

Android Forensics

Investigation, Analysis,
and Mobile Security for

Google Android
Andrew Hoog
John McCash, Technical Editor
AMSTERDAM � BOSTON � HEIDELBERG � LONDON
NEW YORK � OXFORD � PARIS � SAN DIEGO

SAN FRANCISCO � SINGAPORE � SYDNEY � TOKYO

Syngress is an imprint of Elsevier

Acquiring Editor: Angelina Ward
Development Editor: Heather Scherer
Project Manager: Danielle S. Miller
Designer: Russell Purdy

Syngress is an imprint of Elsevier
225 Wyman Street, Waltham, MA 02451, USA

� 2011 Elsevier, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or any information storage and
retrieval system, without permission in writing from the publisher. Details on how to seek
permission, further information about the Publisher’s permissions policies and our
arrangements with organizations such as the Copyright Clearance Center and the Copyright
Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the
Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and
experience broaden our understanding, changes in research methods or professional practices
may become necessary. Practitioners and researchers must always rely on their own
experience and knowledge in evaluating and using any information or methods described
herein. In using such information or methods they should be mindful of their own safety and
the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors,
assume any liability for any injury and/or damage to persons or property as a matter of
products liability, negligence or otherwise, or from any use or operation of any methods,
products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
Application submitted

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-1-59749-651-3
For information on all Syngress publications visit
our website at www.syngress.com
Printed in the United States of America

11 12 13 14 15 10 9 8 7 6 5 4 3 2 1

http://www.elsevier.com/permissions
http://www.syngress.com

Dedication
To my beautiful spouse who has endured my extended absenteeism as I wrote this
book. She is my motivation, my friend, my partner, and the root of my happiness.
This book is dedicated to her.

And to my wonderful daughters. You light up our lives and know more about
Android forensics than any other 6-year-olds. May your lives be full of learning,
success, and happiness.

Acknowledgements
I now understand that the phrase “It takes a village.” applies equally to writing
a book as it does to raising children. As such, I wish to acknowledge the village:

• My family (see Dedication).
• Lee Haas, for excellent editing and attempts to keep me on schedule
• Ted Eull, who coined to term “deHOOGification,” which provides an immense

service to you, the reader, as the ideas bouncing around in my head don’t always
come out that clear when I persist them to words. Ted is also a great friend and all
around swell guy. Many thanks to his better half for her patience in putting up
with the long hours racked up by motivated geeks at a tech start-up.

• Chris Triplett, for diving head first into Android and doing an amazing job at it.
Chris is also excellent at patching drywall and providing some comic relief by
applying farm English to digital forensics.

• Katie Strzempka, for generally taking care of that other book (“iPhone and iOS
Forensics”). Please buy that one too, seriously.

• My parents, Stevie and Al, who set me on the correct path from the start and were
always there to remind me if I swerved off a bit.

• To Harmonee and Hadabogee, whose help with our daughters, dinner, and other
areas is immensely appreciated.

• To the men and women who bravely serve the public interest in Local, State, and
Federal law enforcement and other government agencies. We appreciate all that
you do to protect and serve our communities and countries.

• To Google, for seeing the value in Android and creating a new paradigm of
openness for mobile devices.

• To Apple, for providing the opposite paradigm.
• And finally to the reader. I hope that you find this book useful and certainly do

appreciate your support.
xiii

Introduction
The Android mobile platform has quickly risen from its first phone in October 2008
to the most popular mobile operating system in the world by early 2011. The
explosive growth of the platform has been a significant win for consumers with
respect to competition and features. However, forensic analysts and security engi-
neers have struggled as there is a lack of knowledge and supported tools for
investigating these devices. This book seeks to address issues not only by providing
in-depth insights into Android hardware, software, and file systems but also by
sharing techniques for the forensic acquisition and subsequent analysis of these
devices. For readers with limited forensic experience, this book creates step-by-step
examples that use free, open source utilities so the reader can directly participate in
the examples. As the free Android software development kit provides a full Android
emulator, readers do not even need to possess an Android device.

As Android devices grow in numbers, an increased awareness of the data they
possess will equally grow. Unfortunately, much of that interest will come from cyber
criminal organizations who realize that successful attacks against the platform will
yield significant results as the devices contain enormous quantities of personal and
business information. The solution to this threat requires a deep understanding of the
platform not only from core Android developers and manufacturers but also from
app developers and corporate security officers. More secure apps will prevent loss of
sensitive information as well as strong policies that can be put in place by IT security
managers.

Although most of the discussed statistics about Android focus on smartphones
and now tablets, there are many more devices that currently or in the near future will
run Android. Some examples include vehicles, televisions, GPS, gaming devices,
netbooks, and a wide variety of other consumer devices. Android will be present in
an increasingly significant percentage of investigations for both forensic analysts
and security engineers. Finally, the appeal of Android is not specific to any particular
country or region and as such will impact individuals, corporations, and agencies
throughout the world.

The following paragraphs contain a brief summary of each of the chapters.
CHAPTER 1
This chapter provides not only a history of the Android platform but also discusses
the Android Open Source Project (AOSP), the internationalization of the platform,
the Android Market, a brief Linux tutorial, and a quick fb-non-chapter to Android
forensics. It also provides a step-by-step tutorial for creating an Ubuntu-based
virtual machine (VM), which will be used throughout the book in examples. The
Ubuntu VM is a highly recommended component of this book and can also be used
outside of the book for Android forensic cases.
xv

xvi Introduction
CHAPTER 2
In this chapter, a wide array of Android-supported hardware and device types is
covered. Although the hardware compatibility is great for manufacturers, wireless
providers, and ultimately consumers, this diversity poses challenges for forensic
analysts and security engineers. Understanding the hardware components, device
types, and boot process for Android will aid in your overall understanding of
Android and assist in both forensic and security investigations.
CHAPTER 3
This chapter covers the various Android releases, the Android software development
kit (SDK), the Davlik virtual machine, key components of Android security, and
several other concepts core to Android forensics such as the Android debug bridge
(adb) and the USB debugging setting. Step-by-step examples include installing the
SDK on Linux, OS X, and Windows as well as creating an Android virtual device
that can be used to test forensic techniques.
CHAPTER 4
This chapter covers the information needed to understand how data are stored on an
Android device. This includes reviewing the methods in which data are stored
(shared preferences, files, SQLite, and network) as well as the types of memory used
in an Android device such as RAM and the all important NAND flash. The various
file systems the reader might encounter in an Android device are also covered in
great detail including the YAFFS2, EXT, FAT32/FAT16, and a variety of low-level
file systems.
CHAPTER 5
This chapter covers the security of Android devices, data, and apps. A review not
only of how data can be exfiltrated from an Android device is covered but also of
how an Android device can be used as an active attack vector. After discussing
several overarching security concepts, this chapter provides specific advice for three
primary audiences: individuals, corporate security, and app developers. As the
growth of Android continues, issues of data security will be increasingly important
and this chapter provides a thorough and practical fb-non-chapter to this important
topic.

Introduction xvii
CHAPTER 6
This chapter covers specific techniques that are useful in the forensic acquisition of
Android devices. After clarifying the different types of acquisitions and providing
procedures for handling an Android device, seven different strategies for circum-
venting a pass code are discussed. Next, techniques and a specific script for
acquiring an SD card and, if present, the Embedded MultiMediaCard (eMMC) are
covered. Logical acquisition techniques are then covered including ones built into
Android and the SDK, a solution free to law enforcement and government agencies
called AFLogical, and finally a review of six commercial forensic software pack-
ages. Finally, techniques for acquiring a physical image of the NAND flash are
described in detail including six strategies for gaining root privileges and the
AFPhysical technique developed by viaForensics.
CHAPTER 7
In this final chapter, strategies and specific utilities are provided, which enable
a forensic analyst or security engineer to analyze an acquired Android device.
Although many of the techniques used in traditional forensic investigations are
applicable in Android forensics analysis, the new file system and the underlying
hardware characteristics require new techniques. Without these new techniques,
little content and value can be extracted from an Android physical acquisition.
Beyond providing the background and actual utilities, an overview of Android’s
directory structure as well as an in-depth analysis of 11 important applications that
provide significant data about the device are given. Armed with this knowledge,
a forensic analyst or security engineer can investigate any Android device they
encounter.
WEBSITE
For companion material including code, programs and updates please visit: http://
viaforensics.com/education/android-forensics-mobile-security-book/

About the Author
Andrew Hoog is a computer scientist, certified forensic analyst (GCFA and CCE),
computer and mobile forensics researcher, former adjunct professor (assembly
language), and cofounder of viaForensics, an innovative digital forensic and security
firm. He divides his energies between investigations, forensic software development,
and research in digital forensics and security. He also has two patents pending in the
areas of forensics and data recovery. He lives in Oak Park, IL, where he enjoys
spending time with his family, traveling, great wine, science fiction, and tinkering
with geeky gadgets.
About the Technical Editor
John McCash (CompTIA Sec+, GCIH, GAWN, GCFA, EnCE, GREM, SANS
Lethal Forensicator) is a 23-year IT veteran. He has specialized in Security for the
last 15 years, and Forensics for the last 4 years. McCash has extensive experience in
digital forensics, security/system/network administration, and incident response on
diverse platforms in very heterogeneous environments. He obtained his BS and MS
in CS at Bradley University in 1988. Currently John works for a major telecom-
munications equipment provider, and is a semiregular contributor to the SANS
Forensic Blog.
xix

About the Author
Andrew Hoog is a computer scientist, certified forensic analyst (GCFA and CCE),
computer and mobile forensics researcher, former adjunct professor (assembly
language), and cofounder of viaForensics, an innovative digital forensic and security
firm. He divides his energies between investigations, forensic software development,
and research in digital forensics and security. He also has two patents pending in the
areas of forensics and data recovery. He lives in Oak Park, IL, where he enjoys
spending time with his family, traveling, great wine, science fiction, and tinkering
with geeky gadgets.
About the Technical Editor
John McCash (CompTIA Sec+, GCIH, GAWN, GCFA, EnCE, GREM, SANS
Lethal Forensicator) is a 23-year IT veteran. He has specialized in Security for the
last 15 years, and Forensics for the last 4 years. McCash has extensive experience in
digital forensics, security/system/network administration, and incident response on
diverse platforms in very heterogeneous environments. He obtained his BS and MS
in CS at Bradley University in 1988. Currently John works for a major telecom-
munications equipment provider, and is a semiregular contributor to the SANS
Forensic Blog.
xix

Android and mobile forensics
CHAPTER
1

INFORMATION IN THIS CHAPTER

� Android platform

� Linux, Open source software and forensics

� Android Open Source Project

� Internationalization

� Android Market

� Android forensics

INTRODUCTION
Digital forensics is an exciting, fast-paced field that can have a powerful impact on
a variety of situations including internal corporate investigations, civil litigation,
criminal investigations, intelligence gathering, and matters involving national
security. Mobile forensics, arguably the fastest growing and evolving digital forensic
discipline, offers significant opportunities as well as many challenges. While the
interesting part of Android forensics involves the acquisition and analysis of data
from devices, it is important to have a broad understanding of both the platform and
the tools that will be used throughout the investigation. A thorough understanding
will assist a forensic examiner or security engineer through the successful investi-
gation and analysis of an Android device.
An
Co
TIP

Book corrections, updates, and software
All corrections, updates, and even software samples for this book will be maintained online
at the following web page:

http://viaforensics.com/education/android-forensics-mobile-security-book/
Please check the web site as over time it will evolve and provide significant and

increasing value to the reader. Beyond corrections and updates, some of the software
referenced in the book will be available for download.

ANDROID PLATFORM
Android is an open source mobile device platform based on the Linux 2.6 kernel and
managed by the Open Handset Alliance, a group of carriers, mobile device and
component manufacturers, and software vendors.
1droid Forensics. DOI: 10.1016/B978-1-59749-651-3.10001-9
pyright � 2011 Elsevier Inc. All rights reserved.

http://viaforensics.com/education/android-forensics-mobile-security-book/
http://dx.doi.org/10.1016/B978-1-59749-651-3.10001-9

Table 1.1 Total US Smartphone Subscribers, Ages 13þ, November 2010

Platform Share (%) of Smartphone Subscribers

RIM 33.5

Google 26.0

Apple 25.0

Microsoft 9.0

Palm 3.9

2 CHAPTER 1 Android and mobile forensics
Android has made a significant impact on the smartphone market and, conse-
quently, in the area of forensics. Two years and one month after the first Android
device was introduced (October 2008), Android became the second largest smart-
phone platform capturing 26.0% of the 61.5 million US smartphone subscribers
(comScore reports, n.d.). Table 1.1 shows the top smartphone platforms as of
November 2010, according to comScore, Inc.

But Android’s influence extends well beyond the US market. According to
Gartner, Inc., the Android operating system (OS) was the second most popular
during the third quarter of 2010 and accounted for 25.5% of worldwide smartphone
sales (Gartner says, n.d.), as shown in Table 1.2.

According to the web site Google Investor, Google CEO Eric Schmidt reported
that over 350,000 Android devices were being activated each day as of February
2011 (Google investor, n.d.). These statistics focus on the smartphone market, which
is only one of the many types of Android devices available in the market.

The open source nature of Android has not only established a new direction for
the industry, but also has enabled developers, code savvy forensic analysts, and
Table 1.2 Worldwide Smartphone Sales to End Users by Operating System

in Third Quarter of 2009–2010 (in Thousands of Units)

Company
Unitsd3rd
Qtr 2010

Market Share
(%)d3rd Qtr 2010

Unitsd3rd
Qtr 2009

Market Share
(%)d3rd Qtr
2009

Symbian 29,480.1 36.6 18,314.8 44.6

Android 20,500.0 25.5 1424.5 3.5

iOS 13,484.4 16.7 7040.4 17.1

Research
in motion

11,908.3 14.8 8522.7 20.7

Microsoft
Windows
mobile

2247.9 2.8 3259.9 7.9

Linus 1697.1 2.1 1918.5 4.7

Other OS 1214.8 1.5 612.5 1.5

Total 80,532.6 100.0 41,093.3 100.0

Android platform 3
(unfortunately) sophisticated criminals to understand the device at the most
fundamental level. As the core platform quickly matures and continues to be
provided free of charge, carriers and hardware vendors alike can focus their efforts
on customizations intended to retain their customers.
History of Android
For over three decades, companies have invested significant resources into research
and development of handheld computing devices in the hopes that they would open
new markets. As with traditional computers, the hardware components central to
building such devices have advanced significantly and now provide a small, though
powerful, mobile platform for handheld computers.

A central figure in the development of Android is Andy Rubin whose past
employers include robotics firms, Apple, WebTV, and Danger Inc. His previous
company, Danger Inc., developed a smartphone and support OS most recognized
from the T-Mobile Sidekick. This mobile operating system, DangerOS, was built
using Java. It provided a software development kit and had some of the features
found in current smartphones. In 2004, Rubin left Danger and tinkered with several
new ideas. He again returned to smartphone development and teamed with several
engineers from past companies. The company Rubin formed in 2003 was called
Android, Inc.

While the team began development, Rubin was actively marketing Android to
both potential investors and wireless carriers. One of the companies he spoke with
was Google, who subsequently acquired Android in July 2005. The acquisition,
combined with new patents and services involving mobile and a large bid for
wireless spectrum, fueled significant speculation that Google was developing their
own smartphone and perhaps was aiming to be a full wireless carrier.

However, on November 5, 2007, Andy Rubin announced a more ambitious plan
on the official Google blog (Official Google blog, n.d.):

Android is the first truly open and comprehensive platform for mobile devices. It

includes an operating system, user-interface and applicationsdall of the

software to run a mobile phone, but without the proprietary obstacles that have

hindered mobile innovation. We have developed Android in cooperation with

the Open Handset Alliance, which consists of more than 30 technology and

mobile leaders including Motorola, Qualcomm, HTC and T-Mobile. Through

deep partnerships with carriers, device manufacturers, developers, and others,

we hope to enable an open ecosystem for the mobile world by creating

a standard, open mobile software platform. We think the result will ultimately

be a better and faster pace for innovation that will give mobile customers

unforeseen applications and capabilities.

One week later, Google released an early look at the Android software devel-
opment kit (SDK) to developers. This allowed Google to create the first Android
Developer Challenge, which ran from January 2008 through April 2008. Google set

4 CHAPTER 1 Android and mobile forensics
aside $1,000,000 to reward the most innovative Android apps. The top 50 apps are
available for review at http://code.google.com/android/adc/adc_gallery/.

In August 2008, Google announced the availability of the Android Market where
developers could upload their apps for mobile device owners to browse and install.
The initial release did not support paid apps. However, that feature was added in
early 2009. Finally, October 2008 marked both the official release of the Android
Open Source Project (AOSP) (Bort, n.d.) and the first publicly available Android
smartphone, the T-Mobile G1.

Since inception, the Android ecosystem has grown significantly and is comprised
of diverse groups of contributors. Table 1.3 summarizes significant milestones for
the Android platform.
Open Handset Alliance
The Open Handset Alliance (OHA) is a collaboration among mobile technology
companies including wireless carriers, handset and component manufacturers,
software developers, and other support and integration companies. The alliance,
established on November 5, 2007, originally had 34 members. However, by January
2011 there were nearly 80 members.

The OHA is committed “to accelerate innovation in mobile and offer consumers
a richer, less expensive, and better mobile experience” (Alliance FAQ, n.d.) with the
primary focus on the coordination, development, and release of Android devices.
Google is the driving force behind both the OHA and AOSP. Some have complained
that the alliance is simply a marketing technique that offers little value to the
members or consumers. However, new members have joined throughout 2010 and
the OHA will undoubtedly continue well into the future. The members, as of
Table 1.3 Android Milestones

Date Event

July 1, 2005 Google acquires Android, Inc.

November 12, 2007 Android launched

August 28, 2008 Android Market announced

September 23, 2008 Android 1.0 platform released

October 21, 2008 Android released as open source software

February 13, 2009 Android Market: USA takes paid apps

March 12, 2009 Android Market: UK takes paid apps

April 15, 2009 Android 1.5 (Cupcake) platform released

September 16, 2009 Android 1.6 (Donut) platform released

October 5, 2009 Android 2.0/2.1 (Eclair) platform released

May 20, 2010 Android 2.2 (Froyo) platform released

May 23, 2010 Android 2.2. for Nexus One phones released

December 6, 2010 Android 2.3 (Gingerbread) platform released

February 2, 2011 Android 3.0 (Honeycomb) preview released

http://code.google.com/android/adc/adc_gallery/

Android platform 5
February 3, 2011, listed in Table 1.4, are grouped by mobile operators, handset
manufacturers, semiconductor companies, software companies, and commerciali-
zation companies (Alliance members, n.d.).

Android Features
While we explore the various Android device types more in the next chapter, there
are several features common to most Android devices that we can discuss here.

First, Android was engineered from the beginning to be online, whether using
cellular networks such as Global System for Mobile Communications and Code
Division Multiple Access (GSM/CDMA) or wireless networks (Wi-Fi). Regardless
of the venue, the ability to be online is a core feature of any Android device. Many of
the devices are indeed smartphones and thus support sending and receiving phone
calls, text messages, and other services found on cellular networks. Interacting with
the device is typically via a touch screen, but many devices also allow for keyboards
or other buttons, which support user interaction.

A second core feature of Android devices is the ability to download and install
applications (apps) from the Android Market. This is a primary feature to many users
because it allows them to extend the functionality of the device. These apps also
typically happen to be a rich source of information for forensic analysts.

The final core feature is the ability for users to store their data on the devices. This,
of course, is the basis for the forensics work covered in detail in this book. Most
Android devices come with some on-device storage using flash (NAND) memory as
well as an external SD card that is portable and intended to store larger amounts of
data. Some recent HTC devices are now shipping with an emulated SD card which is
a separate USB device ID mapped to the NAND and presented as an SD card. The
emulated SD cards are typically formatted with Microsoft’s FAT32 file system.

Supported Cellular Networks
As smartphones are the largest category of Android devices, it is important to
understand the various cellular technologies Android currently supports.

The first Android device, the HTC DREA100 or T-Mobile G1, was a Global
System for Mobile Communications (GSM) phone. GSM is the most widely used and
supported cellular system with excellent support throughout the world. Major wireless
providers in the United States that support GSM include AT&T and T-Mobile. The
GSM system leverages a subscriber identity module (SIM) or universal subscriber
identity module (USIM) to identify the user to the cellular network.

The next cellular system supported by Android is the Code Division Multiple
Access, often referred to as CDMA. CDMA is the technique used to encode and send
the voice, data, and control signals used by a CDMA phone. It is popular in the
United States, but less so around the world. In the United States, the primary
technology standard used is called CDMA2000. Major carriers include Verizon
Wireless, Sprint, U.S. Cellular, and Cricket Communications.

The final cellular system supported by Android is the Integrated Digital
Enhanced Network, or iDEN, whose primary attraction is its support of the

Table 1.4 Open Handset Alliance Members

Company Type Companies

Mobile operators � Bouygues Telecom
� China Mobile Communications Corporation
� China Telecommunications Corporation
� China Unicom
� KDDI Corporation
� NTT DoCoMo, Inc.
� Softbank Mobile Corp.
� Sprint Nextel
� T-Mobile
� Telecom Italia
� Telefónica
� Telus
� Vodafone

Handset manufacturers � Acer Inc.
� Alcatel Mobile Phones
� ASUSTeK Computer Inc.
� CCI
� Dell
� FIH
� Garmin
� Haier Telecom (Qingdao) Co., Ltd
� HTC Corporation
� Huawei Technologies
� Kyocera
� Lenovo Mobile Communication Technology Ltd
� LG
� Motorola
� NEC Corporation
� Samsung Electronics
� Sharp Corporation
� Sony Ericsson
� Toshiba Corporation
� ZTE Corporation

Semiconductor companies � AKM Semiconductor Inc.
� Audience
� ARM
� Atheros Communications
� Audience
� Broadcom Corporation
� CSR Plc.
� Cypress Semiconductor Corp.
� Freescale Semiconductor
� Gemalto
� Intel Corporation
� Marvell Semiconductor, Inc.
� MediaTek, Inc.
� MIPS Technologies, Inc.

6 CHAPTER 1 Android and mobile forensics

Table 1.4 Open Handset Alliance Members (Continued)

Company Type Companies

� Nvidia Corporation
� Qualcomm
� Renesas Electronics Corp.
� ST-Ericsson
� Synaptics, Inc.
� Texas Instruments Inc.
� Via Telecom

Software companies � Access Co., Ltd
� Ascender Corp.
� Cooliris, Inc.
� eBay Inc.
� Google Inc.
� LivingImage Ltd
� Myriad
� Motoya Co., Ltd
� Nuance Communications, Inc.
� NXP Software
� OMRON Software Co., Ltd
� PacketVideo (PV)
� SkyPop
� SONiVOX
� SVOX
� VisualOn Inc.

Commercialization
companies

� Accenture
� Aplix Corp.
� Borqs
� L&T Infotech
� Noser Engineering Inc.
� Sasken Communication Technologies Limited
� SQL Start International Inc.
� TAT The Astonishing Tribe AB
� Teleca AB
� Wind River Systems
� Wipro Technologies

Android platform 7
popular push-to-talk (PTT) feature. In the United States, the only large carrier
supporting iDEN is Sprint Nextel (who also owns Boost Mobile). Motorola, the
developer of iDEN, also developed the Motorola i1, the first Android phone
supporting iDEN.
Google’s Strategy
Android is clearly a powerful mobile device platform which costs an enormous
amount in development. So why did Google give Android away for free?

8 CHAPTER 1 Android and mobile forensics
The answer starts with Google’s clearly defined mission (Corporate information:
about, n.d.):

Google’s mission is to organize the world’s information and make it universally

accessible and useful.

Cell phones are the most popular consumer device, numbering over 4 billion, so
by providing an advanced mobile stack at no cost, Google believes they are fulfilling
the universally accessible portion of their mission. But, obviously there must still be
some benefit for Google. When more people are online, more people use search,
which ultimately drives ad revenuedGoogle’s primary source of income. In
a March 2009 interview, Andy Rubin explained:

Google has a great business model around advertising, and there’s a natural

connection between open source and the advertising business model. Open

source is basically a distribution strategy, it’s completely eliminating the

barrier to entry for adoption.

(Krazit, n.d.)

One of the criticisms of Android is that the market is now highly fragmented with
different versions and variations of Androidda direct result of how Google releases
Android to the manufacturers. This is in contrast to other devices, such as the iPhone
where Apple has total control over the hardware and OS and significant influence
over third-party application. Rubin defends this model, however. In the same
interview, Rubin further commented on this aspect (Krazit, n.d.):

Controlling the whole device is great, (but) we’re talking about 4 billion handsets.

When you control the whole device the ability to innovate rapidly is pretty limited

when it’s coming from a single vendor. You can have spurts of innovation. You can

nail the enterprise, nail certain interface techniques, or you can nail the Web-in-

the-handset business, but you can’t do everything. You’re always going to be in

some niche. What we’re talking about is getting out of a niche and giving

people access to the Internet in the way they expect the Internet to be

accessed. I don’t want to create some derivative of the Internet, I don’t want to

just take a slice of the Internet, I don’t want to be in the corner somewhere

with some dumbed-down version of the Internet, I want to be on the Internet.

So by creating a mobile OS that meets the demands of the consumer as well as
the needs of the manufacturers and wireless carriers, Google has an excellent
distribution platform for their revenue-generating search and advertising business.

Apps
One important way by which Android supports innovation beyond the core mobile
stack is by enabling the development and distribution of third-party apps on
Android. As of January 2011, over 200,000 Android apps have been developed.
This, of course, is similar to the strategy Apple developed. However, there are key
differences in their approach. Apple maintains tight control over their App Store,

Android platform 9
requiring developers to submit to a sometimes lengthy review process and
providing Apple with the final approval for an app. Apps can be denied based on
a number of criteria, most notably if they contain any content Apple feels is
objectionable. Google, on the other hand, requires very little review to publish an
app in the Android Market. While Google has the ability to ban a developer,
remove an app from the Android Market, and even remotely uninstall apps from
Android devices, in general their approach to app management is hands off.

Nexus Phones
In January 2010, Google released its own smartphone, the Nexus One (N1) shown in
Fig. 1.1. The N1 was developed by HTC and, by all accounts, was an ideal model for
how manufacturers should develop their phones. The processor was extremely fast
(1 GHz), it was running the latest version of Android, and it had innovations such as
three microphones which survey background noise and blend your voice to create
the most clear conversation possible.

The N1 was sold directly by Google and was sold unlockedda move many
analysts saw as a direct challenge to the carrier lock-in model where customers must
sign a two-year agreement to get a discount on the device. The N1 was also available
through T-Mobile for a reduced price, provided the user signs an extended contract.
In the end, the sales for the N1 were not overwhelming and there was speculation
that Google failed in their implementation (Fig. 1.1).
FIGURE 1.1

Google Nexus One by HTC.

FIGURE 1.2

Google Nexus S by Samsung.

10 CHAPTER 1 Android and mobile forensics
,

.

However, at the time, Google was also trying to demonstrate how they believed an
Android phone should be released and maintained. To the surprise of many, one year
later Google released the Nexus S manufactured by Samsung, shown in Fig. 1.2. One
interesting feature of the Nexus Swas that it ran onAndroid 2.3 that allowed the native
ability to make Voice over IP (VoIP) phone calls. If a device has a data connection
whether it isWi-Fi.comor some other network, then it can send and receive phone calls
using any number of popular VoIP services. In the United States, the phone was sold
only through Best Buy stores and service was available through T-Mobile (Fig. 1.2).

It is unclear what Google’s overall goals are with the Nexus line of smartphones
However, it is clear they intend to release Google phones and eventually may offer
consumers a new flexibility in how they purchase and use smartphones.
LINUX, OPEN SOURCE SOFTWARE, AND FORENSICS
Open source software has had a tremendous impact on the digital forensics disci-
pline. Forensic tools that are released as free open source software have tremendous
advantages over closed source solutions including the following:

� The ability to review source code and understand exact steps taken
� The ability to improve the software and share enhancementswith entire community
� The price

http://Wi-Fi.com

Linux, open source software, and forensics 11
While many of the free, open source software packages do not offer a commer-
cial support model, some companies specialize in providing support. For example,
Red Hat has built a significant business providing support and services for the Linux
OS. In addition, the maintainers of many free, open source software packages are
generally very accessible and responsive to inquiries and can often provide far
superior support as they directly maintain the software.

The most significant and important example of free, open source software is the
Linux OS. Linux is not only a critical component of Android but can also be used as
a powerful forensic tool.

Brief History of Linux
There have been many books written about Linux and dedicating only one section to
such an important OS is difficult. There are also many fantastic online resources for
Linux some of which focus on Linux as a forensic tool.

In 1991, Linus Torvalds was a University of Helsinki student when he decided to
develop a terminal emulator that he could use to connect to the University’s systems.
The code was developed specifically for his computer, which had an Intel 386
processor. After he completed the initial development, he realized that code could
actually form the basis of an OS and he posted the following famous messages on the
Usenet newsgroup comp.os.minix (Torvalds, 1991):
Path: gmdzi!unido!mcsun!news.funet.fi!hydra!klaava!torvalds
From: torva...@klaava.Helsinki.FI (Linus Benedict Torvalds)
Newsgroups: comp.os.minix
Subject: Free minix-like kernel sources for 386-AT
Keywords: 386, preliminary version
Message-ID: <1991Oct5.054106.4647@klaava.Helsinki.FI>
Date: 5 Oct 91 05:41:06 GMT
Organization: University of Helsinki
Lines: 55

Do you pine for the nice days of minix-1.1, when men were men and wrote
their own device drivers? Are you without a nice project and just dying
to cut your teeth on a OS you can try to modify for your needs? Are you
finding it frustrating when everything works on minix? No more all-
nighters to get a nifty program working? Then this post might be just
for you :-)

As I mentioned a month(?) ago, I'm working on a free version of a
minix-lookalike for AT-386 computers. It has finally reached the stage
where it's even usable (though may not be depending on what you want),
and I am willing to put out the sources for wider distribution. It is
just version 0.02 (+1 (very small) patch already), but I've successfully
run bash/gcc/gnu-make/gnu-sed/compress etc under it.

<snip>

I can (well, almost) hear you asking yourselves "why?". Hurd will be
out in a year (or two, or next month, who knows), and I've already got
minix. This is a program for hackers by a hacker. I've enjouyed doing
it, and somebody might enjoy looking at it and even modifying it for
their own needs. It is still small enough to understand, use and
modify, and I'm looking forward to any comments you might have.

<snip>

12 CHAPTER 1 Android and mobile forensics
Reading this post, the mentality of many avid Linux users is captured in the desire to
understand, modify, create, and otherwise tinker with complex systems (often
referred to as a hacker mentality). The newsgroup Linus posted on was for the Minix
OS, which at the time was the OS of choice for many people wanting to test and
develop a Unix-like OS. However, there were licensing restrictions as well as
technical limitations of Minix that Linus wanted to overcome.

Over nearly 20 years, Linux has matured significantly and is used on many
PCs, servers, and now mobile devices. There are literally thousands of powerful
tools available as well as complete development environments for many program-
ming languages. The are many distributions that focus on different needs
including servers, workstations, laptops, embedded devices, security suites, and
many more.
Installing Linux in VirtualBox
Linux is a truly amazing OS and we will use its power throughout this book in
examples intended for the reader to follow along and complete. All examples in this
book are performed on an Ubuntu 10.10 64-bit desktop install running as a virtual
machine (VM). While the virtual machine software from several vendors is
compatible (including VMWare Fusion running on Mac OS X), this book is focused
on options that are free, open, or both. In this instance, VirtualBox is both open
source software and freely available.
NOTE

This Ubuntu VM will be used extensively through the book for all examples. Subsequent
chapters will build upon this base install by adding more tools and scripts. Readers are
encouraged to create this Ubuntu VM and follow along with all examples to maximize
knowledge. The Ubuntu VM can be used directly for Android forensic cases.
VirtualBox is now owned by Oracle and is distributed under the GPLv2 license.
There is a section on Oracle’s web site that addresses frequently asked questions
about licensing.

You can download VirtualBox for many operating systems including Microsoft
Windows, Mac OS X, and Linux (2.4 and 2.6) from http://www.virtualbox.org/.
After you install VirtualBox, you will see the Oracle VM VirtualBox Manager,
shown in Fig. 1.3, where you create and manage new VMs.

When you create the new VM, make sure you have enough hard drive space (at
least 20 GB is recommended) and as much RAM as you can spare. For the
Android build, Google recommends at least 1536 MB (1.5 GB) (Get Android
source code, n.d.).

Using the VirtualBox Manager graphical user interface (GUI) to set the new
virtual machine is straightforward. However, if you have access an Ubuntu
Linux 64-bit workstation or server, but do not have the ability to run desktop

http://www.virtualbox.org/

FIGURE 1.3

Oracle VM VirtualBox Manager for OS X.

Linux, open source software, and forensics 13
applications, here are the steps you can follow to setup, configure, and run the new
VM (VirtualBox 3.2.10).

From an ssh session, it is best to use the program “screen” so that if you lose
connection to the server, your VM remains active. Then, follow these steps:
mkdir -p ~/vbox
cd ~/vbox
wget http://ubuntu.mirrors.pair.com/releases/maverick/ubuntu-10.10 -desktop
-amd64.iso

VBoxManage createvm -name af-book-vm -ostype Ubuntu -register

VBoxManage modifyvm af-book-vm --memory 1536 --acpi on --boot1 dvd \
--nic1 bridged --usb on --usbehci on --vrdp on --vrdpport 3392 \
--clipboard bidirectional --pae on --hwvirtex on --hwvirtexexcl on
 --vtxvpid on \
--nestedpaging on --largepages on

mailto:Image of Figure 1.3|tif
mailto:Image of Figure 1.3|tif

VBoxManage modifyvm af-book-vm --bridgeadapter1 eth0

VBoxManage storagectl af-book-vm --name "IDE Controller" --add ide

VBoxManage createvdi --filename ~/vbox/af-book-vm.vdi \
--size 20000 --register

VBoxManage storageattach af-book-vm --storagectl "IDE Controller" \
--port 0 --device 0 --type hdd --medium ~/vbox/af-book-vm.vdi

VBoxManage storageattach af-book-vm --storagectl "IDE Controller" \
--port 1 --device 0 --type dvddrive --medium ~/vbox/ubuntu-10.10-desktop
-i386.iso

VBoxHeadless -startvm af-book-vm -p 3392 &

#need to eject DVD, the restart
VBoxManage storageattach af-book-vm --storagectl "IDE Controller" --port 1 \
--device 0 --type dvddrive --medium none

#restart the virtual machine
VBoxHeadless -startvm af-book-vm -p 3392

14 CHAPTER 1 Android and mobile forensics
At this point, the VM will start up and you can access the install using any
Remote Desktop Protocol (RDP) viewer such as Remote Desktop Connection on
Windows, rdesktop on Linux, or Microsoft’s Remote Desktop Connection Client for
Mac. To access the above session, you would connect to <host server’s IP:3392>.
From there, follow the install until it is time to reboot.

If you shutdown or reboot the VBoxHeadless session ends; you can simply issue
the command again to start the server backup. Then, RDP back into the machine and
install openssh server so that we can use ssh instead of the less efficient RDP:

Now you can find the virtual machine’s IP address by running ifconfig and looking at
the “inet addr” for eth0. You can use your favorite ssh program (if on Windows, try
Putty for a great, free client) and ssh into the virtual machine.

The Sleuth Kit (TSK)
Brian Carrier has an excellent open source forensic toolkit called The Sleuth Kit
(TSK), which will be discussed in this section. Examples throughout this book will
leverage TSK extensively. Brian developed and continues to maintain TSK and
provides an enormous service to our industry. If you are not familiar with TSK, visit
the web site at http://sleuthkit.org/ and consider using the programs. There is quite
a bit of information on TSK’s web site as well as many forensic blogs and books. If
you are going to follow the examples in this book, you should install TSK on the
Linux workstation with the following command:

sudo apt-get install openssh-server
Hopefully others can follow in Brian’s footsteps and provide such important toolkits
and service to the forensic community.

sudo apt-get install sleuthkit

http://sleuthkit.org/
mailto:Image of Figure 1.3|tif
mailto:Image of Figure 1.3|tif
mailto:Image of Figure 1.3|tif

Linux, open source software, and forensics 15
Disable Automount
It is critical that forensic workstations do not have automount enabled which, as the
name infers, will automatically mount a file system when one is found on a device
connected. The option to disable automount in Ubuntu is done per user, so if the
workstation will have more than one user account, please make sure you change
each of them:

Then navigate to apps> nautilus> preferences and ensure the “media_automount”
and “media_automount_open” options are unchecked as illustrated in Fig. 1.4.

You can then close the Gnome Configuration editor. Now, automount is disabled.
For typical users, this is more work. However, for a forensic analyst, it is an absolute
necessity (as is the use of hardware write blockers).

Linux and ForensicsdBasic Commands
Before we setup and configure a Linux forensic workstation, it is helpful to provide
an overview of Linux’s relevance to forensics. A Linux workstation is a powerful
tool for forensic investigation due to the wide support for many file systems, the
advanced tools available, and the ability to develop and compile source code.
However, since many examiners are not familiar with Linux, the following sections
provide a breakdown of some of the more common Linux commands including
a description of the command, its general usage, and one or more examples of how
the command can be applied.

gconf-editor
FIGURE 1.4

Disable automount on Ubuntu.

mailto:Image of Figure 1.4|tif

16 CHAPTER 1 Android and mobile forensics
man
The “man” command pulls up online manuals for the requested command in the
terminal window. The manual will provide a detailed description of the command as
well as its usage (including all the options or “flags” for that command).
In the following examples, the first command lists the beginning of the manual
page for the “mount” command, while the second searches all manuals containing
the characters “grep”, a powerful searching tool.

$ man [-k keywords] commands
$ man mount
MOUNT(8) Linux Programmer's Manual MOUNT(8)

NAME
 mount - mount a filesystem

SYNOPSIS
 mount [-lhV]

 mount -a [-fFnrsvw] [-t vfstype] [-O optlist]

 mount [-fnrsvw] [-o option[,option]...] device|dir

 mount [-fnrsvw] [-t vfstype] [-o options] device dir

DESCRIPTION
 All files accessible in a Unix system are arranged in one big tree, the
 file hierarchy, rooted at /. These files can be spread out over sev-
 eral devices. The mount command serves to attach the filesystem found
 on some device to the big file tree. Conversely, the umount(8) command
 will detach it again.

 The standard form of the mount command, is
<snip>

$ man -k grep
bzegrep (1) - search possibly bzip2 compressed files for a regular
 expression
bzfgrep (1) - search possibly bzip2 compressed files for a regular
 expression
bzgrep (1) - search possibly bzip2 compressed files for a regular
 expression
egrep (1) - print lines matching a pattern
fgrep (1) - print lines matching a pattern
git-grep (1) - Print lines matching a pattern
grep (1) - print lines matching a pattern
pgrep (1) - look up or signal processes based on name and other
 attributes
rgrep (1) - print lines matching a pattern
xzegrep (1) - search compressed files for a regular expression
xzfgrep (1) - search compressed files for a regular expression
xzgrep (1) - search compressed files for a regular expression
zegrep (1) - search possibly compressed files for a regular
 expression
zfgrep (1) - search possibly compressed files for a regular
 expression
zgrep (1) - search possibly compressed files for a regular
 expression
zipgrep (1) - search files in a ZIP archive for lines matching a
 pattern

mailto:Image of Figure 1.4|tif
mailto:Image of Figure 1.4|tif

Linux, open source software, and forensics 17
help
The “help” command displays information on the requested command, including
usage and examples, similar to “man.” Some commands use the - -help notation
while others simply use -h or -help.
$ mount --help

Usage: mount -V : print version
 mount -h : print this help
 mount : list mounted filesystems
 mount -l : idem, including volume labels
So far the informational part. Next the mounting.
The command is 'mount [-t fstype] something somewhere'.
Details found in /etc/fstab may be omitted.
 mount -a [-t|-O] ... : mount all stuff from /etc/fstab
 mount device : mount device at the known place
 mount directory : mount known device here
 mount -t type dev dir : ordinary mount command
Note that one does not really mount a device, one mounts
a filesystem (of the given type) found on the device.
One can also mount an already visible directory tree elsewhere:
 mount --bind olddir newdir
or move a subtree:
 mount --move olddir newdir
One can change the type of mount containing the directory dir:
 mount --make-shared dir
 mount --make-slave dir
 mount --make-private dir
 mount --make-unbindable dir
One can change the type of all the mounts in a mount subtree
containing the directory dir:
 mount --make-rshared dir
 mount --make-rslave dir
 mount --make-rprivate dir
 mount --make-runbindable dir
A device can be given by name, say /dev/hda1 or /dev/cdrom,
or by label, using -L label or by uuid, using -U uuid.
Other options: [-nfFrsvw] [-o options] [-p passwdfd].
For many more details, say man 8 mount.
cd
This command is used to change into another directory. In Linux, the special
character ~ is used to represent the current user’s home directory. For example, the
user ahoog has a home directory on a Linux system at /home/ahoog. From anywhere
in the file system, you can use ~ to refer to /home/ahoog. This works well for
documentation so throughout this book we refer to ~ and, even if you have setup
a different user name, the command will still function as expected.
$ cd ~ (changes into the current user's home directory from
 anywhere)
$ cd ~/Desktop/Projects (changes into the "Projects" folder located on the
 user's Desktop)
$ cd .. (changes directories up 1 level, back into "Desktop")
$ cd ../../ (changes directories up 2 levels)
$ cd (also changes into the user's home directory from
 anywhere)
$ cd / (changes into the root file system folder from
 anywhere)

mailto:Image of Figure 1.4|tif
mailto:Image of Figure 1.4|tif

18 CHAPTER 1 Android and mobile forensics
mkdir
The “mkdir” command creates a directory in the current location, unless otherwise
specified.

$ mkdir android (creates the "android" folder in the
 current directory)
$ mkdir -p ~/android/forensics/book (creates the full path of directories even
 if top levels do not exist)

rmdir/rm
This command removes existing directories or files based on the flags specified. The
“rmdir” command will only remove empty folders. If there are files within the
directory, these will first need to be removed prior to running the “rmdir” command.
The “rm” command can be used to remove both files and folders, and will prompt
the user prior to removing. You can override the prompt with the -f option but use
with caution, hence the phrase “rm minus rf ” or rm -rf.
$ rmdir android (removes only an empty folder)
$ rmdir -p ~/android/forensics/book (removes each folder within the specified
 path)
$ rm -r android (removes the specified folder and all of
 its contents)
$ rm -rf android (removes the specified folder and all of
 its contents without prompting)
$ rm test.txt (deletes the specified file)
$ rm *.txt (deletes all .txt files within the current
 directory)
$ rm * (deletes all files within the current
 directory)
nano
The “nano” is a terminal based editor that allows the creation and modification of
text files. To create a file, simply type the command.
$ nano
Typing “nano” will open the text editor within the terminal window or ssh
session, allowing the user to enter the contents they wish as shown in Fig. 1.5.

When the text has been entered, pressing Control X will exit the text editor and
prompt you to save the file. In this case, we set the file name to newfile.txt.

To modify an existing file, simply follow the nano command with the file name
or full path and file name if the file is in a different directory:

$ nano /etc/apt/sources.list

ls
This command lists files and folders. The “ls” command without any options
specified will list the file/folder names only in the current directory. Adding the “-lh”

mailto:Image of Figure 1.4|tif
mailto:Image of Figure 1.4|tif

FIGURE 1.5

Create file using “nano.”

Linux, open source software, and forensics 19
option will provide a long list with more details including permissions, ownership,
size, and date and time stamps.

ahoog@ubuntu:~/src$ ls
dc3dd-7.0.0 md5deep-3.7 viaextract-python
dc3dd-7.0.0.tar.gz md5deep-3.7.tar.gz yaffs2-old
download viaextract_env yaffs2-older.tgz

ahoog@ubuntu:~/src$ ls -lh
total 9.0M
drwxr-xr-x 10 ahoog ahoog 4.0K 2011-02-12 13:21 dc3dd-7.0.0
-rw-r--r-- 1 ahoog ahoog 4.2M 2011-02-12 13:12 dc3dd-7.0.0.tar.gz
-rw-r--r-- 1 ahoog ahoog 4.2M 2010-08-19 18:23 download
drwxr-xr-x 6 ahoog ahoog 4.0K 2011-02-18 07:21 md5deep-3.7
-rw-r--r-- 1 ahoog ahoog 256K 2010-12-17 09:33 md5deep-3.7.tar.gz
drwxr-xr-x 6 ahoog ahoog 4.0K 2011-02-16 11:54 viaextract_env
drwxr-xr-x 6 ahoog ahoog 4.0K 2011-02-16 11:21 viaextract-python
drwxr-xr-x 8 ahoog ahoog 4.0K 2011-02-18 07:13 yaffs2-old
-rw-r--r-- 1 ahoog ahoog 460K 2011-02-18 07:11 yaffs2-older.tgz

tree
The “tree” command shows the hierarchy of folders for the directory specified. If
no parameters are specified, the current directory will be used. In Linux, the
current directory is referred to as a single “.” while one directory up is a double
period “..”. In the following output, the current directory is used, which happens to
be the current user’s home directory. The user can specify how many directory
levels they wish to view with the “-L” flag. In the first example, one level is
shown. Whereas in the second example, two levels of the source directory and
files are displayed. Don’t forget: you can learn all the details of a command by

mailto:Image of Figure 1.5|tif

20 CHAPTER 1 Android and mobile forensics
examining the man page (man tree) or specifying the command’s help parameter
(tree - -help).
ahoog@ubuntu:~/src$ tree -L 1
.
├── dc3dd-7.0.0
├── dc3dd-7.0.0.tar.gz
├── download
├── md5deep-3.7
├── md5deep-3.7.tar.gz
├── viaextract_env
├── viaextract-python
├── yaffs2-old
└── yaffs2-older.tgz

5 directories, 4 files

ahoog@ubuntu:~/src$ tree -L 2 viaextract_env/
viaextract_env/
├── bin
│ ├── activate
│ ├── activate_this.py
│ ├── easy_install
│ ├── easy_install-2.6
│ ├── pilconvert.py
│ ├── pildriver.py
│ ├── pilfile.py
│ ├── pilfont.py
│ ├── pilprint.py
│ ├── pip
│ ├── pisa
│ ├── python
│ └── xhtml2pdf
├── include
│ └── python2.6 -> /usr/include/python2.6
├── lib
│ └── python2.6
└── src
 └── viaextract -> /home/ahoog/src/viaextract-python/trunk/viaextract/

7 directories, 13 files
less
The “less” command displays specified files one page at a time. This command is
commonly used in conjunction with other commands to show output one page at
a time. The following command will display the contents of the sanitize-csv.sh file
one screen at a time within the terminal window. Once you are in the less utility,
there are a few key commands to remember:

� h: access help menu
� q: quit help menu
� spacebar: display one screen/page down
� b: display one screen/page up
� /: search for a pattern
� Enter: move one line down
� y: move one line up

Linux, open source software, and forensics 21
There are many more commands and tricks to this powerful utility so read the
help screens, the man page, or simply search the Internet for more helpful tips.
ahoog@ubuntu:~$ less sanitize-csv.sh
#!/bin/bash

create a new directory to store the sanitized files
mkdir sanitized

#for each file ending with .csv
for f in *.csv
do
 #read the top 1 row of the file and save it to the sanitized directory
 #with the same filename followed by -1strowonly
 head -1 "$f" > sanitized/"$f"-1strowonly
done

#create a "tar gzip" archive of the file so it is easier share
tar czvf AFlogical-sanitized.tgz sanitized/*
sanitize-csv.sh (END)
cat
The “cat” command outputs the contents of a file to the screen or to a new file if
specified (without retaining the format of the file).
ahoog@ubuntu:~/Desktop$ cat android.txt
android forensics is so much fun.

This file contains unnecessary information used to display the workings of the
"cat" command.

The "cat" command can be used in conjunction with "less" in order to display
the contents of a
file one page at a time.
This command can also be used to combine multiple files into one (i.e., often
referred to as concatenating files).
$ cat file1.txt file2.txt file3.txt > final.txt
find
The “find” command is used to search for files in a directory hierarchy. The
following command will list all of the files, including the full path, contained on the
specified user’s home directory.
ahoog@ubuntu:~$ find ~
/home/ahoog
/home/ahoog/scalpel-1.60
/home/ahoog/scalpel-1.60/README
/home/ahoog/scalpel-1.60/dirname.h
/home/ahoog/scalpel-1.60/base_name.c
/home/ahoog/scalpel-1.60/dig.c
/home/ahoog/scalpel-1.60/prioque.h
/home/ahoog/scalpel-1.60/scalpel.o
/home/ahoog/scalpel-1.60/files.c
/home/ahoog/scalpel-1.60/helpers.o
<snip>

mailto:Image of Figure 1.5|tif
mailto:Image of Figure 1.5|tif
mailto:Image of Figure 1.5|tif
mailto:Image of Figure 1.5|tif

22 CHAPTER 1 Android and mobile forensics
The output of the find command can also be used in another command. For
example, the following will run the “md5sum” command on the files from the “find”
command. Several parameters are specified:

� find: the command

� ~: find files in the current user’s home directory

� -type f: only list regular files (do not list directories)

� -exec: run the following command

� sha256sum : the utility that calculates a file’s sha256 hash
� {} \;: crazy shell escapes and notations!
ahoog@ubuntu:~$ find ~ -type f -exec sha256sum {} \;
1d4b6d9e7930e1bd186de982e21ad0d4dab92239920dea791dc25f2d0ffe92cb
/home/ahoog/scalpel-1.60/README
a771570f4b3ebfb212b39abaeff92cc7b4c116b920b726f6f6cabc78092b5d5b
/home/ahoog/scalpel-1.60/dirname.h
95d9d2243444b3e53eb2b449bd9052050bb4bb7d12d9d9bcaae2802de61feab1
/home/ahoog/scalpel-1.60/base_name.c
70babfb49c46a989f8d034b5e7438d5f51fe115a0ce61e6fdac6f0619d47d581
/home/ahoog/scalpel-1.60/dig.c
a5456e609810bca0730768a9d07b8c591246f1448c72b7d107d8b7ebd90f8fef
/home/ahoog/scalpel-1.60/prioque.h
f2364fd3caac10a297ec93123da6503b621cb65a98efaab6ca6fa5aeeccb6c32
/home/ahoog/scalpel-1.60/scalpel.o
d9c2351cc1fa8a8e4ea874005b756d89fa722de051d9e23dd2cd7b3988ce7122
/home/ahoog/scalpel-1.60/files.c
58c10d10cb629c95a81035fd73c553fa0c9ca2bbcacd184b9533f342285cf554
/home/ahoog/scalpel-1.60/helpers.o
<snip>
If you run a command against the results of a large number of files, you can run into
issues. In those cases, you should research piping the output of the file command to
a utility called xargs.

With most Linux commands, you can also save the output of a command into
a file. For example, the output from the same command above can be saved in the
user’s home directory in a file called md5.txt:
ahoog@ubuntu:~$ find ~ -type f -exec sha256sum {} \; > ~/sha256sum.txt
The output of the find command run against the sha256sum utility is redirected to
the sha256sum.txt file in the user’s home directory.
chmod
Short for “change mode,” this command changes file or folder permissions. Many
examples are provided in the following list. Note that these commands must either
be run in the directory in which “textfile.txt” is stored, or the full path to the file must
be provided.

mailto:Image of Figure 1.5|tif
mailto:Image of Figure 1.5|tif

Linux, open source software, and forensics 23
*Provides details on the file permissions for "textfile.txt"
 ahoog@ubuntu:~/Desktop$ ls -l textfile.txt
 -rw-r--r-- 1 ahoog ahoog 264 2011-03-01 12:17 textfile.txt

*Gives read, write, and execute permissions for the owner, and read and execute
permissions for group and world.
 ahoog@ubuntu:~/Desktop$ chmod 755 textfile.txt

 ahoog@ubuntu:~/Desktop$ ls -l textfile.txt
 -rwxr-xr-x 1 ahoog ahoog 264 2011-03-01 12:17 textfile.txt

*Gives read, write, and execute permissions for the owner, and execute
permissions for group and world.
 ahoog@ubuntu:~/Desktop$ chmod 711 textfile.txt

 ahoog@ubuntu:~/Desktop$ ls -l textfile.txt
 -rwx--x--x 1 ahoog ahoog 264 2011-03-01 12:17 textfile.txt

*Gives read, write, and execute permissions for the owner, and read-only
permissions for group and world.
 ahoog@ubuntu:~/Desktop$ chmod 744 textfile.txt

 ahoog@ubuntu:~/Desktop$ ls -l textfile.txt
 -rwxr--r-- 1 ahoog ahoog 264 2011-03-01 12:17 textfile.txt

The “chmod” command can also be run on a group of files or a folder.

$ chmod 755 * (Changes permissions of all files in the current
 directory)
$ chmod -R 444 Files/ (Changes permissions of the "Files" directory and all of
 the files within it)
chown
The “chown” command changes the owner or group of a specified file or directory.
In the following example, the original owner and group of “textfile.txt” was ahoog.
The chown command changed the owner to “root.” This command required
“sudo.”

ahoog@ubuntu:~/Desktop$ ls -l textfile.txt
-rwxr--r-- 1 ahoog ahoog 264 2011-03-01 12:17 textfile.txt

ahoog@ubuntu:~/Desktop$ sudo chown root textfile.txt
[sudo] password for ahoog:

ahoog@ubuntu:~/Desktop$ ls -l textfile.txt
-rwxr--r-- 1 root ahoog 264 2011-03-01 12:17 textfile.txt
sudo
Preceding any command with “sudo” gives the user elevated permissions, allowing
them to run a command as a super user or another user. Sudo is required to run
certain commands such as apt-get (to install software), chown (to change ownership
if you are not the owner), mount, accessing raw disk devices, and many other
commands depending on the files it must access. To use sudo, simply precede the

mailto:Image of Figure 1.5|tif
mailto:Image of Figure 1.5|tif
mailto:Image of Figure 1.5|tif

24 CHAPTER 1 Android and mobile forensics
command with “sudo,” which will then prompt you for your password. Then log the
command in the sudo logs:
ahoog@ubuntu:~$ sudo xxd /dev/sda1 | less
[sudo] password for ahoog:
apt-get
The “apt” part of the apt-get command stands for Advanced Packaging Tool and
allows the user to install and uninstall software, upgrade existing software, or even
perform system updates. To run this command, sudo permissions are required.
$ sudo apt-get install scalpel (Installs scalpel software package)
[sudo] password for ahoog:

$ sudo apt-get remove scalpel (Uninstalls scalpel software package)
[sudo] password for ahoog:

$ sudo apt-get update (Updates the APT package index, which stores
 packages available for download)
[sudo] password for ahoog:

$ sudo apt-get upgrade -u (Upgrades APT package versions, including
 security updates; should be run after
 update)
[sudo] password for ahoog:
grep
The “grep” command searches through a file, or list of files and folders, for
a specified phrase. It is equivalent to opening a document and doing a “find” for
a certain phrase. The search is case sensitive, so if you are unsure if a letter is
capitalized or lower case, then you should specify the “-i” (case insensitive) flag.
This option will take longer, depending on the size of the file that is being searched.

General usage is:

The following contains several examples of the usage of “grep.”

$ grep keyword file.txt
$ grep Forensics androidBook.txt (will search for "forensics" in the
 specified file)
The next command searches the contents of all files on the user’s desktop for theword
“unnecessary.” The results show that this word was found in “textfile.txt,” and there
are also matches for this word in “WXP-PRO-OEM.iso.” Because this is a binary file,
further techniques will need to be performed to make the content viewable.

$ grep -i forensics androidBook.txt (will search for "forensics", case
 insensitive, in the specified file)
$ grep "list of files" androidBook.txt (will search the specified file for
 "list of files", case sensitive)
ahoog@ubuntu:~/Desktop$ grep unnecessary *

Binary file WXP-PRO-OEM.iso matches
android.txt:This file contains unnecessary information used to display the
workings of the "cat" command.

mailto:Image of Figure 1.5|tif
mailto:Image of Figure 1.5|tif
mailto:Image of Figure 1.5|tif
mailto:Image of Figure 1.5|tif
mailto:Image of Figure 1.5|tif

Android open source project 25
As you use Linux more extensively for forensic investigations, grep will become
an indispensable utility.

Piping and Redirecting Files (j and >)
The pipe character “j” (located above the “Enter” key on most keyboards) allows
the output of one command to be sent to another for further processing. Output can
also be redirected into another file using “>”.

The following command takes the results of “cat file.txt” and pipes it to the “less”
command, allowing the user to view the contents one page at a time.

The next command searches for “android” in “ch1.xml” using the grep command
and then takes the results of that search and performs another search, case insen-
sitive, for “forensics.” The final results are then piped through “less” to be displayed
one page at a time.

Redirecting output from a command can also be helpful. The following command
takes the output of “book.txt” (using the “cat” command) and copies the output into
a file on the user’s desktop called “newdocument.txt.”

$ cat file.txt | less

$ grep android ch1.xml | grep -i forensics | less
cat ch1.xml > ~/Desktop/new-ch1.xml
Redirection can be very helpful while running the “strings” command on a partic-
ular file or even an entire disk image, which will be explored further in Chapter 7.
ANDROID OPEN SOURCE PROJECT
The open strategy behind Android naturally led to the release of the Android source
code through the AOSP on October 21, 2008. The site states (Get Android source
code, n.d.):

We created Android in response to our own experiences launching mobile

apps. We wanted to make sure that there would always be an open

platform available for carriers, OEMs [original equipment manufacturers],

and developers to use to make their innovative ideas a reality. We wanted

to make sure that there was no central point of failure, where one industry

player could restrict or control the innovations of any other. The solution

we chose was an open and open-source platform.

The development strategy focuses on flagship devices (for instance, the Nexus
series), which allows Google to absorb much of the risk with a new platform. The
manufacturers can then use the latest release of Android on their devices while the
AOSP develops the next major release.

mailto:Image of Figure 1.5|tif
mailto:Image of Figure 1.5|tif
mailto:Image of Figure 1.5|tif

26 CHAPTER 1 Android and mobile forensics
AOSP Licenses
The AOSP is governed by two primary software licenses, the Apache Software
License 2.0 (Apache 2.0 or ASL2.0) and the GNU Public License v2 (GPLv2). The
GPLv2 is a far more restrictive license that forces contributors to distribute all of
their source code under the same license. Google felt this would limit the
commercial backing of Android, so the GPLv2 primarily covers the use of the Linux
kernel core to Android only.

The Apache 2.0 license, however, is more accepted by commercial entities
because it is less restrictive and does not force companies to open source all of their
related software. The AOSP addresses the question of why they chose the Apache
2.0 license (Licenses, n.d.):

We are sometimes asked why Apache Software License 2.0 is the preferred license

for Android. For userspace (that is, non-kernel) software, we do in fact prefer

ASL2.0 (and similar licenses like BSD, MIT, etc.) over other licenses such as

LGPL.

Android is about freedom and choice. The purpose of Android is to promote

openness in the mobile world, but we don’t believe it’s possible to predict or

dictate all the uses to which people will want to put our software. So, while we

encourage everyone to make devices that are open and modifiable, we don’t

believe it is our place to force them to do so. Using LGPL libraries would

often force them to do so.

Here are some of our specific concerns:

1. LGPL (in simplified terms) requires either: shipping of source to the

application; a written offer for source; or linking the LGPL-ed library

dynamically and allowing users to manually upgrade or replace the library.

Since Android software is typically shipped in the form of a static system

image, complying with these requirements ends up restricting OEMs’ designs.

(For instance, it’s difficult for a user to replace a library on read-only flash

storage.)

2. LGPL requires allowance of customer modification and reverse engineering for

debugging those modifications. Most device makers do not want to have to be

bound by these terms, so to minimize the burden on these companies we

minimize usage of LGPL software in userspace.

3. Historically, LGPL libraries have been the source of a large number of

compliance problems for downstream device makers and application

developers. Educating engineers on these issues is difficult and slow-going,

unfortunately. It’s critical to Android’s success that it be as easy as possible

for device makers to comply with the licenses. Given the difficulties with

complying with LGPL in the past, it is most prudent to simply not use LGPL

libraries if we can avoid it.

/*

 *
 */
int

Android open source project 27
The issues discussed above are our reasons for preferring ASL2.0 for our own

code. They aren’t criticisms of LGPL or other licenses. We do feel strongly on

this topic, even to the point where we’ve gone out of our way to make sure as

much code as possible is ASL2.0. However, we love all free and open source

licenses, and respect others’ opinions and preferences. We’ve simply decided

that ASL2.0 is the right license for our goals.
Development Process
The AOSP is a very sophisticated and complex open source project, requiring the
coordination of many developers across the world. As such, the AOSP has a defined
set of roles and processes that must be followed to contribute to the project. The roles
include the following:

� Contributor/developers: individuals and corporations who contribute code to the
project

� Verifiers: individuals who test code changes
� Approvers: individuals who are experienced developers and decide whether

a change will be included or excluded
� Project leads: typically Google employees who are responsible for the overall

management of the AOSP project

Anyone can download, compile, and enhance the AOSP project. Figure 1.6
illustrates the development process.
Value of Open Source in Forensics
Not many forensic examiners will, or need to, contribute directly to the AOSP.
However, there is tremendous value in downloading the software. For example,
when examining a Yet Another Flash File System2 (YAFFS2) physical image from
an Android 1.5 device, the phrase “silly old name” frequently appears when using
strings to extract ASCII text. For most file systems, the examiner would have to
simply conjecture as to the relevance of “silly old name.” However, by downloading
the source code, an examiner can quickly search for the phrase, identify the code,
and examine it for additional information. In this case, when the object header for
a YAFFS2 object (e.g., a file) is updated, the name field is set to “silly old name”
under certain circumstances.

From the AOSP in file kernel/fs/yaffs2/yaffs_guts.c, there is a function
called yaffs_UpdateObjectHeader. The comment in the code and function
header reads:
UpdateObjectHeader updates the header on NAND for an object.

If name is not NULL, then that new name is used.

 yaffs_UpdateObjectHeader(yaffs_Object * in, const YCHAR * name, int force,
 int isShrink, int shadows)

mailto:Image of Figure 1.5|tif

Author sets up
local development
environment with

Git & Repo

Author develops
code / edits files

then commits
changes

Author submits
change commit to
Gerrit for review

Android Open Source Project

Contribution Workflow

Author notifies
reviewers via
Gerrit or email

Approver sets the
“code looks good”
bit in Gerrit, adds

comments

Approver looks at
code diffs within

Gerrit to determine
if change is a good

fit for the project

Verifier patches
the commit to their
local client, then
builds & tests the

change

Verifier sets the
“verified” bit in

Gerrit and submits
the change commit

Verifier unsets the
“code looks good”

bit, adds
 comments &
notifies author

Gerrit merges
commit with
public depot.

The “verified”
and “code
look good”

bits are unset

Gerrit notifies the
verifier to merge

changes manually

Verifier manually
merges files or

notifies the author
to merge &
resubmit

The “verified”
bit is unset

Change is
submitted to
public depot,
included in

future syncs

Did edits to the
same file merge
without conflicts?

Did the merge
go through without

conflicts?

Is the change
correct?

Is change a
good fit?

Approver adds
comments, notifies

author

Gerrit notifies
project owners /

verifiers

“A”

NO

YES

NO

NO NO

YES

YES YES

To
“A”

Author syncs
to pull code
from public

depot to local
client

Author

Approver

Automatic process

Verifier

Verifier’s local environment

Author’s local environment

FIGURE 1.6

AOSP development process.

28 CHAPTER 1 Android and mobile forensics

mailto:Image of Figure 1.6|eps

Android open source project 29
A variable called “oldName” is created with the contents “silly old name”:
yaffs_strcpy(oldName,_Y("silly old name"));

if (prevChunkId > 0) {
 result = yaffs_ReadChunkWithTagsFromNAND(dev, prevChunkId,
 buffer, &oldTags);

if (name && *name) {
 memset(oh->name, 0, sizeof(oh->name));
 yaffs_strncpy(oh->name, name, YAFFS_MAX_NAME_LENGTH);
 } else if (prevChunkId>=0) {
 memcpy(oh->name, oldName, sizeof(oh->name));
 } else {
And the name field of the object header being updated is set to “oldName” when
the previous “ChunkId” is greater than 0:
The code also checks to see if the original call to the function passed in a new
name for the object. If a new name value was not provided to the function, the value
of oldName (which is still “silly old name”) is used:

 yaffs_VerifyObjectHeader(in,oh,&oldTags,0);

 memcpy(oldName, oh->name, sizeof(oh->name));
}

While not every examiner is comfortable interpreting a programmer’s code (C in
this case), clearly this information could be useful in a forensic examination. And, of
course, there are many other situations, such as how SMS messages are time
stamped or how geo-tagging is implemented, which could bring tremendous value to
an examination.

 memset(oh->name, 0, sizeof(oh->name));
 }
Downloading and Compiling AOSP
Hopefully the value of referring to the Android source code was demonstrated in the
previous YAFFS2 example. The following section highlights the steps you should
follow to download and compile the latest release from the AOSP. While Android
2.2 and earlier versions would compile on 32-bit machines, the latest version of the
AOSP (Android 2.3) and forward require a 64-bit computer.

Using the Ubuntu VM we previously built, we can now start updating the stock
Ubuntu install and then build Android from source code.

#add repository needed for sun-java6-jdk
sudo add-apt-repository "deb http://archive.canonical.com/ lucid partner"

#update installed packages
sudo apt-get update
sudo apt-get upgrade -u
sudo reboot

mailto:Image of Figure 1.6|eps
mailto:Image of Figure 1.6|eps
mailto:Image of Figure 1.6|eps
mailto:Image of Figure 1.6|eps

30 CHAPTER 1 Android and mobile forensics
#install packages needed to build Android
sudo apt-get install git-core gnupg flex bison gperf libsdl1.2-dev libesd0-dev \
libwxgtk2.6-dev squashfs-tools build-essential zip curl libncurses5-dev \
zlib1g-dev sun-java6-jdk pngcrush g++-multilib lib32z1-dev lib32ncurses5-dev \
lib32readline5-dev gcc-4.3-multilib g++-4.3-multilib

#make directories and repo utility
mkdir -p ~/bin
mkdir -p ~/android
curl http://android.git.kernel.org/repo > ~/bin/repo
chmod 755 ~/bin/repo

#initialize Android git archive
cd ~/android
time ~/bin/repo init -u git://android.git.kernel.org/platform/manifest.git

#download source files
time ~/bin/repo sync

#build Android
cd ~/android
source build/envsetup.sh
lunch
time make

Congratulations, you have built Android from source (or started the builddit
takes a while).

Now, if you come across an aspect of Android you need to understand better, you
can search the source code and learn more about it. Table 1.5 charts the core Android
Table 1.5 Core Android Projects

Project Description

bionic C runtime: libc, libm, libdl, dynamic linker

bootloader/legacy Bootloader reference code

build Build system

dalvik Dalvik virtual machine

development High-level development and debugging tools

frameworks/base Core Android app framework libraries

frameworks/policies/base Framework configuration policies

hardware/libhardware Hardware abstraction library

hardware/ril Radio interface layer

kernel Linux kernel

prebuilt Binaries to support Linux and Mac OS builds

recovery System recovery environment

system/bluetooth Bluetooth tools

system/core Minimal bootable environment

system/extras Low-level debugging/inspection tools

system/wlan/ti TI 1251 WLAN driver and tools

mailto:Image of Figure 1.6|eps

Internationalization 31
project, which you will find maps roughly to the directories in the Android source
tree. The project information can be found on the AOSP site at https://sites.google.
com/a/android.com/opensource/projects, which provides a brief description of each
project function.
INTERNATIONALIZATION
Android has broad support for international languages and locales throughout the
platform. This not only allows the phone to display menus, web sites, and other
aspects of the graphical user interface in many languages, but there is also support
for input in a variety of international keyboard formats.
Unicode
The key to Android’s ability to support a multitude of languages is the ability to
encode and decode characters in Unicode, the industry standard encoding scheme
that supports over 600 languages (Languages and scripts, n.d.).
TIP

Cuneiform support
For those curious and adventurous readers, Unicode does support Cuneiform, although we
are still waiting for someone to implement the Android user interface in Sumero-Akkadian
Cuneiform. The full list of Unicode supported languages and scripts can be viewed at
http://unicode.org/repos/cldr-tmp/trunk/diff/supplemental/languages_and_scripts.html
Keyboards
Android supports many different types of keyboards, sometimes referred to as the
input method. For example, when running an Android virtual device (AVD), the
emulator allows you to change the language of the keyboard input as shown in
Fig. 1.7.

The ability to handle various languages is simply built into the AVD system.
This has important implications in a forensic investigation where analysts must
remain vigilant and consider that some data could be encoded in an unexpected
language.

The same feature of the ADV is available on the physical Android devices as
well. For example, on the HTC Incredible distributed in the United States by Verizon
Wireless, there is a setting called Language and Keyboard. You can select from two
languages for the phone user interface: English and Español. Then, under the Text
settings, you can choose your Touch Input settings. From here, you can specify the
keyboard type (QWERTY, Phone Keypad, or Compact QWERTY), select from over
20 international keyboards, specific options for Chinese Text input (Traditional or

https://sites.google.com/a/android.com/opensource/projects
https://sites.google.com/a/android.com/opensource/projects
http://unicode.org/repos/cldr-tmp/trunk/diff/supplemental/languages_and_scripts.html

FIGURE 1.7

Android virtual device with Chinese number pad.

32 CHAPTER 1 Android and mobile forensics
Simplified Chinese), and a number of other options. The latest version of Android
(Gingerbread, 2.3) now supports 57 languages (Android 2.3 platform, n.d.).

Finally, Android supports third-party keyboards that the user can install. An
alternative keyboard that is gaining popularity is called Swype that allows the user to
drag their finger across the keyboard to each letter in one continuous motion. The
software is then able to determine, with high probability, what word you were
typing. The software supports multiple languages and is a good example of a plug-
gable keyboard input.
Custom Branches
As Android was released as open source, anyone (including you after following the
steps above!) can download and then customize the Android source code. While
many people who undertake this ultimately release their changes back to Google for
inclusion into Android, some people fully branch the code and release their own
version of Android.

Aftermarket Firmware
Perhaps the most prolific example of custom Android branches (also called Mods,
firmware, and ROMs) comes from the Android hacking and enthusiast community.
The community is a very large and diverse group of individuals who are motivated to
develop, experiment, and otherwise hack Android. Some of their work may involve
gaining root permissions on an Android device, enabling new features, or simply
bragging about their latest customization. The community is passionate, prolific, and
a terrific source of information (as well as misinformation) and they respond to many
requests for help. Serious Android researchers would be remiss if they ignored this

mailto:Image of Figure 1.7|tif

Android market 33
community. However, the sheer volume of information makes it a very time-
consuming endeavor.

One of the most popular communities is called XDA Developers, self-described
as “the largest Internet community of smartphone enthusiasts and developers for the
Android and Windows Mobile platforms” (xda-developers, n.d.). Their web site has
over 3.2 million registered users and runs a truly impressive forum.

Many of the custom Mods are released on XDA and often the developers
themselves are active in the community. Perhaps the most popular aftermarket
firmware is CyanogenMod. This firmware is based on the AOSP. It adds new
features and attempts to increase the performance and reliability of the device over
Android-based ROMs released by the vendors and carriers directly (CyanogenMod,
n.d.). Currently CyanogenMod supports 17 different smartphone and tablet devices
from six manufacturers: Commitva, Dell, HTC, Motorola, Samsung, and Viewsonic.
These aftermarket firmwares have root access enabled on the device which, as we
will discuss in Chapter 6, is key to obtaining a physical acquisition of the device.

OPhone OS
The Open Mobile Phone OS (OPhone OS) is based on Android and developed by
Borqs, a Chinese software developer. OPhone OS was designed for Chinese
government-owned China Mobile, the largest mobile carrier in the world with over
500 million subscribers. In June 2010, OPhone OS 2.0 was released in Beijing, and
while Borqs/OPhone OS is relatively unknown outside of China, they clearly play an
important and growing role in the Android ecosystem. Inside China, Borqs CEO
stated they only work with one carrier, China Mobile, because “you cannot serve two
masters” in that country (China’s OPhone, n.d.).

So, they reserve the name OPhone OS for their China Mobile software. However,
according to their web site, they also develop another branch of Android software
that they call Androidþ (China’s OPhone, n.d.). In their press release, Borqs
explains the Dell Aero is outfitted with their Androidþ software, which includes an
Apple-esque user interface, and that their software is also being distributed by Dell
in Brazil and Mexico.

Android on iPhone (and Other non-Android Devices)
Perhaps one of the most controversial aftermarket firmwares is the one that enables
Android to run on an iPhone. Since many mobile devices are based on the ARM
processor, the porting process is achievable. This allows Android to run on devices
designed to run other OSs like Windows Mobile, Symbian, iOS, and others. There’s
nothing quite like showing an Apple fanboy your beautiful iPhone running Android!
ANDROID MARKET
The Android Market is an avenue for third-party developers to release their appli-
cations to anyone who owns an Android device. The Android Market was first

34 CHAPTER 1 Android and mobile forensics
announced on August 28, 2008 on the Google Developer blog as “an open content
distribution system that will help end users find, purchase, download and install
various types of content on their Android-powered devices” (Android developers
blog, n.d.). When the market was first released in October 2008, it did not support
paid apps. However, by early 2009 the Android Market supported paid applications
in both the United States and United Kingdom. By January 2011, the Android
Market supported paid apps in 29 countries (Supported locations, n.d.). Several other
countries, most notably India, can use the Android Market but currently cannot
install paid apps.

Google’s light-handed approach to managing the Android Market is in stark
contrast to Apple’s tight management of their App Store. While the Android Market
does have Terms of Service for users (Android Market terms, n.d.) and an Android
Market Developer Distribution Agreement (Android Market developer, n.d.) for
developers, apps are released to the market without an approval process. Instead,
Google believes that the app ratings will weed out apps that are buggy or show little
merit.

To release an app into the Android Market, developers must be registered,
pay a $25 fee, and sign their app with a private key which will uniquely identify
them to the market. When a user purchases an app, the developer receives 70%
of the purchase price with the remaining 30% going to Google (and, at times, the
carrier involved). Initially, users had a 48 h window of time where they could
return the apps. However, in December 2010, Google shortened that window to
15 min.

Google has the ability to remotely remove an app not only from the Android
Market, but also directly from an Android device. The Remote Application Removal
Feature is a security control Android possesses where a dangerous application could
be removed from active circulation in a rapid and scalable manner to prevent further
exposure to users (Android developers blog: exercising, n.d.). The security control
was first exercised in June 2010 when a security researcher distributed a proof of
concept app which could allow it to download and install another app on the device
(Mills, n.d.).

In the open spirit of Android, Google also does not preclude users from directly
installing apps on their phone from the developers’ web site, nor does it preclude the
development of a competing app marketplace. There are several alternatives to the
Android Market, most of which are small in comparison. Also, several large
companies have either announced or indicated their intentions to create an alter-
native app store, including Amazon, Best Buy, and Verizon.
Installing an app
To install an app from the Android Market, shown in Fig. 1.8, a user must first run
the Market app and sign in with a Gmail account. This account allows the user to
purchase paid apps through a Google Checkout account with address and credit card
information. Recently, Google has partnered with some carriers so an app can be

FIGURE 1.8

Android Market on HTC Incredible running Android 2.2.

Android market 35
purchased and placed on the subscribers’ monthly wireless carrier bill instead of the
Google Checkout credit card.

The Market app allows the user to search for apps and to browse by topic or
popularity. Once an app is selected, a dedicated app page is displayed from which
the user may install the app. The dedicated page also provides general information
such as description, number of downloads, average rating, detailed reviews, related
apps, developer info and, finally, an opportunity to provide feedback or flag the app
as inappropriate.

As we will discuss, permissions are a central component to Android security.
Once a user decides to install an app, they are presented with the screen that displays
all of the permissions an app is requesting, as seen in Fig. 1.9. At this point, the user
can accept the permissions and proceed with the install or go back to the previous
screen.

The app is then downloaded and installed and the results are displayed in the
notification bar at the top of the device. From there, the user can run the application
or access it anytime from the list of applications.

To remove an application, the user can access the device’s Settings and choose
the Application setting. From there, they can Manage applications (see Fig. 1.10),
which displays a list of apps with various characteristics such as downloaded,
running, and on SD card.

FIGURE 1.9

Android app permissions.

FIGURE 1.10

Manage applications.

36 CHAPTER 1 Android and mobile forensics

FIGURE 1.11

Application information, including uninstall.

Android forensics 37
By selecting an app, the user can then see the Application info screen which
shows various information about the apps and allows the user options to Force stop,
Clear data, Clear cache, and Uninstall as shown in Fig. 1.11.
Application Statistics
The Android Market is growing quickly. Six months after its release, T-Mobile’s
Chief Technology Officer, Cole Brodman, commented that users needed more filters
to successfully locate apps from the nearly 2300 apps on the Market (Lawson, n.d.).
By January 2011, over 200,000 apps were on the Market with 27,227 added in
November 2010 alone (Android Market statistics, n.d.). Estimates place the number
of downloaded apps at over 2.5 billion.

Obviously, apps are a key area of focus for both security and forensics. In
Chapter 4, we will explore in great detail how apps persist data to an Android device,
what types of information are stored, and how data can be recovered and analyzed.
ANDROID FORENSICS
Clearly there is a need for Android forensics. Smartphones in general are perhaps the
one electronic device that knows the most about an individual. For most people, their
smartphone is rarely more than a few feet from them at any point of timedincluding
while sleeping. The device blends both personal and corporate information and has the

38 CHAPTER 1 Android and mobile forensics
ability to store vast amounts of data including text messages, e-mails, GPS locations,
picture, videos, and more. And people tend to be more honest with their smartphone
than any other person or device.Why?Because people feel the device is secure and can
provide themwith answers to questions theymay choose not to sharewith anyone else.
More than one forensic examiner has quipped, “You are what you Google,” clearly
a byproduct of seeing firsthand the honesty with which people use their smartphones.

Challenges
Of course, nothing worth doing is easy and both mobile forensics and Android
forensics in particular have a host of challenges that must be overcome.

A fundamental goal in digital forensics is to prevent any modification of the
target device by the examiner. However, mobile phones lack traditional hard drives
that can be shutdown, connected to a write blocker, and imaged in a forensically
sound way. Any interaction with the smartphone will change the device in someway.
As such, the examiners must use their judgment when examining a mobile device
and if the device is modified, they must explain how it was modified anddas
importantlydwhy that choice was made.

Some forensic examiners take exception to this approach and debates have ensued.
However, techniques thatmay alter a computer targeted for forensic examination have
been used for some time. For example, often a livememory analysis is necessary in an
investigation of a malware attack. Similarly, if a hard drive is encrypted, an examiner
must image the device while it is still running or they run the risk of never having the
ability to access the data on the drive. Other good examples are systems that must
remain online due to complex environments, typically found in cases involving larger
corporate servers. While every examiner should strive to not change the device they
are investigating, it is rarely possible in the mobile world. So, if the device cannot be
modified, then the only other choice would be to not examine the device. Clearly this
option is not acceptable as evidence from mobile forensics is a critical component in
many investigations and has even solved many crimes.

Further complicating Android forensics is the sheer variety of devices, Android
versions, and applications. The permutations of devices and Android versions alone
are in the thousands and each device plus platform has unique characteristics. While
a logical analysis of every Android phone is achievable, the vast combinations make
the full physical acquisition of every Android device likely unachievable. Even
a minor difference in the Android version may require extensive testing and vali-
dation in high-stakes cases.
SUMMARY

Android is a fast growing, feature-rich, and exciting mobile platform. The combi-
nation of features, connectivity, and popularity naturally lead to a growing need for
Android forensics. While the difficulty of mobile forensics is increasing, the value
is increasing as well. The open source aspect of Android greatly assists in the

Android forensics 39
fundamental understanding a forensic analyst requires, making Android an ideal
platform to work on.
References
Alliance, F. A. Q. (n.d.). Open Handset Alliance. Retrieved January 3, 2011, from http://

www.openhandsetalliance.com/oha_faq.html.
Alliance Members. (n.d.). Open Handset Alliance. Retrieved March 9, 2011, from http://

www.openhandsetalliance.com/oha_members.html.
Android developers blog: Android Market: a user-driven content distribution system. (n.d.).

Retrieved January 9, 2011, from http://android-developers.blogspot.com/2008/08/
android-market-user-driven-content.html.

Android developers blog: Exercising our remote application removal feature. (n.d.).
Retrieved January 9, 2011, from http://android-developers.blogspot.com/2010/06/
exercising-our-remote-application.html.

Android Market developer distribution agreement. (n.d.). Retrieved January 9, 2011, from
http://www.android.com/us/developer-distribution-agreement.html.

Android Market terms of service. (n.d.). Retrieved January 9, 2011, from http://www.google.
com/mobile/android/market-tos.html.

Android Market statistics from AndroLib, Androlib, Android applications and games directory.
(n.d.). Retrieved January 9, 2011, from http://www.androlib.com/appstats.aspx.

Android 2.3 platform, & Android developers. (n.d.). Retrieved January 8, 2011, from http://
developer.android.com/sdk/android-2.3.html#locs.

Bort, D. (n.d.). Android is now available as open source. Android Open Source Project.
Retrieved January 3, 2011, from https://sites.google.com/a/android.com/opensource/
posts/opensource.

China’s OPhone to find its way to US as Androidþ. (n.d.). Retrieved January 8, 2011, from
http://www.borqs.com/news.jsp.

Corporate information: About. (n.d.). Google. Retrieved January 4, 2011, from http://www.
google.com/corporate/.

comScore reports November 2010 U.S. mobile subscriber market share. (n.d.). comScore.
Inc. Retrieved January 9, 2011, from http://www.comscore.com/Press_Events/
Press_Releases/2011/1/comScore_Reports_November_.

CyanogenMod, About the Rom, CyanogenMod. (n.d.). Retrieved January 8, 2011, from http://
www.cyanogenmod.com/about.

Gartner says worldwide mobile phone sales grew 35 percent in third quarter 2010; smart-
phone sales increased 96 percent. (n.d.) Technology Research & Business Leader
Insight. Gartner Inc. Retrieved March 9, 2011, from http://www.gartner.com/it/page.jsp?
id¼1466313.

Get Android source code, Android open source. (n.d.). Retrieved March 9, 2011, from http://
source.android.com/source/download.html.

Google Investor: Google android activating 350,000 devices daily (data visualization video)
“Top global smartphone platform.” (n.d.). Retrieved March 9, 2011, from http://
googinvestor.blogspot.com/2011/03/google-android-activations-350k-daily.html.

Krazit, T. (n.d.). Google’s Rubin: Android “a revolution.” Digital MediadCNET News.
Technology NewsdCNET News. Retrieved January 5, 2011, from http://news.cnet.com/
8301-1023_3-10245994-93.html.

http://www.openhandsetalliance.com/oha_faq.html
http://www.openhandsetalliance.com/oha_faq.html
http://www.openhandsetalliance.com/oha_members.html
http://www.openhandsetalliance.com/oha_members.html
http://android-developers.blogspot.com/2008/08/android-market-user-driven-content.html
http://android-developers.blogspot.com/2008/08/android-market-user-driven-content.html
http://android-developers.blogspot.com/2010/06/exercising-our-remote-application.html
http://android-developers.blogspot.com/2010/06/exercising-our-remote-application.html
http://www.android.com/us/developer-distribution-agreement.html
http://www.google.com/mobile/android/market-tos.html
http://www.google.com/mobile/android/market-tos.html
http://www.androlib.com/appstats.aspx
http://developer.android.com/sdk/android-2.3.html%23locs
http://developer.android.com/sdk/android-2.3.html%23locs
https://sites.google.com/a/android.com/opensource/posts/opensource
https://sites.google.com/a/android.com/opensource/posts/opensource
http://www.borqs.com/news.jsp
http://www.google.com/corporate/
http://www.google.com/corporate/
http://www.comscore.com/Press_Events/Press_Releases/2011/1/comScore_Reports_November_
http://www.comscore.com/Press_Events/Press_Releases/2011/1/comScore_Reports_November_
http://www.cyanogenmod.com/about
http://www.cyanogenmod.com/about
http://www.gartner.com/it/page.jsp%3Fid%3D1466313
http://www.gartner.com/it/page.jsp%3Fid%3D1466313
http://www.gartner.com/it/page.jsp%3Fid%3D1466313
http://source.android.com/source/download.html
http://source.android.com/source/download.html
http://googinvestor.blogspot.com/2011/03/google-android-activations-350k-daily.html
http://googinvestor.blogspot.com/2011/03/google-android-activations-350k-daily.html
http://news.cnet.com/8301-1023_3-10245994-93.html
http://news.cnet.com/8301-1023_3-10245994-93.html

40 CHAPTER 1 Android and mobile forensics
Licenses. (n.d.). Android open source. Retrieved January 5, 2011, from http://source.android.
com/source/licenses.html.

Languages and scripts. (n.d.). Unicode Consortium. http://unicode.org/repos/cldr-tmp/trunk/
diff/supplemental/languages_and_scripts.html.

Lawson, S. (n.d.). Android Market needs more filters, T-Mobile says. ITworld, IT news,
technology analysis and how-to resources. Retrieved January 9, 2011, from http://www.
itworld.com/personal-tech/64481/android-market-needs-more-filters-t-mobile-says.

Mills, E. (n.d.). Google remotely wipes apps off Android phones. InSecurity Complex
dCNET News. Technology NewsdCNET News. Retrieved January 9, 2011, from
http://news.cnet.com/8301-27080_3-20008922-245.html.

Official Google Blog: Where’s my Gphone? (n.d.). Retrieved January 2, 2011, from http://
googleblog.blogspot.com/2007/11/wheres-my-gphone.html.

Supported locations for merchantsdAndroid Market help. (n.d.). Retrieved January 9, 2011,
from http://www.google.com/support/androidmarket/bin/answer.py?hl¼en&answer¼
150324.

Torvalds, L. (1991, October 5). Free minix-like kernel sources for 386-ATdcomp.os.minix.
Google Groups. Retrieved March 3, 2011, from http://groups.google.com/group/comp.
os.minix/msg/2194d253268b0a1b.

xda-developers. (n.d.). Retrieved January 8, 2011, from www.xda-developers.com/.

http://source.android.com/source/licenses.html
http://source.android.com/source/licenses.html
http://unicode.org/repos/cldr-tmp/trunk/diff/supplemental/languages_and_scripts.html
http://unicode.org/repos/cldr-tmp/trunk/diff/supplemental/languages_and_scripts.html
http://www.itworld.com/personal-tech/64481/android-market-needs-more-filters-t-mobile-says
http://www.itworld.com/personal-tech/64481/android-market-needs-more-filters-t-mobile-says
http://news.cnet.com/8301-27080_3-20008922-245.html
http://googleblog.blogspot.com/2007/11/wheres-my-gphone.html
http://googleblog.blogspot.com/2007/11/wheres-my-gphone.html
http://www.google.com/support/androidmarket/bin/answer.py%3Fhl%3Den%26answer%3D150324
http://www.google.com/support/androidmarket/bin/answer.py%3Fhl%3Den%26answer%3D150324
http://www.google.com/support/androidmarket/bin/answer.py%3Fhl%3Den%26answer%3D150324
http://groups.google.com/group/comp.os.minix/msg/2194d253268b0a1b
http://groups.google.com/group/comp.os.minix/msg/2194d253268b0a1b
http://www.xda-developers.com/

Android hardware platforms
CHAPTER
2

INFORMATION IN THIS CHAPTER

� Overview of core components

� Overview of different device types

� Read-only memory and boot loaders

� Manufacturers

� Specific devices
INTRODUCTION
Android was designed to be compatible with a wide array of hardware. This is
achieved, in large part, through the Linux kernel, which over the years has evolved to
support a large variety of hardware. This is an important characteristic of the plat-
form as it allows manufacturers freedom to design, procure, or otherwise integrate
the ideal components of the Android device. This strategy has led to the develop-
ment of powerful dual core Android devices capable of significant processing as
well as entry-level devices targeted to entry-level wireless plans. Although the
hardware compatibility is great for manufacturers, wireless providers, and ulti-
mately consumers, the diversity poses challenges for forensic analysts and security
engineers. Understanding the hardware components, device types, and boot process
for Android will aid in your overall understanding of Android.
OVERVIEW OF CORE COMPONENTS
Androidwas developed to support awide range of devices andmanufacturers.As such,
any list of major components will likely be outdated as soon as it is printed. However,
there are some consistent components found in Android devices, which are beneficial
to discuss. The following components comprise the core of an Android device.
Central Processing Unit
The central processing unit (CPU) is a term quite familiar to most forensic analysts,
and there are no surprises in its role on Android devices. The CPU is responsible for
executing operating system (OS) and application code and coordinating or controlling
other core components including the network, storage, displays, and input devices.
Android Forensics. DOI: 10.1016/B978-1-59749-651-3.10002-0
Copyright � 2011 Elsevier Inc. All rights reserved.

41

http://dx.doi.org/

42 CHAPTER 2 Android hardware platforms
From the beginning, most (if not all) Android devices utilize ARM processors as
their CPU, which are powerful enough for the mobile platform but designed for low
power consumptionda key aspect in maximizing battery life.

However, corporations and enthusiasts alike have ported Android to other plat-
forms. On the corporate front, Intel has ported Android to their Atom processors.
Similarly, Google has ported Android in their Google TV product, which is built on
top of Android. There are also projects, such as Android-x86 (Android-x86, n.d.),
that have released ported versions of Android running on Intel’s x86 architecture.
Some of the platforms supported include many of the Eee PCmodels and the Lenovo
ThinkPad x61 Tablet.
Baseband Modem/Radio
The baseband modem and radio are hardware and software systems that provide
Android devices a connection to the cellular network. This allows both voice and
data communication from the device.

Instead of occupying the main CPU with these activities, device designers
typically leverage a dedicated component to manage the complexities of cellular
communication. Thus, although the CPU may direct the overall activities of the
device, the baseband modem manages cellular communication.

Throughout this book, we will use the terms baseband, baseband modem, and
radio interchangeably. Although these systems are complex and certain nuances
may be overlooked in this definition, the distinctions are not significant for forensic
analysts.
Memory (Random-Access Memory and NAND Flash)
Android devices, because they are at some level simply computers, need various
types of memory to operate. The two primary types of memory required are volatile
(random-access memory [RAM]) and nonvolatile (NAND flash) memory.

The RAM is used by the system to load, execute, and manipulate key parts of the
OS, applications, or data. RAM is volatile, meaning that it does not preserve its state
without power.

However, NAND flash memory (we will refer to this memory simply as NAND
flash) is nonvolatile, and thus, the data are preserved after the device has been powered
off. The NAND flash is used to store the boot loader, OS, and user data. It is therefore
a critical component of any forensic investigation and is similar to a hard drive in
a forensic investigation of a laptop, desktop, or server. NAND flash also has unique
properties that make it ideal for mobile devices while at the same time presenting
a number of challenges for programmers (which often yield unique opportunities for
forensic analysts). These characteristics will be explored in detail in Chapter 4.

