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PREFACE

This book is about the underlying concepts on which our modern com-
puters are based and about the people who developed these concepts. In
the spring of 1951, shortly after completing my doctorate in mathemati-
cal logic at Princeton University, where Alan Turing himself had worked a
decade earlier, | was teaching a course at the University of Illinois based
on his ideas. A young mathematician who had been attending my lectures
called my attention to a pair of machines being constructed across the
street from my classroom that he insisted were physical embodiments of
Turing's conception. It was not long before I found myself writing soft-
ware for these early computers. My professional career, spanning half a
century, has revolved around this relationship between the abstract logi-
cal concepts underlying modern computers and their physical realization.

As computers have evolved from the room-filling behemoths that were
the computers of the 1950s to the small, powerful machines of today
that perform a bewildering variety of tasks, their underlying logic has re-
mained the same. These logical concepts have developed out of the work
of a number of gifted thinkers over a period of centuries. In this book I tell
the story of the lives of these people and explain some of their thought.
The stories are fascinating in themselves, and my hope is that readers will
not only enjoy them, but that they will also come away with a better sense
of what goes on inside their computers and with an enhanced respect for

the value of abstract thought.
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In developing this book I have benefited from a great deal of help of
various kinds. The John Simon Guggenheim Memorial Foundation pro-
vided welcome financial support during the early stages of the studies
that led up to this book. Patricia Blanchette, Michael Friedman, Andrew
Hodges, Lothar Kreiser, and Benson Mates generously shared their ex-
pert knowledge with me. Tony Sale kindly acted as my guide to Bletchley
Park, where Turing had played an important part in the decoding of secret
German military communications during World War I1. Eloise Segal, who
alas did not live to see the book completed, was a devoted reader, helping
me to avoid expository pitfalls. My wife, Virginia, stubbornly refused to
let me be obscure. Sherman Stein read the manuscript with great care,
suggesting many improvements and saving me from a number of errors.
I benefited from help with translations by Egon Bérger, William Craig,
Michael Richter, Alexis Manaster Ramer, Wilfried Sieg, and Frangois
Treves. Other readers who provided useful comments were Harold Davis,
Nathan Davis, Jack Feldman, Meyer Garber, Dick and Peggy Kuhns, and
Alberto Policriti. My editor Ed Barber at W. W. Norton has generously
shared his knowledge of English prose style and is responsible for many
improvements. Harold Rabinowitz introduced me to my agent Alex Hoyt,
who has been unfailingly helpful. Of course this long list of names is
meant only to express gratitude and not to absolve myself of responsi-
bility for the book’s shortcomings. I would be grateful for comments or

corrections from readers sent to me at davis@eipye.com.

Martin Davis
Berkeley, January 2, 2000



INTRODUCGCTION

Ifit should turn out that the basic logics of a machine designed for the numer-
ical solution of differential equations coincide with the logics of a machine
intended t0 make bills for a department store, I would regard this as the most

amazing coincidence I have ever encountered.

— Howard Aiken, 1956!

Let us now return to the analogy of the theoretical computing machines .. . It
can be shown that a single special machine of that type can be made to do the
work of all. It could in fact be made to work as a model of any other machine.

The special machine may be called the universal machine.

—Alan Turing, 19472

In the fall of 1945, as the ENIAC, a gigantic calculating engine contain-
ing thousands of vacuum tubes, neared completion at the Moore School
of Electrical Engineering in Philadelphia, a group of experts met regularly
to discuss the design of its proposed successor, the EDVAC. As the weeks
went by, the meetings grew increasingly acrimonious, with the experts di-
viding into two groups they began to speak of as the “engineers” and the
“logicians.” John Presper Eckert, leader of the engineers, was justly proud
of his accomplishment with the ENIAC. It had been thought impossible
for 15,000 hot vacuum tubes to work together long enough to accomplish

anything useful. Nevertheless, by using careful, conservative design prin-
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ciples, Eckert had succeeded brilliantly in accomplishing this feat. Things
came to a head when, much to Eckert’s displeasure, the group’s leading lo-
gician, the eminent mathematician John von Neumann, circulated, under
his own name, a draft report on the proposed EDVAC that, paying little at-
tention to engineering details, set forth the fundamental logical computer
design known to this day as the von Neumann architecture.

Although an engineering tour de force, the ENIAC was a logical mess.
It was von Neumann’s expertise as a logician—and what he had learned
from the English logician Alan Turing—that enabled him to understand
that a computing machine is really a logic machine. Its circuits embody
the distilled insights of a remarkable collection of logicians, developed
over centuries. Nowadays, as computer technology advances with such
breathtaking rapidity, as we admire the truly remarkable accomplishments
of the engineers, it is all too easy to overlook the logicians whose ideas
made it all possible. This book tells their story.
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LEIBNIZ’S
DREAM

SITUATED SOUTHEAST OF the German city of Hanover, the ore-rich
veins of the Harz mountain region had been mined since the middle of
the tenth century. Because the deeper parts tended to fill with water, they
could only be mined so long as pumps kept the water at bay. During the
seventeenth century water wheels powered these pumps. Unfortunately,
this meant that the lucrative mining operations had to shut down during
the winter season when the streams were frozen.

During the years 1680-1685, the Harz mountain mining managers
were in frequent conflict with a most unlikely miner, G. W. Leibniz, then
in his middle thirties. Leibniz was there to introduce windmills as an ad-
ditional energy source to enable all-season operation of the mines. At this
point in his life, Leibniz had already accomplished a lot. Not only had he
made major discoveries in mathematics, but he had also acquired fame
as a jurist and had written extensively on philosophical and theological is-
sues. He had even undertaken a diplomatic mission to the court of Louis
XIV in an attempt to convince the French Sun King of the advantages of
conducting a military campaign in Egypt (instead of against Holland and
German territories).!

Some seventy years earlier, Cervantes had written of the misadventures
of a melancholy Spaniard with windmills. Unlike Don Quixote, Leibniz

was incurably optimistic. To those who reacted bitterly to the evident mis-
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ery in the world, Leibniz responded that God, from His omniscent view
of all possible worlds, had unerringly created the best that could be con-
structed, that all the evil elements of our world were balanced by good in
an optimal manner.* But Leibniz’s involvement with the Harz mountain
mining project ultimately proved to be a fiasco. In his optimism, he had
not forseen the natural hostility of the expert mining engineers toward a
novice proposing to teach them their trade. Nor had he allowed for the
inevitable break-in period a novel piece of machinery requires or for the
unreliability of the winds. But his most incredible piece of optimism was
with respect to what he had imagined he would be able to accomplish with
the proceeds he had expected from the project.

Leibniz had a vision of amazing scope and grandeur. The notation
he had developed for the differential and integral calculus, the notation
still used today, made it easy to do complicated calculations with little
thought. It was as though the notation did the work. In Leibniz's vision,
something similar could be done for the whole scope of human knowl-
edge. He dreamt of an encyclopedic compilation, of a universal artificial
mathematical language in which each facet of knowledge could be ex-
pressed, of calculational rules which would reveal all the logical interre-
lationships among these propositions. Finally, he dreamed of machines
capable of carrying out calculations, freeing the mind for creative thought.
Even with his optimism, Leibniz knew that the task of transforming this
dream to reality was not something he could accomplish alone. But he
did believe that a small number of capable people working together in a
scientific academy could accomplish much of it in a few years. It was to
fund such an academy that Leibniz had embarked on his Harz mountain
project.

LEIBNIZ'S WONDERFUL IDEA

Leibniz was born in Leipzig in 1646 into a Germany divided into some-
thing like 1,000 separate, semiautonomous political units and devastated
by almost three decades of war. The Thirty Years War, which didn’t end

until 1648, was fought mainly on German soil, although all of the major

*Voltaire’s Dr. Pangloss in Candide was a sendup of this Leibnizian doctrine.
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European powers had participated. Leibniz’s father, a professor of philos-
ophy at the University of Leipzig, died when the child was only six. Over
the opposition of his teachers, Leibniz gained access to his father’s library
at the age of eight and soon became a fluent reader of Latin.

Destined to become one of the greatest mathematicians of all time,
Leibniz got his first introduction to mathematical ideas from teachers
who had no inkling of the work elsewhere in Europe that was revolu-
tionizing mathematics. In the Germany of that day, even the elementary
geometry of Euclid was an advanced subject, studied only at the univer-
sity level. However, in his early teens, his school teachers did introduce
Leibniz to the system of logic that Aristotle had developed two millennia
earlier, and this was the subject that aroused his mathematical talent and
passion. Fascinated by the Aristotelian division of concepts into fixed “cat-
egories,” Leibniz thought of what he came to call his “wonderful idea” He
would seek a special alphabet whose elements represented not sounds,
but concepts. A language based on such an alphabet should make it pos-
sible to determine by symbolic calculation which sentences written in the
language were true and what logical relationships existed among them.
Leibniz remained under Aristotle’s spell and held fast to this vision for
the rest of his life.

Indeed, for his Bachelor’s degree at Leipzig, Leibniz wrote a thesis on
Aristotelian metaphysics. His master’s thesis at the same university dealt
with the relationship between philosophy and law. Evidently attracted also
to legal studies, Leibniz obtained a second bachelor’s degree, this time in
law, writing a thesis emphasizing the use of systematic logic in dealing
with the law. Leibniz’s first real contribution to mathematics developed
out of his Habilitationsschrift (in Germany, a kind of second doctoral dis-
sertation) in philosophy: As a first step toward his wonderful idea of an
alphabet of concepts, Leibniz foresaw the need to be able to count the var-
ious ways of combining such concepts. This led him to a systematic study
of the problem of counting complex arrangements of basic elements, first
in his Habilitationsschrift and then in his more extensive monograph Dis-
sertatio de Arte Combinatoria.?

Continuing his legal studies, Leibniz presented a dissertation for a
doctorate in law at the University of Leipzig. The subject, so typical for
Leibniz, was the use of reason to resolve cases in law thought too difficult
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for resolution by the normal methods. For reasons that are not clear the
Leipzig faculty refused to accept the dissertation, so Leibniz presented
it instead at the University of Altdorf, near Nuremberg, where it was
received with acclaim. At the age of twenty-one, his formal education
completed, Leibniz faced the usual problem of the newly graduated: how
to develop a career.

PARIS

Uninterested in a career as a university professor in Germany, Leibniz pur-
sued his only real alternative: to find a wealthy noble patron. He found one
in Baron Johann von Boineburg, nephew of the Elector of Mainz, who put
Leibniz to the task of updating the legal system that had been based on
Roman civil law. Soon Leibniz was appointed a judge at the High Court
of Appeal and tried his hand at diplomatic intrigue, including an abortive
attempt to influence the selection of a new king for Poland and a mission
to the court of Louis XIV.

The Thirty Years War had left France as the “superpower” on the Eu-
ropean continent. Mainz, tensely situated on the banks of the Rhine, had
known military occupation during the war. So, the burghers of Mainz un-
derstood very well the importance of forestalling hostile military action
and, therefore, of good relations with France. It was in this context that
Boineburg and Leibniz concocted the scheme to convince Louis XIV and
his advisers of the great advantages of making Egypt the object of their mil-
itary endeavors. The most important historical effect of this proposition—
essentially the same proposition that led Napoleon to a military disaster
over a century later—was that it brought Leibniz to Paris.

Leibniz arrived in Paris in 1672 to press the Egyptian scheme and to
help untangle some of Boineburg’s financial affairs. Before the end of the
year disaster struck when news came that Boineburg had died of a stroke.
Although he continued to perform some services for the Boineburg fam-
ily, Leibniz was left without a reliable source of income. Nevertheless he
managed to remain in Paris for another four extremely productive years
that included two brief visits to London.? On the first of these, in 1673,
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he was unanimously elected to the Royal Society of London based on the
model he was able to exhibit of a calculating machine capable of carry-
ing out the four basic operations of arithmetic. Although Pascal had de-
signed a machine that could add and subtract, Leibniz's was the first that
could multiply and divide as well.* This machine incorporated an inge-
nious gadget that became known as a “Leibniz wheel,” a device common
in calculating machines well into the twentieth century. About his ma-

chine, Leibniz wrote:

And now that we may give final praise to the machine we may say that it
will be desirable to all who are engaged in computations which, it is well
known, are the managers of financial affairs, the administrators of oth-
ers’ estates, merchants, surveyors, geographers, navigators, astronomers
...But limiting ourselves to scientific uses, the old geometric and astro-
nomic tables could be corrected and new ones constructed by the help of
which we could measure all kinds of curves and figures . . . it will pay to ex-
tend as far as possible the major Pythagorean tables; the table of squares,
cubes, and other powers; and the tables of combinations, variations, and
progressions of all kinds, .. . Also the astronomers surely will not have to
continue to exercise the patience which is required for computation. . ..
For it is unworthy of excellent men to lose hours like slaves in the labor of
calculation which could safely be relegated to anyone else if the machine

were used.?

Leibniz’'s machine could only do ordinary arithmetic, but he grasped the
broader significance of mechanizing calculation. In 1674 he described a
machine that could solve algebraic equations. A year later, he wrote com-
paring logical reasoning to a mechanism, thus pointing to the goal of re-
ducing reasoning to a kind of calculation and of ultimately building a ma-

chine capable of carrying out such calculations.’

*Blaise Pascal, born on June 19, 1623, at Clermont-Ferrand, France, one of the
founders of the mathematical theory of probability, was a prolific mathematician,
physicist, and religious philosopher. His calculating machine, designed and built
circa 1643, brought him considerable fame. He died in 1662.
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A crucial event for Leibniz, then twenty-six, was meeting the great
Dutch scientist Christiaan Huygens, then living in Paris. The forty-three-
year-old Huygens had already invented the pendulum clock and discov-
ered the rings of Saturn. His most important contribution, the wave theory
of light, was still to come. His conception—that light consists of waves
like those spreading across a pond when a pebble is tossed into it—directly
contradicted the great Newton's account of light as consisting of a stream
of discrete bullet-like particles.* Huygens gave Leibniz a reading list en-
abling the younger man to quickly overcome his lack of knowledge of
current mathematical research. Soon Leibniz was making fundamental
contributions.

The explosion of mathematical research in the seventeenth century had

been fueled by two crucial developments:

1. The technique of dealing with algebraic expressions (what is gen-
erally high-school algebra) had been systematized and had become es-

sentially the powerful technique we still use today.

2. Descartes and Fermat had each shown how, by representing points

by pairs of numbers, geometry could be reduced to algebra.

Various mathematicians were using this new power to solve problems that
would not previously have been accessible. Much of this work involved
limit processes, that is, solving a problem by using approximations to the re-
quired answer that get systematically closer and closer to that answer. The
idea was not to be satisfied with any particular approximation but rather
to “go to the limit,” to obtain an exact solution.

An example that may help to clarify this concept is one of Leibniz’s own
early results, one of which he was quite proud:

T 1 1 1 1 n 1 1 n
4 3 5 7 9 11
* Although it was Huygens’s view that came to be generally accepted, the coming of
quantum physics in the twentieth century made it clear that Newton and Huygens
had both been right; each had grasped an essential characteristic of light.
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»

On the left side of the “=" is the familar number 7 that occurs in the for-
mulas for the circumference and the area of a circle.* On the right side is
what is called an infinite series; the individual numbers alternately added
and subtracted are called the terms of the series. The dots (.. .) mean that
it continues indefinitely. The full infinite pattern consists of fractions, with
1 as numerator and the successive odd numbers as denominators, being
alternately added and subtracted and is intended to be clear from the fi-
%, then subtract %, and so
on. But can one actually perform an infinite number of additions and sub-

nite part shown: After subtracting -, add

tractions? Not really. But, starting at the beginning and breaking off at any
point, an approximation to a “true” answer is obtained, and that approxi-
mation gets better and better as more terms are included. In fact, the ap-
proximation can be made as accurate as one wishes by including enough
terms. In the table, it is shown how this works for Leibniz’s series. When
including 10,000,000 terms, a value is obtained that agrees with the true
value of %, namely 0.7853981634.. ., to 8 places.

Leibniz’s series is so striking because it connects the number 7, and
therefore the area of a circle, with the succession of odd numbers in a par-
ticularly simple way. It is an example of one kind of problem that could be
solved using limit processes—that of finding areas of figures with curved
boundaries. Another kind of problem susceptible to attack using limits
was finding exact rates of change, such as the varying speed of a moving
body. During the last months of 1675, toward the end of his stay in Paris,
Leibniz made a number of conceptual and computational breakthroughs
in the use of limit processes that, taken together, are called his “invention
of the calculus™:

*The number 7 is in fact the area of a circle whose radius is %

"The numerical data regarding Leibniz’s series for % was obtained by writing and
running a Pascal program on a 486 33MHz PC. Summing 1,000,000 terms required
50 seconds; 10,000,000 terms took 8 minutes. Two years later the program was re-
run on a Pentium 200MHz machine and the times were reduced to 4 seconds and

40 seconds, respectively!
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Number of terms Sum correct to 8 decimal places

10 0.76045990

100 0.78289823

1,000 0.78514816
10,000 0.78537316
100,000 0.78539566
1,000,000 0.78539792
10,000,000 0.78539816

TABLE OF APPRAOXIMATIGNS TO

LEIBNIZ’S SERIES

1. Leibniz saw that the problems of finding areas and calculating rates
of change were paradigmatic in the sense that many different kinds of

problems were reducible to one or the other of these two types.*

2. He also perceived that the mathematical operations required in cal-
culating the solutions to problems of these two types were in fact in-
verse to each other in much the same sense that the operations of addi-
tion and subtraction (or multiplication and division) are inverse to one
another. Nowadays these operations are called integration and differen-
tiation, respectively, and the fact that they are inverse is known as the
“fundamental theorem of the calculus.”

3. Leibniz developed an appropriate symbolism (the very notation still
in use today) for these operations, [ for integration and d for differen-

*Thus, finding volumes and centers of gravity are problems of the first kind, and
computing accelerations and (in economic theory) marginal elasticity are problems

of the second type.
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tiation.* Finally he found the mathematical rules needed for actually
carrying out the integrations and differentiations that occurred in prac-
tice,

Taken together these discoveries transformed the use of limit processes
from being an exotic method accessible only to a handful of specialists
into a straightforward technique that could be taught in textbooks to
many thousands of people.® Most important for the subject of this book,
Leibniz’s success convinced him of the critical importance of choosing
appropriate symbols and finding the rules governing their manipulation.
The symbols [ and d did not represent meaningless sounds like the let-
ters of a phonetic alphabet; they stood for concepts and thus provided a
model for Leibniz’s boyhood wonderful idea of an alphabet representing
all fundamental concepts.

Much has been written about the separate and entirely independent
development of the calculus by Newton and by Leibniz and about the
bitter accusations of plagiarism tossed back and forth across the English
Channel before the foolishness of such charges was finally understood by
all. It is the great superiority of Leibniz’s notation that is significant for
our story.” A key technique used in integration (the method of “substi-
tution”) is virtually automatic in Leibniz’s notation but relatively compli-
cated in Newton’s. It has even been alleged that slavish devotion to their
national hero’s methods caused the English followers of Newton to lag far
behind their continental contemporaries in developing the mathematical
perspectives that the calculus had uncovered.

Like so many who have tasted the special quality of life in Paris, Leibniz
wanted to remain there as long as he could. He attempted to maintain
his Mainz connections while continuing to live and work in Paris. But it
soon became clear that, so long as he stayed in Paris no funds from Mainz
would be forthcoming. Meanwhile an offer of a position arrived from the
Dukedom of Hanover, one of the multitude of principalities that made
up seventeenth-century Germany. Although Duke Johann Friedrich had

*The symbol for integration [ is actually a modified “S” intending to suggest “sum”
and the symbol “d” is likewise intended to suggest the idea of “difference.”
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some genuine interest in intellectual matters, and the offer gave some
promise of financial security, Leibniz was not eager to live in Hanover.
After delaying as long as he could financially afford, Leibniz accepted the
offer early in 1675. In his letter of acceptance, he asked for the “free-
dom to pursue his own studies in arts and sciences for the benefit of
mankind.”® He left Paris in the fall of 1676, when it became clear that
no position in Paris would be forthcoming and that the Duke would accept
no further delay. Leibniz was to spend the rest of his life in the service of
the Dukes of Hanover.

HANOVER

Leibniz apparently understood perfectly well that despite his request for
“freedom to pursue his own studies in arts and sciences,” success in his
new position would require him to do things that his patron would find
useful and practical. He undertook to upgrade the ducal library and pro-
posed various ideas for improving public administration and agriculture.
Soon thereafter he began promoting his ill-fated project to use windmills
for improving the Harz Mountain mining operations. In 1680, only a year
after the Harz project with Leibniz in charge had finally been approved,
his position was endangered by the duke’s sudden death.

It now became necessary to convince the new duke, Ernst August, to
continue Leibniz’s position and to support the Harz Mountain project.
The new duke was a “practical” man. Unlike his predecessors, he wasn't
willing to spend much on the library. Leibniz soon learned not to involve
Ernst August in scholarly discussions. To help cement his position, he of-
fered to write a short history of the duke’s family. Five years later, when the
duke finally closed down the Harz project, Leibniz proposed a more elab-
orate version of the family history: if a few gaps were filled, the family tree
could be traced back to the year 600. The duke evidently regarded this as
a most appropriate way to employ one of the greatest thinkers of all time,
nor did he stint. To pursue this effort, Leibniz received a regular salary, a
personal secretary, and travel funds for searching out genealogical infor-
mation. Most likely, the optimistic Leibniz hardly imagined that he would
find himself chained to genealogy for the remaining three decades of his
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life. (Georg Ludwig, who succeeded Ernst August on his death in 1698,
was especially adamant in nagging Leibniz to complete the family history.)

If Leibniz had any pupils in Hanover, they were women, for he shared
none of the common prejudices concerning the intellectual capabilities
of the female sex. Duchess Sophie, the talented wife of Ernst August,
and Leibniz had frequent conversations about philosophical matters and
carried on an extensive correspondence when Leibniz was away from
Hanover. She made sure also that her daughter Sophie Charlotte, who
was to become Queen of Prussia, also had the benefit of Leibniz’s teach-
ings. Sophie Charlotte, not content simply to receive Leibniz's wisdom,
energetically raised questions that helped Leibniz to clarify his ideas. As
the contemporary Leibniz scholar Benson Mates explains:

For most of Leibniz’s life, these women were his principal advocates at
the courts in Hanover and Berlin. Sophie Charlotte’s sudden death in
1705 devastated him; it was such an obvious loss to him that he even
received formal expressions of sympathy from the emissaries of foreign
governments; and when Duchess Sophie ... died in 1714, his ability to
obtain support for anything other than continuing the Brunswick history

came to an end.?

The history project did provide Leibniz with an excuse to travel, and
he made use of this freedom to an extent that vexed his noble patrons.
Of course Leibniz took full advantage of the possibilities of developing
and maintaining scholarly contacts. In Berlin he even was able to found
a Society of Science, later institutionalized as an academy. His extensive
correspondence continued to span the full variety of his interests. Leibniz
seemed never to tire of explaining that, since God had done as well as was
possible in creating the world, there must be a pre-established harmony be-
tween what existed and what was possible and that there was a sufficient
reason (whether or not we could find it) for every single thing in the world.
In the realm of diplomacy, Leibniz had two pet projects: to reunite the
various branches of the Christian church; and to obtain for the Dukes of
Hanover the succession to the British throne. But when Georg Ludwig

actually did become George I of England only two years before Leibniz’s
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death in 1716, he brusquely rejected his employee’s request for permis-
sion to leave the Hanovarian backwater for London with his patron, or-

dering him to hurry up and finish the family history.

THE UNIVERSAL CHARACTERISTIC

But what of the wonderful idea of Leibniz’s youth, his grand dream to
find a true alphabet of human thought and the appropriate calculational
tools for manipulating these symbols? Although he had resigned himself
to the fact that unaided he could never accomplish such a thing, he never
lost sight of this goal, thinking and writing about it throughout his life.
It was clear to him that the special characters used in arithmetic and
algebra, the symbols used in chemistry and astronomy, and the symbols
he himself had introduced for the differential and integral calculus, all
provided a paradigm showing how crucial a truly appropriate symbolism
could be. Leibniz referred to such a system of characters as a characteris-
tic. Unlike the alphabetic symbols which had no meaning, the examples
just mentioned were, for him, a real characteristic in which each symbol
represented some definite idea in a natural and appropriate way. What
was needed, Leibniz maintained, was a universal characteristic, a system
of symbols that was not only real, but which also encompassed the full
scope of human thought.

In a letter explaining this to the mathematician G. F. A. L'Hospital,
Leibniz wrote: “Part of the secret of” algebra “consists of the character-
istic, that is to say of the art of properly using” the symbolic expressions.
This care for proper use of symbols was to be the “thread of Ariadne” that
would guide the scholar in creating his characteristic.

As the early twentieth century logician and Leibniz scholar Louis

Couturat explained:

It is algebraic notation that incarnates, so to speak, the ideal of the char-
acteristic and which is to serve as a model. It is also the example of algebra
that Leibniz cites consistently to show how a system of properly chosen

symbols is useful and indeed indispensible for deductive thought.'®
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Perhaps the most enthusiastic explanation of his proposed characteristic
appears in his letter to Jean Galloys, with whom Leibniz had extensive

correspondence:

Iam convinced more and more of the utility and reality of this general sci-
ence, and [ see that very few people have understood its extent. ... This
characteristic consists of a certain script or language . . . that perfectly rep-
resents the relationships between our thoughts. The characters would be
quite different from what has been imagined up to now. Because one has
forgotten the principle that the characters of this script should serve in-
vention and judgement as in algebra and arithmetic. This script will have
great advantages; among others, there is one that seems particularly im-
portant to me. This is that it will be impossible to write, using these char-
acters, chimerical notions (chiméres) such as suggest themselves to us. An
ignoramus will not be able to use it, or, in striving to do so, he himself will

become erudite.!!

In the letter just quoted, Leibniz refers to arithmetic as well as algebra as
showing the importance of an appropriate symbolism. He had in mind in
particular the advantage of the Arabic system of notation that we still use
today, based on the digits 0 to 9, over previous systems (like the Roman
numerals) for ordinary calculation. When Leibniz discovered binary no-
tation, in which any number can be written using only the digits 0 and 1,
he was particularly impressed by the simplicity of this system. He believed
that it would be useful in laying bare properties of numbers that otherwise
would be hidden. Although this belief turned out to be unjustifed, this in-
terest on Leibniz’s part is remarkable in the light of the importance of this
binary notation in connection with modern computers.

Leibniz saw his grand program as consisting of three major compo-
nents. First, before the appropriate symbols could be selected, it would
be necessary to create a compendium or encyclopedia encompassing the
full extent of human knowledge. He maintained that once having accom-
plished this, it should prove feasible to select the key underlying notions
and to provide appropriate symbols for each of them. Finally, the rules of

deduction could then be reduced to manipulations of these symbols, that
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is to what Leibniz called a calculus ratiocinator, what nowadays might
be called a symbolic logic. To a present-day reader, it is hardly surprising
that Leibniz did not feel able to accomplish such a program on his own,
especially given the constant pressure he was under to produce the fam-
ily history that his patron regarded as his principal task. But even more,
nowadays it is difficult to understand how Leibniz could have seriously
believed that the universe we inhabit, in all of its complexity, could be
reduced to a single symbolic calculus.

We can only hope to begin to comprehend the matter by attempting
to see the world through the eyes of Leibniz. For him nothing, absolutely
nothing, about the world was in any way undetermined or accidental; ev-
erything followed a plan, clear in the mind of God, by means of which
He had created the best world that could be created. Hence, all aspects
of the world, natural and supernatural, were connected by links one could
hope to discover by rational means. Only from this perspective can we un-
derstand how, in a famous passage, Leibniz could write of serious “men of
good will” sitting around a table to solve some critical problem. After writ-
ing out the problem in Leibniz’s projected language, his universal charac-
teristic, it would be time to say “Let us calculate!” Out would come the
pens and a solution would be found whose correctness would necessarily
be accepted by all.!?

Leibniz wrote with enthusiasm about the importance of producing
the calculus ratiocinator, the algebra of logic, that would presumably be

needed to carry out these calculations:

For if praise is given to the men who have determined the number of
regular solids—which is of no use, except insofar as it is pleasant to
contemplate—and if it is thought to be an exercise worthy of a mathe-
matical genius to have brought to light the more elegant properties of a
conchoid or cissoid, or some other figure which rarely has any use, how
much better will it be to bring under mathematical laws human reasoning,

which is the most excellent and useful thing we have. '3

Unlike the universal characteristic concerning which Leibniz wrote
with such passion and conviction, but produced little in the way of
specifics, he did make a number of attempts to produce a calculus ra-
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DEFINITION 3. Aisin L, or L contains A, is the same as to say that L can
be made to coincide with a plurality of terms taken together of which A is
one. B&N = L signifies that B is in L and that B and N together compose

or constitute L. The same thing holds for a larger number of terms.
AXIOM 1.B@&N=N@®B.

POSTULATE. Any plurality of terms, as A and B, can be added to compose
a single term A & B.

AXIOM 2. A®A = A.

PROPOSITION 5. IfAisin Band A = C, then C is in B.

For in the proposition A is in B the substitution of A for B gives C is in B.
PROPOSITION 6. If C isin B and A = B, then Cisin A.

For in the proposition C is in B the substitution of A for B gives C is in A.
PROPOSITION 7. A is in A,

For A is in A @ A (by Definition 3). Therefore (by Proposition 6) A is
inA.

PROPOSITION 20 If Aisin Mand Bisin N, then A @ Bisin M ® N.

SAMPLE FROM ONE GOF LEIBNIZ’S

LocicAL CALCULI

tiocinator. Part of his most polished effort in this direction is shown in the
accompanying illustration.!* A good century and a half ahead of his time,
Leibniz proposed an algebra of logic, an algebra that would specify the
rules for manipulating logical concepts in the manner that ordinary alge-
bra specifies the rules for manipulating numbers. He introduced a special
new symbol @ to represent the combining of quite arbitrary pluralities of
terms. The idea was something like the combining of two collections of
things into a single collection containing all of the items in either one.
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The plus sign encourages us to think of this operation as being like ordi-
nary addition, but the circle around it warns us that it is not exactly like
ordinary addition because it is not numbers being added. Some of his
algebraic rules are also found in high school algebra textbooks: to some
extent the same rules work for logical concepts as for numbers. But there’s
more to the story. There are also rules that are very different from those
for numbers. The most striking rule of this latter kind, one that in a some-
what different context George Boole was to make the cornerstone of his
algebra of logic, is Leibniz’s Axiom 2, A @ A = A, which expresses the
fact that combining a plurality of terms with itself will yield nothing new:
evidently, combining all the things belonging to a given collection with
that same collection of things will just produce that same collection, all
over again. Of course addition of numbers is quite different: 2 +2 = 4,
not 2.

In the next chapter, we will see how George Boole, presumably igno-
rant of Leibniz’s efforts, produced a serviceable symbolic logic along the
lines that Leibniz had pioneered. Boole’s logic subsumed the logic Aris-
totle had introduced two thousand years earlier, but it was only with the
work of Gottlob Frege well into the nineteenth century that the serious
limitations shared by the logical systems of Aristotle and of Boole were
really overcome.!”

Despite Leibniz’s voluminous correspondence, we have little idea of
what he was like as a person. One biographer claims to see in the few
portraits of Leibniz we possess the image of a tired, unhappy, pessimistic
man, in contradiction to his optimistic philosophy.!® Others have re-
marked that he liked to give cakes to his neighbors’ children. Apparently,
he proposed marriage when he was fifty, but thought better of it when the
lady hesitated.!” We have the picture of Leibniz spending long days and
often entire nights seated at his desk managing his enormous correspon-
dence with remarkable punctuality, his meals brought to him from an inn
by his servants. What is clear is that he was indefatigable in his work.*

*In part, this picture comes from the biography (see [Huber] in References) which
was completed by Professor Kurt Huber in prison while awaiting execution by the
Nazis. He had supported the efforts of his students at the University of Munich who
had formed the “White Rose” underground group and who were decapitated for dis-
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What if Leibniz had not been shackled to his patrons” family history
and been free to devote more time to his calculus rationcinator? Might
he not have accomplished what Boole was only to do so much later? But
of course, such speculation is useless. What Leibniz has left us is his
dream, but even this dream can fill us with admiration for the power
of human speculative thought and serve as a yardstick for judging later

developments.

tributing anti-Nazi leaflets. There is now a Professor Huber Platz at the University
of Munich. (I am indebted to Benson Mates for this information about Professor
Huber’s heroic role.)
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GEORGE BoOoaoLE'’'s HARD LIFE

The beautiful and intelligent Princess Caroline von Ansbach, one day to
be Queen of England as the wife of George 1I, met Leibniz in Berlin in
1704 when she was eighteen. After she went to England with the court,
their friendship continued by correspondence. She tried to persuade her
father-in-law, George I of England, to bring Leibniz to England, but as we
have seen, the king insisted that Leibniz remain in Germany to complete
the Hanovarian family history.

