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Preface to the Second Edition

Since the publication of Symmetry in Chaos in 1992, substantial progress has

been made on the mathematics and science underlying symmetric chaos. For

example, the concept of patterns on average is based on the mathematics behind

our symmetric images. Bruce Gluckman, Philippe Marcq, Josh Bridger, and

Jerry Gollub conducted elegant experiments at Haverford College which show

that patterns on average occur in the Faraday experiment—a classical experiment

from fluid dynamics. We have described this experiment in the revised intro-

ductory chapter. On the mathematical side, attractor symmetries have been clas-

sified and methods for numerically determining the symmetry of higher dimen-

sional analogues of our images have been developed. The mathematical results

have been obtained in collaboration with Pete Ashwin, Ernie Barany, Michael

Dellnitz, Ian Melbourne, and Matt Nicol.

In another direction, the increasing power of desktop computers has

enabled significant improvement of the resolution of the images as well as

improvements in the coloring algorithms. Although, with few exceptions, we

have kept the computer-generated images shown in the first edition, we have

tried to improve both the quality and coloring of the images. We have added one

or two new pictures, mainly in Chapters 4 and 5, which we hope will make some

of the mathematical explanations of chaos easier to read.

Aside from the changes mentioned above, we replaced a few of the

nonmathematical images. We have also worked to improve some of the math-

ematical explanations and have made minor improvements throughout the text.

We removed the appendix on Basic programs—since Basic is no longer a readily

available or widely used computer language.

We have been delighted that many of our images have found their way

into the mathematics community: The Notices of the American Mathematical

Society and a number of mathematics and science textbooks have used several

of our pictures as cover images, the Joint Policy Board for Mathematics featured

symmetric chaos on its 1997 Mathematics Awareness Week poster, and the

Institute for Mathematics and its Applications uses a symmetric chaos image

as its logo (see Figure 5.13 (top)).

Preface to the Second Edition ❖ vii
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The intertwining of mathematics and art has increased greatly over the

past fifteen years. Indeed, following the ‘Art-Math’ conferences started by Nat

Friedman in 1992, there are now many regular interdisciplinary conferences, such

as Bridges, which explore connections between art, architecture, mathematics,

and the sciences. We have greatly enjoyed the privilege of being involved in

several of these meetings. Using ideas from symmetric chaos, one of us (MF)

has given several courses to junior and senior students in the art department at

the University of Houston as well as leading seminars for local teachers in the

Houston Teachers Institute. We would like to thank the University of Houston

for their encouragement and support of our exploration of the interface between

mathematics and art and its potential for impacting education.

Some further acknowledgments are in order. We have received grant

support from the National Science Foundation (NSF) and the Texas Advanced

Research Program for the mathematical research referred to above. In particu-

lar, while preparing this revision we received partial support from NSF grants

DMS-0600927, DMS-0806321 (MF), and DMS-0604429 (MG).

Last, but not least, we would like to thank SIAM for publishing the

second edition of Symmetry in Chaos and, in particular, Elizabeth Greenspan for

her enthusiastic editorial assistance.

Houston and Columbus Mike Field

January 2009 Marty Golubitsky
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Preface to the First Edition

In our mathematics research, we study how symmetry and dynamics coexist.

This study has led to the pictures of symmetric chaos that we present throughout

this book. Indeed, we have two purposes in writing this book: to present these

pictures and to present the ideas of symmetry and chaos—as they are used by

mathematicians—that are needed to understand how these pictures are formed.

As you will see, the images of symmetric chaos are simultaneously complex and

familiar; the complexity stems from the chaotic dynamics by which the pictures

are produced, while the familiarity is due to the symmetry.

Although symmetry has long played a key role in mathematics and indeed

in virtually all models of the universe, the study of chaotic dynamics in mathe-

matics and its use in modeling physical phenomena is a more recent endeavor.

It is worth noting that both words symmetry and chaos have standard meanings

in the English language as well as technical definitions in mathematics. There

are clear similarities between the everyday usage and the technical definitions

for each of these words—but the similarity is rather more for symmetry and

rather less for chaos. In both everyday usage and mathematics, symmetry has

the sense of repetition. For example, symmetry gives unity to designs from the

rose windows of great cathedrals to the wallpaper in your own home by repeating

one design a large number of times.

Chaos, on the other hand, means ‘without form’—the great void. Viewed

in this light, it is difficult to see how chaos can be the subject of scientific inquiry—

which is based on finding form and regularity in the physical world. In recent

years, the term chaos has (perhaps unfortunately) been adopted by mathemati-

cians and scientists to describe situations which exhibit the twin properties of

complexity and unpredictability. Archetypal examples are the weather and the

stock market—although complex and unpredictable, these examples are far from

being without form or structure.

One of our goals for this book is to present the pictures of symmetric

chaos—in part because we find them beautiful and in part because we have

enjoyed showing them to our friends and think they may appeal to others. But

we also want to present the ideas that are needed to produce these pictures. For

although the methods by which these computer-generated images are obtained are

Preface to the First Edition ❖ ix
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relatively simple, it is difficult to conceive how they might have been discovered

without an appreciation of the underlying mathematics on which they are based.

In the first two chapters we discuss in general how the pictures are

produced and how they are related to the mathematical ideas of symmetry and

chaos. The third chapter has the role of an intermezzo. As we noted previously,

the images of symmetric chaos often seem quite familiar. So in Chapter 3 we

have paired off a number of pictures from nature (diatoms, shellfish, flowers,

etc.) and a number of decorative designs (from rose windows to corporate logos

to ceramic tiles) with designs produced on the computer using symmetric chaos

methods. The fourth chapter is devoted to a more detailed discussion of the

simplest forms of chaotic dynamics.

As you will see, we use three mathematically different methods for

computing our images. Indeed these images which we call symmetric icons,

quilts, and symmetric fractals are quite different in character. The methods for

producing the icons, quilts, and symmetric fractals are explained in detail in the

last three chapters. Since many of the readers of this book may be familiar with

fractal art—say as appears in the books The Beauty of Fractals by Heinz-Otto

Peitgen and Peter Richter and Fractals Everywhere by Michael Barnsley—it is

worth noting that the images we present have a different character from those

found in fractal art. While fractal pictures have the sense of avant garde abstract

modernism or surrealism, ours typically have the feel of classical designs.

In the first appendix we present the exact parameter values that we

have used to produce the pictures of symmetric chaos found in this volume.

In Appendix B we give detailed computer programs (written in QuickBasic)

that will enable the reader to experiment on a home computer with the formulas

for symmetric chaos presented in Chapters 5–7. The actual derivation of these

formulas is found in the last two appendices—one for the icons and one for the

quilts. These sections contain more technical mathematics than the previous

chapters.

Though this book is concerned with symmetry and chaos and their

relationship with pattern formation and geometric design and art, we have not

attempted here to describe in depth the many possible threads that lead from

this work, in part, because these issues have been discussed elsewhere. Indeed,

many authors have written about symmetry and art, but perhaps none more

elegantly than Hermann Weyl in his classic book Symmetry. There have also

been a number of books on chaos—our favorites being Ian Stewart’s Does God

Play Dice? and James Gleick’s Chaos: Making a New Science. Finally, the

x ❖ Symmetry in Chaos
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mathematical and scientific discipline of pattern formation, which underlies our

own work, is discussed in Fearful Symmetry: Is God a Geometer?

There are a number of individuals whose help we wish to acknowledge.

This help has taken a variety of forms, from deriving the basic theory on which

our pictures of symmetric chaos are based, to helping with the computer pro-

gramming needed to produce high resolution color graphics on workstations,

to making helpful suggestions on how better to use color in our pictures. We

thank Peter Ashwin, Pascal Chossat, Robert Cottingham, Michael Dellnitz, April

Field, Nathan Field, Michael Flanagan, Elizabeth Golubitsky, Phil Holmes,

Barbara Keyfitz, Greg King, Martin Krupa, Ian Melbourne, Ralph Metcalfe,

Jim Richardson, Harry Swinney, Hans True, and, in particular, Ian Stewart. We

also thank WendyAldwyn, who has produced the hand-drawn artwork, including

several original drawings, and has helped us with the coloring of several of the

computer drawn pictures.

Layout, mathematical notations, graphics and color reproduction have

made this book unusually complex to produce. Special thanks are due to Oxford

University Press for their comprehensive assistance and helpful suggestions at

every stage of the production process. The computer generated pictures were pro-

duced directly from computer files by Kaveh Bazargan of Focal Image, Ltd. using

state-of-the-art processes. Finally, we acknowledge the institutional assistance

of the Mathematical Sciences Institute, Cornell University; the Department of

Mathematics, University of Houston; and the Department of Pure Mathematics,

University of Sydney, for providing the intellectual and computer environments

needed to produce these pictures.

Sydney and Houston Mike Field

February 1992 Marty Golubitsky
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Chapter One
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Figure 1.1 Halloween.

The pictures shown in Figures 1.1 and 1.2 were created using a computer and

are visualizations of mathematical ideas that involve symmetry and chaos. The

pictures were not created by an artist. Instead, artistic sensibilities and aesthetic

judgments have, to some extent, been replaced by precise mathematical formulas.

We see in these pictures that it is possible to use mathematics and a computer

2 ❖ Symmetry in Chaos
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to create original shapes and designs, often of great complexity and fine detail,

that are sometimes similar to patterns observed in nature or created by man. The

pictures reveal hidden designs that lie deep in the mathematics and that may also

manifest themselves in the physical world. Notwithstanding the use of computers

and mathematics, there is a definite human component: the choice of what to

reveal.

Our goal is to describe how these pictures were formed and their con-

nection with two of the most fascinating ideas of twentieth-century mathematics.

We use this opportunity to show what can be achieved visually with these ideas:

the extraordinary variety of geometry, textures, and style that is possible.

Our pictures are created by merging symmetry and chaos. At first sight,

this seems paradoxical: a merging of order and disorder or yin and yang. To

make sense of this description, we begin by examining these two intriguing ideas

from mathematics.

Symmetry

We begin with a dictionary definition of symmetry (quoted from The American

Heritage Dictionary):

symmetry n. Exact correspondence of form and constituent configuration on

opposite sides of a dividing line or plane or about a center or an axis.

A first reading may suggest that dictionaries are just masters of obfus-

cation. Yet, symmetry is a very basic concept, like that of oneness, and it is

notorious how difficult such ideas can be to explain. The dictionary definition

suggests that planar shapes may be symmetric in two different ways: on reflection

across a dividing line or on rotation about a point. There is a third type of planar

symmetry, which we discuss later, but for now we concentrate on the first two.

Consider the three patterns shown in Figure 1.3. The first pattern (a) has

a line of symmetry, whereas patterns (b) and (c) do not. Naively, one tends to

think of a planar object as being symmetric if it is possible to cut it along a line

and get two identical pieces. However, this is too imprecise. Patterns (b) and (c)

are not symmetric, but we get identical pieces when we cut along the dotted line.

On the other hand, pattern (a) is symmetric, but the pieces are different when we

cut along the dotted line.

Perhaps the simplest way to explain symmetry is to follow the operational

approach used by mathematicians: a symmetry is a motion. That is, suppose you

Introduction to Symmetry and Chaos ❖ 3
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Figure 1.2 Mayan bracelet.

have an object and pick it up, move it around, and set it down. If it is impossible

to distinguish between the object in its original and final positions, we say that

it has a symmetry. Suppose you pick up the pattern in Figure 1.3(a) and rotate

it by half a turn in three dimensions around the dotted line (that is, rotate out of

the plane). Then the exact same pattern appears before and after rotation. The

same is not true of pattern (b). After rotation one arrives at pattern (c).

4 ❖ Symmetry in Chaos
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(a) (b) (c)

Figure 1.3 Defining symmetry.

Thinking of symmetry in this way, we see that every object has at least

one trivial symmetry obtained by picking it up and putting it back in its original

position. Even though, at first sight, it may seem bizarre to say that everything

has at least one symmetry, this convention is actually quite useful. Indeed, it

parallels an important discovery of Indian mathematics: the number zero.

Next let us look at an object which has symmetries other than the trivial

symmetry. We shall search for the symmetries of the three-pointed star shown in

Figure 1.4. We have labeled the points of the star A, B, C to aid our discussion.

If we rotate the star clockwise through one-third of a turn about its

center O, we move it to a position that is geometrically indistinguishable from

its original position. However, point A is moved to where point C was, point C

to where point B was, and point B to where point A was (see Figure 1.5 (left)).

This motion is a nontrivial symmetry of the star. We may repeat the process

and further rotate the star clockwise through another one-third of a turn (that is,

the star will have been rotated clockwise two-thirds of a turn from its original

position). We see that point A has been moved to B, point B to C, and point C

toA (see Figure 1.5 (right)). If we again rotate the star by a third of a turn, it will

return to its original position. Thus far we have found three symmetries: leave

fixed, rotate one-third of a turn, rotate two-thirds of a turn. However, these are

not the only symmetries of the star. Referring to Figure 1.4, observe that we can

reflect the star through the lineAO. Otherwise said, hold the star along the line or

axis AO and make one half-turn in space so as to interchange B and C, keeping

A fixed (see Figure 1.6 (left)). That is, we flip the star upside-down, keeping

the line AO fixed. Clearly, there are two other reflection symmetries of the star

obtained by reflecting in the lines BO and CO (Figure 1.6 (middle, right)). It

turns out that the six symmetries that we have found are all the symmetries of

the star.

Of course, the six symmetries of the star that we have described are

precisely the symmetries of an equilateral triangle and are common to many

figures. In particular, Figure 1.7 has exactly the same symmetries as the star.

On the other hand, Figure 1.8 does not. While it has the rotational symmetries

Introduction to Symmetry and Chaos ❖ 5
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Figure 1.4 A three-pointed star.
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AFigure 1.5 Three-pointed star
rotated by 120◦ (left) and 240◦

(right).

o

C

A

B

B

C

A

o

B

A

o

C
Figure 1.6 Three-pointed star
reflected across AO-axis (left),
BO-axis (middle), and CO-axis
(right).

of the star, it does not have the reflectional symmetries. However we reflect the

figure (through any line), we always get a different figure. It may be helpful to

note that the figure appears to come with a counterclockwise twist. After being

reflected, the figure has a clockwise twist.

Subsequently, we shall look more carefully at figures with different

symmetries (for example, the symmetry of the square). Symmetries of one type

or another figure prominently in many artifacts created by humans. Even the

ubiquitous road sign invariably has some symmetry. At first glance, symmetry

is not immediately apparent in nature. For example, geographical features such

6 ❖ Symmetry in Chaos
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Figure 1.7 Wild Chaos.

as the landscape, mountain ranges, and oceans are far from symmetric. Living

organisms often have approximate symmetry—usually they resemble their mirror

images—but the correspondence is rarely exact. One of the most obvious,

and beautiful, examples of symmetry in nature is the fantastic symmetry of

snowflakes (see Figure 1.9). It is perhaps not so surprising that symmetry can

Introduction to Symmetry and Chaos ❖ 7
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Figure 1.8 Clam Triple.

be found in the physical world, because symmetries are woven into the physical

laws that govern the universe. However, in the acting out of those laws, much of

this symmetry becomes invisible to us. In some way, our response and feeling for

symmetry is perhaps a reflection of the underlying symmetry of these physical

laws.

8 ❖ Symmetry in Chaos
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Figure 1.9 A snowflake with
hexagonal symmetry. Image
courtesy of Kenneth Libbrecht.

Introduction to Symmetry and Chaos ❖ 9
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Chaos

Next we describe what, at first sight, is the antithesis of symmetry: chaos. Again,

we begin with a dictionary definition:

chaos n. Any condition or place of total disorder or confusion.

Whatever else, it would appear that chaos is featureless, without form

or structure. However, since the early 1970s the term chaos has been used

increasingly in science and mathematics. It has been suggested that a wide range

of natural phenomena, from the orbit of Pluto to the weather or reversals of the

earth’s magnetic field, are chaotic. Since the word chaos suggests a lack of form

or feature, the use of the word in a scientific context may seem confusing or

misleading. Indeed, we think of scientific investigation as being restricted to

those phenomena that do have definable structure or features. Crudely put, if

something is in a state of total disorder and lacks structure or form, there is not

much we can say about it.

In this book we shall use the term chaos in the sense that it is used in con-

temporary science. Roughly speaking, we regard chaos as being characterized

by unpredictability and complexity. To proceed further and give more precision

to our description we need to go back to the time of Newton and the birth of the

modern viewpoint on dynamics or the evolution of a system in time.

Determinism

Newton not only formulated his famous theory of gravitation, and the three laws

of motion, but also invented the mathematics that enabled him to develop the

consequences of those laws. For example, he gave a precise mathematical model

for the motion of the planets around the sun. Perhaps the most important feature

of Newton’s model was its ability to give exact predictions of the future orbits

of the planets. In other words, if we know the position and speed of the planets

at any given time we can, in theory, predict the positions of the planets at any

subsequent time. Thus, Newton’s model for the solar system is deterministic: if

we know the initial position and velocity of the planets, then their subsequent

motion is uniquely determined.

10 ❖ Symmetry in Chaos
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This point is brought out more clearly if we look at a nondeterministic

model. For example, it is a consequence of the rotation of the earth that the sun

always rises in the east. Suppose, instead, that the matter of where the sun rises

depended on the toss of a coin. That is, imagine that every night God tosses a fair

coin. If the coin comes down heads, the sun rises in the east, if it comes down

tails, it rises in the west. This model for the rising of the sun is nondeterministic.

Whether the sun rose in the east or west today has no bearing on whether it will

rise in the east or west tomorrow.

A common expectation, based on determinism, is the belief that reason-

able knowledge of current position leads to good predictions of future position.

In other words, outcomes should be the same given roughly the same initial data.

For example, the gravity well, pictured in Figure 1.10, is a toy that, in recent

years, has appeared spontaneously in museums throughout America, with the

purpose of making the act of giving more enjoyable. Typically, the gravity well

is put into action when a parent gives a coin to a child who then hurls it along

the ramp located at the top of the well. After launch the coin spins its way to the

bottom, rotating ever more quickly, much to the delight of children and parents

alike. At the bottom the coin falls, kerplunk, into a box. Different speeds of

entry of the coin lead to slightly different trajectories, but ultimately to the same

kerplunk. Indeed, the purpose of moving coins from your pocket to the museum

coffers would not be well served were the final state not independent of the initial

conditions.

Figure 1.10 A gravity well.

The color plates shown in Figures 1.1 and 1.2 were generated by a deter-

ministic model, in this case by a precise mathematical formula. However, in spite

of this determinism, the model behaves in many ways in a nondeterministic or

random manner. This is characteristic of chaotic systems: they are deterministic

but behave as though they are not. How can determinism produce a seeming

lack of determinism? The answer, in part, depends on the fact that in practice

we can never know exactly our initial position or state. A tiny inaccuracy in our

knowledge of current position can be magnified to produce completely inaccurate

predictions of future position. Even if we do know our current position exactly,

when we come to compute our final position—using a computer—small errors

can and do creep into the arithmetic. In a chaotic system, these errors are rapidly

magnified and force inaccurate predictions. The realization that to all intents and

purposes a deterministic system can behave as though it were nondeterministic is

relatively recent. In the nineteenth century the belief in a deterministic universe

was so strong that the French mathematician and physicist Laplace was able to

say

Introduction to Symmetry and Chaos ❖ 11
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such an intelligence would embrace in the same formula the movements of the

greatest bodies of the universe and those of the lightest atom; for it, nothing

would be uncertain and the future, as the past, would be present to its eyes.

The development of quantum theory at the beginning of the twentieth

century showed that at the atomic level there is a basic lack of determinism in

physical laws. More recently, it has become clear that, even if we ignore quantum

effects, Laplace’s optimistic view that the future and past can be predicted on

the basis of enough information about the present is fundamentally flawed. The

problem is a practical one. Even the tiniest error in our data can be magnified

over time to produce an outcome far different from what we would have gotten

using the true data.

Sensitive dependence

The sensitive dependence on initial conditions that is the hallmark of chaotic

dynamics can have important implications for everyday life. Indeed, consider

the weather. We know that temperatures rise and fall within broad limits dictated

by the seasons and that rain and sunshine alternate. But, for a variety of reasons,

we would like to have more precise knowledge. ‘Will it rain on Thursday

afternoon?’, ‘How much snow will fall on Sunday?’, and ‘How hot will it be

on Tuesday?’ are typical questions. The answers to these questions depend

crucially on having exact knowledge of current weather conditions, which is

literally impossible, given the complexity of such data.

Suppose that the weather system is chaotic, which many scientists be-

lieve to be the case. Then accurate and detailed long-term predictions of the

weather are also impossible. We are faced with the possibility that sensitive

dependence on the initial data makes accurate predictions of the weather five or

six days in advance a practical impossibility.

One indisputable feature of the weather is its complexity, and this is a

characteristic feature of chaotic dynamics. Complexity is certainly a feature of

the color plates displayed throughout this book. On examination, we see that

each picture has a most complicated and intricate structure. This complexity and

structure tell us that the pictures contain information. The problem, just as with

the weather, is how to use and interpret this information. Contrary to common

belief, uncertainty is often proportional to the amount of available data rather

12 ❖ Symmetry in Chaos
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than in inverse proportion. Moreover, our response to complicated phenomena

often compounds the difficulty.

Information concerning the economy is a good example. Every day the

media bombard us with an abundance of data—data about the stock market,

unemployment rates (local and national), the gross domestic product, foreign

trade, inflation, taxes, worker productivity, banking practices, and so on. For the

majority of us, the effect of this mass of data is to make us even less certain about

what is actually happening to the economy. In an attempt to control the mountain

of data, we, as well as our leaders, tend to look for simple indicators that will

predict the direction of the economy. In short, our solution to this uncertainty is

often to base all argument and prediction on just one or two features (‘the money

supply’ or ‘inflation’). While this approach cannot be said to be scientifically

valid, it has the merit of being comforting and very flexible.

Again it is appropriate to stress that we draw a sharp distinction between

the dictionary definition of chaos and the sense in which we use the term here.

The dictionary definition of chaos implies that there is no information within

chaos: it has neither form nor structure. For us, chaos may be complex and

appear to be nondeterministic, but hidden within it is a wealth of information.

Rules

Before we can come to grips with explaining why our pictures represent chaotic

dynamics, we need to spend some time talking about how the pictures are created.

Computers really are obstinate beasts. There is an old joke about a professor

complaining to a colleague: ‘My student is incredibly stupid; I’ve taught him

everything I know and he still doesn’t know a thing.’ Computers are exactly like

this. Anyone who has programmed one knows that the ‘black box’ is remarkably

dumb—it does precisely what it is told, nothing more, nothing less. To create

pictures like the ones here, we have to tell the computer precisely what to do,

correcting our own mistakes along the way.

What shall we tell the computer to do? Basically, the computer must be

told which lights on the screen it should turn on and in which color. Each light

on the screen is called a pixel, and a modern high resolution monitor typically

has about two million pixels, each of which may be thought of as a square about

0.2mm across (or about 100 to the inch). Because the pixels are so small, it

is often convenient to think of them as representing points on the screen. In
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Figure 1.11 Pixels on a 10 × 10
grid.

Figure 1.11, we show how the pixels are arranged on a monitor screen with 100

pixels in a 10 × 10 grid.

The way we tell the computer to make pictures is by using mathematical

formulas. These formulas determine the pictures that are drawn. A symmetric

formula can produce a symmetric picture. Abstractly, formulas provide a short-

hand for the rules of arithmetic, and these rules of arithmetic provide us with a

mechanistic way of choosing points in the plane or pixels on a computer screen.

The word rule has several meanings, the most familiar being restriction.

As an example, consider a basic rule in many homes: no feet on the furniture.

(In this sense, rules are usually unfair.) However, the type of rule we have in

mind is a set of instructions. For example, our GO TO BED rule is: go upstairs,

have a bath, brush teeth, do not read, turn off the lights, get in bed, and go to

sleep. This rule is quite complicated. To learn it takes at least twelve years of

constant reinforcement.

The GO TO BED rule is, in one respect, quite simple. Once invoked,

there is only one allowed outcome (sleep). Arithmetic rules are more compli-

cated: answers depend on inputs. A calculator with a square root button provides

a good example of an arithmetic rule. The rule is: enter a number and push the

square root button. Should we enter 4, out will come 2; if we enter 2, out will

come 1.4142135 (or something close, depending on the calculator). Of course,

we can apply the square root rule many times by just repeatedly pressing the

square root button. When we do this, we are simply taking the square root of

the result from the previous calculation. Indeed, this repetition will eventually
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lead to the calculator displaying the number 1 (unless you started with a number

less than or equal to zero). From now on we shall use the word rule only in the

sense of one of these mathematical rules. In particular, a rule will always have

an input (typically a number) and an output (typically a number).

A good example of an arithmetic rule is provided by the following tale

from folklore. A wise man, using his wit, is able to save a (somewhat slow and

unpopular) Indian king from devastation (you may choose from what and how).

In return, the king offers him half his kingdom worth 500,000,000 rupees. The

wise (and shrewd) man modestly asks the king: ‘Oh, honorable king, I am but

a poor man. Perhaps, instead, you could just fill the squares on a chess board

for me, starting with a grain of rice on the first square, two grains on the second,

four grains on the third, and so on’.

As king, do you grant the wise man his wish, put him in charge of the

national debt, or chop off his head? The difficulty lies in the ‘and so on’. By

the tenth square, the king would be giving the wise man a modest 2,047 grains

of rice. However, by the twentieth square, he would be giving 2,097,151 grains

of rice. By the last square, the wise man would have accumulated about 30

cubic kilometers of rice. Put another way, if we assume each grain of rice is

about 0.8cm in length, and the grains of rice are laid end to end, then they would

stretch from the earth to the sun and back, thence to the nearest starAlpha Centuri

and back, and there would still be about 15 cubic kilometers of rice left over (very

roughly 20 times the annual Indian production of rice in 2007).

More formally, the wise man asks the king to start with a grain of rice

and double that amount 63 times. As long as you start with a nonzero number, the

doubling rule makes numbers grow larger and larger. As the wise man shrewdly

observed, the numbers grow unimaginably large quite quickly.

Pixel rules

If we intentionally confuse pixels on the screen with points (in the plane), then

the rules that make our pictures are similar to the arithmetic rules we have

described above. However, unlike the doubling rule, we do not want our rules

on repeated application to grow without bound (otherwise, points would soon

leave the computer screen). We think of a pixel rule as a rule which has pixels

as input and pixels as output. The pixel rule may depend on some complicated

mathematical formula, but for the moment we wish to keep the arithmetic hidden.
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Figure 1.12 Dynamics on the
pixel grid.

To make a black and white picture, we assume that the screen is black. We choose

one pixel and turn it on—the corresponding point on the screen will then be white.

Then we invoke our pixel rule, beginning with the first pixel as input, and obtain

a new pixel which we turn on. Finally we repeat this rule over and over again

until we decide to stop. The whole process is called iteration. In this scheme

there is no reason why one pixel cannot be visited more than once.

As an example of a very simple pixel rule, choose one pixel from the

screen, say the top left. We define a pixel rule by requiring that whatever pixel

we choose from the screen as input, we always get the top left pixel as output.

However many times we apply the rule, we never see more than two pixels lit

on the screen: the initial pixel and the top left pixel.

Next we look at a slightly more complicated pixel rule. Following

Figure 1.11, suppose that the monitor screen has 100 pixels arranged in a 10×10

grid. Choose a pixel P from the screen and the direction left. The pixel rule has

two parts: if you can, move one pixel in the direction you are going; and if you

cannot, turn right one quarter of a turn. The picture that will result from this pixel

rule is simple to describe. There is an initial segment moving left from the initial

point P to the boundary of the grid followed by a never ending circumnavigation

of the boundary in the clockwise direction (see Figure 1.12).

Even though the rules we have described here are rather simple, there

are one or two interesting features that we want to single out for special mention.

