the DOM to change a page’s structure
You already know that using code like this isn’t that great of an idea:

We need to add content AND structure to
the “currentWord” div
When a player clicks on a letter, that letter should be added to the current

word. Right now, we’ve got a <div> with an id of “currentWord,” but

nothing in that <div>:

<div id="currentWord"></div>

So what do we need? Well, we’ve got to insert text in that <div>, but

text doesn’t usually go directly inside a <div>. Text belongs in a textual

element, like a <p>. So what we really want is something more like this:

<div id="currentWord">
 <p>Current Word</p>
</div>

But there’s a way to work with the structure of a page without using

innerHTML: the DOM. You’ve already used the DOM to get around

on a page, but you can use the DOM to change a page, too.

From the browser’s point of view, here’s the part of the DOM tree

representing the currentWord <div>:

var currentWordDiv = getElementById("currentWord");
currentWordDiv.innerHTML = "<p>" + tileLetter + "</p>";

Besides this being a hotbed for typos, what do you do afterward to get the existing current word and append to it?

p

div id="currentWord"

We need to create something that looks more like this:

div id="currentWord"

The DOM sees the <div> as

an element node named div

with an id attribute having

a value of “currentWord.”

We need to add a new <p>
element as a child of the <div>...

...and a new text node where

we can add letters as the user

clicks on tiles.

Update scoreSubmit wordSet up board Handle tile clickscontent and structure

Chapter 7. manipulating the DOM Page 18 Return to Table of Contents

Chapter 7. manipulating the DOM
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 301

manipulating the dom

Use createElement() to create a DOM element
Remember the document object? We’re going to use it again. You can call
document.createElement() to create a new element. Just give the
createElement() method the name of the element to create, like “p” or “img”:

element document
createElement() creates
and returns an object
that represents the DOM
element you asked for.

createElement() is a method of the document object.
You pass the name of the
element to the method.

The string is case insensitive. You can use “p” or “P.”

The createElement() method is part of the document element, which
contains everything else in the browser’s DOM tree. Where do you
think the new element is added in the DOM tree?

It’s a child of the document element at the
top of the DOM tree.

It’s a leaf node at the bottom of the DOM tree.

Nowhere. The new element doesn’t become
part of the tree.

document

element

document

element

document element

= . createElement (" p ") ;

Leave off the angle brackets.
It’s “p”, not “<p>.”

Chapter 7. manipulating the DOM Page 19 Return to Table of Contents

Chapter 7. manipulating the DOM
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

302 Chapter 7

The createElement() method is part of the document element, which
contains everything else in the browser’s DOM tree. Where do you
think the new element is added in the DOM tree?

It’s a child of the document element at the
top of the DOM tree.

It’s a leaf node at the bottom of the DOM tree.

Nowhere. The new element doesn’t become
part of the tree.

document

element

document

element

document element

You have to TELL the browser where to
put any new DOM nodes you create
Web browsers are good at following directions, but they’re not so great at

figuring things out on their own. When you create a new node, the browser

has no idea where that node should go. So it just holds on to it until you

tell the browser where the node goes.

That works out pretty well, too, because you already know how to add a

new child node to an element: with appendChild(). So we can create a

new element, and then append it to an existing element as a new child:

var currentWordDiv = getElementById("currentWord");
var p = document.createElement("p");
currentWordDiv.appendChild(p);

This gets the <div> we’ll want

to use as a parent.

Then we create a new
<p> element.

Finally, we add the <p>
as a child of the <div>.

where do these nodes go?

Chapter 7. manipulating the DOM Page 20 Return to Table of Contents

Chapter 7. manipulating the DOM
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 303

manipulating the domUpdate scoreSubmit wordSet up board Handle tile clicks

You can create elements, text,
attributes, and a lot more.
The document object has all sorts of helpful

create methods. You can createElement(),

createTextNode(), createAttribute(),

and a lot more.

Each method returns a new node, and you can

insert that node anywhere into your DOM tree you

want. Just remember, until you insert the node into

the DOM tree, it won’t appear on your page.

See if you can complete the code for adding a letter to the currentWord <div>. Add your code
into the addLetter() event handler, and try things out. Does everything work like you expected?

document= . (" Hello! ") ;

att document= . createAttribute (" id ");," "

All the create methods
return a new node. createTextNode() takes the text for the new node as its single argument.

An attribute node belongs on an
element... that’s up to you to take
care of, though.

createAttribute() takes an attribute name and value as arguments.

Chapter 7. manipulating the DOM Page 21 Return to Table of Contents

Chapter 7. manipulating the DOM
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

304 Chapter 7

Your job was to finish up adding letters to the currentWord <div>. Were you able to
finish the code up? Were there any problems?

woggle.js

function
initPage {
 ...
}

function addLetter() {
 var tileClasses = this.className.split(" ");
 var letterClass = tileClasses[2];
 var tileLetter = letterClass.substring(1,2);

 var currentWordDiv = document.getElementById("currentWord");
 var p = document.createElement("p");
 currentWordDiv.appendChild(p);

}

Get the right <div>...

...create and add
a <p>...

...and then create and add the letter to that <p>.

But it only works the first time!
Click a letter, and it appears in
the currentWord box.

But click a second letter, and nothing shows up. What gives?

Update scoreSubmit wordSet up board Handle tile clickstwice is not nice

Chapter 7. manipulating the DOM Page 22 Return to Table of Contents

Chapter 7. manipulating the DOM
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 305

manipulating the dom

Q: When I call appendChild(), where
exactly is the node I pass into that
method added?

A: appendChild() adds a node as
the last child of the parent element.

Q: What if I don’t want the new node
to be the last child?

A: You can use the
insertBefore() method. You pass
insertBefore() two nodes: the
node to add, and an existing node that the
new node should precede.

Q: Didn’t we use appendChild() to
move elements in the last chapter?

A: We sure did. Whatever node is
passed to appendChild(), or
insertBefore(), is added as
a new child node to the parent you call
appendChild() on. The browser
moves the node if it’s already in the DOM
tree, or adds the node into the DOM tree if
it’s not part of the tree already.

Q: What happens when you append or
insert a node that already has children of
its own?

A: The browser inserts the element you
insert and all of its children into the DOM
tree. So when you move a node, you’re
moving that node and everything underneath
that node in the DOM tree.

Q: Can you just remove a node from a
DOM tree?

A: Yes, you can use the
removeNode() methods to remove a
node completely from a DOM tree.

DOM Magnets
Let’s try and figure out what’s going on with Woggle and our
addLetter() event handler. Use the DOM magnets below to build the
DOM tree under the currentWord <div> for:

div id="currentWord"

p

p

p
p

p

p

#text

#text

#text

#text

#text

...the first time
addLetter() is called:

...the second time
addLetter() is called:

...the third time
addLetter() is called:

div id="currentWord" div id="currentWord"

#text

You can use each of t
hese

magnets as many times as

you’d like.

Chapter 7. manipulating the DOM Page 23 Return to Table of Contents

Chapter 7. manipulating the DOM
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

306 Chapter 7

DOM Magnet Solutions
Let’s try and figure out what’s going on with Woggle and our
addLetter() event handler. Use the DOM magnets below to build the
DOM tree under the currentWord <div> for:

id="currentWord"

...the first time
addLetter() is called:

...the second time
addLetter() is called:

...the third time
addLetter() is called:

id="currentWord" id="currentWord"

p

#text

div

p

#text

div

p

#text

p

#text

p

#text

div

p

#text

Some nodes have a nodeName, others have
a nodeValue, and still others have both.
The first time addLetter() gets called, we create a new

text node. But on future calls, we need addLetter() to

change the text in that node. We can do that using the text

node’s nodeValue property.

Every DOM node has two basic properties: nodeName and

nodeValue. For an element, the nodeName is the name

of the element. For an attribute, nodeName is the attribute

name, and nodeValue is the attribute value. And for a text

node, the nodeValue is the text in the node.

Update scoreSubmit wordSet up board Handle tile clicks

nodeValue

nodeName

node

Element or attribute name

Attribute value or text for a text nodeEvery DOM node
has a nodeName and
nodeValue property

.

nodeName and nodeValue

Chapter 7. manipulating the DOM Page 24 Return to Table of Contents

Chapter 7. manipulating the DOM
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 307

manipulating the dom

The nodeName and nodeValue properties tell you about nodes

node node type nodeName nodeValue

document document node "document" null

head element node "head" null

"p"p element node null

Webville Puzzles text node "#text" "Webville Puzzles”

id attribute node "id" "letterbox"

The nodeName of a node is
the same as its tag element nodes never

have a nodeValue

The nodeValue of a
text node is its text

You’re ready to finish up the section of addLetter() that gets a
letter from a clicked-on tile, and adds the clicked-on letter to the
currentWord <div>. See if you can write the rest of the function
now... and don’t forget to test things out!

Write your version of addLetter() here.

Hint: node.childNodes returns an array of a node’s children, and node.
childNodes.length tells you how many children a node has.

Chapter 7. manipulating the DOM Page 25 Return to Table of Contents

Chapter 7. manipulating the DOM
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

308 Chapter 7

Using what you learned about the DOM in the last two chapters,
were you able to finish up this section of addLetter()? You should
have come up with something like this:

function addLetter() {
 var tileClasses = this.className.split(" ");
 var letterClass = tileClasses[2];
 var tileLetter = letterClass.substring(1,2);

 var currentWordDiv = document.getElementById("currentWord");

 if (currentWordDiv.childNodes.length == 0) {
 var p = document.createElement("p");

 currentWordDiv.appendChild(p);

 var letterText = document.createTextNode(tileLetter);

 p.appendChild(letterText);

 } else {
 var p = currentWordDiv.firstChild;

 }
}

This is the code we
had before. Now this
code only runs when the
currentWord <div> has
no child nodes.

If the currentWord <div> has children...

...we can get the <p>, and
then the text node child of
that <p>...

...and add the new letter to
the text node.

The first thing we need to
do is see if the currentWord
<div> has any children already.

Q: What is that childNodes property
again?

A: childNodes is a property
available on every node. It returns an array
of all of a node’s children, or null if there
aren’t any children for that node. And since
it’s an array, it has a length property that
tells you how many nodes are in the array.

Q: Can’t I just keep up with whether or
not addLetter() has been called, and use
that as my conditional?

A: No, that won’t always work. It’s true
that the first time addLetter() is
called, you need to create a <p> and text
node. But if the player submits a word, and
the board is reset, addLetter() would
again need to create a new <p> and text
node. So just checking to see how many
times addLetter() has run won’t be
enough.

Q: I wrote my code a different way. Is
that okay?

A: Sure. There are usually at least two or
three different ways to solve a problem. But
you need to be sure that your code always
works... and that it’s not creating DOM nodes
unless it needs to. If both of those things are
true, then feel free to use your own version
of addLetter().

Update scoreSubmit wordSet up board Handle tile clicksadd a letter

Chapter 7. manipulating the DOM Page 26 Return to Table of Contents

Chapter 7. manipulating the DOM
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 309

manipulating the dom

When you control the DOM structure,
nothing happens that you don’t specify.
When the browser creates a DOM tree based on an

XHTML text file, the browser is in control. It’s doing

what it thinks is best to represent that XHTML - and

sometimes, that means interpreting line endings or extra

tabs and spaces as text nodes filled with whitespace.

But when you’re making changes to a DOM tree, you’re
the one in control. The browser won’t insert anything

unless you tell it to. So when you’re working with the DOM

nodes you inserted into the currentWord <div>, you don’t

have to worry about extra whitespace text nodes. Instead,

you can go right to the first child of the <div>, and know

that it’s a <p>.

Test Drive
Test out your new-and-improved event handler.
See how addLetter() works now. Each time you click a tile, it should

add another letter to the current word box. Does it work?

?
There are a few things we still need to do related to clicking on tiles,

though... can you figure out what they are?

?

Chapter 7. manipulating the DOM Page 27 Return to Table of Contents

Chapter 7. manipulating the DOM
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

310 Chapter 7

We need to disable each tile. That means

changing the tile’s CSS class...

Once a player’s clicked on a tile, they can’t re-click on that tile. So we need

to disable each tile once it’s been clicked.

...AND turning OFF the addLetter()

event handler

As long as there have been games, there have been gamers looking for an

edge. With Woggle, even though we can disable the look of a tile, that

doesn’t mean clicking on the tile doesn’t do anything. Clicking on a tile—

even if it’s got the disabled class—will still trigger the addLetter()
event handler. That means a letter can be clicked on an infinite number of

times... unless you put a stop to it!

So we need to take another step at the end of addLetter(). We need to

remove the addLetter() event handler for the clicked-on tile.

Clicking on a tile should change the look of that tile.

This is presentation, so you probably already know what to do, don’t you?

In addLetter(), we need to add another CSS class to the clicked-on tile.

There’s a class in puzzle.css called “disabled” that’s perfect for the job.

Add this line to the end of addLetter():

function addLetter() {
 // existing code

 this.className += " disabled";
}

We need to add this class to
the existing tile classes, not
just replace those classes.

Now, once addLetter() runs, the clicked-on tile fades, and then looks

like it can’t be clicked anymore.

Set onclick to an empty string. That removes the addLetter() event handler.

function addLetter() {
 // existing code

 this.className += " disabled";
 this.onclick = "";
}

Make sure there’s a space to separate the CSS classes from each other.

Update scoreSubmit wordSet up board Handle tile clickschange css classes at will

Chapter 7. manipulating the DOM Page 28 Return to Table of Contents

Chapter 7. manipulating the DOM
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 311

manipulating the dom

Test Drive
We’ve handled tile clicks... completely!
Have you made all the additions you need to addLetter()? Once you
have, fire up Woggle, and build some words.

Now clicking on a tile adds a letter to the current word box...

...disables the look of the tile...

...and turns
off the onclick event handlers.

Chapter 7. manipulating the DOM Page 29 Return to Table of Contents

Chapter 7. manipulating the DOM
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

312 Chapter 7

Submitting a word is just (another) request
addLetter() was all about using the DOM, and submitting a word to the
server is all about request objects. Woggle’s already got a program on their
server that takes in a word and returns a score for that word... or a -1 if the
word isn’t a real English word.

request
word

-1 or score

dictionary.php

Our JavaScript can
send the word to the
server-side program.

word

matches

The server responds with -1
if the word isn’t valid, or
with the score for the word
if the word is valid.

If the word is valid, the player will get 1 point for each vowel and 2 points for each consonant.

Update scoreSet up board Handle tile clicks Submit word

lookup-word.php

The server-side program at
Woggle requests a dictionary
program on a different server
to see if the word is valid.

The dictionary web service indicates if the submitted word is valid English.

This program runs remotely.

Our JavaScript doesn’t care how the server
figures out its response to our request
With Woggle, it really doesn’t matter that the server-side program we’re
calling makes another request to another program. In fact, it wouldn’t matter
even if lookup-word.php called a PHP program, then made a SOAP
request to a Java web service, and then sent a message to a cell phone using
an SMS gateway. All that does matter is that we send the server-side program
the right information, and it returns to us the right response.

Your JavaScript
only needs to
worry about
sending requests
and handling
responses... not
how the server gets
those responses.

a request is a request

Chapter 7. manipulating the DOM Page 30 Return to Table of Contents

Chapter 7. manipulating the DOM
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 313

manipulating the dom

You’ve built and sent a lot of request objects by now. Using what
you’ve learned, can you write the submitWord() function?

Answers on page 316.

Chapter 7. manipulating the DOM Page 31 Return to Table of Contents

Chapter 7. manipulating the DOM
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

314 Chapter 7

Not every request should be an
ASYNCHRONOUS request.
In all the earlier chapters, we made asynchronous
requests, so users weren’t stuck waiting on a
password to get checked or a page to get loaded.
But in Woggle, we really want users to wait on the
server before doing anything else. So when a word
is sent to the server for scoring, we need to use a
synchronous request.

wait

Update scoreSet up board Handle tile clicks Submit wordsynchrony is still useful

Chapter 7. manipulating the DOM Page 32 Return to Table of Contents

Chapter 7. manipulating the DOM
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 315

manipulating the dom

Synchronous requests don’t require a
callback function.
When a request is asynchronous, the browser keeps

running your code. So after it runs request.
send(null), the browser goes to the next line of

your sending function. That’s usually the end of the

function because we want users to be able to keep

working with a web page. Then, when the server

responds, a callback gets run that can update the

page or respond to what the server said.

But with a synchronous request, the browser waits
on the server. No more code is run until the

server comes back with a response. So in that

case, we really don’t need a callback. We can just

continue on with the sending function, and know
that the request object will have the server’s
response data in it!

Go back to the code you wrote on page 313, and make a few
changes. First, make sure your request is synchronous, and not
asynchronous. Then, remove a reference to a callback; we don’t
need one! Finally, at the end of the function, display the response
from the server using an alert box.

REVISITED

Chapter 7. manipulating the DOM Page 33 Return to Table of Contents

Chapter 7. manipulating the DOM
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

316 Chapter 7

Your job was to build the submitWord() function... and to make
sure it works synchronously. What did you come up with?

function submitWord() {

 var request = createRequest();

 if (request == null) {

 alert ("Unable to create request object.");

 return;

 }

 var currentWordDiv = document.getElementById("currentWord");

 var userWord = currentWordDiv.firstChild.firstChild.nodeValue;

 var url = "lookup-word.php?word=" + escape(userWord);

 request.onreadystatechange = updateScore;

 request.open("GET", url, false);

 request.send(null);

 alert("Your score is: " + request.responseText);

}

This is pretty standard stuff. Make sure you’ve got utils.js referenced in your XHTML page.

First we get the <div> with the
current word...

...and then we want the first

child (the <p>), followed by the

first child of that (the t
ext

node), and then the node
 value

of that.We send the request like always,
but we use “false,” making this a
synchronous request. We’re sending a synchronous

request, so there’s no need for a

callback function this time.
The code won’t get here until
the server responds, so it’s safe
to use the responseText property.

Q: I got a little lost on that
currentWordDiv.firstChild.firstChild.
nodeValue bit. Can you explain that?

A: Sure. You can break that statement
down into parts. So first, there’s
currentWordDiv.firstChild.
That’s the first child of the <div>, which is
a <p>. Then, we get the firstChild
of that, which is a text node. And finally, we
get the nodeValue of that, which is the
text in the node—the word the user entered.

Q: Wow, that’s confusing. Do I have to
write my code that way?

A: You don’t have to, but it’s actually a
bit faster than breaking things into lots of
individual lines. Since this entire statement
is parsed at one time, and there’s only one
variable created, JavaScript will execute this
line a bit faster than if you’d broken it into
several pieces.

Q: Didn’t you forget to check the
readyState and status codes of the
request object?

A: When you’re making a synchronous
request, there’s no need to check the
readyState of the request object. The
browser won’t start running your code again
until the server’s finished with its response,
so the readyState would always be 4
by the time your code could check it.

You could check the status to make sure
your request got handled without an error.
But since you’ll be able to tell that from the
actual response, it’s often easier to just go
right to the responseText. Remember,
we’re not making an asynchronous request.
With a synchronous request, there’s no need
to check readyState and status in
your callback.

Update scoreSet up board Handle tile clicks Submit wordchain statements

Chapter 7. manipulating the DOM Page 34 Return to Table of Contents

Chapter 7. manipulating the DOM
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 317

manipulating the dom

Usability check: WHEN can
submitWord() get called?
Did you try and test out your new submitWord() function? If you did, you

probably realized that the function isn’t connected to anything. Right now,

the “Submit Word” button doesn’t do anything. In fact, “Submit Word” is an

<a> element, and not a button at all!

<div id="submit">Submit Word</div>
This <div> and <a> are then styled to look like a button on the page. We

had a similar situation with the tiles, though, so this shouldn’t be a problem.

We can assign an event handler to the onclick event of the <a> representing

the “Submit Word” button:

var submitDiv = document.getElementById("submit");
var a = submitDiv.firstChild;
while (a.nodeName == "#text") { a = a.nextSibling; }
a.onclick = submitWord;

Get the right <div>.

Get the first child of the <div>.

Since the browser created this part of the DOM, we should make sure we don’t have a whitespace text node.
Assign the event handler.

You can’t submit a word if there’s no word to submit
So where do you think this code goes? In initPage()? But that doesn’t

make sense... in initPage(), there aren’t any letters in the current word

box, so players shouldn’t be able to submit anything.

The first time there’s a word to submit is the first time there’s a letter in the

current word box. That’s also the first time that a tile is clicked, which turns

out to be the first time addLetter() is called for a new word.

Fortunately, we’ve already got a special case: the first time addLetter() is

called for a new word, we’re creating the <p> and text node underneath the

currentWord <div>. So we just need to add the code above to that part of

the addLetter() event handler:

if (currentWordDiv.childNodes.length == 0) {
 // existing code to add a new <p> and text node
 // existing code to add in first letter of new word
 // code to enable Submit Word button

} else { // ... etc ...

All of this new code...

...goes right here.

Chapter 7. manipulating the DOM Page 35 Return to Table of Contents

Chapter 7. manipulating the DOM
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

318 Chapter 7

Test Drive
Get your word score. Go on, get it!
Have you made all the additions you need to addLetter()? Once you
have, fire up Woggle, and build some words.

Now you can build
words with the tiles.

Clicking
“Submit
Word”
calculates
your score.

Update scoreSet up board Handle tile clicks Submit wordtest drive

Chapter 7. manipulating the DOM Page 36 Return to Table of Contents

Chapter 7. manipulating the DOM
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 319

manipulating the dom

You want the table cell just to the left of
the table cell you’re in.

nodeValue

Match the DOM properties and methods on the left to the tasks you’d
use those properties and methods to accomplish on the right.

You want all the <p>’s within a
particular <div>.

parseInt

You want to get rid of all the

elements on a page.

removeChild

You want to exchange an
element with some descriptive text.

previousSibling

You want to print out a name, which
is in the <div> with an id of “name.”

childNodes

You need to add the numeric
values of two form fields.

replaceNode

Well, this
isn’t a
DOM
method,
but you
never know
when you’ll
need it.

Chapter 7. manipulating the DOM Page 37 Return to Table of Contents

Chapter 7. manipulating the DOM
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

320 Chapter 7

You want the table cell just to the left of
the table cell you’re in.

nodeValue

Match the DOM properties and methods on the left to the tasks you’d
use those properties and methods to accomplish on the right.

You want all the <p>’s within a
particular <div>.

parseInt

You want to get rid of all the

elements on a page.

removeChild

You want to exchange an
element with some descriptive text.

previousSibling

You want to print out a name, which
is in the <div> with an id of “name.”

childNodes

You need to add the numeric
values of two form fields.

replaceNode

parseInt(“21”) converts the
string “21” into the int 21.

childNodes gives you the children of a particular DOM node.

When you’re
replacing one node
with a different
node, use
replaceNode().

Text in a node is
represented by
the nodeValue
property on a
text node.

go right brain!

Chapter 7. manipulating the DOM Page 38 Return to Table of Contents

Chapter 7. manipulating the DOM
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 321

manipulating the dom

It’s time to put everything you’ve learned so far to use: DOM manipulation, creating DOM
nodes, JavaScript string functions, handling the request from a server... this exercise has it all.
Follow the directions below, and tick off the boxes as you complete each step.

If the server rejects the submitted word, let the player know with a message
that reads, “You have entered an invalid word. Try again!”

If the server accepts the submitted word, add the accepted word to the box
of accepted words just below the “Submit Word” button.

Get the current score, and add the score that the server returns for the just-
accepted word. Using this new score, update the “Score: 0” text on the screen.

Whether the server accepts or rejects the word, remove the current word from
the current word box.

Enable all the tiles on the playing board, and reset the “Submit Word”
button to its original state.