From a hardware perspective, mobile devices obviously have significant space
limitations. Often, the RAM and NAND flash memory are manufactured into
a simple component referred to as the multichip package (MCP). When examining

+ +

512M / 1G / 2G / 4G / 8G

256M / 512M / 1G / 2G / 4G

MCP PoP

107balls 130balls 137balls 149balls 160balls 152balls 168balls
10.5x13mm 10.5x13mm8x9mm 10x14mm 15x15mm 14x14mm 12x12mm

Height : 1.0mm / 1.2mm / 1.4mm Height : 0.7mm / 0.8mm / 0.9mm / 1.0mm

Voltage Option: 1.8v / 2.7v
I/O Option : 1.8v / 2.7v
Page Option : 512 / 2K byte

Voltage Option : 1.8v
I/O Option : X16 / X32

+ +

Line-Up

NAND Flash

Mobile SDRAM

PKG

MCP Your choice NAND Flash

Your choice Package

Your choice Mobile DRAM

FIGURE 2.1

MCP architecture (Mobile Memory, n.d.).

Overview of core components 43
Android device components, generally the NAND flash and RAM will be packaged
as an MCP.

Although Fig. 2.1 is specific to the memory manufacturer Hynix (used in the Dell
Streak and other Android devices), this overall architecture is a good depiction of
MCP components that include not only the NAND flash and RAM but also the
packaging options to suit various devices.
Global Positioning System
Undoubtedly one of the most important innovations in mobile devices since the
inclusion of cellular communication has been integration of the Global Positioning
System (GPS) into the core offering. This functionality not only identifies the
location of the device using the GPS satellite network but also allows for applica-
tions such as point-to-point directions, position-aware applications, and, undoubt-
edly, many more interesting uses in the future.
Wireless (Wi-Fi.com and Bluetooth)
Beyond the cellular networks, most devices allow for additional wireless technol-
ogies, such as Wi-Fi.com for high-speed data connection and Bluetooth for
connections to external devices such as headsets, keyboards, printers, and more. In

http://Wi-Fi.com
http://Wi-Fi.com

44 CHAPTER 2 Android hardware platforms
fact, some devices may omit the cellular network connection, which not only
reduces the cost and complexity of the device but also eliminates a monthly
recurring charge for the consumer. These devices may be designed for home use
only (e.g., a home phone or multimedia device) or for offline mode for those times
when a Wi-Fi.com connection is not available (i.e., tablet or e-reader).
Secure Digital Card
Most Android devices ship with a removable memory card referred to as their Secure
Digital (SD) card. Like the on-device NAND flash, SD cards are nonvolatile and also
use NAND flash technology. However, because the SD cards were designed to be
portable, they must adhere to various physical and communication specifications
that allow them to interoperate with most devices.

The SD card is one obvious design difference between most Android devices and
the popular Apple iPhone. The iPhone is designed with 4GB to 32GB of NAND flash
on-board and does not provide for SD cards. Although more expensive, this provides
the device manufacturer (Apple, in this case) with far more control over the device.
In the case of Android, larger user files are intended to be stored on the SD card. This
not only provides a less expensive and easily upgradeable memory option for
consumers but is also portable, so if a consumer purchases a new phone, they can
easily transfer data using their existing SD card.

Recent HTC phones (notably the HTC Incredible) have provided the standard SD
card interface but did not ship with an SD card installed. Instead, they created an
emulated SD card by carving a portion of the on-board NAND memory and pre-
senting it as an SD card. This adds additional complexity for the forensic analysts.
Analysts must first determine whether there is an SD card, an emulated SD card, or
some other means of user data storage (in addition to the on-board NAND flash).
Screen
The screen on an Android device is obviously a critical component. It is the primary
interface for user interaction, not only through the visual display but also by
responding to the user’s touch. The technologies behind the display are the focus of
intense development. Early iterations included a liquid crystal display and a second
layer that detects user input on the screen. Recent improvements include higher
display resolution, brighter screens, more sensitive and complicated user touch
interactions, and reduced power consumption. In fact, some recent Android smart-
phones, such as those using Samsung’s Super AMOLED technology, have been well
received by consumers due largely to the screen capabilities.
Camera
Initially cameras on smartphones were used to take pictures. Although an exciting
development at the time, there has been significant innovation in this area too. Most

http://Wi-Fi.com

Overview of core components 45
devices now also support video recording (some in high definition). Of course,
cameras have increased in their quality and now often include an integrated flash.

Recently, some devices include two cameras. The first, on the back of the device,
is used for external pictures and videos. A second front-facing camera allows for
new applications such as videoconferencing.

Most Android devices also combine the camera functionality with the GPS; hence,
you can record not only the date and time of a picture but also the GPS coordinates.
You can then easily upload or share the picture using the network or perhaps send them
through the Multimedia Messaging Service (MMS) of the cellular provider.

One interesting development in this area is the use of cameras to read bar codes.
Specialized applications leverage the camera to take a picture of a bar code and then
analyze the data. It might look up product reviews, determine the best price, or
automatically check you into a restaurant’s application so that you can rate expe-
riences. Perhaps in the future, these apps may even allow you to pay for items you
wish to purchase.

An early implementation of this is a Google app called Goggles. The user can
take a picture of anything, and the app attempts to identify the object. An interesting
example, provided by Google, was tourists using the app to identify landmarks they
were visiting.
Keyboard
Youmight think that there is little innovation possiblewith a keyboard; however, this is
certainly not the case. Most Android devices come with an on-screen keyboard thanks
to touch screen technology. A number of devices also have a hardware-based keyboard.

The powerful software keyboards can adapt to the screen orientation (i.e., if you
rotate the screen 90 degrees, the keyboard will also rotate) and can support multiple
languages.

There are also companies developing more efficient ways to input text to
a device. One such company, Swype Inc., developed a keyboard where the user does
not select individual keys for each letter. Instead, for each word they simply start
with the first letter and then swipe their finger around the keyboard (without picking
it up) to each subsequent letter until they are done. The Swype keyboard then
determines the likely word and completes it (or offers suggestions). This approach
has proven to be quite successful, and we expect to see more Swype technology (or
similar innovations) integrated into the Android keyboard.
Battery
Battery life has always been a major concern for smartphone adopters. You may love
your phone but hate its battery life. The more people use the devicedand the
components that make it so powerfuldthe more battery consumed. Great care is
taken in minimizing power consumption. However, most people find they must
charge their phones every day.

46 CHAPTER 2 Android hardware platforms
Over time, improvements in the hardware, software, and battery technology may
lead to less frequent charging. There are some interesting research initiatives in this
area such as recharging your phone without wires, leveraging the movement of the
human body for continuous recharging, or simply creating more powerful batteries.
Whatever the improvements, they will be welcomed by consumers.

For forensic analysts, one thing to bear in mind is that the SD card is often
located behind the battery. So, to access the SD card (and determine the exact device
type and identification), you generally have to remove the battery (thus powering off
the device). There are various considerations here, which we will cover in Chapter 6.
Universal Serial Bus
Most Android devices support several Universal Serial Bus (USB) interfaces that
can be accessed from computers. The cables may vary between devices, but in
general, the USB interface allows most modern OSs connectivity to the device. The
following are some common interfaces exposed by Android devices:

1. Charge only: the device can be recharged over the USB cable
2. Disk interface: portions of the device, including the SD card, emulated SD card,

and other disk interfaces, are presented and accessible to the OS as a Mass
Storage Device

3. Vendor-specific interfaces: these include custom synchronization protocols,
emulated CD-read-only memory (ROM) drives for software installs, and
specialized connections for sharing the phone’s Internet connection

4. Android Debug Bridge (ADB): an interface that provides the user access to
a shell prompt on the device as well as other advanced features

In Chapter 3, we will explore the disk interface and the ADB interface, both of
which are critical components in the forensic investigation of an Android device.
Accelerometer/Gyroscope
Android can detect and change the user interface based on how the device is held or
rotated. This is typically achieved through an accelerometer that detects the size and
direction a device has been accelerated (or positioned). Typically, this is used to
change the display between landscape and portrait.

The latest version of Android (2.3 as of this writing) now supports a gyroscope,
which is more sensitive and sophisticated than an accelerometer. The gyroscope is
a more responsive and accurate measure of device movementdkey for advanced
game development.
Speaker/Microphone
Finally, a smartphone or tablet is not that interesting without the ability to hear or
produce sound. Like the other components, the speaker and microphone continue to

Overview of different device types 47
mature with each iteration. For instance, some Android devices contain two or three
microphones that, combined with the Android software, have the ability to detect
and cancel out background noise to provide better sound quality. In perhaps some of
the most stunning technological development of this decade, the speaker phones
have evolved to the point where they can actually be used in real conversation!
OVERVIEW OF DIFFERENT DEVICE TYPES
From these core components, designers have created a wide variety of device types.
Back in October of 2008, the T-Mobile G1 (HTC Dream 100) was just released, and
it was quite easy to track the Android devices and types. It was simply the G1. And
the only device type was a smartphone. Of course, there were already blog posts
flying around about new device types but that was all speculation.

However, by the end of 2010, not only had the number of Android devices grown
tremendously but also the types of devices. There are many web sites that attempt to
track Android devices; however, most are incomplete. One decent reference that is
useful while preparing to examine a new Android device is PDAdb.net, which tracks
significant information about current and future devices. Currently, they are tracking
over 300 devices running Android, which you can search from their PDAmaster
page (Main Page, n.d.).

The primary device types remain smartphones and tablets, but there are a growing
number of ultraportable computers (we will call them netbooks) as well as e-readers.
On the innovation front, Google TV devices (running Android) are beginning to hit
the market, a few media players exist, and a number of automotive companies have
announced that they will run Android as part of their media and navigation systems.
And finally, there is an entire group that falls under the “other” category, which may
remain as one-off devices or could certainly go mainstream. Examples include
appliances, gaming devices, GPS receivers, home phones and audio devices, photo
frames, and printers. The following sections detail some of these device types.
Smartphone
Smartphones are the most popular type of Android devices. They contain nearly all
of the components described above and are generally the most well known. As of
October 2010, Android devices represent 22% of the smartphone market in the
United States (NielsenWire, n.d.) and are growing quickly. It is widely accepted that
Android will surpass the iPhone and perhaps will ultimately be the most popular
smartphone platform.
Tablet
Even though tablet computers have been around for decades, it appears that the
confluence of hardware, software, mobile networks, and applications may finally

http://PDAdb.net

48 CHAPTER 2 Android hardware platforms
yield a viable market. There are a number of Android tablets on the market.
However, the most recent and widely publicized device is the Samsung Galaxy
Tab�. The 7-inch device has essentially all the components of an Android smart-
phone but in a larger form factor. Although tablets may support cellular data
connections (as the Galaxy Tab does), they are typically limited to data and Short
Message Service/MMS and do not support cellular voice calls. However, with the
convergence of voice and data, we expect tablet devices to support Voice over
Internet Protocol phone and video calls soon.
Netbook
Netbooks are highly portable laptops with low power consumption and are a good
candidate for Android. It is important to note that Android is different from another
Google project called Chromium OS, which “is an open-source project that aims to
build an OS that provides a fast, simple, and more secure computing experience for
people who spend most of their time on the web” (Chromium OS, n.d.). Android was
developed first and is far more mature than Chromium OS.

A number of Android netbooks that are now available share common charac-
teristics with tablets, except netbooks have a full hardware keyboard and generally
a larger hinged screen. Often, the primary data storage medium for netbooks is
NAND flash. However, there is no technical reason why a more traditional hard drive
could not be used.
Google TV
Google, like many companies in the past, is trying to bridge the gap between viewing
broadcast television and Internet content. The devices span from full television sets
with Android built in, to set-top boxes that connect to existing televisions. But the
key is leveraging Android as the base OS, integrating the Internet and television
shows, and providing a framework for developers to create new applications specific
for the new medium.
Vehicles (In-board)
An area that holds exciting possibilities is the integration of Android devices into
automobiles, typically as part of the navigation/heads-up display or entertainment
system. To date, such systems are specific to each vehicle manufacturer, which has
resulted in systems that vary greatly in features, stability, and effectiveness. If
manufacturers integrated the full functionality of the ever-evolving Android OS, it
would allow them to focus on the user experience instead of the fundamental
building blocks. Users would find consistency between different vehicles and with
the Android devices. And developers could target applications specific to the needs
of vehicles and have a wider distribution market. Finally, there may be a host of
additional interested players, such as insurance agencies, attorneys, research

Rom and boot loaders 49
organizations, forensic analysts, and more, who could analyze information from
these systems in many ways.

The first car in production running Android is the Roewe 350 developed and
distributed in China by Shanghai Automotive Industry Corporation. In addition, many
US-based car makers have announced support for Android ranging from connectivity
with smartphones through full integration of the Android OS into their vehicles.
Global Positioning System
As mentioned previously, most Android devices have GPS built into their hardware.
When GPS first became available to consumers, the manufacturers created custom
OSs to manage their devices. Although most still leverage their custom system,
several have moved to the Android OS. As such, forensic analysts might encounter
dedicated GPS devices that run Android.
Other Devices
There are a growing number of new Android devices that will be hopelessly out-of-
date as soon as they are mentioned. Android is just too good of a deal for manu-
facturers to pass up. The OS is free, mature, and allows for proprietary development.
It also provides a mechanism for application development, whether internal or
through third parties. So many manufacturers are foregoing the expensive OS
development, maintenance, and support and instead building on top of Android.
Here are some examples of additional Android device types:

� Home appliances such as washing machines and microwaves
� E-readers such as Barnes and Noble’s Nook
� Media players
� Office equipment such as copying machines
� Home phones, audio and video (e.g., photo frames) devices
� Dedicated gaming devices
� Printers

As you can tell, there are manyways in whichmanufacturers will leverage Android
that will certainly keep the forensic analyst’s job interesting (as if it was not already).
ROM AND BOOT LOADERS
Android devices, like any other computer, have a fairly standard boot process which
allows the device to load the needed firmware, OS, and user data into memory to
support full operation. Although the boot process itself is well defined, the firmware
and ROM varies by manufacturer and by device. The goal of this section is to
provide a high-level overview of the Android boot process, as techniques addressed
later in this book will interact with the device at various levels. This overview is

50 CHAPTER 2 Android hardware platforms
intended to be a high level because an in-depth description of the Android or Linux
boot process could easily require an entire book on its own.

Much of the information in this section is based on a post titled “The Android
boot process from power on” by Mattias Björnheden of the Android Competence
Center at Enea (Björnheden, n.d.). In the post, Mattias identifies seven key steps to
the Android boot process:

1. Power on and on-chip boot ROM code execution
2. The boot loader
3. The Linux kernel
4. The init process
5. Zygote and Dalvik
6. The system server
7. Boot complete

We will examine each of these steps in detail.
Power On and On-chip Boot ROM Code Execution
When an Android device is first powered on, a special boot ROM code paired with
the CPU is executed to (1) initialize the device hardware and (2) locate the boot
media. The ROM code is specific to the CPU the device is using. This step in the
boot process is similar to the basic input-output system used to boot computers.

For example, a CPU popular with the hardware hacking community is the Texas
Instrument OMAP3530 ARM-compatible CPU that has a 3444-page Technical
Reference Manual available publicly (Public Version of OMAP35xx, 2010).
Although reading the technical manual is not for everyone, it provides enormous
detail and insight into how the CPU initializes and loads an OS. On page 3373, the
manual provides a flowchart detailing the overall booting sequence. The ROM code,
which starts the entire process, is hard coded at address 0x00014000, so that when
power is applied to the device, the CPU knows exactly where to locate the boot ROM
to start the boot sequence.

Once the device hardware is initialized, the ROM code scans until it finds the
boot media (which Android devices store on the NAND flash) and copies the initial
boot loader to internal RAM. Then execution jumps from the boot ROM to the
freshly loaded code in RAM as shown in Fig. 2.2.
Boot Loader (Initial Program Load/Second Program Loader)
The boot loader, now copied from the boot media, is executed in internal RAM. This
step is similar to the boot loader found when booting computers such as Windows,
Mac, and Linux. A typical computer boot loader, such as GRUB for Linux, allows
the user to select which OS they want to boot and loads it accordingly.

For an Android device, the boot loader has two distinct stages: the initial program
load (IPL) and the second program loader (SPL). The IPL is responsible for
detecting and setting up external RAM, an essential component needed to boot and

FIGURE 2.2

Power on and on-chip boot ROM code.

Rom and boot loaders 51
operate the device. Once external RAM is prepared, the IPL copies the SPL into
RAM and then transfers execution to the SPL.

The SPL is responsible for not only loading the Android OS but also providing
access to alternative boot modes such as fastboot, recovery, or other modes designed
to update and debug or service the device. The SPL is generally provided by the
manufacturer. However, the Android community actively creates their own SPLs
(and other custom images) that enable additional features and functionality. In
a typical boot scenario, the SPL will initialize hardware components such as the
clock, console, display, keyboard, and baseband modem as well as file systems,
virtual memory, and other features required to operate the device.

The SPL then locates the Linux kernel on the boot media, copies it to RAM,
loads boot parameters, and finally transfers execution to the kernel. Figure 2.3
illustrates this process.
Linux Kernel
There have been volumes written on the Linux kernel and much of it is available
online. For this book, we simply acknowledge that the Linux kernel is now
controlling the device. After setting up additional features on the device, the root file
system is read from the NAND flash, which will provide access to system and user
data shown in Fig. 2.4.
The Init Process
Once the kernel has access to the system partition, it can process the init scripts that
start key system and user processes. This is similar to the /etc/init.d scripts found on

FIGURE 2.3

Boot loader.

52 CHAPTER 2 Android hardware platforms
traditional Linux devices. For Android, the init.rc is typically located on the root file
system and provides the kernel with the details on how to start core services.

On an HTC Incredible running Android 2.2, the init.rc and init.inc.rc files contain
over 650 lines and provide substantial insight into the device setup. The selected
portions of the /init.rc file are as follows:
FIGURE 2.4

Linux kernel.

mailto:Image of Figure 2.4|tif

on init

sysclktz 0

loglevel 3

setup the global environment
 export PATH /sbin:/system/sbin:/system/bin:/system/xbin
 export LD_LIBRARY_PATH /system/lib
 export ANDROID_BOOTLOGO 1
 export ANDROID_ROOT /system
 export ANDROID_ASSETS /system/app
 export ANDROID_DATA /data
 export EXTERNAL_STORAGE /mnt/sdcard
 export ASEC_MOUNTPOINT /mnt/asec

Backward compatibility
 symlink /system/etc /etc
 symlink /sys/kernel/debug /d

create mountpoints
 mkdir /mnt 0775 root system
 mkdir /mnt/sdcard 0000 system system

Backwards Compat - XXX: Going away in G*
 symlink /mnt/sdcard /sdcard

 mkdir /system
 mkdir /data 0771 system system
 mkdir /cache 0770 system cache
 mkdir /config 0500 root root

 # Directory for putting things only root should see.
 mkdir /mnt/secure 0700 root root

 # Directory for staging bindmounts
 mkdir /mnt/secure/staging 0700 root root

 # Directory-target for where the secure container
 # imagefile directory will be bind-mounted
 mkdir /mnt/secure/asec 0700 root root

 # Secure container public mount points.
 mkdir /mnt/asec 0700 root system
 mount tmpfs tmpfs /mnt/asec mode=0755,gid=1000

 mount rootfs rootfs / ro remount

 write /proc/sys/kernel/panic_on_oops 1
 write /proc/sys/kernel/hung_task_timeout_secs 0
 write /proc/cpu/alignment 4
 write /proc/sys/kernel/sched_latency_ns 5000000
 write /proc/sys/kernel/sched_wakeup_granularity_ns 100000
 write /proc/sys/kernel/sched_min_granularity_ns 100000
 write /proc/sys/kernel/sched_compat_yield 1
 write /proc/sys/kernel/sched_child_runs_first 0

mount mtd partitions
 # Mount /system rw first to give the filesystem a chance to save
 a checkpoint
 mount yaffs2 mtd@system /system
 mount yaffs2 mtd@system /system ro remount

Rom and boot loaders 53

We chown/chmod /data again so because mount is run as root + defaults
mount yaffs2 mtd@userdata /data nosuid nodev
chown system system /data
chmod 0771 /data

54 CHAPTER 2 Android hardware platforms
From a forensic standpoint, the HTC Incredible changes how the browser stores
cache after the boot process is complete. The contents of /bootcomplete.inc.rc are
quite telling:
rm -r /data/data/com.android.browser/cache
mkdir /app-cache/com.android.browser
chmod 755 /app-cache/com.android.browser
chownto /app-cache/com.android.browser /data/data/com.android.browser
mkdir /app-cache/com.android.browser/cache
chmod 755 /app-cache/com.android.browser/cache
chownto /app-cache/com.android.browser/cache /data/data/com.android.browser
ln -s /app-cache/com.android.browser/cache /data/data/com.android.browser/cache
rm -r /data/app-cache
rm -r /data/DxDrm
As you can see, once the device has completed the boot process, the browser cache
is moved from the user data partition stored on the NAND flash into a temporary
RAM disk (tmpfs) located at /app-cache. This means that when the device is powered
down, any data written to /app-cache will be lost as shown in Fig. 2.5.

In summary, the init.rc is a fundamental step in the setup of the Android device
and can be carefully studied to understand how a particular Android device is
configured and operates.
Zygote and Dalvik
In Chapter 3, we will cover the specifics of the individual virtual machine each user
application is provided as a runtime sandbox. The Dalvik virtual machine is the
technology Google selected to create this application sandbox. At startup, the
Zygote sequence essentially sets up the Java runtime environment and registers
a socket with the system; hence, new applications that need to initialize can request
a new Dalvik virtual machine. Without the Zygote service, the Android kernel could
run. However, no applications would operate including built-in applications such as
the phone, browser, and other core features as illustrated in Fig. 2.6.
System Server
The core features of the device mentioned in the previous section are started by the
system server. Once the Java runtime is set up and the Zygote process is listening,
the system server is started. This runs core features such as telephony, network, and
other fundamental components that the device and other applications rely upon.
Figure 2.7 illustrates how the system server runs.

mailto:Image of Figure 2.4|tif
mailto:Image of Figure 2.4|tif

FIGURE 2.5

Init process.

Rom and boot loaders 55
The system finally sends a standard broadcast action called ACTION_
BOOT_COMPLETED, which alerts dependent processes that the boot process is
complete. The Android system is now fully operational and is ready to interact with
the user.
FIGURE 2.6

Zygote and Dalvik.

mailto:Image of Figure 2.5|tif

FIGURE 2.7

System server.

56 CHAPTER 2 Android hardware platforms
MANUFACTURERS
Google’s Android strategy has spawned a diverse group of Android device manu-
facturers. On the Android Developer web site, a list of USB Vendor IDs is main-
tained and currently tracks 15 manufacturers (Using Hardware Devices, n.d.). The
list includes the following:

� Acer
� Dell
� Foxconn
� Garmin-Asus
� HTC
� Huawei
� Kyocera
� LG
� Motorola
� Nvidia
� Pantech
� Samsung
� Sharp
� Sharp
� ZTE

However, once you factor in manufacturers not listed above and devices in
the planning phase, there are over 50 different manufacturers of Android devices.

This, of course, presents a unique challenge for forensic investigators and
corporate security managers alike. The sheer volume of device manufacturers,

Android updates 57
device types, and devices results in a complicated array of policies, procedures,
techniques, and even USB cables.
ANDROID UPDATES
Android’s update models are decentralized, device specific, and are the responsi-
bility of the carrier or device manufacturer, not Google. Although the Open
Handset Alliance, largely influenced by Google, is responsible for maintaining the
core Android OS, they do not exercise control over specific devices. This decen-
tralized approach impacts the forensic and security procedures for devices in
several ways.

First, an analyst is never certain what version of Android a device will have
installed. This is in part driven by corporations’ quest for the highest possible profit
margins. Notably in the United States, if a consumer purchases an Android device
with a two-year contract, the carrier has essentially locked the consumer in, because
the early termination fees are ever-escalating. As the user is unlikely to upgrade
their service or purchase a new phone, they represent a fixed amount of revenue for
the carrier. The engineering, development, deployment, and support costs of
upgrading an existing Android device are quite steep. Therefore, the carriers can
either invest in new Android devices, which generate enormous interest
and presumably sales, or maintain an existing device, which brings in very little, if
any, additional revenue. More often than not, consumers using older Android
phones will remain on older and less functional and less secure versions of Android.
This is an issue Google has acknowledged and has stated that they are working to
address.

Second, both securing and acquiring a forensic image of an Android device
vary greatly between Android versions and device types. For example, the
technique an analyst would leverage for an HTC Dream 100 (T-Mobile G1)
running Android 1.5 with kernel 2.6.30.4 or earlier is vastly different than
the same device running Android 1.6 or a kernel greater than 2.6.30.4. As you can
imagine, with more than 50 manufacturers, over 300 Android devices, four
major releases and hundreds of minor releases, the possible combinations are
vast.

Third, the hardware, drivers, and software used to connect to different Android
devices can vary. The Android software development kit (SDK), discussed in
Chapter 3, does provide some consistency. However, each manufacturer may have
their own set of specific drivers and software. For example, if connecting a Samsung
Galaxy S to a computer running Windows, you need to first install specific software
provided by Samsung. However, many other devices have standard USB drivers
provided by Google via their SDK.

Finally, each manufacturer has their own boot process including the hardware,
boot loaders, and ROM firmware. In Chapter 6, we will explore some techniques for
exploiting the boot process on devices by various manufacturers.

58 CHAPTER 2 Android hardware platforms
Custom User Interfaces
Portions of Android are licensed under the Apache 2.0 open source instead of the full
GPLv2 open source license. The Apache 2.0 license allows manufacturers and
developers the ability to customize certain parts of the Android system, yet relieves
them of the obligation to return the source code back to the community. The Apache
2.0 license primarily covers specific drivers for the device where the manufacturer’s
intellectual property could be compromised and in the area of user interface
customization.

By allowing proprietary user interfaces, Google has allowed the manufacturers to
tailor a key area to the intended audience and differentiate their Android devices
from their competitors. For instance, one Android device may target the teen market
and focus on text messaging and social applications, whereas a different device may
be primarily targeted to business users. Fundamentally, the devices operate quite
similarly. However, the user interface customizations (as well as hardware design
implementation) create a unique experience. Table 2.1 describes the custom user
interfaces by manufacturers.
Aftermarket Android Devices
As the Android OS is an open source, custom builds have been created, which will
run on devices originally released to the market with other OSs. In one infamous
example, versions of Android exist which can be installed and run on the iPhone
(Linux on the iPhone, n.d.). It is certainly a lot of fun to watch the Apple fanboys
react when such a feat has been accomplished. More practically, Android has been
ported to many HTC phones that originally shipped with Windows Mobile. And
there are many more examples involving devices from companies such as Nokia and
even devices in categories other than smartphones.

Although it may not happen too often, it is important to consider the possibility
that the Windows phone (or iPhone) you need to forensically analyze may indeed be
running Android.
Table 2.1 Custom Android User Interfaces

Manufacturer Custom User Interface(s)

Motorola Motoblur

HTC Sense

Samsung TouchWiz

Sony Ericsson Rachael, UX, Nexus

Acer Touch 3D

Dell Stage

Viewsonic TapnTap

Specific devices 59
SPECIFIC DEVICES
The following devices are used throughout this book, and a brief overview of each
device is presented here for reference. Several of these devices were some of the first
commercially available Android smartphones and are well understood. They can be
purchased at a fairly reasonable price point and may be a great device to populate
and experiment on following the examples throughout this book.
T-Mobile G1
The T-Mobile G1 shown in Fig. 2.8 was manufactured by HTC and released to the
US market by T-Mobile in October 2008. Like many first-generation devices, there
were usability issues with the phone. However, it sold over one million units (Krazit,
n.d.) in the first six months and serves as a great reference phone.

Device info:

� Manufacturer: HTC
� Model: G1 (aka: HTC Dream 100)
� Carrier(s): T-Mobile
� Release date: October 2008
FIGURE 2.8

T-Mobile G1 (DREA100).
Motorola Droid
The Motorola Droid, shown in Fig. 2.9, was manufactured by Motorola and released
to the US market by Verizon in November 2009. In the first 74 days, 1.05 million
Droid smartphones were sold, making it more popular than the original iPhone

FIGURE 2.9

Motorola Droid (A855).

60 CHAPTER 2 Android hardware platforms
release in June 2007 (Day 74 Sales, n.d.). The Droid is an excellent reference phone,
and if you are contemplating the purchase of a device for testing, you should
strongly consider this device.

Device info:

� Manufacturer: Motorola Mobile Devices
� Model: A855
� Carrier(s): Verizon Wireless
� Release date: November 2009
HTC Incredible
The HTC Incredible, pictured in Fig. 2.10, was released on the Verizon network and
is also extremely popular in the United States. The device is used extensively
throughout this book as a reference phone.

Device info:

� Manufacturer: HTC
� Model: ADR6300
� Carrier(s): Verizon Wireless
� Release date: April 2010
Google Nexus One
As described in Chapter 1, Google released their own smartphone, the Nexus One
(N1), in January 2010, shown in Fig. 2.11. The N1 was developed by HTC and, by
all accounts, was an ideal model of how manufacturers should develop their phone.

FIGURE 2.10

HTC Incredible.

FIGURE 2.11

Google Nexus One (N1).

Specific devices 61

62 CHAPTER 2 Android hardware platforms
The processor was extremely fast (1 GHz), it was running the latest version of
Android, and it had innovations such as three microphones that survey background
noise and blend your voice to create the most clear conversation possible.

Device info:

� Manufacturer: HTC
� Model: HTC Passion
� Carrier(s): T-Mobile, Verizon, Vodafone
� Release date: January 2010
SUMMARY

Although device components vary, there are several core components common to
most devices. A basic understanding of these components, as well as an under-
standing of the various device types, is sufficient for forensic analysts in many
cases. However, it is apparent that there are many other diverse factors that should
be considered in an investigation. The high-level overview of the boot process
provides a foundation for more in-depth discussions of the processes, which will
be further explored. Finally, the overview of manufacturers and devices provides
insight into all the various factors that analysts need to consider. The Android
Market is fractured and diverse, and forensic analysts need to keep in mind that a
“one-size-fits-all” strategy does not work when investigating Android devices.
References
Android-x86dPorting Android to x86. (n.d.). Retrieved March 9, 2011, from http://www.

android-x86.org/.
Björnheden, M. (n.d.). Enea Android Blog: The Android boot process from power on.

Retrieved December 17, 2010, from http://www.androidenea.com/2009/06/android-boot-
process-from-power-on.html.

Chromium OSdThe Chromium projects. (n.d.). Retrieved December 13, 2010, from http://
www.chromium.org/chromium-os.

Day 74 Sales: Apple iPhone vs. Google Nexus One vs. Motorola Droid. (n.d.). The Flurry
BlogdMobile application analyticsjiPhone analyticsjAndroid analytics. Retrieved
December 18, 2010, from http://blog.flurry.com/bid/31410/Day-74-Sales-Apple-iPhone-
vs-Google-Nexus-One-vs-Motorola-Droid.

Krazit, T. (n.d.). T-Mobile has sold 1 million G1 Android phones. WirelessdCNET News.
Technology newsdCNET News. Retrieved December 18, 2010, from http://news.cnet.
com/8301-1035_3-10226034-94.html.

Linux on the iPhone. (n.d.). Retrieved December 15, 2010, from http://linuxoniphone.
blogspot.com/.

Main PagejPDAdb.netdComprehensive database of smartphone, PDA, PDA phone, PNA,
netbook & mobile device specifications. (n.d.). Retrieved November 28, 2010, from
http://pdadb.net/index.php.

http://www.android-x86.org/
http://www.android-x86.org/
http://www.androidenea.com/2009/06/android-boot-process-from-power-on.html
http://www.androidenea.com/2009/06/android-boot-process-from-power-on.html
http://www.chromium.org/chromium-os
http://www.chromium.org/chromium-os
http://blog.flurry.com/bid/31410/Day-74-Sales-Apple-iPhone-vs-Google-Nexus-One-vs-Motorola-Droid
http://blog.flurry.com/bid/31410/Day-74-Sales-Apple-iPhone-vs-Google-Nexus-One-vs-Motorola-Droid
http://news.cnet.com/8301-1035_3-10226034-94.html
http://news.cnet.com/8301-1035_3-10226034-94.html
http://linuxoniphone.blogspot.com/
http://linuxoniphone.blogspot.com/
http://pdadb.net/index.php

Specific devices 63
Mobile Memory. (n.d.). Hynix. Retrieved March 9, 2011, from http://www.hynix.com/
products/mobile/mcp.jsp?menuNo¼1&m¼4&s¼4.

Nielsen Wire. (n.d.). U.S. smartphone battle heats up: Which is the “most desired” operating
system? Retrieved December 12, 2010, from blog.nielsen.com/nielsenwire/online_
mobile/us-smartphone-battle-heats-up/.

Public Version of OMAP35xx. (2010). Technical reference manualdVersion M
(SPRUF98M) Houston, TX: Texas Instruments Incorporated. Retrieved December 17,
2010, from http://focus.ti.com/docs/prod/folders/print/omap3530.html.

Using hardware devices. (n.d.). Android developers. Retrieved March 9, 2011, from http://
developer.android.com/guide/developing/device.html.

http://www.hynix.com/products/mobile/mcp.jsp%3FmenuNo%3D1%26m%3D4%26s%3D4
http://www.hynix.com/products/mobile/mcp.jsp%3FmenuNo%3D1%26m%3D4%26s%3D4
http://www.hynix.com/products/mobile/mcp.jsp%3FmenuNo%3D1%26m%3D4%26s%3D4
http://www.hynix.com/products/mobile/mcp.jsp%3FmenuNo%3D1%26m%3D4%26s%3D4
http://www.hynix.com/products/mobile/mcp.jsp%3FmenuNo%3D1%26m%3D4%26s%3D4
http://blog.nielsen.com/nielsenwire/online_mobile/us-smartphone-battle-heats-up/
http://blog.nielsen.com/nielsenwire/online_mobile/us-smartphone-battle-heats-up/
http://focus.ti.com/docs/prod/folders/print/omap3530.html
http://developer.android.com/guide/developing/device.html
http://developer.android.com/guide/developing/device.html

3
Android software
development kit
and android debug bridge
CHAPTER
INFORMATION IN THIS CHAPTER

� Android platforms

� Software development kit (SDK)

� Android security model

� Forensics and the SDK
INTRODUCTION
The Android software development kit (SDK) provides not only the tools to
create applications that run on the Android platform but it also provides
documentation and utilities that can assist significantly in the forensic or
security analysis of a device. While the Android hardware covered in Chapter 2
plays a major role in the capabilities of a device, the software harnesses these
features to ultimately create the experience and functionality consumers seek. A
thorough understanding of the Android SDK will provide many insights into the
data and the device, as well as important utilities that we will leverage in
investigations.
ANDROID PLATFORMS
Android was officially announced in November 2007 but has been under significant
development since 2005. This, combined with the large and diverse hardware, which
leverages Android, has created a diverse ecosystem adding significant complexity
for the forensic analyst or security engineer.

An informative characteristic of Android is the version of the Android platform
itself. The platform is a large factor in determining the features a device can
support. The official Android platforms are each assigned an application
programming interface (API) level, and all the newer versions receive a code name.
The current release, as of January 2011, is Android 2.3 which has the code name
Gingerbread. The next major release has a code name Honeycomb and appears to
Android Forensics. DOI: 10.1016/B978-1-59749-651-3.10003-2
Copyright � 2012 Elsevier Inc. All rights reserved.

65

http://dx.doi.org/10.1016/B978-1-59749-651-3.10003-2

Table 3.1 Android Platforms

Platform API Level Code Name Release Date

Android 2.3.3 10 Gingerbread February 9, 2011

Android 2.3 9 Gingerbread December 2010

Android 2.2 8 FroYo May 20, 2010

Android 2.1 7 Eclair January 11, 2010

Android 2.0.1 6 Eclair December 11, 2009

Android 2.0 5 Eclair October 5, 2009

Android 1.6 4 Donut September 16, 2009

Android 1.5 3 Cupcake April 27, 2009

Android 1.1 2 Petit Four February 9, 2009

Android 1.0 1 N/A September 23, 2008

66 CHAPTER 3 Android software development kit and android debug bridge
target the anticipated growth of tablet devices. Table 3.1 gives the full list of
Android platforms including API level, code name, and release date (Android
timeline, n.d.).

While many Android versions exist, the distribution of each in current
devices can have a large impact on forensic analysts and security engineers.
Figure 3.1 shows Google’s reports of distribution of Android versions based on
a two-week survey of devices accessing the Android Market (Platform
Versions, n.d.).

To put that in perspective, Table 3.2 shows the total number of devices in
circulation in the United States by Android version. These data are based on an
FIGURE 3.1

Distribution of Android devices by platforms, January 2011.

FIGURE 3.2

Historical distribution of Android version from August 2001 through February 2, 2011.

Table 3.2 Approximate Number of Android Devices by

Platform in the United States

Android Version Total Devices

Android 2.3 63,960

Android 2.2 8,282,820

Android 2.1 5,628,480

Android 1.6 1,263,210

Android 1.5 751,530

Android platforms 67
approximate US Android device population of 15.99 million as of November 2011
(comScore Reports, n.d.).

Google also released a graph displaying the historical distribution of Android
versions for the seven-month period between August 2010 and February 2, 2011.
The data are again based on devices accessing the Android Market but nicely dis-
played the progress of Android updates over time as shown in Fig. 3.2 (Platform
Versions, n.d.).

While some devices will never support the latest version of Android, many do
eventually receive the update. Future devices will probably be able to quickly
support and upgrade to the latest version. However, from a forensics and security
perspective, the older outliers cannot be ignored.
Android Platform Highlights Through 2.3.3 (Gingerbread)
Android is a sophisticated, heavily developed platform and any attempt to fully
document all features would encompass a large portion of this book. However,

68 CHAPTER 3 Android software development kit and android debug bridge
a brief overview of each major release can be helpful so that a forensic analyst is
aware of the features a device may support. Generally speaking, the features build on
each other so functionality available in Android 1.5 is likely available and improved
in Android 2.3.3.
Android 1.5
Android 1.5, released April 2009, highlighted the features and updates listed in
Table 3.3 (Android 1.5, n.d.).
Android 1.6
Android 1.6, released September 2009, highlighted the features and updates listed
in Table 3.4 (Android 1.6, n.d.).
Table 3.3 Android 1.5 Features and Highlights

New User Features
New Developer Features,
APIs, and Technologies

Built-in
Applications

� User Interface Refinements,
including in-call experience,
SMS/MMS and more

� Performance Improvements
to camera, GPS, browser,
and Gmail

� On-screen soft keyboard
� Home screen widgets
� Video recording and

playback
� Better Bluetooth support and

functionality
� Browser copy and paste,

on-page searching, and
more

� Contact improvements
including pictures, date/time
stamps for call logs, and
on-touch access to contact
methods

� View Google Talk friends’
status in Contacts, SMS,
MMS, Gmail, and e-mail
applications

� Upload videos to YouTube,
pictures to Picasa

� New Linux kernel
(version 2.6.27)

� SD card file system
auto-checking and repair

� Improved media framework
� Speech recognition

framework
� Support 26 locales

� Alarm clock
� Browser
� Calculator
� Camcorder
� Camera
� Contacts
� Custom locale

(developer app)
� Dev. tools

(developer app)
� Dialer
� E-mail
� Gallery
� IME for Japanese

text input
� Messaging
� Music
� Settings
� Spare parts

(developer app)

Table 3.4 Android 1.6 Features and Highlights

New User Features
New Developer Features,
APIs, and Technologies

Built-in
Applications

� Quick Search Box for Android
� Updated camera, camcorder,

and gallery
� VPN, 802.1x support
� Battery usage indicator
� Android Market Updates

including categorization, top
apps, and screenshots

� 2.6.29 Linux kernel
� Expanded search framework
� Text-to-speech engine
� Support for gestures
� New accessibility framework
� Expanded support for screen

densities and resolutions
� Telephony support for CDMA
� New version of OpenCore for

better audio handling

� All apps in
Android 1.5

� Gestures
Builder

Android platforms 69
Androids 2.0 and 2.1
Android 2.0 and 2.1, released October 2009 and January 2010, respectively,
highlighted the features and updates listed in Table 3.5 (Android 2.1, n.d.).
Table 3.5 Android 2.0/2.1 Features and Highlights

New User Features
New Developer Features,
APIs, and Technologies

Built-in
Applications

� Multiple accounts for e-mail and
contact syncing, Quick contact
feature

� Exchange support in e-mail
� SMS/MMS search functionality
� Many enhancements to camera

such as built-in flash, digital
zoom, and more

� Improvement in Android virtual
keyboard

� Browser updates include
bookmarks with web page
thumbnails, double-tap zoom,
and HTML5 support

� New calendar features such as
inviting guests

� Revamped graphics
architecture for improved
performance that enables
better hardware acceleration.

� Bluetooth 2.1
� Live Wallpapers API

� Same apps as
Android 1.6
Android 2.2
Android 2.2, released May 2010, highlighted the features and updates found in
Table 3.6.

Table 3.6 Android 2.2 Features and Highlights

New User Features
New Developer Features,
APIs, and Technologies

Built-in
Applications

� New Home screen tips widget
� The Phone, applications

Launcher, and Browser now have
dedicated shortcuts on the Home
screen

� Exchange expanded with addition
of numeric pin or alpha-numeric
password options to unlock
device; Remote wipe; Exchange
Calendars are now supported;
Auto-discovery; Global Address
Lists look-up

� Improved camera and gallery
� Some devices can be a portable

Wi-Fi hotspot that can be shared
with up to eight devices.

� Multiple keyboard languages
� Improved performance in browser,

Dalvik VM, graphics, and kernel
memory management

� 2.6.32 Linux kernel (support
for RAM> 256 MB)

� New media framework that
supports local file playback
and HTTP progressive
streaming

� Bluetooth improvements
including voice dialing over
Bluetooth, share contacts
with other phones, and
better compatibility with
vehicles

� Android Cloud to Device
Messaging

� Android Application Error
Reports

� Apps on external storage
� Data backup APIs
� Device policy manager

� Same as
Android 2.1

70 CHAPTER 3 Android software development kit and android debug bridge
Android 2.3
Android 2.3, released December 2010, highlighted the features and updates listed
in Table 3.7.
Table 3.7 Android 2.3 Features and Highlights

New User Features
New Developer Features,
APIs, and Technologies

Built-in
Applications

� UI refinements for simplicity and
speed

� Faster, more intuitive text input
� One-touch word selection and

copy/paste
� Improved power management
� Support for Internet/SIP calling

(VoIP)
� NFC Reader application lets the

user read and interact with near-
field communication (NFC) tags.

� Downloads management
� Camera improvements, support

for front- and rear-facing
camera

� Linux kernel 2.6.35
� Enhancements for gaming

including performance
improvements, new sensors,
graphics, audio and power
management routines

� Rich multimedia support
such as mixable audio
effects

� Significant upgrades and
enhancements in the Dalvik
runtime and supporting
libraries

� Support for 57 languages/
locales

� Same apps as
Android 2.2

� Downloads
� Search
� Speech

Recorder

Table 3.8 Android 2.3.3 Features and Highlights

New User Features

New Developer
Features, APIs, and
Technologies Built-in Applications

� Same as Android 2.3 � Improved and extended
support for near-field
communications (NFCs)

� Tweaks to Bluetooth,
graphics, media
framework, and
speech recognition

� Support for 57
languages/locales

� Same apps as Android 2.3

Software development kit (SDK) 71
Android 2.3.3
Android 2.3.3, released February 2011, highlighted the features and updates found
in Table 3.8.
SOFTWARE DEVELOPMENT KIT (SDK)
The Android software development kit (SDK) is the development resource needed to
develop Android applications. It includes software libraries and APIs, reference
materials, an emulator, and other tools. The SDK is supported in many environments
including Linux, Windows, and OS X and can be downloaded free from http://
developer.android.com.

The SDK is also a powerful forensic tool used by analysts in many situations to
aid in the investigation of an Android device.
SDK Release History
While the Android platforms mark the officially supported releases of Android, the
SDK is updated more frequently. Table 3.9 provides the complete SDK release
history that can aid in these situations (SDK Archives, n.d.).
Table 3.9 Archived Android Platforms Releases

Platform API Level Release Date

Android 1.6 r1 4 September 2009

Android 1.5 r3 3 July 2009

Android 1.1 r1 2 February 2009

Android 1.0 r2 1 November 2008

http://developer.android.com
http://developer.android.com

72 CHAPTER 3 Android software development kit and android debug bridge
SDK Install
Since the SDK is critical in the investigation of an Android device, examiners should
have a working installation. The following sections provide step-by-step directions
for installing the SDK on the supported platforms.

Linux SDK Install
These steps are based on the Ubuntu VM used to download and compile the Android
Open Source Project (AOSP) from Chapter 1 which already includes most of the
prerequisites including the Java development kit. From a terminal window, install
the needed 32-bit libraries:
FI

D

NOTE

32-Bit libraries
Since the Ubuntu VM built in Chapter 1 used the 64-bit version of Ubuntu, we must install
the 32-bit libraries to install the SDK. If, however, you are using a 32-bit Linux workstation,
you need not complete this step. While the 32-bit workstation can run the SDK, it cannot
build the AOSP after version 2.2.
GURE 3.3

ownload Android SDK for Linux.

Software development kit (SDK) 73
#install 32-bit libraries
sudo apt-get install ia32-libs

Next, start Firefox and navigate to http://developer.android.com/sdk and

download the Linux i386 platform (android-sdk_r08-linux_86.tgz, as of January
2011). The default action will open the archive in the archive manager as shown
in Fig. 3.3.

Then right click and extract the archive to your home directory as shown in
Fig. 3.4.

Next, from the terminal window:

#navigate to the tools/ directory in the Android SDK
cd ~/android-sdk-linux_x86/tools

#run android
./android

This will run the Android SDK and Android Virtual Device (AVD) manager,
which will allow you to download and manage the additional necessary components
as shown in Fig. 3.5.

To fully leverage the Android SDK, additional components are required. Mini-
mally, we want to install the platform’s specific SDK tools and at least one SDK
FIGURE 3.4

Extract Android SDK for Linux.

mailto:Image of Figure 3.2|tif
http://developer.android.com/sdk
mailto:Image of Figure 3.3|tif
mailto:Image of Figure 3.4|tif

FIGURE 3.5

Android SDK and AVD manager in Linux.

74 CHAPTER 3 Android software development kit and android debug bridge
platform (in this case, Android 2.3) so that we can run the emulator. To complete the
installation, select the Available packages from the left navigation pane and then the
two additional packages as shown in Fig. 3.6.
FIGURE 3.6

Select additional Android SDK packages.

Software development kit (SDK) 75
And then choose Install Selected. You will be prompted to approve the license for
all packages as shown in Fig. 3.7.
FIGURE 3.7

Accept and install Android SDK packages.
Select Accept All (provided you agree) and then install. The Android SDK and
AVD manager will then download and install the components.

Optionally, you may want to add the binary directories to your operating system
(OS) execution path so you do not have to specify the full path to the programs each
time. In Linux, do the following:
open your .bashrc in an editor
nano -w ~/.bashrc

#add the following line, substituting your login name
export PATH=$PATH:/home/ahoog/android-sdk-linux_86/tools/
Save, exit, and then re-open (Ctrl-O) a new shell.
One final step you must take in Ubuntu is to create USB profiles for each Android

device manufacturer in the system’s configuration, specifically the udev rules. From
a terminal session as root, edit/create the udev rule:

export PATH=$PATH:/home/ahoog/android-sdk-linux_86/platform-tools/
sudo nano -w /etc/udev/rules.d/51-android.rules

76 CHAPTER 3 Android software development kit and android debug bridge
Copy the following contents (vendor IDs are supplied on http://developer.
android.com/guide/developing/device.html#VendorIds):

#Acer
SUBSYSTEM=="usb", SYSFS{idVendor}=="502", MODE="0666"
#Dell
SUBSYSTEM=="usb", SYSFS{idVendor}=="413c", MODE="0666"
#Foxconn
SUBSYSTEM=="usb", SYSFS{idVendor}=="489", MODE="0666"
#Garmin-Asus
SUBSYSTEM=="usb", SYSFS{idVendor}=="091E", MODE="0666"
#HTC
SUBSYSTEM=="usb", SYSFS{idVendor}=="0bb4", MODE="0666"
#Huawei
SUBSYSTEM=="usb", SYSFS{idVendor}=="12d1", MODE="0666"
#Kyocera
SUBSYSTEM=="usb", SYSFS{idVendor}=="482", MODE="0666"
#LG
SUBSYSTEM=="usb", SYSFS{idVendor}=="1004", MODE="0666"
#Motorola
SUBSYSTEM=="usb", SYSFS{idVendor}=="22b8", MODE="0666"
#Nvidia
SUBSYSTEM=="usb", SYSFS{idVendor}=="955", MODE="0666"
#Pantech
SUBSYSTEM=="usb", SYSFS{idVendor}=="10A9", MODE="0666"
#Samsung
SUBSYSTEM=="usb", SYSFS{idVendor}=="400000000", MODE="0666"
#Sharp
SUBSYSTEM=="usb", SYSFS{idVendor}=="04dd", MODE="0666"
#Sony Ericsson
SUBSYSTEM=="usb", SYSFS{idVendor}=="0fce", MODE="0666"
#ZTE
SUBSYSTEM=="usb", SYSFS{idVendor}=="19D2", MODE="0666"

And then save the file. Finally, make the file readable by all users:

sudo chmod a+r /etc/udev/rules.d/51-android.rules

You can either restart the udev daemon or simply reboot.

Windows SDK Install
The latest version of the Android SDK for Windows, shown in Fig. 3.8, is now
packaged as an executable installer, which will determine if you have the necessary
Java dependencies properly installed and, if not, will download and install them for
you. However, the installer will only detect the 32-bit install of the JDK and will not
automatically install the JDK on a Windows 7 64-bit install. If you are running a 32-
bit version of Windows (such as Windows XP), then the installer may be a good
option and you can simply download the package from http://developer.android.
com/sdk/index.html and run the installer.

However, many analysts and engineers have moved to 64-bit OSs. To install the
Android SDK on Windows, first install the Java SE SDK by downloading it at http://
java.sun.com/javase/downloads/. Make sure you install the full SDK.

After the SDK is installed, download the zipped version of the Window’s
Android SDK at http://developer.android.com/sdk/index.html and extract it to your

http://developer.android.com/guide/developing/device.html%23VendorIds
http://developer.android.com/guide/developing/device.html%23VendorIds
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://java.sun.com/javase/downloads/
http://java.sun.com/javase/downloads/
http://developer.android.com/sdk/index.html

FIGURE 3.8

Android SDK installer for Windows.

Software development kit (SDK) 77
hard drive. For our example, we will extract directly to C:\ that will then create the
folder C:\android-sdk-windows.

Open that directory and double click SDK Manager.exe to begin the update
process. Be sure that you select at least the Android SDK Platform-tools, as in
Fig. 3.9, and one release platform (2.3 in this example).
FIGURE 3.9

Android SDK manager for Windows.

78 CHAPTER 3 Android software development kit and android debug bridge
When working with Android devices in Windows, you need to specify USB
drivers. The Android SDK recently updated how the USB drivers are installed. First,
make sure you are running the SDKManager and select Available packages. Expand
Third party Add-ons / Google Inc. add-ons and finally choose Google Usb Driver
package as shown in Fig. 3.10.

Then, accept the license and install as shown in Fig. 3.11.
After the USB drivers are installed, you should have all the necessary compo-

nents. However, to simplify running tools from the Android SDK, you should update
FIGURE 3.10

Google USB driver package for Windows.

FIGURE 3.11

Accept and install license.

FIGURE 3.12

Update PATH environment variable (Windows 7 64 bit).

Software development kit (SDK) 79
your workstation’s environment variables, specifically the PATH to executable files.
To do this, go to your Control Panel and open the System application. You should
then select the tab where you can update the Environment variable, whose location
will vary depending on your exact Windows version, shown in Fig. 3.12. Finally,
locate the Path system variable, select Edit, and append the full path to your Android
SDK platform-tools directory, which in our example would be ;C:\android-sdk-
windows\platform-tools.

The “;” is important, as it is the delimiter between path locations. Once you
complete this update, make sure you exit and wait for command prompts indicating
that the new setting has taken effect.
OS X SDK
To install the Android SDK on OS X, first download the archive from http://
developer.android.com/sdk/index.html, from which OS X will then automatically
extract.

Navigate to the tools subdirectory as shown in Fig. 3.13, and then double
click Android to run the Android SDK and AVD manager as shown in
Fig. 3.14.

When the Manager runs, select Available packages, expand Android Repository
and then select the Android SDK platform-tools and at least one Android platform as
shown in Fig. 3.15.

http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html

FIGURE 3.13

Extracted Android SDK for OS X.

80 CHAPTER 3 Android software development kit and android debug bridge
Then accept the licenses and complete the install. Finally, to simplify running
tools from the Android SDK, you should update your executable PATH. On OS X
10.6, run Terminal (Applications / Utilities) and do the following:

#edit your bash_profile
nano -w ~/.bash_profile

#add the following line substituting your full path to the platform-tools
directory PATH=$PATH:/Users/ahoog/android-sdk-mac_86/platform-tools

#save with Ctrl-O and then Ctrl-X to exit. Exit Terminal
exit
FIGURE 3.14

Open Android on OS X.

mailto:Image of Figure 3.13|tif

FIGURE 3.15

Install Android SDK components on OS X.

Software development kit (SDK) 81
Make sure you fully exit the Terminal app and then restart. From the terminal,
type:

echo $PATH

This should return your executable path with the platform-tools appended.
Android Virtual Devices (Emulator)
Once you have the Android SDK installed on your workstation and have at least one
release platform downloaded, you are ready to create an AVD, a virtual mobile
device, or emulator, which runs on your computer. The emulator is especially helpful
for developers for creating custom applications. However, there is great value for
the forensic analyst and security engineer because you can profile how applications
execute on a device. This could be important to validate your findings in an inves-
tigation, or to test how a forensic tool affects an Android device.

The emulator takes considerable resources, so an ideal workstation would have
a newer sufficient CPU and RAM. A bit of patience from the examiner may also be
required. To create an AVD, first run the Android SDK and AVD manager appli-
cation as seen in Fig. 3.16. If you updated your OS’s path to include the tools
directory in the SDK, you should be able to run Android from a shell, terminal, or
command prompt.

In the left pane, select Virtual devices and then select New, as in Fig. 3.17.

mailto:Image of Figure 3.15|tif

FIGURE 3.16

Start Android SDK and AVD manager.

FIGURE 3.17

Creating a new AVD.

82 CHAPTER 3 Android software development kit and android debug bridge

Software development kit (SDK) 83
Make sure you populate the following fields:
� Name: Provide a name for the virtual device, for example, af23 (Android

Forensics 2.3).
� Target: Select the target platform, in this case Android 2.3dAPI level 9.
� [optional] SD card: Optionally create an SD card for the virtual device.

You can set additional properties. However, for now wewill create the most basic
AVD. Also, if you encounter an Android device running on an older platform, you
can create virtual devices running the older version by simply downloading the
Android platform using the Android SDK and AVDmanager. When you click Create
AVD, the device will be created and you will receive a confirmation screen similar to
that shown in Fig. 3.18.

Ensure that the new AVD is highlighted and then click Start, at which point you
will be prompted for launch options as shown in Fig. 3.19.

Select any options you wish and click Launch. At this point, the AVD will begin
the boot process, which could take a few minutes or longer. During that time, you
will see Android starting up. This is illustrated in Fig. 3.20.

Finally, you will be presented with the fully functioning AVD as shown in
Fig. 3.21.
FIGURE 3.18

AVD-created confirmation.

FIGURE 3.19

AVD launch options.

FIGURE 3.20

AVD launching.

FIGURE 3.21

Running AVD.

84 CHAPTER 3 Android software development kit and android debug bridge
The AVD is very powerful and fully functional. For example, you can easily
jump online, as demonstrated in Fig. 3.22, and surf the web site. You can configure e-
mail accounts, send test SMS messages to other AVD and of course, if you are
a developer, deploy and test your application.

When an AVD is created and then launched, the data created are valuable for
forensic and security research. The files are created in your home directory, which

FIGURE 3.22

AVD running browser.

Table 3.10 AVD Storage Directory

Workstation
Operating System AVD Storage Directory Example

Ubuntu Linux /home/<username>/.android /home/ahoog/.android

Mac OS X /Users/<username>/.android /Users/ahoog/.android

Windows 7 C:\Users\<username>\.android C:\Users\ahoog\.android

Software development kit (SDK) 85
varies by platform, in a folder called .android (note the dot prefix in the filename).
Table 3.10 provides specific OS paths.

Inside AVD’s .android directory you will find configuration and data files needed
to run the AVD.
ahoog@ubuntu:~/.android$ tree
.
├── androidtool.cfg
├── avd
│ ├── af23.avd
│ │ ├── cache.img
│ │ ├── config.ini
│ │ ├── emulator-user.ini
│ │ ├── sdcard.img
│ │ ├── userdata.img
│ │ └── userdata-qemu.img
│ └── af23.ini
├── default.keyset
├── modem-nv-ram-5554
└── repositories.cfg

2 directories, 11 files

86 CHAPTER 3 Android software development kit and android debug bridge
Files of particular forensic and security interest include the following:
� cache.img: disk image of /cache partition
� sdcard.img: disk image of SD card (if created during AVD setup)
� userdata-qemu.img: disk image of /data partition

The cache.img and userdata-qemu.img are YAFFS2 file systems that are not sup-
ported by current forensic software and will be covered in Chapter 4. However, stan-
dard forensic tools will work quite well on sdcard.img, which is a FAT32 file system.

ahoog@ubuntu:~/.android/avd/af23.avd$ file sdcard.img
sdcard.img: x86 boot sector, code offset 0x5a, OEM-ID "MSWIN4.1", Media
descriptor 0xf8,
sectors 51200 (volumes > 32 MB), FAT (32 bit), sectors/FAT 397, reserved3
0x800000,
serial number 0x1d0e0817, label: " SDCARD"

Forensic analysts and security engineers can learn a great deal about Android and

how it operates by leveraging the emulator and examining the network, file system,
and data artifacts.
Android OS Architecture
It is important to understand the high-level architecture of Android, especially for
security procedures and moving beyond logical forensic analysis.

Android is based on the Linux 2.6 kernel that provides the fundamental software
needed to boot and manage both the hardware and Android applications. While the
functionality that the kernel provides is quite extensive, we will focus on core areas
highlighted in Fig. 3.23.

As illustrated in Fig. 3.23, low-level functions include power management,
Wi-Fi.com, display, audio drivers, and more. Perhaps most important from a foren-
sics perspective is the flash memory driver, which will be explored in detail in
Chapter 4.

After the kernel, a set of libraries are available, which provide core functionality
needed by developers and device owners alike. These include the WebKit library for
rendering HTML in both the bundled browser and third-party apps. Other libraries
handle fonts, displays, various media, and secure communications using Secure
Socket Layers (SSLs). Finally, the SQLite library provides a method for structured
data storage on Android and is an area forensic analysts and security engineers will
focus on.

The core libraries are then bundled with a custom Java virtual machine (VM) to
provide the Android runtime environment, which is where applications run.

Finally, the SDK provides access to these resources via APIs and an application
framework. The framework is the primary layer that third-party developers interact
with and it provides them abstract access to key resources needed for their application.
As we explore logical forensic techniques, an important aspect of the application
frameworkdcontent providersdwill be explained in more detail because they
provide the primary mechanism bywhich we can extract data from an Android device.

mailto:Image of Figure 3.22|tif
http://Wi-Fi.com

FIGURE 3.23

Android architecture.

Software development kit (SDK) 87
Dalvik VM
The Dalvik Virtual Machine (Dalvik VM) was developed by Google to create an
efficient and secure mobile application environment.

To achieve the desired security, each application is run on its own Dalvik VM. As
such, the Dalvik VM was written so that many VMs could run at once on an Android
device. The Dalvik VM relies heavily on the Linux OS to provide low-level func-
tions such as access to core libraries and hardware, threat and security management,
memory management, and more.

To achieve efficiency, applications that run in a Dalvik VM have a special
format called a Dalvik Executable (.dex) file. Developers write and compile their
programs with Sun’s Java Development Kit and the resulting byte code is then
transformed into a .dex file which provides efficient storage and is optimized for
execution in the Dalvik VM. An interesting project developed by JesusFreke, an
accomplished and well-known Android hacker, is called smali/baksmali. This
project allows a user to decompile a .dex file to determine what an application
does (smali, n.d.).

Dalvik is a unique aspect of Android and a critical component in the forensic and
security analysis of a device.

mailto:Image of Figure 3.23|tif

88 CHAPTER 3 Android software development kit and android debug bridge
Native Code Development
While most Android applications are written in Java using the SDK, Google
provides a lower level development platform with their native development kit
(NDK). The NDK was first released in June 2009 and has gone through five revi-
sions, with the latest release in November 2010.

The NDK allows developers to write code in C/Cþþ and compile it directly for
the CPU. While this adds complexity to the development process, some developers
can benefit from this approach by reusing an existing code base in C/Cþþ or by
implementing certain functions that can be optimized outside the Dalvik VM. The
NDK does not allow developers to create full applications that run outside of the
Dalvik VM; instead the C/Cþþ components are packaged inside the application’s
.apk file and are called by the application within the VM.

At this time, the NDK supports the ARMv5TE and ARMv7-A CPUs, and in the
future will support Intel’s x86 CPU architecture. When a developer writes code in
one platform (e.g., Mac OS X) but compiles it for another CPU, the technique is
referred to as cross-compiling an application. The NDK greatly simplifies this
process and provides a set of libraries the developer can use.

From a forensics and security viewpoint, cross-compiling is an important
component for research and development of new techniques and exploits. While
most forensic analysts and security engineers do not need to compile code, under-
standing how the process works, and what role it plays in the process, is important.
For example, the initial Android 1.5 root exploit targeted a Linux kernel bug (CVE-
2009-2692) to gain privileges. The initial code was distributed as source code and
required cross-compiling. One significant advantage to this approach is that an
examiner can describe in exact detail how the device was exploited and, if necessary,
provide the source code.

As Android matures, expect to see additional developments in the NDK and
natively complied code.
ANDROID SECURITY MODEL
The Android platform implements security through a number of controls designed to
protect the user.

When an application is first installed, Android checks the .apk file to ensure it has
a valid digital signature to identify the developer. Unlike SSL, the digital certifi-
cation does not need to be signed by a Certificate Authority. However, the developer
must keep the key safe; otherwise someone could sign a malicious application and
distribute it as that developer. For example, if a financial institution’s digital
signature was compromised, a malicious developer could publish an update to the
banking application, which steals critical data.

After the .apk file is validated, Android checks the special file created by the
developer that specifies, among other items, what access an application needs to
the system. For example, an application may request access to the user’s contacts,
SMS messages, and the network/Internet. If this application adds functionality to the

Android security model 89
SMS system, these permissions seem reasonable. If, however, the application simply
changes your background images, then a user should question the permission and can
choose not to install the application. In practice, users quickly allow all permissions
and application requests, and thus may allow a malicious application to install.

After an application has been verified and the user granted the requested
permissions, the application can now install on the system. A key part of the Android
security model is that each application is assigned a unique Linux user and group ID
and runs in its own process and Dalvik VM. During the installation, the system
creates a specific directory on the device to store the application’s data and only
allows that application to access the data leveraging the Linux user ID and group ID
permissions. In addition, the application’s Dalvik VM is run in its own process as the
specific user ID. These key mechanisms enforce data security at the OS level as
applications do not share memory, permissions, or disk storage. Applications can
only access the memory and data within their Dalvik VM.

Of course, there are a few exceptions to this process. First, a developer can signmore
than one application with the same digital certification and specify that it can share the
same user ID, process,memory, and data storage as one of their other applications. This
situation is exceptional and is most commonly used when a developer has both a free
and a paid version. If a user upgrades to the paid version, they can leverage the data
accumulated while using the free version and thus no data are lost.

Also, most Android users have the option to allow apps to be installed from non-
Market locations and to skip the digital signature check. This option can be accessed
from the Applications menu in the device’s Settings and, when selected, displays
a warning to the user as shown in Fig. 3.24.
FIGURE 3.24

Android setting to allow apps installs from unknown sources.

90 CHAPTER 3 Android software development kit and android debug bridge
The most common situation is that users could now install apps from web
sites by directly downloading an .apk file. The install process also skips the digital
signature check. A recent AT&T phone (Motorola Backflip) removed this
option from Android upsetting many users (Android On Lockdown, n.d.).
However, a work-around using the Android SDK does exist and will be discussed
in Chapter 6.

As a result of the security architecture built into Android, forensic examiners do
not have a simple way to extract core user data from a device. Barring exploits, the
security architecture is effective in isolating and protecting data between
applications.
FORENSICS AND THE SDK
So how is the SDK important in forensics? The SDK not only provides a set of tools
and drivers enabling the analysis of Android devices but is also useful for application
profiling and other forensic research.
Connecting an Android Device to a Workstation
It is important to note how an Android device actually connects to a VM.
Android devices, to date, have a physical USB interface that allows them to
connect, share data and resources, and typically to recharge from a computer or
workstation. If you are only running a single OS, the USB device should be
detected and accessible. However, additional configuration or drivers may be
required. If you are running a VM though, you simply want the host OS to pass
the connection through to the VM. For example, if your host OS is OS X and
you are running VMWare fusion, you select the menus Virtual Machine / USB
and then Connect the device (High Android Phone in this case), as shown in
Fig. 3.25.

Similarly, when your host OS is Linux, and you are running the VM using
Oracle’s VirtualBox, you must first ensure that you are a member of the usbusers
group. So, from a terminal session, execute the following:

#create usbusers group
sudo addgroup usbusers

#Add your username to the userusers group:
sudo usermod -a -G usbusers ahoog

Next, you go into the VM’s Settings and add a USB Filter for the device, as
shown in Fig. 3.26.

Finally, you can connect the USB device as shown in Fig. 3.27.
Finally, here are the steps if you are running the VM headless (VirtualBox 3.2.10

as outlined in Chapter 1). First, you need to install VBox Additions, which will

FIGURE 3.25

Connect USB device to Ubuntu VM in VMWare Fusion.

FIGURE 3.26

Adding USB filter on Linux host running Oracle’s VirtualBox.

Forensics and the SDK 91

mailto:Image of Figure 3.25|tif

FIGURE 3.27

Connecting USB device on Linux host running Oracle’s VirtualBox.

FIGURE 3.28

Install VBox additions over on Ubuntu VM remote desktop protocol.

92 CHAPTER 3 Android software development kit and android debug bridge

Forensics and the SDK 93
enable shared folder, better video, USB support (if you downloaded/bought the
PUEL edition), and other features. From the host workstation:

wget
http://download.virtualbox.org/virtualbox/3.2.0/VBoxGuestAdditions_3.2.0.iso

VBoxManage registerimage dvd ~/VBoxGuestAdditions_3.2.0.iso

VBoxManage storageattach af-book-vm --storagectl "IDE Controller" --port 1
--device 0 \
--type dvddrive --medium ~/VBoxGuestAdditions_3.2.0.iso

The DVD should now be available on the Ubuntu VM. Remote desktop into
the VM again (see Chapter 1 for necessary steps) and double click VBOX-
ADDITIONS_3.2.0_61806 DVD on your desktop to open the DVD. Then
double click autorun.sh and select the Run option. You will be prompted
for your password after which the install will proceed. Figure 3.28 illustrates
this step.

Now that you have VBox Additions installed, you can connect USB devices to
your guest OS. But first, you must shutdown the VM. Then, follow these steps:
#create usbusers group
sudo addgroup usbusers

#Add your username to the userusers group:
sudo usermod -a -G usbusers ahoog

#Determine attached USB device info
VBoxManage list usbhost

Oracle VM VirtualBox Command Line Management Interface Version 3.2.8
(C) 2005-2010 Oracle Corporation
All rights reserved.

Host USB Devices:

UUID: b1c23004-db71-49ec-b5cb-348e2038b409
VendorId: 0x0781 (0781)
ProductId: 0x554f (554F)
Revision: 2.0 (0200)
Manufacturer: Best Buy
Product: Geek Squad
SerialNumber: 153563119AC07CAD
Address: sysfs:/sys/devices/pci0000:00/0000:00:1d.0/usb2/2-1/
2-1.5//device:/dev/bus/usb/002/004
Current State: Busy

#Create the USB filter to connect the device
VBoxManage usbfilter add 0 --target af-book-vm --vendorid 0781
--productid 554F \
--name "Geek Squad" --active yes

#Ensure USB is enabled
VBoxManage modifyvm Win2003SvrR2 --usb on

#Power on the guest (again recommended from inside screen)
VBoxHeadless -startvm af-book-vm -p 3392 &

mailto:Image of Figure 3.28|tif

94 CHAPTER 3 Android software development kit and android debug bridge
Using this example, the USB device should now be passed through to the VM.
USB Interfaces
While you connect an Android device to your workstation or VM through a single
USB port, the hardware and Android itself generally expose more than one virtual
USB interface. For example, when you connect the HTC Incredible over USB, you
are presented with a menu of four options:

1. Charge onlydCharge phone over USB
2. HTC SyncdSync contacts and calendar
3. Disk drivedMount as disk drive
4. Mobile Broadband ConnectdSmart phone’s mobile networks with PC

The default selection, shown in Fig. 3.29, is the Charge only option. Both HTC
Sync andMobile Broadband Connect options are custom options and programs HTC
and, at times, the wireless carrier support for the device.

CD-ROM Interface
The disk drive option is more universally used. This option connects the Android
device to the workstation as a disk drive. This is one key area where the device
exposes multiple USB devices to the workstation. When you first plug HTC
FIGURE 3.29

HTC Incredible connect to PC options.

mailto:Image of Figure 3.29|tif

Forensics and the SDK 95
Incredible into the computer, it actually registers three separate types of drives: one
CD-ROM and two USB mass storage devices. The following listing is taken from
the Linux workstation’s kernel messages with the dmesg command:

[210.336135] usb 1-1: new high speed USB device using ehci_hcd and address 3
[210.646221] scsi4 : usb-storage 1-1:1.0
[211.649296] scsi 4:0:0:0: Direct-Access HTC Android Phone 0100
PQ: 0 ANSI: 2
[211.652056] scsi 4:0:0:1: Direct-Access HTC Android Phone 0100
PQ: 0 ANSI: 2
[211.654291] scsi 4:0:0:2: CD-ROM HTC Android Phone 0100
PQ: 0 ANSI: 2
[211.657317] sd 4:0:0:0: Attached scsi generic sg2 type 0
[211.658364] sd 4:0:0:1: Attached scsi generic sg3 type 0
[211.661956] sr1: scsi3-mmc drive: 0x/0x caddy
[211.662569] sr 4:0:0:2: Attached scsi CD-ROM sr1
[211.662755] sr 4:0:0:2: Attached scsi generic sg4 type 5
[211.678409] sd 4:0:0:0: [sdb] Attached SCSI removable disk
[211.686339] sd 4:0:0:1: [sdc] Attached SCSI removable disk

As you can see, two Direct-Access drives are found at 4:0:0:0 and 4:0:0:1, and
a CD-ROM is found at 4:0:0:2. The CD-ROM contains custom programs and drivers
that HTC bundles with the device to enable the syncing and broadband connect
features. Obviously, there is no physical CD-ROM. However, a portion of the
device’s storage is dedicated to the CD-ROM and is formatted as an ISO9660. The
host OS can then mount the drive as a CD-ROM and, in Windows, would potentially
even support the auto-run feature. Leveraging TSK’s fsstat program, we can see
more details about the partition:
ahoog@ubuntu:~$ sudo fsstat /dev/sr2

=== PRIMARY VOLUME DESCRIPTOR 1 ===
FILE SYSTEM INFORMATION
--
File System Type: ISO9660
Volume Name: Verizon Mobile
Volume Set Size: 1
Volume Set Sequence: 1
Publisher: Publisher
Data Preparer: Publisher
Recording Application: Application
Copyright:

METADATA INFORMATION
--
Path Table Location: 23-23
Inode Range: 0 - 9
Root Directory Block: 26

CONTENT INFORMATION
--
Sector Size: 2048
Block Size: 2048
Total Sector Range: 0 - 2383
Total Block Range: 0 - 2383

mailto:Image of Figure 3.29|tif

=== SUPPLEMENTARY VOLUME DESCRIPTOR 1 ===
FILE SYSTEM INFORMATION
--
File System Type: ISO9660
Volume Name:
Volume Set Size: 1
Volume Set Sequence: 1
Publisher:
Data Preparer: Publisher
Recording Application:
Copyright:

METADATA INFORMATION
--
Path Table Location: 25-25
Root Directory Block: 29
Joliet Name Encoding: UCS-2 Level 1

CONTENT INFORMATION
--
Sector Size: 2048
Block Size: 2048
Total Sector Range: 0 - 2383
Total Block Range: 0 - 2383

96 CHAPTER 3 Android software development kit and android debug bridge
As you can tell from the Volume Name, the CD-ROM contains software
provided by Verizon to use the additional features of the device.

SD Cards (Removable and Virtual)
Far more important from a forensic standpoint are the SD card(s) available through
the device. Placing user’s files, especially larger files such as multimedia, is a key
strategy in Android. Most Android devices have a removable media slot, which
accepts a micro-SD card. The core application data remain on the device (under
/data/data), but the files that are likely important in an investigation may also exist on
the SD card.

In the previous section, when an Android device was connected via USB, the
Linux workstation’s kernel messages displayed the various USB devices available.
The two SCSI removable disks that were listed, sdb and sdc, represent the SD cards
on an HTC Incredible. If you choose the “Mount as disk drive” option under Connect
to PC, the following additional messages show up on the kernel messages:
[325.669335] sd 4:0:0:1: [sdc] 3911680 512-byte logical blocks: (2.00 GB/
1.86 GiB)
[325.672039] sd 4:0:0:1: [sdc] Assuming drive cache: write through
[325.678282] sd 4:0:0:1: [sdc] Assuming drive cache: write through
[325.678294] sdc: sdc1
[327.671951] sd 4:0:0:0: [sdb] 13844464 512-byte logical blocks: (7.08 GB/
6.60 GiB)
[327.674074] sd 4:0:0:0: [sdb] Assuming drive cache: write through
[327.679387] sd 4:0:0:0: [sdb] Assuming drive cache: write through
[327.679395] sdb:

mailto:Image of Figure 3.29|tif
mailto:Image of Figure 3.29|tif

Forensics and the SDK 97
You will now see additional information about the SD card. The drive sdc has one
partition, sdc1. And its size is 2 GB. We can see additional partition information by
running TSK’s mmls:
ahoog@ubuntu:~$ sudo mmls /dev/sdc
DOS Partition Table
Offset Sector: 0
Units are in 512-byte sectors

 Slot Start End Length Description
00: Meta 0000000000 0000000000 0000000001 Primary Table (#0)
01: ----- 0000000000 0000000128 0000000129 Unallocated
02: 00:00 0000000129 0003911679 0003911551 DOS FAT16 (0x06)
As you will see, the SD card is formatted with a FAT16 file system, but often you
will find FAT32 or you might encounter multiple file systems like FAT32 and native
Linux file system ext3 and ext4.

More recently, devices also have an emulated or virtual SD card feature that uses
the device’s NAND flash to create a nonremovable SD card. This more closely
models the iPhone where the user data partition is located directly on the NAND
flash and cannot be removed. In the previous example, the sdb device provides
access to the emulated SD card. Unlike the physical SD card, sdc does not have
a partition table and the file system simply starts immediately. To see important
information, run TSK’s fsstat:

ahoog@ubuntu:~$ sudo fsstat /dev/sdb
FILE SYSTEM INFORMATION
--
File System Type: FAT32

OEM Name: BSD 4.4
Volume ID: 0xc7f80810
Volume Label (Boot Sector): NO NAME
Volume Label (Root Directory):
File System Type Label: FAT32
Next Free Sector (FS Info): 562580
Free Sector Count (FS Info): 13376448

Sectors before file system: 0

File System Layout (in sectors)
Total Range: 0 - 13844463
* Reserved: 0 - 31
** Boot Sector: 0
** FS Info Sector: 1
** Backup Boot Sector: 2
* FAT 0: 32 - 1721
* FAT 1: 1722 - 3411
* Data Area: 3412 - 13844463
** Cluster Area: 3412 - 13844435
*** Root Directory: 3412 - 3475
** Non-clustered: 13844436 - 13844463

mailto:Image of Figure 3.29|tif
mailto:Image of Figure 3.29|tif

98 CHAPTER 3 Android software development kit and android debug bridge
METADATA INFORMATION
--
Range: 2 - 221456838
Root Directory: 2

CONTENT INFORMATION
--
Sector Size: 512
Cluster Size: 32768
Total Cluster Range: 2 - 216267

FAT CONTENTS (in sectors)
--
3412-3475 (64) -> EOF
3476-3539 (64) -> EOF
3540-5267 (1728) -> EOF
5268-7379 (2112) -> EOF
<snip>

In this particular case, the file system is in fact FAT32 and you will notice that
while the volume has no Label, the OEM Name is set BSD 4.4.
WARNING

Auto-mounting USB devices
In the Ubuntu VM configuration section of Chapter 1, the auto-mount feature is disabled to
prevent the OS from automatically detecting and mounting USB mass storage devices.
Forensic analysts should take extreme precautions to prevent this from happening on a device
being investigated. Beyond disabling auto-mount, devices should generally be connected
through a USB write blocker.

In Ubuntu, if you do not have auto-mounting of USB devices disabled
(which you should in nearly all situations), the SD cards are automatically
mounted for you. If the device is attached to a hardware write blocker, mounted
read-only, or in a situation where write blocking is not needed (e.g., research
and development), you can run the df command in Linux to see where they were
mounted:

ahoog@ubuntu:~$ df -h
Filesystem Size Used Avail Use% Mounted on
/dev/sda1 19G 3.4G 15G 19% /
none 369M 228K 369M 1% /dev
none 375M 252K 375M 1% /dev/shm
none 375M 100K 375M 1% /var/run
none 375M 0 375M 0% /var/lock
.host:/ 931G 663G 269G 72% /mnt/hgfs
/dev/sdc1 1.9G 200M 1.7G 11% /media/E0FD-1813 (physical
 2GB SD Card)
/dev/sdb 6.6G 227M 6.4G 4% /media/C7F8-0810 (emmulated SD Card)

The physical SD card was mounted on /media/E0FD-1813 and the emulated SD
card on /media/C7F8-0810.

mailto:Image of Figure 3.29|tif
mailto:Image of Figure 3.29|tif

Forensics and the SDK 99
On the Android device itself, the two SD cards are mounted as follows:

/dev/block/vold/179:9 /mnt/sdcard vfat
rw,dirsync,nosuid,nodev,noexec,relatime,uid=1000,gid=1015,fmask=0702,dmask=0702,
allow_utime=0020,codepage=cp437,iocharset=iso8859-1,shortname=mixed,utf8,
errors=remount-ro 0 0
/dev/block/vold/179:3 /mnt/emmc vfat
rw,dirsync,nosuid,nodev,noexec,relatime,uid=1000,gid=1015,fmask=0702,dmask=0702,
allow_utime=0020,codepage=cp437,iocharset=iso8859-1,shortname=mixed,utf8,
errors=remount-ro 0 0

USB Debugging
One final, and very important, USB interface exposes the Android Debug Bridge
(ADB) that allows a developer, forensic analyst, or security engineer to communi-
cate and control an Android device over USB. By default, an AVD (running in the
emulator) will have USB debugging enabled. However, non-emulator devices must
explicitly enable USB debugging. To enable, select Applications / Development
from the devices Setting’s, as shown in Fig. 3.30. Finally, check USB debugging.

Once set, the device will run the adb daemon (adbd) in the background and wait
for a USB connection. The daemon will run under the non-privileged shell user
account to limit the access it has to data. AVDs and physical devices that have root
access enabled will run adbd as root providing complete access to the system.
Additional details on this topic will be covered in Chapter 6.

In newer versions of Android, anytime a device with USB debugging enabled is
connected over USB, it will display a security warning as seen in Fig. 3.31.
FIGURE 3.30

Enable USB debugging.

mailto:Image of Figure 3.29|tif
mailto:Image of Figure 3.30|tif

FIGURE 3.31

USB debugging warning.

100 CHAPTER 3 Android software development kit and android debug bridge
For every current logical Android forensic tool, USB debugging must be
enabled. While this is trivial to achieve if the device is unlocked, it is far more
difficult if the device has a pass code. There are some techniques that can circumvent
the pass code, discussed in Chapter 6. However, they do not work on every platform.
Introduction to Android Debug Bridge
Throughout the rest of this book, we will leverage adb extensively, so covering the
basics now is important. There are three primary components involved when
utilizing adb:

1. The adbd running on the Android device
2. The adbd running on your workstation
3. The adb client program running on your workstation

As previously covered, when you enable USB debugging on an Android device,
the daemon will run and listen for a connection. Communication between the
device’s adbd and your workstation’s adbd takes place over the virtual network
running on top of the USB connection. The daemons communicate over their local
host on ports 5555 through 5585. When the workstation’s adbd detects a new
emulator or device, it creates two sequential port connections. The even port
communicates with the device’s console while the odd port is for adb connections.
The local adb client program uses port 5037 to communicate with the local adbd.

Forensics and the SDK 101
The most basic adb command you can issue is the adb devices command, which
provides a list of connected devices.

ahoog@ubuntu:~$ adb devices
List of devices attached
HT08XHJ00657 device

Another important command provides the ability to kill your local adb service.
To achieve this, type the following:

ahoog@ubuntu:~$ adb kill-server
ahoog@ubuntu:~$ adb devices
* daemon not running. starting it now on port 5037 *
* daemon started successfully *
List of devices attached
HT08XHJ00657 device

As you can see, if the adbd on the workstation is not running, it will be auto-
matically started. On Ubuntu, if you ever receive the following response:

ahoog@ubuntu:~$ adb devices
List of devices attached
???????????? no permissions

it is likely that the connected Android device has a new vendor ID which must be
identified (sudo lsusb -v) and added to the udev rule as discussed in the “SDK
install” section. In Microsoft Windows, if the Android device is not recognized you
will be alerted and you must install the proper USB drivers from Google or the
manufacturer.

One powerful adb command all analysts and engineers should know is “adb
shell,” which allows you to open a shell on the Android device and interact with the
system. This is an important feature for anyone exploring Android. For example,
start an AVD and follow these steps to view the application data directories on the
device:
ahoog@ubuntu:~$ adb shell
cd /data/data
ls
com.android.sdksetup
com.android.calculator2
com.android.packageinstaller
com.android.providers.userdictionary
com.android.development
com.android.soundrecorder
com.android.providers.drm
com.android.spare_parts
com.android.providers.downloads.ui
com.android.protips
com.android.fallback
com.android.browser
com.android.providers.applications
com.android.netspeed
com.android.wallpaper.livepicker
android.tts
com.android.htmlviewer

mailto:Image of Figure 3.31|tif
mailto:Image of Figure 3.31|tif
mailto:Image of Figure 3.31|tif

102 CHAPTER 3 Android software development kit and android debug bridge
com.android.music
com.android.certinstaller
com.android.inputmethod.pinyin
com.android.providers.subscribedfeeds
com.android.inputmethod.latin
com.android.gallery
com.android.systemui
com.android.contacts
com.android.camera
com.android.term
com.android.speechrecorder
com.android.server.vpn
com.android.quicksearchbox
com.android.defcontainer
com.svox.pico
com.android.customlocale
com.android.providers.settings
com.android.settings
com.android.providers.contacts
jp.co.omronsoft.openwnn
com.android.phone
com.android.launcher
com.android.providers.telephony
com.android.mms
com.android.providers.media
com.android.providers.downloads
com.android.deskclock
com.android.email

The functionality of adb has increased with each new SDK and is a very pow-
erful tool. Some of the features will be explored in detail in Chapter 6, including:

1. Running shell commands on the device
2. Installing applications using command line
3. Forwarding ports between your workstation and the device
4. Copying files and folders recursively to and from the device
5. Viewing device log files

Full documentation for the adb command can be found on the Android
Developer web site http://developer.android.com/guide/developing/tools/adb.html#
commandsummary.

Testing various commands using an Android emulator is an excellent way to
understand the tool prior to leveraging it in an investigation.
SUMMARY

The Android SDK not only provides deep insight into the Android platform but
also provides powerful tools to investigate a device, from both a forensic and
security viewpoint. Once the SDK is installed on a forensic workstation, the
examiner has the ability to interact with an Android device connected via USB,
provided the USB debugging feature is enabled. Not only is it possible to query
information from the device but apps can also be installed, run, and ultimately

mailto:Image of Figure 3.31|tif
http://developer.android.com/guide/developing/tools/adb.html%23commandsummary
http://developer.android.com/guide/developing/tools/adb.html%23commandsummary

Forensics and the SDK 103
data extracted from the device. The Android SDK is an important tool used for
forensic and security analysis.
References
Android timeline. (n.d.). Android tutorials, news, views and forums, Android Academy.

Retrieved March 12, 2011, from http://www.androidacademy.com/1-android-timeline.
Platform Versions, (n.d.). Android developers. Retrieved March 12, 2011, from http://

developer.android.com/resources/dashboard/platform-versions.html.
comScore Reports November 2010 U.S. Mobile Subscriber Market SharedcomScore,

Inc. (n.d.). comScore, Inc.dMeasuring the digital world. Retrieved March 12, 2011,
from http://www.comscore.com/Press_Events/Press_Releases/2011/1/comScore_Reports_
November_2010_.

Android 1.5 Platform. (n.d.). Android developers. Retrieved March 12, 2011, from http://
developer.android.com/sdk/android-1.5.html.

Android 1.6 Platform. (n.d.). Android developers. Retrieved March 12, 2011, from http://
developer.android.com/sdk/android-1.6.html.

Android 2.1 Platform. (n.d.). Android developers. Retrieved March 12, 2011, from http://
developer.android.com/sdk/android-2.1.html.

SDK Archives. (n.d.). Android developers. Retrieved March 13, 2011, from http://developer.
android.com/sdk/older_releases.html.

smali-Project Hosting on Google Code. (n.d.). Google code. Retrieved March 13, 2011, from
http://code.google.com/p/smali/.

Android On Lockdown: AT&T Removes Best Parts of Android from Backflip (n.d.).
AndroidGuys. The trusted source for Android news and opinion, Est. 2007. Retrieved
March 13, 2011, from http://www.androidguys.com/2010/03/08/android-lockdown-att-
removes-parts-android-backflip/.

http://www.androidacademy.com/1-android-timeline
http://developer.android.com/resources/dashboard/platform-versions.html
http://developer.android.com/resources/dashboard/platform-versions.html
http://www.comscore.com/Press_Events/Press_Releases/2011/1/comScore_Reports_November_2010_
http://www.comscore.com/Press_Events/Press_Releases/2011/1/comScore_Reports_November_2010_
http://developer.android.com/sdk/android-1.5.html
http://developer.android.com/sdk/android-1.5.html
http://developer.android.com/sdk/android-1.6.html
http://developer.android.com/sdk/android-1.6.html
http://developer.android.com/sdk/android-2.1.html
http://developer.android.com/sdk/android-2.1.html
http://developer.android.com/sdk/older_releases.html
http://developer.android.com/sdk/older_releases.html
http://code.google.com/p/smali/
http://www.androidguys.com/2010/03/08/android-lockdown-att-removes-parts-android-backflip/
http://www.androidguys.com/2010/03/08/android-lockdown-att-removes-parts-android-backflip/

Android file systems and data
structures
CHAPTER
4

INFORMATION IN THIS CHAPTER

� Data in the shell

� Type of memory

� File systems

� Mounted file systems and directory structures
INTRODUCTION
While the underlying hardware and software powering Android devices is fasci-
nating, the primary focus of forensic analysts and security engineers is to acquire,
analyze, and understand data stored on a device. Like other topics discussed, there
are many nuances to this that are important to understand for effective analysis
including what types of data are stored, where they are stored, how they are stored,
and characteristics of the physical mediums on which they are stored. All of these
factors play a major role in what data can be recovered and how they can be
analyzed.
DATA IN THE SHELL
Forensic analysts are primarily concerned with data artifacts that can be recovered
from the devices they investigate. Android is a combination of both well-known
artifacts, such as those found in Linux, and entirely new ones, such as the Dalvik VM
and the YAFFS2 file system. Adding to the complexity are the varying architectures
that different manufacturers embrace.

While no single book or examiner could possibly cover this topic
exhaustively, there are certain fundamental concepts common to Android
devices. File systems, file, and other artifacts are at the core of what forensic
analysts must understand about Android to maximize the effectiveness of their
investigations.
Android Forensics. DOI: 10.1016/B978-1-59749-651-3.10004-4
Copyright � 2011 Elsevier Inc. All rights reserved.

105

http://dx.doi.org/10.1016/B978-1-59749-651-3.10004-4

106 CHAPTER 4 Android file systems and data structures
What Data are Stored
Android devices store an enormous amount of data, typically combining both
personal and work data. Apps are the primary source of these data, and there are
a number of sources for apps including:

� Apps that ship with Android
� Apps installed by the manufacturer
� Apps installed by the wireless carrier
� Additional Google/Android apps
� Apps installed by the user, typically from the Android Market

Chapter 7, Android Application and Forensic Analysis, will examine a number
of these apps in detail, although it is certainly beyond the scope of this book to
cover all possibilities. A sample of data found on Android devices includes the
following:

� Text messages (SMS/MMS)
� Contacts
� Call logs
� E-mail messages (Gmail, Yahoo, Exchange)
� Instant Messenger/Chat
� GPS coordinates
� Photos/Videos
� Web history
� Search history
� Driving directions
� Facebook, Twitter, and other social media clients
� Files stored on the device
� Music collections
� Calendar appointments
� Financial information
� Shopping history
� File sharing
App Data Storage Directory Structure
Android applications primarily store data in two locations, internal and external
storage, both of which will be covered in more detail later in this chapter. However, it
is helpful to have a high-level understanding of the data storage directory structure.

In the external data storage areas (the SD card and emulated SD cards), appli-
cations can store data in any location they wish. However, internal data storage is
controlled by the Android APIs. When an application is installed (through either the
market place or in the build shipped to the consumer), an internal data storage is
saved in a subdirectory of /data/data/ named after the package name. For example,
the default Android browser has a package name of com.android.browser and, as

Table 4.1 Common /data/data/<packageName> Subdirectories

shared_prefs Directory Storing Shared Preferences in XML Format

lib Custom library files an application requires

files Files the developer saves to internal storage

cache Files cached by the application, often cache files from the web
browser or other apps that use the WebKit engine

databases SQLite databases and journal files

Data in the shell 107
such, the data files are stored in /data/data/com.android.browser. While applications
are not required to store data files, most do.

Inside the applications /data/data subdirectory, there are a number of standard
directories found in many applications as well as directories that developers control.
The most common standard subdirectories are listed in Table 4.1.