First of all, note that the first part of the pixel sequence is different from

its long-term behavior. In particular, the pixels on the initial line segment, labeled
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L in Figure 1.12, are never revisited. We say that this part of the pixel sequence

represents the initial behavior. We often use the term transient to describe the

initial behavior. The transient behavior is seen at the beginning but not in the

long term. The part of the pixel sequence beginning at the boundary represents

the long-term behavior.

A second important observation about this example is that the long-term

behavior repeats ad infinitum. We refer to this characteristic as periodicity. Since

there are 36 pixels on the perimeter, this pixel rule repeats itself every 36 iterates

(ignoring the initial transient).

Indeed if we apply any pixel rule enough times, then eventually at least

one pixel will be revisited. To see why this is so, suppose that there are 100

pixels on the screen (any large number will do equally well). After 100 iterates

we have ‘lit’ 101 pixels, so at least one pixel must have been ‘lit’ twice. (This

argument is an example of the pigeonhole principle: if there are 101 letters to be

put in 100 pigeonholes, at least one pigeonhole must contain at least two letters.)

It follows that if the rule that we used to create our pictures were actually a pixel

rule, then, after an initial transient, we would have to find periodic behavior. In

general, our picture rules do not lead to this simple kind of periodic behavior,

and color can be used to understand this point.

Coloring by number

We now say more about how we color our figures. The basic idea is quite simple.

Start with a mathematical formula generating a picture such as Figure 1.13.

Choose an initial point and apply the rule a large number of times, typically

between 20,000,000 and 100,000,000. Ignore the transient part of the pixel

sequence that is produced. (In practice, we only count pixel hits after the first

1,000 applications of the rule.) Record the number of times each pixel is hit,

and color the pixel according to the value of that number. This process is no

more than coloring by number. The actual colors are chosen according to which

colors bring out best the underlying structure. In Figure 1.13, we show the

result of coloring a figure with fivefold symmetry after 667,000,000 iterations

on a 3,000 × 3,000 pixel grid. Since there are 9,000,000 pixels, it follows by

the pigeonhole principle that some pixels must have been hit more than once. In

practice, many pixels are hit more than once, and in the color band in Figure 1.13,

we show the colors assigned to pixels, depending on the number of times they
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Figure 1.13 Emperor’s Cloak.
Pentagonal symmetry and a
color bar. have been hit. As we usually do, we leave the pixel black if it has not been hit.

We color white, shading to yellow, if the pixel has been hit between 1 and 10

times; yellow if the pixel has been hit between 11 and 30 times; yellow shading

through red if the pixel has been hit between 31 and 270 times, and so on ending

up with navy blue if the pixel has been hit at least 2,370 times. (The maximum

number of hits on an individual pixel was 42,534.)

Thus far, we have confused pixels and points on the screen and regarded

our mathematical formula as a pixel rule. However, when we make a large

number of applications of our rule, we really have to distinguish the underlying

arithmetical rule from a pixel rule. To see why this is so, recall that a pixel rule

starts with a transient and then behaves periodically. A consequence is that the
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only sensible choice of coloring for pixels chosen using a pixel rule would be

one color for the transient pixels (those visited only once) and another color for

the pixels that are visited periodically. If we look at the colorings of Figure 1.13,

we see that the picture represents a process that is far from periodic.

Arithmetic rules

So as to understand how we can create pictures with such intricate colorings,

we need to discuss how our hidden arithmetic rule can be related to a pixel rule.

In an arithmetic rule there is a formula that tells us how to move points in the

plane to points in the plane. Suppose we choose an initial point to which we

will apply an arithmetic rule. Since a pixel is actually a small square region on

the computer screen, this point lies inside one of the pixels. (There is a small

difficulty concerning what happens when the point is on the common boundary

of two pixels, but we ignore this issue.) Applying the arithmetic rule, we get a

new point on the screen which lies inside a single pixel. We turn on this pixel.

If we repeat this process many times, eventually there will be a pixel which is

visited twice. As we explained above, if we were working with a pixel rule,

it would follow that subsequent behavior would be periodic. However, in our

visualization of the arithmetic rule, it is important to understand that, even though

a single pixel may be visited many times during the iteration process, no point

inside that pixel need be hit more than once during this process.

Even though we do not want our arithmetic rule to behave like the

doubling rule—that is, points should not become unboundedly large and leave

the screen—it turns out, perhaps surprisingly, that the rules we use to generate our

pictures have much in common with the doubling rule. In Figure 1.14, we show

two pointsA and B lying inside a pixel. For simplicity, we suppose the pixel has

edge length equal to 0.2mm. Suppose the distance between A and B is 0.01mm.

We now apply our arithmetic rule to find new pointsA1 and B1 corresponding to

A and B, respectively. Since A and B are close together, we would expect that

A1 and B1 are likely to lie within the same pixel. However, the distance between

A1 and B1 may be increased (see Figure 1.14). For the arithmetic rules used to

produce our pictures, distances are often increased by at least some multiple. For

example, the distance between A1 and B1 might be at least twice the distance

between A and B. Now this property of doubling distances holds provided that

the distance between points is not too large (say, not more than one-tenth of the
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Figure 1.14 The divergence of
points within a pixel on iteration.

diameter of the screen). If we apply our arithmetic rule toA andB five times, and

letA5 andB5 be the resulting points, then the distance betweenA5 andB5 would

be at least 32 (= 25) times the distance between A and B. A quick computation

shows that this distance is at least 0.32mm and so A5 and B5 must now lie in

different pixels.

This argument shows that if our arithmetic rule tends to increase distances

between points which are close together, then the eventual outcome of even

relatively few iterations (say 10 or 20) will depend very sensitively on the initial

points. In particular, the iterates computed and plotted on the screen are likely,

after just a few steps, to be very different from the true iterates (the iterates

computed with no roundoff error). This is so because the computer only computes

to a finite precision and so, after just one iteration, the computed point will already

differ a little bit from the true value. After a few more iterations, the computed

point will typically be nowhere near the true value of the point.

However, all is not lost. It is a remarkable fact that if we perform a

very large number of iterations and color our pixels according to the number of

times points meet each pixel, then the resulting picture is (with high probability)

independent of the initial point chosen. In other words, even though it may

not be possible to compute accurately an individual trajectory, it is nonetheless

possible to compute ‘something’ that contains interesting information and does

not depend sensitively on initial points. In order to make sense of all this, we

need to discuss two topics: strange attractors and statistics.
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Strange attractors

It is challenging to give a simple explanation of how symmetry and dynamics

merge to generate both chaos and structure at the same time. Mathematicians and

physicists are still trying to understand the methods whereby chaotic dynamics

produces repeatable and observable patterns. Although chaotic dynamics has

become fairly well known only in the last twenty or thirty years, this limited

familiarity has led to some understanding, and much of this understanding is

based on pictures.

In part, however, the situation is a little like old Uncle Jake, who is a

bit eccentric. You’re not really surprised by what Uncle Jake does, but it’s still

difficult to understand why he does what he does. But by calling him eccentric,

you feel comfortable with his actions. We often name issues or situations that are

too complex to understand, and then feel at ease when these names are repeated.

Well, mathematicians are sometimes as guilty as others in naming away their lack

of understanding. In this case, we call those geometrically complicated objects

that appear by iteration strange attractors. The word strange is used simply

because they were unexpected! Why attractors? Well, that we can explain.

In a way the behavior we see with attractors is the opposite of the

unboundedness in the wise man’s doubling rule. Recall that the doubling rule

takes a number and doubles it. If we start with the number zero, the result is

just zero again. We call zero a fixed point for the rule: it is fixed, or unchanged,

when we apply the rule. However, if we start with a very, very small number

(for example, 0.00000001) and apply the doubling rule over and over again (say

thirty-two times) then we arrive at a relatively large number (about 43). Thus,

even though the number zero is fixed, nearby numbers move away from zero

when we repeatedly apply the doubling rule. This process of moving away from

zero is slow at first but eventually ends up proceeding quite briskly. We might

call the number zero a repelling fixed point. As we apply the rule, numbers move

away from zero.

An attractor captures the opposite behavior. As we apply a rule, we

move closer, or are attracted, to the attractor. For example, we may consider

the halving rule, which takes a number and halves it. Since half of zero is still

zero, we see that zero is a fixed point for the halving rule. However, unlike the

doubling rule, all numbers move closer to zero under repeated applications of the

halving rule. In this case we call zero an attracting fixed point: under repeated

application of the halving rule, nearby numbers are attracted to zero.
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The main feature of this attracting fixed point is that whatever initial

point you choose, iteration will bring that initial point closer and closer to zero.

The long-term behavior consists only of the fixed point. In a similar way, more

complicated geometric objects can be attracting. Indeed, when we make our

pictures, we start with some initial point and iterate, throwing away what we

believe to be the transients. How do we know that they are transients? Well,

if we start with another initial point and throw away the transients, we end up

with the same picture. The totality of points that form the picture is called the

attractor.

We can now understand part of the reason why we get the same picture

when we choose two different initial points to start the iteration process. Indeed,

suppose that we are using a rule for the iteration that has an attractor. Provided

that our choice of initial point is not too far away from the attractor, we find that

the iterates approach the attractor and then appear to ‘bounce around’ chaotically

on the attractor. The order in which we visit points of the attractor may depend

on the choice of initial point. However, the chaotic behavior of the iterates on

the attractor leads to the iterates eventually visiting all the pixels that comprise

the attractor. Suppose we use a black and white picture to display the attractor

and color pixels white when they have been hit. If we ignore the transient part

of the iteration (where we are approaching the attractor), we eventually turn on

exactly those pixels that make up the attractor, irrespective of the initial point.

This discussion gives some insight into why we get the same black and

white pictures; but why do we get the same color pictures? To understand this

issue we need to discuss some statistical properties of the attractors.

Statistics

Let us start with a review of the method used to color our pictures. We take a

large number of iterates, ask how many times each pixel is hit during the iteration

process, and then color by number. As we have noted previously, each pixel

actually represents a small square in the plane. Suppose we perform 1,000,000

iterates and find that a particular pixel P is hit 500 times. This means that 0.2%

of the points visited during the iteration process lie in this particular pixel. We

may interpret 0.2% as a probability in the following way. Suppose we perform

an experiment using our computer. We start the computer iterating at some initial

point and then at some ‘random’ time we stop the iteration process and record the

22 ❖ Symmetry in Chaos



March 16, 2009 09:36 book_new Sheet number 31 Page number 23 cyan magenta yellow black

last point visited. Then that last point will lie inside the pixel P with probability

0.002. Suppose, for example, that we color amber all pixels that have been hit

500 times. The information that this coloring is giving us is that if we were to

perform the experiment just described, then it would be equally likely that the

last point visited would lie in any one of the pixels that are colored amber.

One of the fundamental ideas surrounding chaotic dynamics is that

strange attractors have precisely defined statistical properties. Indeed, mathe-

maticians have shown that strange attractors typically have the same kind of

statistics that you see when you toss a fair coin many times and count the number

of heads and tails. In particular, there is a very good mathematical reason for

coloring our pictures the way we have. We are measuring the approximate

probability that a given pixel will be hit during iteration and exhibiting this

information through colors.

A consequence of this statistical aspect of strange attractors is that we

can expect to obtain the same picture (with very high probability) independently

of the initial point we choose (as long as it eventually converges to the attractor).

We obtain identical pictures, not because the order in which the pixels are visited

in the attractors is the same (it isn’t), but because the probability that we will visit

any given pixel in the attractor during the iteration is independent of the choice

of initial point.

Symmetry on average

At this point, it is worth exploring how the statistical nature of strange attractors

affects the basic property of the pictures we have shown: their symmetry. As

we have seen, one way of thinking of a strange attractor is as the result of

averaging. Rather than looking at a large number of iterates, let us instead look

at the pictures we obtain by spending a small amount of time in the iteration

process, that is, by doing only a few iterates. In Figure 1.15, we show the result

of performing a fairly small number of iterations using a rule with threefold

symmetry. In Figure 1.15(a), we have performed 100 iterations. No structure is

apparent and, at first glance, the distribution of points appears somewhat random.

In Figures 1.15(b–c), we have recorded 1,000 and 5,000 iterations, respectively.

We see that by the last picture definite symmetry has appeared, though the picture

is not completely symmetric. In Figure 1.15(d), we show the result of 40 million

iterations. This figure now has definite structure and threefold symmetry. Finally,
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we perform 360 million iterations (on a 3,000 × 3,000 pixel grid) and color the

resulting figure (Figure 1.16). The use of color has brought out many fine details

that were not apparent in Figure 1.15 (d). Color also shows us which of the points

on the attractor are most likely to be hit during the iteration process—and which

are least likely to be hit.

Indeed, one of the reasons why chaos and strange attractors were not

discovered until relatively recently was that structure does not appear unless

some type of averaging is performed. If we had recorded just 50 or 100 iterations

and looked at the resulting picture, we would have been tempted to dismiss

the result as just random. It was with the advent and availability of modern

high-speed computers that it became possible to do many iterations and plot the

resulting points in a satisfactory way. Indeed, it is worth remarking that to do

just 100 iterations of the rule used in these pictures would have required more

than 5,000 arithmetic computations of addition, subtraction, and multiplication.

If we had worked by hand to seven decimal places and allowed 60 seconds for a

multiplication and 10 seconds for an addition or subtraction, the time involved

(assuming no errors) would have been more than 3 days! And that does not

include the time that it would have taken to plot these 100 points accurately.

The pictures and discussion show that although the attractors in our

pictures are symmetric, this symmetry can be observed only after a relatively

large number of iterations have been made. In short, what we see is that the

symmetry of these attractors is only symmetry on average.

What, how, and why?

Until now we have spent our time trying to explain what the pictures we have

shown are, and in general terms how they are made. In later chapters of this book

we will address these questions in more detail. In particular, we will give the

formulas that we use to make the pictures and, more importantly, show where

the formulas come from. Now seems a good time to talk about their significance

and why they might be interesting.

It takes time to get the measure and significance of new mathematics.

The question of whether the pictures we produce and, more importantly, the

mathematics behind these pictures will be of lasting scientific interest is one that

has yet to be answered. We wish here to paint—with a very broad brush—some

indication of why these ideas may be both interesting and important.
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(a) (b)

(c) (d)

Figure 1.15 (a)–(c) A sequence of figures
showing the effect of increasing the
number of iterations. (d) Black and white
picture with 40 million iterations.
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Figure 1.16 The Trampoline: a
color picture using 360 million
iterations.

We begin by observing that attractors created by rules with symmetry

need not have that symmetry. Figure 1.17(a) is an attractor with only bilateral

symmetry produced by a rule having triangular symmetry. If we change the rule

just a little bit, we find the attractor in Figure 1.17(b) which does have triangular

symmetry, at least on average.
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(a)

(b)

The fact that the long-term behavior of symmetric equations need not

be symmetric has long been known to be of fundamental importance in physics.

The book Fearful Symmetry: Is God a Geometer? by Stewart and Golubitsky

describes many fields where this observation has proved its importance. Each

of us carries an example of symmetry-breaking with us whenever we go for a

walk. Think of the human animal walking down the street; to a very high degree

of approximation we are bilaterally symmetric. Yet, what would we look like if

our motion preserved that bilateral symmetry? What indeed would we look like

if we were all seen to be hopping down the street moving both legs in unison,

rather than walking normally? Normal walking breaks bilateral symmetry.

As another example, think of boiling water. We know that water never

Figure 1.17 (a) Fish and Eye:
produced by a rule with triangular
symmetry; (b) Fish: symmetry
creation from Fish and Eye.

boils while you’re looking at it—so don’t look at it, just think about it. A typical

pot in which you boil water is circularly symmetric, yet when the water begins

to move as it boils, it does not move in circular waves.
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A third example: starfish grow from spherically symmetric cells—why?

There are many such questions, and it is known that fundamental changes occur

to solutions of equations when those solutions change their symmetry. Usually

such changes are associated with the loss of symmetry, the increase in pattern,

and the spawning of complicated dynamics.

The question that these pictures suggest is, can a corresponding impor-

tance be attached to the symmetry of strange attractors? In some general sense,

strange attractors do represent the long-term behavior of equations, and so it

is believable that the symmetry of these attractors is important. As one might

imagine, however, the answer to this question is quite complex. After all, even

the symmetry of strange attractors is not exact: it exists only on the average.

So in order even to begin addressing the question of whether the symmetry of

strange attractors is important, we have to look for examples in nature where the

symmetry of a state is apparent only on average.

Patterns and turbulence

One area in which averaged properties are known to be important is in fluid

mechanics—in turbulence. To illustrate the issue, let us start with a thought

experiment. Imagine that you are sitting on the bank of a river in flood. If you

look at the surface of the river, you will see an apparently unrelated sequence of

whirls, vortices, eddies, and other phenomena. At first sight there seems to be

little more to say except that the events seem to occur more or less randomly.

Now imagine that you take your camera and over a long period of time take a

picture of the same area of the river, say one picture every second. Take the

resulting sack of slides and form the average picture. You can imagine stacking

all the slides one on top of another and shining a strong light through the resulting

column of slides. What you see is the ‘averaged’ picture of the turbulence.

It is a reasonable guess that the picture will not be uniform. Indeed,

by carrying out this picture averaging process, you might expect to see some

underlying structure to the turbulence. For example, if there was a large rock

under the surface of the river or a bend in the river, this might show up as some

lack of uniformity in the averaged picture. In other words, even though the

motion of the river may appear random and turbulent, when you average over

time, structure may appear. Of course, this type of structure is not usually visible
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to us directly since when we see things we see them at each instant of time, and

our brain is usually unable to produce a ‘time-averaged’ picture.

Guided by our thought experiment, we now take a look at a problem that

we can discuss in a more scientific way: the flow of water down a cylindrical pipe.

The water is driven down the pipe by pressure, and we start by supposing that

the pressure, and hence the flow rate, is small. When the flow rate is small, what

we see is called laminar flow: the molecules of water move down the pipe along

lines parallel to the walls. The molecules near the center move fastest, while

those on the pipe wall are stationary. In Figure 1.18, we graph the dependence

of the speed of the water molecules on their distance from the pipe wall.
Figure 1.18 Velocity profile for
laminar flow.

When the pressure (and hence the flow rate) is large, the pattern of

the flow down the pipe becomes much more difficult to describe and is called

turbulent. At relatively low flow rates, patches of turbulence pass down the

pipe; at higher pressures apparently featureless turbulence is seen. Suppose one

carries out a similar averaging process to the one carried out in the previous

thought experiment. In particular, one can measure the speed of the fluid as it

crosses a section of the pipe and compute a time average of this speed. What

should we expect to see in the time average over a long period of time? The

answer is contained in Figure 1.19—as we now explain.

Figure 1.19 Averaged velocity
profile for turbulent flow.

If, at the higher flow rate, the flow down the pipe had been laminar,

then we would have expected the profile in Figure 1.18 to become elongated—

indicating that the molecules in the center of the pipe were moving faster. We

graph this hypothetical profile in Figure 1.19 by a solid line. The profile for

the actual turbulent flow is shown with a dashed line. We see that the averaged

velocity profile for the turbulent flow is flattened near the center when compared

with the velocity profile for the laminar flow. What this indicates is that the

higher velocity fluid at the center is intruding into regions near the wall, signaling

the presence of turbulence and the breakdown of laminar flow. Without the

turbulence more water would flow through the pipe in a given time. Although

we haven’t solved the problem of designing a pipe which will stop turbulence

from occurring, we can see that forming the averaged picture does give us some

information about the properties of turbulence.

Finally, imagine what might happen if we performed this averaging

experiment for turbulent flow down a pipe with square cross section. It is a

reasonable guess that we would see an averaged picture with much structure and

that the picture would have square symmetry. It is conceivable, however, that at

low flow rates, when the flow has just gone turbulent, we might find a picture

that was not square symmetric. Indeed, there might be something rather curious
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going on when this hypothetical transition from asymmetry to symmetry takes

place. At this time, it is still not known whether asymmetric turbulent flow can

occur in a square pipe—but it is an intriguing question.

The Faraday experiment

A cup of coffee sitting on a table in a moving train shows that waves can form

on the surface of a vibrating fluid. These waves were first described by Michael

Faraday in 1831. Faraday waves can also form in a controlled experiment by

placing a fluid layer in a container with a square cross section at the center of a

loudspeaker and then acoustically vibrating that fluid layer. The amplitude and

frequency of the vibration can be controlled by changing the volume and note

produced by the loudspeaker. At low amplitudes (low volume), the surface of

the fluid remains flat. As the volume is increased, the flat surface loses stability,

the fluid surface deforms, and waves appear. For this discussion it is important to

note that this form of the Faraday experiment has the symmetries of the container

cross section, that is, the eight symmetries of a square.

In Figure 1.20, we show data from the Faraday experiment performed

by Bruce Gluckman and coworkers in Jerry Gollub’s laboratory at Haverford

College. In these experiments, the deformation of the fluid surface is seen through

shadowgraph pictures; these images provide a vivid illustration of the regular

symmetric patterns that can result from experiments with symmetry. The images

are formed by recording, on a video camera, the intensity of light transmitted

through the bottom of the container and refracted through the top surface. This

Figure 1.20 Shadowgraph of
Faraday wave near transition to
square symmetric pattern. Image
courtesy of J.P. Gollub.
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arrangement has the effect that the image is bright only where the fluid surface is

almost flat. The shadowgraph in Figure 1.20 is taken at an amplitude of vibration

just beyond the point where the flat surface loses stability and waves appear.

We return now to previous paragraphs and discuss the relevance of

attractor symmetry to the Faraday experiment. In order to do this, we must make

a connection between the symmetry of an attractor in the phase space for the

mathematical model of the experiment and the way that symmetry shows itself

in physical space. A powerful mathematical result called the ergodic theorem

tells us that if the attractor has a symmetry in the phase space, then the time

average of the result in physical space will also have that same symmetry. So,

if the attractor for the differential equation model of the Faraday experiment has

square symmetry, then so will the time average of the shadowgraphs obtained

in physical space. How is the time average of shadowgraphs formed? The

experiment is run for a long time, the resulting shadowgraph images are digitized

(pixels again), and the intensity of transmitted light at each pixel averaged. The

process of averaging does precisely what we suggested in our earlier discussion

of turbulence; that is, the average could be obtained, in principle, by just stacking

the shadowgraphs one on top of each other.

The implication suggested by our computer simulations of symmetric

attractors is that the time average of the shadowgraphs will likely have square

symmetry. This prediction was confirmed in the Faraday experiment of Gluck-

man and coworkers. The shadowgraph image shown in Figure 1.21 (left) was

obtained when the amplitude of the vibrations were large. Although the wave

forms many cell-like structures, there is a distinct lack of a regular pattern and the

absence of any symmetry. Indeed, a movie of this experiment shows that the cell-

like structures appear to move about in a complicated and random way, suggesting

that the dynamics of these Faraday waves is chaotic. In Figure 1.21 (right), the

Figure 1.21 A sample
shadowgraph obtained in the
Faraday experiment at high
amplitude vibration (left) and the
time average of the shadowgraphs
in that experiment (right). Images
courtesy of J.P. Gollub.
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time average of the intensity of the transmitted light is shown. Observe, as

suggested by theory, the regular symmetric pattern that has reappeared in the

time average.

The Faraday experiment illustrates that there are two types of attractor

symmetry, each with its own physical interpretation: those symmetries that fix

an attractor pointwise and hence fix a corresponding pattern in physical space at a

single moment of time (instantaneous symmetries), as occurs in Figure 1.20, and

those symmetries that fix an attractor setwise and hence fix a pattern in physical

space only on average (average symmetries), as occurs in Figure 1.21 (right).

Some further speculation

In our discussion of turbulence, we created thought experiments about the flow of

fluid in a river or in a square pipe where patterns and symmetry on average might

be detected. We have described an actual fluid dynamics experiment where a

pattern in a turbulent flow is known to exist, at least on average. It would seem

fair, then, to ask: Where would we see the effects of symmetry on average in the

real world? To address this point, we present another thought experiment.

Imagine a two-dimensional rectangular container that holds a fluid mix-

ture of several chemicals, one of which is an acid. Imagine also that the fluid

mixture is in motion, indeed in complicated chaotic motion. Finally, imagine

that the acid can eat away or etch the bottom of this container. Under these

circumstances it is reasonable to presume that the rate of etching along the bottom

of the container will be proportional to the concentration of the acid. Of course,

that concentration may be expected to vary both along the bottom of the container

and in time, and the etching pattern created over time can be expected to be quite

complicated.

There is one nontrivial symmetry in the thought experiment we have

posed. The container can be reflected left to right without making any changes

in its description. With this symmetry in mind, we ask the question: Supposing

the fluid circulates for a long time, will the pattern of etching along the bottom

of the container be left-right symmetric or not? We expect that both possible

answers—yes and no—will occur depending on the particular system that is

studied. Moreover, we expect there to be critical parameter values of the system

where the averaged etching pattern will suddenly jump from being asymmetric

on average to being symmetric on average when these parameters are changed.
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It is important to understand that we are not saying that the dynamics

of the concentration profile of the acid along the bottom will be symmetric at

each point in time—it will not be. What we are saying is that if one averages

this concentration in time over a relatively long period, then what one will see in

some systems is an averaged concentration with a distinctive left-right symmetric

pattern, even though the concentration is changing chaotically in time. In this

sense, the pattern will appear only on average.

To actually make a detailed study of this kind of fluid motion, with its

associated chemical reactions, is a very complicated task. Rather than embark

on such a complex project straight away, it makes sense first to study simpler

problems to see whether the phenomenon of symmetry and pattern on average is

present. The simplest possible model of such an experiment would be one that

keeps track only of the concentration of the acid along the bottom of the container.

Equations of this sort are called partial differential equations and describe the

evolution of a quantity like concentration in both space and time. The problem

with this kind of simplification is that it is hard to write down an equation that

can in any way be called approximate.

Another approach is just to choose a partial differential equation that

is known to model a chemical process, solve it numerically, compute the time

average, and see whether or not the time average is symmetric. This has been

done recently for a model equation called the Brusselator. (It was written down

by a group of chemists in Brussels; there is also a more complex model called the

Oregonator written down by a group in Oregon.) This numerical experiment was

performed by Michael Dellnitz (University of Paderborn); what was found was

a transition from an asymmetric time average to a symmetric one as a parameter

was changed. In our thought experiment, this parameter would correspond to

the length of the bottom of the container.

This kind of numerical experiment allows us to believe that the phe-

nomenon of symmetric patterns on average is real. We can now begin to wonder

whether other phenomena where distinctive (almost) symmetric patterns appear

are the product of chaotic growth, averaged to form a regular pattern.
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Symmetry seems such a basic notion that it should be possible to go to a standard

reference and find out what it is. With this in mind we consulted the well-known

Mathematics Dictionary edited by James and James and found the following

rather perplexing entry under symmetry: ‘See various headings under SYM-

METRIC’. And under symmetric: ‘Possessing symmetry’. In fact, there are two

difficulties that have conspired to complicate our seemingly reasonable request,

and have led to these circular references.

The first difficulty is one of abstraction. In our introductory chapter we

spoke of symmetries as individual motions that leave a picture unchanged. In

mathematics what is important, however, is not the individual symmetries, but

rather the collection of all symmetries of the picture. This collection is called a

group, and much of the discussion in this dictionary refers to group theory. The

second difficulty concerns scope. There are so many different kinds of symmetry

that it is virtually impossible to give one simple all-inclusive definition of this

term. For example, one can discuss the symmetries of an equation or a physical

law, not just the symmetries of a picture. Although the ideas of symmetry in its

different manifestations are related, care must be taken when making the notion

precise.

In our discussion of symmetry, however, our goals are really quite

modest. We want to know what are the possible symmetry groups for pictures

in the plane. From the perspective of a general discussion of symmetry groups,

we have asked a very specialized question. Group theorists know the answer to

this question, and it is this answer that we shall attempt to describe.