Caroline found herself entangled in the foolish continuing dispute
between Leibniz and Newton and his followers, each side accusing the
other of plagiarism over the invention of the calculus. She tried to con-
vince Leibniz that the issue was of no great importance, but he was having
none of it. Indeed, Leibniz sought her support before the king for his de-
sire to be appointed Historiographer of England so as to match Newton’s
position as Master of the Mint, asserting that only in this way could the
honor of Germany vis-a-vis England be maintained. Leibniz wrote Car-
oline that when Newton held that a grain of sand exerted a gravitational
force on the distant sun without any evident means by which such a force
could be transmitted, he was in effect calling on miraculous means to ex-
plain a natural phenomenon, something he assured her was inadmissable.
For her part, Caroline tried to get some of Leibniz’s writings translated
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into English. This effort brought her into contact with Samuel Clarke,
who had been recommended to her as a possible translator.

Clarke was a philosopher and theologian and also a convinced disciple
of Newton. In his Being and Attributes of God (1704) Clarke had devel-
oped a proof of the existence of God. Caroline showed him a letter from
Leibniz attacking certain of Newton’s ideas and asked him to reply. This
initiated a correspondence between the two men that continued until just
a few days before Leibniz's death. Not surprisingly, there was no meeting
of minds. From the point of view of our story, the most interesting fact
about Samuel Clarke is that almost a century and a half after Leibniz’s
death, George Boole would demonstrate the efficacy of his own methods
by using Clarke’s proof of the existence of God as an example. In effect,
with these methods, Boole had so far succeeded in bringing to life part of
Leibniz’s dream that Clarke’s complicated deduction could be reduced to
a simple set of equations. !

In proceeding from the world of Leibniz and the seventeenth century
European nobility to that of George Boole, we move forward not only two
centuries in time but also down several layers of social class. George, the
first of four children, was born on November 2, 1815, in the town of Lin-
coln in the eastern part of England to John and Mary Boole, who had been
childless for the first nine years of their marriage. John Boole, a cobbler
who eked out a meager living from his trade, had a passion for learning
and especially for scientific instruments. In his shop window he proudly
displayed a telescope he had made. Unfortunately, he was not an effective
businessman, and his talented, conscientious son soon found himself car-
rying the burden of supporting the whole family.

In June 1830, the citizens of Lincoln were treated to a silly controversy
in a local newspaper over the originality of an English translation of one
of the poems of the ancient Greek writer Meleager. The translation had
appeared in the Lincoln Herald as the work of “G. B. of Lincoln, aged 14
years,” and one P. W. B. took the trouble to write accusing G. B. of pla-
giarism. P. W. B. admitted that he was unable to provide a reference to
the source from which he was accusing G. B. of copying, but regarded
it as simply beyond belief that the work could have been produced by a
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GEORGE BOOLE
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fourteen year old. The battle led to an exchange of several letters between
G. B. and P. W. B,, all duly published in the Herald.

George Boole’s family, who early recognized his ability, were far too poor
to furnish him with a proper formal education, and so, with the important
help of his father, George was mainly self-taught. Boole studied not only
Latin and Greek but also French and German and was able (much later,
of course) to write mathematical research papers in these languages. He
never belonged to any particular religious denomination and found it im-
possible to believe in the divinity of Christ, but throughout his life he held
strong religious convictions. He soon abandoned his original ambition to
join the clergy of the Church of England, in part because of his beliefs, but
crucially because of his family’s need for immediate financial help when
his father’s business collapsed. George was not yet sixteen when he be-
gan his career as a teacher at a small Methodist school some forty miles
from home. After two years, he was fired, apparently owing to complaints
about his irreligious behavior: he worked on mathematics on Sundays, and
even in chapel! Indeed, it was at this time that Boole’s efforts turned more
and more to mathematics. In later years, reminiscing about this period in
his life, he explainined that having a very limited budget for buying books,
he found that mathematics books provided the best value because it took
longer to work through them than books on other subjects. He also liked
to speak of the inspiration that suddenly came to him during his stay at
the Methodist school. While walking across a field, the thought flashed
across his mind that it should be possible to express logical relationships
in algebraic form. This experience, which a biographer compares to that
of Paul on the road to Damascus, was to bear fruit only many years later.3

After the Methodist school, Boole took a position in Liverpool. But
after six months of living and teaching there, he felt compelled to leave
because of (in the words of his sister) “the spectacle of gross appetites and
passions unrestrainedly indulged,” presumably by the school headmas-
ter.* His next job was also of brief duration. Then at age nineteen George
Boole decided to start his own school in his hometown of Lincoln to put
his family’s finances on a sound basis. For fifteen years, until accepting a
professorship at a newly founded university at Cork, Ireland, Boole man-

aged a successful career as a schoolmaster. His schools (there were three
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in succession) were the sole support of his parents and siblings, although
eventually his sister Mary Ann and brother William assisted him.
Although running a day and boarding school and teaching numerous
classes might be thought to be a full-time job, Boole managed during this
period to make the transition from student of mathematics to creative
mathematician. In addition, he somehow found time for activities of so-
cial improvement. He was a founder and trustee of a female penitent’s
home in Lincoln whose purpose was “to provide a temporary home in
which, by moral and religious instruction and the formation of indus-
trious habits, females, who have deviated from the paths of virtue, may
be restored to a reputable place in society.” Boole’s biographer speaks of
prostitutes (who were evidently numerous in Victorian Lincoln) as the
penitent women who were to be helped by this institution.> More likely,
the typical client was a young women of the servant class who found her-
self pregnant and abandoned after having been promised marriage by a
lover of her own social class.* Some insight into George Boole’s personal
attitudes toward sexual matters may perhaps be gleaned from what he
said in two of his lectures on nonmathematical subjects. In one, a lecture

on education, he warned:

A very large proportion of the extant literature of Greece and Rome . . . is
deeply stained with allusions and all too often with more than allusions
to the vices of Heathenism. ... But that the innocence of youth can be

exposed to the contamination of evil without danger I do not believe.®

And a lecture on the proper uses of leisure (given after a successful cam-
paign by the Lincoln Early Closing Association to obtain a ten-hour work-

ing day) included Boole’s stern words:

If you seek gratification in those pursuits from which virtue turns aside,

you do so without excuse.”

*The study [Barret-Ducrocq] of a similar institution in London recounts many such
tales of woe.
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Boole, following in his father’s footsteps, was also deeply involved with
the Lincoln Mechanics’ Institute. These mechanics’ institutes, mainly de-
voted to after-hours education for artisans and other workers, had sprung
up all over Victorian Britain. Boole did committee work for the one in Lin-
coln, made recommendations for improving the library, gave lectures, and
provided teaching on a variety of subjects without remuneration.

Yet somehow, amidst all of this, he found time to study some of the most
important English and continental mathematical treatises and to begin
making his own contributions. Much of Boole’s early work bears witness
to Leibniz’s belief in the power of appropriate mathematical symbolism, of
the manner in which the symbols seem to magically produce correct an-
swers to problems almost unaided. Leibniz had pointed to the example of
algebra. In England, as Boole began his own work, it was coming to be re-
alized that the power of algebra comes from the fact that the symbols rep-
resenting quantities and operations obeyed a small number of basic rules
or laws. This implied that this same power could be applied to objects and
operations of the most varied kind so long as they obeyed some of these
same laws

In Boole’s early work, he applied algebraic methods to the objects that
mathematicians call operators. These “operate” on expressions of ordinary
algebra to form new expressions. Boole was particularly interested in dif-
ferential operators, so called because they involve the differentiation oper-
ation of the calculus mentioned in the previous chapter.” These operators
were seen to be of particular importance because many of the fundamen-
tal laws of the physical universe take the form of differential equations,
that is, equations involving differential operators. Boole showed how cer-
tain differential equations could be solved by using methods of ordinary al-
gebra applied to differential operators. Engineering and science students
typically learn some of these methods nowadays in their sophomore or ju-
nior year in a course in differential equations.

During his years as a schoolmaster, Boole published a dozen research
papers in the Cambridge Mathematical Journal. In addition, he submitted
a very long paper to the Philosophical Transactions of the Royal Society. At
first the Royal Society was loathe to consider a submission from such an
outsider but finally they decided to accept it, later awarding it their gold
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medal.!® Boole’s method was to introduce a technique and then to apply
it to a number of examples. He generally asked for no more in the way of
proof that his methods were correct than that his examples worked out.!!

At this time, Boole developed professional correspondences and friend-
ships with a number of England’s leading young mathematicians. And,
in fact, it was a quarrel between the Scottish philosopher Sir William
Hamilton and Boole’s friend Augustus De Morgan that brought Boole’s
thoughts back to his long ago flash of insight that logical relationships
might be expressible as a kind of algebra. Although Hamilton was an eru-
dite scholar in aspects of metaphysics, he seems to have been something
of a quarrelsome fool. Out of what can only have been his colossal ig-
norance of the subject, he published diatribes against mathematics as a
subject. What had set him off was De Morgan’s publication on logic that
Hamilton claimed plagiarized what he thought of as his own great discov-
ery in logic, what he called the “quantification of the predicate.” We need
waste no time trying to understand this idea or the fierce controversy it
generated—it is of importance only because of the stimulus it provided
to George Boole.!?

The classical logic of Aristotle that had so fascinated the young Leibniz

involved sentences like
1. All plants are alive.
2. No hippopotamus is intelligent.
3. Some people speak English.

Boole came to realize that what is significant in logical reasoning about
such words as “alive,” “hippopotamus,” or “people” is the class or collec-
tion of all individuals described by the word in question: the class of liv-
ing things, the class of hippopotomuses, the class of people. Moreover, he
came to see how this kind of reasoning can be expressed in terms of an al-
gebra of such classes. Boole used letters to represent classes just as letters
had previously been used to represent numbers or operators. If the letters
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x and y stand for two particular classes, then Boole wrote xy for the class
of things that are both in x and in y. As Boole himself put it:

... If an adjective, as “good,” is employed as a term of description, let us
represent by a letter, as y, all things to which the description “good” is ap-
plicable, i.e., “all good things,” or the class “good things.” Let it further
be agreed, that by the combination xy shall be represented that class of
things to which the names or descriptions represented by x and y are si-
multaneously applicable. Thus, if x alone stands for “white things,” and y
for “sheep,” let xy stand for “white sheep;” and in like manner, if z stands

for “horned things,” . . . let zxy represent “horned white sheep.”!3

Boole thought of this operation applied to classes as being in some ways
like the operation of multiplication applied to numbers. However, he no-
ticed a crucial difference: If once again y is the class of sheep, what is yy?
It must be the class of things that are sheep and are also . . . sheep. But this
is the very same thing as the class of sheep; soyy = y. It is only a small
exaggeration to say that Boole based his entire system of logic on the fact
that when x stands for a class, the equation xx = x is always true. We will
return to this point later.”

George Boole was thirty-two when his first revolutionary monograph on
logic as a form of mathematics was published. His more polished exposi-
tion, The Laws of Thought, appeared seven years later. These were eventful
years in Boole’s life. Boole’s social class and unconventional education had
apparently ruled out his chances for an appointment at an English uni-
versity. Strangely, it was the Irish “problem” that gave Boole an opening.
Among the many bitter complaints in Ireland concerning English rule was
the Protestant character of their only university, Trinity College in Dublin.
In response it was proposed by the British government to found three new
universities to be called Queen’s Colleges in Cork, Belfast, and Galway.
Remarkably for the time, they would be nondenominational. Despite de-

nunciations by Irish political and religious figures, who demanded insti-

*Boole’s equation xx = x can be compared to Leibniz's A®A = A. In both cases, an
operation that is intended to be applied to pairs of items, when applied to an item
and itself, yields that very same item as a result.
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tutions of a definitely Catholic character, the plans moved forward. Boole
decided to apply for an appointment at one of these universities, and fi-
nally three years later, in 1849, he was appointed Professor of Mathemat-
ics at Queen’s College in Cork.

By 1849, Ireland had come through the worst of the disaster of famine
and disease brought by the potato blight, a devastating fungus that de-
stroyed most of the potato crops on which the Irish poor depended. Many
of those who did not starve to death were killed by the epidemics of ty-
phus, dysentery, cholera, and relapsing fever to which their weakened im-
mune systems had laid them open. The English rulers, slow to recognize
the fungus as the underlying cause of the catastrophe, instead blamed the
supposed indolence of the Irish. This social analysis was used to justify the
continuing export of food from Ireland while millions went hungry and
starved. Between 1845 and 1852, out of eight million Irish, at least a mil-
lion died and another one-and-a-half million emigrated.!*

Boole had little if anything to say about this: his strong expressions
of indignation centered on cruelty to animals. Indeed, his attitude to
the Irish people was rather equivocal as emerges from these lines from
a sonnet to Ireland Boole wrote just as the college in Cork was being

inaugurated:

Yet thou in wisdom still art young, though old
In misery and tears. Oh that thy store
Of bitter thoughts, which brood upon the past,

Were from thy bosom quite erased and worn.!®

Although Cork was certainly no major intellectual or cultural center,
the position provided Boole with the possibility of a life far more appro-
priate to his stature as one of the great mathematicians of the century.
His father had recently died and, after making suitable provision for his
mother, he was finally freed from the burden of being the family provider
and could think of having a personal life. The mathematics taught at Cork
was at a rather low level for a university. The syllabus began with “Frac-
tional and Decimal Arithmetic” and continued with topics taught today in

secondary school. Boole’s annual salary was £250 in addition to a direct
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tuition fee of about £2 per term from each student. Since he had no assis-
tant, he did all the grading of the weekly homework assignments himself.

Controversy over the Queen’s Colleges continued. Although Cork’s
president was the distinguished Catholic scientist Sir Robert Kane, Cath-
olics were certainly under-represented: of the academic staff of twenty-
one, only one other was Catholic. The Catholic church hierarchy had
actually gone so far as to forbid members of the clergy from participating
in the work of the colleges. Some felt that Irish candidates for positions
were deliberately passed over for relatively mediocre Englishmen or Scots.
Nor did President Kane endear himself to his faculty. His wife had no wish
to live in Cork, and so the president tried to run the college from Dublin.
This, combined with his arbitrary pugnacious manner, led to one fight af-
ter another between the president and the faculty, sterile battles in which
Boole usually found himself involved.'®

Mary Everest, Boole’s wife-to-be, later recounted some of her first im-
pressions of the attitudes of some of the residents of Cork toward the man
she would marry. One lady’s answer to the question “What is the Profes-
sor of Mathematics like?” was “Oh he’s like—the sort of man to trust your
daughter with.” Another lady explained the absence of her young children
by informing Miss Everest that George Boole had taken them for a walk
and that she was always happy when he had them. To the reply that Boole
seemed to be a general favorite, the lady demurred:

He is no favorite of mine, . . . at least, [ don't enjoy his society. I don't care
to be with such very good people. . .. he never shows you that he thinks
you wicked, but when you are near anyone so pure and holy, you can’t help
feeling how shocked he must be at you. He makes me feel very wicked;
but I am always at ease when the children are with him; [ know they are
getting some good.!”

Mary Everest was the daughter of an eccentric clergyman and a niece
of Lieutenant-Colonel Sir George Everest, whose name was given to the
world’s tallest mountain. She was also a niece of Boole’s friend and col-
league John Ryall, vice-president and professor of Greek at Cork, who in-
troduced George and Mary. As a child Mary had displayed an aptitude for
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mathematics and after George began to tutor her, they grew to be good
friends and frequent letter writers. It seems that Boole believed that their
seventeen-year age difference precluded anything more, but five years af-
ter their first meeting matters came to a head with the death of Mary’s
father. As Mary was apparently left financially impoverished, George pro-
posed at once, and they were married before the year was out.

Their marriage lasted a mere nine years, for Boole died at the age of
only forty-nine, after walking three miles to class in a cold October rain-
storm. The ensuing bronchitis soon became pneumonia, and he died two
weeks later. Tragically, his death may have been hastened by his wife’s
crank medical views—apparently she treated his pneumonia by placing
him between cold, soaking bed sheets.!®

The marriage had evidently been a very happy one.!” Mary Boole re-
called it as being “like the remembrance of a sunny dream.” Boole’s widow
lived well into our century, dying at the age of eighty-four while World War
I raged across the channel. She became attached to various systems of
mystical belief and wrote a great deal of nonsense. Their five children, all
girls, had interesting lives. The third daughter, Alicia, possessed a very re-
markable geometric ability: she was able to visualize clearly geometric ob-
jects in four dimensions. This enabled her to make a number of important
mathematical discoveries. However, the youngest daughter, Ethel Lilian,
was the most astonishing. She was only six months old when her father
died and she remembered her childhood as one of terrible poverty. Lily, as
she was called, became involved with the circle of Russian revolutionary
emigrés that had made London their home during the late nineteenth cen-
tury. While on a trip to the Russian empire (which at that time included
much of Poland) to help her revolutionary friends, she was seen by her
future husband, Wilfred Voynich, from his prison cell, as she stared up at
the Warsaw Citadel. Voynich recognized her years later after he had made
his escape to London. This romantic beginning led to their marriage.

Lily became famous later as the author of The Gadfly, a novel inspired
by her short but passionate love affair with the man who became known
as Sidney Riley and whose incredible life formed the basis for a television
miniseries called Riley: Ace of Spies. With irony piled upon irony, Riley, a
fervent anticommunist, was executed in Russia by the Bolsheviks, while
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his lover’s novel, its true inspiration unknown, became required reading
for Russian schoolchildren. In 1955 Pravda reported to its Moscow read-
ers that the author of The Gadfly was alive and well in New York, and she
received from Russia a royalty check for $15,000. She died five years later

at the age of ninety-six.2

GEORGE BDOLE’S ALGEBRA DF LDGIC

Returning to Boole’s new algebra applied to logic, we recall that if x and y
represent two classes, then Boole would write xy to stand for the class of
those things that belong to both x and y and that he intended the notation
to suggest an analogy with multiplication in ordinary algebra. In contem-
porary terminology, xy is called the intersection of x and y.2! We also saw
that the equation xx = x is always true when x represents a class. This led
Boole to ask the question: In ordinary algebra, where x stands for a number,
when is the equation xx = x true? The answer is straightforward: the equa-
tion is true when x is 0 or 1 and for no other numbers. This led Boole to
the principle that the algebra of logic was precisely what ordinary algebra
would become if it were restricted to the two values 0 and 1. However, to
make sense of this, it became necessary to reinterpret the symbols 0 and
1 as classes. A clue is provided by the behavior of 0 and 1, respectively,
with respect to ordinary multiplication: 0 times any number is 0; 1 times
any number is that very number. In symbols,

Now for classes, Ox will be identical to 0 for every x, if we interpret 0 to
be a class to which nothing belongs; in modern terminology, 0 is the empty
set. Likewise, 1x will be identical to x for every x, if 1 contains every object
under consideration, or, as we may say, 1 is the universe of discourse.
Ordinary algebra deals with addition and subtraction as well as multi-
plication. Thus, if Boole was to present the algebra of logic as just ordinary
algebra with the special rule xx = x, he had to provide an interpretation

for + and —. So, if x and y represent two classes, Boole took x+y to repre-
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sent the class of all things to be found either in x or in y, nowadays called
the union of x and y. Thus, to use Boole’s own example, if x is the class
of men and y is the class of women, then x + y is the class consisting of
all men and women. Also, Boole wrote x — y for the class of things in x
that are not in y.22 If x represents the class of all people and y represents
the class of all children, then x —y would represent the class of adults. In
particular, 1 — x would be the class of things not in x, so that

x4+ (1l —x)=1.

Let us see how Boole’s algebra works. Using ordinary algebraic nota-
tion, let us write x? for xx. So Boole’s basic rule can be written as x* = x
or x — x2 = 0. Factoring this equation by following the usual rules of al-

gebra,
x(l —x) = 0.

In words: Nothing can both belong and fail to belong to a given class x. For
Boole, this was an exciting result, helping to convince him that he was on
the right track. For as he said, quoting Aristotle’s Metaphysics, this equa-

tion expresses precisely

... that “principle of contradiction” which Aristotle has described as the
fundamental axiom of all philosophy. “It is impossible that the same qual-
ity should both belong and not belong to the same thing. .. This is the
most certain of all principles . .. Wherefore they who demonstrate refer to
this as an ultimate opinion. For it is by nature the source of all the other

axioms.”23

Boole must have been delighted to obtain confirmation such as every
scientist seeks when introducing new and general ideas: to see an im-
portant earlier landmark turn out to be a mere particular application of
the new ideas, in this case Aristotle’s principle of contradiction. In fact
in Boole’s time, it was common for writers on logic to equate the entire
subject with what Aristotle had done so many centuries earlier. As Boole



34 THE UNIVERSAL COMPUTER

put it, this was to maintain that “the science of Logic enjoys an immunity
from those conditions of imperfection and of progress to which all other
sciences are subject.” The part of logic that Aristotle studied deals with in-
ferences, called syllogisms, of a very special and restricted kind. They are
inferences from a pair of propositions called premises to another proposi-
tion, called the conclusion. The premises and conclusions must be repre-
sentable by sentences of one of the following four types:

Sentence type Example
All X are Y. All horses are animals.
No X are Y. No trees are animals.
Some X are Y. Some horses are pure-bred.
Some X are not Y. Some horses are not pure-bred.

The following is an example of a valid syllogism:

AllX are Y
AllY are Z
All X are Z

That this syllogism is valid means that whatever properties are substituted
for X, Y, and Z, so long as the given two premises are true, the conclusion
will be as well. Here are two instances of this syllogism:

All horses are mammals. All boojums are snarks.
All mammals are vertebrates. All snarks are purple.
All horses are vertebrates. All boojums are purple.

Boole’s algebraic methods can easily be used to demonstrate that this
syllogism is valid. To say that everything in X also belongs to Y is the
same as to say that there is nothing that belongs to X but not to Y, that is,
X(1 —Y) = 0 or equivalently X = XY. Likewise, the second premise can
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be written Y = YZ. Using these equations we get

X=XY=X(YZ) = (XY)Z=XZ,

the desired conclusion.?*
Of course, not every proposed syllogism is valid. An example of an in-
valid syllogism can be obtained by interchanging the second premise with

the conclusion in the previous example:

All X areY
All X are Z
All Y are Z

This time there is no way to use the premises X = XY and X = YZ to
obtain the supposed conclusion Y = YZ.

In retrospect, it is difficult to understand the widespread belief that
syllogistic reasoning constituted the whole of logic, and Boole was quite
scathing in his denunciation of this idea. He pointed out that much or-
dinary reasoning involves what he called secondary propositions, that is,
propositions that express relations between other propositions. Such rea-
soning is not syllogistic.

For a simple example of such reasoning, let us listen in on a coversation
between Joe and Susan. Joe can't find his checkbook and Susan is helping

him.

SUSAN: Did you leave it in the supermarket when you were shopping?

JOE: No, I telephoned them, and they didn't find it. If T had left it there,
they surely would have found it.

SUSAN: Wait a minute! You wrote a check at the restaurant last night
and I saw you put your checkbook in your jacket pocket. If you haven't

used it since, it must still be there.

JOE: You're right. I haven't used it. It’s in my jacket pocket.
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Joe looks and (if it’s a good day for logic), the missing checkbook is there.
Let us see how Boole’s algebra could be used to analyze Joe and Susan’s
reasoning.

In their reasoning, Joe and Susan were dealing with the following
propositions (each labeled with a letter):

L = Joe left his checkbook at the supermarket,

F = Joe's checkbook was found at the supermarket,

W = Joe wrote a check at the restaurant last night,

P = After writing the check last night, Joe put his checkbook in his
jacket pocket,

H = Joe hasn'’t used his checkbook since last night,

S = Joe’s checkbook is still in his jacket pocket.
They used the following pattern:

PREMISES:
If L, then F.
Not F.
W & P.
If W & P & H, then S.
H.

CONCLUSIONS:
Not L.
S.
Like Aristotle’s syllogisms, this pattern forms a valid inference. As with

any valid inference, the truth of sentences called conclusions is inferred
from the truth of other sentences called premises.
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Boole saw that the same algebra that worked for classes would also
work for inferences of this kind.?> He used an equation like X = 1 to
mean that the proposition X is true; likewise he used the equation X = 0 to
mean that X is false. Thus, for “Not X,” he could write the equation X = 0.
Also, for “X & Y” he wrote the equation XY = 1. This works because X & Y
is true precisely when X and Y are both true, while algebraically, XY = 1
if X=Y =1, but XY = 0 if either X = O or Y = O (or both).

Finally, the statement “If X, then Y” can be represented by the equation

X1-Y)=0.
To see this, think of this statement as asserting that
if X=1,then Y = 1.
But indeed, substituting X = 1 in the proposed equation leads to 1 -Y =

0, thatis, toY = 1.
Using these ideas, Joe and Susan’s premises can be expressed by the

equations
L(1-F)=0,
F=0,
WP =1,
WPH(1 - S) =0,
H=1

Substituting the second equation in the first, we get L = 0, the first de-
sired conclusion. Substituting the third and fifth equations in the fourth,
we get 1 —S =0, thatis, S = 1, the other desired conclusion.

Now of course, Joe and Susan had no need for this algebra. But the
fact that the kind of reasoning that takes place informally and implicitly
in ordinary human interactions could be captured by Boole’s algebra en-
couraged the hope that more complicated reasoning could be captured
as well. Mathematics may be thought of as systematically encapsulating
highly complex logical inferences, so an ultimate test of a theory of logic
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that aims at completeness is whether it encompasses all mathematical
reasoning. We will return to this matter in the next chapter.

As a final example of Boole’s methods, we turn to Samuel Clarke’s proof
of the existence of God mentioned at the beginning of this chapter. With-
out trying to follow Clarke’s long complex deduction, it is at least amusing

to see how Boole proceeds. We quote a small fragment:2°

The premises are:—
1st. Something is.
2nd. If something is, either something always was, or the things that now
are have risen out of nothing.
3rd. If something is, either it exists in the necessity of its own nature, or
it exists by the will of another being.
4th. If it exists in the necessity of its own nature, something always was.
5th. If it exists by the will of another being, then the hypothesis that the
things which now are have risen out of nothing, is false.
We must now express symbolically the above propositions.
Let

x = Something is,

y = Something always was,

z = The things that now are have risen out of nothing,

p = It exists in the necessity of its own nature

(i.e., the something spoken of above),

q = It exists by the will of another being.

Boole then obtains from the premises the following equations:

1 —-x=0,

x{yz+ (1 —y)(1 —2)} =0,
x{pg + (1 —p)1-q)} =0,
p(1 =y =0,

gz = 0.
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One wonders what Clarke would have made of this reduction of his intri-
cate metaphysical reasoning to manipulations of simple equations. Likely,
as a disciple of Newton, he would have been pleased. On the other hand,
the pugnacious metaphysician Sir William Hamilton who hated mathe-

matics so very much must have been horrified.

BODODLE AND LEIBNIZ'’S DREAM

Boole’s system of logic included Aristotle’s and went far beyond it. But it
still fell far short of what was needed to fulfill Leibniz’s dream. Consider
the following sentence: All failing students are either stupid or lazy. One
might think of this sentence as being of the type

All X are Y.

However, this would require that the class of students being stupid or lazy
be treated as a unit and would not permit any reasoning that sought to
distinguish those who were failing because of stupidity from those who
were failing because of laziness. In the next chapter we'll see how Gottlob
Frege’s system of logic does include reasoning of this subtler kind.

It is quite straightforward to use Boole’s algebra as a system of rules
for calculating, and so we may say that, within its limits, it provided the
calculus ratiocinator Leibniz had sought. Leibniz's writings on these mat-
ters were in the form of letters and other unpublished documents, and it
was only late in the nineteenth century that a serious effort to gather and
publish these was undertaken. So there is no reasonable way that Boole
could have been aware of his predecessor’s efforts. Nevertheless it is inter-
esting to compare Boole’s full-blown system with Leibniz’s fragmentary at-
tempts. Leibniz’s fragment quoted in our first chapter included as its sec-
ond axiom A@A = A. Thus, the operation Leibniz considered was to obey
Boole’s fundamental rule: xx = x. Moreover, Leibniz proposed to present
his logic as a full-fledged deductive system in which all of the rules are de-
duced from a small set of axioms. This is in accord with modern practice

and shows Leibniz, in this respect, to have been ahead of Boole.
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George Boole’s great achievement was to demonstrate once and for all
that logical deduction could be developed as a branch of mathematics.
Although there had been some developments in logic after Aristotle’s pio-
neering work (notably by the stoics in Hellenistic times and by the twelfth-
century scholastics in Europe), Boole had found the subject essentially as
Aristotle left it two millennia earlier. Since Boole, mathematical logic has
been under uninterrupted development.*

*An international organization, the Association for Symbolic Logic, publishes two
quarterly journals and holds regular meetings for the dissemination of new research.
European logicians have their own annual meetings. New work on the relationships
between logic and computers is presented at the annual international Logic in Com-
puter Science and Computer Science Logic conferences.



CHAPTEHR T HREE

FREGE:
FROM BREAKTHROUGH
TO DESPAIR

In June 1902 a letter arrived in Jena, a medieval town later to be part
of Communist East Germany, addressed to fifty-three-year-old Gottlob
Frege from the young British philosopher Bertrand Russell. Although
Frege believed that he had made important and fundamental discoveries,
his work had been almost totally ignored. It must then have been with
some pleasure that he read, “I find myself in agreement with you in all
essentials . . . I find in your work discussions, distinctions, and definitions
that one seeks in vain in the work of other logicians.” But, the letter con-
tinued, “There is just one point where I have encountered a difficulty.”
Frege soon realized that this one “difficulty” seemed to lead to the col-
lapse of his life’s work. It cannot have helped too much that Russell went
on to write, “The exact treatment of logic in fundamental questions has
remained very much behind; in your works I find the best I know of our
time, and therefore I have permitted myself to express my deep respect
to you.”

Frege replied at once to Russell acknowledging the problem. The sec-
ond volume of his treatise in which he had applied his logical methods
to the foundations of arithmetic was already at the printer, and he hastily
added an appendix beginning with the words, “There is nothing worse that
can happen to a scientist than to have the foundation collapse just as the
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work is finished. I have been placed in this position by a letter from Mr.
Bertrand Russell.”

Many years later, more than four decades after Frege’s death, Bertrand
Russell had occasion to write:

As I think about acts of integrity and grace, I realise that there is nothing
in my knowledge to compare with Frege’s dedication to truth. His entire
life’s work was on the verge of completion, much of his work had been ig-
nored to the benefit of men infinitely less capable, his second volume was
about to be published, and upon finding that his fundamental assumption
was in error, he responded with intellectual pleasure clearly submerging
any feelings of personal disappointment. It was almost superhuman and
a telling indication of that of which men are capable if their dedication is

to creative work and knowledge instead of cruder efforts to dominate and
be known. !