Table 4.1 only presents the most common subdirectories found in an applica-
tion’s /data/data file. As we examine data more closely throughout this book, we will
catalog many additional folders and data files.
How Data are Stored
Android provides developers with five methods for storing data to a device. Forensic
examiners can uncover data in at least four of the five formats. Therefore, it is
important to understand each in detail.

Persistent data are stored to either the NAND flash, the SD card, or the network.
Specifically, the five methods are:

1. Shared preferences
2. Internal storage
3. External storage
4. SQLite
5. Network

Beyond the data that app developers store, the Linux kernel and Android stack
provide information through logs, debugging, and other standard information
services.
Shared Preferences
Shared preferences allow a developer to store key-value pairs of primitive data types
in a lightweight XML format. Primitive data types that can be stored in a preferences
file include the following:

1. boolean: true or false
2. float: single-precision 32-bit IEEE 754 floating point
3. int: 32-bit signed two’s complement integer

108 CHAPTER 4 Android file systems and data structures
4. long: 64-bit signed two’s complement integer
5. strings: string value, typically as a UTF-8

With these basic types, developers can create and save simple values that power their
application.

Shared preferences files are typically stored in an application’s data directory in
the shared_pref folder and end with .xml. On our reference HTC Incredible, the
Android phone shared preferences directory are five XML files:
ahoog@ubuntu:~/data/data/com.android.phone/shared_prefs$ ls -l
total 20
-rw-r----- 1 ahoog ahoog 104 2011-01-23 18:05 cdma_msg_id.xml
-rw-r----- 1 ahoog ahoog 214 2011-01-20 09:34 com.android.phone_preferences.xml
-rw-r----- 1 ahoog ahoog 126 1980-01-06 09:42 _has_set_default_values.xml
-rw-r----- 1 ahoog ahoog 152 2010-09-10 09:46 htc_cdma_settings.xml
-rw-r----- 1 ahoog ahoog 102 2010-09-10 09:48 updateAreaCode.xml
The com.android.phone_preferences.xml preferences file has examples of int,
boolean, and string preferences:

ahoog@ubuntu:~/data/data/com.android.phone/shared_prefs$ cat
com.android.phone_preferences.xml
<?xml version='1.0' encoding='utf-8' standalone='yes' ?>
<map>
<int name="vm_count_key_cdma" value="0" />
<boolean name="pref_key_save_contact" value="true" />
<string name="vm_number_key_cdma">*86</string>
</map>

As you can tell, the XML file describes the string encoding type at the start of the
file, UTF-8 in this case. There are three preferences that save various settings and
characteristics. Perhaps most interesting from a forensics standpoint is the
updateAreaCode.xml:

ahoog@ubuntu:~/data/data/com.android.phone/shared_prefs$ cat updateAreaCode.xml
<?xml version='1.0' encoding='utf-8' standalone='yes' ?>
<map>
<string name="MDN">312</string>
</map>

The mobile directory number (MDN) is queried and the area code for the device
is stored in this file, presumably to allow a seven-digit dialing option in areas sup-
porting that feature.

Since many applications take advantage of the lightweight Shared Preferences
method for storing key-value pairs, it can be a rich source of forensic data. This is
especially true when examiners can recover older or deleted versions of the XML
preferences file.
Files on Internal Storage
Files allow developers to store more complicated data structures and are saved in
several places on the file internal storage. The files are stored in the application’s
/data/data subdirectory and the developer has control over the file type, name, and

mailto:Image of Figure 4.2|tif

Data in the shell 109
location. By default, the files can only be read by the application and even the device
owner is prevented from viewing the files unless they have root access. The
developer can override the security settings to allow other processes to read and even
update the file.
TIP

Identifying custom files
The best way to determine which files in an application’s subdirectory fall into this category is
by a process of elimination. Basically, any file in the application’s /data/data/ subdirectory
which is not in the shared_prefs, lib, cache, or databases subdirectories is a file the developer
created and controls.
Let’s examine com.google.android.apps.maps that provides a good example of
files saved on internal storage:

ahoog@ubuntu:~/data/data/com.google.android.apps.maps$ ls -l
total 24
drwxr-x--x 5 ahoog ahoog 4096 2011-01-18 03:42 app_
drwxr-x--x 3 ahoog ahoog 4096 2010-09-15 10:59 cache
drwxr-x--x 2 ahoog ahoog 4096 2011-01-23 10:30 databases
drwxr-x--x 2 ahoog ahoog 4096 2011-01-23 20:55 files
drwxr-xr-x 2 ahoog ahoog 4096 1980-01-06 09:41 lib
drwxr-x--x 2 ahoog ahoog 4096 2011-01-24 04:13 shared_prefs

The application uses most of the storage mechanisms available and stores files on
internal storage in both the app_ and files directory. The app_ directory has several
subdirectories and a cache_r.m file which is not of a known file format:

ahoog@ubuntu:~/data/data/com.google.android.apps.maps$ tree app_/
app_/
├── cache
│ └── cache_r.m
├── debug
└── testdata

The files directory stores many data files needed by the application to display and
update Google Maps:

ahoog@ubuntu:~/data/data/com.google.android.apps.maps$ tree files
files
├── DA_DirOpt_en_US
├── DA_LayerInfo
├── DATA_LATITUDE_WIDGET_MODEL
├── DATA_LAYER_10
├── DATA_LAYER_2
├── DATA_LAYER_20
├── DATA_LAYER_21
├── DATA_LAYER_24
├── DATA_LAYER_25
├── DATA_LAYER_3
├── DATA_LAYER_5
├── DATA_LAYER_6
├── DATA_LAYER_7

├── DATA_LAYER_8
├── DATA_location_history
├── DATA_OptionDefinitionBlock_en
├── DATA_Preferences
├── DATA_PROTO_SAVED_CATEGORY_TREE_DB
├── DATA_PROTO_SAVED_LAYER_STATE
├── DATA_PROTO_SAVED_RECENT_LAYERS
├── DATA_RemoteStringsBlock_en
├── DATA_Restrictions
├── DATA_Restrictions_lock
├── DATA_SAVED_BGFS_3
├── DATA_SAVED_BGFS_EXTRA_3
├── DATA_SAVED_BGSF_
├── DATA_SAVED_REMOTE_ICONS_DATA_BLOCK
├── DATA_ServerControlledParametersManager.data
├── DATA_STARRING
├── DATA_SYNC_DATA
├── DATA_SYNC_DATA_LOCAL
├── DATA_TILE_HISTORY
├── DATA_Tiles
├── DATA_Tiles_1
├── DATA_Tiles_2
├── DATA_Tiles_3
├── event_store_driveabout
├── event_store_LocationFriendService
├── NavigationParameters.data
├── NavZoomTables.data
├── nlp_GlsPlatformKey
├── nlp_state
└── ZoomTables.data

110 CHAPTER 4 Android file systems and data structures
The files clearly indicate data that may be of interest to a forensic analyst or
security engineer. A more thorough data analysis of applications and their data
stored will be covered in Chapter 7, Android Application and Forensic Analysis.

Files on External Storage
While files stored on the internal device’s storage have strict security and location
parameters, files on the various external storage devices have far fewer constraints.

First, one important motivation (beyond cost) for using a removable SD card is
that the data could be used on other devices, presumably upgraded Android devices.
If a consumer purchased a new Android device, inserted their previous SD card
containing all of his or her family pictures and videos and found they were unable to
access them, they would be quite upset.

In order to facilitate mounting the SD card on desktop computers to share files,
SD cards are generally formatted with Microsoft’s FAT32 files system. While the file
system is widely supported, it lacks the fine grained security mechanism built into
file systems such as ext3, ext4, yaffs2, hfsplus, and more. Thus, by default, the files
cannot enforce permissions.

For example, the com.google.android.apps.maps application referenced previ-
ously also stores data on the SD card in the Android/data subdirectory. The
following is a listing of the files and directories from the reference HTC Incredible
SD card, mounted at /mnt/sdcard:

Data in the shell 111
ahoog@ubuntu:~/htc-inc/mnt/sdcard/Android/data$ tree com.google.android.apps.maps/
com.google.android.apps.maps/
├── cache
│ ├── cache_its.0
│ ├── cache_its.m
│ ├── cache_its_ter.m
│ ├── cache_r.0
│ ├── cache_r.1
│ ├── cache_rgts.0
│ ├── cache_rgts.m
│ ├── cache_r.m
│ ├── cache_vts.0A
│ ├── cache_vts.1
│ ├── cache_vts_GMM.0
│ ├── cache_vts_GMM.1
│ ├── cache_vts_GMM.m
│ ├── cache_vts.m
│ └── cache_vts_tran_GMM.m
├── debug
└── testdata

Similarly, the HTC Incredible ships with an emulated SD card that is stored
directly on the NAND flash. The emulated SD card is mounted at /mnt/emmc. The
following is a listing of a subdirectory that stores album JFIF thumbnail files:

ahoog@ubuntu:~/htc-inc/mnt/emmc$ tree Android/data/com.android.providers.media/
└── albumthumbs
 ├── 1283015214003
 ├── 1283015215018
 ├── 1283015215425
 ├── 1283015215861
 ├── 1283015216304
 └── 1283015216711

As you can tell, developers have great control over the name, format, and
location of files on the external and emulated SD cards.

SQLite
Another NAND/SD card-based storage that developers leverage is a specific type of
filedan SQLite database. Databases are used for structured data storage and SQLite
is a popular database format appearing in many mobile systems as well as traditional
operating systems.

SQLite is popular for many reasons. Notably the entire code base is of high
quality, open source, and released to the public domain. The file format and the
program itself are very compact and pack significant functionality in less than a few
hundred kilobytes. Unlike more traditional relational database management systems
(RDBMS), such as Oracle, MySQL, and Microsoft’s SQL Server, with SQLite the
entire database is contained in a single cross-platform file.

The Android SDK provides dedicated APIs that allow developers to use SQLite
databases in their applications. The SQLite files are generally stored on the internal
storage under /data/data/<packageName>/databases. However, there are no restric-
tions on creating databases elsewhere.

112 CHAPTER 4 Android file systems and data structures
SQLite databases are a rich source of forensic data. The built-in Android
browser, based on the WebKit Open Source Project (http://webkit.org/), provides
a great example. In our referenced HTC Incredible, there were 28 SQLite databases
located in subdirectories of /data/data/com.android.webkit. In this instance, the five
subdirectories were as follows:

� app_icons: 1 database of web page icons
� app_cache: 1 database containing web application data cache
� app_geolocation: 2 databases relating to GPS position and permissions
� app_databases: 21 databases providing local database storage for supporting web sites
� databases: 3 databases for the browser and browser cache

There is very high potential of recovering forensically valuable data from these files.
Network
The final data storage mechanism available to developers is the network, a key
benefit of a device designed to be network aware. Initially, very few applications
took advantage of the network as a storage option. However, as the SDK, apps, and
devices mature, the network storage option is being leveraged more.

The Android Developer web site provides very few details for those interested in
network storage. Their entire documentation is a mere two sentences long (Data
storage, n.d.).

You can use the network (when it is available) to store and retrieve data on your own
web-based services. To do network operations, use classes in the following packages:

� java.net.)

� android.net.)

The packages referenced in the documentation essentially provide developers
with the low-level APIs needed to interact with the network, web servers, and more.
Apps that leverage the network require more custom coding and, while all of the
forensically interesting data may not be stored on the device, often important
configuration and database files are recoverable.

For example (and as a sneak peak to Chapter 7, Android Application and Forensic
Analysis), Dropbox is a popular file sharing web site which has mobile apps for
Android, Blackberry, and iOS devices. Their current Android application (version
1.0.3.0) has been downloaded from the Android Market over 250,000 times and has
over 35,000 user ratings, most quite high. After the app is installed, you can find the
application folder at /data/data/com.dropbox.android with four standard directories:
ahoog@ubuntu:~/htc-inc/data/data$ tree com.dropbox.android/
com.dropbox.android/
├── databases
│ └── db.db
├── files
│ └── log.txt
├── lib
└── shared_prefs
 └── DropboxAccountPrefs.xml

http://webkit.org/

Data in the shell 113
The log.txt is a verbose log of activity and a few lines are provided for reference:

ahoog@ubuntu:~/com.dropbox.android$ cat ./files/log.txt
5 1296055108427 com.dropbox.android.provider.DatabaseHelper Creating new Dropbox
database.
4 1296055108459 com.dropbox.android.DropboxApplication Not authenticated, so
authenticating
4 1296055108466 com.dropbox.android.DropboxApplication No stored login token.
4 1296055108702 com.dropbox.android.DropboxApplication Not authenticated, so
authenticating
4 1296055108704 com.dropbox.android.DropboxApplication No stored login token.
4 1296055108704 com.dropbox.android.activity.SimpleDropboxBrowser Didn't
authenticate, redirecting to login
4 1296055108713 com.dropbox.android.DropboxApplication Not authenticated, so
authenticating
4 1296055108714 com.dropbox.android.DropboxApplication No stored login token.
4 1296055134550 com.dropbox.android.DropboxApplication Authenticating username:
book@viaforensics.com
4 1296055136507 com.dropbox.android.DropboxApplication Successfully
authenticated
6 1296055137501 com.dropbox.android.activity.LoginActivity Dismissed nonexistent
dialog box
4 1296055137525 com.dropbox.android.activity.LoginOrNewAcctActivity Successful
account login
4 1296055137549 com.dropbox.android.activity.delegate.MenuDelegate Successful
login
4 1296055137735 com.dropbox.android.activity.SimpleDropboxBrowser Query is:
content://com.dropbox.android.Dropbox/metadata/
6 1296055137742 com.dropbox.android.provider.QueryStatus Querying with query
id: DB2
4 1296055137765 com.dropbox.android.activity.SimpleDropboxBrowser Browsing
URI: content://com.dropbox.android.Dropbox/metadata/
4 1296055138208 com.dropbox.android.provider.ProviderDirSyncThread Directory
changed, going through line-by-line:
content://com.dropbox.android.Dropbox/metadata/
4 1296055161450 com.dropbox.android.activity.delegate.MenuDelegate Importing
Picture from Gallery
6 1296055170307 com.dropbox.android.provider.DropboxProvider Adding new file
(from import, probably): content://media/external/images/media/5
4 1296055170329 com.dropbox.android.taskqueue.TaskQueue Added task to queue:
content://media/external/images/media/5~/
4 1296055170333 com.dropbox.android.taskqueue.TaskQueue Starting up task queue
4 1296055170333 com.dropbox.android.taskqueue.UploadTask Uploading file from
URI: content://media/external/images/media/5
4 1296055170333 com.dropbox.android.taskqueue.DbTaskQueue Task
content://media/external/images/media/5~/ adding to task DB
6 1296055170351 com.dropbox.android.service.ServiceBinderDelegate Unbound
service!
4 1296055170352 com.dropbox.android.taskqueue.UploadTask Uploading file:
/mnt/sdcard/forensics/20110111.1618/387.jpg to / as 387.jpg
4 1296055170367 com.dropbox.android.activity.SimpleDropboxBrowser Browsing URI:
content://com.dropbox.android.Dropbox/metadata/
4 1296055170471 com.dropbox.android.service.DropboxReceiver Connectivity action:
mobile CDMA - EvDo rev. A 2GVoiceCallEnded
4 1296055170471 com.dropbox.android.service.DropboxReceiver Connectivity change!
true
4 1296055170472 com.dropbox.android.taskqueue.DbTaskQueue Adding Uploads from
stored db: 1

Some items of potential interestwere emphasized in the above listing, specifically:

1. All actions have time stamps
2. Successfully authenticate user, user name provided

114 CHAPTER 4 Android file systems and data structures
3. Picture imported from Gallery
4. Specific file on SD card is uploaded
5. Dropbox service is interrupted by phone call

The app also has a shared preference file:

ahoog@ubuntu:~/htc-inc/data/data/com.dropbox.android$ cat
shared_prefs/DropboxAccountPrefs.xml
<?xml version='1.0' encoding='utf-8' standalone='yes' ?>
<map>
<string name="LAST_URI">content://com.dropbox.android.Dropbox/metadata/</string>
<string name="DISPLAY_NAME">Andrew Hoog</string>
<long name="QUOTA_QUOTA" value="2147483648" />
<long name="QUOTA_NORMAL" value="1480890" />
<string name="REFERRAL_LINK">https://www.dropbox.com/referrals/NNNNAN0NnwNNN
</string>
<string name="COUNTRY"></string>
<long name="UID" value="96189742" />
<string name="EMAIL">book@viaforensics.com</string>
<string name="ACCESS_KEY">accesskeyinfohere</string>
<string name="ACCESS_SECRET">accesssecretinfohere</string>
<long name="QUOTA_SHARED" value="0" />
</map>

A quick examination of the db.db yields the following data using the sqlite3
command line program (you could also use a graphical SQLite browser to view the
database):

ahoog@ubuntu:~/htc-inc/data/data/com.dropbox.android/databases$ sqlite3 db.db
SQLite version 3.6.22
Enter ".help" for instructions
Enter SQL statements terminated with a ";"

sqlite> .tables
android_metadata dropbox pending_upload

sqlite> .mode line

sqlite> select * from dropbox where _id = 2;
 _id = 2
 _data = /sdcard/dropbox/Android intro.pdf
 modified = Wed, 26 Jan 2011 15:18:40 +0000
 bytes = 176607
 revision = 10
 hash =
 icon = page_white_acrobat
 is_dir = 0
 path = /Android intro.pdf
 root =
 size = 172.5KB
 mime_type = application/pdf
 thumb_exists = 0
 parent_path = /
 _display_name = Android intro.pdf
 is_favorite =
local_modified = 1296055191000
 local_bytes = 176607
local_revision = 10
 accessed =
 sync_status = 2

Data in the shell 115
The database provides important forensic and security data about the Dropbox
application, device, and ultimately the user and people they might interact with. The
“Android intro.pdf” file was automatically synced to the Dropbox account by
Dropbox when Android app was installed and logged into. When the shared PDF file
was viewed, it was cached on the SD card. Additional metadata about the file and the
use of it is contained in the database. Despite Dropbox’s extensive use of network
data storage for their application, we could still recover useful information.
Kernel, System, and Application Logs
One additional area where forensic analysts and security engineers can locate files
and information relevant to an investigation or audit is the standard Linux file
system. Unfortunately, that’s quite broad and overwhelming, but we can at least
provide a starting place to look for relevant information.

Log files and debugging are two common and effective ways in which developers
and administrators both maintain their system and their apps. It provides an insight
into the apps as well as the system running them. While not true in every case, it is
possible to glean important information from an Android device by simply exam-
ining the various log and debug files.
Linux kernel logging
The Linux kernel is the low level, abstract interface of the Linux operating system
that provides access to the hardware of a device. Since the role of the kernel is
central to all functions on the device, the ability to log key events and activities is
highly leveraged. The kernel log is accessible on a Linux (and thus Android) device
through the command dmesg. This will print to console all available kernel
messages, a portion of which is displayed here:

ahoog@ubuntu:~$ adb shell dmesg
<6>[151434.178802] batt: SMEM_BATT: get_batt_info: batt_id=2, batt_vol=4211,
batt_temp=264, batt_current=377, eval_current=112, level=96, charging_source=1,
charging_enabled=1, full_bat=1300000, over_vchg=0 at 151435426063278
(2011-01-28 11:28:37.995086662 UTC)
<4>[151574.946685] select 7673 (ogle.android.gm), adj 15, size 4821, to kill
<4>[151574.947418] send sigkill to 7673 (ogle.android.gm), adj 15, size 4821
<4>[151575.003967] deathpending end 7673 (ogle.android.gm)
<4>[151668.188018] mmc1: Starting deferred resume
<6>[151668.195281] incrediblec_sdslot_switchvdd: Setting level to 2850 (Success)
<6>[151668.506591] mmc1: Deferred resume completed
<6>[151674.597320] [dma.c] msm_datamover_irq_handler id 8, result not
valid4000001
<6>[151734.168731] batt: M2A_RPC: level_update: 97 at 151735415412693
(2011-01-28 11:33:37.985015911 UTC)
<6>[151734.173339] batt: batt:power_supply_changed: battery at 151735422126560
(2011-01-28 11:33:37.989654582 UTC)
<6>[151734.190490] batt: SMEM_BATT: get_batt_info: batt_id=2, batt_vol=4212,
batt_temp=281, batt_current=353, eval_current=152, level=97, charging_source=1,
charging_enabled=1, full_bat=1300000, over_vchg=0 at 151735437507419
(2011-01-28 11:33:38.006744426 UTC)
<6>[152004.168853] batt: M2A_RPC: level_update: 98 at 152005415595761
(2011-01-28 11:38:07.985168460 UTC)

116 CHAPTER 4 Android file systems and data structures
<6>[152004.171142] batt: batt:power_supply_changed: battery at 152005418311825
(2011-01-28 11:38:07.987457279 UTC)
<6>[152004.187622] batt: SMEM_BATT: get_batt_info: batt_id=2, batt_vol=4210,
batt_temp=288, batt_current=265, eval_current=112, level=98, charging_source=1,
charging_enabled=1, full_bat=1300000, over_vchg=0 at 152005434913389 (2011-01-28
11:38:08.003875737 UTC)

As you may notice, the data are quite verbose and low level. However, it can
provide important time stamps and activities, as well as a wealth of information
about the device on boot-up. However, if the device has not been rebooted recently,
the initial logs from startup are no longer available.

This command does not require any special permission on the device except that
USB debugging must be enabled. If you ran this command on a device or emulator,
you would have noticed that far too much data were displayed on your screen. You
can determine the total number of lines available in the log by piping (or sending) the
contents of dmesg to a program called wc (which stands for word count) and
instructing it to count the number of lines:

ahoog@ubuntu:~$ adb shell dmesg | wc -l
1859

So, on the reference HTC Incredible, we have 1859 lines in the kernel log. If you
need to inspect the information more closely, or include it in a report, you can
redirect the output of dmesg to a file with the following:

ahoog@ubuntu:~$ adb shell dmesg > dmesg.log

You can now examine the contents of the available kernel log by opening
dmesg.log in a text editor or display program.

logcat
Android has several additional debugging techniques available. One program, logcat,
displays a continuously updated list of system and application debug messages.

ahoog@ubuntu:~$ adb shell logcat
I/HtcLocationService(308): agent - search location by name: oak park, country:
united states, state: illinois
I/HtcLocationService(308): agent - no location was found, total: 0
D/AutoSetting(308): service - CALLBACK - onGetTimeZoneOffset, result: failed,
zoneId: , offset: 0
D/LocationManager(308): removeUpdates: listener =
com.htc.htclocationservice.HtcLocationServiceAgent$7@45dfc770
V/AlarmManager(97): Adding Alarm{463aea28 type 2 com.google.android.location}
Jan 05 05:05:25 pm
I/HtcLocationService(308): agent - send current location notify intent, name:
Oak Park, state: Illinois, country: United States, lat: 41.8786, lng:
-87.6359,tzid:
D/AutoSetting(308): service - CALLBACK - onSetWeatherProvider, result: success
I/WSP (308): [Receiver] EVENT - CURRENT LOCATION CHANGED
V/AlarmManager(97): Adding Alarm{46265558 type 0 com.htc.htclocationservice}
Jan 28 09:12:53 am
D/AutoSetting(308): service - wake lock release
D/LocationManager(308): removeUpdates: listener =
com.htc.htclocationservice.HtcLocationServiceAgent$7@45dfc770

Data in the shell 117
V/AlarmManager(97): Alarm triggering: Alarm{46265558 type 0
com.htc.htclocationservice}
V/AutoSetting(308): receiver - ***onReceive:
com.htc.app.autosetting.retrylocation
V/AutoSetting(308): receiver - startAutosettingService, action:
com.htc.app.autosetting.retrylocation,notifyWhenNoResult:false
D/AutoSetting(308): service - onCreate(),no SharedPreference
D/AutoSetting(308): service - ***setupWizardIsCompleted: true
D/AutoSetting(308): service - onStart(), id = 0
D/AutoSetting(308): service - new wake lock
D/AutoSetting(308): service - wake lock acquire
D/AutoSetting(308): service - onStart(), Checking location times = 2
D/AutoSetting(308): service - onStart(), Checking location change = false
D/AutoSetting(308): service - onStart(), Set city info = false
D/AutoSetting(308): service - onStart(), Set network time info = false
D/AutoSetting(308): service - onStart(), Set network timezone info = true
D/AutoSetting(308): service - onStart(), Set notify when no result = false
D/AutoSetting(308): service - ***setupWizardIsCompleted: true
D/AutoSetting(308): service - ***chkConnected,
mbReqChecking:false,mbApplyAll:true
D/AutoSetting(308): service - ***Data call is avaiable
D/AutoSetting(308): service - doAutoSettings(), isNetworkAvailable: true,
isUseWirelessNetworks: true, isTimeAutoState: true
D/LocationManager(308): requestLocationUpdates: provider = network, listener =
com.htc.htclocationservice.HtcLocationServiceAgent$7@45dfc770
D/LocationManagerService(97): CdmaCellLocation Unavailable
I/HtcLocationService(308): agent - search location by name: oak park, country:
united states, state: illinois
V/AlarmManager(97): Adding Alarm{45fb22a0 type 2 com.google.android.location}
Jan 05 05:04:51 pm
V/AlarmManager(97): Adding Alarm{45fb0a90 type 2 com.google.android.location}
Jan 05 05:04:51 pm

A quick scan of the small log snippet above reveals

� Longitude and latitude data
� Date/time information
� Application details

The logging is very verbose and the sample provided here is just a small sample
of what is available. Each log message begins with message type indicator, described
in Table 4.2.
Table 4.2 Log Method Types

Message Type Description

V Verbose

D Debug

I Information

W Warning

E Error

F Fatal

S Silent

118 CHAPTER 4 Android file systems and data structures

The logcat program also provides logs from the full cellular radio debug, which can
be viewed with the following command (only select portions of the radio logs
included):

ahoog@ubuntu:~$ adb shell logcat -b radio
D/CDMA (193): [CdmaServiceStateTracker] Set CDMA Roaming Indicator to: 128.
mCdmaRoaming = false, isPrlLoaded = true. namMatch = true , mIsInPrl = true,
mRoamingIndicator = 128, mDefaultRoamingIndicator= 64
D/CDMA (193): [CdmaServiceStateTracker] Poll ServiceState done:
oldSS=[0 home Verizon Wireless Verizon Wireless 31000 EvDo rev. A CSS supported
3 20RoamInd: 128DefRoamInd: 64EriInd: 1EriMode: 0RadioPowerSv: falseDefRoamInd:
64EmergOnly: false] newSS=[0 home Verizon Wireless Verizon Wireless 31000 EvDo
rev. A CSS supported 3 20RoamInd: 128DefRoamInd: 64EriInd: 1EriMode:
0RadioPowerSv: falseDefRoamInd: 64EmergOnly: false]
D/CDMA (193): Query NBPCD state: false
D/CDMA (193): will call NBPCD: 7735555555 NBPCD state: false
D/SMS (193): SMS send size=5time=1296219734520
D/RILJ (193): [23001]> RIL_REQUEST_CDMA_SEND_SMS
D/HTC_RIL (67): ril_func_cdma_send_sms():called
D/HTC_RIL (67): dump_cdma_sms():uTeleserviceID = 4098
D/HTC_RIL (67): dump_cdma_sms():bIsServicePresent = 0
D/HTC_RIL (67): dump_cdma_sms():uServicecategory = 0
D/HTC_RIL (67): dump_cdma_sms():sAddress.digit_mode = 0
D/HTC_RIL (67): dump_cdma_sms():sAddress.number_mode = 0
D/HTC_RIL (67): dump_cdma_sms():sAddress.number_type = 0
D/HTC_RIL (67): dump_cdma_sms():sAddress.number_plan = 0
D/HTC_RIL (67): dump_cdma_sms():sAddress.number_of_digits = 10
D/HTC_RIL (67): dump_cdma_sms():sAddress.digits = [07070305050505050505]
D/HTC_RIL (67): dump_cdma_sms():sSubAddress.subaddressType = 0
D/HTC_RIL (67): dump_cdma_sms():sSubAddress.odd = 0
D/HTC_RIL (67): dump_cdma_sms():sSubAddress.number_of_digits = 0
D/HTC_RIL (67): dump_cdma_sms():sSubAddress.digits = []
D/HTC_RIL (67): dump_cdma_sms():uBearerDataLen = 32
D/HTC_RIL (67): dump_cdma_sms():aBearerData:
[0003202C80010D10654CBCFA20DB979F3C39F2800E0705189249CB1B00080100]
D/HTC_RIL (67): encode_cdma_sms():encode_index = 51
D/HTC_RIL (67): ril_func_cdma_send_sms():raw_data:
[00000210020407029DCD158C988006010008200003202C80010D10654CBCFA20DB979F3C39F2800
E0705189249CB1B00080100]
D/HTC_RIL (67): (t=1296219734)>> AT+CMGS=51\r
D/HTC_RIL (67): RX::> \r\n> ^M
D/HTC_RIL (67): (t=1296219734)XX \r\n
D/HTC_RIL (67): (t=1296219734)<< >
D/HTC_RIL (67): (t=1296219734)>>
00000210020407029DCD158C988006010008200003202C80010D10654CBCFA20DB979F3C39F2800E
0705189249CB1B00080100^Z
D/RILJ (193): [UNSL]< UNSOL_DATA_CALL_LIST_CHANGED [DataCallState: { cid:
62, active: 1, type: IP, apn: 0, address: 10.237.127.132 }, DataCallState:
{ cid: -1, active: 0, type: , apn: , address: }, DataCallState: { cid: -1,
active: 0, type: , apn: , address: }]

While the logging is verbose and generally cryptic, scanning the logs above can
provide information such as:

� Time of events (in Unix Epoch, e.g., t¼1296218163)
� AT commands used by the cellular modem to communicate
� Recipient, size, time, and encoded SMS message
� Device’s cellular IP address, networking and location information
� Wireless carrier information

Data in the shell 119
This information is of very low level. However, if such logs are recovered, they can
reveal important information about a device.
NOTE

Unix Epoch
Unix Epoch time is a common format for time stamps in systems based on Unix/Linux. The
time stamp is an integer value that represents the number of seconds (or milliseconds) since
January 1, 1970. A typical time stamp using seconds will have 10 digits while a time stamp
using milliseconds will have 13 digits. Time stamps are covered in more details in Chapter 7.

One final logcat feature is the event logs display:

$adb shell logcat -b events
I/db_sample(193):
[/data/data/com.android.providers.telephony/databases/mmssms.db,INSERT INTO
sms(body, index_on_sim, address, subject, read, type,280,,57]
I/db_sample(193):
[/data/data/com.android.providers.telephony/databases/mmssms.db,SELECT
transport_type, _id, thread_id, address, body, date, read,170,,35]

Again, this log is very verbose. However, as different events within the system
occur, they log considerable information here. In the previous log snippet, we can
see both an INSERT and SELECT statement on the mmssms.db, which is used to
store text messages.

dumpsys
The next logging mechanism is accessed through a command called dumpsys.

Dumpsys provides information on services, memory, and other system details that
can provide helpful information. Some of the types of information provided include

� Currently running services
� Dump of each service
� Services, broadcasts, pending intents, activities, and processes in current activity

manager state
� Process information including memory, process IDs (PIDs), databases, and more

used

Sample sections from the reference HTC Incredible dumpsys are listed next and
each include a brief explanation of how the data might be valuable to a forensic
analyst or security engineer.

First, you run the dumpsys command as follows:

$adb shell dumpsys
Currently running services:
 SurfaceFlinger
 VZW_LOCATION_SERVICE
 accessibility
 account
<snip>

The section dumping details of the service “account” has valuable information
about the various accounts used on the device.

120 CHAPTER 4 Android file systems and data structures
DUMP OF SERVICE account:
Accounts: 10
 Account {name=Backup Assistant, type=com.htc.VzWBASync}
 Account {name=News, type=com.htc.newsreader}
 Account {name=Weather, type=com.htc.sync.provider.weather}
 Account {name=Stocks, type=com.htc.android.Stock}
 Account {name=book@viaforensics.com, type=com.google}
 Account {name=book@viaforensics.com, type=com.htc.android.mail.eas}
 Account {name=Andrew Hoog, type=com.htc.socialnetwork.facebook}
 Account {name=viaforensics, type=com.htc.htctwitter}
 Account {name=viaforensics, type=com.twitter.android.auth.login}
 Account {name=personal@emailaddress.com, type=com.google}
You can see not only programs used, but also at times the account name specific
to the user. For example, the above reveals:

� Google account with user name book@viaforensics.com
� Exchange ActiveSync (EAS) account with user name book@viaforensics.com

(separate from the Google account above)
� Facebook account for Andrew Hoog
� Twitter account for viaforensics
� Google account for personal@emailaddress.com (second one on the device)

Further in the log, the actual time stamps for the last 10 syncs are similarly provided:

Recent Sync History
 #1: book@viaforensics.com:com.google com.android.calendar LOCAL @ 2011-01-28
09:52:46 for 0.0s
 #2: book@viaforensics.com:com.htc.android.mail.eas htceas USER @ 2011-01-28
09:51:43 for 34.5s
 #3: book@viaforensics.com:com.google com.android.calendar LOCAL @ 2011-01-28
09:49:25 for 0.0s
 #4: Andrew Hoog:com.htc.socialnetwork.facebook com.htc.socialnetwork.facebook
SERVER @ 2011-01-28 09:48:57 for 0.5s
 #5: book@viaforensics.com:com.google com.android.calendar LOCAL @ 2011-01-28
09:45:30 for 0.0s
 #6: Andrew Hoog:com.htc.socialnetwork.facebook com.htc.socialnetwork.facebook
SERVER @ 2011-01-28 09:44:40 for 1.3s
 #7: book@viaforensics.com:com.htc.android.mail.eas htceas USER @ 2011-01-28
09:44:18 for 1.3s
 #8: viaforensics:com.twitter.android.auth.login
com.twitter.android.provider.TwitterProvider SERVER @ 2011-01-28 09:44:06 for
11.6s
 #9: book@viaforensics.com:com.htc.android.mail.eas htceas USER @ 2011-01-28
09:41:08 for 15.8s
 #10: Andrew Hoog:com.htc.socialnetwork.facebook com.htc.socialnetwork.facebook
SERVER @ 2011-01-28 09:37:27 for 0.1s

Another service is humorously named “iphonesubinfo,” which obviously has

nothing to do with Apple’s iPhone despite the similarity in name.

DUMP OF SERVICE iphonesubinfo:
Phone Subscriber Info:
 Phone Type = CDMA
 Device ID = A100001829481F

Both the phone type and Device ID (changed) are available from this section.

The Device ID is not the device’s serial number but the Mobile Equipment Identifier
(MEID), which uniquely identifies the device on the CDMA network.

mailto:book@viaforensics.com
mailto:book@viaforensics.com
mailto:personal@emailaddress.com

Data in the shell 121
Another great source of information is the location service that shows last known
location information and time.

DUMP OF SERVICE location:
 Last Known Locations:
 passive:
 mProvider=network mTime=1296230208384
 mLatitude=41.8786 mLongitude=-87.6359
 mHasAltitude=false mAltitude=0.0
 mHasSpeed=false mSpeed=0.0
 mHasBearing=false mBearing=0.0
 mHasAccuracy=true mAccuracy=1423.0
 mExtras=Bundle[{networkLocationType=cell, networkLocationSource=cached}]
 gps:
 mProvider=gps mTime=1296157873000
 mLatitude=41.8786 mLongitude=-87.6359
 mHasAltitude=true mAltitude=198.8000030517578
 mHasSpeed=true mSpeed=29.75
 mHasBearing=true mBearing=69.7
 mHasAccuracy=true mAccuracy=2.828427
 mExtras=Bundle[{satellites=11}]

Most time stamps in Android are the number of milliseconds since January 1,
1970, which is Unix Epoch timedin milliseconds instead of seconds, however.
Since most tools convert Unix Epoch based on seconds, you can divide the number
by 1000 and then use a standard formula. If you built the Ubuntu workstation, you
can convert using the following command line:

ahoog@ubuntu:~$ date -d @1296230208
Fri Jan 28 09:56:48 CST 2011

This will output in the workstation’s time zone. You can control the time zone,
format, and many other parameters with various switches on the command. To see
the full possibilities, run “date–help” or “man date.”

Examining the three cached locations above, we can see the system cached
locations from both GPS satellites and cell towers at the following times:

1. GPS: Thu Jan 27 13:51:13 CST 2011
2. Cell: Fri Jan 28 09:56:48 CST 2011

The locations are accurate for the time recorded and thus provide excellent historical
information on the device’s location.

The network state section provides additional information, including more
detailed information on cell phone towers:

network Internal State:
 location Location[mProvider=network,mTime=1296230208384,mLatitude=41.8786,
mLongitude=-87.6359,mHasAltitude=false,mAltitude=0.0,mHasSpeed=false,mSpeed=0.0,
mHasBearing=false,mBearing=0.0,mHasAccuracy=true,mAccuracy=1423.0,mExtras=Bundle
[{networkLocationSource=cached, networkLocationType=cell}]]
 Status 2
 StatusUpdateTime 385403711
 NetworkState 2
 LastCellStateChangeTime 428707868
 LastCellLockTime 0

122 CHAPTER 4 Android file systems and data structures
 cell state [cid: 277 lac: 3 mcc: 0 mnc: 20 radioType: 2 signalStrength: -85
 neighbors[]
 cell history
 [cid: 4671 lac: 3 mcc: 0 mnc: 20 radioType: 2 signalStrength: -103 neighors[]
 [cid: 277 lac: 3 mcc: 0 mnc: 20 radioType: 2 signalStrength: -103 neighbors[]
 [cid: 4671 lac: 3 mcc: 0 mnc: 20 radioType: 2 signalStrength: -87 neighbors[]
 [cid: 286 lac: 3 mcc: 0 mnc: 20 radioType: 2 signalStrength: -98 neighbors[]
 WifiScanFrequency 60000
 WifiEnabled 0
 WaitingForWifiScan 0
 LastNetworkQueryTime 428712899
 LastSuccessfulNetworkQueryTime 428712926
 Enabled 1
 AirplaneMode 0
 DisabledForAirplaneMode 0

One last section to point out, despite the level of technical details, is the memory
information section, which is output for each PID:

** MEMINFO in pid 454 [com.htc.android.mail] **
 native dalvik other total limit bitmap nativeBmp
 size: 18048 9543 N/A 27591 32768 N/A N/A
 allocated: 14490 4485 N/A 18975 N/A 1032 0
 free: 1341 5058 N/A 6399 N/A N/A N/A
 (Pss): 10644 4839 8651 24134 N/A N/A N/A
 (shared dirty): 1348 3924 960 6232 N/A N/A N/A
 (priv dirty): 10604 4724 4800 20128 N/A N/A N/A

Objects
 Views: 0 ViewRoots: 0
 AppContexts: 0 Activities: 0
 Assets: 3 AssetManagers: 3
 Local Binders: 50 Proxy Binders: 36
Death Recipients: 2
OpenSSL Sockets: 1

SQL
 heap: 3740 memoryUsed: 3740
pageCacheOverflo: 2185 largestMemAlloc: 1667

DATABASES
 Pagesize Dbsize Lookaside Dbname
 1024 21 38 webview.db
 1024 305 52 webviewCache.db
 1024 5662 499 mail.db
 1024 8 0 (attached) people_db

This may be useful not only for determining which processes are running, but
also for determining the databases they access. For instance, a case may require the
investigator to better understand what information is updated when an e-mail is
received. In the above listing, you can see that the e-mail application (com.htc.
android.mail) updates not only the mail.db, but also two web-related databases
attached to the people_db. This information can be very useful when explaining how
data on an Android device interrelates.

dumpstate
Another debug command is dumpstate that combines portions of previous debugs
with system information. Similar to the other commands, you run the command with
the following:

Data in the shell 123
$adb shell dumpsys
/data/anr/traces.txt: Permission denied
==
== dumpstate: 2011-01-28 09:56:27
==

Build: FRF91
Bootloader: 0.92.0000
Radio: 2.15.00.07.28
Network: Verizon Wireless
Kernel: Linux version 2.6.32.17-g9a2fc16 (htc-kernel@u18000-Build-149)
(gcc version 4.4.0 (GCC)) #1 PREEMPT Thu Sep 30 18:42:08 CST 2010
Command line: (unknown)

The first section displayed on an emulator or device with adbd running as root is
stack traces from applications. However, on the reference HTC devices, dumpstate
returns a permission denied. Immediately following is basic information about the
device, build, radio, network and kernel details. The remaining log contains the
sections outlined in Table 4.3.
Table 4.3 Dumpstate Sections

Section File or Command

Stack traces N/A

Device info N/A

System N/A

Memory info /proc/meminfo

Cpu info top -n 1 -d 1 -m 30 -t

Procrank (procrank)

Virtual memory stats /proc/vmstat

Vmalloc info /proc/vmallocinfo

Slab info /proc/slabinfo

Zoneinfo /proc/zoneinfo

System log logcat -v time -d):v

Event log logcat -b events -v time -d):v

Radio log logcat -b radio -v time -d):v

Network interfaces netcfg

Network routes /proc/net/route

Arp cache /proc/net/arp

Dump Wi-Fi firmware log su root dhdutil -i eth0 upload /data/local/tmp/
wlan_crash.dump

System properties N/A

Kernel log dmesg

Kernel wakelocks /proc/wakelocks

Kernel cpufreq /sys/devices/system/cpu/cpu0/cpufreq/stats/
time_in_state

(Continued)

Table 4.3 Dumpstate Sections (Continued)

Section File or Command

Vold dump vdc dump

Secure containers vdc asec list

Processes ps -p

Processes and threads ps -t -p -p

Librank librank

Binder failed transaction log /proc/binder/failed_transaction_log

Binder transaction log /proc/binder/transaction_log

Binder transactions /proc/binder/transactions

Binder stats /proc/binder/stats

Binder process state sh -c cat /proc/binder/proc/) -p

File systems and free space df

Package settings /data/system/packages.xml: 2011-01-26 09:18:02

Package uid errors /data/system/uiderrors.txt: 2010-11-14 22:52:26

Last kmsg /proc/last_kmsg

Last radio log parse_radio_log /proc/last_radio_log

Last panic console /data/dontpanic/apanic_console

Last panic threads /data/dontpanic/apanic_threads

Blocked process wait
channels

N/A

Backlights N/A

Dumpsys dumpsys

124 CHAPTER 4 Android file systems and data structures
bugreport
The final debugging command further builds on the previous commands and
combines the logcat, dumpsys, and dumpstate debug output in a single command,
and displays on screen for the purpose of submitting a bug report. The command is
run as follows:

ahoog@ubuntu:~$ adb bugreport

It starts by running dumpstate. When run against the reference HTC Incredible,
the output was saved into a file and then a line count was performed:

ahoog@ubuntu:~$ adb bugreport > bugreport.log
ahoog@ubuntu:~$ wc -l bugreport.log
42575 bugreport.log

As you can see, the report generated over 42,000 lines of debug rich in
time stamps, app data, and system information. Parsing this data will yield
useful information. However, if the data are processed manually, the task is
daunting.

Type of memory 125
TYPE OF MEMORY
As discussed in Chapter 2, Android devices have two primary types of memory,
volatile (RAM) and nonvolatile (NAND flash) memory. Each provides a different
insight into the device’s data.

RAM
RAM is used by the system to load, execute, and manipulate key parts of the
operating system, applications, or data, and is not saved on reboot. Like traditional
computers, RAM can contain very important information which applications use to
process data. Some examples include the following:

� Passwords
� Encryption keys
� Usernames
� App data
� Data from system processes and services

Recently, solutions for examining Android memory have emerged. One tech-
nique was documented by security researcher Thomas Cannon on his blog, which we
will step through in detail (Android reverse engineering, n.d.).

Android provides a mechanism for dumping an application’s memory to a file by
sending the app a special signal (SIGUSR1). To send the signal, you need an app’s
PID, which you can find with the ps command:

ahoog@ubuntu:~$ adb shell ps
USER PID PPID VSIZE RSS WCHAN PC NAME
root 1 0 348 248 ffffffff 00000000 S /init
root 2 0 0 0 ffffffff 00000000 S kthreadd
root 3 2 0 0 ffffffff 00000000 S ksoftirqd/0
root 28 2 0 0 ffffffff 00000000 S crypto/0
root 39 2 0 0 ffffffff 00000000 S panel_on/0
keystore 72 61 1732 420 ffffffff 00000000 S /system/bin/keystore
shell 76 61 3412 196 ffffffff 00000000 S /sbin/adbd
system 97 68 288408 50100 ffffffff 00000000 S system_server
app_96 193 68 162284 28356 ffffffff 00000000 S com.swype.android.inputmethod
radio 199 68 181376 33452 ffffffff 00000000 S com.android.phone
9997 429 68 187716 34756 ffffffff 00000000 S com.htc.android.mail
app_24 568 68 187796 31064 ffffffff afd0ebd8 S com.google.android.gm
9997 732 68 161816 24492 ffffffff 00000000 S
com.htc.android.mail:directpush
app_103 756 68 150480 23036 ffffffff 00000000 S com.dropbox.android
app_43 1020 68 176632 29472 ffffffff 00000000 S com.google.android.apps.maps
app_43 1132 68 161984 27744 ffffffff 00000000 S
com.google.android.apps.maps:BackgroundFriendService
app_42 1294 68 160680 32672 ffffffff 00000000 S com.facebook.katana
app_4 1355 68 148900 23768 ffffffff 00000000 S com.htc.WeatherWallpaper
shell 1938 76 744 328 c0064900 afd0e88c S /system/bin/sh
shell 1939 1938 892 340 00000000 afd0d97c R ps

The ps command lists all system and app processes as well as the parent process
id, memory information, and the name. Since a typical device has many running
processes, the above listing only displays a portion of the output.

126 CHAPTER 4 Android file systems and data structures
Next, we need to run an interactive shell on the device with root privileges and
set /data/misc with sufficient permissions to write and then read the memory
dump:

ahoog@ubuntu:~$ adb shell
$ su
chmod 777 /data/misc
WARNING

Changing folder permissions
The chmod command changes the permissions of the /data/misc folder granting read,
write, and execute access to all user accounts on the system. This change is necessary for
the successful memory dump. However, this is a system change overtly made by the
forensic analyst. If such analysis is warranted, the change should be noted in your report
and ideally the folder permissions should be restored to their default setting after the
memory dump.

From here, we can send the signal needed to dump memory and display the
contents of the directory:

kill -10 1294
ls -l
drwxrwx--- dhcp dhcp 2011-01-17 13:18 dhcp
drwxrwx--- system system 1980-01-06 11:40 vpn
drwxrwx--- system system 1980-01-06 11:40 bluetooth
drwx------ system system 1980-01-06 11:40 systemkeys
drwxrwxrwx system system 1980-01-06 11:41 lockscreen
-rw-r--r-- system system 1 2011-01-29 15:19 screen_lock_status
-rw-rw---- compass compass 442 2011-01-29 19:11 AK8973Prms.txt
drwxrwx--- wifi wifi 2010-08-28 12:06 wifi
drwxrwx--- bluetooth bluetooth 1980-01-06 11:40 bluetoothd
-rw-rw-rw- app_42 app_42 3978523 2011-01-29 19:26 heap-dump-tm1296350817-
 pid1294.hprof
drwx------ keystore keystore 1980-01-06 11:40 keystore

The file heap-dump-tm1296350817-pid1294.hprof contains the memory dump
and we can exit the interactive adb shell and pull the file to your local workstation for
analysis:

ahoog@ubuntu:~/memdump$ adb pull /data/misc/heap-dump-tm1296351804-pid1294.hprof
facebook.hprof
1223 KB/s (3977724 bytes in 3.175s)

From there, use any memory analysis technique you have at your disposal. For
example, you could extract ASCII strings with the command strings:

ahoog@ubuntu:~/memdump$ strings gmail.hprof > gmail.str

and then view the contents of the file. A quick scan of Gmail’s memory provided
information about various encryption libraries the app referenced as well as HTTP
traffic:

Type of memory 127
POST
/proxy/gmail/a/andrewhoog.com/g/?version=25&clientVersion=25&allowAnyVersion=1
HTTP/1.1
Accept-Encoding: gzip
Content-Length: 29
Host: android.clients.google.com
Connection: Keep-Alive
User-Agent: Android-GmailProvider/156 (inc FRF91); gzip
Cookie: GXAS_SEC=andrewhoog.com=DQAAAJsAAACz6B42ndmh7G5-oRmGrv_78Q-
NxsOMxL256qXfh_Dtkj3llZ0uUir7FbGQOK8PsaCi3iXuR1GsqCtV0rOel-07_-
nrjZ7WADRPDYDJ2lIYvBfnpaZh7mbMjBpJB4iS6Kvgi1gc8wRJCHhb0aaaaaaaa;
S=gmail=K1XaaaaaaaaaamYA3YypJA:gmproxy=-v0_tVIkUaaaaaaaQ;
GXAS_SEC=andrewhoog.com=DQAAAJwAAAAPCeOv_Xha1i8NCBR5d6hp8wrvO79bW1cweQTUulld3sVT4
nPcw4wnUfCZAaaav8Cqp-ktu6l4gW9L2gWCUpuFkjPHGvHiEa4W7P0R-dawWSgk7_wOmaP585kz8Pkoo4
EGYzn9nbQj7X2s5qLfqRwdpRPUMWREKMqazlg6HgAG5Tsp
Cookie2: $Version=1
: application/vnd.google-x-gms-proto; charset=utf-8
Set-Cookie: XAS_SEC=andrewhoog.com=DQAAAJoAAAAUERMYMdgggggggggiwn1MqWkps31wuuOa
KKe-hKekfgyT7apv6wKpPlycE8PS7S0-gRkmJydqPyDPCgjLXBSw7SVj5Lyp;
Path=/proxy/gmail/a/; Secure
Expires: Sun, 30 Jan 2011 00:16:05 GMT
Transfer-Encoding: chunked
Date: Sun, 30 Jan 2011 00:16:05 GMT
Cache-Control: private, max-age=0
X-Content-Type-Options: nosniff
X-Frame-Options: SAMEORIGIN
X-XSS-Protection: 1; mode=block
Server: GSE

The Facebook app, which uses a file format called JSON to encode and transfer
data, yielded the following:

{"messages":{"unread":0,"most_recent":1296345224},"pokes":{"unread":0,
"most_recent":0},"shares":{"unread":0,"most_recent":0},"friend_requests":[],
"group_invites":[],"event_invites":[18191xxxxxxxxx]}!
:)","time":1296238459,"status_id":1802922removed},"pic_square":"http:\/\/profile.
ak.fbcdn.net\/hprofile-ak-snc4\/hs1323.snc4\/161426_506.jpg"},{"uid":removed,
"first_name":"removed","last_name":"removed","name":"removed
removed","status":{"message":"College friends: do you ever reflect on all the
time we spent driving past removed","time":1296194273,"status_id":10574xxxxxxxx},
{"id":7695xxxxx,"type":"user"
,"pic_square":"http:\/\/profile.ak.fbcdn.net\/hprofile-ak-
snc4\/hs712.ash1\/161111_76xxxxxx_q.jpg","name":"removed"}]},{"name":"places",
"fql_result_set":[{"page_id":1
0823xxxxx,"longitude":-
75.130002,"latitude":40.324749,"description":"","checkin_count":62,"name":
"Pocos"}]}

These examples were sanitized prior to inclusion in this book. However, you can
see time stamps, profile updates, friend info, check-ins, and more.

Memory analysis of an Android device can provide deep insight into the device’s
internal structure as well as key information about the device owner. Over time,
expect more solutions in the market to address analysis of Android memory.

NAND Flash
Unlike RAM, NAND flash is nonvolatile and thus the data are preserved even when
the device is without power or rebooted. The NAND flash is used to store not only
system files but also significant portions of the user’s data.

128 CHAPTER 4 Android file systems and data structures
NAND flash memory has characteristics very different from the magnetic media
found in modern hard drives. These properties make NAND flash ideal storage for
mobile devices, while at the same time presenting a number of challenges for
programmers and opportunities for forensic analysts.

First, NAND flash has no mechanically moving parts like the spinning platters
and arms found in traditional magnetic hard drives. This improves the durability and
reduces both the size and power consumption of the device. The memory is
distributed as one or multiple chips, which often integrate both NAND flash and
RAM (MCP, see Chapter 2) and are directly integrated into the circuit board of the
device.

NAND flash also has very high density and is cost effective to manufacture. This,
of course, makes it very popular with manufacturers. One side effect of the
manufacturing process and technology in general is that NAND flash literally ships
with bad blocks directly from the manufacturer. The manufacturer will generally test
the memory as part of the manufacturing process and mark bad blocks in a specific
structure on the NAND flash, which is described in their documentation. Software,
which then directly interacts with the NAND flash, can read the manufacturer’s bad
block markers and will often implement a bad block table that can logically track the
bad blocks on the system and remove them from operation. This greatly speeds up
bad block detection and management. So while NAND flash is more physically
durable than spinning platters, its error rate is much higher and must be accounted
for in development and use.

Another significant limitation of NAND flash is that it has a very limited
write/erase life span before the block is no longer capable of storing data. The
life span varies by device and is largely impacted by the amount of data stored
per NAND flash cell, the central building block for storing the 1 or 0 bit(s). If the
cell only stores a single bit (single-level cell or SLC) then the NAND flash is
rated around 100k write/erase cycles for one-year data retention. However,
NAND flash rarely uses SLC as manufacturers (and consumer) demand more data
storage in similarly sized or smaller devices. The technology has moved to
multilevel cells (MLC) where a cell can store two, three, or even more bits per
cell. However, this not only complicates the manufacturing process and slows
down the write/erase cycle, but it also significantly reduces the endurance of the
device. A typical MLC NAND flash storing two bits per cell experiences a
10-fold reduction in endurance (measured as one-year data retention) with a value
of approximately 10k write/erase cycles. As the bit density per cell increases, the
endurance continues to drop, which obviously must be addressed by the controlling
device.

Unlike RAM and NOR flash which is also flash memory and typically used in
systems such as a computer’s Basic Input Output System or BIOS, NAND flash
cannot be accessed randomly. Instead, access to data is achieved via an allocation
unit, called a page or chunk, which is typically between 512 and 2048 bytes, but
generally increases as the overall size of NAND flash increases. Even though NAND
flash does not provide the fast random access like RAM, access time is still quite fast

Type of memory 129
because it does not require the mechanical platter and arm movements used in
traditional spinning hard drives.
NOTE

Page versus chunk
Throughout this book, we will use the word page and chunk synonymously to refer to the
low-level data allocation unit referenced in NAND flash. While the allocation unit is usually
referred to as a page, the YAFFS2 file system, which is a key component of Android, generally
refers to the allocation unit as a chunk.

The chunks are then organized into a larger logical unit called a block, which is
typically much larger than a traditional 512B hard drive sector. In most Android
devices, the NAND flash blocks contain 64 chunks of data and each chunk is 2048
bytes. Taking 64� 2 KB yields a block size of 128 KB. Of course, this can and will
change over time and is controlled by the NAND flash manufacturers. When a block
is allocated for writing, the chunks inside the block are written sequentially.

Another very important characteristic of NAND flash is the operations available
for reading and writing:

� Read (page)
� Write (page)
� Erase (block)

While individual chunks can be read or written, the erase operation only func-
tions at the block level. When a block is erased, the entire block is written over with
1’s or 0xFF (hex).
NOTE

NAND flash erase operation
The erase operation is the only mechanism by which a 0 can be changed to a 1 in NAND flash.
This point is worth belaboring. In a traditional hard drive, if a value is changed from a 0 to a 1
(or vice versa), the program would simply seek to the value on the hard drive and apply the
appropriate voltage to change and store the new value. However, the fundamental architecture
of NAND flash provides only one mechanism to change a 0 to a 1 and that is via the erase
function that is applied at the block level, not an individual page level. For this reason, a page
can only be written once, and if the value of the page needs to change, the entire block must be
erased and then the page can be written.
Here is a specific example using a single byte for simplicity: Let’s say this
particular byte holds the decimal value 179 and we want to add 39 for a total value of
218. For those unfamiliar with converting numbers between base10, hex (base16),
and binary (base2), the built-in calculator programs in Windows, Mac OS X, and
Ubuntu Linux provide a programmer mode that will perform the conversions. For
the numbers above, we have the conversions between numbering systems shown in
Table 4.4.

Table 4.4 Decimal, Hex, and Binary Representation of Integers

Decimal (base10) Hex (base16) Binary (base2)

179 0xB3 1011 0011

218 0xDA 1101 1010

130 CHAPTER 4 Android file systems and data structures
So the value 179 contains three 0’s and two of them need to change to a 1 to
present our new value of 218. However, NAND flash cannot make that change
without erasing the entire block. So, if this single byte was attempted without the
erase, the result would be 146, not 218. Here is how this happened:

1011 0011 (original byte, 0xB3 or 179 decimal)
1101 1010 (new byte to write, 0xDA or 218 decimal)

1001 0010 (resulting byte, 0x92 or 146 decimal)
As the byte did not contain all 1’s (0xFF), the only portions of the write cycle that
succeeded were 1’s either remaining a 1 or changing to a 0. Anytime the write
function encountered a 0 and was requested to change to a 1, it would fail and simply
retain the 0 value. The resulting byte was 0x92 or 146 base10dclearly not the value
intended. Another way to describe the write function is that it only changes the
charged 1 values to a 0 where requested, the equivalent of the “logical and” of the
two values.

In summary, a chunk can only be written once, and if it needs to be re-written, the
entire block must first be erased.

As you can tell, NAND flash imposes various restrictions and limitations and
thus developers and file systems must be flash aware to effectively work within the
constraints. Unlike traditional hard drives that ship with firmware to manage the
device (including bad block), the NAND flash used in Android devices does not ship
with a controller. All management of the memory must be implemented in software
interfacing with the NAND flash. Two important techniques deployed are error-
correcting code (ECC) and wear-leveling. Both have significant implications for
forensics and data recovery.

First, ECC is a technique where an algorithm is used to detect data errors on read
or write operations and correct some errors on the fly. Since NAND flash degrades
over time through usage, the system must be able to detect when a page or block is
going bad and recover the data stored there. After a number of errors or failed
operations is exceeded (typically three failed operations), the page or block will be
marked bad and added to the bad block table.

The second important algorithm used to effectively manage NAND flash on
Android is the wear-leveling code that spreads the writing of data across the entire
NAND flash to avoid overutilization of a single area, thus wearing those blocks out
more quickly.

Many hardware devices that use NAND flash, such as removable USB thumb
drivers and solid state drives (SSD), have controller logic bundled with the device,

Type of memory 131
which provides the functions described above including bad block management,
wear-leveling, and error-correcting code. However, Android devices were designed
to integrate the NAND flash components directly, and thus a software management
layer was needed to provide these important functions. The layer selected to manage
the NAND flash was the Memory Technology Device (MTD) system.

MTD was developed to address the need of NAND flash and similar devices due
to their unique characteristics. Prior to MTD, Linux supported primarily character
devices and block devices. Neither device type addresses the unique properties of the
newly developed memory devices. Additionally, while NAND flash was not strictly
a block device (like traditional hard drives), exposure of block device characteristics
to developers aided in development and support. By leveraging MTD, Android now
had the necessary Flash Transition Layer (FTL) needed to effectively interact with
the NAND flash. By taking this approach, Android did not lock manufacturers into
using a small subset of NAND flash providers and associated controllers. Instead,
they are free to use any NAND flash available and then “simply” integrate with
MTD, which supports a wide range of NAND flash.

In Android, the MTD provides not only the block interface to the NAND flash
but also the ECC, wear-leveling, and other critical functions. The ECC and other
chunk metadata are stored in a reserved area called the out of band (OOB) or spare
area. The OOB is located directly after each chunk on the NAND flash. While the
chunk, block, and OOB layout is configurable, most Android devices to date have
a 128 KB block consisting of 64 2,048 byte (2k) chunks each with a 64 byte OOB as
shown in Fig. 4.1.

The OOB not only stores information managed by MTD, but can also store
metadata critical to the file system, provided the file system is NAND flash aware.
While the system presents the block as 128 KB, when you add in the 64 OOB, each
64 bytes in size, there is an additional 4096 bytes (4 KB) bringing the total bytes
used on the NAND flash to 132 KB.

On Android devices, you can determine the MTD partitions by viewing the /proc/
mtd file. On our reference HTC Incredible, we have the following:
FIGURE 4.1

Block (128 KB ¼ 64 � 2k chunks þ OOB).

mailto:Image of Figure 4.1|tif

Table 4.5 MTD Partitions Size Conversions

Size (hex) Name Size (decimal, bytes) Size (KB) Size (MB)

0xa0000 misc 655,360 640 0.6

0x480000 recovery 4,718,592 4608 4.5

0x300000 boot 3,145,728 3072 3.0

0xf800000 system 260,046,848 253952 248.0

0xa0000 local 655,360 640 0.6

0x2800000 cache 41,943,040 40960 40.0

0x9500000 datadata 156,237,824 152576 149.0

132 CHAPTER 4 Android file systems and data structures
ahoog@ubuntu:~$ adb shell cat /proc/mtd
dev: size erasesize name
mtd0: 000a0000 00020000 "misc"
mtd1: 00480000 00020000 "recovery"
mtd2: 00300000 00020000 "boot"
mtd3: 0f800000 00020000 "system"
mtd4: 000a0000 00020000 "local"
mtd5: 02800000 00020000 "cache"
mtd6: 09500000 00020000 "datadata"

There are seven MTD partitions and the following section will examine where
they are mounted, and provide a high-level overview of the directories and files
found. In the previous listing, the size and erasesize are both hex values that provide
important MTD/NAND flash properties. The erasesize specifies the size of each
block which is 0x20000 or 131,072 bytes or 128 KB (128� 1024) in decimal. This
is consistent with the block figure, specifically 64 pages, each 2048 (2 KB) in size.
The size column specifies the overall size of that partition. So, in this instance, we
have the MTD partitions as shown in Table 4.5.

The values from Table 4.5 can also be verified using the df (disk free) command
that provides a listing of mounted file systems and their total, used, and available
space. Following is the df data for /system:

ahoog@ubuntu:~$ adb shell df /system
/system: 253952K total, 243724K used, 10228K available (block size 4096)

As you can tell, the size found in /proc/mtd is consistent in both our conversions
and as displayed by the df command.

Now that we have established a fundamental understanding of NAND flash and
MTD for Android, we will examine the various file systems used by Android.
FILE SYSTEMS
Like most Linux systems, there are several file systems in use on Android, many of
which are used to boot and run the system. While we will touch on several of the file
systems, the primary focus is on partitions where user data are stored, in particular
the EXT, FAT32, and YAFFS2 file systems.

mailto:Image of Figure 4.1|tif

File systems 133
To determine what file systems a Linux kernel (and thus Android) supports, you
can examine the contents of the file /proc/filesytem. On our reference HTC
Incredible, it contains the following:

ahoog@ubuntu:~$ adb shell cat /proc/filesystems
nodev sysfs
nodev rootfs
nodev bdev
nodev proc
nodev cgroup
nodev tmpfs
nodev debugfs
nodev sockfs
nodev pipefs
nodev anon_inodefs
nodev inotifyfs
nodev devpts
 ext3
 ext2
nodev ramfs
 vfat
 yaffs
 yaffs2

Of the 18 file systems supported by the HTC Incredible, only five are backed by
a physical device such as NAND flash or the SD card. The remaining file systems
have the “nodev” property, which means that they are essentially virtual file systems
that are not written to any physical device. Furthermore, only six of the nodev file
systems are actually used on the device:

1. rootfs
2. tmpfs
3. cgroup
4. proc
5. sysfs
6. devpts

And three of the device-backed file systems are used:

1. ext3
2. yaffs2
3. vfat

The following sections provide a brief overview of most file systems, and an in-
depth analysis of YAFFS2, where significant user data are stored.
rootfs, devpts, sysfs, and cgroup File Systems
Many file systems in Linux are used to boot, operate, or manage the system and
often will not contain information useful in a forensic investigation. However,
security engineers and researchers may closely examine these file systems, and the
kernel’s inner-workings, in an attempt to identify security holes and other

mailto:Image of Figure 4.1|tif

134 CHAPTER 4 Android file systems and data structures
weaknesses. We will quickly highlight four of the more infrastructure-related file
systems found in Android.

First, rootfs is where the kernel mounts the root file system (the top of the
directory tree, noted with a forward slash) at startup. In order for the kernel to
complete the boot process, it needs access to core files and libraries, thus the need to
mount the root file system. As the kernel finalizes the boot process, subsequent file
systems are mounted as directories off the root file system. For example (and more
on this later in the chapter), the root file system would be mounted at / and contain
key files. Then a more complete system directory would be mounted at /system. You
can see the root file system and directories by running the “ls -l” command from
a shell or typing “mount” to see which file systems are mounted and in what
directory of the root file system.

The devpts file system is used to provide simulated terminal sessions on an
Android device, similar to connecting to a traditional Unix server using telnet or ssh.
Each time a virtual terminal connects, a new node under /dev/pts is created. For
example, if you have a single adb shell connection to an Android device, /dev/pts
would show the following:

ahoog@ubuntu:/dev/pts$ adb shell
$ ls -l /dev/pts
crw------- shell shell 136, 0 2011-02-01 10:00 0

However, in the next example, there are two adb shell connections and one
terminal app connection from an app installed on the device:

ahoog@ubuntu:~$ adb shell ls -l /dev/pts
crw------- shell shell 136, 2 2011-02-01 10:02 2
crw------- app_105 app_105 136, 1 2011-02-01 10:02 1
crw------- shell shell 136, 0 2011-02-01 10:00 0

As you can see, the original /dev/pts/0 connection exists. However, two addi-
tional connections are now present and the one from the terminal app is run under the
app’s unique user id (app_105).

Sysfs is another virtual file system that contains configuration and control files
for the device. On the HTC Incredible, the following top-level directories exist:

ahoog@ubuntu:/dev/pts$ adb shell ls -l /sys
drwxr-xr-x root root 2011-02-01 11:06 fs
drwxr-xr-x root root 2011-01-31 15:42 devices
drwxr-xr-x root root 2011-02-01 11:06 dev
drwxr-xr-x root root 2011-02-01 11:06 bus
drwxr-xr-x root root 2011-02-01 10:02 class
drwxr-xr-x root root 2011-02-01 11:06 firmware
drwxr-xr-x root root 2011-02-01 11:06 kernel
drwxr-xr-x root root 2011-01-31 15:42 power
drwxr-xr-x root root 2011-02-01 11:06 board_properties
drwxr-xr-x root root 2011-02-01 11:06 module
drwxr-xr-x root root 2011-02-01 11:06 block
drwxr-xr-x root root 2011-02-01 11:06 android_touch
drwxr-xr-x root root 2011-02-01 11:06 android_camera
drwxr-xr-x root root 2011-02-01 11:06 camera_led_status
drwxr-xr-x root root 2011-02-01 11:06 android_camera_awb_cal

mailto:Image of Figure 4.1|tif
mailto:Image of Figure 4.1|tif
mailto:Image of Figure 4.1|tif

File systems 135
For curiosity’s sake, you can do an adb pull on /sys to your forensic workstation
as the files can be read by any user. Execute the following:

ahoog@ubuntu:/dev/pts$ adb pull /sys sys
pull: building file list...
<snip>
pull: /sys/camera_led_status/led_hotspot_status -> ./camera_led_status/
 led_hotspot_status
pull: /sys/camera_led_status/led_wimax_status -> ./camera_led_status/
 led_wimax_status
pull: /sys/camera_led_status/led_ril_status -> ./camera_led_status/led_ril_status
pull: /sys/android_camera_awb_cal/awb_cal -> ./android_camera_awb_cal/awb_cal
3370 files pulled. 0 files skipped.
0 KB/s (33334 bytes in 233.611s)

As you can see, a large number of files were pulled, and you can now use the full
suite of Linux tools to examine the data. While the forensic value of this information
requires additional research, it clearly provides low-level information about the
device that can assist in security research. For example, if you wanted to learn more
about the NAND device, you could examine the following directory:

ahoog@ubuntu:~/sysfs$ ls -l ./module/msm_nand/parameters/
total 12
-rw-r--r-- 1 ahoog ahoog 123 2011-02-01 09:11 info
-rw-r--r-- 1 ahoog ahoog 5 2011-02-01 09:11 pagesize
-rw-r--r-- 1 ahoog ahoog 8 2011-02-01 09:11 vendor

And then each file:

ahoog@ubuntu:~/sysfs$ cat ./module/msm_nand/parameters/vendor
Samsung

ahoog@ubuntu:~/sysfs$ cat ./module/msm_nand/parameters/info
<< NAND INFO >>
flash id =5500BCEC
vendor =Samsung
width =16 bits
size =512 MB
block count =4096
page count =64

ahoog@ubuntu:~/sysfs$ cat ./module/msm_nand/parameters/pagesize
2048

Understanding the NAND device in detail is clearly an important step in forensic
and security analysis. With nearly 3000 files, there is considerable data to examine.
Here is a quick way to look at the file names, paths, and sizes that will allow you to
then easily examine relevant files (try running two terminal sessions and listing the
files in one terminal and use copy/paste to “cat” the file contents in the other terminal):

ahoog@ubuntu:~$ find sysfs -type f -ls | less
933783 4 -rw-r--r-- 1 ahoog ahoog 91 Feb 1 09:11
sysfs/board_properties/virtualkeys.atmel-touchscreen
933855 4 -rw-r--r-- 1 ahoog ahoog 2 Feb 1 09:11
sysfs/android_camera/node
933857 4 -rw-r--r-- 1 ahoog ahoog 22 Feb 1 09:11
sysfs/android_camera/sensor
933856 4 -rw-r--r-- 1 ahoog ahoog 2 Feb 1 09:11
sysfs/android_camera/cam_mode
933863 4 -rw-r--r-- 1 ahoog ahoog 32 Feb 1 09:11

mailto:Image of Figure 4.1|tif
mailto:Image of Figure 4.1|tif
mailto:Image of Figure 4.1|tif
mailto:Image of Figure 4.1|tif

136 CHAPTER 4 Android file systems and data structures
sysfs/android_camera_awb_cal/awb_cal
933782 4 -rw-r--r-- 1 ahoog ahoog 2 Feb 1 09:11
sysfs/power/pm_trace
933779 4 -rw-r--r-- 1 ahoog ahoog 5 Feb 1 09:10
sysfs/power/wait_for_fb_wake
933781 4 -rw-r--r-- 1 ahoog ahoog 2 Feb 1 09:11
sysfs/power/pm_trace_mask
<snip>
TIP

Additional sysfs analysis
Beyond manually examining the sysfs file system, there are detailed resources on the Internet
which provide additional background. One such resource is a paper by Patrick Mochel
providing a helpful background (The sysfs filesystem, n.d.).

The final virtual file system is called cgroups and is used to track and aggregate

tasks in the Linux file system. On the HTC Incredible, two cgroup file systems are
created: one at /dev/cpuctl and the other at /acct. While additional analysis may yield
results, the accounting data generally do not prove useful in forensic analysis.
proc
The proc file system provides detailed information about kernel, processes, and
configuration parameters in a structured manner under the /proc directory. Some of
the files can be examined by the shell user. However, many files prevent access
unless you have root privileges. As before, one method for exploring the proc file
system is to pull the files from the Android device onto your forensic workstation. It
will take some time and could hang on certain files causing an incomplete copy.

ahoog@ubuntu:~$ adb pull /proc proc
pull: building file list...

On the HTC Incredible, the above process hung when trying to copy process 76
and had to be canceled with a Ctrl-C:

pull: /proc/76/task/5959/auxv -> proc/76/task/5959/auxv
failed to copy '/proc/76/task/5959/auxv' to 'proc/76/task/5959/auxv':
Permission denied
pull: /proc/76/task/5959/environ -> proc/76/task/5959/environ
failed to copy '/proc/76/task/5959/environ' to 'proc/76/task/5959/environ':
Permission denied
pull: /proc/76/task/6993/fd/16 -> proc/76/task/6993/fd/16
 ^C

ahoog@ubuntu:~/proc$ du -hs
25M .
ahoog@ubuntu:~/proc$ find . -type f | wc -l
5998

Before canceling, we successfully pulled 25 MB of data and nearly 6000 files. As
with the sysfs examination, you can manually examine the data using the find
command to locate and list files:

mailto:Image of Figure 4.1|tif
mailto:Image of Figure 4.1|tif
mailto:Image of Figure 4.1|tif

File systems 137
ahoog@ubuntu:~/proc$ find . -type f -ls | less
934618 4 -rw-r--r-- 1 ahoog ahoog 93 Feb 1 09:48 ./cpu/alignment
413065 4 -rw-r--r-- 1 ahoog ahoog 8 Feb 1 09:50 ./25/wchan
413062 4 -rw-r--r-- 1 ahoog ahoog 2 Feb 1 09:50 ./25/oom_score
413063 4 -rw-r--r-- 1 ahoog ahoog 20 Feb 1 09:50 ./25/cgroup
413069 0 -rw-r--r-- 1 ahoog ahoog 0 Feb 1 09:51 ./25/maps
566313 4 -rw-r--r-- 1 ahoog ahoog 85 Feb 1 09:50 ./25/net/sockstat6
566315 4 -rw-r--r-- 1 ahoog ahoog 108 Feb 1 09:50 ./25/net/if_inet6
<snip>

Alternatively, you can examine some files in /proc directly from the adb shell as
follows:

ahoog@ubuntu:~$ adb shell
$ cd /proc
$ cat cpuinfo
Processor : ARMv7 Processor rev 2 (v7l)
BogoMIPS : 162.54
Features : swp half thumb fastmult vfp edsp thumbee neon
CPU implementer : 0x51
CPU architecture: 7
CPU variant : 0x0
CPU part : 0x00f
CPU revision : 2

Hardware : incrediblec
Revision : 0002
Serial : 0000000000000000

Valuable information about the device can be found in the proc file system.
Examiners can audit these files and should start with files in the /proc directory
instead of the subdirectories.
tmpfs
tmpfs is a file system that stores all files in virtual memory backed by RAM and, if
present, the swap or cache file for the device. Most Android devices at this time do
not have swap space. However, some aftermarket firmware enables this feature. The
advantage of tmpfs is that by using RAM, the storage is very fast and also non-
permanent and hence not saved on reboot.

Of course, for forensic examiners, this poses a challenge. If important data are
located on a tmpfs mount point, it must be collected before the device is rebooted or
loses power. It also presents a unique opportunity because the tmpfs is often readable by
the shell user and forensic programs can be copied and executed in tmpfs without
modifying theNANDflash or SD card. Thismay allow an examiner to acquire forensic
data fromanAndroid devicewithoutmodifying theNANDflash or SDcard in anyway.
WARNING

Investigating tmpfs
If your primary interest is in memory analysis of the device, making changes to tmpfs is not
advised unless you first have a forensic copy of the parts of memory you are interested in.

mailto:Image of Figure 4.1|tif
mailto:Image of Figure 4.1|tif

138 CHAPTER 4 Android file systems and data structures
On the HTC Incredible, the standard installation has four tmpfs mount points:

� /dev
� /mnt/asec
� /app-cache
� /mnt/sdcard/.android_secure

The /dev directory contains device files that allow the kernel to read and write to
attached devices such as NAND flash, SD card, character devices, and more. The
/mnt/asec and /mnt/sdcard/.android_secure directories are a relatively new addition
to Android and allow apps to be stored on the SD card instead of /data/data, which
provides more storage.

Interestingly, the /app-cache is also a new addition and appears to provide
tmpfs space, which apps can use. On the HTC Incredible, the Web Browser (com.
andrew.browser) created a directory in /app-cache and stores cache files from web
browsing.

ahoog@ubuntu:~$ adb shell ls -l / | grep app-cache
drwxrwxrwt root root 2011-01-31 15:42 app-cache

ahoog@ubuntu:~$ adb shell
$ ls -l /app-cache
drwxr-xr-x app_12 app_12 2011-01-31 15:42 com.android.browser

From the first listing, we can see that the app-cache directory has read, write, and
browse permissions set for all users. In addition, the final “t” in the permissions
“rwxrwxrwt” indicates that only root or the owner of the directory can delete or
rename the directory.

The second listing shows the directory’s inside app-cache, which only has
com.android.browser. However, as we dig deeper into the directory, we discover the
directory and files we are most interested in only allow the app itself (com.android.
browser, user id of app_12) or root access to the files.

ahoog@ubuntu:~$ adb shell ls -l /app-cache/com.android.browser/cache
drwxrwx--x app_12 app_12 2011-01-31 15:57 webviewCache

ahoog@ubuntu:~$ adb shell ls -l /app-cache/com.android.browser/cache/webviewCache
opendir failed, Permission denied

As we have root access on the device, here is what the directory contained:

� 1.4 MB of data
� 64 files
� 18 ASCII files (mostly CSS and JavaScript)
� 1 empty file
� 9 GIF files
� 5 HTML files
� 11 JPEG files
� 17 PNG files
� 3 UTF-8 files

mailto:Image of Figure 4.1|tif
mailto:Image of Figure 4.1|tif

File systems 139
ahoog@ubuntu:~/app-cache/com.android.browser/cache/webviewCache$ du -hs
1.4M .

ahoog@ubuntu:~/app-cache/com.android.browser/cache/webviewCache$ find . -type f |
wc -l
64

ahoog@ubuntu:~/app-cache/com.android.browser/cache/webviewCache$ find . -type f |
xargs file
./1d15a326: ASCII text, with very long lines
./982785ed: HTML document text
./fe3f9f59: GIF image data, version 89a, 1 x 1
./1cdb9fc0: PNG image, 140 x 44, 8-bit colormap, non-interlaced
./1c32cdf6: JPEG image data, JFIF standard 1.01
./aacce58f: ASCII C program text
./ad01e1f2: PNG image, 100 x 66, 8-bit/color RGB, non-interlaced
./39e4b622: PNG image, 140 x 44, 8-bit colormap, non-interlaced
./fcf0e4eb: PNG image, 64 x 3, 8-bit colormap, non-interlaced
./9244746c: PNG image, 140 x 44, 8-bit colormap, non-interlaced
./13bf2ef2: ASCII C program text, with very long lines
./44e36c36: PNG image, 560 x 370, 8-bit/color RGB, non-interlaced
./ffbedd54: JPEG image data, JFIF standard 1.01
./c780272a: ASCII English text
<snip>

If you browse the webviewCache directory from your Ubuntu workstation, you
can easily preview images and other files (Fig. 4.2).
FIGURE 4.2

Browser webviewCache from Ubuntu workstation.

mailto:Image of Figure 4.1|tif
mailto:Image of Figure 4.2|tif

140 CHAPTER 4 Android file systems and data structures
The /app-cache tmpfs directory contains information that would be important in
a forensic investigation. This underscores the growing need to educate front-line
responders to ensure that devices are properly handled to maximize the forensic
investigation’s effectiveness.
Extended File System (EXT)
The extended file system (EXT) is the de facto file system for Linux developed
specifically for the operating system. As you already know, Linux supports a large
number of file systems. However, the default is EXT. Since the original version of
EXT was developed in 1992, there have been three additional releases: EXT2,
EXT3, and EXT4.

Although EXT has been integral to most laptop, desktop, and server Linux
distributions, it was not found in early Android devices. In 2010, however, EXT
began to show up in devices, and on December 9, 2010, Google announced in their
Android Developer blog that an increasing number of Android devices were going to
move from YAFFS to the EXT (Android developers blog, n.d.). The move from
YAFFS to EXT seems to be driven by several factors that were discussed online
(Way, n.d.), including

� More Android devices are moving from raw NAND flash to regular block device
(eMMC)

� EXT4 is a standard Linux file system that supports full Unix permissions and
semantics

� EXT4 is stable and offers high performance
� YAFFS is single threaded, which would experience bottlenecks on forthcoming

dual-core systems

The first Android device to use EXT4 is the Google Nexus S, and it is expected that
many tablet devices running Android’s Honeycomb release will also use this new file
system. As only one Android device currently uses EXT4, many changes are expected
over time. Currently, the Nexus uses EXT4 in the following mount points:

� System image (read-only, /system)
� Local user data (readewrite, /data/data)
� Cache partitions (readewrite, /cache and possible others)

From a forensics standpoint, EXT4 is simply another file system that examiners
need to understand and forensic tools need to support. Of course, most forensic tools
do not fully (or even nominally) support EXT4 so this presents a bit of a problem.
File carving techniques do work and it is expected that more forensic software will
begin to support the file system over time.
FAT32/VFAT
Android devices often have one or more Microsoft FAT32 partitions, generally on
the SD card and eMMC. The reason for leveraging this venerable file system is not

File systems 141
due to superior design but is due to sheer compatibility with other operating systems.
Microsoft’s FAT32 file system was widely supported in most operating systems
including Mac OS X, all Windows versions (obviously), Linux, and more. This
means that Android data stored on the FAT32 partitions can be easily read, modified,
or even deleted on other file systems.

In Linux, the file system driver for a FAT32 partition is called VFAT, not to be
confused with Microsoft’s earlier Virtual FAT file system that bridged the FAT16 and
FAT32 implementation by adding, among other features, long file name support. On
the HTC Incredible, there are three mount points that use FAT32:

� /mnt/sdcard
� /mnt/secure/asec
� /mnt/emmc

As you may recall from Chapter 3’s section on USB interfaces, when an Android
device is connected to another computer, there is an option to expose the devices’
USB mass storage (UMS) interfaces to enable file sharing. On the HTC Incredible,
both the /mnt/sdcard and /mnt/emmc partitions can be presented to other operating
systems over the USB connection as a UMS device.

The /mnt/secure/asec partition is an encrypted partition on the SD card where
Android devices can store apps. When the ability to run apps from the SD card was
introduced, the security engineers were understandably concerned that app data
could easily be damaged or compromised because file permissions are not main-
tained in the VFAT/FAT32 partitions. As such, the app (.apk file) is encrypted on the
physical device and when in use, it is decrypted and temporarily stored at /mnt/asec
or another location specified by design.

As discussed previously, the removable SD card is mounted at /mnt/sdcard and
generally contains photos, videos, thumbnails, downloaded files, text to speech
temporary files, and Google Maps Navigation data as well as data from many
Android Market applications. The newer /mnt/emmc is a FAT32 partition, not
removable, and resides in storage architected into the device. In the devices
examined thus far, the eMMC is formatted as FAT32, again for interoperability.
YAFFS2
When the first Android device was released, many people were surprised to see
a relatively unknown file system play a key role in the system. YAFFS, which is an
acronym for Yet Another Flash File System, is an open-source file system developed
specifically for NAND flash and is licensed under both the GNU Public License
(GPL) and a commercial license agreement for those who do not wish to follow the
strict GPL guidelines (YAFFS licence FAQs, n.d.). Android devices use the latest
release of YAFFS (YAFFS2) that follows more strict NAND flash guidelines meant
to improve the endurance of the NAND flash while optimized to run on low-memory
mobile or embedded devices.

142 CHAPTER 4 Android file systems and data structures
YAFFS2 was developed by Aleph One Ltd, a company based in New Zealand.
Driven by customer requests, Aleph One began YAFFS design in December 2001
and released the first publicly available source code in May 2002. The primary
developer (or certainly the most visible) is Charles Manning who is described as
“The Embedded Janitor” and has been developing and “mopping up” embedded
systems for 20 years (YAFFS: the NAND-specific flash, n.d.). Charles is quite active
on the YAFFS mailing list and is the de facto expert on YAFFS and YAFFS2.
TIP

Additional YAFFS2 resources
Analysts and engineers interested in the internals of YAFFS2 are encouraged to read the
full documentation (and source code, if that’s your thing) from http://www.yaffs.net/ and sign
up for the mailing list.

YAFFS2 was built specifically for the growing NAND flash devices and has
a number of important features that address the stringent needs of this medium.
YAFFS2 is

� a log-structured file system (which protects data even through unexpected power
outages)

� provides built in wear-leveling and error correction
� capable of handling bad blocks
� fast and has a small footprint in RAM

However, since its usage was limited prior to Android, there are currently no
forensic tools (commercial or open source) that support the file system. This leaves the
forensic analysts with few options except to download the YAFFS2 source code, grab
a forensic image of a partition, open it up in your favorite hex editor, and start digging.
Although some utilities should develop over time, Android’s move to EXT4 may
reduce the motivation for commercial forensic companies to develop such support.

As covered in the NAND flash section, YAFFS2 addressed the memory in blocks
through the MTD subsystem and each block contains a set number of pages (called
chunks in YAFFS documentation and code). When YAFFS2 is ready to write data to
the NAND flash, it passes both the data and metadata structures to the MTD. The
MTD is then responsible for writing (as well as reading) both the data and the
metadata to the NAND flash.

For most Android devices, the MTD subsystem addressed NAND flash in blocks
that are divided into 64 chunks with each chunk containing 2048 bytes (so blocks are
128K) plus a 64-byte out-of-band/spare area (OOB) where various tags and meta-
data are stored. When a block is allocated for writing, it is assigned a sequence
number that starts at 1 and increments with each new block.

All data structures stored in YAFFS2 are referred to as Objects and can be files,
directories, symbolic links, and hard links. Each chunk either stores a yaffs_
ObjectHeader (object metadata) or data for the object. The yaffs_ObjectHeader
tracks various information including the Object type, the parent object, a checksum

http://www.yaffs.net/

File systems 143
of the name to speed up searching, the object name, permissions and ownership,
MAC information, and the size of the object if it is a file.

In the 64-byte OOB/spare area, YAFFS2 not only stores critical information
about the chunk but also shares the area with the MTD subsystem. The critical
YAFFS2 tags are as follows:

� 1 byte: block state (0xFF if block is good, any other value for a bad block)
� 4 bytes: 32-bit chunk ID (0 indicates that chunk is storing a yaffs_ObjectHeader,

else data)
� 4 bytes: 32-bit Object ID (similar to traditional Unix inode)
� 2 bytes: number of data blocks in this chunk (all but final chunk will be fully

allocated)
� 4 bytes: sequence number for this block
� 3 bytes: ECC for tags (in Android, handled by MTD)
� 12 bytes: ECC for data (in Android, handled by MTD)

If an object is changed, a new yaffs_ObjectHeader is written to flash because
NAND memory can only be written once before erasing. The old data and headers
still exist but are ignored in the file structure by examining the values of the sequence
number. Using this process complies with the guideline that blocks in NAND flash
can never be re-written (only written once and then erased when no longer needed).
This, of course, can be of enormous benefit to the data-recovery process as modified
or deleted data will still exist on the NAND flash unless the block went through
the garbage collection process used to erase a block and prepare it to accept new
data.

Similarly, when a file is deleted in YAFFS2, the parent directory for the
ObjectHeader is moved to a special, hidden directory called unlinked. The file
remains in this directory until all of the chunks in the file are erased. To achieve this,
the file system tracks the number of chunks in the system for the file. When it reaches
0, the remnants of the file no longer exist. At that point, it will no longer track the
object in the unlinked directory.

While the file system structure can be regenerated completely from the OOB area
and ObjectHeader information, this is not efficientdespecially as the size of NAND
flash memory grows. The structure is thus loaded and maintained in RAM (with
writes to the NAND flash as needed) using a tree-node structure (T-node) to track all
allocated chunks. T-nodes are a fixed 32 bytes and, at their lowest level (level 0),
store an index used to locate the first chunk ID. As the file size grows, additional
levels are added, which consist of eight pointers to other T-nodes.

To regenerate, YAFFS2 reads each chunk in its block allocation order, starting
from the end and working back, and populates the file system structures as T-nodes
in RAM. This requires scanning the entire NANDda time-consuming operation. To
work around this issue, checkpointing was developed for YAFFS2, which prefers the
RAM structure to NAND flash (using 10 blocks) when it is properly unmounted.

A few other key concepts are needed to round out your understanding on
YAFFS2. First, garbage collection is queued up and, if needed, is done each time

144 CHAPTER 4 Android file systems and data structures
a write-to-the-system occurs. If all the chunks in a block are no longer in use, the
block is a candidate for garbage collection. The system is also capable of taking the
“dirtiest” block, copying allocated chunks to new blocks, thus making the block
available for garbage collection. To make the block available again, it is erased by
writing all 1’s (0xFF).

On an Android device, we can find detailed information about the YAFFS2 file
systems by examining the /proc/yaffs files:

ahoog@ubuntu:~$ adb shell cat /proc/yaffs
YAFFS built:Sep 30 2010 18:41:07
Id
Id

Device 0 "system"
startBlock......... 0
endBlock........... 1983
totalBytesPerChunk. 2048
nDataBytesPerChunk. 2048
chunkGroupBits..... 0
chunkGroupSize..... 1
nErasedBlocks...... 10
nReservedBlocks.... 5
blocksInCheckpoint. 3
nTnodesCreated..... 9600
nFreeTnodes........ 62
nObjectsCreated.... 1100
nFreeObjects....... 20
nFreeChunks........ 5690
nPageWrites........ 0
nPageReads......... 551024
nBlockErasures..... 0
nGCCopies.......... 0
garbageCollections. 0
passiveGCs......... 0
nRetriedWrites..... 0
nShortOpCaches..... 10
nRetireBlocks...... 0
eccFixed........... 0
eccUnfixed......... 0
tagsEccFixed....... 0
tagsEccUnfixed..... 0
cacheHits.......... 0
nDeletedFiles...... 0
nUnlinkedFiles..... 460
nBackgroundDeletions 0
useNANDECC......... 1
isYaffs2........... 1
inbandTags......... 0

Device 1 "datadata"
startBlock......... 0
endBlock........... 1191
totalBytesPerChunk. 2048
nDataBytesPerChunk. 2048
chunkGroupBits..... 0
chunkGroupSize..... 1
nErasedBlocks...... 11
nReservedBlocks.... 5
blocksInCheckpoint. 0

File systems 145
nTnodesCreated..... 3700
nFreeTnodes........ 119
nObjectsCreated.... 3000
nFreeObjects....... 84
nFreeChunks........ 50903
nPageWrites........ 2368440
nPageReads......... 1028358
nBlockErasures..... 38623
nGCCopies.......... 323313
garbageCollections. 18186
passiveGCs......... 2454
nRetriedWrites..... 0
nShortOpCaches..... 10
nRetireBlocks...... 0
eccFixed........... 0
eccUnfixed......... 0
tagsEccFixed....... 0
tagsEccUnfixed..... 0
cacheHits.......... 1017819
nDeletedFiles...... 0
nUnlinkedFiles..... 643647
nBackgroundDeletions 0
useNANDECC......... 1
isYaffs2........... 1
inbandTags......... 0

We can see many useful details, for example, on the “datadata” YAFFS2 partition
mounted at /data/data. By examining the /proc/yaffs listing for this partition, we can
learn the following:

1. There are 1192 blocks (0 through 1191) and we know there are 64 chunks (2048
bytes) per block. So, 128K� 1192 ¼ 152,576K, which you can confirm by
running the df command or examining /proc/mtd as we did above.

2. The number of Page Reads, Page Writes, and Block Erasures are shown. This
will provide a general idea of how much the NAND flash is used.

3. One strategy in the garbage collection procedure is to find blocks that are nearly
free, copy the remaining data out, and then mark the block available for
collection. We can see this happening at a high rate (323,313).