Types of symmetric pictures

We begin with some ground rules. In Chapter 1 we defined a symmetry of a

(planar) picture to be a motion of the plane that leaves that picture unchanged.

We noted, for example, that there are six symmetries of a three pointed star:

rotation counterclockwise through 120◦ and 240◦, reflection across the three

axes of the star, and the ‘trivial’ motion that leaves the plane fixed. For figures

like the equilateral triangle and square, symmetries are always either rotations

or reflections. On the other hand, when we consider repeating patterns, such

as are found in wallpaper patterns and quilts, we will also have translational

symmetries, which slide everything along without rotating, and glide reflection
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symmetries, which are a combination of a reflection followed by a translation

along the line of reflection.

Our pictures are all determined on the computer screen, which represents

just a small part of the infinite Euclidean plane. Yet there are still two types

of picture: those that appear to be completely contained within the computer

screen and those that are not. We call the first kind of picture a symmetric icon.

Pictures of this type only have rotations and reflections as symmetries. These

symmetries are the same as those possessed by a regular n-sided polygon, such as

an equilateral triangle, a square, or a regular pentagon. The second kind of picture

appears to fill the whole Euclidean plane; these pictures are determined by infinite

repetition from the small part of the plane that we see on the computer screen.

We call these pictures quilt patterns; all of these pictures have translational

symmetries. Thus we see that the two types are distinguished by whether or not

they have a translation as a symmetry. In our discussion, we first describe the

symmetry groups of the symmetric icons, that is, those pictures that have only

rotational and reflectional symmetries.

Groups

There are three fundamental properties of the collection of symmetries of any

picture, and it is these properties that mathematicians use in their analysis of

symmetry groups.

The first appears so obvious that it hardly seems worth stating: there is

a trivial symmetry that we denote by I . This trivial symmetry keeps the picture

fixed and plays the same role for symmetries that the number zero plays for

integers.

The second rule is almost equally clearly valid. Any symmetry has an

equal but opposite symmetry, called the inverse symmetry. If rotation counter-

clockwise through the angle d◦ is a symmetry of a picture, then rotation clockwise

through d◦ is also a symmetry. If translation in one direction is a symmetry, then

so is translation in the opposite direction.

Finally, performing two motions one after the other is also a motion,

called the composition of the first two motions. The third property states that if

the first two motions are symmetries of a picture, then so is the composition.

These three properties actually define an abstract group; this is the reason

that we call the collection of all symmetries of a picture a symmetry group. We
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discuss these ideas in more detail below in terms of the symmetry group of the

square.

Symmetries of regular figures

In his autobiographical book Surely You’re Joking, Mr. Feynman!, the physicist

Richard Feynman describes the behavior of mathematicians at Princeton in the

following terms. A mathematician would try to describe a new idea to one of his

colleagues. After much discussion, puzzled looks, and many filled blackboards,

his colleague would eventually say, ‘Oh I understand, that’s trivial!’ To non-

mathematicians, who have wrestled with high school mathematics, this comment

may seem quite bizarre. Yet there is some truth in the assertion that much of

mathematics is inherently trivial or obvious. In part, this is because questions

in mathematics generally admit a yes-no answer. Put another way, if you make

a mathematical assertion, then it is either true or false. This simple situation

is to be contrasted with the everyday problems of belief and action that we all

confront. Such everyday, and apparently mundane, questions are in reality very

complex precisely because they cannot be reduced logically to a matter of simple

truth or falsity. Even in science, there are no absolute truths, only reasonable

approximations to what is tacitly believed to be an underlying, yet invisible,

truth. However, just because a piece of mathematics is ‘obvious’ does not mean

that it is easy to understand. Indeed, the most obvious ideas are often the most

difficult.

As an aid to understanding our discussion of symmetry, we suggest that

you get pencil, paper, and scissors and test out what we say while reading through

this section. By the end, we hope that everything we do will indeed be obvious!

We begin our discussion of the symmetry group of a regular n-sided

polygon with that of the square.

Symmetries of a square

It’s fairly easy to convince yourself that there are precisely eight symmetries of

a square. First there is the trivial identity symmetry got by picking up the square

and putting it back down exactly as it was before. We denote this symmetry by I .

Then there are the three rotations of the square obtained by rotating the square

counterclockwise by 90◦ (that is, one quarter of a turn counterclockwise), 180◦

38 ❖ Symmetry in Chaos



March 16, 2009 09:36 book_new Sheet number 47 Page number 39 cyan magenta yellow black

(a half turn), and 270◦ (three quarters of a turn). These symmetries are denoted

by r90, r180, and r270. Note that r180 and r270 can be obtained by applying r90

twice and three times, respectively. Indeed, applying r90 four times just gets back

to the identity I . Finally, we can flip the square over on itself while leaving the

vertical midline of the square fixed. We denote this motion by F . The remaining

three symmetries of the square are now obtained by flipping the square using F

and then rotating the square using one of three rotations listed above.

We denote the group of all eight symmetries of the square by D4—the D

standing for dihedral and the 4 standing for the regular four-sided polygon (the

square). We also note that the identity together with the three rotations form a

group called the cyclic group Z4.

It is worthwhile being a little more explicit about the motions that we C B
C B

D
D A

A

Figure 2.1 Cardboard square,
white side up.

have just described. One way to do this is to cut a square out of cardboard

and color the opposite sides of the square with different colors, say black on

one side and white on the other. Place the square on a table, with the white

side uppermost, and label the corners A,B,C,D counterclockwise around the

square. Turn the square over, and label the corresponding corners A,B,C,D

so that labels match up for both sides (A,B,C,D will run clockwise round the

black side of the square). Label the center of the square, on both sides, with the

letter O. We show the labeled square, white side up, in Figure 2.1. Now place

the square on a sheet of paper, white side up, and draw the outline of the square

on the paper. Mark the cornersA,B,C,D on the paper and then mark the center

of the outlined square with an O.

The first thing to notice is that there are precisely four ways to place the

square within the outline with the white side up: these are the symmetries in

the group Z4 mentioned previously. Using the A,B,C,D designations of the

corners we can describe each of the symmetries of the square. For example, the

counterclockwise rotation r90 moves the corner labeled A to the corner labeled

B, the corner B to C, C to D, and D to A. We can write this motion using the

shorthand notation

(A,B,C,D) → (B,C,D,A).

The flip F can now be described using this notation as

(A,B,C,D) → (D,C,B,A),

that is, F interchanges corner A with cornerD and corner B with corner C. It is

easy to see that when you try to interchange these corners with a motion of your

cardboard square you must turn the square over so that its black side is up.

Planar Symmetries ❖ 39



March 16, 2009 09:36 book_new Sheet number 48 Page number 40 cyan magenta yellow black

As an exercise, you might want to check that the symmetry obtained by

first flipping the square using F and then rotating the square using r90, which we

denote by r90F , leads to the motion

(A,B,C,D) → (A,D,C,B),

which just interchanges the corners B and D.

We can push a little further into the geometry associated with these

symmetries. The four symmetries that involve F (namely, F , r90F , r180F ,
C B

C B

D
D A

A

Figure 2.2 The axes of symmetry
of the square.

r270F ) all have axes of symmetry (F leaves the horizontal midline fixed while

r90F leaves the diagonal from cornerA to corner C fixed). Indeed there are four

axes of symmetry of the square (see Figure 2.2) and these correspond to the four

symmetries just mentioned. On the other hand, the rotations themselves have no

axes of symmetry.

We can now use this discussion of the symmetries of the square to point

to properties of patterns having this symmetry. For example, the fact that the

eight symmetries of the square can be obtained from just two of the symmetries

(namely, r90 and F ) allows us to check whether a figure has square symmetry

by just asking whether the figure remains the same when you rotate it by 90◦

and when you flip it by F . Of course this figure might have more than square

symmetry (a regular octagon has square symmetry, and more) but it has at least

D4 symmetry.

Suppose a figure has the rotational symmetry r90 but does not have the

flip symmetry F . From the previous discussion we say that this figure has Z4

symmetry but not D4 symmetry. We can also make a prediction about that figure:

it will not have any axes of symmetry. Indeed, look at the picture in Figure 2.3

which has this property.

Symmetries of a regular polygon

Everything we have said for the square extends to the symmetries of the other

Figure 2.4 The axes of symmetry
of the regular nonagon.

regular figures in the plane. For example, suppose we consider the regular

nine-sided polygon: the nonagon (see Figure 2.4). There are nine rotational

symmetries of the regular nonagon forming a group denoted by Z9 (the cyclic

group of order 9). In all, there are a total of 18 symmetries of the regular

nonagon forming a group denoted by D9 (the dihedral group of order 18). The

group D9 contains nine rotational symmetries and nine reflectional symmetries

about the nine axes of symmetry of the regular nonagon. We may replace ‘9’

in this discussion by any whole number ‘n’ greater than or equal to two. The
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Figure 2.3 Swirling Streamers.
An Icon with rotational Z4

symmetry.

resulting regular n-sided polygon has symmetry group Dn (the dihedral group of

order 2n) containing 2n symmetries, n of which are rotational symmetries and

the remainder are reflections in the n axes of symmetry of the regular n-sided

polygon.
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Figure 2.5 Lace by Nine.

We should emphasize that we have chosen regular figures for our dis-

cussion of symmetry groups because they are the simplest figures possessing the

given symmetry and so are easier to draw and to talk about. Of course, every-

thing we have said applies equally well to the more complex figures illustrating

symmetric chaos that we show throughout the book. For example, in Figure 2.5

we show a picture with D9 symmetry.
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Figure 2.6 Emerald Mosaic.
Chaotic tiling with square
symmetry.We end this subsection by noting that the groups of symmetries of

symmetric icons are either the dihedral groups Dn or the cyclic groups Zn.

Needless to say, the corresponding discussion of the symmetries of symmetric

icons in three dimensions is substantially more complicated.
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Tilings and wallpaper patterns

Although figures with the symmetry of regular n-sided polygons are common

in many motifs, our most direct experience of symmetry is through observation

of wallpaper and tiling patterns. In this section, we enlarge our discussion of

symmetry to include this type of repeating pattern.

We begin with a simple tiling pattern based on the square; see Figure 2.6.

This pattern is formed by simply repeating the design in one basic square, which

we call a cell. From the perspective of symmetry, the most important feature

of this pattern is the translational symmetry; the pattern remains unchanged if

we translate the figure either horizontally or vertically by a cell. The existence

of these translational symmetries allows us to imagine extending the quilt-like

design to the whole plane, after having seen only several repetitions of the basic

cell on which the pattern is based. The second, more refined, feature of this figure

is the square D4 symmetry of the design in the basic cells.

Indeed, two distinct properties of the square are used when describing

Figure 2.7 Tiling of the plane by
squares.

Figure 2.8 The hexagonal tiling
of a honeycomb.

this ‘simple’ tiling pattern. The first property is that horizontal and vertical

translations of the square neatly fill up the entire plane, as indicated in Figure 2.7.

In this way it is possible for translations to be symmetries of the entire pattern.

The second property based on the square is the fact that a square has

square symmetry, and we can speak of the square D4 symmetry of the design

within the unit square.

From this perspective it is easy to imagine a tiling pattern built on

hexagons which also fill out or tile the plane, as any self-respecting honeybee

knows (see Figure 2.8). Moreover, we can arrange things so that within each cell

the design has hexagonal (D6) symmetry (see Figure 2.9). We refer to this tiling

of the plane as a hexagonal tiling. It turns out that there are just five different

ways to fill the entire plane by simply translating one regular tile. In addition to

the square and hexagonal tilings, there are the rectangular, rhombic, and oblique

tilings (see Figure 2.10). In practice, the repeating patterns that are most often

seen in nature or art are based on either square or hexagonal tiles.

The wallpaper groups

Although the most symmetric of repeating patterns are those built with square

symmetry on square tiles and hexagonal symmetry on hexagonal tiles, it is
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Figure 2.9 Dutch Quilt. Chaotic
tiling with hexagonal symmetry.

interesting to consider other less symmetric types of repeating patterns. For

example, it is easy to imagine a pattern based on a design on a square tile that

is not square symmetric, but nevertheless is repeated infinitely often. We can

also repeat that design by rotating it counterclockwise by 90◦ whenever we

translate it either to the left or up and clockwise by 90◦ when we translate it

either down or to the right (see Figure 2.11). Note that a 4×4 grid of cells in this

figure repeats infinitely often; but there is added structure within the grid. For

more information on the appearance and use of these types of design in different
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Figure 2.10 Regular tilings of the
plane.

Figure 2.11 Rotated A’s on a
square tiling.

cultures, we suggest that you consult the book Symmetries of Culture by Dorothy

Washburn and Donald Crowe.

Figures 2.12 and 2.13 contain two pictures of tiling patterns that are com-

puted using mathematical rules that have the symmetry of square and hexagonal

tilings. These pictures indicate the rich variety of patterns that can be obtained

with chaotic tilings.
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The collection of all such symmetry patterns, based on tilings of the

plane, have been classified by their symmetries; these symmetric repeating

patterns are called either the wallpaper groups groups or the two-dimensional

crystallographic groups groups. There are exactly seventeen different wallpaper

groups, and hence seventeen different types of wallpaper pattern. It can be

quite challenging to find the symmetry type of a particular wallpaper pattern.

A systematic approach depends on a careful analysis of the various types of

rotation, reflection, and glide reflection symmetry of the pattern. For example,

the pattern shown in Figure 2.13 has half-turn, one-third turn, and one-sixth

turn rotational symmetries. On the other hand, Figure 2.12 has only rotational

symmetries through half and quarter turns. Consequently the two patterns are

of different symmetry type. Practical algorithms for carrying out symmetry

identification of repeating patterns are given in the previously mentioned book

by Washburn and Crowe. We have illustrated the twelve patterns that can occur

on the square lattice in Figure 2.14 and the remaining five patterns, which occur

on the hexagonal lattice, in Figure 2.15. We have identified each pattern by the

label that is commonly used in mathematics or crystallography. For example,

p4m is a repeating pattern with full square symmetry (as in Figure 2.12), while

pmm is a pattern which has rectangular but not square symmetry. (In this book

we mainly show patterns of types p4m, full square symmetry; p4, rotational

square symmetry; p6m, full hexagonal symmetry; and p6, rotational hexagonal

symmetry.)

Coloring and interlacing

In practice, of course, patterns must be drawn using at least two colors, and many

ornamental patterns are drawn using a complicated set of lines and curves. Both

of these observations lead to more sophisticated classifications of pattern in ways

that we now discuss.

We begin with color. For simplicity, suppose we use two colors, say

black and white. We call the pattern positive if it is drawn black on white and

negative if it is drawn white on black. We can now imagine making a design,

such as the one by Maurits Escher (Figure 2.16), by taking a square tiling pattern

and alternating positive and negative pictures, as on a chessboard (Figure 2.16).

(In Escher’s picture the negative image is reflected.) It turns out that there

are exactly forty-six of these alternating two-color tiling patterns (for details,
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Figure 2.12 Sugar and Spice.

we again refer you to the book by Dorothy Washburn and Donald Crowe). We

resist the temptation even to discuss the symmetries of three-color tiling patterns,

though that classification has also been completed.

As we noted, ornamental designs are often constructed using complexes

of lines and curves. In Figure 2.17, some lines intersect while others pass each
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Figure 2.13 Crown of Thorns.

other in a way reminiscent of a weaving pattern. The effect is similar to what one

sees on a detailed street map where intersections, overpasses, and underpasses

are marked. Hermann Weyl, in his book Symmetry, devotes a chapter to the

subject of ornamental patterns.
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Figure 2.14 Twelve wallpaper
patterns on a square lattice.
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Figure 2.15 Five wallpaper
patterns on an hexagonal lattice.

Planar Symmetries ❖ 51



March 16, 2009 09:36 book_new Sheet number 60 Page number 52 cyan magenta yellow black

Figure 2.16 Symmetry drawing A
by Maurits Escher from The
Graphic Work of M.C. Escher.
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Figure 2.17 Interlace pattern:
Celtic knotwork with metallic
strips.
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Symmetry stands out, it demands our attention. Viewed in this light, it is not

surprising that symmetry plays such a pivotal role in a wide range of human

activity, from decorative design and textiles to architecture and advertising logos.

Yet symmetry means much more to us than just a pleasing visual response. For

example, symmetry has enjoyed a special place in both philosophy and theology.

In this context, symmetry is the great harmonizer and unifier. We frequently

portray, obtain, or symbolize meaning by the use of symmetry. Well-known

instances of this can be found in Greek philosophy (‘harmony of the spheres’),

in the religious icons and stained glass of Christianity, and, most especially, in

the exquisite mosaics and patterns used in Islamic art. This process of using

symmetry to obtain harmony and unity is also to be found in science. Many of

our modern ideas about the universe are based, just as those of the Greeks were,

on symmetry.

Our response to symmetry is more complex than might at first appear.

The most symmetric figure in the plane, bar the plane itself, is the circle. Even

though the Greeks regarded the circle as perfect—being most symmetric—we

tend not to regard objects with the symmetry of the circle as being especially

attractive. Indeed, in this book we have not shown any symmetric icons with

full circular symmetry on the grounds that they look rather dull when compared

with the figures with dihedral or cyclic symmetry. Simply put, we respond best

when symmetry is broken from the perfect symmetry of the circle (or plane) to

a lesser, but still identifiable, symmetry. When we break the symmetry of the

circle to that of the square, we lose the sameness or homogeneity of the circle and

find the structure of the square. This structure is comprehensible, even when it is

represented by a symmetric (chaotic) icon with square symmetry. The squareness

allows us to encompass it within our vision and mental capabilities.

Once all symmetry has gone, we often lose control, and words and

metaphors are no longer adequate to describe what we see. However hard we try,

it is difficult to impose order and rationality on the unsymmetric world around

us, whether it be nature, the stock market, the weather, or humanity itself.

In Chapter 1, we pointed out that the word chaos has two distinct

meanings. We agreed to follow contemporary scientific usage by deciding that

chaos meant ‘complex and unpredictable’. However, the original meaning of

chaos is that of ‘being without feature or form’. We shall refer to this state as

one of total chaos.

Perfect symmetry and total chaos have one feature in common: both

look the same at every point and from every direction. In this sense, total chaos

can be thought of as perfectly symmetric. Symmetry, however, when used in
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art, decorative design, or architecture, is usually one step down from perfect

symmetry. Analogously, our pictures of symmetric chaos can be viewed as a

breaking of the perfect symmetry of total chaos. By breaking this symmetry,

we introduce (symmetric) structure. If we think of chaos as representing the

‘dark side’, then one way we can illuminate the otherwise invisible symmetry

and structure in chaos is by the use of time averaging.

Throughout this book, we show a range of computer-drawn pictures

with various symmetries. We have found that these pictures evoke in many

people memories of images from a wide range of human experience. Of course,

likenesses are rarely exact, but they are often highly suggestive. In a sense, the

pictures seem to act like a Rorschach ink blot test, eliciting responses from Star

Wars to starfish. It is difficult to explain exactly why this is so. We would like

to think that one reason is that the symmetric creations of humanity, obtained by

breaking perfect symmetry, are similar in kind to those we obtain by breaking

the symmetry of total chaos.

In this chapter, we have collected a number of images from nature and

art and compared them with similar computer-drawn pictures. In no sense are

we suggesting that the mathematics used to draw these pictures also provides an

explanation for why the images look the way they do. Specific resemblances,

such as they are, are surely accidental. What is surprising is that the character of

these pictures, constructed using symmetric chaos, is so close to the character of

symmetric images from nature and art. A consequence is that it seems possible

that computer-drawn pictures, based on the ideas of symmetric chaos, can provide

images that will be useful in design. At any rate, we feel that there is a beauty in

these pictures of symmetric chaos that is worth recording.

Icons with pentagonal symmetry

Let us start by examining the classification of images by their symmetry in a little

more detail. We know that there are many different kinds of images that have the

same symmetry. To illustrate this point, we focus on images with pentagonal or

D5 symmetry. There are pictures of a diatom (Figure 3.1), flowers (Figure 3.2), a

corporate logo (Figure 3.3), architectural designs (Figure 3.4), and sea creatures

(Figure 3.5). Along with certain of these images we have included examples of

computer-drawn pictures that appear to mimic the real images. Of course we
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Figure 3.1 A unicellular diatom with pentagonal
symmetry. Image courtesy of Dr. Stephen Nagy.

Figure 3.2 (above right) The Spring Gentian and
(right) The Common Mallow.
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Figure 3.3 Corporate logos in a
Texas beach scene. Original
watercolor by Wendy Aldwyn.

should not forget the ultimate in logos with pentagonal symmetry: the Pentagon

itself (Figure 3.6).

You may wonder what some of these images actually are. So here is

some background material. Our examples of marine life include a type of diatom,

Actinoptychus heliopelta, that is found in marine and freshwater plankton. Most

flowers possess dihedral symmetry, and there are many examples of flowers with

five petals and fivefold symmetry. This really is a case where the symmetry is

there to be noticed—in this case by the bees. We have chosen the spring gentian

(Gentiana Verna) and the common mallow (Malva sylvestris) to illustrate two of

the many possible choices.

For corporate logos, we chose the Chrysler automobile logo; in the past

one of us drove Chrysler cars for many years. Having stared through that logo on

many a long trip, it seemed justified to use it. Our architectural design comes from

the Gothic tracings at the Cloisters of Hauterive. Finally we end our discussion

of pentagonal symmetry with pictures of starfish and sand dollars that are found

in great abundance along the Texas coast. The computer-drawn Sand Dollar

bears an uncanny resemblance to the real shell.

Icons with different symmetries

There are many images with different kinds of symmetry that are possible to col-

lect. For example, although most flowers have dihedral symmetry, the St. John’s
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Figure 3.4 (below) Gothic
tracery from the Cloisters of
Hauterive and (above) Gothic
Medallion.
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Figure 3.5 (below) Starfish, sea
cookies, and Sand Dollars and
(above) The Sand Dollar.
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Figure 3.6 (below) The
Pentagon and (above) The
Pentagon Attractor.
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Figure 3.7 (below) St. John’s
wort and (above) Chaotic
Flower. Bottom image courtesy
of Jamie M. Nielsen.
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Figure 3.8 Diatom with
triangular symmetry. Image
courtesy of Earth Sciences,
University College London.

wort Hypericum perforatum (Figure 3.7) has cyclic Z5 symmetry. Unusual

symmetries suggest possible unusual uses and, indeed, in the The Kindly Fruits

we find that the St. John’s wort is used

to cure madness, especially if the patient was thought to be possessed by the

devil, and was collected on St. John’s Eve (23 June) to be hung in the house

to ward off evil spirits.

There are diatoms with different symmetries; one with triangular sym-

metry is pictured in Figure 3.8. The Mercedes-Benz symbol provides a good

example of a logo with triangular symmetry (see Figure 3.9 (bottom)); the

Mitsubishi corporate logo pictured in Figure 3.3 is another example.

Distinctive logos can generate powerful images and associations, as is

evidenced by the following quote about the Mercedes medallion from Roger

Bell’s introduction to Great Marques: Mercedes-Benz.

The three-pointed star of Mercedes-Benz is more a symbol of prestige and

success, more even than an epitaph to Gottlieb Daimler’s dream of conquering

travel on land, sea and air. Since this world-famous trademark was first

embossed on the radiators of Mercedes cars in the early 1900s (it was not

encircled by a ring and proudly raised above the bonnet until 1923) it has

stood for the very finest in engineering and craftsmanship.
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Figure 3.9 (below) The
Mercedes-Benz medallion and
(above) The Mercedes-Benz
Attractor.
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Figure 3.10 (top left) Tunisian
pottery, (top right) Qianlong moon
flask, (bottom left) Turkish tile
plate, and (bottom right) Venetian
enameled dish.

Once you start looking for symmetric icons you find them everywhere.

For example, in Figure 3.10 we have the following: a pottery mosaic from a mar-

ket in Tataouine, South Tunisia, a famille rose and doucai Qianlong moon flask

with octagonal symmetry, a decorative Turkish tile plate, and a sixteenth-century

Venetian enameled dish with 42-fold symmetry. We contrast these examples of

earthenware design with two symmetric icons in Figures 3.11 and 3.12. The

57-fold symmetric icon in Figure 3.12 was discovered by Greg Findlow, who

was a student at Sydney University.

Some of the most dramatic symmetric icons may be found in the rose

windows of Gothic cathedrals. Two particularly beautiful examples are the rose

66 ❖ Symmetry in Chaos



March 16, 2009 09:36 book_new Sheet number 75 Page number 67 cyan magenta yellow black

Figure 3.11 Icon for ceramics:
Kachina Dolls.

windows at Chartres (Figure 3.13) with twelvefold symmetry that Painton Cowen

in Rose Windows calls “a triumph of geometry” and the thirteenth-century 24-fold

symmetric double layered wheel at Santa Chiara inAssisi (Figure 3.14 (bottom)).
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Figure 3.12 Sunflower, 57-fold
symmetry.
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Figure 3.13 Rose window at
Chartres.
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Figure 3.14 (below) Double
layered wheel at Santa Chiara
and (above) Santa Chiara Icon.
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Figure 3.15 French Glass. A
ninefold symmetric icon in the
style of stained glass.
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Figure 3.16 The Pentacle.

It is worth quoting Cowen more extensively concerning the meaning of

the degree of symmetry in rose windows:

Every rose window is a direct expression of number and geometry—of light

in perfect form. At Chartres all of them are divided into twelve segments, the

number of perfection, of the universe, and the Logos.
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Figure 3.17 Star of David.

The numbers one to eight were the most important, together with the all-

important number twelve, and each had a geometric equivalent. One repre-

sented the unity of all things, symbolized by the circle and its center; two,

duality and the paradox of opposites, expressed as pairs across the center;

three, the triangle, stability transcending duality; four, the square, matter, the

elements, winds, seasons and directions; five, the pentacle, man, magic, and
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Christ crucified with five wounds; six, the number of equilibrium and balance

within the soul, symbolized in the Star of David or Solomon’s Seal; seven,

the mystic number, of the seven ages, planets, virtues, gifts of the Spirit and

liberal arts; eight, the number of baptism and rebirth, implied in the octagon;

twelve that of perfection, the universe, time, the apostles, the Zodiac, the tribes

of Israel, and the precious stones in the foundations of the New Jerusalem.

Every rose window contains a star, either placed literally in the rose—as

at Saint-Ouen and Sens—or implied through the radiating pattern. In the

language of symbolism stars have many meanings, but they primarily relate

‘to the struggle of spirit against the forces of darkness’. Thus, the five-pointed

pentacle is a symbol of magic, the Pythagorean symbol of healing, of the

Crucifixion, and at a later date Man, drawn within the pentacle by Leonardo

da Vinci. The six-pointed Solomon’s Seal or Star of David is the star of

the macrocosm, of heaven and earth united through man, the two interlocking

triangular symbols of fire and water forming the perfect union of the conscious

and the unconscious.

In Figures 3.16 and 3.17 we present symmetric chaos icons of the five-

pointed pentacle and the six-pointed Star of David. How easily these figures

impersonate the semimystical icons of religious numerology.

Tilings

Thus far we have stressed the dihedral and cyclic symmetries of symmetric icons.

But there is another class of planar symmetries that are exhibited by quilts and

tilings. The main difference between the icons and the quilts is that the icons are

bounded but the quilts, through infinite repetition, are not.

Some quite unexpected instances of tilings are shown in Figures 3.18

and 3.19. The first picture is of the Giant’s Causeway, which is found along

the Northern coast of County Antrim in Ireland. The 60-million-year-old array

of hexagonal columns of the causeway occur in the middle basalt layer; similar

formations can be seen at Staffa in Scotland (Fingal’s Cave) and along the Snake

River Canyon in the American Northwest.

The picture in Figure 3.19 is a near perfect hexagonal array of convection

cells. In this experiment, a layer of water is placed in a container which is

then heated from below. When the difference between the temperatures at the

top and bottom of the fluid is small, the applied heat is just transmitted to the

top by conduction. However, when the temperature difference is large enough,
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Figure 3.18 Giant’s Causeway.
Image courtesy of Stephen Morris.