Much of the contemporary philosopher Michael Dummett’s work has
been inspired by Frege’s ideas. Yet when he wrote about Frege’s “integrity,”
it was in a quite different vein:

There is some irony for me in the fact that the man about whose philo-
sophical views I have devoted, over the years, a great deal of time to think-
ing, was, at least at the end of his life, a virulent racist, specifically an anti-
semite. . .. [His] diary shows Frege to have been a man of extreme right-
wing opinions, bitterly opposed to the parliamentary system, democrats,
liberals, Catholics, the French and, above all, Jews, who he thought ought
to be deprived of political rights and, preferably, expelled from Germany. I
was deeply shocked, because I had revered Frege as an absolutely rational

1'1'1211’1.2

Frege’s contributions were of immense importance. He provided the
first fully developed system of logic that encompassed all of the deductive
reasoning in ordinary mathematics, and his pioneering work using tools
of logical analysis to study language provided the basis for major develop-
ments in philosophy. Today, under the subject heading “Frege, Gottlob”
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well over fifty items will be found in a typical university library. Yet he died
in 1925 a bitter man, believing that his life’s work had led only to futility,
his death ignored by the scholarly community. Even now we have only the
most meager information about his personal life.3

Gottlob Frege was born on November 8, 1848, in Wismar, a small
town destined to become part of Communist East Germany. His father,
a theologian in the Evangelical faith, headed a girls’ high school (where
his mother was also employed). Frege was thirty-eight when he married
the thirty-five-year-old Margarete Lieseberg, who died seventeen years
later leaving no children behind. At the request of a clergyman relative,
Frege adopted a five-year-old orphan in 1908. It was this son, Alfred,
who brought to light the infamous diary Frege had kept in 1924, a year
before his death, the diary that so outraged and disillusioned Michael
Dummett. Alfred Frege himself, part of the German military occupation
of Paris, was killed in action in June 1944, a little over a week after the
allied landings in Normandy and just two months before the liberation
of Paris. Alfred typed the diary from his father’s handwritten manuscript
and in 1938, five years after Hitler had seized power, sent it to the Frege
archive being maintained by Heinrich Scholz. At that time the sentiments
that so outraged Michael Dummett would have seemed unexceptional in
Germany. The manuscript itself as well as a biography Alfred had written
of his father are lost.

Frege was twenty-one when he entered the university. After two years
at Jena he moved to Géttingen University where, three years later, he re-
ceived a Ph.D. in mathematics. Then, he obtained a nonpaying appoint-
ment as lecturer (Privatdozent) at the University of Jena. It seems that
Frege was supported at this time by his mother, who, on his father’s death,
had taken over management of the girls’ school. After five years Frege was
appointed Associate Professor at Jena, where he remained until his retire-
ment in 1918. Because his colleagues didn'’t really value his work, he was
never promoted to a full professorship.

In 1873, Germany, newly united, was in a state of euphoria. The war
against the France of Napolean III had ended in a great victory. Indus-
try was expanding at breakneck speed. Until the death of Kaiser Wilhelm

I, his Chancellor, Bismarck, continued his cunning policy of maintaining
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GoTTLOB FREGE

(Institute for Mathemaical Logic and Foundational Research, Miinster University)
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the security of Germany by means of a carefully nurtured system of al-
liances. Bismarck and Kaiser Wilhelm remained heroes to Frege for his
entire life. However, Bismarck was a thorough-going reactionary who saw
to it that the emperor maintained total control of military affairs and for-
eign relations. He regarded democracy as anathema and pushed legisla-
tion outlawing many of the activities of the Social Democratic Party.

Soon after Wilhelm 11 succeeded to the throne, he got rid of Bismarck.
The new kaiser, a vainglorious and insecure man, oversaw a disastrous for-
eign policy. Repeatedly misjudging the effect of his maneuvers, he man-
aged to so alarm the other European powers that France, Russia, and Eng-
land formed an alliance against Germany. Faced with the danger of a war
on two fronts, against Russia on the east and against France on the west,
the German general staff produced the clever, but ultimately disastrous,
Schlieffen plan, designed to defeat France quickly before Russia could
complete its ponderous mobilization.*

In the summer of 1914, in response to the assassination of Archduke
Ferdinand, and with German encouragement, the Austrians began World
Wiar 1 by attacking Serbia. To stress their determination that Austria not
be permitted to destroy their fellow Slavs, Russia began mobilization. The
German generals explained to the kaiser that, in response, they had to
act at once to implement the Schlieffen plan calling for a German attack
through Belgium. The attendant violation of Belgium’s neutrality brought
England into this catastrophic war whose consequences cast their shadow
on the entire twentieth century. In war things rarely go according to plan,
and when the Schlieffen plan attack petered out, the fighting degenerated
into a murderous stalemate, slaughtering the best part of a generation of
European men in trench warfare. Seemingly unaware that the fighting was
going badly, many German academics called for a peace in which Ger-
many would annex much territory, including all of Belgium.

As victory continued to elude the Germans and the English siege
took its toll, the military command was put into the hands of General
Ludendorff. This capricious gambler (who was later to participate in
Hitler's beer-hall “Putsch”) refused to consider a compromise peace until
a British breakthrough in the Balkans threatened to roll up the German
flank. With defeat staring him in the face, Ludendorff told the kaiser that
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an armistice was essential. So ended the war and the German monarchy.

The government that assumed power in the new German republic was
social democratic, and many Germans (Frege among them) came to ac-
cept the story that Germany had been forced into the war against its will,
had not been defeated, but had been betrayed by the socialists and (many
were soon adding) the Jews. This was the poisonous atmosphere that ul-
timately made it possible for Hitler to assume power.

In 1923 the great postwar hyperinflation in Germany wiped out the
value of personal savings and, presumably, of Frege’s pension. His result-
ing impoverishment forced him to board with relatives until his death at
Bad Kleinen near Wismar in 1925. It was under these circumstances that
he wrote his deplorable diary. He looked for a great leader to rescue Ger-
many from the lowly position into which it had been thrust. Having held
high hopes for Ludendorff to play this role, he was disappointed that he
had joined Hitler's Putsch. He still had hope that General Hindenburg
might be the one, but feared that he was too old; Frege did not live to see
Hindenburg hand the keys to the republic to Adolph Hitler.

In his diary entry for April 22, 1924, Frege reminisces about a time
when the Jews of his hometown were treated in what he thought was an
appropriate manner and also manages to disclose his views on the French

and their baleful influence:

There was a law at that time that Jews were permitted to stay overnight in
Wismar only in the time of certain annual fairs. . . . I suppose this decree
was old. The old Wismarkers must have had experiences with the Jews
that had led them to this legislation.

[t must have been the Jewish way of doing business together with the
Jewish national characteristics that is tied together closely with the way
of doing business. . . . There came universal suffrage, even for Jews. There
came the freedom of movement, even for Jews, presents from France.
We make it so easy for the French to bless us with gifts. If one had only
turned to noble and patriotic Germans. . . . The French had treated us nas-
tily enough indeed before 1813, and nevertheless we have this blind ad-
miration of all things French. . . .  have only in the last years really learned

to comprehend antisemitism. If one wants to make laws against the Jews,
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one must be able to specify a distinguishing mark by which one can rec-

ognize a Jew for certain. I have always seen this as a problem.’

The problem, merely theoretical for Frege, of defining Jews with sufficient
precision so that one could make laws against them, became quite a prac-
tical problem under the Nazis. Ludwig Wittgenstein, thought to be one of
the great thinkers of the twentieth century and an admirer and disciple of
Frege, would have qualified as a Jew under the Nazi racial code.

Other diary entries rail against the Social Democrats and Catholics:

The Reich suffered from a cancer in 1914, namely Social Democracy.
(April 24)

To be sure, I regarded Ultramontanism and its embodiment in the
Zentrum as very detrimental for our Reich and nation; nevertheless, the
revelations of ... Ludendorff in his [recent] article on the efforts and
machinations of the ultramontanes give me insights which have most
deeply disturbed me.* T implore anybody who does not yet believe in the
thoroughly unGerman spirit of the Zentrum to read and reflect on the
stated article of His Excellency Ludendorff . . . This is the most evil en-
emy which undermined Bismarck’s Reich. ... [The Ultramontanes] will
always look to the Pope to get their instructions. (April 26)°

Frege’s extreme right-wing ideas were hardly rare in Germany after
World War I. Nevertheless, we may wonder whether the diary represents
only the thoughts of a bitter (and possibly senile) old man within a year of
his death. Alas, there is little doubt that Frege had held right-wing views
for some time. Frege’s colleague, Bruno Bauch, a philosophy professor at
Jena, founded a right-wing philosophical society (the DPG) during the
war, and he edited its journal. Frege was one of the early adherents of
the DPG and published in‘its journal. Bauch’s writings on the concept of
nation insisted that no Jew could really be a German. His group came out
in full support of the Nazis when they took power in 1933.”

LIS

*The Zentrum party was oriented toward the Catholic Church. It's “Ultramon-
tanism” referred to the influence from “over the mountains,” that is, Rome.
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FREGE’S BEGRIFFSSCHRIFT

It is with a sense of relief that one turns from Frege’s awful views, ex-
pressed as his life drew towards its end, to the brilliant contributions he
made as a young man. In 1879,* he published a booklet of fewer than 100
pages entitled Begriffsschrift, a hard-to-translate word Frege constructed
from the German words Begriff (“concept”) and Schrift (roughly “script”
or “mode of writing”). It was subtitled, “a formula language, modeled upon
that of arithmetic, for pure thought.” This work has been called “perhaps
the most important single work ever written in logic.”

Frege sought a system of logic that included all of the deductive infer-
ences in mathematical practice. Boole took ordinary algebra as his starting
point and used the symbols of algebra to represent logical relations. Since
Frege intended algebra, like other parts of mathematics, to be built as a su-
perstructure with his logic as a foundation, he regarded it as important to
introduce his own special symbols for logical relationships to avoid confu-
sion. Also, where Boole had thought of propositions that express relations
between other propositions as secondary propositions, Frege saw that the
same relations that connect propositions can also be used to analyze the
structure of individual propositions, and he made these relations the basis
of his logic. This crucial insight has gained general acceptance and forms
the basis of modern logic.

For example, Frege would analyze the sentence
All horses are mammals
using the logical relationship if ..., then ...:
If x is a horse, then x is a mammal.

*1 was invited to present an address at a scientific conference in 1979 commem-
orating the hundredth anniversary of the Begriffsschrift in which I was to trace its
consequences for computer science. This was my first taste of studies in the histor-
ical background of computer science in logic and the beginning of the research that
has culminated in this book.
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Likewise, he would analyze the sentence
Some horses are pure-bred
using the logical relationship ... and .. .:
x is a horse and x is pure-bred.

However, the letter x is used differently in these two examples. In the first
example one wants to say that what is asserted is true whatever x might be,
that is, for every x. But in the second example what is wanted is only the
assertion for some x. In the symbolism in current use, for every is written
Y and for some is written 3. So, the two sentences could be written as fol-

lows:

(Vx)(if x is a horse, then x is a mammal),

(3x)(x is a horse and x is pure-bred).

The symbol V, an upside-down A, suggests the word “all” and is called a
universal quantifier. Likewise the symbol 3, a backwards E, is called an
existential quantifier and is intended to suggest the word “exists.” So this

second sentence could be read
There exists x such that x is a horse and x is pure-bred.

The logical relationif . . . , then . . . is usually symbolized D, and the relation

...and ... is symbolized A. Using these the sentences become’

(¥x)(x is a horse D x is a mammal),

(Ix)(x is a horse Ax is pure-bred).
This can be abbreviated as follows

(Vx)(horse(x) D mammal(x)),
(Jx)(horse(x) A pure-bred(x)).
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Or, even more briefly,

(Vx)(h(x) D m(x)),
(Fx)(h(x) A px)).

Joe and Susan’s effort to use logic in locating Joe’s wallet was used as
an example in the previous chapter. In that example, we used letters to
abbreviate sentences as follows:

L = Joe left his checkbook at the supermarket,
F = Joe’s checkbook was found at the supermarket,

W = Joe wrote a check at the restaurant last night,

P = After writing the check last night, Joe put his checkbook in his
jacket pocket,

H = Joe hasn't used his checkbook since last night,

= Joe’s checkbook is still in his jacket pocket.
Their reasoning came down to the following pattern:

PREMISES:
If L, then F.

Not F.
W &P.
If W & P & H, then S.
H.
CONCLUSIONS:
Not L.
S.
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Using the symbol — to stand for “not” and the other symbols we've intro-

duced, this now becomes

LDOF
-F
WAP
WAPAHDS
H

-L
S

One final symbol should be mentioned: V standing for ...or.... The
following table provides a summary of the symbols that have been intro-

duced:

not ...
..or...
...and ...
if ..., then ...
every

w<<y > < |

some

At the end of the previous chapter, the sentence
All failing students are either stupid or lazy

was exhibited as an example whose logical structure would be missed by
Boole’s analysis. In Frege’s logic, it is easy. Writing

F(x) forx is a failing student,

S(x) forx is stupid,

L(x) forxis lazy,

the sentence can be expressed as

(Vx)(F(x) D S{x) vV L{(x)).
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By now it should be clear that Frege was not just developing a mathe-
matical treatment of logic but also was actually creating a new language.
In this he was guided by Leibniz’s notion of a universal language that
would gain its power from a judicious choice of symbols.'® The expres-
siveness of this language can be gauged from the following examples
where we are using L(x,y) to stand for x loves y:

Everyone loves someone. (Vx)(Fy)x lovesy  (Vx)(Ty)L(x,y)
Someone loves everyone. (Fx)(Wy) x lovesy  (Fx)(Vy)L(x,y)
Everyone is loved by someone.  (Vy)(3x)x lovesy  (Vy)(Ix)L(x,y)

) )L(x,y)

xlovesy  (Iy)(Vx)L(x,

Someone is loved by everyone. (y)(Vx

Here is one more example:
Everyone loves a lover.
As a first stab we write
(V)(Wy)[y is a lover D Lx,)].

Now, if we construe being a lover as simply meaning loving someone, we
can replace y is a lover by (3z)L(y, z), finally obtaining

(Vx)(Wy)[(3z)L{y,z) D L(x,)].

FREGE INVENTS FORMAL SYNTAX

Boole’s logic was simply another branch of mathematics to be developed
using ordinary mathematical methods. This of course includes using logi-
cal reasoning. But there is something circular about using logic to develop
logic. For Frege this was unacceptable. His intention was to show how all
of mathematics could be based on logic. For this to be at all convincing,
Frege had to find some way to develop his logic without using logic in the
process. His solution was to develop his Begriffsschrift as an artificial lan-
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guage with mercilessly precise rules of grammar, or, as one says, of syntax.
This made it possible to exhibit logical inferences as purely mechanical
operations, so-called rules of inference, having reference only to the pat-
terns in which symbols are arranged. It was also the first example of a for-
mal artificial language constructed with a precise syntax. From this point
of view, the Begriffsschrift was the ancestor of all computer programming
languages in common use today.

The most fundamental of Frege’s rules of inference works like this: if
<& and A are any two sentences of Frege’s Begriffsschrift, then if & and
(O O A) are both asserted, then one is permitted to also assert the sen-
tence A. The thing to notice about this operation is that to carry it out,
no understanding of what D means is required. Of course we can see that
the rule cannot lead to error because it only enables one to proceed from
<& and (If O, then A) to A. But to actually employ the rule, it is only nec-
essary to match up the individual symbols constituting the sentence ¢
with symbols in the first part of the longer sentence one by one.!! In our

example of locating Joe's wallet, we had the premise
WAPANHDS.

If we were able to also assert W A P A H, then the rule would enable us
to also assert one of the desired conclusions, namely S. Here is how the

matchup would go:

WAPAHDS,
WAPAH.

Frege’s logic has become the standard logic taught to undergraduate
students in logic courses in mathematics, computer science, and phi-
losophy departments.'? It has been the basis for an enormous body of
research and indirectly led Alan Turing to formulate the idea of an all-
purpose computer. But this is getting ahead of ourselves.

Frege’s logic was an enormous advance over Boole’s. For the first time

an exact system of mathematical logic encompassed, at least in principle,
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all the reasoning ordinarily used by mathematicians. But in attaining this
goal, something was given up. Beginning with some premises in Frege’s
logic, Frege’s rules could be applied in an attempt to reach a desired
conclusion. But if the attempt failed, Frege provided no means to know
whether this was because not enough cleverness or persistence was em-
ployed or whether the desired conclusion simply did not follow from the
given premises. This lack meant that Frege’s logic did not fullfill Leibniz’s
dream that with the words “Let us calculate,” those knowing the rules of
logic would be able to proceed to determine unfailingly whether or not

some conclusion follows.

WHY BERTRAND RUSSELL’S LETTER

WAS S0 DEVASTATING

If Frege’s logic was such a great achievement, why did Russell’s letter lead
Frege to despair? Frege regarded his logic as only a stepping stone toward
providing a complete foundation for arithmetic. Although the differential
and integral calculus of Leibniz and Newton led to enormously fruitful de-
velopments, there were serious problems in justifying some of the steps in
the reasoning mathematicians were in the habit of employing. During the
nineteenth century these problems were gradually cleared up, ultimately
by developing a new and profound theory of the number system of mathe-
matics. However, in the end this based everything on the so-called natural

(or counting) numbers:
1,2,3,....

Frege wanted to provide a purely logical theory of the natural numbers
and thereby to demonstrate that arithmetic, and indeed all of mathemat-
ics including developments stemming from the differential and integral
calculus, could be regarded as a branch of logic. This point of view, which
came to be called logicism, was shared by Bertrand Russell. Logicism has

been explained by the American logician Alonzo Church as maintaining
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that the relationship between logic and mathematics is that between the
elementary and the advanced part of one and the same subject.*

Thus Frege wanted to be able to define the natural numbers in purely
logical terms, and then to use his logic to derive their properties. The num-
ber 3, for example, was to be explained as part of logic. How could this be
possible? A natural number is a property of a set, namely, the number of its
elements. The number 3 is something that all the following have in com-
mon: the Holy Trinity, the set of horses pulling a troika, the set of leaves on
a (normal) clover leaf, the set of letters {a, b, c }. Without saying anything
about the number 3, one can see that any two of these sets have the same
number of elements. We can simply match them up. Frege’s idea was to
identify the number 3 with the collection of all of these sets. That is, the
number 3 is just the set of all triples. In general, the number of elements
in a given set can be defined to be the collection of all those sets that can
be matched up one-to-one with the given set.!

Frege’s two-volume treatise on the foundations of arithmetic showed
how to develop the arithmetic of natural numbers using the logic devel-
oped in his Begriffsschrift. Bertrand Russell’s letter of 1902 showed Frege
that this entire development was inconsistent, that is, self-contradictory.
Frege’s arithmetic, in effect, made use of sets of sets. Russell showed in
his letter that reasoning with sets of sets can easily lead to contradictions.
Russell’s paradox can be explained as follows: Call a set extraordinary if it
is a member of itself; otherwise call it ordinary. How could a set be extraor-
dinary? Russell’s own example of an extraordinary set is the set of all those
things that can be defined in fewer than 19 English words. Since we have
just defined this set using only 16 words, it belongs to itself and therefore
is extraordinary. Another example is the set of all things that are not spar-
rows. Whatever this set might be, it is surely not a sparrow. So this set too

is extraordinary.

*It is now generally recognized that, by the use of numerical coordinates, geometry
can also be reduced to arithmetic. However, Frege always believed that geometry
had to be regarded as separate. I'm indebted to Patricia Blanchette for emphasizing
this aspect of Frege's thought and for other helpful comments on this section.
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Russell proposed to Frege the set £ of all ordinary sets. Is £ ordinary
or extraordinary? It must be one or the other. But it seems to be neither.
Could € be ordinary? If so, since £ is the class of all ordinary sets, it would
belong to itself. But then it would be extraordinary. OK. Then £ would
have to be extraordinary. Therefore, it would not belong to itself, since it
is the set of ordinary sets. But that would make it ordinary! Either way one
is led to a contradiciton!

Russell’s paradox is first cousin to a large number of puzzles that are
simply amusing. But when Frege received Russell’s letter, he was not
amused. He realized at once that the contradiction could be readily de-
rived within the system he was using to develop arithmetic. Now, a math-
ematical proof that runs into a contradiction is a demonstration that one
of the premises of the argument was false. This principle is used all the
time as a useful proof method: to prove a proposition, one shows that
-its denial leads to a contradiction. But for poor Frege, the contradiction
had shown that the very premises on which his system was built were

untenable. Frege never recovered from this blow.!*

FREGE AND THE PHILOSOPHY

OF LANGUAGE

In 1892 Frege published a paper in a philosophical journal whose title may
be translated as On Sense and Denotation.'> Along with Frege’s logic, it
is because of the issues raised in this paper that philosophers have been
so interested in his work.

Frege pointed out that different words may be used to name or denote
one and the same specific object although they may have quite different
senses or meanings. His famous example uses the phrases “the morning
star” and “the evening star.” Their sense is quite different: one is the bright
star seen after sunset; the other is the one seen before sunrise. But both
denote the same planet, Venus. The fact that both phrases refer to the

same object is not obvious; it was at one time a real astronomical discov-
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ery. Some of Frege’s concerns have to do with substitutivity: Consider the

sentence
Venus is the morning star.
This is very different from
Venus is Venus.

This is the case although, in fact, one sentence was derived from the other
by replacing one phrase by another denoting the same object.

These ideas represent the beginning of a major branch of twentieth
century philosophy: the philosophy of language.'® Some key concepts in
contemporary computer science may also be said to have their origin in

this same essay.!”

FREGE AND LEIBNIZ'S DREAM

Frege thought of his Begriffsschrift as embodying the universal language
of logic that Leibniz had called for. Indeed, Frege’s logic can deal with the
most diverse subjects. But to Leibniz it would likely have been a disap-
pointment. It fell short of his desires in at least two important respects.
Leibniz had imagined a language that was capable not only of logical de-
duction but that also would automatically include all the truths of science
and of philosophy. This naive expectation was only conceivable before the
massive development of science in the eighteenth and nineteenth cen-
turies based on careful experiment as well as theorizing.

From the point of view of our story, it is more appropriate to point to
a different limitation of Frege’s logic. Leibniz had called for a language
that would also be an efficient instrument of calculation, one that would
enable logical inferences to be carried out systematically by the direct
manipulation of symbols. In fact any but the simplest of deductions are
almost unbearably complicated in Frege’s logic. Not only are such de-

ductions tediously long, but also Frege's rules provide no calculational
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procedures for determining whether some desired conclusion can be de-
duced from given premises in the logic of his Begriffsschrift.

Because the Begriffsschrift did fully encapsulate the logic used in or-
dinary mathematics, it became possible for mathematical activity itself to
be investigated by mathematical methods. As we will see, these investi-
gations led to some very remarkable and unexpected developments. The
search for a calculational method that could show whether a proposed
inference in Frege’s logic is correct reached its climax in 1936 with a
proof that no such general method exists. This was bad news for Leibniz’s
dream. However, in the very process of proving this negative result, Alan
Turing discovered something that would have delighted Leibniz: he found
that it was possible, in principle, to devise one single universal machine
that, all by itself, could carry out any possible computation.



C HAPTTEHR F O UR

CANTOR: DETOUR
THROUGH INFINITY

The sequence of numbers 1,2,3,..., the so-called natural or count-
ing numbers, goes on forever. No matter how large a number you start
with, you can always get a larger number by adding 1. One may conceive
of the natural numbers as generated by a process, beginning with 1 and

successively adding 1:
1,L1+41=2,241=3,...,99+1=100,....

Such a process, continuing beyond any finite bound, was characterized
by Aristotle as a potential infinity. However, Aristotle was not willing to
accept as legitimate the culmination of this process—the infinite set of
all natural numbers. This would be a “completed” or “actual” infinity, and
Aristotle declared that such were illegitimate.! Aristotle’s views heavily
influenced the scholastic religious philosophers of the twelfth century,
particularly Thomas Aquinas. The problem of the nature of the infinite
has been perplexing for mathematicians, philosophers, and theologians
alike. Theologians could propose that a completed infinity was actually
an aspect of God and conclude that for mere humans it had to remain a

mystery. Leibniz was not put off by such considerations, writing:
ystery. P y g

I am so in favor of the actual infinite that instead of admitting that Na-
ture abhors it, as is commonly said, I hold that Nature makes frequent
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use of it everywhere, in order to show more effectively the perfections of
its Author.?

The limit processes of the calculus that became so important for math-
ematics in the eighteenth and nineteenth centuries exemplified poten-
tial infinity. In this connection, the great German mathematician Carl
Friedrich Gauss (1777-1855) warned:

I protest above all against the use of an infinite quantity as a completed
one, which in mathematics is never allowed. The infinite is only a manner

of speaking, in which one properly speaks of limits.>

After the middle of the nineteenth century mathematical problems that
arose quite naturally out of current concerns seemed to call for the use
of completed infinities in their precise formulation. Among the mathe-
maticians who were coping with this situation, it was only Georg Cantor
who, flying in the face of Gauss’s warning, accepted the challenge to cre-
ate a profound and coherent mathematical theory of the actual infinite.
Cantor’s work unleashed a storm of criticism: Not only mathematicians,
but also philosophers and theologians attacked the temerity of one who
would bring the methods of mathematical science to bear on the hitherto
sacrosanct domain of the infinite. Frege was supportive of Cantor’s em-
brace of the actual infinite, recognizing its importance for the future of
mathematics. Frege also saw quite clearly that a stormy struggle would
develop between those mathematicians who embraced Cantor’s infinite
and those who regarded it as anathema:

For the infinite will eventually refuse to be excluded from arithmetic. . ..
Thus we can foresee that this issue will provide the setting for a momen-

tous and decisive battle.*

What Frege could not have foreseen as he wrote these lines was that the
very foundation for arithmetic that he himself had developed would be an
early casualty of that battle, a victim of the paradox that Bertrand Russell
would call to his attention a decade later in that famous letter, a paradox
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GEORG CANTOR, WITH HIS WIFE, VALLY

(lvor Grattan-Guinness)
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that Russell would find while exploring the implications of Cantor’s in-
finite. And Frege could certainly never have imagined that the ensuing
tumultuous discussions, investigations, and disputes over Cantor’s infi-
nite would one day provide key insights leading to the development of all-
purpose digital computers.

ENGINEER OR MATHEMATICIAN

In an unlikely setting for a future professor of mathematics at a Ger-
man university, Georg Cantor was born in 1845 in St. Petersburg, Russia.
Cantor’s mother, Marie Bshm, came from a distinguished musical fam-
ily, and she herself was an accomplished musician. His father, Georg
Waldemar Cantor, was born in Copenhagen, but was brought to St. Pe-
tersburg as a child. It is believed that he was raised and educated there
in a Lutheran Evangelical mission. Although Marie had been baptized a
Roman Catholic, she also adhered to the Evangelical Church after her
marriage, and Georg Cantor and his three siblings were raised in that
faith.>

Georg Waldemar Cantor was a very successful businessman. He worked
as a wholesaling agent in St. Petersburg and later became a broker at the
St. Petersburg Stock Exchange. One author, referring to the letters Cantor

had received from his father while a student, was moved to write:

One is fascinated by this multifaceted, cultivated, mature, and kind in-
dividual. They [the letters] breathe a spirit not always found among suc-

cessful businessmen.®

Although tuberculosis, the nineteenth century’s great plague, hit poor
neighborhoods with particular force, the rich were not immune. Cantor’s
father contracted this dread disease and ultimately died of it. Although
still in his forties, illness led Georg Waldemar to liquidate his business
and move his family to Germany when his son was eleven. But his success
had been such that, even after his death seven years after the move, his
four children were very well provided for.
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Georg Waldemar believed that engineering was the profession most ap-
propriate to his son’s talents, but, to Georg’s great joy, he finally acqui-
esced in the boy’s desire to be a mathematician. In Berlin, the young Georg
Cantor had the opportunity to study under three great mathematicians:
Karl Weierstrass, Ernst Kummer, and Leopold Kronecker. Cantor's math-
ematical interests began in quite traditional areas. It would have been dif-
ficult to predict at the beginning of his career that he was destined to ex-
pand the horizons of mathematical thought in a revolutionary direction,
or that his teacher, Kronecker, would become his great nemesis, attack-
ing his life’s work as being nonsense.

Halle, where Cantor assumed his first university position and where he
was to spend the rest of his life, was an industrial city thirty-five miles up
the Saale River from Frege’s home in Jena. Quite typical for a beginning
academic career in Germany at that time, Cantor was appointed a Privat-
dozent, a lecturer without pay. Obviously, under these circumstances, in-
dependent financial resources were necessary for launching an academic
career. The leading mathematician at Halle, Eduard Heine, recognized
Cantor’s great mathematical powers and persuaded him to work on some
problems involving infinite series. In the first chapter, we encountered in-

finite series, namely Leibniz's famous

The “infinities” encountered in such series are potential infinities only, ex-
actly the sort Gauss (quoted above) had in mind. For an infinite series, one
seeks a limit to which one gets ever closer as one adds more and more
terms (in the case of Leibniz’s series, this limit is 7); one says that the se-
ries converges to the limit. There is no question of a completed infinity; at
any stage in the process one has simply added finitely many numbers.
Naturally, the subject of infinite series had advanced considerably
in the two centuries since Leibniz's time. Cantor studied trigonomet-
ric series’ (so-called because the terms involve the sine and cosine from
trigonometry). He wanted to find out under what circumstances two dif-
ferent series of this type could converge to the same thing and, in fact,
to prove that such circumstances would be very unusual. This investi-
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gation took Cantor far afield: He found that in order to get the desired
results, he had to treat infinite sets as completed wholes and to perform
complex operations on them. Soon, he was developing the theory of sets

(Mengenlehre in German) as an autonomous subject.

INFINITE SETsS CoME IN DIFFERENT SIZES

Granting that it makes sense to deal with the set of all natural numbers,
1,2,3,...,as an example of a completed, actual infinity, does it also make
sense to ask how many numbers there are in this set. Are there infinite
numbers that can be used to count infinite sets? Leibniz, who had no
objection to completed infinities as such, considered this question in a
letter to the Catholic priest, theologian, and philosopher Nicolas Male-
branche. His conclusion was that such infinite numbers do not exist. We
may explain his reasoning as follows: We can tell that two sets have the
same number of members, without even knowing what that number is, by
matching the elements of one of the sets in a one—one manner with those
of the other set.* For example, if one observes that there are no empty
seats and no standees in an auditorium, then one can conclude (without
counting) that the number of people in the audience and the number of
seats are the same—one is matching up each seat with the person occupy-
ing it. Leibniz held that if such things as infinite numbers did exist, then
the same idea should apply to them: if a one—one matching can be de-
fined between two infinite sets, then one should be able to conclude that
the two sets have the same number of members. Then, he proposed to ap-
ply this concept to the following two sets: the set of all natural numbers
1,2,3,...and the set of even natural numbers 2,4, 6, .. .. It is easy to de-
vise a one—one matching between these two sets by simply matching with
each natural number its double, like this:

N > —
B i
N — W
0 —

*This is the same idea that Frege invoked in his thwarted attempt to define “number.”
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Notice that even though the sets are infinite, the specified matching be-
tween the set of all natural numbers and the set of even numbers is per-
fectly explicit. For example, corresponding to the natural number 117 is
the even number 234; corresponding to the natural number 4228 is the
even number 8456, and so on. Leibniz reasoned that if there were such
things as infinite numbers, the existence of this matchup would force us
to conclude that the number of natural numbers is the same as the num-
ber of even numbers. But how could this be? Among the natural num-
bers are not only the even numbers themselves, but also all of the odd
numbers, themselves constituting an infinite set. And one of the most
basic mathematical principles, going back to Euclid, is that the whole is
greater than any of its parts.® Hence Leibniz concluded that the very con-
cept of the number of all natural numbers is incoherent, that it makes no
sense to speak of the number of elements in an infinite set. As he put
1t:

For any number there exists a corresponding even number which is its
double. Hence the number of all numbers is not greater than the number

of even numbers, that is, the whole is not greater than the part.9

Cantor reasoned much as Leibniz had and faced the same dilemma:
either it makes no sense to speak of the number of elements in an infi-
nite set or some infinite sets will have the same number of elements as
one of its subsets. However, while Leibniz had chosen one horn of this
dilemma, Cantor chose the other. He went on to develop a theory of num-
ber that would apply to infinite sets and just accepted the consequence
that an infinite set could have the same number of elements as one of its
parts.