4. We can see there are no ECC errors detected.
5. The YAFFS2 metadata reports over 643,000 unlinked files.
6. YAFFS2 is not using software ECC and instead relies on either MTD or the

NAND flash.

If you compare the system partition that does not have the high read and write
usage of the /data/data direction, you will notice significant differences. Inspecting
the /proc/yaffs file may help provide necessary background information when
explaining error-correcting code, fragmented data, and more.

The best way to gain a deeper understanding of YAFFS2 is to simply create,
modify, and examine the file system directly. All of this is possible on the Ubuntu
workstation created for other exercises throughout the book. Since we already have
a Linux virtual machine and the build-essential package installed (which includes

mailto:Image of Figure 4.2|tif

146 CHAPTER 4 Android file systems and data structures
the necessary C compiler and supporting packages), we need to now install the mtd-
utils package:

ahoog@ubuntu:~$ sudo apt-get install mtd-utils

Then, we download the latest YAFFS2 source code:

ahoog@ubuntu:~$ curl http://www.aleph1.co.uk/cgi-bin/viewvc.cgi/
yaffs2.tar.gz?view=tar > yaffs2.tar.gz
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 391k 0 391k 0 0 242k 0 --:--:-- 0:00:01 --:--:-- 277k

And then extract yaffs2.tar.gz and compile so we can use the kernel module:

ahoog@ubuntu:~$ tar xzf yaffs2.tar.gz
ahoog@ubuntu:~$ cd yaffs2/
ahoog@ubuntu:~/yaffs2$ make
make -C /lib/modules/2.6.35-25-generic/build M=/home/ahoog/yaffs2 modules
make[1]: Entering directory `/usr/src/linux-headers-2.6.35-25-generic'
 CC [M] /home/ahoog/yaffs2/yaffs_mtdif.o
<snip>

Next, we are going to load the needed kernel modules to simulate an MTD in
RAM (unless you happen to have some NAND flash lying around which you can
hook up directly) and then mount a YAFFS2 partition.

First, we’ll create a place to mount the file system in our home directory:

ahoog@ubuntu:~$ cd; mkdir -p ~/mnt/yaffs2

Next we need to load a few kernel modules to enable MTD support:

ahoog@ubuntu:~$ sudo modprobe mtd
[sudo] password for ahoog:
ahoog@ubuntu:~$ sudo modprobe mtdblock

Next, we create the simulated NAND flash with the nandsim kernel module:

ahoog@ubuntu:~$ sudo modprobe nandsim first_id_byte=0x20 second_id_byte=0xa2
third_id_byte=0x00 fourth_id_byte=0x15
TIP

Additional information on Linux MTD
The Linux MTD web page provides more details on nandsim. The web site provides deep
background information and support for MTD so please visit it for full details.
Additional details on nandsim from the Linux MTD web site are provided here

for direct reference (NAND FAQ, n.d.):

“NAND simulator (nandsim) is an extremely useful debugging and development

tool which simulates NAND flashes in RAM or a file. To select the simulated flash

type one should specify ID bytes of your flashdthe ones which are returned by the

mailto:Image of Figure 4.2|tif
mailto:Image of Figure 4.2|tif
mailto:Image of Figure 4.2|tif
mailto:Image of Figure 4.2|tif
mailto:Image of Figure 4.2|tif
mailto:Image of Figure 4.2|tif

File systems 147
“Read ID” command (0x90)dconsult the flash manual. The following are

examples of input parameters:

� modprobe nandsim first_id_byte¼0x20 second_id_byte¼0x33d16MiB,
512 bytes page

� modprobe nandsim first_id_byte¼0x20 second_id_byte¼0x35d32MiB,
512 bytes page;

� modprobe nandsim first_id_byte¼0x20 second_id_byte¼0x36d64MiB,
512 bytes page;

� modprobe nandsim first_id_byte¼0x20 second_id_byte¼0x78d128MiB,
512 bytes page;

� modprobe nandsim first_id_byte¼0x20 second_id_byte¼0x71d256MiB,
512 bytes page;

� modprobe nandsim first_id_byte¼0x20 second_id_byte¼0xa2
third_id_byte¼0x00 fourth_id_byte¼0x15d64MiB, 2048 bytes page;

� modprobe nandsim first_id_byte¼0xec second_id_byte¼0xa1
third_id_byte¼0x00 fourth_id_byte¼0x15d128MiB, 2048 bytes page;

� modprobe nandsim first_id_byte¼0x20 second_id_byte¼0xaa
third_id_byte¼0x00 fourth_id_byte¼0x15d256MiB, 2048 bytes page;

� modprobe nandsim first_id_byte¼0x20 second_id_byte¼0xac
third_id_byte¼0x00 fourth_id_byte¼0x15d512MiB, 2048 bytes page;

� modprobe nandsim first_id_byte¼0xec second_id_byte¼0xd3
third_id_byte¼0x51 fourth_id_byte¼0x95d1GiB, 2048 bytes page;”

Now that we have the simulated NAND flash, we can verify size and
partition info by examining the /proc/mtd just as we did directly on the Android
device:

ahoog@ubuntu:~$ cat /proc/mtd
dev: size erasesize name
mtd0: 04000000 00020000 "NAND simulator partition 0"

The system shows that we have one MTD partition (mtd0), and erasesize in
hex of 0x20000 bytes (128 KB), and a total size in hex of 0x4000000
(65,536 KB or 64 MB). Next, we need to load the YAFFS2 kernel module into
memory:

ahoog@ubuntu:~$ sudo insmod ~/yaffs2/yaffs2.ko

Before we mount the YAFFS2 file system, let’s take a look at the uninitialized
simulated NAND flash in a hex editor. If you try to use tools like dd or simply xxd to
view the NAND flash device, you will not see the OOB areas because they are not
exposed to most tools. This is to prevent the intermixed 64 bits of metadata from
confusing programs that do not expect OOB in their file (imagine trying to display
a PDF that has 64 bytes of binary OOB data after each 2k chunk). To read the full
NAND flash including the OOB, we use the program nanddump that is part of the

mailto:Image of Figure 4.2|tif
mailto:Image of Figure 4.2|tif

148 CHAPTER 4 Android file systems and data structures
previously installed mtd-utils package. This will read the data and return them in
binary. There are several options to consider which can be easily viewed:

ahoog@ubuntu:~$ nanddump --help
Usage: nanddump [OPTIONS] MTD-device
Dumps the contents of a nand mtd partition.

 --help Display this help and exit
 --version Output version information and exit
-a --forcebinary Force printing of binary data to tty
-c --canonicalprint Print canonical Hex+ASCII dump
-f file --file=file Dump to file
-i --ignoreerrors Ignore errors
-l length --length=length Length
-n --noecc Read without error correction
-o --omitoob Omit oob data
-b --omitbad Omit bad blocks from the dump
-p --prettyprint Print nice (hexdump)
-q --quiet Don't display progress and status messages
-s addr --startaddress=addr Start address

For our purposes, we want to use nanddump to extract the full NAND with OOB
and pipe the output to a hex editor (xxd) for viewing:

ahoog@ubuntu:~$ sudo nanddump -a /dev/mtd0ro | xxd | less
0000000: ffff ffff ffff ffff ffff ffff ffff ffff
0000010: ffff ffff ffff ffff ffff ffff ffff ffff
0000020: ffff ffff ffff ffff ffff ffff ffff ffff
0000030: ffff ffff ffff ffff ffff ffff ffff ffff
0000040: ffff ffff ffff ffff ffff ffff ffff ffff
0000050: ffff ffff ffff ffff ffff ffff ffff ffff
0000060: ffff ffff ffff ffff ffff ffff ffff ffff
0000070: ffff ffff ffff ffff ffff ffff ffff ffff
0000080: ffff ffff ffff ffff ffff ffff ffff ffff
<snip>

Notice that the simulated NAND flash contains the expected 0xFF values that
a blank or erased NAND flash should have. The above command will allow you to
examine how the raw NAND flash is modified when we initialize and subsequently
modify the file system.

So, finally, we are ready to mount a YAFFS2 file system:

ahoog@ubuntu:~$ sudo mount -t yaffs2 /dev/mtdblock0 ~/mnt/yaffs2/

You can verify the file system is mounted and accessible:

ahoog@ubuntu:~$ sudo mount -t yaffs2 /dev/mtdblock0 ~/mnt/yaffs2/
ahoog@ubuntu:~$ mount | grep yaffs2
/dev/mtdblock0 on /home/ahoog/mnt/yaffs2 type yaffs2 (rw)

ahoog@ubuntu:~$ ls -la ~/mnt/yaffs2/
total 8
drwxr-xr-x 1 root root 2048 2011-02-03 11:37 .
drwxr-xr-x 3 ahoog ahoog 4096 2011-02-03 07:21 ..
drwx------ 1 root root 2048 2011-02-03 11:37 lost+found

So, we can see a YAFFS2 file system is mounted with read/write permissions at
~/mnt/yaffs2. Even though we have not created any files, the directory contains
a lostþfound virtual directory where files and directories whose parent directory

mailto:Image of Figure 4.2|tif
mailto:Image of Figure 4.2|tif
mailto:Image of Figure 4.2|tif
mailto:Image of Figure 4.2|tif

File systems 149
cannot be determined are stored. If you use the xxd hex editor again to examine the
simulated NAND flash device, it will still contain 0xFF. However, if you write
a single file with the following command:

ahoog@ubuntu:~$ nano -w ~/mnt/yaffs2/book.txt

and put the contents “Android Forensics and Mobile Security” in the file, then when
we examine the raw NAND flash, we can clearly see the YAFFS2 structures
including the ObjectHeaders, Objects, and file contents. Here’s a portion of the hex
content using nanddump and a slightly modified xxd command by adding the -a
option that will skip 0x00 rows:

ahoog@ubuntu:~$ sudo nanddump -a /dev/mtd0ro | xxd -a | less
0000000: 0100 0000 0100 0000 ffff 626f 6f6b 2e74 book.t
0000010: 7874 0000 0000 0000 0000 0000 0000 0000 xt..............
0000020: 0000 0000 0000 0000 0000 0000 0000 0000
*
00007e0: ffff ffff ffff ffff ffff ffff ffff ffff
00007f0: ffff ffff ffff ffff ffff ffff ffff ffff
0000800: ffff 0110 0000 0101 0010 0100 0080 0000
0000810: 0000 2aaa aaaa 0400 0000 fbff ffff ffff ..*.............
0000820: ffff ffff ffff ffff fff0 cfaa 5567 ffff Ug..
0000830: ffff ffff ffff ffff ffff ffff ffff ffff
0000840: 416e 6472 6f69 6420 466f 7265 6e73 6963 Android Forensic
0000850: 7320 616e 6420 4d6f 6269 6c65 2053 6563 s and Mobile Sec
0000860: 7572 6974 790a 0a00 0000 0000 0000 0000 urity...........
0000870: 0000 0000 0000 0000 0000 0000 0000 0000
*
0001040: ffff 0110 0000 0101 0000 0100 0000 2700 '.
0001050: 0000 1900 0000 0800 0000 f7ff ffff ffff
0001060: ffff ffff ffff ffff aa66 5bff ffff ffff f[.....
0001070: ffff ffff ffff ffff ffff ffff ffff ffff
0001080: 0100 0000 0100 0000 ffff 626f 6f6b 2e74 book.t
0001090: 7874 0000 0000 0000 0000 0000 0000 0000 xt..............
00010a0: 0000 0000 0000 0000 0000 0000 0000 0000

Beginning at offset 0x0000000, we can see the blank ObjectHeader where we
can easily see the file name in ASCII (book.txt). Beginning at 0x0000800 through
0x000083F, we can see the OOB data that is stored by YAFFS2 and then MTD as
packed binary data and must be decided. The actual contents of the file are written to
the NAND flash at 0x0000840. We see another OOB from 0x0001040 through
0x000107F and then the ObjectHeader is written to the NAND flash again at
0x0001080 because the original ObjectHeader represented the blank file. Once we
added the content and saved the file, the data was written to the NAND flash and
a new ObjectHeader was written to the NAND flash. The new ObjectHeader reflects
the new metadata about the Object including what chunks hold the data, MAC
(modified, accessed, changed) data, and more.

A key point to understand is that YAFFS2 could not simply update the first
ObjectHeader with this information because it would first have to erase that entire
block. So instead it writes a new ObjectHeader, generates a high sequence number
for that header which makes it the most up-to-date ObjectHeader for the file. As you
can imagine, the old ObjectHeader and data remain on the NAND flash unless they
go through garbage collection and thus provide a great opportunity to recover file
metadata and contents using forensic techniques.

mailto:Image of Figure 4.2|tif
mailto:Image of Figure 4.2|tif

150 CHAPTER 4 Android file systems and data structures
YAFFS Example
In this final section about YAFFS2, a fictitious scenario is presented to illustrate how
ObjectHeaders and Objects are written to the NAND flash. The example was pre-
sented by Charles Manning in his “How Yaffs Works” (How YAFFS works, n.d.).
Anyone interested in the internals of YAFFS is encouraged to print, read, or re-read
this document. In the example, we use a NAND flash which, for simplicity, has four
chunks per block and is erased (0xFF). After each change is described, a table will
show the contents of the NAND flash.

First, we create an empty file on the NAND flash as shown in Table 4.6.
Table 4.6 Blank File Created

Block Chunk ObjectId ChunkId
Status (Live or
Shrink/Delete) Comment

0 0 500 0 Live ObjectHeader for
blank file, length
of 0
The ObjectHeader points to an empty file. Next, we write three chunks of data to
the file, as shown in Table 4.7.

So far, this may seem straightforward. The object is now taking up the entire first
block.
NOTE

Fictitious NAND flash
Remember, our fictitious NAND flash has four chucks per block, not the typical 64 chunks we
see in commercial NAND flash.
Table 4.7 Write Three Chunks of Data

Block Chunk ObjectId ChunkId
Status (Live or
Shrink/Delete) Comment

0 0 500 0 Live ObjectHeader for
blank file, length
of 0

0 1 500 1 Live First chunk of
data

0 2 500 2 Live Second chunk of
data

0 3 500 3 Live Third chunk of
data

Table 4.8 Save the File’s New ObjectHeader

Block Chunk ObjectId ChunkId

Status (Live
or Shrink/
Delete) Comment

0 0 500 0 Shrink/delete Obsoleted
ObjectHeader.
Originally for blank
file, length of 0

0 1 500 1 Live First chunk of data

0 2 500 2 Live Second chunk of
data

0 3 500 3 Live Third chunk of data

1 0 500 0 Live New ObjectHeader,
file length 3.

File systems 151
Next, we are going to save the file that will cause a new ObjectHeader to be
written to the NAND flash as shown in Table 4.8.

The key point to understand here is that YAFFS2 is unable to go back and update
the original ObjectHeader with the new size, chunks of data, and others. Instead, it
must write a new ObjectHeader that will contain the metadata needed for the
updated file. In YAFFS2, the new ObjectHeader is given a larger sequence number
and thus it becomes the current ObjectHeader and YAFFS2 simply ignores the
previous one (however, it remains on disk).

Next, the file will be opened with read/write access and the first chunk of data
will be given a new value. Finally, the file is saved and closed, which results in
additional data written to the NAND flash, as shown in Table 4.9.

Again, since we cannot simply change the original first chunk of data in the file,
a new data chunk is written to the NAND flash and the previous data chunk is
obsolete. This is achieved as yet another new ObjectHeader is written to the NAND
flash, which points to the new first chunk of data for the file. Next, we are going to
truncate the file to a zero length file and the resulting NAND flash changes are shown
in Table 4.10.

As the file was truncated, none of the chunks in Block 0 are in use any longer.
This makes the block available for garbage collection, which will occur on the next
write cycle. This is referred to as lazy garbage collection because it uses an existing
write cycle to perform any necessary garbage collection. As before, a new Object-
Header is written to the NAND flash to account for the truncated file.

Finally, we rename the file and the NAND flash results are shown in Table 4.11.
During this cycle, Block 0 was garbage collected and is now available for writing

data. As the file was renamed, a new ObjectHeader was written to the NAND flash.
With all chunks in Block 1 now obsolete, they are available for garbage collection.
However, bear in mind that due to the limited endurance of NAND flash, write/erase
cycles are avoided.

Table 4.9 Save the New Data and ObjectHeader

Block Chunk ObjectId ChunkId

Status (Live
or Shrink/
Delete) Comment

0 0 500 0 Shrink/delete Obsoleted
ObjectHeader.
Originally for blank
file, length of 0

0 1 500 1 Shrink/delete Obsoleted first chunk
of data

0 2 500 2 Live Second chunk of data

0 3 500 3 Live Third chunk of data

1 0 500 0 Shrink/delete Obsoleted
ObjectHeader, file
length 3

1 1 500 1 Live New first chunk of
data

1 2 500 2 Live New ObjectHeader,
file length 3

Table 4.10 Truncate File and Write New ObjectHeader

Block Chunk ObjectId ChunkId

Status (Live
or Shrink/
Delete) Comment

0 0 500 0 Shrink/delete Obsoleted
ObjectHeader.
Originally for blank
file, length of 0

0 1 500 1 Shrink/delete Obsoleted first chunk
of data

0 2 500 2 Shrink/delete Second chunk of data

0 3 500 3 Shrink/delete Third chunk of data

1 0 500 0 Shrink/delete Obsoleted
ObjectHeader, file
length 3

1 1 500 1 Shrink/delete New first chunk of
data

1 2 500 2 Shrink/delete New ObjectHeader,
file length 3

1 3 500 3 Live New ObjectHeader,
file length 0

152 CHAPTER 4 Android file systems and data structures

Table 4.11 Rename File and Write New ObjectHeader

Block Chunk ObjectId ChunkId

Status (Live
or Shrink/
Delete) Comment

0 0 Erased

0 1 Erased

0 2 Erased

0 3 Erased

1 0 500 0 Shrink/delete Obsoleted
ObjectHeader, file
length 3

1 1 500 1 Shrink/delete New first chunk of
data

1 2 500 2 Shrink/delete New ObjectHeader,
file length 3

1 2 500 2 Shrink/delete New ObjectHeader,
file length 0

2 0 500 0 Live New ObjectHeader,
file renamed, file
length 0

Mounted file systems 153
The implications for forensics are that the entire history of ObjectHeader and
Object data chunks, unless garbage collected, would remain on the NAND flash.
With proper software, the NAND flash could be scanned and the entire history of the
file system could essentially be rebuilt. Not only would the timeline contain the date/
time of every edit, but it is possible to recover the actual state of the file. In practice,
the state of the YAFFS2 partitions is not this simple. However, the general principle
remains relevant.
MOUNTED FILE SYSTEMS
We have covered many components of Android’s memory systems in detail. Not
only have we explored RAM and the NAND flash, but we have also examined many
of the file systems in great detail. This background information will assist in your
forensic and security analysis of Android devices. To better understand this more
academic information, we will now explore the mounted file systems found on an
Android device.

154 CHAPTER 4 Android file systems and data structures
Mounted File Systems
Let us start with the file systems mounted on the HTC Incredible:

ahoog@ubuntu:~$ adb shell mount
rootfs / rootfs ro,relatime 0 0
tmpfs /dev tmpfs rw,relatime,mode=755 0 0
devpts /dev/pts devpts rw,relatime,mode=600 0 0
proc /proc proc rw,relatime 0 0
sysfs /sys sysfs rw,relatime 0 0
none /acct cgroup rw,relatime,cpuacct 0 0
tmpfs /mnt/asec tmpfs rw,relatime,mode=755,gid=1000 0 0
none /dev/cpuctl cgroup rw,relatime,cpu 0 0
/dev/block/mtdblock3 /system yaffs2 rw,relatime 0 0
/dev/block/mmcblk0p1 /data ext3 rw,nosuid,noatime,nodiratime,
errors=continue,data=writeback 0 0
/dev/block/mtdblock6 /data/data yaffs2 rw,nosuid,nodev,relatime 0 0
/dev/block/mmcblk0p2 /cache ext3
rw,nosuid,nodev,noatime,nodiratime,errors=continue,data=writeback 0 0
tmpfs /app-cache tmpfs rw,relatime,size=8192k 0 0
/dev/block/vold/179:9 /mnt/sdcard vfat
rw,dirsync,nosuid,nodev,noexec,relatime,uid=1000,gid=1015,fmask=0702,dmask=0702,
allow_utime=0020,codepage=cp437,iocharset=iso8859-1,shortname=mixed,utf8,
errors=remount-ro 0 0
/dev/block/vold/179:9 /mnt/secure/asec vfat
rw,dirsync,nosuid,nodev,noexec,relatime,uid=1000,gid=1015,fmask=0702,dmask=0702,
allow_utime=0020,codepage=cp437,iocharset=iso8859-1,shortname=mixed,utf8,
errors=remount-ro 0 0
tmpfs /mnt/sdcard/.android_secure tmpfs ro,relatime,size=0k,mode=000 0 0
/dev/block/vold/179:3 /mnt/emmc vfat
rw,dirsync,nosuid,nodev,noexec,relatime,uid=1000,gid=1015,fmask=0702,dmask=0702,
allow_utime=0020,codepage=cp437,iocharset=iso8859-1,shortname=mixed,utf8,
errors=remount-ro 0 0

When you run the mount command without parameters, it returns the list of
mounted file systems and their options. Table 4.12 is a description of the output
using several entries. However, note that each entry above ends with “0 0” which
is omitted from the table for space reasons. The “0 0” entry determines whether
or not the file system is archived by the dump command and the pass number that
determines the order in which the file system checker (fsck) checks the device/
partition for errors at boot time. On most desktop or server Linux systems, the
root file system has a pass number of 1 so it is checked prior to other file
systems.

The /mnt/sdcard has many options. The options are:

1. rw: mounted to allow read/write
2. dirsync: all updates to directories are done synchronously
3. nosuid: does not allow setuid (which would allow other users to execute

programs using the permission of file owner)
4. nodev: does not interpret any file as a special block device
5. noexec: does not let all files execute from the file system
6. relatime: updates the file access time if older than the modified time
7. uid¼1000: sets the owner of all files to 1000
8. gid¼1015: sets the group of all files to 1015

mailto:Image of Figure 4.2|tif

Table 4.12 Output of Mount Command Overview

Device
Name

Mount
Point

File
System
Type Options Notes

rootfs / rootfs ro,relatime This is the ro (read-only)
root file system mount at /

tmpfs /dev tmpfs rw,relatime,
mode¼755

The device directory is
mounted as tmpfs and has
permissions set to 755
that are read, write, and
execute for root (rwx) and
read/execute for everyone
else

/dev/block/
mtdblock6

/data/
data

yaffs2 rw,nosuid,
nodev,relatime

While the /data directory is
an ext3, the /data/data
where app data is stored is
a YAFFS2 file system. It is
mounted to allow read/
write access, does not
allow setuid (which would
allow other users to
execute programs using
the permission of file
owner), does not interpret
any file as a special block
device, and updates the
file access time if older
than the modified time

/dev/block/
vold/179:9

/mnt/
sdcard

vfat See SD card
numbered list

See SD card
numbered list

Mounted file systems 155
9. fmask¼0702: sets the umask applied to regular files only (set permissions
---rwxr-x, or user¼none, group¼read/write/execute,other¼read/execute)

10. dmask¼0702: sets the umask applied to directories only (set permissions
--- rwxr-x, or user¼none, group¼read/write/execute,other¼read/execute)

11. allow_utime¼0020: controls the permission check of mtime/atime.
12. codepage¼cp437: sets the codepage for converting to shortname characters on

FAT and VFAT file systems.
13. iocharset¼iso8859-1: character set to use for converting between 8-bit char-

acters and 16-bit Unicode characters. The default is iso8859-1. Long file names
are stored on disk in Unicode format.

14. shortname¼mixed: defines the behavior for creation and display of file names
that fit into 8.3 characters. If a long name for a file exists, it will always be the
preferred display. Mixed displays the short name as is and stores a long name
when the short name is not all upper case.

156 CHAPTER 4 Android file systems and data structures
15. utf8: converts 16-bit Unicode characters on CD to UTF-8.
16. errors¼remount-ro: defines the behavior when an error is encountered; in this

case, remounts the file system read-only.

All of the mount command options are explained in the manual page (man 8
mount). However, for most cases, a quick scan will reveal the information an
examiner needs including the mount points, types, and permissions on the file
systems.

The df command will provide information about the free space available on the
mounted file systems:

ahoog@ubuntu:~$ adb shell df
/dev: 211600K total, 0K used, 211600K available (block size 4096)
/mnt/asec: 211600K total, 0K used, 211600K available (block size 4096)
/system: 253952K total, 243724K used, 10228K available (block size 4096)
/data: 765992K total, 129840K used, 636152K available (block size 4096)
/data/data: 152576K total, 52048K used, 100528K available (block size 4096)
/cache: 198337K total, 10790K used, 187547K available (block size 1024)
/app-cache: 8192K total, 7140K used, 1052K available (block size 4096)
/mnt/sdcard: 1955520K total, 245664K used, 1709856K available (block size 32768)
/mnt/secure/asec: Permission denied
/mnt/emmc: 6920512K total, 233152K used, 6687360K available (block size 32768)

As you can see, one of the mount points (/mnt/secure/asec) returned a permission
denied when the shell user tried to determine how much disk space was free.
By looking at the parent directory, we can see that only root has access to the
directory:

ahoog@ubuntu:~$ adb shell ls -l /mnt
d---rwxr-x system sdcard_rw 1969-12-31 18:00 emmc
drwxr-xr-x root system 2011-01-31 15:42 asec
drwx------ root root 2011-01-31 15:42 secure
d---rwxr-x system sdcard_rw 2011-02-01 17:49 sdcard

Interestingly, two of these file systems/directories can be exposed through the
USB mass storage (UMS) option and when that occurs, the permissions on the
directories change. If the UMS option is not enabled, the file systems are fully
accessible to the Android device as you can see for /mnt/emmc and /mnt/sdcard.

However, when UMS is active and the two file systems are available to the
connected workstation, the permissions change:

ahoog@ubuntu:~$ adb shell ls -l /mnt
d--------- system system 2011-01-23 10:08 emmc
drwxr-xr-x root system 2011-01-23 10:08 asec
drwx------ root root 2011-01-23 10:08 secure
d--------- system system 2011-01-23 10:08 sdcard

As you can see, all permissions on /mnt/emmc and /mnt/sdcard are removed and
thus the Android device cannot access /mnt/emmc or /mnt/sdcard from the phone
directly (i.e., it is exclusively shared with the connected workstation).

mailto:Image of Figure 4.2|tif
mailto:Image of Figure 4.2|tif
mailto:Image of Figure 4.2|tif

Mounted file systems 157
SUMMARY

The physical memory, file systems, and data structures present on an Android device
are the fundamental building blocks for data storage. Having a deep understanding
of these structures will not only enable you to understand an Android device but to
also perform your own research and development when presented with new file
systems and data structures.
References
Android developers blog: Saving data safely. (n.d.). Retrieved February 2, 2011, from http://

android-developers.blogspot.com/2010/12/saving-data-safely.html.
Android reverse engineering. (n.d.). thomascannon.net. Retrieved January 29, 2011, from

http://thomascannon.net/projects/android-reversing/.
Data storage. (n.d.). Android Developers. Retrieved March 13, 2011, from http://developer.

android.com/guide/topics/data/data-storage.html#netw.
How YAFFS works: the internals. (n.d.). YAFFS. Retrieved February 4, 2011, from http://

www.yaffs.net/how-yaffs-works-internals.
Nand Faq. (n.d.). Memory technology device (MTD) subsystem for Linux, Retrieved March

13, 2011, from http://www.linux-mtd.infradead.org/faq/nand.html.
The sysfs filesystem. (n.d.), Retrieved February 1, 2011, from http://www.kernel.org/pub/

linux/kernel/people/mochel/doc/papers/ols-2005/mochel.pdf.
Way, T. (n.d.). Android will be using ext4 starting with Gingerbread. Thoughts by Ted.

Welcome to thunk.org, Retrieved February 2, 2011, from http://thunk.org/tytso/blog/
2010/12/12/android-will-be-using-ext4-starting-with-gingerbread/.

Licence FAQs, Y. A. F. F. S. (n.d.). YAFFS, Retrieved February 4, 2011, from http://www.
yaffs.net/yaffs-licence-faqs.

YAFFS: the NAND-specific flash file systemdIntroductory Article. (n.d.). Retrieved February
2, 2011, from http://www.yaffs.net/yaffs-nand-specific-flash-file-system-introductory-
article.

http://android-developers.blogspot.com/2010/12/saving-data-safely.html
http://android-developers.blogspot.com/2010/12/saving-data-safely.html
http://thomascannon.net/projects/android-reversing/
http://developer.android.com/guide/topics/data/data-storage.html%23netw
http://developer.android.com/guide/topics/data/data-storage.html%23netw
http://www.yaffs.net/how-yaffs-works-internals
http://www.yaffs.net/how-yaffs-works-internals
http://www.linux-mtd.infradead.org/faq/nand.html
http://www.kernel.org/pub/linux/kernel/people/mochel/doc/papers/ols-2005/mochel.pdf
http://www.kernel.org/pub/linux/kernel/people/mochel/doc/papers/ols-2005/mochel.pdf
http://thunk.org/tytso/blog/2010/12/12/android-will-be-using-ext4-starting-with-gingerbread/
http://thunk.org/tytso/blog/2010/12/12/android-will-be-using-ext4-starting-with-gingerbread/
http://www.yaffs.net/yaffs-licence-faqs
http://www.yaffs.net/yaffs-licence-faqs
http://www.yaffs.net/yaffs-nand-specific-flash-file-system-introductory-article
http://www.yaffs.net/yaffs-nand-specific-flash-file-system-introductory-article

Android device, data,
and app security
CHAPTER
5

INFORMATION IN THIS CHAPTER

� Data theft targets and attack vectors

� Security considerations

� Individual security strategies

� Corporate security strategies

� App development security strategies
INTRODUCTION
There is a delicate balance in being both a forensic analyst and a privacy advocate. If
a device were 100% secured, then forensic investigation of the device would fail to
return any information. On the other hand, if a device’s security measures were
completely absent, forensic expertise would hardly be necessary to extract mean-
ingful data from the device.

The primary consumers of mobile forensics are law enforcement and govern-
ment agencies. They use and secure many types of sensitive data on mobile devices,
and they have the mandate and authority to investigate crimes. They rely not only on
digital forensic analysis, but can also exercise their authority through search
warrants and subpoenas and compel most organizations to produce needed infor-
mation such as financial records, e-mail, Internet service provider logs, and more.

Similarly, corporations need to protect their sensitive data, and at times launch
internal investigations to ensure security. While their authority does not reach
beyond their company, in the United States, corporations can exercise wide authority
pertaining to searches on devices they own.

Finally, individuals have the right to access their own data. Whether they exercise
this in the pursuit of civil litigation or for other matters, they have the authority to do
so on devices they own.

In the cases of individuals and corporations, the parties generally have no need
to recover sensitive information such as credit cards, banking information, or
passwords on the device they have authority to investigate. Corporations would not
seek an individual’s credit card data in an internal investigation, and they have the
means to access corporate e-mail systems and change passwords. In the case of
individuals, they already have access to their own financial records, e-mail, and
Android Forensics. DOI: 10.1016/B978-1-59749-651-3.10005-6
Copyright � 2011 Elsevier Inc. All rights reserved.

159

http://dx.doi.org/10.1016/B978-1-59749-651-3.10005-6

160 CHAPTER 5 Android device, data, and app security
other such sensitive data. In the case of law enforcement and government agencies,
they can use their subpoena and search warrant powers to acquire the data they
seek.

So, in the end, the only people likely to benefit from highly sensitive data being
stored insecurely on mobile devices are cyber criminals. In the course of many
individual, corporate, and criminal investigations of mobile devices, we have
encountered highly sensitive personal information that was not central to the case.
However, if cyber criminals had access to that devicedwhether in their physical
possession or through remote exploitsdthe data they could gather would represent
a significant risk to the consumer.

Likewise, corporations are targets for commercial espionage, financial theft,
intellectual property theft, and a wide variety of other attacks. As many corporations
move to employee-owned devices, even more control and oversight of the device is
lost, placing corporate data at great risk.

And finally, law enforcement and government agencies are negatively affected
by mobile security issues. The agencies are comprised of individuals who share the
same risk of data exposure as consumers. Like corporations, the agencies themselves
may be the target of attacks, which seek not only sensitive data that could jeopardize
investigations or embarrass the agency but also attacks with motives as serious as
international espionage. And a challenge unique to law enforcement and govern-
ment agencies is that many, many crimes involving mobile devices must be inves-
tigated, straining already overloaded criminal investigation units and digital forensic
laboratories.

For these reasons, mobile device security is a rising concern for individuals,
corporations, and law enforcement and government agencies.
DATA THEFT TARGETS AND ATTACK VECTORS
At this point anyone still reading is quite aware that smartphones, and Android
devices in particular, contain an enormous amount of information, often blending
both personal and corporate data. Android devices can be a target of data theft as
well as a means by which theft can occur (attack vector). Understanding the
various threats and scenarios will allow security engineers and developers to
design appropriate controls to mitigate risk. While this chapter cannot possibly
provide exhaustive coverage of such a broad topic, specific threats and mitigation
strategies will be covered and should serve as a strong starting point for security
professionals.
Android Devices as a Target
Primary focus of mobile security research, exploits, and articles has been on
smartphones as a target of data theftdand rightfully so. The risks to consumers,
corporations, and agencies are very real, and most security experts agree that

Data theft targets and attack vectors 161
malicious software targeting mobile devices is on the rise and will remain a focus of
cyber criminals.

Mobile devices contain a wealth of personal and corporate data in a highly
concentrated and portable form. Criminals are generally pragmatic and cyber
criminals are no exception. If they can exploit one device that contains not only user
names, passwords, and sensitive data about an individual, but also the same types of
information about their employers, they will clearly target that opportunity.
Furthermore, while the data from one mobile app may not provide sufficient
information for the criminal to achieve their goal, combining the information found
from the numerous installed applications typically yields an alarmingly complete
profile of the owner.

Mobile devices are not only easy to lose and relatively easy to steal, but they
also have a fairly short usage scenario before consumers want the latest model.
Both of these situations result in a large number of smartphones available for
purchase through venues such as eBay and Craigslist, and many of the devices
are not properly wiped leaving personal data intact. Furthermore, malicious code,
malware, and remote exploits increasingly target mobile devices, and history
indicates they will result in significant data theft. The extent of their effectiveness
will only be determined over time; but given the urgent pace of development of
the operating systems (Android in this case), and the rapid proliferation of
mobile apps, it is certainly reasonable to expect that many of these attacks will
succeed.
Data at Rest
Data at rest is a term used to describe data that are stored in nonvolatile memory and
thus are neither located in RAM nor in transit through networks (cellular, data, or
other networks). The term data at rest is often used in laws and regulations and
defines one key state where data must be secured.

Throughout this book, we highlight different examples of data that an Android
device contains. Here, let’s consider two fictitious scenarios: one focusing on
corporate customers and one focusing on an individual.

For the individual, the Android device is used for personal communications,
personal finance, entertainment, and general information surfing. Examining the
phone might recover the following:

� SMS/MMS: All allocated (undeleted) SMS and MMS will be recoverable as well
as much of the unallocated (deleted but still on the NAND flash). The infor-
mation recovered will include not only the messages themselves, but any
attachments including pictures, videos, audio files, phone contacts (.vcf file),
calendar items, and more. There are also many third-party SMS/MMS apps that
may include additional features.

� Call logs: While also available from the wireless carrier, the full call logs are
recoverable. These could include call attempts that failed to make it to the carrier
as well as other metadata that we can correlate, such as location (this can also be

162 CHAPTER 5 Android device, data, and app security
generally estimated based on cell towers) and other activities happening on the
device prior to the call being placed.

� Voice mail: In the case of installed voice-mail applications, such as Verizon’s
visual voice mail, allocated voice-mail messages are usually recoverable as audio
files (.OGG). Some unallocated voice-mail messages may be recoverable as well.

� Financial apps: While they vary widely, most installed financial apps store some
data locally or cache web pages. In some cases, the information recoverable can
include user login, password, account numbers, and transaction details. In our
testing, for example, the Mint.com app stored a user name, PIN for accessing the
local app, and some bank account transaction information.

� Personal e-mail: Most installed e-mail apps store the contents of e-mail messages
in plain text, including e-mail headers (To/From e-mail addresses). In some
cases, the user credentials including user login and password are also recover-
able. The standard Android mail app, for example, when used to connect to
Hotmail via POP3, was found to store the password in plain text.

� Web history: Allocated web history including URLs visited, cookies, and cached
pages are recoverable. Unallocated space may include additional web history
information.

� Google search history: URLs from Google including search terms.
� YouTube: URLs of videos watched.
� Pictures and videos: Photos and videos taken by the user, stored on the device,

related to applications, and others.
� Geo-location: GPS coordinates in pictures, other artifacts.
� Game history and interactions.

In this fictitious situation, a skilled forensic examiner can recover extensive
information about an individual.

In our corporate example, it simply builds on the individual since most devices
blend the individual’s information with their corporate information. Here are some
additional items typically recoverable from a corporate device:

� Corporate e-mail and attachments
� Voice mail and faxes sent via e-mail
� User names, passwords, and domain information
� Wi-Fi access points, information, and passwords
� Calendar items
� Instant Messenger or other communications with employees
� Corporate files stored on the device for convenience

As you can see, if an attacker was looking for an effective way to infiltrate
a corporation, an employee’s device (or better yet, several employees’ devices) can
provide many insights and avenues for an attackdnot to mention recovering
sensitive corporate information directly from the device.

One concrete example that may raise significant alarm with corporate security
managers is how Android’s built-in e-mail application stores credentials for an

http://Mint.com

Data theft targets and attack vectors 163
e-mail account that uses Microsoft’s exchange ActiveSync (EAS) protocol. The
credentials used to authenticate to EAS are a user’s active directory domain user
name and password. Many corporations centralize their authentication, authoriza-
tion, and accounting (AAA) services into an active directory that enables single
sign-on and simplified management. Overall, the simplification leads to more
effective security. In the Android mail application (com.android.mail), the user’s
EAS is stored in plain text in a well-defined location. The database is stored in /data/
data/com.android.email, Here is an overview of the folders and files:

ahoog@ubuntu:~$ tree com.android.email/
com.android.email/
├── cache
│ └── webviewCache
├── databases
│ ├── 1.db_att
│ │ ├── 1
│ │ ├── 2
│ │ └── 3
│ ├── EmailProviderBody.db
│ ├── EmailProvider.db
│ ├── webviewCache.db
│ └── webview.db
├── files
│ └── deviceName
├── lib
└── shared_prefs
 └── AndroidMail.Main.xml

The password is located in the EmailProvider.db in a table called HostAuth in
a column conveniently named password:

ahoog@ubuntu:~$ sqlite3 com.android.email/databases/EmailProvider.db
SQLite version 3.6.22
Enter ".help" for instructions
Enter SQL statements terminated with a ";"
sqlite> .mode line
sqlite> select * from HostAuth;
 _id = 1
 protocol = eas
 address = owa.CorpExchangeServerExample.com
 port = 0
 flags = 5
 login = thisIsTheirUserNameInPlainText
 password = thisIsTheirPasswordInPlainText-Seriously
 domain = NeverHurtsToHaveTheDomainInfoToo
accountKey = 0

In addition to the account’s user name, password, and domain, the full subject and
body of e-mail are stored in the data directory, as well as attachments, preferences, and
other information. All are stored in plain text (the term silver platter comes to mind).

There are two primary techniques attackers use to access data at rest. The first
requires physical access to the device and will use a variety of techniques that are
essentially the same techniques used by forensic examiners and which will be

164 CHAPTER 5 Android device, data, and app security
explored in Chapter 6. While physical access to a device is not necessarily easy to
achieve, we mention plausible scenarios above, including lost or stolen phones as well
as phones that are replaced with newer models but not securely wiped. In addition,
people who travel internationally, especially executives at corporations, may find their
phones are temporarily confiscated and examined by customs officials as they enter
a country. In this scenario, the officials have unfettered physical access to the device.

The other primary techniques attackers use to access data at rest are remote
exploits and malicious software. In these scenarios, the attackers are able to gain
additional privileges by using programmatic and social engineering techniques. The
techniques may include exploiting vulnerabilities found in the Linux kernel and core
Android libraries, phishing attacks, or exploiting vulnerabilities in apps. In addition,
users may inadvertently install apps and grant permissions beyond the access needed,
thereby allowing malicious software access to data at rest. Finally, social engineering
remains a highly effective way to compromise systems, and mobile devices are not
immune from this. Users are accustomed to installing a variety of apps, often knowing
little about the app provider and often trust and freely follow links presented to them in
e-mail and SMS, opening avenues to social engineering-based attacks.

Data in Transit
Data in transit (sometimes called data in motion) is a term used to describe data that
is in transit through networks (cellular, Wi-Fi, or other networks) or is located in
RAM. The term data in transit is often used in laws and regulations and defines
another key state where data must be secured.

In general, most of the information stored on a device (and described above) will,
at some point, have traveled through the network. Beyond the data itself, quite a bit
of information never persisted to the device is transmitted and must be protected.
Some examples include the following:

� Passwords: Many applications do not store passwords on the device and require
the user to authenticate each time the app is opened. The password is therefore
only transmitted, not stored.

� Two-factor authentication
� Password reset security responses
� Data displayed in an application but not saved or cached to nonvolatile storage

(e.g., account numbers and balances)

A good way to demonstrate the data traveling through the network is with an
example. In this case, a computer running BackTrack 4 (a Linux-based penetration
testing suite), was connected to a network hub, which also has a Wi-Fi access point
connected to it. The network interface on the computer is set to promiscuous mode,
which allows the device to see all traffic on the network hub, even if the traffic was
not destined for the interface. The urlsnarf program is run which intercepts the traffic
on the network interface (eth0) and inspects it for URLs. If a URL is found, it is
printed to screen. Bear in mind, all network traffic is intercepted so any unencrypted
data such as user names or passwords could be similarly captured and viewed.

Data theft targets and attack vectors 165
root@bt:~# sudo urlsnarf
urlsnarf: listening on eth0 [tcp port 80 or port 8080 or port 3128]
10.1.10.11 - - [17/Mar/2011:09:26:19 -0500] "GET
http://api.twitter.com/1/statuses/mentions.json?include_entities=true&count=100&
since_id=45865608952295424 HTTP/1.1" - - "-" "TwitterAndroid/2.0.1 (122)
ADR6300/8 (HTC;inc;verizon_wwe;inc;)"
10.1.10.11 - - [17/Mar/2011:09:26:19 -0500] "GET
http://api.twitter.com/1/statuses/retweets_of_me.json?include_entities=true&
count=100&since_id=15855940804812800 HTTP/1.1" - - "-" "TwitterAndroid/2.0.1
(122) ADR6300/8 (HTC;inc;verizon_wwe;inc;)"
10.1.10.11 - - [17/Mar/2011:09:26:20 -0500] "GET
http://api.twitter.com/1/statuses/home_timeline.json?include_entities=true&
count=100&since_id=48383245812895746 HTTP/1.1" - - "-" "TwitterAndroid/2.0.1
(122) ADR6300/8 (HTC;inc;verizon_wwe;inc;)"
10.1.10.11 - - [17/Mar/2011:09:26:20 -0500] "GET
http://api.twitter.com/1/account/rate_limit_status.json HTTP/1.1" - - "-"
"TwitterAndroid/2.0.1 (122) ADR6300/8 (HTC;inc;verizon_wwe;inc;)"
10.1.10.11 - - [17/Mar/2011:09:26:20 -0500] "GET
http://api.twitter.com/1/direct_messages.json HTTP/1.1" - - "-"
"TwitterAndroid/2.0.1 (122) ADR6300/8 (HTC;inc;verizon_wwe;inc;)"
10.1.10.11 - - [17/Mar/2011:09:26:20 -0500] "GET
http://api.twitter.com/1/account/rate_limit_status.json HTTP/1.1" - - "-"
"TwitterAndroid/2.0.1 (122) ADR6300/8 (HTC;inc;verizon_wwe;inc;)"
10.1.10.11 - - [17/Mar/2011:09:26:21 -0500] "GET
http://api.twitter.com/1/direct_messages/sent.json HTTP/1.1" - - "-"
"TwitterAndroid/2.0.1 (122) ADR6300/8 (HTC;inc;verizon_wwe;inc;)"
10.1.10.11 - - [17/Mar/2011:09:27:35 -0500] "GET http://goo.gl/4G7Bx HTTP/1.1"
- - "-" "Mozilla/5.0 (Linux; U; Android 2.2; en-us; ADR6300 Build/FRF91)
AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/533.1"
10.1.10.11 - - [17/Mar/2011:09:28:51 -0500] "GET http://mrkl.it/ HTTP/1.1"
- - "-" "Mozilla/5.0 (Linux; U; Android 2.2; en-us; ADR6300 Build/FRF91)
AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/533.1"
10.1.10.11 - - [17/Mar/2011:09:28:51 -0500] "GET http://mrkl.it/
-/media/static/main.css HTTP/1.1" - - "http://mrkl.it/" "Mozilla/5.0 (Linux; U;
Android 2.2; en-us; ADR6300 Build/FRF91) AppleWebKit/533.1 (KHTML, like Gecko)
Version/4.0 Mobile Safari/533.1"
10.1.10.11 - - [17/Mar/2011:09:28:51 -0500] "GET http://mrkl.it/
-/media/static/fancybox/jquery.fancybox-1.3.4.pack.js HTTP/1.1"
- - "http://mrkl.it/" "Mozilla/5.0 (Linux; U; Android 2.2; en-us; ADR6300
Build/FRF91) AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile
Safari/533.1"
10.1.10.11 - - [17/Mar/2011:09:28:51 -0500] "GET
http://ajax.googleapis.com/ajax/libs/jquery/1.5.1/jquery.min.js HTTP/1.1"
- - "http://mrkl.it/" "Mozilla/5.0 (Linux; U; Android 2.2; en-us; ADR6300
Build/FRF91) AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile
Safari/533.1"
10.1.10.11 - - [17/Mar/2011:09:28:51 -0500] "GET http://mrkl.it/
-/media/static/fancybox/jquery.fancybox-1.3.4.css HTTP/1.1"
- - "http://mrkl.it/" "Mozilla/5.0 (Linux; U; Android 2.2; en-us; ADR6300
Build/FRF91) AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile
Safari/533.1"
10.1.10.11 - - [17/Mar/2011:09:28:52 -0500] "GET http://mrkl.it/
-/media/static/misc/screenshot-demo.png HTTP/1.1" - - "http://mrkl.it/"
"Mozilla/5.0 (Linux; U; Android 2.2; en-us; ADR6300 Build/FRF91)
AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/533.1"
10.1.10.11 - - [17/Mar/2011:09:28:52 -0500] "GET http://mrkl.it/
-/media/static/main.js HTTP/1.1" - - "http://mrkl.it/" "Mozilla/5.0 (Linux; U;
Android 2.2; en-us; ADR6300 Build/FRF91) AppleWebKit/533.1 (KHTML, like Gecko)
Version/4.0 Mobile Safari/533.1"
10.1.10.11 - - [17/Mar/2011:09:28:52 -0500] "GET http://mrkl.it/
-/media/static/sign-in-with-twitter-l.png HTTP/1.1" - - "http://mrkl.it/"
"Mozilla/5.0 (Linux; U; Android 2.2; en-us; ADR6300 Build/FRF91)
AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/533.1"

166 CHAPTER 5 Android device, data, and app security
10.1.10.11 - - [17/Mar/2011:09:28:53 -0500] "GET
http://www.youtube.com/embed/ptq21VOfgfs?rel=0&hd=1 HTTP/1.1"
- - "http://mrkl.it/" "Mozilla/5.0 (Linux; U; Android 2.2; en-us; ADR6300
Build/FRF91) AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile
Safari/533.1"
10.1.10.11 - - [17/Mar/2011:09:28:53 -0500] "GET http://www.
google-analytics.com/__utm.gif?utmwv=4.8.9&utmn=722592738&utmhn=mrkl.it&
utmcs=UTF-8&utmsr=800x1183&utmsc=32
-bit&utmul=en&utmje=0&utmfl=10.1%20r92&utmdt=Welcome&utmhid=414400362&utmr=-&
utmp=%2F&utmac=UA-21535947
-2&utmcc=__utma%3D15198314.1123929794.1300372147.1300372147.1300372147.1%3B%2B
__utmz%3D15198314.1300372147.1.1.utmcsr%3D(direct)%7Cutmccn%3D(direct)%7Cutmcmd%
3D(none)%3B&utmu=q HTTP/1.1" - - "http://mrkl.it/" "Mozilla/5.0 (Linux; U;
Android 2.2; en-us; ADR6300 Build/FRF91) AppleWebKit/533.1 (KHTML, like Gecko)
Version/4.0 Mobile Safari/533.1"
10.1.10.11 - - [17/Mar/2011:09:28:54 -0500] "GET http://mrkl.it/
-/media/static/favicon.ico HTTP/1.1" - - "http://mrkl.it/" "Mozilla/5.0 (Linux;
U; Android 2.2; en-us; ADR6300 Build/FRF91) AppleWebKit/533.1 (KHTML, like
Gecko) Version/4.0 Mobile Safari/533.1"
10.1.10.11 - - [17/Mar/2011:09:28:54 -0500] "GET
http://s.ytimg.com/yt/swfbin/watch_as3-vflFkxRDW.swf HTTP/1.1"
- - "http://www.youtube.com/embed/ptq21VOfgfs?rel=0&hd=1" "Mozilla/5.0 (Linux;U;
Android 2.2; en-us; ADR6300 Build/FRF91) AppleWebKit/533.1 (KHTML, like Gecko)
Version/4.0 Mobile Safari/533.1"
10.1.10.11 - - [17/Mar/2011:09:28:57 -0500] "GET
http://i1.ytimg.com/crossdomain.xml HTTP/1.1"
- - "http://s.ytimg.com/yt/swfbin/watch_as3-vflFkxRDW.swf" "Mozilla/5.0 (Linux;
U; Android 2.2; en-us; ADR6300 Build/FRF91) AppleWebKit/533.1 (KHTML, like
Gecko) Version/4.0 Mobile Safari/533.1"
10.1.10.11 - - [17/Mar/2011:09:28:57 -0500] "GET
http://i1.ytimg.com/vi/ptq21VOfgfs/hqdefault.jpg HTTP/1.1"
- - "http://s.ytimg.com/yt/swfbin/watch_as3-vflFkxRDW.swf" "Mozilla/5.0 (Linux;
U; Android 2.2; en-us; ADR6300 Build/FRF91) AppleWebKit/533.1 (KHTML, like
Gecko) Version/4.0 Mobile Safari/533.1"

There are several well-known techniques that attackers use to compromise data
in transit, along with new techniques that security researchers either discover
themselves or practitioners uncover “in the wild.” Some of the well-known tech-
niques include:

� Man-in-the-middle (MITM) attacks
� MITM Secure Sockets Layer (SSL) attacks
� DNS spoofing attacks (including /etc/hosts)
� TMSI overflow baseband attacks

The baseband attacks are a very new technique focusing on the cellular modem
(baseband) firmware. According to Ralf-Philipp Weinmann who presented his
exploit at the DeepSec 2010 conference, the baseband firmware is code written in the
1990s. Until recently, the technologies behind the GSM networks were poorly
understood. However, over time researchers have unraveled the protocols and
hardware and today it is possible to create a rogue GSM station with readily
available hardware powered by open source software. With control over the GSM
network, an attacker can execute a TMSI overflow attack that causes a heap overflow
in the GSM baseband stack of Apple iOS devices prior to 4.2. This attack can lead to
remote code execution on the baseband processor (Ralf-Philipp Weinmann, n.d.).

Data theft targets and attack vectors 167
While the baseband attack is cutting edge security work, the MITM attacks have
been around much longer and are well understood and fairly easily executed.
Generally, these techniques require the attacker to fully control a computer that is
between the mobile device and the ultimate destination the device is trying to
communicate with. In addition, the attacker may control key network services or
devices such as a network switch, Wi-Fi access point, or DNS server, facilitating the
attack.

Once the attacker is able to position their computer between the Android device
and the ultimate destination, they can launch the attack. For this scenario, let us
assume an Android device connects to a Wi-Fi network unaware that a malicious
attacker controls the network. The user begins to surf the Internet and ultimately
decides to check their Twitter account. To keep the example simple, let us assume
the Twitter app they use does not implement SSLdmost do not, although recently
the official app began to move in this direction.

When they launch the app, it will connect to Twitter’s web site, authenticate, and
take the user to their account. Of course, in the interim, the attacker was capturing
the web traffic and now has the Twitter user name and password. If the app did use
SSL, but did not properly verify the SSL certificate, they would be susceptible to an
MITM SSL attack, illustrated in Fig. 5.1.

Although such an attack may only capture one password, most users reuse user
names and passwords for many different sites. Once the attacker has one user name
Attacker SSL Clear Text

Authentic
SSL

Authentic Web site
with SSL Certificate

Internet

Victim Attacker-controlled
Wi-Fi access point

Attacker

FIGURE 5.1

Man-in-the-middle SSL.

168 CHAPTER 5 Android device, data, and app security
and password, they can begin to research more about the consumer and generally
will be able to find additional systems they can access.

Another very well-known attack leverages interception of HTTP session cookies
to hijack another user’s authenticated session on a web site and begin acting as that
user. Eric Butler’s Firesheep extension for the Firefox browser (http://codebutler.
com/firesheep) demonstrates how easy this type of attack can be. Although using
strong encryption such as WPA on Wi-Fi and other local measures can make things
more difficult, as long as web sites do not require HTTPS end-to-end this type of
attack remains possible.
Android Devices as an Attack Vector
While the press and many security researchers largely focus on attacks directed at
mobile devices, a growing concern is use of the Android device as an attack vector,
particularly in environments where sensitive data are stored. The most common
scenarios are found in corporations with trade secrets, intellectual property, or other
data requiring protection. Corporations often implement sophisticated systems
designed to prevent, or at least detect, the theft of data. These systems are not only
expensive to purchase, but they generally require skilled staff to maintain, monitor,
and then act on the information they provide.

Until recently, most data protection systems focused on securing the perimeter
of the enterprise to keep attackers outside the protected areas. Over time, systems
designed to protect against internal threats were also developed. The most recent
systems delve even deeper into the network and infrastructure in an attempt to
thwart attacks. These systems focus on areas such as data loss prevention (DLP),
network access control (NAC), and network forensics. However, currently
available solutions do not yet fully address the threat presented by mobile
devices.

Smartphones are obviously popular, and most people use them as intended.
Often, they are personally owned and heavily used devices, so asking someone to
forfeit their device is an intrusive request. For these reasons, Android devices and
other smartphones end up in locations which house sensitive information, and yet
no one shows concern. If instead someone brought a digital camera, voice
recording device, camcorder, external hard drive, or their own networking
equipment, it might raise some eyebrows. Of course, an Android device essen-
tially contains all of these features and more in a compact and innocent looking
device.
Data Storage
Perhaps the simplest example of how an Android device can be used to steal
information is to use it as a USB mass storage device. Until recently, smartphones
had very little data storage. However, as NAND flash matured, manufacturers
realized they could cost-effectively create devices that stored many gigabytes of

http://codebutler.com/firesheep
http://codebutler.com/firesheep

Data theft targets and attack vectors 169
data. Android devices today can easily store eight to 16 GB of data on the NAND
flash, and many devices include an external SD card, which can store an additional
16 GB or more.
Recording Devices
Android devices are also well equipped to record nearly anything around them. They
can easily take photographs of sensitive equipment or documents. They can also
record video that captures a path through a building, including the sounds, security
stations, windows, stairwells, and other items of interest along the way. Finally,
Android devices can also passively record audio. All of this can be done without
drawing any attention.
Circumventing Network Controls
Perhaps an even more dangerous feature is the ability of an Android device to
provide a separate network connection for a computer or devices with wireless
capabilities. There are several ways to achieve this. In one scenario, an attacker
(perhaps a disgruntled employee) could connect their Android device to their
workstation. Casual observation may not raise any alarm since many people do this
to charge their phones while at work. However, by installing a small program on
both the Android device and the computer, a new network connection is provided to
the computer. In this case, the traffic routed from the computer and out the Android
device is completely outside the control of the environment. This connection
completely circumvents the firewall, network access control, data loss prevention,
and other security controls in place at the company.

The newest Android devices do away with the USB cables and software pack-
ages needed in the above scenario. Instead, the Android device becomes a fully
functional wireless access point through which the computer can connect. This
scenario just as effectively circumvents the network security controls in place and
can be performed with the device in a briefcase or pocket.
REALLY SNEAKY TECHNIQUES

If anyone believes cyber criminals or other attackers are not intelligent and creative, they are
showing a serious lapse in judgment. So, let’s think outside the box using some of the
techniques described above.

For this scenario, the attacker is an employee who works at a company, which has signif-
icant trade secrets and intellectual property. (The attacker would not necessarily need to work
there; however, it keeps the example simple.) Many of the executives who have access to this
information also have laptops and smartphones. Many of these same executives drink coffee
at a popular cafe, which offers free Wi-Fi. The wireless access point at the coffee shop is
called “indigo” and since they do not want to require a password, the access point is open and
unencrypted. While the executives are drinking, eating, or meeting at the cafe, they connect
their smartphones and laptops to the Wi-Fi.

When they return to the office, they leave the wireless active on their smartphones and
laptops. The disgruntled employee, of course, knows about the cafe’s wireless access point

170 CHAPTER 5 Android device, data, and app security
and decides to enable the access point feature on his Android device. Naturally, he has root
access on his device, so he also installs and runs software that allows him to capture the
network traffic. When one of the executives gets close to his Android device, the smart-
phone or laptop associates with his access point. He is then able to intercept traffic and
either capture sensitive files and communications or perhaps capture credentials he could
then use to access key network resources.

While there are obstacles the attacker would have to overcome to implement this scenario,
it is highly plausible and illustrates the unique risks Android devices present when used as an
attack vector.
SECURITY CONSIDERATIONS
Security, like development, is an art. There might be some who do not agree with
that statement but very few of those individuals are going to read a forensics and
security book. Security is an artistic process in the sense that art is “the products of
human creativity” and “a superior skill that you can learn by study and practice and
observation” (WordNet Search, n.d.). So why is all of this relevant? Successful
security strategies require the right mix and balance of experience, judgment, risk
assessment, creativity, observation, skill, and maybe even a little bit of luck. This
section aims to cover a few broad concepts related to Android and security.
Security Philosophy
Security is nearly always a compromise, weighing the risk of an attack against the
costs (financial or other costs) of mitigating that risk. While in theory an entirely
secure system is possible, in practice it is nearly impossible to achieve, especially
when social engineering attacks are available. The task of securing a system is very
difficult even when the security professional controls access to the device including
physical and remote access.

Mobile devices are even more difficult to secure than traditional systems. Most of
the control that a corporate security engineer would have over a computer system is
not possible on an Android device. First, the device is comprised of hardware and
software assembled and maintained by a large, complex, and diverse group of
participants including the core Android team, software and hardware from the
manufacturer, and software and hardware from the wireless carrier. Furthermore, the
device owner has the ability to install custom apps and even modify the device
significantly if they have sufficient privileges. Finally, the device travels through
many networks, none of which can be fully trusted. Yes, securing mobile devices is
a major challenge.

In spite of these challenges, certain security controls could be engineered into the
device. To summarize an overall strategy and philosophy, the following meme is
useful:

If you secure it, they won’t come.

Security considerations 171
The conceptdadapted from Universal Studio’s 1989 film “Field of Dreams,” where
a voice is heard encouraging the lead character to build a baseball field on his Iowa
farmdis simple. In themovie, the voice repeatedly says, “If you build it, hewill come”
(Ten, n.d.). Eventually, the lead character does build the field and, in fact, mysterious
guests do show up. But you’ll have to watch the movie for the complete story.

So, how does this apply to mobile security? There is a wide margin between the
ideal cryptographically secure system and a system that stores all information in
plain text in a well-organized and known structure as described in the previous
com.android.email example. Since the mobile device is a risk from many different
vectors, even encrypted data can be compromised. However, providing some level of
obfuscation or encryption will complicate the process required for an attacker to
compromise the data. While this approach is not 100% secure, attackers are prag-
matic and tend to target the easily accessible data.

One argument against this approach is that obfuscation or encryption that can be
compromised provides a false sense of security causing the user to act more care-
lessly with the device in the belief that the security of their data is impenetrable.
Whereas if the data are stored as plain text and the users are aware of the risk, they
will use significant caution with the device.

Ultimately, the individual and corporate consumers of mobile devices will steer
the mobile security ecosystem in the direction they value through their purchasing
decisions. This necessarily depends on education. Consumers must be sufficiently
aware of the data security risks and possible solutions available.

There are a number of potential solutions which, while not providing a crypto-
graphically secure system, do improve the security of the data by increasing the
complexity of a successful attack. The list below illustrates several concepts:

1. Require the user to enter the password the first time an app is run after a reboot,
and only store the password in memory. In this case, the password is not stored on
the device in plain text. However, it is in memory and an attacker with sufficient
privileges on the device could recover the password.

2. Further, secure the concept above by encrypting the password stored in memory
with a key based on time, pseudo-random data, etc. In this fashion, the attacker
now must have root on the device and instead of just dumping the processes’
memory, they must locate the encryption key, the encrypted password, and the
algorithm used to comprise the password.

3. Building further, the memory password could expire in time or the encryption
key used in memory could be changed.

4. If the password is stored on the NAND flash, encrypt it with a pass phrase, which
is entered after the device reboots.
Although none of the ideas provide a completely secure system, the level of
effort and privilege needed to compromise the data are orders of magnitude
higher than compromising sensitive data stored in plain text, and thus deters most
attackers.

172 CHAPTER 5 Android device, data, and app security
US Federal Computer Crime Laws and Regulations
There are a number of federal laws in the US that relate to the security of data at rest
and in transit. The goal of this section is to simply enumerate several of the more
relevant laws and provide a brief background on them. In total, more than 40 federal
statues exist which can be used in the prosecution of computer-related crimes
(Country, n.d.). In addition, each State typically has laws and regulations addressing
computer crimes.

At the Federal level, the US Department of Justice (DoJ) divides computer crime
into three distinct areas, two of which have broad application to the types of crimes
involved when compromising a mobile device. The two areas are (Country, n.d.):

1. Crimes that target a computer network or device directly including hacking,
viruses, worms, malware, sniffers, and others.

2. Crimes committed using computer networks or devices such as fraud, identity
theft, corporate espionage, and so on.

The Computer Fraud and Abuse Act (CFAA) focuses on attacks against
government and financial institution computers or computers involved in interstate
or foreign commerce. The Act covers narrow areas, such as accessing computers
without proper authorization to gain data related to national security issues, as well
as more broad sections, such as accessing a computer without proper authorization
in order to commit fraud or to gain something of value. The CFAAwas amended by
the National Information Infrastructure Protection Act to cover new abuses and to
include those intending to commit the crime.

The Electronic Communications Privacy Act (ECPA) is another law covering
computer crimes, which makes it illegal to intercept stored or transmitted electronic
communication without authorization. The ECPA contains several key areas:

� Communication in transit including oral, wire, or electronic communications
(Wiretap).

� Data at rest (Stored Communication Act) that protects data stored on nonvolatile
memory.

� Collecting communication metadata such as phone numbers, IP addresses, and
other data used to route communication (but not the message itself). This is
called the “pen registers and trap and trace devices,” which refers to the actual
devices and techniques used to capture the information.

One final law worth pointing out is the Economic Espionage Act, which passed in
1996 and focused on the theft of trade secrets. Prior to the law’s enactment, it was
difficult to prosecute economic or corporate espionage. However, by defining trade
secrets and requiring the owner of the information to have taken reasonable measures
to protect the secret, itwas nowpossible to criminalize the theft of intellectual property.

This section barely addresses the significant body of legal work which can be
used to prosecute computer crimes. However, it should be clear that there are laws
designed to protect data both in transit and at rest.

Security considerations 173
In addition to Federal and State laws that criminalize computer crimes, a host
of regulatory bodies govern corporations who operate in industries which
involve sensitive data. Many of the regulations provide not only specific
guidelines and requirements the firms must follow, but also civil and criminal
statues with both financial penalties and, in the most serious cases, may even
involve incarceration. A list of the better known regulations include the
following:

� Payment card industry data security standard (PCI)
� Health Insurance Portability and Accountability Act (HIPAA)
� HITECH Act Enforcement Interim Final Rule (additions to HIPAA)
� Federal Information Security Management Act (FISMA)
� Family Education Rights and Privacy Act of 1974 (FERPA)
� Gramm-Leach-Bliley Financial Services Modernization Act of 1999 (GLBA)
� Sarbanes Oxley (SOX)

Clearly the US Congress recognizes the importance of data and computer
security and provides a wide array of laws, regulations, and other resources to
compel and enforce the security measures necessary to successfully operate the
systems critical to commerce.
Open Source Versus Closed Source
There is active debate discussed often on the Internet about whether open source
software is more secure than closed source software. As with many long-standing
debates, the main proponents of each side are committed to their conclusions and the
debate continues on.

The basic reason behind the belief that open source software is more secure is
that the code can be examined for flaws and quickly fixed. Implicit in this belief are
two assumptions:

1. Developers will perform security code reviews on open source projects.
2. The software’s maintainer will quickly patch the security flaws.

Of course, if both the steps are not taken, then clearly the open source software
will contain security flaws and without the patch, attackers will have precisely the
information they need to exploit the bug. However, if both of these steps are taken,
then the security of the code will evolve with the benefit of many people examining
the code and the resulting patches.

In contrast, the closed source model relies on a company developing secure code,
scouring their code for security flaws, patching the flaws, and then distributing the
updates in a timely manner to subscribers. For anyone tasked with securing desktops
running Microsoft’s Windows platforms, they are well aware of the continuous
stream of patches released on the second Tuesday of each month, which has been
dubbed “Patch Tuesday.” Microsoft also releases patches for serious exploits outside
of the scheduled Patch Tuesdays.

174 CHAPTER 5 Android device, data, and app security
In a fairly high profile finding, Microsoft acknowledged (Microsoft Security
Advisory, n.d.) that security researcher Tavis Ormandy discovered a 17-year-old
security flaw in every 32-bit version of Microsoft Windows since 1993 (Windows
NT through Windows 7) (Johnston, n.d.). Ormandy posted the full details of the
exploit to the Full Disclosure mailing list nearly seven months after notifying
Microsoft of the vulnerability on June 12, 2009 ([Full-disclosure] Microsoft, n.d.). It
is noteworthy that the official advisory to Microsoft’s clients only happened after
Ormandy posted the disclosure and after that point, Microsoft acknowledged the
security flaw within one day.

In another recent example, security firm Matta Consulting discovered numerous
critical security flaws in Cisco System’s Unified Videoconferencing platform. The
flaws enable a malicious third party to gain full control of the device, harvest user
passwords, and possibly launch an attack against other parts of the target infra-
structure (Cisco Unified Video, n.d.). Cisco acknowledged the flaws in their advisory
with the hard-coded passwords representing the most alarming flaw:

The Linux shadow password file contains three hard-coded user names and

passwords. The passwords cannot be changed, and the accounts cannot be

deleted. Attackers could leverage these accounts to obtain remote access to

a device by using permitted remote access protocols.

(Cisco Security Advisory, n.d.)

In the end, software development is a creative endeavor which, despite all best
efforts and intention, will likely contain flaws. The overall security of the software or
system is directly related to how quickly the flaws are discovered and resolved.
Although over eight years old (an eternity from a security standpoint), David A.
Wheeler’s “Secure Programming for Linux and Unix HOWTO” provides an
excellent overview of the debate and represents both the sides. He quotes Elias Levy
(also known as Aleph One and moderator of the Bugtraq full disclose list in addition
to CTO and co-founder of SecurityFocus) as saying:

So does all this mean Open Source Software is no better than closed source

software when it comes to security vulnerabilities? No. Open Source Software

certainly does have the potential to be more secure than its closed source

counterpart. But make no mistake, simply being open source is no guarantee of

security.

(Secure Programming, n.d.)

At the end of his HOWTO, Wheeler concludes that open source software can be
more secure if the following happens:

� If the code is first closed source and then opened, it will start as less secure but
over time will improve.

� People must review the code.
� The reviewers and developers must know how to write secure code.
� Once flaws are found, they must be quickly fixed and distributed.

Security considerations 175
Ultimately, each individual will have to decide if they believe open source or
closed source software is more secure. Since large parts of Android system are
indeed open source, it is likely the software will initially have a number of flaws
discovered, but over time they will be addressed resulting in a more secure system.
Encrypted NAND Flash
The techniques and strategies for secure data in transmission are, generally
speaking, more mature, vetted, and secure than the technologies used to securely
store data at rest. The reason data in transmission are easier to secure is because the
duration of time in which the information must be protected is short and well
defined. After the transmission of data in transit is complete, the keys protecting the
data can be discarded. In contrast, data at rest are nonvolatile and must, at any time,
be accessible to the user. That means that the keys for decryption must be available
on the device (or the user must type them every time, which is impractical) and thus
they are accessible to an attacker.

Bruce Schneier, a respected security technologist, cryptographer, and author,
summarizes the difficulties of using encryption to protect data at rest:

Cryptography was invented to protect communications: data in motion. This is

how cryptography was used throughout most of history, and this is how the

militaries of the world developed the science. Alice was the sender, Bob the

receiver, and Eve the eavesdropper. Even when cryptography was used to

protect stored dataddata at restdit was viewed as a form of communication.

In “Applied Cryptography,” I described encrypting stored data in this way: “a

stored message is a way for someone to communicate with himself through

time.” Data storage was just a subset of data communication.

In modern networks, the difference is much more profound. Communications are

immediate and instantaneous. Encryption keys can be ephemeral, and systems

like the STU-III telephone can be designed such that encryption keys are

created at the beginning of a call and destroyed as soon as the call is

completed. Data storage, on the other hand, occurs over time. Any encryption

keys must exist as long as the encrypted data exists. And storing those keys

becomes as important as storing the unencrypted data was. In a way,

encryption doesn’t reduce the number of secrets that must be stored securely; it

just makes them much smaller.

Historically, the reason key management worked for stored data was that the key

could be stored in a secure location: the human brain. People would remember

keys and, barring physical and emotional attacks on the people themselves,

would not divulge them. In a sense, the keys were stored in a “computer” that

was not attached to any network. And there they were safe.

This whole model falls apart on the Internet. Much of the data stored on the

Internet is only peripherally intended for use by people; it’s primarily intended

176 CHAPTER 5 Android device, data, and app security
for use by other computers. And therein lies the problem. Keys can no longer be

stored in people’s brains. They need to be stored on the same computer, or at least

the network, that the data resides on. And that is much riskier.

(Schneier on, n.d.)

Several other platforms, notably later models of Apple’s iPhones, implement
encryption on the user portions of the NAND flash. However, in the case of the 3.x
versions of Apple’s iOS, the encryption was quickly defeated for the reasons
highlighted previously. As of March 2011, the encryption of iOS 4.x has not yet been
broken. However, it is likely that over time this will happen.

The forensic strategies for dealing with encrypted NAND flash differ from
unencrypted ones. If the NAND flash is not encrypted, the memory could be
physically read via a chip-off or JTAG process and then decoded. However, with an
encrypted NAND flash, this technique will no longer work. Instead, to extract the
unencrypted data, the process executes on the device while it is running. In forensics,
this is referred to as a live acquisition and is used in other scenarios such as
a workstation or server that encrypts the contents of the hard drive or other storage
device.

Encryption will play a growing role in securing both data in transit and data at
rest. However, the data at rest will nearly always be vulnerable to attack. In this
instance, the security designers must find the balance between a cryptographically
secure system and one that offers little protection. The compromise will result in
a system that provides reasonable protection of the data at rest and in transit without
encumbering the user to the point where device is no longer useful.
INDIVIDUAL SECURITY STRATEGIES
While the large part of this chapter has focused on issues with mobile devices and
data security, there are user practices that can minimize the risk of compromise. As
before, this list is not intended to be comprehensive. Rather, it provides a solid basis
for securing the device.

1. Always use a data network you trust. For mobile devices, this may include your
wireless carrier’s data network or Wi-Fi access point at work, home, or other
trusted locations. This ensures that the networks used to transmit sensitive data
are not malicious or used by an attacker to compromise your sensitive data.
Although a carrier’s network can be compromised, there is far greater security in
place at a large company than on a smaller data network. Furthermore, while it is
easy to acquire, setup, and manage a rogue Wi-Fi access point, it is far more
difficult to implement rogue cellular data connections. So, in general, the cellular
data connections provided by the wireless carriers reduce the risk of attack.

2. Always place a pass code on the Android device to thwart a casual attacker from
gaining access to your sensitive data. Ideally, the Android device should perform
a full wipe of the user data if the pass code is input incorrectly more than a set

Individual security strategies 177
number of attempts. That way an attacker cannot compromise your pass code
through brute force. Also, if possible use the option for an alphanumeric pass-
word over a four-digit numeric PIN or pattern lock. The alphanumeric codes
provide far greater security by allowing more complex pass codes. Think of the
pass code on your device as similar to a password on your computer. It is hard to
imagine (perhaps just for security researchers) that anyone would have
a computer that did not have a password.

3. Check the free appWatchdog service at http://viaforensics.com/appwatchdog/ to
determine if the applications you use pass a basic security test. appWatchdog
audits mobile apps to determine if they securely store your user name, password,
and sensitive app data. The web site provides a result of pass, warn, or fail for
each area tested and details of what information was recovered. Currently,
a mobile app version of appWatchdog is being developed that will allow the user
to install directly on an Android (or iPhone) device and determine the audit status
of installed apps. It will also allow the user to directly contact the app developer
to request resolution to an audit issue as well as other notification options.

4. Never click on links in SMS messages and ideally avoid links in e-mail
messages, especially shortened links like bit.ly or goo.gl. Smartphone and
computer tablet users are three times more susceptible to e-mail phishing scams
than traditional PC and laptop users, according to research by security firm
Trusteer (Donohue, n.d.). The research determined that it is more difficult to
identify fraudulent web sites from a smartphone due to reduced screen sizes and
lack of software protecting the user from phishing scams. The best way to ensure
that you are visiting the valid web site is to either type it in manually, or (perhaps
a better approach) allow a trusted search engine to locate the web site on your
behalf. This allows the user to type (or mistype) the name of the company and
allows the search engine to find the appropriate sites. Some search engines, such
as Google, are now attempting to deter malicious or compromised web sites and
this provides an additional layer of protection for smartphone users.

5. Consider using an alternate web browser on your Android device. As mentioned
previously, cyber criminals are pragmatic, which is why for many years they
focused on attacking Microsoft Windows and largely ignored operating systems
such as Linux and Mac. In the mobile environment, many of the bundled
browsers are based on the open source WebKit project. As such, it is likely that
initial web attacks against Android and other smartphone devices will focus on
browsers utilizing WebKit. By using an alternative browser, you may find far
fewer attacks targeting your platform. However, this may only provide a nominal
and temporary increase in security.

6. When installing apps from the Android Market, ensure that the app is only
granted permissions necessary to operate. If you are installing an enhanced alarm
clock application and it requests access to your SMS and web history data, you
should not grant it permission. Although this will not protect you from all
malicious apps, it is an important layer of Android’s security and one the user
must take responsibility for.

http://viaforensics.com/appwatchdog/

178 CHAPTER 5 Android device, data, and app security
Over time, not only will this list grow and evolve but hopefully new security controls
will be introduced, which will help secure the mobile device and sensitive data.
CORPORATE SECURITY STRATEGIES
Corporations typically have more complex security requirements than individuals
because they are responsible for protecting the entire corporation from both internal
and external attacks. In addition, they may belong to a regulated industry required to
operate under some of the guidelines listed earlier in this chapter. For these reasons,
more fine grained control over assets, including mobile devices, is required.
Policies
One important aspect of mobile device management in corporations is a close
evaluation of current policies making sure to update them for the new situations
presented by mobile devices. Most policies do not account for smartphone and tablet
devices and the situations that might arise through their use. Although a complete
review of corporate policies is warranted, there are at least a few which will certainly
require attention. They include the following:

� Acceptable Use (for company resources, now including mobile devices)
� Data Security (obviously want to place policies around mobile devices)
� Backups and Data Retention (will likely be impacted, especially from an elec-

tronic discovery standpoint)

Although updating policies does not directly improve security through infor-
mation technology, it provides critical direction not only to the employees but also to
the security architects and those involved in internal investigations and disciplines. If
you have an outdated policy in place, it can be used against you. For example, if your
Acceptable Use policy simply adds mobile devices into the description of covered
resources, then all of the policies in place that allow a corporation to investigate
a device they own are now explicitly defined. Otherwise in a contentious legal battle,
it is quite possible opposing counsel would make the case that the mobile devices
were not covered by policy and thus the evidence found on the device (e.g., company
confidential documents) is not admissible. While your legal team may refute the
argument, it is far less expensive and more effective to simply update the policy to
include mobile devices.
Password/Pattern/PIN Lock
Passwords, pattern, and PIN locks are neither consistently nor effectively imple-
mented on Android devices. However, they do offer some protection. These features
have improved since they first appeared and will likely continue to improve over
time. With the exponential increase in processing power and a simultaneous

Corporate security strategies 179
reduction in cost, using brute force techniques to crack protection mechanisms is
affordable and more common each year. However, if the device is lost or stolen, it
provides a basic level of protection that would be effective against nontechnical
criminals.

All pass codes are not created equal. The most effective pass code is the one
that allows or requires an alphanumeric password. While entering these codes is far
more cumbersome for the users, it greatly increases the effort needed to crack the
password. The next most effective pass code is the pattern lock found in the first
Android device and many since then. The pattern technique introduced a new way to
approach locking the device and as such required the user to learn the new technique
resulting in a more effective lock. Instead of reusing old approaches (such as the
PIN), the user had to come up with a new pattern and thus it would be hard for an
attacker to use information about the person to guess the pattern lock. Perhaps for
familiarity, the venerable PIN was also included in many Android devices. While it
would be better to use a PIN than leave the phone unlocked, the PIN is probably the
easiest lock to defeat. They typically have a finite number of digits (four is the
common number), which dangerously constrains the number of overall combina-
tions. Furthermore, the PIN has been used to secure many other system, most well
known are Automated Teller Machine (ATM) cards. People tend to reuse PINs and
to base them on easily discoverable facts about them.

As suggested in the individual strategies in the previous section, the pass code
lock should have a maximum number of attempts allowed after which the device
should perform a factory reset and full wipe of the user data partitions. This will
prevent a brute force attack against the easier-to-defeat pass codes (i.e., the four-
digit PIN) and provide an additional layer of security.
Remote Wipe of Device
One of the most sought after security features for smartphones by corporate security
managers is the ability to remotely wipe the device. The feature is, without a doubt,
extremely important and powerful. However, it is a very fragile feature, and the
confidence it instills in security managers might be too high.

The basic premise behind the remote wipe is that the company can issue
a command to the device causing it to wipe all data and perform a factory reset.
Many of the smartphone platforms are building hooks into their system to allow this
control. However, the features were not designed from the beginning and do not yet
provide enough reliability to ensure high security.

Even provided the remote wipe hooks are present and working effectively, it is
quite easy to prevent the remote wipe command by simply not placing the device on
the network using airplane mode, removing the SIM card, or other such techniques.
In fact, some corporation might first disable a terminated employee’s cellular
account and then send the remote wipe command. In most cases, they will have
inadvertently removed their ability to remotely wipe the device. While the device is
no longer connected to the network, it will still have full access to the data. Savvy

180 CHAPTER 5 Android device, data, and app security
device owners who have root access on their device could also look into filtering
such requests to simply ignore them. However, the largest issue is simply that the
remote wipe feature is not sufficiently mature.

In Android 2.1 on the Motorola Droid, the remote wipe feature triggered using
Microsoft’s Exchange ActiveSync did not cause the device to wipe data. However,
when the same feature was tested on Android 2.2 on the Motorola Droid, the remote
wipe did occur. If you are relying on the remote wipe feature for data security, you
need to ensure that the remote wipe ability works on each of the Android hardware
platforms for each Android version installed. This, unfortunately, is a difficult
undertaking for most IT departments because the devices are widely distributed and
do not have a good central administrative tool (more on that later).

One fairly simple technique to overcome the limitations of remote wipe is to
install an application on the device that will automatically wipe the device if it is
unable to check in with the enterprise system after a specific amount of time. Using
such a technique (often called a watchdog or countdown app), provides a significant
improvement in data security because the device will automatically erase if unable to
connect to the corporate system after a certain number of attempts. So, even if
a device is offline, security managers can ensure all corporate data will be wiped
within a specific time frame. Of course, if a user disconnects his or her phone from
the network for a long time for legitimate reasons, it will result in an erased phone,
so user education on this feature is important. At this time, very few (if any)
applications exist that support this feature.

There is another technique that addresses data residing on the NAND flash. It is
possible to develop an app (and a few do exist) that would routinely erase the unused
(unallocated) space on the device’s user data storage partition. The benefit of this
being that (most) deleted data would no longer be recoverable, even with a physical
image. This erasing can be accomplished by having the app simply write a file with
0xFF until the partition fills up. At that point, the file is deleted and thus the allocated
space has been overwritten. Of course, there can be many repercussions to such
a program, including shortening the life of the NAND flash, causing the device to
become unresponsive while writing the file, wearing down the battery, or causing
other apps to crash or lose data if they try to access the partition when it is
completely full.
Upgrade to Latest Software
Although the smartphone market is innovating quickly, it is far more difficult for
enterprises to upgrade core infrastructure such as their Microsoft Exchange envi-
ronment. However, the last two versions of Microsoft Exchange offer enhanced
mobile management and security mechanisms. When Exchange is upgraded to the
latest version (currently Exchange 2010), additional options to securely manage
your device are available. Ensuring that the corporate infrastructure is up-to-date
will improve not only the manageability but the overall security of connected mobile
devices.

Corporate security strategies 181
Similarly, the mobile devices themselves should apply updates as they
become available. While in some cases a new bug or security flaw could be
introduced, in general the updated software will not only patch previously
discovered flaws but also add additional management and security features. The
example from the remote wipe section above illustrates this well as Android 2.1
on the Motorola Droid did not properly execute the remote wipe command
whereas Android 2.2 did.
Remote Device Management Features
Corporate customers have a growing need to manage the mobile devices connected
to their infrastructure. Although the list of features will vary between companies,
a general list of requirements might include the following:

� remotely provision devices
� remotely wipe devices
� enforce IT policies such as pass code, encryption, minimum OS versions,

upgrade policies, allowed/denied applications, and more
� remotely install/upgrade apps

As of Android 2.2, new device administration application programming inter-
faces (APIs) were introduced. They include the ability for apps to incorporate the
types of policy management listed earlier. Specifically, they support (Device
Administration, n.d.) the following abilities.

� Password enabled: Requires that devices ask for PIN or passwords.
� Minimum password length: Sets the required number of characters for the

password. For example, you can require PIN or passwords to have at least six
characters.

� Alphanumeric password required: Requires that passwords have a combination
of letters and numbers. They may include symbolic characters.

� Maximum failed password attempts: Specifies how many times a user can enter
the wrong password before the device wipes its data. The Device Administration
API also allows administrators to remotely reset the device to factory defaults.
This secures data in case the device is lost or stolen.

� Maximum inactivity time lock: Sets the length of time since the user last touched
the screen or pressed a button before the device locks the screen. When this
happens, users need to enter their PIN or passwords again before they can use
their devices and access data. The value can be between 1 and 60 min.

� Prompt user to set a new password.
� Lock device immediately.
� Wipe the device’s data (i.e., restore the device to its factory defaults).

On the Device Administration page on developer.android.com (Device Admin-
istration, n.d.), several examples of this API are demonstrated, as illustrated in
Fig. 5.2.

http://developer.android.com

FIGURE 5.2

Device administration API sample.

182 CHAPTER 5 Android device, data, and app security
When a user installs an app that uses the new administration APIs, they are
presented with an Enable Device Admin screen, shown in Fig. 5.3.

Although this is an improvement over no device management, it falls well short
of the needs and requirements of corporate customers. Also, though the APIs exist,
developers must incorporate them into their apps.

Several companies are trying to fill the void in full feature device management.
However, the solutions for smartphones are also still quite immature. Investing in
a third-party solution may address a short-term need. However, over time, Android,
the manufacturers, and device developers will develop more sophisticated manage-
ment features and tools. Similarly, many corporate devices synchronize with the
e-mail system using Microsoft’s Exchange ActiveSync (EAS) protocol and manage-
ment features continue to mature in this platform. So if immediate security concerns
necessitate better remote management of devices, a corporation might consider
implementing third-party tools for an incremental improvement in security. However,
there is a risk that these tools will not meet or exceed the manufacturers’ tools and thus
the technology and personnel investment will not prove worthwhile.

As much of the corporate data found on mobile devices centers around e-mail,
focusing security efforts in this area can yield good results. Several companies have
recognized this need and have developed their own e-mail clients, which implement
a variety of additional security mechanisms including two-factor authentication,

FIGURE 5.3

Enable device admin.

Corporate security strategies 183
encrypted data stores, and additional management interfaces. However, security-
conscious entities should audit the software to ensure they actually deliver on the
functionality they claim to implement.

Clearly, remote device administration is important to corporate clients and while
support for these features are still immature, expect significant improvements over
the next few releases of Android.
Application and Device Audit
It is difficult to secure mobile devices and their data if you do not have a full
understanding of what information is at risk. Corporations can initiate a mobile
security and risk mitigation audit to evaluate the data exposed on mobile devices. By
analyzing the actual devices and operating systems in use at their company, it is
possible to determine what data are stored, where it might be at risk (on the device,
in transit, in backups, etc.), and create specific policies, procedures, or even software
implementation to minimize the risk.

A typical audit can include evaluation of many criteria including

� What type of corporate data might be stored on the device
� Where that data are stored

184 CHAPTER 5 Android device, data, and app security
� What other applications can be installed, and access corporate data
� Effectiveness/capability of remote wiping and device administration
� Ability to implement corporate security policies
� Secure storage and transmission of passwords, authentication information, and

other sensitive data
� Effectiveness of encryption

Once the supported devices are well understood, the task of securing the data at
rest and in transit is less overwhelming, and specific strategies to minimize unac-
ceptable risk can be developed.

As with other areas of information security, a strategy and ongoing process is
necessary to maintain appropriate security measures and evaluate risk.
APP DEVELOPMENT SECURITY STRATEGIES
One final area extremely important to mobile security is the apps that are developed
and installed. This includes not only third-party apps, but also apps distributed by the
operating system developer (Android in this case), device manufacturers, and the
wireless carriers. The apps are the primary mechanism by which users interact with
their mobile device to access the information they are interested in. Often the
information is sensitive and provides private details about the user.
Mobile App Security Testing
After discovering numerous mobile application security vulnerabilities in the course
of performing forensic work, this author and colleagues at viaForensics began
auditing the security of data in popular applications and disclosed their findings
publicly on our web site. The goal of the free public service, called appWatchdog, is
to improve mobile app data security and protect consumers. As consumer awareness
of the data security risks rises, developers will be encouraged to thoroughly review
their apps prior to release and achieve a higher level of security. The findings can be
viewed at http://viaforensics.com/appwatchdog/. viaForensics plans to release a
mobile app that will check the installed apps on an Android device and provide
appWatchdog results for those already audited. It will also allow the consumer to
suggest an app for review as well as contact the app developer if they have any
concerns.

The appWatchdog service uses forensic and security assessment techniques to
determine whether user names, passwords, credit card numbers, or other application
data are being insecurely stored. The process involves installing the application and
running it in the manner in which a consumer uses the app. The device is then
forensically imaged and analyzed for personal information and application data. The
findings are first communicated to the app developer and then publicly disclosed in
order to provide this information directly to consumers. Users can then make an

http://viaforensics.com/appwatchdog/

App development security strategies 185
informed decision on whether or not they wish to continue use of that app, or perhaps
wait for the developer to release a more secure version.

Each app is reviewedbasedon certain criteria that dependon the specific uses for the
app. For example,with amobile payment app, the appwould beanalyzed for user name,
password, application data, and credit card numbers. However, for other applications,
credit card numbers may not be relevant. The following criteria are explained in further
detail, with the top three being the most applicable to most applications:

� Securely stores passwords? If any type of password is being stored unencrypted
on the device, the application would get a “Fail.”

� Securely stores user names?Application data are examined to determine whether
user names are being stored unencrypted on the device.

� Securely stores application data? Each application is analyzed for app-related
data. For example, financial apps are searched for account numbers, balances,
and transfer information. Other applications might store additional personal user
data, such as e-mail address, phone number, or address.

� Securely stores credit card information? For applications handling credit card
information, data are examined to determine whether the full credit card number
is stored unencrypted on the device as well as any supporting data associated
with it, such as expiration date or security number on the back of the card.

� Additional security tests: These tests can include capturing wireless data sent
from the mobile device and examining that traffic for user names, passwords,
PINs, and any other relevant application data. Additional security tests are
typically more time consuming and therefore only performed for an in-depth
application security review.

The appWatchdog service only provides a basic indication of whether a mobile
app implements security. By combining advanced mobile forensic and security
techniques, a far deeper analysis of a mobile app is possible. The items listed below
are some of the criteria that should be evaluated in order to determine whether a
mobile application is secure.

� How does the application handle web history and caching?
� Does the application securely transmit login data?
� Does the application avoid MITM attacks?
� Does the application securely transmit sensitive data?
� Is the application protected from session hijacking?
� Is the application able to permanently delete data and prevent storage on the

device?
� Does the application securely handle interruptions?
� Does the application properly secure data in backups?

A thorough application security audit leverages both advanced forensics and
security tests to uncover security flaws, protecting both developers and users. via-
Forensics provides these testing services and a certification, called appSecure. A
similar testing methodology can be effectively applied by internal forensic and

186 CHAPTER 5 Android device, data, and app security
security teams provided they have the tools and expertise, as well as the budget and
time, to execute the tests.
App Security Strategies
The results of appWatchdog and appSecure have led to some general guidelines that
mobile app developers should consider as they design, develop, and test their apps.
This list, as with others, is not necessarily exhaustive but provides some noteworthy
concepts for consideration.

User Names
Avoid storing user names in plain text on the device. For obvious usability issues,
you may decide to cache the user name on the device so the consumer does not have
to type it in every time. However, consider masking a portion of the user name that
would provide enough information for the consumer to identify their user name but
not enough for an attacker to have the entire user name. The user name is one
component needed to log into an account and the less an attacker knows, the less
effective they will be.

For example, let us assume an application which accesses sensitive health
information requires a user name. The consumer creates one called “andrewhoog.”
However, after the initial login, if the application only stores “andr))))” and then
displays that back to the user, it would be clear that they are logging into the correct
account. However, an attacker might only get the first four characters. Furthermore,
if the mask (using “)” in this case but could be presented in other ways) does not
give away the overall length of the user name, it makes it even more difficult for the
attacker to guess.

Finally, more online services are requiring more complex user names that must
be of a certain length and be alphanumeric. So, whereas a user name “andrewhoog”
might be fairly easy to guess, AndrewHoog6712 would be far more difficult. Some
sites may even place further restrictions on the user name where it cannot contain
any portion of your basic profile information such as your name.