Figure 3.19 Convective motion in
the Bénard experiment performed
by Bodenschatz, de Bruyn, Canell,
and Ahlers. Reprinted with
permission from the American
Physical Society © 1991.
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Figure 3.20 (below) Second
Century Roman Mosaic from
Turkey and (above) Sicilian Tile.
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Figure 3.21 American quilt
designs taken from the catalog of
The Gazebo.convective motion begins. In the picture the light regions indicate places where

the fluid moves from the bottom to the top, and the dark regions indicate motion

from the top to the bottom. The astonishingly regular patterns formed at the

onset of convection were first observed over a century ago by Henri Bénard, and

the experiment is often called the Bénard experiment.

More familiarly, tilings occur in Islamic art, Italian mosaics (Figure 3.20),

quilts themselves (Figure 3.21), Indonesian batiks (Figures 3.22 and 3.23), and

ceramics (Figure 3.25).

There are a number of partially preserved examples of Italian mosaic

floors that consist of square symmetric patterns on a square lattice. In Fig-

ure 3.20 (bottom), we present a second-century geometric Roman mosaic found

in Hatay, South Turkey, and along with that a computer-generated symmetric

chaos design that we call Sicilian Tile (Figure 3.20 (top)).

Square tilings are also found throughout Indonesian art. In Figure 3.22

(bottom), we show a stone tiling found in the Tjandi Prambanan on the border
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Figure 3.22 (below) An
Indonesian geometric design in
stone and (above) Roses. Bottom
image taken from Indonesian
Geometric Design, published by
the Pepin Press.
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Figure 3.23 (below) A batik
map of Indonesia and (above)
Wagonwheels.

Patterns Everywhere ❖ 79



March 16, 2009 09:36 book_new Sheet number 88 Page number 80 cyan magenta yellow black

Figure 3.24 Choir screen from the
Constance Minster.

Figure 3.25 Ceramic tiles: (top
left) classic floor tiling, (top right)
Mexican style tile wall, (bottom)
Victorian tiles in the Aesthetic
style.
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Figure 3.26 Victorian Tiles.

between Jogjakarta and Surakarta. Note the strong resemblance with the geo-

metric design in Figure 3.22 (top). In Figure 3.23 (bottom), we picture a modern

batik featuring a map of Indonesia surrounded by a number of tiling patterns of

a classical motif. Note the similarity in design of the chaotic quilt pattern in

Figure 3.23 (top).
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Figure 3.27 Chaotic wallpaper
design: Mosque.

Tile patterns can also be found in wrought-iron grills such as the sketch

of the fifteenth-century choir screen from the Constance Minster shown in Fig-

ure 3.24.

Four samples of tiles are found in Figure 3.25. The tiles on the top are

modern (a classic floor tiling pattern on the left and a Mexican wall tiling found

in Santa Fe, New Mexico, on the right). The tiles on the bottom are nineteenth-
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Figure 3.28 Chaotic ceramic
design: Brown Tiles.

century tiles in the Aesthetic style (in black and white on the left and cream and

white on the right). We present our own version of Victorian Tiles in Figure 3.26.

One of the pleasures of experimenting with chaotic quilts on the computer

has been the discovery of a seemingly infinite variety of patterns that could be

used profitably in wallpaper and ceramic tile design. In Figures 3.27 and 3.28,

we present two of these patterns.
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Figure 3.29 (below) Nave
windows at Coventry Cathedral
and (above) Cathedral Attractor.
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Another place where repeating patterns have been utilized with great

effect over the years is in the stained glass windows of great cathedrals. In

Figure 3.29, we present our own attempt at a stained glass pattern. The square

geometry of this design matches well with the strong right angles of the nave

windows of Coventry Cathedral.

Islamic art

Repeated patterns and symmetry enjoy a special place in Islamic art. In part,

this is because of the avoidance by the Islamic faith of art that imitates nature.

In practice, Islamic art often uses an ornate decoration, based on principles of

symmetry, interwoven with a highly developed calligraphy.

Symmetric tilings of one form or another have been used frequently as

decoration on buildings in the Islamic world. In Figure 3.30, we show the dome

Figure 3.30 (left) The dome of
the mosque in Bukhara,
Uzbekistan and (right) the
cupola from the Blue Mosque in
Istanbul.
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Figure 3.31 Hexagonal lattice
pattern: Frontispiece of Qur’̄an.

of a mosque with oriental ornaments and quadrilateral symmetry from Bukhara

and the cupola of the Blue Mosque in Istanbul with 16-fold symmetry.

Some of the most beautiful examples of the use of symmetric patterns are

to be found on decorative pages from books, notably the Qur’̄an. In Figure 3.31,

we show the frontispiece for the Qur’̄an, drawn in 1310 by Al̄ı ibn Muhammad

ibn Zayd al-‘Alav̄ı al-Husayn̄ı in Mossul. We complement this picture with a

chaotic design created on a hexagonal lattice (Figure 3.32).
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Figure 3.32 Hexagonal Design.
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Above all, the power and utility of mathematics is seen in its use for modeling

natural phenomena. This is as true now as it was when Newton invented and

used the calculus for his law of gravitation. There are two fundamental, and

often conflicting, issues in the use of mathematical models. In the first place,

one attempts to derive a complete model that can lead to accurate predictions.

The model we have of the solar system, based on Newton’s laws, is of this type.

However, it is usually not enough just to be able to make accurate predictions.

In most cases, we need a good understanding of the phenomena modeled by the

mathematics. We need this understanding for the control and description of the

processes we are modeling. This is seen, for example, in economics where, in

spite of highly elaborate models, it is often a matter of great controversy as to

exactly what one should do to obtain a desired outcome. Further complicating this

is the fact that in many situations the available mathematical models are limited

by either insufficient knowledge or insufficient data. The study of the climate and

economics suffer from both these limitations. Even worse, if one has a complete

mathematical model, it may turn out to be largely mathematically intractable.

The models we have for turbulence tend to fall into this category. In this respect,

it is worth noting that it is sometimes possible (and often very useful) to develop

models that give good predictions of ‘average’ behavior. Paradoxically, even

though it is still often very difficult, if not impossible, to describe the exact

airflow over an airfoil or predict the weather in five days time, it is possible to

estimate the aerodynamic drag (an average) or make long-term predictions of

average temperatures (such as in climate models). Many of the laws of physics

and chemistry are precisely of this type: they describe the average behavior of

large numbers of atoms or molecules.

In general, we try to develop models that give accurate and useful

predictions. Even though there are many problems concerning the solar system

and gravitation that we cannot answer, there is no doubt that Newton’s laws

have proved of enormous value in the prediction of tides and eclipses and the

computation of the orbits of satellites. In some instances, however, there is

just no hope of making truly accurate models and one is forced to rely on the

study of simple models in order to identify and understand important phenomena.

One such area is population dynamics, where long-range prediction has proved

elusive, but simplified models have proved helpful. A well-known example of

a population model is the logistic mapping, which provides insight into why the

dynamics of populations are so difficult to understand as well as why chaotic

dynamics are so simple to generate.
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We shall start our discussion of chaos with a description of the logistic

map and how it arises as a model in the study of population dynamics. At the end

of the chapter, we show how a mathematical variant of the logistic map, the odd

logistic map, illustrates the phenomenon of symmetry creation that lies behind

the formation of symmetric icons.

The logistic map

The study of chaotic dynamics was made popular by the computer experiments of

Robert May and Mitchell Feigenbaum on a mapping known as the logistic map.

The remarkable feature of the logistic map is the contrast between the simplicity

of its form (it is a polynomial mapping of degree two) and the complexity of its

dynamics.

The logistic map is the simplest model in population theory that incor-

porates the effects of both birth and death rates. We imagine an experiment

where a census is taken each year of the population of rabbits in an isolated

region in South Australia. The basic question facing population dynamicists is

to find a model that accurately predicts the future rabbit population, given that

the present rabbit population is known. This seemingly innocent question is

much too difficult to answer with present knowledge. A more modest approach

is to construct a model of the rabbit population that gives some insights into

what may actually happen. In other words, we try to create models that give

insight into how population dynamics works. It turns out that the logistic map is

the simplest model we can construct that incorporates a realistic mechanism for

birth and death. In spite of the rudimentary character of the model, the logistic

map displays an astonishing range of complex dynamical behavior. Indeed, the

simplicity of this model provides compelling evidence that the real dynamics of

rabbit populations, whatever they are, are likely to be at least as complex as those

of the logistic map.

At this stage, it is helpful to introduce some economical notation to

describe the future population of rabbits. To this end, we shall let pn denote the

population of rabbits after n years and, in particular, let p0 denote the present

rabbit population.

We begin by deciding what factors might influence pn. We shall start by

making the reasonable assumption that the population in any given year depends

only on the previous year’s population: in symbols this means that there is a rule
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g such that

pn+1 = g(pn).

Otherwise said, we have a formula ‘g’ that gives the population of rabbits after

n+ 1 years in terms of the population after n years. Next we discuss what form

the rule g should have. A natural assumption to make is that the rule g depends

only on the birth and death rates of the rabbit population. Moreover, we shall

assume that the birth and death rates do not depend on the year (though we shall

allow the possibility that they depend on the size of the population). Finally,

in order to determine g, we must specify how the birth and death rates actually

enter the formula for g.

If there are no deaths and the birth rate is constant and equal to b, then

the simplest dependence of the rabbit population on the birth rate would be

pn+1 = pn + bpn.

That is, this formula states that the rabbit population after n+ 1 years is the sum

of the rabbit population after n years (that is, pn) with the number of new rabbits

born in year n (that is, bpn). For example, if b = 1 (a rather low birth rate for

rabbits), we would have

pn+1 = pn + pn = 2pn,

and so the model for the population of rabbits would obey the doubling rule of

Chapter 1. In any case, whenever the birth rate is greater than zero, it is easy to

see that in this model the population grows without bound, leading to the absurd

conclusion that after a few years the rabbit population would cover the land of

South Australia to a depth of several hundred feet.

In short, any reasonable model must incorporate a mechanism for death,

presuming that the population of rabbits is to remain bounded. One way of

incorporating death into our model is to assume that a constant proportion of the

population dies each year and that new baby rabbits are born only to that portion

of the population that survives. For example, if the population at the start of

the year were N rabbits, we might assume that over the year only sN rabbits

reproduce and the rest die (think of s as the survival rate). Consequently, at the

end of the year there would be (1 + b)sN rabbits leading to the model

pn+1 = (1 + b)spn.

Unfortunately, this model has the same difficulty as the previous one. If the

growth rate (1 + b)s exceeds unity, then the population still grows without
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bound. There is a new feature that appears in this model. If the survival rate

is so small that the growth rate is less than unity, then the model predicts that

eventually all of the rabbits will die (this should be compared with the halving

map of Chapter 1). Of course, in the unlikely event that the growth rate is exactly

1, the population will remain constant for all time. Since rabbits have a way of

surviving, even though their numbers do not grow without bound, our model is

unrealistic and cannot be correct.

From a mathematical point of view, the difficulty with both of the

previous models is that they are linear: next year’s population is just a constant

multiple of this year’s population (though the exact interpretation of the constant

differs in the two models). Linear models lead naturally either to exponential

growth or to exponential extinction, neither of which is a satisfactory conclusion.

It follows that a model must be nonlinear if it is to yield realistic predictions of

bounded and positive population size.

From a modeling point of view, one way to address the difficulty of

unbounded population growth is to assume that there is a maximum number of

rabbits P that can be supported on the land, where the constant P depends on

such features as the availability of food and the existence of predators. In such

a model, it is reasonable that the survival rate is proportional to the proximity of

the population to P . In other words, we might suppose that if the population at

the beginning of the year was N , then the survival rate would be s ′(P −N) and

so s ′(P −N)N rabbits would survive to the end of the year and reproduce. We

assume here that s ′ is a constant which does not depend on the population size

(or year). This reasoning leads to the new model

pn+1 = (1 + b)[s ′(P − pn)]pn.
Finally, we can simplify this formula by setting xn = pn/P , the propor-

tion of the maximum population present at year n, and λ = (1 + b)s ′P . The

number xn is called the relative population; it is the ratio of the actual population

to the maximum possible population and is therefore a number between 0 and 1.

In terms of xn, this model simplifies to

xn+1 = g(xn) ≡ λxn(1 − xn),

where g is called the logistic mapping and λ is called the effective growth rate.

There is a natural limit on the size of λ for this model. Since we obtain each year’s

relative population by applying the mapping g to the previous year’s relative

population, we must assume the result of applying g to a number between 0 and

1 is also a number between 0 and 1. Thus, in order for this formula to make sense
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as a model of population growth, the function g can never achieve a value greater

than unity when 0 < xn ≤ 1. Since the maximum value of g is g( 1
2) = 1

4λ,

we must assume that 0 ≤ λ ≤ 4. Also note that, as promised, the mapping g is

nonlinear—there is a quadratic term x2
n in its definition. Moreover, the mapping

g has the simplest form possible for a nonlinear mapping.

The period-doubling cascade

What May and Feigenbaum each explored is how the dynamics of the logistic

mapping g changes as the effective growth rate λ is varied. We discuss here

some of their results. Suppose that λ < 1. Then, since 1 − xn is always less than

or equal to 1, we see that

xn+1 = λxn(1 − xn) ≤ λxn < xn.

Hence the population always decreases in size and, as with our earlier population

model, the population decreases to zero as n increases and the rabbits disappear.

Next suppose that the effective growth rate λ is greater than one. Then

there is a critical relative population x� that remains constant year after year.

More precisely, the result of applying g to the point x� is just x�. Thus should

xn ever attain that critical value of x� the model g predicts that the relative

population will maintain its size each year after the nth year. The value x� is

called a fixed point for the map g. It is relatively easy to verify that the logistic

map has precisely one nonzero fixed point x� = 1 − 1/λ. Moreover, when λ lies

between 1 and 3 this fixed point is attracting in the sense that as we increase n,

the population will always approach x� (unless we start with x0 equal to zero or

one). In this sense, the map mimics the halving map considered in Chapter 1,

which had an attracting fixed point at zero.

Thus far, we have seen that when λ < 1 the population becomes extinct,

while if λ lies between 1 and 3 the population stabilizes over time to x�. It is

easy to conceive of other possibilities. For example, suppose that we can find a

point x�1 such that

x�2 = g(x�1) �= x�1

(x�1 is not a fixed point of g) and

g(x�2) = x�1 .
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If the initial population is x�1, then that relative population repeats every second

year. We call x�1 a point of period two for g. We note that x�2 is also of period

two, and indeed points of period two always come in matched pairs. The idea

that the population can alternate in size from year to year is quite reasonable. If

we start with a large population, then resources will be scarce and we can expect

a large number of deaths leading to a small population. On the other hand, if we

have a small population, resources are plentiful and we can expect an explosive

growth in the population size. Given the right conditions, it is reasonable to

presume that the relative population will continue cycling between large and

small populations ad infinitum. With these thoughts in mind, let us return to the

study of what happens in the logistic map as we continue to increase λ.

We find that as λ increases through 3, a pair of period-two points is

created. Moreover, for almost all initial populations of rabbits (that is, values

of x0), the population xn approaches the pair of period-two points as the years

pass. In alternate years the population of rabbits is high and then low. This

change in dynamic behavior that occurs when λ increases through 3 is called a

period-doubling bifurcation.

The period-doubling bifurcation is intriguing, but pales in significance

before the period-doubling cascade which follows. As λ is further increased,

the period-two point itself period-doubles to a period-four point (the population

of rabbits repeats every four years); then period-doubling to period eight occurs,

then to period sixteen, and so on. It is astonishing that a model as elementary as the

logistic map actually predicts the possibility of complicated periodic dynamics.

From this point of view, the 14-year cycles of locusts should perhaps not be

considered such a remarkable phenomenon.

When λ reaches λc = 3.57 . . . , periodic points of arbitrarily large

period have appeared in the dynamics of g and chaotic dynamics has set in.

This bifurcation scenario is summarized by the now famous bifurcation diagram

pictured in Figure 4.1. In this figure the horizontal axis shows the parameter λ

and the vertical axis shows the population x. For each value of the parameter the

attracting set—first the fixed point, then the period-two points, then the period-

four points, etc.—are shown.

We now describe how Figure 4.1 is produced. We will need this infor-

mation when we describe a similar bifurcation diagram for symmetric mappings.

There are five steps in the procedure, which we now enumerate.

1. Take an initial value of λ, say λ = 2.5, and fix a value of x between 0

and 1.
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Figure 4.1 The period-doubling
cascade in the logistic mapping.

2. Using the logistic mapping g iterate 5,000 times starting from x to compute

the transient part of the dynamics.

3. Plot the next 500 iterates of x on the vertical line above the current value

of λ on the λ-axis.

4. Increment the value of λ by a fixed small amount, say 0.005.

5. If λ < 4, return to step 2 using the new value of λ; otherwise stop.

In this way we see the fixed point turning into a period-two point as λ is increased,

and then into a period-four point, etc.

There are two issues that are important here. The first is the discovery of

period-doubling and the period-doubling cascade in this simple logistic map. The

consequence of having this cascade is that small changes in a single parameter,

such as the effective growthλ, can create large changes in the observed dynamics.

The second is the realization that the kind of complicated dynamics that is

observed in the logistic equation is typical of the dynamics for a large class

of mappings.

It was a major surprise to most researchers when in 1976 Robert May

pointed out that even a simple mathematical model like the logistic map can

predict such complicated—or chaotic—dynamics. It has taken time for people

to realize that chaotic dynamics might even be more the rule than the exception.
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In 1978 Mitchell Feigenbaum made another remarkable discovery about

the logistic map and mappings like the logistic map: there is a universal constant

of mathematics (akin to π and e) that can be associated with period-doubling

cascades and, moreover, this constant can even be determined experimentally.

Indeed, this discovery was so surprising that initially there was great reluctance

in accepting Feigenbaum’s ideas.

Feigenbaum’s contribution was the observation that to each period-

doubling cascade one can compute a number as follows. Suppose that a period-

doubling cascade is found by varying a parameter λ, like the λ in the logistic map.

Suppose that you let λm be the parameter value where the mth period-doubling

occurs. Then the ratio
λm − λm−1

λm+1 − λm

tends to a constant as m becomes large, and this constant is now known as

Feigenbaum’s number. What is important is that there is a large class of map-

pings, which includes the logistic map, for which this number is the same. That

number is 4.6692016 · · ·.

Symmetric maps on the line

As we mentioned at the beginning of this chapter, one of the two roles of

mathematical modeling is to identify and illustrate new phenomena. From this

point of view, the study of the logistic map has been a glorious success. The

study of this basic mapping has led to a better understanding of period-doubling

and the role of the period-doubling cascade in leading to the existence of chaotic

dynamics. It has also demonstrated why we should not be surprised to find that

the dynamics of real populations are extraordinarily complicated.

Suppose now that one wants to study how symmetry and chaotic dy-

namics coexist. Since the logistic map has a particularly simple form and also

exhibits chaotic dynamics, it makes sense to try to modify the logistic map so

that it is also symmetric. We begin this process of modification by discussing

symmetry on the line.

Note that the real line has only one nontrivial symmetry that fixes the

origin, namely, reflection about the origin:

Rx = −x.
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What does it mean for a map to be symmetric with respect toR? Suppose

that F is a mapping of the line. That is, for each number x, F determines a new

number that we denote by F(x). In order that F be symmetric, we shall require

that if we evaluate F at symmetrically placed points x and Rx, we obtain a pair

of symmetrically placed points F(x) and F(Rx). That is, we require

F(Rx) = RF(x).

Since Rx = −x, we see that this condition on F amounts to requiring

F(−x) = −F(x).
In other words, F is R symmetric if it is an odd function. It is easy to check

that a polynomial F(x) is odd precisely when the monomials that appear in the

formula for F are of odd degree. For example, if F(x) = x + x3, then F is odd,

but if F(x) = x + x2, then F is not odd. In particular, the logistic map

g(x) = λx − λx2

is not an odd function, on account of the x2 term.

We make a simple modification of the logistic map to obtain an odd

function. What we do is define

go(x) ≡ λx(1 − x2) = λx − λx3.

We call go the odd logistic map. Unlike the logistic map, our new map has

no obvious interpretation as a model for population dynamics. Nevertheless,

we can hope that if there are new phenomena that occur in the dynamics of

symmetric mappings, then these phenomena will become visible when we study

the dynamics of the odd logistic map. It is not hard to show that if −1 ≤ x ≤ 1,

then −1 ≤ go(x) ≤ 1, provided that 0 ≤ λ ≤ 3. If λ > 3.0, orbits typically

become unbounded.

Symmetry creation

The first step in studying the dynamics of the odd logistic map is to create by

computer its bifurcation diagram. What we see is that the bifurcation diagram of

the odd logistic map has many features in common with the bifurcation diagram

of the logistic map. In particular, we find that the odd logistic map has a

period-doubling cascade. However, because of symmetry it is forced to have
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Figure 4.2 Symmetry creation in
the odd logistic map.

two cascades: one corresponding to choosing a positive number x as the initial

point in the iteration procedure, as in Figure 4.2(a), and the other corresponding

to choosing a negative number x as initial point, as in Figure 4.2(b). In both

diagrams we vary λ in small increments from 0 to 3.0.

As we increase λ, we find that the two chaotic attractors spawned by the

period-doubling cascades merge to form one symmetric attractor. The value of λ

where this merging of attractors occurs is given by λc = 3
2

√
3. Below λc, initial

conditions lead to attractors all of whose points are positive or to attractors all of

whose points are negative. Above λc, the chaotic attractors are symmetric about

the origin. In Figure 4.2 the bifurcation diagram showing this symmetry creation

for the odd logistic equation is presented; this diagram is produced in the same

fashion as was Figure 4.1, but with the logistic map replaced by the odd logistic

map.

In Figure 4.3 we show the superposition of the two figures comprising

Figure 4.2. We have used color coding to show the asymmetric attractors for

λ < λc and the symmetric attractors for λ > λc, as well as the relation between

color and number of pixel hits. We computed a total of 650,000 iterates for

each value of λ and both initial conditions. We ignored the first 50,000 iterates

(transient effects are very strong near the bifurcation points) and recorded the

next 600,000 iterates. We colored according to the scheme shown in the color

bars underneath the bifurcation diagram in Figure 4.3.

The odd logistic equation provides the most elementary example of a

symmetry increasing bifurcation.
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Figure 4.3 Conjugate attractors
in the odd logistic map.
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At the end of Chapter 1, we indicated how the kind of symmetry creation

exhibited by the odd logistic map might lead to patterns on average. We now

present another example of symmetry creation.

Chaotic trains

For a number of years, engineers have known that the wheelsets of trains may

move chaotically. These wheelsets are designed to allow some lateral motion.

Indeed, this sideways motion is clearly needed on curves, but it is also needed

on straight stretches, as tracks are not always perfectly aligned. Chaotic motion

of the wheelsets is known to occur, and this chaotic motion does not bode well

for passenger comfort and wheelset durability.

In a paper that appeared in 1992 in the Philosophical Transactions of the

Royal Society of London, three Danish engineers—Carsten Knudsen, Rasmas

Feldberg, and Hans True—studied a detailed model of the lateral motion of

wheelsets and have found an instance of symmetry creation. Like all models of

wheelsets, their model has a single left–right symmetry, and it is this symmetry

that is involved in the symmetry creation.

What these engineers found is that at slow speeds of about 25 miles

per hour (mph) the sideways motion can be chaotic—but asymmetric. More

precisely, the lateral position of the wheelset (relative to the track) is biased

either towards the right or towards the left. At such speeds small imperfections

in the track have the tendency to force the train to position its wheels in one

preferred direction. This preference can cause one of the wheels, say the left,

to wear down more quickly than the right; the difference in the diameters of the

wheels then forces the wheelset to turn towards the side with the preferential

wear, in this case the left, which results in even greater differential wear. This is

clearly an unstable and unwanted situation, and explains why railroad engineers

might be interested in asymmetric chaotic motion.

At higher speeds of about 35 or 40 mph, the model predicts a transition to

symmetric chaotic motion in a way that very much resembles the transition from

asymmetric to symmetric chaos in the odd logistic map. What is curious about

this discovery is the possibility that wheelset repairs might be more frequent

when trains travel at slower speeds. Of course, once such a phenomenon is

identified, wheelset designs can be adapted to guard against such differential

wear. Nevertheless, it is intriguing that the phenomenon of symmetry creation

can appear as a significant factor in practical engineering problems.
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In this chapter, we focus our attention on the properties and construction of

symmetric icons. As a first step, we provide a striking pictorial demonstration

that the mathematical rules we use to construct symmetric icons possess sensitive

dependence on initial conditions—one of the characteristic properties of chaos.

Next we give more details, for the mathematically inclined, on the explicit

mathematical formulas that we have used throughout the book to construct

icons in the plane with Dn symmetry. These formulas can be viewed as a two-

dimensional symmetric version of the logistic map and are most easily described

using complex numbers. For this reason, we include a brief introduction to the

history and properties of complex numbers. We conclude the chapter with a

demonstration of symmetry creation for mappings of the plane which possess

Dn symmetry.

Mappings with dihedral symmetry

We begin by discussing how we might extend the idea of symmetry on which

the odd logistic map is based to maps of the plane with dihedral symmetry. This

extension will eventually provide us with the formulas that we have used to create

all of the symmetric icons shown in this volume.

Let us start by supposing that we are given a planar mapping F . That is,

for each point z in the plane, F determines a new point in the plane that we denote

by F(z). Guided by our discussion of the odd logistic map, we may answer the

question as to what it means for F to be Dn symmetric. Suppose that S in Dn is

a symmetry. We require that the symmetrically placed points z and Sz are taken

by F to symmetrically placed points. More precisely, we require that

F(Sz) = SF(z)

for each symmetry S in Dn. When F is Dn symmetric, this formula allows us to

compute F(Sz) for all 2n symmetries S in Dn once we know F(z). In Figure 5.1

we show an example of a map F with square symmetry. Referring to the figure,

we have color coded the points that can be obtained from z (represented by a

black dot) by reflection in the coordinate axes and diagonals of the square. The

navy blue point Sz is obtained by reflection in the diagonal � and so F(Sz) is

obtained by reflection of F(z) in �. Similarly T z and F(T z) are obtained by

reflection of z and F(z) in the x-axis (denoted by m in the figure).
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TF(z) = F(Tz)

SF(z) = F(Sz)
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Figure 5.1 A map with square
symmetry.

Although the restriction that symmetrically related points get mapped

by F to symmetrically related points may seem weak, it does imply strong

geometric constraints on the map F . For example, since the origin is fixed by

every symmetry, and is the only point in the plane with this property, it follows

that F(0) = 0 (since F(0) = F(S0) = SF(0) for all symmetries S). Similarly,

if S is a reflection with symmetry line �, then every point on � is fixed by S

and so the same must be true for every point on the image by F of �. Hence F

maps every axis of symmetry into itself. Summing up, the assumption that F is

symmetric implies that F preserves the origin and axes of symmetry.

Subsequently, we shall give explicit formulas for symmetric maps. How-

ever, for the time being, we shall keep the formulas hidden and instead give a

graphic illustration of how we can exploit the symmetry of a map to display the

hallmark of chaos—sensitive dependence on initial conditions.

An illustration of chaos

As we discussed in the introductory chapter, one of the most important charac-

teristics of chaotic dynamics is sensitive dependence on initial conditions. Let

us recall what this means in the context of symmetric mappings of the plane.

Suppose that when we begin iterating a point z sufficiently near the origin, all

iterates of z stay within a bounded region of the plane. (This assumption is valid

for the mappings used to create the symmetric icons pictured in this volume.)