Starting where Leibniz had left off, Cantor began studying when it was
possible to set up one—one matchings between two different infinite sets.
While Leibniz had found that a one—one matching could be established
between the set of natural numbers and one of its subsets (the even num-
bers), Cantor considered sets that seemed to be larger than the set of nat-
ural numbers. One example he thought about was the set of numbers that

can be represented as (positive) fractions,'? like % or % Since natural
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numbers could be represented by fractions with the denominator 1 (like
%), the set of natural numbers can be regarded as a subset of this set. But,
with a little thought, Cantor found that he could set up a one—one match-
ing between the set of these fractions and the set of natural numbers. The

fractions can be arranged in a sequence like this

1112|123|1234(12345
1121(321/4321(54321|

They have been grouped according to the sum of the numerator and the
denominator of each fraction: first fractions with the sum 2 (there’s only
one of these), then those with the sum 3 (there are two), then those with
sum 4 (there are three), then those with sum 5 (there are four), and so on.
Now it is easy to set up a one—one matching with the natural numbers:

3
1

[
N > o=
W > —Io
B — W=
Ul > o
O\ — —lw
~] — &l—
00 > Wi
O > Dlw
—> —|n
—> vi|—
—> I
—> wiw
—> |
«—>

10 11

—

2 13

._.
o~

15

Since it seems intuitively that there are so many more fractions than nat-
ural numbers, this demonstration could easily lead one to imagine that
every infinite set can be matched up one—one with the natural numbers.
Cantor’s great achievement was to show that this is not the case. The num-
bers represented by fractions are called rational. If a rational number is
represented as a decimal, the pattern of digits eventually begins to repeat.
Here are some examples:

= (.3333333333333333333333...,
= 0.2500000000000000000000. . .,
= 1.6666666666666666666666. . .,
= 2.1818181818181818181818.. .,

= 1.2857142857142857142857.. ..

._.“[\)
R e O N O B e e S



CANTOR: DETOUR THROUGH INFINITY 67

Numbers that can be represented by decimals, whether or not they even-
tually repeat, are called real numbers. Those whose decimal representa-
tions never repeat are called irrational. Here are some examples of num-
bers that have been proved to be irrational:

V2 = 1.414213562373095050. . .,
V2 = 1.259921049894873160. ..,

7 = 3.141592653589793240. . .,
2V2 = 2.665144142690225190. . ..

Numbers like v/2 and /2 as well as all of the rational numbers are
called algebraic because they can serve as solutions of algebraic equa-
tions. (Thus, v/2 is a solution of the equation x2 = 2 and V2 is a solution
of the equation x> = 2.) The numbers 7 and 2V2 have been proved to
satisfy no algebraic equation; such numbers are called transcendental.
After having shown that the fractions can be matched in a one—one
manner with the natural numbers, Cantor turned his attention to the set
of all algebraic numbers, and he had little difficulty in once again finding a
way to match them with the natural numbers in a one—one manner. Nat-
urally, he wondered whether the same was true for the set of all real num-
bers. We can follow the ruminations of the twenty-eight-year-old Cantor
in letters written in 1873 to Richard Dedekind, a young mathematician
Cantor had met quite by chance the previous year while on vacation in
Switzerland. Cantor, who had recently been promoted to a professorship
at Halle, wrote showing Dedekind that (as we have already seen) one can
construct a one—one matching between the natural numbers and the more
inclusive set of all positive fractions. He even showed that the same is true
for the set of all algebraic numbers. In his letter, Cantor raised the ques-
tion of the possibility of a one—one matching between the set of natural
numbers and the set of all real numbers. Dedekind’s reply suggested that
he believed the question to be of little interest. About a week later, in an-
other letter, Cantor was able to prove to Dedekind the remarkable fact that
the set of real numbers cannot be matched with the set of natural numbers

in a one—one manner, that infinite sets come in at least two sizes.
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Apparently, Cantor himself wasn't even sure that this finding was worth
publishing. He only submitted it for publication after his former teacher
Karl Weierstrass encouraged him to do so. The revolutionary implications
of what Cantor had done were hardly evident in the four-page paper.
The emphasis of the paper was not on the fact that infinite sets had
been shown to come in more than one size, but rather that as a corollary,
Cantor had obtained a new proof that there exist real numbers that are
transcendental. Cantor’s proof amounted to noting that since the alge-
braic numbers can be matched one—one with the natural numbers and
the real numbers cannot be so matched, it follows that the set of real
numbers is different from the set of algebraic numbers. So there must
be a real number that is not algebraic, and therefore is transcenden-
tal.!!

Meanwhile, Cantor’s personal life flourished. In 1874, he married Vally
Guttman, a close friend of his sister and a gifted musician. They had six
children and, from all accounts, were a loving, devoted family. Although
Cantor had a reputation for being forceful and even difficult in profes-
sional contexts, he was apparently quite gentle at home. According to one
account of mealtime at the Cantors”:

At mealtimes he would sit silently and allow his children to lead the con-
versation, and then rise and thank his wife for the meal with: “Are you

content with me and do you then also love me?>”12

But as he began devoting more and more of his efforts to developing set
theory, Cantor began encountering increasing opposition to his unsettling
new ideas. His former teacher Kronecker turned out to be a particularly
unremitting opponent of the entire direction of Cantor’s research, even
trying to prevent the publication of some of his papers. In this atmo-
sphere, an appointment to a university where Cantor could have contact
with colleagues of his own stature was not to be. He would have to remain
in the backwater that was Halle. Even Cantor’s efforts to coax his friend
Dedekind to come to Halle failed. In 1886, acquiescing to the inevitable,

Cantor purchased a magnificent house for his family in Halle.
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CANTOR’'S QUEST FOR INFINITE NUMBERS

Ignoring Gauss’s warning that mathematicians had no business with com-
pleted infinities, Cantor felt himself drawn by the lure of the infinite, hith-
erto the province of theologians and metaphysicians. His mathematical
research had provided the basis for his radical ideas, but he pressed on
far beyond what that research mandated. The natural numbers 1, 2,3, ...
are used in ordinary discourse in two different but related ways. They are
used to count and to rank, as illustrated by the sentences:

* There are four people in this room.

* Joe’s horse came in fourth.

Everyday language recognizes this with its distinction between cardinal
and ordinal numbers for which different words are provided: one, two,
three, ... but first, second, third,. ... Cardinal numbers are used to specify
how many things there are in some set; ordinal numbers are used to spec-
ify how these things are arranged in a particular order. Cantor’s finding
that there is no one—one correspondence between the natural numbers
and the real numbers led him to think about infinite cardinal numbers,
and his work on trigonometric series suggested a way to conceptualize
infinite ordinal numbers.

Cantor assumed that associated with every set (finite or infinite) there
is its unique cardinal number. Cantor thought of the cardinal number of
a set as obtained by disregarding the specific nature of the items making
up the set, so that what remained were simply featureless units. In partic-
ular, if two sets can be matched in a one—one manner, then they will have
the same cardinal number. Let M stand for some perfectly arbitrary set.
Then Cantor introduced the notation M for the cardinal number of that

set M.'* For example,* if
A={8O0N}, B={3,6,7,8}, and C={65},

*Note the use of curly braces {. ..} to signal that the items listed are thought of as
forming a set.
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then
A=B=4 and C=
Of course it is easy to set up a one—one matching between A and B:

& O 0O #
111
3 6 7 8

What happens when two sets do not have the same cardinal number?
In symbols, it is a question of sets M and N such that M # N. In such
a case, one of the two cardinal numbers is the larger and the other, the
smaller. Using the standard symbols < (“is less than”) and > (“is greater
than”), we can write M<N (or equivalently, N > M) to indicate that it
is N that has the larger cardinal number. To prove that this is indeed the
case what is needed is a one—one match-up between M and some subset
of N.1* Thus, in the example above where A>C (because 4 > 2), the
subset {$O} of A can be matched with C like this:

5
{
Q@

<S> - o

As long as one sticks to finite sets, all of this might well seem to be a
matter of expressing simple familiar matters in abstruse terms. Indeed, the
power of Cantor’s ideas only becomes apparent when applied to infinite
sets. Cantor called the cardinal numbers of infinite sets transfinite. His
first example of a transfinite number was the cardinal number of the set of
natural numbers for which Cantor introduced the symbol Rg. Ry is usually
read “aleph-null,” R being the first letter of the Hebrew alphabet.*

*Perhaps because of Cantor’s use of the Hebrew alphabet, there has been a rather
widespread assumption that he was a Jew. In fact, his parents were Christians and
he was brought up in the Lutheran faith. During the Nazi period, the possibility
that there were Jewish ancestors was deemed of some importance in Germany in
deciding whether his mathematics was acceptable. Indeed there is some reason to



CANTOR: OETOUR THROUGH INFINITY 1

Cantor used the symbol C for the cardinal number of the set of real
numbers (because the set of real numbers is sometimes called the con-
tinuum). Cantor was convinced that C was the very next transfinite car-
dinal number after Ry. The statement that this is true, that is, that there
are no cardinal numbers between Ry and C, is known as Cantor’s Con-
tinuum Hypothesis. Despite intense efforts over many years, Cantor was
never able to resolve the matter: he could neither prove nor disprove the
Continuum Hypothesis. This failure caused Cantor no end of distress.
With what we know today, we can see that poor Cantor was just bashing
his head against a stone wall. Fundamental discoveries by Kurt Gédel in
1938 and Paul Cohen in 1963 revealed that if the Continuum Hypothesis
can be resolved at all, it will require going beyond the methods of ordinary
mathematics. So Cantor’s inability to settle the matter is hardly surpris-
ing. Indeed, even today, experts are divided on the question of whether
the Godel-Cohen negative results are the best that can be expected or
whether new powerful methods may yet yield a more satisfying result.

In Cantor’s work on trigonometric series he was led to consider a cer-
tain process that could be applied over and over again in stages: a first
stage, a second stage, a third stage, and so on. But what pulled Cantor
over the edge into the transfinite was the realization that even after all
these infinitely many stages, there was more. Soon he was speaking of an
w' stage, an (w + 1) stage, and beyond and developing the arithmetic
of what he came to call transfinite ordinal numbers.* Let’s look first at the
finite set {&<PV}. Its members can be ranked in six different ways:

15t an 3rd 15t an 3rd 15t an 3rd 15t an 3rd I8t an 3rd I8t an 3rd

L A A I e A e e A A
L RV TRV R I IV RV SRR TR AV )

believe that, on his father's side, there was a Jewish ancestor who had been expelled
from Portugal during the last decade of the fifteenth century. In a letter dated April
30, 1895, Cantor gave his own explanation for his use of the Hebrew alphabet (my
translation): “It seemed to me that for this purpose, other alphabets were [already]
overused.” (I'm indebted to Sherman Stein who showed me a copy of this letter.)
*w is the last letter in the Greek alphabet and is pronounced “omega.”
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However, these six rankings all exhibit the same pattern: a first item, fol-
lowed by a second item, followed by a third item. This is true of any finite
set: All of the different ways of ranking its members exhibit the same un-
derlying pattern. If the set consists of % items, any ranking will show a
first item, a second item, . . . and finally an nth item. Cantor saw that with
infinite sets the situation is entirely different. Infinite sets can be ranked
in different ways with very different patterns. For example, suppose the
natural numbers 1,2, 3, ... are arranged so that all of the even numbers
precede all of the odd numbers like this:

2,4,6,...1,3,5....

If we try to use ordinal numbers to show the rank of each item in the pro-
gression, we find that the familiar finite ordinal numbers are all used up
in taking care of the even numbers:

| L S
A A 1Ll
2 4 6 1 3 5

Cantor saw how to use transfinite ordinal numbers to handle this difficulty.
So after all the finite ordinal numbers, Cantor postulated a first transfinite
ordinal number he designated by the Greek letter w. This was then fol-
lowed by w + 1, w + 2, and so on. Cantor could then have provided ranks
for the odd numbers in the above example quite easily:

1 2nd 3rd o wth (w + l)th (w + 2)£h
oLl | | |
2 4 6 ... 1 3 5

Cantor found that the natural numbers could be ranked in many differ-
ent ways using larger and larger transfinite ordinal numbers. He called
the finite (ordinal) numbers, that is the natural numbers 1,2,3,. .., the
first number class and the transfinite ordinal numbers needed to supply
ranks in different arrangements of the natural numbers the second num-
ber class. Considering the set of transfinite ordinal numbers constituting
this second number class, Cantor designated its cardinal number by the
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symbol ®;. Remarkably, Cantor was able to prove that R is the very next
cardinal number after the smallest transfinite cardinal number Rg. So,
R; > N, and there are no cardinal numbers that are larger than Ry and
smaller than ¥;.

Now, the Continuum Hypothesis that Cantor had been trying so hard
to prove is the statement that C is the very next cardinal number after Xy.
Since he knew that X really is the next cardinal number after Rg, the Con-

tinuum Hypothesis amounted to the succinct question:
?
C= N

Unfortunately, simply writing this equation brought Cantor no closer to
proving that it was true.

First and second number classes. Is there a third number class? Ab-
solutely! In ranking sets with cardinal number X; the numbers of the
first and second number classes do not suffice. Cantor introduced w
as the transfinite ordinal number beginning the third number class, and
he called the cardinal number of the set of all ordinal numbers in this
third number class ;. Then, X, turned out to be the very next cardinal
number after R;. Cantor saw that there is no end to this process: after R,
comes N3, then N4, and so on. And after all of these comes X, and on
and on.

In developing these ideas Cantor was exploring a domain that had been
visited by no one before him. There were no mathematical rules on which
he could rely. He had to invent it all himself relying on his intuition. Con-
sidering the nature of the terrain he was investigating, it is remarkable
that the bulk of his work has held up very well. But from the beginning
there were those who opposed Cantor’s entire enterprise. Kronecker’s an-
tagonism has already been mentioned. A story that has been circulating
among mathematicians and has been widely believed has it that the in-
fluential French mathematician Henri Poincaré said that one day Cantor’s
set theory “would be regarded as a disease from which one had recovered.”
Although the story seems to be apocryphal, its very currency shows what

Cantor was up against.
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THE DIAGONAL METHOD

If students today learn one thing that Cantor accomplished, it is almost
certainly his so-called diagonal method. This method was published in
a paper of only four pages in 1891 after Cantor had all but ceased do-
ing mathematical research and after his definitive articles on transfinite
numbers had been published and even reprinted. It was in 1874 that
Cantor had published his proof that there is no one—one correspondence
between the natural numbers and the real numbers, or, as Cantor would
later express it, Ry < C. The proof used methods borrowed from the basic
theory of limit processes as developed by Weierstrass. Using the diagonal
method, the same conclusion is obtainable from basic logical principles.
The diagonal method will come up again and again in our story .

In explaining the diagonal method, it will be helpful to use the metaphor
of a labeled package. What will be special is that the things used as labels
will be exactly the same sort of thing that is inside the package. As an
example, consider the four suits in a deck of playing cards: & OM. Let
us use each of them as a “label” on a “package” containing some of these
same suits, like this:

L) O % L]
! ! ! !
{00} {0} {O0VA} {&O}

We can exhibit the same information in the form of a table in which we
use a + to indicate that an item is inside a package and a — to indicate
that it is not:

LARNARNEE)
dlOo|+|+]~-
Sl-|e|— |+
Q-1+ |@|+
|+ +]—-©
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In this table, the vertical column on the left lists the four labels and
the contents of the packages are displayed in horizontal rows. The + and
— signs along the diagonal are encircled for emphasis. Now the diagonal
method is a technique for combining the same kind of item into a new
package whose contents are different from each of the labeled packages.
Here’s how it works: we make a new table in which we insert the opposite
sign to the one on the diagonal for each item. Thus, since the sign that
goes with & is —, in our new table, & gets a + sign. Similarly > gets —,
Q© gets —, and finally & gets +. Like this

So, our new package is {d#}. How can we be sure that it is different
from any of the labeled packages? Well, it can’t be the package labeled by
&, because & is not in that package and it is in our new package. It can't
be the package labeled by <, because <$ is in that package and it is not in
our new package, and so on.

Now the packages are, of course, sets. And the labeling is a way of set-
ting up a one—one matching between the sets and members. The method
is perfectly general: it doesn’t matter whether you begin with a finite set
or an infinite set. If you use each element of that set to label some one
particular set made up of some of those same elements, then the diagonal
method can be used to obtain a new set of those elements, different from
all the sets that have been labeled.

Let’s see how this would work if we begin with the set of natural num-
bers 1,2,3,.... We imagine putting some of these numbers into a pack-
age. One package might consist of just the numbers {7, 11, 17}. Another
might consist of all of the even numbers. Now let us imagine using the

natural numbers themselves as labels, as in the following infinite array:
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where each of M|, M2, M3, My, ... is a package of natural numbers. At
this point, we manufacture our new set M different from every one of
these by using the following table:

—if lisin M | otherwise +
—if 2isin M, | otherwise +
—if 3isin M3 | otherwise +

S W N

—if4isin M4 | otherwise -+

In other words, 1 belongs to M just in case 1 doesn't belong to M; 2
belongs to M just in case 2 doesn’t belong to M3; and so on. Therefore, M
is a set of natural numbers different from M, different from M;, and so
on. Now because M, M, M3, My, ... stands for any possible one—one
matching between the numbers 1,2, 3, ... and sets of natural numbers,
we see that no such matching can include all sets of natural numbers. In
other words, the cardinal number of the set of all sets of natural num-
bers is greater than Rg. Actually, it is possible to prove that this cardinal
number is none other than C, the cardinal number of the set of real num-
bers.!> Thus, the diagonal method provides another way to see that there
are more real numbers than natural numbers.

This method is so very general that it provides another way (differ-
ent from Cantor’s successive Rs) to generate lots of transfinite cardinal
numbers. For example, we can think of packages of real numbers labeled
by real numbers. The diagonal method shows that no such labeling can
include all sets of real numbers. Hence the cardinal number of the set
of all such sets must be greater than C, the cardinal number of the set
of real numbers.!® And, there is no need to stop there. The question
of how cardinal numbers obtained in this manner are interlaced with
Cantor’s R, X}, Ry, ... remains a source of difficulty and controversy to
this day.
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DEPRESSION AND TRAGEDY

From the first Cantor faced opposition based on objections to the very idea
that finite human beings living in a finite world could hope to make mean-
ingful assertions about the infinite. But just around the turn of the century,
things became much worse with the discovery that unfettered reasoning
with Cantor’s transfinite could lead to very paradoxical and even ridicu-
lous results. The trouble all began with attempts to collect the totality of
Cantor’s transfinite cardinal or ordinal numbers into a single set. If there is
a set of all cardinal numbers, what could its cardinal number be? It turned
out that it would have to be larger than any cardinal number. How could
this be? How could a cardinal number be larger than all cardinal numbers?

Shortly after Cantor became aware of this disconcerting paradox, the
Italian mathematician Burali-Forti found a similar difficulty in trying to
deal with the set of all transfinite ordinal numbers: he showed that such a
set would lead to a transfinite ordinal number larger than any transfinite
ordinal number, clearly a ridiculous conclusion. Then Bertrand Russell
came on the scene and delivered the most shocking blow of them all. He
considered the question, Can there be a set of all sets? If there were such
a set, what would happen if the diagonal method were applied to it? In
other words, what if we thought of packaging up arbitrary sets and then
used sets to label the packages? Of course, we'd get a set different from
all those that had been provided with labels. It was in contemplating this
situation that Bertrand Russell found his famous paradox of the set of all
those sets not members of themselves. This was the paradox, discussed in
the previous chapter, that Russell communicated to the shattered Frege.

Although Russell discovered his paradox by thinking about Cantor’s
ideas, the paradox itself does not depend at all on considerations involv-
ing transfinite numbers. To many mathematicians it seemed as though the
most basic logical reasoning had become unreliable, filled with pitfalls.
Not surprisingly, most mathematicians continued their usual work remote
from these matters. But for those who were concerned with fundamental
issues about the nature of mathematics, the situation was nothing less
than a crisis in the foundations of mathematics. These mathematicians

and philosophers soon found themselves dividing into opposing camps.
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In particular there were those who saw set theory as an integral part of
mathematics to be preserved at all costs and those who sought to insu-
late the body of mathematics from contamination by Cantor’s transfinite.
Work by logicians during the first three decades of the twentieth century
was dominated by these issues.

Cantor suffered the first in a series of nervous breakdowns in 1884,
an intense depression that lasted about two months. Having recovered,
Cantor attributed his mental problems to the intensity of his work on
the Continuum Hypothesis and to his difficulties with Kronecker. At
this time he even wrote Kronecker a letter proposing that they renew a
friendly relationship, to which Kronecker responded cordially. Cantor’s
explanation of his difficulties was widely accepted for many years despite
several episodes of what is now viewed as manic-depressive illness. Re-
gardless of the severity of external events, it is now generally understood
that the disorder’s fundamental cause is rooted in defective brain chem-
istry, with environmental factors like Cantor’s difficulties with Kronecker
and the Continuum Hypothesis precipitating rather than causing major
disruptions.!”

This episode pretty much marked the end of Cantor’s groundbreak-
ing work in the theory of sets, except for the paper already mentioned on
the diagonal method. More and more, between episodes of severe men-
tal illness, Cantor concerned himself with philosophy, theology, and, of all
things, the question of the authorship of Shakespeare’s plays. About this
last topic, Cantor developed notions of the significance of this work and of
those eager to suppress it that bordered on paranoia. The year 1899 was a
year of crisis and tragedy for Cantor: it was the year in which he first faced
the paradoxes of set theory and suffered a devastating loss with the death
of his beloved thirteen-year-old son.

It was not Georg Cantor’s style to pursue a subject as a dilettante.
He made himself an expert on the Elizabethan period in general and on
Shakespeare’s plays in particular and published a number of monographs
purporting to prove that the plays had been written by Francis Bacon.
This, of course, had nothing to do with set theory or the transfinite. How-
ever, Cantor saw his investigations in philosophy and theology as definitely
connected with his work on the infinite. Cantor believed that beyond the
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transfinite there is an absolute infinite that mere human understanding
can never fully encompass. Even the bedeviling paradoxes that arose in
set theory were to be understood from this point of view. For example, the
multitude of all transfinite cardinals should be regarded as being abso-
lutely infinite, and that is why contradictions arise from thinking of them

as merely transfinite.

A DECISIVE BATTLE?

In German philosophical thought, the towering figure was Immanuel
Kant, whose critical philosophy was framed by two key questions:

* How is pure mathematics possible?

* How is pure natural science possible?

Kant’s answer to the first question relied on what he called “pure intu-
itions” of space (for geometry) and of time (for arithmetic). He conceived
of these intuitions as being entirely independent of empirical sensa-
tions.!® Despite Kant’s emphasis on the importance of science, post-Kant
philosophy in nineteenth-century Germany evolved in a different direc-
tion, moving to an absolute idealism that conceived of ideas and concepts
as primary and sought to understand the world almost as though these
were what it was made of. One of the leaders of this movement was Georg
Wilhelm Friedrich Hegel, whose lectures were attended by hundreds of
eager disciples. Hegel had many followers (among whom, famously, were
Karl Marx and Friedrich Engels), and scholars still find much worthwhile
in his writings. However, he was capable of contorted reasoning that sim-
ply invites ridicule, especially in his massive two-volume Science of Logic
in which readers were asked to ponder the deep thoughts:

Nothing is simple equality with itself.
Being is Nothing.

Nothing is Being.
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Both of these categories in the transition from each to the other dissolve

into the further category: Becoming.

Meanwhile, toward the end of the century, deriving its impetus in part
from the “positivistic” ideas of Auguste Comte, and partly from develop-
ments in science, a new “empiricist” philosophy was developing in Ger-
many. For the empiricists, the primary items in terms of which the world
is to be understood are sense data. Cantor saw this empiricism as a re-
action to nonsense like Hegel’s, but found it to be crude and simplistic.
The great scientist Hermann von Helmholtz, one of the principal expo-
nents of empiricist philosophy, wished to bring back Kant’s central focus
on empirical science. A little pamphlet he wrote on counting and measur-
ing infuriated Georg Cantor. In 1887, in an article surveying transfinite
numbers from mathematical, philosophical, and theological viewpoints,
Cantor made a point of attacking this pamphlet as expressing an “extreme
empirical-psychological point of view with a dogmatism one would not
have thought possible.” He went on to complain:

Thus, in today's Germany we see, as a reaction against the overblown
Kant-Fichte—Hegel-Schelling Idealism, an academic-positivistic skepti-
cism that powerfully dominates the scene. This skepticism has inevitably
extended its reach even to arithmetic, in which domain it has led to its
most fateful conclusions. Ultimately, this may turn out most damaging to

this positivistic skepticism itself.!?

This article was included in a collection of Cantor’s papers dealing with
the transfinite published in 1890. Frege, given the task of reviewing the
volume, chose to emphasize the remark just quoted. In a remarkable pas-
sage (already quoted in part at the beginning of this chapter), appearing in
print just a decade before he was to receive Bertrand Russell’s devastating
letter, Frege wrote:

Yes indeed! This is the very reef on which this doctrine will founder. For
ultimately, the role of the infinite in arithmetic is not to be denied; yet,

on the other hand, there is no way it can coexist with this epistemological



CANTOR: DETOUR THROUGH INFINITY 81

tendency. Thus we can foresee that this issue will provide the setting for

a momentous and decisive battle,20

Georg Cantor died rather suddenly of heart failure on January 6, 1918,
while World War I was still raging. Today although the battle that Frege
predicted in his military metaphor has provided many surprises, it has
hardly resulted in any decisive outcome. Perhaps the most surprising
byproduct of this battle was Alan Turing’s mathematical model of an all-

purpose computer.



C HAPTEHR F I VE

HILBERT TO
THE RESCUE

In 1737, George |l of England, son of Leibniz’s last patron George I,
founded a university in the medieval town of Géttingen located on the
Leine River in central Germany. The city walls, several Gothic churches,
and half-timbered houses on old streets survive to this day in this charm-
ing university town. Géttingen University has a proud tradition of math-
ematical excellence dating back to the nineteenth century, having been
home to such mathematical greats as Carl Friedrich Gauss, Bernhard Rie-
mann, Lejeune Dirichlet, and Felix Klein. But the true glory days for math-
ematics in Géttingen came in the twentieth century when, drawn mainly
by David Hilbert’s reputation, students from everywhere came to what re-
mained the undisputed world center for mathematics until the exodus re-
sulting from the Nazi takeover of Germany in 1933.

During my own graduate student days in the late 1940s, anecdotes
about Géttingen in the 1920s were still being repeated from one genera-
tion of students to the next. We heard about the endless cruel pranks that
Carl Ludwig Siegel played on the hapless Bessel-Hagen, who remained
ever gullible. My own favorite story was about the time that Hilbert was
seen day after day in torn trousers, a source of embarrassment to many.
The task of tactfully informing Hilbert of the situation was delegated to his
assistant, Richard Courant. Knowing the pleasure Hilbert took in strolls
in the countryside while talking mathematics, Courant invited him for
a walk. Courant managed matters so that the pair walked through some
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thorny bushes, at which point Courant informed Hilbert that he had ev-
idently torn his pants on one of the bushes. “Oh no,” Hilbert replied,
“they've been that way for weeks, but nobody notices.” It was during
these same 1920s that Hilbert mounted a remarkable campaign to use
mathematics to validate itself. It was a strange sequence of events that
led from Hilbert’s campaign to Alan Turing’s insight into the nature of
computation.

David Hilbert was born and grew up in a Protestant family in the town
of Konigsberg in the Eastern part of Prussia, a town proud to remember
that it had been the home of the philosopher Immanuel Kant. In 1870,
when Bismarck orchestrated a war with the France of Napoleon IIT and
used the stunning German victory to accomplish the unification of Ger-
many into an empire with the King of Prussia as its Kaiser, Hilbert was a
child of eight. By the time he entered the University of Kénigsberg to study
mathematics, his remarkable talent for the subject had been recognized
and his characteristic style of absorbing mathematics in conversation es-
tablished. With his friends Hermann Minkowski and Adolf Hurwitz, he
would go on long walks, talking mathematics all the way.!

During the two centuries that had elapsed between the invention of the
calculus by Leibniz and Newton and the years when David Hilbert was
becoming a mathematician, a host of workers had found many spectacu-
lar applications of limit processes. Many of these results were obtained by
purely formal manipulation of symbols with little concern for their under-
lying meaning. But by the middle of the nineteenth century, a day of reck-
oning had arrived. Problems were arising that demanded conceptual un-
derstanding that went beyond mere symbols. At the forefront of this effort
were Georg Cantor, his teacher Karl Weierstrass, and his friend Richard
Dedekind.

In 1888 Hilbert went on a trip to the major centers of mathematics in
Germany to make contact with the leading figures in his field. In Berlin he
visited Cantor’s nemesis Leopold Kronecker, renewing an acquaintance
he had made two years earlier. Kronecker was a great mathematician,
some of whose work was to play a fundamental role in Hilbert's own ac-
complishments. But, as Hermann Weyl, Hilbert’s one-time student, wrote

in an obituary notice half a century later, Hilbert saw Kronecker as using
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“his power and authority to stretch mathematics upon the Procrustean
bed of arbitrary philosophical principles.” These principles led Kronecker
to a profoundly negative attitude toward a good deal of the mathematics
of his day. It was not only Cantor’s transfinite that Kronecker found objec-
tionable but also the entire effort by Weierstrass, Cantor, and Dedekind
to provide a firm rigorous foundation for the limit processes of the calcu-
lus. Kronecker dismissed these efforts as worthless. He was particularly
insistent that mathematical proofs of existence be constructive. That is, to
be acceptable to Kronecker, a proof that there actually are mathematical
entities satisfying certain conditions would have to provide a method to
exhibit explicitly the entities in question. Hilbert would soon challenge
this dictum in his own work. Many years later, he would explain the dis-
tinction to students by pointing out the certainty that among the students
in the lecture hall (none of whom, apparently, was totally bald), there
was one with the least number of hairs on his head, although he had no

evident way to identify such a student.?

HILBERT’S EARLY TRIUMPHS

The world is in flux, but some things do not change. Mathematicians are
often concerned with finding out exactly which things stay the same when
other things change. In such a case, they speak of things that are invariant
under certain transformations. The investigation of what came to be called
algebraic invariants was initiated by George Boole in one of his early pa-
pers.3 By the final quarter of the nineteenth century, algebraic invariants
had become a major focus of mathematical research. Heroic bouts of alge-
braic manipulation were brought to bear on the problem of finding invari-
ants. A true virtuoso in this endeavor was the German mathematician Paul
Gordan, dubbed by his contemporaries the “king of invariants.” Thread-
ing his way through thickets of algebra, Gordan was led to conjecture a
simplifying theorem about the structure of algebraic invariants. According
to Gordan’s conjecture, in considering all of the invariants of a particular
algebraic expression, there would always be a finite number of key invari-
ants in terms of which all of the others could be expressed by means of a
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simple formula. However, his direct onslaught enabled him to prove his
conjecture only in a very special case. Gordan’s conjecture was regarded
as one of the major problems faced by mathematicians of the day, and it
was generally supposed that the person who managed to prove it would do
so by displaying a virtuosity with manipulative algebra rivaling Gordan’s.
In this climate, David Hilbert’s proof of Gordan’s conjecture came as a
great shock. Instead of complicated formal manipulations, Hilbert relied
on the power of abstract thought.

It was after meeting Gordan himself that Hilbert found himself capti-
vated by the problem Gordan had set. His solution, found after six months
of work, rested on an extremely general result known today as Hilbert's
Basis Theorem, the proof of which was quite straightforward. Using this
Basis Theorem, Hilbert demonstrated that the supposition that Gordan’s
conjecture is false leads to a contradiction. This spectacular proof of Gor-
dan’s conjecture could not have been satisfactory to Kronecker because
of its nonconstructive nature. Instead of furnishing a list of the key in-
variants whose existence Hilbert had established, this proof had merely
shown that the supposition of their nonexistence would lead to a contra-
diction. However, with its demonstration of the power of abstract thought,
Hilbert’s proof opened a window on the mathematics of the coming cen-
tury. The more general viewpoint uncovered by Hilbert’s proof had the in-
cidental effect of killing the classical theory of algebraic invariants. Today,
Gordan is mainly remembered for his reaction to Hilbert’s proof. “This is
not mathematics,” he exclaimed, “it is theology.”