Below is the DOM tree for the sections of the page you’re working with, as the
browser initially creates the tree. Draw what the DOM tree will look like after
your code has run for two accepted words (the specific two words don’t matter,
as long as the server accepted both of them).

id="currentWord"div

id="submit"div

id="background"div

id="wordListBg"div

id="wordList"div

id="score"div

nodeValue="Score: 0"#text

a href="#"

nodeValue="Submit Word"#text

Chapter 7. manipulating the DOM Page 39 Return to Table of Contents

Chapter 7. manipulating the DOM
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

322 Chapter 7

Update scoreSet up board Handle tile clicks Submit word

Below is the completed version of submitWord(). Now it not only submits a word, but
updates the score on the page. How close if your solution to ours?

function submitWord() {

 var request = createRequest();

 if (request == null) {

 alert ("Unable to create request object.");

 return;

 }

 var currentWordDiv = document.getElementById("currentWord");

 var userWord = currentWordDiv.firstChild.firstChild.nodeValue;

 var url = "lookup-word.php?word=" + escape(userWord);

 request.open("GET", url, false);

 request.send(null);

 if (request.responseText == -1) {

 alert("You have entered an invalid word. Try again!");

 } else {

 var wordListDiv = document.getElementById("wordList");

 var p = document.createElement("p");

 var newWord = document.createTextNode(userWord);

 p.appendChild(newWord);

 wordListDiv.appendChild(p);

 var scoreDiv = document.getElementById("score");

 var scoreNode = scoreDiv.firstChild;

 var scoreText = scoreNode.nodeValue;

 var pieces = scoreText.split(" ");

 var currentScore = parseInt(pieces[1]);

 currentScore += parseInt(request.responseText);

 scoreNode.nodeValue = "Score: " + currentScore;

 }

If the server rejects the submitted word, let the player know.
The server returns -1 if the
submitted word is invalid.

This creates a new <p>, a new text node
with the user’s word, and then adds both to
the wordList <div>.

Add the accepted word to the box
of accepted words.

You can split “Score: 0” into

two parts using split(“ ”).

We want the second part, and we want it as an int.

Add the server’s response, and
then update the text node.

Update the “Score: 0”
text on the screen.

long exercise solution

Chapter 7. manipulating the DOM Page 40 Return to Table of Contents

Chapter 7. manipulating the DOM
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 323

manipulating the dom

 var currentWordP = currentWordDiv.firstChild;

 currentWordDiv.removeChild(currentWordP);

 enableAllTiles();

 var submitDiv = document.getElementById("submit");

 var a = submitDiv.firstChild;

 while (a.nodeName == "#text") {

 a = a.nextSibling;

 }

 a.onclick = function() {

 alert("Please click tiles to add letters and create a word.");

 };

}

function enableAllTiles() {

 tiles = document.getElementById("letterbox").getElementsByTagName("a");

 for (i=0; i<tiles.length; i++) {

 var tileClasses = tiles[i].className.split(" ");

 if (tileClasses.length == 4) {

 var newClass =

 tileClasses[0] + " " + tileClasses[1] + " " + tileClasses[2];

 tiles[i].className = newClass;

 tiles[i].onclick = addLetter;

 }

 }

}

Remove the current
word from the word box.

Enable all the tiles.

We built a utility function for enabling all the tiles.

A tile that has 4 classes has the “disabled” class at the end.

We use the first three existing
classes, but drop the fourth.Remember to reset the event handler to addLetter.

Solution continues on the next page.

Remember to reset the “Submit
Word” button to an alert()
function for the event handler.

Chapter 7. manipulating the DOM Page 41 Return to Table of Contents

Chapter 7. manipulating the DOM
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

324 Chapter 7

Below is the DOM tree for the sections of the page you’re working with, as the
browser initially creates the tree. Draw what the DOM tree will look like after
your code has run for two accepted words (the specific two words don’t matter,
as long as the server accepted both of them).

id="currentWord"div

id="background"div

id="wordListBg"div

id="wordList"div

id="score"div

nodeValue="Score: 0"#text

aa href="#"

nodeValue="Submit Word"#text

#text nodeValue=“word1”

p

p
#text nodeValue=“word2”

This part of the tree stays

the same.

For each accepted word, there will be a <p> and a text node, with the word as the value of the text node.

The score text node will have an
updated number as its nodeValue.

(continued)

Update scoreSet up board Handle tile clicks Submit wordwe told you, it’s long

Chapter 7. manipulating the DOM Page 42 Return to Table of Contents

Chapter 7. manipulating the DOM
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 325

manipulating the dom

Test Drive
Anyone for Woggle?
Do you have everything working? Try out Woggle... it’s all working just

the way we imagined way back on page 286.

Now you can enter words...

....and get
a score for
your word.

Each word adds to the word
list, and to the score.

Tiles are reset each time and can be reused.

Chapter 7. manipulating the DOM Page 43 Return to Table of Contents

Chapter 7. manipulating the DOM
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

326 Chapter 7

But there’s still more to do!

We want to see you put your DOM, JavaScript, and Ajax skills to
work. Build your BEST version of Woggle, and submit your URL
in the Head First Labs “Head First Ajax” forum. We’ll be giving
away cool prizes for the best entries in the coming months.

Click here to go to the
forums and tell

us how to access your version
of Woggle.

challenge yourself

What if there was a timer that gave you 60 seconds to enter as
many words as you could think of?

And besides all that, how do YOU think Woggle could be improved?

What if you could choose a lettered tile, and then only choose
tiles next to the last selected tile?

What if once you used letters to make a valid word, those tiles
were replaced by new random tiles?

Chapter 7. manipulating the DOM Page 44 Return to Table of Contents

Chapter 7. manipulating the DOM
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 327

manipulating the dom

This method creates an element of the specified type:

This is the name of the game we built in this chapter:

A DOM tree is a just collection of these:

This method adds an element to the DOM tree:

This method substitutes one node for another:

This method removes a node from the DOM tree:

987654321

2524232221

201918171615

14131210

292826 27

4039

37 383635343332

3130

464544434241

5554535251

50494847

DOMAcrostic
Take some time to sit back and give your right brain something to do. Answer

5756 61605958

13 16 50 52 38 59 13 37 16 54 33 34 9 57 5 38

5 2 21 25 38 8 43 14 45 38 26 32 10

37 58 3 33 39 16 15 38 45 51

Chapter 7. manipulating the DOM Page 45 Return to Table of Contents

Chapter 7. manipulating the DOM
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

328 Chapter 7

This method creates an element of the specified type:

This is the name of the game we built in this chapter:

A DOM tree is a just collection of these:

This method adds an element to the DOM tree:

This method substitutes one node for another:

This method removes a node from the DOM tree:

C R E A T E E E
98

L
7654321

M E N

O G G L E

T

W

A P P E N
2524232221

201918171615

14131210

D C H I
292826

L
27

D

O B J E C ST

R E
4039

37 383635343332

3130

P L A C E C
464544434241

H I L D

R E M O V
5554535251

50494847

DOMAcrostic
Take some time to sit back and give your right brain something to do. Answer

E C
5756

H I L D
61605958

T
37

H
58

E
3

B
33

R
39

O
16

W
15

S
38

E
45

R
51

T
5

R
2

A
21

N
25

S
38 8

L A
43

T
14

E
45

S
38

D
26

O
32

M
10

N
13

O
16

D
50

E
52

S
38

I
59

N
13

T
37

O
16

O
54

B
33

J
34

E
9

C
57

T
5

S
38

exercise solution

Chapter 7. manipulating the DOM Page 46 Return to Table of Contents

Chapter 7. manipulating the DOM
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Table of Contents

Chapter 8. frameworks and toolkits.. 1
Section 8.1. So what frameworks ARE there?... 7
Section 8.2. Every framework uses a different syntax to do things... 8
Section 8.3. The syntax may change... but the JavaScript is still the same... 9
Section 8.4. To framework or not to framework?... 12
Section 8.5. The choice is up to you.. 14

Chapter 8. frameworks and toolkits

Chapter 8. frameworks and toolkits
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

this is a new chapter 329

frameworks and toolkits8

Trust No One

So what’s the real story behind all those Ajax frameworks?

convenience methods for working with

the DOM validation sending requests

screen effects

take control of your applications.

So what’s the real story behind all those Ajax frameworks?

convenience methods for working with

the DOM validation sending requests

screen effects

take control of your applications.

Chapter 8. frameworks and toolkits Page 1 Return to Table of Contents

Chapter 8. frameworks and toolkits
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

330 Chapter 8

There are a LOT of options for
frameworks that let you work with Ajax
in different (and sometimes easier) ways.
If you Google the Internet for “JavaScript framework”
or “Ajax library,” you’ll get a whole slew of links to
different toolkits. And each framework’s a bit different.
Some are great for providing slick screen effects, like
drag-and-drop, fades, and transitions. Others are good
at sending and receiving Ajax requests in just a line or
two of code.

In fact, you’ve been using a framework of sorts every
time you reference a function from utils.js. All
that script does is provide common functionality in a
reusable package. Of course, most frameworks have a
lot more functionality, but the principle is still the same.

So which framework should you use? Even more
importantly... should you use one at all?

to framework or not to framework?

Chapter 8. frameworks and toolkits Page 2 Return to Table of Contents

Chapter 8. frameworks and toolkits
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 331

frameworks and toolkits

Deciding to use a JavaScript framework for writing your code is a
big deal. Below, write down three reasons that you think it would
be a good idea to use a framework... and three reasons you think
it might not be a good idea.

Reasons to use a framework Reasons NOT to use a framework

1.

2.

3.

1.

2.

3.

Q: I don’t even know what a framework
is. How am I supposed to answer these
questions?

A: A framework is just a JavaScript
file—or set of files—that has functions,
objects, and methods that you can use in
your code. Think of a framework like a bigger,
more complete version of the utils.js
file we’ve been using.

Q: But I’ve never used one before!

A: That’s okay. Just think about reasons
you might like to try out a framework, and
what advantages that framework might have
over doing things the way you’ve been doing
them so far. Then, think about what you
like about how you’ve been writing code so
far... those are reasons you might not use a
framework.

Q: Is there a difference between a
framework and a toolkit?

A: Not really. Framework and toolkit
are used pretty interchangeably in the
JavaScript world. Some people will tell you
a framework is a structure for how you write
all your code, while a toolkit is a collection of
utility functions. But that’s a distinction that
not every framework or toolkit makes, so it’s
not worth getting hung up on.

Chapter 8. frameworks and toolkits Page 3 Return to Table of Contents

Chapter 8. frameworks and toolkits
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

332 Chapter 8

Tonight’s talk: Ajax Framework and Do-It-Myself JavaScript
go head-to-head on utility functions, toolkits, and the pros
and cons of do-it-yourself thinking.

Ajax Framework:
Wow, I thought you guys were never going to have

me on. What is this, like page 332 or something,

and I’m just now making an appearance?

Oh boy. Here we go... you’re one of these JavaScript

purists, aren’t you? No frameworks, no utility

functions, just hard work and thousands of lines of

code in a single .js file, am I right?

So what’s your problem with me? I’d think a guy

like you would love me. I take all those routine,

boring, annoying tasks and wrap them up into user-

friendly function and method calls.

And? What’s the problem with that? I don’t even see

the difference... wrapping? abstracting?

You’re kidding, right? I’m just JavaScript, too. You

can open me up anytime you want. So how is my

JavaScript .js file any different than yours?

Do-It-Myself JavaScript:

Hey, we figured you’d show up when you were

needed. And lookie here, seven chapters down, and

you’re just now getting involved.

Not at all. In fact, I’m a big fan of abstracting

common code into utility methods, not writing

duplicate code, and even having different .js files

for different sets of functionality.

Well, that’s just it. You wrap them up... you don’t

abstract them into a different file. You actually hide

those details away.

Hey, you can always look at my code. Just open

another script, and you know exactly what’s going

on. No mystery, no “magic function.” That’s me,

alright.

fireside chat

Chapter 8. frameworks and toolkits Page 4 Return to Table of Contents

Chapter 8. frameworks and toolkits
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 333

frameworks and toolkits

Oh, all the time. What’s your point, Mr. Heavy-

Handed?

I’ve got options, man. Tons of options. Sometimes

almost a hundred for certain methods. Beat that!

Uhhh... gee, lemme think... well, how about when

you don’t know how to do what you need to do

yourself ? Ever tried to code drag-and-drop? Or

move around within an image, zooming in and

zooming out? You want to build all that yourself ?

Hey, we’re not talking about atomic fusion here.

Sometimes you just need to get some little visual

effect done... or an Ajax request sent. That’s no

time to be digging around on the Internet for some

code a junior high dropout posted to his blog three

years ago.

Yeah, and he’s also driving a ‘76 Pinto ‘cause no one

will hire him. Because he’s so slow at writing basic

code!

Have you ever looked at yourself ? Maybe in a

mirror, or in the reflection from one of those bright

shiny widgets you’re so proud of ?

You’re impossible to figure out! There’s like a

thousand lines of code to wade through. What if I

want to do something just a bit differently than you’re

set up for? What then?

Why in the world would I want to? Who wants to

figure out what the eighth parameter to a method

is? Since when is that helpful?

If that’s what it takes to actually understand what’s

going on, you bet I do!

I’ll bet that kid knows what he’s doing, though!

Whatever.

Ajax Framework: Do-It-Myself JavaScript:

Chapter 8. frameworks and toolkits Page 5 Return to Table of Contents

Chapter 8. frameworks and toolkits
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

334 Chapter 8

Your job was to think of some good reasons to use a framework,
and some not-so-good reasons that come with using a
framework. What did you write down?

Reasons to use a framework Reasons NOT to use a framework

1.

2.

3.

4.

1.

2.

3.

You don’t have to write code for functions that
someone else has already figured out. You can
just use the existing code in frameworks.

Frameworks have functions you might not have time
to write yourself but would use if those functions
were available. So you get more functionality.

The code in frameworks is tested more because
more people are using the framework. So there’s less
chance of bugs, and less need for testing.

You don’t really know what the framework’s
doing. It might be doing things well... or it might
be doing them more inefficiently than you would.

The framework might not have all the options
you want or need. So you might end up changing
your code to accommodate the framework.

Sometimes a framework hides important concepts
that would be helpful to know. So you might not
learn as much using a framework.

don’t

why use a framework?

Frameworks usually take care of cross-browser
issues for you, so you don’t have to worry about IE,
or Firefox, or Opera.

We only asked for three, but we
couldn’t resist adding this one. It’s

a

BIG reason for using frameworks.

Chapter 8. frameworks and toolkits Page 6 Return to Table of Contents

Chapter 8. frameworks and toolkits
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 335

frameworks and toolkits

So what frameworks ARE there?
There are several popular frameworks out there... and most of them do a

few different things. Here’s the ones that most people are buzzing about:

Frameworks usually change FASTER than
the underlying JavaScript syntax does.
Frameworks are controlled by the people who write them,

and so a framework might release a new version every

few months... or in early stages, every few weeks! In fact,

a framework might lose popularity and totally disappear

over the course of six or seven months.

But the core JavaScript syntax and objects, like

XMLHttpRequest and the DOM, are controlled by big,

slow-moving standards groups. So that sort of syntax

won’t change very often. At the most, you’ll see something

change every few years.

Prototype (http://www.prototypejs.org)

jQuery (http://www.jquery.com)

mooTools (http://mootools.net) script.aculo.us (http://script.aculo.us)

jQuery is one of the
most popular toolkits for
JavaScript programming,
including Ajax requests.

script.aculo.us is an add-on to
Prototype, and is aimed at providing
screen effects in JavaScript.

Prototype is a workhorse library. It provides lots of low-level JavaScript utilities, including support for Ajax.

mooTools is
newer, but very
full-featured.
You get screen
effects and Ajax
request utilities.

Chapter 8. frameworks and toolkits Page 7 Return to Table of Contents

Chapter 8. frameworks and toolkits
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

336 Chapter 8

function checkUsername() {

 var usernameObj = $("username");

 usernameObj.className = "thinking";

 var username = escape(usernameObj.value);

 new Ajax.Request("checkName.php", {

 method:”get",

 parameters: "username=" + username,

 onSuccess: function(transport){

 if (transport.responseText == "okay") {

 $("username").className = "approved”;

 $("register").disabled = false;

 } else {

 var usernameObj = ${"username");

 usernameObj.className = "denied";

 usernameObj.focus();

 usernameObj.select();

 $("register").disabled = true;

 }

 },

 onFailure: function() { alert("Error in validation."); }

 });

}

Every framework uses a different
syntax to do things
Each framework uses a different syntax to get things done. For example,
here’s how you’d make a request and specify what to do with the server’s
response in Prototype:

This is the
Ajax object for
making requests
in Prototype.

This gets the
element with an
id of “username.”

The onSuccess
function runs
when the server
responds normally.

The onFailure
function runs if
there’s a problem
with the request
or response.

transport is
the Prototype “stand-in” for the request object.

The first part of both bits of
code gets a value from the page.

Then a request is made. This is a
lot shorter in Prototype.

You usually give Prototype the callback inline... but it’s the same basic code, just a little different syntax.

We haven’t been providing an
error message if the status
code isn’t 200, or if other
problems occur. Prototype
handles this nicely, though.

different syntax, same functionality

Chapter 8. frameworks and toolkits Page 8 Return to Table of Contents

Chapter 8. frameworks and toolkits
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 337

frameworks and toolkits

The syntax may change... but the
JavaScript is still the same
At a glance, that Prototype code looks pretty different from anything
you’ve written before. But take a look at the equivalent JavaScript from
an early version of Mike’s Movies registration page:

function checkUsername() {

 document.getElementById("username").className = "thinking";

 request = createRequest();

 if (request == null)

 alert("Unable to create request");

 else {

 var theName = document.getElementById("username").value;

 var username = escape(theName);

 var url= "checkName.php?username=" + username;

 request.onreadystatechange = showUsernameStatus;

 request.open("GET", url, true);

 request.send(null);

 }

}

function showUsernameStatus() {

 if (request.readyState == 4) {

 if (request.status == 200) {

 if (request.responseText == "okay") {

 document.getElementById("username").className = "approved";

 document.getElementById("register").disabled = false;

 } else {

 document.getElementById("username").className = "denied";

 document.getElementById("username").focus();

 document.getElementById("username").select();

 document.getElementById("register").disabled = true;

 }

 }

 }

}

This code looks a lot different at first... but it turns out to be very similar to the code you write to use a toolkit.

Chapter 8. frameworks and toolkits Page 9 Return to Table of Contents

Chapter 8. frameworks and toolkits
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

338 Chapter 8

JavaScript and Ajax frameworks are
just new and different ways to do what
you’ve already been doing.
When you boil it all down to code, an asynchronous
request is an asynchronous request is an asynchronous
request. In other words, under the hood, your
JavaScript code still has to create a request object, set
up code to run based on what the server returns, and
then send that request. No matter how the syntax
changes, the basic process stays the same.

Using a framework might make parts of setting up
and sending that request easier, but a framework won’t
fundamentally change what you’ve been doing. And
yes, you’ll definitely need to learn some new syntax to
use any framework effectively.

another

Frameworks offer a lot of nice
features “for free.”
Most frameworks come with a lot of
convenience methods and cool visual effects.
And the syntax isn’t really that hard to pick
up if you’re already familiar with basic
JavaScript and Ajax concepts and principles.

And one of the best features of frameworks
is that a lot of them handle situations where
users don’t have JavaScript enabled in their
browsers.

frameworks supply “free” features

Chapter 8. frameworks and toolkits Page 10 Return to Table of Contents

Chapter 8. frameworks and toolkits
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 339

frameworks and toolkits

Q: You didn’t mention my favorite
framework, [insert your framework name
here]. What’s up with that?

A: Well, there are a lot of frameworks
out there, and more are showing up every
day. The frameworks on page 335 are
some of the most popular right now, but your
framework might show up on that list in a
few months.

In any case, the main thing is that a
framework doesn’t provide fundamentally
different functionality than the code you’ve
been writing. It just makes that functionality
more convenient, or it takes less time to
write, or it adds visuals... you get the idea.

Q: Do all frameworks make working
with elements on a page so easy?

A: If you use a framework, you probably
won’t be writing a lot of DOM methods,
like getElementById() or
getElementsByTagName().
Since those are such common operations,
most frameworks provide syntax to make
that easier, like $("username") to get
an element with an id of “username.”

Q: So what’s the framework using to
get the element, then?

A: The same DOM methods
you’d use without the framework.
$("username") just gets
turned into a call to document.
getElementById
("username"). Additionally, the
returned object has its normal DOM methods
available, as well as additional methods the
framework might provide.

Q: So frameworks are a good thing,
right?

A: Well, some people use frameworks
because they don’t want to take the time to
learn the underlying concepts. That’s not a
good thing because those folks don’t really
know what’s going on in their code.
If you use a framework, though, you do
know the concepts and code underneath.
That means you’ll probably be more effective
as a programmer, and be able to hunt down
problems a little more effectively, too.

Q: So a framework just does what
we’ve already been doing ourselves?

A: Well, frameworks often do a little
more than we’ve been doing. They typically
provide more options, and they also tend
to have a more robust error handling setup
than just showing an alert() box. But
they’re still making requests and handling
responses and grabbing elements on a page
using the DOM, just like the code you’ve
been writing.

Q: So we shouldn’t use frameworks
since we already know how to write all
that request and response and DOM code,
right?

A: Well, frameworks do offer a lot of
convenience functions, and those screen
effects are pretty cool...

Q: So then we should use
frameworks?

A: We didn’t say that either. There’s a
certain amount of control you lose with a
framework because it might not do just
what you want it to in a certain situation.
Sometimes it’s best to take complete control,
and just write the code you need without
putting a framework in the mix.

Q: So which is it? Use a framework, or
don’t use one?

A: That’s the question, isn’t it? Turn the
page, and let’s try and figure that out.

Frameworks
can’t solve your
programming
problems for you.

It’s up to YOU to
UNDERSTAND your
code, whether or not
you use a framework
to make that code
easier to write.

Chapter 8. frameworks and toolkits Page 11 Return to Table of Contents

Chapter 8. frameworks and toolkits
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

340 Chapter 8

To framework or not to framework?
There are a lot of good reasons to use a framework... and plenty of

reasons to not use one. Some people go back and forth between projects

where they use a framework and projects where they don’t. It really

depends on the situation and your personal preferences.

Accessibility-minded web designer

Hobbyist programmer, running a popular gaming web site

Maintains her own
blog, tinkering with
JavaScript programming

what should i do?

Chapter 8. frameworks and toolkits Page 12 Return to Table of Contents

Chapter 8. frameworks and toolkits
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 341

frameworks and toolkits

Business developer
building a micro site
for mobile devices

Junior software developer

Database engineer at a media company

Chapter 8. frameworks and toolkits Page 13 Return to Table of Contents

Chapter 8. frameworks and toolkits
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

342 Chapter 8

The choice is up to you...
Is it important for you to really control every aspect of your code? Do
you go crazy wondering how efficient every function you use in your
JavaScript really is? Can you not stand the thought of missing out on

learning some new tool, trick, or technique? If this is you, you may
just end up frustrated and annoyed by frameworks. Stick with

writing your own requests, callbacks, and utility functions,
building an ever-growing library of code in utils.
js, and not having to update to a new version of a
framework every few months.

Don’t care so much about every internal line of code?
If you’re a productivity nut, and want great apps with a

minimal amount of time spent dealing with errors, weird browser
inconsistencies, and oddities of the DOM, frameworks might be
just for you. Say goodbye to request.send(null) forever,
and pick a framework to learn. It shouldn’t take you long... you
already know what’s really going on with asynchronous requests.