Choose two initial points z1 and z2 that are very close together. We say that our

mapping has sensitive dependence on initial conditions if, when we compute the

sequence of iterates for both z1 and z2, the corresponding points in the sequence
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Figure 5.2 Color coding of
wedges between lines of symmetry.

move away from each other. For example, if z1 and z2 lie in the same pixel of

the computer screen, we would require that corresponding iterates of z1 and z2

eventually lie in different pixels (see Chapter 1). In fact, this property cannot

be expected to be valid for every pair of points in a pixel, but when sensitive

dependence is present we expect it to be valid for almost every choice of points.

Typically the separation of the points z1 and z2 under iteration is very fast and is

similar to what one sees under the doubling rule.

Coupling symmetry and color allows us to illustrate pictorially the notion

of sensitive dependence. To understand how this is possible, we restrict our

attention to mappings with triangular symmetry. Suppose that f is a mapping

of the plane with D3 symmetry. As we indicated above, any point of the plane

which lies on an axis of symmetry of D3 must be mapped by f onto that same

axis of symmetry.

Using the three axes of symmetry of D3, we may divide the plane into

six wedge-shaped regions. We assign a color to each of these wedges. We

refer to Figure 5.2 (left), where we have shown a picture of the computer screen

with colored wedges displayed. Note that we have singled out a square region

in the center of the screen with a black border. In Figure 5.2 (right) we have

superimposed the result of iterating the map f half a million times. In particular,

f has a symmetric attractor and the attractor is contained in the inner square.

106 ❖ Symmetry in Chaos



March 16, 2009 09:36 book_new Sheet number 115 Page number 107 cyan magenta yellow black

Figure 5.3 Color coding of the
first and second iterates.

We choose a point z inside each pixel lying in the square region. We

then color that pixel with the color of the wedge in which F(z) lies. There is an

ambiguity concerning this construction which we mention here only briefly. The

phenomenon of sensitive dependence on initial conditions leads to the possibility

that two points inside one pixel will go under iteration by F to two different

wedges. In our case, we always chose the point to be at the top left-hand corner

of the pixel. Other choices will lead to essentially the same results. We show

the results of this construction in Figure 5.3 (left).

Observe that there is some evidence of mixing in Figure 5.3 (right).

For example, the coloring shows that points inside of any wedge get spread

around by F to four different wedges. The mixing effect is much stronger in

Figure 5.3 (right), where we have shown the result of iterating each point in the

inner square twice. As before, we color the initial pixel according to the color of

the wedge in which the second iterate lies.

In Figure 5.4 (left), we show the dramatic effects of the mixing after just

eight iterates. We see from the picture that we can choose six pixels that are quite

close to each other and which go to all of the six possible wedges. This illustrates

the phenomenon of sensitive dependence on initial conditions, and one can see

how quickly it occurs. In Figure 5.4 (right), we show the mixing after sixty

iterates. The image now looks quite homogeneous—typically adjacent pixels go
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Figure 5.4 Color coding of the
eighth and sixtieth iterates.

to different wedges. In Figure 5.5, we show the individual pixels in a very small

section of the image. The original was computed as an image 6,000 × 6,000

pixels in size. The sections we show are about 90 pixels square. The section

in Figure 5.5 (left) is chosen from the upper right-hand quadrant. The second

section is chosen from the same region but, in this case, we did 120 iterates.

As you can see even at this very small scale, pixels appear to be colored quite

randomly.

In Figure 5.6, we show the symmetric attractor associated with the map

F that we used to produce Figures 5.3 and 5.4.

Numerology

Our eventual goal is to present the formulas that we use to compute the symmetric

icons. It turns out that these formulas become much simpler and more transparent

once we have shown that points in the plane can be regarded in many ways like

ordinary numbers. In particular, we want to show how it is possible to add and

multiply points in the plane so that all the usual rules of arithmetic hold. However,
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Figure 5.5 Fine detail of pixel
coloring after 60 and 120 iterates.

before we do this, it is helpful to digress in order to sketch some fragments in

the historical evolution of the idea of number.

As a guide, it is worth noting that two themes appear in this evolution.

The first theme is that of utility or application. When all is said and done, numbers

are used in computation, to solve problems. Over time, our concept of number has

often been enlarged when it has become necessary to find a numerical solution to

a problem. The other theme is more philosophical and mathematical in character.

It is that of mathematical beauty or completeness. Often, the concept of number

is enlarged so that mathematical problems that should reasonably have solutions

do have solutions.

The remarkable fact is that both themes are inextricably intertwined.

Often, new ideas of number have been developed to solve seemingly esoteric

and abstract mathematical problems; at other times, new highly abstract ideas

about numbers have evolved out of efforts by engineers and scientists to solve

practical problems. Whatever the source, it has always turned out that abstract

ideas of number are essential to our understanding of the real world.

By discussing certain aspects of the evolution of numbers—integers to

fractions (or rational numbers) to irrational numbers to real numbers to complex

numbers—we will see how the complex numbers, the points in the plane referred

to above, may also be seen as a natural tool for computation. The books
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Figure 5.6 Golden Flintstone.
Attractor for color-coded
mapping.

The Emergence of Number by John Crossley and Number Theory, An Approach

Through History by André Weil present a more comprehensive discussion of the

history of numbers.
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The integers

The nineteenth-century German mathematician Leopold Kronecker made the

comment that the

natural numbers were made by God; the rest [of mathematics] is the work of

man.

Noting Kronecker’s remark, it seems appropriate to start our overview with the

idea of a natural number. The natural numbers, or positive integers, comprise the

whole numbers 1, 2, 3, . . . . As we have already indicated, the development of the

idea of number is very much driven by practical considerations. For example, we

need to extend our idea of whole number to include negative numbers just to do

accounting using modern notions of debt and credit. Negative numbers (and zero)

were certainly well known, understood, and used by the seventh-century Indian

mathematician Brahmagupta and his followers. On the other hand, negative

numbers were treated with considerable distrust as late as the sixteenth century

in Europe, probably due to their lack of geometric interpretation.

We call the set of all whole numbers—positive, negative, and zero—the

integers. However, integers by themselves are far too limited a class of number

even for the analysis of problems just involving integers. We recall that a fraction

(or rational number) is a quotient of integers. Thus, 1
2 ,−2

3 , and 16
7 are fractions.

Fractions appear the moment we look at averages. For example, the average

size of a household in Australia in 1986 was about 2.9. This is so, even though

adults and children come in whole numbers.

The rational numbers

The idea of number was important to Greek mathematics and philosophy. If we

go back to the fifth century BC, the followers of Pythagoras—the Pythagoreans—

were the dominant force in Greek mathematics. From our perspective, the

Pythagoreans’ idea of number is not so easy to understand; roughly speaking

we believe that they worked with natural numbers and fractions. Most of their

ideas about number were closely related to geometry—to quantities like length,

perimeter, and area. As a result there was no developed concept of negative

numbers since such geometric quantities are always positive! On the other hand,

fractions or ratios are closely tied to geometric constructions. For example, in

Euclid’s treatise on geometry, we find a construction, using ruler and compass,

for the division of a line into n equal parts for any natural number n. It follows
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that, given a line of unit length, it is possible to construct a line of length m
n

for

any positive integers m and n.

It is believed that the Pythagorean mathematician Hippasus of Metapon-

tum was the first person to show that all of geometry could not be expressed in
b

a

 (a  +  b  )2 2

Figure 5.7 The Pythagorean
theorem.

terms of ratios of whole numbers. Specifically, Hippasus is credited with the

proof that the square root of two cannot be written as a ratio of whole numbers.

Referring to Figure 5.7, we recall the Pythagorean theorem that the square of

the hypotenuse of a right triangle is the sum of the squares of the adjacent sides.

(The question of who first proved the Pythagorean theorem is still a matter of

some controversy. What does seem to be generally agreed upon is that it was not

Pythagoras.)

If the adjacent sides of a right triangle both have length 1, then it follows

from the Pythagorean theorem that the length of the hypotenuse is
√

12 + 12 =√
2. It is quite easy to show—just as the Greeks did—that

√
2 cannot be written

as a fraction, that is,
√

2 is an irrational number. The argument is based on

‘proof by contradiction’ and uses simple facts about odd and even integers (a

specialty of the Pythagoreans). Suppose we can write
√

2 as a fraction. Say√
2 = m

n
, where m, n are positive integers. By canceling powers of 2 we can

always assume that at least one of m, n is an odd number. Squaring, we get

2 = m2

n2 and so 2n2 = m2. Since the square of an odd number is odd, it follows

that m must be even, say m = 2p. Substituting, we get 2n2 = 4p2 and so,

dividing by 2, we get 2p2 = n2. Hence n is even. We have shown that both m

and n are even, contradicting our original assumption that one of m, n was odd.

Therefore we cannot write
√

2 as a ratio of integers.

The irrational numbers

The Pythagoreans, in particular Pythagoras, regarded this discovery as rather

shocking. Indeed, not only was their geometry based on the idea that all numbers

were rational, but it is believed that their proof of the Pythagorean theorem

depended crucially on this assumption. For some time the existence of irrational

numbers was kept secret by the Pythagoreans. There is even a legend that

Hippasus made his discovery at sea and was subsequently thrown overboard by

Pythagorean shipmates. Other stories have Hippasus murdered by Pythagoras.

The existence of irrational numbers is shocking. It is not by chance that

we use the word ‘irrational’ to describe numbers like
√

2. If we attempt to write

down the decimal expansion of
√

2, we find that
√

2 = 1.414213562373095048801688724 . . .
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and the sequence of integers following the decimal point never repeats itself.

Consequently, we need infinitely many integers to specify precisely the square

root of 2. In other words, we can never know
√

2 exactly. All we can say is that√
2 is that positive number which squares to 2. Much later, it was shown in 1761

by the German mathematician and philosopher Johann Heinrich Lambert that

the ratio π of the circumference to the diameter of a circle is also an irrational

number. In one sense the existence of irrational numbers is not too serious.

Indeed, a computer computes using rational numbers; it could never have a

memory big enough to store an irrational number like
√

2. In spite of this

limitation, a computer often produces answers that are very close to the true,

possibly irrational, result. From the philosophical and mathematical point of

view, however, we have to accept the existence of irrational numbers, and once

we do this we find that most numbers are irrational. If we use decimal expansions,

then we may write any number as an infinite decimal. For example,

1/35 = 0.02857 142857 142857 142857 . . .

The sequence 142857 repeats forever and this periodicity in the decimal expan-

sion is characteristic of rational numbers. Indeed, rational numbers, and only

rational numbers, have this periodicity in their decimal expansion.

Suppose now that we randomly choose each digit in the decimal expan-

sion of a number. What sort of number would we expect to create? It seems

most unlikely that there would be a pattern of digits that would repeat infinitely

often; indeed it is most unlikely that a number chosen in this fashion would be

rational. In this sense, most numbers are irrational.

The real numbers

The collection of all numbers, rational and irrational, is called the real numbers.

There is some irony in the choice of the word real, as at each stage in the

development of number, new types of number, such as negative numbers or

irrational numbers, were regarded with suspicion and given names such as false

or fictitious numbers.

As we have just discussed, the existence of rational and irrational num-

bers were forced on the Greeks when they tried to do geometry, that is, to make

sense out of concepts like length and area. There is another direction in which

these types of numbers are also forced to exist. Try solving the linear equation

2x − 3 = 0. The solution is easily seen to be x = 3
2 , which is not an integer.

Symmetric Icons ❖ 113



March 16, 2009 09:36 book_new Sheet number 122 Page number 114 cyan magenta yellow black

Thus, when you try to solve linear equations with integers as coefficients, you

can easily get rational numbers—not integers—as solutions.

Next consider the slightly more complicated equation: the quadratic

equation x2 = A when A ≥ 0. This equation always has a solution if we are

allowed to use irrational numbers. For example, if A = 2, the solutions are

±√
2. Significantly, ifA > 0 is irrational, then the solutions of x2 = A will also

be irrational. Thus, no new numbers are needed when we use the Pythagorean

theorem to solve for the length of the hypotenuse of a right triangle given the

lengths of the adjacent sides, since this solution involves taking the square root

of a positive real number. Now consider solving the equation x2 = −A when

A is positive. For example, consider solving the equation x2 = −1. Such an

equation has no real number as a solution, since the square of a real number is

never negative.

In most formal treatments, a new number i is introduced to solve the

equation x2 = −1. That number is written formally as i = √−1. Even the

notation seems to advertise this approach as strange—for the letter i stands for

imaginary. We shall shortly show that there is a more natural and geometric way

to think of i. Moreover, this alternative approach not only removes the mystery

from i but also suggests and permits powerful new methods of computation. For

the moment, however, note that our formal definition enables us to solve the

equation x2 = −A when A is positive: the solutions are

±√−A = ±√−1
√
A = ±i√A.

More generally, we might ask when the quadratic equationx2+2bx+c =
0 has a solution. Most readers will recall from high school algebra that the solu-

tions to this equation are given by the quadratic formula −b±√(b2 − c). Using

the notion of i described above, we see that this formula works just fine. When

b2 ≥ c, the square root produces a real number and the solutions are real. When

b2 < c, the square root produces a multiple of i. However, guided by potential

applications, we might say, in this case, that equations where b2 < c have

no conceivable application and dismiss them as aberrations. Mathematically,

however, it seems quite unsatisfying that some quadratic equations have solutions

while others do not. Historically, this problem did not worry mathematicians:

solutions of quadratic equations were always thought about geometrically (not

algebraically) and an equation x2+2bx+c = 0 with b2 < cwas simply regarded

as an equation without solutions or geometric interpretation.
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The complex numbers

Numbers involving i are called complex numbers; all complex numbers can be

written in the form x + iy, where x and y are real numbers. As the quadratic

formula shows, every quadratic equation has solutions which are either real

numbers (when b2 ≥ c) or complex numbers (when b2 < c). As we have seen,

from the algebraic point of view, trying to solve linear equations leads to the need

for rational numbers and trying to solve quadratic equations leads to the need for

irrational and even complex numbers. There is a sinking feeling that if we try to

solve cubic equations, then we will need even more exotic types of number. But

that is not the case.

In the sixteenth century, mathematicians started to think seriously about

solutions to cubic equations, specifically equations of the form

x3 + ax = b.

The Italian physician and mathematician Cardano was the first person to publish

a formula for the solution of cubic equations. This formula is now named after

Girolamo Cardano, though he learnt of it from a contemporary, Niccolo Tartaglia

and swore, under oath, not to disclose it. In fact another Italian, Scipione dal

Ferro, is generally credited with being the first person to solve general cubic

equations. Whatever the truth of the matter, Cardano presents a formula for

the solutions of cubic equations in his famous book The Great Art or the Rules

of Algebra and, for the first time, describes numbers including the square root

of a negative number. However, he regarded these new numbers somewhat

disdainfully:

So progresses arithmetic subtlety the end of which, as is said, is as refined as

it is useless.

In fact, complex numbers were far from useless. Rafael Bombelli, who

was an engineer and contemporary of Cardano, worked out the basic rules of

arithmetic for complex numbers. Bombelli was not interested in whether or not

they existed; for him these numbers were useful precisely because they enabled

him to solve practical engineering problems. Bombelli was not concerned about

the philosophy behind these numbers. His view was pragmatic: they worked.

In spite of Bombelli’s enthusiasm, mathematicians of the time tend-

ed to treat complex numbers with considerable caution, often combined with

mysticism. Thus, Leibniz described these numbers as

…a fine and wonderful refuge of the divine spirit, as if it were an amphibian

of existence and non-existence.
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Notwithstanding this initial skepticism, mathematicians increasingly stud-

ied complex numbers. By the nineteenth century, Gauss had christened these

numbers complex numbers and, perhaps unfortunately, this rather intimidating

name persists to this day.

As we shall soon see, complex numbers can be regarded as an extension

of the real numbers. Most importantly, the usual rules of arithmetic hold for

complex numbers.

Geometry of the complex numbers

The first point to note about the complex numbers is that they are all points in

a plane—the complex plane. The second point to observe is that you can add

and multiply complex numbers in a way that is consistent with the addition and

multiplication of real numbers. The third point concerns the complex plane itself:

there are two coordinate systems that we can use to describe complex numbers—

cartesian and polar. Addition is most easily defined in cartesian coordinates,

while multiplication is most easily described in polar coordinates.

We begin our discussion of the arithmetic of complex numbers with

cartesian coordinates and addition. Recall that complex numbers can be written

as z = x + iy, where x and y are real numbers. Thus we can view the point z

as the point (x, y) in the (x, y)-plane. The real numbers x and y are called the

cartesian coordinates of z (see Figure 5.8). The real number x is called the real

part of z and is denoted by Re(z), while the real number y is called the imaginary

part of z and is denoted by Im(z).

y

o x

z

Figure 5.8 Cartesian coordinates
of a complex number.

Observe that if y = 0 then the complex number z equals the real number

x. In this way, the real number line may be viewed as the horizontal x-axis in

the complex plane. The real number zero is viewed as the origin of the complex

plane and is denoted by O in Figure 5.8.

Complex addition

To add two complex numbers z1 = x1 + iy1 and z2 = x2 + iy2, we just add the

real and imaginary parts separately, that is,

z1 + z2 = (x1 + x2)+ i(y1 + y2).

Observe that if z1 and z2 are real (y1 = y2 = 0) then addition of complex numbers

reduces to addition of real numbers.
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Geometrically, the sum of two complex numbers is shown in Figure 5.9.

Associate with z1 and z2 the parallelogram drawn in that figure. The sum z1 + z2

is the vertex of the parallelogram diametrically opposite the origin O.
z

z2

1

z +z21

Figure 5.9 Addition of complex
numbers.

Polar coordinates

Next we discuss polar coordinates. Let z be a complex number and let r be the

distance of z from the origin. The number r is called the magnitude of z. The

Pythagorean theorem implies that

r =
√
x2 + y2.

Now define θ to be the angle that the line through z and the origin makes with the

horizontal x-axis, as shown in Figure 5.10. (If z = O, we regard the angle θ as

undefined.) The angle θ is called the phase of z, and the pair (r, θ) is called the

polar coordinates of z. Observe that the real axis is also easily identified in polar

coordinates: the positive real numbers have phase θ = 0, while the negative real

numbers have phase θ = 180◦.

z

r

Figure 5.10 Polar coordinates of
a complex number.

Complex multiplication

Using polar coordinates, it is rather easy to define complex multiplication. Sup-

pose that z1 and z2 are complex numbers with magnitudes and phases (r1, θ1)

and (r2, θ2), respectively. Then the product z1z2 is the complex number with

magnitude r1r2 and phase θ1 + θ2 (see Figure 5.11). In polar coordinates, this

rule for complex multiplication is simple: multiply the magnitudes and add the

phases.

z

r
1 2 1

1 1

2

2

2

r

z

r r1 2

z z1 2

+

Figure 5.11 Multiplication of
complex numbers.

Suppose that z1 and z2 are the real numbers x1 and x2. Then the product

z1z2 is also real and corresponds exactly to the real number x1x2. The phase of

z1z2 is 0◦ if x1 and x2 have the same signs and is 180◦ if they have opposite signs.

As an example, consider the complex number z whose magnitude is 1

and whose phase is 90◦. The number z2 is a complex number whose magnitude

is 1 and whose phase is 180◦; that number is just the real number −1. Thus

we have verified that z is a solution to the equation z2 = −1; indeed, we have

verified that the imaginary number i is just this number z. From this point of

view, i = √−1 is a fact, not a definition.

One of the advantages of our definition of complex multiplication using

polar coordinates is that it enables us to view rotation as multiplication by a

complex number (of magnitude 1). As this interpretation of a rotation will be
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very helpful in our discussion of symmetry, it is worth taking some time to explain

carefully what we mean. Suppose then that ρ is a complex number of magnitude

1 and phase ψ . Then, multiplying the complex number z by ρ is the same as

rotating z counterclockwise by the angle ψ . Indeed, the magnitude of ρz is the

same as the magnitude of z and the phase of ρz is obtained by adding ψ to the

phase of z. Thus the mapping

R(z) = ρz

is rotation through the angle ψ .

In general, multiplication by a complex number ρ simultaneously rotates

by the phase of ρ and dilates by the magnitude of ρ. Using this geometric fact,

it is fairly easy to show that multiplication and addition of complex numbers

satisfy all of the rules of ordinary multiplication and addition of real numbers.

We can now write down a formula for complex multiplication in cartesian

coordinates. Suppose z1 = x1 + iy1 and z2 = x2 + iy2. Then

z1z2 = (x1 + iy1)(x2 + iy2)

= x1x2 + ix1y2 + iy1x2 + i2y1y2.

Using the fact that i2 = −1, we see that

z1z2 = (x1x2 − y1y2)+ i(x1y2 + x2y1).

This somewhat forbidding looking formula has, as we now know, a natural

interpretation as rotation and dilation. In cartesian coordinates, however, it is a

simple formula with which to do computations.

Complex conjugation

There is one final operation on complex numbers that has proved to be most

useful: complex conjugation. The complex conjugate of z = x + iy is just

z̄ = x− iy. In polar coordinates, z̄ has the same magnitude as z but the opposite

phase. More precisely, if z = (r, θ) in polar coordinates, then z̄ = (r,−θ ) (see

Figure 5.12). (Note that until now we have used positive numbers for angles, and

these numbers refer to measuring angles in the counterclockwise direction. When

we use negative numbers for angles, we are referring to clockwise measurement

of angles.) It also follows that zz̄ equals r2, the square of the magnitude of z.

z

r

z

y

y

r

x

Figure 5.12 The conjugate of a
complex number.

Finally note that geometrically the mapping

κ(z) = z̄

is just reflection across the x-axis.
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In a few pages, we have tried to summarize some of the historical

background to our contemporary ideas about number. These ideas quite literally

took the greatest scientific minds thousands of years to develop. To conclude,

we would like to emphasize two points. First, even for quite specific down-to-

earth problems, we find that we are forced to extend and abstract our concept of

number far beyond anything dreamt of by the mathematicians of antiquity. The

situation was well summarized by Alfred Whitehead in 1925:

The paradox is now firmly established that the utmost abstractions are the true

weapons with which to control our thought of concrete fact.

Second, even though we tend to think of mathematics as understood

and complete, at critical points in the development of mathematics and science

mathematical ideas have been used that were not, in any sense, understood.

The criterion was, and still is, pragmatic: if it works, use it! This was so with

Bombelli’s work on complex numbers and is true today with the physicist’s

use of Feynman integrals in quantum theory. It is this dichotomy between

utility and understanding that has provided much of the driving force behind

the development of science and mathematics.

Dihedral symmetry

Using complex multiplication, it is now an easy task to write down the symmetries

of the dihedral group Dn. Recall that the group Dn is generated by two elements:

a reflection κ and a rotationR through 360◦/n. We may as well take the reflection

to be reflection across the real x-axis, that is, in complex notation,

κ(z) = z̄.

Suppose we let ρ be the complex number of magnitude 1 and phase 360◦/n.

Then, using complex multiplication,

R(z) = ρz.

The dihedral logistic mappings

Recall that one of our purposes in this chapter was to actually write down the

formulas that we have used to produce the various symmetric icons. Now that we
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have introduced complex numbers and some of their properties, the presentation

of these formulas is a relatively straightforward task. We begin by extending the

odd logistic map to the plane so that it has the full symmetry of the circle. To do

this, we merely define

G(z) = λz(1 − zz̄).

Write z = x + iy and let (x, y) denote the cartesian coordinates of z. We now

write the complex logistic map G in terms of x and y as

G(x, y) = λ[1 − (x2 + y2)](x, y).

It is easy to see that if we set y = 0 we get the odd logistic map on the x-axis:

G(x, 0) = (λ(1 − x2)x, 0) = (go(x), 0);

while if we set x = 0 we find the odd logistic map appearing on the y-axis:

G(0, y) = (0, λ(1 − y2)y) = (0, go(y)).

Indeed, the odd logistic map actually appears on every line through the origin!

The remarks in the previous paragraph show that the extension of the

odd logistic map to the plane is, in itself, not very interesting. Suppose we start

iterating by G from some nonzero initial point z0. We would find that all the

iterates of this map would remain on the line in the plane going through the origin

and z0, and on that line the dynamics would be those of the odd logistic map

described in the last chapter. In short, from a dynamics point of view there would

be no reason to study this extended map.

What we want to do next is to modify this mapping so that, instead of

having circular symmetry in the plane, it has only dihedral symmetry. To do this,

we have to return to the idea of symmetry for a mapping introduced in a previous

section.

Our previous discussion of the dihedral groups Dn recalls that the group

Dn is generated by two symmetries: the flip κ and a counterclockwise rotation

R of the plane through 360◦/n.

We now observe that mappings F of the plane that have Dn symmetry

are those that satisfy

F(κ(z)) = κF(z) and F(R(z)) = RF(z).

The explicit determination of mappings of the plane that are Dn symmetric is

more difficult than the determination of mappings of the line which are odd. For

the present, what we shall do is claim that the term of lowest degree which is Dn
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symmetric, but not circularly symmetric, is z̄n−1. It is easy to check thatF(κz) =
κF(z), that is, F(z̄) = F(z). In polar coordinates F(z) = (rn−1,−(n− 1)θ). It

follows that

F(Rz) = (rn−1,−(n− 1)(θ + 360◦/n)),

while

RF(z) = (rn−1,−(n− 1)θ + 360◦/n).

The magnitudes of these two numbers are equal—but what about the phases?

The difference between the phases is

−(n− 1)(θ + 360◦/n)− [−(n− 1)θ + 360◦/n]
= −(n− 1)360◦/n− 360◦/n

= −360◦.

But any two angles that differ by 360◦ are the same. Hence the phases of F(Rz)

and RF(z) are identical.

Adding the term z̄n−1 to G, we obtain the equation

g(z) = λ(1 − zz̄)z+ γ z̄n−1,

where λ and γ are real numbers. Maps of this form are the simplest mappings

that can create symmetric icons in the plane through symmetry creation. We may

think of these mappings as a natural extension of the (odd) logistic map to the

class of Dn symmetric mappings.

For our exploration of symmetric icons, obtained through symmetry-

increasing bifurcations, we have used a number of variations on this basic

formula. In particular, most of the symmetric icons were obtained using the

Dn symmetric mapping given by

F(z) = (λ + α |z|2 + β Re(zn))z + γ z̄n−1,

where λ, α, β, and γ are real numbers. The new term that we have added is

βRe(zn)z; when β = 0 and α = −λ the mapping F is just the mapping g noted

above. We have added this term because it is the Dn symmetric term of next

highest degree to z̄n−1. In Appendix B, we give more details on how we actually

find polynomial mappings with Dn symmetry.

Odd logistic maps in cartesian coordinates

When we perform the iteration process using the arithmetic rule F , we actually

think of z as a point in the plane whose cartesian coordinates are x and y. We
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also write the complex number F(z) in its real (u) and imaginary (v) parts, that

is, F = u+ iv. In this way, our formula is an arithmetic rule that shows us how

to move the point (x, y) to the point (u, v). As noted previously, the brevity of

the previous formula stems from the use of complex multiplication. To illustrate

this point we shall write out the formula for F in cartesian coordinates when n

equals 3 and 4. We begin by noting that

z̄2 = (x2 − y2)− i(2xy) and Re(z3) = x3 − 3xy2.

It follows that when F has triangular symmetry we can write F(z) explicitly in

cartesian coordinates as

F(x, y) = (I3x + γ (x2 − y2), I3y − γ (2xy)),

where

I3 = λ+ α(x2 + y2)+ β(x3 − 3xy2).

Similarly, when F has square symmetry, the formula for F in cartesian

coordinates is

F(x, y) = (I4x + γ (x3 − 3xy2), I4y − γ (3x2y − y3)),

where

I4 = λ+ α(x2 + y2)+ β(x4 − 6x2y2 + y4).

As n increases, writing out F(z) in cartesian coordinates becomes ever more

complex and we resist the temptation to give the formula for n greater than

4. Observe how much simpler it is to write out these formulas using complex

numbers.