After the sensation created by his solution of Gordan’s problem, which
had immediately elevated him to the first rank among contemporary math-
ematicians, Hilbert did not rest on his laurels. But before leaving the the-
ory of invariants for good, he cleaned up some details, in particular giv-
ing another proof of Gordan’s conjecture that was fully constructive.* In
addition he published a veritable barrage of papers on a variety of math-
ematical topics. Strikingly, one short paper had an unmistakably Canto-
rian flavor that Kronecker surely would have disdained. However, notwith-
standing his prolific output, Hilbert’s practical career continued to lan-
guish as he remained for years a Privatdozent in Kénigsberg, dependent

for his meager earnings on fees for his lectures. In one case, he delivered
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an entire course of lectures to just one student, a mathematician from Bal-
timore. In a letter to his good friend Minkowski, Hilbert remarked ironi-
cally that there were eleven Dozents competing for the same number of
students.

The year 1892 marked some crucial changes in young Hilbert’s life. It
all began with the death of the sixty-eight-year-old Kronecker just before
the new year and the retirement of Karl Weierstrass. The closed world
of academic mathematical life in Germany began to unfreeze, leading
to a virtual game of academic musical chairs in German mathematics.
At last, after six years as a Dozent, Hilbert could finally move into a
regular academic position at Kénigsberg. In this same year he married
Kithe Jerosch, his favorite dancing partner. A year later, his son Franz
was born. Meanwhile, Felix Klein, the leading light of the mathematics
faculty at Géttingen, was determined to lure Hilbert there. By the spring
of 1895, Klein's maneuverings had proved successful and Hilbert had
moved to Géttingen, where he remained until his death forty-eight years
later.

If Hilbert's dazzling proof of Gordan’s conjecture had brought clo-
sure to the classical theory of algebraic invariants, his comprehensive
Zahlbericht (literally, “report on number”), produced at the behest of the
German Mathematical Society, was an opening onto a vast mathematical
panorama. The Society had expected a report on the current state of a
relatively new branch of mathematics, algebraic number theory, a topic
many mathematicians had been finding baffling.> What they got was a
critically thought-out reworking of the field from first principles. We were
still studying it with pleasure and profit in my graduate student days half
a century later.

Hilbert had come to Géttingen with lectures already prepared for
courses on a great variety of mathematical subjects, because of the lec-
tures he had been giving during his Dozent days in Kénigsberg. Otto Blu-
menthal, the first of the sixty-nine students to complete a doctoral disser-
tation under his supervision, was able to report forty years later his clear
recollection of the impression Hilbert made on him on when he arrived in
Gottingen: “This medium-sized, nimble man with his broad reddish beard
and his quite ordinary clothes seemed quite unprofessorial. .. [in com-
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parison to the other professors].” Blumenthal describes Hilbert’s lectures

as

very much to the point, but with a rather dull delivery style and a tendency
to repeat important propositions. However, the rich content and the sim-
ple clarity of the presentation led one to forget the form. He would intro-
duce things that were new and that he himself had done, without making
a special point of it. It was evident that he took pains to see that everyone

understood; he lectured for the students, not for himself.®

Students were astonished to find that for the winter 1898 term, Hilbert
was proposing to give a course entitled “Elements of Euclidean Geom-
etry.” They had thought of him as being entirely immersed in algebraic
number theory and had no notion that he might be interested in geometric
subjects. The topic announced seemed particularly strange because Eu-
clidean geometry was, after all, a subject in the secondary school curricu-
lum. Astonishment only grew when the course began and the students
found themselves exposed to an entirely new development of the founda-
tions of geometry. This was the first hint of Hilbert’s profound interest in
the foundations of mathematics. It is this interest that will provide our main
focus. In his lectures, Hilbert provided a set of axioms for geometry that
plugged some gaping holes in Euclid’s classic treatment. He emphasized
the abstract nature of the subject: it must be shown by pure logic that
the theorems follow from the axioms without the corrupting influence of
what we can “see” by looking at a diagram. In a famous anecdote, he is
alleged to have said that the theorems must continue to hold if, instead
of points, lines, and planes, one were to talk of “tables, chairs, and beer
mugs” so long as these latter objects are assumed to obey the axioms. Fi-
nally, to put a cap on his achievement, Hilbert provided a proof that his
axioms are consistent, that no contradiction can be derived from them.
This proof showed that any inconsistency in his axiom system for geome-
try would result in an inconsistency in the arithmetic of real numbers. So
what Hilbert had done was to reduce the consistency of Euclidean geom-
etry to that of arithmetic, leaving the problem of the consistency of arith-

metic for another day!
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ToOwARD A NEW CENTURY

The mathematicians present at an international conference in Paris in Au-
gust 1900 inevitably wondered what the new century would bring to their
subject. It was on a sultry day that the thirty-eight-year-old David Hilbert,
whose stunning accomplishments had taken him to the top of his profes-
sion, delivered an invited address in which he presented, as a challenge to
the mathematicians of the twentieth century, twenty-three problems that
seemed utterly inaccessible by the methods available at the time.” In a
burst of characteristic optimism, Hilbert declared that every mathemati-
cian shares the conviction “that every definite mathematical problem must
necessarily be susceptible of an exact settlement . . . . This conviction. . . is
a powerful spur to our work. We hear within us the perpetual call: There is
the problem. Seek its solution. You can find it by pure reason.” The very first
problem on Hilbert’s list was that of deciding the truth of Cantor’s Con-
tinuum Hypothesis (the assertion that there are no sets with a cardinal
number between that of the set of natural numbers and that of the set of
all sets of natural numbers). This was a ringing endorsement of Cantor’s
transfinite at a time when the threat posed by paradoxes could be seen as
vindicating Kronecker’s negativism.

The second problem was precisely the loose end left by Hilbert’s proof
of the consistency of the axioms of Euclidean geometry—to somehow es-
tablish the consistency of the axioms for the arithmetic of real numbers.
Previous consistency proofs had been proofs of relative consistency; this
means that they had worked by reducing the consistency of one set of ax-
ioms to that of another. But Hilbert realized that with arithmetic he had
reached logical bedrock, and new direct methods would be needed. This
problem also provided an opportunity for Hilbert to explain his own view
of the meaning of existence in mathematics. Whereas Kronecker had pro-
claimed that to prove the existence of mathematical entities requires that
a method be provided for constructing or exhibiting the items in question,
for Hilbert existence simply required a proof that assuming the existence
of such entities would not lead to a contradiction: “if it can be proved
that the attributes assigned to a concept can never lead to a contradiction
by the application of a finite number of logical processes, I say that the
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mathematical existence of the concept.. .is thereby proved.” According
to Hilbert, the contradiction arising from supposing the existence of a set
consisting of all of Cantor’s transfinite cardinal numbers merely showed
that such a set does not exist. Especially after the paradox that Bertrand
Russell communicated to Frege in his devastating letter of 1902 became
generally known, the difficulties with the foundations of mathematics be-
gan to be seen as constituting a crisis, and the problem of the consistency
of arithmetic continued to fester. It was only during the 1920s that Hilbert
with his students and disciples launched a frontal attack on this problem,
with consequences they could hardly have foreseen.

The set of problems that Hilbert proposed in 1900 has fascinated
generations of mathematicians. The problems spanned a great variety
of topics in pure and applied mathematics, and presaged the breadth of
Hilbert’s own contributions to come. In his obituary essay about Hilbert,
Hermann Weyl commented that anyone who had solved one of the prob-
lems on Hilbert’s list thereby entered “the honors class of the mathemati-
cal community.” In 1974, the American Mathematical Society sponsored
a special symposium (I was privileged to be a participant) in which ex-
perts were invited to speak on the mathematical developments that had
arisen from these problems in the intervening years. The fecundity of
the Hilbert problems can be seen in the fact that the proceedings of this
symposium were published in a volume of over six hundred pages.®

KRONECKER’S GHOST

The misgivings many mathematicians felt about Cantor’s transfinite, and
indeed about the entire direction of foundational research, came to a head
with Bertrand Russell’s making known the contradiction he had found in
what seemed to be straightforward reasoning. As we have seen, Frege sim-
ply gave up on his life’s work when he received a letter containing Russell’s
paradox. One may wonder whether he recalled the prophecy he had made

ten years earlier:
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For ultimately, the role of the infinite in arithmetic is not to be denied; . . . Thus
we can foresee that this issue will provide the setting for a momentous

and decisive battle.?

Although Frege and Cantor’s friend Dedekind withdrew from the battle,
there was no lack of warriors to enter the fray. In the early years of the
twentieth century, Hilbert and Henri Poincaré were generally thought to
be the two greatest living mathematicians and they both engaged with
gusto, but on opposite sides. After 1900, the next International Congress
of Mathematicians occurred in 1904, two years after Russell had an-
nounced his paradox. In Hilbert’s address to the congress, he made evi-
dent his approach to the crisis by outlining the form a consistency proof
for arithmetic might take.!® He did not fail to add that the proof could be
extended to encompass Cantor’s transfinite as well. Poincaré was quick to
observe that Hilbert was guilty of circular reasoning: the very methods the
proof was intended to justify were used in the supposed proof that those
methods cannot lead to a contradiction. It would be some years before
Hilbert came to terms with this objection. Poincaré saw some use in what
he called “Cantorism”; however, he insisted, “There is no actual (given
complete) infinity (Poincaré’s italics). The Cantorians have forgotten this,

"1 Here Poincaré echoed the

and they have fallen into contradiction.
words of Gauss written some eight decades earlier, already quoted in the
previous chapter: “I protest above all against the use of an infinite quan-
tity as a completed one, which in mathematics is never allowed.” Cantor’s
great life work had been a heroic challenge to this tradition.

Bertrand Russell was not one of those who retired from the battlefield.
He worked assiduously to develop a system of symbolic logic in terms of
which Frege’s project to reduce arithmetic to pure logic could be carried
out without running into the paradoxes. In communicating his efforts to
his contemporaries, he was aided greatly by the symbolization introduced
by the Italian logician Giuseppe Peano (essentially the one introduced in
Chapter 3), far easier to penetrate than Frege’s. Poincaré bitterly attacked
Russell’s efforts:



HILBERT TO THE RESCUE 93

It is difficult to see that the word if acquires when written D, a virtue it
did not possess when written if.!2

Nor did Poincaré fail to note that to take Russell’s effort seriously would
open the possibility of reducing mathematics to mere computation (Leib-
niz’s dream!) and to ridicule the very idea:

Thus it will be readily understood that in order to demonstrate a theorem,
it is not necessary or even useful to know what it means. . .. we might
imagine a machine where we should put in axioms at one end and take
out theorems at the other, like that legendary machine in Chicago where
pigs go in alive and come out transformed into hams and sausages. It is
no more necessary for the mathematician than it is for these machines to

know what he is doing.!3

Bertrand Russell’s effort to resurrect Frege’s program took the form of
the monumental three-volume work Principia Mathematica (published
1910-1913) that Russell authored with Alfred North Whitehead. This
work started out with the pure logic of Frege's Begriffsschrift and ended
with subject matter that was clearly mathematics with simple direct steps
in between, very much in the spirit of Poincaré’s Chicago machine. The
paradoxes were avoided by an elaborate and unwieldy structure of layers
in which, in effect, any particular set could only have members from just
one layer. This layering so crippled ordinary mathematics that a special
dubious axiom of reducibility was provided to cut through the fences that
had been erected between the layers.!* The Principia was also marred
by an underlying confusion. While Frege had understood clearly that he
was dealing with two levels of language, a new formal language he was
constructing and ordinary language in which this new language could be
discussed, the Whitehead—Russell opus was unclear on this matter and
commingled the two levels.!> This meant that the problem of the consis-
tency of the entire structure, so crucial for Hilbert, would not even arise in
Russell’s context. Despite all this, the Principia was a landmark achieve-
ment demonstrating once and for all that the complete formalization of

mathematics in a system of symbolic logic is perfectly feasible.
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While Bertrand Russell labored to find a logical basis for the full
breadth of classical mathematics while avoiding the paradoxes, a brilliant
young Dutch mathematician, L. E. J. Brouwer had convinced himself
that much of it was fatally flawed and needed to be discarded. Brouwer’s
doctoral dissertation of 1907 showed such hostility to Cantor’s transfinite
and to much of contemporary mathematical practice that one might have
thought him possessed by Kronecker’s spirit. In 1905, Brouwer had taken
time from his mathematical pursuits to publish a short book, Life, Art and
Mysticism, drenched in romantic pessimism. After portraying life in this
“sad world,” as an illusion, this morose young man concluded with:

Look at this world, full of wretched people, who imagine that they have
possessions, . .. who now nurture an insatiable appetite for knowledge,
power, health, glory, and pleasure.

Only he who recognizes that he has nothing, that he cannot possess
anything, that security is unattainable, who completely resigns himself
and sacrifices all, who gives everything, who does not know anything, who
does not want anything and does not want to know anything, who aban-
dons and neglects all, he will receive all: the world of freedom is opened
to him, the world of painless contemplation and—of nothing.'®

Despite his praise for the life of self-abnegation, Brouwer embarked on
a self-righteous campaign to reconstruct mathematical practice from the
ground up so as to satisfy his philosophical convictions. Although he could
easily have chosen a conventional mathematical topic, he was determined
instead to write his doctoral dissertation on the foundations of mathemat-
cs.!7 His adviser reluctantly agreed, but, appalled by his prize student’s
insistence on injecting his strange and irrelevant ideas into his disserta-
tion, he wrote:

I have again considered whether I could accept Chapter 1I as it stands,
but honestly, Brouwer, I cannot. I find it all interwoven with some kind of
pessimism and mystical attitude to life which is not mathematics, nor has

anything to do with the foundations of mathematics.!8
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For Brouwer, mathematics exists in the consciousness of the mathemati-
cian and is ultimately derived from time as the “mathematical Primordial
Intuition.” The real mathematics is in the mathematician’s intuition and
not in its expression in language. Far from mathematics being logic (as
Frege and Russell had maintained), logic itself is derived from mathemat-
ics. For Brouwer, Cantor’s belief that he had found different sizes of infin-
ity was nonsense and his continuum problem was a triviality. Hilbert was
mistaken in claiming that consistency is all that is needed for mathemat-

ical existence. On the contrary:

to exist [Brouwer’s italics] in mathematics means: to be constructed by
intuition; and the question whether a certain language is consistent, is
not only unimportant in itself, it is also not a test for mathematical ex-
istence. !

Echoing Kronecker’s call for construction as the only valid method
for establishing existence in mathematics, Brouwer went further and
denounced the use of a fundamental law of logic, Aristotle’s law of the
excluded middle (which simply asserts that any proposition is either true
or false) when applied to infinite sets.2’ For Brouwer, some propositions
can neither be said to be true or to be false; these are propositions for
which no method is currently known by means of which this can be de-
cided one way or the other. Hilbert’s original proof of Gordan’s conjecture
used the law of the excluded middle in the way mathematicians usually
do: he showed that denying the conjecture would lead to a contradiction.
To Brouwer such a proof was unacceptable.

After completing his dissertation, Brouwer made a conscious decision
to temporarily keep his contentious ideas under wraps and to concen-
trate on demonstrating his mathematical prowess. The arena he selected
was the burgeoning new field of topology. He obtained a number of deep
results, including his important Fixed Point Theorem.* In 1910, when

*In 1994 the Nobel Prize in economics was awarded to three people, two
economists and the mathematician John Nash. The award to Nash was for a the-
orem from his doctoral dissertation of 1950 that had found numerous applications
in economics and elsewhere. In this dissertation, Nash had made ingenious use of
the Brouwer Fixed Point Theorem.
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the twenty-nine-year-old Brouwer published this fundamental principle,
he had already won Hilbert’s admiration. David Hilbert was greatly im-
pressed and even invited the younger man to join the editorial board of his
prized journal, the Mathematische Annalen, an invitation he would live to
regret. After obtaining a regular academic appointment at the University
of Amsterdam in 1912 (with the help of Hilbert, who was one of those
who wrote on his behalf), Brouwer felt free to return to his revolutionary
project which he was now calling intuitionism.

Hermann Weyl was Hilbert’s prize student, one of the great mathemati-
cians of his century, the one eventually chosen to take Hilbert’s place at
Géttingen. His interests spanned mathematics, physics, philosophy, and
even art. Much to Hilbert’s dismay, Weyl convinced himself that the foun-
dation for dealing with limit processes that had been erected by Weier-
strass, Cantor, and Dedekind was shaky. He couldn’t bring himself to ac-
cept the system of real numbers on which all of it was based. The entire
edifice, he famously declared, “is a house built on sand.”?! Weyl's own
attempt to reconstruct the continuum of real numbers, Das Kontinuum,
ultimately failed to satisfy him, and, when he learned how Brouwer pro-
posed to go about it, he was hooked. “. .. Brouwer, that is the revolution,”
he declared. This was too much for Hilbert, who may well have thought,
“Et tu, Brute
The country had lost the First World War and had been forced to accept
the humiliating Versailles treaty. The Social Democratic government that

1

The 1920s were indeed revolutionary times in Germany.

took power after the abdication of the Kaiser was beset by severe eco-
nomic problems and by attempts from the left and right to overthrow it.
Extreme rhetoric was to be heard on all sides. In this heady atmosphere,
in an address delivered in 1922, Hilbert responded to his former student’s
desertion as if to treason:

What Weyl and Brouwer are doing amounts in essence to taking the path
once laid out by Kronecker: they seek to provide a foundation for math-
ematics by pitching overboard whatever discomforts them and declaring
an embargo a la Kronecker. But this would mean dismembering and mu-
tilating our science, and, should we follow such reformers, we would

run the risk of losing a large part of our most valued treasures. Weyl
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and Brouwer outlaw the general notion of irrational number, of function,
even of number-theoretic function, Cantor’s [ordinal] numbers of higher
number classes, etc. The theorem that among infinitely many natural
numbers there is always a least, and even the logical law of the excluded
middle, e.g., in the assertion that either there are only finitely many prime
numbers or there are infinitely many: these are examples of forbidden the-
orems and modes of inference. I believe that impotent as Kronecker was
to abolish irrational numbers (Weyl and Brouwer do permit us to retain
a torso), no less impotent will their efforts prove today. No! Brouwer’s
[program] is not as Weyl thinks, the revolution, but only a repetition of an
attempted putsch with old methods, that in its day was undertaken with
greater verve yet failed utterly. Especially today, when the state power
is thoroughly armed and fortified by the work of Frege, Dedekind, and
Cantor, these efforts are foredoomed to failure.22

Noting the martial flavor of Hilbert’s diatribe, one might have thought
that he was among those numerous Europeans who greeted the coming
of war in 1914 with frenzied euphoria. But this was far from being the
case. From the first he let it be known that he regarded the war as fool-
ish. In August 1914, ninety-three famous German intellectuals addressed
a manifesto to “the civilized world” in response to the indignation in Eng-
land, France, and the United States over the actions of the German mili-
tary in Belgium, asserting: “It is not true that we have criminally violated
the neutrality of Belgium . . . It is not true that our troops have brutally de-
stroyed Louvain.” Hilbert had been asked to sign, but he refused, insist-
ing that he just didn’t know whether the charges were true. In 1917, five
years before Hilbert’s denunciation of Weyl and Brouwer, while bloody
trench warfare was still in the process of devouring a generation of Eu-
ropean men, Hilbert published a lauditory obituary notice about the re-
cently deceased great French mathematician Gaston Darboux. When stu-
dent demonstrators, gathered in front of his house, called for the repudi-
ation of this memorial to an “enemy mathematician,” Hilbert responded
by demanding and receiving an official apology.2> When opposition arose
to the proposal that the brilliant young mathematician Emmy Noether be
appointed Privatdozent at Gottingen, on the grounds that this could lead
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to a woman becoming a professor and a member of the university Sen-
ate, Hilbert declared: “I do not see that the sex of a candidate is an ar-
gument against her admission as a Privatdozent. After all, the Senate is
not a bath-house.”* In September 1917, while Germany and its neigh-
bor France were engaged in doing their best to slaughter one another’s cit-
izens, Hilbert delivered a lecture in Ziirich entitled “Axiomatic Thought”

that began with the provocative sentence:

Just as in the life of peoples, one folk can only flourish if things also go
well with all of its neighbors, and as the interest of the nations require
not only that order reigns within each individual nation, but also that re-
lations among the nations be properly arranged, so is it also in the life of

the sciences.?>

METAMATHEMATICS

The problem of the consistency of arithmetic was problem number two in
Hilbert's 1900 address to the International Congress of Mathematicians.
But it was only during the 1920s that Hilbert formulated his serious ap-
proach to the problem. His student Wilhelm Ackermann and his assis-
tant Paul Bernays worked closely with him; John von Neumann also con-
tributed.* Hilbert began with the logical system of the Whitehead—Russell
Principia Mathematica, and at first went along with the Frege—Russell goal
of defining number in purely logical terms. But he was soon led to abandon
this goal as untenable, while continuing to see the symbolic logic they had

*John von Neumann, one of the great mathematicians of the twentieth century, was
born in Budapest in 1903. A child prodigy, he grew up in a wealthy family, able and
willing to devote resources to nurturing his talent. He worked in a great variety of
topics in pure and applied mathematics (including mathematical physics and eco-
nomics). He became a member of the Institute for Advanced Study in Princeton at
its founding in 1933 and held this position until his death in 1957. During World
War II he became heavily involved in military problems, including the atomic bomb
project in Los Alamos. This interest, which continued into the Cold War period, led
to his concern for the development of advanced computational equipment.
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developed as crucial. In Hilbert's new program, mathematics and logic
were to be developed together in a purely formal symbolic language. Such
a language may be thought of being viewable from the “inside” or from the
“outside.” From the inside, it is just mathematics, with each tiny deduc-
tive step made utterly explicit. But from the outside it is only a lot of for-
mulas and symbol manipulation, which may be handled without regard to
meaning. The task was to prove that no pair of formulas could be derived
in the language that explicitly contradicted one another, or equivalently
(as it turns out), that such formulas as 1 = 0 or 0 # 0 cannot be derived.

The criticisms by Poincaré and Brouwer had to be faced: nothing
worthwhile could result from a consistency proof that relied on the very
methods it was intended to secure. Hilbert’s bold idea was a brand-new
kind of mathematics that he called metamathematics or proof theory. The
desired consistency proof was to be carried out within metamathematics.
While within the formal system the fullest unrestricted use of math-
ematical methods of every kind was to be permitted, metamathemati-
cal methods were to be restricted to methods beyond dispute, methods
Hilbert called “finitary.” Thus Hilbert hoped to be able to thumb his nose
at Brouwer and Weyl, saying in effect: I've proved that mathematicians
will never run into a contradiction using their usual methods, and I've
proved it using methods of which even you approve. Or as von Neumann
actually put it, “Proof theory should construct, so to speak, classical math-
ematics on an intuitionistic basis and in this way reduce intuitionism ad
absurdum.”2

Among the mathematical “treasures” his methods would rescue, Hilbert
emphatically included Cantor’s transfinite numbers, of which he said,
“This appears to me to be the most admirable flower of the mathematical
intellect and in general one of the highest achievements of purely rational

"27 Dismissing the criticisms of Brouwer and Weyl, he pro-

human activity.
claimed, “No one shall be able to drive us from the paradise that Cantor
created for us.”?® Prepared to concede that Hilbert’s program might well
succeed in its own terms, Brouwer remained unimpressed: “. . . nothing
of mathematical value will thus be gained: an incorrect theory, even if it

cannot be inhibited by any contradiction that would refute it, is none the
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less incorrect, just as a criminal policy is none the less criminal even if it
cannot be inhibited by any court that would curb it."?°

The battle of words between Hilbert and Brouwer escalated to one of
deeds when Hilbert resorted to quasilegal methods to dump Brouwer from
the editorial board of the Mathematische Annalen, leading Albert Einstein
to complain about “this frog and mouse” battle.3* The controversy be-
tween Hilbert and his collaborators, on the one hand, and Brouwer and
Weyl, on the other, was certainly rooted in basic philosophical questions
about the nature of knowledge. Indeed, views on both sides were heavily
influenced by the ideas of Immanual Kant. However, unlike much philo-
sophical controversy, the positions taken by Hilbert and Brouwer took the
form of programs, leading to quite specific problems, and thus were ex-
posed to the possibility of refutation by events.

The main problem facing Brouwer’s intuitionism was to actually carry
out the reconstruction of mathematics called for in his program, to con-
vince working mathematicians that they could carry on without the classi-
cal continuum of real numbers and without the law of the excluded mid-
dle and still not risk losing some of their most valued treasures. However,
the intuitionistic mathematics that Brouwer actually produced suffered
from what Weyl much later called “an almost unbearable awkwardness . . . ”
and made few converts.?! Although Brouwer never recanted his views,
he felt more and more isolated, and spent his last years under the spell
of “totally unfounded financial worries and a paranoid fear of bankruptcy,
persecution and illness.” He was killed in 1966 at the age of 85, struck
by a vehicle while crossing the street in front of his house.3? Perhaps the
greatest irony in the story is that intuitionism lives on after all, not, as
Brouwer had intended, as the corrected practice of working mathemati-
cians, but as the study of formal logical systems designed to incorporate
elements of his ideas.>*> Some of these systems have actually formed the
basis for working computer programs that carry out formal deductions.*

Of course, the principal problem posed by Hilbert’s program was the
problem with which it all began: the consistency of arithmetic. Acker-
mann and von Neumann worked on this problem and achieved partial
results, and it was believed that it was just a matter of sharpening tech-
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nique to get the full result. In 1928, Hilbert with his student Ackermann
published a skinny little textbook on logic based on the lecture courses
Hilbert (with Bernays’ assistance) had been giving since 1917. In this book
two problems were posed about the basic logic of Frege’s Begriffsschrift,
what has come to be called first-order logic. In a sense, both problems had
been in the air for some time, but it was Hilbert’s insight that logical sys-
tems could be viewed from the outside that led to the sharp form in which
they were stated. One of these problems was to prove that first-order logic
is complete in the sense that any formula that viewed from the outside is
valid, can be derived inside the system using only the rules proposed in
the textbook. The second, which became known as Hilbert's Entscheid-
ungsproblem, was to provide a method that would, given a formula of
first-order logic, determine in a finite number of well-defined effective
steps whether or not that formula is valid. As we shall see in Chapter 7,
these two problems, especially the Entscheidungsproblem, brought into
the twentieth century, as concrete problems for mathematicians to solve,
the hopes about which Leibniz could only dream in the seventeenth.
Also in 1928, Hilbert addressed an International Congress of Mathe-
maticians in Bologna. Except when international conditions made it im-
possible, these Congresses took place regularly at four-year intervals. Of
course, there was no Congress in 1916. Conferences were held in 1920
and 1924, but the postwar bitterness was so great that the Germans were
not invited. It was Hilbert who insisted that the German mathematicians
accept the invitation to attend the 1928 Congress, against the protests of
those, like Ludwig Bieberbach (later a Nazi) and Brouwer, who wanted
the meeting boycotted as a protest against the Versailles Treaty. In his ad-
dress, Hilbert posed a problem concerning a formal system based on ap-
plying the rules of first-order logic (essentially Frege’s rules) to a system
of axioms for the natural numbers, now known as Peano arithmetic (after
the Italian logician Giuseppe Peano), or PA. Hilbert asked for a proof that
PA is complete, meaning that for any proposition that can be expressed in
PA, either it can be proved in PA that the proposition is true or it can be
proved in PA that the proposition is false. The solution of this problem
two years later by a young logician named Kurt Gédel was not at all what



102 THE UNIVERSAL COMPUTER

Hilbert had anticipated, and indeed turned out to have devastating import
for Hilbert’s program.

CATASTROPHE

Hilbert's wife Kithe is described by his biographers as being a wise and
sensible person, a loyal helper to her husband (many of whose papers were
handwritten by her), a mother, and dispenser of wisdom about life to the
young mathematicians to whom the Hilbert house seemed always to be
open. Hilbert thought himself a man of the world and used to quip that
the best possible vacation is taken with a colleague’s wife. He never tired
of flirtations and would try to dance with the prettiest young women when
the occasion allowed. His “flames” were so notorious that at a jolly birth-
day celebration, impromptu verses were produced about his “loves” with
a different one for each letter of the alphabet. But when it came to “K”
everyone was stumped. At this point Kithe remarked, “Well, you could at
least think of me for once.” Immediately the following verse was generated
(the very free translation is mine):

Gott sei Dank Thanks be to God

nicht so genau, She won't have strife.
Nimmt es Kithe “Who cares,” says Kithe,
seine Frau. And she is his wife.

Their son Franz was a source of distress (in different ways) to husband
and wife. His strong physical resemblance to his father only served to em-
phasize that it was not accompanied by any resemblance in the mental
sphere. Despite efforts to pretend otherwise, it became clear that Franz
was a badly disturbed young man, and it finally became necessary to insti-
tutionalize him. The father’s reaction to this tragedy was that he no longer
had a son: the mother felt otherwise.

In 1929 a wonderful new building to house the Géttingen Mathemat-
ical Institute opened its doors. Funding had been provided by the Rock-
efeller Foundation and the German government, largely as the result of
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Richard Courant’s skillful diplomacy. But the days when Géttingen could
be the world center of mathematical research were almost at an end.
When Hilbert retired in 1930, Hermann Weyl accepted an offer to take
over his position. That same year Hilbert was honored by being granted
the title “honorary citizen” by his birth city Kénigsberg. He was invited
to give a special address that fall in Kénigsberg to a meeting of scientists
and physicians, and Hilbert chose an appropriately general topic: Natural
science and logic. In a wide-ranging speech, he emphasized the crucial
role that mathematics plays in science and that logic plays in mathemat-
ics. With his usual optimism, he insisted that there are no unsolvable

problems. He concluded with the words:*®

Wir miissen wissen (We must know)

Wir werden wissen  (We will know)

During the days immediately preceding Hilbert's address, a sympo-
sium on the foundations of mathematics took place in Konigsberg. The
speakers were Brouwer’s student and disciple A. Heyting, the philosopher
Rudolph Carnap, and (representing Hilbert’s proof theory program) John
von Neumann. At the roundtable discussion that concluded the event, a
shy young man named Kurt Gédel (the subject of our next chapter) made
a quiet announcement that, to those who grasped its import, signaled a
new era in foundational studies. Von Neumann got the point at once and
concluded that it was all over—that Hilbert’s program could not succeed.
When Hilbert learned of Godel's announcement his initial reaction was
to become angry at what may well have seemed to him a frontal attack on
his “Wir werden wissen.” But when Bernays came to write up the achieve-
ments of Hilbert’s proof theory in two massive volumes that appeared in
1934 and 1939, Gédel's work played a prominent role.3¢

In 1932 Hilbert’s seventieth birthday was duly celebrated in the new
Mathematical Institute building. There were toasts and music, and of
course, dancing, and the old man was on the dance floor for most of the
dances. Also in 1932, the depression being in full swing, the Nazis made
great gains in the elections to the Reichstag. The following January, Hitler
was appointed Chancellor, and the collapse of German science followed
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soon thereafter. Jews were not allowed to teach, and one after another,
they found their way abroad. Richard Courant, despite his service in the
German army during World War I, found himself an outcast at the Math-
ematical Institute for which he had done so much and ended up at New
York University where he was eventually to found another mathematical
institute. Named for him, it occupies a handsome building in Green-
wich Village in New York City. Hermann Weyl, though an “Aryan,” found
the situation in Germany intolerable and accepted a position at the new
Institute for Advanced Study in Princeton, joining Albert Einstein.*

Hilbert seems to have been bewildered by the new political situation—
on the one hand speaking out against the regime even as it became in-
creasingly dangerous to do so, on the other unable to comprehend that the
vaunted German legal system was unable to protect against arbitrary as-
saults. At a gathering, Hilbert asked Blumenthal, his first doctoral student,
what courses he was teaching. Being told that he was no longer permit-
ted to teach, the old man reacted with indignation unable to comprehend
why Blumenthal did not take legal action. Blumenthal himself made his
way to Holland, but when the Germans invaded in 1940, he found him-
self trapped. He died in 1940 in the notorious ghetto that had been estab-
lished at Theresienstadt in what is now the Czech Republic.

