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Abstract   
 

We review our model of a proton that obeys the Schwarzschild condition. We 
find that only a very small percentage (~10-39%) of the vacuum fluctuations available 
within a proton volume need be cohered and converted to mass-energy in order for the 
proton to meet the Schwarzschild condition.  This proportion is similar to that between 
gravitation and the strong force where gravitation is thought to be ~10-40 weaker than 
the strong force.  Gravitational attraction between two contiguous Schwarzschild 
protons can easily accommodate both nucleon and quark confinement.  In this picture, 
we can treat “strong” gravity as the strong force.  We calculate that two contiguous 
Schwarzschild protons would rotate at c and have a period of 10-23s and a frequency of 
1022 Hz which is characteristic of the strong force interaction time and a close 
approximation of the gamma emission typically associated with nuclear decay. We 
include a scaling law and find that the Schwarzschild proton falls near the least squares 
trend line for organized matter.   Using a semi-classical model, we find that a proton 
charge orbiting at a proton radius at c generates a good approximation to the measured 
anomalous magnetic moment.  
 
Keywords: black holes, Schwarzschild radius, proton, strong force, anomalous 
magnetic moment 
 
1. Introduction 

 
We examine some of the fundamental issues related to black hole physics and 

the amount of potential energy available from the vacuum.  We use a semi-classical 
analogy between strong interactions and the gravitational force under the Schwarzschild 
condition.  We examine the role of the strong nuclear force relative to the gravitational 
forces between two Schwarzschild protons and find that the gravitational component is 
adequate for confinement.  In an alternative approach we can utilize QCD to obtain 
similar results (work in progress).  We also compare our results to a scaling law for 
organized matter and in particular, to the ubiquitous existence of black holes.  We 
calculate the magnetic moment of such a Schwarzschild proton system and we find it to 
be a close approximation to the measured value for the so-called “anomalous” magnetic 
moment of the proton. 
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2. Fundamentals of the Schwarzschild Proton 
 

In our approach to comprehend a fundamental relationship between the strong 
force and gravitational interactions we utilize a semi-classical approach in order to yield 
a more definitive understanding.  The quantum vacuum density is given 
as 393 /1016.5 cmgmv  .  We can calculate the amount of vacuum density necessary 
from the quantum vacuum fluctuations to produce the Schwarzschild condition at a 
nucleon’s radius.  For a proton with a radius of FmrP 32.1  and a volume of 

3391066.9 cmVp
 , the quantity of the density of the vacuum available in the volume 

of a proton, R is 
 

pv VR         (1) 

then volumeprotongmR /1098.4 55 .   
 
One can obtain a similar result utilizing the proton volume pV  and dividing it by 

the Planck volume plv  given by 3plv . Therefore, 3991022.4 cmv pl
 where   is 

the Planck length cm331062.1   .  Then,  
pl

p
v

V
  yields the quantity 

601029.2  where   is the ratio of the proton volume to the Planck volume.  Since the 
Planck’s mass pm  is given as gmmp

51018.2  , then the mass density within a 
proton volume is 

   
     pmR             (2) 

then volumeprotongmR /1098.4 55 .  We note that this value is typically given as 
the mass of matter in the universe.  This may be an indication of an ultimate 
entanglement of all protons.  We then calculate what proportion of the total vacuum 
density R available in a proton volume pV  is necessary for the nucleon to obey the 

Schwarzschild condition 2

2
c
GMRs  .  The mass M , needed to obey the Schwarzschild 

condition for a proton radius of FmrP 32.1  is   
 

G
Rc

M s

2

2

       (3) 

 
where we choose the condition that FmrR Ps 32.1  and the gravitational constant is 
given as 238 /1067.6 sgmcmG  ,and the velocity of light is given as 
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scm /102.99c 10 .  Then M equals the Schwarzschild mass of 
148.85 10M gm   which is derived from the density of the vacuum available in a 

proton volume pV .   
 
We note that only a very small proportion of the available mass-energy density 

from the vacuum within pV   is required for a nucleon to obey the Schwarzschild 
condition.  In fact, the ratio of the quantity of density of the vacuum in the volume of a 
proton, 551098.4 R  to the quantity sufficient for the proton to meet the 

Schwarzschild condition, 148.85 10M gm   is: 
  

                                            411078.1 
R

M                            (4) 

Therefore, only %1078.1 39  of the mass-energy density of the vacuum is 
required to form a “Schwarzschild proton.”  This contribution from the vacuum may be 
the result of a small amount of the vacuum energy becoming coherent and polarized 
near and at the boundary of the “horizon” [1] (Sec 4 pgs 11-16) of the proton due to 
spacetime torque and Coreolis effects as described by the Haramein-Rauscher solution  
[2, 3]. 