The use of complex notation is also helpful when we computeF(z), since

we actually compute z̄n−1 and Re(zn) inductively using complex multiplication.

More general Dn symmetric maps

For some of the symmetric icons, we have used a more complicated symmet-

ric mapping that is not a polynomial. Specifically, we add a nonpolynomial

symmetric term to our standard Dn symmetric map F to obtain

F(z) =
(
λ+ αzz̄+ β Re(zn)+ δ Re

([
z

|z|
]np)

|z|
)
z+ γ z̄n−1,

where λ, α, β, γ , and δ are real numbers and p ≥ 0 is an integer.

Often, the addition of this nonpolynomial term has the effect of chang-

ing the symmetric icon near the origin, and we illustrate this phenomenon in

Figure 5.13. (The top figure shown in Figure 5.13 is now used as a logo by the

Institute of Mathematics and Its Applications, the University of Minnesota.)
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Figure 5.13 The effect of adding a
nonpolynomial term (above)
without and (below) with
nonpolynomial term.

Symmetric Icons ❖ 123



March 16, 2009 09:36 book_new Sheet number 132 Page number 124 cyan magenta yellow black

Zn symmetric maps

Until now, we have limited our discussion to mappings with full Dn symmetry.

For both aesthetic and mathematical reasons, it is worth considering the effect of

adding a term that breaks the reflectional symmetries in Dn while preserving the

rotational symmetries in the cyclic group Zn. Such a term isωiz. Observe that it is

easy to show thatG(z) = iz does not have κ symmetry. ForG(κz) = G(z̄) = iz̄

while κG(z) = iz = −iz̄. On the other hand, G does have rotational symmetry

since

G(Rz) = G(ρz) = iρz = ρG(z) = RG(z).

The Zn symmetric icon map that we explore is

FZ(z) = (λ + α zz̄ + β Re(zn) + ω i)z + γ z̄n−1,

where λ, α, β, γ , and ω are real numbers. As the previous discussion shows,

the mapping FZ(z) has the rotational symmetries generated by rotation through

the angle 360◦/n but does not have any reflectional symmetries, as long as ω

is nonzero. It follows that the attractors obtained by using this map should not

have a reflectional symmetry.

In Figure 5.14, we show the effect of the term ωiz on the attractor. The

picture at the top left shows the fully symmetric icon obtained when ω = 0.

Proceeding clockwise we show the effect on the attractor when we increment

ω in steps of 0.05. In this way by adding a small amount of asymmetry to our

mapping (ω is small), we are able to destroy the reflectional symmetries in the

original attractor.

Symmetry creation in the plane

We now discuss some of the consequences for the dynamics of F(z) that follow

from the existence of Dn symmetry. Suppose that S is any symmetry in the group

Dn. Since F is assumed Dn symmetric, we have

F(Sz) = SF(z).

As a consequence of this condition on F , we obtain a relation between

the iterates computed at two symmetrically related points z and Sz:

z, F (z), F (F (z)), F (F (F (z))), . . .
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Figure 5.14 Breaking the
symmetry in an attractor from D6

(top left) to Z6.
Sz, F (Sz), F (F (Sz)), F (F (F (Sz))), . . . .

It follows from symmetry that each point in the second sequence can be found

by applying the symmetry S to the corresponding point in the first sequence. In

Figure 5.15, we show the results of iterating a map with triangular symmetry
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Figure 5.15 Three conjugate
attractors of a triangularly
symmetric mapping.

starting with three symmetrically placed initial conditions, each indicated by its

own color.

Next, we discuss the consequence of symmetry for the pictures we obtain

by using a symmetric mappingF . Suppose we begin with an initial point z, iterate

until the transients die out, and then plot a picture, which we label A. As noted
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previously, if we began our iteration process with the point Sz, we would form the

picture obtained by moving A using the symmetry S; we denote this picture by

SA. There are two possibilities: either pictures A and SA are indistinguishable,

or they are not.

In the first case, A has the symmetry S. Indeed, in this volume we have

already seen many pictures with nontrivial symmetries. In the second case, it

can be proved that pictures A and SA do not intersect, and we call A and SA

conjugate pictures. The three (color-coded) pictures shown in Figure 5.15 are

all conjugate. We can use this discussion to understand how symmetry creation

occurs in the plane.

Suppose that we change the constants in the mapping F(z) by a small

amount. The conjugate attractors such as those in Figure 5.15 may grow a small

amount. Then, at a critical value of this constant, the conjugate attractors might

actually touch along a line of symmetry. When this happens it can be shown

that the new attractor will have the symmetry of the reflection corresponding

to this line of symmetry. For example, each individual attractor in Figure 5.15

has a reflectional symmetry. When the attractors collide a second reflectional

symmetry is added to the symmetries of the new attractor. Since the whole group

D3 is generated by these two reflections, a new attractor with full D3 symmetry

results (see Figure 5.16). This is our first example of symmetry creation in the

plane.
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Figure 5.16 Trinity in Red.
Attractor with full triangular
symmetry.
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Chapter Six

QUILTS
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Figure 6.1 Gyroscopes.

When we discussed planar symmetries in Chapter 2, we pointed out that there

were two distinct types of planar symmetry group. First of all there are the finite

planar symmetry groups. These groups contain only finitely many symmetries

and arise by looking at the symmetries of geometric figures such as the square or

n-sided regular polygon. A finite planar symmetry group is either a dihedral or a
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cyclic group. There is also the class of planar symmetry groups arising from the

symmetries of repeating patterns in the plane. These groups, which we called

wallpaper groups, contain infinitely many symmetries. As we have seen, pictures

of symmetric chaos based on these two types of symmetry groups lead to pictures

that are quite different: the icons and the quilts. In the preceding chapter, we

described the formulas that allow us to produce symmetric icons; in this chapter,

we shall describe the methods by which we produce quilt patterns. The quilts

are made by a method similar to the one used to produce icons, but care must be

exercised in creating patterns that will tile the plane in an aesthetically pleasing

manner. The formulas that are needed to produce the quilts are more complicated

than those used to create the icons and utilize trigonometric functions rather than

polynomials.

Repeating patterns

While in the process of writing this book, one of us (MG), who was at the time

flying across half of America, decided to take a small, rather unscientific poll.

What kinds of design were on men’s shirts? More precisely, what kinds of

design were on the shirts worn by the men traveling on this plane? Admittedly

the largest class consisted of the rather boring (from the point of view of design)

class of solid colored shirts, white and blue being the two most popular colors.

Following the solids were the stripes—some broad, some narrow—but all with

multicolored bands that repeated. Finally there were the plaids, usually formed

by a combination of horizontal and vertical bands. That was the lot, apart from

the one flamingo that had recently flown in from a Mexican vacation. The

common feature of all of these patterns was that they could be repeated infinitely

often. Indeed, in the era of mass produced textiles, the only patterns that are

commercially viable are those that can be repeated ad infinitum.

The simplest of these repeating patterns are those built from a design on

a single square whose horizontal and vertical translates fill up the plane. Indeed,

the designs of all of the shirts—except, of course, the flamingo—were based on

this single idea. Even the floor of the plane was covered by a repeating pattern

of the same type. The carpet was a lovely maroon with a square array of little

flesh-colored dots.

Our point is simple: once you start looking for repeating patterns, you

see them everywhere. There are the patterns of tile on bathroom floors and
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kitchen walls, the hexagonal honeycomb pattern that honeybees like to build,

and the square pattern of backyard chain link fences. Thus, it seems natural,

after finding so many different symmetric icons through symmetric chaos, to use

that same technique to produce repeating patterns on planar lattices. To begin,

we choose the square lattice.

The square lattice

Recall that the way we form patterns using chaotic dynamics is to choose a

mapping, iterate while counting the number of times a point (pixel) is hit under

iteration, and then color by number. To form a repeating pattern, we need a

way of assigning the same number to symmetrically placed points—in this case

a lattice of symmetrically placed points. To achieve this symmetry, we cheat

slightly. We iterate a mapping on a unit square to form the design on that square

and then just tell the computer to fill out the plane (or as much of the plane as we

desire) using translations of that design. (In case this sounds too mundane, what

we are really doing is iterating a map of a torus—the surface of a doughnut—and

then lifting the pattern on the torus to the plane. This may help to explain the

striking coherence of the patterns.)

We begin the discussion of the formulas that we use to make symmetric

quilts by describing how it is possible to create mappings on a unit square which

match on the boundary of the square. Denote the unit square in the plane by S.

More precisely, a point X = (x, y) is a point in S if the coordinates x, y both lie

between 0 and 1, that is, if 0 ≤ x, y < 1. Arithmetically there is a simple and

natural way to translate points in the plane to points in S. Take a point (A,B)

in the plane and write A and B as an integer part and a decimal; more precisely,

write (A,B) = (m, n)+ (a, b), where m and n are integers and (a, b) is in the

unit square S, that is, 0 ≤ a, b < 1. Geometrically the point (A,B) is translated

to the point (a, b) in the unit square by this process.

Now we can write down mappings on S. Choose a planar mapping

f : R2 → R2. Suppose we apply the mapping f to a point (x, y) in the unit

square. The result will be some point (A,B) in the plane. As described in the

previous paragraph, we may translate this point to the point (a, b) in the square

S. In this way we have created a mapping f̂ on the unit square which takes the

point (x, y) to the point (a, b). In symbols we write f̂ : S → S.
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Figure 6.2 Cats Eyes. Quilt on
a square lattice.

Seams

As we indicated previously we will make quilt patterns from f̂ by creating the

design on S and then filling out the plane by translations of this design. There is
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a potential problem that we must address before beginning this process: seams.

We don’t want the pattern to have ugly seams at the boundaries of the square.

To prevent seams from showing, we want our design on the right boundary of S

to merge smoothly with the design on the left side of S; similarly, we want the

design near the top boundary of S to merge smoothly with the design near the

bottom side.

Mathematically, we can eliminate seams by demanding that the mapping

f that we choose to start the process be consistent with the square lattice itself.

More precisely, suppose we start with two points X and Y in the plane that

translate to the same point in S. This happens when the components of X and

Y differ by integers; that is, Y = X + (m, n), where m and n are integers. For

such points, we demand that f (X) and f (Y ) also translate to the same point in

S. That is, we demand that f̂ (X) = f̂ (Y ). In symbols, this means that there are

integers M and N such that

f (X + (m, n)) = f (X)+ (M,N).

If you look closely at the pictures of quilts, you will see that the choice of unit

square is quite arbitrary. We might just as well have started with the square S′

consisting of all points (x ′, y ′), where 0.11 ≤ x ′ < 1.11 and 1.43 ≤ y ′ < 2.43;

the design on this square would appear to vary just as continuously as the design

on the original square.

Internal symmetry

There is one difference, however, between the designs that we find on the two

unit squares S and S ′. The design that we have created on the square S has square

symmetry, whereas the design on the square S ′ does not. As with the symmetric

icons, we must choose the mappings f to respect the square symmetry of S in

order to create designs with this internal square symmetry. We impose this square

symmetry on the mapping f̂ as follows.

Suppose that h is a symmetry of the square lattice. We demand that the

map f̂ commutes with this symmetry h. This is accomplished by requiring that,

for all X,

f (hX) = hf (X)+ (K,L),

where K and L are integers.
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In Appendix C, we show how to derive mappings f that can produce

designs on the unit square that are both seamless and square symmetric. The

formula that produces these square quilt designs is quite complicated; we present

that formula here for completeness:

f (x, y) = m(x, y)+ v + λ(sin(2πx), sin(2πy))

+ α(sin(2πx) cos(2πy), sin(2πy) cos(2πx))

+ β(sin(4πx), sin(4πy))

+ γ (sin(6πx) cos(4πy), sin(6πy) cos(4πx)),

where m is an integer, λ, α, β, γ are real numbers, and either v = (0, 0) or

v = (1
2 ,

1
2). Examples of quilts on a square lattice are given in Figures 6.1

and 6.2.

The hexagonal lattice

Of course, we could have required that our repeating pattern lie on any planar

lattice; the square lattice was chosen first because it appears so frequently in

tiles and quilts. For comparison we also produce repeating patterns based on

the hexagonal lattice. Although the ideas used to create the mappings that

produce patterns on the hexagonal lattice are identical to those that are used

to create the mappings that produce square quilt designs, the details are much

more complicated. The formula we give below is also derived in Appendix C.

The mapping we use has four real parameters, λ, α, and the vector a =
(β, γ ), and an integer constant m. The vectors L = (3, 1/

√
3), M = (2, 0),

and N = (1,−1/
√

3) are used in the definition of f . Below, R denotes rotation

counterclockwise by 120◦ and F denotes the reflection of the plane that fixes

the x-axis, that is, F(x, y) = (x,−y). Finally, we use the dot product notation

N · X = n1x + n2y, where N = (n1, n2) and X = (x, y). The formula for f

that we use is

f (X) = mX

+ λ(sin(2πN ·X)N + sin(2πRN ·X)RN + sin(2πR2N ·X)R2N)

+ α(sin(2πM ·X)M + sin(2πRM ·X)RM + sin(2πR2M ·X)R2M)

+ sin(2πL ·X)a + sin(2πRL ·X)Ra + sin(2πR2L ·X)R2a

+ sin(2πFL ·X)Fa + sin(2πRFL ·X)RFa + sin(2πR2FL ·X)R2Fa.

An example of a quilt based on a hexagonal lattice is shown in Figure 6.4.
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Figure 6.3 Flowers with
ribbons.

Less internal symmetry

Of course, as with the symmetric icons, the formulas can be modified so that

the attractors have Z4 symmetry instead of D4 symmetry on the square lattice (a
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Figure 6.4 Sundial Mosaic.
Quilt on a hexagonal lattice.

quilt of type p4) and Z6 symmetry rather than D6 symmetry on the hexagonal

lattice (a quilt of type p6). Examples of these are given in Figures 6.3 and 6.5.

Indeed, Figure 6.5 is found by adding a small symmetry-breaking term to the

formula used to compute Figure 6.4.

Finally, we note that we could just as well have used a rectangular or a

rhombic lattice on which to base our pictures. But from our perspective these

lattices are less interesting, since they have less natural symmetry than the square

and hexagonal lattices.
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Figure 6.5 Fractured Symmetry.
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Figure 7.1 Whipper-snipper.

Our method for constructing symmetric icons was based on choosing a relatively

complicated symmetric polynomial mapping combined with the simple process

of iteration. The result, as we have shown, can be a figure of great geometric

intricacy. In this chapter, we adopt a rather different approach. Instead of working

with one complicated mapping, we shall use a number of very simple mappings

140 ❖ Symmetry in Chaos



March 16, 2009 09:36 book_new Sheet number 149 Page number 141 cyan magenta yellow black

of the plane. Each of these mappings will have a single fixed point and when

iterated will produce the corresponding point attractor. However, instead of

using the process of iteration on a single mapping, we use a more subtle iterative

process known as random iteration. For this we need at least two mappings. We

iterate by randomly selecting mappings from our fixed set of mappings.

If we choose our set of simple mappings in a symmetric way, we obtain a

symmetric figure in the plane. We call the resulting pictures symmetric fractals.

On the facing page we have shown a fractal with 55-fold symmetry (Figure 7.1),

which we call the whipper-snipper. As you can see, whipper-snipper is strikingly

different in feel and texture from the images we showed previously of symmetric

icons. This difference in texture and appearance is not so surprising, as whipper-

snipper was produced by methods quite different from those used to produce

symmetric icons and quilts.

Fractals

Over the past twenty years, there has been an enormous growth in the mathe-

matical study of fractal geometry, and this has run in parallel with a veritable

explosion of fractal-based computer art. A Google Internet search for ‘fractal art’

resulted in 187,000 hits. There will likely be more hits by the time this revision

is published. There are now many books, at all levels, on the topic of fractals.

In particular, we would cite the classic book by Benoit Mandelbrot (The Fractal

Geometry of Nature), and the books by Heinz-Otto Peitgen and Peter H. Richter

(The Beauty of Fractals) and Michael Barnsley (Fractals Everywhere). All of

these books show some of the potential for fractal-based artwork. Techniques

used for making fractal landscapes and images have been used to create special

effects scenes in a number of Hollywood movies, most notably perhaps in the

Star Wars saga, in Star Trek: The Wrath of Khan, and in the Lord of the Rings

trilogy.

Fractals have a number of characteristic properties. Some of the best-

known examples of fractals possess the intriguing feature of self-similarity:

they can exhibit essentially the same structure on all scales. This property was

originally discovered and investigated in the early part of the twentieth century

by a number of mathematicians. In 1915, the Polish mathematician Wacław

Sierpiński published the first pictures of what is now known as the Sierpiński

triangle (shown on left-hand side of Figure 7.2). If we examine the triangle, we
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Figure 7.2 The Sierpiński
triangle.

see that it is composed of three smaller triangles, each of which is just a copy

of the original Sierpiński triangle. Sierpiński showed that this process may be

repeated ad infinitum: each of the smaller triangles consists of three scaled down

copies of itself. If we magnify any one of the smaller triangles in the Sierpiński

triangle, we recover the original triangle. The right-hand side of Figure 7.2 shows

the magnification of the marked triangle on the left by a factor of about 16 (in

area). The Sierpiński triangle can be thought of as a mathematical instance of

‘Plus ça change, plus c’est la même chose’.

The Sierpiński triangle

Nowadays, we call figures which have this property of infinite reproducibility

fractals. Mathematically speaking, fractals are usually defined as having ‘frac-

tional’dimension. However, we will not dwell on this aspect of fractal geometry.

Suffice it to say that it is difficult to give a definition that is both sufficiently

broad to include everything that one would like to call a fractal and sufficiently

restrictive to exclude objects that should not be fractals. Later in this chapter

we give a working definition in terms of iterated function systems. One might

guess that the realization of a fractal like the Sierpiński’s triangle would require

instructions of infinite complexity. However, one of the remarkable features

of fractals is that they can often be produced using very simple instructions or

algorithms.
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Figure 7.3 Random iteration
algorithm for the Sierpiński
triangle.

We illustrate this by describing the algorithm needed to construct a

Sierpiński triangle. The novelty of these instructions is that they are based on

choosing a sequence of random numbers.

We begin by choosing an equilateral triangle in the plane. Label the

vertices A,B,C and pick a point inside the triangle (outside will work just as

well—the end result is the same). Now choose randomly one of A, B, or C.

If, say, B is chosen, move the point halfway to vertex B and mark the point we

get. Similarly, if A is chosen, move the point halfway to A, and the same for

C. Now repeat the process to obtain a sequence of points that can be plotted on

the computer monitor. In Figure 7.3 we have shown the result of a computer

simulation. The initial point x0 is shown in the left-hand figure. In the right-

hand figure we show the first five iterates x1, . . . , x5 (corresponding to selecting

B,C,A,C,A, respectively).

In this way we have defined a dynamical process, but a nondeterministic

one. Nevertheless, if (after transients are ignored) we plot the points that are

visited by this random process, we always (strictly speaking, actually with

probability one) find the same figure appearing: the Sierpiński triangle.

That this procedure works and gives us the Sierpiński triangle seems quite

remarkable. It is even more surprising when we contrast this method with that

used to produce symmetric icons. In Chapter 1 we explained how a deterministic

process can lead through the notion of chaos to something that looks random, and

now we claim that a random process can lead to a figure of great regularity. You

know the old adage ‘You can’t have it both ways’—in mathematics, sometimes

you can.
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Probability and random numbers

We digress now to discuss our use of the terms randomly and probability men-

tioned above.

We start with the concept of probability. In Australia, there is a famous

(and illegal1) game called two-up. Two coins are taken and bets are placed on

whether the coins, when tossed, will both fall same side up. If we agree that one

side of the coin is labeled the head, the other the tail, then bets are placed on

whether the coins will fall both heads up (side bets on other combinations are

possible). If we assume that the coins are ‘fair’ (a moot point in illegal games),

then the probability that the coins both fall heads up is 1
4 . This does not mean

that if we toss the coins four times, then on one occasion the coins will fall heads

up. The idea of probability is based on an average over time. To say that the

probability that the coins will fall heads up is 1
4 means that if we toss the coins a

large number of times, say 100,000 times, then we can expect that approximately

one-quarter of the coin tosses will result in both coins falling heads up. Note the

use of the word expect: it is possible, though extremely unlikely, that both the

coins would fall heads up every single time. (The odds against this happening are

inconceivably large—about 1060 000 to 1.) In summary, to say that the probability

is 1
4 means that, on average, we expect one in four coin tosses to result in a pair

of heads.

Next we look at the question of what is meant by a ‘random sequence’ of

numbers. There are two aspects to this problem: how do we generate a random

sequence and how do we know when we have got one? Both questions are quite

subtle.

How do we construct a ‘random’ sequence of whole numbers between 0

and 9, say a sequence of 100,000 such numbers? One possibility might be to ask

100,000 people to each choose one whole number between 0 and 9 and record

the results. Would we get a random sequence using this method? The answer

is almost surely no: numbers often have cultural associations and there likely

would be a bias towards choosing certain numbers such as 3 and 7.

Turning to the question of identifying random sequences, consider the

first 100 terms of the following sequence of integers lying between 0 and 9:

00507614213197969543147208121827411167512690

35532994923857868020304568527918781725888324873096446700…

1Except on ANZAC day.
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There are ten 0’s, twelve 1’s, and nine 9’s in the sequence. That looks promising—

we would expect roughly, but not exactly, ten occurrences of each digit between

0 and 9. We might also expect that the average of 100 randomly chosen integers

between 0 and 9 should be 4.5. In fact it is 4.41 for this sequence—within 2.0%.

Where did this sequence come from? If we had just written down 100

‘random’integers between 0 and 9, the resulting sequence would almost certainly

not appear as random as the sequence shown above. We constructed this sequence

by taking the first 100 digits of the decimal expansion of 1
197 . As we mentioned

in Chapter 5, since 1
197 is a fraction its decimal expansion eventually repeats. For

1
197 , the decimal expansion consists of the first 98 terms repeated indefinitely (so

the next ten digits in the decimal expansion of 1
197 will be 5076142131). Since

the sequence repeats, it cannot be random. With a little bit of work, we can

predict exactly what the 1010th integer in the sequence will be (it is 7). For a

random sequence, the best we can do is say that the chance of the 1010th term

being a 7 is 1
10 .

So we repeat, “how can we generate numbers between 0 and 9 in a

‘random’ way?” One way of doing this would be to imagine a ten-sided fair die,

with each side marked with a whole number between 0 and 9. We then generate

random numbers between 0 and 9 by successively tossing the die and taking

the upmost number on the die. After many tosses, we would expect that each

number should appear approximately the same number of times. Otherwise said,

the probability of a given number between 0 and 9 appearing uppermost should

be 1
10 th.

Even though this method is not practical, it does give a rough idea of

what a random sequence should be. It should be as random as the sequence

of heads and tails we get when we toss a fair coin. In practice, sequences of

random numbers are generated on a computer using what is called a pseudo-

random number generator. This produces a sequence which looks random but

eventually—after very many iterations—will repeat. A little bit like looking at

the decimal expansion of 1
p

, where p is a very large prime number.
All of this seems like a lot of trouble to go to in order to construct

and identify random sequences of numbers. It turns out that random sequences
have many important and powerful applications in computing, mathematics, and
statistics—for example, in polling and trialing new drugs where it is important
to get good ‘random’ samples. In summary,

The generation of random numbers is too important to be left to chance.

(Robert Coveyou, Oak Ridge)
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In the case of the Sierpiński triangle, we choose a sequence of random

numbers chosen from 1, 2, 3. If we choose 1, we select the vertexA, 2 the vertex

B, and 3 the vertexC. On average, in this way, we will choose the verticesA, B,

and C approximately the same number of times. We can imagine, however, that

it might happen that we choose the vertex B on each iterate. Then the resulting

figure (after transients have been ignored) will be precisely the vertex B, not the

Sierpiński triangle. When we say that the probability is one that the Sierpiński

triangle will appear on the screen, we are implicitly claiming that the probability

that vertex B will always be chosen is very small.

Indeed, we are saying more. Suppose that we call a sequence of vertices

a bad sequence if it leads to a figure other than the Sierpiński triangle. Then

we are asserting that if the vertices are chosen at random, there is virtually no

chance that a bad sequence will actually be chosen. Since there are many bad

sequences—an infinite number of them—how is this possible?

Probability one

Suppose now that we change the question about choosing numbers between 0

and 9 to allow the choice of any number, integer or not. What will happen if we

again ask a large number of people to choose a number between 0 and 9. Now

it’s less certain how ‘most people’ will reply, so to get a feel for the answer, we

surveyed a few of our friends. What we found is that several of them continued

to choose integers, but some more adventurous souls decided on fractions like

1 7
8 and 8 2

3 , and others chose decimals like 3.14 and 5.28. It seemed as though

people chose numbers that appeared to cover uniformly the numbers from 0 to

9. But were their choices likely?

We begin by observing that the decimals that were chosen could equally

well have been written as fractions. For example, 3.14 = 3 7
50 and 5.28 = 5 7

25 .

Next we recall from Chapter 5 that all fractions when written as a decimal have

a special form: the decimal ‘ends’ in a pattern of digits that repeats itself ad

infinitum. In the simplest of cases 7 1
2 = 7.500000 . . .; that is, the decimal ends

with the digit 0 being repeated infinitely often. Conversely, if a decimal has the

property that it ends in a repeating pattern, then it can be written as a fraction.

For example, the decimal

1. 0588235294117647 0588235294117647 05882352 . . .
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is equal to the fraction 1 1
17 . Numbers, such as

√
2, which do not have this

property are called irrational numbers and cannot be expressed as fractions.

From this point of view, it begins to seem rather unlikely that a number

chosen randomly between 0 and 9 will be a fraction. If we think in terms of

choosing the decimal expansion, then for the number to be a fraction we would

have to choose the decimal expansion so that it ended with a pattern of repeating

digits. Not only would such a choice be unlikely, it would almost never happen

if we constructed the decimal expansion of a number by choosing each digit (an

integer between 0 and 9) randomly. In this sense, we say that the probability that

a number chosen at random between 0 and 9 will be a fraction is zero. It then

follows that the probability that a number chosen at random between 0 and 9 will

be irrational is one. In an analogous fashion, the probability that the iteration

algorithm described above will lead to the Sierpiński triangle is one.

It can be shown that the decimal expansion of a number chosen at random

between 0 and 9 will, with probability 1, have a decimal expansion which is a

random sequence of integers between 0 and 9. Unfortunately, this turns out to

be of little practical help in actually constructing random sequences.

Sierpiński polygons

Our algorithm for constructing the Sierpiński triangle was based on fixing an

equilateral triangle or, more precisely, fixing the vertices of that triangle. It is

natural to modify the algorithm a little by replacing the triangle by a square

or indeed by any one of the regular polygons. For example, suppose we had

chosen a regular pentagon in the plane. After choosing an initial point inside the

pentagon, we could have defined our algorithm by making random choices of

vertices and, at each stage of the iteration, moving halfway towards the chosen

vertex. In Figures 7.4 and 7.5, we show the figures that are obtained when we

choose the regular pentagon and hexagon (we discuss the case of the square

later).

We now look a little more carefully at the instructions that we use to

construct the Sierpiński triangle. We choose the equilateral triangle in the plane

with vertices A = (1, 0), B = (− 1
2 ,

√
3

2 ), C = (−1
2 ,−

√
3

2 ), and note that the

center of this triangle is the origin.

Pick a pointX = (x, y). Suppose that the vertex A is chosen. We move

the point X halfway to A by averaging the coordinates of A and X. This leads
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Figure 7.4 The Sierpiński
Pentagon.
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Figure 7.5 The Sierpiński
Hexagon.
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to the map

ρA(x, y) =
(
x

2
+ 1

2
,
y

2

)
.

Similarly, since B has coordinates (− 1
2 ,

√
3

2 ), we find that the map moving X

halfway to B is given by

ρB(x, y) =
(

1

2
x − 1

4
,

1

2
y +

√
3

4

)
,

and the map moving X halfway to C by

ρC(x, y) =
(

1

2
x − 1

4
,

1

2
y −

√
3

4

)
.