*Both of these great scientists gave lectures that I was lucky enough to be able to
attend during my graduate student days in the late 1940s. Neither lecture was out-
standing as an example of scientific exposition, but of course that was not the point.
We flocked eagerly to Fuld Hall (where the Institute for Advanced Study has its
headquarters) to hear these legendary figures.

In the case of Hermann Weyl, it was to introduce a series of lectures by the
Japanese mathematician Kodaira. What I remember best about his lecture was the
good-natured pleasure with which he spoke about mathematical ideas. Weyl’s lec-
ture was rather poorly organized while Kodaira’s lectures that followed were a model
of clear mathematical exposition.

Einstein’s lecture was occasioned by his discovery that a set of equations for a
“unified field theory” in which he was interested could be derived from what is called
avarjational principle. He totally lost track of the time as he wrote on the blackboard
and only stopped when J. Robert Oppenheimer (the director of the Institute) called
the time to his attention.
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Hilbert died in 1943 with World War 11 still raging. Kithe followed two
years later. On Hilbert’s tombstone were the words:

Wir miissen wissen
Wir werden wissen



C HAPTTEHR S 1 X

GODEL UPSETS
THE APPLEDCART

In the fall of 1952, shortly after my wife, Virginia, and I arrived in
Princeton for a two-year stay at the Institute for Advanced Study, we
were driving down Olden Lane approaching the Institute when we found
our way blocked by an odd pair walking slowly and obliviously in front of
our car. The taller man was quite unkempt while the other was immac-
ulately dressed in a business suit and carried a briefcase. As [ cautiously
passed them, we could see that it was Albert Einstein and Kurt Godel.
“Einstein and his lawyer,” Virginia quipped.

It was not only in their dress that these good friends differed. After
the 1952 presidential election, Einstein declared, “Godel has gone com-
pletely crazy . .. He voted for Eisenhower.”! To the liberal Einstein, vot-
ing for a Republican was inconceivable. Their views on some fundamental
philosophical issues were also far apart. In formulating his special theory
of relativity, Einstein had been influenced by the skeptical positivism of
Ernst Mach with its attack on Immanuel Kant’s doctrine that our notions
of space and time (although objective) are independent of empirical obser-
vation. Godel began reading Kant as a teenager and remained very much
interested in the work of the classical German philosophers (especially
Leibniz) all of his life. Indeed, in an unpublished manuscript found among
his papers after his death, he maintained that relativity theory, properly
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understood, actually confirms certain of Kant’s views about the nature of
time.?> Echoing the complaint of Frege and Cantor about the limitations
of positivism, Godel let it be known that it was precisely by rejecting those
ideas that it became possible for him to see connections that other logi-
cians had overlooked, making his momentous discoveries possible.?

After Godel’s death in 1978, a Kurt Gédel Society, devoted to research
in logic and related areas in computer science, was founded in Vienna,
and that is where its meetings ordinarily take place. However, in August
1993 the Society met in Brno, in the Czech Republic, where Godel had
been born eighty-seven years earlier. In addition to a scientific program,
the meeting featured a ceremony in which Brno’s civil authorities dedi-
cated a commemorative plaque placed on Godel's childhood home. I well
remember the occasion: we stood under our umbrellas in the chill pre-
autumnal drizzle, while the inevitable speeches (in Czech) were followed
by several numbers played by a local band in colorful folk costume.

Kurt Godel was born in 1906 in Brno, then still part of the Austro-
Hungarian Empire. Bertrand Russell, for some reason, believed that
Godel was Jewish. In actuality his mother’s family was Protestant while his
father was nominally an Old Catholic, although neither was a churchgoer.
Kurt’s schooling was entirely in German schools. Because of his metic-
ulous habits and his apparent unwillingness to throw anything away, an
unusually complete picture of his primary schooling is available. His re-
port cards show a student who received top grades in all subjects, and his
workbooks give evidence of a curriculum heavy on drilling. At the age of
eight, Kurt fell ill with rheumatic fever, but it seems that no lasting phys-
ical damage resulted in his case. On the other hand, Gédel did become a
life-long hypochondriac, very likely as the result of this illness. His older
brother Rudolf stated that even as a child, Kurt Gédel showed signs of
mental instability.*

When the Austro-Hungarian Empire was dismembered after World
War 1, the Gédel family found itself part of the large German-speaking
minority in the newly formed Czechoslovakia. German-speaking Vienna,
a mere sixty-eight miles to the south of Brno, with its fine university, soon

drew Rudolf and Kurt to it. After a rigorous secondary school education
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KuRT GODEL AND ALBERT EINSTEIN

(Richard Arens)
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in Brno with an almost perfect academic record, Kurt moved to Vienna in
the fall of 1924, sharing an apartment with Rudolf, who had moved there
some time before as a medical student. Although Kurt’s original intention
had been to study physics, the beauty of the patterns among the integers
revealed in lectures he heard on the theory of numbers persuaded him
that mathematics was his true calling.

The Austrian republic, formed from the debris of the Austro-Hungarian
Empire at the end of World War I, lasted a mere twenty years before it
was absorbed into Nazi Germany in 1938. These were years of tumul-
tuous confusion, with the nation often teetering on the edge of civil war
between “red” (that is, social democratic) Vienna and the deeply conser-
vative countryside. It was in this turbulent atmosphere that the famed Vi-
enna Circle flourished. The work of Whitehead and Russell had devel-
oped an artificial language for mathematics in which proofs of theorems
could be represented by purely symbolic formal operations. The Circle
was formed in 1924 by a group of philosophers and scientists continu-
ing in the empiricist-positivist tradition of Mach and Helmholtz. As men-
tioned in Chapter 4, Cantor and Frege had bitterly attacked these very
ideas. In the Circle, traditional metaphysics was abhorred, while it was
believed that an important goal for philosophy should be the development
and study of symbolic systems like that of Whitehead—Russell that would
encompass not only mathematics but also empirical science. When the
founder, Moritz Schlick, was assassinated in 1936 by a deranged former
student, the Nazis justified the killing on the grounds of Schlick’s sup-
posed left-wing views. Among the other important adherents of the Circle
were Rudolf Carnap, who had studied with Frege, and Hans Hahn, who
was to be Goédel's principal teacher.*

*Carnap’s doctorate was from the University of Jena, where he studied under Frege.
He was a leading figure in the philosophical tendency called logical positivism. From
1935 on, he held positions at American universities, first the University of Chicago
and then U.C.L.A.

Hans Hahn, Gédel’s dissertation adviser, made important contributions to a num-

ber of branches of mathematics and was also interested in philosophical questions.
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THE RETURN OF KRONECKER'’S GHOST

While Bertrand Russell's ideas about the foundations of mathematics had
taken concrete form in the massive three-volume Principia Mathematica,
those of his student, the brilliant and quixotic Ludwig Wittgenstein, were
presented to the world in his slim, seventy-five-page Tractatus Logico-
Philosophicus. The ideas of these two philosophers played an important
role in the ongoing discussions at meetings of the Vienna Circle. When
Godel began attending these meetings in 1926 at the invitation of his
teacher Hans Hahn, he found himself out of sympathy with much of
what he heard. Even so, the heady mixture of Russell's demonstration
that all of ordinary mathematics can be encapsulated in a formal logical
system and Wittgenstein's emphasis on the problems of speaking about
language from within language must have influenced the direction of the
young Godel's research. These concerns of Wittgenstein echoed Hilbert’s
stance that formal logical systems could not only represent mathematical
reasoning on the inside, but could also be studied from the outside using
mathematical methods.

In the courses on logic that Hilbert had been giving at Géttingen, he
adopted the basic rules of logical deduction that had been proposed by
Frege in his Begriffsschrift and incorporated by Whitehead and Russell in
their Principia Mathematica. In his 1928 textbook on logic (written with
his student Wilhelm Ackermann), Hilbert posed the question of whether
there are gaps in these rules, that is, deductive inferences that ought to be
correct but for which the rules do not suffice to obtain the conclusion from
the premises. His belief was that there are no such gaps but he wanted a
proof that this is the case, that the rules are complete. Godel chose this
problem for his doctoral dissertation. Although he succeeded in short or-
der in obtaining the result Hilbert wanted, there was some irony in the
situation. The techniques that Godel used were quite familiar to the lo-
gicians of the day, but, as we shall see, their hands had been tied by the
influence of the Brouwer—Weyl strictures together with Hilbert’s tacit ac-
ceptance of them as appropriate in metamathematical investigations.

Logical deduction proceeds from premises to a conclusion. When the

symbolic logic of Frege—Russell-Hilbert is used, each premise as well as
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the conclusion is represented by a logical formula, which just amounts to
a string of symbols.> Some of these symbols stand for purely logical con-
cepts, some are mere punctuation, and some refer to the specific subject
matter in question. Here is a sample logical inference in which the first
two lines shown are the premises and the third line is the conclusion.

Anyone in love is happy.

William loves Susan.

William is happy.

Using the logical symbolism introduced in Chapter 3, we can translate

this into the language of logic as follows:

(Vx)((3y)Lx,y) O Hx)) (%)

LW,S)
HW)

In this inference the logical symbols used are D, V, and 3, whose meanings
are recalled in the following table:

> if..., then...
v every
3 some

The letters x,y serve as variables which stand in (like pronouns) for arbi-
trary individuals in the population being considered. The other symbols
L, W, H, and S have meanings relevant to the particular subject matter
as shown below:
L = the relation of loving,
H = the property of being happy,
W = William,

S = Susan.
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So we can read the inference as follows:

For all x, if there is a y such that x loves y, then x is happy.
William loves Susan.

William is happy.

Now what it means to say that this inference is valid is that no matter what
underlying universe of individuals we may choose, no matter what rela-
tionship between such individuals we represent by the letter L, no matter
what property of such individuals we represent by the letter H, and no
matter which particular individuals we choose to designate as W and S,
as long as we do this in such a manner that the two premises are both true
statements, then the conclusion will be true as well. To help clarify what
it means for an inference to be valid, it may be helpful to consider another
interpretation of the same symbolic inference with a very different subject

matter:

Predators have sharp teeth.
Wolves prey on sheep.

Wolves have sharp teeth.

To see that this example is also included under the symbolic inference (x),
we may let the variables x,y stand for arbitrary species of mammals and
interpret the other letters as follows:
L = The relation of one species preying on another,
H = The property of having sharp teeth,
W = Wolves,
S = Sheep.

Thus, the symbolic inference may be read:

For all x, if there is a y such that x preys ony, then x has sharp teeth.
Wolves prey on sheep.

Wolves have sharp teeth.
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Hilbert asked for a proof that for every inference that is valid in the
sense just explained, there is a step-by-step proof of the conclusion from
the premises using the Frege—Russell-Hilbert rules. In other words,
Hilbert wanted a proof that if a proposed inference has the property

for any interpretation of the letters in the formulas with respect to which the

premises are true statements, the conclusion is true as well,

then the Frege—Russell-Hilbert rules can be used to lead from the prem-
ises to the conclusion. In Gédel's doctoral dissertation, he succeeded in
providing exactly what Hilbert had requested.

Godel’s proof was explained with a directness and clarity that was to
mark his later publications as well. But although this work was an im-
pressive achievement whose great importance became clear only with the
passage of time, there was little novelty in his methods, all perfectly well
known to logicians at the time. This could well lead one to wonder at the
inability of the powerful team of Hilbert, Ackermann, and Bernays to find
its way to a proof. Indeed, Godel himself commented many years later
that the theorem was an “almost trivial consequence” of results in a paper
by the Norwegian logican Thoralf Skolem that had appeared in 1923, six
years before Godel's dissertation (although presumably neither Godel nor
his adviser had been familiar with this paper). In a letter written in 1967,
Godel looking back at the 1920s, referred to a “blindness. . . of logicians

[that] is indeed surprising.” But, he continued:

I think the explanation is not hard to find. It lies in a widespread lack, at
that time, of the required epistemological attitude toward metamathemat-

ics and toward non-finitary reasoning.®

Following the Brouwer—Weyl criticisms (discussed in the previous chap-
ter) of nonfinitary reasoning, and Hilbert’s defining his metamathematics
as permitting only finitary reasoning, it was at least tacitly accepted that
investigations of formal logical systems from the outside had to be strictly
limited to finitary methods, methods to which Brouwer could not ob-
ject.” But, in fact, Godel's completeness theorem cannot be proved with-
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out the use of nonfinitary methods. Without quarreling with the aims of
Hilbert's program and its methodologicial restrictions, Gédel explained

why nonfinitary methods were appropriate in this case as follows:

...it was not the controversy regarding the foundations of mathematics
that caused the problem treated here to surface (as was the case, for ex-
ample, for the problem of the consistency of mathematics); rather, even
if it had never been questioned that “naive” mathematics is correct as
to its content, this problem could have been meaningfully posed within
this naive mathematics (unlike, for example, the problem of consistency),
which is why a restriction on the means of proof does not seem to be more

pressing here than for any other mathematical problem.? [italics added]

So, while Godel accepted Hilberts restriction to finitary methods in in-
vestigations intended to secure the foundations of mathematics, he saw
no reason to accept such a straightjacket in work in mathematical logic

that was not part of this work.

UNDECIDABLE PROPOSITIONS

The second problem on Hilbert’s famous 1900 list had called for a proof
of the consistency of the arithmetic of real numbers. At that time, no one
had any notion of what such a proof might be like, and in particular how it
could avoid the trap of circularity, that is, how it could avoid using in the
proof the very methods that the proof sought to justify. As we have seen
in the previous chapter, during the 1920s Hilbert introduced his program
of metamathematics: axioms to be proved consistent were to be encapsu-
lated in a formal logical system in which a proof is only an arrangement of
a finite number of symbols. Then, the proof that no contradiction could be
derived in this system was to be carried out by using what Hilbert called
finitary methods, methods even more restrictive than what Brouwer would
have been willing to allow. When Gédel turned to these matters after com-
pleting his doctoral dissertation, Hilbert’s program seemed well on the way

to success.
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At the International Congress in Bologna in 1928, Hilbert had spoken
about the system, nowadays called Peano’s arithmetic (PA), that encap-
sulates the basic theory of the natural numbers 1,2, 3,.... When Godel
began to think about Hilbert's program, Hilbert’s student Ackermann and
John von Neumann seemed to be advancing toward a finitary consistency
proof for PA. Both had found such proofs for a limited subsystem of PA,
and it was thought that progress was blocked only by technical difficulties
which would be overcome in time. Gédel himself may well have believed
this. In any case, he set himself the problem of proving the consistency
of more powerful systems relative to PA. There had been a number of im-
portant relative consistency proofs, so this was a natural idea. Gédel had
hoped to give a finitary reduction of the consistency of powerful systems,
adequate for the arithmetic of real numbers and more, to the consistency
of PA. This was very much following in Hilbert’s path: Hilbert had reduced
the consistency of Euclidean geometry to that of the arithmetic of real
numbers, and Gédel proposed to carry the reduction one step further. Had
Gédel succeeded, a proof of the consistency of PA by Hilbert’s followers
would have automatically provided a proof of the consistency of the arith-
metic of real numbers as well, thus fulfilling the request Hilbert had made
in his second problem of 1900. But it was not to be. Gédel not only failed
in this endeavor, he proved that he could not have succeeded! At the end,
instead of helping to secure mathematics against the Brouwer-Weyl cri-
tique as he had evidently hoped, he effectively buried Hilbert’s program.

As Gédel began to think about these matters, he found himself re-
thinking what it meant to view a formal logical system from the outside
as opposed to the inside. Russell and Whitehead had shown quite con-
vincingly that all of ordinary mathematics can be developed inside such a
system. Hilbert, in his metamathematics, was proposing to use mathemat-
ical methods, severely restricted to be sure, to study such systems from
the outside. So, why can’t metamathematics itself be developed inside
a formal logical system? Viewed from the outside, these systems involve
relationships among strings of symbols. On the inside, these systems can
express propositions about various mathematical objects including nat-
ural numbers. Moreover, it isn’t difficult to think of ways that strings of

symbols can be coded by natural numbers. Aha! By using such codes the
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outside can be brought inside. To illustrate the use of such codes, let us
look again at how the premise “Anyone in love is happy” was symbolized:

(Vx)((3y)Lx,y) D Hx)) ()

What we have here is an arrangement or string of the ten symbols:
, LH DO V3Ixy ()

We can use a simple coding scheme in which each symbol is replaced by

one of the decimal digits, for example, as follows:

) L H ) v 3

Lol ! d Lol
0 1 2 3 4 s 6 7 8 9

®

—
—
—
—

Replacing the symbols by digits in (f) as indicated, we get the code

number
846988579186079328699.

Note that not only is it easy to go from the string of symbols to the number
that codes it, but it is also just as easy to go in the reverse direction. Of
course, when there are more than ten symbols, a different encoding must
be used, but this causes no difficulty. For example, if we code each sym-
bol by a pair of decimal digits, up to 100 symbols can be accommodated.
Essentially the same methods can be applied to any formal logical system
so that the various locutions of such systems (all of which are seen from
the outside to be presented as strings of symbols) can be coded via natural
numbers.’

Gédel had no problem seeing how codes could indeed be used to de-
velop the metamathematics of formal logical systems inside those very
same systems. But in the process, he found himself thinking thoughts that
were strictly forbidden according to precepts being promulgated in the
Vienna Circle. Gédel found that there are propositions that viewed from
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outside such systems could be seen to be true, yet could not be proved in-
side them. For many adherents of the Vienna Circle, any notion of math-
ematical truth other than provability was meaningless, a chimera of ideal-
istic metaphysics. Being unencumbered by such beliefs, Gédel was led to
the remarkable conclusion that on the contrary, not only is there a mean-
ingful notion of mathematical truth, but also its extent goes beyond what
can be proved in any given formal system. This conclusion applied to a
wide range of formal logical systems, from comparatively weak systems
like PA and to systems like Whitehead and Russell’s Principia Mathemat-
ica (PM) that encapsulated the full power of classical mathematics. For
any of these systems, there are true propositions expressible in the system,
but not provable in the system. In Gédel's remarkable paper On Formally
Undecidable Propositions of Principia Mathematica and Related Systems,
published in 1931, he chose to present his results for PM, thus showing
that even powerful logical systems could not hope to encompass the full
scope of mathematical truth.!®

The crucial step in Gédel's proof was his demonstration that the prop-
erty of a natural number of being the code of a proposition provable in PM
is itself expressible in PM. Using this fact, Gédel could construct propo-
sitions in PM that to one who knew the specific code being used could
be seen to express the assertion that some proposition is not provable in
PM. That is, he was able to construct propositions A that, read via the
encoding, assert that some proposition B is not provable in PM. Now,
someone not privy to the code looking at A would see a string of symbols
expressing some complicated and mysterious proposition about natural
numbers. But via the code, the mystery vanishes: A expresses the propo-
sition that some string of symbols B represents a proposition not provable
in PM. Ordinarily A and B would be different propositions. Godel asked
the question, Could they be the same? Indeed they could, and Gédel was
able to demonstrate this by making use of a mathematical trick he had
learned from Georg Cantor: the diagonal method. By using this trick, mat-
ters could be so arranged that the proposition asserted to be unprovable
and the proposition making that assertion were one and the same. In other
words, Gédel had seen how to obtain a most remarkable proposition, we'll
call U, with the properties:
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* U says that some particular proposition is not provable in PM.
* That particular proposition is none other than U itself.

* Therefore, U says: “U is not provable in PM.”

In the Vienna Circle, it was generally believed that the only notion of
“truth” that makes sense for propositions expressed in a system like PM is
that of provability according to the rules of the system. The properties of
this proposition U make this belief untenable. If we are willing to assume
that PM doesn't lie, that whatever is proved in PM is actually true,!! then
we can see that U is true, but not provable in PM as follows:

1. U is true. Suppose that it were false. Then, what it says would be
false. So it couldnt be unprovable and would have to be provable,
and therefore true. This contradicts the supposition that U was false.

Hence it must be true.

2. U is not provable in PM. Since it is true, what it says must be true,

and so it is not provable in PM.

3. The negation of U, written U, is not provable in PM. Because U is
true, ~U must be false, and therefore also not provable in PM.

To emphasize that U has the property that neither it nor its negation is
provable in PM, it is called an undecidable proposition. But it cannot be
emphasized too strongly that this undecidability is only with respect to
provability inside the system. From our outside viewpoint, it is clear that
U is true.!?

Now here is a puzzle: we know that U is true although unprovable in
PM. Since all of ordinary mathematics is encapsulated in PM, why can’t
the proof that U is true be carried on inside PM? Godel came to realize
that this is almost possible, but that there is a catch. Inside PM it can be

proved that:

If PM is consistent, then U.
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So it is only the additional assumption that PM is consistent that blocks
the proof of U inside PM. Since we know that U can’t be proved inside
PM, we must conclude that the consistency of PM cannot be proved in
PM. However, the thrust of Hilbert's program was to prove that systems
like PM are consistent using finitary methods that were thought to consti-
tute a very modest subset of those available in PM. Yet Gédel had proved
that even the full power of PM is insufficient to prove its own consistency.

So, at least as originally imagined, Hilbert’s program was dead!!?

KuUrRT GADEL, COMPUTER PROGRAMMER

In 1930 the realization of an actual physical device that could function as
a general-purpose information-processing programmable computer was
still decades in the future. Yet someone knowledgeable about modern
programming languages today looking at Gédel's paper on undecidability
written that year will see a sequence of forty-five numbered formulas that
looks very much like a computer program. The resemblence is no acci-
dent. In demonstrating that the property of being the code of a proof in
PM is expressible inside PM, Godel had to deal with many of the same
issues that those designing programming languages and those writing
programs in those languages would be facing. At the most fundamental
level, contemporary computers can perform only simple basic operations
on short strings of Os and Is. Designers of so-called high-level program-
ming languages face the task of providing programmers with locutions
that encapsulate the highly complex operations with which they would
like to work. For programs written using these locutions to be carried out
by a computer they must be translated into machine language—into a
detailed listing of the basic operations needed to execute them. This is

done by special translation programs called interpreters or compilers.*

*An interpreter works by translating the steps of a program one by one into machine
language and actually executing each step before proceeding to the next. A compiler
translates an entire program into machine language. The machine language program
thus produced can be run as a stand-alone item, without further need for the com-
piler. Almost all commercial software is generated by compilers.
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The keystone in Gédel’s proof of the existence of undecidable propo-
sitions is the fact that provability in PM can be expressed in PM itself.
Godel knew very well that he would be presenting his revolutionary re-
sults to a highly skeptical audience and he wanted to eliminate any doubt.
Thus, he faced the problem of breaking down complex operations on the
codes of the strings of symbols corresponding to the axioms and rules of
inference of PM viewed from the outside, and transforming them into ex-
pressions written in the symbolic language of PM. To solve this problem,
Géodel created what amounted to a special language in which the opera-
tions needed could be developed in a step-by-step fashion.!* Each step
consisted of a definition of an operation on numbers that, via the code
Godel was using, corresponded to a parallel operation on expressions of
PM. The definitions were expressed in Godel’s special language in terms
of items that had already been defined in previous steps. The special lan-
guage was so designed that operations introduced by such a definition
were guaranteed to be appropriately expressible inside PM.

Leibniz had certainly proposed the development of a precise artificial
language in which much human thought would be reduced to calcula-
tion. Frege, in his Begriffsschrift, had shown how the usual logical reason-
ing by mathematicians could indeed be captured. Whitehead and Russell
had succeeded in developing actual mathematics in an artificial language
of logic. Hilbert had proposed the metamathematical study of such lan-
guages. But before Gédel no one had shown how these metamathematical
concepts could be embedded in the languages themselves.!”

In addition to constructing an undecidable proposition U, Gédel wished
to demonstrate that this proposition required for its statement no exotic
mathematical concepts. For this purpose, Gédel used a theorem from the
elementary theory of numbers known as the Chinese Remainder Theo-
rem to show how all the operations expressible in his special language
could also be expressed in the basic language of the arithmetic of natu-
ral numbers.!® From this it followed that the undecidable proposition U
itself could be expressed in this basic language. What this meant specif-
ically is that U could be written out using a vocabulary that permitted
only variables whose values could be any natural number, the arithmetic
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operations + and X, the symbol =, and the basic operations of Frege’s
logic, nowadays written =, D, A, V, 3, and V. The remarkable conclusion
was that even restricted to this meager vocabulary, propositions could be
constructed that are undecidable in PM.

THE CONFERENGE AT KANIGSBERG

On August 26, 1930, at the Reichsrat Cafe in Vienna, the twenty-four-
year-old Kurt Godel was talking to Rudolph Carnap about the Conference
on the Epistemology of the Exact Sciences planned for Konigsberg ten days
later. Carnap, almost forty, and a leading figure in the Vienna Circle,
was scheduled to deliver a major address on the logicist program for the
foundations of mathematics, a program that had reached its fullest real-
ization in the Principia Mathematica of Whitehead and Russell. Carnap’s
notes reveal that Gédel had told him about his sensational discovery that
there were propositions about the natural numbers undecidable in Prin-
cipia Mathematica. The two logicians (together with other participants in
the Conference) traveled together to Kénigsberg. On the first day of the
conference, there were three hour-long addresses on the foundations of
mathematics. Carnap led off with his address on logicism and, remark-
ably, made no mention of Gédel’s new results. Carnap was followed by
A. Heyting, a student of L. E. J. Brouwer, who spoke on Brouwer’s intu-
itionism. The final address of the day was by John von Neumann whose
topic was Hilbert's program.!”

On the second day, in addition to three more hour-long talks there were
three twenty-minute presentations, including one by Gédel on his doc-
toral dissertation, that is, on the completeness of Frege’s rules. Gédel’s
bombshell came on the third day during a roundtable discussion of the
foundations of mathematics. He began with a rather long but tentative
discussion of what would be gained from a consistency proof for a system
like that of PM. He asserted that even if such a system is known to be con-
sistent, it was still perfectly possible that one could prove in the system a
proposition about the natural numbers, that, viewed from outside, could
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be seen to be false. So mere consistency of a formal system provided no
guarantee that what was proved in that system was correct. Apparently, a
favorable comment by von Neumann encouraged him to go further. Gédel
went on to assert that assuming the consistency of systems like PM, “one
can even give examples of propositions” of a simple arithmetic form that
are true but unprovable in such a system. “Therefore,” he continued, “if
one adjoins the negation of such a proposition to” PM, one obtains a con-
sistent system in which a false proposition is provable.!®

John von Neumann seems to have grasped immediately the import of
what Godel had done and indeed sought him out for discussion at the
session’s end. There is no evidence that anyone else realized what had
happened. Von Neumann continued to think about the matter and con-
vinced himself that (for reasons explained above) it follows from Godel’s
result that consistency itself is unprovable, and concluded that that was
the end of Hilbert’s program. By the time a letter from von Neumann ar-
rived with this information, Gédel had already submitted for publication
his own paper containing this same conclusion. Von Neumann’s letter
thanking Gédel for a preprint of this paper said, perhaps ruefully, “Since
you have established the unprovability of consistency as a natural contin-
uation and deepening of your earlier results, of course I will not publish
on that subject.”!® Logic and the foundations of mathematics had been
one of von Neumann’s important interests. He became a good friend of
Godel, lectured widely on Gédel's work, and spoke of him as the great-
est logician since Aristotle.?® But he himself stopped working in logic.
When his interests returned to logic over a decade later, it was in logic as
embodied in hardware: the all-purpose digital computer.

One of von Neumann'’s collaborators in his later work with computers
reports the following amusing story that von Neumann used to tell about

his efforts to prove the consistency of arithmetic:

At the end of a day’s work [von Neumann] would go to bed and very of-
ten awaken in the night with new insights. . .. In this case he was busily
engaged in trying to develop a proof [of the consistency of arithmetic]
and was unsuccessful! One night he dreamed how to overcome his dif-

ficulty and carried his proof much further along. . . . The next morning he
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returned to the attack, again without success, and again that night retired
to bed and dreamed. This time he saw his way through the difficulty, but

when he arose . . . he saw there was still a gap.

Things would have worked out differently, von Neumann quipped, if he
had dreamed a third night!?!

The conference where Gédel dropped his bombshell was but an ad-
junct to the major event taking place in Kénigsberg that week: a conven-
tion of the Society of German Scientists and Physicians. The opening
address was delivered by David Hilbert the day following the roundtable.
This was the occasion in which Hilbert articulated the slogan still on his
tombstone in which he declared his faith that all mathematical questions
must and will be answered: “wir miissen wissen; wir werden wissen,” [we
must know; we shall know]. Gédel’s incompleteness theorem shows that
if mathematics is restricted to what can be encapsulated in specific for-
mal systems like PM, then Hilbert’s faith was in vain. For any specific
given formalism there are mathematical questions that will transcend it.
On the other hand, in principle, each such question leads to a more pow-
erful system which enables the resolution of that question. One envisions
hierarchies of ever more powerful systems each making it possible to de-
cide questions left undecidable by weaker systems. Although all of this
is incontrovertible as a matter of theory, it is less clear to what extent it
will ever become a matter of mathematical practice. Gédel has left as his
legacy to mathematicians the task of learning to use these more power-
ful systems in settling intractable problems. Although some courageous
researchers have been working along these lines, most mathematicians
remain unaware of these issues, and some experts greet this work with

extreme skepticism.??

LaoVvE AND HATE

One of Godel's fellow students in Vienna, Olga Taussky-Todd, who later
became a prominent number theorist, reports that Gédel's ability was
well-recognized among the students and that when a student experi-
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enced difficulty, Gédel always stood ready to help. She tells the following

amusing anecdote:

There is no doubt that Gédel had a liking for members of the oppo-
site sex, and he made no secret about this fact. . .. I was working in the
small seminar room outside the library in the mathematical seminar. The
door opened and a very small, very young girl entered. She was good
looking . . . and wore a beautiful, quite unusual summer dress. Not much
later Kurt entered and she got up and the two of them left together. It
seemed a clear show off on the part of Kurt.??

Godel met Adele, the woman who was to be his life’s companion, dur-
ing his student days, a decade before they married. At the time, she was
still married to her first husband and worked as a dancer.* His parents
could hardly have been pleased by his choice—not only was she six years
older than Kurt but she was a Roman Catholic as well. It appears that
female dancers in Vienna had the reputation, deserved or not, of being
sexually available for a modest sum.2* Perhaps for these reasons, Kurt
was quite circumspect about his relationship with Adele, which seems
to have been a close, intimate one for some time before their marriage.
When they finally did marry, her very existence came as quite a surprise
to Godel's colleagues.?”> Rudolf (who himself had remained a bachelor)
wrote shortly after his brother’s death, “I would not presume to pass judge-
ment on my brother’s marriage.”?® Marital happiness remains a great mys-
tery, and the prognostications of those older and presumably wiser are of-
ten wrong. This was the case with the Gédels, whose marriage proved to
be long-lasting and happy.

Godel's attempts to develop a professional career in Austria occurred
against the background of tumultuous and calamitous political, social,
and economic events. The German-speaking state that emerged from the
debris of the Austro-Hungarian Empire at the close of World War I was
forbidden by the Allies to do what most Austrians desired: to unify with

* According to one account she danced at Der Nachfalter, a nightclub whose name,
“the moth,” was intended to suggest shadowy creatures of the night. Another version
has it that she was a ballet dancer.
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Germany. At any rate, independent democratic Austria did not last very
long. A low-intensity civil war between the fascist Heimwehr and the so-
cial democratic Schutzbund reached a climax in 1927: when an old man
and a child were killed by reactionaries and a jury refused to convict the
killers, a mass demonstration called by the Social Democrats led to the
burning to the ground of the Ministry of Justice building and the death
of almost one hundred people. By the end of 1929, the president of the
republic had obtained the power to rule by emergency decree. Meanwhile
the great worldwide economic crisis (in the United States known as the
Great Depression) was making moderation seem irrelevant. The Dollfuss
regime, elected in 1932, took an authoritarian turn ending any meaningful
role for parliament. Things went from very bad to immeasurably worse.
In early 1934, with Hitler already in power in Germany, all political par-
ties were abolished except for Dollfuss’s Fatherland Front. A few months
later Dollfuss was murdered by Austrian Nazis attempting unsuccessfully
to seize power. His successor, Schuschnigg, kept Hitler at bay for a few
years with the help of Mussolini. But the end came in March 1938 when
Austria was absorbed into Nazi Germany.