Either way, the choice is yours. We think it’s pretty important
to know what’s going on under the hood, whether you use a
framework or not, so the rest of this book will stick with plain
old JavaScript instead of going with any particular framework.
But everything you’ll learn still is useful, even if you later use a
framework to hide away the details of what’s going on.

choose wisely

Chapter 8. frameworks and toolkits Page 14 Return to Table of Contents

Chapter 8. frameworks and toolkits
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Table of Contents

Chapter 9. xml requests and responses.. 1
Section 9.1. Classic rock gets a 21st century makeover.. 2
Section 9.2. How should a server send a MULTI-valued response?.. 5
Section 9.3. innerHTML is only simple for the CLIENT side of a web app.. 11
Section 9.4. You use the DOM to work with XML, just like you did with XHTML.. 17
Section 9.5. XML is self-describing.. 24

Chapter 9. xml requests and responses

Chapter 9. xml requests and responses
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

this is a new chapter 343

xml requests and responses9

More Than Words Can Say

How will you describe yourself in 10 years? How about 20?
data that can change with your needs

extensible markup language describe

itself

use

more flexibility easier data handling.

How will you describe yourself in 10 years? How about 20?
data that can change with your needs

extensible markup language describe

itself

use

more flexibility easier data handling.

As a special bonus, we’re
bringing back the DOM in this
chapter... keep an eye out!

Chapter 9. xml requests and responses Page 1 Return to Table of Contents

Chapter 9. xml requests and responses
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

344 Chapter 9

Classic rock gets a 21st century makeover
Rob’s Rock and Roll Memorabilia has hit the big time. Since going online
with the site you built for Rob, he’s selling collectible gear to rich customers
around the world.

In fact, Rob’s gotten lots of good feedback on the site, and he’s making some
improvements. He wants to include a price for each item, in addition to the
description, and he also wants to be able to include a list of related URLs so
customers can find out more about each item.

Rob wants
to add a
price for
each item.

Each item will have one or
more URLs to find out
more about the item.

rock-n-roll forever

Chapter 9. xml requests and responses Page 2 Return to Table of Contents

Chapter 9. xml requests and responses
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 345

xml requests and responses

Server Response Magnets
Below are diagrams of the interactions between several of the apps
you’ve built and programs on the server that those apps use. Can
you place the right server response magnets on each diagram?

okay

Web server

Web server

Web server

Web server

denied No server
interaction

-1

4

XHTML

fragme
nt

How are the server responses from the apps you’ve built so far
different from what Mike wants his server to respond with in the
new version of his rock and roll site?

If you don’t remember, flip back to these earlier chapters, or check your own code.

Chapter 3 and 4:
 Yoga for Programmers

Chapter 5:
 Mike’s Movies

Chapter 6:
 The Fifteen Puzzle

Chapter 7: Woggle

Use these magnets for the
servers’ responses.

Chapter 9. xml requests and responses Page 3 Return to Table of Contents

Chapter 9. xml requests and responses
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Server Response Magnet Solutions
Below are diagrams of the interactions between several of the apps
you’ve built and programs on the server that those apps use. Can
you place the right server response magnets on each diagram?

okay

Web server

Web server

Web server

Web server

denied

No server
interaction

-1

4

XHTML

fragment

The Yoga app requested XHTML page fragments from the server, but didn’t call any server-side programs

Chapter 3 and 4:
 Yoga for Programmers

Chapter 5:
 Mike’s Movies

Chapter 6:
 The Fifteen Puzzle

Chapter 7: Woggle

Mike’s server-side
script returns “okay” or
“denied” for a username
and password.

The server returns a word score for Woggle, or -1 if the word is invalid.

Using the DOM for

the Fifteen Puzzle

didn’t involve a
server-side program.

346 Chapter 9

single-valued responses

Chapter 9. xml requests and responses Page 4 Return to Table of Contents

Chapter 9. xml requests and responses
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

xml requests and responses

How are the server responses from the apps you’ve built so far
different from what Mike wants his server to respond with in the
new version of his rock and roll site?

How should a server send a

MULTI-valued response?

So far, all the server-side programs we’ve worked with have sent back

a single piece of data, like -1 or “okay.” But now Mike wants to send

back several pieces of data at one time:

All the servers so far sent out a single response... Mike’s server
is going to send back more than one piece of data.

A string description of the selected item.11

A numeric price for the item, like 299.95.22

A list of URLs with related information about the item.33

 347

What would you do?
There are lots of ways to handle

getting more than one value back from

the server, and this time, the choice is

up to you. What do you think?

Chapter 9. xml requests and responses Page 5 Return to Table of Contents

Chapter 9. xml requests and responses
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

348 Chapter 9

Frank
Joe

Jim

Time to place your bets. We’re going to follow Frank, Jim, and Joe
and see which one comes up with the best solution. Who do you
think will solve Rob’s site problems and win the Les Paul?

XML is the best choice. Frank’s gonna win.

CSV is simple and functional. Go, Jim!

innerHTML: it ain’t broke. Joe’s got it in the bag.

which format?

Chapter 9. xml requests and responses Page 6 Return to Table of Contents

Chapter 9. xml requests and responses
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 349

xml requests and responses

You’re not done sharpening that pencil just yet. Suppose you had the
following information for an item:

Item ID: itemCowbell
Description: Remember the famous “more cowbell” skit from Saturday Night
 Live? Well this is the actual cowbell.
Price: 299.99
URLs: http://www.nbc.com/Saturday_Night_Live/
 http://en.wikipedia.org/wiki/More_cowbell

How would a server represent this information...

...as XML?11

...as22

...as an XHTML fragment?33

In this space, write what you
think the XML for this item
would look like.

What would the CSV look
like from the server?

What about XHTML,
suitable for innerHTML?

Chapter 9. xml requests and responses Page 7 Return to Table of Contents

Chapter 9. xml requests and responses
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

350 Chapter 9

You’re not done sharpening that pencil just yet. Suppose you had the
following information for an item:

Item ID: itemCowbell
Description: Remember the famous “more cowbell” skit from Saturday
 Night Live? Well this is the actual cowbell.
Price: 299.99
URLs: http://www.nbc.com/Saturday_Night_Live/
 http://en.wikipedia.org/wiki/More_cowbell

How would a server represent this information...

...as XML?11

<?xml version="1.0"?>
<item id="itemCowbell">
 <description>Remember the famous "more cowbell" skit from
 Saturday Night Live? Well this is the actual cowbell.</description>
 <price>299.99</price>
 <resources>
 <url>http://www.nbc.com/Saturday_Night_Live/</url>
 <url>http://en.wikipedia.org/wiki/More_cowbell</url>
 </resources>
</item>

All XML documents begin like this.

We used an attribute for the item ID.

The description and price are
in XML elements.

We grouped the URLs with a
resources element, and then
put each URL in a url element.

* These solutions are just ONE way to represent the item data as XML, CSV, and XHTML. You might have come up with something a little different. As long as you got the right values in the right format, you’re all set.

dueling data formats

Chapter 9. xml requests and responses Page 8 Return to Table of Contents

Chapter 9. xml requests and responses
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 351

xml requests and responses

22

...as an XHTML fragment?33

<p>Description: Remember the famous 'more cowbell" skit from
 Saturday Night Live? Well this is the actual cowbell.</p>
<p>Price: $299.99</p>

 http://www.nbc.com/Saturday_Night_Live/

 http://en.wikipedia.org/wiki/More_cowbell

itemCowbell,Remember the famous 'more cowbell' skit from
 Saturday Night Live? Well this is the actual cowbell., 299.99,
 http://www.nbc.com/Saturday_Night_Live/,
 http://en.wikipedia.org/wiki/More_cowbell

Each item in a CSV string is
separated by a comma.

This is the XHTML exactly as it needs to

be inserted into the rock and ro
ll page. CSS

styles it, and the data from the server is

wrapped up in XHTML tags.

Chapter 9. xml requests and responses Page 9 Return to Table of Contents

Chapter 9. xml requests and responses
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

352 Chapter 9

Jill: I don’t know, Joe. That’s a lot of formatting for the

server-side guys to keep up with.

Joe: But they’ve got all the data about the item, right?

Jill: Well, sure... but server-side programmers don’t

really like to mess around with XHTML. That’s the

whole reason a lot of these folks move over to the server-

side in the first place... no XHTML.

Joe: But the CSS doesn’t change that much, so the

XHTML won’t change that often.

Jill: Oh, the XHTML will change sometimes?

Joe: Well, sure, maybe... but not very often. Only if we

need to add a tag, or maybe an ID for CSS...

Jill: Oh, no. You’re not going to be able to get server-

side guys to write XHTML, and then change it all the

time on top of that.

Joe: Hmmm. This is sounding harder than I thought. I

thought innerHTML was going to be really simple...

this these

Joe, still working
on innerHTML
and an XHTML
server response.

Jill, a server-side
expert, is helping
out the team.

innerHTML problems

Chapter 9. xml requests and responses Page 10 Return to Table of Contents

Chapter 9. xml requests and responses
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 353

xml requests and responses

innerHTML is only simple for the
CLIENT side of a web app
From a client-side point of view, innerHTML is pretty simple to use.

You just get an XHTML response from the server, and drop it into a

web page with an element’s innerHTML property.

function displayDetails() {

 if (request.readyState == 4) {

 if (request.status == 200) {

 detailDiv = document.getElementById("description");

 detailDiv.innerHTML = request.responseText;

 }

 }

}

The problem is that the server has to do a lot of extra work. Not only

does the server have to get the right information for your app’s request,

it has to format that response in a way that’s specific to your application.

In fact, that format is specific to one individual page on your site!

Web server

Generic response
Web server

Format-specific
response

Web server

Page-specific
response

This is completely generic...
just the raw data.

This is an XML response. It’s
a specific format, but any app
that reads XML can use this.

If you were a server-side developer... which would YOU prefer?

This response only works for
a very specific XHTML page.
For another page, you’d
need a totally different
XHTML response.

<?xml version="1.0"?>

<item id="itemCowbell">

 <description>Remember the
famous "more cowbell" skit
from

 Saturday Night Live? Well,
this is the actual cowbell.</
description>

 <price>299.99</price>

 <resources>

 <url>http://www.nbc.com/
Saturday_Night_Live/</url>

itemCowbell

Remember the famous "more
cowbell" skit from Saturday
Night Live? Well, this is the
actual cowbell.

299.00

http://www.nbc.com/Saturday_
Night_Live/

<p>Description: Remember the
famous 'more cowbell' skit
from

 Saturday Night Live?
Well this is the actual
cowbell.</p>

<p>Price: $299.99</p>

 <a href="http://www.nbc.
com/Saturday_Night_Live/">

 http://www.nbc.com/
Saturday_Night_Live/

 <a href="http://

Chapter 9. xml requests and responses Page 11 Return to Table of Contents

Chapter 9. xml requests and responses
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

354 Chapter 9

Frank: I’m not sure, Jim. Something’s bugging me
about this CSV thing.

Jim: What, just because I’m already almost done?

Frank: No, seriously. It just seems so ... I don’t know.
Inflexible?

Jim: What do you mean? Here, look at my code to
take the server’s response in my callback, and update
the item detail for the page. It’s a little long, but it’s all
pretty basic stuff:

function displayDetails() {

 if (request.readyState == 4) {

 if (request.status == 200) {

 detailDiv = document.getElementById("description");

 detailDiv.innerHTML = request.responseText;

 // Remove existing item details (if any)

 for (var i=detailDiv.childNodes.length; i>0; i--) {

 detailDiv.removeChild(detailDiv.childNodes[i-1]);

 }

 // Add new item details

 var response = request.responseText;

 var itemDetails = response.split(",");

Frank’s still a
fan of XML.

Jim has his
sights set on a
CSV solution.

We no longer
use innerHTML.

This code removes any
elements added by previous
calls to displayDetails().

First, we get the response.

Then, we separate the
values using the commas.

(continued on th
e

next page)

csv seems simple

Chapter 9. xml requests and responses Page 12 Return to Table of Contents

Chapter 9. xml requests and responses
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 355

xml requests and responses

thumbnails.js

function
display
Details {
 ...
}

 var descriptionP = document.createElement("p");

 descriptionP.appendChild(

 document.createTextNode("Description: " +

 itemDetails[1]));

 detailDiv.appendChild(descriptionP);

 var priceP = document.createElement("p");

 priceP.appendChild(

 document.createTextNode("Price: $" + itemDetails[2]));

 detailDiv.appendChild(priceP);

 var list = document.createElement("ul");

 for (var i=3; i<itemDetails.length; i++) {

 var li = document.createElement("li");

 var a = document.createElement("a");

 a.setAttribute("href", itemDetails[i]);

 a.appendChild(document.createTextNode(itemDetails[i]));

 li.appendChild(a);

 list.appendChild(li);

 }

 detailDiv.appendChild(list);

 }

 }

}

This creates a new <p> with the description of the item in it.

Next, we add another
<p> with the price.

Let’s display the URLs as list items in an
unordered list.

Each URL goes into an

<a>, which is added as
the content of an ...

...and then the gets
added to a ...

...which finally ends upunder
the details <div>.

All of this code goes into
thumbnails.js, replacing the
old version of displayDetails().

If you’re stumped, try reversing the
loop and see what happens. Can you
figure out what’s going on?

Chapter 9. xml requests and responses Page 13 Return to Table of Contents

Chapter 9. xml requests and responses
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

356 Chapter 9

Test Drive
Try out CSV for yourself.
Download the examples for Chapter 9 from the Head First Labs website. Open
thumbnails.js, and make two changes:

Update displayDetails() to match page 354.11

In getDetails(), change the URL of the server-side
script to getDetailsCSV.php.

22

The downloads for Chapter
9 include a server-side
script that returns CSV
instead of plain text.

Now try out the site. Does everything work?

This looks right... there’s a
description, price, and list
of URLs.

csv test drive

Chapter 9. xml requests and responses Page 14 Return to Table of Contents

Chapter 9. xml requests and responses
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 357

xml requests and responses

Q: What is CSV again?

A: CSV stands for comma-separated
values. It just means that several values
are put together into a single string, with
commas separating each individual value.

Q: I’ve also heard about TSV. Is that
similar?

A: TSV refers to tab-separated values.
The idea is the same, but tabs are used
instead of commas. In fact, you can use
anything you want to separate the values: a
pipe symbol (|), an asterisk (*), or anything
else that’s a fairly uncommon character.

Q: Why do you need to use an
uncommon character to separate values?

A: If you use something common, like a
period or letter, that same character might
show up in your data. Then, your JavaScript
might split the data incorrectly, giving you
problems when you display or interpret that
data.

In fact, CSV is a bit dangerous because an
item description might have a comma in
it. In that case, you’d end up splitting the
description on the comma, and having all
sorts of problems.

Q: So is that why we shouldn’t use
CSV?

A: Good question. Frank, Jim, and Joe
are still debating the merits of CSV, but
you could always swap out those commas
for something else, and change your client
code to split on that new character instead
of commas. As for whether or not you should
use CSV, you may want to keep reading...

Q: What is setAttribute()? I’ve never
seen that before.

A: setAttribute() creates a
new attribute on an element. The method
takes two arguments: the name of the
attribute and its value. If there’s no attribute
with the supplied name, a new attribute is
created. If there’s already an attribute with
the supplied name, that attribute’s value
is replaced with the one you supplied to
setAttribute().

Q: What about childNodes? What’s
that?

A: childNodes is a property on
every DOM node. The property returns an
array of all the child nodes for that node.
So you can get an element’s children, for
example, and iterate over them or delete
them.

Q: So why did you iterate backwards
over the childNodes array?

A: That’s a tricky one. Here’s a hint to get
you thinking in the right direction: when you
call removeChild(), the node you
supply to that method is removed from its
parent immediately.
That also means that all references to that
now-removed node—say in an array full
of an element’s child nodes—have to be
updated. Without a child to point to, all the
child nodes that come after the removed
node have to be moved up in the array.

So if you iterated over an array like
childNodes from front to back,
removing nodes as you went, what would
happen?

Chapter 9. xml requests and responses Page 15 Return to Table of Contents

Chapter 9. xml requests and responses
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

358 Chapter 9

Jill: Sure, XML is easy. The server-side guys

shouldn’t have any problem with that at all. It’s

certainly a lot better than XHTML...

Frank: Yeah, I heard Joe was working on that. The

server guys couldn’t get him an XHTML response?

Jill: Well, they could’ve, but nobody wanted to.

XHTML is a mess to work with on the server, and it

changes all the time.

Frank: You know XHTML is just a flavor of XML,

right?

Jill: Sure, but lots of people and apps can use XML.

Dealing with a certain <div> with this id, or only

using <p>’s and not
’s... that’s pretty fragile.

Frank: No kidding. Well, I’ve got to rewrite my

callback, but let me know when the XML response is

ready, okay?

XML is pervasive in the
programming world. If
you respond in XML,
LOTS of different
applications can work
with that XML response.

Q: What do you mean, “XHTML is just a flavor of XML”?

A: A flavor of XML is like a specific implementation of XML, with certain
elements and attributes defined. So XHTML uses elements like html and p and
div, and then those elements are used along with attributes and text values. You
can’t make up new elements, but instead you just use the ones already defined.
With XML, you can define flavors like this—sometimes called XML vocabularies—
and extend XML for whatever your needs are. That’s why XML is so flexible: it can
change to match the data it represents.

Frank’s asked Jill for
some advice from a
server-side perspective.

xml is flexible

Chapter 9. xml requests and responses Page 16 Return to Table of Contents

Chapter 9. xml requests and responses
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 359

xml requests and responses

You use the DOM to work with XML,
just like you did with XHTML
Since XHTML is really a particular implementation of XML, it makes

sense that you can use the DOM to work with XML, too. In fact, the

DOM is really designed to work with XML from the ground up.

Even better, the request object you’ve been using to talk to the server has

a property that returns a DOM tree version of the server’s response. That

property is called responseXML, and you use it like this:

XML, XHTML... it shouldn’t make much difference to an
experienced DOM programmer like yourself. You’ve got two
assignments:

Draw a DOM tree for the XML response the server will send to Rob’s app
(the response is shown below).

Write a version of the displayDetails() callback in thumbnails.js that will
use the DOM to get the various parts of the server’s response, and update
the item’s details on Rob’s web page.

<?xml version="1.0"?>
<item id="itemCowbell">
 <description>Remember the famous "more cowbell" skit
 from Saturday Night Live? Well, this is the actual
 cowbell.</description>
 <price>299.99</price>
 <resources>
 <url>http://www.nbc.com/Saturday_Night_Live/</url>
 <url>http://en.wikipedia.org/wiki/More_cowbell</url>
 </resources>
</item>

The server can send an
unlimited number of
URLs for each item.

There will always be a single description and price element.

This id will match the id you

send the server in your requ
est.

var responseDoc = request.responseXML;

responseXML holds a DOM tree version of the server’s response.

Chapter 9. xml requests and responses Page 17 Return to Table of Contents

Chapter 9. xml requests and responses
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

360 Chapter 9

XML, XHTML... it shouldn’t make much difference to an
experienced DOM programmer like yourself. You had two
different assignments:

Draw a DOM tree for the XML response the server will send to Rob’s app
(the response is shown below).

<?xml version="1.0"?>
<item id="itemCowbell">
 <description>Remember the famous "more cowbell" skit
 from Saturday Night Live? Well, this is the actual
 cowbell.</description>
 <price>299.99</price>
 <resources>
 <url>http://www.nbc.com/Saturday_Night_Live/</url>
 <url>http://en.wikipedia.org/wiki/More_cowbell</url>
 </resources>
</item>

description

price
resources

299.99

Remember the famous “more
cowbell” skit from Saturday
Night Live? Well, this is the
actual cowbell.

url
url

http://www.nbc.com/Saturday_Night_Live/

http://en.wikipedia.org/wiki/More_cowbell

This is structured just
like an XHTML tree,
with everything coming
off of the root element.

id="itemCowbell"

item The item element has an
id, as well as child nodes.

return to the dom

Chapter 9. xml requests and responses Page 18 Return to Table of Contents

Chapter 9. xml requests and responses
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 361

xml requests and responses

Write a version of the displayDetails() callback in thumbnails.js that will
use the DOM to get the various parts of the server’s response, and update
the item’s details on Rob’s web page.

function displayDetails() {
 if (request.readyState == 4) {
 if (request.status == 200) {
 var detailDiv = document.getElementById("description");

 // Remove existing item details (if any)
 for (var i=detailDiv.childNodes.length; i>0; i--) {
 detailDiv.removeChild(detailDiv.childNodes[i-1]);
 }

 // Add new item details
 var responseDoc = request.responseXML;
 var description = responseDoc.getElementsByTagName("description")[0];

 var descriptionP = document.createElement("p");
 descriptionP.appendChild(
 document.createTextNode("Description: " + descriptionText));
 detailDiv.appendChild(descriptionP);
 var price = responseDoc.getElementsByTagName("price")[0];

 var priceP = document.createElement("p");
 priceP.appendChild(
 document.createTextNode("Price: $" + priceText));
 detailDiv.appendChild(priceP);
 var list = document.createElement("ul");
 var urlElements = responseDoc.getElementsByTagName("url");
 for (var i=0; i<urlElements.length; i++) {
 var url = urlElements[i].firstChild.nodeValue;
 var li = document.createElement("li");
 var a = document.createElement("a");
 a.setAttribute("href", url);
 a.appendChild(document.createTextNode(url));
 li.appendChild(a);
 list.appendChild(li);
 }
 detailDiv.appendChild(list);
 }
 }
}

Most of the code that works on the page itself is identical to the CSV version on page 354.

First, we get the
response in the form of
an XML DOM tree.

We can get the
<description> element,
and then get its first
child: a text node.
From there, we just get
the text node’s value.

Getting the price is the
same pattern: grab the
element, get its text,
and get that text
node’s value.

The big difference is
in how we handle the
response from the server.

We can get all the
<url> elements and
loop through each one.

Chapter 9. xml requests and responses Page 19 Return to Table of Contents

Chapter 9. xml requests and responses
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

362 Chapter 9

Test Drive
And now for an XML solution...
Open thumbnails.js, and make two more changes:

Update displayDetails() to match the XML
version of the callback shown on page 361.

11

In getDetails(), change the URL of the server-side
script to getDetailsXML.php.

22

How does the XML version of Rob’s online shop look?

This looks just like
the CSV version, but
it’s using XML and
the DOM.

xml test drive

Chapter 9. xml requests and responses Page 20 Return to Table of Contents

Chapter 9. xml requests and responses
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 363

xml requests and responses

p

p

You may not have known...
...that just as the browser sees your HTML as a DOM tree, web browsers

automatically convert any XML they have to deal with into DOM trees.
...that you can work with more than one DOM tree in the same JavaScript
function. For example, you can read an XML DOM tree and update an
HTML DOM tree, all at the same time.
 ...that HTML elements and XML elements are both just element nodes in

the DOM. There’s no difference between an XML type and an HTML type,
at least when it comes to the DOM.

...that the responseXML property always returns a DOM
document object, even if that object is a single element, or just a

single text node.

Rob wants data that changes
depending on the request.
If you ask the server for details about a guitar,
you’ll get a manufacturer and year. Clothing?
A manufacturer, sure, but also a size. And for
bands, you’ll get a band name, and possibly
the name of the individual in the band that
the item belonged to or is associated with.

How would you handle a changing response
from the server? And who’s better equipped
to handle this new requirement? Frank, with
his XML, or Jim, with his CSV?

Chapter 9. xml requests and responses Page 21 Return to Table of Contents

Chapter 9. xml requests and responses
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

364 Chapter 9

You can’t always know in
advance what the data
structure you get from the
server will look like.

And even if you do, that
format might change... at
anytime.

Frank: Yeah, I’ve got a lot of changes to make, too.