Passwords
Perhaps far more concerning are applications that store the password in plain text.
There are several strategies to avoid this serious problem. First, as discussed in the
“Security philosophy” section, you could simply force the users to type their
password in each time they run the app. If you think about logging into a banking
web site from your home computer, you must log in every time. While you stay
logged in for your current session, once a certain period of inactivity has passed (or
you log out), you can no longer access the protected web site without re-entering
your user name and password.

Another approach to consider is the use of security tokens to avoid storing the
real password on the mobile device. If a user securely authenticates to a protected
resource on the Internet, a security token can be generated, which not only expires

App development security strategies 187
after a certain period of time but is also unique to that device. While someone with
physical access to the phone could access the protected resource, it would only last
until the token expired, at which point they would need the user name and password
again. Furthermore, if the security token was specific to the device and was
compromised remotely, the token would not provide access to the restricted
resource. Methodologies that use the security token approach also would not place
any other protected resource on the Internet at risk, even if the account holder used
the same user name and password (which is quite common).

Implementing a token-based authentication scheme is more complicated than
a simple user name and password and is a methodology that is not as widely used or
understood by developers. However, a number of APIs that provide this functionality
are available and are maturing. One framework is called OAuth and is supported by
many of Google’s services. There are other APIs, but they tend to focus on
a particular service. There are similarities and the OAuth web site describes the
connection to other services this way:

OAuth is the standardization and combined wisdom of many well established

industry protocols. It is similar to other protocols currently in use (Google

AuthSub, AOL OpenAuth, Yahoo BBAuth, Upcoming API, Flickr API, Amazon

Web Services API, etc). Each protocol provides a proprietary method for

exchanging user credentials for an access token or ticker. OAuth was created

by carefully studying each of these protocols and extracting the best practices

and commonality that will allow new implementations as well as a smooth

transition for existing services to support OAuth.

An area where OAuth is more evolved than some of the other protocols and

services is its direct handling of non-website services. OAuth has built in

support for desktop applications, mobile devices, set-top boxes, and of course

websites. Many of the protocols today use a shared secret hardcoded into your

software to communicate, something which poses an issue when the service

trying to access your private data is open source.

(IntroductiondOAuthn, n.d.)

Since Google is moving toward OAuth, they provide detailed information about
the APIs and how to use them. On the Google Code web site, they provide the
following basic overview of the OAuth process (Default, n.d.):

1. Your application requests access and gets an unauthorized request token from
Google’s authorization server.

2. Google asks the user to grant you access to the required data.
3. Your application gets an authorized request token from the authorization server.
4. You exchange the authorized request token for an access token.
5. You use the access token to request data from Google’s service access servers.

As you can tell from the steps, the actual user name and password are only sent to
the authorization service (Google in this case) and are not stored nor shared with the

188 CHAPTER 5 Android device, data, and app security
requesting app. The requesting app is provided the various tokens used through the
negotiation of the process and they will need to store the final access token, but the
time and scope are both limited.

Although the typical scenario for OAuth allows a third-party service (i.e., a social
media we bsite) time and scope limited, token-based authentication to the protected
information (i.e., your Gmail contact list), it is interesting to point out that an app
developer can use the OAuth service to authenticate to themselves. Using this
approach, the app developers not only provide secure, token-based access to their
service in a standardized fashion but they now have the infrastructure in place to
allow approved third-party apps’ access to the data, provided the account owner
authorizes the access.

There are many different schemes and techniques that can be used to securely
authenticate users who would not require a mobile app to store the user name and
password in plain text on the mobile device. App developers must move to these
more secure methodologies to better protect their customers.
Credit Card Data
Most people in the security industry are familiar with the Payment Card Industry
(PCI) Data Security Standard (DSS), which provides standards for protecting credit
card data. Prior to the formation of the PCI Security Standards Council (SSC), the
major credit card vendors had their own standards for protecting credit card data. In
2006, the PCI SSC was launched by the following payment brands:

� American Express
� Discover Financial Services
� JCB International
� MasterCard Worldwide
� Visa Inc

These brands have a vested interested in reducing fraud in the payment card
industry. In the version 2.0 document “Requirements and Security Assessment
Procedures” published in October 2010, the specific requirements of the PCI DSS
are listed. The following is a small sample of requirements that would cover situ-
ations where credit card data are used in a mobile app (Documents Library, n.d.).

� 3.2 Do not store sensitive authentication data after authorization (even if
encrypted). Sensitive authentication data include the data as cited in Require-
ments 3.2.1 through 3.2.3

� 3.2.1 Do not store the full contents of any track (from the magnetic stripe located
on the back of a card, equivalent data contained on a chip, or elsewhere). These
data are alternatively called full track, track, track 1, track 2, and magnetic-stripe
data.

� 3.2.2 Do not store the card verification code or value (three-digit or four-digit
number printed on the front or back of a payment card) used to verify card-not
present transactions.

App development security strategies 189
� 3.2.3 Do not store the personal identification number (PIN) or the encrypted PIN
block.

� 3.3 Mask PAN when displayed (the first six and last four digits are the maximum
number of digits to be displayed).

� 3.4.1 If disk encryption is used (rather than file- or column-level database
encryption), logical access must be managed independently of native operating
system access control mechanisms (e.g., by not using local user account data-
bases). Decryption keys must not be tied to user accounts.

The PCI DSS, while not without criticism, is a fairly mature standard with a goal
of protecting a staggering volume of financial transactions. It is interesting to
compare some of the standards the PCI DSS has developed over time such as
requiring encryption, limiting the storage of sensitive information, and masking
sensitive information when displayed to screen.

It should really go without saying that storing the credit card in plain text on
a mobile device would not only violate the PCI DSS standard but would also place
the card owner at great risk if the device was compromised. Perhaps not surprisingly,
the appWatchdog service described above checks for credit card data stored in plain
text and, unfortunately, uncovers this information in some applications.

If an app requires payment processing, it would be advisable to integrate with
mature online services such as PayPal and Google Checkout, or work with
a payment provider to implement a secure payment application. Be advised, this is
a significant undertaking, not only from a development and testing perspective, but
also requiring an ongoing security audit process.

Sensitive App Data
Many mobile apps contain sensitive data that the consumer would not want out of
their control. There are various levels to the data. Here is a simplistic list designed to
illustrate the levels:

1. No sensitive user datadfor example, a calculator app would not contain any
sensitive user data.

2. No sensitive user data but some potential metadatadfor example, a weather
application would not contain any sensitive user data; however, it might contain
the GPS coordinates and date/time stamp when it was run.

3. Contains user data but not sensitivedsome applications are intended for public
consumption such as messages people share on Twitter. If a user was informed
that all of his or her Twitter messages were readable by the world, most (except
those which protect to their messages) would not be concerned.

4. Contains sensitive user datadmany applications fall into this category and
contain sensitive user data such as your full e-mail messages, SMS and MMS
messages, voice mail, call logs, and more.

5. Highly sensitive user datadthis is a special level that covers apps that contain
financial information, health care information, password vaults, and other apps
which place the consumers at great risk if their security is compromised.

190 CHAPTER 5 Android device, data, and app security
It is helpful to differentiate the sensitivity of data an app contains in order to
provide appropriate levels of security. If a calculator app required two-factor
authentication and AES-256 encryption, users would obviously be annoyed and
might try to calculate the 15% tip on paper (which once written down would place it
at risk for a number of physical and social engineering attacks, but we digress).

However, the appWatchdog service regularly uncovers apps containing sensitive
data of levels 4 and 5 which are stored in plain text on the NAND flash. If you
develop an application with sensitive data at this level, you should protect the data
with some level of security. There are a number of options including

1. Don’t store the datadthis is the simplest approach and mitigates any attack
which grants access to the NAND flash. As discussed previously, the crypto-
graphic algorithms used to protect data in transit are far more effective than any
approach to securing data at rest (at least on a mobile device). Most mobile
devices are highly connected to the Internet and thus caching the data is not
necessary. Of course, there are advantages to caching the data, which include
providing access even if the device is offline as well as improving app
responsiveness.

2. Encrypt the datadas discussed previously, encrypting data at rest on a mobile
device requires that the keys are also stored on the device and as such it cannot
provide perfect security. However, if the keys are sufficiently difficult to locate, it
provides a much higher level of protection than plain text. Also, as remote attacks
against mobile devices increase, they may gain access to the NAND flash but not
other areas where the encryption keys are stored, such as memory. If the data
were in plain text, they would be at risk; whereas if the data were encrypted, the
consumer would be protected in this instance.

Securing sensitive data is critical to protecting consumers and the industry must
mature and consider this as a requirement for apps.

SSL/TLS
One final area to discuss is the implementation of Secure Sockets Layer (SSL) and
Transport Layer Security (TLS) that protects data in transit. It is critical that app
developers properly implement SSL/TLS, including a full validation of the digital
certificates to prevent MITM attacks. Although SSL/TLS is effective in protecting
data in transit, without proper implementation it leaves the users highly vulnerable to
attack. While testing apps for the appWatchdog service, a test-attacking machine
would regularly display the user name and password for apps not in scope as it
would automatically execute (i.e., some apps log in on a schedule to check to new
messages) and fall victim to the compromise.

Beyond ensuring SSL/TLS is properly implemented and validated in the mobile
app, SSL/TLS must also be securely configured on the server. SSL has been
available since the 1990s to secure data transmission on untrusted networks. Earlier
implementation of SSL contained security flaws that had to be addressed to ensure
secure transmission. And over time, the algorithms were improved to reduce the risk

Client Attacker Server (HTTPS)

TLS Handshake session #1
(client <> server)

TLS Handshake session #2
(attacker <> server)

Attacker sends application layer
commands of his choice

Renegotiation is triggered

Legend

Red: Attacker data
Green: Client communication

Dotted line: Encrypted communication
Straight line: Clear test communication

Attacker holds
the packets

Client data is encrypted within session #1 (Green) (The attacker cannot read/
manipulate this data), previous data (1.2) prefixed to newly sent client-data

TLS Handshake session #1 continued (client-server)
within the encrypted session #2 (attacker-server)

FIGURE 5.4

Generic TLS renegotiation prefix injection vulnerability.

App development security strategies 191
of a brute force attack. The latest versions of the technology are known as TLS and
generally work in the same way as SSL, so much so that many still simply use the
term SSL for both.

A common problem is that the people responsible for implementing SSL/TLS on
the server are not necessarily security engineers and hence tend to focus on server
infrastructure. They might implement and test SSL/TLS and it would appear to be
secure; but, there can be vulnerabilities. For example, MD5 is a common encryption
algorithm that has been in wide use for more than 10 years. Although still considered
useful for applications such as file integrity checking, authorities have designated it
for retirement from use in securing communications. The US Department of
Homeland Security CERT group states in Vulnerability Note #836068 “Software
developers, Certification Authorities, web site owners, and users should avoid using

mailto:Image of Figure 5.4|eps

192 CHAPTER 5 Android device, data, and app security
the MD5 algorithm in any capacity. As previous research has demonstrated, it should
be considered cryptographically broken and unsuitable for further use” (US-CERT
Vulnerability Note VU#836068, n.d.). Real-time cracking of this encryption remains
impractical, but stronger encryption is supported by all major Web browsers and
mobile devices.

An even greater problem is the acceptance of the NULL cipher (no encryption)
or weaker export-grade encryption in the server SSL/TLS settings. For a number of
years the United States restricted the export of devices and software with cryptog-
raphy technology, and so weaker encryption algorithms were implemented for use in
exported software. The export ciphers use a short key length of only 40 bits and can
be compromised much more easily than modern ciphers with longer keys of 128 or
256 bits.

Another issue in SSL/TLS use is the implemented version. TLSv1 is more than
10 years old and was found vulnerable to a “renegotiation attack” in 2009. In this
attack, the server treats the client’s initial TLS handshake as a renegotiation and thus
believes that the initial data transmitted by the attacker are from the same entity as
the subsequent client data (US-CERT Vulnerability Note VU#120541, n.d.). Thierry
Zoller (November 2009), a security consultant, provided a well-written summary
with visual depictions of the steps involved. Although many different attacks are
explained, Fig. 5.4 is the first example provided in this summary that helps illustrate
the attack.

Most servers using TLSv1 have been patched to close this vulnerability.
However, the TLSv1 protocol has been updated and a more current TLSv1.2
offers the latest technology and strongest encryption ciphers. Older specifica-
tions including SSLv2 and SSLv3 are still widely in use and can be reasonably
secure with adequate ciphers and key lengths, but they are not as secure as
TLS.

Securing the transmission of sensitive data from a mobile device requires
coordination, diligence, and a thorough understanding of SSL/TLS from not only the
app developer but also from the team that maintains the server participating in the
secure communication. Although SSL/TLS has been available for some time and
may be taken for granted, it is important that a correct implementation and thorough
security testing of the system be undertaken.
SUMMARY

Android devices can be both a target of malicious attacks and a tool used to carry out
such attacks. Personal users as well as corporations must be aware of the risks and
should take certain measures to protect against malicious misuse. Application
developers must also increase their attention on security concerns and take
responsibility for protecting user data. Implementing basic security measures dis-
cussed in this chapter, though not providing full protection, can at least serve as
a deterrent against most attacks.

App development security strategies 193
References
Country. (n.d.). Computer crime lawdguide to computer crimes law. Retrieved February 10,

2011, from http://www.hg.org/computer-crime.html.
Cisco unified video conferencing multiple vulnerabilities. (n.d.). Matta Consulting.

Retrieved February 11, 2011, from www.trustmatta.com/advisories/MATTA-2010-001.
txt.

Cisco Security advisory: multiple vulnerabilities in Cisco unified video conferencing
productsdCisco Systems. (n.d.). Retrieved February 10, 2011, from http://www.cisco.
com/en/US/products/products_security_advisory09186a0080.

default. (n.d.). OAuth for installed applicationsdauthentication and authorization for Google
APIsdGoogle Code. Retrieved February 12, 2011, from http://code.google.com/apis/
accounts/docs/OAuthForInstalledApps.htm.

Device administration. (n.d.). Android Developers. Retrieved February 11, 2011, from http://
developer.android.com/guide/topics/admin/device-admin.html.

Donohue, B. (n.d.). Mobile device users more susceptible to phishing scams. Retrieved
February 10, 2011, from http://threatpost.com/en_us/blogs/mobile-device-users-more-
susceptible-phishing-scams-010511.

Documents Library. (n.d.). PCI security standards documents: PCI DSS, PA-DSS, PED
standards, compliance guidelines and more. Retrieved February 12, 2011, from https://
www.pcisecuritystandards.org/security_standards/documents.php?agreements¼pcidss&
assocation¼PCI%20DSS.

[Full-disclosure] Microsoft Windows NT #GP trap handler allows users to switch kernel
stack. (n.d.). Retrieved February 10, 2011, from http://lists.grok.org.uk/pipermail/full-
disclosure/2010-January/072549.html.

IntroductiondOAuthn. (n.d.). OAuth Community Site. Retrieved February 12, 2011, from
http://oauth.net/about/.

Johnston, S. J. (n.d.). Microsoft warns about 17-year-old windows bug. Retrieved
February 10, 2011, from http://www.esecurityplanet.com/features/article.php/3860131/
article.htm.

Microsoft security advisory (979682) vulnerability in Windows kernel could allow elevation
of privilege. (n.d.). Retrieved February 10, 2011, from http://www.microsoft.com/
technet/security/advisory/979682.mspx.

Ralf-Philipp Weinmann. (n.d.). CryptoLUX. Retrieved February 10, 2011, from https://
cryptolux.org/Ralf-Philipp_Weinmann.

Schneier on security: data at rest vs. data in motion. (n.d.). Retrieved February 9, 2011, from
http://www.schneier.com/blog/archives/2010/06/data_at_rest_vs.html.

Secure programming for Linux and Unix HOWTO. (n.d.). David A. Wheeler’s personal home
page. Retrieved February 10, 2011, from http://www.dwheeler.com/secure-programs/
Secure-Programs-HOWTO/open-source-security.html.

Ten, T. T. (n.d.). Field of dreams (1989)dMemorable quotes. The Internet movie database
(IMDb). Retrieved February 10, 2011, from http://www.imdb.com/title/tt0097351/
quotes?qt0314964.

US-CERT Vulnerability Note VU#836068. (n.d.). CERT Knowledgebase. Retrieved February
13, 2011, from http://www.kb.cert.org/vuls/id/836068.

US-CERT Vulnerability Note VU#120541. (n.d.). CERT Knowledgebase. Retrieved February
13, 2011, from http://www.kb.cert.org/vuls/id/120541.

http://www.hg.org/computer-crime.html
http://www.trustmatta.com/advisories/MATTA-2010-001.txt
http://www.trustmatta.com/advisories/MATTA-2010-001.txt
http://www.cisco.com/en/US/products/products_security_advisory09186a0080
http://www.cisco.com/en/US/products/products_security_advisory09186a0080
http://code.google.com/apis/accounts/docs/OAuthForInstalledApps.htm
http://code.google.com/apis/accounts/docs/OAuthForInstalledApps.htm
http://developer.android.com/guide/topics/admin/device-admin.html
http://developer.android.com/guide/topics/admin/device-admin.html
http://threatpost.com/en_us/blogs/mobile-device-users-more-susceptible-phishing-scams-010511
http://threatpost.com/en_us/blogs/mobile-device-users-more-susceptible-phishing-scams-010511
https://www.pcisecuritystandards.org/security_standards/documents.php?agreements=pcidss&assocation=PCI%20DSS
https://www.pcisecuritystandards.org/security_standards/documents.php?agreements=pcidss&assocation=PCI%20DSS
https://www.pcisecuritystandards.org/security_standards/documents.php?agreements=pcidss&assocation=PCI%20DSS
https://www.pcisecuritystandards.org/security_standards/documents.php?agreements=pcidss&assocation=PCI%20DSS
https://www.pcisecuritystandards.org/security_standards/documents.php?agreements=pcidss&assocation=PCI%20DSS
http://lists.grok.org.uk/pipermail/full-disclosure/2010-January/072549.html
http://lists.grok.org.uk/pipermail/full-disclosure/2010-January/072549.html
http://oauth.net/about/
http://www.esecurityplanet.com/features/article.php/3860131/article.htm
http://www.esecurityplanet.com/features/article.php/3860131/article.htm
http://www.microsoft.com/technet/security/advisory/979682.mspx
http://www.microsoft.com/technet/security/advisory/979682.mspx
https://cryptolux.org/Ralf-Philipp_Weinmann
https://cryptolux.org/Ralf-Philipp_Weinmann
http://www.schneier.com/blog/archives/2010/06/data_at_rest_vs.html
http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/open-source-security.html
http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/open-source-security.html
http://www.imdb.com/title/tt0097351/quotes?qt0314964
http://www.imdb.com/title/tt0097351/quotes?qt0314964
http://www.kb.cert.org/vuls/id/836068
http://www.kb.cert.org/vuls/id/120541

194 CHAPTER 5 Android device, data, and app security
WordNet searchd3.0. (n.d.). Retrieved February 10, 2011, from wordnetweb.princeton.edu/
perl/webwn?s¼art.

Zoller, T. (2009, November 29). TLS & SSLv3 renegotiation vulnerability explained. SANS
Internet Storm Center; Cooperative Network Security CommunitydInternet Security.
Retrieved February 13, 2011, from http://isc.sans.edu/diary.html?storyid¼7582.

http://wordnetweb.princeton.edu/perl/webwn?s=art
http://wordnetweb.princeton.edu/perl/webwn?s=art
http://wordnetweb.princeton.edu/perl/webwn?s=art
http://isc.sans.edu/diary.html?storyid=7582
http://isc.sans.edu/diary.html?storyid=7582

Android forensic techniques
CHAPTER
6

INFORMATION IN THIS CHAPTER

� Procedures for handling an Android device

� Imaging Android USB mass storage devices

� Logical techniques

� Physical techniques
INTRODUCTION
Before we dive into the actual Android forensic techniques, there are a number of
considerations that influence which technique forensic analysts should use. In this
section, we will discuss the different types of investigations, the differences between
logical and physical techniques, and how to limit or avoid modifications to the
device.
Types of Investigations
There are a variety of situations that might benefit from the results of an Android
forensic investigation. While the application of forensics is a commonality in all the
situations, each one may require different procedures, documentation, and overall
focus.

The first situation that people think of in general is investigations that will likely
be adjudicated in a criminal or civil court of law. In these situations, there are
a number of important considerations:

� Chain of custody
� Detailed contemporaneous notes and final reporting
� Possible validation of results using different tools or investigators
� Fact or opinion based testimony

Another common scenario is internal investigations in corporations. These
investigations may end up litigated in court, but often they are used to deter-
mine the root cause of an issue (whether that is a system, external attack, or
internal employee) and may result in disciplinary action against an employee.
Android Forensics. DOI: 10.1016/B978-1-59749-651-3.10006-8
Copyright � 2011 Elsevier Inc. All rights reserved.

195

http://dx.doi.org/10.1016/B978-1-59749-651-3.10006-8

196 CHAPTER 6 Android forensic techniques
Internal corporate investigations can cover many areas but the most common
include:

� Intellectual property or data theft
� Inappropriate use of company resources
� Attempted or successful attack against computer systems
� Employment-related investigations includingdiscrimination, sexual harassment, etc.
� Security audit (random or targeted)

There is also a need for forensics in cases involving family matters. The most
common cases involve:

� Divorce
� Child custody
� Estate disputes

One final area where forensic investigation can yield significant value is for the
security and operation of a government. Governments are usually the largest
employer in a country and the United States is a good example. According to the
US Census Bureau, data from the 2009 Annual Survey of Public Employment and
Payroll revealed that the Federal government across all functions had over 3 million
employees, while state and local governments has 16.6 million full-time equivalent
employees (Government Employment & Payroll, n.d.).

Beyond employment-related matters, countries are also the potential target of
attacks and foreign government intelligence gathering. Forensics can play a key role
in thwarting attacks against a country, investigating successful attacks, counter
intelligence scenarios, and in providing valuable intelligence needed for the gov-
erning of the country.
Difference Between Logical and Physical Techniques
Android forensic techniques are either logical or physical in nature. A logical
technique extracts allocated data and is typically achieved by accessing the file
system. Allocated data simply means that the data are not deleted and are accessible
on the file system. One exception to this definition is that some files, such as an
SQLite database, can be allocated and still contain deleted records in the database.
While recovery of the deleted data requires special tools and techniques, it is
possible to recover deleted data from a logical acquisition.

Physical techniques, on the other hand, target the physical storage medium
directly and do not rely on the file system itself to access the data. There are
advantages to this approach; the most significant is that physical techniques likely
provide access to significant amounts of deleted data. As discussed in Chapter 4, file
systems often only mark data as deleted or obsolete, and do not actually erase the
storage medium unless needed. As physical forensic techniques provide direct
access to the storage medium, it is possible to recover both the allocated and the
unallocated (deleted or obsolete) data.

Introduction 197
Of course, the analysis of an Android physical acquisition is generally far more
difficult and time consuming. Also, the physical techniques are more difficult to
execute and missteps could leave the device inaccessible.

In Android forensics, the most common logical technique does not provide direct
access to the file system and operates at a more abstract and less-effective level than
the traditional logical techniques, which can acquire all nondeleted data directly
from the file system. This technique, which relies on the Content Providers built into
the Android platform and software development kit (SDK), is effective in producing
some important forensic data, but only a fraction of the data that are available on the
system.
Modification of the Target Device
One of the guiding principles of any forensic investigation is to avoid modification
of the target device in any manner. In many cases, this is achievable. For example,
let’s assume you are handed a desktop computer that is not powered on. You are
informed it was seized from a suspect and that you need to launch a forensic
investigation. The device is fairly easy to investigate without material changes to the
data after you take custody. A typical investigation would fully document the
computer, remove the hard drive, and connect it to a physical write blocker and
acquire a bit-by-bit forensically sound image of the hard drive. The investigation
would then take place on copies of the forensic image and the original device would
remain unchanged.

As the power and functionality of computers has increased, this ideal situation
has become more and more difficult to achieve. First, let’s assume you are called to
the scene of an investigation and there is a desktop computer, but this time the
computer is in operation. Any interaction with the computer, whether you simply
move it or even physically unplug the device, will modify the device in some way.
While many examiners advocate simply unplugging the computer, unplugging the
computer still changes the computer as the contents of RAM, open network
connections, and more (all of which can be quite valuable in an investigation) are
permanently lost.

If you instead decide to examine the device while it is running, all interactions
change the device. To further complicate an investigation, it is possible that the
computer is leveraging encryption and, while the device is running, that data may be
accessible. However, if the device is powered off and you don’t have the encryption
keys, then you may permanently lose the ability to recover that data.

Another complicating factor can be the existence of servers that have special
hardware, complex setups, or that simply cannot be powered down without signif-
icant impact to other systems or people. Some examples of complex service setups
include complicated RAID setup, setups that rely on network-based storage area
networks (SAN), and unsupported hardware. In such cases, the examiner must
interact directly with the device while it is running even though those actions change
the device.

198 CHAPTER 6 Android forensic techniques
Of course, mobile devices, and Android devices in particular, are nearly
impossible to forensically analyze without any impact to the device. Unlike desk-
tops, notebooks, and servers, there are portions of storage on an Android device that
cannot be easily removed. And if the device is powered on, a shutdown of the device
or pulling the battery again changes the device.

When mobile phones were first showing up in investigations, there was very little
data stored in them that could be extracted from the device. Many investigations used
traditional approaches, such as a search warrant on the wireless carrier to obtain call
detail records. It was also possible to remove the subscriber identity module (SIM)
card on GSM devices and extract some data. As phones began to store more data, there
developed a deep divide between examiners who advocated the older methods (which
had little impact on the device and subsequently retrieved only nominal data) and
those who advocated exploiting the device more fully. The techniques used to exploit
the devices did modify the device, leading to the ensuing debate.

As of 2011, much of the debate has subsided because the amount of data mobile
devices now hold necessitates the more intrusive techniques. The Association of
Chief Police Officers in the United Kingdom produces guidelines that address this
issue quite clearly. The guide, Good Practice Guide for Computer-Based Electronic
Evidence (ACPO Good Practice Guide, n.d.), establishes four principles of
computer-based electronic evidence:

1. No action taken by law enforcement agencies or their agents should change data
held on a computer or storage media, which may subsequently be relied upon in
court.

2. In circumstances where a person finds it necessary to access original data held on
a computer or on storagemedia, that personmust be competent to do so and be able
to give evidence explaining the relevance and the implications of their actions.

3. An audit trail or other record of all processes applied to computer-based elec-
tronic evidence should be created and preserved. An independent third party
should be able to examine those processes and achieve the same result.

4. The person in charge of the investigation (the case officer) has overall respon-
sibility for ensuring that the law and these principles are adhered to.

As mobile devices clearly present a circumstance where it is necessary to access
the original device directly, then it is permissible provided the examiner is suffi-
ciently trained, provides valid reasons for their approach and keeps a clear audit trail
so that their actions are repeatable by a third party. This is certainly good advice and
helps provide a solid framework for the forensic investigation of mobile devices.
PROCEDURES FOR HANDLING AN ANDROID DEVICE
One major challenge for forensic analysts is to devise a protocol for handling the
device prior to the analyst taking direct custody. And this is certainly not a new issue
for analysts as others involved in the investigation may also handle other digital

Procedures for handling an android device 199
devices such as computers or laptops. However, mobile devices are still relatively
new and are often not handled properly by first responders. There is a tendency to
immediately examine the device, which almost inevitably results in data modifi-
cation and potential loss of access to the device.
Securing the Device
Many agencies and first responders have established a protocol for securing
evidence. The following sections are meant to complement the existing proce-
dures, not replace them. Of course, these represent special procedures, and
educating first responders who have many other responsibilities can be quite
challenging.

Pass Code Procedures
Pass code locked devices are becoming more common as a result of heightened
security awareness in consumers and corporations. In the next section, we cover
some specific techniques to circumvent pass codes. However, it is not always
possible. The first consideration when obtaining information from a device is
whether an opportunity exists to immediately disable or otherwise circumvent the
pass code.

If you encounter an Android device and the screen is active, strong consideration
should be given to checking and potentially changing its settings. For devices that
have pass codes, there is a short period of time (from less than a minute up to about
15 min) where full access to the device is possible without re-entering the pass code.
If a device is in this state, there are several steps to consider:

1. Increase the screen timeout to prevent or postpone the screen locking. The
location for this setting is not consistent between Android versions and devices.
For example, on a G1 running Android 1.5, the timeout can be set by pressing
Menu (from the home screen), then Settings, Sound & display, Screen timeout,
and then select “Never timeout.” On an HTC Incredible running Android 2.2,
press Menu (from the home screen), then Settings, Security, Lock phone after,
and then finally “15 minutes.” As long as the device has some nominal activity in
the allotted timeout setting, it will remain accessible.

2. Enable USB debugging and “Stay awake” settings. The location for this setting
has remained consistent in devices and can be accessed by pressing Menu (from
the home screen), then Settings, Applications and Development. From there, you
can check USB debugging and Stay awake. If you select the “Stay awake” setting
and then connect it to a charge, the device will never go to sleep, which is
effective in preventing the screen lock. By enabling USB debugging, the device
can be accessed over USB enabling data extraction.

Of course, these steps are making changes to the device and should be thoroughly
logged in the case notes describing the state of the device, the rationale for the
attempted changes, and the outcome of each change. This will not only assist in

200 CHAPTER 6 Android forensic techniques
future report writing but will likely be an important factor if your decision to change
the device is challenged in court.

To make matters more difficult, it is also important to minimize touching the
screen in case the screen lock becomes active. As we will discuss shortly, it is
sometimes possible to determine the pattern lock of a device by enhancing photo-
graphs of the device’s screen. The lesser the interaction a first responder has with the
screen, the higher the success rate of this technique.
Network Isolation
As many examiners likely know, it is important to isolate the device from the
network as soon as possible. In the worst-case scenario, a remote wipe could be
initiated on the device which, if successful, would prevent the recovery of any data.
While most remote wipes are done over the data network, some can be triggered over
SMS, and hence ensure the device is fully isolated to prevent remote wipes. In other
circumstances, additional messages on the device could be received or even removed
by triggers outside your control. As the goal of a forensic image is to preserve the
state of the device for additional analysis, any changes should be avoided.

There are a number of ways to isolate a device from the network and each of
these methods have advantages and disadvantages. Table 6.1 summarizes the
advantages and disadvantages of each technique.

As you can tell, isolating an Android device from the network is not an easy task
and each option has advantages and disadvantages. While each examiner or their
organization should determine the appropriate steps to undertake, the best option is
probably placing the device in Airplane mode. This varies slightly between Android
devices and versions but the general approach is the same:

1. Press and hold the Power off button and select Airplane mode.
2. Press Menu (from the home screen), then Settings, then the Wireless option

which is generally near the top. Some examples are “Wireless controls” or
“Wireless and networks.” The next menu should present the Airplane mode
option.

Fig. 6.1 is a screenshot from the Power off button approach. Fig. 6.2 shows the
option via the Wireless settings.

Regardless of which technique you ultimately choose, the main goal should be to
isolate the device from the network as soon as possible.

Power and Data Cables
While most forensic labs will have the cables necessary to charge and connect the
device, it is always prudent to seize the cables directly from the scene. It’s possible
that a newer device is in use and the forensic toolkits do not yet have an appropriate
cable. For example, a new specification for connecting media devices was developed
called portable digital media interface (PDMI) and is integrated into two Android
tablet devices, the Dell Streak and the Samsung Galaxy Tab. The PDMI interface

Table 6.1 Techniques for Device Isolation

Technique Advantages Disadvantages

Put the device in Airplane
mode. This requires that
you have full access to the
Settings menu.

The device continues
running and temporal data
remains intact. Disables
cellular data network as
well as Wi-Fi.com.

You are modifying the
device setting further. Only
works if you have full
access to the device.

If the phone is a GSM
phone, remove the SIM
card.

Easy to remove, effective
in disabling all cellular
voice, SMS, and data
transmissions.

Does not disable Wi-Fi.
com or other networks.
Does not work on non-
GSM phones including
CDMA and iDEN phones.

Suspend account with
wireless carrier.

Effective in disabling all
cellular voice, SMS, and
data transmissions for any
phone.

Process may take some
time and require a court
order. Does not disable
Wi-Fi.com or other
networks.

Place device in a shielded
bag, box, tent, or room.

Faraday shields prevent
various types of network
transmissions and can be
an effective approach if
you cannot utilize any of
the previous options.

There is some debate
about the effectiveness of
portable Faraday shields,
notably Faraday bags.
Also, while the
transmissions are
blocked, the device
attempts to contact the
cellular network
repeatedly thus draining
the battery quickly. Cords
cannot be inserted into the
enclosure as they will
transmit signals. A
shielded room dedicated
for mobile examinations is
ideal. However, they are
quite expensive to build
and maintain.

Turn the device off. Completely effective in
preventing all network
transmissions.

The device state is
modified and temporal
data is lost. Pass code on
reboot could be enabled,
thus restricting access to
the device.

Procedures for handling an android device 201
provides not only power and high-resolution video output, but also offers USB 3.0
support. Whereas the actual examination of one of these devices could be delayed
while an appropriate cable is acquired, if it needed charging and you do not have the
appropriate cable, the loss of power will result in the loss of temporal data.

http://Wi-Fi.com
http://Wi-Fi.com
http://Wi-Fi.com
http://Wi-Fi.com

FIGURE 6.1

Airplane mode via the Power off button.

FIGURE 6.2

Airplane mode via the Wireless and networks settings.

202 CHAPTER 6 Android forensic techniques

Procedures for handling an android device 203
Powered-off Devices
If a device is already powered off when you encounter it, the best option is to boot it
into recovery mode to test for connectivity and root access. The owner may have
already enabled USB debugging or have rooted the device, so you may have access
to the data without booting into normal operational mode.

This approach is similar to performing forensics on a standard computer hard
drive. The last thing any trained forensic analyst would do is boot the computer to
determine what operating system is installed. Instead, the hard drive is removed and
connected to a write blocker for imaging to prevent any changes to the evidence.
Similarly, if a mobile device does not have to boot into normal mode, there is no need
to do so as this may make changes to the device. Specific information on how to test
a device in recovery mode for sufficient privileges is discussed later in this chapter.

How to Circumvent the Pass Code
The ability to circumvent the pass code on an Android device is becoming more
important as they are utilized frequently and, in most cases, do not allow data
extraction. While there is no guaranteed method, there are a number of techniques
which have worked in certain situations.

As previously discussed, there are three types of pass codes Android devices
currently support. The first is a pattern lock. This was the default on the initial
Android devices. To access the device, the user draws a pattern on the locked phone
and, if drawn properly, the device is unlocked. An example of a pattern lock on an
HTC Incredible is shown in Fig. 6.3.
FIGURE 6.3

Android pattern lock.

FIGURE 6.4

Android PIN lock.

204 CHAPTER 6 Android forensic techniques
The second type of pass code is the simple personal identification number (PIN)
which is commonly found on other mobile devices. Fig. 6.4 is an example of a PIN-
enabled HTC Incredible.

The final type of pass code currently found on Android devices is a full,
alphanumeric code, as shown in Fig. 6.5.
FIGURE 6.5

Android alphanumeric lock.

mailto:Image of Figure 6.4|tif

Procedures for handling an android device 205
As discussed in Chapter 4, not all pass codes were created equal. The most
effective pass code is one that allows or requires an alphanumeric password, as these
are far more difficult to circumvent.
Utilize ADB if USB Debugging is Enabled
The first technique you should attempt, provided the phone is powered on, is to
connect with the Android Debug Bridge (ADB) over USB, which was covered
extensively in Chapter 3. Whereas only a fraction of Android devices will allow an
ADB connection through the USB debugging setting, it is certainly worth trying as it
easily provides sufficient access for data extraction. The most common reasons for
which users enable USB debugging include:

� App development and testing
� Certain apps require this setting, such as PDAnet, which allows the device to

provide Internet access to a tethered device over USB
� Custom ROMs
� Developer phones such as Google’s Android developer phone (ADP1)
� Device hacking

It is quite simple to determine if USB debugging is enabled, provided you are
using the Ubuntu virtual machine (VM) or have a forensic workstation with
a properly installed and configured Software Development Kit. With the phone
running in normal mode, plug it into the Ubuntu VM. From the command
prompt type “adb devices.” If USB debugging is enabled, the ADB daemon will
return the device serial number along with the mode that the phone is
presently in.

ahoog@ubuntu:~$ adb devices
List of devices attached
HT08XHJ00657 device

If it is disabled, it will not return anything when the “adb devices” command is
entered.
ahoog@ubuntu:~$ adb devices
List of devices attached

ahoog@ubuntu:~$
Remember to pass the device through to your VM if you are running the
command inside a virtual workstation. If the VM can’t see the device, you
will get the same result as if the USB debugging were not enabled. Once you
verify that the USB connection is passed through to the Ubuntu VM, you can

206 CHAPTER 6 Android forensic techniques
execute the lsusb command to verify that the operating system is aware of the
connection:
ahoog@ubuntu:~$ sudo lsusb -v
[sudo] password for ahoog:

Bus 001 Device 005: ID 0bb4:0c9e High Tech Computer Corp.
Device Descriptor:
 bLength 18
 bDescriptorType 1
 bcdUSB 2.00
 bDeviceClass 0 (Defined at Interface level)
 bDeviceSubClass 0
 bDeviceProtocol 0
 bMaxPacketSize0 64
 idVendor 0x0bb4 High Tech Computer Corp.
 idProduct 0x0c9e
 bcdDevice 2.26
 iManufacturer 1 HTC
 iProduct 2 Android Phone
 iSerial 3 HT08XHJ00657
 bNumConfigurations 1
<snip>
 Interface Descriptor:
 bLength 9
 bDescriptorType 4
 bInterfaceNumber 1
 bAlternateSetting 0
 bNumEndpoints 2
 bInterfaceClass 255 Vendor Specific Class
 bInterfaceSubClass 66
 bInterfaceProtocol 1
 iInterface 4 ADB
<snip>

In this example, emphasis was placed on several areas that clearly show the
Android device is connected and, in such cases, we can see an ADB interface is
exposed. If the device is connected but you cannot connect via ADB, you should also
kill your local ADB daemon and then start it again. This is easily accomplished as
follows:
ahoog@ubuntu:~$ adb kill-server
ahoog@ubuntu:~$ adb devices
* daemon not running. starting it now on port 5037 *
* daemon started successfully *
List of devices attached
HT08XHJ00657 device

If the USB debugging is enabled, a forensic analyst can use the interface to gain
access and perform a logical recovery of the device, which is covered in detail later
in this chapter.

FIGURE 6.6

Enhanced photo showing smudge attack.

Procedures for handling an android device 207
Smudge Attack
Initially, Android devices used the pattern lock for pass code protection instead of
a numeric or alphanumeric code. A recent paper entitled “Smudge Attacks on
Smartphone Touch Screens” by the University of Pennsylvania Department of
Computer and Information Science demonstrated a technique for accessing pattern
locked Android devices by enhancing photographs of the screen (Aviv, Gibson,
Mossop, Blaze, Smith, n.d.). The paper’s summary states:

Our photographic experiments suggest that a clean touch screen surface is

primarily, but not entirely, reflective, while a smudge is primarily, but not

entirely, diffuse. We found that virtually any directional lighting source that is

not positioned exactly at a complementary angle to the camera will render

a recoverable image of the smudge. Very little photo adjustment is required to

view the pattern, but images generally rendered best when the photo capture

was overexposed by two to three f-stops (4 to 8 times “correct” exposure).

If care was taken by the first responders to minimize contact with the device’s
screen, this recovery technique may be viable. As an example of what is possible,
Fig. 6.6 shows photos of the same Android device displayed side by side. The same
original photo was used for both images but the image on the right was enhanced as
part of the smudge attack process to highlight the contact points.

Recovery Mode
Some users install a custom ROM which usually enables root access to the device
through a modified recovery mode. Most custom ROMs install a modified recovery
partition which simplifies the process used to install the custom ROM. There are

mailto:Image of Figure 6.6|tif

Table 6.2 Key Combinations to Boot into Recovery Mode

Device Key Combination

HTC G1 Hold home button and press power button. Use volume
down to select RECOVERY and press power key.

Nexus One Hold volume down and press power button.

Motorola Droid Hold X key and press power button.

HTC Incredible Hold volume down and press power button. Use volume
down to select RECOVERY and press power key.

208 CHAPTER 6 Android forensic techniques
several popular recovery partitions that are primarily used with custom ROMs and
both offer shell access with root privileges from within the recovery console itself.
As the phone is not booted into normal mode, the pass code is circumvented and the
user data partitions can be mounted read-only, thus preventing changes to that area.

Forensic analysts should attempt to boot into recovery mode if the device is
powered off, when they take custody. If, instead, the device is running and a pass
code is present, you should first attempt to connect via ADB and consider smudge
attack. If neither of these is successful, you should then try to reboot into recovery
mode. Like many other techniques, recovery mode is accessed in different ways
depending on the device manufacturer and model. Table 6.2 covers the key
combinations to access recovery mode on the phones referenced throughout this
book. Each assumes the device is powered off already.

Once in recovery mode, you can connect the device to your Ubuntu workstation
and attempt to connect using ADB. If the device is running a nonmodified recovery
mode, the connection will fail. The screen generally shows a triangle with an
exclamation point inside it and often a small Android device next to it. On other
devices, you will be presented with the somewhat famous three Androids on
a skateboard. Finally, other recovery modules clearly show they are in modified
recovery code and provide a wide range of device options.

Flash a New Recovery Partition
There are a number of protocols, utilities, and devices that allow a skilled examiner
to flash the recovery partition of a device with a modified image.

The first available protocol supporting this approach was fastboot. Fastboot is
a NAND flash update protocol executed over USB while in bootloader mode. Most
devices ship with bootloader protection enabled, which prohibits the use of this
protocol. However, it is possible that the protection has been disabled. To determine
if bootloader protection is enabled, you must access the bootloader and look at the
signature information, which will indicate S-ON or S-OFF. The S represents
security, and so S-ON, the default production build, has security enabled; S-OFF
indicates security is not enabled. Some devices ship with S-OFF, such as the
Google Nexus One, as it is preloaded with Google’s Engineering SPL/Bootloader.

Procedures for handling an android device 209
Other rooting techniques also disable this protection, so checking this on a pass code
protected device may yield results. You can access the main bootloader using the
first part of the key combinations in Table 6.2 in the previous section.

Fastboot does not require USB debugging to access the device. Hence, like
recovery mode, it can be used to gain access to the device’s data. Once the new
recovery partition is available, the device should be rebooted into recovery mode and
forensic imaging can take place.

Other techniques exist which allow the recovery partition to be flashed with
a new image. Some examples include:

� Motorola’s RSD Lite
� sbf_flash
� Samsung’s Odin Multiloader

While these utilities and protocols may ultimately provide the privileges that
a forensic analyst requires, there is considerable effort required to not only locate
and test the techniques but to understand them sufficiently to use them in a forensic
investigation.
Screen Lock Bypass App
Security researcher Thomas Cannon recently developed a technique that allows
a screen lock bypass by installing an app through the new web-based Android
Market (Cannon, T., n.d.). Cannon’s technique utilizes a new feature in the web-
based Android Market that allows apps to be installed directly from the web site. As
such, you must have access to the Android Market using the primary Gmail user
name and password for the device, which may be accessible from the primary
computer of the user. Alternatively, you could access the Android Market if you
knew the user name and password and had sufficient authority. Changing the user’s
Gmail password would not work in this instance.

Cannon explains the technique on this web site as in the following section
(Cannon, T., n.d.).
How it Works
The procedure is quite simple really. Android sends out a number of broadcast
messages which an application can receive, such as SMS received or Wi-Fi.com
disconnected. An application has to register its receiver to receive broadcast
messages and this can be done at run time, or for some messages, at install time.
When a relevant message comes in, it is sent to the application and if the application
is not running it will be started automatically.

After testing out various broadcast messages the best one I found for the purpose
of this utility was android.intent.action.PACKAGE_ADDED. This exists in all APIs
as version 1 and is triggered when an application is installed. Hence, to get the
application to execute remotely, we first deploy it from the Android Market, then
deploy any other application that will cause the first one to launch.

http://Wi-Fi.com

210 CHAPTER 6 Android forensic techniques
Once launched it is just a matter of calling the disableKeyguard() method in
KeyguardManager. This is a legitimate API to enable applications to disable the
screen lock when, say, an incoming phone call is detected. After finishing the call the
app ought to enable the screen lock again, but we just keep it disabled.

This technique is certainly worth consideration if you have proper access to the
Android Market.
Use Gmail User/Pass
On most Android phones, you can circumvent the pass code if you know the primary
Gmail user name and password registered with the device. After a number of failed
attempts (ten attempts on the G1), you will be presented with a screen that asks if
you forgot your pass code. From there, you can enter the Gmail user name and
password and you will then be prompted to reset the pass code. This technique does
not require the phone to be online as it uses credential information cached on the
phone.

If you do not have the current Gmail user name and password, but have sufficient
authority (i.e., court order) to reset the password, you could attempt to compel
Google to reset the account password. You would then have to connect the Android
device to the network and gain access. This issue presents many challenges,
including the need to place the device online, putting it at risk for remote wipe in
addition to making changes to the device. Reports on various law enforcement
mailing lists indicate this technique does not always work.

If this approach is attempted, additional research is warranted. In particular, it
would be prudent to control the Internet connection the device uses, most likely
a Wi-Fi.com access point. You could then limit the network access to only those
which the Google server needed for authentication. In addition, a detailed network
capture of test devices should be analyzed as well as the actual changes made to the
device.
JTAG and Chip-off
At this time, most Android devices do not encrypt the contents of the NAND flash,
which makes directly accessing and decoding the memory chips a potential work-
around if a pass code is enabled. There are two primary techniques, which provide
direct access to the chips. Both are technically challenging. The two techniques are:

� Joint test action group (JTAG)
� Physical extraction (chip-off)

Both techniques are not only technically challenging and require partial to full
disassembly of the device, but they require substantial post-extraction analysis to
reassemble the file system. For these reasons, JTAG and chip-off would likely be the
very last choices to circumvent a locked device.

With JTAG, you connect directly to the device’s CPU by soldering leads to
certain JTAG pads on the printed circuit board (PCB). Then JTAG software can be

http://Wi-Fi.com

Imaging android USB mass storage devices 211
used to perform a complete binary memory dump of the NAND flash, modify certain
partitions to allow root access, or eliminate the pass code altogether.

In the chip-off procedure, the NAND flash chips are physically extracted from
the PCB using heat and air. The chip, usually a small ball grid array (BGA) package,
then needs to have the BGA connections regenerated and inserted into special
hardware that connects to the chip and reads the NAND flash.

The advantages to these techniques are that they will work in any situation where
the NAND flash is not encrypted. However, extensive research, development,
testing, and practice are required to execute these techniques.
IMAGING ANDROID USB MASS STORAGE DEVICES
Every Android device to date has either an external Secure Digital (SD) card or an
EmbeddedMultiMediaCard (eMMC) that provides the large storage space required by
many users. These storage devices exist because the user’s app data, typically stored in
/data/data, is isolated for security and privacy reasons. However, users want to copy
songs, pictures, videos, or other files between theirAndroiddevice and a computer, and
these large capacity FAT file system partitions solve that issue. The sensitive user data
remains protected, yet the larger and more portable files are accessible to the user.

Initially, the approach to imaging the external storage was to simply remove it
from the Android device and image using a USB write blocker. However, a number
of challenges arose over time, including:

� Moving to eMMC storage meant that the mass storage was no longer removable.
� Apps can now run from the SD card and in this scenario, the .apk files are

encrypted. If capturing an unencrypted copy of the app is critical to an investi-
gation (for example, a case involving malware analysis or a Trojan horse
defense), the SD card must remain in the Android device.

� Newer devices are using RAM disks (tmpfs) more frequently to store user data
that might be helpful in an investigation. Often, removing the SD card requires
the device to be shut down and the battery removed, thus losing the ability to
recover the temporal data.

For these reasons, the recommended approach for imaging the USB Mass
Storage (UMS) devices on Android no longer involves removing the SD card but
instead imaging it via the UMS interface.
SD Card Versus eMMC
An SD card and eMMC are not all that different. The primary difference, of course,
is that the SD cards are portable, easily moving from one device to the next. They use
NAND flash, are based on the MultiMediaCard (MMC) specification, and have
embedded storage controllers, so that systems MTD is not needed for guest oper-
ating systems to read them.

212 CHAPTER 6 Android forensic techniques
To date, Android devices accept microSD cards generally ranging from 2 GB
up to 16 GB. However, larger cards are possible. Depending on the Android
device, the SD card may be easily accessed and removed from a running device.
However, many require that the device is shut down so that the battery can be
removed.

For storage embedded on the device, several manufacturers have begun using
eMMC, which consists of embedded storage with an MMC interface integrating
directly onto the device’s PCB. This standard simplifies accessing NAND flash
with the standardized eMMC protocol and is capable of supporting file systems
that are not NAND flash aware. This does not necessarily mean the file systems
preserve the life of the NAND flash at the same level and sophistication that
a NAND flash-aware file system like YAFFS2 does. However, the general lifespan
of Android devices is certainly decreasing and is likely not an issue for most
users.
How to Forensically Image the SD Card/eMMC
There are two primary methods to forensically acquire the SD card and eMMC
without removing it from the device. The first method, covered here, exposes the
UMS device interface to your forensic workstation and allows you to acquire
the image with your forensic tool of choice. The second method does not expose the
UMS to your forensic workstation and instead uses dd on the Android device. This
requires adb port forwarding, which will be covered in the section on physical
techniques later in this chapter.

Even though our Ubuntu VM has dd built in, we are going to download,
compile, and install an updated version of dd maintained by the Department of
Defense’s Cyber Crime Center. The program, dc3dd, is a patched version of GNU
dd and includes a number of features useful for computer forensics (dc3dd, n.d.),
such as:

� Piecewise and overall hashing with multiple algorithmsdSupports MD5,
SHA-1, SHA-256, and SHA-512.

� Progress meter with automatic input/output file-size probing.
� Combined log for hashes and errors.
� Error groupingdProduces one error message for identical sequential errors.
� Verify modedAble to hash output files and compare hashes to the acquisition

hash.
� Ability to split the output into chunks with numerical or alphabetic extensions.
� Ability to write multiple output files simultaneously.

The program is open source software licensed under the GNU Public license
version 3 (GPLv3) and is distributed online through SourceForge and was updated to
version 7.0 in August 2010 (dc3dd, n.d.). At this point in the book, you should be
fairly comfortable compiling programs and have all the tools needed, so here are the
abbreviated steps.

Imaging android USB mass storage devices 213
mkdir -p ~/src
cd ~/src
curl http://cdnetworks-us-2.dl.sourceforge.net/project/dc3dd/
dc3dd/7.0.0/dc3dd-7.0.0.tar.gz
> dc3dd-7.0.0.tar.gz
tar xzf dc3dd-7.0.0.tar.gz
cd dc3dd-7.0.0/
./configure
make
sudo make install

At this point, you could proceed with imaging. However, typing out the entire dc3dd
command each time is not only tedious but can result in typos that could cause
irreparable damage. So create a shell script, which not only acquires the device but
also records various system characteristics, date/time stamps, and creates log files,
which can be helpful as you write your report at a later time.

We will place the acquire script in /usr/local/bin so you can easily run the script
from any directory as /usr/local/bin is in your execution path by default:

ahoog@ubuntu:~$ sudo nano -w /usr/local/bin/acquire-disk.sh

Next, copy the following into the script, save by pressing Ctrl-O, and exit with
Ctrl-X:
#!/bin/bash

CLIENT="${1}"
CASE="${2}"
TAG="${3}"
SERIALNO="${4}"
SOURCEDEV="${5}"
DESTPATH="${6}"

OUTPUTPATH=$DESTPATH/$CLIENT/$CASE/$TAG-$SERIALNO
LOGFILE=$OUTPUTPATH/log/$TAG-$SERIALNO.log
STDERRLOG=$OUTPUTPATH/log/$TAG-$SERIALNO.stderr.log
SEPERATOR="--\r"

if ["$#" != 6]; then
 echo "Usage: acquire_disk.sh CLIENT CASE TAG SERIALNO SOURCEDEV
DESTPATH"
 exit 2
fi

check directories, created if needed
if [! -d "$DESTPATH"]; then
 echo "Destination path [$DESTPATH] does not exist, exiting"
 exit 1
fi

if [-d "$DESTPATH/$CLIENT/$CASE/$TAG-$SERIALNO"]; then
 echo "$DESTPATH/$CLIENT/$CASE/$TAG-$SERIALNO already exists, can't
overwrite evidence"
 exit 1
fi

mailto:Image of Figure 6.6|tif

GOTROOT=`whoami`

if ["$GOTROOT" != "root"]; then
 echo "must be root to execute"
 exit 1
fi

mkdir -p $OUTPUTPATH/log

echo -e "Start date/time" >> $LOGFILE
echo -e "$SEPERATOR" >> $LOGFILE
echo -e "`/bin/date`\n" >> $LOGFILE 2>> $STDERRLOG

echo -e "uname -a" >> $LOGFILE
echo -e "$SEPERATOR" >> $LOGFILE
echo -e "`uname -a`\n" >> $LOGFILE 2>> $STDERRLOG

echo -e "dmesg | tail -50" >> $LOGFILE
echo -e "$SEPERATOR" >> $LOGFILE
echo -e "`dmesg | tail -50`\n" >> $LOGFILE 2>> $STDERRLOG

echo -e "lshw" >> $LOGFILE
echo -e "$SEPERATOR" >> $LOGFILE
echo -e "`lshw`\n" >> $LOGFILE 2>> $STDERRLOG

VERSION=`fdisk -v`
echo -e "fdisk -l $SOURCEDEV [$VERSION]" >> $LOGFILE
echo -e "$SEPERATOR" >> $LOGFILE
echo -e "`fdisk -l $SOURCEDEV`\n" >> $LOGFILE 2>> $STDERRLOG

VERSION=`mmls -V`
echo -e "mmls $SOURCEDEV [$VERSION]" >> $LOGFILE
echo -e "$SEPERATOR" >> $LOGFILE
echo -e "`mmls $SOURCEDEV`\n" >> $LOGFILE 2>> $STDERRLOG

VERSION=`fsstat -V`
echo -e "fsstat $SOURCEDEV [$VERSION]" >> $LOGFILE
echo -e "$SEPERATOR" >> $LOGFILE
echo -e "`fsstat $SOURCEDEV`\n" >> $LOGFILE 2>> $STDERRLOG

VERSION=`dc3dd --version 2>&1 | grep dc3dd`
echo -e "dc3dd [$VERSION]" >> $LOGFILE
echo -e "$SEPERATOR" >> $LOGFILE
echo -e "dc3dd if=$SOURCEDEV of=$OUTPUTPATH/$TAG-$SERIALNO.dc3dd verb=on
hash=sha256 hlog=$OUTPUTPATH/log/$TAG-$SERIALNO.hashlog
log=$OUTPUTPATH/log/$TAG-$SERIALNO.log rec=off\n" >> $LOGFILE
dc3dd if=$SOURCEDEV of=$OUTPUTPATH/$TAG-$SERIALNO.dc3dd verb=on hash=sha256
hlog=$OUTPUTPATH/log/$TAG-$SERIALNO.hashlog log=$OUTPUTPATH/log/
$TAG-$SERIALNO.log rec=off

echo -e "ls -lR $DESTPATH/$CLIENT/$CASE/$TAG-$SERIALNO" >> $LOGFILE
echo -e "$SEPERATOR" >> $LOGFILE
echo -e "`ls -lR $DESTPATH/$CLIENT/$CASE/$TAG-$SERIALNO`\n" >> $LOGFILE

echo -e "End date/time" >> $LOGFILE
echo -e "$SEPERATOR" >> $LOGFILE
echo -e "`/bin/date`\n" >> $LOGFILE

#sha256sum all log files
cd $OUTPUTPATH/log/
sha256sum * > $TAG-$SERIALNO.sha256.log

214 CHAPTER 6 Android forensic techniques

Imaging android USB mass storage devices 215
Next, you have to change permissions, so that you can run the script and then run
it without parameters to see the usage help:

ahoog@ubuntu:~$ sudo chmod 755 /usr/local/bin/acquire-disk.sh
ahoog@ubuntu:~$ sudo /usr/local/bin/acquire-disk.sh
Usage: acquire_disk.sh CLIENT CASE TAG SERIALNO SOURCEDEV DESTPATH

The great thing about this script, and open source in general, is that you can
simply change it as you see fit. If you do not want to track client name, then simply
remove it from the script.

Next, we have to mount the UMS device on your Ubuntu workstation. As
covered in Chapter 1 in the Ubuntu VM setup, it is critical that you have disabled
automount on your workstation. If you did not do this, please review the steps
necessary and complete before presenting the UMS devices to the VM.

Additionally, the ideal situation would first connect the Android device to
a hardware-based USB write blocker. However, some write blockers seem to have
trouble when the connected device exposes more than one device ID. You should
experiment with your USB write blocker and, ideally, have this working first.
ah
<s
[3
[3
[3
PQ
[3
PQ
[3
PQ
[3
[3
[3
[3
[3
[3
[3
NOTE

Tableau UltraBlock USB
The Tableau UltraBlock USB model T8, running the latest firmware from August 9, 2009, was
only able to pass through the first USB device found on the reference HTC Incredible, and so we
were unable to use it when analyzing a device. Tableau has a new UltraBlock USB device which
may work; however, we have not verified this. Examiners should test the various USB write
blockers they have for compatibility.

Next, we need to determine to what devices the UMS is mapped. This infor-
mation is displayed in the kernel logs and can be easily accessed with the “dmesg”
command:
oog@ubuntu:~/$ dmesg
nip>
27202.720222] usb 1-1: new high speed USB device using ehci_hcd and address 12
27203.032759] scsi11 : usb-storage 1-1:1.0
27204.039549] scsi 11:0:0:0: Direct-Access HTC Android Phone 0100
: 0 ANSI: 2
27204.044572] scsi 11:0:0:1: Direct-Access HTC Android Phone 0100
: 0 ANSI: 2
27204.047208] scsi 11:0:0:2: CD-ROM HTC Android Phone 0100
: 0 ANSI: 2
27204.049854] sd 11:0:0:0: Attached scsi generic sg2 type 0
27204.052640] sd 11:0:0:1: Attached scsi generic sg3 type 0
27204.066738] sr1: scsi3-mmc drive: 0x/0x caddy
27204.066817] sr 11:0:0:2: Attached scsi CD-ROM sr1
27204.066892] sr 11:0:0:2: Attached scsi generic sg4 type 5
27204.082001] sd 11:0:0:0: [sdb] Attached SCSI removable disk
27204.091070] sd 11:0:0:1: [sdc] Attached SCSI removable disk

216 CHAPTER 6 Android forensic techniques
As discussed previously, the HTC Incredible exposes three USB interfaces in
addition to ADB:

� CD-ROM for device driver install (sr1)
� eMMC UMS device (sdb)
� SD card UMS device (sdc)

However, the differences between /dev/sdb and /dev/sdc are not easily discernible
until the UMS or Disk drive feature is enabled on the Android device. Once enabled,
you should then examine the output of dmesg again.
WARNING

Use hardware write blocker
Although the automount feature on the Ubuntu workstation has been disabled, it is critical that
the forensic analyst connects only the Android device to the workstation through a hardware
write blocker to ensure no changes are made to the device. All hardware should be thoroughly
tested prior to active use in a case.

ahoog@ubuntu:~/$ dmesg
<snip>
[327520.269248] sd 11:0:0:1: [sdc] 3911680 512-byte logical blocks:
(2.00 GB/1.86 GiB)
[327520.298549] sd 11:0:0:1: [sdc] Assuming drive cache: write through
[327520.304747] sd 11:0:0:1: [sdc] Assuming drive cache: write through
[327520.304757] sdc: sdc1
[327522.267959] sd 11:0:0:0: [sdb] 13844464 512-byte logical blocks:
(7.08 GB/6.60 GiB)
[327522.271097] sd 11:0:0:0: [sdb] Assuming drive cache: write through
[327522.277187] sd 11:0:0:0: [sdb] Assuming drive cache: write through
[327522.277202] sdb:

It is now clearer that /dev/sdb is the 7 GB storage device (which is the eMMC)
while the 2 GB SD card is mapped to /dev/sdc. We can now acquire the devices
using our acquire script or any forensic imaging tool available on your forensic
workstation. The script takes the following six parameters:

1. Client dThis parameter creates the folder structure, examples might be “sher-
iffs-office” or a client name such as “viaforensics.”

2. CasedThis parameter provides a case name, such as af-book.
3. TagdThis parameter is tag number for the evidence you are forensically

imaging, item001 in our example.
4. SerialnodThis is the serial number of the device, disk, SD card, etc. If you do

not have access to a serial number, you can type any text you choose such as
unknown-serialno.

5. SourcedevdThis is the device you want to acquire such as /dev/sdb, /dev/sdc,
etc. You can determine this using dmesg which is explained next.

6. DestpathdThe top-level directory where the folders should be created. It could
be your home directory (~) or perhaps a folder called clients (~/clients).

Imaging android USB mass storage devices 217
For this example, create a folder in your home directory called sd-emmc and then
run the acquire script with sudo permissions.

ahoog@ubuntu:~$ sudo acquire-disk.sh viaforensics af-book item001
unknown-serialno /dev/sdc ~/sd-emmc
Cannot determine file system type

dc3dd 7.0.0 started at 2011-02-22 04:36:05 -0600
compiled options:
command line: dc3dd if=/dev/sdc of=/home/ahoog/sd-emmc/viaforensics/
af-book/item001-unknown-serialno/item001-unknown-serialno.dc3dd
verb=on hash=sha256 hlog=/home/ahoog/sd-emmc/viaforensics/af-book/
item001-unknown-serialno/log/item001-unknown-serialno.hashlog
log=/home/ahoog/sd-emmc/viaforensics/af-book/item001-unknown-serialno/
log/item001-unknown-serialno.log rec=off
device size: 3911680 sectors (probed)
sector size: 512 bytes (probed)
2002780160 bytes (1.9 G) copied (100%), 808.727 s, 2.4 M/s

input results for device '/dev/sdc':
 3911680 sectors in
 0 bad sectors replaced by zeros
 fc8f3d6dc7e659c3124a4113d2d0ebe87466b497038aedf9f7a1b89c44eda8b9 (sha256)

output results for file '/home/ahoog/sd-emmc/viaforensics/af-book/
item001-unknown-serialno/item001-unknown-serialno.dc3dd':
 3911680 sectors out

dc3dd completed at 2011-02-22 04:49:34 -0600

Youcan thenuse the samegeneral command,but change theparameters to image the
eMMC which, for the device, is located at /dev/sdb. After these commands complete,
the forensic images and log files are in ~/sd-emmc and are structured as follows:

hoog@ubuntu:~$ tree -h sd-emmc/
sd-emmc/
└── [4.0K] viaforensics
 └── [4.0K] af-book
 ├── [4.0K] item001-emmc-unknown-serialno
 │ ├── [6.6G] item001-emmc-unknown-serialno.dc3dd
 │ └── [4.0K] log
 │ ├── [686] item001-emmc-unknown-serialno.hashlog
 │ ├── [39K] item001-emmc-unknown-serialno.log
 │ ├── [374] item001-emmc-unknown-serialno.sha256.log
 │ └── [0] item001-emmc-unknown-serialno.stderr.log
 └── [4.0K] item001-sd-unknown-serialno
 ├── [1.9G] item001-sd-unknown-serialno.dc3dd
 └── [4.0K] log
 ├── [726] item001-sd-unknown-serialno.hashlog
 ├── [39K] item001-sd-unknown-serialno.log
 ├── [296] item001-sd-unknown-serialno.sha256.log
 └── [0] item001-sd-unknown-serialno.stderr.log

6 directories, 10 files

For each UMS device forensically imaged, we not only have the verified image
but also a hashlog for the dd image, log file with date, time, system info and

218 CHAPTER 6 Android forensic techniques
commands run, an error log, and finally a listing of each log file and its sha256
hash. This ensures sufficient details are known about the imaging process.
TIP

Encrypted apps on the SD card
If apps are installed on the SD card, they are encrypted and thus, if the files are examined from
the SD card image, they will be unreadable. However, when the SD card is not mounted on your
forensic workstation, the unencrypted .apk files are mounted in /mnt/asec. If an investigation
relies on .apk app analysis, ensure you acquire a copy of the unencrypted files too.
LOGICAL TECHNIQUES
As discussed at the start of this chapter, logical forensic techniques extract data that
is allocated. This is typically achieved by accessing the file system. Logical
techniques are often the first type of examination a forensic analyst will run
because they are not only easier to execute but often provide sufficient data for the
case. Android forensics physical techniques can provide far more data. However,
they are more difficult to successfully execute and take considerably more effort to
analyze.

Logical techniques also have the advantage of working in far more scenarios as
the only requirement is that USB debugging is enabled. In other words, Android
forensics logical techniques do not require root access.

In this section, we first cover techniques that are freely available (although
AFLogical is only free for active law enforcement and government agencies) fol-
lowed by a review of available commercial software.
ADB Pull
In Chapter 4, the recursive adb pull command was demonstrated several times as
various parts of the file system were copied to the Ubuntu workstation for further
analysis. Unless an Android device has root access or is running a custom ROM, the
adb daemon running on the device that proxies the recursive copy only runs with
shell permissions. As such, some of the more forensically relevant files are not
accessible. However, there are still files which can be accessed.

If you attempt to access files that the shell user does not have permissions to, it
simply does not copy the files:

ahoog@ubuntu:~$ adb pull /data adbpull
pull: building file list...
0 files pulled. 0 files skipped.

However, if you have sufficient privileges (root in the next example), then this
method is very simple and effective:

Logical techniques 219
ahoog@ubuntu:~$ adb pull /data adbpull/
pull: building file list...
<snip>
pull: /data/miscrild_nitz_long_name_31026 -> data/misc/rild_nitz_long_name_31026
pull: /data/misc/akmd_set.txt -> data/misc/akmd_set.txt

712 files pulled. 0 files skipped.
963 KB/s (208943249 bytes in 211.671s)

As you can see from the output above, the entire “/data” partition was copied to
a local directory in just over three and a half minutes. The directory structure is
maintained during the copy so you can then simply browse or otherwise analyze the
files of interest from the workstation.

As most phones will not have root access (at least by default), this technique may
appear to be of little value. However, it is a powerful utility to understand and there
are several scenarios ideal for this approach. These scenarios include:

� On nonrooted devices, an adb pull can still access useful files such as unen-
crypted apps, most of the tmpfs file systems that can include user data such as
browser history, and system information found in “/proc,” “/sys,” and other
readable directories.

� On rooted devices, a pull of nearly all directories is quite simple and certain files
and directories from “/data” would be of interest.

� When utilizing the physical technique, it is not always possible to mount some
acquired file systems such as YAFFS2. If adbd is running with root permissions,
you can quickly extract a logical copy of the file system with adb pull.

As adb is not only a free utility in the Android SDK but also very versatile, it
should be one of the primary logical tools used on a device.
WARNING

adb Pull issues
Some recursive pulls using adb can fail in the middle of the data transfer due to permission or
other issues. You should closely monitor the results of the command to determine if any issues
were encountered. Breaking the recursive pull of large directories into smaller data pulls may
yield better results.

Backup Analysis
When Android was first released, it did not provide a mechanism for users to backup
their personal data. As a result, a number of backup applications were developed and
distributed on the Android Market. For users running custom ROMs, there was an
even more powerful backup utility developed called nandroid.

Many of the backup utilities have a “Save to SD Card” option (which users found
extremely convenient) as well as several options to save to “the cloud.” Either way,
users could take a backup of their devices, and if needed they could restore required

220 CHAPTER 6 Android forensic techniques
data. This is not only a great way for users to protect themselves from data loss, but it
can be a great source of information for forensic analysts.

One of the more popular backup apps is RerWare’s My Backup Prowhich can take
a backup of device data using Content Provider and even the entire “/data/data” files if
the device has root access. The user can choose between saving to the SD card and
saving to RerWare’s server. The app supports (RerWare, LLC, n.d.) the following:

� Application install files (if phone has root access, this includes APK þ Data and
Market Links)

� Contacts
� Call log
� Browser bookmarks
� SMS (text messages)
� MMS (attachments in messages)
� System settings
� Home screens (including HTC Sense UI)
� Alarms
� Dictionary
� Calendars
� Music playlists
� Integrated third-party applications

The last bullet, “integrated third-party applications,” refers to companies who
provide RerWare hooks for data backup. At least initially, RerWare would pay
developers to include RerWare backup support in their apps.

Interestingly, the app runs not only on Android but also on Windows Mobile,
Blackberry, and soon Symbian OS. The user can take a backup on one platform and
restore on a completely different supported OS. RerWare saves a single SQLite file
to the SD card when the device backup is stored locally.

In the more recent releases of Android, a new backup API is now available.
Developers can simply integrate these APIs into their apps and the rest of the backup
is handled by Android and Google. This provides the users with secure, cloud-based
backups with consistency across apps, and will likely become the de facto standard.
Unfortunately, current research has not yet discovered useful artifacts from the new
backup APIs left on an Android device.

Regardless of the backup app, forensic analysts should determine if one was
installed and, if so, where the backup data is stored. The SD card should be
examined as well as other devices such as a computer or laptop. The data saved in
a backup is obviously of significant value in an examination.

AFLogical
AFLogical is an Android forensics logical technique which is distributed free to law
enforcement and government agencies. The app, developed by viaForensics, extracts
data using Content Providers, which are a key feature of the Android platform. This
is the same technique that commercial forensics tools use for logical forensics.

Logical techniques 221
Recall that Android’s security model is effective in limiting access to app data
except in a few circumstances. Here is a quick recap of the key components of
Android’s security model:

� Each application is assigned a unique Linux user and group id.
� Apps execute using their specific user ID in a dedicated process and Dalvik VM.
� Each app has dedicated storage, generally in “/data/data,” that only the app can

access.

However, the Android framework does provide a mechanism by which apps can
share data. An app developer can include support for Content Providers within their
application, which allows them to share data with other apps. The developer controls
what data is exposed to other apps. During the install of an app, the user controls
whether or not an app should gain access to the requested Content Providers.

Some examples of Content Providers are:

� SMS/MMS
� Contacts
� Calendar
� Facebook
� Gmail

And there are many more.
The AFLogical app takes advantage of the Content Provider architecture to gain

access to data stored on the device. Similar to commercial Android logical tools,
USB debugging must be enabled on the device for AFLogical to extract the data.
The current version, 1.5.1, extracts data from 41 Content Providers and provides the
output information to the SD card in CSV format and as an info.xml file, which
provides details about the device and installed apps. AFLogical supports devices
running Android 1.5 and later, and has been specifically updated to support
extraction of large data sets such as an SMS database with over 35,000 messages.
The currently supported Content Providers are:

1. Browser Bookmarks
2. Browser Searches
3. Calendars
4. Calendar Attendees
5. Calendar Events
6. Calendar Extended Properties
7. Calendar Reminders
8. Call Log Calls
9. Contacts Contact Methods

10. Contacts Extensions
11. Contacts Groups
12. Contacts Organizations
13. Contacts Phones

222 CHAPTER 6 Android forensic techniques
14. Contacts Settings
15. External Media
16. External Image Media
17. External Image Thumb Media
18. External Videos
19. IM Account
20. IM Accounts
21. IM Chats
22. IM Contacts Provider (IM Contacts)
23. IM Invitations
24. IM Messages
25. IM Providers
26. IM Provider Settings
27. Internal Image Media
28. Internal Image Thumb Media
29. Internal Videos
30. Maps-Friends
31. Maps-Friends extra
32. Maps-Friends contacts
33. MMS
34. Mms Parts Provider (MMSParts)
35. Notes
36. People
37. People Deleted
38. Phone Storage (HTC Incredible)
39. Search History
40. SMS
41. Social Contracts Activities

Let’s walk through the steps for running AFLogical on a device. First, ensure you
have downloaded AFLogical, which requires registration and approval from via-
Forensics. (You can access the AFLogical page at http://viaforensics.com/products/
tools/aflogical/.) Next, you need to replace the user’s SD card with an SD card you
control and ensure that USB debugging is enabled on the device. Then connect the
Android device to your Ubuntu workstation and make sure you pass the USB
connection through to the VM.
WARNING

Replace user’s SD card
This version of AFLogical writes content directly to the SD card and it is important that the
user’s SD card is removed and replaced with the examiner’s SD card. Failure to do this will
either write data to the user’s SD card or AFLogical will fail as it cannot write to the SD card.
The commercial version of this app will eventually replace the writing to the SD card in favor of
port forwarding over adb.

http://viaforensics.com/products/tools/aflogical/
http://viaforensics.com/products/tools/aflogical/

Logical techniques 223
From a terminal session, verify you can see the device:
$adb devices
List of devices attached
0403555511112222F device

Assuming you saved the AFLogical app in your home directory, you can install it
with the following command:

ahoog@ubuntu:~$ adb install ~/AndroidForensics.apk
523 KB/s (31558 bytes in 0.058s)
 pkg: /data/local/tmp/AndroidForensics.apk
Success

Note: If AFLogical is already installed on the device, an error will display and
you must uninstall the existing app before you can install the new version. To
uninstall, run the following command:

ahoog@ubuntu:~$ adb install /opt/via/AFLogical/AndroidForensics.apk
824 KB/s (31558 bytes in 0.037s)
 pkg: /data/local/tmp/AndroidForensics.apk
Failure [INSTALL_FAILED_ALREADY_EXISTS]

ahoog@ubuntu:~$ adb uninstall com.viaforensics.android
Success

After the application is successfully installed, you can run the program from
either the Android device directly or via command line. If you run the app from
command line, you can simply start the app and then complete using the device or
have it run automated. To run the app and extraction automatically, execute the
following:

ahoog@ubuntu:~$ adb shell am start -n
com.viaforensics.android/com.viaforensics.android.ExtractAllData
Starting: Intent { cmp=com.viaforensics.android/.ExtractAllData }

The program immediately starts and begins to extract data from all supported
Content Providers. If you are viewing the screen, you would see an image similar to
Fig. 6.7.

Or you can simply start the app with the following:

ahoog@ubuntu:~$ adb shell am start -n
com.viaforensics.android/com.viaforensics.android.ForensicsActivity
Starting: Intent { cmp=com.viaforensics.android/.ForensicsActivity }

FIGURE 6.7

AFLogical, extract all from command line.

224 CHAPTER 6 Android forensic techniques
And then complete the acquisition using the screen presented on the device as
shown in Fig. 6.8.

Otherwise, you can simply run the app directly from the All Apps screen
on the device as shown in Fig. 6.9. First, access the Android app menu,
FIGURE 6.8

AFLogical, run from command line.

mailto:Image of Figure 6.8|tif

FIGURE 6.9

AFLogical in All Apps list.

Logical techniques 225
look for a program called viaForensics and click on the icon to launch
the app.

You will then be presented with the AFLogical data extraction screen. You can
select or deselect individual Content Providers or leave all of them selected. Next,
you hit Capture which will start the data collection process as illustrated in
Fig. 6.10.

Once the data collection is complete, you will receive the corresponding message
shown in Fig. 6.11.

The extracted data are saved to the SD card of the device in a directory called
forensics and a subdirectory named after the date in YYYYMMDD.HHMM
format. For this example, we moved the files from the SD card to an AFLogical
directory on the local file system using adb pull. If you examine that folder,
you see:
ahoog@ubuntu:~$ ls AFLogical/
20110221.1708

FIGURE 6.11

AFLogical, data extraction complete.

FIGURE 6.10

AFLogical capturing data.

226 CHAPTER 6 Android forensic techniques

mailto:Image of Figure 6.11|tif

Logical techniques 227
This then contains the extracted data:

ahoog@ubuntu:~$ ls AFLogical/20110221.1708/
Browser Bookmarks.csv IM Providers.csv
Browser Searches.csv IM ProviderSettings.csv
CallLog Calls.csv info.xml
Contacts ContactMethods.csv Internal Image Media.csv
Contacts Extensions.csv Internal Image Thumb Media.csv
Contacts Groups.csv Internal Videos.csv

Contacts Organizations.csv Maps-Friends contacts.csv
Contacts Phones.csv Maps-Friends.csv
Contacts Settings.csv Maps-Friends extra .csv
External Image Media.csv MMS.csv
External Image Thumb Media.csv MMSParts.csv
External Media.csv People.csv
External Videos.csv PhoneStorage (HTC Incredible).csv
IM Account.csv sanitize.sh
IM Accounts.csv Search History.csv
IM Chats.csv SMS.csv
IM Contacts.csv Social Contracts Activities.csv
IM Invitations.csv

The CSV files can be viewed using any editor or spreadsheet. There is also a file in
the directory called info.xml, which contains information about the device including
the IMSI, IMEI, Android version, network provider, and more, as well as the list of
all installed apps.

ahoog@ubuntu:~$ less info.xml
<android-forensics>
<date-time>20110221.1708</date-time>
<IMSI>removed</IMSI>
<IMEI>removed</IMEI>
<build>
 <version.release>2.2</version.release>
 <version.sdk>8</version.sdk>
 <version.incremental>264707</version.incremental>
 <board>inc</board>
 <brand>verizon_wwe</brand>
 <device>inc</device>
 <display>FRF91</display>
 <fingerprint>verizon_wwe/inc/inc/inc:2.2/FRF91/264707:user/release-
keys</fingerprint>
 <host>HPA003</host>
 <id>FRF91</id>
 <model>ADR6300</model>
 <product>inc</product>
 <tags>release-keys</tags>
 <time>1285855309000</time>
 <type>user</type>
 <user>root</user>
</build>
<applications>
 <app>
 <label>Network Location</label>
 <className>null</className>
 <dataDir>/data/data/com.google.android.location</dataDir>
 <descriptionRes>0</descriptionRes>
 <flags>48709</flags>
 <manageSpaceActivityName>null</manageSpaceActivityName>

mailto:Image of Figure 6.10|tif
mailto:Image of Figure 6.10|tif

228 CHAPTER 6 Android forensic techniques
 <name>null</name>
 <packageName>com.google.android.location</packageName>
 <permission>null</permission>
 <processName>system</processName>
 <publicSourceDir>/system/app/NetworkLocation.apk
 </publicSourceDir>
 <sourceDir>/system/app/NetworkLocation.apk</sourceDir>
 <taskAffinity>com.google.android.location</taskAffinity>
 <uid>1000</uid>
 <enabled>true</enabled>
 <description>null</description>
 <packageinfo> <versionCode>8</versionCode>
 <versionName>2.2</versionName>
 </packageinfo> </app>
 <app>
 <label>IMDb</label>
 <className>null</className>
 <dataDir>/data/data/com.imdb.mobile</dataDir>
<snip>

The data can now be analyzed by the forensic examiner and easily shared with
others.
WARNING

Uninstall AFLogical
Do not forget to uninstall AFLogical. Failure to uninstall the app would mean that the Android
device could potentially be returned to the owner with the forensic agent still accessible. To
uninstall AFLogical, key in the following command:

adb uninstall com.viaforensics.android
This should return Success. Alternately, you can go to the home screen, press Menu,

select Applications, Manage Applications, viaForensics, and finally Uninstall.

Commercial Providers
Many of the commercial mobile forensic software vendors now support Android. To
date, the forensic software only supports a logical examination of an Android device
using the same Content Provider technique used by AFLogical. It can be helpful for
a forensic examiner to understand how each of the forensic software vendors
implement Android support.

Each software company provided an evaluation copy of their software as well as
an overview of their platform, which is included at the beginning of each section. A
Motorola Droid running Android 2.2 was used for the examination. This section is
not intended to evaluate each platform, but rather provide a helpful overview. The
following forensic software packages were provided (reviewed in alphabetical
order):

� Cellebrite UFED
� Compelson MOBILedit!
� EnCase Neutrino

mailto:Image of Figure 6.10|tif

Logical techniques 229
� Micro Systemation XRY
� Paraben Device Seizure
� viaForensics’ viaExtract

Two additional forensic software packages were tested. However, issues were
encountered which prevented their inclusion at this time. These vendors do provide
a forensic solution for Android and, if interested, you should review their offerings
independently. The software packages omitted were Oxygen Forensic Suite 2010
and Logicube’s CellDEK.

The challenge with any such overview is that the forensic software is updated
frequently enough that a newer version likely already exists. Forensic examiners and
security engineers interested in a particular software package should check the
vendor’s web site or contact them directly.
Cellebrite UFED
The following overview of Cellebrite was provided by the vendor:

The Cellebrite UFED Forensic system is a stand-alone device capable of
acquiring data from approximately 1600 mobile devices and storing the information
on a USB drive, SD card or PC. UFED also has a built-in SIM card reader and cloner.
The ability to clone a SIM card is a powerful feature as you can create and insert
a clone of the original SIM and the phone will function normally. However, it will
not register on the mobile carrier’s network, eliminating the need for Faraday bags
and the possibility that the data on the phone will be updated (or erased). The UFED
package ships with about 70 cables for connecting to most mobile devices available
today. Connection protocols supported include serial, USB, infrared, and Bluetooth.

Cellebrite also distributes the UFED Report Manager, which provides an intui-
tive reporting interface and allows the user to export data/reports into Excel, MS
Outlook, Outlook Express, and CSV or to simply print the report.

The UFED device fully supports Unicode and thus, can process phones with any
language enabled. Also, the following data types are extracted:

� Phone Book
� Text Messages
� Call History (Received, Dialed, Missed)
� SIM ID Cloning
� Deleted Text Messages off SIM/USIM
� Audio Recordings
� Videos
� Pictures
� Phone Details (IMEI/ESN phone number)
Installation

The UFED system is a stand-alone unit and is packaged in a soft case containing the
UFED device, user manual, software CD-ROM, USB Bluetooth radio (Cambridge

FIGURE 6.12

UFED instructions for Android device.

230 CHAPTER 6 Android forensic techniques
Silicon Radio Ltd), 250 MB USB drive, and roughly 72 cables for connecting to
supported devices.

The UFED system provides several mechanisms by which the firmware and
software can be updated. After setting the date and time, an examiner can
simply connect the UFED system to the network via an Ethernet cable,
provided DHCP and Internet access are available. Next, select Services,
Upgrade, Upgrade Application Now, and select HTTP Server as the source. For
this test, the latest Application software, version 1.1.0.5, was located and
installed. As the UFED system is a stand-alone solution, no additional installs
are necessary.
Acquisition

The acquisition of the Motorola Droid was quite fast and simple on the UFED
system. After powering the device on, select Extract Phone Data, Motorola
CDMA, Moto. A855 Droid (Android), USB disk drive (destination), and the
desired Content types. The following instructions were then displayed by the
UFED system (see Fig. 6.12):

Moto. A855 Droid (Android):
Before starting the transaction, prepare phonebook for transfer, as follows:
1. Make sure SD card is inserted into the phone.
2. Go to "Contacts".
3. Press on "Menu" Key on the phone.
4. Select "Import/Export".
5. Select "Export to SD card" and "OK".
6. Wait for completing of Export to .vcf file.

To enable phone USB Connectivity, set Connection settings as follows:
Menu -> Settings -> Applications -> Development -> Select the checkboxes: "USB
debugging" and "Stay awake".

mailto:Image of Figure 6.10|tif
mailto:Image of Figure 6.12|tif

Logical techniques 231
It should be noted that the contacts list will be saved to the SD card if the
suggested steps are followed. After performing these steps, you hit Continue and the
acquisition proceeds. The UFED system next prompts:

Set USB to Mass Storage (Memory Card) mode on the SOURCE phone

And after this step is completed, the acquisition proceeds. You may be prompted
to set UMS again before the acquisition is complete. The acquisition process took
just over three minutes and provided the following prompt:

Moto. A855 Droid (Android):
Please return the Connection settings back: Menu -> Settings -> Applications ->
Development -> unmark the checkboxes: "USB debugging" & "Stay awake"

The results from the acquisition were stored on the flash drive that was plugged
into the UFED. A 25 MB folder was created on this drive with folders for videos,
audio, and images. There were also three files of interest created: PhoneBook
2010_11_23 (001).htm, SMSMessages 2010_11_23 (001).htm, and Report.htm. All
these can be viewed in a web browser. The file Report.htm contains the entire report
of the extraction. This contains sections for Phone Examination Report Properties,
Phone Examination Report Index, Phone Contacts, Phone SMSdText Messages,
Phone Incoming Calls List, Phone Outgoing Calls List, Phone Missed Calls List,
Images, Ringtones, Audio, and Video.

The entire acquisition process took approximately ten minutes. After the
acquisition was completed, a quick examination of the SD card revealed a file
named 00001.vcf that contained the contact information from the export
process.

Phone information was well laid out and was quite accurate.

Data presentation and analysis

The acquisition data was stored on a flash drive connected to the UFED system and
contained a folder that stored videos, audio files, and images as well as three HTML
files, which contained the report data:

1. PhoneBook 2010_11_23 (001).htm
2. SMSMessages 2010_11_23 (001).htm
3. Report.htm

These files can be viewed in a web browser and samples from the report are
displayed in Fig. 6.13, in which thorough phone information was captured.

Fig. 6.14 shows how the Phone Contacts are laid out.
Fig. 6.15 shows text messages displayed chronologically with detailed infor-

mation on whether the message was sent or received.

mailto:Image of Figure 6.12|tif

FIGURE 6.14

UFED phone contacts reporting.

FIGURE 6.13

UFED phone information reporting.

232 CHAPTER 6 Android forensic techniques

mailto:Image of Figure 6.14|tif

FIGURE 6.15

UFED SMS reporting.

Logical techniques 233
However, deleted text messages are not displayed, nor are MMS messages.
Call logs are displayed chronologically as shown in Fig. 6.16, and include the

length of the call. They are categorized into Incoming, Outgoing, and Missed
sections.

Several calls were deleted from the call logs; however, UFED was able to extract
and display the details.

All of the images found on the phone are reported, along with a thumbnail of the
image and details, including file name, size, date and time created, and resolution, as
shown in Fig. 6.17.

Deleted images did not appear, and it seemed as though a duplicate of each image
was created. Both audio and video files are reported. The report includes file name,
file size, date and time created, and a link to view or listen to the media, as shown in
Fig. 6.18.

No deleted videos were returned and songs uploaded to the device did not appear
in the report. The audio files that were reported were returned from Google Maps
Navigation.

FIGURE 6.16

UFED phone calls reporting.

FIGURE 6.17

UFED images reporting.

234 CHAPTER 6 Android forensic techniques

FIGURE 6.18

UFED audio and video reporting.

Logical techniques 235
Compelson MOBILedit!
The following overview of MOBILedit! was provided by the vendor:

With just a single click, MOBILedit! Forensic collects all possible data from
mobile phones and generates extensive reports onto a PC that can be stored or
printed. It is the most universal mobile phone solution with software supporting most
GSM phones and open architecture allowing the support of any phone. The system
allows you to customize the output making it completely adaptable to the needs of
your judicial system.

MOBILedit! Forensic does a complete analysis of the phone including its phone
book, last dialed numbers, missed calls, received calls, MMS messages, SMS
messages, photos, videos, files, phone details, calendar, notes, tasks, and much more.

MOBILedit! Forensic caters to the entire world with reports that can be gener-
ated in any language. You are able to prepare creative templates according to your
specific needs. You construct all the text that you would like to see appear in every
final report. It also allows for XML export, so that you can connect the application
with other systems. The XSL module exports and nicely formats all data in the
package to an Internet browser. You can burn, send, and share the report as needed.

MOBILedit! Forensic reports can be created without the touch of a human hand.
While there is noneed to import or export stubs of data fromSIMsor phones, it is possible
in manual investigation mode in MOBILedit! Forensic. It is read-only and hence, it
prevents changes in the device, which could mean the disappearance of evidence. All

236 CHAPTER 6 Android forensic techniques
items are also protected against later modifications by MD5 hash codes used in digital
signatures. It helps you to quickly locate the possible place of modification.

MOBILedit! Forensic also has frequent updates and upgrades so that you can be
sure you are using the absolute latest in technology. Its detailed reports and user-
friendly design make it a pleasure to work with.

Installation

The MOBILedit!4 Forensic application was downloaded from www.mobiledit.com
and the install only took a few minutes. After the installation is completed and the
application is run for thefirst time, you are presentedwith a prompt to check for updates.

To activate the software, Compelson sends an e-mail with an “activation card”
attachment. This PDF file includes installation instructions as well as an activation
key that worked without any issues.

Acquisition

To begin the acquisition, the examiner must first connect the Android device to the
forensic workstation using USB and ensure USB debugging is enabled. MOBILedit!
attempts to detect the device as shown in Fig. 6.19.

After clicking “Finish,” there was a notification prompting the installation of the
“Connector” app on the device, shown in Fig. 6.20.

Following the quick installation, you create a name for the investigation and
select the type of data you want to extract. In the example shown in Fig. 6.21, the
FIGURE 6.19

detect Android device.

http://www.mobiledit.com

FIGURE 6.20

Install the connector.

FIGURE 6.21

Take backup of the whole file system.

Logical techniques 237
option to take a backup of the “Whole file system” was selected, which then
executed without error and presented a success status as illustrated in Fig. 6.22.

You can then decide if you want to add this to an already existing case or create
a new one. For this example, shown in Fig. 6.23, a new case was created and a data
export format option of XLS was selected.

FIGURE 6.22

Operation completed successfully.

FIGURE 6.23

Data export format.

238 CHAPTER 6 Android forensic techniques

FIGURE 6.24

Main screen.

Logical techniques 239
Data presentation and analysis

Immediately following the acquisition of the device, MOBILedit displays statistics
on the devices that were acquired, as well as a view of the application data available
for analysis. Fig. 6.24 shows the main screen where the examiner can see specific
device information including the IMEI number, serial number, and details on the
amount of Phone memory, Battery signal, Network signal, and Memory card space
available on the device.

The next option in the Tree View is the Phonebook where the examiner can view
all contacts stored within the Phonebook including e-mail address, phone numbers,
nicknames, and any notes entered regarding the contact, as shown in Fig. 6.25.

Call logs are next and are separated into Missed calls, Last dialed numbers, and
Received calls as shown in Fig. 6.26.

SMS messages are similarly separated into categories including Inbox, Sent
items, and Drafts. Each section contains the date and time the message was received
(or sent), the message content, and who the message was from. Contact names are
linked to the Phonebook, so both name and phone numbers are displayed. Fig. 6.27
shows the SMS message inbox.

Any MMS messages are displayed within the “MMS Storage” folder, shown in
Fig. 6.28. On the left-hand side, information about the message is displayed,

FIGURE 6.25

Phonebook.

FIGURE 6.26

Call logsdMissed calls.

240 CHAPTER 6 Android forensic techniques
including the subject, number it was sent from, number it was sent to, and date and
time. On the right-hand side is a preview of the actual image.

Selecting the Calendar option will literally pull up a calendar within the reporting
tool as shown in Fig. 6.29.

Additional data extracted from the device or SD card is shown within the “files”
directory. This directory contains a listing of the file system on the device. While
some of these folders are empty (such as cache, config, and data), there are also some
folders which contain raw files acquired from the device. For example, within the SD
card folder, the subfolder “secret stuff” contained two files shown in Fig. 6.30.