Godel began the long academic climb with an official appointment as
Dozent in February 1933. In the meantime he had been quite active in
the logic seminar run by his thesis adviser Hahn as well as in an on-going
colloquium run by the mathematician Karl Menger (who was also active
in the Vienna Circle). A considerable number of Gédel's interesting re-
sults from this period, some of them quite important, were published as
brief articles in the proceedings of Menger's colloquium.?’ Gadel's first
course as a Dozent was given during the summer of 1933 under difficult
conditions. The university had to be closed one day because of Nazi activ-
ities, and there was a week when Nazi terrorist bombs exploded in various
parts of Vienna.

When an offer came to spend the academic year 1933—34 at the newly
formed Institute for Advanced Study in Princeton, Gédel could hardly
have turned it down. Not only would he escape the political madness at
home, but he could also look forward to such stellar colleagues as Albert
Einstein and John von Neumann. However, the prospect of leaving family
and friends (and perhaps especially Adele) for most of a year surely pro-
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voked some anxiety in the shy, hypochondriacal, young man. Indeed, after
setting out to meet the ship scheduled to take him across the Atlantic, he
decided that he had a fever and turned back. Only family persuasion got
him to catch another ocean liner and make the voyage.

Little seems to be known about how Gédel fared during his year in
Princeton. Manuscripts do exist for a lecture he gave in December in
Cambridge, Massachusetts, and for a course of lectures he presented in
Princeton during the spring, but there is no information about his per-
sonal life. What we do know is that a few months after his return to
Vienna in June he suffered a nervous breakdown and spent some time
in the Purkersdorf Sanitarium, “an establishment for the well-to-do, part
spa, part clinic, part rest home” where he was examined by the Nobel
Prize—winning psychiatrist Julius Wagner-Jauregg.?® Gédel's return was
to an Austria assailed by dismal events. The Nazi attempted takeover
and Dollfuss’s assassination occurred late in July, one day after Hans
Hahn, Gédel's dissertation supervisor, died of the complications of cancer
surgery. At the university, things were deteriorating. Administrators were
required to join the fascist Fatherland Front, and there was widespread
firing of professors who were thought to be of the left and even of some
apolitical Jewish scholars. There is no way to know what role these events
may have played in Gédel's breakdown.

With the advantage of hindsight it is easy to see the menace in the
steady advance of fascism. But to those who would have chosen to flee had
they been gifted with knowledge of the future, matters were not so sim-
ple. One could always hope that things would work out. Godel's brother
noted that none of his family members was “very interested in politics,”
and so, they didn’t understand the significance of Hitler coming to power

in Germany in 1933. However, he went on:

Two events quickly opened our eyes: the murder of Chancellor Dollfuss
and the murder (by a National Socialist student) of the philosopher Pro-
fessor Schlick in whose circle my brother had moved.2®

While remaining in touch with the Institute in Princeton about future

possibilities, Gédel continued to pursue an academic career in Vienna.
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He gave his second course at the university beginning in May 1935, and
in September of that year set out once again for a visiting appointment in
Princeton. This time he did not remain in America very long. Prostrated
by a deep depression, he resigned his appointment and returned home
early in December. Gédel later spoke of 1936, the year of Schlick’s assas-
sination, as the worst year in his life. His mental condition continued to
be poor, and he spent much time in sanataria. But 1937 marked a great
improvement. In June, while giving a course at the university in set the-
ory, Godel achieved a momentous breakthrough in his work on Cantor’s
Continuum Hypothesis, the first problem on Hilbert’s famous 1900 list.
(More about that later.)

Hitler’s invasion of Austria and its absorption into Germany took place
in March of 1938, and Gédel set out for his third visit to America in Oc-
tober, leaving behind Adele, his bride of just over two weeks.” This time
his year in America was quite fruitful. After spending the fall semester in
Princeton, where he lectured on his discoveries regarding Cantor’s Con-
tinuum Hypothesis, he took up a visiting appointment for the spring term
at the University of Notre Dame, where his old colleague Karl Menger
had settled after fleeing Vienna. But when the academic year was over, he
returned to Vienna and to Adele late in June 1939, two months before the
German invasion of Poland that was to precipitate World War II.

Godel returned to a Vienna, now an integral part of Nazi Germany, be-
ing systematically remade as part of Hitler's “New Order.” At the univer-
sity, the position of Dozent had been abolished and a new position called
“Dozent neuer Ordnung” (that is, Dozent of the New Order) had been
put in its place. The new position did carry a small salary, but it required
a new application, and the candidate had to pass muster with respect to
political views and racial purity. In September, shortly after war broke out,
Godel did apply. To his surprise and indignation, his application was not
approved. The report to the Dean from the bureaucrat in charge of Dozent
applications noted that Gédel had worked under “the Jewish Professor
Hahn” and that he had moved in “Jewish-liberal” circles. On the other

*There is some reason to believe that there was some plan afoot for the newlyweds
to travel together to Princeton. See [Dawson] (in References), pp. 128-129.
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hand he had never been known to say anything “against National Social-
ism.” Under these circumstances it was impossible either to approve the
application or to turn it down.3® An undecidable proposition!

Another serious blow came when, after months of delay, Gédel was
called up for a physical to determine his fitness for military service. Once
again he was surprised: he was pronounced fit for garrison duty. Somehow
amidst all of this, in November, he and Adele moved from their subur-
ban rental flat into a recently purchased apartment in the city.3! Godel's
apparent obliviousness to what was going on around him can only be de-
scribed as pathological denial. This is illustrated by the tale recounted by
Gustav Bergmann, a member of the Vienna Circle and a Jew, one of a
stream of Jewish refugees arriving in America. Shortly after his landing in
October 1938, he was invited to lunch by Gédel (then visiting in Prince-
ton) and was astounded to hear Gédel inquire, “And what brings you to
America, Herr Bergmann?"3? It seems that what finally brought Godel’s
precarious situation home to him, shortly after his move, was his being set
upon in the street by a bunch of rowdies who struck him and knocked off
his glasses.?3

After Germany’s rapid conquest of Poland, the winter of 1939-1940
became known as the period of “phony war.” The German onslaught on
western Europe that resulted in the defeat of France was still months
away. The attack on Russia was not to take place until June 1941. In
fact, Germany had signed a nonagression pact with the Soviet Union,
and Stalin’s Russia was supplying Germany with products useful to the
military. In December 1939 Gédel finally decided to make an all-out
effort to leave Europe. In order to do this, he needed to obtain exit per-
mits for Adele and himself from the German authorities and a visa from
the U.S. authorities. Neither was easy. The newly appointed director of
the Institute for Advanced Study in Princeton, Frank Aydelotte, was the
hero of this endeavor. In approaching the U.S. State Department he was
not above stretching the truth. In his correspondence, it was “Professor
Godel” although he knew perfectly well that Gédel was no professor. In
answer to a question about what Gédel’s teaching duties at the Institute
would be, Aydelotte calmly lied, saying “Professor Gédel’s responsibili-
ties” would “involve teaching” but at an advanced, hence informal level.
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In addition, Aydelotte wrote the German Embassy in Washington empha-
sizing that Godel was an “Aryan” and one of the greatest mathematicians
in the world. This did the trick: all necessary documents were now forth-
coming, and the Gédels could leave. However, the Atlantic crossing be-
ing deemed too dangerous, they traveled the long way around—through
Siberia to Japan, then across the Pacific, and finally by train to Princeton,
arriving in mid-March.3*

One of the first to greet Gédel was Oskar Morgenstern, who was to
become one of his best friends. Morgenstern, an economist, had known
Godel casually in the Vienna Circle and had accepted a position as pro-
fessor at Princeton University when he was fired from his leading position
in Austria. Eagerly inquiring about the current situation in Vienna, he was
taken aback when Gédel replied, “The coffee is wretched.”?>

HILBERT’S DICTUM

At the head of Hilbert's problem list in his 1900 address was Cantor’s Con-
tinuum Hypothesis. This is the assertion that infinite sets of real numbers
come in just two sizes: small and large. The small infinite sets of real num-
bers are those that are just as large as the set of natural numbers, mean-
ing that such sets can be matched up in a one—one fashion with the set
{1,2,3,...}. The large sets are those that can be matched up in a one—
one fashion with the set of all real numbers. The Continuum Hypothesis
is the statement that every infinite set of real numbers must be of one or
the other of these types, so that there are none whose size is in between.
(In the language of Cantor’s transfinite cardinal numbers, the assertion is
the cardinal number of every infinite set of real numbers is either X or C.) In
his address, Hilbert said that the Continuum Hypothesis is “very plausi-
ble” but that “in spite of the most strenuous efforts, no one has succeeded
in proving” it.>® Hilbert returned to the problem a quarter of a century
later, claiming that he could use his metamathematics to prove the Con-
tinuum Hypothesis. However, this turned out to be an illusion. In 1934
a treatise by the Polish mathematician Waclaw Sierpinski was published,
entirely devoted to propositions that had been found to be equivalent to
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the Continuum Hypothesis or to be related to it in other ways. Yet, despite
all of these continuing “strenuous efforts,” it remained undecided whether
the Continuum Hypothesis is true or false.

Godel came to believe that the Continuum Hypothesis is undecidable
from the available formal systems serving as foundations for mathematics.
Such systems included not only Russell and Whitehead’s PM but also sys-
tems based on axioms for set theory. He was able to justify his belief only in
part: in 1937, he saw how to prove that in these systems it is not possible to
disprove the Continuum Hypothesis.3” Although he was convinced that
it would turn out that it would be equally impossible to prove the Contin-
uum Hypothesis in these systems, he never was able to prove that this is
actually the case. (Godel was vindicated a quarter of a century later when
Paul Cohen developed powerful new methods by means of which he was
able to show that the Continuum Hypothesis is indeed undecidable from
the systems in question.)

In his address in Paris 1900 and again in his retirement address in
Kénigsberg in 1930, Hilbert had proclaimed his faith in the solvability
of every mathematical question. Was the continuing inability of math-
ematicians to resolve Cantor’s continuum problem an indication that
Hilbert had been wrong? The undecidable propositions Gédel had found
involving natural numbers were undecidable inside the formal systems
in question, but as we have seen, viewed from the outside, they were
clearly true. But the Continuum Hypothesis was different: Godel's work
provided no hint regarding the truth or falsity of it. Up to this point Godel
had been unencumbered by narrow foundational views, able to plough
ahead using whatever mathematical methods were needed. But now his
results forced him to stop and think about the philosophical implications
of what he had done.

The specific individual real numbers with which mathematicians ordi-
narily deal, such as 7 and v/2, can be defined in formal systems like PM.
But, as was already clear in Cantor’s time, the cardinal number of the set
of all possible definitions in such systems is only 8y while the cardinal
number of the set of all real numbers is C, which as we know is larger. So
most real numbers have no definition: they are undefinable. This is spooky.
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How can you count things that you can't define? Does it make sense to
talk about sets of real numbers when some of the numbers in such a set
are undefinable? Maybe the undecidability of the Continuum Hypothe-
sis (conjectured by Gédel and later proved by Paul Cohen) tells us that
it does not have a clear meaning, that it is inherently vague. Dealing with
this issue is to face starkly the question of the role of the actual infinite
in mathematics, the very issue that Frege had predicted would lead to a
“momentous and decisive battle.”8

Manuscripts for lectures on Gédel’s work on the Continuum Hypothe-
sis that he gave shortly after obtaining his results on the problem show that
he was equivocal. The Continuum Hypothesis, he suggested, might well
turn out to be “absolutely undecidable” showing that Hilbert had been
mistaken in believing that every mathematical problem could be solved.
In the early 1940s, Gédel moved on to philosophical studies, in part no
doubt to help him come to terms with his views about infinite sets. He be-
came especially devoted to Leibniz, the classical philosopher with whom
he felt the greatest affinity.

Members of the Institute for Advanced Study were under no obligation
to give lectures, work with students, or even publish. Gédel responded
to this relaxed atmosphere by lecturing or publishing only in response
to very specific invitations. An important source of such invitations was
the Library of Living Philosophers, a series of books, each devoted to a
living philosopher. Each volume was a collection of invited essays about
the ideas of the philosopher in question, followed by rejoinders by the
philosopher himself. Gédel was invited to contribute to the volumes on
Bertrand Russell, Albert Einstein, and Rudolf Carnap. The Russell vol-
ume appeared in 1944 with a rather shocking essay by Godel. After an
incisive discussion of Russell’s mathematical logic, Godel announced that
sets and concepts may be “conceived as real objects. . . existing indepen-
dently of our definitions and constructions. ... the assumption of such
objects is quite as legitimate as the assumption of physical objects and
there is quite as much reason to believe in their existence.” So much for
vagueness! Three years later, in an invited expository article on the Con-

tinuum Hypothesis, Godel reiterated his belief in the genuine existence
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of sets, emphasized that existing foundational systems were necessar-
ily incomplete and capable of extension, and predicted that new axioms
would be found that would finally and definitively settle the Continuum
Hypothesis by enabling one to prove that it is false. 3

Until his work on the Continuum Hypothesis, Gédel's interaction with
philosophical issues had consisted mainly of ignoring the scruples of oth-
ers that were preventing them from seeing what was clear to him. But now
he was treading deep philosophical waters. What are numbers anyway?
Are they a mere human construct or do they have some kind of objective
existence? Was 2 + 2 = 4 true before there were people on the planet to
assert it? These issues have been debated for centuries. The doctrine that
abstract objects (like numbers and sets of numbers) have an objective exis-
tence with properties that people can only discover, not invent, is generally
ascribed to Plato and, therefore, is called Platonism. Gdel’s adherence to
this doctrine marked a clear shift in his views. In a lecture given in Cam-
bridge, Massachusetts, in 1933, he had claimed that Platonism could not
“satisfy any critical mind.”*® Researchers in set theory through the final
decades of the twentieth century have been following Gédel’s injunction
to seek new axioms, but despite much interesting work, the Continuum
Hypothesis remains unsettled.

The most truly astonishing passage in Godel’s contribution to the
Russell volume concerned Leibniz’s pet project for a universal charac-
teristic. Writing over two centuries after Leibniz's death, Gédel held out
the hope that such a language could be developed and that it would rev-

olutionize mathematical practice:

But there is no need to give up hope. Leibniz did not in his writings about
the Characteristica universalis speak of a utopian project; if we are to be-
lieve his words he had developed this calculus of reasoning to a large ex-
tent, but was waiting with its publication till the seed could fall on fertile
ground. He went so far as to estimate the time which would be necessary
for his calculus to be developed by a few select scientists to such an ex-
tent “that humanity would have a new kind of an instrument increasing

the powers of reason far more than any optical instrument has ever aided
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the power of vision.” The time he names is five years, and he claims that
his method is not any more difficult to learn than the mathematics or phi-

losophy of his time.*!

Now, we have seen that what Leibniz had produced by way of a calculus
of reasoning, despite being amazing for its time, was a puny, paltry thing
compared with what Boole and Frege later accomplished. Whatever could
Godel have been thinking? Alas, it seems that he believed in a conspiracy
to suppress Leibniz’s ideas. Gédel had a number of very strange beliefs
about many subjects, amounting to at least a touch of clinical paranoia.
Yet his prestige among logicians is so great that there is hesitancy to simply
dismiss any of his ideas. (More about Gédel's mental problems later.)

When Godel was asked to write about Einstein for the Library of Liv-
ing Philosophers, he chose as his topic the relationship between Einstein’s
relativity theory and Kant’s philosophy. He found that the equations of
the general theory of relativity (Einstein’s theory of gravitation) possess
a solution quite different from any physicists had imagined. Remarkably,
Godel's solution to these equations represents a universe in which a jour-
ney long enough and fast enough could end up at in the past. Naturally
such a world is vulnerable to the paradoxes of time travel familiar to read-
ers of science fiction: for example, could one travel to the past and kill
one’s own grandparent as a child? Godel’s surprisingly unphilosophical so-
lution to this dilemma was to point out that such a voyage would be quite
impractical if only because of the quantity of fuel required.

Godel routinely revised his articles over and over again with meticulous
care, withholding them from publication until he was completely satis-
fied. Even after publication, he would take the opportunity of a reprinting
of one of his pieces to introduce further revisions. All in all this tended
to be extremely frustrating to his editors watching deadlines recede. In
the case of Godel's promised essay on Rudolf Carnap for the Library of
Living Philosophers, the volume finally appeared without his contribu-
tion. However, six versions of his intended critique of Carnap’s views
on logic and mathematics were found among Gédel’s papers, and the
editors of his Collected Works decided to publish two of them. Another
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manuscript found among his papers was a handwritten draft (with vari-
ous insertions, deletions, and footnotes) of the text of a lecture Gédel had
given in Providence, Rhode Island, during Christmas week 1951.* In the
lecture, entitled Some Basic Theorems on the Foundations of Mathematics
and Their Implications, Godel, in effect, placed Hilbert's dictum regarding
the solvability of every mathematical question in the context of the na-
ture of the human mind. Gédel raised the question of whether the human
mind was in all essentials equivalent to a computer, a question still being
vigorously debated in the context of prospects for artificial intelligence.
Without proposing to answer the question (although it ultimately became
clear that he believed the correct answer is negative), Gédel maintained
that either answer is “decidedly opposed to materialistic philosophy.” If
the full power of the human mind can be emulated by a finite mechanical
device, then Gédel's own incompleteness theorem can be brought to bear
to show that some proposition about the natural numbers, while true,
can never be proved by human beings, an absolutely undecidable propo-
sition. This would evidently contradict Hilbert's dictum. But according
to Godel, it would also require some measure of idealistic philosophy
just to make sense of a statement that assumes the objective existence
of natural numbers with properties beyond those that human beings can
ascertain. On the other hand, Godel reasoned that if the human mind
is not reducible to mechanism, whereas, as he believed was evident, the
physical brain is so reducible, it would follow that the mind transcends
physical reality, which again would be incompatible with materialism. It
is not so much that this argument is totally persuasive, but rather that in
bringing together considerations of theoretical logic, human physiology,
the ultimate potential for computers, and fundamental philosophy, Gédel
had once again shown his dazzling capacity to think in radically novel and

unexpected directions.*?

*This was the prestigious once-a-year Gibbs lecture, given at the invitation of the
American Mathematical Society. [ was lucky to be in the audience at the lecture,
which had a profound influence on my own views about the foundations of mathe-

matics.
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A STRANGE MAN AND A SAD END

As Kurt Gédel neared retirement age, he hoped that the logician Abraham
Robinson, then at Yale, would take his place at the Institute for Advanced
Study. Before any of this could happen, Robinson was diagnosed with in-
operable pancreatic cancer and died soon after. During his final months,
Robinson received the following letter from Godel:

In view of what I said in our discussion last year [about Robinson coming
to the Institute for an extended period of time] you can imagine how very
sorry | am about your illness, not only from a personal point of view, but
also as far as logic and the Institute for Advanced Study are concerned.
As you know, I have unorthodox views about many things. Two of

them would apply here:
1. I don't believe that any medical diagnosis is 100% certain.

2. The assertion that our ego consists of protein molecules seems to

me one of the most ridiculous ever made.

I hope you are sharing at least the second opinion with me. I am glad
to hear that, in spite of your illness, you are able to spend some time in
the mathematics department. I am sure this will provide some welcome

diversion.*3

This letter is quintessential Godel. What he said about his distrust of med-
ical diagnosis was certainly an understatement. When he suffered a to-
tal blockage of his urinary duct resulting from an enlarged prostate, he
not only refused to accept the diagnosis but also insisted that his prob-
lem could be treated with additional doses of the laxatives on which he
had already become quite dependent. At one point he angrily ripped out
the catheter that had been inserted. Refusing the surgery that usually re-
lieves this condition, he finally accepted the catheter and used it for the

rest of his life. His attempt to console Robinson by referring obliquely to
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his belief that the mind is more than protein molecules, apparently with
the suggestion that there would be an afterlife, is another typical touch.

The boundary between Gédel’s unorthodox views and outright clinical
paranoia was not always clearcut. Morgenstern records his surprise that
Godel took ghosts quite seriously. More important, Godel was convinced
that the refrigerator and radiators in his various apartments in Princeton
were giving off noxious gases, and as a result, he and Adele moved a num-
ber of times. Finally he simply had the offending appliances removed,
making his apartment “a pretty uncomfortable place in the winter time.”

When Godel sought to become a U.S. citizen, he prepared, in typical
Godel fashion, for the perfunctory examination on American institutions
before a judge—he submitted the Constitution to the kind of meticulous
analysis only he would have performed. Moreover, he became quite agi-
tated when he concluded that the Constitution was actually inconsistent.
While driving to Trenton, the state capital, for the procedure, Einstein
and Morgenstern, his supporting witnesses, tried to distract Godel from
his discovery, fearing it might cause trouble if broached. Einstein told one
joke after another. But when the judge asked Gédel whether he thought
a dictatorship like that in Germany was possible in the United States, the
candidate began to explain his discovery. Fortunately, the judge quickly
understood with whom he was dealing and interrupted, so that all ended
happily.

One may chuckle easily at such anecdotes revealing aspects of Gédel’s
strangeness. But not all of it was so amusing. In a paranoid state over the
safety of the food available to him, and with his devoted wife herself too ill
to be much help, he literally starved himself to death. So, on January 14,
1978, ended the life of one of the great minds of the twentieth century.**



CHAPTTEHR S EV EN

TURING CONCEIVES
OF THE ALL-PURPOSE
COMPUTER

As early as 1834, Charles Babbage had conceived of an automatic
calculating machine, his proposed but never constructed analytical en-
gine, intended to carry out numerical computations of the most varied
kind.* To emphasize the power and scope of his engine, Babbage re-
marked facetiously that “it could do everything but compose country
dances.”! While for Babbage it was self-evident that machines designed
for computation could not be expected to compose dances, it does not
strike us today as being at all out of the question. In fact, today’s computers
can perfectly well be programmed to compose country dances (although
probably not of the finest quality). Someone today seeking a similar fig-
ure of speech to emphasize the power and scope of computers would not

*Charles Babbage was born in London in December 1791. An accomplished math-
ematician, he was part of a group seeking to bring continental mathematical ideas
to the British universities. He developed a particular interest in mechanical calcula-
tion and conceived of a machine, the “difference engine,” designed for the efficient
construction of mathematical tables. Soon Babbage was inspired to propose his far
more ambitious analytical engine. He died in 1871 a disappointed and embittered
man, frustrated over the failure to complete this project.
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find it easy to complete the sentence. Almost any task imaginable involv-
ing symbols, numbers, or text either is already within the competence of
computers or some expert is insisting that it soon will be so. Clearly, our
very concept of what computation is has been altered drastically. In 1935
Alan Turing formulated the underlying conception while in the process
of solving a problem in mathematical logic posed by David Hilbert.

Babbage had intended to build his engine entirely out of mechanical
components like gears, and given the complexity of the proposed device,
not surprisingly, he failed. It was only with the development, beginning
in the 1930s, of electromechanical calculators using electrical relays that
machines were built having the scope Babbage had envisioned. But dur-
ing the 1930s and 1940s none of those involved with this work spoke of
machines going beyond straightforward mathematical calculation. As we
will see, the person who first brought Babbage’s vision to life was Howard
Aiken. He wrote:

If it should turn out that the basic logics of a machine designed for the
numerical solution of differential equations coincide with the logics of a
machine intended to make bills for a department store, [ would regard this

as the most amazing coincidence that I have ever encountered.?

Aiken made this remarkable assertion in 1956 when computers that could
readily be programmed to do both of these things were already commer-
cially available. If Aiken had grasped the significance of Alan Turing’s pa-
per published two decades earlier, he would never have made such a pre-
posterous statement.

A CHILD OF THE EMPIRE

Alan Turing’s father, Julius Turing, had had great success as a civil servant
in India. In the spring of 1907, however, after more than a decade of ser-
vice, he was ready for a leave to England. On the voyage home, via the Pa-

cific, he met Alan’s mother, Ethel Sara Stoney. Born in Madras and raised
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in Ireland with a bit of time in Paris, Ethel Sara had returned to India.
On her return trip, a shipboard romance developed swiftly and the young
couple ended up crossing the United States together, stopping for a tour
of Yellowstone Park. With her father’s approval, they married in Dublin in
the fall, before returning to India that winter. Alan’s older brother John
was born in September 1908. Julius’s duties required extensive travel in
the south of India and he was often accompanied by Ethel Sara and the
baby. In the fall of 1911, while on these rounds, Alan was conceived and
after Julius managed to obtain another leave, the family sailed together to
England. Alan Mathison Turing was born in London on June 23, 1912.3

The remorseless logic of empire made a life together a difficult propo-
sition for the Turing family. The father’s career was in India where tropical
disease particularly targeted young children and where an education be-
fitting them was not to be had. The mother could be with her husband
or with her children; only when the father was on leave could she be
with both. Alan was only fifteen months old when his mother arranged to
leave him and his four-year-old brother in England to board with a retired
Colonel and his wife, while she returned to India. Mrs. Turing did man-
age to spend a few months with the children in 1915, and in the spring
of 1916 both parents came home. But this time another danger lurked—
German submarines—and so Mrs. Turing remained in England when her
husband returned to India. Thus the grim war actually benefited Alan by
keeping his mother near. He was a precocious, happy child who made
friends readily, but also a clumsy one and untidy. Though many six-year-
old boys went off to boarding schools, Alan’s mother kept him with her,
sending him to a local day school to learn the Latin deemed essential to a
proper education, lessons made no easier by scratchy pens, leaky fountain
pens, and Alan’s terrible penmanship.

When his mother left once more for India in 1919, the seven-year-old
Alan returned to the Colonel’s establishment, and after an interval of al-
most two years, Mrs. Turing returned to find that her child had not thrived.
Instead of the cheerful little boy she had left, she found an “unsociable”
introverted child whose basic education had been badly neglected. After
doing her best to get him ready, she enrolled him in the small boarding
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ALAN TURING

(Elliot & Fry; Courtesy of the National Portrait Gallery, London)
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school where his brother John was already a student. The two were to-
gether for only a few months before John left for a public school.* So it was
that after a summer vacation, Alan was left by his parents to cope alone
with boarding school life. He showed what he felt about the prospect by
running miserably after his parents’ departing automobile.

By the time the fourteen-year-old Alan Turing began his residence at
the Sherborne public school, his passion for science and mathematics had
been established. He found himself in an environment in which compet-
itive sports were particularly valued and mathematics most emphatically
was not. One of his teachers thought of science in general as being “low
and cunning,” and spoke of mathematics as imparting a bad smell to a
room.* Alan’s mathematical genius thus was recognized but belittled, and
his parents were warned of the danger of his becoming a mere science spe-
cialist. Above all, there was the dirty, blotted work in his almost illegible
handwriting. Meanwhile, having little to do with the other boys and paying
little attention to his classes (but doing well enough on exams), Alan car-
ried on his own little mathematical investigations and studied Einstein’s
theory of relativity.

Alan’s life changed when he found a friend, and more than a friend, in
Christopher Morcom. Chris shared Alan’s passion for science and mathe-
matics but, unlike Alan, was a diligent student who took all of his school-
work seriously and whose written work was impeccably neat. Alan’s admi-
ration for Chris knew no bounds, and he determined to be more like him.
It is unclear at what point in his life Alan Turing became fully aware of
his homosexuality, but it is natural to suppose that, at least for Alan, the
friendship with Morcom had erotic overtones. Turing’s biographer calls
Alan’s feelings “first love,” and indeed they had that intensity. It is im-
possible to know how the relationship would have developed, how Alan’s
feelings might have been modulated, had not tragedy intervened. Unbe-
knownst to Alan, his friend had been suffering from tuberculosis; he died

*As most readers probably realize, the British public schools are in fact elite private
institutions. Attendence at one was a crucial milestone on a boy’s journey toward a

successful upper-middle-class career.
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in February 1930, remaining forever enshrined as a symbol of perfection
in Turing’s mind.>

By his final year at Sherborne, Turing had become so successful in his
studies that he was able to win a scholarship to King’s College at the Uni-
versity of Cambridge. In addition to room and board, he was provided with
a stipend of £80 a year, just about half of what a skilled worker could have
hoped to earn at the time.® Where mathematics had been in bad odor at
Sherborne, at Cambridge Turing found himself in an atmosphere in which
his mathematical genius could flourish. Cambridge’s great mathematician
was G. H. Hardy (1877-1947), whose Course of Pure Mathematics, pub-
lished in 1908, has been a classic textbook from which successive genera-
tions of student mathematicians have come to grips with the fundamental
properties of limit processes. (It is still in print at this writing.) Hardy was
portrayed in a public television program (first broadcast in 1988) about
the self-educated postal clerk from Madras, Ramanujan, whose mathe-
matical genius he had brought to light. Among the lecture courses avail-
able to Turing were Hardy’s and those of the mathematical physicist and
astronomer Sir Arthur Eddington, who had led the 1919 expedition to
West Africa, where a total eclipse of the sun made it possible to observe
the behavior of starlight passing near the sun, and thereby to obtain the
first confirmation of Einstein’s prediction, in his general theory of relativ-
ity, concerning the bending of such light by the sun’s gravitational pull.
Eddington’s lectures raised the question of why so many statistical obser-
vations seemed to align themselves along the famous bell-shaped curve
known as the normal distribution. Eddington’s lectures would also have
covered the still quite new quantum theory, then revolutionizing physics.
But the work in this area that attracted Turing’s serious attention was a
recently published book on the mathematical foundations of quantum
mechanics by John von Neumann, a book Alan had won as a prize at
Sherborne.

The ubiquitous occurrence of the bell-shaped normal distribution
stressed in Eddington’s lectures fascinated Turing, and he sought an un-
derlying mathematical explanation. He found it by working out a proof
that a diverse range of statistical distributions do tend in the limit to the

normal distribution. This was an application par excellence of the limit
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processes of the calculus. Alan Turing didn’t know that he had discovered
something already well known as the Central Limit Theorem. Never-
theless, his achievement was found sufficiently impressive for him to be
offered a position as a Fellow. Turing was now a Cambridge don with an
annual stipend of £300, a three-year appointment, and the near certainty
of a renewal for another three. No specific duties were attached to the fel-
lowship, and Turing could now take dinner at “high table,” literally looking
down on the undergraduates. If he wished, he could also earn additional
income by serving as tutor to undergraduates. The appointment placed
Turing on a path ordinarily expected to lead to an academic career.* At
Sherborne, the alleged bad smell of mathematics and the admonitions to
avoid being a mere scientific specialist were forgotten amidst the celebra-
tion of the success of one of their old boys. The students were granted a

special half-day holiday and the verse

Turing
Must have been alluring
To get made a don

So early on.”

was shamelessly passed around.

And Alan Turing did soon prove his mettle with his first bit of genuinely
new mathematics, leading to a published paper. As it happened, what he
had obtained was an improvement of a theorem proved by von Neumann
in a highly specialized field known as the theory of almost-periodic func-
tions. Turing was now well on the way to a career as a successful research
mathematician whose accomplishments would be of interest only to other
specialists. Then, he attended a course of lectures on the foundations of
mathematics given at Cambridge in the spring of 1935 and everything
changed.

*The doctoral degree, a standard requirement for a university appointment in
France, Germany, and the United States, was rarely sought by English academics
before World War 11.
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HILBERT’S ENTSCHEIDUNGSPROBLEM

Leibniz had dreamt of human reason reduced to calculation and of pow-
erful mechanical engines to carry out calculations. Frege had provided for
the first time a system of rules that could plausibly account for all of hu-
man deductive reasoning. Gédel, in his doctoral dissertation of 1930, had
proved that Frege’s rules were complete, answering a question posed by
Hilbert two years earlier. Hilbert had also sought explicit calculational pro-
cedures by means of which it would always be possible to determine, given
some premises and a proposed conclusion written in the notation of what
has come to be called first-order logic, whether Frege's rules would en-
able that conclusion to be derived from those premises.® The task of find-
ing such procedures came to be known as Hilbert's Entscheidungsproblem
(literally, “decision problem”). Of course, systems of calculational proce-
dures for solving specific problems were nothing new. Indeed the tradi-
tional mathematical curriculum has been largely made up of such calcu-
lational procedures, otherwise known as algorithms. We begin by learning
algorithms for addition, subtraction, multiplication, and division of num-
bers, we move on to algorithms for manipulating algebraic expressions and
solving equations, and, if we continue to calculus, we learn how to use
the algorithms originally developed by Leibniz for that subject. However,
Hilbert was asking for an algorithm of unprecedented scope. In principle,
an algorithm for his Entscheidungsproblem would have reduced all hu-
man deductive reasoning to brute calculation. To a considerable extent, it
would have been a fulfillment of Leibniz's dream.