But I was thinking... Jim, how are you going to handle a

changing response with your CSV?

Jim: Well, I was thinking about that...

Joe: Hey, guys, I had an idea. You know I’ve been

doing some research—

Jim: So I think what I can do is assume that every

other value is a category, like “Description” or “Price.”

And the values after each category are the actual

category values, like the textual description, or 399.99,

or whatever.

Frank: Hmmm. Sounds a little hairy.

Jim: It’s not too bad. Except for cases where there’s

more than one value, like for those URLs? Then I think

I have to check for maybe a special character before

each category to indicate that it’s a multi-value category.

Joe: Listen, guys, I wanted to show you—

Frank: Wow, Jim, that’s nasty. Sounds like this latest

change from Rob is really going to be a pain.

Jim: Yeah, it kinda is. But what else can I do?

Frank, still set on XML.

Jim, struggling
with CSV.

Joe’s still
working with
innerHTML...
right?

xml is really flexible

Chapter 9. xml requests and responses Page 22 Return to Table of Contents

Chapter 9. xml requests and responses
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 365

xml requests and responses

Chapter 9. xml requests and responses Page 23 Return to Table of Contents

Chapter 9. xml requests and responses
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

366 Chapter 9

XML is self-describing
The thing that’s cool about XML is that you can create your

own vocabulary. XHTML is an XML vocabulary that’s specific

to displaying things on the web. But suppose we needed a

vocabulary for describing items, like at Rob’s online store.

But the format can’t be locked into elements like <price> or

<resources> because we want each item to define its own

categories. We might use something like this:

<?xml version="1.0"?>

<item id="item ID">

<category>

 <name>Label for this category</name>

 <value>The value to display for this category</value>

</category>

<category>

 <name>Name of the next category</name>

 <value>Next value</value>

</category>

 <category type="list">

 <name>Name of multi-valued category</name>

 <value>First value for this category</value>

 <value>Second value for this category</value>

 </category>

...

</item>

<item> is the root
element. It’s the
container for all
the <category>
elements, just like
the <html> element
in an XHTML file.

The <category> element
contains the label and value for
each bit of information we need
to display.

Every category
has a <name> and
a <value>. They
contain the actual
data we’ll display.

The XML can contain as many <category> elements as necessary. We don’t need to know how many there are or what they are in advance.

We can have multi-valued
categories, and even
indicate that with
an attribute on the
<category> element.

xml is self-describing

Chapter 9. xml requests and responses Page 24 Return to Table of Contents

Chapter 9. xml requests and responses
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 367

xml requests and responses

Here’s some more data from Rob’s inventory database:

Item ID: itemGuitar
Manufacturer: Gibson
Model: Les Paul Standard
Description: Pete Townshend once played this guitar while his own axe was in the
shop having bits of drumkit removed from it.
Price: 5695.99
URLs: http://www.thewho.com/
 http://en.wikipedia.org/wiki/Pete_Townshend

How would you represent this item’s details using the XML format from the last page?

Write your XML in
right here.

Chapter 9. xml requests and responses Page 25 Return to Table of Contents

Chapter 9. xml requests and responses
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

368 Chapter 9

Here’s some more data from Rob’s inventory database:

Item ID: itemGuitar
Manufacturer: Gibson
Model: Les Paul Standard
Description: Pete Townshend once played this guitar while his own axe was in the
shop having bits of drumkit removed from it.
Price: 5695.99
URLs: http://www.thewho.com/
 http://en.wikipedia.org/wiki/Pete_Townshend

Your job was to represent this in XML using the vocabulary from page 366.

<?xml version="1.0"?>
<item id="itemGuitar">

<category>
 <name>Manufacturer</name>
 <value>Gibson</value>

</category>
<category>

 <name>Model</name>
 <value>Les Paul Standard</value>

</category>
<category>

 <name>Description</name>
 <value>Pete Townshend once played this guitar while his own axe
 was in the shop having bits of drumkit removed from it.</value>

</category>
<category>

 <name>Price</name>
 <value>5695.99</value>

</category>
 <category type="list">
 <name>URLs</name>
 <value>http://www.thewho.com/</value>
 <value>http://en.wikipedia.org/wiki/Pete_Townshend</value>
 </category>
</item>

Most of this is just “fill in the blanks.” You drop in the name of a category and its value, and you’re all set.

The URLs are a list, so we have to set the
category type to “list.”

dynamic rock

Chapter 9. xml requests and responses Page 26 Return to Table of Contents

Chapter 9. xml requests and responses
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 369

xml requests and responses

Q: So the big deal about XML is that it
describes itself? That can’t be useful all
that often...

A: Actually, self-describing data is useful
in a number of situations, just like here, with
Rob’s online store. It’s pretty convenient to
be able to define elements and structure
that’s suited to your business.
Even better, XML is a standard, so tons
of people know how to work with it. That
means your vocabulary is usable by lots of
programmers, in client-side and server-side
programs.

Q: Wouldn’t it be easier to just make
up our own data format?

A: It might seem that way at first, but
proprietary data formats—ones that you
make up for your own use—can really cause
a lot of problems. If you don’t document
them, people may forget how they work.
And if anything changes, you need to make
sure everything is up-to-date: the client, the
server, the database, the documentation…
that can be a real headache.

Q: Okay, I get why we should use XML,
but doesn’t it become a “proprietary data
format” when we start declaring element
names?

A: No, not at all. That’s the beauty of
XML: it’s flexible. The server and the client
need to be looking for the same element
names, but you can often work that out at
run-time. That’s what’s meant by self-
describing: XML describes itself with its
element names and structure.

It’s time for the big finish (at least for now). Your job is to take what you’ve learned
about the DOM, server-side responses in XML, and the format from the last few
pages, and put it all together. Here’s what you’ve got to do:

Change your request URL to use getDetailsXML-updated.php. That script is in
with the other downloads for this chapter from Head First Labs.

Rewrite the displayDetails() callback to work with the XML vocabulary we’ve
been looking at. Remember, you may get more—or less—categories for
different items. And you’ve got to handle those list categories, too.

Test everything out! Once you’ve got everything working, turn the page to
claim your Les Paul (at least, that’s what we hope)!

Chapter 9. xml requests and responses Page 27 Return to Table of Contents

Chapter 9. xml requests and responses
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

370 Chapter 9

It’s time for the big finish (at least for now). Your job was to take what you’ve
learned about the DOM, server-side responses in XML, and the format from the
last few pages, and complete an updated version of the displayDetails() callback.

function displayDetails() {

 if (request.readyState == 4) {

 if (request.status == 200) {

 var detailDiv = document.getElementById("description");

 // Remove existing item details (if any)

 for (var i=detailDiv.childNodes.length; i>0; i--) {

 detailDiv.removeChild(detailDiv.childNodes[i-1]);

 }

 // Add new item details

 var responseDoc = request.responseXML;

 var categories = responseDoc.getElementsByTagName("category");

 for (var i=0; i<categories.length; i++) {

 var category = categories[i];

 var nameElement = category.getElementsByTagName("name")[0];

 var categoryName = nameElement.firstChild.nodeValue;

 var categoryType = category.getAttribute("type");

 if ((categoryType == null) || (categoryType != "list")) {

 var valueElement = category.getElementsByTagName("value")[0];

 var categoryValue = valueElement.firstChild.nodeValue;

 var p = document.createElement("p");

 var text = document.createTextNode(

 categoryName + ": " + categoryValue);

This is the same as
before. We start by
getting rid of any
existing content.

First up, we
get the
categories...

...and then get
the name and
type of each
category.

We can check
the type to
see if it’s a
list. If not...
...get the
value, create a
<p>, and add
text with the
category name
and value.

This gets
categories
with no type
attribute, or
a type with
a value other
than “list.”

two dom trees

Chapter 9. xml requests and responses Page 28 Return to Table of Contents

Chapter 9. xml requests and responses
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 371

xml requests and responses

 p.appendChild(text);

 detailDiv.appendChild(p);

 } else {

 var p = document.createElement("p");

 p.appendChild(document.createTextNode(categoryName));

 var list = document.createElement("ul");

 var values = category.getElementsByTagName("value");

 for (var j=0; j<values.length; j++) {

 var li = document.createElement("li");

 li.appendChild(

 document.createTextNode(values[j].firstChild.nodeValue));

 list.appendChild(li);

 }

 detailDiv.appendChild(p);

 detailDiv.appendChild(list);

 }

 }

}

 }

}

Things don’t look like they’re going so
well for Jim and his CSV solution.

This block
handles lists
of values.

First, we get
all the values.

For each value, we
add an to an
unordered list ().

Add both the list heading and the
list itself to the <div>.

Chapter 9. xml requests and responses Page 29 Return to Table of Contents

Chapter 9. xml requests and responses
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

372 Chapter 9

Test Drive
Test out the new, improved, more flexible version of Rob’s page.
Once you’ve got all your code updated, let’s take it for a spin, and show Rob what
we’ve come up with. Here’s what the page looks like now:

Be sure to change the URL in your getDetails() request function, too.

Beautiful... no
matter what the
XML sends, our page
displays it.

Multi-valued data works, too.

xml rocks

Chapter 9. xml requests and responses Page 30 Return to Table of Contents

Chapter 9. xml requests and responses
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 373

xml requests and responses

?
Which Data Format?” You’ve got to decide

which data format is best for the 5 examples below. Be careful: some are requests,
while others are responses. Good luck!

dd
d

n

Text or XML

<?php
require('lib.php');

function go() {
 $myVar = ...
 return ...
}
?>

Top 10 iTunes

downloads of

2007

<?php
require('lib.php');

function go() {
 $myVar = ...
 return ...
}
?>

Number of

hobbits that fit

in a Volkswagen

Request today’s

house blend

Play “When It

Falls” next

Update journal

with new entry

An
sw

er
s o

n
pa

ge
 3

77
.

Chapter 9. xml requests and responses Page 31 Return to Table of Contents

Chapter 9. xml requests and responses
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

374 Chapter 9

Rob’s thrilled with

the XML solution.

What’s Joe talking about?

 What ever happened to innerHTML?

 And how does he plan to top XML?

 Find the answers to these questions
 and more... all in Chapter 10.

It’s Joe,
recovered
from his
failures with innerHTML.

another contender?

Chapter 9. xml requests and responses Page 32 Return to Table of Contents

Chapter 9. xml requests and responses
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 375

xml requests and responses

Our original version put pre-formatted XHTML in this property:

We addded a
 element to the detailDiv to do this:

The browser puts the XML DOM into a property of this object:

This property of the request object contains text returned by the server:

This was our client in this chapter:

987654321

252423222120191817

161514131210

29

2826 27

4039

37 3836353433323130

46

4544434241

4847

XMLAcrostic
Take some time to sit back and give your right brain something

in the secret message.

The response to our request is generated here:

27 8 9 1 44 32 4 39 48 21 35 4

48 42 28 10 9 40 27 36 48 9 30

Chapter 9. xml requests and responses Page 33 Return to Table of Contents

Chapter 9. xml requests and responses
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

376 Chapter 9

Our original version put pre-formatted XHTML in this property:

We addded a
 element to the detailDiv to do this:

The browser puts the XML DOM into a property of this object:

This property of the request object contains text returned by the server:

This was our client in this chapter:

I N N E R H T L
98

M
7654321

F O R T

R E S P

M A

O N S E T
252423222120191817

161514131210

E X T

S
29

2826

E

27

R V E R S I ED

R E
4039

37 3836353433323130

Q U E S T

R
46

4544434241

O B
4847

XMLAcrostic
Take some time to sit back and give your right brain something
to do. Answer the questions in the top, then use the letters to

The response to our request is generated here:

-

X
27 8

M L
9

I
1

S
44

V
32

E
4

R
39

B
48

O
21

S
35

E
4

B
48

U
42

T
28

F
10

L
9

E
40

X
27

I
36

B
48

L
9

E
30

exercise solutions

Chapter 9. xml requests and responses Page 34 Return to Table of Contents

Chapter 9. xml requests and responses
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 377

xml requests and responses

?
which data format is best for the 5 examples below. Be careful: some are requests,
while others are responses. Good luck!

dd
d

n

Text or XML

<?php
require('lib.php');

function go() {
 $myVar = ...
 return ...
}
?>

Top 10 iTunes

downloads of

2007

<?php
require('lib.php');

function go() {
 $myVar = ...
 return ...
}
?>

Number of

hobbits that fit

in a Volkswagen

Request today’s

house blend

Play “When It

Falls” next

Update journal

with new entry

For all these
requests,
normal request
parameters
work fine.

XML is ideal for multi-valued responses.

A single
number is best
represented as
plain text.

Because the journal is probably structured information, XML might be a good choice, too.

Chapter 9. xml requests and responses Page 35 Return to Table of Contents

Chapter 9. xml requests and responses
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Table of Contents

Chapter 10. json... 1
Section 10.1. JSON can be text AND an object... 3
Section 10.2. JSON data can be treated as a JavaScript object.. 4
Section 10.3. So how do we get JSON data from the server's response?... 5
Section 10.4. JavaScript can evaluate textual data... 7
Section 10.5. Use eval() to manually evaluate text... 7
Section 10.6. Evaluating JSON data returns an object representation of that data.. 8
Section 10.7. JavaScript objects are ALREADY dynamic... because they're not COMPILED objects... 14
Section 10.8. You can access an object's members... and then get an object's values with those members............................... 15
Section 10.9. You need to PARSE the server's response, not just EVALUATE it.. 21

Chapter 10. json

Chapter 10. json
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

this is a new chapter 379

json10

SON of JavaScript

JavaScript, objects, and notation, oh my!

JavaScript Standard Object Notation

represent complex objects and mappings

send and receive

JSON

JavaScript, objects, and notation, oh my!

JavaScript Standard Object Notation

represent complex objects and mappings

send and receive

JSON

Chapter 10. json Page 1 Return to Table of Contents

Chapter 10. json
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

380 Chapter 10

Joe: I think we might have different definitions of flawless,

man. Two DOM trees to work with, and dealing with

whitespace in the server’s response?

Jim: That’s a good point, Frank. Did you even check for

whitespace nodes?

Frank: No, but that’s easy enough to add in—

Joe: And your code will get even more convoluted.

Frank: Hey, at least my code works. And that CSV stuff was

a total bust.

Jim: It worked great! At least... well, it worked pretty well

until we had data where the structure changed depending on

the item.

Joe: So you’ve got broken CSV, or convoluted XML. What a choice! Good thing

there’s another option.

Jim: What? What did you find?

Frank: This better not be another innerHTML fiasco...

Joe: I found JSON!

Jim and Frank: JSON? What the heck is that?

Joe: JSON is JavaScript Standard Object Notation. It’s a way to represent a JavaScript

object in plain text. So the server can send us JSON—which is just text, no XML or

DOM issues to deal with—and our JavaScript can work with that response as an object.

Jim: What’s the big deal about that?

Frank: Hmm. Well, if Joe’s really onto something—

Joe: I am!

Frank: —then you wouldn’t need all this DOM stuff, or even split() and other

text manipulation code. You could just say, for example, var description =
itemDetails.description. That would be pretty cool.

Joe: Look, here’s how it works...

Jim

Frank, of XML fame in Chapter 9.

Joe, with
some new,
amazing idea.

data format debate

Chapter 10. json Page 2 Return to Table of Contents

Chapter 10. json
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 381

json

Suppose you had an item’s ID, description, price, and a list of
URLs for that item. What do you think an object representing that
information might look like? Draw a circle for the object below, and
then add in whatever fields you think the object might have.

JSON can be text AND an object
With CSV, comma-separated values, the CSV data was pure text.

The server sent over the text, and our JavaScript had to use string

manipulation routines like, split(), to turn the string into

individual pieces of data.

With XML, the server sent text over, too, but that text was self-

describing. So we could get a DOM representation of the text

using the request object’s responseXML property. But then we

had to use all those DOM methods to work with the object, instead

of actual property names like description or urls.

But suppose we had a way to get text from the server, and then

treat that text as a JavaScript object. Instead of using string

manipulation or DOM methods, we’d just use code like item.
description or itemDetails.urls. In other words,

we’d have a format that was represented as text for easy network

transmission, but an object when we needed to work with the data.

Web server

CSV

Web server

XML

itemDetails = response.split(",");

responseDoc = request.responseXML;

Web server

JSON

description = item.description;

Chapter 10. json Page 3 Return to Table of Contents

Chapter 10. json
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

382 Chapter 10

Suppose you had an item’s ID, description, price, and a list of URLs for that
item. Your job was to draw what you thought an object representing that
information might look like.

id
description

urls
urlurlurlurl

We figured the
object might best be
called itemDetails, or
something similar. It
doesn’t represent an
item, but information
about the item.

itemDetails

id, description, and price are just
properties of the object.

urls is a list, where each item in
the list is an individual URL.

JSON data can be treated as a
JavaScript object
When you get JSON data from a server or some other source,

you’re getting text... but that text can easily be turned into a

JavaScript object. Then, all you need to do is access that object’s

fields using dot notation. Dot notation just means you put the

object name, and then a dot, and then a field name, like this:

var weakness = superman.weakness;
For instance, suppose you had an object like the one shown in the

solution above. How do you think you’d access the value of the

description field?

If you’re looking at your answer, and thinking it’s too simple, then

you’ve probably got things just right. Working with JavaScript

objects is about as easy as it gets.

Don’t worry... we’re going to talk about how to get the JSON data from the server in a minute.

price

json is javascript

Chapter 10. json Page 4 Return to Table of Contents

Chapter 10. json
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 383

json

So how do we get JSON data from
the server’s response?
When a server sends its response as JSON data, that data comes
across the network as text. So you can get that data using the
responseText property of your request object:

var jsonData = request.responseText;

Let’s see exactly what the server responds with... then, we
can figure out how to turn that response into something we
can work with.

Download the examples for Chapter 10, which include a JSON-
specific version of the server-side script, as well as a JSON
library that script uses.

Change the request URL in getDetails() (in thumbnails.js)
to point to the JSON-specific script, getDetailsJSON.php.
Everything else about the request should stay the same.

Get the textual response from the server, and display it using
an alert() or some other JavaScript output function. What does
the response look like?

Chapter 10. json Page 5 Return to Table of Contents

Chapter 10. json
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

384 Chapter 10

What did the server respond with? Does it look like a JavaScript object?

Download the examples for Chapter 10, which include a JSON-
specific version of the server-side script, as well as a JSON
library that script uses.

Change the request URL in getDetails() (in thumbnails.js)
to point to the JSON-specific script, getDetailsJSON.php.
Everything else about the request should stay the same.

Get the textual response from the server, and display it using
an alert() or some other JavaScript output function. What does
the response look like?

var url= "getDetailsJSON.php?ImageID=" + escape(itemName);

This is the line we used from
getDetails() that requests
a response from the JSON
server-side script.

alert(request.responseText);
We added this line into the displayDetails() callback.

Here’s what we got reloading
the inventory page, and
clicking on the guitar image.

What the heck is this? And what do we DO with it?

first look at json

Chapter 10. json Page 6 Return to Table of Contents

Chapter 10. json
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 385

json

JavaScript can evaluate textual data
JavaScript is pretty good at turning text into objects, functions, and

lots of other things. You can give JavaScript some text, and it’s

smart enough to figure out what that text represents.

For example, remember how we’ve been assigning event handlers?

image.onclick = function () {

 var detailURL = 'images/' + this.title + '-detail.jpg';

 document.getElementById("itemDetail").src = detailURL;

 getDetails(this.title);

}

It looks like we’re assigning a textual description of a function to the image’s onclick event.

JavaScript takes this textual function, and creates an actual function

in memory. So when an image is clicked, the function code sitting in

memory is executed. That all happens behind the scenes, though, and

isn’t something you need to worry about.

But what about when you have text, and you need to TELL JavaScript

to turn it into something more than text?

{"id":"itemGuitar",

 "description":"Pete Townshend once played this guitar ...",

 "price":5695.99,

 "urls":["http://www.thewho.com/",

 "http://en.wikipedia.org/wiki/Pete_Townshend"]}

This response from the
server looks like it’s a bunch
of property names and
values... but how can we tell
JavaScript to turn this into
something we can use?Use eval() to manually evaluate text

The eval() function tells JavaScript to actually evaluate text. So

if you passed the text describing a statement to eval(), JavaScript

would actually run that statement, and give you the result:

alert(eval("2 + 2"));

4JavaScript evaluates the
text “2 + 2”...

...and turns it into the
statement 2 + 2...

...and evaluates that expression,
returning the result.

Chapter 10. json Page 7 Return to Table of Contents

Chapter 10. json
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

386 Chapter 10

Evaluating JSON data returns an
object representation of that data
So how does this apply to JSON data? Well, when you run eval()
on text that describes a set of property names and values, then

JavaScript returns an object representation of those properties and

values. Suppose you ran eval() on this text:

{"id":"itemGuitar",

 "description":"Pete Townshend once played this guitar ...",

 "price":5695.99,

 "urls":["http://www.thewho.com/",

 "http://en.wikipedia.org/wiki/Pete_Townshend"]}

JavaScript figures, “Hey, this looks like an object.” So it turns this data

into an actual object, and returns that object:

id = "itemGuitar"

description = "Pete Townshend once
played this guitar..."

urls
http://www.thewho.com/

itemDetails

http://en.wikipedia.org/wiki/Pete_Townshend

Each name/value gets turned into a property of a new object.

The urls array gets turned
into a property with an
array holding its values.But there’s one catch...

It looks like the object JavaScript creates from a JSON response is perfect for

Rob’s rock inventory page. There’s just one thing to watch out for. You need to

make sure that the overall JSON response string is seen as a single object. So

when you call eval(), wrap the whole response in parentheses, like this:

eval(JSON data string'(' ')');+ +

This last parentheses closes the eval() statement.

Enclosing the entire text in
parentheses says to JavaScript:
“Treat this all as ONE THING.”

eval() json data

Chapter 10. json Page 8 Return to Table of Contents

Chapter 10. json
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 387

json

You’ve got a script that returns JSON data, and now you know how to convert that response into
an object. All that’s left to do is use that object in your callback. Open up thumbnails.js, and see
if you can rewrite displayDetails() to convert the JSON data from the server into an object, and
then use that object to update Rob’s inventory page.

Q: Do I need any special libraries to
read JSON data?

A: No. eval() is built into JavaScript,
and it’s all you need to turn JSON data into a
JavaScript object.

Q: Why should I mess with eval()?
Couldn’t I just parse the raw text from the
server?

A: You could, but why bother? eval()
turns all that text into a very simple object,
and you can avoid counting characters and
messing with split().

Q: eval() just stands for evaluate,
right?

A: Right. eval() evaluates a string.

Q: So eval() runs a piece of text?

A: Well, not always. eval() takes a
string, and turns it into an expression. Then,
the result of that expression is returned.
So for a string like “2 + 2”, the expression
would be 2 + 2, and the result of that
expression is 4. So 4 is returned from
eval("2 + 2");
But take a string like ‘{“id”:”itemGuitar”,”price

”:5695.99”}.’ Turning that into an expression
and executing the expression results in
a new object, not a specific “answer.” So
sometimes eval() doesn’t really run text
as much as it evaluates (or interprets) text.

Q: What are those curly braces around
everything in the server’s response?

A: JSON data is enclosed within curly
braces: { and }. It’s sort of like how an
array is enclosed within [and]. It’s just a
way of telling JavaScript, “Hey, I’m about to
describe an object.”

Q: And each name/value pair in the
text becomes a property of the object and
a value for that property?

A: Right. The text “id”:”itemGuitar” in
an object description tells JavaScript that
there’s an id property, and the value of that
property should be “itemGuitar.”

Q: What about the urls property? That
looks sort of weird.