 
Now let us consider the gravitational force between two contiguous 

Schwarzschild protons.  In a semi-classical approach the force between these protons is 
given as  

2

2(2 )p

GMF
r

       (5) 

where the distance between the protons’ centers is FmrP 64.22  ,  yielding a force of   
477.49 10 dynes .  

 
We now calculate the velocity of two Schwarzschild protons orbiting each other 

with their centers separated by a proton diameter.  We utilize the force from Eq. 5 to 
calculate the associated acceleration 

 
M
Fa        (6) 

which yields 232 /1046.8 scma  .                                          
              
We utilized this acceleration to derive the relativistic velocity as 
 
                 2 2 Pv ar .                  (7) 

Then scmv /1099.2 10 .  Thus, cv  , the velocity of light.  The period of 
rotation of such a system is then given by 
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                                                       2 Prt
v


       (8)  

which yields  st 231055.5  .  Interestingly, this is the characteristic interaction time 
of the strong force.   

 
The strong interaction manifests itself in its ability to react in a very short time.  

For example, for a particle which passes an atomic nucleus of about cm1310  in 
diameter with a velocity of approximately scm /1010 , having a kinetic energy of 
approximately 50 MeV for a proton (and 0.03 MeV for an electron), the time of the 
strong interaction is s2310 [4].   

 
Therefore, the frequency of the Schwarzschild proton system is  

                          1f
t

       (9) 

or  Hzf 2210806.1  , which is within the measured gamma ray emission frequencies 
of the atomic nucleus.  This is a most interesting result and is consistent with hadronic 
particle interactions.  

  
Further, we calculate the centrifugal forces that may contribute to the rapid 

weakening of the attractive force at the horizon of such a Schwarzschild proton system.  
As a first order approximation we utilize a semi-classical equation that expresses the 
centrifugal potential between two orbiting bodies.  Note that we utilize the reduced mass 
as typically used in nuclear physics for rotational frames of reference, calculated by 

1 2

1 2
red

M Mm
M M




      (10) 

where 148.85 10M gm  , yielding, (in our case) half the total mass or 144.45 10 gm . 
The expression for the centrifugal potential is: 

    
2 2 2

2 2

( )
2 2 2

L mrc mcV r
mr mr

   .                  (11) 

Therefore, the centrifugal potential reduces to the kinetic energy of the system, 
resulting in  

  351.98 10V r ergs       (12) 

We divide by r to obtain the centrifugal force of 477.49 10 Dynes  from the 
centrifugal potential. 

 
Now we calculate the Coulomb repulsion of such a system as it contributes to 

the total repulsive force and should be added to the centrifugal component.  The 
repulsion of two protons just touching is given by 

          2
21

r
qqKcForce        (13) 
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where 22910988.8 Kc CNm and Coulombqq 19
21 10602.1  , the charge of the 

proton.  Then   
dynesorNF 6103.333         (14) 

We then add the Coulomb repulsion of 63.3 10 dynes  to the centrifugal 
component and find a negligible change on a value of  ~ 4710 dynes of centrifugal force. 

 
From the Equation 5, above, the gravitational attraction between two 

Schwarzschild protons is 477.49 10 dynes .  Therefore, we obtain a stable orbit for two 
orbiting Schwarzschild protons at a diameter apart.   

 
 It is clear from these results that the “strong force” may be accounted for by a 

gravitational attraction between two Schwarzschild protons. In the standard model the 
strong force is typically given as 38 to 39 orders of magnitude stronger than the 
gravitational force however, the origin of the energy necessary to produce such a force 
is not given.  Remarkably, a Schwarzschild condition proton as a mass ( 148.85 10 gm ) 
approximately 38 orders of magnitude higher than the standard proton mass 
( 241.67 10 gm ), producing a gravitational effect strong enough to confine both the 
protons and the quarks.   Our approach, therefore, offers the source of the binding 
energy as spacetime curvature resulting from a slight interaction ( %1078.1 39 ) of the 
proton with the vacuum fluctuations and offers a unification from cosmological objects 
to atomic nuclei.  Therefore, we write a scaling law [1] to verify that the Schwarzschild 
proton falls appropriately within the mass distribution of organized matter in the 
universe. 
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A Scaling Law for Organized Matter of Mass vs. Radius 
 