The map ρA has the single fixed pointA. If we iterate using only the map ρA, then

successive iterates of X approach A. Indeed, A is an attractor for the iteration

defined by ρA. Similar remarks hold for the maps ρB and ρC . Taken individually,

these maps have dynamical behavior akin to that of the ‘halving’ map.

We conclude by emphasizing that the maps ρA, ρB , and ρC are very

simple, especially in comparison with the symmetric polynomial maps we used

to construct symmetric icons.

Affine linear maps

The mappings ρA, ρB , and ρC are examples of affine linear maps. In general, an

affine linear map (of the plane) always has the form

ρ(x, y) = (ax + by + α, cx + dy + β),

where a, b, c, d, α, β are fixed real numbers.

In recent years, the method we have described for the construction of the

Sierpiński triangle has been generalized to create a wide range of fractal images.

We shall describe the main ideas that are used; the book by Michael Barnsley

has more detail, and there are now many introductory texts on the subject.

We start by choosing a finite collection of affine linear maps ρ1, . . . , ρk

and form a dynamical process similar to the one we described above in connection

with the Sierpiński triangle. Specifically, choose an initial point X in the plane.

Randomly select a whole number j between 1 and k and define the new point

ρj (X). This construction defines an iterative process known as random iteration.
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Provided the affine linear maps satisfy an additional condition, this process will,

with probability one, converge to a fractal.

It should be clear that we must impose some conditions on the affine

linear maps ρ1, . . . , ρk. For example, suppose that the maps were all equal to

the affine linear map ρ(x, y) = (ax, ay), where a is a given real number. If a

were greater than 1, then points would grow without bound under iteration. In

fact, since we would always be choosing the same map, the process would be

similar to the doubling map. On the other hand, if a were positive but less than

1, points would converge to the origin and the process would be similar to the

halving map.

Contractions

We restrict our attention to a special class of maps of the plane called contractions.

To explain the idea of a contraction, suppose that ρ is a map of the plane and

K is a positive number strictly less than 1. We say that ρ is a contraction, with

contraction rateK , if given any pair of pointsX and Y in the plane, the distance

between ρ(X) and ρ(Y ) is less than or equal toK times the distance between X

and Y . Basically, a contraction possesses the property that under iteration pairs

of points are brought closer together—distances are scaled down by at least the

factor K . The affine maps ρA, ρB , and ρC that make the Sierpiński triangle are

all contractions since they halve distances to their corresponding vertices.

It turns out that any polynomial map of the plane that is a contraction

must be an affine linear map. In particular, none of the maps we used to construct

symmetric icons is a contraction. With a little more work, one can show that the

affine linear map

ρ(x, y) = (ax + by + α, cx + dy + β)

is a contraction if (and only if)

a2 + c2 < 1,

b2 + d2 < 1,

a2 + b2 + c2 + d2 < 1 + (ad − cb)2.

(We caution that these conditions are independent and are all necessary for ρ to

be a contraction.)
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Iterated function systems and fractals

Barnsley calls a set ρ1, . . . , ρk of affine contractions an iterated function system.

We can use the idea of an iterated function system to give a definition of a fractal.

We shall say that a set L of points in the plane is a fractal if we can find an

iterated function system ρ1, . . . , ρk such that the points in L are precisely the

points that lie in at least one of the sets ρ1(L), . . . , ρk(L). Using some standard

mathematical notation, we may express this more economically by writing

L = ρ1(L) ∪ · · · ∪ ρk(L).

We sayL is the aggregate or union of the setsρ1(L), . . . , ρk(L). Since the mapρ1

is a contraction, we can think of ρ1(L) as being a scaled-down or shrunken copy

ofL. Similar remarks hold for the other sets ρ2(L), . . . , ρk(L). Consequently, to

say thatL is a fractal means that it is the union of a (finite) number of scaled-down

copies of itself.

It is possible to show that fractals always have the property of similar

structure at all scales. This property can appear in a rather simple and uninter-

esting fashion, as we shall illustrate later. However, the type of structure we see

in the Sierpiński triangle is characteristic of many fractals, and we illustrate the

idea of a fractal using the Sierpiński triangle.

Let us look more carefully at what the contractions ρA, ρB , and ρC are

B

A

C

Figure 7.6 New triangles from
old.

actually doing and how they tend to scale down pieces of the triangle. To simplify

our notation a little bit, we let S denote the equilateral triangle whose vertices

are A, B, and C. The set ρA(S) consists of all the points ρA(X), with X lying

in S. We similarly define ρB(S) and ρC(S). The contraction ρA scales S down

by a factor of a half, and it follows that ρA(S) is an equilateral triangle with side

length half that of the original triangle A. Similar remarks hold for ρB(S) and

ρC(S). In Figure 7.6, we show how the three triangles ρA(S), ρB(S), and ρC(S)

fit inside S. The equilateral triangle S pictured in Figure 7.6 is not a fractal since

the set ρA(S) ∪ ρB(S) ∪ ρC(S) is contained in S but is not equal to all of S: the

set misses all points in the white central triangle in S.

With the goal of understanding how the Sierpiński triangle arises from

an iteration, we repeat this process but with S replaced by the set S1 consisting

of points which lie in one of the sets ρA(S), ρB(S), or ρC(S). Symbolically, we

have

S1 = ρA(S) ∪ ρB(S) ∪ ρC(S).
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Now ρA(S1) is just a scaled down version of S1 as are ρB(S1) and ρC(S1). In

Figure 7.7, we show the points in

S2 = ρA(S1) ∪ ρB(S1) ∪ ρC(S1).

We are still a long way from Sierpiński’s triangle but there is now a definite

resemblance.

Figure 7.7 Towards the Sierpiński
triangle.

Again S2 is not a fractal, because of the omission of yet smaller white

triangles. We can continue this process indefinitely and in the limit reach a set

S∞. This set is the Sierpiński triangle, and it has the property that the same kinds

of white triangles are omitted on all scales. Not very surprisingly,

S∞ = ρA(S∞) ∪ ρB(S∞) ∪ ρC(S∞),

and so S∞ is a fractal.

Strict fractals and overlaid fractals

If the sets ρ1(L), . . . , ρk(L) are disjoint (that is, they have no points in common),

we say L is a strict fractal. The Sierpiński triangle is very close to being a strict

fractal. For example, ρA(S∞) and ρB(S∞) have but one point in common (the

midpoint of the edge AB of the original triangle). In general, in our definition

of a fractal, we do not require that the sets ρ1(L), . . . , ρk(L) be disjoint. In this

case the fractal is overlaid . Most of the pictures of symmetric fractals that we

show are of this type. In Figure 7.8, we show the effect of varying the rule for

the construction of the Sierpiński triangle. In (a) we have defined ρA by moving

a point 0.55 of the way to vertex A. The maps ρB and ρC are defined similarly.

In (b) we move 0.50 of the distance to the chosen vertex, and in (c) we move

0.45 towards the chosen vertex. As you can see, in (a) we obtain a strict fractal,

in (b) we have the Sierpiński triangle (the transitional case), and in (c) we have

an overlaid fractal.

(a) (b) (c)
Figure 7.8 Strict and overlaid
fractals.
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Two basic theorems

In Barnsley’s book, there are two beautiful theorems about iterated function

systems. The first theorem states that every iterated function system ρ1, . . . , ρk

is associated with a unique fractal. That is, there is a unique bounded subset S

such that

S = ρ1(S) ∪ · · · ∪ ρk(S).
The second theorem gives an effective way of constructing this fractal.

If we start with a point in the plane and execute the random iteration that we have

described above, then with probability one we form the fractal S.

At first glance, it may seem surprising that one can actually show the

existence of a set S satisfying the conditions of the first theorem. Indeed, being

able to make such an assertion illustrates one of the powers of mathematical

thinking. Since the idea behind this proof is so very elegant, we shall attempt to

give a short description of why the result is true.

One of the characteristic features of contractions is that they have a

unique fixed point and that iterates of any initial point converge to that fixed

point. The basic idea in the proof of the first theorem is to use the iterated

function system to define a contraction on the set of all bounded subsets of the

plane. This is clearly a sophisticated idea since it is not immediately clear how

one would even define the distance between two planar sets. However, it is easy

to define the mapping from subsets of the plane to subsets of the plane. If we

are given an iterated function system ρ1, . . . , ρk and a subset L of the plane, we

define a new subset ρ(L) of the plane by means of the formula

ρ(L) = ρ1(L) ∪ · · · ∪ ρk(L).

Indeed, for the Sierpiński triangle where we chose S to be the equilateral triangle,

the set ρ(L) is just the set S1. It can then be shown that this transformation of

subsets of the plane is a contraction mapping which has a unique fixed point.

This fixed point is a set which we denote by S. Since S is a fixed point of ρ, we

have

S = ρ1(S) ∪ · · · ∪ ρk(S),
and so S is a fractal satisfying the conditions of the theorem.

We see that the construction of the fractal S can be done in terms of an

iteration. The difference with our construction of symmetric icons is that the

transformation ρ is a contraction, and therefore simple, but the space on which
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Figure 7.9 Circular Saw.

it acts is complicated, and so we can end up with a geometric object of great

complexity. Indeed, for the Sierpiński triangle, the iterates of ρ just form the

sets Sk, and the limit set S∞ is the Sierpiński triangle.

The method of proof of the first theorem suggests a way to construct the

fractal associated with an iterated function system: take a subset S of the plane
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Figure 7.10 Catherine Wheel.

and iterate using the map ρ we described above. Theoretically this procedure

is fine; practically it requires enormous computing resources. The gist of the

second theorem is that we can construct the fractal merely by taking any point

in the plane and carrying out the random iteration process described above.

156 ❖ Symmetry in Chaos



March 16, 2009 09:36 book_new Sheet number 165 Page number 157 cyan magenta yellow black

Figure 7.11 The Bee.

In somewhat fancier language, we can think of the fractal obtained by

the first process as a spatial average and that obtained by the second process

as a time average. The second theorem asserts that the spatial average and time

average are equal. This result is an example of what is called an ergodic theorem.
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Although this subject is beyond the scope of this book, suffice it to say that the

idea of ergodicity is central to the modern theory of dynamical processes.

The Sierpiński square

As mentioned previously, there is one case where it is rather easy to describe

B

A

D

C

Figure 7.12 Subdivision of the
Sierpiński square.

the fractal that results when we use the first process. Suppose we take a square

with vertices A,B,C,D. We take as our iterated function system the affine

contractions ρA, . . . , ρD defined by moving points halfway to the corresponding

vertex. These are exactly the affine contractions we used in our discussion of

the Sierpiński polygons. Suppose we denote the square by S and subdivide S

into four squares, as shown in Figure 7.12. Observe that the set ρA(S) is just the

small square that contains the vertex A, which is shown in black in this figure.

Similarly, the sets ρB(S), ρC(S), and ρD(S) are the small squares containing the

vertices B, C, and D, respectively. Thus S satisfies

S = ρA(S) ∪ ρB(S) ∪ ρC(S) ∪ ρD(S).
It follows that S is a fractal—a rather uninteresting fractal by comparison with

the other Sierpiński polygons.

It is worth noting that for this construction to work the affine maps had

to be chosen exactly. For example, in Figure 7.13, we show the fractal obtained

if instead of moving halfway to the four verticesA,B,C,D, we move only 0.46

of the way.

Symmetric fractals

We now show how we can use certain special kinds of iterated function systems

to form symmetric fractals. Fix an affine linear contraction ρ. Suppose that G

is a planar symmetry group equal to either Dn or Zn. For each element g in G,

one can show that gρ is an affine contraction. Hence we may define an iterated

function system consisting of the affine maps gρ with g an element of G. With

this construction of an iterated function system, the resulting fractal has to be

symmetric.

We illustrate this for the case when G is the cyclic group Z3. If we let

r120 denote the rotation through 120◦, then Z3 consists of the identity, r120, and
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Figure 7.13 Variation on the
Sierpiński square.

r240. Consequently, if ρ is an affine contraction, the associated iterated function

system consists of the affine contractions ρ, r120ρ, and r240ρ. It follows from

the first theorem that there is an associated fractal S characterized by

S = ρ(S) ∪ r120ρ(S) ∪ r240ρ(S).

Observe that each element of the group Z3 just permutes the sets ρ(S), r120ρ(S),

and r240ρ(S). For example, r120 applied to these three sets is r120ρ(S),

r120r120ρ(S), and r120r240ρ(S). Since r120r120 = r240 and r120r240 is the identity,

the new sets are r120ρ(S), r240ρ(S), andρ(S). Thus r120(S) = S and the resulting

fractal must have Z3 symmetry.

We use the second theorem to compute symmetric fractals. Suppose ρ

is an affine contraction andG is a planar symmetry group as above. Suppose we

have plotted the points X1, . . . , Xn. We plot the next point Xn+1 by randomly

choosing a group element g inG and takingXn+1 to be equal to the point gρ(Xn).

By the first theorem, the set S always has G symmetry.
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We now present some examples of symmetric fractals following the same

scheme for coloring that we used for symmetric icons. In particular, the color of

a pixel represents the probability that that pixel will be visited during the iteration

(see the discussion of statistics in Chapter 1).

The Sierpiński triangle is symmetric

Although it is a fact that the Sierpiński triangle pictured in Figure 7.2 is D3

symmetric, the reason for this symmetry is slightly different from the reason

why the symmetric fractals constructed in the last section are symmetric. As

a consequence of untangling these differences, we shall see that two different

iterated function systems can create the same fractal. Along the way, we shall

also see that the first theorem—giving the existence of a unique fractal for every

iterated function system—really has mathematical teeth.

We have already shown how the Sierpiński triangle may be constructed

using the geometrically defined iterated function system ρA, ρB , ρC . A con-

sequence of the uniqueness part of the first theorem is that any bounded set of

points Z in the plane satisfying

(SIER) Z = ρA(Z) ∪ ρB(Z) ∪ ρC(Z)
must be the Sierpiński triangle. Indeed, we will show that the Sierpiński triangle

is actually symmetric by finding a symmetric set Z that satisfies (SIER).

We begin by finding a Z3 symmetric set. Suppose that r120 denotes

rotation through 120◦. Then Z3 consists of the identity, r120, and r240. Using

our recipe for constructing symmetric fractals, we consider the iterated function

system ρA, r120ρA, r240ρA. Associated with this iterated function system, there

will be a unique Z3 symmetric fractal Z characterized by

Z = ρA(Z) ∪ r120ρA(Z) ∪ r240ρA(Z).

We shall show that Z satisfies (SIER) and so must be equal to the Sierpiński

triangle.

Geometrically, the map r120ρA moves the pointX halfway to the vertexA

and then rotates it through 120◦. Considering the geometry, it is relatively easy to

see that this is the same as first rotatingX through 120◦ and then moving halfway

to the vertex B. In symbols, r120ρA = ρBr120. Similarly, r240ρA = ρCr240.
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Since Z is Z3 symmetric, we have r120(Z) = Z, r240(Z) = Z, and so

r120ρA(Z) = ρBr120(Z) = ρB(Z),

r240ρA(Z) = ρCr240(Z) = ρC(Z).

But Z = ρA(Z) ∪ r120ρA(Z) ∪ r240ρA(Z), and so we have shown that Z

satisfies (SIER):

Z = ρA(Z) ∪ ρB(Z) ∪ ρC(Z).
As we explained above, it follows that Z is the Sierpiński triangle.

Thus far, we have shown that the Sierpiński triangle has Z3 symmetry.

In fact, the Sierpiński triangle has D3 symmetry, and we use a similar argument

to establish this extra symmetry. To see why this is so, letR denote the reflection

on the x-axis. We already know that the Sierpiński triangle is equal to the set

Z which has Z3 symmetry. To verify D3 symmetry, it is enough to show that

R(Z) = Z. We may easily check that

RρA = ρAR, RρB = ρCR, RρC = ρBR.

It follows that RρA(Z) = ρAR(Z), RρB(Z) = ρCR(Z), RρC(Z) = ρBR(Z),

and so

R(Z) = ρAR(Z) ∪ ρBR(Z) ∪ ρCR(Z).
We make yet another application of the uniqueness part of the first theorem to

deduce that R(Z) = Z.

Structure on all scales

Perhaps the most exciting feature of fractals is that they have structure on all

scales. Although we will not discuss this issue further here, we can illustrate

the phenomenon with a sequence of pictures showing successive magnifications

(Figure 7.17). Observe how the symmetry appears approximately on all scales.

We have taken a small box around one branch of the fractal in Figure 7.17(a) and

magnified it by about five times in Figure 7.17(b).

More examples

We conclude the chapter with some further observations about the two theorems

on iterated function systems. The first theorem giving the existence of symmetric
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Figure 7.14 Snowflake.

fractals did not depend on ideas of randomness or probability. With this in

mind, it is worthwhile thinking about the way we actually constructed fractals

using the random selection of contractions from an iterated function system.

Suppose, for example, that we had an iterated function system consisting of

three affine contractions ρ1, ρ2, ρ3. Instead of choosing each contraction with
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Figure 7.15 Astigmatism.

equal probability, suppose we decided to choose ρ1 with probability 1
2 and ρ2 and

ρ3 with probability 1
4 . For example, we could choose whole numbers randomly

between 1 and 4 and select ρ1 if the random number was either 1 or 2, ρ2 if it

were 3, and ρ3 if it were 4. One can show that the process again converges with

probability one to the fractal defined by ρ1, ρ2, ρ3. However, since we will be
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Figure 7.16 Fifty Nations.

choosing ρ1 more often we would expect to get a different coloring of the fractal.

We give an illustration of this in Figure 7.18. The symmetric fractal shown in

(a) was constructed in the usual way and both the fractal and the coloring have

eightfold symmetry. In (b) we carried out the iteration by selecting the second,

fourth, sixth, and eighth elements of the iterated function system with twice the
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(a) (b)

Figure 7.17 Magnifying a fractal.

probability of the first, third, fifth, and seventh elements. As you can see, the

resulting figure is the same as that shown in (a). However, the coloring now

has only fourfold symmetry. Finally, in (c) we show another variation. Now we

break the iterated function system into two groups of four (related by a rotation

through an eighth of a turn) and combine the two resulting images to obtain

a ‘two-color’ symmetric fractal. Observe that if we ignore color, the image

has eightfold symmetry. If we take color into account, the image has fourfold

symmetry and rotations through one-eighth of a turn interchange colors.
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(a) (b)

(c)

Figure 7.18 A symmetric fractal
colored so that the fractal is (a) D8

symmetric, (b) D4 symmetric, and
(c) D4 symmetric with an
additional two-color symmetry.
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Figure 7.19 Cashmere.
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Appendix A

Picture Parameters

In this appendix, we list the mappings and parameter values that were used to produce

all of the images of symmetric chaos pictured in this volume (with the exception of the

wallpaper patterns shown in Figures 2.14 and 2.15). This information appears in the

tables below. We also note, where relevant, the names that we have associated with

these figures. The pictures divide into three categories: icons, quilts, and fractals. For

the icons, we have used two formulas: one which allows us to change the symmetry

of the mapping from Dn to Zn and the other which has a nonpolynomial term. For the

quilts, we have used two formulas: one for the square quilt patterns and one for the

hexagonal quilt patterns. The fractals are all created from the choice of one affine linear

map.

Symmetric icons
Each of the formulas that we have used to produce symmetric icons has five real

parameters and each has an integer parameter n, the degree of symmetry.

The first and most basic formula used in the computation of the symmetric icons

is

F(z) = (λ + α zz̄ + β Re(zn) + ω i)z + γ z̄n−1,

where α, β, γ , λ, and ω are the real parameters. This formula has either Dn symmetry

(when ω = 0) or Zn symmetry (when ω �= 0).

The parameter values for the icons produced using this formula are given in

Table A.1.

In the second formula, we omit the ω term (so the formula is always Dn

symmetric) and add a nonpolynomial term. The coefficient of this term is δ, so there

are still five real parameters. The purpose of the nonpolynomial term is to explore what

happens to the attractors when a mild singularity is introduced at the origin but with

symmetry preserved. The degree of the singularity present is determined by a second

integer p. The formula with the nonpolynomial term is

F(z) =
(
λ+ αzz̄+ βRe(zn)+ δRe

([
z

|z|
]np)

|z|
)
z+ γ z̄n−1.

The parameter values for the icons computed using this formula are given in Table A.2.
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Table A.1 Data for symmetric icons—standard formula

Figure λ α β γ ω Symmetry Name

1.1 –2.7 5.0 1.5 1.0 0.0 D6 Halloween

1.2 –2.08 1.0 –0.1 0.167 0.0 D7 Mayan Bracelet

1.8 1.56 –1.0 0.1 –0.82 0.12 Z3 Clam Triple

1.13 –1.806 1.806 0.0 1.0 0.0 D5 Emperor’s Cloak

1.15/16 1.56 –1.0 0.1 –0.82 0.0 D3 The Trampoline

1.17(a) –2.18 10.0 –12.0 1.0 0.0 Z2 Fish and Eye

1.17(b) –2.195 10.0 –12.0 1.0 0.0 D3

2.3 –1.86 2.0 0.0 1.0 0.1 Z4 Swirling Streamers

3.5 –2.34 2.0 0.2 0.1 0.0 D5 The Sand Dollar

3.6 2.6 –2.0 0.0 –0.5 0.0 D5 Pentagon Attractor

3.7 –2.5 5.0 –1.9 1.0 0.188 Z5 Chaotic Flower

3.11 2.409 –2.5 0.0 0.9 0.0 D23 Kachina Dolls

3.14 2.409 –2.5 –0.2 0.81 0.0 D24 Santa Chiara Icon

3.15 –2.05 3.0 –16.79 1.0 0.0 D9 French Glass

3.16 –2.32 2.32 0.0 0.75 0.0 D5 The Pentacle

5.6 2.5 –2.5 0.0 0.9 0.0 D3 Golden Flintstone

5.13 1.455 –1.0 0.03 –0.8 0.0 D3 IMA Logo

5.14 2.39 –2.5 –0.1 0.9 0.0 D6

5.14 2.39 –2.5 –0.1 0.9 –0.15 Z6

5.15 1.5 –1.0 0.1 –0.8 0.0 Z2

5.16 1.5 –1.0 0.1 –0.805 0.0 D3 Trinity in Red

Table A.2 Data for symmetric icons—nonpolynomial term

Figure λ α β γ δ Symmetry p Name

1.7 1.5 –1.0 –0.2 –0.75 0.04 D3 24 Wild Chaos

2.5 –2.5 8.0 –0.7 1.0 –0.9 D9 0 Lace by Nine

3.4 –2.38 10.0 –12.3 0.75 0.02 D5 1 Gothic Medallion

3.9 1.0 –2.1 0.0 1.0 1.0 D3 1 Mercedes-Benz

3.12 –2.225 1.5 –0.014 0.002 –0.02 D57 0 Sunflower

3.17 –2.42 1.0 –0.04 0.14 0.088 D6 0 Star of David

5.13 1.455 –1.0 0.03 –0.8 –0.025 D3 0

172 ❖ Symmetry in Chaos



March 16, 2009 09:36 book_new Sheet number 181 Page number 173 cyan magenta yellow black

Symmetric quilts
The formula that we use for computing the square quilt designs is

f (x, y) = m(x, y)+ v + λ(sin(2πx), sin(2πy))

+ α(sin(2πx) cos(2πy), sin(2πy) cos(2πx))

+ β(sin(4πx), sin(4πy))

+ γ (sin(6πx) cos(4πy), sin(6πy) cos(4πx)).

This formula contains five real parameters λ, α, β, γ , and ω, an integer m, and a shift

which is either v = (0, 0) or v = (0.5, 0.5). This quilt formula is D4 symmetric when

ω = 0 and Z4 symmetric whenω �= 0. The parameter values for the square quilt designs

are given in Table A.3.

The formula that we have used to create hexagonal quilt designs is

f (X) = mX + λ[sin(2πN ·X)N + sin(2πRN ·X)RN + sin(2πR2N ·X)R2N ]
+ α[sin(2πM ·X)M + sin(2πRM ·X)RM + sin(2πR2M ·X)R2M]
+ sin(2πL ·X)a + sin(2πRL ·X)Ra + sin(2πR2L ·X)R2a

+ sin(2πFL ·X)Fa + sin(2πRFL ·X)RFa + sin(2πR2FL ·X)R2Fa,

whereX = (x, y) is a point in the plane,L = (3, 1/
√

3),M = (2, 0),N = (1,−1/
√

3),

R denotes rotation of the plane counterclockwise by 120◦, andF(x, y) = (x,−y). In this

formula we have used the dot product notationN ·X = n1x+n2y, whereN = (n1, n2)

and X = (x, y).

This formula also has five real parameters λ, α, a = (β, γ ), and ω; it has D6

symmetry when ω = 0 and Z6 symmetry when ω �= 0. The parameter m is usually an

integer, but it can take values which are integer multiples of a sixth root of unity. When

Table A.3 Data for square quilts

Figure λ α β γ ω Shift m Name

2.6 –0.59 0.2 0.1 –0.33 0.0 (0, 0) 2 Emerald Mosaic

2.12 –0.59 0.2 0.1 –0.27 0.0 (0.5, 0.5) 0 Sugar and Spice

3.20 –0.2 –0.1 0.1 –0.25 0.0 (0, 0) 0 Sicilian tile

3.22 0.25 –0.3 0.2 0.3 0.0 (0, 0) 1 Roses

3.23 –0.28 0.25 0.05 –0.24 0.0 (0, 0) –1 Wagonwheels

3.26 –0.12 –0.36 0.18 –0.14 0.0 (0.5, 0.5) 1 Victorian Tiles

3.27 0.1 0.2 0.1 0.39 0.0 (0, 0) –1 Mosque

3.28 –0.589 0.2 0.04 –0.2 0.0 (0.5, 0.5) 0 Brown Tiles

3.29 –0.28 0.08 0.45 0.05 0.0 (0.5, 0.5) 0 Cathedral Attractor

6.1 –0.59 0.2 0.2 0.3 0.0 (0, 0) 2 Gyroscopes

6.2 –0.28 0.25 0.05 –0.24 0.0 (0.5, 0.5) –1 Cats Eyes

6.3 –0.11 –0.26 0.19 –0.059 0.07 (0.5, 0.5) 2 Flowers with Ribbons
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Table A.4 Data for hexagonal quilts

Figure λ α β γ ω m Name

2.9 0.1 –0.076 –0.6 0.1 0.0 0 Dutch Quilt

2.13 0.2 0.04 0.1 0.1 0.0 1 Crown of Thorns

3.32 –0.105 –0.15 0.06 –0.03 0.0 0 Hexagonal Design

6.4 0.02 –0.1 0.14 0.052 0.0 0 Sundial Mosaic

6.5 0.02 –0.1 0.14 0.052 0.04 0 Fractured Symmetry

C.8 0.02 –0.1 0.14 0.052 0.0 e
iπ
3 Hex Nuts

C.9 0.1 –0.076 –0.06 0.1 0.101 0 Marching Troupe

m is not an integer, the resulting figure will have only Z6 symmetry. Parameter values

for the hexagonal quilt patterns that we have shown are given in Table A.4.