A: urls is an array. So the property name
is “urls,” and the value is an array, indicated
by those opening and closing square
brackets ([and]).

Chapter 10. json Page 9 Return to Table of Contents

Chapter 10. json
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

388 Chapter 10

You’ve got a script that returns JSON data, and now you know how to convert that response into
an object. Your job was to use that object in your callback. How did you do?

function displayDetails() {
 if (request.readyState == 4) {
 if (request.status == 200) {
 var detailDiv = document.getElementById("description");

 // Remove existing item details (if any)
 var children = detailDiv.childNodes;
 for (var i=children.length; i>0; i--) {
 detailDiv.removeChild(children[i-1]);
 }

 // Add new item details
 var descriptionP = document.createElement("p");
 descriptionP.appendChild(
 document.createTextNode("Description: " + itemDetails.description));
 detailDiv.appendChild(descriptionP);
 var priceP = document.createElement("p");
 priceP.appendChild(
 document.createTextNode("Price: $" + itemDetails.price));
 detailDiv.appendChild(priceP);
 var list = document.createElement("ul");
 for (var i=0; i<itemDetails.urls.length; i++) {
 var url = itemDetails.urls[i];
 var li = document.createElement("li");
 var a = document.createElement("a");
 a.setAttribute("href", url);
 a.appendChild(document.createTextNode(url));
 li.appendChild(a);
 list.appendChild(li);
 }
 detailDiv.appendChild(list);
 }
 }
}

Here’s where we ask JavaScript
to convert the server’s
response into an object.

Most of this
code to update
the display of
the page itself
is identical to
the XML version
from Chapter 9.

There’s no need for using DOM to get values from the server with JSON.

Getting the details about
each item is really simple now.

This code is a bit shorter than the XML version, and only uses one DOM. Do you think this version is better or worse than the XML version?

Remember these extra parentheses!

json in action

Chapter 10. json Page 10 Return to Table of Contents

Chapter 10. json
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 389

json

itemDetails = {
"id" : "itemShades",

 "description" : "Yoko Ono's sunglasses. ..
.",

 "price" : 258.99,
 "urls" : ["http://www.beatles.com/",

 "http://www.johnlennon.com/",

 "http://www.yoko-ono.com/"]

}

Q: This is all just about a data format, right?

A: That’s right. Any time you send information between your web
page and a server, you’re going to need some way to format that
information. So far, we’ve used plain text to send requests, and text
and XML to retrieve responses. JSON is just one more way to send
data back and forth.

Q: If we’ve already got XML and text as options, why do we
need JSON?

A: Since JSON is JavaScript, it’s often a lot easier for both
JavaScript programmers and browsers to work with. Also, because
JSON creates a standard JavaScript object, it winds up looking more
like a “business object” that combines data and functionality, instead
of an untyped XML DOM tree. You can create similar objects from an
XML response, but it requires a lot of additional work, with schemas
and databinding tools.

Q: So JSON does things XML can’t do?

A: It’s not so much that it does more; JSON actually does fewer
things than XML. But what JSON does, it does simply and elegantly,
without a lot of the overhead that XML requires to do all the bazillion
things a more fully-featured markup language was designed to
handle.

Q: Can we go back to syntax? I’m still a little fuzzy on the
textual representation of an item. Can you explain how that’s
working again?

A: The curly braces, { and }, define an object, which is an
unordered set of name/value pairs. Square brackets, [and],
indicate an ordered array. In your code, you reference elements
inside curly braces by their name, but the ones inside square
brackets are referenced by number. Here’s a closer look:

The opening brace
indicates that there
is an unordered set of elements in the object.

We’re creating an object
called itemDetails.

The bracket
indicates the
start of an array.

You access the elements
of the array using the
name of the array
and the index for the
element that you want.

itemDetails.urls[0]

itemDetails.urls[1]

itemDetails.urls[2]
itemDetails.description

Values in curly braces
are accessed by their
property name, after
the object name.

itemDetails.price

Chapter 10. json Page 11 Return to Table of Contents

Chapter 10. json
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

390 Chapter 10

Test Drive
But does JSON actually impress Rob?
The code looks a bit simpler, and there’s one less DOM to work with. But does the

JSON version of Rob’s inventory page actually work? Change your callback to match

the version on page 388, update your request URL to getDetailsJSON.php, and

try out the new version of the inventory page.

This looks just like the XML version... but it uses JSON as the data format. One more choice for Rob to look at...

Be sure you
have JSON.php
along with the
JSON server-
side script.

The server-side scripts for this
chapter require JSON.php,
which comes with this chapter’s
downloads. Be sure you have
all those files before going on.

JSON.php is used by the
server-side script in this
chapter. It handles some
PHP-specific issues that make
dealing with JSON easier on
the server.

test drive

Chapter 10. json Page 12 Return to Table of Contents

Chapter 10. json
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 391

json

Frank: You’re right! His JSON code doesn’t really help much in
that case. His code depends on knowing the names of the object’s
properties.

Jim: Exactly. And there’s no way it works with dynamic item
descriptions, where the property names change.

Frank: Hmmm. You know, I was able to solve that problem with
XML. I wonder if Joe—

Jim: No way, man. You’ve always read the name of properties from
your element’s tag names. His code has the property names as part
of the code... they’re not even parameters to search methods like
getElementsByTagName().

Frank: You’re right. I’ll bet this will hang him up pretty good.

Frank, who thought
he had the Les Paul
guitar in the bag.

Jim just doesn’t want to see Joe win.

Chapter 10. json Page 13 Return to Table of Contents

Chapter 10. json
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

392 Chapter 10

JavaScript objects are ALREADY dynamic...
because they’re not COMPILED objects
In compiled languages, you define your objects in a source file, like a .java or

.cpp file. Then, you compile those files into bytecode. So once your program’s

running, you’re stuck with the definitions that are compiled into bytecode.

In other words, a Car object can’t suddenly have a new manufacturer
property without recompilation. That lets everyone who’s using the Car object

know what to expect.

JavaScript, however, isn’t compiled; it’s interpreted. Things can change at

any time. Not only that, but the objects the server sends are created at runtime,

using eval(). So whatever’s sent to our JavaScript, that’s what we get in the

itemDetails object.

var itemDetails = eval('(' + request.responseText + ')');

id
description

urls
urlurlurlurl

itemDetails price

id
description

urls
urlurlurlurl

itemDetails
price

id

description

urls
urlurlurlurl

itemDetails

price

manufacturer
model

worn by
person
person
person

colorThis is the object we’ve been
using so far... basic properties
that apply to all items.

This object has a new color property and a new “worn by” property with an array of values.

This version of itemDetails

has two new properties:
manufacturer and model.

eval() doesn’t need to know what kind of
object it’s creating ahead of time. It just
evaluates the text you give it.

We don’t need to change our object at all! We just
 need to know how to figure out what’s IN the object.

.cpp
is for
C++
code.

javascript is interpreted

Chapter 10. json Page 14 Return to Table of Contents

Chapter 10. json
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 393

json

You can access an object’s members... and then
get an object’s values with those members
JavaScript will tell you what properties an object has. You just have to ask it, using the

for/in syntax. Suppose you’ve got an object called itemDetails, and you want to

know what properties itemDetails has. You’d use this code to get those properties:

for (var property in hero) {
 alert("Found a property named: " + property);
}

Pretty simple, right? So the variable property would have values like id,

description, price, and urls.

But we don’t want just the property names; we also want the values for

each property. That’s okay, though, because JavaScript lets you access an

object’s properties as if the object were an array. But instead of supplying

an array index, like itemDetails[0], you supply a property name, like

itemDetails["price"].

In other words, the value returned for itemDetails["price"] for an

object is the value of the property named price in that object.

id
description

urls
urlurlurlurl

itemDetails price

itemDetails["id"]

itemDetails["description"]

itemDetails["price"]

itemDetails["urls"][0]
itemDetails["urls"][1]

itemDetails["urls"][2]
itemDetails["urls"][3]

These lines of code return the
values of the matching properties in the itemDetails object.

The value of itemDetails[“urls”]
is an array...

...which can then be accessed by numeric index.

You know what to do. Update your version of the inventory page to work with dynamic data from
the server. You never know what you’ll get... just that the server will return an object in JSON
format with properties and values for those properties. Good luck!

Chapter 10. json Page 15 Return to Table of Contents

Chapter 10. json
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

394 Chapter 10

Ready Bake
Codefunction isArray(arg) {

 if (typeof arg == 'object') {

 var criteria = arg.constructor.toString().match(/array/i);

 return (criteria != null);

 }

 return false;

}

Arrays are all considered objects
by JavaScript.

If the argument isn’t an
object, it’s not an array.

All arrays have a constructor
with the word “array” in that
constructor.

Any object that has that constructor is an array.

JavaScript does NOT give you a built-in
way to see if a value is an array.
Dealing with dynamic data is tricky business. For

instance, when you write in your code itemDetails.
urls, you know that the value for that property will

be an array. But what about itemDetails[proper
tyName]? Is the value for that property an array or a

single value, like a string?

Unfortunately, JavaScript doesn’t give you a simple way

to check and see if a value is an array. You can use the

typeof operator, but even for arrays, typeof returns

“object,” and not “array” like you might expect.

To help you out, here’s a little Ready Bake Code that

will tell you if a value is an array or not. Add this

function to the end of thumbnails.js, and then

see if you can finish up your exercise from the last page.

Add this entire function to the
end of thumbnails.js.

isArray() returns
true if you pass it
an array value, and
false if you pass it
something else, like
a string value.

The “i” at
the end
means ignore
case.

is it an array?

Chapter 10. json Page 16 Return to Table of Contents

Chapter 10. json
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 395

json

You know what to do. Update your version of the inventory page to work with dynamic data from
the server. You never know what you’ll get... just that the server will return an object in JSON
format with properties and values for those properties. How did you do?

function displayDetails() {
 if (request.readyState == 4) {
 if (request.status == 200) {
 var detailDiv = document.getElementById("description");

 var itemDetails = eval('(' + request.responseText + ')');
 // Remove existing item details (if any)
 var children = detailDiv.childNodes;
 for (var i=children.length; i>0; i--) {
 detailDiv.removeChild(children[i-1]);
 }

 // Add new item details
 for (var property in itemDetails) {
 var propertyValue = itemDetails[property];
 if (!isArray(propertyValue)) {
 var p = document.createElement("p");
 p.appendChild(
 document.createTextNode(property + ": " + propertyValue));
 detailDiv.appendChild(p);
 } else {
 var p = document.createElement("p");
 p.appendChild(document.createTextNode(property + ":"));
 var list = document.createElement("ul");
 for (var i=0; i<propertyValue.length; i++) {
 var li = document.createElement("li");
 li.appendChild(document.createTextNode(propertyValue[i]));
 list.appendChild(li);
 }
 detailDiv.appendChild(p);
 detailDiv.appendChild(list);
 }
 }
 }
 }
}

Nothing’s changed in this section... this just clears out existing content.

We can cycle through each
property of the returned object.

Start by getting the property’s value
and seeing if that value is an array.

Single-valued
properties are easy.
We just need a <p>
and some text.

For multi-valued
properties, we have to
iterate through the
array of property values.

For each value in the array, create a new and add the value to it.

Remember to
add isArray()
to your code, or
this JavaScript
won’t work.

Chapter 10. json Page 17 Return to Table of Contents

Chapter 10. json
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

396 Chapter 10

Test Drive
JSON testing, part deux
Now our code handles dynamic objects, values that might be strings or arrays, and
should run like a dream. Let’s see the new-and-improved JSON page...

Everything works... do you think Rob will be impressed?

it is an array!

Chapter 10. json Page 18 Return to Table of Contents

Chapter 10. json
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 397

json

Good property names aren’t usually
good label names, too.
Take a close look at the property names for an item’s

description:

These don’t
look too great.

We’ve been printing out the property name and then the value

for that property. But those property names look more like code

than “human speak.”

Not only that, but the ID of each item is showing, too. That

could wind up being a real security bug down the line.

What would YOU do to fix these problems?

Chapter 10. json Page 19 Return to Table of Contents

Chapter 10. json
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

398 Chapter 10

Joe: Well, yeah, that’s kind of the point.

Frank: Do you really think that’s a good idea? Just running code
that someone else gave you?

Joe: I’m not running it, I’m evaluating it. Haven’t you been paying
attention?

Jim: Someone’s getting cranky that their JSON solution isn’t so
easy...

Frank: Whether JSON’s easy or not, you can’t just evaluate that
code blindly. What if it’s malicious code, like a script that hacks
the user’s browser or something? Or it redirects their browser to a
porn site?

Joe: Are you kidding me? It’s Rob’s server, for crying out loud!

Frank: What if it’s not correct JSON? What if there’s an error?
Evaluating code with an error in it is going to generate errors for
the users?

Jim: Sounds pretty dismal, Joe...

Joe: You’re both just annoyed that I was gonna win that guitar.

Frank: Hey, safety first, man. I’m telling you, you can’t go around
using eval() on code that you don’t have any control over.

Joe: Great. Now what am I gonna do?

eval() evaluates
what you give it,
WITHOUT regard
for the results of
that evaluation.

You ONLY have
direct control of
eval() code.

be careful with eval()

Chapter 10. json Page 20 Return to Table of Contents

Chapter 10. json
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 399

json

You need to PARSE the server’s
response, not just EVALUATE it
Calling eval() initiates a simple process: take a bit of text, and

evaluate that text. What we need is an additional step. Suppose we

could take a bit of text, and make sure it’s actually JSON-formatted

data. Then, we could reasonably assume it’s safe to evaluate that data,

and turn it into a JavaScript object.

That extra step—parsing the data and making sure the data is JSON—

protects us from two important potential problems:

var itemDetails = JSON.

You still need to assign the
result of calling the parse()
function to a variable.

parse(

This JSON object is
created when json2.js
is first loaded by the
web browser.

parse() takes in a string and
returns an object if the string is valid JSON-formatted data.

We can pass the server’s response
directly to JSON.parse().

We’ll know that the data is safe to evaluate, and not a

malicious script or program.

11

We can be sure that not only is the data JSON, but it’s correctly
formatted JSON and won’t cause our users any errors.

22

Fortunately for Joe (and us!), the JSON website at

http://www.json.org provides a JSON parser that does all of

these things, and more. You can download a script from json.org called

json2.js, and then use this command to parse JSON-formatted data:

JavaScript code, or other
scripts, won’t pass a simple,
“Is this JSON?” test.

A parser can catch errors and report them, instead of just giving up and creating an error.

);

Change your code to use JSON.parse().

The examples for Chapter 10 already include json2.js in

the scripts/ directory. Add a reference to this new script in

inventory.html, and update your version of thumbnails.js
to use JSON.parse() instead of eval().

Put the reference to json2.
js before the reference
to thumbnails.js since the
thumbnails script uses the
json2 script.

Chapter 10. json Page 21 Return to Table of Contents

Chapter 10. json
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

400 Chapter 10

There’s still lots to do. Can YOU help Joe out?

Can you make Rob’s inventory page even cooler using JSON?
Build your best version of Rob’s page, and submit your URL in the
Head First Labs “Head First Ajax” forum. We’ll be giving away
cool prizes for the best entries in the coming months.

Visit us here, tell us about your entry,
and give us a URL to check out what
you’ve done (and how).

more challenges!

And besides all that, how do YOU think Rob’s inventory page
could be improved?

Don’t forget to use a JSON parser, instead of eval()!

How could you avoid showing the ID of an item when a user
clicks on that item?

What about those labels? Can you figure out a way to show
better, more- readable labels?

What about those URLs? Can you figure out a way to format
URLs as links (using <a> elements) so they’re clickable?

Chapter 10. json Page 22 Return to Table of Contents

Chapter 10. json
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 401

json

Q: So I shouldn’t ever use eval()?

A: eval() is an important part of
JavaScript. If you need to pass textual data
to another function for evaluation, or even
between scripts, eval() is really helpful.
However, eval() can be a problem when
you’re evaluating data that you can’t control,
like from someone else’s program or server.
In those cases, you won’t know ahead of
time exactly what you’re evaluating. So in
situations where you’re not in control of all
the data, stick to a parser or some other
approach other than eval().

Q: But a JSON parser keeps my code
safe, right?

A: A JSON parser keeps your code safer
than eval(), but that doesn’t mean you
can completely relax. When you’re writing
web code, security is always an issue. In
the case of JSON data, JSON.parse()
will ensure you’ve got valid JSON data, but
you still don’t know what that data actually
is. So you may still need additional checks
before using the data in the rest of your
scripts.

Q: We didn’t do any checks like that
for Rob’s page. Should we?

A: That’s a good question. When you’re
reworking the app to help out Joe, think
about the data you’re getting. Could it be
used maliciously? Do you think you need
additional security checks?

Q: What about that json2.js script?
Can I trust and rely on that code?

A: Now you’re thinking like a web
programmer! Anytime you use code from
another source, like from http://www.
json.org, you should thoroughly test out
the code. We’ve done that testing here at
Head First Labs, and json2.js is safe
to use.

Q: Is it free, too? Do I have to pay
anyone anything to use json2.js?

A: json2.js is free and open
source. You can actually read through the
source code at http://www.json.
org/json2.js, and see what it does
for yourself.

Q: So what about XML versus JSON?
Which is better? And who won the guitar?

A: That’s another good question. You’ve
seen a lot of JSON and XML code now...
which do you like best?

Security is ALWAYS
a concern when
you’re programming
for the web.

Always thorougly
test any code that
you don’t have
complete control over.

Chapter 10. json Page 23 Return to Table of Contents

Chapter 10. json
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

402 Chapter 10

So which is the better data format?

Joe: I know about lots of things I don’t like. Brussel
sprouts, Melrose Place, velcro shoes... just because I know
about something, doesn’t mean I like it!

Frank: I just don’t see what you really gain by using
JSON. Maybe it’s a little easier for you to use, but it’s a
pretty big pain when you get to dynamic data.

Jim: I don’t know, Frank... I got really confused dealing
with 2 DOMs at once.

Frank: But XML is self-describing! We didn’t have any
of those property-names-as-labels issues with XML.

Joe: I still think JSON lets me think in JavaScript, not
some other language.Joe: JSON

Frank: XMLJim: Completely
down on CSV

time to choose

Chapter 10. json Page 24 Return to Table of Contents

Chapter 10. json
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 403

json

What do YOU think? Below are two columns: one for XML, and
one for JSON. Under each heading, write why you think that
format is better. See if you can come up with at least 5 good
arguments for XML, and 5 more for JSON.

XML JSON

Chapter 10. json Page 25 Return to Table of Contents

Chapter 10. json
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

404 Chapter 10

Tonight’s talk: XML and JSON go head-to-head on data
formats and standardization

XML:
(glares at JSON)

I’ve heard that one before... but here I am, still the

reigning data format in the world.

I’m big because I can handle anything: product

memorabilia, HTML, purchase orders... you throw

it at me, I’ll take care of it. No problem. You think a

little pipsqueak can handle all those different types

of data? I don’t think so.

I’m plenty fast, especially if you use my attributes.

And I’m versatile... I can do all sorts of things, like

represent a math equation or a book.

But can someone transform you into something

else? Like with XSLT? Or what about web services...

you’re gonna tell me you can handle web services?

JSON:

Your time has finally come, XML. Tonight, the

world is gonna see that you’ve lost a step, especially

when it comes to JavaScript and asynchronous

applications.

You’re only at the top because people think that

there’s nothing else available. I know lots of people

that can’t stand you, XML... you’re big and bloated,

and a real pain to work with.

Maybe not, but I’m fast... a lot faster than you, most

of the time.

Yeah, well, most of my users aren’t too interested in

sending math equations across the network. Besides,

all those angle brackets? Ugh... anyone that knows

arrays can start working with me without having to

learn all that weird XML syntax.

xml vs. json

Chapter 10. json Page 26 Return to Table of Contents

Chapter 10. json
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 405

json

Uh, yeah. Hello? We’ve got a whole group of DOM

experts out there these days, writing killer user

interfaces. Did you see that Fifteen Puzzle? That

was pretty cool, and it was only about 100 lines of

code. Anyone that knows the DOM is ready to use

XML, today!

What are all the servers going to think about this?

You know, PHP and ASP.Net and Java... I don’t see

them lining up to throw their support to you and

your “lightweight data format” spiel.

Libraries? If they’ve got to use a library, why not use

a standard like the Document Object Model?

But here I am, being used right now, because I’m

already a standard. At the end of the day, you’re just

one more proprietary data format. Maybe you’ve

got a few more fans than comma-separated values,

but I’ll put an end to that.

Wow, you’ve really been a bit overused, haven’t

you... you’re missing the point, Bracket-Head. I

don’t care about all those things. I just care about

getting information from a web page to a server and

back, without a bunch of extra work... like having

to crawl up and down a DOM tree. Know anyone

who thinks that’s fun?

Look, all developers really need is a lightweight data

format that’s easy to work with in JavaScript. And

that’s me, Big Boy, not you.

Well, I guess that’s true... but there are libraries that

those guys can use to work with me.

I’m already standard in PHP 5. And who knows

who’s going to adopt me next?

Oh really? Let’s see about that...

XML: JSON:

Chapter 10. json Page 27 Return to Table of Contents

Chapter 10. json
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

406 Chapter 10

What do YOU think? Below are two columns: one for XML, and
one for JSON. Under each heading, write why you think that
format is better. See if you can come up with at least 5 good
arguments for XML, and 5 more for JSON.

XML JSON

Answers
obscured

intentionally

These are YOUR answers. It’s up to you to decide between JSON and XML, based on the factors that are important to you.
Hop online and continue the XML vs. JSON discussion at the Head First Ajax forum on http://www.headfirstlabs.com.

exercise... solution?

Chapter 10. json Page 28 Return to Table of Contents

Chapter 10. json
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Table of Contents

Chapter 11. forms and validation... 1
Section 11.1. Validation should work from the web page BACK to the server... 8
Section 11.2. You can validate the FORMAT of data, and you can validate the CONTENT of data.. 14
Section 11.3. Don't Repeat Yourself: DRY... 17
Section 11.4. Let's build some more event handlers... 20
Section 11.5. RETURN of SON of JavaScript... 24
Section 11.6. The value of a property can be another JavaScript object.. 24
Section 11.7. Let's warn Marcy's customers when there's a problem with their entry.. 27
Section 11.8. If you don't warn(), you have to unwarn()... 31
Section 11.9. IF there's a warning, get rid of it.. 31
Section 11.10. Duplicate data is a SERVER problem.. 37

Chapter 11. forms and validation

Chapter 11. forms and validation
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

this is a new chapter 407

forms and validation11

Say what you meant to say

Everyone makes mistakes from time to time.

mistakes

respond to those mistakes validate

validation data integrity

Everyone makes mistakes from time to time.

mistakes

respond to those mistakes validate

validation data integrity

Chapter 11. forms and validation Page 1 Return to Table of Contents

Chapter 11. forms and validation
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

408 Chapter 11

Marcy’s Yoga for Programmers...
a booming new enterprise
With her hip new site and super-fast response times, Marcy’s Yoga for
Programmers site has exploded. She’s got some of Silicon Valley’s highest-end
clientele signing up daily. She’s even added online enrollment, so once a potential
client finds the perfect class, they can sign up right away:

A lot of this
is standard
info... first and
last name, email,
date of birth.

Marcy also
wants to know
how long the
client has been
practicing yoga.

There’s a spot for biog
raphical

information, so Marcy can

target her classes and
 mailouts.

marcy’s big-time

Chapter 11. forms and validation Page 2 Return to Table of Contents

Chapter 11. forms and validation
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 409

forms and validation

Below are a few entries from Marcy’s ever-growing customer
database. There are some big problems... can you figure out
what they are?

firstname lastname email bday yrs bio
Smith

5
Smith

Jones Jane

com

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

How many
problems can
you spot with
this data?