Finally, the tool also provides a hex dump capability for specified files. After
selecting “Hex Dump,” and then a file (in this example, a .jpg file was selected),

FIGURE 6.27

SMS messagesdInbox.

FIGURE 6.28

MMS storage.

Logical techniques 241
the hex dump is viewed on the right-hand side using a hex editor as shown in
Fig. 6.31.

Most of the raw user data files on the Android can be found within the “data”
folder and, when MOBILedit created an entry in the Tree View for this folder (under
the “Files” directory), it did not contain any files.

One thing to note is that when the acquisition and analysis was complete, the
“MOBILedit! Connector” application was still installed on the device. Examiners
should strongly consider manually uninstalling the software from the device after
the investigation is complete.

FIGURE 6.29

Calendar.

FIGURE 6.30

SD card files.

242 CHAPTER 6 Android forensic techniques
EnCase Neutrino
The following overview of Neutrino was provided by the vendor:

EnCase� Neutrino� is designed for law enforcement, security analysts, and
eDiscovery specialists who need to forensically collect and review data from mobile
devices. Investigators can process and analyze mobile device data alongside other
types of digital evidence within any EnCase� product.

The solution features hardware support and parsing capabilities for the most
common mobile devices and Smartphone operating systems including iPhone, Palm,

FIGURE 6.31

Hex dump.

Logical techniques 243
BlackBerry�, Android, Windows Mobile, Motorola, Nokia, Samsung, and many
more. Investigators can collect, analyze, and preserve all potentially relevant data
including:

� Device Settings
� Contacts
� Call logs
� E-mail
� Images
� SMS/MMS
� Calendars
� Other files stored on the device

With EnCase Neutrino an investigator can:

� Collect data from a wide variety of devices, following an easy to use wizard
� Correlate data from multiple devices and computer media
� Seamlessly integrate collected data into EnCase Forensic or EnCase Enterprise

for analysis
� Parse data quickly to improve speed of investigation process
� Access more data on selected devices in comparison to similar products
Installation

The installation of EnCase Neutrino first required installing EnCase, then Neutrino.
The software installation proceeded without issue when following the on-screen

244 CHAPTER 6 Android forensic techniques
instructions. To use the software, you must have a hardware USB dongle provided
by EnCase.

Acquisition

The acquisition of an Android device by Neutrino is handled in a single screen. First,
you select the device, manufacturer, and model. Next, you enter basic information
about the case and the device. Finally, you connect the device to your forensic
workstation and click “Acquire Current Item.” Fig. 6.32 shows the acquisition screen.

The acquisition took less than one minute. Once completed, click Generate
Report to see the results of the acquisition.

Data presentation and analysis

Neutrino reports have a short and a detailed report. The short report, shown in
Fig. 6.33, shows all of the entries of the detailed report but with fewer details.

And the detailed view provides much greater detail about the contacts as shown
in Fig. 6.34.
FIGURE 6.32

Neutrino acquisition screen.

FIGURE 6.34

Neutrino contacts in detailed report.

FIGURE 6.33

Neutrino contacts in short report.

Logical techniques 245
The SMS section also has a short and detailed view. The short view only shows
the other phone number in the conversation, the date and time of the message, the
message direction (sent or received), and the message contents. The detailed view,
shown in Fig. 6.35, includes information such as the name associated with the phone
number involved with the message and the status of the message.

FIGURE 6.35

Neutrino SMS in detailed report.

246 CHAPTER 6 Android forensic techniques
MMS messages only appear in the detailed view, shown in Fig. 6.36.
No deleted SMS messages were recovered. The detailed view of the user’s web

history, shown in Fig. 6.37, provides considerable details.
The only photos recovered from the device were the images sent as MMS, not the

photos or videos saved on the device’s SD card.
The report can be exported in other formats, such as to HTML, so that the entire

report can be viewed in one page, as illustrated in Fig. 6.38

Micro Systemation XRY
The following overview of XRY was provided by the vendor:

XRY is a dedicated mobile device forensic tool developed by Micro Systemation
(MSAB) based in Stockholm.

XRY has been available since 2002 and “XRY Complete” is a package con-
taining the software and hardware to allow logical and physical analysis of mobile
devices. The product comes shipped in a handy portable case with bespoke interior
and all the necessary hardware included, which are as follows:

� XRY Forensic Pack Software License Key
� Communication hub for USB, Bluetooth, and Infrared connectivity

FIGURE 6.36

Neutrino MMS in detailed report.

Logical techniques 247

FIGURE 6.37

Neutrino web history in detailed report.

248 CHAPTER 6 Android forensic techniques
� SIM ID cloner device
� Pack of SIM clone cards
� Write-protected universal memory card reader
� Complete set of cables for logical and physical acquisition
� XACT Hex Viewer software application
� XRY Reader Tool for distribution to third parties

XRY was designed and refined with the input of forensic investigators and
a wizard guides you through the entire process to assist the examination. The new
unified Logical/Physical extraction Wizard and the resulting reports help to show
the examiner the full contents of the device in a neat, clean, and professional
manner.

One of the unique features of XRY is the Device Manual with a complete and
detailed list of available support for each device; identifying what data can be
retrieved, and also what cannot be recovered which is sometimes just as relevant to
investigators.

FIGURE 6.38

Neutrino report exported as HTML.

Logical techniques 249
All extractions, logical or physical, are saved in an XRY file which remainsd
for forensic security purposes. From the XRY file, you can create reports as
required in Word, Excel, Open Office, or PDF. You can include case data, and
references, choose what data is included in the report or not and then distribute it to
other parties involved in the investigation; lawyers, prosecutors or other investi-
gators. MSAB offer a free XRY reader and you can provide this to third parties to
allow them to make notes on the reportdwhile still maintaining the original
forensic integrity of the data.

Within the package is the XACT Hex Viewer application to undertake more
detailed examination of the raw data recovered and assist with searching and manual
decoding to supplement the automatic decoding available in XRY Physical.

Version 5.1 of the XRY Forensic Pack was released on June 28, 2010 with
additional support for the Apple iPad.
Installation

XRY is a Windows application that you install from a single setup program provided
by the vendor. The setup includes an installation wizard, checks for software updates
online, and takes approximately 15 minutes. The software requires the use of
a hardware dongle to operate.

FIGURE 6.39

XRYdSearch device type.

250 CHAPTER 6 Android forensic techniques
Acquisition

After the installation is complete, run the software, select Extract Data, and then
choose to extract data from a phone. After that, you must identify the device type,
which can be done in several ways. For this example, a search was executed by
selecting Name Search, search for Droid, and select Motorola Droid A855, and then
select Next. This is illustrated in Fig. 6.39.

Although the MSAB forensic suite supports physical extractions of some
devices, only logical extraction is available for Android. After selecting logical
acquisition, the software displays the data available for extraction as shown in
Fig. 6.40.

Select Next and then the option to extract data by cable and a full read and finally
click Next to start data extraction. When the extraction is complete, you see the
extraction complete screen shown in Fig. 6.41.
Data presentation and analysis

After extraction, the application displays the data within the application and is easy
to navigate. The contact list includes not only the details of a contact but where the
contact was stored, as shown in Fig. 6.42.

The call logs provide the type of call (dialed or received), name, number, time,
duration, and storage location, as shown in Fig. 6.43.

Fig. 6.44 shows the SMS messages including the number, name, message, time,
status, storage, index, and the folder it is located in.

Fig. 6.45 shows that the only image extracted from the device was from anMMS.

FIGURE 6.40

XRY data types available for Droid extraction.

Logical techniques 251
Other data was extracted. However, it is not displayed in a dedicated report
section. For example, you can review the web browser history, web site bookmarks,
and Google search history in the Log section of the report.

MSAB also has a tool called XACT, which provides a hex view of specific
entries. For example, Fig. 6.46 shows the contents of an SMS message.
Paraben Device Seizure
The following overview of Device Seizure was provided by the vendor:

Paraben’s Device Seizure (DS) is a handheld forensics tool that enables the
investigator to perform logical and physical data acquisitions, deleted data recovery,
and full data dumps, on approximately 2400 models of cell phones, PDAs/smart-
phones, and portable GPS units. Physical data acquisitiondoften where deleted data
is founddis possible from approximately two-thirds of the supported models.
Furthermore, DS has been documented and verified as being 100% forensically

FIGURE 6.41

XRY extraction complete.

FIGURE 6.42

XRY contacts list.

252 CHAPTER 6 Android forensic techniques
sound, meaning the digital evidence is never altered in any way. These functions are
all possible through a standard USB data cable connection with any PC.

Over the past two years Google’s Android operating system for mobile devices
has had a significant impact on the industry. Paraben focuses on staying in step with
the latest innovations and has added support for the Android OS to DS. With the
release of DS version 4.0, an investigator has the capabilities of acquiring the most
commonly sought-after data such as call logs, address book, and SMS messages.

FIGURE 6.43

XRY call log.

FIGURE 6.44

XRY SMS.

Logical techniques 253
Beyond these data types, DS will also acquire multimedia filesdMMS messages,
images, video, and audio files. The full list of data types that can be acquired from
Android models are as follows:

� Address Book including contacts groups, organizations, and address book
settings, along with the standard name, phone number, and address

� SMS messages

FIGURE 6.45

XRY images.

FIGURE 6.46

XACTdSMS message.

254 CHAPTER 6 Android forensic techniques

Logical techniques 255
� MMS messages
� Call history
� Contact methods
� Browser history
� External image media (metadata)
� External image thumbnail media (metadata)
� External media, audio, and miscellaneous data (metadata)
� External videos (metadata)
� List of all applications installed and their version
Installation

Paraben DS version 4.1.3971.37683 was installed on the Windows forensic work-
station. The setup process required the installation of many required drivers that took
a considerable amount of time. The software must be registered prior to use, which is
achieved either using a hardware dongle or through a registration key file provided
by Paraben. To install the registration key file, you simply copy the file into the DS
install directory, which is likely C:\Program Files\Paraben Corporation\Device
Seizure.

Acquisition

To start the acquisition of a new Android device, you first open a new case and
complete the required case information section. You then choose “Data Acquisition”
and select Android at which point the following directions are provided:

Android based cell phones must be placed into "debugging" mode*. Follow the
instructions below:
1. On the cell phone, navigate to Settings>Application Settings and select the
Unknown Sources option.
2. On the cell phone, navigate to Settings>Application Settings>Development and
select the USB debugging option.
3. Install drivers for your cell phone. These drivers are provided in the
Device Seizure Drivers Pack that can be downloaded on www.paraben.com.
4. Connect the cell phone to the USB port on your computer.
* Please note that AT&T and Motorola have taken the "Unknown Sources", found on
step 1, out of Android devices. Device Seizure does not support these models.

According to these instructions, Motorola phones are not supported. However,
the acquisition of the Motorola Droid was successful.

Follow the instructions, then click “Next” at which point DS attempts to identify
the phone. Ensure the identified device information is accurate and click “Next” as
shown in Fig. 6.47.

The next screen provides a list of supported data types that DS can extract from
the device. All were selected, which includes acquiring the part of the file system it
can read and the SD card, so the acquisition process is slow. Fig. 6.48 shows the DS
acquisition timing.

The acquisition completed approximately two hours later and the prompt to sort
files was accepted. The process of sorting the files took considerable time, but was

FIGURE 6.47

Device Seizure device identification.

FIGURE 6.48

Device Seizure acquisition timing.

256 CHAPTER 6 Android forensic techniques
less than two hours. At that point, the acquisition process was complete. Fig. 6.49
shows the DS acquisition complete output.
Data presentation and analysis

Device Seizure displays the acquired data with the application in an easy to browse
and navigate structure. The acquired directory structures are shown in Fig. 6.50.

mailto:Image of Figure 6.47|tif

FIGURE 6.49

Device Seizure acquisition complete.

FIGURE 6.50

Device Seizure Droid directory structure.

Logical techniques 257
Contacts provide not only the name, notes, phone numbers, and e-mail, but also
helpful fields, such as number of times contacted, last time contacted, and a photo, if
available, as shown in Fig. 6.51.

The SMS reporting provides the expected fields, but deleted messages were not
included. The report does not cross-reference the contact data with the phone

FIGURE 6.51

Device Seizure contacts.

258 CHAPTER 6 Android forensic techniques
number, so the examiner must either know the phone number or handle the cross-
referencing themselves. Fig. 6.52 shows the DS SMS.

However, the call logs do perform the cross-reference and display the date,
message type, duration, number, number type, name, or whether the call was a new
call (presumably the first time that number appeared in the call logs). Fig. 6.53
shows the call logs.
FIGURE 6.52

Device Seizure SMS.

FIGURE 6.53

Device Seizure call logs.

Logical techniques 259
A complete web history is available and parsed, including visit count and
bookmarks. However, the data view is quite long and only the beginning information
is displayed in Fig. 6.54.

Device Seizure allows the examiner to select any file and extract it to the
forensic workstation for additional analysis. This is helpful for viewing or
analyzing file types not supported natively in the DS environment. As the file
sorting option was chosen during the acquisition stage, each extracted file was
identified and grouped by type allowing quick access to files of interest. This is
shown in Fig. 6.55.
FIGURE 6.54

Device Seizure web history.

FIGURE 6.55

Device Seizure’s file sorter.

260 CHAPTER 6 Android forensic techniques
viaForensics’ ViaExtract
The following overview of viaExtract was provided by the vendor:

viaExtract is the latest Android forensic solution from viaForensics, a leader and
innovator in the field. In addition to their mobile forensics white papers and book,
viaForensics’ provides a free Android forensics solution for law enforcement and
government agencies called AFLogical.

Building on this experience, viaForensics developed viaExtract, which extracts,
analyzes, and reports on data in Android devices. viaExtract is a modular solution
and will next offer an Android forensic physical technique based on viaForensics’
research and development. Up to date information on viaExtract is available online
at http://viaforensics.com/products/viaextract/ including support for Android
forensics physical techniques, additional supported mobile platforms, and advanced
forensic recovery techniques.

viaForensics is a forensics and security firm that actively investigates mobile
devices and traditional computers. Their direct experience as examiners has led to
the development of a tool specifically tailored to forensic examiners. The tool was
designed for frequent updates as the mobile forensic discipline is changing rapidly.
A unique debug and reporting system integrated into viaExtract simplifies the
process of sending debug and sanitized data to viaForensics to assist with the design
and improvement of viaExtract operating on the diverse Android ecosystem.
Installation

The viaExtract software is distributed as a virtual machine, so it runs on Microsoft
Windows, Apple OS X, Linux, or other operating systems that run supported vir-
tualization software. The software is fully configured, as are necessary drivers and
supporting libraries, which greatly simplifies the installation. There are several
supported virtualization packages, which are free, including:

http://viaforensics.com/products/viaextract/

Logical techniques 261
� Oracle’s VirtualBox
� VMWare Player

A number of commercial packages are also available. The virtual machine is
downloaded from viaForensics’ web site and then imported into the supported
software. Examiners can use features built into virtualization software, such as
taking snapshots to restore the software to a pristine state after each case, or integrate
it directly into their host operating system by sharing data storage and other valuable
features.

Acquisition

After viaExtract is imported into the host system’s virtualization software and is
running, the forensic examiner logs into the Ubuntu virtual machine and runs
viaExtract as shown in Fig. 6.56.

The examiner can then start a new case or open a previous one, as illustrated in
Fig. 6.57.

After entering the case details, the examiner can then choose to extract data
directly from an Android device or to load from a previous data extraction located on
the file system. The latter feature is useful for cases where the examiner used via-
Forensics’ free AFLogical software to extract data from Android devices. It also
allows the examiner to generate a new forensic report from a previous device’s
extracted data, which is quite useful as new reporting features are added.

For this example, we will extract data from an Android device by clicking
Forward. We are then presented with the Load data screen, which provides
FIGURE 6.56

viaExtract software.

FIGURE 6.57

viaExtractdNew case.

262 CHAPTER 6 Android forensic techniques
directions for enabling USB debugging. After you click OK the data extraction
begins, as shown in Fig. 6.58.

After the data extraction is complete, the examiner is presented with a list of data
extracts and has the ability to select what they want to include in the forensic
analysis and report, as shown in Fig. 6.59.

After the selections are completed and the examiner clicks Apply, the report
logic is executed and the data extraction is complete.
FIGURE 6.58

viaExtractdData extraction.

FIGURE 6.59

viaExtractdForensic analysis and report.

Logical techniques 263
Data presentation and analysis

After the data extraction is complete, viaExtract presents the analyzed data
to the user. By navigating the selections on the left side of the application,
the examiner can view different sections of the report. For example, the
first section presented is the Device Information section as shown in
Fig. 6.60.

Next, Fig. 6.61 shows browser history and bookmarks that are available in the
report.

In this example, you can see several features of the report view, including:

� Ability to filter, on the fly, any section of the report
� Ability to sort ascending or descending on any column

In the next example, a filter of viaforensics.com was applied against 29 people
records and 2 remained. However, many of the fields were displayed to the right of
the screenshot as shown in Fig. 6.62.

In total, viaExtract currently supports just over 41 Content Providers. However,
in the next release, roughly 100 Content Providers will be actively queried. If the
device responds to the Content Provider, the extraction and subsequent reporting
will succeed. Fig. 6.63 is an example of the Call Logs.

Fig. 6.64 shows the video media metadata.
Reports can also be exported to PDF format as shown in Fig. 6.65.

http://viaforensics.com

FIGURE 6.60

viaExtractdDevice info.

FIGURE 6.61

viaExtractdBrowser history and bookmarks.

264 CHAPTER 6 Android forensic techniques

FIGURE 6.63

viaExtractdCall logs.

FIGURE 6.62

viaExtractdPeople records filtered.

Logical techniques 265

FIGURE 6.64

viaExtractdVideo media metadata.

266 CHAPTER 6 Android forensic techniques
PHYSICAL TECHNIQUES
Forensic techniques that acquire physical images of the targeted data storage
typically result in exponentially more data being recovered and often
circumvent pass code protection. These techniques provide access to not only
deleted data but also data that was simply discarded as the system no longer
required it. For example, some systems track the last time a web site was
visited and the date field is updated each time the site is accessed again. The
previous date and time data was not specifically deleted but was not tracked by
the system. On Android devices using YAFFS2, the previous values are
recoverable provided garbage collection did not occur. As such, the physical
techniques provide access to not only deleted data but also access to obsolete
data on the system.

The Android forensics physical techniques fall into two broad categories:

� Hardware: Methods which connect hardware to the device or physically extract
device components

� Software: Techniques which run as software on devices with root access and
provide a full physical image of the data partitions

FIGURE 6.65

viaExtractdExport to PDF.

P
h
ysic

a
l
te
c
h
n
iq
u
e
s

2
6
7

268 CHAPTER 6 Android forensic techniques
The hardware-based methods required specialized and often expensive equip-
ment and training but can be very effective on devices where root access is unat-
tainable. The software-based physical techniques are a more direct path to
acquisition and are often the best place to start. Of course, before software-based
techniques are possible, you must have root access on the device.
Hardware-Based Physical Techniques
The two hardware-based physical techniques are JTAG and chip-off and a brief
overview is provided in this section.
JTAG
The JTAG was created in the 1980s to develop a standard for testing the wiring and
interconnects on printed circuit boards (PCB). By 1990, the standard was complete
and became an Institute of Electrical and Electronics Engineers standard, specifi-
cally IEEE 1149.1-1990 (IEEE SA, n.d.), and then a later update in 2001 named
IEEE 1149.1-2001. The standard was widely accepted and today most PCBs have
JTAG test access ports (TAPs) that facilitate access to the central processing unit
(CPU).

A JTAG TAP exposes various signals and most mobile devices include the
following:

1. TDIdTest Data In
2. TDOdTest Data Out
3. TCKdTest Clock
4. TMSdTest Mode Select
5. TRSTdTest Reset
6. RTCKdReturn Test Clock

A major obstacle to JTAG is locating the TAPs on the PCB and tracing them
to the CPU to determine which pad is responsible for each test function. This is
very difficult to achieve even if the chip manufacturer has published a CPU map.
In addition, it can be extremely difficult to trace the JTAG functions from the chip
and it may require first removing the CPU from the PCB. Device manufacturers
have JTAG schematics, but they are generally considered company confidential
and are only released to authorized service centers. Another approach is to
determine the functions of each pad by reading the voltage at each pad and, based
on the reference voltage, identifying the function. In some instances the JTAG
pin-outs are published by flasher box manufacturers or various online groups.
Fig. 6.66 is an example of the JTAG pin-outs for a T-Mobile HTC G1. The six
pin-outs are indicated by the small white circles and the legend on the right
provides the detailed information.

In most cases, your soldered wire leads to the pads on the PCB, and the other
side is connected to a special device (flasher box) which, through software, will

FIGURE 6.66

T-Mobile HTC G-1 PCB.

Physical techniques 269
manage the CPU. Some companies make custom connectors which support
a specific device and simplify the connection to the pads by placing the PCB
between two jig boards with pogo pins. The pogo pins make contact with the JTAG
pads on the PCB and can then easily connect to the flasher box. However, expe-
rienced engineers may find that soldering the leads directly to the PCB provides
a more stable connection.

Once the leads are connected to the appropriate pads, power must be applied
to the board to boot the CPU. Each CPU manufacturer publishes the reference
voltage for their hardware and this voltage must not be exceeded. Some flasher
boxes provide an option for managing the voltage but in general the power
should be managed through an external power supply with a built-in digital
voltmeter to ensure accuracy. Once the board is powered on, the flasher box
software has the ability to perform a full binary memory dump of the NAND
flash. However, the connection is serial and takes a considerable amount of
time. Despite all of the complexities, if the JTAG technique is executed
properly, the phone can be reassembled and will function normally with no data
loss.

Though JTAG is an option for extracting data from an Android device’s NAND
flash, it is very difficult and should only be attempted by qualified personnel with
sufficient training and specific experience in soldering small PCB connections.
Errors in soldering to the JTAG pads or applying the wrong voltage to the board
could not only disable JTAG but can also seriously damage the device. For these

270 CHAPTER 6 Android forensic techniques
reasons, JTAG is not typically the first choice for a physical forensic image of an
Android device.
Chip-off
Chip-off is a technique where the NAND flash chips are physically removed from
the device and examined externally. The chip-off technique allows for the recovery
of damaged devices and also circumvents pass code-protected devices. This removal
process is generally destructivedit is quite difficult to reattach the NAND flash to
the PCB and have the device operate.

There are three primary steps in the chip-off technique:

1. The NAND flash chip is physically removed from the device by either de-
soldering it, or using special equipment that uses a blast of hot air and
a vacuum to remove the chip. There are also techniques that heat the chip to
a specified temperature. It is quite easy to damage the NAND flash in this
process and specialized hardware, and even controlling software, exists for
the extraction.

2. The removal process often damages the connectors on the bottom of the chip, so
it must first be cleaned and then repaired. The process of repairing the conductive
balls on the bottom of the chip is referred to as reballing.

3. The chip is then inserted into a specialized hardware device, so that it can be
read. The devices generally must be programmed for a specific NAND flash chip
and support a number of the more popular chips already.

At this point, you now have a physical image of the data stored on the NAND flash
chip.

Although the chip-off process is quite effective, it also has a large barrier to entry.
The cost of the equipment and tools is prohibitive and an examiner must again have
very specialized training and skills. There is always the risk that the NAND flash
chip will be damaged with chip-off, generally in its removal from the PCB. Finally,
a clean room with protections from static electricity is also desirable. While local or
even State law enforcement agencies and forensic firms may find the cost of chip-off
too prohibitive, it is certainly a valid techniques that larger agencies would find
useful in their suite of forensic techniques.
Software-Based Physical Techniques and Privileges
Software-based physical techniques have a number of advantages over the hard-
ware-based techniques. Software-based techniques:

� Are easier to execute;
� Often provide direct access to file systems to allow a complete copy of all logical

files (simplifies some analysis);
� Provide very little risk of damaging the device or data loss.

Physical techniques 271
To execute the software-based physical techniques, you first must gain root
privileges and then run the acquisition programs.

Unfortunately, root privileges on Android devices are not enabled by default.
However, it is possible to gain root privileges in certain scenarios, several of which
we will cover next. There are some major challenges to obtaining root privileges to
keep in mind though:

1. Gaining root privileges changes the device in many situations.
2. The techniques for root privileges differ not only for each manufacturer and

device but for each version of Android and even the Linux kernel in use. Just
based on the Android devices and versions developed to date, there are literally
thousands of possible permutations.

3. Many of the exploits used to gain root privileges are discussed online and often
contain inaccurate information.

Given this, gaining root privileges can be quite difficult and is always very
frustrating.

There are three primary types of root privileges:

1. Temporary root privileges attained by a root exploit, which does not survive
a reboot. Typically the adb daemon is not running as root in this instance.

2. Full root access attained through a custom ROM or persistent root exploit.
Custom ROMs often run the adb daemon as root while most of the persistent root
exploits do not.

3. Recovery mode root attained by flashing a custom recovery partition or part of
a custom ROM. Custom ROMs often run the adb daemon as root as do most of
the modified recovery partitions.

Android enthusiasts who want root access are typically only interested in full,
sustained root privileges. However, from a forensics standpoint, temporary root
privileges or root access via a custom recovery mode are preferred.

If you need to gain access on a new device or Android version, you must have
a separate device used for testing to ensure that the process works and no data are
lost. Testing, although time consuming, is an important step in this situation.

The following sections cover each step in detail.

su
The first thing a forensic examiner should check is whether the device already has
root privileges. This is the easiest of any technique discussed and is certainly worth
the short time it takes to test. The device must have USB debugging enabled but even
if the device is locked, you should still check. If the device is not pass code locked,
make sure USB debugging is enabled, which was covered in Chapter 3.

Next, connect the device to your workstation and attempt to gain root privileges
by requesting super user access with the “su” command as follows:
ahoog@ubuntu:~$ adb shell su
su: permission denied

272 CHAPTER 6 Android forensic techniques
In this instance, root privileges were not granted. This is the typical result of the
command. However, the following was on a device that had root access:
ahoog@ubuntu:~$ adb shell su
#

Instead of receiving a permission denied error, root privileges were granted. This
is indicated by the new # prompt. Sometimes a device will allow root access but
require the user to grant the privileges by clicking OK on a prompt displayed on the
device. If the device is not pass code protected, you should check to see if the prompt
is displayed.
Researching Root Privilege Exploits
If the device does not already have root privileges, you can research possible
techniques online. This process can be very frustrating as there are many inexpe-
rienced people who request help on the various discussion boards. However, while
there are substantial amounts of inaccurate information, there are also very
knowledgeable resources and techniques which do work.

Although there are many sites available that discuss Android root exploits, one
truly stands above all others. The site, xda-developers, is an extremely popular and
active site and is self-described as “the largest Internet community of smartphone
enthusiasts and developers for the Android and Windows Mobile platforms”
(Android & Windows Phone, n.d.). Many of the other web sites post various root
exploits but generally link back to a discussion thread on xda-developers.

Often the best approach to researching root exploits is to simply search the
Internet with your preferred search engine, have a test device, and a lot of patience.
Recovery Mode
Recovery mode is an operating mode for Android that was designed to apply
updates, format the device, and perform other maintenance on the devices. The stock
recovery mode on most devices is very basic, only provides a number of limited
functions, and certainly does not provide root privileges in a shell.

Custom recovery partitions, on the other hand, nearly always allow root privi-
leges through the shell. These new recovery partitions are typically installed by the
user when the device is rooted and provide various functions that simplify the
backup and update processes needed from the custom ROMS.

As with researching root exploits, examiners should use extreme caution when
installing a custom recovery partition as the process often contains kernel and radio
updates that could render the device unusable (often referred to as “bricked”) if there
are incompatibilities between the device, kernel, and radio firmware. Extensive
testing must be performed on a lab device first to ensure no issues occur. And
forensic examiners should understand what is being modified on the device during
the installation of a custom recovery firmware.

mailto:Image of Figure 6.66|tif

Physical techniques 273
The software that powers recovery mode is stored on a dedicated partition and is
quite small. On many devices, you can see details of the recovery partition by
examining /proc/mtd:
ahoog@ubuntu:~$ adb shell cat /proc/mtd
dev: size erasesize name
mtd0: 00040000 00020000 "misc"
mtd1: 00500000 00020000 "recovery"
mtd2: 00280000 00020000 "boot"
mtd3: 04380000 00020000 "system"
mtd4: 04380000 00020000 "cache"
mtd5: 04ac0000 00020000 "userdata"
This list is from a T-Mobile HTC G1 and you can see that the recovery partition
has a size of 0x500000 bytes, which is 5 MB (0x500000 ¼ 5,242,880 then divide by
1024 twice to convert to KB and finally MB). Here are the sizes from other phones
used throughout this book:

� T-Mobile HTC G1: 5 MB
� HTC Incredible: 4 MB
� Motorola Droid: 4 MB
� Google Nexus One: 4 MB

This is helpful to understand as we explore techniques to replace the small but
important recovery partition in the next section.

In the previous section covering techniques for circumventing pass code-pro-
tected devices, accessing the recovery mode was one possible solution. In the same
fashion, it is advisable to check the recovery partition for root privileges as it will
enable the software-based physical techniques. First, boot the device into recovery
mode as covered in Table 6.2, or simply search the Internet for the specific key
combination for your device. Once the device is in recovery mode, connect it to your
Ubuntu VM and run adb as follows:
ahoog@ubuntu:~$ adb devices
List of devices attached
0403555551222244F recovery
In this case, adb discovered a device in recovery mode. However, many devices
will simply not have adb access enabled in recoverymode, especially on stock devices.
In such a case, you can then determine if the shell has root privileges as follows:
ahoog@ubuntu:~$ adb shell
#

As we discussed previously, if you are presented with a # prompt, this indicates
root privileges. If instead you have a $ prompt, you do not have root privileges.
However, you should at least try to gain them by running the su command.

Boot Loaders
As discussed in Chapter 2, the boot loader is a small program that is executed early
in the Android boot process and is responsible for, among other details, selecting and

mailto:Image of Figure 6.66|tif
mailto:Image of Figure 6.66|tif
mailto:Image of Figure 6.66|tif

274 CHAPTER 6 Android forensic techniques
loading the main kernel. On certain devices, special software exists, typically
developed by the manufacturer, which can interact with the boot loader. This soft-
ware is capable of writing new images to the NAND flash of a device. Manufacturers
use this software to fix nonfunctional devices and likely in other situations such as
development and testing. Forensic examiners can also use the software to flash
a utility or exploit to a device’s NAND flash, which will provide root privileges.
However, the boot loaders of most devices are shipped from the factory in a locked
state, which prevents such updates.

One example of software that interacts with Motorola Android devices is
a program called RSD Lite developed by Motorola. RSD Lite is proprietary
software and appears to only be distributed to Motorola Service Centers for device
repair. It is assumed that anyone using this software has full authorization to do so,
and this overview is only provided as a example of how some Android devices are
flashed.

There are many web sites which discuss RSD Lite and provide guides for using
the software. One such site, modmymobile.com, provides an article entitled
“[Guide] Flashing Linux Motorola’s with RSD Lite Versions,” which offers step-by-
step instructions for the software ([Guide] Flashing Linux, n.d.).

Provided the device is supported and the boot loader is unlocked, you connect the
device to your workstation and then run the software, which detects the phone. You
must then provide the appropriate .sbf file and then click Start to flash the device as
shown in Fig. 6.67.
FIGURE 6.67

RSD Lite.

http://modmymobile.com
mailto:Image of Figure 6.67|tif

Physical techniques 275
After the process is completed and the device is restarted, the new recovery
partition (and any other areas modified by the .sbf file used) is ready. RSD Lite may
provide a good option for forensic analysts who have proper authorization to use
RSD Lite.
sbf_flash
Similar to Motorola’s RSD Lite is a utility called sbf_flash that does not carry the
license and usage restrictions of RSD Lite. The application was developed and
posted online by an Android enthusiast and, while distributed in many places online,
it is best to retrieve it from the author’s blog OPTICALDELUSION, which is
updated when new versions are available. This utility was developed on Linux, and
now also runs on OS X, and thus, greatly simplifies the flashing of data to the NAND
flash via an unlocked boot loader. The latest version of sbf_flash is 1.15 and it
supports the following:

ahoog@ubuntu:~$./sbf_flash -h
SBF FLASH 1.15 (mbm)
http://opticaldelusion.org

Usage: ./sbf_flash <filename>

sbf_flash [options] [sbf file]
 -f - force; attempt to continue on error
 -v - verbose output (of CDT)
 -r - read CDT information from the phone
 -x - extract sbf file
 -d - download cg from phone
 --cgname [file] - upload/download cgname
 matches any cgname shown with -r
 optional file arg for contents

To use sbf_flash, you must first verify that the device is supported. For this
example, we will cover the Motorola Droid; however, other devices are supported.
The device must be placed in bootloader mode, which is accomplished by holding
the up direction on the D pad while pressing the power button. The boot loader is
easily recognized on the Motorola Droid by a solid black screen with the kernel
version, USB status, and battery status in white text. Ensure the battery is fully
charged before attempting this process as you could easily brick the device if the
flashing process is interrupted with a power failure. Also, you must have the SBF file
saved to your forensic workstation so you can flash it to the device. This is where
extensive testing must occur prior to working on the target device to ensure
compatibility and a detailed understanding of the process.

With the Droid in bootloader mode, we can query the device with sbf_flash as
follows:

ahoog@ubuntu:~$./sbf_flash -r
SBF FLASH 1.15 (mbm)
http://opticaldelusion.org

mailto:Image of Figure 6.67|tif

 >> waiting for phone: Droid found.
 CG63 0xC0000000-0xC001FFFF mbmloader.img
 CG30 0xC0020000-0xC00BFFFF mbm.img
 CG55 0xC00C0000-0xC015FFFF mbmbackup.img
 CG31 0xC0160000-0xC01BFFFF cdt.bin
 CG38 0xD01CE000-0xD0359FFF pds
 CG34 0xC035A000-0xC03BCFFF lbl
 CG57 0xC03BD000-0xC041FFFF lbl_backup
 CG41 0xC0400000-0xC057FFFF sp
 CG42 0xC0580000-0xC061FFFF logo.bin
 CG44 0xC0620000-0xC067FFFF misc
 CG35 0xC0680000-0xC09FFFFF boot
 CG47 0xC0A00000-0xC0E7FFFF recovery
 CG39 0xD0EF4000-0xD9FB6FFF system
 CG40 0xD9FB7000-0xDFF3BFFF cache
 CG37 0xDFF3C000-0xF0D29FFF userdata
 CG53 0xDFD40000-0xDFF3FFFF kpanic
 CG54 0xDFF40000-0xDFFFFFFF rsv

Usage: ./sbf_flash <filename>

276 CHAPTER 6 Android forensic techniques
The sbf_flash utility looks for a device in bootloader mode and immediately flashes
the image file to the NAND flash. The status of the update process is displayed on
screen and afterwards the Droid is rebooted.

ahoog@ubuntu:~$ sbf_flash SPRecovery.sbf
=== SPRecovery.sbf ===
00: RDL03 0x80500000-0x8054CFFF DECE AP
01: CG47 0xC0A00000-0xC0D5C7FF 02C0 AP

 >> waiting for phone: Droid found.
 >> uploading RDL03
Uploading: 100% OK
 >> verifying ramloader
 -- OK
 >> executing ramloader
Droid found.
 >> sending erase
 >> uploading CG47
Uploading: 100% OK
 >> verifying CG47
 -- OK
 >> rebooting

You should be prepared to immediately boot the device into recovery mode as
later versions of the Motorola Droid’s firmware implemented a routine that checks
the hash signatures of the existing recovery partition against the stock recovery
partition for that Android version. If there is a disparity, the system will rebuild the
stock recovery partition during the boot process and thus overwrite the modified
recovery image.

Once the new SBF file has been flashed, and the device is running in the modified
recovery mode, you will have root access and can proceed with the software-based
physical technique.

fastboot
Fastboot is another utility that flashes images to the NAND flash over USB. The
source code for fastboot is contained in the AOSP and thus, the utility is built when

mailto:Image of Figure 6.67|tif
mailto:Image of Figure 6.67|tif

Physical techniques 277
you compile the AOSP code. Like sbf_flash, the boot loader must support fastboot,
which not only requires a compatible boot loader but also one that has security
turned off (S-OFF).

Fastboot was first used on the Google Android developer phone (ADP),
which was manufactured by HTC. As such, much of the documentation and
references for fastboot refer to the ADP, and HTC has a helpful reference page
for the utility (HTCdDeveloper Center, n.d.). This page contains not only
various stock NAND flash image files for the ADP device but also directions on
using fastboot and accessing the appropriate mode on the device (HTCdDe-
veloper Center, n.d.):

To enter fastboot mode, power up the device (or reboot it) while holding down
the BACK key. Hold the BACK key down until the boot loader screen is visible and
displays “FASTBOOT.” The device is now in fastboot mode and is ready to receive
fastboot commands. If you want to exit fastboot mode at this point, you can hold
down the keys MENUþSENDþEND (on the ADP, SEND is the “Call” key and
END is the “End call” key).

Note that the boot loader screen may vary across devices. For ADP devices, the
boot loader screen shows an image of skateboarding robots. Other devices may
show a different image or color pattern. In all cases, the boot loader screen shows
the text “FASTBOOT” when in fastboot mode. The boot loader also shows the
radio version.

Once in fastboot mode, verify fastboot detects the device with the following
command:
ahoog@ubuntu:~$./fastboot devices
HT08XHJ00657 fastboot
Fastboot provides many options that are detailed when you execute fastboot with
the help parameter as follows:

ahoog@ubuntu:~$./fastboot --help
usage: fastboot [<option>] <command>

commands:
 update <filename> reflash device from update.zip
 flashall flash boot + recovery + system
 flash <partition> [<filename>] write a file to a flash partition
 erase <partition> erase a flash partition
 getvar <variable> display a bootloader variable
 boot <kernel> [<ramdisk>] download and boot kernel
 flash:raw boot <kernel> [<ramdisk>] create bootimage and flash it
 devices list all connected devices
 reboot reboot device normally
 reboot-bootloader reboot device into bootloader

options:
 -w erase userdata and cache
 -s <serial number> specify device serial number
 -p <product> specify product name
 -c <cmdline> override kernel commandline
 -i <vendor id> specify a custom USB vendor id

mailto:Image of Figure 6.67|tif
mailto:Image of Figure 6.67|tif

278 CHAPTER 6 Android forensic techniques
As you can see, once in flashboot mode, it is quite simple to flash the modified
recovery partition:

ahoog@ubuntu:~$ fastboot flash recovery modified-recovery-image.img

After this process completes, you can reboot the phone into recovery mode and
proceed with the software-based physical imaging technique.
AFPhysical Technique
The AFPhysical technique was developed by viaForensics to provide a physical disk
image of Android NAND flash partitions. The technique requires root privileges on
the device and should support any Android device. The technique, however, is not
a simple process and the forensic analyst will have to adapt the technique for the
specific device investigated. This is a direct result of the large variations in Android
devices not only between manufacturers but between devices running different
versions of Android.

The overall process for AFPhysical is quite simple:

1. Acquire root privileges on the target Android device.
2. Identify NAND flash partitions which need to be imaged.
3. Upload forensic binaries to the target Android device.
4. Acquire physical image of NAND flash partitions.
5. Remove forensic binaries if any were stored on nonvolatile storage.

Regardless of the technique, it is assumed you have root privileges on the device.
For this example, we will use a Motorola Droid. As we are able to flash a modified
recovery partition to a Motorola Droid, this technique will work on a device even if it
is pass code locked.

After we have flashed the modified recovery partition and rebooted into recovery
mode, connect the device to our Ubuntu VM and verify adb can locate the device by
running adb devices.

ahoog@ubuntu:~$ adb devices
List of devices attached
040363260C006018 recovery

From there, access the shell to ensure you have root privileges:

ahoog@ubuntu:~$ adb shell
/ #

At this point, we need to understand more about the phone so we can decide what
needs to be physically imaged. The first place to start is to examine the mounted file
systems, if any:

mailto:Image of Figure 6.67|tif
mailto:Image of Figure 6.67|tif
mailto:Image of Figure 6.67|tif

Physical techniques 279
/ # mount
rootfs on / type rootfs (rw)
tmpfs on /dev type tmpfs (rw,mode=755)
devpts on /dev/pts type devpts (rw,mode=600)
proc on /proc type proc (rw)
sysfs on /sys type sysfs (rw)
/dev/block/mtdblock7 on /cache type yaffs2 (rw,nodev,noatime,nodiratime)

Now, we know that the device uses MTD for NAND flash access as well as
YAFFS2. To determine partitions exposed by MTD, we execute the following:

/ # cat /proc/mtd
dev: size erasesize name
mtd0: 000a0000 00020000 "mbm"
mtd1: 00060000 00020000 "cdt"
mtd2: 00060000 00020000 "lbl"
mtd3: 00060000 00020000 "misc"
mtd4: 00380000 00020000 "boot"
mtd5: 00480000 00020000 "recovery"
mtd6: 08c60000 00020000 "system"
mtd7: 05ca0000 00020000 "cache"
mtd8: 105c0000 00020000 "userdata"
mtd9: 00200000 00020000 "kpanic"

An examiner should choose to image all of the MTD partitions. However, for this
example we will focus on mtd8, the user data partition.

As we are now prepared to acquire the device, it may be helpful to refer back to
the NAND flash and file system topics in Chapter 4 if some of the terminology or
data structures are confusing. There are four Android physical acquisition strategies
you can use once you have a device with root access:

1. Full nanddump of all partitions, including data and OOB (preferred)
2. A dd image of partitions, which only acquires the data, not the OOB
3. A logical acquisition of files using tar
4. A logical acquisition of files using adb

In addition, there are two primary ways to save the acquired data from the device:

1. Use adb port forward to create a network between the Ubuntu workstation and
Android device over USB

2. Place an SD card into the device, mount, and save locally

There are advantages to both approaches. With adb port forwarding, you do not
need to insert your own device and can immediately create the files on your
workstation. When you save to the SD card, the acquisition is much faster. Both
approaches are valid and will be demonstrated here.

We will start with the full nanddump of the user data partition as this provides the
most complete forensic copy of the data. To achieve the nanddump, you must have
a version of nanddump compiled for the ARM platform. Cross-compiling nanddump
is beyond the scope of this book. However, you can either search for the program on
the Internet or follow directions that are also posted online.

mailto:Image of Figure 6.67|tif
mailto:Image of Figure 6.67|tif

ah
pu
pu
pu
pu
4
10

280 CHAPTER 6 Android forensic techniques
TIP

Cross-compiling for ARM
Cross-compiling source code to run on the ARM platform can be quite difficult and there is
sparse support for it online. One possible solution is to use Android’s Native Development Kit
(NDK) to build compatible binaries. Another option is to use Linux and install a cross-compiler
such as Code Sourcery’s Gþþ Lite 2009q3-67 for ARM GNU/Linux from http://www.
codesourcery.com/sgpp/lite/arm/portal/release1039. Once a cross-compiler is installed, you
must modify the source code’s Makefile to indicate the cross-compiling option. Also check this
book’s web site at http://viaforensics.com/education/android-forensics-mobile-security-book/
for future updates.

To avoid writing any data to the NAND flash, we can again examine the output of
the mount command and take note that the “/dev” directory is tmpfs and thus, is
stored in RAM. We can therefore push the forensic utilities to “/dev”:
oog@ubuntu:~$ adb push AFPhysical/ /dev/AFPhyiscal
sh: AFPhysical/tar -> /dev/AFPhyiscal/tar
sh: AFPhysical/md5sum -> /dev/AFPhyiscal/md5sum
sh: AFPhysical/nanddump -> /dev/AFPhyiscal/nanddump
sh: AFPhysical/nc -> /dev/AFPhyiscal/nc
files pushed. 0 files skipped.
03 KB/s (2803303 bytes in 2.727s)
Next we need to make the programs executable on the device. To achieve this,
we use the chmod command, which changes the permissions of a file including
the execute flag. We will set all files to allow any user to read or execute the
program:

ahoog@ubuntu:~$ adb shell
/ # cd /dev/AFPhyiscal
/dev/AFPhyiscal # ls -l
-rw-rw-rw- 1 0 0 711168 Jan 24 2011 md5sum
-rw-rw-rw- 1 0 0 669799 Jan 24 2011 nanddump
-rw-rw-rw- 1 0 0 711168 Jan 24 2011 nc
-rw-rw-rw- 1 0 0 711168 Jan 24 2011 tar
/dev/AFPhyiscal # chmod 755 *
/dev/AFPhyiscal # ls -l
-rwxr-xr-x 1 0 0 711168 Jan 24 2011 md5sum
-rwxr-xr-x 1 0 0 669799 Jan 24 2011 nanddump
-rwxr-xr-x 1 0 0 711168 Jan 24 2011 nc
-rwxr-xr-x 1 0 0 711168 Jan 24 2011 tar

As you can tell, after we execute the “chmod 755” command on the programs,
they each have the execute bit now set, which is represented by the “x” in the file
permissions.

If you decided to save the nanddump to the SD card, ensure you place a properly
formatted SD card in the device and that it is mounted on the system. Then we can
execute nanddump as follows:

http://www.codesourcery.com/sgpp/lite/arm/portal/release1039
http://www.codesourcery.com/sgpp/lite/arm/portal/release1039
http://viaforensics.com/education/android-forensics-mobile-security-book/
mailto:Image of Figure 6.67|tif
mailto:Image of Figure 6.67|tif

Physical techniques 281
/ # /dev/AFPhyiscal/nanddump /dev/mtd/mtd8ro > /sdcard/af-book-mtd8.nanddump
ECC failed: 0
ECC corrected: 0
Number of bad blocks: 1
Number of bbt blocks: 0
Block size 131072, page size 2048, OOB size 64
Dumping data starting at 0x00000000 and ending at 0x105c0000...

/ # ls -l /sdcard/af-book-mtd8.nanddump
-rwxrwxrwx 1 0 0 283041792 Jan 1 00:12 /sdcard/
af-book-mtd8.nanddump

And ultimately either transfer to your Ubuntu VM using adb pull or remove the SD
card and copy via a direct USB connection, which is much faster.
SE
--
ah
/
EC
EC
Nu
Nu
Bl
Du
NOTE

MD5 hash
Although the user data partition was not mounted on the device during acquisition, the
md5sum hash signature of “/dev/mtd/mtd8ro” will change even without any writes. This is due
to the nature of NAND flash where the operating system and memory are in a nearly constant
state of change from wear leveling, bad block management, and other mechanisms which
occur despite the lack of changes to the user data. The best approach is to perform an md5sum
of the resulting NAND flash file to ensure integrity from that point forward.

The second method for saving the NAND flash file or any other imaged data is to
use netcat, which is a utility that allows you to redirect the output of a command to
the network. For this approach, you will need two active terminal or ssh sessions. We
will refer to them as Session0 and Session1. All of the Session0 commands will run
on the Ubuntu VM and thus we will not go into the Android device shell from
Session0. The commands which need to execute within the Android device’s shell
will all take place on Session1.

To begin, we first enable the network connection between the two endpoints
using the adb port-forwarding capability:

SESSION0

ahoog@ubuntu:~$ adb forward tcp:31337 tcp:31337

This command essentially connects port 31337 on the Android device and the
Ubuntu VM. Next, we execute nanddump on the Android device and pipe the output
to netcat:
SSION1

oog@ubuntu:~$ adb shell
/dev/AFPhyiscal/nanddump /dev/mtd/mtd8ro | /dev/AFPhyiscal/nc -l -p 31337
C failed: 0
C corrected: 0
mber of bad blocks: 0
mber of bbt blocks: 0
ock size 131072, page size 2048, OOB size 64
mping data starting at 0x00000000 and ending at 0x105c0000...

mailto:Image of Figure 6.67|tif
mailto:Image of Figure 6.67|tif
mailto:Image of Figure 6.67|tif

282 CHAPTER 6 Android forensic techniques
Now that the Android device is sending the nanddump data over netcat, we need
to receive it on the Ubuntu VM side:

SESSION0

ahoog@ubuntu:~$ nc 127.0.0.1 31337 > af-book-mtd8.nanddump

When nanddump completes, it simply exits without any additional output as does
the netcat on the Ubuntu VM. We can verify that the nanddump was received on the
workstation with ls:

SESSION0

ahoog@ubuntu:~$ ls -lh af-book-mtd8.nanddump
-rw-r--r-- 1 ahoog ahoog 270M 2011-02-26 20:58 af-book-mtd8.nanddump

At this point, you could continue to physically image the MTD partitions needed
for the investigation, which should include at least the user data and the cache
partitions.

In Chapter 7, we provide a program that will allow you to extract the OOB data
from a nanddump to assist with forensic processing such as file carving. As you can
generate the dd image in this manner, there is no need to acquire a dd image using the
Android device. However, dd is built into Android and so we provide this example
which is similar to the use of the nanddump example, except it uses the dd utility, and
so does not capture OOB data. This example uses the reference HTC Incredible.

SESSION0

ahoog@ubuntu:~$ adb forward tcp:31337 tcp:31337

SESSION1

ahoog@ubuntu:~$ adb shell
$ su
cat /proc/mtd
dev: size erasesize name
mtd0: 000a0000 00020000 "misc"
mtd1: 00480000 00020000 "recovery"
mtd2: 00300000 00020000 "boot"
mtd3: 0f800000 00020000 "system"
mtd4: 000a0000 00020000 "local"
mtd5: 02800000 00020000 "cache"
mtd6: 09500000 00020000 "datadata"
dd if=/dev/mtd/mtd6 bs=4096 | /dev/AFPhyiscal/nc -l -p 31337
38144+0 records in
38144+0 records out
156237824 bytes transferred in 182.898 secs (854234 bytes/sec)

SESSION0

ahoog@ubuntu:~$ nc 127.0.0.1 31337 > dd of=htc-datadata.dd bs=4096

Due to variations in Android devices, MTD, YAFFS2, and other nuisances, it is
not always possible to mount the acquired nanddump image and extract the logical
files. As you already have sufficient privileges, it is best to extract the desired logical
data. This can be accomplished using a recursive adb pull because the adb daemon

mailto:Image of Figure 6.67|tif
mailto:Image of Figure 6.67|tif
mailto:Image of Figure 6.67|tif

Physical techniques 283
running on the device has root privileges. You can also use a utility such as tar to
copy the data into a single archive file. In either instance, you must ensure the
desired file system is mounted. Some of the modified recovery partitions provide
a user interface for mounting the file systems. However, you can also do this on the
command line and mount the file system read only. On the Motorola Droid refer-
enced above, do the following:

SESSION1

/ # mount -o ro -t yaffs2 /dev/block/mtdblock8 /data
/ # mount -o ro,remount -t yaffs2 /dev/block/mtdblock7 /cache
/ # mount
rootfs on / type rootfs (rw)
tmpfs on /dev type tmpfs (rw,mode=755)
devpts on /dev/pts type devpts (rw,mode=600)
proc on /proc type proc (rw)
sysfs on /sys type sysfs (rw)
/dev/block/mtdblock7 on /cache type yaffs2 (ro)
/dev/block/mmcblk0p1 on /sdcard type vfat
(rw,nodev,noatime,nodiratime,fmask=0000,dmask=0000,allow_utime=0022,
codepage=cp437,iocharset=iso8859-1,errors=remount-ro)
/dev/block/mtdblock8 on /data type yaffs2 (ro)

The first command mounts the “/data” partition read only. The second command
takes the already mounted “/cache” directory and remounts it read only. You can
now perform the adb pull:

ahoog@ubuntu:~$ adb pull /data/data/com.android.providers.telephony sms
pull: building file list...
pull: /data/data/com.android.providers.telephony/databases/mmssms.db ->
sms/databases/mmssms.db
pull: /data/data/com.android.providers.telephony/databases/telephony.db ->
sms/databases/telephony.db
2 files pulled. 0 files skipped.
137 KB/s (44032 bytes in 0.311s)

The final option is to use the tar utility that places files and directories in a single
archive often called a tarball.
SESSION1

ahoog@ubuntu:~$ adb shell
/ # /dev/AFPhyiscal/tar cpv -f - /data/data/com.android.providers.telephony
/cache | /dev/AFPhyiscal/nc -l -p 31337
tar: removing leading '/' from member names
data/data/com.android.providers.telephony/
data/data/com.android.providers.telephony/lib/
data/data/com.android.providers.telephony/databases/
data/data/com.android.providers.telephony/databases/telephony.db
data/data/com.android.providers.telephony/databases/mmssms.db
cache/
cache/recovery/
cache/recovery/log
cache/lost+found/

SESSION0

ahoog@ubuntu:~$ nc 127.0.0.1 31337 > af-book-droid-files.tar

mailto:Image of Figure 6.67|tif
mailto:Image of Figure 6.67|tif
mailto:Image of Figure 6.67|tif

284 CHAPTER 6 Android forensic techniques
In this example, we passed two directories to tar which we wanted archived: the
directory containing SMS/MMS messages in “/data/data” and the “/cache” direc-
tory. We sent the archive over the network and received it on the Ubuntu VM.
However, you could have also simply saved the archive to the SD card.

Once you have root privileges on an Android device and sufficient understanding
of the device’s architecture, you can use nanddump, dd, tar, netcat, and adb to create
forensic images or simply copies of the data for analysis.
SUMMARY

There are several techniques that can be used to perform a forensic acquisition of an
Android device. If the device is pass code protected, you must circumvent or bypass
the protection to extract data. While a number of techniques to circumvent the pass
code exist, it is not possible to achieve this in every circumstance. Once the device is
accessible, the forensic analyst can choose from a logical acquisition which focuses
primarily on undeleted data accessible through Content Providers or the more
thorough but technically challenging physical acquisition. While the physical
acquisition will produce more data, it generally requires more sophisticated analysis
techniques which will be covered in Chapter 7.
References
ACPO Good Practice Guide for Computer-Based Electronic Evidenced7Safe Information

Security. (n.d.). Retrieved February 19, 2011, from http://7safe.com/electronic_evidence/
index.html#.

Android & Windows Phone: Tablets, Apps, & ROMs @ xda-developers. (n.d.). Retrieved
February 23, 2011, from http://www.xda-developers.com/.

Aviv, Gibson, Mossop, Blaze, & Smith. (n.d.). Smudge attacks on smartphone touch screens.
Retrieved February 21, 2011, from http://www.usenix.org/events/woot10/tech/full_
papers/Aviv.pdf.

Cannon, T. (n.d.). Android lock screen bypass. Retrieved February 21, 2011, from http://
thomascannon.net/blog/2011/02/android-lock-screen-bypass/.

dc3dd. (n.d.). Retrieved February 22, 2011, from http://dc3dd.sourceforge.net/.
Government Employment & Payroll. (n.d.). Retrieved February 19, 2011, from http://www.

census.gov/govs/apes/.
[Guide] Flashing Linux Motorola’s with RSD Lite Versions. (n.d.). Retrieved February 24,

2011, from modmymobile.com/forums/8-guides-downloads-forum-suggestions/218651-
guide-flashing-linux-motorolas-rsd-lite-versions.html.

HTCdDeveloper Center. (n.d.). Retrieved February 28, 2011, from http://developer.htc.com/
adp.html.

IEEE SAd1149.1e1990dIEEE Standard Test Access Port and Boundary-Scan
Architecture. (n.d.). Retrieved February 23, 2011, from http://standards.ieee.org/findstds/
standard/1149.1-1990.html.

RerWare, LLC: Android Backup and BlackBerry BackupdMyBackup Pro. (n.d.). Retrieved
February 22, 2011, from http://www.rerware.com/.

http://7safe.com/electronic_evidence/index.html%23
http://7safe.com/electronic_evidence/index.html%23
http://www.xda-developers.com/
http://www.usenix.org/events/woot10/tech/full_papers/Aviv.pdf
http://www.usenix.org/events/woot10/tech/full_papers/Aviv.pdf
http://thomascannon.net/blog/2011/02/android-lock-screen-bypass/
http://thomascannon.net/blog/2011/02/android-lock-screen-bypass/
http://dc3dd.sourceforge.net/
http://www.census.gov/govs/apes/
http://www.census.gov/govs/apes/
http://modmymobile.com/forums/8-guides-downloads-forum-suggestions/218651-guide-flashing-linux-motorolas-rsd-lite-versions.html
http://modmymobile.com/forums/8-guides-downloads-forum-suggestions/218651-guide-flashing-linux-motorolas-rsd-lite-versions.html
http://developer.htc.com/adp.html
http://developer.htc.com/adp.html
http://standards.ieee.org/findstds/standard/1149.1-1990.html
http://standards.ieee.org/findstds/standard/1149.1-1990.html
http://www.rerware.com/

Android application
and forensic analysis
CHAPTER
7

INFORMATION IN THIS CHAPTER

� Analysis techniques

� FAT forensic analysis

� YAFFS2 forensic analysis

� Android app analysis and reference

INTRODUCTION
A lot of material has been discussed up to this point in the book covering not only the
history and architecture of Android devices but also complete details on the file
systems, ways to secure devices, and methodology to acquire data from them. But
data without context and analysis is just noise. Many of the techniques used in
traditional forensic investigations are applicable in Android forensics analysis.
ANALYSIS TECHNIQUES
This section will provide an overview of the analysis techniques followed by
sections that demonstrate the procedures for specific file systems.
Timeline Analysis
Timeline analysis should be a key component to any investigation as the timing of
events is nearly always relevant. There are many ways to build a forensic timeline.
However, unless created with specialized software, the process can be quite tedious.
Several software techniques will be covered in detail later in the chapter including
free, open source forensic utilities from both The Sleuth Kit and log2timline. Other
forensic tools can create timelines as well.

For supported file systems (for example, the FAT16/FAT32 file systems found on
the SD cards and embedded MultiMediaCard [eMMC]), a number of tools are
available which can create the timeline. However, YAFFS2 is not currently supported
by any analysis tool and so creating a timeline requires significant manual analysis.

The primary source of timeline information is the file system metadata including
the modified (file metadata), accessed, changed (file contents), and created. This
Android Forensics. DOI: 10.1016/B978-1-59749-651-3.10007-X
Copyright � 2011 Elsevier Inc. All rights reserved.

285

http://dx.doi.org/10.1016/B978-1-59749-651-3.10007-X

286 CHAPTER 7 Android application and forensic analysis
metadata is often referred to as MAC times or sometimes MACB where the “B”
represents when a file was created (born). File systems track different time stamps
and have nuances that must be taken into account when performing forensic
analysis.

For example, Microsoft’s FAT file system has been the subject of many forensic
investigations and analyses. The Microsoft Developers Network (MSDN) provides
details on file times in FAT and NTFS file systems, stating:

Not all file systems can record creation and last access times, and not all file

systems record them in the same manner. For example, the resolution of create

time on FAT is 10 ms, while write time has a resolution of 2 s, and access time

has a resolution of 1 day, and hence, it is really the access date. The NTFS file

system delays updates to the last access time for a file by up to 1 h after the

last access.

(File Times, n.d.)

Andre Ross created a useful graphical representation of this on his digfor (DIGital
FORensics) blog (http://digfor.blogspot.com/2008/10/time-and-timestamps.html)
shown in Fig. 7.1 (Ross, A., n.d.).

To further illustrate how FAT time stamps work, digital forensics and incident
response firm cmdLab posted a blog entitled “Misinterpretation of File System
Timestamps” (Casey, E., n.d.), which provides full details on FAT time stamps.

The confusion arises from the fact that FAT file systems represent create and last-
write time stamps slightly differently. Last-write time stamps are 32-bit little-endian
values, interpreted as follows:

24 16 8 0
+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
|Y|Y|Y|Y|Y|Y|Y|M| |M|M|M|D|D|D|D|D| |h|h|h|h|h|m|m|m| |m|m|m|s|s|s|s|s|
+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+

____________/________/_________/ ________/____________/_________/
year month day hour minute second

Take as an example the following FAT folder entry with the last-write date high-
lighted in bold:

$ icat /dev/sdb1 353884 | xxd
0000000: 2e20 2020 2020 2020 2020 2030 004f b079 . 0.O.y
0000010: 763a 763a 0000 b579 763a a502 0000 0000 v:v:…yv:……
0000020: 2e2e 2020 2020 2020 2020 2010 004f b079O.y
0000030: 763a 763a 0000 b079 763a 6605 0000 0000 v:v:…yv:f…..
0000040: 4173 0061 006c 0076 0065 000f 009e 6e00 As.a.l.v.e….n.
0000050: 6500 7700 3400 2e00 6700 0000 6900 6600 e.w.4…g…i.f.
0000060: 5341 4c56 454e 7e31 4749 4620 0075 78b9 SALVEN~1GIF .ux.
0000070: 753a 763a 0000 78b9 753a 9212 c1d4 0000 u:v:..x.u:……
0000080: 4269 0066 0000 00ff ffff ff0f 0014 ffff Bi.f…………
0000090: ffff ffff ffff ffff ffff 0000 ffff ffff …………….

Converting to big endian gives 3a 75 b9 78, which has the following binary
representation:

00111010 01110101 10111001 01111000

http://digfor.blogspot.com/2008/10/time-and-timestamps.html

File Times

Last Access
Created

Modified

Granularity
Granularity

Granularity

1 Day FAT FAT 10 milliseconds

Limited by Windows Internal
clock to 1 millisecond

IF instead the file Copied or
Moved from another disk or
directory

Renaming the file or
changing it’s attributes

Saved or auto saved even if
no new data written to the file

Set when OS a cates
a new directory ntry
for a newly crat file

Set when OS wr s or
changes conten f a file

IF instead the file Copied or Moved
via command line from another
disk or directory on Windows
2000 or later

100 ns
NTFS

NTFS

Up to 1 hour

Scanned by Antivirus

File is opened

Changed

Changed

Changed

Not Changed

Not Changed

Not Changed

File is right clicked
Moved to new Volume
Infected file cleaned
by the Antivirus

http://digfor.blogspot.com

Can be disabled in
registries by setting NTFS
Disable Last Access
Update to Value 1

FAT 2 seconds

100 ns
Limited by Windows Internal
clock to 1 millisecondNTFS

FIGURE 7.1

FAT and NTFS time and time stamps.

A
n
a
lysis

te
c
h
n
iq
u
e
s

2
8
7

llo
 e
ed

ite
t o

288 CHAPTER 7 Android application and forensic analysis
This translates to a time stamp of 2009.03.21 23:11:48 as follows:

� 7 bits¼ 0011101¼ 29 years since 1980
� 4 bits¼ 0011¼ 3 months
� 5 bits¼ 10101¼ 21 days
� 5 bits¼ 10111¼ 23 h
� 6 bits¼ 001011¼ 11 min
� 5 bits¼ 11000¼ 24¼ 48 s

Note that 5 bits cannot store all 60 s, so last-write time stamps must be incre-
mented in 2 s intervals, and are always an even number of seconds.

Although the create time follows a similar general calculation, it uses an addi-
tional 8 bits to represent one hundredths of a second. In the same directory listing
above, the create time stamp is identical to the last modified time stamp except for an
additional byte (75 78 b9 75 3a). The additional byte equates to 117 hundredths of
a second, which brings the create time to 2009.03.21 23:11:49.17. Thus, the create
time can have an odd number of seconds, and has a resolution of 10 ms.

One tool used in this book for timeline analysis is The Sleuth Kit (TSK), which
supports several file systems. The TSK wiki provides the information presented in
Table 7.1 to define the meaning of MACB time stamps for the supported file systems
(Carrier, B., n.d.).

Unfortunately, TSK does not, as of version 3.2.1, fully support YAFFS2.
However, there are some efforts to provide this information. For Android, TSK is
effective in analyzing the FAT file systems as well as EXT3 which is found on some
devices. TSK does not yet fully support EXT4 but the software is updated frequently
and examiners should check the web site http://www.sleuthkit.org/ for the most
recent changes.
File System Analysis
As discussed throughout this book, the directories and files in the Android file
systems are obviously the primary focus of a forensic investigation. The final section
of this chapter and book, “Android App Analysis and Reference,” will provide
a detailed analysis of Android apps. Combining this information with techniques
demonstrated in Chapter 4 will provide the most significant results for an
investigation.
Table 7.1 MAC Meaning by File System

File System m a c b

Ext 2/3 Modified Accessed Changed N/A

FAT Written Accessed N/A Created

NTFS File modified Accessed MFT modified Created

UFS Modified Accessed Changed N/A

http://www.sleuthkit.org/

Analysis techniques 289
There are a number of directories that need to be examined for an investi-
gation. Over time, examiners will need to expand the list to include new
directories and files, as Android devices are changing rapidly. The best way to
approach this problem is to first run the following command to determine which
file systems are mounted on the system, where they are mounted, and what type
they are. To demonstrate, let’s look at four different Android phones including
a T-Mobile/HTC G1, a Google Nexus One, a Motorola Droid, and an HTC
Incredible.

To start, let’s examine the output of the mount command on the G1 running
Android 1.5:

ahoog@ubuntu:~$ adb shell mount
rootfs / rootfs ro 0 0
tmpfs /dev tmpfs rw,mode=755 0 0
devpts /dev/pts devpts rw,mode=600 0 0
proc /proc proc rw 0 0
sysfs /sys sysfs rw 0 0
tmpfs /sqlite_stmt_journals tmpfs rw,size=4096k 0 0
/dev/block/mtdblock3 /system yaffs2 ro 0 0
/dev/block/mtdblock5 /data yaffs2 rw,nosuid,nodev 0 0
/dev/block/mtdblock4 /cache yaffs2 rw,nosuid,nodev 0 0

This particular G1 was running a stock firmware and did not have an SD card
inserted, so we are left with four file systems to examine, highlighted with emphasis.

Similarly, we examine the output of mount on the Nexus One running Android
2.1-update1:

ahoog@ubuntu:~$ adb shell mount
rootfs on / type rootfs (ro,relatime)
tmpfs on /dev type tmpfs (rw,relatime,mode=755)
devpts on /dev/pts type devpts (rw,relatime,mode=600)
proc on /proc type proc (rw,relatime)
sysfs on /sys type sysfs (rw,relatime)
tmpfs on /sqlite_stmt_journals type tmpfs (rw,relatime,size=4096k)
none on /dev/cpuctl type cgroup (rw,relatime,cpu)
/dev/block/mtdblock3 on /system type yaffs2 (ro,relatime)
/dev/block/mtdblock5 on /data type yaffs2 (rw,nosuid,nodev,relatime)
/dev/block/mtdblock4 on /cache type yaffs2 (rw,nosuid,nodev,relatime)
/sys/kernel/debug on /sys/kernel/debug type debugfs (rw,relatime)
/dev/block//vold/179:1 on /sdcard type vfat
(rw,dirsync,nosuid,nodev,noexec,relatime,uid=1000,gid=1015,fmask=0702,
dmask=0702,allow_utime=0020,codepage=cp437,iocharset=iso88591,shortname=mixed,
utf8,errors=remount-ro)

In this case, there are five file systems on the Nexus One, highlighted with
emphasis, which should be the initial focus of an examination. The additional file
system is the SD card mounted.

Next, we take a look at the Motorola Droid’s mounted file systems when running
Android 2.2.1:
ahoog@ubuntu:~$ adb shell mount
rootfs / rootfs ro,relatime 0 0
tmpfs /dev tmpfs rw,relatime,mode=755 0 0

devpts /dev/pts devpts rw,relatime,mode=600 0 0
proc /proc proc rw,relatime 0 0
sysfs /sys sysfs rw,relatime 0 0
none /acct cgroup rw,relatime,cpuacct 0 0
tmpfs /mnt/asec tmpfs rw,relatime,mode=755,gid=1000 0 0
none /dev/cpuctl cgroup rw,relatime,cpu 0 0
/dev/block/mtdblock4 /system yaffs2 ro,relatime 0 0
/dev/block/mtdblock6 /data yaffs2 rw,nosuid,nodev,relatime 0 0
/dev/block/mtdblock5 /cache yaffs2 rw,nosuid,nodev,relatime 0 0
/dev/block/mtdblock0 /config yaffs2 ro,relatime 0 0
/dev/block/vold/179:1 /mnt/sdcard vfat
rw,dirsync,nosuid,nodev,noexec,relatime,uid=1000,gid=1015,fmask=0702,dmask=
0702,allow_utime=0020,codepage=cp437,iocharset=iso8859-1,shortname=mixed,utf8,
errors=remount-ro 0 0
/dev/block/vold/179:1 /mnt/secure/asec vfat
rw,dirsync,nosuid,nodev,noexec,relatime,uid=1000,gid=1015,fmask=0702,dmask=
0702,allow_utime=0020,codepage=cp437,iocharset=iso8859-1,shortname=mixed,utf8,
errors=remount-ro 0 0
tmpfs /mnt/sdcard/.android_secure tmpfs ro,relatime,size=0k,mode=000 0 0

290 CHAPTER 7 Android application and forensic analysis
The Motorola Droid also has seven files systems of interest. However, they are
slightly different from the Nexus One.

Finally, let’s take a look at the HTC Incredible output previously discussed
running Android 2.2:

ahoog@ubuntu:~$ adb shell mount
rootfs / rootfs ro,relatime 0 0
tmpfs /dev tmpfs rw,relatime,mode=755 0 0
devpts /dev/pts devpts rw,relatime,mode=600 0 0
proc /proc proc rw,relatime 0 0
sysfs /sys sysfs rw,relatime 0 0
none /acct cgroup rw,relatime,cpuacct 0 0
tmpfs /mnt/asec rw,relatime,mode=755,gid=1000 0 0
none /dev/cpuctl cgroup rw,relatime,cpu 0 0
/dev/block/mtdblock3 /system yaffs2 rw,relatime 0 0
/dev/block/mmcblk0p1 /data ext3
rw,nosuid,noatime,nodiratime,errors=continue,data=writeback 0 0
/dev/block/mtdblock6 /data/data yaffs2 rw,nosuid,nodev,relatime 0 0
/dev/block/mmcblk0p2 /cache ext3
rw,nosuid,nodev,noatime,nodiratime,errors=continue,data=writeback 0 0
tmpfs /app-cache tmpfs rw,relatime,size=8192k 0 0
/dev/block/vold/179:9 /mnt/sdcard vfat
rw,dirsync,nosuid,nodev,noexec,relatime,uid=1000,gid=1015,fmask=0702,dmask=070
2,allow_utime=0020,codepage=cp437,iocharset=iso8859-1,shortname=mixed,utf8,
errors=remount-ro 0 0
/dev/block/vold/179:9 /mnt/secure/asec vfat
rw,dirsync,nosuid,nodev,noexec,relatime,uid=1000,gid=1015,fmask=0702,dmask=070
2,allow_utime=0020,codepage=cp437,iocharset=iso8859-1,shortname=mixed,utf8,
errors=remount-ro 0 0
tmpfs /mnt/sdcard/.android_secure tmpfs ro,relatime,size=0k,mode=000 0 0
/dev/block/vold/179:3 /mnt/emmc vfat
rw,dirsync,nosuid,nodev,noexec,relatime,uid=1000,gid=1015,fmask=0702,dmask=070
2,allow_utime=0020,codepage=cp437,iocharset=iso8859-1,shortname=mixed,utf8,
errors=remount-ro 0 0

The HTC Incredible tops the list with nine file systems of interest. As you can
tell, with different Android devices and different versions of Android, the file
systems of interest change. However, from the above examination, we have created
Table 7.2, which provides a strong starting point for file system examinations.

Table 7.2 File Systems to Include in an Investigation

Mount Point File System Type Relevance

/proc proc Examine on the phone with the “cat”
command. Look for relevant
metadata about the system such as
file system statistics

/data/data (on older
systems, entire /data is
1 partition/file system)

YAFFS2 Nearly all app data

/data (on newer
phones /data can be
further segemented)

EXT3/EXT4/YAFFS2 App and system data excluding the
app data stores found in /data/data

/cache YAFFS2/EXT3 Cache file system used by some
apps and by the system

/mnt/asec tmpfs Unencrypted app .apk file, which is
stored encrypted on the SD card but
decrypted here for running systems
to access and utilize

/app-cache tmpfs Temporary file system where
com.android.browser (on HTC
Incredible) stores cache. Other apps
may also use this directory over time

/mnt/sdcard vfat FAT32 file system on removable SD
card

/mnt/emmc vfat FAT32 file system on the Embedded
MultiMediaCard (eMMC)

Analysis techniques 291
On a positive note, as these files are allocated, even for unsupported file systems
such as YAFFS2, the files can be copied to another medium and examined with
existing forensic tools and techniques an examiner owns and has knowledge of. For
example, the contents of “/data/data” could be copied from an Android device onto
your forensic workstation and then the content could be examined directly.
File Carving
File carving is a process in which specified file types are searched for and extracted
across binary data, often resulting in a forensic image of an entire disk or partition.
File carving works by examining the binary data and identifying files based on their
known file headers. If the file format has a known footer, it will then scan from the
header until it finds the footer (or hits a maximum file length set by the configuration
file) and then save the carved file to disk for further examination.

292 CHAPTER 7 Android application and forensic analysis
Traditional file carving techniques require that the data are sequential in the image
and this cannot produce the full file if it is fragmented. There aremany reasons that files
are fragmented as the process for saving the file to nonvolatile storage varies by file
system type and is heavily influenced by the memory type such as NAND flash. This
alsomeans that files that are very large (such as videos)will bemore difficult to recover.

Newer file carving techniques are being researched and developed to address the
limitations experienced with file fragmentation. One such technique is developed by
Digital Assembly, a digital forensics solutions company based in New York. Their
technique, called SmartCarving, profiles the fragmentation characteristics of several
popular file systems (except YAFFS2, unfortunately) and uses this information to
carve even fragmented photos. Their product, Adroit Photo Forensics, can also carve
images from unknown file systems (Digital Assembly, n.d.).

One popular tool used for carving data files is scalpel, an open source, high
performance file carver written byGoldenG. Richard III (Scalpel, n.d.). Scalpel reads
a configuration file for desired file header and footer definitions in order to extract files
from a raw image. It is file system independent and will work on FATx, NTFS, EXT2/
3, HFS, or raw partitions. Scalpel is written in C and runs on Linux, Windows, OS X,
and other operating systems which can compile the C code (Scalpel, n.d.).

There are two ways to acquire scalpel. First, on the forensic workstation, you can
install via apt-get:

ahoog@ubuntu:~$ sudo apt-get install scalpel

This will install the latest version. Alternatively, you can compile from source,
which will allow you to install the latest version on Linux or other platforms without
waiting for the specific platform maintainer to update the prepackaged version.

cd ~
wget http://www.digitalforensicssolutions.com/Scalpel/scalpel-1.60.tar.gz
tar xzvf scalpel-1.60.tar.gz
cd scalpel-1.60/
make

The scalpel executable is now in “~/scalpel-1.60” and is simply called scalpel. In
addition, there is a sample scalpel.conf in that same directory that is needed by
scalpel to run and to extend the supported file definitions. Here’s a starter scalpel.
conf for an Android device:
#ext case size header footer
gif y 5000000 \x47\x49\x46\x38\x37\x61 \x00\x3b
gif y 5000000 \x47\x49\x46\x38\x39\x61 \x00\x3b
jpg y 200000000 \xff\xd8\xff\xe0\x00\x10 \xff\xd9
jpg y 5000000 \xff\xd8\xff\xe1 \x7f\xff\xd9

png y 102400 \x50\x4e\x47? \xff\xfc\xfd\xfe
png y 102400 \x89PNG

db y 409600 SQLite\x20format

email y 10240 From:

doc y 10000000 \xd0\xcf\x11\xe0\xa1\xb1\x1a\xe1\x00\x00

\xd0\xcf\x11\xe0\xa1\xb1\x1a\xe1\x00\x00 NEXT
doc y 10000000 \xd0\xcf\x11\xe0\xa1\xb1

htm n 50000 <html </html>

pdf y 5000000 %PDF %EOF\x0d REVERSE
pdf y 5000000 %PDF %EOF\x0a REVERSE

wav y 200000 RIFF????WAVE
amr y 200000 #!AMR

zip y 10000000 PK\x03\x04 \x3c\xac

java y 1000000 \xca\xfe\xba\xbe

Analysis techniques 293
As you can tell, the headers for this configuration file define the extension or file
type (if it is case sensitive), the maximum size to carve, the header definition (in
ASCII, hex, and other supported notations), and the footer (if it exists). A targeted
file type for carving does not need to define each setting. For additional infor-
mation, see the sample configuration file in the downloaded source files as there are
many additional options that are quite powerful. Your Ubuntu workstation now has
the software needed for file carving, which will be covered in the FAT32 and
YAFFS2 sections.

It is worth pointing out that a large number of file signatures have already
been assembled. Gary Kessler, an independent consultant and practitioner of
digital forensics, actively maintains a table of file signatures on his web site
(Kessler, G., n.d.). He references the “magic file,” which is found on most
Unix systems located at “/usr/share/file/magic” on the Ubuntu workstation. On
the workstation, you can run the “file” command, which takes a file as an
argument and attempts to determine the file type based on the signatures in the
magic file.

A simple example is looking at an unknown file in “/mnt/emmc/.Trashes,” called
“._501,” which cannot be easily identified by the file name (of course, some people
might try to hide file types by changing the extension; however, by examining the file
signature, this is easily discovered):

#ahoog@ubuntu:~/htc-inc/mnt/emmc$ file ./.Trashes/._501
./.Trashes/._501: AppleDouble encoded Macintosh file

Thus, the eMMC has an OS X file in the Trash, which might indicate that
someone connected the Android device to a Mac computer.
Strings
The strings command on the Ubuntu workstation will extract, by default, ASCII
printable stringsdat least four characters longdfrom any file, text or binary. While
this technique is not terribly elegant or sophisticated, it is quite effective at quickly
examining binary data to determine if information of interest might be contained in
the file.

294 CHAPTER 7 Android application and forensic analysis
There are several options that have a great impact on what strings output. First,
let’s take a look at the synopsis section of the command’s man page (manual):

STRINGS(1) GNU Development Tools STRINGS(1)

NAME
 strings - print the strings of printable characters in files.

SYNOPSIS
 strings [-afovV] [-min-len]
 [-n min-len] [--bytes=min-len]
 [-t radix] [--radix=radix]
 [-e encoding] [--encoding=encoding]
 [-] [--all] [--print-file-name]
 [-T bfdname] [--target=bfdname]
 [--help] [--version] file

There are a few options you should always consider using when executing
strings. First, the “dall” option tells strings to examine the entire file (on certain
files, it only examines certain portions of the file). Second, the “--radix¼” option
instructs strings to print the offset within the file where the string was found. This is
extremely helpful when you combine strings and a hex editor to examine possible
evidence found in the file. The radix option can print the offset in octal (--radix¼o),
hex (--radix¼x), or decimal (--radix¼d). For most hex editors, you should consider
hex or perhaps decimal offsets.

The other extremely important option controls the character encoding of the
strings, which provides support for Unicode characters in both big-endian and little-
endian formats:
--encoding=encoding
 Select the character encoding of the strings that are to be found.
 Possible values for encoding are: s = single-7-bit-byte characters
 (ASCII, ISO 8859, etc., default), S = single-8-bit-byte characters,
 b = 16-bit bigendian, l = 16-bit littleendian, B = 32-bit
 bigendian, L = 32-bit littleendian. Useful for finding wide
 character strings. (l and b apply to, for example, Unicode
 UTF-16/UCS-2 encodings).
This is important because not only does Android natively support Unicode but it
also allows investigating a phone where the default language requires Unicode.
Following are a few examples from the previous dd image:

ahoog@ubuntu:~$ strings --all --radix=x htc-datadata.dd | less
 880a htcchirp.db
 891d ^XMp4XM
 900a unlinked
 980a deleted
 a00a htcchirp.db-journal

In this example, the first lines of results were omitted. However, you can see the
dd image is referencing the htcchirp.db at offset 0x880A and, shortly thereafter, we
see unlinked (0x900A), deleted (0x980A), and finally htcchirp.db-journal
(0xA00A). So what does all this mean? It seems likely that the htcchirp.db database
was modified. During that time, it created a special file (htcchirp.db-journal,

Analysis techniques 295
a journal file) that manages the update and allows the change to roll back if it was not
successful. After the journal file was no longer needed, it was deleted. This is
important information for understanding what occurred and where deleted data
might exist (the journal file takes a complete snapshot of the SQLite page that is
being updated and thus, the previous values are stored on the NAND flash).

Now, let’s change the encoding parameter and look for the following:

ahoog@ubuntu:~$ strings --all --radix=x --encoding=b htc-datadata.dd | less
 c42404 xt=\"chicago tribune\">chicago tribune
</div>",259200,604800],["<div class=\"sg_g\"
 sg_text=\"chicago bears\">chicago bears
</div>",259200,604800],["<div class=\"sg_g\"
 sg_text=\"chicago weather\">chicago weather
</div>",259200,604800],["<div class=\"sg_g\"
 sg_text=\"chicago sun times\">chicago sun times
</div>",259200,604800],["<div class=\"sg_g\"
 sg_text=\"chicago public library\">chicago public library
</div>",259200,604800],
 ["<div class=\"sg_g\" sg_text=\"chicago bul

1943020 gt_bearsh[1295219345,["<div class=\"sg_n\"
sg_url=\"/url?ct=res&oi=s

uggest_nav&q=http://www.bearshare.com/&sa=X&
source=suggest&usg=AFQjCNGP71yyDMU
 jIhmvN-DN2Tm7yPYCAA\">Free Music
Downloads - Download Free MP3
 Music - BearShare.com Music
<span
style=\"display:inline;\">www.bearsha

In this example, we are looking for 16-bit big-endian characters. In this case, two
examples were pulled from the results. In one example at offset 0xC42404, it’s clear
some sort of activity related to Chicago occurred. The examiner could simply open
a hex edit, jump to offset 0xC42404, and look at the data around this entry in an
attempt to understand the activity.

Equally interesting is the next entry at offset 0x1943020 that references the
bearshare.com web site and has what appears to be a time stamp. If we convert the
number 1295219345 into a date/time based on Unix Epoch, we get Sunday, 16 Jan
2011 23:09:05 GMT. Again, the examiner would need to examine the data more
closely to validate any findings, but a good hypothesis is that some web-based
activity took place on the Android device at that time.

One final example (and the other encodings can be left as an exercise for the
reader) reveals the following:

ahoog@ubuntu:~$ strings --all --radix=x --encoding=l htc-datadata.dd | less
18451a8 rgc:0:lat41.8786
18451d2 rgc:0:lon-87.6359
18451fc rgc:1:last1288470018632
1845230 rgc:0:rgcOak Park, IL
1845260 rgc:1:acc912

This is a great example because it includes not only a (valid) longitude and
latitude, but a time stamp (in milliseconds, not seconds, since 1970) that translates to
GMT: Sat, 30 Oct 2010 20:20:18 GMT.

http://bearshare.com

296 CHAPTER 7 Android application and forensic analysis
Strings is a very powerful command which, when combined with searching and
filters, can quickly determine if phone numbers, names, locations, GPS coordinates,
dates, and many more pieces of information are easily extractable in a data file.
Hex: A Forensic Analyst’s Good Friend
In many forensic investigations, a logical acquisition or a logical file system analysis
from a physical acquisition will provide more than enough data for the case.
However, certain cases require a deeper analysis to find deleted data or unknown file
structures. This is also necessary when the file system has little or no support in
standard forensic tools, such as YAFFS2.

Understandably, many forensic analysts would prefer to not perform a deeper
analysis because it requires significant time, is extremely tedious, and requires
a fairly deep understanding and curiosity of data structures. However, the results
from this type of analysis are often quite amazing. Important information about that
individual case is learned, and this knowledge is generally applicable to many cases
in the future.

For these reasons, every forensic analyst should be comfortable using a hex
editor should the need arise. This allows the analysts to see exactly what data are
being stored, look for patterns, and perhaps identify deleted or previously under-
stood data structures.

Of course, let’s explain this better with an example. First, make sure you install
the following package on your Ubuntu workstation:

ahoog@ubuntu:~$ sudo apt-get install ncurses-hexedit

This is a very fast curses (terminal)-based hex editor. Of course, you can use any
hex editor that is comfortable. Next, let’s use the strings command to look at the
mmssms.db file which is located in the /data/data/com.android.providers.telephony/
databases directory to see if we can find some deleted text messages. In this sample
case, it is known that text messages to 3128781100 were deleted from the device.
First, let’s use strings to see if we find that phone number in the SQLite file:

ahoog@ubuntu:~$ strings --all --radix=x mmssms.db | grep 3128781100 | wc -l
417

In this command, we use the pipe (“j”) operator, which takes the output from one
command and sends it to the next command. In this way we can link many
commands together and get very powerful analysis techniques on the fly. Thus, the
above command does the following:

1. Runs the strings command on the SQLite database.
2. Takes the output of the strings command and runs it through the grep program,

which filters the output-based patterns provided. In this case, we provide the
phone number in question. However, you can create very powerful search strings
for grep including regular expressions.

Analysis techniques 297
3. Take the output from the grep command and see how many lines are returned by
piping the output to the word count program (“wc”) and instructing it to count by
line instead of by word.

The result is that 417 entries for that phone number were found; obviously
indicating that there was indeed communication with the phone number on that
device. We next want to take a close look at the messages, so instead of piping the
output to the wc program, let’s look at the results directly and include one line of text
after the phone number by adding the option “-A 1” to grep (also, we pipe the output
to the “less” command to display it one page at a time):

ahoog@ubuntu:~$ strings --all --radix=x mmssms.db | grep -A 1 3128781100 |
less
 12108 3128781100
 1211b Activated my phone
--
 14080 3128781100
 14097 Have to meet CPA at 11:30.
--
 16116 3128781100
 16129 Can you try to refresh...

Thus, we know we have an SQLite database with the targeted number and
messages. Let’s use SQLite3 to better understand the database. Here we will use
command line (covered in Chapter 4) but you can use a SQLite viewer with
a graphical front end if you prefer.
ah
SQ
En
En
sq
ad
an
at
ca
cb
dr
ht
ht

sq
CR
TIP

SQLite language reference
While we have mentioned several SQLite tools throughout this book, you may find the SQLite
language reference at http://www.sqlite.org/lang.html to be a great resource. For those not
familiar with SQL, it provides a thorough overview. If you already have an understanding of
SQL, this language reference will help explain, as the page title reads, “SQL as Understood by
SQLite.”
oog@ubuntu:~$ sqlite3 mmssms.db
Lite version 3.6.22
ter ".help" for instructions
ter SQL statements terminated with a ";"
lite> .tables
dr incoming_msg sms
droid_metadata incoming_msg_v2 sr_pending
tachments part threads
nonical_addresses pdu threads_list
ch pending_msgs words
m qtext words_content
cmsgs rate words_segdir
cthreads raw words_segments

lite> .schema sms
EATE TABLE sms (_id INTEGER PRIMARY KEY,thread_id INTEGER,toa INTEGER

http://www.sqlite.org/lang.html

DEFAULT 0,address TEXT,person
INTEGER,date INTEGER,protocol INTEGER,read INTEGER DEFAULT 0,status INTEGER
DEFAULT -1,type
INTEGER,reply_path_present INTEGER,subject TEXT,body TEXT,sc_toa INTEGER
DEFAULT 0,report_date
INTEGER,service_center TEXT,locked INTEGER DEFAULT 0,index_on_sim INTEGER
DEFAULT -1,callback_number TEXT,
priority INTEGER DEFAULT 0,htc_category INTEGER DEFAULT 0,cs_timestamp LONG
DEFAULT -1, cs_id TEXT,
cs_synced INTEGER DEFAULT 0, error_code INTEGER DEFAULT 0,seen INTEGER
DEFAULT 0);
<snip>

sqlite> .mode line

sqlite> select * from sms limit 1;
 _id = 5
 thread_id = 3
 toa = 0
 address = 3121111111
 person = 901
 date = 1284137437259
 protocol = 0
 read = 1
 status = -1
 type = 1
reply_path_present = 0
 subject =
 body = Did you have a chance do upload the new classes to the
website?
 sc_toa = 0
 report_date =
 service_center =
 locked = 0
 index_on_sim = -1
 callback_number =
 priority = 0
 htc_category = 0
 cs_timestamp = -1
 cs_id =
 cs_synced = 0
 error_code = 0
 seen = 0

sqlite> .quit

298 CHAPTER 7 Android application and forensic analysis
In the above SQLite3 sessions, the following commands were run to better
understand the data:

1. SQLite3 mmssms.db: Opens database for querying.
2. .tables: Lists the tables in the database.
3. .schema sms: Focuses on the sms table, asks database for the structure (schema)

of the table. The schema was quite long and was truncated.
4. .mode line: Sets the display mode to line for easier viewing.
5. “select * from sms limit 1;”: Instructs SQLite3 to display one record to the screen

(limit one) from the sms table showing all columns.
6. .quit: Exits the program

Thus, we can now see that there are a number of fields in the sms table, but that
after the phone number, there is a personal ID followed by the time stamp. Using

Analysis techniques 299
a hex editor, let’s see if we can determine the date/time stamp from the message
about the phone being activated. First, let’s open the mmssms.db in the hex editor we
just installed:

ahoog@ubuntu:~$ hexeditor mmssms.db

This will then show you the beginning of the file in box hex as well as the
printable ASCII strings in the right column:

File: mmssms.db ASCII Offset: 0x00000000 / 0x00077FFF (%00)
00000000 53 51 4C 69 74 65 20 66 6F 72 6D 61 74 20 33 00 SQLite format 3.
00000010 04 00 01 01 00 40 20 20 00 00 24 4A 00 00 00 00 @ ..$J....
00000020 00 00 00 00 00 00 00 00 00 00 00 3C 00 00 00 01 <....
00000030 00 00 00 00 00 00 00 18 00 00 00 01 00 00 00 3C <
00000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000060 00 00 00 00 05 00 00 00 17 03 8D 00 00 00 00 45 E
00000070 03 FB 03 F6 03 F1 03 EC 03 E7 03 E2 03 DD 03 D8
00000080 03 D3 03 CE 03 C9 03 C4 03 BF 03 BA 03 B5 03 B0
00000090 03 AB 03 A6 03 A1 03 9C 03 97 03 92 03 8D 00 00
000000A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000000B0 00 00 00 00 00 00 00 00 00 00 00 00 00 04 81 0C
000000C0 03 07 17 15 15 01 81 7B 74 61 62 6C 65 61 64 64 {tableadd
000000D0 72 61 64 64 72 05 43 52 45 41 54 45 20 54 41 42 raddr.CREATE TAB
000000E0 4C 45 20 61 64 64 72 20 28 5F 69 64 20 49 4E 54 LE addr (_id INT
000000F0 45 47 45 52 20 50 52 49 4D 41 52 59 20 4B 45 59 EGER PRIMARY KEY
00000100 2C 6D 73 67 5F 69 64 20 49 4E 54 45 47 45 52 2C ,msg_id INTEGER,
00000110 63 6F 6E 74 61 63 74 5F 69 64 20 49 4E 54 45 47 contact_id INTEG
00000120 45 52 2C 61 64 64 72 65 73 73 20 54 45 58 54 2C ER,address TEXT,
00000130 74 79 70 65 20 49 4E 54 45 47 45 52 2C 63 68 61 type INTEGER,cha
00000140 72 73 65 74 20 49 4E 54 45 47 45 52 29 84 57 02 rset INTEGER).W.
00000150 07 17 13 13 01 89 15 74 61 62 6C 65 70 64 75 70 tablepdup
^G Help ^C Exit (No Save) ^T goTo Offset ^X Exit and Save ^W Search

We can press Control-T (^T) to jump to an offset in the file. In this case, the
previous strings command included the “–radix¼x,” so we have the offset in hex
(0x12108), so time to search:

File: mmssms.db ASCII Offset: 0x00000000 / 0x00077FFF (%00)
00000000 53 51 4C 69 74 65 20 66 6F 72 6D 61 74 20 33 00 SQLite format 3.
00000010 04 00 01 01 00 40 20 20 00 00 24 4A 00 00 00 00 @ ..$J....
00000020 00 00 00 00 00 00 00 00 00 00 00 3C 00 00 00 01 <....
00000030 00 00 00 00 00 00 00 18 00 00 00 01 00 00 00 3C <
00000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000060 00 00 00 00 05 00 00 00 17 03 8D 00 00 00 00 45 E
00000070 03 FB┌──┐
00000080 03 D3│ Goto Offset │
00000090 03 AB│ │
000000A0 00 00│ Offset: 0x12108 │
000000B0 00 00│ │
000000C0 03 07│ Hint: Decimal 255 = Hex 0xFF = Octal 0377 │ {tableadd
000000D0 72 61│ │ addr.CREATE TAB
000000E0 4C 45└──┘ E addr (_id INT
000000F0 45 47 45 52 20 50 52 49 4D 41 52 59 20 4B 45 59 EGER PRIMARY KEY
00000100 2C 6D 73 67 5F 69 64 20 49 4E 54 45 47 45 52 2C ,msg_id INTEGER,
00000110 63 6F 6E 74 61 63 74 5F 69 64 20 49 4E 54 45 47 contact_id INTEG
00000120 45 52 2C 61 64 64 72 65 73 73 20 54 45 58 54 2C ER,address TEXT,
00000130 74 79 70 65 20 49 4E 54 45 47 45 52 2C 63 68 61 type INTEGER,cha
00000140 72 73 65 74 20 49 4E 54 45 47 45 52 29 84 57 02 rset INTEGER).W.
00000150 07 17 13 13 01 89 15 74 61 62 6C 65 70 64 75 70 tablepdup
^G/^X/Escape Cancel ^U Clear input

300 CHAPTER 7 Android application and forensic analysis
The hex editor is extremely responsive and jumps to the offset:
File: mmssms.db ASCII Offset: 0x00012108 / 0x00077FFF (%15)
00012100 01 01 00 01 01 01 01 00 33 31 32 31 31 31 31 31 31211122
00012110 32 32 01 2A FC 97 C5 2C 01 FF 02 41 63 74 69 76 22.*...,...Activ
00012120 61 74 65 64 20 6D 79 20 70 68 6F 6E 65 00 00 FF ated my phone...
00012130 33 31 32 34 34 34 33 33 33 33 00 00 FF 00 FF 00 3124443333......
00012140 7B 05 1C 00 01 01 21 00 05 01 01 01 01 01 00 81 {.....!.........
00012150 0B 01 00 00 01 01 0D 01 01 01 00 01 01 01 03 00
00012160 33 33 33 35 35 35 37 37 37 37 01 2A FC 8E 48 4B 3335557777.*..HK
00012170 00 01 FF 01 00 44 69 64 20 79 6F 75 20 68 61 76 Did you hav
00012180 65 20 61 20 63 68 61 6E 63 65 20 64 6F 20 75 70 e a chance do up
00012190 6C 6F 61 64 20 74 68 65 20 6E 65 77 20 63 6C 61 load the new cla
000121A0 73 73 65 73 20 74 6F 20 74 68 65 20 77 65 62 73 sses to the webs
000121B0 69 74 65 3F 00 00 FF 00 00 FF 00 00 00 81 25 04 ite?..........%.
000121C0 1C 00 01 01 3F 00 05 01 01 01 01 01 00 81 41 01 ?.........A.
000121D0 00 00 01 01 0D 01 01 01 00 01 01 01 02 00 73 74 st
Looking at the hex data above, we can see the phone number and it ends at
0x12111. After that, we should see a person field, as it is the next column as specified
in the table design (also called the table schema). If the person field is set, it links to
the contact table to provide details on the person involved. In this case, no person
was set, so SQLite does not record anything. Finally, we look at the next six bytes
and we get 0x012AFC97C52C. When translated to decimal, the resulting number is
1284138059052. Finally, we can use a number of techniques to convert this time
(Unix Epoch in milliseconds) to a more easily read date/time. One quick technique
for this is to use the built-in date command. However, it only handles Unix Epoch in
seconds, not milliseconds, so you can simply divide by 1000 (that is, omit the last
three digits):

ahoog@ubuntu:~$ date -d @1284138059
Fri Sep 10 12:00:59 CDT 2010

The date command automatically displays the date in the current system time
zone. Another quick way to convert the time is to use the web site designed to
convert Unix Epoch time at http://www.epochconverter.com/ that handles both Unix
Epoch in seconds and milliseconds (Epoch Converter, n.d.). To convert, copy the
entire time stamp (not necessary to divide by 1000) into the web site text box and
click “Timestamp to Human date” as in Fig. 7.2.