Symmetric fractals
Finally, we consider the symmetric fractals. Each symmetric fractal is created from one

affine linear mapping, and an affine linear mapping is determined by six real constants:

a 2 × 2 matrix consisting of four constants a11, a21, a12, a22, and a translation vector

consisting of two real constants b1 and b2. The symmetric fractals are created from the

affine linear mapping by choosing randomly from the elements of a finite group, in this

case either Dn or Zn. The data that we used to produce the various symmetric fractals

are listed in Table A.5.
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Table A.5 Data for symmetric fractals

Figure a11 a12 a21 a22 b1 b2 Symmetry Name

7.1 –0.4 0.75 0.2 –0.3 0.0 0.4 Z55 Whipper-snipper

7.2 0.5 0.0 0.0 0.5 0.5 0.0 Z3 Sierpiński Triangle

7.4 0.5 0.0 0.0 0.5 0.5 0.0 Z5 Sierpiński Pentagon

7.5 0.5 0.0 0.0 0.5 0.5 0.0 Z6 Sierpiński Hexagon

7.8(a) 0.45 0.0 0.0 0.45 0.55 0.0 Z3 strict fractal

7.8(c) 0.55 0.0 0.0 0.55 0.45 0.0 Z3 overlaid fractal

7.9 0.45 –0.1 –0.31 0.45 0.1 0.2 Z11 Circular Saw

7.10 0.4 –0.1 –0.35 0.4 0.01 0.2 Z9 Catherine Wheel

7.11 –0.1 0.35 0.2 0.5 0.5 0.4 D3 The Bee

7.13 0.46 0.0 0.0 0.46 0.54 0.0 Z4 Variation on the Sierpiński square

7.14 –0.25 –0.3 0.3 –0.26 0.5 0.5 D8 Snowflake

7.15 –0.25 –0.3 0.3 –0.34 0.5 0.5 D4 Astigmatism

7.16 –0.25 –0.3 0.14 –0.26 0.5 0.5 Z12 Fifty Nations

7.17 0.4 –0.1 –0.31 0.45 0.01 0.0 Z5 magnifying fractal

7.18 0.45 –0.1 0.3 –0.4 0.15 0.1 Z8 asymmetric coloring

7.19 –0.15 0.75 0.2 –0.3 0.075 0.4 Z50 Cashmere
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Appendix B

Icon Mappings

How does one actually find mappings on the plane with Dn symmetry? The answer to

this question resides in a field called invariant theory. Fortunately, although many of the

questions in this theory are devilishly difficult to answer, the answer to the question we

ask is relatively simple to explain. We begin with the simplest example and then state

the abstract strategy. First we need some basic definitions.

Let G be a group of linear transformations of Rm. For example, G might be

the dihedral group Dn of symmetries of the regular n-sided polygon acting on the plane

R2. Suppose that X is any point of Rm. TheG-orbit of X is the set of points in Rm that

result from applying all the transformations of G to X. We say that a function on Rm

is G-invariant if it is constant on G-orbits. More precisely, if p : Rm → R, then p is

G-invariant if p(gX) = p(X) for all g ∈ G. A mapping f : Rm → Rm commutes with

G (or is G-equivariant) if f (gX) = gf (X) for all g ∈ G.

Symmetry on the line
We shall look at a simple group of symmetries of the line R. For our group, we take

G = Z2, where G acts as multiplication by ±1 on R. In this instance, a function

p : R → R will be G-invariant if p(−X) = p(X). Such functions p are called

even functions. The name ‘even’ is not plucked from thin air. For should p(X) be a

polynomial, that is,

p(X) = a0 + a1X + a2X
2 + · · · + amX

m,

then

p(−X) = a0 − a1X + a2X
2 − · · · + (−1)mamX

m.

It follows that the identity p(−X) = p(X) holds for all X precisely when all of the odd

terms vanish. That is,

a1 = a3 = a5 = · · · = 0.

Thus

p(X) = a0 + a2X
2 + · · · + a2kX

2k.
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A rather simple observation concerning even polynomials is

p(X) = q(U),

where U = X2 and

q(U) = a0 + a2U + a4U
2 + · · · + a2kU

k.

In other words, every even polynomial is a polynomial in X2.

Now let us look at maps f : R → R that commute with the group G, that is,

maps f satisfying

f (−X) = −f (X).
We call such maps odd functions. An argument similar to the one for even functions

shows that odd polynomials f have the form

f (X) = b1X + b3X
3 + · · · + b2k+1X

2k+1.

It follows that if f is odd we may write

f (X) = (b1 + b3U + · · · + b2kU
k)X,

where, as above, U = X2. Simply put, every odd polynomial can be written as the

product of an even polynomial with X.

This decomposition generalizes to all compact symmetry groups of linear

transformations of Rm. The general observations are as follows.

1. Let p : Rm → R be G-invariant and let f : Rm → Rm be G-equivariant. Then

pf : Rm → Rm is G-equivariant.

2. There exist a finite number of G-invariant polynomials

U1(X), U2(X), . . . , Us(X)

such that every G-invariant polynomial is a polynomial in U1, . . . , Us .

3. There exist a finite number of G-equivariant polynomial mappings

f1(X), f2(X), . . . , ft (X)

such that every G-equivariant polynomial mapping has the form

p1(X)f1(X)+ · · · + pt(X)ft (X),

where each pj (X) is a G-invariant polynomial.

In terms of even and odd polynomials, these statements translate as follows.

1. Even polynomials times odd polynomials are odd polynomials.

2. Every even polynomial is a polynomial in U1(X) = X2.

3. Every odd polynomial is an even polynomial times f1(X) = X.
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Dn equivariants
We recall that the action of Dn, the planar symmetry group of the regularn-sided polygon,

is generated by

κz = z̄ and ρz = e2πi/nz,

where z ∈ C is a complex number.

Define the polynomial maps U1, U2 : C → R by

U1(z) = zz̄ and U2(z) = zn + z̄n.

It is easy to check that bothU1 andU2 are Dn invariant polynomials. For future reference,

we note that U2(z) = 2 Re(zn). We claim that every Dn invariant polynomial mapping

p : C → R may be written as a polynomial in U1 and U2. That is, there is a polynomial

map q : R2 → R such that p = q(U1, U2). We shall also show that if f : C → C is Dn

equivariant then we may write

f = p1z+ p2z̄
n−1,

where p1 and p2 are Dn invariant polynomials. It is worth remarking, and useful for

applications, that these expressions for Dn invariants and equivariants also hold for

smooth (that is, infinitely differentiable) mappings with the change that q will now be a

smooth map from R2 to R and p1 and p2 will be smooth invariant functions.

We start by verifying our claim about polynomial Dn invariants. Letp : C → R
be a Dn invariant polynomial map. We may write p in the form

p(z) =
∑
j,k≥0

aj,kz
j z̄k,

where each aj,k ∈ C is a complex number. Note that since p is a polynomial this sum is

actually finite. The fact that p is real-valued (p(z) = p(z)) implies aj,k = ak,j . Since

p(κz) = p(z) we also have aj,k = ak,j . It follows that all of the aj,k are real. Taking

out multiples of zz̄, we can write

p(z) =
∑
k

bk(zz̄)(z
k + z̄k),

where bk is a polynomial in zz̄. We now use the fact that p(ρz) = p(z) to conclude that

bk = 0 unless k is divisible by n. Thus p actually has the form

p(z) =
∑
k

ck(zz̄)(z
nk + z̄nk).

Finally, we use the identity

zn(�+1) + z̄n(�+1) = (zn� + z̄n�)(zn + z̄n)− (zz̄)n(zn(�−1) + z̄n(�−1))

and induction to observe that p(z) can be written as a polynomial in U1 and U2.
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Now suppose that f : C → C is a polynomial mapping that commutes with

Dn. Using complex notation, we can again write

f (z) =
∑
j,k≥0

aj,kz
j z̄k,

where each aj,k ∈ C. Here, though, we cannot assume that f is real-valued.

The fact thatf commutes with κ means thatf (z̄) = f (z), from which it follows

that aj,k = aj,k . Hence all of the aj,k are real.

Since f commutes with ρ we have the identity

f (z) = e−2πi/nf (e2πi/nz).

It now follows that aj,k = 0 unless j ≡ k + 1(mod n). Grouping terms, we can rewrite

f in the form

f (z) =
∑
k≥0

[bk(zz̄)znk+1 + ck(zz̄)z̄
n(k+1)−1].

Applying the identities

zn(�+1)+1 = (zn� + z̄n�)z− (zz̄)z̄n�−1,

z̄n(�+1)−1 = (zn� + z̄n�)z̄n−1 − (zz̄)n−1zn(�−1)+1,

and using induction, allows us to put f in the desired form.

Suppose that f : C → C is a Dn-equivariant polynomial map. Truncating f

to lowest order in U1 and U2 and replacing U2 by V1 = 1
2U2 yields the mapping

F(z) = (λ+ αzz̄+ β Re(zn))z+ γ z̄n−1

= (λ+ αU1 + βV1)z+ γ z̄n−1,

where λ, α, β, γ are real parameters. This is the mapping we have used to produce most

of our symmetric icons. Of course, our choice of this particular Dn-equivariant mapping

is somewhat arbitrary. However, it yields the simplest class of Dn-equivariant mappings

that display chaotic behavior and symmetry creation.

In our investigations of maps with Dn symmetry, we have sometimes added an

extra nonpolynomial term

f (z) = (λ+ αU1 + βV1)z+ γ z̄n−1 + δ Re(z/|z|)npz|z|.
Although the extra term is Dn-equivariant, it does have a mild singularity at the origin.

In particular, for nonzero δ, this term tends to dominate the iteration near z = 0.

Zn equivariants
We shall now briefly describe the Zn invariants and equivariants. We start by observing

that

U1 = zz̄, V1 = Re(zn), and V2 = Im(zn)
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are Zn equivariants. Just as in the case of Dn equivariants, we may show that every Zn
invariant is a polynomial in U1, V1, and V2.

Turning to Zn equivariants, we may show that every Zn equivariant map f :
C → C may be written

f = p1(U1, V1)z+ p2(U1, V1)z̄
n−1,

where p1 and p2 are arbitrary complex-valued polynomials.

In our numerical explorations of Zn symmetry, we have added the term ωiz to

the truncation we used for the study of Dn symmetry, to yield

f (z) = (λ+ αzz̄+ β Re(zn)+ ωi)z+ γ z̄n−1,

where λ, α, β, γ , and ω are real parameters. If ω = 0 then f is Dn-equivariant, while if

ω �= 0 then f is only Zn-equivariant.
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Appendix C

Planar Lattices

A planar lattice is a subset L ⊂ R2 consisting of all vectors of the form

n1k1 + n2k2,

where k1 and k2 are noncollinear vectors in the plane and n1 and n2 are integers. The

set of vectors {k1, k2} is called a basis for L. In Figure C.1, we have drawn part of

the lattice defined by taking k1 and k2 to be the unit vectors along the x- and y-axes,

respectively. For obvious reasons, this lattice is called a square lattice.

k

k1

2

Figure C.1 The square lattice.

Suppose f is a mapping of the plane. We call f a symmetry of L if f (L) = L.

Our first task is to describe the group of linear symmetries of L.

Let A be a linear map of the plane. Since {k1, k2} is a basis of R2, we can

express A(k1) and A(k2) in terms of k1 and k2. Specifically, we may find real numbers

a, b, c, d such that

A(k1) = ak1 + bk2,

A(k2) = ck1 + dk2.

In order that A be a symmetry of L, we must have A(k1), A(k2) ∈ L. Hence,

a, b, c, d must be integers. Provided that a, b, c, d are integers, it is easy to show that

A(n1k1 + n2k2) ∈ L for all integers n1 and n2. However, for A to be a linear symmetry

of L, we also require that A(L) be equal to L. Clearly, it is not enough to require only

that a, b, c, d are integers (take a = b = c = d = 0). However, to be a symmetry,

it suffices that the linear map A is invertible and that the inverse map of A is also a

symmetry of L. With a little more work, it follows that A is a linear symmetry of L if

(S1) a, b, c, d are integers;

(S2) ac − bd = ±1.

We refer to the collection of linear maps satisfying conditions (S1) and (S2) as the group

of linear symmetries of L and denote it by GL. In the case where the linear map A

satisfies only (S1), we refer to A as a linear endomorphism of L. We denote the space

of linear endomorphisms of L by EL. Obviously, EL ⊃ GL and indeed GL consists

precisely of the invertible elements of EL.

Suppose that A is an element ofGL. Then {A(k1), A(k2)} is also a basis of L.

Since GL is a rather large group, it follows that a lattice can have very many different
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bases. In Figure C.2, we show another basis for the square lattice found by taking

a = 2, b = c = d = 1.

A(k  )1

A(k  )2

Figure C.2 An alternate basis for
the square lattice.

Up to this point we have not introduced any geometry into our discussion of

lattices. Indeed, it follows from (S1) and (S2) that if L and L′ are any two lattices, then

GL andGL′ are isomorphic; and so, at least from the point of view of linear symmetries,

all lattices have the same structure.

The way we introduce geometric structure is to regard R2 as a Euclidean vector

space. In particular, we shall assume that R2 comes with its standard inner product. If

x, y ∈ R2, we let x · y denote the inner (or dot) product of x with y. We let O(2) denote

the orthogonal group consisting of the set of all linear transformations of R2 that preserve

the inner product. Otherwise stated, O(2) is the group consisting of all rotations about

the origin of R2 together with all reflections in lines through the origin.

We define the holohedry of the lattice L to be the group HL consisting of all

those elements of GL which are rotations and reflections; that is,

HL = GL ∩ O(2).

Unlike what happened in our discussion ofGL, the group HL depends on the particular

lattice L.

It is not hard to show that HL is always finite and does not depend on the choice

of basis of L. Moreover, since −I is always a linear symmetry of L, we see that HL
always contains ±I . With a bit more work, one can show that there are precisely five

groups that can occur as the holohedry of a planar lattice. We describe these groups, and

representative lattices, in Table C.1.

Fundamental cells and tori

Suppose that the lattice L has basis {k1, k2}. The fundamental cell or period parallelo-

gram of the lattice is the parallelogram spanned by k1 and k2. The plane is tessellated

by translations of the fundamental cell using vectors in L.

As we have already pointed out, a given lattice has many different bases. On the

square and hexagonal lattices, however, certain of these bases better reflect the symmetry

of the holohedry. In particular, this happens when the basis vectors have the same length

and lie on axes of symmetry of the holohedry. Consequently, on the square lattice we

choose basis vectors

k1 = (1, 0), k2 = (0, 1),

Table C.1 The planar lattices

Name Length of basis vectors Angle between k1, k2 Holohedry
Oblique |k1| �= |k2| α �= 90◦ Z2

Rectangular |k1| �= |k2| α = 90◦ Z2 ⊕ Z2

Rhombus |k1| = |k2| α �= 60◦, 90◦ Z2 ⊕ Z2

Square |k1| = |k2| α = 90◦ D4

Hexagonal |k1| = |k2| α = 60◦ D6
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Figure C.3 Identifying the
opposite sides of a fundamental
cell to make a torus.while on the hexagonal lattice we choose basis vectors

k1 = (1, 0), k2 =
(

1

2
,

√
3

2

)
.

At this point, we note that the opposite sides of the fundamental cell are

identified by translations. When we think of this process of identifying opposite sides

geometrically, we produce a torus denoted by T 2. We refer the reader to Figure C.3 for

the case of the square lattice.

Suppose we have a mapping f : R2 → R2. When does f induce a mapping

on the torus? For this to happen, the points f (X) and f (X + k), where k ∈ L, must

differ by only a lattice element; that is, for each k ∈ L, there exists a k̂ ∈ L such that

f (X + k) = f (X)+ k̂.

We can rephrase the definition of EL in this language: the space EL of linear

endomorphisms of L consists of those linear maps of R2 that induce a mapping on the

torus. To see this, let A be a linear map on R2. Then A induces a map on T 2 if and only

if, for every k ∈ L, the vector A(X + k)− A(X) = A(k) is in L.

Action of the holohedry on the torus
We assume that L is either the square or hexagonal lattice and take the associated

fundamental cell as described above. Let T 2 denote the torus defined by the fundamental

cell. Since HL ⊂ EL it follows that HL acts on T 2. We wish to describe the lines of

symmetry for the action of HL on T 2. This is most easily done by drawing the lines of

symmetry on the fundamental cell. We have done this for the fundamental cells of the

square and hexagonal lattices in Figure C.4.
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(a) (b)

Figure C.4 Lines of symmetry on
the fundamental cell (large dots
denote points fixed by the
holohedry and small dots and
triangles denote points fixed by
proper subgroups of the
holohedry): (a) square lattice, (b)
hexagonal lattice.

The reader should note that there are two points on the fundamental cell of the

square lattice that are fixed by all elements of the holohedry. These points are (0, 0) and

( 1
2 ,

1
2 ); they are characterized as being the only points that lie on all the axes of symmetry

of the action of HL. On the other hand, if we take the hexagonal lattice, then the action

of HL on T 2 has just one fixed point: (0, 0).

We gain more insight into the symmetry structure of the action of the holohedry

by drawing the associated tessellations, with lines of symmetry. We show this in

Figure C.5(a) for the square lattice and in Figure C.5(b) for the hexagonal lattice. The

reader should note that there is much more structure than appears in the corresponding

pictures for the linear actions of the holohedry groups D4 and D6 on the plane. The

lines of symmetry that occur in the tessellations are, of course, the lines of symmetry for

the associated lattice. In the case of the hexagonal lattice, we see not only reflectional

and rotational symmetries but also glide reflection symmetries. For example, referring

to Figure C.5(b), we see there is a glide reflection symmetry defined by translation and

reflection in the line ab. It is this additional structure that is, in part, responsible for the

richness of the patterns seen in our pictures of chaotic quilt tilings.

Mappings on the torus
In general, every continuous mapping f : R2 → R2 that induces a map on T 2 has the

form

f (X) = q(X)+ A(X)+ v, (C.1)

where A is in EL, v is in the fundamental cell, q(0) = 0, and q is L-periodic; that is,

q(X + k) = q(X)

for all k ∈ L. We now verify formula (C.1) in three steps.

First, note that v must equal f (0); just evaluate (C.1) at X = 0.

Second, since f induces a mapping on T 2 it follows that f (k1) = k̂1 and

f (k2) = k̂2, where k̂1, k̂2 ∈ L. Define A to be the linear map satisfying A(kj ) = k̂j
for j = 1, 2. By construction A lies in EL.
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(a)

(b)

a b

Figure C.5 Lines of symmetry in
the plane (see Figure C.4 for an
explanation of notation): (a)
square lattice, (b) hexagonal
lattice.

Third, note that the mappings f (X) and f (X)+ k induce the same mappings

on T 2. Hence, after a translation by an element of the lattice, we may assume that v is

in the fundamental cell. Finally, we define

q(X) ≡ f (X)− A(X)− v.

By construction q(0) = 0. Since f (X + kj ) = f (X)+ k̂j , it follows that q(X + kj )−
q(X) = 0. So q is L-periodic as claimed.

Symmetric torus mappings
We assume that the planar mapping f induces a mapping on the torus and hence has

the form (C.1). As noted above, the holohedry HL of the lattice acts on the torus; we

ask which mappings of the torus will commute with the action of the holohedry on
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the torus. These are the mappings that will have attractors with square symmetry in

the fundamental cell of the square lattice and hexagonal symmetry on the fundamental

cell of the hexagonal lattice; indeed, these are the mappings that will produce the quilt

patterns we have shown in previous chapters.

Forf to commute with the action of the holohedry on the torus, it must commute

modulo the lattice with the action of HL on the plane; that is,

f (hX) = hf (X)+ kh,

where h ∈ HL and kh ∈ L. On the square and hexagonal lattices this commutativity

takes place precisely when f has the form

f (X) = q(X)+mX + v, (C.2)

where m is an integer, v is a fixed point of the action of HL when projected onto the

torus, q(0) = 0, and q is an L-periodic mapping that commutes with HL. To verify

(C.2), use the form (C.1) to compute f (hX)− hf (X) = 0 and obtain

q(hX)− hq(X) = hA(X)− A(hX)+ hv − v + kh.

Observe that the left-hand side of this equation is L-periodic (using the fact that h is in

the holohedry) and the right-hand side is affine and unbounded unless the linear part is

identically zero. Hence,

hA(X) = A(hX).

A short calculation shows that the only linear mappings on the plane that commute with

either D4 or D6 are multiples of the identity. For such mappings to be in the holohedry,

they must be integer multiples of the identity. Hence A(X) = mX as claimed.

Next we use the fact that q(0) = 0 to see that hv = v − kh for all elements of

the holohedry. Hence hv = v when projected onto the torus; that is, v is a fixed point of

the holohedry on the torus, as claimed. It now follows that q commutes with the action

of the holohedry on the plane.

As we have already shown, v is 0 on the hexagonal lattice and either 0 or ( 1
2 ,

1
2 )

on the square lattice.

In order to specify the family of mappings that may produce the types of periodic

quilts that we desire, we must enumerate the L-periodic mappings that commute with

the holohedry. This is most easily done using Fourier series.

Fourier expansions of L-periodic mappings
There is a simple but ingenious way of enumerating L-periodic functions using what is

called the dual lattice. The idea is to ask which plane waves exp(2πil ·X) are L-periodic

mappings. A quick calculation shows that periodicity holds precisely when l · k is an

integer for all lattice vectors k ∈ L. Indeed, the set of all such l forms a lattice called

the dual lattice and is denoted by L�.
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A basis {l1, l2} for the dual lattice satisfies

li · lj = δi,j ,

where δi,j is the usual Kronecker delta, which equals 1 if i = j , and equals 0 otherwise.

For the square lattice (with k1 = (1, 0) and k2 = (0, 1)), we have

l1 = (1, 0) and l2 = (0, 1).

For the hexagonal lattice (with k1 = (1, 0) and k2 = ( 1
2 ,

√
3

2 ), we have

l1 =
(

1,
−1√

3

)
and l2 =

(
0,

2√
3

)
.

We can now write down a large number of L-periodic mappings of the plane

to the plane. For each l ∈ L∗, let zl be in C2. Then the formal sum

q(X) =
∑
l∈L∗

Re[exp(2πil · X)zl]

is L-periodic, when the sum converges.

It follows from Fourier analysis, that every continuous q can be written in this

form. We won’t go into the details here, but rather ask what restrictions have to be put

on the amplitude vectors zl for q to commute with the holohedry.

Indeed, for q to commute with the holohedry, we must have

hq(h−1X) = q(X)

for all h ∈ HL. We now compute formally

hq(h−1X) =
∑
l∈L∗

Re[exp(2πil · h−1X)hzl]

=
∑
l∈L∗

Re[exp(2πihl · X)hzl].

Equating terms in the Fourier expansion of q(X) and hq(h−1X) yields

hzl = zhl.

Next we observe that since −I is in the holohedry,

z−l = −zl.

It follows by combining the l and −l terms that we can write q as

q(X) =
∑
l∈L∗

sin(2π l · X)al,

where al ∈ R2 and

ahl = hal (C.3)

for all l ∈ L∗.
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We can now rewrite the summation that forms q in a slightly more efficient

way. The holohedry HL acts on the dual lattice L∗. Thus we can think of the dual lattice

as being partitioned by the orbits of the action of the holohedry. Suppose we form a set

of dual lattice vectors L∗
that consists of one dual lattice vector from each group orbit

in L∗. Then we can write

q(X) =
∑
l∈L∗

⎛
⎝∑
h∈HL

sin(2π l · X)hal

⎞
⎠ .

Of course, since a−l = −al and sin(−x) = − sin(x) we need only write the inner sum

over half of the elements of the holohedry.

We end by writing out explicitly a few terms in this Fourier expansion of q for

both the hexagonal and square lattices.

The quilt mappings
We begin with the square lattice. On the square lattice, the dual basis is simply l1 = k1,

l2 = k2. The first group orbit of wave vectors is just ±l1, ±l2, as pictured in Figure C.6(a).

Since there is a reflection in the holohedry that leaves each of these vectors invariant,

we get the term

λ(sin(2π l1 · X)l1 + sin(2π l2 · X)l2).

If we write X = (x, y) in coordinates, then this term is just

λ(sin(2πx), sin(2πy)).

For the second term, we choose the orbit generated by the wave vector m1 =
l1 + l2 (see Figure C.6(b)). The group orbit of this vector is m1 and m2 = l2 − l1 and

their negatives, and the associated term in q is

α[sin(2πm1 · X)m1 + sin(2πm2 · X)m2].
If one unravels all of the vector notation, one arrives at the term

α(sin(2πx) cos(2πy), sin(2πy) cos(2πx)).

Continuing along these lines, we may show that the general formula for q(x, y)

in coordinates is

q(x, y) = (p(x, y), p(y, x)),

where

p(x, y) =
∑

m≥0,n>0

am,n sin(2πmx) cos(2πny).

Arbitrarily, we chose four terms from the Fourier series for p:

p(x, y) = λ sin(2πx)+ α sin(2πx) cos(2πy)

+ β sin(4πx)+ γ sin(6πx) cos(4πy).
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For our investigations of square quilts, we take this mapping together with the translation

term v and the linear term mX.

We conclude with the hexagonal lattice. Choose the vector l1 to be an orbit

representative and let l3 = −l1 − l2. Then the first term in our expansion of q has the

form

sin(2π l1 · X)a1 + sin(2π l2 · X)a2 + sin(2π l3 · X)a3. (C.4)

As shown in Figure C.7(a), there is an element h of the holohedry that fixes l2 and

interchanges l1 with l3. It follows that

hal2 = ahl2 = al2 .

Since the only vectors fixed by h are scalar multiples of l2, it follows that a2 = λl2 for

some real number λ. Hence we may rewrite (C.4) as

λ[sin(2π l1 · X)l1 + sin(2π l2 · X)l2 + sin(2π l3 · X)l3].

Similarly, if we let m1 = 2l1 + l2, we obtain a group orbit as shown in

Figure C.7(b). Note that there is a reflectional symmetry in the holohedry that fixes

m1 so that the same argument just given applies. Hence, the second term for q that we

write down is

α[sin(2πm1 · X)m1 + sin(2πm2 · X)m2 + sin(2πm3 · X)m3],

where m1,m2, and m3 are as shown in Figure C.7(b).

For the third (and last) term we take n = 3l1 + 2l2. None of the nontrivial

elements of the holohedry fixes this dual wave vector. Hence we get a total of six sine

terms. Let R denote rotation counterclockwise by 120◦ and let F denote reflection in

the x-axis. Then the new term is

sin(2πn · X)an + sin(2πRn · X)Ran + sin(2πR2n · X)R2an

+ sin(2πFn · X)Fan + sin(2πRFn · X)RFan + sin(2πR2Fn · X)R2Fan,

where an = (β, γ ) is now an arbitrary two-vector.

l

l

2

1

1

2

m

m

(a) (b)
Figure C.6 Group orbits of dual
wave vectors on the square lattice.
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n

l

l

m m

m

2

1

2 1

3

(a) (b) (c)

Figure C.7 Group orbits of dual
wave vectors on the hexagonal
lattice.

Summing these various terms together gives a mapping with four real parame-

ters (λ, α, β, γ ) and one integerm. Together with the termmX, this is the mapping that

we have used to produce the pictures of hexagonal quilts.

Quilts with cyclic symmetry
Several of the quilts we show have cyclic rather than dihedral symmetry. To obtain these

quilts, we allow the parameters to take complex rather than real values. For example, in

our investigations of square quilts with cyclic symmetry, we take the initial term to be

λ(sin(2πx), sin(2πy))− ω(sin(2πy), sin(2πx))

and allow ω to take nonzero values. We make a similar change in the case of hexagonal

quilts.

There is a second way in which cyclic symmetry can be forced in the quilt

mappings. The linear map A used in the derivation of our formulas was forced by

dihedral symmetry to be an integer multiple of the identity. Cyclic symmetry only

forces it to be an integer multiple of a root of unity. In particular, cyclic symmetry will

appear in square quilts if the parameterm is chosen to be an integer multiple of i. Cyclic

symmetry will appear in hexagonal quilts ifm is chosen to be an integer multiple of e
iπ
3 .

We end this appendix with two symmetric chaos quilts based on an hexagonal

lattice. The first quilt (Figure C.8) has Z6 symmetry and uses for the first time a noninteger

value of the parameter m. The second quilt (Figure C.9) also has Z6 symmetry, but is

computed using a nonzero value for ω.
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Figure C.8 Hex Nuts.
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Figure C.9 Marching Troupe.
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Sierpiński triangle, 141–143, 152,

160
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