                              
                               Figure 1.  Mass vs. Radius 

A plot of Log Mass (gm) vs. Log Radius (cm) for objects from the Universe to a 
Planck black hole.  The light red line is a least squares trend line.  The graph clearly 
demonstrates a tendency for different scales’ masses to form and cluster along an 
approximate linear progression.  Although the Schwarzschild proton falls nicely on 
the trend line, the standard proton is far from it.   
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TABLE 1.    Mass and Radius Data for the Scaling Law 

 Mass Log Mass Radius Log Radius 
Universe 1.59E+58 5.82E+01 4.40E+28 28.64 
Local Super Cluster 1.99E+49 4.93E+01 7.10E+25 25.85 
Large Galaxy Cluster 1.99E+47 4.73E+01 6.17E+24 24.79 
Quasar 7.96E+45 4.59E+01 6.17E+21 21.79 
Milky Way Galaxy 5.97E+45 4.58E+01 9.46E+22 22.98 
Galaxy M87 5.37E+45 4.57E+01 5.68E+22 22.75 
Andromeda Galaxy 1.41E+45 4.52E+01 1.04E+23 23.02 
Whirlpool Galaxy 3.18E+44 4.45E+01 3.60E+22 22.56 
Triangulum Galaxy 1.41E+44 4.42E+01 1.04E+22 22.02 
Large Magellanic Cloud 1.19E+43 4.31E+01 1.84E+22 22.27 
Galaxy M87 Core 3.98E+42 4.26E+01 2.37E+17 17.37 
Sun 1.99E+33 3.33E+01 6.95E+10 10.84 
Pulsar 2.79E+33 3.34E+01 1.50E+06 6.18 
Large White Dwarf 2.65E+33 3.34E+01 1.39E+09 9.14 
Small White Dwarf 1.99E+33 3.33E+01 5.56E+08 8.75 
Schwarzschild Proton 8.89E+14 1.49E+01 1.32E-13 -12.88 
Standard Proton 1.67E-24 -2.38E+01 -2.97E+01 -12.88 
Planck Black Hole 1.00E-05 -5.00E+00 -7.60E+01 -33.00 

On a graph of Log Mass vs. Log Radius, (Figure 1.) we find interestingly that 
most organized matter tends to cluster along a fairly narrow linear region as mass 
increases.  The Schwarzschild proton falls nicely near the least squares trend line 
clustering organized matter whereas the standard proton falls many orders of magnitude 
away from it.   

3. The “Anomalous” Magnetic Moment 

We calculate the “anomalous” magnetic moment [5] of the proton using a simple 
model where the proton is a sphere with a Compton radius of 1.321 Fermi spinning at 
the speed of light, c, with a point proton charge at its equator.  The magnetic moment is 
given as: 

 

2
qrv

                  (15) 

where q  is an elementary charge of 191.60217653 10 Coulombs , the proton radius is  
151.321 10pr meters   and the velocity smv /10998.2 8  giving a value of the 

magnetic moment of such a proton of TeslaJoules /1017259.3 26 .   
 
The measured magnetic moment of the proton is 26. 0 10 /1 4 895 Joules Tesla , 

which is only 2.25 times smaller than our calculated value. The magnetic moment 
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calculated for a Schwarzschild proton model is remarkably close the measured value for 
such a crude first approximation.  

4. Conclusions  

We have presented evidence that the proton may be considered as a 
Schwarzschild entity and that such a system predicts remarkably well, even under crude 
approximations utilizing semi-classical mechanics, its interaction time, its radiation 
emissions, its magnetic moment, and even the origin of the strong force as a 
gravitational component.  We are still examining the fundamental nature of mass, 
inertia, charge, magnetism, spin and angular momentum in the context of the Haramein-
Rauscher solution which considers spacetime torque [2].  These aspects are usually 
assumed as “given” without a source.  Here the coherent structure of the vacuum and its 
gravitational curvature begin to give us an appropriate accounting of the energies 
necessary to produce these effects.   

The Schwarzschild proton strongly suggests that matter at many scales may be 
organized by black-holes and black hole-like phenomena and thereby lead to a scale 
unification of the fundamental forces and matter. 
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