One final time stamp conversion technique to mention is the free utility DCode
by Digital Detective, a digital forensic software company based in the United
Kingdom. DCode supports many formats (Digital Detective, n.d.) and can covert
from milliseconds as shown in Fig. 7.3.

This example is simply intended to illustrate the importance of data that might
only be accessible if the forensic analyst moves beyond the forensic software they
use and also examines the data directly. With well-known file systems and perhaps
“standard” cases, this is often not necessary. However, mobile forensics, and
Android forensics in particular, is a challenging area as many of the file formats, file
systems, hardware, and software are not only very new (and not well supported) but
also change at an alarming rate. Forensic analysts who dive into hex will find they
uncover far more data than simply relying on existing forensic software.

http://www.epochconverter.com/

FIGURE 7.2

Time conversion on http://www.epochconverter.com/.

FIGURE 7.3

DCode time conversion utility by Digital Detective.

Analysis techniques 301
Android Directory Structures
A broad understanding of the Android directory structure is very helpful in the
forensic analysis of a device. To perform this analysis, five important root level
directories were copied from the HTC Incredible and then displayed with the tree

http://www.epochconverter.com/

302 CHAPTER 7 Android application and forensic analysis
command on the local workstation. Following the hierarchical layout, an explana-
tion of many directories is provided.
1 /
2 ├── app-cache
3 │ └── com.android.browser
4 │ └── cache
5 │ └── webviewCache
6 ├── cache
7 │ ├── lost+found
8 │ └── recovery
9 ├── data
10 │ ├── anr
11 │ ├── app
12 │ ├── app-private
13 │ ├── backup
14 │ ├── btips
15 │ ├── dalvik-cache
16 │ ├── data
17 │ │ ├── com.facebook.katana
18 │ │ │ ├── cache
19 │ │ │ │ └── webviewCache
20 │ │ │ ├── databases
21 │ │ │ ├── files
22 │ │ │ ├── lib
23 │ │ │ └── shared_prefs
24 │ ├── dontpanic
25 │ ├── local
26 │ ├── lost+found
27 │ ├── misc
28 │ │ ├── bluetooth
29 │ │ ├── bluetoothd
30 │ │ ├── dhcp
31 │ │ ├── keystore
32 │ │ ├── lockscreen
33 │ │ ├── systemkeys
34 │ │ ├── vpn
35 │ │ └── wifi
36 │ ├── property
37 │ ├── system
38 │ │ ├── registered_services
39 │ │ ├── shared_prefs
40 │ │ ├── sync
41 │ │ ├── throttle
42 │ │ └── usagestats
43 │ └── tombstones
44 ├── mnt
45 │ ├── asec
46 │ ├── emmc
47 │ │ ├── Android
48 │ │ │ └── data
49 │ │ │ └── com.android.providers.media
50 │ │ │ └── albumthumbs
51 │ │ ├── DCIM
52 │ │ │ └── 100MEDIA
53 │ │ ├── LOST.DIR
54 │ │ ├── MP3
55 │ │ │ ├── People Under the Stairs
56 │ ├── sdcard
57 │ │ ├── Android
58 │ │ │ └── data
59 │ │ │ ├── com.google.android.apps.maps
60 │ │ │ │ ├── cache

mailto:Image of Figure 7.3|tif

61 │ │ │ │ ├── debug
62 │ │ │ │ └── testdata
63 │ │ │ └── com.yelp.android
64 │ │ │ └── cache
65 │ │ │ └── images
66 │ │ ├── dcim
67 │ │ ├── download
68 │ │ ├── Downloads
69 │ │ ├── LOST.DIR
70 │ │ └── tmp
71 │ └── secure
72 │ ├── asec
73 │ └── staging
74 └── system
75 ├── app
76 ├── bin
77 ├── customize
78 │ ├── CID
79 │ ├── MNS
80 │ └── resource
81 ├── etc
82 │ ├── bluetooth
83 │ ├── clockwidget
84 │ ├── dhcpcd
85 │ │ └── dhcpcd-hooks
86 │ ├── firmware
87 │ ├── iproute2
88 │ ├── permissions
89 │ ├── ppp
90 │ ├── security
91 │ ├── updatecmds
92 │ ├── wifi
93 │ └── wimax
94 ├── fonts
95 ├── framework
96 ├── lib
97 │ ├── bluez-plugin
98 │ ├── egl
99 │ ├── hw
100 │ └── modules
101 ├── lost+found
102 ├── media
103 │ └── audio
104 │ ├── alarms
105 │ ├── notifications
106 │ ├── ringtones
107 │ └── ui
108 ├── tts
109 │ └── lang_pico
110 ├── usr
111 │ ├── keychars
112 │ ├── keylayout
113 │ ├── share
114 │ │ ├── bmd
115 │ │ └── zoneinfo
116 │ └── srec
117 └── xbin

Analysis techniques 303

mailto:Image of Figure 7.3|tif

304 CHAPTER 7 Android application and forensic analysis
Line 1: At the top is the root directory, which creates the structure and mount
points for the other file systems explored previously.
Line 2: As previously discussed, the HTC Incredible created an “/app-cache”
directory of type tmpfs. You can see the browser cache structure. Presumably,
over time, other apps may leverage this directory.
Lines 6e8: Android devices from the start had a dedicated “/cache” directory
that originally appeared to be unused. However, this is certainly not the case and
the “/cache” partition should be imaged for full analysis. Files including Gmail
attachment previews, Browser DRM, some downloads (Market and other), as
well as Over The Air (OTA) updates from the wireless carriers can be found here.
Line 9: The root level “/data” directory has a number of important subdirectories
covered next. Note that some phones (such as the HTC Incredible) have a dedi-
cated partition for the “/data/data” subdirectory.
Line 10: The “/data/anr” directory contains stack traces (debugging) from the
system and is generally not accessible to the shell user. However, some of the adb
debug commands appear to read this data.
Line 11: The “/data/app” directory contains the .apk files from the AndroidMarket.
Line 12: The “/data/app-private” directory stores protected apps from the
Android Market.
Line 13: More recent versions of Android have a secure cloud backup API that
developers can integrate into their apps. The “/data/backup” directory is used to
queue and manage these backups. However, thus far meaningful data has not
been recovered from directory.
Line 14: The “/data/btips” (Texas Instrument’s Bluetooth Protocol Stack) direc-
tory stores the log files if the associated app (com.ti.btips) crashes.
Line 15: The “/data/davlik-cache” directory contains the Davlik VM’s cached dex
files used to run apps.
Line 16: The “/data/data directory” contains the application specific data, easily
the most important area to focus on in an investigation.
Lines 17e23: One app was kept in the directory hierarchy for demonstration
purposes. The directory is named according to the package name and often
clearly identifies the developer (Facebook in this case).
Line 24: For HHGTTG fans (famous advice to intergalactic travelers from the
classic novel The Hitchhiker’s Guide to the Galaxy: DON’T PANIC), there’s
a great directory named “/data/dontpanic,” which is simply a place to store some
error log files from the system. Again, a great benefit of an open system is the
ability to examine code. Short of that, we would have simply had to guess the
purpose or perform significant testing. From the AOSP:
Create dump dir and collect dumps.
 # Do this before we mount cache so eventually we can use cache for
 # storing dumps on platforms which do not have a dedicated dump partition.

 mkdir /data/dontpanic
 chown root log /data/dontpanic
 chmod 0750 /data/dontpanic

mailto:Image of Figure 7.3|tif

 # Collect apanic data, free resources and re-arm trigger
 copy /proc/apanic_console /data/dontpanic/apanic_console
 chown root log /data/dontpanic/apanic_console
 chmod 0640 /data/dontpanic/apanic_console

 copy /proc/apanic_threads /data/dontpanic/apanic_threads
 chown root log /data/dontpanic/apanic_threads
 chmod 0640 /data/dontpanic/apanic_threads

 write /proc/apanic_console 1

 # Collect ramconsole data
 copy /proc/last_kmsg /data/dontpanic/last_kmsg
 chown root log /data/dontpanic/last_kmsg
 chmod 0640 /data/dontpanic/last_kmsg

Analysis techniques 305
Line 25: The “/data/local” directory is important as it allows shell (the user
account nonrooted phones run adbd as) read/write access. When an app is
installed, it is first copied to “/data/local.” Also, some forensic techniques rely on
this directory to upload important files, typically binaries.
Line 26: The “/data/lostþfound” directory shows up in several places in YAFFS2
file systems. Again, a quick search (try “grep -R lostþfound *.c” from the
YAFFS2 source directory we downloaded) will explain that any files or
directories found that do not have a path to the root directory will be placed in this
folder.
/*
 * This code iterates through all the objects making sure that they are
rooted.
 * Any unrooted objects are re-rooted in lost+found.
 * An object needs to be in one of:
 * - Directly under deleted, unlinked
 * - Directly or indirectly under root.
 *
 * This fixes the problem where directories might have inadvertently been
deleted
 * leaving the object "hanging" without being rooted in the directory tree.
 */
Lines 27e35: The “/data/misc” directory contains files related to Bluetooth,
dhcp, vpn, Wi-Fi, and more. One important file to point out is “/data/misc/wifi/
wpa_supplicant.conf” that contains a list of Wi-Fi.com networks to which the

device got connected. If the wireless access point required a password, it is stored
in plain text in the file (have fun pen testers). Here’s a partial listing:
ahoog@ubuntu:~/htc-inc/data/misc/wifi$ cat wpa_supplicant.conf
ctrl_interface=eth0
update_config=1

network={
 ssid="viaForensics"
 psk="s0rryN04cc3ss"
 priority=1
}

http://Wi-Fi.com
mailto:Image of Figure 7.3|tif
mailto:Image of Figure 7.3|tif

network={
 ssid="attwifi"
 key_mgmt=NONE
 priority=3
}

network={
 ssid="GoogleGuest"
 key_mgmt=NONE
 priority=4
}

network={
 ssid="sfo free wifi"
 key_mgmt=NONE
 priority=5
}

306 CHAPTER 7 Android application and forensic analysis
Line 36: The “/data/property” directory contains various system properties such
as time zone, country, and language.
Line 37: Beyond the subdirectories you can see /data/system contains several key
files. First, the accounts.db contains a list of accounts that require authentication
and provides the name, type, password (encrypted), and authentication tokens
(among other data). There are also two very important files related to the pass
code or PIN for the device. The files are gesture.key and password.key and
contain an encoded/encrypted hex value for the pass code.
Line 43: When a process crashes, a special tombstone file can be created. The file
is ASCII and thus readable. More information can be found online such as one
informative post on Crazydaks.com (Debugging in Android, n.d.).
Line 44: The “/mnt” directory is where the system mounts various file systems,
including the SD card, the eMMC, and others.
Line 45: The “/mnt/asec” directory contains the unencrypted apps that are stored
on the SD card. When Android introduced the ability to store apps on the SD
card, they encrypted the contents for security reasons. However, when the system
is up and running and unencrypted access to the files is necessary, they are
decrypted and mounted in “/mnt/asec.”
Line 46: The “/mnt/emmc” contains the FAT32 file system that resides on the
NAND flash for some devices. Lines 47 through 55 are several examples of
eMMC subdirectories.
Line 51: The “/mnt/emmc/DCIM directory,” album thumbnails are stored here.
Line 52: The “/mnt/emmc/DCIM/100MEDIA” directory contains any pictures or
videos taken by the HTC Incredible.
Line 53: The “/mnt/emmc/LOST.DIR” directories are found on FAT32 partitions
and may contain files or fragments that the file system lost track of (similar to
YAFFS2 lostþfound directory). This directory should be examined.
Line 56: If a physical SD card is present, it is mounted at “/mnt/sdcard.”
Line 66: As with the eMMC, the “/mnt/sdcard/dcim” directory would store
pictures and videos from the device. On the HTC Incredible, they are stored in
“/mnt/emmc/DCIM,” so they are not present on the physical SD card.

http://Crazydaks.com

Analysis techniques 307
Lines 67e68: The “/mnt/sdcard/download” and “/mnt/sdcard/Downloads”
directories contain files downloaded by the browser, e-mail clients, and others.
Line 72: As mentioned previously, the “/mnt/sdcard/secure/asec” directory is
encrypted and is where apps that reside on the SD card (instead of the NAND
flash) store data.
Line 75: The “/system/app” directory contains .apk app files for apps that are
provided with the system. This includes apps bundled by Google/Android, the
manufacturer (HTC in this case), and the wireless carrier (Verizon in this case). In
the case of the HTC Incredible, the directory contains a significant 152 .apk files.
It’s important to know this location in case app analysis is required for a case
(which means you need access to the apk file). The .apk files present on the
reference HTC Incredible were:
AccountSyncManager.apk
AdobeReader.apk
amazonmp3.apk
ApplicationsProvider.apk
AppSharing.apk
Bluetooth.apk
BrcmBluetoothServices.apk
Browser.apk
Calculator.apk
Calendar.apk
CalendarProvider.apk
CertInstaller.apk
CheckinProvider.apk
CityID.apk
Clicker.apk
com.htc.FMRadioWidget.apk
com.htc.FriendStreamWidget.apk
com.htc.MusicWidget.apk
com.htc.NewsReaderWidget.apk
com.htc.StockWidget.apk
com.htc.TwitterWidget.apk
com.htc.WeatherWidget.apk
ContactsProvider.apk
CustomizationSettingsProvider.apk
CustomizationSetup.apk
DCSImpl.apk
DCSStock.apk
DCSUtility.apk
DebugTool.apk
DefaultContainerService.apk
DMPortRead.apk
DownloadProvider.apk
DrmProvider.apk
EPST.apk
Facebook.apk
FieldTest.apk
FieldTrial.apk
FilePicker.apk
Flashlight.apk
Flickr.apk
FriendStream.apk
GenieWidget.apk
Gmail.apk
GoogleCalendarSyncAdapter.apk
GoogleContactsSyncAdapter.apk
GoogleFeedback.apk
GooglePartnerSetup.apk
GoogleQuickSearchBox.apk
GoogleServicesFramework.apk
GSD.apk
HtcAddProgramWidget.apk

HTCAlbum.apk
htcbookmarkwidget.apk
HtcCalculatorWidget.apk
htccalendarwidgets.apk
HTCCamera.apk
HtcCarPanel.apk
HtcCdmaMccProvider.apk
HtcClockWidget.apk
HtcContacts.apk
htccontactwidgets.apk
HtcCopyright.apk
HtcDialer.apk
HtcFacebook.apk
HtcFMRadio.apk
HtcFootprints.apk
HtcFootprintsWidget.apk
HTC_IME.apk
HtcLocationPicker.apk
HtcLocationService.apk
HtcLockScreen.apk
htcmailwidgets.apk
HtcMessageUploader.apk
htcmsgwidgets.apk
HtcMusic.apk
HtcPhotoWidget.apk
HtcProfilesWidget.apk
HtcRingtoneTrimmer.apk
HtcRingtoneWidget.apk
HtcSettingsProvider.apk
htcsettingwidgets.apk
HTCSetupWizard.apk
HtcSoundRecorder.apk
HtcStreamPlayer.apk
HtcSyncwidget.apk
HtcTwitter.apk
HtcWeatherWallpaper.apk
HTMLViewer.apk
install_flash_player.apk
LbsProvider.apk
LiveWallpapers.apk
LiveWallpapersPicker.apk
MagicSmokeWallpapers.apk
Mail.apk
Maps.apk
MarketUpdater.apk
MediaProvider.apk
MediaUploader.apk
Mms.apk
Mode10Wallpapers.apk
NetworkLocation.apk
NewsReader.apk

PackageInstaller.apk
PCSCII.apk
Phone.apk
PicoTts.apk
PluginManager.apk
QuickLookup.apk
Quickoffice.apk
QxdmLog.apk
restartapp.apk
Rosie.apk
RSS.apk
Settings.apk
SettingsProvider.apk
SetupWizard.apk
SlackerRadio.apk
SocialNetworkProvider.apk
Stock.apk
Street.apk
Superuser.apk
Talk.apk
teeter.apk
TelephonyProvider.apk
TtsService.apk
TVOUT.apk
Updater.apk
UpgradeSetup.apk
UploadProvider.apk
UserDictionaryProvider.apk
VCast.apk
Vending.apk
VisualizationWallpapers.apk
VoiceDialer.apk
VoiceSearch.apk
VpnServices.apk
VVM.apk
VzNav.apk
VzWBAClient.apk
VzWBAService.apk
VZWInstaller.apk
VzwLBSPerm.apk
VZW_MyVerizon.apk
VZW_Skype.apk
WeatherAgentService.apk
Weather.apk
WeatherProvider.apk
WeatherSyncProvider.apk
WidgetDownloadManager.apk
WifiRouter.apk
WorldClock.apk
YouTube.apk

ahoog@ubuntu:~/htc-inc/system/app$ ls *.apk

308 CHAPTER 7 Android application and forensic analysis
Lines 76 and 117: The “/system/bin” and “/system/xbin” directories contain the
Android binary files used on the system. Forensic analysts and security engineers
(and most definitely Android researchers) can find many useful and undocu-
mented commands by experimenting with files in these directories.
Lines 77e80: The “/system/customize” directories contain carrier-specific cus-
tomizations for the phone, notably UI.
Line 81: The “/system/etc” directory is where Android stores the typical Linux/
Unix configuration (/etc) directory. It contains numerous configuration files
worthy of examinationdtoo many to discuss in this bookdbut can vary from
device to device.

There are far more directories and files to explore but the above overview
provides a good starting point.
FAT FORENSIC ANALYSIS
The SD card can be a gold mine for forensic investigators. All the multimedia that
has been synced with the phone, or taken with the phone’s camera, is stored here.
Items such as pictures, videos, voice recordings, application data, music, Google
Map data, and potentially complete backup files from backup apps that use the SD
card for storage are recoverable. In addition, investigators can also find cached mms
image thumbnails, trash information relating to deleted objects, and downloaded
application APKs.

For example, a typical user might use Google Maps to obtain driving directions
to a local shopping center. Through forensic examination of the “com.google.
android.apps.maps/cache” directory on the SD card, we are able to recover map
image tiles and navigation voice prompts. These voice prompts are also stamped
with a date and time, so a forensic investigator can literally retrace the location of
that device for a given time and date.

Here’s what it looks like after a short trip within a Chicago suburb:

ahoog@ubuntu:/mnt/readonly-fs/google_maps_navigation/cache$ ls -la
total 1184
dr-xr-xr-x 2 root root 32768 2010-11-16 15:32 .
dr-xr-xr-x 4 root root 32768 2010-11-16 13:31 ..
-r-xr-xr-x 1 root root 66476 2010-11-16 15:20 ._speech_nav_0.wav
-r-xr-xr-x 1 root root 142252 2010-11-16 15:19 ._speech_nav_1.wav
-r-xr-xr-x 1 root root 142380 2010-11-16 15:18 ._speech_nav_2.wav
-r-xr-xr-x 1 root root 73644 2010-11-16 15:15 ._speech_nav_3.wav
-r-xr-xr-x 1 root root 60460 2010-11-16 15:15 ._speech_nav_4.wav
-r-xr-xr-x 1 root root 107948 2010-11-16 15:15 ._speech_nav_5.wav
-r-xr-xr-x 1 root root 96300 2010-11-16 15:20 ._speech_nav_6.wav
-r-xr-xr-x 1 root root 6144 2010-11-16 13:31 tilecache_ImageTileStore.db
-r-xr-xr-x 1 root root 281600 2010-11-16 15:32 tilecache_VectorTileStore.db

It is also important to remember that SD cards can be mounted through Android
as an external mass storage device. This allows the user to transfer any files between
the SD card and his or her personal computer.

FAT forensic analysis 309
In Chapter 6, we demonstrated how to acquire the two current FAT32 partitions
on Android devices that contain data. There are many books and articles which cover
the analysis of FAT32 file systems and this section will not attempt to cover those
again in detail. However, this section will demonstrate some techniques for
examining the FAT32 partitions found on Android devices using the Ubuntu
workstation.
FAT Timeline Analysis
To build a file system timeline of a FAT32 image, we utilize both The Sleuth Kit
(TSK) and another great open source forensic tool called log2timeline. The
log2timeline utility, written by Kristinn Gudjonsson, is a framework for automatic
creation of a timeline that encompasses various log files and artifacts found on the
system. log2timeline can be utilized on many systems and does an excellent job at
extracting time stamp information for many file formats for analysis.

As we already have TSK setup, we need to take a few steps to install
log2timeline. First, it has probably been a while since you first built the Ubuntu
workstation so it is a good idea to update any packages which have newer
versions and often contain security patches or bug fixes.

sudo apt-get update
sudo apt-get upgrade -u

The first step updates your software list and the second will actually perform the

upgrade. Next, we’ll install log2timeline, which Kristinn has greatly simplified by
creating a Ubuntu package for his software.

sudo add-apt-repository "deb http://log2timeline.net/pub/ maverick main"
wget -q http://log2timeline.net/gpg.asc -O- | sudo apt-key add -
sudo apt-get update
sudo apt-get install log2timeline-perl
The four commands do the following:

1. Add the log2timeline custom software repository to the Ubuntu workstations
overall list.

2. Download the public key used to validate the software and add to the list of
accepted keys.

3. Update the software packages list.
4. Install log2timeline.

For this analysis, we are going to use the forensic image of the 2 GB SD card we
imaged in Chapter 6. First, the examiner should always ensure that the hash
signature of the image matches with the hash taken during forensic imaging to
ensure the image is valid.
ahoog@ubuntu:~/sd-emmc/viaforensics/af-book/sdcard2-113serialno$ sha256sum
sdcard2-113serialno.dc3dd
e5dcc0af1d8a09c9af4d2db98f5f684d20a561666b9ff8df7c8b90a0b9d78770 sdcard2-
113serialno.dc3dd

310 CHAPTER 7 Android application and forensic analysis
If you recall, the hash of the input device (/dev/sdc in this case) was e5dcc0af1
d8a09c9af4d2db98f5f684d20a561666b9ff8df7c8b90a0b9d78770. The forensic image
is now validated. Next, let’s take a quick look at the file first with the file command:

ahoog@ubuntu:/home/ahoog$ file /home/ahoog/sd-emmc/viaforensics/af-book/
sdcard2-113serialno/sdcard2-113serialno.dc3dd
/home/ahoog/sd-emmc/viaforensics/af-book/sdcard2-
113serialno/sdcard2-113serialno.dc3dd: x86 boot sector; partition 1: ID=0x6,
starthead 2, startsector 129, 3911551 sectors, extended partition table
(last)\011, code offset 0x0

So we are, in fact, dealing with a disk image with a valid partition. Next, we can
examine the disk image further with TSK’s mmls:

ahoog@ubuntu:~/sd-emmc/viaforensics/af-book/sdcard2-113serialno$ mmls sdcard2-
113serialno.dc3dd
DOS Partition Table
Offset Sector: 0
Units are in 512-byte sectors

 Slot Start End Length Description
00: Meta 0000000000 0000000000 0000000001 Primary Table (#0)
01: ----- 0000000000 0000000128 0000000129 Unallocated
02: 00:00 0000000129 0003911679 0003911551 DOS FAT16 (0x06)

And finally TSK’s fsstat, but note that you have to provide a sector offset of 129
as the FAT partition starts there:

ahoog@ubuntu:~/sd-emmc/viaforensics/af-book/sdcard2-113serialno$ fsstat -o 129
sdcard2-113serialno.dc3dd
FILE SYSTEM INFORMATION
--
File System Type: FAT16

OEM Name:
Volume ID: 0xe0fd1813
Volume Label (Boot Sector): NO NAME
Volume Label (Root Directory):
File System Type Label: FAT16

Sectors before file system: 129

File System Layout (in sectors)
Total Range: 0 - 3911550
* Reserved: 0 - 0
** Boot Sector: 0
* FAT 0: 1 - 239
* FAT 1: 240 - 478
* Data Area: 479 - 3911550
** Root Directory: 479 - 510
** Cluster Area: 511 - 3911550

METADATA INFORMATION
--
Range: 2 - 62577158
Root Directory: 2

CONTENT INFORMATION
--
Sector Size: 512
Cluster Size: 32768
Total Cluster Range: 2 - 61111

FAT CONTENTS (in sectors)
--
511-574 (64) -> EOF
575-638 (64) -> EOF
639-702 (64) -> EOF
703-766 (64) -> EOF
767-830 (64) -> EOF
831-894 (64) -> EOF
895-958 (64) -> EOF
959-1022 (64) -> EOF
1023-1086 (64) -> EOF
<snip>

FAT forensic analysis 311
In this case, the partition is a FAT16 partition with data on it. So, we are going to
first build the timeline with TSK’s fls command:

ahoog@ubuntu:/home/ahoog$ time fls -z CST6CDT -s 0 -m /mnt/sdcard -f fat16 -r
-o 129 -i raw ~/sd-emmc/viaforensics/af-book/sdcard2-113serialno/sdcard2-
113serialno.dc3dd > ~/sdcard.body

real 0m55.765s
user 0m0.820s
sys 0m12.850s

The options set have the following meaning:

� -z CST6CDTdSets time zone to CST6CDT for US Central Time
� -s 0dSets the time skew if one is known
� -m /mnt/sdcarddPrefaces the path with this value when writing out the body file
� -f fat16dSets file system to FAT16
� -rdRecursively traverses all directories to build the timeline
� -o 129dSets the offset to 129 (a sector size of 512 bytes is assumed but can be

changed with the -b option)
� -i rawdSets the image type, in this case a raw image and not another forensic

image format
� ~/sd-emmc/viaforensics/af-book/sdcard2-113serialno/sdcard2-113serial-

no.dc3dddImage file
� > ~/sdcard.bodydRedirects the command’s output to a file instead of displaying

on the screen

Often it is helpful to know how long a command takes (if nothing else, over
time you learn when it’s best to go grab that coffee warmer). So, we preface fls
with the time command, which will tell us how long the program took to run (real)
and the various system time it took (user, sys). You can view the contents of the
body file, but in a later step we will convert it to a more readable format. If you

312 CHAPTER 7 Android application and forensic analysis
.

want to verify fls-returned results, you can always determine the total lines in the
file:

ahoog@ubuntu:~$ wc -l sdcard.body
24399 sdcard.body

So, we have just over 24,000 entries. Next, we need to mount the file system

read-only and then we can run log2timeline against it. To mount the file system using
the dd image, you use the mount command and a special device called the loopback
device. The full command is as follows:

ahoog@ubuntu:~$ mkdir -p ~/mnt/sdcard
ahoog@ubuntu:~$ sudo mount -t vfat -o loop,ro,offset=66048 ~/sd-emmc/
viaforensics/af-book/sdcard2-113serialno/sdcard2-113serialno.dc3dd ~/mnt/sdcard

Again, let’s look at each of the options set. First, this command requires
administrator rights so we run with sudo. The options are then:

� -t vfat
� -o loop,ro,offset¼66068dThis tells mount to use the loopback device as we are

using a physical file instead of an actual device. The ro mounts the e-mail as read-
only. Finally, we have to tell mount where to find the partition. From the mmls
command, you recall that the offset was a sector 129. Mount does not know the
sector size, so we calculate 129� 512, which is equal to 66,048

� ~/sd-emmc/viaforensics/af-book/sdcard2-113serialno/sdcard2-113serialno
dc3dddThe dd images

� ~/mnt/sdcarddWhere to mount the image

We can validate that the file system is mounted by executing the mount command
with no options, which returns the list of all mounted file systems. We pipe this
through grep to isolate the file system we are looking for:

ahoog@ubuntu:~$ mount | grep vfat
/dev/loop0 on /home/ahoog/mnt/sdcard type vfat (ro,offset=66048)

So, we can see the vfat file system is mounted read-only using loopback device
“/dev/loop0” and located at “/home/ahoog/mnt/sdcard.” You can see the total size
with the df command:

ahoog@ubuntu:~$ df -h
Filesystem Size Used Avail Use% Mounted on
/dev/sda1 19G 18G 570M 97% /
none 366M 208K 366M 1% /dev
none 373M 256K 373M 1% /dev/shm
none 373M 100K 373M 1% /var/run
none 373M 0 373M 0% /var/lock
/dev/mtdblock0 64M 1.2M 63M 2% /home/ahoog/mnt/yaffs2
/dev/loop0 1.9G 244M 1.7G 13% /home/ahoog/mnt/sdcard

So, only 244 M of the 1.7 G available is in use. Now we are ready to use the time-
scanner program that comes with log2timeline to extract additional timeline information
from the files. We will append the command output to the same body file as fls:

FAT forensic analysis 313
ahoog@ubuntu:~$ time timescanner -d /home/ahoog/mnt/sdcard -z CST6CDT >>
sdcard.body
Loading output file: mactime
[timescanner] Recursive scan completed. Successfully extracted timestamps from
410 artifacts (either files or directories).
Run time of the script 62 seconds.

real 1m2.241s
user 0m31.810s
sys 0m13.760s

The options for timescanner are as follows:

� -d /home/ahoog/mnt/sdcarddSpecify the directory to scan for time stamp artifacts
� -z CST6CDTdAgain set the time zone to U.S. Central Time
� >> sdcard.bodydAppend the output to the existing sdcard.body. Please note the

double greater than sign (“>>”), which instructs the shell to append to the file
(and if it does not exist, creates it). If you forget and use a single “>”, then you
will overwrite the fls output.

Timescanner only extracted 410 artifacts, which is far less than the number you
would extract on a scan of an entire hard drive. However, the 410 artifacts will
certainly help build the overall timeline for the device.

Finally, we can create an easy-to-read (and easy-to-share) comma separated
values (csv) file of the timeline with TSK’s mactime command:

ahoog@ubuntu:~$ mactime -b sdcard.body -z CST6CDT -d > sdcard-timeline.csv

The following options were passed to mactime:

� -b sdcard.bodydSpecifies the body file to convert
� -z CST6CDTdTime zone
� -ddOutput of the file in csv format

This only takes a few seconds for just under 25,000 entries but yields over 73,000
lines in the csv file.

ahoog@ubuntu:~$ wc -l sdcard-timeline.csv
73739 sdcard-timeline.csv

You can now easily browse the timeline in a spreadsheet program or even import it
into a database for additional analysis. There are several interesting items to point out.

First, you will likely see many dates near January 1, 1970. This is caused by time
stamps that were set to 0 or not set at all. As Unix Epoch is based on the number of
seconds since 01/01/1970 00:00:00 UTC, then an offset would be that exact time. In
the above examples, we set the time zone to CST6CDT which, in January, is GMT
�6 hours. So, there are many artifacts with a time stamp of “Wed Dec 31 1969
18:00:00.” While we are unable to glean specific timeline data on these artifacts,
they may nonetheless contain important information.

FIGURE 7.4

Text import of sdcard-timeline.csv into OO Calc.

314 CHAPTER 7 Android application and forensic analysis
If you double-click the sdcard-timeline.csv file from your Ubuntu workstation,
Open Office’s Calc program will present a Text Import screen as shown in Fig. 7.4.
Make sure the “Separated by” is set to comma, then press OK.
The Calc program will then open and you can browse the timeline, illustrated in
Fig. 7.5.

As you can see, most of the files are deleted. However, TSK and other programs
can still recover them. One interesting event to examine is when an app was moved
to the SD card for testing purposes. The app, Angry Birds, supports running from the
SD card, which was tested at 06:17:28 on 02/15/2011, shown in Fig. 7.6.

The timeline clearly shows that a new file is created and modified at 06:17:28 in
“/mnt/sdcard/.android_secure.”

One final entry to point out is from log2timeline. As it came across a PDF, the
metadata was extracted. We can see the following:

� Mon Nov 29 2010 04:44:47
� 23,159 bytes
� File modified
� Title: (Scanned Document)
� Author: [michelle]
� Creator: [HardCopy]
� Produced by: [Lexmark X543]
� File: /mnt/sdcard/.easc/Attachment/ATT_1291219677612.pdf

mailto:Image of Figure 7.4|tif

FIGURE 7.5

Viewing timeline in OO Calc.

FIGURE 7.6

Timeline when app moved to SD card.

FAT forensic analysis 315
Timeline analysis is extremely powerful, especially if the forensic analyst
combines traditional file system time stamped artifacts from Kristinn Gudjonsson’s
log2timeline.

316 CHAPTER 7 Android application and forensic analysis
FAT Additional Analysis
There are many different approaches for further analysis of the FAT partitions. First,
the large majority of forensic software in the market supports the FAT file system,
and many examiners will have tool sets that they are comfortable with. Beyond the
forensic software, we covered several additional techniques in the first section
including:

� File system analysis
� File carving
� Strings
� Hex analysis

These techniques are similar even when the file system type is different, so we
will provide detailed coverage of them in the YAFFS2 section next. However, some
brief concepts are highlighted below.

First, the SD card clearly has a significant amount of deleted files. It is advisable
to use a forensic tool to recover the data. TSK can recover the data as well as many
other forensic software packages. In addition, file-carving techniques should be used
to recover files that are not referenced in the File Allocation Table of the partition.
Strings and hex analysis are again great ways to quickly locate data of interest.

There is one more quick technique to mention if the Ubuntu workstation is used
for file system analysis. Using the find and file commands, you can list all allocated
files by name, path, and file type. You can easily sort them on the fly or import them
into a spreadsheet or database for additional analysis. This technique only lists
allocated (undeleted) files, but is quite effective.

The command is as follows:

ahoog@ubuntu:~$ find ~/mnt/sdcard -type f -print0 | xargs -0 file
/home/ahoog/mnt/sdcard/.android_secure/com.rovio.angrybirds-1.asec:
data
/home/ahoog/mnt/sdcard/.footprints/footprints.db:
SQLite 3.x database
/home/ahoog/mnt/sdcard/download/Swype-Installer.apk:
Zip archive data, at least v2.0 to extract
/home/ahoog/mnt/sdcard/download/Swype-Installer-1.apk:
Zip archive data, at least v2.0 to extract
/home/ahoog/mnt/sdcard/download/Swype-Installer-2.apk:
Zip archive data, at least v2.0 to extract
/home/ahoog/mnt/sdcard/download/Download.apk:
Zip archive data, at least v1.0 to extract
/home/ahoog/mnt/sdcard/download/PdaNetA242.pkg:
xar archive - version 1
/home/ahoog/mnt/sdcard/download/hotwatch-powerpoint.pdf:
PDF document, version 1.5
/home/ahoog/mnt/sdcard/download/dinner.pdf:
PDF document, version 1.3
/home/ahoog/mnt/sdcard/download/dinner-1.pdf:
PDF document, version 1.3
/home/ahoog/mnt/sdcard/download/Swype-Installer-3.apk:
Zip archive data, at least v2.0 to extract
/home/ahoog/mnt/sdcard/download/subpoena.pdf:
PDF document, version 1.3

/home/ahoog/mnt/sdcard/Android/data/com.google.android.apps.genie.geniewidget.
news-content-cache/.nomedia: empty
/home/ahoog/mnt/sdcard/Android/data/com.google.android.apps.maps/cache/
cache_vts.m:data
/home/ahoog/mnt/sdcard/Android/data/com.google.android.apps.maps/cache/
cache_rgts.m:data
/home/ahoog/mnt/sdcard/Android/data/com.google.android.apps.maps/cache/
cache_rgts.0:Microsoft Document Imaging Format
/home/ahoog/mnt/sdcard/Android/data/com.google.android.apps.maps/cache/
cache_vts.0:data
/home/ahoog/mnt/sdcard/Android/data/com.google.android.apps.maps/cache/
._speech_nav_5.wav: RIFF (little-endian) data, WAVE audio,
Microsoft PCM, 16 bit, mono 16000 Hz

FAT forensic analysis 317
In total, this command found and categorized 4352 allocated files on the SD card.
Here’s what each part of the command accomplished:

� find ~/mnt/sdcarddFinds files in the directory where we mounted the SD card
image ~/mnt/sdcard

� -type fdOnly examines regular files (i.e., doesn’t list directories)
� -print0dTerminates each file name with a NULL character instead of the default

new line which causes issues when file names have spaces
� “j”dPipes the output of find to the next program
� xargsdThis program builds and executes command lines using data from

standard input (i.e., other programs’ output)
� -0dTells xargs that the data being piped is terminated by NULL character

(matches the -print0 from find)
� filedThis is the command xargs runs against each line returned by the find

command

The find and xargs commands are very powerful ways to examine, interact, or
otherwise manipulate a large set of files. By combining timeline and file system
analysis, file carving, strings, and hex analysis, an investigator is armed with
powerful tools to uncover information critical to the case.
FAT Analysts Notes
There are a few remaining notes for the FAT file systems on Android.

Apps on the SD Card
First, as mentioned in Chapter 6, as of Android 2.2, users can move supported
applications to the SD card to save space in the “/data/data” directory where user
data are stored. The app must explicitly support this capability, and typical candi-
dates for this feature are apps that use a lot of storage such as a game. To test this
feature, the popular Angry Birds game by Rovio Mobile (Rovio - Angry Birds, n.d.)
was installed on the reference HTC Incredible. The app was briefly run and then
closed. To move the app to the SD card, you select Settings from the home screen,
then Applications, and finally Manage Applications as illustrated in Fig. 7.7.

mailto:Image of Figure 7.6|tif

FIGURE 7.7

Manage applications screen.

318 CHAPTER 7 Android application and forensic analysis
As you can tell, the Angry Birds uses 18.40 MB of space on “/data/data,” which
is very precious space. So, the app developer included the necessary support to move
the .apk to the SD card. The user can then select the app (Angry birds, in this case)
and is then presented with a screen that has information and options about the app,
including “Move to SD card” as shown in Fig. 7.8.

From this screen, you can see that the app itself uses 18.39 MB while user data is
only 12.00 KB, a clear candidate for moving the .apk to the SD card. And, as
illustrated in Fig. 7.9, it’s as simple as clicking the “Move to SD card” button and
waiting for the task to complete.

This is great from the user’s perspective. But what does this mean for the forensic
examiner or security analyst? A number of steps are taken that are described next
and then highlighted in the code listing.

1. The .apk file is moved from “/data/app” (or “/data/app-private”) to the SD card in
an encrypted partition at /mnt/secure/asec (see highlighted parts of next listing)
which can only be accessed via the root directory.

2. Anewdevicemapperfile system ismounted read-onlyand theapp from“/mnt/secure/
asec” is decrypted and accessible to the system at “/mnt/asec/com.rovio.angrybirds-
1.” The system must be able to access the unencrypted .apk file to run the app.

3. The user data remains in “/data/data” (in this case “/data/data/com.rovio.angrybirds”).
4. If the SD card becomes inaccessible (whether it is removed, damaged, or simply

mounted on a host computer for file sharing), the unencrypted volume is
unmounted and no longer accessible to the system. This is why the core apps are
currently unable to run from the SD card.

mailto:Image of Figure 7.7|tif

FIGURE 7.8

Move to SD card.

FIGURE 7.9

App move to SD card complete.

FAT forensic analysis 319

320 CHAPTER 7 Android application and forensic analysis
The .apk file is encrypted on the SD card to ensure that other apps (or processes)
cannot corrupt or maliciously modify the app. However, app developers should not
rely on the encryption to prevent people from accessing the .apk file as it is simply
a matter of copying it from the unencrypted “/mnt/asec/<app-name>.” The mount
and ls commands in the following code illustrate the structure.
ahoog@ubuntu:~/sd-emmc$ adb shell mount
rootfs / rootfs ro,relatime 0 0
tmpfs /dev tmpfs rw,relatime,mode=755 0 0
devpts /dev/pts devpts rw,relatime,mode=600 0 0
proc /proc proc rw,relatime 0 0
sysfs /sys sysfs rw,relatime 0 0
none /acct cgroup rw,relatime,cpuacct 0 0
tmpfs /mnt/asec tmpfs rw,relatime,mode=755,gid=1000 0 0
none /dev/cpuctl cgroup rw,relatime,cpu 0 0
/dev/block/mtdblock3 /system yaffs2 ro,relatime 0 0
/dev/block/mmcblk0p1 /data ext3
rw,nosuid,noatime,nodiratime,errors=continue,data=writeback 0 0
/dev/block/mtdblock6 /data/data yaffs2 rw,nosuid,nodev,relatime 0 0
/dev/block/mmcblk0p2 /cache ext3
rw,nosuid,nodev,noatime,nodiratime,errors=continue,data=writeback 0 0
tmpfs /app-cache tmpfs rw,relatime,size=8192k 0 0
/dev/block/vold/179:3 /mnt/emmc vfat
rw,dirsync,nosuid,nodev,noexec,relatime,uid=1000,gid=1015,fmask=0702,
dmask=0702,allow_utime=0020,codepage=cp437,iocharset=iso8859-1,shortname=mixed,
utf8,errors=remount-ro 0 0
/dev/block/vold/179:9 /mnt/sdcard vfat
rw,dirsync,nosuid,nodev,noexec,relatime,uid=1000,gid=1015,fmask=0702,
dmask=0702,allow_utime=0020,codepage=cp437,iocharset=iso8859-1,shortname=mixed,
utf8,errors=remount-ro 0 0
/dev/block/vold/179:9 /mnt/secure/asec vfat
rw,dirsync,nosuid,nodev,noexec,relatime,uid=1000,gid=1015,fmask=0702,
dmask=0702,allow_utime=0020,codepage=cp437,iocharset=iso8859-1,shortname=mixed,
utf8,errors=remount-ro 0 0
tmpfs /mnt/sdcard/.android_secure tmpfs ro,relatime,size=0k,mode=000 0 0
/dev/block/dm-0 /mnt/asec/com.rovio.angrybirds-1 vfat
ro,dirsync,nosuid,nodev,noexec,relatime,uid=1000,fmask=0222,dmask=0222,
codepage=cp437,iocharset=iso8859-1,shortname=mixed,utf8,errors=remount-ro 0 0

ahoog@ubuntu:~/sd-emmc$ adb shell ls -l /mnt
d---rwxr-x system sdcard_rw 1969-12-31 18:00 emmc
drwxr-xr-x root system 2011-02-15 05:17 asec
drwx------ root root 2011-02-14 07:59 secure
d---rwxr-x system sdcard_rw 1969-12-31 18:00 sdcard

ahoog@ubuntu:~/sd-emmc$ adb shell ls -l /mnt/asec
dr-xr-xr-x system root 1969-12-31 18:00 com.rovio.angrybirds-1

ahoog@ubuntu:~/sd-emmc$ adb shell ls -l /mnt/asec/com.rovio.angrybirds-1
-r-xr-xr-x system root 17235931 2011-02-15 05:17 pkg.apk

ls -l /mnt/secure/asec
----rwxr-x system sdcard_rw 19192832 2011-02-15 05:17 com.rovio.angrybirds-1.
asec

ls -l /data/data/com.rovio.angrybirds
drwxrwx--x app_106 app_106 2011-02-15 05:14 cache
drwxrwx--x app_106 app_106 2011-02-15 05:15 files
drwxr-xr-x system system 2011-02-15 05:14 lib

YAFFS2 forensic analysis 321
If you need the .apk for analysis (for example, investigating malware), then it is
critical to copy the “/mnt/asec” subdirectories during the acquisition process while
the SD card is inserted and active on the Android device (that is, not mounted on the
forensic workstation for physical acquisition).

nomedia
One other common item found on the SD card and eMMC partitions is an empty file
named .nomedia that will instruct Android’smedia scanner to skip the directory, so that
it does not include any of themedia files in apps such asGallery orMusic. If a directory
does not contain this file, then it is quite possible that images which were previously
deleted might have thumbnails which can be found in the media scanner’s directory.
This will be covered further in the section on Android App Analysis and Reference.
YAFFS2 FORENSIC ANALYSIS
As discussed in Chapter 4, YAFFS2 is an open source, log-structured file system
developed specifically for NAND flash, including support for wear-leveling and
error-correcting code algorithms. This is great news not only for the phone owners,
as YAFFS2 works very well on Android, but also for forensic analysts since
a significant amount of old (deleted or updated) data is recoverable. But the good
news stops there. As YAFFS2 is a relatively new file system, at this time no
commercial forensic software solution supports it.

However, all is not lost. Using the power of Linux, the openness of YAFFS2, an
effective acquisition strategy, and the techniques already discussed including file
system analysis, file carving, strings, and hex analysis, a forensic examiner can
extract significant amounts of relevant data from the file system.

As we dive into the analysis of YAFFS2, it’s quite helpful to remember how it is
structured. One important concept to recall is how the data are structured physically
on the NAND flash via MTD. Generally, YAFFS2 andMTD organize the NAND flash
into 128 KB blocks, which consist of 2048 KB chunks of data followed by 64 bytes of
Out-Of-Band (OOB) data (making the total size on the NAND flash 132 KB), which is
used to store disk and some file system metadata, as shown in Fig. 7.10.

Of course, it is not required that the Android device structure the NAND flash
and MTD this way and the best way to verify is to examine the contents of the
“/proc/mtd” file, which contains configuration information. Here is the file again
from the reference HTC Incredible.
ahoog@ubuntu:~$ adb shell cat /proc/mtd
dev: size erasesize name
mtd0: 000a0000 00020000 "misc"
mtd1: 00480000 00020000 "recovery"
mtd2: 00300000 00020000 "boot"
mtd3: 0f800000 00020000 "system"
mtd4: 000a0000 00020000 "local"
mtd5: 02800000 00020000 "cache"
mtd6: 09500000 00020000 "datadata"

mailto:Image of Figure 7.9|tif

FIGURE 7.10

Block (128 KB¼ 64� 2k chunksþOOB).

322 CHAPTER 7 Android application and forensic analysis
While we need the OOB data if we want to attempt to mount the YAFFS2
nanddump on the Ubuntu workstation, the 64-byte OOB data will definitely cause
problems for most forensic techniques, notably file carving. To alleviate this problem,
you can simply remove the OOB with a simple program. The program is written in
Python and can be easily adapted to different block and OOB configurations.

First, let’s open a newfile for editingwith sudo permissions, so thatwe can place the
program in “/usr/local/bin”which is the best place to save custom scripts and programs.

ahoog@ubuntu:~$ sudo nano -w /usr/local/bin/removeOOB.py

Next, copy the following contents into the editor:
#!/usr/bin/env python

Author: Andrew Hoog [ahoog at viaforensics dot com]
Name: removeOOB.py
#

import subprocess, os, csv, getopt, sys

def usage():
 print """
Written by Andrew Hoog, remove the recurring 64 bytes of OOB data from
nanddump file with 2k chunks. Resulting dd file in saved in current directory

Usage: removeOOB.py [-h] -o nanddump file

 -h|--help: prints this help function and exits
 -o|--oobFile: name of nanddump file to parse
 """

def main():
 try:
 opts, args = getopt.getopt(sys.argv[1:], "ho:", ["help", "oobFile="])
 except getopt.GetoptError, err:
 # print help information and exit:
 print str(err) # will print something like "option -a not recognized"
 usage()
 sys.exit(2)

mailto:Image of Figure 7.9|tif
mailto:Image of Figure 7.10|tif

 oobFile = None
 for o, a in opts:
 if o in ("-o", "--oobFile"):
 oobFile = a
 elif o in ("-h", "--help"):
 usage()
 sys.exit()
 else:
 assert False, "unhandled option"

 #open OOB file binary, read-only
 print "opening %s readonly" % oobFile
 try:
 yaffs2File = open(oobFile, 'rb')
 except:
 print "Unable to open file source file %s" % oobFile
 usage()
 sys.exit()

 #open .dd file binary, writable
 print "opening %s.dd r/w" % oobFile
 try:
 ddFile = open(oobFile + '.dd', 'wb')
 except:
 print "Unable to file %s" % oobFile + '.dd for output'
 usage()
 sys.exit()

 chunks=0

 data = yaffs2File.read(2048)
 oob = yaffs2File.read(64)

 print "Processing..."
 while data != "":
 ddFile.write(data)
 chunks += 1
 data = yaffs2File.read(2048)
 oob = yaffs2File.read(64)

 print "Complete. Read %d chunks" % chunks
 yaffs2File.close()
 ddFile.close()

if __name__ == "__main__":
 main()

YAFFS2 forensic analysis 323
Then save with Ctrl-O and exit with Ctrl-X. Next, you have to make the Python
file executable, so type in the following:

ahoog@ubuntu:~$ sudo chmod 755 /usr/local/bin/removeOOB.py

And finally we can run the program against a nanddump file:

ahoog@ubuntu:~$ removeOOB.py -o htcinc-mtd6-datadata.nanddump
opening htcinc-mtd6-datadata.nanddump readonly
opening htcinc-mtd6-datadata.nanddump.dd r/w
Processing...
Complete. Read 76288 chunks

mailto:Image of Figure 7.10|tif
mailto:Image of Figure 7.10|tif
mailto:Image of Figure 7.10|tif

324 CHAPTER 7 Android application and forensic analysis
Let’s make sure the removeOOB.py results are what we expect. According to
“/proc/mtd,” the “/dev/mtd/mtd6” partition has a size of 0x9500000 bytes and an
erase size (block size) of 0x20000. The overall size in bytes is 156,237,824 (simply
convert the size from hex to decimal) or roughly 154 MB. Similarly, the erase size is
2048 bytes, so if we divide 156,237,824 by 2048, we get 76,288 blocks in the data.
This corresponds to the results from removeOOB.py. But there is one more thing we
can check. As we know the nanddump has 64 bytes of OOB data after each 2k
chunk, the total nanddump size on disk should be (76,288� 64)þ 156,237,824. The
total should then be 161,120,256, which would represent the data chunks and their
corresponding OOB. We can see what the size on disk is with a simple “ls el”:

ahoog@ubuntu:~$ ls -ltr htcinc-mtd6-datadata*
-rw-r--r-- 1 ahoog ahoog 161120256 2011-02-13 19:34 htcinc-mtd6-datadata.
nanddump
-rw-r--r-- 1 ahoog ahoog 156237824 2011-02-13 19:36 htcinc-mtd6-datadata.
nanddump.dd

As you can see, both the full nanddump and the .dd image (the nanddump with
the OOB removed) correspond to the expected sizes.

As we now have the YAFFS2 nanddump file, dd image, and the logical files
(either from tar, adb pull, or by mounting the YAFFS2 partition), we are ready to
perform various techniques against the data.
YAFFS2 Timeline Analysis
Ideally, this section would detail the use of already-built forensic software that
would build YAFFS2 timelines. Unfortunately, YAFFS2 is not yet supported by any
forensic timeline tools, so examiners in need of this information must take a more
difficult path.

Over the next few years, the forensics industry needs to perform far more
research into YAFFS2. However, with Android moving towards EXT4, it is possible
that most of the YAFFS2 research will not occur. Hopefully, this will not be the case.

Here, we will present some research that is intended to provide a basic frame-
work to begin YAFFS2 research. This research was done on the simulated NAND
flash initially covered in Chapter 4. While this approach provides the researcher with
the control and privileges needed for effective research, it does not necessarily
mimic production environments.

As discussed in Chapter 4, both YAFFS2 and MTD are involved in writing
data to the NAND flash. The YAFFS2 module is responsible for all aspects of
the file system. However, the writing of the data to the NAND flash is managed
by MTD. Unfortunately, this adds considerable complexity to the analysis as
MTD can accept the data from YAFFS2, which needs to be written to the
NAND flash and then has the autonomy to write not only the YAFFS2 data but
additional MTD data in the manner it sees fit. Some research into the data as it
has persisted must take into account not only the YAFFS2 code but the MTD
code. Additionally, there can be subtle differences in the YAFFS2 and MTD

mailto:Image of Figure 7.10|tif

YAFFS2 forensic analysis 325
modules used on different Android devices, which adds yet another layer of
complexity.

This does not mean understanding the YAFFS2 data found in a nanddump is
impossible. To get started, we are going to setup a 64 MB simulated NAND flash
device on our Ubuntu workstation.

sudo modprobe mtd
sudo modprobe mtdblock
sudo insmod ~/yaffs2/yaffs2.ko
sudo modprobe nandsim first_id_byte=0x20 second_id_byte=0xa2 third_id_byte=0x00
fourth_id_byte=0x15

You can verify the nandsim is properly setup:

ahoog@ubuntu:~$ cat /proc/mtd
dev: size erasesize name
mtd0: 04000000 00020000 "NAND simulator partition 0"

Before we mount the YAFFS2 file system, we are going to enable various
debugging features built into YAFFS2. There are many debugging options that
YAFFS2 supports (YAFFS Debugging, n.d.), but we are only going to enable three of
them. To do this, we first need to have full root permissions and then we will echo the
debugging flags into “/proc/yaffs”:

ahoog@ubuntu:~$ sudo -s
root@ubuntu:~# echo =none+os+write+mtd > /proc/yaffs

The value after echo command first removes any exiting debugging (none) and
then enables the os, write, and mtd debugging options. You can view the results of
the debugging in the system log located at “/var/log/syslog.” Ideally, open a second
terminal window or ssh session and use the tail command to continuously output the
tail end of the syslog:

ahoog@ubuntu:~$ tail -f /var/log/syslog
Feb 17 18:29:34 ubuntu kernel: [4474.970406] new trace = 0xF0004082

Next, we create the mount point and mount a YAFFS2 file system:

mkdir -p ~/mnt/yaffs2
sudo mount -t yaffs2 /dev/mtdblock0 ~/mnt/yaffs2

At this point, the examiner should create a series of test cases, so that the
expected controlled data can be examined on the simulated NAND flash to ulti-
mately determine the structure. For this test, the following steps were taken:

1. Create a directory called test in “~/mnt/yaffs2” (mkdir ~/mnt/yaffs2/test)
2. Create “~/mnt/yaffs2/test/file1.txt” with the contents “viaforensics” (nano -w

~/mnt/yaffs2/test/file1.txt)
3. Update “~/mnt/yaffs2/test” and append “updated” to file (echo “updated” >>

~/mnt/yaffs2/test/file1.txt)
4. Read “~/mnt/yaffs2/test/file1.txt” (cat ~/mnt/yaffs2/test/file1.txt)

mailto:Image of Figure 7.10|tif
mailto:Image of Figure 7.10|tif
mailto:Image of Figure 7.10|tif
mailto:Image of Figure 7.10|tif
mailto:Image of Figure 7.10|tif

mkdir ~/mnt/yafs2/t

Feb 17 15:53:33 ubu
Feb 17 15:53:33 ubu
Feb 17 15:53:33 ubu
Feb 17 15:53:33 ubu
Feb 17 15:53:33 ubu
Feb 17 15:53:33 ubu
Feb 17 15:53:33 ubu
Feb 17 15:53:33 ubu
Feb 17 15:53:33 ubu
Feb 17 15:53:33 ubu
Feb 17 15:53:33 ubu
Feb 17 15:53:33 ubu
Feb 17 15:53:33 ubu
Feb 17 15:53:33 ubu
Feb 17 15:53:33 ubu
Feb 17 15:53:33 ubu
Feb 17 15:53:33 ubu
Feb 17 15:53:33 ubu
Feb 17 15:53:33 ubu
Feb 17 15:53:33 ubu
Feb 17 15:53:33 ubu
Feb 17 15:53:33 ubu
Feb 17 15:53:33 ubu
Feb 17 15:53:33 ubu
Feb 17 15:53:33 ubu
Feb 17 15:53:33 ubu
Feb 17 15:53:33 ubu
Feb 17 15:53:33 ubu
Feb 17 15:53:33 ubu
Feb 17 15:53:33 ubu
Feb 17 15:53:37 ubu
Feb 17 15:53:37 ubu
Feb 17 15:53:37 ubu
Feb 17 15:53:37 ubu
Feb 17 15:53:37 ubu

chmod -R 777 ~/mnt/

Feb 17 15:59:00 ubu
Feb 17 15:59:00 ubu
Feb 17 15:59:00 ubu
Feb 17 15:59:00 ubu
Feb 17 15:59:00 ubu
Feb 17 15:59:00 ubu
Feb 17 15:59:00 ubu
Feb 17 15:59:00 ubu
Feb 17 15:59:00 ubu
Feb 17 15:59:00 ubu
Feb 17 15:59:00 ubu
Feb 17 15:59:00 ubu

326 CHAPTER 7 Android application and forensic analysis
5. Change the user and group owner for the directory and file (chown -R pulse.rtkit
~/mnt/yaffs2/test)

6. Change the permission of the directory and file (chmod -R 777 ~/mnt/yaffs2/
test)

As these tests are being executed, not only is the file system being updated but the
debugging information is written to the syslog. The debugging is very verbose (and
we only enabled three of the debugging options), so only two examples are provided
here, which correspond to the following:

1. Creating the “~/mnt/yafs2/test” directory
2. Change the permission of file1.txt (chmod -R 777 ~/mnt/yaffs2/test)
est

ntu kernel: [26704.104072] yaffs_lookup for 1:test
ntu kernel: [26704.104076] yaffs_lookup not found
ntu kernel: [26704.104078] yaffs_mkdir
ntu kernel: [26704.104080] yaffs_mknod: parent object 1 type 3
ntu kernel: [26704.104082] yaffs_mknod: making oject for test, mode 41ed dev 0
ntu kernel: [26704.104083] yaffs_mknod: making directory
ntu kernel: [26704.104191] yaffs_MarkSuperBlockDirty() sb = ffff88001bf74800
ntu kernel: [26704.104194] nandmtd2_ReadChunkWithTagsFromNAND chunk 0 data ffff88000d30c000 tags ffff880019f479f8
ntu kernel: [26704.104233] packed tags obj -1 chunk -1 byte -1 seq -1
ntu kernel: [26704.104235] ext.tags eccres 0 blkbad 0 chused 0 obj 0 chunk0 byte 0 del 0 ser 0 seq 0
ntu kernel: [26704.104237] packed tags obj -1 chunk -1 byte -1 seq -1
ntu kernel: [26704.104239] ext.tags eccres 1 blkbad 0 chused 0 obj 0 chunk0 byte 0 del 0 ser 0 seq 0
ntu kernel: [26704.104243] Writing chunk 0 tags 257 0
ntu kernel: [26704.104244] nandmtd2_WriteChunkWithTagsToNAND chunk 0 data ffff88000d30c800 tags ffff880019f47ba8
ntu kernel: [26704.104247] packed tags obj 805306625 chunk -2147483647 byte 0 seq 4097
ntu kernel: [26704.104249] ext.tags eccres 0 blkbad 0 chused 1 obj 257 chunk0 byte 0 del 0 ser 1 seq 4097
ntu kernel: [26704.104466] nandmtd2_ReadChunkWithTagsFromNAND chunk 0 data ffff88000d30c000 tags ffff880019f47aa8
ntu kernel: [26704.104471] packed tags obj 805306625 chunk -2147483647 byte 0 seq 4097
ntu kernel: [26704.104474] ext.tags eccres 0 blkbad 0 chused 1 obj 257 chunk0 byte 0 del 0 ser 0 seq 4097
ntu kernel: [26704.104476] packed tags obj 805306625 chunk -2147483647 byte 0 seq 4097
ntu kernel: [26704.104478] ext.tags eccres 1 blkbad 0 chused 1 obj 257 chunk0 byte 0 del 0 ser 0 seq 4097
ntu kernel: [26704.104487] yaffs_get_inode for object 257
ntu kernel: [26704.104488] yaffs_iget for 257
ntu kernel: [26704.104492] yaffs_FillInode mode 41ed uid 0 gid 0 size 2048 count 1
ntu kernel: [26704.104494] yaffs_mknod created object 257 count = 1
ntu kernel: [26704.330210] yaffs_MarkSuperBlockDirty() sb = ffff88001bf74800
ntu kernel: [26704.330214] Writing chunk 1 tags 1 0
ntu kernel: [26704.330217] nandmtd2_WriteChunkWithTagsToNAND chunk 1 data ffff88000d30c800 tags ffff880011c3dd00
ntu kernel: [26704.330219] packed tags obj 805306369 chunk -2147483648 byte 0 seq 4097
ntu kernel: [26704.330221] ext.tags eccres 0 blkbad 0 chused 1 obj 1 chunk0 byte 0 del 0 ser 1 seq 4097
ntu kernel: [26708.060113] yaffs_write_super
ntu kernel: [26708.060118] yaffs_do_sync_fs: dirty no checkpoint
ntu kernel: [26708.060121] flushing obj 257
ntu kernel: [26708.060122] flushing obj 2
ntu kernel: [26708.060123] flushing obj 1

yaffs2/test

ntu kernel: [27030.833325] yaffs_setattr of object 257
ntu kernel: [27030.833331] inode_setattr called
ntu kernel: [27030.833338] nandmtd2_ReadChunkWithTagsFromNAND chunk 11 data ffff88000d30c800 tags ffff88002e2efc38
ntu kernel: [27030.833356] packed tags obj 805306625 chunk -2147483647 byte 0 seq 4097
ntu kernel: [27030.833358] ext.tags eccres 0 blkbad 0 chused 1 obj 257 chunk0 byte 0 del 0 ser 0 seq 4097
ntu kernel: [27030.833360] packed tags obj 805306625 chunk -2147483647 byte 0 seq 4097
ntu kernel: [27030.833362] ext.tags eccres 1 blkbad 0 chused 1 obj 257 chunk0 byte 0 del 0 ser 0 seq 4097
ntu kernel: [27030.833366] yaffs_MarkSuperBlockDirty() sb = ffff88001bf74800
ntu kernel: [27030.833368] Writing chunk 12 tags 257 0
ntu kernel: [27030.833369] nandmtd2_WriteChunkWithTagsToNAND chunk 12 data ffff88000d30c800 tags ffff88002e2efc88
ntu kernel: [27030.833372] packed tags obj 805306625 chunk -2147483647 byte 0 seq 4097
ntu kernel: [27030.833378] ext.tags eccres 0 blkbad 0 chused 1 obj 257 chunk0 byte 0 del 0 ser 4 seq 4097

mailto:Image of Figure 7.10|tif

Feb 17 15:59:00 ubuntu kernel: [27030.833390] yaffs_setattr done returning 0
Feb 17 15:59:00 ubuntu kernel: [27030.833485] yaffs_readdir: starting at 0
Feb 17 15:59:00 ubuntu kernel: [27030.833486] yaffs_readdir: entry . ino 257
Feb 17 15:59:00 ubuntu kernel: [27030.833488] yaffs_readdir: entry .. ino 1
Feb 17 15:59:00 ubuntu kernel: [27030.833490] yaffs_readdir: file1.txt inode 258
Feb 17 15:59:00 ubuntu kernel: [27030.833493] yaffs_readdir: starting at 3
Feb 17 15:59:00 ubuntu kernel: [27030.833500] yaffs_setattr of object 258
Feb 17 15:59:00 ubuntu kernel: [27030.833501] inode_setattr called
Feb 17 15:59:00 ubuntu kernel: [27030.833504] nandmtd2_ReadChunkWithTagsFromNAND chunk 10 data ffff88000d30c800 tags ffff88002e2efc38
Feb 17 15:59:00 ubuntu kernel: [27030.833510] packed tags obj 268435714 chunk -2147483391 byte 21 seq 4097
Feb 17 15:59:00 ubuntu kernel: [27030.833512] ext.tags eccres 0 blkbad 0 chused 1 obj 258 chunk0 byte 0 del 0 ser 0 seq 4097
Feb 17 15:59:00 ubuntu kernel: [27030.833514] packed tags obj 268435714 chunk -2147483391 byte 21 seq 4097
Feb 17 15:59:00 ubuntu kernel: [27030.833517] ext.tags eccres 1 blkbad 0 chused 1 obj 258 chunk0 byte 0 del 0 ser 0 seq 4097
Feb 17 15:59:00 ubuntu kernel: [27030.833519] yaffs_MarkSuperBlockDirty() sb = ffff88001bf74800
Feb 17 15:59:00 ubuntu kernel: [27030.833520] Writing chunk 13 tags 258 0
Feb 17 15:59:00 ubuntu kernel: [27030.833522] nandmtd2_WriteChunkWithTagsToNAND chunk 13 data ffff88000d30c800 tags ffff88002e2efc88
Feb 17 15:59:00 ubuntu kernel: [27030.833524] packed tags obj 268435714 chunk -2147483391 byte 21 seq 4097
Feb 17 15:59:00 ubuntu kernel: [27030.833526] ext.tags eccres 0 blkbad 0 chused 1 obj 258 chunk0 byte 0 del 0 ser 7 seq 4097
Feb 17 15:59:00 ubuntu kernel: [27030.833533] yaffs_setattr done returning 0
Feb 17 15:59:01 ubuntu kernel: [27032.060195] yaffs_write_super
Feb 17 15:59:01 ubuntu kernel: [27032.060205] yaffs_do_sync_fs: dirty no checkpoint
Feb 17 15:59:01 ubuntu kernel: [27032.060208] flushing obj 258
Feb 17 15:59:01 ubuntu kernel: [27032.060209] flushing obj 257
Feb 17 15:59:01 ubuntu kernel: [27032.060210] flushing obj 2
Feb 17 15:59:01 ubuntu kernel: [27032.060212] flushing obj 1

YAFFS2 forensic analysis 327
The debugging provides valuable information including object id, sequence
number, chunk id, and the detailed process YAFFS2 follows to create the file. If you
enable additional debugging you will have even more data to correlate and use in
your understanding of YAFFS2.

Before we examine the actual nanddump, there is one other helpful command
worth pointing out. The stat command will provide detailed information about
a file, directory, or other file system objects. For example, we can run stat against
“~/mnt/yaffs2/test” and “~/mnt/yaffs2/test/file1.txt” and use the information in
our research:

root@ubuntu:~/mnt/yaffs2# stat test
 File: `test'
 Size: 2048 Blocks: 4 IO Block: 4096 directory
Device: 1f00h/7936d Inode: 257 Links: 1
Access: (0777/drwxrwxrwx) Uid: (109/ pulse) Gid: (117/ rtkit)
Access: 2011-02-17 15:53:33.000000000 -0600
Modify: 2011-02-17 15:55:02.000000000 -0600
Change: 2011-02-17 15:59:00.000000000 -0600

root@ubuntu:~/mnt/yaffs2# stat test/file1.txt
 File: `test/file1.txt'
 Size: 21 Blocks: 1 IO Block: 4096 regular file
Device: 1f00h/7936d Inode: 258 Links: 1
Access: (0777/-rwxrwxrwx) Uid: (109/ pulse) Gid: (117/ rtkit)
Access: 2011-02-17 15:55:02.000000000 -0600
Modify: 2011-02-17 15:56:13.000000000 -0600
Change: 2011-02-17 15:59:00.000000000 -0600

We now have the Modified, Access, and Change properties of the file and

directory and, combined with the actions we took to create the data, we have enough
information to start our research.

It’s time to look at the NAND flash, which requires root access. The following
command will skip the rows of the NAND flash, which are all 0xFF and 0x00
making it easier to see trends. Also, only a small portion of the NAND flash is
displayed here in hex for space reasons:

mailto:Image of Figure 7.10|tif
mailto:Image of Figure 7.10|tif

328 CHAPTER 7 Android application and forensic analysis
nanddump -c /dev/mtd0ro | grep -v "00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00" |
grep -v "ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff" | less
0x00000000: 30 00 00 00 10 00 00 00 ff ff 47 56 37 47 00 00 |..........test..|
0x00000100: 00 00 00 00 00 00 00 00 00 00 ff ff de 14 00 00 |.............A..|
0x00000110: 00 00 00 00 00 00 00 00 dd 89 d5 d4 dd 89 d5 d4 |..........]M..]M|
0x00000120: dd 89 d5 d4 ff ff ff ff ff ff ff ff ff ff ff ff |..]M............|
0x000001c0: ff ff ff ff ff ff ff ff ff ff ff ff 00 00 00 00 |................|
0x000001e0: ff ff ff ff ff ff ff ff 00 00 00 00 ff ff ff ff |................|
0x000001f0: ff ff ff ff ff ff ff ff 00 00 00 00 00 00 00 00 |................|
 OOB Data: ff ff 10 01 00 00 10 10 00 03 10 00 00 08 00 00 |.........0......|
 OOB Data: 00 00 c0 a7 4f 91 30 00 00 00 30 00 00 00 ff ff |...z............|
 OOB Data: ff ff ff ff ff ff ff ff ff f3 f0 ff 0f 3c ff ff |.........?......|
 OOB Data: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff |................|
<snip>
0x00006800: 10 00 00 00 10 10 00 00 ff ff 66 96 c6 56 13 e2 |..........file1.|
0x00006810: 47 87 47 00 00 00 00 00 00 00 00 00 00 00 00 00 |txt.............|
0x00006900: 00 00 00 00 00 00 00 00 00 00 ff ff ff 18 00 00 |................|
0x00006910: d6 00 00 00 57 00 00 00 63 99 d5 d4 d7 99 d5 d4 |m...u...6.]M}.]M|
0x00006920: 42 a9 d5 d4 51 00 00 00 ff ff ff ff ff ff ff ff |$.]M............|
0x000069c0: ff ff ff ff ff ff ff ff ff ff ff ff 00 00 00 00 |................|
0x000069e0: ff ff ff ff ff ff ff ff 00 00 00 00 ff ff ff ff |................|
0x000069f0: ff ff ff ff ff ff ff ff 00 00 00 00 00 00 00 00 |................|
 OOB Data: ff ff 10 01 00 00 20 10 00 01 10 10 00 08 51 00 |................|
 OOB Data: 00 00 51 af e2 e2 10 00 00 00 ef ff ff ff ff ff |................|
 OOB Data: ff ff ff ff ff ff ff ff ff 00 3c ff 3c ff ff ff |................|
 OOB Data: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff |................|

The portion of the NAND flash included covers the following:
1. Create “~/mnt/yaffs2/test” directory
2. Permissions change on file1.txt (chmod -R 777 ~/mnt/yaffs2/test)

The data displayed are part of YAFFS2 ObjectHeaders and contain the metadata
for the file system. The names of the files are clearly visible as are the 64-byte OOB
areas. One key characteristic about this data is that the integers which represent Unix
Epoch time stamps are in little-endian order, which means that you must read the
data from right to left.

� Number as written to NAND flash: 63 99 d5 d4 (0x6399d5d4)
� Converted from little endian to big endian: 4d 5d 99 36 (0x4d5d9936, which is

the hex read from right to left)
� Converting 0x4d5d9936 (hex) to base 10 is 1297979702
� Unix time stamp 1297979702 in human date/time format is Thu Feb 17 15:55:02

CST 2011 (date -d @1297979702)

Using this information, we can isolate a number of important artifacts in the
nanddump as shown in Table 7.3.

Quite satisfyingly, the data from the debug logs, stat command, and the nand-
dump of the simulated NAND flash device all correspond. With additional analysis,
it would be quite possible to create the MAC times for each file and directory on the
NAND flash, which would provide obvious benefit to an examiner. It is also possible
to gather full metadata information from ObjectHeaders still found on the NAND
flash anddprovided garbage collection did not occur on the blockdthe full content
of the time at each point in time.

mailto:Image of Figure 7.10|tif

Table 7.3 Artifacts from YAFFS2 Nanddump

Offset Hex Decimal Converted Description

0x00000118 - 11B dd 89 d5 d4 1297979613 Thu Feb 17 15:53:33 CST
2011

This is the atime (accessed time) for the
directory created, which is the same as the
modified and changed time as it was just
created. This corresponds with the date/
time from debugging statements

0x0000011C - 11F dd 89 d5 d4 1297979613 Thu Feb 17 15:53:33 CST
2011

This is the mtime (modified time) of the
directory, which is the same as the atime as
it was just created

0x00000120 - 123 dd 89 d5 d4 1297979613 Thu Feb 17 15:53:33 CST
2011

This is the ctime (metadata changed time)
of the directory, which is the same as the
atime as it was just created

Bytes 3–6 in OOB 10 01 00 00 4097 N/A Sequence number for the block

Bytes 7–10 in OOB 10 10 00 03 805306625 N/A Object ID for directory test, consistent with
debugging data

0x00006918 - 691B 63 99 d5 d4 1297979702 Thu Feb 17 15:55:02 CST
2011

File atime, not updated as file was created
despite file being accessed

0x0000691C - 691F d7 99 d5 d4 1297979773 Thu Feb 17 15:56:13 CST
2011

File mtime, consistent with update of file
contents

0x00006920 - 6923 42 a9 d5 d4 1297979940 Thu Feb 17 15:59:00 CST
2011

File ctime, consistent with the permission
change detailed in debug logs

Bytes 3–6 in OOB 10 01 00 00 4097 N/A Sequence number for the block, same as
previous as all data fit in 128 KB block and
thus, a new sequence number was not
allocated

Bytes 7–10 in OOB 20 10 00 01 268435714 N/A Object ID for file1.txt, consistent with
debugging data

Y
A
F
F
S
2
fo
re
n
sic

a
n
a
lysis

3
2
9

330 CHAPTER 7 Android application and forensic analysis
It is worth pointing out that in the very limited testing and analysis demonstrated
here, it appears the atime (accessed time) for the file is not updated every time the file
is accessed. This is not really surprising as it would mean that any time a program
accesses the file, a new ObjectHeader would have to be written to NAND flash. This
would result in a far greater number of writes to the NAND flash and would not only
use precious battery power, but would also wear out the NAND flash with metadata
updates most users do not really care about. This practice is also not terribly unusual
as Microsoft, by default, disabled atime update in Microsoft Windows Vista and
Windows 7.

To be sure, this analysis is not trivial. It can provide valuable information and is
a basis for forensic research on the YAFFS2 file system.

YAFFS2 File System Analysis
Hex analysis of the YAFFS2 file system is quite time consuming, so let’s move on to
techniques for analyzing the allocated files. Unfortunately, there are again chal-
lenges, as it can be quite difficult to mount a YAFFS2 nanddump after it is extracted
from an Android device.

For this reason, as highlighted in Chapter 6, if you have root access on an
Android device, it is best to not only acquire the appropriate YAFFS2 nanddump
files, but to also logically copy important directories from the systems using adb
pull, tar, or other method. That way, if you are unable to mount the YAFFS2
nanddump, you still have a logical copy of the files. The nanddump can then be used
for timeline creation, other hex analysis, and file carving.

However, it is possible to mount some YAFFS2 nanddumps in Linux and, over
time, expect more nanddump files to successfully mount. For this section though, we
will focus on a nanddump from a Motorola Droid as they can be successfully
mounted in Linux with nandsim and the YAFFS2 kernel module.

First, we need to load the appropriate kernel modules and create a 1 GB nandsim
device.

sudo modprobe mtd
sudo modprobe mtdblock
sudo insmod ~/yaffs2/yaffs2.ko
sudo modprobe nandsim first_id_byte=0xec second_id_byte=0xd3 third_id_byte=0x51
fourth_id_byte=0x95

We now have a 1 GB nandsim device that is capable of housing the Droid’s
“/data” partition. The next step is to use nandwrite to copy both the data and OOB to
the simulated NAND flash.

ahoog@ubuntu:~$ sudo nandwrite --autoplace --oob /dev/mtd0 droid_userdata.
nanddump
Writing data to block 0 at offset 0x0
Writing data to block 1 at offset 0x20000
Writing data to block 2 at offset 0x40000
Writing data to block 3 at offset 0x60000
Writing data to block 4 at offset 0x80000
Writing data to block 5 at offset 0xa0000
<snip>

mailto:Image of Figure 7.10|tif
mailto:Image of Figure 7.10|tif

YAFFS2 forensic analysis 331
The parameters instruct nandwrite to do the following:

� sudo nandwritedNandwrite requires root permission
� --autoplacedUse auto oob layout
� --oobdImage contains oob data
� /dev/mtd0dThe mtd device to write the nanddump to
� droid_userdata.nanddumpdThe name of the nanddump file

If everything went as expected, we should now be able to mount the file system
with the following commands:

ahoog@ubuntu:~$ mkdir -p ~/mnt/yaffs2
ahoog@ubuntu:~$ sudo mount -t yaffs2 /dev/mtdblock0 ~/mnt/yaffs2

There are two primary problems you can encounter during this process. First,
YAFFS2 and MTD may not successfully mount the file system and will display this
message:

ahoog@ubuntu:~$ sudo mount -t yaffs2 /dev/mtdblock0 ~/mnt/yaffs2
mount: wrong fs type, bad option, bad superblock on /dev/mtdblock0,
 missing codepage or helper program, or other error
 In some cases useful info is found in syslog - try
 dmesg | tail or so

There can be many causes for this such as:

� Differences between device’s YAFFS2 and MTD implementation and your
workstation

� Corrupt or invalid nanddump
� File system issues

The secondmost common issue is that the file systemmounts, but there are no files:

ahoog@ubuntu:~/mnt/yaffs2$ ls
lost+found

This is most likely due to differences between the device’s YAFFS2 and MTD
implementation and your workstation, and again can be difficult to debug. There are
a few things you can try to resolve the issues. First, if you have a version of mtu-utils
greater than 20090606-1, try installing the older version. Here’s how to check your
current version and optionally install:

ahoog@ubuntu:~$ dpkg -l | grep mtd-utils
ii mtd-utils 20100706-1
Memory Technology Device Utilities

ahoog@ubuntu:~$ sudo apt-get remove mtd-utils
ahoog@ubuntu:~$ wget http://mirror.pnl.gov/ubuntu//pool/universe/m/mtd-
utils/mtd-utils_20090606-1ubuntu0.10.04.1_amd64.deb
ahoog@ubuntu:~$ sudo dpkg -i mtd-utils_20090606-1ubuntu0.10.04.1_amd64.deb

ahoog@ubuntu:~$ dpkg -l | grep mtd-utils
ii mtd-utils 20090606-1ubuntu0.10.04.1
Memory Technology Device Utilities

mailto:Image of Figure 7.10|tif
mailto:Image of Figure 7.10|tif
mailto:Image of Figure 7.10|tif
mailto:Image of Figure 7.10|tif

332 CHAPTER 7 Android application and forensic analysis
Now that we downgraded the version of MTD, you could try the steps to mount
a YAFFS2 nanddump again.

The other potential option is that your version of YAFFS2 is not consistent
enough with the version used on the Android device. In order to get different
versions of YAFFS2, you will need to use the source control system of either the
YAFFS2 or the Android Open Source Project. You would then compile that
source code, remove the existing YAFFS2 kernel module, insert the new one, and try
again.

If these steps work, here is what you will see:

ahoog@ubuntu:~$ ls -l ~/mnt/yaffs2/
total 25
drwxrwx--x 1 ahoog ahoog 2048 2010-10-11 15:21 app
drwxrwx--x 1 ahoog ahoog 2048 2010-10-07 13:53 app-private
drwx------ 1 ahoog ahoog 2048 2010-10-11 20:16 backup
-rw-rw-rw- 1 root root 8 2010-10-11 20:18 cc_data
drwxrwx--x 1 ahoog ahoog 2048 2010-10-11 15:21 dalvik-cache
drwxrwx--x 1 ahoog ahoog 2048 2010-10-11 15:21 data
drwxr-x--- 1 root 1007 2048 2010-10-07 13:53 dontpanic
drwxrwx--x 1 2000 2000 2048 2010-10-07 13:53 local
drwxrwx--- 1 root root 2048 2010-10-07 13:53 lost+found
drwxrwx--t 1 ahoog 9998 2048 2010-10-11 19:02 misc
drwx------ 1 root root 2048 2010-10-11 19:38 property
drwxrwxr-x 1 ahoog ahoog 2048 2010-10-11 20:20 system
drwxr-xr-x 1 ahoog ahoog 2048 2010-10-11 14:55 tombstones

ahoog@ubuntu:~$ df -h
Filesystem Size Used Avail Use% Mounted on
/dev/mtdblock0 1.0G 65M 960M 7% /home/ahoog/mnt/yaffs2

So we now have the full “/data” file system from a Motorola Droid accessible on

our Ubuntu workstation, which you can then explore and analyze with the forensic
tools of your choice. Ultimately, if you are unable to mount the nanddump on the
Ubuntu workstation, you should still have the full set of logical files from the
acquisition process, so it should not inhibit the analysis of the device.
YAFFS2 File Carving
The next technique useful for analyzing YAFFS2 file systems is file carving.
Previously in this chapter, we installed and configured scalpel on our Ubuntu
workstation. For this example, let’s assume there is a file called htc-datadata.dd in
the home directory of the logged-in user on the Ubuntu virtual machine. In that same
directory (which you can reference with a ~ in your commands), there is a scalpel
configuration containing the entries from the section 1.3 named scalpel-
android.conf.

Please note that we are using the dd image for file carving, not the nanddump.
This is necessary as the OOB data found after each 2k chunk of YAFFS2 data would
significantly impact the ability of scalpel to carve valid files. The following
command would run scalpel against the dd image and output the files in a folder
called htc-scalpel-test in your home directory:

mailto:Image of Figure 7.10|tif

ahoog@ubuntu:~$ scalpel -c ~/scalpel-android.conf ~/htc-datadata.dd -o
~/htc-scalpel-test
Scalpel version 1.60
Written by Golden G. Richard III, based on Foremost 0.69.

Opening target "/home/ahoog/htc-datadata.dd"

Image file pass 1/2.
/home/ahoog/htc-datadata.dd: 100.0%
|***| 149.0 MB
Allocating work queues...
Work queues allocation complete. Building carve lists...
Carve lists built. Workload:
gif with header "\x47\x49\x46\x38\x37\x61" and footer "\x00\x3b" --> 16 files
gif with header "\x47\x49\x46\x38\x39\x61" and footer "\x00\x3b" --> 385 files
jpg with header "\xff\xd8\xff\xe0\x00\x10" and footer "\xff\xd9" --> 2140 files
jpg with header "\xff\xd8\xff\xe1" and footer "\x7f\xff\xd9" --> 18 files
png with header "\x50\x4e\x47\x3f" and footer "\xff\xfc\xfd\xfe" --> 0 files
png with header "\x89\x50\x4e\x47" and footer "" --> 1442 files
db with header "\x53\x51\x4c\x69\x74\x65\x20\x66\x6f\x72\x6d\x61\x74" and
footer "" --> 5453 files
email with header "\x46\x72\x6f\x6d\x3a" and footer "" --> 1183 files
doc with header "\xd0\xcf\x11\xe0\xa1\xb1\x1a\xe1\x00\x00" and footer
"\xd0\xcf\x11\xe0\xa1\xb1\x1a\xe1\x00\x00" --> 0 files
doc with header "\xd0\xcf\x11\xe0\xa1\xb1" and footer "" --> 0 files
htm with header "\x3c\x68\x74\x6d\x6c" and footer
"\x3c\x2f\x68\x74\x6d\x6c\x3e" --> 732 files
pdf with header "\x25\x50\x44\x46" and footer "\x25\x45\x4f\x46\x0d" -->
1 files
pdf with header "\x25\x50\x44\x46" and footer "\x25\x45\x4f\x46\x0a" -->
0 files
wav with header "\x52\x49\x46\x46\x3f\x3f\x3f\x3f\x57\x41\x56\x45" and
footer "" --> 0 files
amr with header "\x23\x21\x41\x4d\x52" and footer "" --> 0 files
zip with header "\x50\x4b\x03\x04" and footer "\x3c\xac" --> 0 files
java with header "\xca\xfe\xba\xbe" and footer "" --> 0 files
Carving files from image.
Image file pass 2/2.
/home/ahoog/htc-datadata.dd: 100.0%
|***| 149.0 MB
Processing of image file complete. Cleaning up...
Done.
Scalpel is done, files carved = 11370, elapsed = 4 seconds.

YAFFS2 forensic analysis 333
In this instance, scalpel was able to recover 11,370 files and the output provides
specifics on the file types and counts that were recovered. Fig. 7.11 is a screen shot
from the Ubuntu workstation looking at one of the JPG directories.

The images do not have a high resolution but, especially when viewed directly on
the workstation, you can discern the contents. Here are a few things that this small
fraction of images shows:

� The top three pictures are the opening frames from YouTube movies, dragon
cartoons in this case.

� The next picture is a fragment of a Facebook message asking about lunch and
recommending sushi.

� The remaining pictures appear to be from various news articles.

mailto:Image of Figure 7.10|tif

FIGURE 7.11

Viewing images recovered using scalpel.

334 CHAPTER 7 Android application and forensic analysis
As this demonstrates, file carving can recover important artifacts from YAFFS2
and is a valuable tool for forensic analysis.
YAFFS2 Strings Analysis
We have already demonstrated one example of using strings to find data on an
Android device. However, let’s work through another exercise to demonstrate not
only the technique but the power of this type of analysis.

For this example, the examiner needs to find location information on the Android
device. One term to search for, especially on an Android device, is maps.google.com
as the Google Maps service is tightly integrated into the operating system. An
extremely powerful utility for search is called grep and is used so extensively it is
now a verb in technical vernacular (“Did you grep the device for map references?”).
It is not only built into the Ubuntu virtual machine but it also supports very powerful
regular expressions (often shortened to regex or regexp), which allow sophisticated
pattern matching. There are many online resources which introduce both grep and
regex with good examples.

For our example, we are going to use grep for its most basic functionality where
we simply search for a string:

http://maps.google.com
mailto:Image of Figure 7.11|tif

YAFFS2 forensic analysis 335
ahoog@ubuntu:~$ strings --all --radix=x htcinc-mtd6-datadata.nanddump | grep
maps.google.com | less
691e6 Nhttp://maps.google.com/?q=Naperville+Crime+Prevention&
cid=146831038092484986558d2e7cc
Vhttp://maps.google.com/?q=Kennedy+Space+Center+Visitor+Complex&
cid=36393186238250854638d30fce
http://maps.google.com/maps/gen_204?oi=miwd&sa=X&ct=miw_details&cd=1&ei=3oVUTdC
aNZn2iwPg2dyOBQ&q=Kennedy+near+Space+Center,+FL&cad=ip:174.253.2.53,client:
maps-mobile,cid:3639318623825085463,src:link

The query returned 775 examplesdonly a few are displayed here for brevity and
privacy reasons. However, it is quite easy to determine some of the activity that took
place on the device. Specifically:

� A search (the q¼ in the URL stands for query) for Naperville Crime Prevention
was conducted and the URL is valid complete with address, phone number,
pictures, directions, and more.

� A search for Kennedy Space Center Visitor Complex was also performed.
� The Kennedy Space Center query was then viewed by the mobile maps appli-

cation and we can even see the IP address.

If we take a look at the IP address, which is part of the last query (174.253.2.53),
we can use either command line tools or an online IP lookup service (What Is My
IP Address, n.d.) to find out additional information. The results are shown in
Fig. 7.12.