Gerry MacGregor isn’t old enough to have been practicing yoga for 99 years.

Chapter 11. forms and validation Page 3 Return to Table of Contents

Chapter 11. forms and validation
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

410 Chapter 11

Below are a few entries from Marcy’s ever-growing customer
database. How many problems were you able to spot?

firstname lastname email bday yrs bio
Smith

5
Smith

Jones Jane

com

1. Susan Smith is registered twice.

2. Bob Brown didn’t give his email address.

3. The F0b#2938 entry is spam, not a real client.

4. Jane Jones entered in a website URL, not an email address.

5. Gerry MacGregor’s email isn’t valid... he probably left off .com or .org.

6. Gerry MacGregor couldn’t have been practicing yoga for 99 years.

7. Mary didn’t enter in a last name.

8. Everyone’s using a different format for their birthday.

9. There’s information missing for Jane Jones, Bob Brown, and Bill Bainfield.

10. Did you come
up with any
other problems?

spammy data

Chapter 11. forms and validation Page 4 Return to Table of Contents

Chapter 11. forms and validation
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 411

forms and validation

Based on the data that Marcy’s trying to gather, what sorts of things would you do to
ensure she isn’t having the sorts of problems you saw on the last couple of pages?

For each field below, write down what you think you need to check.

First name

Last name

E-Mail

Biography

Birthday

Years of Yoga

Chapter 11. forms and validation Page 5 Return to Table of Contents

Chapter 11. forms and validation
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

412 Chapter 11

Based on the data that Marcy’s trying to gather, what sorts of things
would you do to ensure she isn’t having the sorts of problems you
saw on the last couple of pages?

First name

Last name

E-Mail

Biography

Birthday

Years of Yoga

This should be a required field.

Names should only have letters.

This should be a required field.

Names should only have letters.

This should be a required field.

We also need to make sure it’s formatted like an e-mail.

This should be a required field.

This should be some sort of consistent format, like

 MM-DD-YY, or something similar.

This should be a required field.

This should be a number, and be less than the years the

 person has been alive (calculated from their birthday).

This should be a required field.

Maybe we need a length limit?

Do we allow initials?
That might mean we can
allow periods.

What about spaces? Those might be okay, too...

list the requirements

Chapter 11. forms and validation Page 6 Return to Table of Contents

Chapter 11. forms and validation
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 413

forms and validation

The owner of the page knows their
requirements better than you do.
No matter how good of a programmer you are,
you’re not an expert in your customer’s business. So
you probably won’t always make good assumptions
about things like required fields, the types of data
that can be entered, or the format of that data.

It’s best to come up with some basic ideas about
validation, and then confirm and expand those
ideas by talking to whomever actually owns the site
or business that the site represents.

The customer defines
the requirements,
not the programmer.

The best way to build a site
your customer loves is to build

the site the your customer actually
wants. Don’t make assumptions about
functionality... instead, ASK the customer
how they want things to work.

For Marcy’s site, Marcy is the customer, and you’re the programmer.

Q: Is this gonna be another one of those, “Not
really Ajax” chapters?

A: Yes and no. We’ll be spending most of the chapter
working on validation, not asynchronous requests. But
figuring out how to actually get accurate requirements
and validating data for those requirements applies to all
software development, not just Ajax apps.

Chapter 11. forms and validation Page 7 Return to Table of Contents

Chapter 11. forms and validation
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

414 Chapter 11

Validation should work from the web page
BACK to the server
Validation is usually a multi-step process. Some things you can catch by using

certain controls on your web page, like a select box instead of a text field. You

can catch other things with your client-side JavaScript, like the format of an

email field. And still other things might need to go to the server to get validated,

like seeing if a username’s already taken.

The most effective way to handle multi-layered validation like this is to always

validate as much as you can on the web page. Then, move to JavaScript, and

validate as much as you can there. Finally, involve the server.

Web page JavaScript Server
The server has access to the business
data of your app. So it can check data
consistency or perform other business
logic that requires interaction with other
data in the system.

Your client-side JavaScript
can check data formats,
ensure data’s entered
into fields, and prevent
submissions until a group of
fields have data in them.

A web page can constrain data
through specific controls, like
length-limited text boxes and
select boxes with only a few
appropriate options.

Do as much as you can here
to constrain data. Don’t
check for things in your
JavaScript that you can
restrict with form controls.

Try and never send the server
data that’s not formatted
correctly. Let the server
worry about business logic,
not formatting.

The server should focus on t
he

correctness of the data: b
ased

on existing data, is this ne
w

data correct and consisten
t?

Constraints Validity Consistency

request

Web Server

validation everywhere

Chapter 11. forms and validation Page 8 Return to Table of Contents

Chapter 11. forms and validation
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 415

forms and validation

<html>
<head>
 <title>Yoga for Programmers</title>
 <link rel="stylesheet" type="text/css" href="css/yoga-enroll.css" />
</head>
<body>
 <div id="background">
 <h1 id="logo">Yoga for Programmers</h1>
 <div id="content">
 <h2>Enroll</h2>
 <form action="process-enrollment.php" method="post">
 <fieldset><label for="firstname">First Name</label>
 <input name="firstname" id="firstname" type="text" /></fieldset>
 <fieldset><label for="lastname">Last Name</label>
 <input name="lastname" id="lastname" type="text" /></fieldset>
 <fieldset><label for="email">Email</label>
 <input name="email" id="email" type="text" /></fieldset>
 <fieldset><label for="birthday">Birthday</label>
 <input name="birthday" id="birthday" type="text" /></fieldset>
 <fieldset><label for="years">Years of Experience</label>
 <input name="years" id="years" type="text" /></fieldset>
 <fieldset><label for="bio">Biography</label>
 <textarea name="bio" id="bio"></textarea></fieldset>
 <fieldset class="nolabel">
 <input type="submit" id="enroll" value="Enroll" />
 </fieldset>
 </form>
 </div>
 </div>
</body>
</html>

Below is the XHTML for Marcy’s current version of the enrollment
form. What changes would you make, based on the things you
wrote down on page 412, along with Marcy’s comments?

Go ahead and mark your changes directly on the XHTML.

Chapter 11. forms and validation Page 9 Return to Table of Contents

Chapter 11. forms and validation
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

416 Chapter 11

<html>
<head>
 <title>Yoga for Programmers</title>
 <link rel="stylesheet" type="text/css" href="css/yoga-enroll.css" />
</head>
<body>
 <div id="background">
 <h1 id="logo">Yoga for Programmers</h1>
 <div id="content">
 <h2>Enroll</h2>
 <form action="process-enrollment.php" method="post">
 <fieldset><label for="firstname">First Name</label>
 <input name="firstname" id="firstname" type="text" /></fieldset>
 <fieldset><label for="lastname">Last Name</label>
 <input name="lastname" id="lastname" type="text" /></fieldset>
 <fieldset><label for="email">Email</label>
 <input name="email" id="email" type="text" /></fieldset>
 <fieldset><label for="birthday">Birthday</label>
 <input name="birthday" id="birthday" type="text" />
 <select name="month" id="month">
 <option value="">--</option>
 <option value="january">January</option>
 <option value="february">February</option>
 <!-- ... etc... -->
 </select>
 <select name="day" id="day">
 <option value="">--</option>
 <option value="1">1</option>

 <!-- ... etc... -->

Your job was to add constraints to the data Marcy collects from
her customers by changing her XHTML. What did you come up
with? Here’s what we did.

There are a fixed number of

values for birthday, so let’
s

not use a text box, which

allows bad entries.

Instead, we can use a select box for the month, and list the 12 possible month values...

...and another select for the
day of the month, with all the
possible day values.

Marcy told us she didn’t want a birth year, so we didn’t need to worry about that.

constrain your xhtml

Chapter 11. forms and validation Page 10 Return to Table of Contents

Chapter 11. forms and validation
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 417

forms and validation

 </select>
 </fieldset>
 <fieldset><label for="years">Years of Experience</label>
 <input name="years" id="years" type="text" />
 <select name="years" id="years">
 <option value="">--</option>
 <option>none</option>
 <option>less than 1</option>

 </select>
 </fieldset>
 <fieldset><label for="bio">Biography</label>
 <textarea name="bio" id="bio"></textarea></fieldset>
 <fieldset class="nolabel">
 <input type="submit" id="enroll" value="Enroll" disabled="disabled" />
 </fieldset>
 </form>
 </div>
 </div>
</body>
</html>

We can group the years of
experience into useful ranges,
and simplify things here, too.

We’re going to need some JavaScript validation, so
let’s disable the Enroll button... we know people
can’t enroll without filling out some fields, so
this protects the form from being submitted too
soon.

Chapter 11. forms and validation Page 11 Return to Table of Contents

Chapter 11. forms and validation
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

418 Chapter 11

Test Drive
See how many errors we can catch now...
Download or type in signup.html, and make the changes from page 416

and 417. Then load the page up in your browser. We’ve already knocked out a

few of the problems Marcy was having:

Birthday is now
a set of select
boxes, one for
month and one
for day.

Years of experience
is also a select
box with some
predefined choices.

The form can’t be submitted right away.

a little more validation...

Chapter 11. forms and validation Page 12 Return to Table of Contents

Chapter 11. forms and validation
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 419

forms and validation

Q: Are you kidding? This isn’t even JavaScript... it’s just
HTML. What gives?

A: It can definitely be a little boring to dig into XHTML if you’d
rather be writing JavaScript and asynchronous requests. Then again,
your coding gets a lot easier if you’ve got a good web page doing its
job.

Q: So I should use select boxes whenever possible?

A: When it comes to data entry, that’s a good principle. The more
invalid or poorly formatted data that comes to your JavaScript, the
more work your JavaScript has to do.

Q: What’s the big deal with doing all of this in my JavaScript,
and not messing with the XHTML web page?

A: Impatient customers are the big deal. It’s often easy for you
to code validation in your scripts, but customers don’t like error
messages. If you can make sure they enter data by using good
controls, customers are less likely to need error messages from your
validation code. That makes for a happier user experience, and that’s
always a good thing.

Q: Why did you disable the Enroll button in the HTML?
Haven’t we usually been doing that in an initPage() function, and
calling initPage() from window.onload?

A: In earlier chapters, we’ve used initPage() to disable
buttons, yes. You can certainly do the same thing here, or you can
set the button to disabled in the XHTML. There’s not a big difference
in either approach, really.

One slight advantage to disabling the Enroll button in your XHTML,
though, is that the XHTML now really does represent the initial state
of the page. In other words, initPage() doesn’t change the
form as soon as it loads. That makes the XHTML a more accurate
represention of the form at load-time. Still, it’s not a big deal if you’d
rather disable the button in an initPage() function.

Nobody enjoys an error
message that says, “Hey, you
screwed that up. Try again.”

Chapter 11. forms and validation Page 13 Return to Table of Contents

Chapter 11. forms and validation
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

420 Chapter 11

You can validate the FORMAT of data, and
you can validate the CONTENT of data
We’ve been using the term validation pretty loosely. At the user’s browser, we

might make sure that the user enters their first name and birthday. That’s one

form of validation. At the server, we might make sure that the user’s username

isn’t already taken. That’s another form of validation.

In the first case, you’re validating a data format. You might make sure that a

username is at least six characters long, or that there’s a value for the first name

field, or that an email address has an @ sign and a .com or .org in it. When

you’re validating a data format, you’re usually working with client-side code.

Validate the format of user data with JavaScript.
By using client-side code to validate data formats,
you can let users know of problems quickly, without
waiting on a server response.

Validate the content of user data on the server.
You’ll need your app’s business logic to see if the
content of user data is acceptable. Use server-side
programs to let users know of problems with what
they’ve entered.

Sometimes you’ve got to do more than just see how many characters a string

is, or make sure an entry is really a month of the year. You may need to check

data against your database to prevent duplicate entries, or run a computation

that involves other programs on your network.

In those cases, you’re validating the content of user data. And that’s not

something you can usually do at the client. You’ll need to send the data to

your server, and let programs on the server check out the data for validity.

Well-designed
applications
validate both the
FORMAT and
the CONTENT
of user data.

You need
BOTH types
of validation to
keep bad data
out of your apps
and databases.

format or content?

Chapter 11. forms and validation Page 14 Return to Table of Contents

Chapter 11. forms and validation
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 421

forms and validation

First name

Last name

E-Mail

Biography

Birthday

Years of Yoga

This should be a required field.

Names should only have letters.

This should be a required field.

Names should only have letters.

This should be a required field.

We also need to make sure it’s

 formatted like an e-mail.

This should be a required field.

This should be some sort of consistent format.

This should be a required field.

This should be a number.

This should be a required field.

Maybe we need a length limit?

Here’s our list of
validation requirements.

Marcy said we don’t need to require a birthday, bio, or the years they’ve been practicing yoga.

We’ve got
birthday in
a consistent
format by
using XHTML
select boxes.This isn’t a

number, but
it’s in a format
we control via
select boxes.

We need to validate the FORMAT of the

data from Marcy’s enrollment page

Let’s take another look at what we need to do to validate Marcy’s page. For each

field, we’re actually just validating the format of the data. That means we should

be able to do pretty much everything we need using JavaScript:

We can use JavaScript to validate the format of all of these
fields, but what exactly would you do next?

Chapter 11. forms and validation Page 15 Return to Table of Contents

Chapter 11. forms and validation
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

422 Chapter 11

Joe: Like checkFirstname() and checkLastname(), right?.

Jim: Right. Then we just register each event handler to the right

field, and boom, we’re good to go.

Joe: Perfect. So let’s—

Frank: Hang on a second, guys. I’m not sure that’s such a good

idea. Aren’t we doing the same checks on several different fields?

Jim: You mean like making sure a field has a non-empty value?

Yeah, that’s... ummm... first name, last name, and email.

Frank: Right. But aren’t we going to be repeating code in each one

of those event handlers if we’re doing the same checks for different

fields?

Joe: You know, he’s right. So maybe we need to have utility

functions, like fieldIsFilled(), and we can call those

from each event handler. So checkFirstname() and

checkLastname() could just call fieldIsFilled() to see if

those fields are empty.

Jim: Oh, that is better. So come one, let’s get—

Frank: Wait a second. I still think we can do better. Why do we

even need a checkFirstname() function?

Jim: Well, duh, that’s got to call all the utility functions.

Joe: Hey, hang on, I think I see what Frank’s getting at. What if we

built the utilities to take in a field, and do their check?

Jim: But you’d still need something to call all the checks for each

field. Like I said, checkFirstname(), or whatever...

Joe: But can’t you assign multiple handlers to a single field?

Frank: That’s it! So you could just assign each validation function

to the field it applies to. Like this...

Frank
JoeJim

don’t repeat yourself

Chapter 11. forms and validation Page 16 Return to Table of Contents

Chapter 11. forms and validation
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 423

forms and validation

function fieldIsFilled() {
 if (this.value == "") {
 // Display an error message
 } else {
 // No problems; we're good to go
 }
}

Don’t Repeat Yourself: DRY
One of the core principles in software design is called DRY: don’t repeat
yourself. In other words, if you write a piece of code once, in one place,
try to avoid writing that piece of code again in some other place.

When it comes to validation, that means we shouldn’t write code that
checks to see if a field is empty in two (or more!) places. Let’s write one
utility function, and then use that function over and over again:

This function is generic. It can be applied as an event handler to any field.

Check to see if the field
has no value...

...and then display an error
or let the user continue.

Don’t Repeat
Yourself

If the same code exists
in two places, it’s easy

to change one bit of code and
forget to change the other. By only
writing code once, your app will be
easier to maintain, as well as more
modular. Don’t repeat yourself!

Now you can assign this handler to several fields, for instance in an
initPage() function:

document.getElementById("firstname").onblur = fieldIsFilled;
document.getElementById("lastname").onblur = fieldIsFilled;
document.getElementById("email").onblur = fieldIsFilled;

Because fieldIsFilled() isn’t tied to a particular field, it can be used as a handler for multiple fields.

There’s a pretty big problem with
fieldIsFilled(). Can you figure out
what it is, and fix it?

Hint: You might need another JavaScript file to correct the problems with fieldIsFilled().

Chapter 11. forms and validation Page 17 Return to Table of Contents

Chapter 11. forms and validation
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

424 Chapter 11

function fieldIsFilled(e) {
 var me = getActivatedObject(e);
 if (me.value == "") {
 // Display an error message
 } else {
 // No problems; we're good to go
 }
}

Did you find the problem in fieldIsFilled()? If you assign multiple handlers to a field, you’ll need
to use addEventHandler()... and as soon as you use that function, the “this” keyword no longer
works in your handlers. Here’s how we fixed the problem.

We need to get the activated object since “this” isn’t reliable with multiple handlers registered to the same field.

We’ll get an event object when our utility
function, addEventHandler(), is used.

Jim: What do you mean? I tried it out, everything works

great.

Frank: But you’re only assigning a single event handler

to each field, right?

Jim: Right. And we’ve got our utility function,

addEventHandler(), ready for when we need to

add more handlers. So I’m all ready to handle multiple

browsers and that whole addEventListener/

attachEvent thing.

Frank: But you’re using this in fieldIsFilled()...

Jim: Sure. What’s the big... oh. Once we use

addEventHandler()—

Frank: —this stops working. That’s the problem.

This code will require utils.js, which is
where we have getActivatedObject() and
addEventHandler() coded.

remember this?

Chapter 11. forms and validation Page 18 Return to Table of Contents

Chapter 11. forms and validation
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 425

forms and validation

Q: Why do we need to use multiple
event handlers again?

A: Because we’re building a handler
for each type of validation function, like
checking to see if a field’s value is empty or
if a value is in an email format.

So for a single field, there might be several
of those utility functions that should be
assigned. For example, the firstname field
shouldn’t be empty, but it also should only
contain alphabetic characters.

Q: So since we’re using more than one
event handler, we can’t use this?

A: Indirectly, yes. Beceause we
need multiple event handlers on
some fields, we’ll need to use the
addEventHandler() utility method
we wrote in utils.js earlier. And
since we’re using that approach to register
handlers, we can’t use this in those
handlers.

Q: Wouldn’t it be easier to use
a shell function for each field, like
checkFirstname(), and then call each
individual validation function from that?

A: Not really. Switching from this to
getActivatedObject() isn’t a
big deal (especially if you’ve got a set of
helper functions, like we do in utils.
js). Besides, we’d need even more
functions. In addition to the validation
functions, we’d need a wrapper for each
field that just connected the field to all of its
handlers.

Q: I don’t think I got that DRY thing.
Can you explain that again?

A: Sure. DRY stands for “Don’t Repeat
Yourself.” DRY is a pretty well-known
software design principle. DRY just
means that you want a single piece of
code appearing in one single place. So if
you’re checking a field for an empty value,
you should have that code in one place,
and other pieces of code that need that
functionality then call that single bit of code.
If you follow DRY, you never have to change
one piece of code in more than one place in
your scripts. That means your code ends up
being easier to change, maintain, and debug.

You can check out Head First Object-
Oriented Analysis and Design for a lot more
on DRY and other design principles.

Q: And how does DRY fit into Marcy’s
Yoga app?

A: Well, each of our validation functions
is a single bit of code, in a single function.
If we put that code into individual handlers,
we might have duplicate code. So
checkFirstname() might have
code that checks for an empty field, but
checkLastname() might have the
same code. If you found a better way to do
that bit of functionality, you’d have to make a
change in two places—and that violates DRY.

Q: So you never repeat code, no
matter what?

A: Every once in a while you’ll have to
violate DRY, but it’s pretty rare. As a general
rule, if you work really hard to follow DRY,
you’ll have better designed code. If you’ve
tried but can’t manage it, then don’t worry
too much. The point is to try your best to not
repeat code, as that makes you design and
write better code in the long run.

Code that doesn’t
repeat itself is
easier to change,
maintain, and debug.
Always try and
write DRY code!

Chapter 11. forms and validation Page 19 Return to Table of Contents

Chapter 11. forms and validation
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

426 Chapter 11

Let’s build some more event handlers
fieldIsFilled() was pretty simple. Let’s go ahead and write code
for the other event handlers we’ll need. We can build each just like
fieldIsFilled(): using getActivatedObject(), we can figure
out the activated object, and then validate the format of the field.

function fieldIsFilled(e) {
 var me = getActivatedObject(e);
 if (me.value == "") {
 // Display an error message
 } else {
 // No problems; we're good to go
 }
}

function emailIsProper(e) {
 var me = getActivatedObject(e);
 if (!/^[\w\.-_\+]+@[\w-]+(\.\w{2,4})+$/.test(me.value)) {
 // Display an error message
 } else {
 // No problems; we're good to go
 }
}

This handler checks an email format to make sure it’s name@domain.com (or .org, .gov, etc.)

We’ll work out what code we
need for when there are errors
and when there aren’t any
problems in just a little bit. For
now, we can use these comments.

This is the regular expression for checking email formats from Head First JavaScript.

validate formats

Chapter 11. forms and validation Page 20 Return to Table of Contents

Chapter 11. forms and validation
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 427

forms and validation

function fieldIsLetters(e) {
 var me = getActivatedObject(e);
 var nonAlphaChars = /[^a-zA-Z]/;
 if (nonAlphaChars.test(me.value)) {
 // Display an error message
 } else {
 // No problems; we're good to go
 }
}

function fieldIsNumbers(e) {
 var me = getActivatedObject(e);
 var nonNumericChars = /[^0-9]/;
 if (nonNumericChars.test(me.value)) {
 // Display an error message
 } else {
 // No problems; we're good to go
 }
}

This handler checks a field to see if it only
contains letters: from a-z, case-insensitive.

fieldIsNumbers() ensures a field has only numeric values in its value.

Here’s another regular expression. It represents all characters that are NOT between a to z, or A to Z. So all non-alphabetic characters.

If any of these non-alphabetic
characters are in the field’s value

,

the value isn’t all letters.

This expression grabs all characters
NOT (using the ^ symbol) in the
numbers 0 through 9.

For a lot more on regular expressions,

check out Head First JavaScript.

Now that you’ve got event handlers, can you write initPage()
for Marcy’s app? Create a new script and save it as enroll.js. Add
the event handlers above and your version of initPage(). Then
reference enroll.js and utils.js in Marcy’s XHTML.

Try and load the enrollment page. Does it validate your entries?

Chapter 11. forms and validation Page 21 Return to Table of Contents

Chapter 11. forms and validation
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

428 Chapter 11

Your job was to build an initPage() function for Marcy’s yoga page,
and use the handlers on the last two pages to validate user entry.

window.onload = initPage;

function initPage() {
 addEventHandler(document.getElementById("firstname"), "blur", fieldIsFilled);
 addEventHandler(document.getElementById("firstname"), "blur", fieldIsLetters);
 addEventHandler(document.getElementById("lastname"), "blur", fieldIsFilled);
 addEventHandler(document.getElementById("lastname"), "blur", fieldIsLetters);
 addEventHandler(document.getElementById("email"), "blur", fieldIsFilled);
 addEventHandler(document.getElementById("email"), "blur", emailIsProper);
}

We get each field...
...we want to validate when
users move out of the field...

...and finally, we assign the handler for the field.

Several fields have multiple
handlers assigned.

An alert() stops EVERYTHING... and
users don’t like to stop.
Using an alert() is pretty heavy-handed. That little

popup brings everything on the page to a crashing halt.

Earlier, we used some icons to let the user know what’s

going on. But there was a problem with that approach,

especially if you try and apply it to what we’re doing

with Marcy’s page.

Why doesn’t a simple approved or denied icon
work for Marcy’s page? What would you do
differently?

avoid alert()

Chapter 11. forms and validation Page 22 Return to Table of Contents

Chapter 11. forms and validation
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 429

forms and validation

Jim: That makes sense. So for each error, we can

just display a message related to that error. Like,

“Please enter a first name” or “E-mails should be in

the format name@domain.com”.