The information from the IP lookup service reveals several important pieces of
information:

1. The device is using the Verizon Wireless network.
2. The device was located in the Chicago, IL area (it is possible to spoof and fake IP

addresses but this is nontrivial and unlikely in most scenarios).

As we have the hex offset for the strings recovered, we could then look at
data surrounding this search to determine the general time frame the search took
place.
YAFFS2 Analyst Notes
The manual analysis required for much of the YAFFS2 forensics is certainly time
consuming and a bit daunting, which makes the barrier of entry much higher than
the analysis of well-understood and supported file systems. However, there are
many resources that are easily accessible to assist an analyst new to this
approach.

First, hopefully this book provided a good introduction to using Linux for
forensic analysis (please recommend that all of your friends and colleagues should
have a copy for their bookshelf).

Perhaps a bit more helpful is that a simple Google search will often result in
many helpful posts on blogs, discussion boards, mailing lists, and other such

FIGURE 7.12

Results of IP address lookup.

336 CHAPTER 7 Android application and forensic analysis
resources. While there is certainly inaccurate information on the Internet, many of
the technical people working in these areas post quite accurate and precise infor-
mation. And, as a bonus, many of the authors are very responsive to inquiries and
clarifications.

Next, there is an excellent introduction to Linux for law enforcement and
forensic analysts, which is available online and at no cost. The web site, Linux LEO:
The Law Enforcement and Forensic Examiner’s Introduction to Linux, provides the
guide in PDF format and introduces the reader to Linux concepts needed to use the
operating system as a forensic tool (Grundy, B., n.d.).

As you use Linux further, you will find that it is quite easy to automate many of
the manual tasks. This not only allows you to have great control over how the system
works, but the automation can save considerable time. This is a great combination as
the busy examiner can process more forensic data with cutting edge tools and at the
same time explain exactly what the system did instead of just being able to say that
a button was clicked and a report was produced.

The easiest way to start automating common Linux tasks is to simply write
a shell script, which is very easy to write and essentially mimic the commands you
would type in a terminal session.

mailto:Image of Figure 7.12|tif

YAFFS2 forensic analysis 337
For example, let’s say you have a series of .csv files, which contain the
results from running the AFLogical forensic technique on an Android device.
You need to send the top row of each file to someone, but it should not contain
any data from the device. You could open each file manually, delete the data
rows, save the updated file to a new directory, and finally send the information.
However, this could take quite some time. Instead, you could write a simple
shell script.

First, let’s open a new file for editing:

ahoog@ubuntu:~$ nano -w ~/sanitize-csv.sh

Then place the following into the file:
#!/bin/bash

create a new directory to store the sanitized files
mkdir sanitized

#for each file ending with .csv
for f in *.csv
do
 #read the top 1 row of the file and save it to the sanitized directory
 #with the same filename followed by -1strowonly
 head -1 "$f" > sanitized/"$f"-1strowonly
done

#create a "tar gzip" archive of the file so it is easier share
tar czvf AFlogical-sanitized.tgz sanitized/*

Then save the file by pressing Ctrl-O and exit with Ctrl-X. Next, we have to make

the script executable:

ahoog@ubuntu:~$ chmod 755 ~/sanitize-csv.sh

The files we want to sanitize are in a directory called AFLogical on the home

directory of the user and, as you can tell, processing these by hand would be quite
time consuming:

ahoog@ubuntu:~/AFLogical$ ls
Browser Bookmarks.csv IM Providers.csv
Browser Searches.csv IM ProviderSettings.csv
CallLog Calls.csv info.xml
Contacts ContactMethods.csv Internal Image Media.csv
Contacts Extensions.csv Internal Image Thumb Media.csv
Contacts Groups.csv Internal Videos.csv
Contacts Organizations.csv Maps-Friends contacts.csv
Contacts Phones.csv Maps-Friends.csv
Contacts Settings.csv Maps-Friends extra .csv
External Image Media.csv MMS.csv
External Image Thumb Media.csv MMSParts.csv
External Media.csv People.csv
External Videos.csv PhoneStorage (HTC Incredible).csv
IM Account.csv sanitize.sh
IM Accounts.csv Search History.csv
IM Chats.csv SMS.csv
IM Contacts.csv Social Contracts Activities.csv
IM Invitations.csv

mailto:Image of Figure 7.12|tif
mailto:Image of Figure 7.12|tif
mailto:Image of Figure 7.12|tif

338 CHAPTER 7 Android application and forensic analysis
We can easily process these files simply now:
ahoog@ubuntu:~/AFLogical$ cd ~/AFLogical
ahoog@ubuntu:~/AFLogical$ ~/sanitize-csv.sh
sanitized/Browser Bookmarks.csv-1strowonly
sanitized/Browser Searches.csv-1strowonly
sanitized/CallLog Calls.csv-1strowonly
<snip>

Now, the AFLogical directory not only has a new subdirectory called sanitized
with each of the updated files in it, but also a single file containing the data:

ahoog@ubuntu:~/AFLogical$ ls -lh *.tgz
-rw-r--r-- 1 ahoog ahoog 2.1K 2011-02-19 03:44 AFlogical-sanitized.tgz

This data can be easily e-mailed or copied to another drive.
Here’s a more complex example, which will create a nandsim device, mount

a blank YAFFS2 file system, generate several files, and then allow the user to
unmount the file system. This is a quick way to automate the steps involved in testing
YAFFS2.
#!/bin/bash

read -p "Load kernel modules? (y/n)?"
if ["$REPLY" == "y"] ; then
 sudo modprobe mtd
 sudo modprobe mtdblock
 sudo insmod ~/yaffs2/yaffs2.ko
else
 exit
fi
echo ""
echo "Choose nandsim size in MiB [64, 128, 256, 512, 1024]"
echo "1) 64 MiB"
echo "2) 128 MiB"
echo "3) 256 MiB"
echo "4) 512 MiB"
echo "5) 1024 MiB"
read size
case $size in
 1) sudo modprobe nandsim first_id_byte=0x20 second_id_byte=0xa2
third_id_byte=0x00 fourth_id_byte=0x15 ;;
 2) sudo modprobe nandsim first_id_byte=0x20 second_id_byte=0xa1
third_id_byte=0x00 fourth_id_byte=0x15 ;;
 3) sudo modprobe nandsim first_id_byte=0x20 second_id_byte=0xaa
third_id_byte=0x00 fourth_id_byte=0x15 ;;
 4) sudo modprobe nandsim first_id_byte=0x20 second_id_byte=0xac
third_id_byte=0x00 fourth_id_byte=0x15 ;;
 5) sudo modprobe nandsim first_id_byte=0xec second_id_byte=0xd3
third_id_byte=0x51 fourth_id_byte=0x15 ;;
 *)
 echo "invalid nandsim size"
 exit
 ;;
esac

mailto:Image of Figure 7.12|tif
mailto:Image of Figure 7.12|tif
mailto:Image of Figure 7.12|tif

read -p "Mount yaffs2 in ~/mnt/y? (y/n)?"
if ["$REPLY" == "y"] ; then
 echo ""
 echo "Mounting with sudo mount -t yaffs2 /dev/mtdblock0 ~/mnt/y"
 sudo mount -t yaffs2 /dev/mtdblock0 ~/mnt/y
else
 exit
fi

echo ""
read -p "Write viafile.txt with contents of viaforensics? (y/n)?"
if ["$REPLY" == "y"] ; then
 sudo echo "viaforensics" > ~/mnt/y/viafile.txt
else
 exit
fi

echo ""
read -p "Append .com to contents of viafile.txt? (y/n)?"
if ["$REPLY" == "y"] ; then
 sudo echo ".com" >> ~/mnt/y/viafile.txt
else
 exit
fi

echo ""
read -p "Rename viafile.txt to renamed.txt? (y/n)?"
if ["$REPLY" == "y"] ; then
 sudo mv ~/mnt/y/viafile.txt ~/mnt/y/renamed.txt
else
 exit
fi

echo ""
read -p "Delete renamed.txt? (y/n)?"
if ["$REPLY" == "y"] ; then
 sudo rm ~/mnt/y/renamed.txt
else
 exit
fi

echo ""
read -p "Create last.txt with afphysical? (y/n)?"
if ["$REPLY" == "y"] ; then
 sudo echo "afphysical" > ~/mnt/y/last.txt
else
 exit
fi

echo ""
read -p "Unmount and remove modules? (y/n)?"
if ["$REPLY" == "y"] ; then
 sudo umount ~/mnt/y
 sudo rmmod yaffs2
 sudo rmmod nandsim
 sudo rmmod mtdblock
 sudo rmmod nand
 sudo rmmod mtd_blkdevs
 sudo rmmod mtd
 echo "Done"
else
 exit
fi

YAFFS2 forensic analysis 339

mailto:Image of Figure 7.12|tif

340 CHAPTER 7 Android application and forensic analysis
Hopefully, the absence of commercial tools which support the YAFFS2 file
system is not viewed by the examiner as a situation where no additional data can be
recovered. Using free, open source tools available on an Ubuntu workstation
clearly provides a powerful means to further the investigation. When combining
these techniques with the hex analysis outlined in this chapter, an examiner should
find they are well prepared to extract evidence from YAFFS2 partitions on Android
devices. When a case involving a medical device that runs embedded Linux with
the YAFFS2 file system is placed on your desk you can confidently dive in and
figure it out.
ANDROID APP ANALYSIS AND REFERENCE
While this chapter described many techniques useful for the forensic and security
investigation of Android devices, it is helpful to have a reference of where data is
stored for key applications. Of course, maintaining a complete reference would be
nearly impossible not only due to the sheer number of applications but also due to
the variation between specific devices and Android versions.

In the following sections, we analyze 10 important applications from the refer-
ence phones used throughout this book and provide the following data:

1. App information
2. Files and directories (including /data/data, SD card, and eMMC)
3. Important database tables
4. Analyst notes

Through the app analysis, all time stamps are in Unix Epoch milliseconds, the
number of milliseconds since January 1, 1970, unless otherwise noted.

The apps tested were installed and used on the device and then analyzed with
a custom Python program to automate some of the techniques described previously
in this chapter. While significant information is provided, be advised that this is only
a reference and likely incomplete. Analysts should use the forensic and security
tools as well as the techniques described above for a full analysis of the device they
are examining.
Messaging (sms and mms)
App Info
This is the default app shipped with Android that handles SMS and MMS
messages.

� App Name: Messaging
� Package name: com.android.providers.telephony
� Version: 2.2
� Device: HTC Incredible
� App developer: Android

Android app analysis and reference 341
Directories, Files, and File Types
In /data/data/com.android.providers.telephony:

com.android.providers.telephony/ directory
├── app_parts directory
│ ├── PART_1285875367786 JPEG image data, JFIF standard 1.01
│ ├── PART_1287901591761 JPEG image data, JFIF standard 1.01
│ └── PART_1293199567316 JPEG image data, JFIF standard 1.01
├── databases directory
│ ├── mmssms.db SQLite 3.x database, user version 60
│ └── telephony.db SQLite 3.x database, user version 524296
└── lib directory
Important Database Tables and Files
Important database tables and files for mms and sms are shown in Table 7.4.
Table 7.4 Important Database Tables and Files from /data/data/

com.android.providers.telephony/databases/mmssms.db

Database Tables/Files Description

words_content Content of messages

part MMS attachment details including type, name, location
on file system if binary (i.e., images), and content of
attachment if plain text

sms Full SMS messages including to, from, person, time
stamp, read status, send/receive status, and message
content
Analyst Notes
Analyst notes for /data/data/com.android.providers.telephony:

� The app_parts folder will contain the MMS attachments and can include images,
video, or any other supported data. File types are not maintained, so use the file
command or other file signature analysis tools to identify.

� The telephony database is usually of little interest as it only contains service
information for the wireless carrier(s).

� The sms table contains all the messages and should be the primary focus.
� Several other tables seem to replicate parts of the sms table’s content, so look at

words_content and other tables to aid in your analysis.
� See also: com.android.mms.
MMS Helper Application
App Info
This app stores some MMS data and appears to be a helper application for the main
Messaging app.

mailto:Image of Figure 7.12|tif

342 CHAPTER 7 Android application and forensic analysis
� App Name: com.android.mm
� Package name: com.android.mms
� Version: 2.2
� Device: HTC Incredible
� App developer: Android
Directories, Files, and File Types
In /data/data/com.android.mms:

com.android.mms directory
├── bufferFileForMms data
├── cache directory
│ ├── PART_1285875367786 PNG image, 80 x 60,
8-bit/color RGB, non-interlaced
│ ├── PART_1287901591761 PNG image, 80 x 60,
8-bit/color RGB, non-interlaced
│ └── PART_1293199567316 PNG image, 80 x 60,
8-bit/color RGB, non-interlaced
├── lib directory
└── shared_prefs directory
 ├── com.android.mms.customizationBySIM.xml XML document text
 ├── com.android.mms_preferences.xml XML document text
 ├── FIRST_EXECUTE.xml XML document text
 ├── _has_set_default_values.xml XML document text
 └── VERY_FIRST_EXECUTE.xml XML document text

Important Database Tables and Files
� PART files in /data/data/com.android.mms/cache
Analyst Notes
Analyst notes for /data/data/com.android.mms:

� File “bufferFileForMms” might contain buffer data at the time of sending.
However, it usually only contains 0x00.

� The PART files in cache are small PNG versions of the images found in the
Messaging app at /data/data/com.android.providers.telephony/app_parts.
Browser
App Info
This is the built-in web browser for Android, based on the open source WebKit
project.

� App Name: Internet
� Package name: com.android.browser
� Version: 2.2

mailto:Image of Figure 7.12|tif

Android app analysis and reference 343
� Device: HTC Incredible
� App developer: Android
Directories, Files, and File Types
In /data/data/com.android.browser:
com.android.browser/directory
├── app_appcache directory
│ └── ApplicationCache.db SQLite 3.x database, user version 5
├── app_databases directory
│ ├── Databases.db SQLite 3.x database
│ ├── http_a.ringleaderdigital.com_0 directory
│ │ └── 0000000000000002.db SQLite 3.x database
│ ├── http_blogs.techrepublic.com.com_0.localstorage SQLite 3.x database
│ ├── http_b.scorecardresearch.com_0.localstorage SQLite 3.x database
│ ├── http_forumlogr.disqus.com_0.localstorage SQLite 3.x database
│ ├── http_mashable.com_0.localstorage SQLite 3.x database
│ ├── http_mashable.disqus.com_0.localstorage SQLite 3.x database
│ ├── http_m.imdb.com_0.localstorage SQLite 3.x database
│ ├── https_api.twitter.com_0.localstorage SQLite 3.x database
│ ├── http_singularityhub.com_0.localstorage SQLite 3.x database
│ ├── http_singularityhub.disqus.com_0.localstorage SQLite 3.x database
│ ├── http_twitpic.com_0.localstorage SQLite 3.x database
│ ├── http_voices.washingtonpost.com_0.localstorage SQLite 3.x database
│ ├── http_www.accuweather.com_0 directory
│ │ └── 0000000000000001.db SQLite 3.x database
│ ├── http_www.accuweather.com_0.localstorage SQLite 3.x database
│ ├── http_www.cbc.ca_0.localstorage SQLite 3.x database
│ ├── http_www.forensicfocus.com_0.localstorage SQLite 3.x database
│ ├── http_www.forumlogr.com_0.localstorage SQLite 3.x database
│ ├── http_www.google.com_0.localstorage SQLite 3.x database
│ ├── http_www.iphoneworld.ca_0.localstorage SQLite 3.x database
│ ├── http_www.linkedin.com_0.localstorage SQLite 3.x database
│ └── http_www.youtube.com_0.localstorage SQLite 3.x database
├── app_geolocation directory
│ ├── CachedGeoposition.db SQLite 3.x database
│ └── GeolocationPermissions.db SQLite 3.x database
├── app_icons directory
│ └── WebpageIcons.db SQLite 3.x database
├── app_plugins directory
│ └── com.adobe.flashplayer directory
│ ├── .adobe directory
│ │ └── Flash_Player directory
│ │ └── AssetCache directory
│ │ └── YY3JJV4U directory
│ │ ├── 3C82B2A2455B252B8595FD0113249AA19D7E8BDD.heu data
│ │ ├── 3C82B2A2455B252B8595FD0113249AA19D7E8BDD.swz data
│ │ └── cacheSize.txt ASCII text, with no line terminators
│ └── .macromedia directory
│ └── Flash_Player directory
│ ├── adobe.com directory
│ │ └── flashplayer directory
│ │ ├── #cdn.widgetserver.com directory
│ │ │ └── settings.sol data
│ │ ├── #flashapps.ifg.net directory
│ │ │ └── settings.sol data
│ │ ├── #images10.newegg.com directory
│ │ │ └── settings.sol data
│ │ ├── settings.sol data
│ │ └── #s.ytimg.com directory
│ │ └── settings.sol data
│ └── #SharedObjects directory
│ └── GPDJW6S3 directory
│ ├── cdn.widgetserver.com directory

mailto:Image of Figure 7.12|tif

│ │ ├── com.quantserve.sol data
│ │ ├── syndication directory
│ │ │ └── flash directory
│ │ │ └── InsertWidget.swf directory
│ │ │ └── wbx.sol data
│ │ └── wbx_cookie.sol data
│ ├── flashapps.ifg.net directory
│ │ └── weather directory
│ │ └── weather.swf directory
│ │ └── TestMovie_Config_Info.sol data
│ ├── images10.newegg.com directory
│ │ ├── s7_newegg.sol data
│ │ └── WebResource directory
│ │ └── Themes directory
│ │ └── 2005 directory
│ │ └── Nest directory
│ │ └── genericzoomviewer.swf directory
│ │ └── #newegg directory
│ │ └── 16%2D102%2D144%2DZ02_init.sol data
│ └── s.ytimg.com directory
│ └── soundData.sol data
├── app_sharedimage directory
├── app_thumbnails directory
├── cache -> /app-cache/com.android.browser/cache broken symbolic link to '/app-cache/
 com.android.browser/cache'
├── databases directory
│ ├── browser.db SQLite 3.x database, user version 24
│ ├── webviewCache.db SQLite 3.x database, user version 4
│ └── webview.db SQLite 3.x database, user version 10
├── lib directory
└── shared_prefs directory
 ├── com.android.browser_preferences.xml XML document text
 └── WebViewSettings.xml XML document text

344 CHAPTER 7 Android application and forensic analysis
In /app-cache/com.android.browser/cache:
app-cache/ directory
└── com.android.browser directory
 └── cache directory
 └── webviewCache directory
 ├── 00684608 JPEG image data, JFIF standard 1.01, comment:
"CREATOR: gd-jpeg v1.0 (using IJ"
 ├── 00f02aa9 GIF image data, version 89a, 3 x 3
 ├── 0113650e ASCII text, with very long lines
 ├── 01c6689f ASCII C program text, with very long lines
 ├── 0249f797 PNG image, 46 x 20, 8-bit/color RGBA,
 non-interlaced
 ├── 02d78554 GIF image data, version 89a, 468 x 60
 ├── 0305cad6 JPEG image data, JFIF standard 1.02
 ├── 0339028b GIF image data, version 89a, 155 x 85
 ├── 036d8956 036d8956: GIF image data, version 89a, 15 x 15
 ├── 03bc67f9 ASCII text, with very long lines
 ├── 04e9f7f8 JPEG image data, JFIF standard 1.01
 ├── 056d50ab HTML document text
 ├── 069360d7 JPEG image data, JFIF standard 1.02
 ├── 073f38ff GIF image data, version 89a, 20 x 14
 ├── 074a5b68 ASCII text, with very long lines
 ├── 07f04406 PNG image, 200 x 52, 8-bit/color RGBA,
 non-interlaced
 ├── 07ff1c11 PNG image, 132 x 29, 8-bit/color RGBA,
 non-interlaced
 ├── 09fda0dd GIF image data, version 89a, 32 x 11
 ├── 0aec9086 GIF image data, version 89a, 8 x 3
 ├── 0c24e90f GIF image data, version 89a, 17 x 17
<snip>

mailto:Image of Figure 7.12|tif
mailto:Image of Figure 7.12|tif

Android app analysis and reference 345
Important Database Tables and Files
Local storage for supported web apps is shown in Table 7.5.

Cached geoposition data is shown in Table 7.6.
The geolocation permissions database is shown in Table 7.7.
Table 7.8 shows the browser database.
Table 7.9 shows the web view database.
And the web view cache database is shown in Table 7.10.
Table 7.5 Important Database Tables and Files from /data/data/com.android.

browser/app_databases/http_www.google.com_0.localstorage

Database Tables/Files Description

ItemTable This table is a simple list of key/value pairs; however,
potentially contains useful information for sites that were
visited and takes advantage of the localstorage feature.

Table 7.6 Important Database Tables and Files from /data/data/com.android.

browser/app_geolocation/CachedGeoposition.db

Database Tables/Files Description

CachedPosition � latitude¼41.896888
� longitude¼�87.799985
� altitude¼
� accuracy¼ 1368.0
� altitudeAccuracy¼
� heading¼
� speed¼
� timestamp¼ 1296479267929

Table 7.7 Important Database Tables and Files from /data/data/

com.android.browser/app_geolocation/GeolocationPermissions.db

Database Tables/Files Description

Permissions This table is list of origins (web sites) and the permission for
each (allow). For example, http://www.google.com and the
value 1 means Google’s web site has permission to access
geolocation
Analyst Notes
Analyst notes for /data/data/com.android.browser:

� Check the WebpageIcons.db in app_icons if looking for a particular site and the
site has a favicon.

http://www.google.com_0.localstorage
http://www.google.com

Table 7.9 Important Database Tables and Files from /data/data/

com.android.browser/databases/webview.db

Database Tables/Files Description

cookies � _id¼ 3912
� name¼ PHPSESSID
� value¼ 25b5b5a8608795fa4ac45d2b872a20e5
� domain¼mobile.itworld.com
� path¼ /
� expires¼
� secure¼ 0

formurl � _id¼ 95
� url¼ http://en.m.wikipedia.org/wiki/

Dime_(United_States_coin)?wasRedirected¼true

formdata � _id¼ 39
� urlid¼ 95
� name¼ search
� value¼Dime (United States coin)

httpauth � _id¼ 1
� host¼ dev-computer-forensics.sans.org
� realm¼ SANS - Restricted Access [Area - 39]
� username¼ your-sans-blog-username
� password¼ your-sans-blog-password

password � _id¼ 2
� host¼ httpswww.netflix.com
� username¼ your-netflix-username
� password¼ your-netflix-password

Table 7.8 Important Database Tables and Files from /data/data/

com.android.browser/databases/browser.db

Database Tables/Files Description

Bookmarks � _id¼ 662
� title¼ http://mobile.itworld.com/device/article.php?

CALL_URL¼http://www.itworld.com/security/135495/
ddos-attacks-made-worse-firewalls-report-finds

� url¼ http://mobile.itworld.com/device/article.php?CALL_
URL¼http://www.itworld.com/security/135495/ddos-
attacks-made-worse-firewalls-report-finds

� visits¼ 1
� date¼ 1296736862801

Searches � _id¼ 4
� search¼ fogo de chao chicago
� date¼ 1291401576968

346 CHAPTER 7 Android application and forensic analysis

http://en.m.wikipedia.org/wiki/Dime_(United_States_coin)?wasRedirected=true
http://en.m.wikipedia.org/wiki/Dime_(United_States_coin)?wasRedirected=true
http://en.m.wikipedia.org/wiki/Dime_(United_States_coin)?wasRedirected=true
http://www.netflix.com
http://mobile.itworld.com/device/article.php?CALL_URL=http://www.itworld.com/security/135495/ddos-attacks-made-worse-firewalls-report-finds
http://mobile.itworld.com/device/article.php?CALL_URL=http://www.itworld.com/security/135495/ddos-attacks-made-worse-firewalls-report-finds
http://mobile.itworld.com/device/article.php?CALL_URL=http://www.itworld.com/security/135495/ddos-attacks-made-worse-firewalls-report-finds
http://mobile.itworld.com/device/article.php?CALL_URL=http://www.itworld.com/security/135495/ddos-attacks-made-worse-firewalls-report-finds
http://mobile.itworld.com/device/article.php?CALL_URL=http://www.itworld.com/security/135495/ddos-attacks-made-worse-firewalls-report-finds
http://mobile.itworld.com/device/article.php?CALL_URL=http://www.itworld.com/security/135495/ddos-attacks-made-worse-firewalls-report-finds
http://mobile.itworld.com/device/article.php?CALL_URL=http://www.itworld.com/security/135495/ddos-attacks-made-worse-firewalls-report-finds
http://mobile.itworld.com/device/article.php?CALL_URL=http://www.itworld.com/security/135495/ddos-attacks-made-worse-firewalls-report-finds

Table 7.10 Important Database Tables and Files from /data/data/

com.android.browser/databases/webviewCache.db

Database Tables/Files Description

cache � _id¼ 464
� url¼ http://profile.ak.fbcdn.net/hprofile-ak-snc4/hs267.

snc3/23271_145853460360_2616_q.jpg
� filepath¼ 00684608
� lastmodify¼ Thu, 01 Jan 2009 00:00:00 GMT
� etag¼
� expires¼ 1299533415543
� expiresstring¼Mon, 07 Mar 2011 21:30:00 GMT
� mimetype¼ image/jpeg
� encoding¼
� httpstatus¼ 200
� location¼
� contentlength¼ 2890
� contentdisposition¼
� crossdomain¼

Android app analysis and reference 347
� The specific app databases can contain very useful information. For example,
Google app database has previous search terms, many versions of cached “lon/
lat/acc” with time stamps and more.

� The com.adobe.flashplayer directory contains not only “Flash cookies,” which
end in the .sol extension and can be parsed by log2timeline, but also some of the
Flash .swf files.

� The browser database (databases/browser.db) contains a table called bookmarks,
which is generally pre-populated with bookmarks from the wireless carriers. This
same table also contains the web browser history. There is also a table called
Searches, which contains Google searches made from the browser.

� The web view database (databases/webview.db) contains considerable infor-
mation not only useful for a forensic examiner but also a security engineer.
Cookies are visible and most are not secure, meaning they may be vulnerable to
a cookie hijacking attack using a tool such as Firesheep. Form URL and data
often contain sensitive information as do httpauth and password.

� The web view cache database (databases/webviewCache.db) provides the met-
adata about the cache files stored in cache directory.

� Most devices save the web view cache data as a subdirectory in /data/data/
com.android.browser. However, the HTC Incredible moved this directory to
a tmpfs (RAM disk) directory.
Contacts
App Info
This app is the main contacts app provided by Android. While there are many
additional apps available, this app provides the core contact functionality.

http://profile.ak.fbcdn.net/hprofile-ak-snc4/hs267.snc3/23271_145853460360_2616_q.jpg
http://profile.ak.fbcdn.net/hprofile-ak-snc4/hs267.snc3/23271_145853460360_2616_q.jpg

com.andro
├── datab
│ └── c
├── files
│ ├── t
│ ├── t
│ ├── t
│ ├── t
│ ├── t
│ ├── t
│ ├── t
│ ├── t
│ ├── t
│ ├── t
│ ├── t
│ ├── t
│ └── t
├── lib
├── share
│ ├── c
│ └── C
└── SNtem
 └── 2

348 CHAPTER 7 Android application and forensic analysis
� App Name: Contacts
� Package name: com.android.providers.contacts
� Version: 2.2
� Device: HTC Incredible
� App developer: Android
Directories, Files, and File Types
In /data/data/com.android.providers.contacts:
id.providers.contacts directory
ases directory
ontacts2.db SQLite 3.x database, user version 309
 directory
humbnail_photo_10014.jpg JPEG image data, JFIF standard 1.01
humbnail_photo_10194.jpg JPEG image data, JFIF standard 1.01
humbnail_photo_10199.jpg JPEG image data, JFIF standard 1.01
humbnail_photo_10202.jpg JPEG image data, JFIF standard 1.01
humbnail_photo_10203.jpg JPEG image data, JFIF standard 1.01
humbnail_photo_12450.jpg JPEG image data, JFIF standard 1.01
humbnail_photo_12827.jpg JPEG image data, JFIF standard 1.01
humbnail_photo_12832.jpg JPEG image data, JFIF standard 1.01
humbnail_photo_12833.jpg JPEG image data, JFIF standard 1.01
humbnail_photo_9508.jpg JPEG image data, JFIF standard 1.01
humbnail_photo_9509.jpg JPEG image data, JFIF standard 1.01
humbnail_photo_9566.jpg JPEG image data, JFIF standard 1.01
humbnail_photo_9866.jpg JPEG image data, JFIF standard 1.01
 directory
d_prefs directory
om.android.providers.contacts_preferences.xml XML document text
ontactsUpgradeReceiver.xml XML document text
p directory
7386_604172803_5385_n.jpg empty
Important Database Tables and Files
There is only one database, contacts2.db, and it has over 30 tables. A few of the key
tables are listed in Table 7.11.
Analyst Notes
Analyst notes for /data/data/com.android.providers.contacts:

� This app stores the Call Logs for the device in the calls table.
� There are over 30 tables in contacts2.db, so further inspection may be required.

The data table contains additional values about contacts and the raw_contacts
contains additional data about some contacts.

� The app is capable of storing contact information from many different accounts
including Gmail, Exchange, Facebook, Twitter, and more. Some of the data stored
include information from these other apps such as Facebook status messages.

� If pictures of the contacts are available, they are stored in the files directory and
named thumbnail_photo_[NNNNN].jpg. In the reference HTC Incredible, there
were over 200 images but duplicates were found.

Table 7.11 Important Database Tables and Files from /data/data/

com.android.providers.contacts/databases/contacts2.db

Database Tables/Files Description

accounts � account_name¼ viaforensics
� account_type¼ com.twitter.android.auth.login

calls � _id¼ 1156
� number¼ 3128781100
� date¼ 1296780296202
� duration¼ 142
� type¼ 1
� new¼ 1
� name¼ viaForensics Corporate
� numbertype¼ 3
� numberlabel¼
� raw_contact_id¼ 907
� city_id¼

status_updates � status_update_data_id¼ 14792
� status¼ installed Facebook for Windows

Phone
� status_ts¼ 1287597506000
� status_res_package¼ com.htc.socialnetwork.

provider
� status_label¼ 2130968576
� status_icon¼ 33685932

contacts � _id¼ 907
� name_raw_contact_id¼ 907
� photo_id¼
� custom_ringtone¼
� send_to_voicemail¼ 0
� times_contacted¼ 19
� last_time_contacted¼ 1296780451343
� starred¼ 0
� in_visible_group¼ 1
� has_phone_number¼ 1
� lookup¼ 1598i2%3A40
� status_update_id¼
� single_is_restricted¼ 0
� ext_account_Type¼ com.htc.android.mail.eas
� ext_photo_url¼
� display_name¼ viaForensics Corporate
� default_action¼

Android app analysis and reference 349
Media Scanner
App Info
This app scans and stores the metadata of media files available on internal and
external storage.

350 CHAPTER 7 Android application and forensic analysis
� App Name: Media Store
� Package name: com.android.providers.media
� Version: 2.2
� Device: HTC Incredible
� App developer: Android
Directories, Files, and File Types
In /data/data/com.android.providers.media:
com.android.providers.media directory
├── databases directory
│ ├── emmc-c7f80810.db SQLite 3.x database, user version 90
│ ├── external-e0fd1813.db SQLite 3.x database, user version 90
│ └── internal.db SQLite 3.x database, user version 90
├── lib directory
└── shared_prefs directory
 └── ringtoneinit.xml XML document text
Important Database Tables and Files
The structure of each database is similar, as shown in Table 7.12.
Analyst Notes
Analyst notes for /data/data/com.android.providers.media:

� The database names contain the volume ID, if available. For example, on the
reference HTC Incredible device, the eMMC FAT32 file system has a volume ID
of 0xc7f80810.

� If a directory has a file named .nomedia, then the media store will not scan and
record the metadata of files in that directory.

� If an image was deleted, the thumbnail likely still exists. Also, even if the
metadata record is deleted, it is likely recoverable due to the YAFFS2 file system.

� Also scans for audio files, albums, etc.
� Other media scanners and apps exist, so check for those. One stores thumbnails

on the SD card, which can provide an insight into deleted pictures and videos.
YouTube
App Info
YouTube is a video viewing web site now owned by Google, for which they have
developed a native app for Android.

� App Name: YouTube
� Package name: com.google.android.youtube
� Version: 1.6.21
� Device: HTC Incredible
� App developer: Google

Table 7.12 Important Database Tables and Files from /data/data/

com.android.providers.media/databases/

Database Tables/Files Description

images � _id¼ 88
� _data¼ /mnt/emmc/DCIM/100MEDIA/IMAG0074.jpg
� _size¼ 873150
� _display_name¼ IMAG0074.jpg
� mime_type¼ image/jpeg
� title¼ IMAG0074
� date_added¼ 1295368758
� date_modified¼ 1295372358
� description¼
� picasa_id¼
� isprivate¼
� latitude¼
� longitude¼
� datetaken¼ 1295372358000
� orientation¼ 0
� mini_thumb_magic¼ 88
� bucket_id¼ -942500167
� bucket_display_name¼ 100MEDIA
� favorite¼
� lock_screen¼

videos Fields similar to images table

thumbnails � _id¼ 88
� data¼ /mnt/emmc/dcim/.thumbnails/(28)890943898-

s¼901931-fH¼274-gH¼160-mode¼10-AG¼0.raw
� image_id¼ 28
� kind¼ 103
� width¼ 160
� height¼ 160

Android app analysis and reference 351
Directories, Files, and File Types
In /data/data/com.google.android.youtube:

com.google.android.youtube/ directory
├── cache directory
│ ├── GDataRequest.-1358025214 XML document text
│ ├── GDataRequest.149614182 XML document text
│ ├── GDataRequest.1718906282 XML document text
│ ├── GDataRequest.307198247 XML document text
│ ├── GDataRequest.-689089246 XML document text
│ ├── GDataRequest.718990876 XML document text
│ └── GDataRequest.-953243531 XML document text
├── files directory
│ └── DATA_Preferences data
├── lib directory
└── shared_prefs directory
 └── youtube.xml XML document text

352 CHAPTER 7 Android application and forensic analysis
Important Database Tables and Files
YouTube preferences, including device key(s) and watched videos in /data/data/
com.google.android.youtube/shared_prefs/youtube.xml:

<?xml version='1.0' encoding='utf-8' standalone='yes' ?>
<map>
<int name="safe_search_mode" value="1" />
<string name="StrongAuth.deviceKey">AomSH9asdnA5DMqw/8mzHUDXdsaIl5e0s=</string>
<string name="watchedVideos">osnUasdB9bUm-E,SunCPrwdsadOlNI,
qKrrHtY1231WcWA,E7ULR-asdayfNnk,aHmUZgssaoq123rIYA,JaecOddBxDFlas0</string>
<string name="StrongAuth.deviceId">AOuj_RqrF8oasdastTCOySdFNIaNV_M9lX
-3MQMbBzzLassdTcAQQn8oYPMWZRK_PiTYMgB-T_rPECOyG4W2jd7zLT7TS2Q</string>
<string name="ratedVideos"></string>
<string name="MasfLogYouTubeApplicationVersion">1.6.21</string>
</map>

Information about specific movies watched saved in XML file in /data/data/

com.google.android.youtube/cache:
<?xml version='1.0' encoding='UTF-8'?>
<id>tag:youtube.com,2008:video:E7ULR-yfNnk</id>
<published>2006-09-10T22:22:58.000Z</published>
<updated>2010-11-30T19:06:08.000Z</updated>
<category scheme='http://schemas.google.com/g/2005#kind'
term='http://gdata.youtube.com/schemas/2007#video'/>
<category scheme='http://gdata.youtube.com/schemas/2007/categories.cat'
term='Entertainment' label='Entertainment'/>
<category scheme='http://gdata.youtube.com/schemas/2007/keywords.cat'
term='Mime'/>
<category scheme='http://gdata.youtube.com/schemas/2007/keywords.cat'
term='Miming'/>
<category scheme='http://gdata.youtube.com/schemas/2007/keywords.cat'
term='Robot'/>
<category scheme='http://gdata.youtube.com/schemas/2007/keywords.cat'
term='Dance'/>
<title>Cool Mime! Tyson Eberly Mime Performance Part 2</title>
<content type='video/mp4' src='http://v12.lscache5.googlevideo.com/
videoplayback?id=13b50b47ec9f3679&itag=18&uaopt=
no-save&ip=0.0.0.0&ipbits=0&expire=1293757989&
sparams=id,itag,uaopt,ip,ipbits,expire
&signature=C3885D4913EC51106910D8E99049F7D39F7C4AA6.D809F3290B0A6E0D8C83C28
F31261D64BDF0C680&key=yta1
&el=videos&client=mvapp-android-
verizon&devKey=ATEU_r3RX2afGwq_gCqiS2UO88HsQjpE1a8d1GxQnGDm&
app=youtube_gdata'/>

<snip>
Analyst Notes
Analyst notes for /data/data/com.google.android.youtube:

� Examine the XML files in the cache directory and in the shared_prefs directory
for information on videos viewed.

� A snapshot of the opening image to a video can often be found on the device
using file carving or other techniques.

Android app analysis and reference 353
Cooliris Media Gallery
App Info
This app was developed for the Google Nexus One and provides a media gallery and
scanner.

� App Name: Cooliris Media Gallery
� Package name: com.cooliris.media
� Version: 1.1.30682
� Device: Google Nexus One
� App developer: Cooliris

Directories, Files, and File Types
In /data/data/com.cooliris.media:

com.cooliris.media/ directory
└── databases directory
 └── picasa.db SQLite 3.x database, user version 83

More importantly, thumbnails are stored on the SD card:

/mnt/sdcard/Android/data/com.cooliris.media directory
└── cache directory
 ├── geocoder-cache directory
 ├── geocoder-cachechunk_0 data
 ├── geocoder-cacheindex data
 ├── hires-image-cache directory
 ├── hires-image-cache-1158935264581041381_1024.cache JPEG image data, JFIF s
 ├── hires-image-cache1585961800385347536_1024.cache JPEG image data, JFIF s
 ├── hires-image-cache1588208008548304680_1024.cache JPEG image data, JFIF s
 ├── hires-image-cache-1695915026582362443_1024.cache JPEG image data, JFIF s
 ├── hires-image-cache1826788044297674713_1024.cache JPEG image data, JFIF s
 ├── hires-image-cache1830742186312500388_1024.cache JPEG image data, JFIF s
 ├── hires-image-cache2087069753732167412_1024.cache JPEG image data, JFIF s
 ├── hires-image-cache2114895255670203853_1024.cache JPEG image data, JFIF s
<snip>
 ├── hires-image-cache9169278413697037975_1024.cache JPEG image data, JFIF s
 ├── local-album-cache directory
 ├── local-album-cachechunk_0 data
 ├── local-album-cacheindex data
 ├── local-image-thumbs directory
 ├── local-image-thumbschunk_0 data
 ├── local-image-thumbsindex data
 ├── local-meta-cache directory
 ├── local-meta-cachechunk_0 data
 ├── local-meta-cacheindex data
 ├── local-skip-cache directory
 ├── local-skip-cachechunk_0 MMDF mailbox
 ├── local-skip-cacheindex data
 ├── local-video-thumbs directory
 ├── local-video-thumbschunk_0 data
 ├── local-video-thumbsindex data
 ├── picasa-thumbs directory
 └── picasa-thumbsindex data
tandard 1.01
tandard 1.01
tandard 1.01
tandard 1.01
tandard 1.01
tandard 1.01
tandard 1.01
tandard 1.01

tandard 1.01

354 CHAPTER 7 Android application and forensic analysis
Important Database Tables and Files
For this device, the picasa.db was empty, but presumably the databases will contain
useful information.

Analyst Notes
Analyst notes for /data/data/com.cooliris.media:

� The real value in this app is that media discovered on the device is cached on the
SD card in “/mnt/sdcard/Android/data/com.cooliris.media/cache” and should be
examined closely.
Google Maps
App Info
This is the built-in Google Maps application used to view maps, search for
endpoints, and even provide directions.

� App Name: Google Maps
� Package name: com.google.android.apps.maps
� Version: 4.4.0
� Device: HTC Incredible
� App developer: Google
Directories, Files, and File Types
In /data/data/com.google.android.apps.maps:
com.google.android.apps.maps/ directory
├── app_ directory
│ ├── cache directory
│ │ └── cache_r.m data
│ ├── debug directory
│ └── testdata directory
├── cache directory
│ └── webviewCache directory
├── databases directory
│ ├── da_destination_history SQLite 3.x database, user version 1
│ ├── friends.db SQLite 3.x database, user version 19
│ ├── LayerInfo SQLite 3.x database, user version 2
│ ├── search_history.db SQLite 3.x database, user version 5
│ ├── webviewCache.db SQLite 3.x database, user version 4
│ └── webview.db SQLite 3.x database, user version 10
├── files directory
│ ├── DA_DirOpt_en_US data
│ ├── DA_LayerInfo data
│ ├── DATA_LATITUDE_WIDGET_MODEL data
│ ├── DATA_LAYER_10 data
│ ├── DATA_LAYER_11 data
│ ├── DATA_LAYER_13 data
│ ├── DATA_LAYER_14 data
│ ├── DATA_LAYER_15 data
│ ├── DATA_LAYER_16 data
│ ├── DATA_LAYER_18 data

│ ├── DATA_OptionDefinitionBlock_en data
│ ├── DATA_Preferences data
│ ├── DATA_PROTO_SAVED_CATEGORY_TREE_DB raw G3 data, byte-padded
│ ├── DATA_PROTO_SAVED_LAYER_STATE data
│ ├── DATA_PROTO_SAVED_RECENT_LAYERS data
│ ├── DATA_RemoteStringsBlock_en data
│ ├── DATA_Restrictions raw G3 data, byte-padded
│ ├── DATA_Restrictions_lock empty
│ ├── DATA_SAVED_BGFS_3 data
│ ├── DATA_SAVED_BGFS_EXTRA_3 data
│ ├── DATA_SAVED_BGSF_ data
│ ├── DATA_SAVED_REMOTE_ICONS_DATA_BLOCK data
│ ├── DATA_ServerControlledParametersManager.data data
│ ├── DATA_STARRING X11 SNF font data, MSB first
│ ├── DATA_SYNC_DATA data
│ ├── DATA_SYNC_DATA_LOCAL data
│ ├── DATA_TILE_HISTORY data
│ ├── DATA_Tiles data
│ ├── DATA_Tiles_1 data
│ ├── DATA_Tiles_2 data
│ ├── DATA_Tiles_3 data
│ ├── DATA_Tiles_4 DBase 3 data file (45375 records)
│ ├── DATA_Tiles_5 data
│ ├── DATA_Tiles_6 data
│ ├── DATA_Tiles_7 data
│ ├── DATA_Tiles_8 DBase 3 data file (60175 records)
│ ├── event_store_driveabout data
│ ├── event_store_LocationFriendService data
│ ├── NavigationParameters.data data
│ ├── NavZoomTables.data data
│ ├── nlp_GlsPlatformKey data
│ ├── nlp_state data
│ └── ZoomTables.data data
├── lib directory
└── shared_prefs directory
 ├── DriveAbout.xml XML document text
 ├── friend_service.xml XML document text
 ├── login_helper.xml XML document text
 └── network_initiated_prefs.xml XML document text

│ ├── DATA_LAYER_27 data
│ ├── DATA_LAYER_28 data
│ ├── DATA_LAYER_3 data
│ ├── DATA_LAYER_5 data
│ ├── DATA_LAYER_6 data
│ ├── DATA_LAYER_7 data
│ ├── DATA_LAYER_8 data
│ ├── DATA_LAYER_9 data
│ ├── DATA_location_history data

│ ├── DATA_LAYER_2 data
│ ├── DATA_LAYER_20 data
│ ├── DATA_LAYER_21 data
│ ├── DATA_LAYER_24 data
│ ├── DATA_LAYER_25 data

Android app analysis and reference 355
This app also stores data on the SD card:

/mnt/sdcard/Android/data/com.google.android.apps.maps/ directory
├── cache directory
│ ├── cache_its.0 data
│ ├── cache_its.m data
│ ├── cache_its_ter.m data
│ ├── cache_r.0 data

ging Format

356 CHAPTER 7 Android application and forensic analysis
│ ├── cache_vts_GMM.11 data
│ ├── cache_vts_GMM.12 data
│ ├── cache_vts_GMM.2 data
│ ├── cache_vts_GMM.3 data
│ ├── cache_vts_GMM.4 data
│ ├── cache_vts_GMM.5 data
│ ├── cache_vts_GMM.6 data
│ ├── cache_vts_GMM.7 data
│ ├── cache_vts_GMM.8 data
│ ├── cache_vts_GMM.9 data
│ ├── cache_vts_GMM.m data
│ ├── cache_vts.m data
│ ├── cache_vts_tran_GMM.m data
│ ├── ._speech_nav_0.wav RIFF (little-endian)
data, WAVE audio, Microsoft PCM, 16 bit, mono 16000 Hz
│ ├── ._speech_nav_1.wav RIFF (little-endian)
data, WAVE audio, Microsoft PCM, 16 bit, mono 16000 Hz
│ ├── ._speech_nav_2.wav RIFF (little-endian)
data, WAVE audio, Microsoft PCM, 16 bit, mono 16000 Hz
│ ├── ._speech_nav_3.wav RIFF (little-endian)
data, WAVE audio, Microsoft PCM, 16 bit, mono 16000 Hz
│ ├── ._speech_nav_4.wav RIFF (little-endian)
data, WAVE audio, Microsoft PCM, 16 bit, mono 16000 Hz
│ ├── ._speech_nav_5.wav RIFF (little-endian)
data, WAVE audio, Microsoft PCM, 16 bit, mono 16000 Hz
│ └── ._speech_nav_6.wav RIFF (little-endian)
data, WAVE audio, Microsoft PCM, 16 bit, mono 16000 Hz
├── debug directory
└── testdata directory

│ ├── cache_r.1 data
│ ├── cache_rgts.0 Microsoft Document Ima
│ ├── cache_rgts.m data
│ ├── cache_r.m data
│ ├── cache_vts.0 data
│ ├── cache_vts.1 data
│ ├── cache_vts_GMM.0 data
│ ├── cache_vts_GMM.1 data
│ ├── cache_vts_GMM.10 data
Database Tables/Files Description
Table 7.13 Important Database Tables and Files from /data/data/

com.google.android.apps.maps/databases/da_destination_history
destination_history � time¼ 1295058395176
� dest_lat¼ 37786034
� dest_lng¼ -122405174
� dest_title¼Coffee Bean and Tea Leaf
� dest_address¼ 773 Market Street San Francisco,

CA 94103
� dest_token¼ FbKRQAIdyj60-CE--yMryKRCIQ
� source_lat¼ 37791708
� source_lng¼ -122410077
� day_of_week¼ 6
� hour_of_day¼ 18

Android app analysis and reference 357
Important Database Tables and Files
While each database should be examined, on the HTC Incredible, two contained
highly useful information. The first is the da_destination_history database as shown
in Table 7.13 and the search_history database shown in Table 7.14.
Table 7.14 Important Database Tables and Files from /data/data/

com.google.android.apps.maps/databases/search_history.db

Description

suggestions � _id¼ 140
� data1¼ the stanford court, a renaissance hotel, 905 california

street, san francisco, ca 94108
� singleResult¼
� displayQuery¼ The Stanford Court, A Renaissance Hotel, 905

California Street, San Francisco, CA 94108
The files directory also contains a significant amount of information. For
example, the first part of the DATA_LAYER_24 file contains the following
strings:

t,+0
XThe Stanford Court, A Renaissance Hotel, 905 California Street,
San Francisco, CA 94108
FQqpQAIdGS20-CHNignjYUhNwQ,CJ
$3.75;B
VWalking directions (beta): use caution.
Head southeast on Naglee Ave toward Cayuga Ave
3 %(
Balboa Park BART`
167 ft
37 secsRV
Turn left at Cayuga Ave
78aBo16F4yPZxvWb9KipKA
0.2 mi
3 minsRU
Turn left at Ottawa Ave
3 ((
KutrDTBAAz1iBqg0_dtz3w
167 ft
40 secsRW
Turn right at Delano Ave
paD-lLwjtwdrtiMP6pjAOw
0.3 mi
5 minsRV
Turn left at Geneva Ave
CHzTIqx_6bEUmrZ5e2dnBw
0.2 mi
4 minsR
#Millbrae-SFIA to Pittsburg/Baypoint
Balboa Park BART:
Powell St. BARTB
Pittsburg / Bay Point`
11 mins
Civic Center BART
us-ca-bart:CIVC

358 CHAPTER 7 Android application and forensic analysis
The data stored on the SD card is used for the turn-by-turn directions for the
Google Maps Navigation and the turn-by-turn directions are time stamped:

ahoog@ubuntu:~/htc-inc/mnt/sdcard/Android/data/com.google.android.apps.maps/
cache$ ls -lah | grep speech
-rwxr-xr-x 1 root root 105K 2011-01-27 14:35 ._speech_nav_0.wav
-rwxr-xr-x 1 root root 81K 2011-01-27 14:34 ._speech_nav_1.wav
-rwxr-xr-x 1 root root 127K 2011-01-27 14:34 ._speech_nav_2.wav
-rwxr-xr-x 1 root root 61K 2011-01-27 14:33 ._speech_nav_3.wav
-rwxr-xr-x 1 root root 94K 2011-01-27 14:41 ._speech_nav_4.wav
-rwxr-xr-x 1 root root 67K 2011-01-27 14:41 ._speech_nav_5.wav
-rwxr-xr-x 1 root root 112K 2011-01-27 14:41 ._speech_nav_6.wav

Analyst Notes
Analyst notes for /data/data/com.google.android.apps.maps:

� The app stores a significant amount of information about maps, tiles, searches,
and more in the files directory and should be closely examined.

� While each database may not contain information, both search_history.db and
da_destination_history should be examined closely.

� While the shared_prefs direction contains some information, most is not useful to
a forensic examination. However, the authentication token can be recovered,
which may be of interest in a security review.

� The Navigation function caches map data on the SD card, as well as .wav files of
the actual directions. If you look at the time stamps on the file, which are
prefaced with a “._speech_nav,” you can determine when the directions were
provided and also hear the actual spoken directions.
Gmail
App Info
Google provides a native client for their Gmail service:

� App Name: Gmail (Google Mail)
� Package name: com.google.android.gm
� Version: 2.2
� Device: HTC Incredible
� App developer: Google

Directories, Files, and File Types
In /mnt/sdcard/Android/data/com.google.android.apps.maps/:
com.google.android.gm/ directory
├── app_sslcache directory
│ └── android.clients.google.com.443 data
├── cache directory
│ ├── download directory
│ │ └── .jpeg JPEG image data, JFIF standard 1.01
│ └── webviewCache directory

├── databases directory
│ ├── downloads.db SQLite 3.x database, user version 100
│ ├── gmail.db SQLite 3.x database, user version 18
│ ├── gmail.db-journal empty
│ ├── mailstore.book@viaforensics.com.db SQLite 3.x database, user version 56
│ ├── mailstore.personal@emailaddress.com.db SQLite 3.x database, user version 56
│ ├── suggestions.db SQLite 3.x database, user version 513
│ ├── webviewCache.db SQLite 3.x database, user version 4
│ ├── webviewCache.db-journal data
│ └── webview.db SQLite 3.x database, user version 10
├── files directory
├── lib directory
└── shared_prefs directory
 ├── Gmail.xml XML document text
 └── _has_set_default_values.xml XML document text

Android app analysis and reference 359
Important Database Tables and Files
The Gmail app stores a significant amount of information in SQLite databases and
a sample of key tables is shown in Table 7.15.
Table 7.15 Important Database Tables and Files from /data/data/com.google.

android.gm/databases/mailstore.book@viaforensics.com.db

Database
Tables/Files Description

conversations � _id¼ 1343614283601791413
� queryId¼ 3
� subject¼New Banking Trojan Discovered Targeting

Businesses’ Financial Accounts
� maxMessageId¼ 1347608009807593988
� snippet¼ Forwarded message From: “Andrew Hoog”

<book@viaforensics.com> Date .
� fromAddress¼ n 2 0 0

messages � _id¼ 2
� messageId¼ 1338926826441746102
� conversation¼ 1338926826441746102
� fromAddress¼ “Hoog, Andrew” <book@viaforensics.

com>
� toAddresses¼ “” <us12268@somegraphxcompany.

org>
� ccAddresses¼
� bccAddresses¼
� replyToAddresses¼
� dateSentMs¼ 1276900125000
� dateReceivedMs¼ 1276900125971
� subject¼ viaForensics training packet

(continued on next page)

mailto:book@viaforensics.com
mailto:book@viaforensics.com
mailto:book@viaforensics.com
mailto:us12268@somegraphxcompany.org
mailto:us12268@somegraphxcompany.org

Table 7.15 Important Database Tables and Files from /data/data/com.google.

android.gm/databases/mailstore.book@viaforensics.com.db (Continued)

Database
Tables/Files Description

� snippet¼Hello, Per our conversation with sandy, we
need 11 packets by 10am monday. Th.

� listInfo¼
� personalLevel¼ 0
� body¼<p>Hello, Per our conversation with sandy, we

need 11 packets by 10am monday. Thanks. Andrew

</p>

� bodyEmbedsExternalResources¼ 0
� joinedAttachmentInfos¼
� synced¼ 1
� error¼
� clientCreated¼ 0
� refMessageId¼ 0
� forward¼ 0
� includeQuotedText¼ 0
� quoteStartPos¼ 0
� bodyCompressed¼
� customFromAddress¼

360 CHAPTER 7 Android application and forensic analysis
Analyst Notes
Analyst notes for /data/data/com.google.android.gm:

� Each configured Gmail account will have its own SQLite database, which will
contain the entire e-mail content.

� Other databases such as downloads.db, suggestions.db, and gmail.db contain
additional information.

� Some SQLite journal files may be recoverable.
� The cache/download directory stores downloads.
� The synced Gmail accounts are also referenced in the Gmail.xml in shared_prefs.
Facebook
App Info
This is the office Facebook app.

� App Name: Facebook
� Package name: com.facebook.katana
� Version: 1.2
� Device: HTC Incredible
� App developer: Facebook

Android app analysis and reference 361
Directories, Files, and File Types
In /data/data/com.facebook.katana:
com.facebook.katana/ directory
├── cache directory
│ └── webviewCache directory
├── databases directory
│ ├── fb.db SQLite 3.x database, user version 58
│ ├── webviewCache.db SQLite 3.x database, user version 4
│ ├── webviewCache.db-journal data
│ └── webview.db SQLite 3.x database, user version 10
├── files directory
│ ├── 093m JPEG image data, JFIF standard 1.01
│ ├── 0iC8 JPEG image data, JFIF standard 1.01
│ ├── 0NUX JPEG image data, JFIF standard 1.01
│ ├── 0SSB JPEG image data, JFIF standard 1.01
│ ├── 0vgY JPEG image data, JFIF standard 1.01
│ ├── 0xKj JPEG image data, JFIF standard 1.01
<snip>
│ ├── vT4y JPEG image data, JFIF standard 1.01
│ ├── VVzz JPEG image data, JFIF standard 1.01
│ ├── wE7J JPEG image data, JFIF standard 1.01
│ ├── WHTa JPEG image data, JFIF standard 1.01
│ ├── X663 JPEG image data, JFIF standard 1.01
│ ├── XzR6 JPEG image data, JFIF standard 1.01
│ ├── y44e JPEG image data, JFIF standard 1.01
│ └── YLyf JPEG image data, JFIF standard 1.01
├── lib directory
└── shared_prefs directory
 └── com.facebook.
 katana_preferences.xml XML document textvv
Important Database Tables and Files
There is one primary database as shown in Table 7.16.

Analyst Notes
Analyst notes for /data/data/com.facebook.katana:

� The fb.db contains nearly all of the information and only three of the tables were
profiled above. Full table list includes the following:

� albums
� info_contacts
� notifications
� android_metadata
� key_value
� perf_sessions
� chatconversations
� mailbox_messages
� photos
� chatmessages
� mailbox_messages_display
� search_results

Table 7.16 Important Database Tables and Files from /data/data/

com.facebook.katana/databases/fb.db

Database Tables/Files Description

friends � _id¼ 125
� user_id¼ removed
� first_name¼ FName
� last_name¼ LName
� display_name¼ FName LName
� user_image_url¼ http://profile.ak.fbcdn.net/hprofile-ak-

snc4/aa.jpg
� user_image¼ ÿØÿà
� intent¼ content://com.facebook.katana.provider.

FriendsProvider/info_contacts/uid<snip>
� birthday_month¼ 01
� birthday_day¼ 01
� birthday_year¼ 1929
� hash¼ -15123123123177976

user_statuses � _id¼ 21
� user_id¼ removed
� first_name¼ FName
� last_name¼ LName
� display_name¼ FName LName
� user_pic¼ http://profile.ak.fbcdn.net/hprofile-ak-snc4/

aa.jpg
� timestamp¼ 1296367386
� message¼ geolocation, geolocation,

geolocation.hmmm.

mailbox_messages � _id¼ 13
� folder¼ 0
� tid¼ 1825710720339
� mid¼ 0
� author_id¼ removed
� sent¼ 1290345224
� body¼ happy birthday! hope it was a fun day and that

you have a wonderful year!

362 CHAPTER 7 Android application and forensic analysis
� default_user_images
� mailbox_profiles
� stream_photos
� events
� mailbox_threads
� user_statuses
� friends
� mailbox_users
� user_values
� The files directory contains a significant number of images from the Facebook

app.

http://profile.ak.fbcdn.net/hprofile-ak-snc4/aa.jpg
http://profile.ak.fbcdn.net/hprofile-ak-snc4/aa.jpg
http://profile.ak.fbcdn.net/hprofile-ak-snc4/aa.jpg
http://profile.ak.fbcdn.net/hprofile-ak-snc4/aa.jpg

Android app analysis and reference 363
Adobe Reader
App Info
This is the official Abode Reader for PDF files

� App Name: Adobe Reader
� Package name: com.adobe.reader
� Version: 9.0.1
� Device: HTC Incredible
� App developer: Adobe

Directories, Files, and File Types
In /data/data/com.adobe.reader:

com.adobe.reader/ directory
├── cache directory
│ └── cache_file.pdf PDF document, version 1.1
├── lib directory
└── shared_prefs directory
 ├── AdobeReader.xml XML document text
 └── com.adobe.reader.preferences.xml XML document text
Important Database Tables and Files
The com.adobe.reader.preferences.xml preferences file:

<?xml version='1.0' encoding='utf-8' standalone='yes' ?>
<map>
<string name="recentFile0">/sdcard/dropbox/Android intro.pdf</string>
<string name="recentFile3">/mnt/sdcard/download/presentation-powerpoint.pdf
</string>
<string name="recentFile2">/mnt/sdcard/download/dinner-1.pdf</string>
<string name="recentFile1">/mnt/sdcard/download/file-1.pdf</string>
</map>
Analyst Notes
Analyst notes for /data/data/com.adobe.reader:

� Cached PDF files are stored in the cache directory.
� A list of recent files is stored in cache/com.adobe.reader.preferences.xml.
SUMMARY

While the acquisition of Android devices is the focus of much research, devel-
opment, and discussion, it is really only half of the challenge of Android forensics.
Analysis is needed with both logical and physical techniques. However, the amount
of analysis needed after a physical acquisition is far greater. The goal of this
chapter was to provide techniques that would allow a forensic analyst or security
engineer to examine and extract data from acquisitions even if the file systems are
not supported by forensic utilities. By leveraging existing forensic utilities, Linux

364 CHAPTER 7 Android application and forensic analysis
commands and, at times, hex analysis, much of the data required for an investi-
gation are available.
References
File times (Windows). (n.d.). Retrieved February 13, 2011, from http://msdn.microsoft.com/

en-us/library/ms724290%28VS.85%29.aspx.
Carrier, B. (n.d.). Mactime outputdSleuthKitWiki. Retrieved February 13, 2011, from http://

wiki.sleuthkit.org/index.php?title¼Mactime_output.
Casey, E. (n.d.). Misinterpretation of file system timestamps. Retrieved February 13, 2011,

from http://blog.cmdlabs.com/2009/05/08/misinterpretation-of-file-system-timestamps/.
Debugging in Android with tombstones. (n.d.). Retrieved March 14, 2011, from http://

crazydaks.com/debugging-in-android-with-tombstones.html.
Digital assembly: Adroit photo forensicsdSmartCarving�. (n.d.). Retrieved February 13,

2011, from http://digital-assembly.com/products/adroit-photo-forensics/features/smartcar
ving.html.

Digital DetectivedDCode. (n.d.). Retrieved February 14, 2011, from http://www.digital-
detective.co.uk/freetools/decode.asp.

Epoch converterdepoch & unix timestamp conversion tools. (n.d.). Retrieved February 14,
2011, from http://www.epochconverter.com/.

Grundy, B. (n.d.). Linux LEO. Retrieved February 19, 2011, from http://www.linuxleo.com.
Kessler, G. (n.d.). File signatures table. Retrieved February 13, 2011, from http://www.

garykessler.net/library/file_sigs.html.
Ross, A. (n.d.). digfor: Time and timestamps. Retrieved February 13, 2011, from http://

digfor.blogspot.com/2008/10/time-and-timestamps.html.
RoviodAngry Birds. (n.d.). Retrieved February 15, 2011, from http://www.rovio.com/index.

php?page¼angry-birds.
Scalpel: a frugal, high performance file carver. (n.d.). Retrieved February 13, 2011, from

www.digitalforensicssolutions.com/Scalpel/.
What is my IP address. (n.d.). Retrieved February 19, 2011, from http://www.whatismyip.

com/.
YAFFS debugging. (n.d.). Retrieved February 17, 2011, from http://www.yaffs.net/

yaffs-debugging.

http://msdn.microsoft.com/en-us/library/ms724290%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms724290%28VS.85%29.aspx
http://wiki.sleuthkit.org/index.php%3Ftitle%3DMactime_output
http://wiki.sleuthkit.org/index.php%3Ftitle%3DMactime_output
http://wiki.sleuthkit.org/index.php%3Ftitle%3DMactime_output
http://blog.cmdlabs.com/2009/05/08/misinterpretation-of-file-system-timestamps/
http://crazydaks.com/debugging-in-android-with-tombstones.html
http://crazydaks.com/debugging-in-android-with-tombstones.html
http://digital-assembly.com/products/adroit-photo-forensics/features/smartcarving.html
http://digital-assembly.com/products/adroit-photo-forensics/features/smartcarving.html
http://www.digital-detective.co.uk/freetools/decode.asp
http://www.digital-detective.co.uk/freetools/decode.asp
http://www.epochconverter.com/
http://www.linuxleo.com
http://www.garykessler.net/library/file_sigs.html
http://www.garykessler.net/library/file_sigs.html
http://digfor.blogspot.com/2008/10/time-and-timestamps.html
http://digfor.blogspot.com/2008/10/time-and-timestamps.html
http://www.rovio.com/index.php%3Fpage%3Dangry-birds
http://www.rovio.com/index.php%3Fpage%3Dangry-birds
http://www.rovio.com/index.php%3Fpage%3Dangry-birds
http://www.digitalforensicssolutions.com/Scalpel/
http://www.whatismyip.com/
http://www.whatismyip.com/
http://www.yaffs.net/yaffs-debugging
http://www.yaffs.net/yaffs-debugging

Index

Note: Page numbers followed by “f” and “t” denote figures and tables, respectively.
A
Accelerometer, 46

ACTION_BOOT_COMPLETED, 55

ADB pull, 219

Adobe Reader, 363

AFLogical, 228

in All Apps list, 225f

data capture, 226f

data extraction complete, 226f

extract all from command line, 224f

run from command line, 224f
AFPhysical Technique, 278e284

Aftermarket firmware, 32e33

Airplane mode, 202f

Alphanumeric lock, 205f

Android

apps, 8e9

core, projects, 32f

history of, 3e7

milestones, 4t

supported cellular networks, 5e7
Android, Inc., 3

Android 1.5, 42

features and highlights, 68t
Android 1.6, 42e43

features and highlights, 69t
Android 2.0 and 2.1, 69

features and highlights, 69t
Android 2.2, 35f, 69e70

features and highlights, 70t
Android 2.3, 70

features and highlights, 70t
Android 2.3.3, 71

features and highlights, 71t
Android app analysis, 340e363

Adobe Reader, 363

Browser, 342e347

Contacts, 347e349

Cooliris Media Gallery, 353e354

Facebook, 360e362

Gmail, 358e360

Google Maps, 354e358

Media Scanner, 349e350

messaging, 340e341

MMS Helper Application, 341e342

YouTube, 350e352
Android Debug Bridge (ADB), 100e102

for USB debugging, 203e207
Android Development Challenge, 3e4
Android device

as attack vector, 168

for circumventing network controls, 169

connecting to workstation, 90e94

as data theft target, 160e168

detection of, 236f

features of, 5

platform-based distribution, 66f, 67t

procedures for handling, 198e211
network isolation, 200e203, 201t

pass code, circumventing, 203e211

securing, 199e200

as recording device, 169

as storage device, 168e169
Android directory structures, 301e308

Android forensics, 37e38

challenges, 38e39
Android Market, 4, 8e9, 33e37

application
installation of, 34e37, 37f

managing, 36f

permissions, 36f

statistics, 37

on HTC Incredible, 35f
Android Open Source Project (AOSP), 4, 25e31

development process, 27, 28f

downloading and compiling, 29e31

licenses, 26e27

value in forensics, 27e29
Android OS architecture, 86e87, 87f

Android platforms, 1e10, 65e71, 66t

archived, releases, 71t

versions, 41e42
distribution of, 67f

Android security model, 88e90

Android USB mass storage device, imaging

SD card vs. eMMC, 211e218
Android Virtual Device (AVD) manager, 82f

for Linux, 74f
Android virtual devices (AVD), 81e86

creating, 82f, 83f

launching, 83f, 84f

running, 84f, 85f

storage directory, 85t
Apache Software License 2.0 (Apache 2.0 or

ASL2.0), 26

App development security strategies, 184e192

credit card data, 188e189

mobile app security testing, 184e186
365

366 Index
App development security strategies (Continued)

passwords, 186e188

sensitive app data, 189e190

SSL/TLS, 190e192, 191f

usernames, 186
Apple, 8e9

Application programming interfaces (APIs),

device administration sample, 182f

Applications

audit, 183e184

data storage directory structure, 106e107

installation from unknown sources, 89f
appSecure, 185

appWatchdog, 177, 184, 185

apt-get command, 24

AT&T, 5

Attack vector, android device as, 168

Automated Teller Machine (ATM) cards, 179

Automobiles, android devices in, 48e49

B
Backup analysis, 219e220

Baseband modem, 42

Battery, 45e46

Block, 129, 131f

Bluetooth, 7e10

Boot loader, 50e51, 52f, 273e275

Browser, 342e347

bugreport command, 124

C
Camera, 44e45

Carrier, Brian, 14

cat command, 21

cd command, 17

CDMA2000, 5

CD-ROM interface, 94e96

Cellebrite UFED, 229

acquisition, 230e231

audio and video reporting, 235f

data presentation and analysis, 231e233

images reporting, 234f

installation of, 229e230

instruction for Android device, 230f

phone calls reporting, 234f

phone contacts reporting, 232f

phone information reporting, 232f

SMS reporting, 233f
Cellular networks, 5e7

Central processing unit (CPU), 41e42

cgroup file system, 133e136

Chip-off, 270
chmod command, 22e23

chown command, 23

Chromium OS, 48

Closed source software, 173e175

Code Division Multiple Access (CDMA), 5

Commands. See also individual commands

redirecting (>), 25
Commercial providers, 228e266

Cellebrite UFED, 229e233

Compelson MOBILedit!, 233e242

EnCase Neutrino, 242e246

Micro Systemation XRY, 246e251

Paraben Device Seizure, 251e260

viaForensics’ ViaExtract, 260e266
Compelson MOBILedit!, 233e242, 236f, 237f,

238f, 239f

acquisition of, 236e239

backup of whole file system, 237f

calendar, 242f

call logs, 240f

data export format, 238f

data presentation and analysis, 239e242

hex dump, 243f

installation of, 236

MMS storage, 241f

phonebook, 240f

SD card files, 242f

SMS messages, 241f
Computer Fraud and Abuse Act (CFAA), 172

Contacts (application), 347e349

Cooliris Media Gallery, 353e354

Corporate security strategies, 178e184

application and device audit, 183e184

latest software upgradation, 180e181

passwords, pattern, and PIN lock, 178e179

policies, 178

remote device management features, 181e183

remote wipe of device, 179e180
Credit card data, 188e189

Custom branches, 32e33

aftermarket firmware, 32e33

iPhone, 33

OPhone OS, 33
Custom user interfaces, 58, 58t

D
Dalvik Executable (.dex) file, 87

Dalvik VM, 54, 55f, 87

DangerOS, 3

Data at rest, 161e164

Data cables, 200e202

/data/data file, subdirectories in, 107t

Index 367
Data in motion. See Data in transit

Data in transit, 164e168

Data storage, Android device for, 168e169

Data structures, 105e124

application data storage, 106e107

storage methods, 107e124
files on external storage, 110e111

files on internal storage, 108e110

network, 112e115

shared preferences, 107e108

SQLite, 111e112

type of data stored, 106
Data theft target, android device as, 160e168

Debugging, USB, 99e100

Device

administration, 182f, 183f

audit, 183e184

target, modification of, 197e198

remote wipe of, 179e180
devpts file system, 133e136

Digital Detective, DCode time conversion utility

by, 301f

dumpstate command, 122e124

sections, 123te124t
dumpsys command, 122

E
Electronic Communications Privacy Act (ECPA),

172

Embedded MultiMediaCard (eMMC), 211

imaging, 211e218
Emulator. See Android Virtual Devices

EnCase Neutrino, 242e246

acquisition, 244, 244f

contacts, 245f

data presentation and analysis, 244e246

HTML report, 249f

installation, 243e244

MMS, 247f

SMS, 246f

web history, 248f
Error-correcting code (ECC), 130

Exchange ActiveSync (EAS) protocol, 162e163,

182

Extended file system (EXT), 140

External storage, 110e111

F
Facebook, 360e363

Fastboot, 276e278

FAT file system, time and time stamps, 287

FAT32 file system, 140e141
FAT forensic analysis, 308e321

additional analysis, 316e317

analysts, notes of, 317e321
nomedia, 321

SD card, apps on, 317e321

timeline analysis, 309e315
File carving, 291e293

YAFFS2, 332e334
File system analysis, 288e291

YAFFS2, 330e332
File systems, 132e153

extended file system, 140

FAT32/VFAT, 140e141

to include in investigation, 291t

mounted file systems, 153e157

proc, 136e137

rootfs, devpts, sysfs, and cgroup, 133e136

tmpfs, 137e140

YAFFS, 150e153

YAFFS2, 141e149
find command, 21e22

Flash Transition Layer (FTL), 131

Forensic analysis, Android application

Android app analysis, 340e364
Adobe Reader, 363

Browser, 342e343

Contacts, 347e348

Cooliris Media Gallery, 353e354

Facebook, 360e362

Gmail, 358e360

Google Maps, 354e358

Media Scanner, 349e350

messaging, 240e241

MMS Helper Application, 241e242

YouTube, 350e352

FAT forensic analysis, 308e321

timeline analysis, 309e315

techniques, 285e308

Android directory structures, 301e308

file carving, 291e293

file system analysis, 288e291

hex editor, 296e301

strings, 293e296

timeline analysis, 285e288

YAFFS2 forensic analysis, 321e340

analysts, notes of, 336e340

file carving, 332e334

file system analysis, 330e332

strings analysis, 334e335

timeline analysis, 324e330
Forensic techniques

Android device, procedures for handling,

198e211

368 Index
Forensic techniques (Continued)
network isolation, 200e203, 201t

pass code, circumventing, 203e211

securing the device, 199e200

Android USB mass storage device, imaging

SD card vs. eMMC, 211e218

investigations, types of, 195e196

JTAG, 268e270

AFPhysical Technique, 278e284

chip-off, 270

software-based physical techniques and

privileges, 270e278

logical techniques, 196e197, 218e266

ADB pull, 218e219

backup analysis, 219e220

AFLogical, 220e228

commercial providers, 228e266

physical techniques, 196, 266e284

hardware-based, 268e270

target device, modification of, 197e198

G
Global positioning system (GPS), 43, 49

Global System for Mobile Communications

(GSM), 5

Gmail, 358e360

userername/password, 210
GNU Public License v2 (GPLv2), 26

Goggles, 45

Google, 34

strategy of, 7e10
Google Maps, 354e358

Google TV, 48

Google USB driver package, for Windows,

78f, 79f

grep command, 24e25

Gyroscope, 46

H
Hardware-based physical techniques,

268e270

Hardware platforms

accelerometer and gyroscope, 46

Android updates, 57e58
aftermarket Android devices, 58

custom user interfaces, 58, 58t

baseband modem and radio, 42

battery, 45e46

boot loader, 50e51, 52f

camera, 44e45

central processing unit, 41e42

device types, 47e49
Google TV, 48

netbook, 48

smartphone, 47

tablet, 47, 48

vehicles, in-board, 48, 49

global positioning system, 43

init process, 51e54, 55f

keyboard, 45

Linux Kernel, 51, 52f

manufacturers, 56e57

memory, 42, 43

“power on” and on-chip boot ROM code

execution, 50, 51f

screen, 44

secure digital card, 44

speaker and microphone, 46, 47

system server, 54e55, 56f

universal serial bus, 46

wireless, 43e44

Zygote and Dalvik, 54, 55f
help command, 17

Hex editor, 296e301

HTC Incredible, 60, 61f

connect to PC options, 94f

Nexus OneI, 9f, 60e62, 61f

I
Initial program load (IPL), 50e51

Init process, 51e54, 55f

Integers

decimal, hex, and binary representation of,

130t
Integrated Digital Enhanced Network (iDEN), 5

Internal storage, 108e110

Internationalization, 31

custom branches, 32e33

keyboards, 31e32

unicode, 31
Investigations

file systems in, 291t

types of, 195e196
IP address lookup, results of, 336

iPhone, android on, 33

Is command, 18e19

J
JSON format, 127

JTAG, 268e270

AFPhysical Technique, 278e284

chip-off, 210, 270

software-based physical techniques and

privileges, 270e278

Index 369
boot loaders, 273e275

fastboot, 276e278

recovery mode, 272

root privileges, researching, 272e273

sbf_flash, 275e276

su command, 271e272
K
Keyboards, 31e32, 45

L
less command, 20e21

Linux, 74f

automount, disabling, 15

and forensics, basic commands, 15

history of, 11e12

installation in VirtualBox, 12e14

SDK for
downloading, 72f

extracting, 73f

installation, 72e76

Linux kernel, 51, 52f

logging, 115e116
Log, method types, 117t

log2timeline, 309

logcat, 116e119

Logical techniques, 218e266

ADB pull, 218e219

AFLogical, 220e228

backup analysis, 219e220

commercial providers, 228e266

vs. physical techniques, difference between,

196e197
Loopback device, 312

M
MACB, meaning by file system, 288t

man command, 16

Man-in-the-middle SSL attack, 167f

md5.txt, 3

Media Scanner, 349e350

Memory, 42e43

types, 125e132
Memory Technology Device (MTD) system,

130e132

partitions, size conversions, 132t
Messaging (sms and mms), 340e341

Microphone, 46e47

Microsoft Developers Network (MSDN), 286

Micro Systemation XRY, 246e251

acquisition, 250

call log, 253f
contacts, 252f

data presentation and analysis, 250e251

data types available for Droid extraction,

251f

extraction complete, 252f

images, 254f

installation, 249

search device type, 250f

SMS, 253f
Minix OS, 11e12

mkdir command, 1

MMS Helper Application, 341e342

Mobile app security testing, 184e186

Mobile directory number (MDN), 108

Mobile Equipment Identifier (MEID), 120

Motorola Droid, 59e60, 60f

Mounted file systems, 153e156, 155t

Multichip package (MCP), 42e43

architecture, 43f
Multilevel cells (MLC), 128

N
NAND Flash, 42e43, 105

blank file on, 150t

encrypted, 175e176

saving file’s new ObjectHeader in,

150te153t
nano command, 18, 19f

Native Code Development, 88

Netbook, 48

Network(s)

controls
circumventing, android device for,

169e170

as file storage mechanism, 112e115

isolation, 200e203, 201t

power and data cables, 200e202

powered-off devices, 203
Nexus phones, 9e10

Nexus One (HTC), 9f, 60e62, 61f

Nexus S (Samsung), 10f
NTFS file system, time and time stamps, 287f

O
Open Handset Alliance (OHA), 1e10

members of, 6te7t
Open Mobile Phone OS (OPhone OS), 33

Open Office’s Calc program, 314f, 315f

viewing timeline in, 315f
Open source software, 10e25, 173e175

Oracle VM VirtualBox Manager

for OS X, 12e13, 13f

370 Index
OS X, 80f

SDK for
extracting, 80f

installation, 79e81, 81f

Out of band (OOB), 131

P
Paraben Device Seizure, 251e260

acquisition, 255e256, 256f, 257f

call logs, 259f

contacts, 258f

data presentation and analysis, 256e260

Droid directory structure, 257f

file sorter, 260f

identification, 256f

installation, 255

SMS, 258f

web history, 259f
Pass code

circumventing, 203e211
ADB for USB debugging, 208

GMail user/pass, 210

JTAG and chip-off, 210

recovery mode, 207

recovery partition, flashing, 208

screen lock bypass app, 209

smudge attack, 207, 207f

procedures, 199
Passwords, 178, 186

Pattern lock, 178, 204f

Payment Card Industry Data Security Standard

(PCI DSS), 188, 189

Personal identification number (PIN), 203

Physical techniques, 266

hardware-based, 268

vs. logical techniques, difference between,

196
PIN lock, 178, 204f

Pipe character (“j”), 25
Policies, security, 178

Portable digital media interface (PDMI),

200e201

Power cables, 200

Powered-off devices, 203

Power on and on-chip boot ROM code execution,

50, 51f

proc file system, 136

R
Radio, 42

Random-access memory (RAM), 42, 125

NAND Flash, 105
Recording device, android device as,

169

Recovery mode, 207, 272

key combinations to boot into, 208t

partition, flashing, 208
Red Hat, 11

Relational database management systems

(RDBMS), 111

Remote device management features, 181

Remote Desktop Protocol (RDP) viewer, 14

rmdir/rm command, 18

rootfs file system, 133

Root privileges, researching, 272

RSD Lite, 274f

Rubin, Andy, 3, 8

S
Samsung

Nexus S, 10f
sbf_flash, 275

Scalpel, viewing images recovered using,

334f

Screen, of Android device, 44

Screen lock bypass app, 209

sdcard-timeline.csv file, 314f

Second program loader (SPL), 50

Secure digital (SD) card, 44, 96

apps on, 315f, 317, 319f

imaging, 211, 212
Secure Sockets Layer (SSL), 86, 190, 191f

Security, 170

corporate strategies, 178
application and device audit, 183e184

latest software upgradation, 183

passwords, pattern, and PIN lock,

178

policies, 178

remote device management features,

181

remote wipe of device, 179

encrypted NANS Flash, 175

individual strategies, 176

open source vs. closed source, 173

philosophy, 170

US Federal Computer Crime Laws and

Regulations, 172
Sensitive app data, 189

Shared preferences, 107

Sleuth Kit, The (TSK), 14

Smali/baksmali, 87

SmartCarving, 292

Smartphone, 47

Index 371
U.S. subscribers, 2t

worldwide sales to end users, 2t
Smudge attack, 207, 207f

Software

-based physical techniques, 270
boot loaders, 273

fastboot, 276

recovery mode, 272

root privileges, researching, 272

sbf_flash, 275

su command, 271

closed source, 207

open source, 207

upgradation, 211
Software development kit (SDK), 3e4, 71

additional packages, selecting, 74f

Android OS architecture, 86

Android virtual devices, 81

Dalvik VM, 87

and forensics, 90

installation, 72, 75f

for Linux, 74f
downloading, 72f

extracting, 73f

installation, 72

Native Code Development, 88

for OS X, 80f

extracting, 80f

installation, 79, 81f

release history, 71

for Windows, 77f

installation, 76
Speaker, 46

Sprint Nextel, 5e7

SQLite, 111

Storage device, android device as, 168

Strings, 293

Subscriber identity module (SIM), 5

su command, 271

sudo command, 23

Swype, 32

sysfs file system, 133

System server., 54, 56f

T
Tablet, 47

Target device, modification of, 197

Timeline analysis, 285

FAT, 309

YAFFS2, 324
T-Mobile, 5

T-Mobile G1, 4, 59, 59f, 269f
tmpfs file system, 137

Torvalds, Linex, 11

Transport Layer Security (TLS), 190, 191f

tree command, 19

U
Ubuntu, 12

automount, disabled, 15f

remote desktop protocol, install VBox additions

over on, 92f

webviewCache in, 139f
Unicode, 31

Universal serial bus (USB), 46

debugging, 99e100, 99f, 100f

interfaces, 94e100
CD-ROM interface, 94e96

SD cards, 96e99

Universal subscriber identity module (USIM), 5

Unix Epoch, time conversion, 301f

User names, 186

US Federal Computer Crime Laws and

Regulations, 172e173

V
Vehicles. See Automobiles, android devices in

VFAT file system, 140e141

viaForensics’ ViaExtract, 260, 261f, 262f, 265f

acquisition, 261e263

browser history and bookmarks, 264f

call logs, 265f

data extraction, 262f

data presentation and analysis, 263e266

device information, 264f

forensic analysis and report, 263f

installation, 260e261

PDF export, 267f

video media metadata, 266f
VirtualBox (Oracle)

adding USB filter on Linux host running, 91f

connecting USB device on Linux host running,

92f

Linux installation in, 12e14
VMWare Fusion, connecting USB device to

Ubuntu VM in, 91f

Voice over IP (VoIP) service, 10

W
Wear-leveling, 130e131

Wi-Fi, 7e10

Windows

SDk for, 77f
installation, 76e79

372 Index
Wireless, 43e44

Workstation, connecting Android device to,

90e94

X
XACT, SMS message in, 254f

Xargs, 3

XDA Developers, 33

Y
Yet Another Flash File System (YAFFS),

150e153, 150t
Yet Another Flash File System2 (YAFFS2), 27,

141e153

forensic analysis, 321e340
analysts, notes of, 335e340

file carving, 332e334

file system analysis, 330e332

strings analysis, 334e335

timeline analysis, 324e330

Nanddump, artifacts from, 329t
YouTube, 350e352

Z
Zygote, 54, 55f

	title
	front matter
	Android Forensics

	Copyright
	 Copyright

	Dedication
	 Dedication

	Acknowledgements
	 Acknowledgements

	Introduction
	 Introduction
	 Chapter 1
	 Chapter 2
	 Chapter 3
	 Chapter 4
	 Chapter 5
	 Chapter 6
	 Chapter 7
	 Website

	About the Author
	 About the Author
	 About the Technical Editor

	About the Technical Editor
	 About the Technical Editor

	Chapter 1 - Android and mobile forensics
	1 Android and mobile forensics
	Introduction
	Android platform
	History of Android
	Open Handset Alliance
	Android Features
	Supported Cellular Networks

	Google's Strategy
	Apps
	Nexus Phones

	Linux, open source software, and forensics
	Brief History of Linux
	Installing Linux in VirtualBox
	The Sleuth Kit (TSK)

	Disable Automount
	Linux and Forensics—Basic Commands
	man
	help
	cd
	mkdir
	rmdir/rm
	nano
	ls
	tree
	less
	cat
	find
	chmod
	chown
	sudo
	apt-get
	grep
	Piping and Redirecting Files (| and ﹥)

	Android Open Source Project
	AOSP Licenses
	Development Process
	Value of Open Source in Forensics
	Downloading and Compiling AOSP

	Internationalization
	Unicode
	Keyboards
	Custom Branches
	Aftermarket Firmware
	OPhone OS
	Android on iPhone (and Other non-Android Devices)

	Android Market
	Installing an app
	Application Statistics

	Android forensics
	Challenges

	Summary
	References

	Chapter 2 - Android hardware platforms
	2 Android hardware platforms
	Introduction
	Overview of core components
	Central Processing Unit
	Baseband Modem/Radio
	Memory (Random-Access Memory and NAND Flash)
	Global Positioning System
	Wireless (Wi-Fi.com and Bluetooth)
	Secure Digital Card
	Screen
	Camera
	Keyboard
	Battery
	Universal Serial Bus
	Accelerometer/Gyroscope
	Speaker/Microphone

	Overview of different device types
	Smartphone
	Tablet
	Netbook
	Google TV
	Vehicles (In-board)
	Global Positioning System
	Other Devices

	ROM and boot loaders
	Power On and On-chip Boot ROM Code Execution
	Boot Loader (Initial Program Load/Second Program Loader)
	Linux Kernel
	The Init Process
	Zygote and Dalvik
	System Server

	Manufacturers
	Android updates
	Custom User Interfaces
	Aftermarket Android Devices

	Specific devices
	T-Mobile G1
	Motorola Droid
	HTC Incredible
	Google Nexus One

	Summary
	References

	Chapter 3 - Android software development kit and android debug bridge
	3 Android software development kit and android debug bridge
	Introduction
	Android platforms
	Android Platform Highlights Through 2.3.3 (Gingerbread)
	Android 1.5
	Android 1.6
	Androids 2.0 and 2.1
	Android 2.2
	Android 2.3
	Android 2.3.3

	Software development kit (SDK)
	SDK Release History
	SDK Install
	Linux SDK Install
	Windows SDK Install
	OS X SDK

	Android Virtual Devices (Emulator)
	Android OS Architecture
	Dalvik VM
	Native Code Development

	Android security model
	Forensics and the SDK
	Connecting an Android Device to a Workstation
	USB Interfaces
	CD-ROM Interface
	SD Cards (Removable and Virtual)
	USB Debugging

	Introduction to Android Debug Bridge

	Summary
	References

	Chapter 4 - Android file systems and data structures
	4 Android file systems and data structures
	Introduction
	Data in the Shell
	What Data are Stored
	App Data Storage Directory Structure
	How Data are Stored
	Shared Preferences
	Files on Internal Storage
	Files on External Storage
	SQLite
	Network
	Kernel, System, and Application Logs
	Linux kernel logging
	logcat
	dumpsys
	dumpstate
	bugreport

	Type of memory
	RAM
	NAND Flash

	File systems
	rootfs, devpts, sysfs, and cgroup File Systems
	proc
	tmpfs
	Extended File System (EXT)
	FAT32/VFAT
	YAFFS2
	YAFFS Example

	Mounted file systems
	Mounted File Systems

	Summary
	References

	Chapter 5 - Android device, data, and app security
	5 Android device, data, and app security
	Introduction
	Data theft targets and attack vectors
	Android Devices as a Target
	Data at Rest
	Data in Transit

	Android Devices as an Attack Vector
	Data Storage
	Recording Devices
	Circumventing Network Controls

	Security considerations
	Security Philosophy
	US Federal Computer Crime Laws and Regulations
	Open Source Versus Closed Source
	Encrypted NAND Flash

	Individual security strategies
	Corporate security strategies
	Policies
	Password/Pattern/PIN Lock
	Remote Wipe of Device
	Upgrade to Latest Software
	Remote Device Management Features
	Application and Device Audit

	App development security strategies
	Mobile App Security Testing
	App Security Strategies
	User Names
	Passwords
	Credit Card Data
	Sensitive App Data
	SSL/TLS

	Summary
	References

	Chapter 6 - Android forensic techniques
	6 Android forensic techniques
	Introduction
	Types of Investigations
	Difference Between Logical and Physical Techniques
	Modification of the Target Device

	Procedures for handling an Android device
	Securing the Device
	Pass Code Procedures

	Network Isolation
	Power and Data Cables
	Powered-off Devices

	How to Circumvent the Pass Code
	Utilize ADB if USB Debugging is Enabled
	Smudge Attack
	Recovery Mode
	Flash a New Recovery Partition
	Screen Lock Bypass App
	How it Works
	Use Gmail User/Pass
	JTAG and Chip-off

	Imaging Android USB mass storage devices
	SD Card Versus eMMC
	How to Forensically Image the SD Card/eMMC

	Logical techniques
	ADB Pull
	Backup Analysis
	AFLogical
	Commercial Providers
	Cellebrite UFED
	Installation
	Acquisition
	Data presentation and analysis

	Compelson MOBILedit!
	Installation
	Acquisition
	Data presentation and analysis

	EnCase Neutrino
	Installation
	Acquisition
	Data presentation and analysis

	Micro Systemation XRY
	Installation
	Acquisition
	Data presentation and analysis

	Paraben Device Seizure
	Installation
	Acquisition
	Data presentation and analysis

	viaForensics' ViaExtract
	Installation
	Acquisition
	Data presentation and analysis

	Physical techniques
	Hardware-Based Physical Techniques
	JTAG
	Chip-off
	Software-Based Physical Techniques and Privileges
	su
	Researching Root Privilege Exploits
	Recovery Mode
	Boot Loaders
	sbf_flash
	fastboot

	AFPhysical Technique

	Summary
	References

	Chapter 7 - Android application and forensic analysis
	7 Android application and forensic analysis
	Introduction
	Analysis techniques
	Timeline Analysis
	File System Analysis
	File Carving
	Strings
	Hex: A Forensic Analyst's Good Friend
	Android Directory Structures

	FAT forensic analysis
	FAT Timeline Analysis
	FAT Additional Analysis
	FAT Analysts Notes
	Apps on the SD Card
	nomedia

	YAFFS2 forensic analysis
	YAFFS2 Timeline Analysis
	YAFFS2 File System Analysis
	YAFFS2 File Carving
	YAFFS2 Strings Analysis
	YAFFS2 Analyst Notes

	Android app analysis and reference
	Messaging (sms and mms)
	App Info
	Directories, Files, and File Types
	Important Database Tables and Files
	Analyst Notes

	MMS Helper Application
	App Info
	Directories, Files, and File Types
	Important Database Tables and Files
	Analyst Notes

	Browser
	App Info
	Directories, Files, and File Types
	Important Database Tables and Files
	Analyst Notes

	Contacts
	App Info
	Directories, Files, and File Types
	Important Database Tables and Files
	Analyst Notes

	Media Scanner
	App Info
	Directories, Files, and File Types
	Important Database Tables and Files
	Analyst Notes

	YouTube
	App Info
	Directories, Files, and File Types
	Important Database Tables and Files
	Analyst Notes

	Cooliris Media Gallery
	App Info
	Directories, Files, and File Types
	Important Database Tables and Files
	Analyst Notes

	Google Maps
	App Info
	Directories, Files, and File Types
	Important Database Tables and Files
	Analyst Notes

	Gmail
	App Info
	Directories, Files, and File Types
	Important Database Tables and Files
	Analyst Notes

	Facebook
	App Info
	Directories, Files, and File Types
	Important Database Tables and Files
	Analyst Notes

	Adobe Reader
	App Info
	Directories, Files, and File Types
	Important Database Tables and Files
	Analyst Notes

	Summary
	References

	Index
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