Frank: Yeah. That seems a lot more user-friendly.

Joe: But that won’t be so easy—.

Frank: Right, you see it, don’t you?

Jim: What?

Joe: Well, we moved to generic handler functions.

Those functions don’t know about which field

they’re testing, so they won’t know what error

message to display.

Frank: Yeah. We need some way to have a set

of error messages associated with each field. And

then figure out a way to look up the right error

message.

Joe: What about the activated object? We’ve got that in our handlers, so what

if we use the object to look up an error message?

Jim: Hey, I’ve got an idea. Can we just have some sort of name/value thing,

where there’s a name of a field, and the value for that field is an error message?

Frank: I like that... I think that would work. So we lookup the error based on

the name of the field, which we’ve got from the activated object.

Joe: But aren’t there multiple problems that can occur for each field? We need

more than one error message per field.

Frank: Hmmm. So we need a key for each field, and then a set of errors and

corresponding messages for that. Right?

Jim: How the heck do we do that in JavaScript?

Chapter 11. forms and validation Page 23 Return to Table of Contents

Chapter 11. forms and validation
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

430 Chapter 11

RETURN of SON of JavaScript
In the last chapter, server-side programs used JSON to represent complex
object structures. But JSON isn’t just for the server-side! Anytime you
need to represent name-to-value mappings, JSON is a great solution:

itemDetails = {
"id" : "itemShades",

 "description" : "Yoko Ono's sunglasses. ...",
 "price" : 258.99,
 "urls" : ["http://www.beatles.com/",
 "http://www.johnlennon.com/",
 "http://www.yoko-ono.com/"]
}

This is the variable name
for this object. The value for itemDetails.

id is “itemShades."

The value for itemDetails.
urls is an array of values.

The value of a property can be another
JavaScript object
You’ve already seen properties have string values, integer values, and
array values. But a property can also have another object as its value,
again represented in JSON:

itemDetails = {
"id" : "itemShades",

 "description" : "Yoko Ono's sunglasses. ...",
 "price" : 258.99,
 "urls" : {
 "band-url": "http://www.beatles.com/",
 "singer-url": "http://www.johnlennon.com/",
 "owner-url": "http://www.yoko-ono.com/"
 }
}

This time, the value of the
urls property is another
JSON-represented object.

Curly braces signal
another object value.

itemDetails.urls.band-url

itemDetails.urls.singer-url

itemDetails.urls.owner-urlYou can just “tack on”
another dot operator to
get to these nested values.

json’s back

Chapter 11. forms and validation Page 24 Return to Table of Contents

Chapter 11. forms and validation
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 431

forms and validation

Please enter in your first name.

firstname
required

required

required

lastname

email
letters

letters

warnings
Please enter in your last name.

Only letters are allowed in a first name.

Only letters are allowed in a last name
.

Please enter in your e-mail address.

format

Please enter your e-mail in the form ’n
ame@domain.com’.

var ______________ = {
 "_______________" : {
 "_____________": "___",
 "_____________": "___"
 },
 "_____________" : {
 "_____________": "___",
 "_____________": "___"
 },
 "_____________" : {
 "_____________": "___",
 "_____________": "___"
 }
}

JSON Magnets
Can you use all the magnets below to build a set of mappings?
You should have each field represented, and for each field, a set of
mappings from a specific type of error to a message for that error.

Chapter 11. forms and validation Page 25 Return to Table of Contents

Chapter 11. forms and validation
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

432 Chapter 11

var ______________ = {
 "_______________" : {
 "_____________": "___",
 "_____________": "___"
 },
 "_____________" : {
 "_____________": "___",
 "_____________": "___"
 },
 "_____________" : {
 "_____________": "___",
 "_____________": "___"
 }
}

Please enter in your first name.
firstname

required

required

required
lastname

email

letters

letters

warnings

Please enter in your last name.

Only letters are allowed in a first name.

Only letters are allowed in a last name
.

Please enter in your e-mail address.
format Please enter your e-mail in the form ’n

ame@domain.com’.

JSON Magnet Solutions
Can you use all the magnets below to build a set of mappings?
You should have each field represented, and for each field, a set of
mappings from a specific type of error to a message for that error.

warnings is the variable
name for the overall object.

There’s a top-
level mapping
for each field
that we have
validation on.

There’s a second-level

mapping for each typ
e

of error that can
happen on each field

.

There’s a specific error message

for each field, and for each
warning for that field.

exercise solution

Chapter 11. forms and validation Page 26 Return to Table of Contents

Chapter 11. forms and validation
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 433

forms and validation

Let’s warn Marcy’s customers when
there’s a problem with their entry
With a warnings object full of useful messages, we can add warnings to

Marcy’s page. Here’s what we’ve got in each event handler validation function:

function warn(field, warningType) {

 var parentNode = field.parentNode;

 var warning = eval('warnings.' + field.id + '.' + warningType);

 if (parentNode.getElementsByTagName("p").length == 0) {

 var p = document.createElement("p");

 field.parentNode.appendChild(p);

 var warningNode = document.createTextNode(warning);

 p.appendChild(warningNode);

 } else {

 var p = parentNode.getElementsByTagName("p")[0];

 p.childNodes[0].nodeValue = warning;

 }

 document.getElementById("submit").disabled = true;

}

Based on that information, here’s what we need to do in our warning:

The field, via an activated object, that we need to validate.11

A specific type of problem that occurred (for example, we know

whether a field was empty or invalidly formatted).

22

Figure out the parent node of the field that there’s a

problem with.

11

Create a new <p> and add it as a child of that field’s parent node.22

Here’s a warn() function that handles this for Marcy’s form:

Look up the right warning, and add that warning as text to the new <p>,

which will cause the browser to display the warning on the form..

33

In our handler funct
ions,

we can pass in the fi
eld

and type of problem
.

This evaluates the string
that matches the field
and warning type.

This check is to see if
there’s already a <p> that
we can add the warning to.

If not, create a new <p> and text node with the right warning.

This “else" is for when
there’s already a <p> to
add the warning to.

If there’s a problem, make
sure the “Enroll" button
can’t be clicked.

Chapter 11. forms and validation Page 27 Return to Table of Contents

Chapter 11. forms and validation
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

434 Chapter 11

We’ve done a lot over the last few pages, and before you test everything out, there are several
steps you need to make sure you’ve taken. Here’s what you need to do:

Add the warnings variable from page 432 into your enroll.js script. You
can put the variable anywhere outside of your functions, at the same

“level” as your window.onload event handler assignment.

Add the warn() function from page 433 into enroll.js, as well.

Update each of your validation functions, like fieldIsFilled() and
fieldIsLetters(), to call warn() when there’s a problem. You should pass
the warn() function the activated object, and a string, like “required” or

“format." You can figure out which strings to use for the warning type by
looking at the values in the warnings variable on page 432.

Q: How does warn() know what field
it’s adding a warning message to?

A: Each validation function knows
what field it’s validating, because of
getActivatedObject(). So
when the handler function calls warn(),
that function passes the activated object on
to warn().

Q: And what about the warning type?
Where does that come from?

A: The warning type is specific
to the event handler function.
fieldIsFilled() would have a
warning type of “required,” because that’s
what that function is essentially checking for:
to see if a required field has a value.

Each handler should pass on a warning type
that matches one of the pre-defined values
from the warnings variable, like “required” or

“letters” or “format.”

Q: What’s all that parentNode stuff?

A: We want to add the warning just under
the actual input box. If we get the parent
of the input box (the field), then we can
add another child of that same node with
the warning. The result is that the warning
message becomes a sibling of the input field
itself... and displays right under the field.

Q: And the warning message is from
the warnings variable?

A: Exactly. We put that message in a
<p>, as a child of the field’s parent node.

Q: What’s going on with that eval()
line? That’s a little confusing to me...

A: First, look at what’s being evaluated:
'warnings.' + field + '.'
+ warningType. That might come out
to ‘warnings.firstname.required’ or warnings.
email.format’. Each of those maps to an
error message, which is what we want.
So to evaluate the expression
'warnings.firstname.
required', we run eval() on that
expression. The result is the matching error
message, which we can then show on the
enrollment form.

use json for warnings

Chapter 11. forms and validation Page 28 Return to Table of Contents

Chapter 11. forms and validation
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 435

forms and validation

Test Drive
It’s time for more error counting.
Make sure you’ve done everything on the checklist on page 434, and then

reload Marcy’s enrollment page. Try out several "bad" combinations of data:

skip entering a value for a few fields, enter in a bad email address, try numbers in

the name fields. What happpens?

This first name has
numbers, and can
only have letters.

There’s no value for
the last name field.

This email address
isn’t an email, it’s a
domain name.

Chapter 11. forms and validation Page 29 Return to Table of Contents

Chapter 11. forms and validation
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

436 Chapter 11

eval() is safe to use when you CONTROL
the data you’re evaluating.
In Chapter 10, we were evaluating data from a server-

side program. We didn’t write that program, and

weren’t even able to look at the source code. That

makes that code unsafe to evaluate. We just weren’t

sure that the code would be valid JSON, and would be

safe to run on a user’s browser.

But with the warnings variable, we created the code

we’re evaluating. So there’s no danger. In fact, we can

test things out, and if there is a problem, we just make

a change to warnings. So it’s perfectly safe to run

eval() on code you’re in control of.

eval('warnings.' + field.id + '.' + warningType);

eval('warnings.firstname.letters');

"Only letters are allowed in a first name."There’s nothing unsafe about this
eval() line because we control the
variable it evaluates.

eval() isn’t always bad

Chapter 11. forms and validation Page 30 Return to Table of Contents

Chapter 11. forms and validation
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 437

forms and validation

If you don’t warn(), you have to unwarn()
There’s one big problem with Marcy’s enrollment page: how do we get rid

of those error messages when there’s not a problem? Here’s what our error

handlers look like right now:

function fieldIsFilled(e) {

 var me = getActivatedObject(e);

 if (me.value == "") {

 // Display an error message

 warn(me, "required");

 } else {

 // No problems; we're good to go

 }

}

The warn() function takes care
of displaying errors on the form.

If there’s not a problem, we need
to remove any error messages.

IF there’s a warning, get rid of it
Let’s build an unwarn() function. The first part is pretty simple: for the field

that’s passed in, we just need to see if there’s a warning. If so, we can get rid

of the warning. If there’s not a warning, we don’t need to do anything:

function unwarn(field, warningType) {

 if (field.parentNode.getElementsByTagName("p").length > 0) {

 var p = field.parentNode.getElementsByTagName("p")[0];

 var currentWarning = p.childNodes[0].nodeValue;

 var warning = eval('warnings.' + field.id + '.' + warningType);

 if (currentWarning == warning) {

 field.parentNode.removeChild(p);

 }

 }

}

We only need to
remove a warning if
there’s at least one
<p> with a warning
already in place.

unwarn() isn’t complete yet. The function still needs to figure out if the Enroll button should
be enabled or disabled. Can you write code that figures out if there are any warnings being
displayed? If so, Enroll should be disabled; otherwise, users can click Enroll to submit the form.

Hint: if you need a refresher, the XHTML for the enrollment page is on page 416.

Figure out which
warning type we’re
unwarning for.We only remove a warning if it matches the warningType passed in to unwarn().

If the warning types match,
remove the warning.

Chapter 11. forms and validation Page 31 Return to Table of Contents

Chapter 11. forms and validation
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

438 Chapter 11

unwarn() isn’t complete yet. The function still need to figure out if the Enroll button should be
enabled or disabled. Your job was to write code that figures out if there are any warnings being
displayed? If so, Enroll should be disabled; otherwise, users can click Enroll to submit the form.

function unwarn(field, warningType) {

 if (field.parentNode.getElementsByTagName("p").length > 0) {

 var p = field.parentNode.getElementsByTagName("p")[0];

 var currentWarning = p.childNodes[0].nodeValue;

 var warning = eval('warnings.' + field.id + '.' + warningType);

 if (currentWarning == warning) {

 field.parentNode.removeChild(p);

 }

 }

 var fieldsets =

 document.getElementById("content").getElementsByTagName("fieldset");

 for (var i=0; i<fieldsets.length; i++) {

 var fieldWarnings = fieldsets[i].getElementsByTagName("p").length;

 if (fieldWarnings > 0) {

 document.getElementById("enroll").disabled = true;

 return;

 }

 }

 document.getElementById("enroll").disabled = false;

}

All the <p> warnings are children of <fieldset> elements, so let’s get all those <fieldset>’s.

For each <fieldset>, we
can see if there are any

<p> child elements.

This is equivalent to seeing if
there are any warnings since
each warning is in a <p>.

If there are an
y warnings,

disable Enroll and retur
n.

If there aren’t any
warnings, the form is
okay... enable Enroll.

exercise solution

Chapter 11. forms and validation Page 32 Return to Table of Contents

Chapter 11. forms and validation
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 439

forms and validation

Test Drive
Turn warnings on AND off.
Time to take the enrollment form for another test drive. In each of your

validation handlers, add a line that calls unwarn(me); if there’s not a

validation problem. Looking pretty good, right?

Errors show up when the
data’s invalid...

...but vanish when the errors are corrected.

The Enroll
button is
enabled now
that all the
data’s valid.

Chapter 11. forms and validation Page 33 Return to Table of Contents

Chapter 11. forms and validation
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

440 Chapter 11

Validation is hard, thankless work... and
EVERY application needs validation.
Getting data right on a form is often boring, and takes

a long time to get right. But, validation is incredibly

important to most customers. Take Marcy: without

good data, she can’t enroll people in classes, she can’t

send out mailings, and she can’t get new business.

Multiply that by all the web apps that you’re getting

paid to develop, and validation becomes critical.

And while Marcy’s enrollment form isn’t making

asynchronous requests, it’s still a web application that’s

typical of the things you’ll have to work on as a web

developer. Not many programmers can make a living

only working on asynchronous requests.

So take the time to get validation on your pages right.

Your customers will love you and their businesses will

flourish... and that means more work, better paychecks,

and less middle-of-the-night, “It’s broken!” calls.

Every application
needs validation!

validation is critical!

Chapter 11. forms and validation Page 34 Return to Table of Contents

Chapter 11. forms and validation
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 441

forms and validation

Below is Marcy’s database and the problems we found way back
on page 410. Next to each problem, make a note about whether
your changes to the enrollment form have fixed that problem yet.

firstname lastname email bday yrs bio
Smith

5
Smith

Jones Jane

com

1. Susan Smith is registered twice.

2. Bob Brown didn’t give his email address.

3. The F0b#2938 entry is spam, not a real client.

4. Jane Jones entered in a website URL, not an email address.

5. Gerry MacGregor’s email isn’t valid... he probably left off .com or .org.

6. Gerry MacGregor couldn’t have been practicing yoga for 99 years.

7. Mary didn’t enter in a last name.

8. Everyone’s using a different format for their birthday.

9. There’s information missing for Jane Jones, Bob Brown, and Bill Bainfield.

10.

Chapter 11. forms and validation Page 35 Return to Table of Contents

Chapter 11. forms and validation
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

442 Chapter 11

We’ve added a lot of validation... but what problems have we
really solved? Your job was to figure out what problems our
validation is preventing.

firstname lastname email bday yrs bio
Smith

5
Smith

Jones Jane
com

com

1. Susan Smith is registered twice.

2. Bob Brown didn’t give his email address.

3. The F0b#2938 entry is spam, not a real client.

4. Jane Jones entered in a website URL, not an email address.

5. Gerry MacGregor’s email isn’t valid... he probably left off .com or .org.

6. Gerry MacGregor couldn’t have been practicing yoga for 99 years.

7. Mary didn’t enter in a last name.

8. Everyone’s using a different format for their birthday.

9. There’s information missing for Jane Jones, Bob Brown, and Bill Bainfield.

10.

We don’t have anything
to handle this yet.

Required fields are handled now.
Our formatting
requirements for
names and emails
take care of this.

The XHTML
changes to the page
keep these from
occurring.

Between Marcy’s updated requirements and our validation, this is no longer a problem.

lots of improvement

Chapter 11. forms and validation Page 36 Return to Table of Contents

Chapter 11. forms and validation
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 443

forms and validation

Duplicate data is a SERVER problem
The only problem we’ve got left is when someone enters in their

information twice, like Susan Smith on the last page. But it’s going to

take a server-side program to handle that sort of problem... the server

would need to take an entry, and compare it with existing entries in

Marcy’s customer database.

firstname lastname email bday yrs bio
Smith

5
Smith

Jones Jane
com

com

Our validation
handles formatting...

...but it takes the server-and
its access to Marcy’s database-
to ensure data consistency.

Web Page Web Server Database

The only way to ensure
data consistency is to check
the current entries before
adding a new one.You could do this with an asynchronous request...

Suppose we build a server-side program to take a user’s information,

and check Marcy’s customer database to see if that user already existed.

We could request that program using an asynchronous request in our

JavaScript. Then, once the server returned a response, we could let the

user know that their data’s been accepted.

...but what’s the benefit?
The only problem is that there’s nothinig for the user to do while they’re

waiting. We’re probably using at least their first name, last name, and

email to check against the database, so at most, a user could keep

entering in their birthdate and bio. But even those aren’t required fields...

It’s really better to let the server check the user’s information when the

user tries to enroll, and issue an error then. Since duplicate users aren’t

a huge problem right now, you’re better off saving a ton of extra code,

and simply letting the server handle reporting a problem to the user.

Sometimes, it’s best
to let the server
handle problems
synchronously.

Not every web app
needs asynchronous
requests and responses!

Chapter 11. forms and validation Page 37 Return to Table of Contents

Chapter 11. forms and validation
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

444 Chapter 11

So we’re done now, right?
That’s right. We’ve handled all of Marcy’s validation problems, and she’s

going to have her server-side guys take a look at preventing duplicate

data. In fact, let’s see how Marcy likes her new enrollment page...

Another web programming success story to add to your portfolio.

another satisfied customer

Chapter 11. forms and validation Page 38 Return to Table of Contents

Chapter 11. forms and validation
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Table of Contents

Chapter 12. post requests... 1
Section 12.1. GET requests send request parameters across the network as clear text... 5
Section 12.2. POST requests DON'T send clear text.. 6
Section 12.3. The data in a POST request is ENCODED until it reaches the server.. 8
Section 12.4. send() your request data in a POST request... 10
Section 12.5. Always check to make sure your request data was RECEIVED.. 12
Section 12.6. Why didn't the POST request work?... 14
Section 12.7. The server unencodes POST data.. 15
Section 12.8. We need to TELL the server what we're sending.. 16
Section 12.9. Set a request header using setRequestHeader() on your request object.. 18

Chapter 12. post requests

Chapter 12. post requests
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

this is a new chapter 445

post requests12

Paranoia: It’s your friend

Someone’s watching you. Right now. Seriously.

inspection

information isn’t safe unless you make it safe

protect your users’ data

Someone’s watching you. Right now. Seriously.

inspection

information isn’t safe unless you make it safe

protect your users’ data

Chapter 12. post requests Page 1 Return to Table of Contents

Chapter 12. post requests
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

446 Chapter 12

There’s a villain in the movies
Just when we thought that we’d solved all of the web world’s problems, it
looks like one of our earlier customers is back... and he’s not happy.

Mike, of Mike’s Movies fame, has another problem.
It doesn’t seem like his customers getting spammed
is really related to the registration form we built for
Mike, but since we built that form, he’s blaming us.
Welcome to web development.

So what do you think is going on? Is it possible
that spammers are getting Mike’s customer email
addresses because of something we did—or didn’t
do—on the enrollment form?

Your code... your problem!

Remember Mike? We
built his movie review
registration page.

spam... again!

Chapter 12. post requests Page 2 Return to Table of Contents

Chapter 12. post requests
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 447

post requests

What’s going on with Mike’s registration page? Do we have
anything to do with his customers getting spammed?

Below is Mike’s page and server. Your job is to draw all the
interactions between them. Be sure to include what’s passing
between the web page and the server.

Web server

Registration page

Do you think we have anything to do with the problems that
Mike’s customers are complaining about?

Don’t worry about the specifics
of any particular user. Just write
what fields and data is being sent
back and forth.

Chapter 12. post requests Page 3 Return to Table of Contents

Chapter 12. post requests
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

448 Chapter 12

Your job was to draw all the interactions between Mike’s page
and server. Be sure to include what’s passing between the web
page and the server. Here’s what we came up with.

Web server

Registration page

username=jjenkins

"okay"
"denied"

"okay"
"denied"

password=iheartalba

<html>
...
</html>

XHTML

username=jjenkins

password=iheartalba

email=jj@mac.com

(other request params)

Do you think we have anything to do with the problems that
Mike’s customers are complaining about?

For usernames, we send a
username, and get back “okay"

or “denied" from the server.

We send passwords, and get back
“okay" or “denied" here, too.

We’re registering use
rs with an

asynchronous reque
st. We send all the

form data as request p
arameters...

...and the server sends back
an XHTML fragment with a
confirmation message and some links.

Maybe! We’re sending the user’s email across
the network... is that safe? Can someone get
that email and spam that user?

Hmmm... maybe Mike’s problem IS

something that’s our code’s fault
.

exposed addresses

Chapter 12. post requests Page 4 Return to Table of Contents

Chapter 12. post requests
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 449

post requests

GET requests send request parameters across
the network as clear text
We’re using a GET request to send all of a user’s information to the server:

function registerUser() {
 t = setInterval("scrollImages()", 50);
 document.getElementById("register").value = "Processing...";
 registerRequest = createRequest();
 if (registerRequest == null) {
 alert("Unable to create request.");
 } else {
 var url = "register.php?username=" +
 escape(document.getElementById("username").value) + "&password=" +

other request parameters...;
 registerRequest.onreadystatechange = registrationProcessed;
 registerRequest.open("GET", url, true);
 registerRequest.send(null);
 }
}

registerUser() sends a
user’s information using an asynchronous request.

Here’s where we tell the
request object to use a GET
method for sending the request.

Clear text is text... in the clear!
When parameters are sent using a GET request, those parameters are just text

moving across the network. And that text is sent in the clear. In other words,

anyone listening to your network can pick up that text.

Web server

Registration page

username=jjenkins

password=iheartalba

email=jj@mac.com

(other request params)

This information is clear text. It’s just plain old text flying between your page and the server. Anyone can read this text.

Chapter 12. post requests Page 5 Return to Table of Contents

Chapter 12. post requests
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

450 Chapter 12

POST requests DON’T send clear text
What we need is a way to send that same data, but to avoid the data

going across the network as clear text. That way, people can’t snoop

around and find Mike’s customers’ email addresses. That should take

care of his spam problem once and for all.

Fortunately, that’s just what POST requests do. They send their request

data in a different way than GET does. Let’s take a look:

In a GET request, data for
the server is sent as part
of the request URL.

GET requests send data to the server as part of the request URL,

using request parameters that are part of the actual URL.

This URL can get pretty long...

* In an actual request, lots of the special characters
in this URL would be encoded by the JavaScript
escape() function. We’ve left it unencoded, though, to
make it a little easier to understand.

GET requests send data in the request URL

The server-side script
reads the data from the
request parameters and
adds the customer to
Mike’s customer database.

Anyone with a cheap
network sniffer can get this information from a customer’s request.

post sensitive data

Chapter 12. post requests Page 6 Return to Table of Contents

Chapter 12. post requests
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 451

post requests

POST
data In a POST request, the data for the server is encoded and sent along with the request, but it’s separate from the URL.

The server gets
the request and
unencodes the
POST data.

Data sent with a POST request isn’t part of the request URL.

In a POST request, data that has to be sent to the server is kept separate

from the URL. So there’s no lengthy URL with data in it, and no clear text

customer data is sent over the network.

POST requests send data separate from the request URL

The server-side script adds the customer’s data to Mike’s database.

Chapter 12. post requests Page 7 Return to Table of Contents

Chapter 12. post requests
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

452 Chapter 12

Once a web server gets a POST request, it figures out what type of data it has received,

and then passes that information on to the program in the request URL.

The data in a POST request is
ENCODED until it reaches the server

username=jjenkins
password=iheartalba
firstname=John
lastname=Jenkins
email=jj@mac.com
genre=action
favorite=Casino Royale
tastes=Action, action, action!

The server opens
up the POST
request and
decodes the
request data...

...which, for Mike’s
movie page, is the
customer’s information
and their movie
preferences.

The server finally
passes the data on to
the original program
requested in the URL.

Since this is a POST request, there’s
no data in the actual request URL.

The server takes the data from the request and turns it into something a server-side program can use.

Web server

<?php...
?>

register.php

servers unencode post data

Chapter 12. post requests Page 8 Return to Table of Contents

Chapter 12. post requests
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 453

post requests

Q: So POST requests are more secure than GET requests?

A: Yes. There’s one additional step that goes into packaging up
POST data: the data is encoded in the browser and decoded on
the server. Still, decrypting POST data isn’t foolproof. Determined
hackers can unencode your POST data, although it takes a lot more
work than grabbing request parameters from the URL of a GET
request.

If you really want to secure your request, you’ll have to use a secure
network connection, like SSL. But that’s a little beyond what we’re
covering in this book.

Q: So if POST is still insecure, how will that help Mike’s
customers?

A: Most spammers are looking for the easiest targets possible.
Most of the time, a single bit of trouble—like unencoding POST
data—is all it takes to send spammers and hackers looking for an
easier target. With Mike’s site, moving to POST takes a little bit of
effort, but will probably protect his site from the majority of malicious
attacks.

Q: So are you saying that POST is safe and GET is unsafe?

A: Not really. “Safe” and “unsafe” are pretty relative terms, and
it’s impossible to predict all the ways something can go wrong. But
sending data to the server using POST takes an extra step to protect
that data. Sometimes that one step is the difference between your
users getting your monthly newsletter, and those same users getting
a spammer’s porn mail.

Q: So why not send every request using POST?

A: There’s really no need to. For one thing, encoding and
unencoding data takes a bit of processing time. Besides that, GET
is fine for sending shorter, non-private data. Also, if you use POST
for everything, your users won’t benefit from tools like Google
Accelerator, and some search engine spiders might not pick up your
links.

Q: And to send a POST request, all we have to do is put the
request data in the send() method instead of the URL?

A: Exactly. You send the data in exactly the same format. You can
pass name/value pairs to the request object’s send() method,
almost exactly like you did when you were sending a GET request.

Q: That’s it? There’s nothing else to do?

A: Well, let’s try it out on Mike’s page and see what happens...

A little bit of security on
the Internet goes a long way.

Encoding your request data
will cause most hackers to
look for an easier target
somewhere OTHER than on
your web site.

Chapter 12. post requests Page 9 Return to Table of Contents

Chapter 12. post requests
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

454 Chapter 12

send() your request data in a POST request
In a GET request, all the request data is sent as part of the request URL. So you build

long URLs, like register.php?username=jjenkins&password=...
But since request data isn’t sent as part of the URL for a POST request, you can put

all the data directly into the send() method of yor request object:

function registerUser() {
 t = setInterval("scrollImages()", 50);
 document.getElementById("register").value = "Processing...";
 registerRequest = createRequest();
 if (registerRequest == null) {
 alert("Unable to create request.");
 } else {
 var url = "register.php";

var requestData = "username=" +
 escape(document.getElementById("username").value) + "&password=" +
 escape(document.getElementById("password1").value) + "&firstname=" +
 escape(document.getElementById("firstname").value) + "&lastname=" +
 escape(document.getElementById("lastname").value) + "&email=" +
 escape(document.getElementById("email").value) + "&genre=" +
 escape(document.getElementById("genre").value) + "&favorite=" +
 escape(document.getElementById("favorite").value) + "&tastes=" +
 escape(document.getElementById("tastes").value);
 registerRequest.onreadystatechange = registrationProcessed;
 registerRequest.open("POST", url, true);
 registerRequest.send(requestData);
 }
}

The request URL is just the name of the program on the server. No request parameters.

This is a POST request now.

The request data is sent as a
string and passed to the send()
method of the request object.

Instead of
adding this
data to the
request URL,
let’s store it
in a string
variable.

Use the same
ampersand
character (&)
to separate
parameters.

You don’t need to precede yor
request data with a question
mark (?) in a POST request.

Q: Why don’t I need a question mark?

A: The question mark (?) separated a server-side program name,
like register.php, from the request data name/value pairs. Since
you’re not appending the request data to the program name, you
don’t need that question mark anymore.

Q: But I still do need an ampersand?

A: Yes. The ampersand (&) separates different pieces of data.
That tells the server where one name/value pair ends, and where the
next one starts.

send() post data

Chapter 12. post requests Page 10 Return to Table of Contents

Chapter 12. post requests
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 455

post requests

Test Drive
Secure Mike’s app with a POST request.
Change your version of registerUser() in validation.js to match the version on

page 454. Then reload Mike’s registration page, and enter in some data. Try and submit the

registration... does everything work like it should?

Everything looks okay... but how
can we know if something went
wrong on the server?

Chapter 12. post requests Page 11 Return to Table of Contents

Chapter 12. post requests
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

456 Chapter 12

Always check to make sure your request
data was RECEIVED.
It seems like we’re sending a valid POST request, and we know that the

request data’s right from when we built Mike’s registration page using GET.

But we really don’t know for sure that our request is getting handled.

In cases like this, where you don’t get direct feedback from a server, you

need to check that your request data got sent to the server and was

properly received. Otherwise, you could find out there’s a problem much

later. And problems like that are hard to debug... who remembers the code

they wrote three months ago, anyway?

This is Jill... she’s been
hanging out with Mike’s
server-side guys lately.

The server-side programs that verified usernames

and passwords gave you direct feedback. That

made it easy to confirm that your request data

was received. In fact, most server-side programs

respond to your request data and give you some

sort of feedback.

But a few programs—like Mike’s server-side

registration page—don’t let you know what data

they’ve received. Work with the programmers

writing those programs. Often, it’s easy to add a

few lines and at least echo back what request data

was received. Then, you can ensure the data you

sent is the data that those programs received.

Good server-side programs
CONFIRM the data you sent.

test, test, test

Chapter 12. post requests Page 12 Return to Table of Contents

Chapter 12. post requests
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 457

post requests

Test Drive (again)
Let’s see what the SERVER says.
If you haven’t already, download the example files for Chapter 12 from Head First Labs. There’s

an updated version of register.php called register-feedback.php that gives you

some visual feedback when a new user submits their registration data.

Update the request URL in registerUser(), in validation.js, to use this new script.

Then, try Mike’s registration page again.

Uh oh... this doesn’t look too good. There’s no username, name, or email address...

Chapter 12. post requests Page 13 Return to Table of Contents

Chapter 12. post requests
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

458 Chapter 12

Why didn’t the POST request work?

Jim: Are you sure? I’ll bet someone forgot to change the

script to accept POST parameters. Come on, that’s got to

be it! Fix the thing, and we can get on with it...

Jill: No, I asked him about that specifically. The script

accepts GET and POST parameters. Are you sure you

sent the customer’s details over?

Jim: I’m positive. registerUser() uses a POST

request, and I know the request object works from when I

was still using GET.

Jill: Well, you must have made a mistake somewhere.

Jim: No way. All the data’s in the send() method of

my request object... I even double-checked. So I know the

data’s getting to the web server.

Jill: Well, it’s not getting to the script. Look at the

output page! There’s nothing for username, firstname, or

lastname, or anything.

Jim: Wait a second. If I’m sending the data to the server

correctly...

Jill: ...and the script’s asking the server for the data and

getting nothing...

Together: The problem must be the server!

This is Jill... she’s been
hanging out with Mike’s
server-side guys lately.

Jim

the server’s the problem

Chapter 12. post requests Page 14 Return to Table of Contents

Chapter 12. post requests
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 459

post requests

Our script is sending a request to the server with the right request

data. But somehow, the server’s not getting that data to the server-

side program, register-feedback.php. So what’s going on

between the server and register-feedback.php?

We know the server is supposed to take our POST data and

unencode it. But the server has to know how to unencode that

data... and that means knowing what type of data it’s receiving.

The server unencodes POST data

?

The server has no idea what type of data is in this POST request... is it an image? Text? XML?

Since the server doesn’t kno
w

what kind of data it has, it

doesn’t know how to pass that

information on to the server-side

program, register-feedback.php.

<?php...
?>

register-feedback.php

Web server

Chapter 12. post requests Page 15 Return to Table of Contents

Chapter 12. post requests
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

460 Chapter 12

We need to TELL the server what we’re sending

We need to let the server know exactly what type of data we’re sending it. But that

information can’t be part of the request data itself, so we need another way to tell the

server.

Anytime you need to talk to the server about a request, you use a request header. A

request header is information that’s sent along with the request and the server can read

right away. The server can also send back response headers, which are pieces of

information about that server’s response:

Servers get information from the browser via

REQUEST HEADERS.

Servers send information to the

browser using RESPONSE HEADERS.

400

Status: No data was received.

This is what the server sends back to the browser.

POST /register.php HTTP/1.1
POST

Content-Type:
 application/x-www-form-urlencoded

Here’s how the server sees our request.
We need to tell the server, in
a request header, what type
of data we’re sending.

The server sends back a response header and status code.

Web server

Web server

request

what are you sending?

Chapter 12. post requests Page 16 Return to Table of Contents

Chapter 12. post requests
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 461

post requests

You can send a lot more than plain text in a POST

request. When a server receives your POST request,

it won’t know what kind of data it’s dealing with

unless you tell the server what to expect.

Once the server knows what kind of data you’re

sending, it can decode the POST data and handle

it properly. For Mike’s registration page, we need

to tell the server we’re sending it name/value pairs.

We can do this by setting a request header called

Content-Type.

You need to set the CONTENT-TYPE
request header for your data.

POST

The POST data is the same as before... ...but with a content type, the

server knows what kind of data

to expect, and it can fig
ure out

how to unencode that data.

This time, the request includes a content type along with the request URL and POST data.

as name/value
pairs

Chapter 12. post requests Page 17 Return to Table of Contents

Chapter 12. post requests
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

462 Chapter 12

Set a request header using setRequestHeader()
on your request object
Once you know what request header to set, it’s easy to do. Just call

setRequestHeader() on your request object, and pass in the name of the

request header and the value for that header.

For name/value pairs, we want to set the Content-Type request header.

We need to set the value of that header as application/x-www-form-
urlencoded. That’s a bit of a strange string, but it just tells the server we’re

sending it name/value pairs, like a web form would send:

function registerUser() {

 t = setInterval("scrollImages()", 50);

 document.getElementById("register").value = "Processing...";

 registerRequest = createRequest();

 if (registerRequest == null) {

 alert("Unable to create request.");

 } else {

 var url = "register.php";

 var requestData = "username=" +

 escape(document.getElementById("username").value) + "&password=" +

 escape(document.getElementById("password1").value) + "&firstname=" +

 escape(document.getElementById("firstname").value) + "&lastname=" +

 escape(document.getElementById("lastname").value) + "&email=" +

 escape(document.getElementById("email").value) + "&genre=" +

 escape(document.getElementById("genre").value) + "&favorite=" +

 escape(document.getElementById("favorite").value) + "&tastes=" +

 escape(document.getElementById("tastes").value);

 registerRequest.onreadystatechange = registrationProcessed;

 registerRequest.open("POST", url, true);

 registerRequest.setRequestHeader("Content-Type",

 registerRequest.send(requestData);

 }

}

This sets the Content-Type request header...

...and tells the server to expect
name/value pairs, like a web form
would send in a submission.

request headers

Chapter 12. post requests Page 18 Return to Table of Contents

Chapter 12. post requests
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 463

post requests

Q: So a request header is sent to the server along with the
request?

A: Yes. All request headers are part of the request. In fact, the
browser sets some request headers automatically, so you’re really
just adding a request header to the existing ones.

Q: Have we been getting response headers all along, too?

A: Yup. The browser and server always generate headers. You
only have to worry about them if there’s information you need to
work with, like setting the content type or retrieving a status from a
response header.

Q: So “Content-Type” is used to tell the server what kind of
POST data we’re sending?

A: Exactly. In this case, we’re using name/value pairs, and the
content type for that is “application/x-www-form-urlencoded.” That
particular type tells the server to look for values like those it would
get from a normal form submission.

Q: Are there other content types?

A: Tons. To find out about the rest of them, try searching for “HTTP
Content-Type” in your favorite search engine.

Chapter 12. post requests Page 19 Return to Table of Contents

Chapter 12. post requests
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

464 Chapter 12

Test Drive (one more time)
Did it work? Did it work?
Update your request to include a Content-Type request header, and try Mike’s registration
page again. Submit your information, and see what the server says.

The server
unencoded our
request data and
passed it on to the
server-side program.

test drive

Chapter 12. post requests Page 20 Return to Table of Contents

Chapter 12. post requests
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 465

post requests

What other secure data does Mike pass

between his registration page and the server?

Should the username request be POST?

What about the password request?

It’s up to you to figure out which requests

are best sent as POSTs, and which ones are

fine as GET requests. Go ahead and update

Mike’s page to make it safer. When you’re

done, flip the page for a few more exercises.

POST secure data.

Chapter 12. post requests Page 21 Return to Table of Contents

Chapter 12. post requests
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

466 Chapter 12

Word Search

X A R S Y R O T A D N A M

A C L V V R E T N I T E S

A V I O A S B A L T R S V

Q S L X H L N D L E R S L

C U Y O R S I A E A Y A R

A C N N E U T D Y N S R A

L O E C C B T U A D N E S

L P U K A M A N N T O L N

G R Y C C I S E O X I B R

E N I A H T E N A U T O R

T U N B A D Q C N R P A N

K N G T F A P O S T O S A

N D U L R I E D R I U D Y

A S E R E D A E H T E S D

J E R C I C T H R I Z A R

Word list:

Get
Post
Validation
Submit
Mandatory
Options
Secure
Unencode
Header
Status

word search

Chapter 12. post requests Page 22 Return to Table of Contents

Chapter 12. post requests
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 467

post requests

?
request method is best for each of the following web apps.

dd
d

n

GET or POST

Request today’s

house blend

Buy "Push" from iTunes

with my credit card

Update journal

with new entry

Login to see my

favorite rock items

Enroll in an

Advanced Yoga class

Chapter 12. post requests Page 23 Return to Table of Contents

Chapter 12. post requests
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

468 Chapter 12

Word Search Solution

X A R S Y R O T A D N A M

A C L V V R E T N I T E S

A V I O A S B A L T R S V

Q S L X H L N D L E R S L

C U Y O R S I A E A Y A R

A C N N E U T D Y N S R A

L O E C C B T U A D N E S

L P U K A M A N N T O L N

G R Y C C I S E O X I B R

E N I A H T E N A U T O R

T U N B A D Q C N R P A N

K N G T F A P O S T O S A

N D U L R I E D R I U D Y

A S E R E D A E H T E S D

J E R C I C T H R I Z A R

Word list:

Get
Post
Validation
Submit
Mandatory
Options
Secure
Unencode
Header
Status

exercise solutions

Chapter 12. post requests Page 24 Return to Table of Contents

Chapter 12. post requests
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you are here 469

post requests

?
request method is best for each of the following web apps.

dd
d

n

GET or POST

Request today’s

house blend

Buy "Push" from iTunes

with my credit card

Update journal

with new entry

Login to see my

favorite rock items

Enroll in an

Advanced Yoga class

Logging in usually involves a username
and password-you want to secure
that sort of information.

There’s no need to
use POST for a
simple item request.

This might go either way.
Are there user credentials
being sent? Is the entry
public or private?

Marcy asks for emails... we don’t want those getting out to anyone malicious.

Sending credit card info
requires POST and something
more secure, like SSL.

Chapter 12. post requests Page 25 Return to Table of Contents

Chapter 12. post requests
Head First Ajax By Rebecca M. Riordan ISBN: 9780596515782 Publisher: O'Reilly Prepared for Ann Cherkis, Safari ID: maottw@gmail.com
Print Publication Date: 2008/08/26 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

	using ajax
	Web pages: the old-fashioned approach
	Web pages reinvented
	So what makes a page "Ajax"?
	Rob's Rock 'n' Roll Memorabilia
	Ajax and rock 'n' roll in 5 steps
	Step 1: Modify the XHTML
	Step 2: Initialize the JavaScript
	Step 3: Create a request object
	Step 4: Get the item's details
	Let's write the code for requesting an item's details
	Always make sure you have a request object before working with it
	The request object is just an object
	Hey, server... will you call me back at displayDetails(), please?
	Use send() to send your request
	The server usually returns data to Ajax requests
	Ajax is server-agnostic
	Use a callback function to work with data the server returns
	Get the server's response from the request object's responseText property
	Goodbye traditional web apps...
	AjaxAcrostic

	designing ajax applications
	Mike's traditional web site sucks
	Let's use Ajax to send registration requests ASYNCHRONOUSLY
	Update the registration page
	Event Handlers Exposed
	Set the window.onload event handler... PROGRAMMATICALLY
	Code in your JavaScript outside of functions runs when the script is read
	What happens when...
	And on the server...
	Some parts of your Ajax designs will be the same... every time
	createRequest() is always the same
	Create a request object... on multiple browsers
	Ajax app design involves both the web page AND the server-side program
	The request object connects your code to the web browser
	You talk to the browser, not the server
	The browser calls back your function with the server's response
	Show the Ajax registration page to Mike...
	The web form has TWO ways to send requests to the server now
	Let's create CSS classes for each state of the processing...
	...and change the CSS class with our JavaScript
	Changes? We don't need no stinkin' changes!
	Only allow registration when it's appropriate

	javascript events
	It all started with a downward-facing dog...
	Ajax apps are more than the sum of their parts
	Here's Marcy's XHTML...
	Events are the key to interactivity
	Connect events on your web page to event handlers in your JavaScript
	Use the window.onload event to initialize the rest of the interactivity on a web page
	Change those left-side images to be clickable
	Use your XHTML's content and structure
	Add the code for hideHint(), too
	Tabs: an optical (and graphical) illusion
	Use a for... loop to cycle through the images
	CSS classes are the key (again)
	Ummm... but the tabs aren't <a>'s!
	This broke our JavaScript, too, didn't it?
	Use a request object to fetch the class details from the server
	Be careful when you have two functions changing the same part of a web page
	When you need to change images in your script, think "change CSS classes" instead
	Links in XHTML are represented by <a> elements
	We need a function to show an active button and hide a button, too

	multiple event handlers
	An event can have only one event handler attached to it (or so it seems)
	Event handlers are just properties
	A property can have only ONE value
	Assign multiple event handlers with addEventListener()
	Your objects can have multiple event handlers assigned to a single event in DOM Level 2
	What's going on with Internet Explorer?
	Internet Explorer uses a totally different event model
	attachEvent() and addEventListener() are functionally equivalent
	addEventHandler() works for ALL apps, not just Marcy's yoga page
	Let's update initPage() to use our new utility function
	Use an alert() to troubleshoot
	So what else could be going wrong?
	Event handlers in IE are owned by IE's event framework, NOT the active page object
	attachEvent() and addEventListener() supply another argument to our handlers
	We need to name the Event argument, so our handlers can work with it
	You say target tomato, I say srcElement tomato...
	So how do we actually GET the object that triggered the event?

	asynchronous applications
	What does asynchronous really mean?
	You've been building asynchronous apps all along
	But sometimes you barely even notice...
	Speaking of more server-side processing...
	(More) Asynchrony in 3 easy steps
	We need two password fields and a <div> for the cover images
	If you need new behavior, you probably need a new event handler function
	With ONE request object, you can safely send and receive ONE asynchronous request
	Asynchronous requests don't wait on anything... including themselves!
	If you're making TWO separate requests, use TWO separate request objects
	Asynchrony means you can't count on the ORDERING of your requests and responses
	A monitor function MONITORS your application... from OUTSIDE the action
	You call a monitor function when action MIGHT need to be taken
	Status variables let monitors know what's going on
	And now for our last trick...
	Synchronous requests block ALL YOUR CODE from doing anything
	Use setInterval() to let JavaScript run your process, instead of your own code

	the document object model
	You can change the CONTENT of a page...
	...or you can change the STRUCTURE of a page
	Browsers use the Document Object Model to represent your page
	Here's the XHTML that you write...
	...and here's what your browser sees
	Your page is a set of related objects
	Let's use the DOM to build a dynamic app
	You start with XHTML...
	appendChild() adds a new child to a node
	You can locate elements by name or by id
	Interiew with a new parent
	Can I move the clicked tile?
	You can move around a DOM tree using FAMILY relationships
	A DOM tree has nodes for EVERYTHING in your web page
	The nodeName of a text node is "#text"
	Did I win? Did I win?
	But seriously... did I win?

	manipulating the DOM
	Webville Puzzles... the franchise
	Woggle doesn't use table cells for the tiles
	The tiles in the XHTML are CSS-positioned
	"We don't want TOTALLY random letters..."
	Our presentation is ALL in our CSS
	We need a new event handler for handling tile clicks
	Start building the event handler for each tile click
	We can assign an event handler in our randomizeTiles() function
	Property values are just strings in JavaScript
	We need to add content AND structure to the "currentWord"<div>
	Use the DOM to change a page's structure
	Use createElement() to create a DOM element
	You have to TELL the browser where to put any new DOM nodes you create
	We need to disable each tile. That means changing the tile's CSS class...
	...AND turning OFF the addLetter() event handler
	Submitting a word is just (another) request
	Our JavaScript doesn't care how the server figures out its response to our request
	Usability check: WHEN can submitWord() get called?

	frameworks and toolkits
	So what frameworks ARE there?
	Every framework uses a different syntax to do things
	The syntax may change... but the JavaScript is still the same
	To framework or not to framework?
	The choice is up to you...

	xml requests and responses
	Classic rock gets a 21st century makeover
	How should a server send a MULTI-valued response?
	innerHTML is only simple for the CLIENT side of a web app
	You use the DOM to work with XML, just like you did with XHTML
	XML is self-describing

	json
	JSON can be text AND an object
	JSON data can be treated as a JavaScript object
	So how do we get JSON data from the server's response?
	JavaScript can evaluate textual data
	Use eval() to manually evaluate text
	Evaluating JSON data returns an object representation of that data
	JavaScript objects are ALREADY dynamic... because they're not COMPILED objects
	You can access an object's members... and then get an object's values with those members
	You need to PARSE the server's response, not just EVALUATE it

	forms and validation
	Validation should work from the web page BACK to the server
	You can validate the FORMAT of data, and you can validate the CONTENT of data
	Don't Repeat Yourself: DRY
	Let's build some more event handlers
	RETURN of SON of JavaScript
	The value of a property can be another JavaScript object
	Let's warn Marcy's customers when there's a problem with their entry
	If you don't warn(), you have to unwarn()
	IF there's a warning, get rid of it
	Duplicate data is a SERVER problem

	post requests
	GET requests send request parameters across the network as clear text
	POST requests DON'T send clear text
	The data in a POST request is ENCODED until it reaches the server
	send() your request data in a POST request
	Always check to make sure your request data was RECEIVED.
	Why didn't the POST request work?
	The server unencodes POST data
	We need to TELL the server what we're sending
	Set a request header using setRequestHeader() on your request object