Mathematicians often like to approach a difficult problem from two di-
rections. On the one hand, they try to do what they can with special cases
of the general problem. Moving in the other direction, they try to reduce
the general problem to certain special cases. If all goes well, the two ap-
proaches meet in the middle, providing a solution to the general problem.
Work on the Entscheidungsproblem proceeded on exactly these lines, and
indeed the gap between the special cases for which algorithms had been
found, and the cases to which the general problem had been reduced, had
been narrowed to such an extent that it was possible to hope that a further

small advance would eliminate the gap entirely, thus providing the algo-
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rithm Hilbert sought.® One skeptic was Cambridge’s G. H. Hardy, who
somewhat indignantly commented: “There is of course no such theorem,
and this is very fortunate, since if there were we should have a mechanical
set of rules for the solution of all mathematical problems, and our activi-
ties as mathematicians would come to an end.”!® Hardy was certainly not
the first craftsman to be convinced that his skill could never be replaced
by a mere mechanism, but this craftsman turned out to be right!

Another Cambridge don, M. H. A. (Max) Newman, fifteen years older
than Turing and a Fellow of St. John’s College, was to play an important
and continuing role in the younger man’s career. Newman had made pi-
oneering contributions to topology, at the time a relatively new branch
of mathematics. Roughly speaking, topology deals with properties of ge-
ometric figures that remain undisturbed by any amount of stretching,
so long as there is no tearing. Newman’s lecture course on topology at
Cambridge introduced many young mathematicians to this burgeoning
field, and he wrote an excellent textbook on the subject. When New-
man attended the 1928 International Congress of Mathematicians in
Bologna, he heard Hilbert set forth goals that, only two years later, the
young Kurt Godel would show were unattainable. Apparently intrigued
by these developments, Newman gave a lecture course in the spring term
of 1935 on the foundations of mathematics featuring Gédel’'s incomplete-
ness theorem as its climax. Attending this course, Turing learned about
Hilbert’s Entscheidungsproblem. Quite apart from the incredulity of such
as Hardy, after Godel’s work it was hard to believe that there could be an
algorithm such as Hilbert had wanted. Alan Turing began to think about
how it could be possible to prove that no such algorithm exists.

TURING’S ANALYSIS OF THE

CoOMPUTATION PROCESS

Turing knew that an algorithm is typically specified by a list of rules that a
person can follow in a precise mechanical manner, like a recipe in a cook-
book. But he shifted his focus from the rules to what the person actually
did when carrying them out. He was able to show, by a process of suc-
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cessively stripping away inessential details, that such a person could be
limited to a few extremely simple basic actions without changing the final
outcome of the computation. Turing’s next step was to see that the person
could be replaced by a machine capable of performing these same basic
actions. Then, by proving that no machine performing only those basic ac-
tions could determine whether a given proposed conclusion follows from
given premises using Frege’s rules, he was able to conclude that no algo-
rithm for the Entscheidungsproblem exists. As a byproduct, he found a
mathematical model of an all-purpose computing machine.

To try to follow what Turing’s thought processes might have been, let
us imagine ourselves watching a computation in progress. What was the
person doing the computing actually doing? She (for it seems that it was
most often women doing this work in the 1930s) was making marks on a
sheet of paper.* She could be observed shifting her attention from what
she had written earlier to what she is writing now. Turing wanted to strip
this description of irrelevant detail. Was she sipping a cup of coffee while
working? Surely not relevant. Was she writing with pencil or with pen?
Again, that doesn’t matter. What about the size of the sheets of paper?
Well, if the paper size is small, she may well need to look back at previ-
ous sheets more often. But Turing easily convinced himself that this was
a matter of convenience not of necessity. Nothing essential would really
change if she were restricted to paper so short that she couldn’t write sym-
bols under one another, in effect if she used something like a roll of paper
tape ruled into horizontal squares. To keep things simple, let us imagine
that she is working out a multiplication example:

4231
x77

29617
296170

325787

*In fact at this time the very word “computer” meant a person (typically female)
whose job was doing computations.
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Without losing anything essential, we can imagine her doing her work

along a paper tape ruled into squares, like this

[l23[1[x[7]7]=[2]9]e[1]7]+[2]o]e[1]7]0]=]3]2[5]7]8]7]

Turing convinced himself that, while it might be a nuisance to deal with a

complicated calculation along such a one-dimensional tape, there was no
fundamental problem in doing so. Let us continue to observe the com-
putation in progress, now restricted to a roll of paper tape: we watch as
our subject glances back-and-forth along the tape, writing symbols, some-
times backing up and erasing symbols so new symbols can be written in
their place. Her decision about what to write next will depend not only on
which symbols she is paying attention to but also on her current state of
mind. Even in the case of our simple multiplication example, as she notes
pairs of digits, her state of mind will determine whether she multiplies or
adds them. As she begins, her tape looks like this

Y Y
[af2fs[1]x[7]7[=]

An arrow ({}) appears above the digits 1 and 7 to indicate that those sym-

bols are initially receiving her attention. Multiplying them gives 7 which

she writes on the tape:

4 4
al2]3 ] fx]7]7][=]7]

She has now shifted her attention to the digits 3 and 7 which are to be
multiplied in turn. After the phase of the computation in which she mul-

tiplies pairs of digits is completed, she will need to add her two partial

products:

¥ ¥
[sl2]3]1[x[7]7[=[2]ofe[1]7]+[2]o]e]1]7]0]-]
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She begins this phase by adding the digits 7 and 0 to obtain

[}
DPDNREEENEBNEEAOBNGNEL

Now she must add the digits 1 and 7 to get 8. Notice that the digits that
have her attention at this point are the same digits that she multiplied

when she began the calculation. But although the digits are the same, her
state of mind is different and leads her to add them instead.

The simple example just discussed illuminates crucial features of any
computation. A person carrying out a computation, in arithmetic, algebra,
calculus, or any other branch of mathematics, operates under the follow-

ing constraints:

* At each stage of a computation only a small number of symbols re-

celve attention.

* The action taken at each such stage depends only on the particular
symbols receiving attention and on the current state of mind of the
person carrying out the computation.

How many symbols can a person deal with simultaneously? And how
many are really needed to carry out a computation correctly? As for the
first question, it surely depends on the particular person, but in any case
it is not very many. Regarding the second question, the answer is one.
This is because the effect of paying attention to several symbols simul-
taneously can always be obtained by paying attention to each of them

1" Moreover the effect of shifting attention from a

singly, one at a time.
particular square on the tape to another a certain distance away can be
obtained by a succession of moves, each of which involves a shift one
square to the right or one to the left. This analysis leads to the conclusion
that any computation can be envisioned as proceeding in the following

manner:

* The computation is carried out by writing symbols in squares on a
ruled paper tape.
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* At each step the person performing the computation pays attention
to the symbol written in exactly one of these squares.

* Her next action will depend only on this symbol and her state of

mind.

* This next action will consist of writing a symbol on the square to
which she has been paying attention and then possibly shifting her
attention to the square immediately to the left or immediately to the
right.

Now it is easy to see that the person doing the work can be replaced by
a machine: the tape—which can be visualized as magnetic tape with the
written symbols represented by coded information—moves back and forth
in the machine. The states of mind of the person carrying out the compu-
tation are represented by different configurations of the internals of the
machine. The machine must be designed so that at each moment it is sen-
sitive to exactly one symbol on the tape, the scanned symbol. Depending
on its internal configuration and on the scanned symbol, the machine will
write a symbol on the tape (replacing the one scanned) and then either
continue to scan the same square or else shift to the position immediately
to the left or to the right on the tape. For the purpose of the computation
it doesn’t matter how the machine is constructed or even what it is made
of; all that is significant is that it have the capability of assuming a number
of different configurations (also called states) and that when in each such
configuration or state it behaves appropriately.

The point is not to actually build one of these Turing machines—after
all, they are merely mathematical abstractions.* What is important is that
on the basis of Turing’s analysis of the notion of computation, it is possi-
ble to conclude that anything computable by any algorithmic process can
be computed by a Turing machine. So if we can prove that some partic-
ular task cannot be accomplished by a Turing machine, we can conclude

that no algorithmic process can accomplish that task. That is how Turing

*Of course, Turing did not call them Turing machines; his term was a-machines—

“«

a” for “automatic.”
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proved that there is no algorithm for the Entscheidungsproblem. In addi-
tion, Turing showed how to produce one individual Turing machine that,
all by itself, can do anything that could be done by any Turing machine—a
mathematical model of an all-purpose computer.

TURING MACHINES IN ACTION

Turing’s analysis of the process of computation has led to the conclusion
that any computation can be carried out by one of the severely circum-
scribed devices that have come to be called Turing machines. It will be
worthwhile to examine a few very simple examples. What is needed to ex-
hibit a particular Turing machine? To begin with, a list of all of its possi-
ble states is required. Then, for each of these states and each symbol that
might be encountered on the tape, it is necessary to specify the machine’s
action in that state when confronted by that symbol. This action, let it be
recalled, is to consist simply of a possible change of symbol on the square
being scanned, a movement one square to the left or to the right, and a
possible change of state. Using uppercase letters to stand for the differ-
ent machine states, we can symbolize the statement:

When the machine is in state R scanning the symbol a on the tape, it will
replace a by b, move one square to the right, and then shift into state S

by the formula R a : b — S. The analogous statement calling for motion
one square to the left will similarly be symbolized as R a : b « S. Finally,
a statement calling for a change of the symbol on the tape without any
motion along the tape will be symbolized as R a : b x S. It is usual to call
these formulas quintuples because it takes five symbols to specify one of
them (not counting the colon). Any particular Turing machine may then
be exhibited by providing a list of such quintuples.

Let us see how to produce a Turing machine that tests a given natural
number to see whether it is even or odd. The given number will be written
in the familiar (decimal) notation as a string of the digits 1, 2, 3, 4, 5, 6,
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7, 8,9, 0. Of course it is very easy to tell at a glance whether a number
(written this way) is even or odd. Just look at the rightmost digit: if it is 1,
3,5, 7, or 9, the number is odd; otherwise it is even. But the setup we'll
use will have the machine beginning by scanning the leftmost digit. Since
a Turing machine can only deal with one digit at a time and can only move
one square at a time, how to manage this isn't totally obvious. The “input”

number is written on the tape like this:

Q
4
[o[4]3]8]3]

Here the number 94383 is written on the tape, and the machine is shown

in its initial state Q scanning the leftmost square. Although the tape is
shown with only five squares (just enough to contain the input) it is cru-
cial that there be no limit to the amount of tape available for a compu-
tation. For this reason a blank square will always appear if the machine
tries to move off the right end of the tape. We treat the blank as a special
character, written O.

Our Turing machine will always start in state Q scanning the leftmost
square. Whatever number is input to the machine, it will eventually ter-
minate with a tape that is all blank except for one square. That one square
will contain a 0 if the original input was even and a 1 if it was odd. The
machine will have four states symbolized by Q, E, O, and F. As stated, Q is
the initial state. Whatever state the machine is in, if it scans an even digit
it will erase that digit (i.e., it will print a blank over it), move one square
to the right, and then enter state E. Similarly, scanning an odd digit, it
will erase it, move to the right, and enter state O. Eventually it will have
scanned and erased the entire input and arrive at an empty square. At this
point it will print a O if it has arrived in state E and a 1 if it has arrived in
state O. Then, it will move one square to the left and halt. Here is the set

of quintuples constituting this machine:
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Q0:0-—-E

Q2

:0— E

Q4:

0O — E

Q6:

0O— E

Q8:

0O — E

Q1:0-0

Q 3

:0—-0

Q5:

O— 0O

Q7:

o—-0

Q9:

O— O

EO0:0—-E

E 2

0 — E

E 4.

O— E

E 6:

0O— E

E 8:

O— E

E1:0-0

E 3

:0 -0

ES5:

O— 0O

E 7:

0O— 0

E 9:

O— 0O

0O0:0—-E

02

:0— E

O4:

O— E

O6:

0O— E

O 8:

0O— E

0O1:0-0

03

:0—-0

O5:

O— 0O

07:

0O— 0

09:

O— 0O

EO:0 « F

O0o:

1 x F

The complete computation beginning with the sample input 94383

shows the operation of the machine in detail:

Q

U
ENEREREREN

O
Y

[ l+[3]s8[3]

E

!
L [ [3[s]3]

O

4
L1 [ [s]3]
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The machine begins in state Q scanning the digit 9. The applicable quin-
tuple is in the second row, last column of the listing. This quintuple causes
the machine to erase the 9, move one place to the right, and enter the
state O. In state O scanning a 4, the quintuple in the fifth row, third col-
umn applies. Accordingly, the machine erases the 4, moves to the right,
and enters state E. Next, in state E, scanning a 3, the quintuple in the
fourth row, second column causes the 3 to be erased and the machine con-
tinues right entering state O. In O, scanning 8, it's the fifth row, last col-
umn that comes into play, erasing the 8, moving right, and entering state
E. Once again in state E scanning 3, it’s the fourth row, second column
that applies causing the 3 to be erased and the machine to move right,
entering state O. In O scanning a blank square, it’s the last row, second
column that applies. The blank is replaced by 1, and the machine stays
put and enters state F. In state F, facing a blank, there is no applicable
quintuple, and the machine halts. At the conclusion of the computation,
there is only the digit 1 on the tape, which is correct because the input
was odd.

Unlike physical devices, Turing machines benefit from their existence
as mere mathematical abstractions by having no limitations on the amount
of tape they can use. The Turing machine consisting of the single quintu-
ple Q O : 0O — Q when started on a blank tape will just keep moving to

the right “forever” as the amount of tape traversed keeps expanding:

I
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A Turing machine computation can continue without ever halting even
when it only traverses a fixed amount of tape. For example, consider the
Turing machine consisting of the two quintuplesQ 1:1 - Qand Q 2:
2 « Q. With input 12, this machine will bounce back and forth like this:

1 Frel B[ He
ool Feold e

This behavior is strictly dependent on the input. For example if the input
is 13, the computation of that same machine will be as follows:
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In state Q scanning 3, no quintuple is applicable and the machine halts.

In summary, some Turing machines with some inputs eventually halt;
others do not. Applying Cantor’s diagonal method to this situation led
Turing to problems that could not be solved by Turing machines and from
that to the unsolvability of the Entscheidungsproblem.

TURING APPLIES CANTOR’S

DiAGoONAL METHOD

The climax of Max Newman’s course that had brought the Entscheidungs-
problem to Alan Turing’s attention was Gédel’s incompleteness theorem.
So it was natural for Turing, contemplating the representation of his ma-
chines as lists of quintuples, to think of using natural numbers as codes for
the machines and of using Cantor’s diagonal method. We'll follow Turing’s
line of thought, and set up a code similar to, but not identical with, the
one he used.

For the purpose of setting up our coding scheme, we think of the quin-
tuples constituting a Turing machine written one after the other separated
by semicolons. Thus the Turing machine consisting of the pair of quintu-

ples:
Ql:1—-0Q Q2:2«0Q

would be written: Q1:1—Q;Q2:2+Q. Then we replace each symbol by
a string of decimal digits according to the following scheme:

* Strings beginning and ending with 8 with only the digits 0, 1, 2, 3, 4,
5 in between will be used for symbols on the tape. The table below
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gives the particular representation we'll use for the decimal digits and
O (as tape symbols) and also for the five symbols — « x :;

Symbol Representation Symbol Representation
0 8008 O 8558
1 8018 — 616
2 8028 — 626
3 8038 * 636
4 8048 : 646
5 8058 ; 77
6 8518
7 8528
8 8538
9 8548

* Strings beginning and ending with 9 with only the digits 0, 1, 2, 3,
4, 5 in between will be used for states. In particular, the start state Q

will be represented by the string 99.

Thus the two quintuple Turing machine just referred to would be coded
by the number: 998018 646 8018 616 99 77 998028 646 8028 626 99.
For the Turing machine we built to distinguish even from odd numbers,
we can code the states E, O, F by 919, 929, and 939, respectively. The
code number for the entire machine would then be:

9980086468558616919 77 9980286468558616919 77 9980486468558616919 77
9985186468558616919 77 9985386468558616919 77 9980186468558616929 77
9980386468558616929 77 9980586468558616929 77 9985286468558616929 77
9985486468558616929 77 91980086468558616919 77 91980286468558616919 77
91980486468558616919 77 91985186468558616919 77 91985386468558616919 77
91980186468558616929 77 91980386468558616929 77 91980586468558616929 77
91985286468558616929 77 91985486468558616929 77 92980086468558616919 77
92980286468558616919 77 92980486468558616919 77 92985186468558616919 77
92985386468558616919 77 92980186468558616929 77 92980386468558616929 77
92980586468558616929 77 92985286468558616929 77 92985486468558616929 77
91985586468008636939 77 92985586468018636939
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Although this is just one big number, it has been displayed with spaces to
show the codes for the individual quintuples. Notice that it is a straight-
forward matter to recover the quintuples from the code: First find the 77s
that separate the codes of the individual quintuples and then decode each
quintuple. For example, the code 92985386468558616919 separates into
929 8538 646 8558 616 919, which decodes into O 8: O — E. Of course
the coding could have been set up in many different ways, but this scheme
has this important and useful property of transparent decodability.*

As with the above examples, any Turing machine can be thought of as
initially scanning the leftmost digit of a number written on its tape. For
some of these numbers, the machine will eventually halt, while for others
it may continue forever. Let us call the set of those natural numbers in
the first of these categories the halting set of that particular Turing ma-
chine. Now, if we think of the halting set of a Turing machine as consti-
tuting a “package” and of the code number of that machine as labeling that
package, then we have exactly the typical setup for applying the diagonal
method: labeled packages in which the labels are exactly the kind of thing
in the packages—in this case, natural numbers.! The diagonal method will
permit us to manufacture a set of natural numbers we will call D that is
different from any halting set of a Turing machine. Here’s how: D will con-
sist entirely of code numbers of Turing machines. For each Turing machine,
its code number will belong to D if and only if it does not belong to the halt-
ing set of that machine. Thus, if the code number of some particular Turing
machine belongs to its halting set, then that code number doesn't belong
to D. On the other hand, if that code number doesn’t belong to the ma-
chine’s halting set, then it does belong to D. In either case D cannot be the
same set of numbers as the halting set of the machine in question. Since

*Note that this coding scheme allows for symbols on the tape other than the decimal
digits and O, symbols coded by such strings as 81118. This allows for symbols that
can serve to mark particular squares on the tape so they can be found on a return
visit. 1t is possible to prove that the use of such additional symbols does not increase
the computational power of Turing machines. It can also be proved that the use of
the decimal system is irrelevant to what Turing machines can do. See [Dav-Sig-Wey]
(in References), pp. 113-68.

TFor a quick refresher on this, see pp. 74-76.
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this is the case for every Turing machine, we can conclude that The set
D is not the halting set of any Turing machine.

But wait! Here is a stubborn person who remains unconvinced. We lis-
ten in on a conversation between the Stubborn Person (SP) and the Om-

niscient Author (OA):

SP: I didn'’t quite follow that reasoning, but in any case I know that I
can construct a Turing machine whose halting set is D. In fact here it

is.

OA: T see. Would you kindly calculate the code number of your ma-
chine.

SP: Gladly! Let me see. The number is 998038646855861692977 . ..
7792985286468558616929 (showing us some enormous number).

OA: OK. And is this number in the halting set of your machine?

SP: Wait! I must work this out. No. No. It’s not in my machine’s halting

set.

OA: Now listen. If this number is not in your machine’s halting set,
then from the way D was defined, the number must be in D. Since this
number is in D and is not in your machine’s halting set, the two sets
must be different.

SP: Let me check my work. Oh, I see. I made a small mistake. Very silly
of me. In fact this number is in my machine’s halting set. I apologize
for my foolish mistake.

OA: Not so fast! From the way D was defined, if the code number of
your machine is in its halting set, then it most certainly is not in D. So
the two sets must be different.

SP: What you are saying sounds plausible enough. But if I were to agree
that you'd proved your point, then I'd no longer be a stubborn person.
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UNSOLVABLE PROBLEMS

A set of natural numbers D has been defined that is different from the
halting set of any Turing machine. But what possible connection can this
have to the Entscheidungsproblem? The connection has to do with the
very reason that Hilbert called this problem the fundamental problem of
mathematical logic. Hilbert understood that a solution to the Entscheid-
ungsproblem would provide an algorithm for settling all mathematical
questions. This same understanding underlay Hardy’s certainty that there
would never be a solution to the Entscheidungsproblem. If we take this
seriously, it implies that if there is any example of a mathematical problem
which can be shown to be algorithmically unsolvable, then the Entscheid-
ungsproblem itself must be unsolvable. The set D will provide us with
such an example.

We consider the following problem:

Find an algorithm to determine for a given natural number whether it be-

longs to the set D.

This is our example of an unsolvable problem. Our first step in seeing that
there is no such algorithm is to observe that by Turing’s analysis of the
computation process, if there were such an algorithm, then there would
be a Turing machine that could accomplish the same thing. Just as with
the Turing machine constructed to distinguish even from odd numbers,
we can visualize such a machine as beginning to scan the leftmost digit of
the given number in an inital state Q, like this:

Q
¢
3

|

Likewise, we would want the machine to halt eventually, with a tape that

[2]6[9]1]

is all blank except for a single digit: 1 if the input number belongs to the set
D, and 0 if it doesn’t. Finally we would want it to halt in a state F with the
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property that no quintuples of the machine begin with the letter F.* For

example,

L[ ]o]

Now let us imagine adding the following two quintuples to our supposed

Turing machine:
FO:O—-F and FO:O-—>F

With an input that belongs to D, the new machine will behave as be-
fore, eventually coming to a halt with 1 on the tape. However, with an
input that doesn’t belong to D, this machine will move to the right for-
ever. Hence, the halting set of this supposed new machine is exactly the
set D. However, this is impossible because D was constructed using the
diagonal method so as to be different from the halting sets of any Turing
machine whatsoever. So our supposition that there is an algorithm for
distinguishing members from nonmembers of D must have been wrong.
There is no such algorithm! The problem of algorithmically distinguishing
members from nonmembers of D is unsolvable!

As we have seen, Hilbert and Hardy both believed that an algorithmic
solution to the Entcheidungsproblem would imply that any mathemati-
cal problem can be decided by an algorithm. So once we have a mathe-
matical problem that is algorithmically unsolvable, the unsolvability of the
Entscheidungsproblem should follow. To see how to make the connection
with the set D, we associate with each natural number % the following pro-
posed premise and conclusion:

*It should be emphasized that if there really were an algorithm for distinguishing
members of D from nonmembers, there would be no problem with these input-
output embellishments. After all, there would be no difficulty with handing the in-
put number to a human person to execute the supposed algorithm in that form, nor
would there be a problem in having her put the output on the tape in the desired

form.
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Premise
n is the code number of some Turing machine and the same
number # is placed on its tape with the leftmost digit scanned.

Conclusion
This Turing machine started in that manner will eventually

halt.

Using the language of first-order logic, both of these sentences can be
translated into logical notation. It is then possible to prove that the conclu-
sion can be derived from the premise using Frege’s rules if and only if the
Turing machine in question really will eventually halt when started with its
own code number on its tape. And this in turn is true if and only if # does
not belong to D. So, if we possessed an algorithm for the Entscheidungs-
problem, we could use it to decide membership in D. Namely given a nat-
ural number %, we could use our supposed algorithm for the Entscheid-
ungsproblem to check whether the conclusion follows from the premise.
If it does, we would know that n doesn’t belong to D, and if not, we would
know that n does belong to D. It follows that the Entscheidungsproblem

is algorithmically unsolvable.!?

TURING’S UNIVERSAL MACHINE

There was something troubling about what Turing had done. He had
proved that no Turing machine could be used to solve the Entscheid-
ungsproblem. However, to conclude that there is no algorithm of any
kind for the Entscheidungsproblem, Turing had recourse to his discus-
sion of what happens when a human being carries out a computation. Just
how convincing was his argument that any such computation could just
as well be carried out by a Turing machine? To buttress his case, Turing

proved that a variety of complicated mathematical calculations could be
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done on Turing machines.* But the most audacious and far-reaching idea
he came up with for testing the validity of what he had done was the
universal machine.

Think of two natural numbers written on a Turing machine tape (in the
usual decimal notation) separated by a blank square. The first number is
to be the code number of some Turing machine and the second is to be

an input to that machine:

Code number of a Turing machine M | ‘ Input to M

Now imagine a person given the task of working out what the Turing ma-
chine whose code number is the first number on the tape would do if con-
fronted by the second number on the tape as input. The task is straightfor-
ward. She could begin by obtaining the actual quintuples constituting the
machine coded by the first number on the tape. Then, she could simply
do on the tape whatever the quintuples command. Now Turing’s analysis
had purported to demonstrate that any straightforward computational task
can be carried out by a Turing machine. Applying this idea to the present
task, one is led to imagine a Turing machine that, begun with the code
number of a Turing machine M followed by a numerical input to M on
its tape, would do exactly what the machine M would have done if con-
fronted with that same input. This would be one single Turing machine that,
all by itself, could do anything that any Turing machine could do. Turing
tested this remarkable conclusion by setting himself the task of showing
how one could actually produce the quintuples of such a universal ma-
chine. In a few pages of what nowadays would be called programming, he
succeeded brilliantly in doing exactly this! 3

People had been thinking about calculating machines since Leibniz’s
time and even earlier. Before Turing the general supposition was that in

dealing with such machines the three categories—machine, program, and

*For example, Turing showed how to construct such machines that could produce
the sequences of Os and 1s representing the binary representations of the real num-
bers e and . He did the same for various other real numbers that come up in stan-
dard mathematics: roots of polynomial equations with integer coefficients and even
the real zeros of Bessel functions.
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data—were entirely separate entities. The machine was a physical object;
today we would call it hardware. The program was the plan for doing a
computation, perhaps embodied in punched cards or connections of ca-
bles in a plugboard. Finally, the data was the numerical input. Turing’s
universal machine showed that the distinctness of these three categories
is an illusion. A Turing machine is initially envisioned as a machine with
mechanical parts, hardware. But its code on the tape of the universal ma-
chine functions as a program, detailing the instructions to the universal
machine needed for the appropriate computation to be carried out. Fi-
nally, the universal machine in its step-by-step actions sees the digits of
a machine code as just more data to be worked on. This fluidity among
these three concepts is fundamental to contemporary computer practice.
A program written in a modern programming language is data to the inter-
preter or compiler that manipulates it so that its instructions can actually
be executed. In fact Turing’s universal machine can itself be regarded as
an interpreter, since it functions by interpreting successive quintuples to
perform the tasks they specify.

Turing’s analysis provided a new and profound insight into the ancient
craft of computing. The notion of computation came to be seen as em-
bracing far more than arithmetic and algebraic calculations. And at the
same time, the vision appeared of universal machines that in principle
could compute everything that is computable. Turing’s examples of spe-
cific machines are already instances of the art of programming; the univer-
sal machine in particular is the first example of an interpretative program.
The universal machine also provides a model of a stored program com-
puter in which the coded quintuples on the tape play the role of stored
program and in which the machine makes no fundamental distinction be-
tween program and data. Finally, the universal machine shows how hard-
ware in the form of a set of quintuples thought of as a description of the
functioning of a mechanism can be replaced by equivalent software in the
form of those same quintuples in coded form stored on the tape of a uni-
versal machine.

While working out his proof that there is no algorithmic solution to
the Entscheidungsproblem, Turing did not suspect that similar conclu-
sions were being reached on the other side of the Atlantic. Newman
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had already received a first draft of Turing’s paper when an issue of the
American Journal of Mathematics arrived in Cambridge containing an ar-
ticle by Alonzo Church of Princeton University entitled “An Unsolvable
Problem of Elementary Number Theory.”* In this paper, Church had al-
ready shown that there were algorithmically unsolvable problems. His
paper did not mention machines but it did point to two concepts, each of
which had been proposed as explications of the intuitive notion of com-
putability or, as Church put it, “effective calculability.” The two concepts
were lambda-definability, developed by Church and his student Stephen
Kleene, and general recursiveness, introduced by Gédel (in the lectures he
gave during his visit to the Institute for Advanced Study in Princeton in
the spring of 1934). The two notions had been proved to be equivalent,
and Church’s unsolvable problem was in fact unsolvable with respect to
either equivalent notion. Although in this paper Church had not drawn
the conclusion that Hilbert’s Entscheidungsproblem was itself unsolvable
with respect to these notions, the first issue of the Journal of Symbolic
Logic (1936) contained a brief note by Church in which he did exactly
that. Turing quickly proved that his notion of computability was equiva-
lent to lambda-definability and decided to attempt to spend some time in
Princeton.

While much of what Turing had accomplished amounted to a redis-
covery of what had already been done in the United States, his analysis of
the notion of computation and his discovery of the universal computing
machine were entirely novel.! Kurt Gédel had been quite unconvinced

*Alonzo Church (1903-1995) played a crucial role in the development of a flourish-
ing research effort in logic in the United States. He established the influential Jour-
nal of Symbolic Logic and served as its editor for over forty years. Stephen Kleene
(1909-1994), another prominent American logician, was one of Church'’s thirty-one
doctoral students (as was I).

"The same first volume of the Journal of Symbolic Logic in which Church’s proof
of the unsolvability of the Entscheidungsproblem appeared also contained a short
paper by the American logician E. L. Post that formulated a concept quite close to
Turing’s ([Davis 1], pp. 289-91). Post was my teacher when I was an undergraduate
at Gity College in New York City.
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by Church’s proposals, and it was only Turing’s analysis that finally con-

vinced him of their correctness.!*

ALAN TURING IN PRINCETON

Although mathematicians in England did not typically bother to acquire
a Ph.D., it was most convenient for Turing to arrange his stay at Prince-
ton University by becoming a graduate student, really an anomalous status
given his accomplishments. In the two years of his stay at Princeton, he
completed a remarkable doctoral dissertation (with Alonzo Church as ad-
visor). Since Godel's undecidable proposition in a given system could be
seen to be true when viewed from outside the system, a natural approach
was to add such a proposition to the given system as a new axiom, thus ob-
taining a new system in which that undecidable proposition was no longer
undecidable. Of course, applying Gédel’s methods, the new system would
be seen to have undecidable propositions of its own. In his dissertation,
Turing studied hierarchies of systems obtained by doing this over and over
again.

Another concept introduced in this dissertation is that of a Turing ma-
chine modified so that it could interrupt its computation to seek external
information. By means of such machines, it becomes possible to speak
of one of a pair of unsolvable problems being “more unsolvable” than the
other. All in all, the ideas introduced in this paper were to provide the ba-
sis for the work of a succession of researchers.!

In 1936 (and indeed through the 1950s) the Princeton mathematics
department was housed in Fine Hall, a low-level, attractive red brick
building.* At the time, Fine Hall housed not only the mathematics fac-
ulty of Princeton University, but also the mathematicians who were part
of the recently established Institute for Advanced Study. The great influx
to the United States of scientists fleeing the Nazi regime had begun. The
concentration of mathematical talent at Princeton during the 1930s came
to rival and then surpass that at Géttingen. Among those to be seen in the

*The building where Princeton’s mathematics department is housed today is also
called Fine Hall; it is visible as a concrete tower from Highway US 1, a mile away.



168 THE UNIVERSAL COMPUTER

corridors of Fine Hall were Hermann Weyl, Albert Einstein, and John von
Neumann, whose interests had moved very far from his work on Hilbert’s
program for the foundations of mathematics.

During his first year at Princeton, Turing had to make do with the
meager stipend that his fellowship at Cambridge provided. This had been
quite sufficient in Cambridge, where room and board were also provided.
However, during his second year he felt himself to be quite rich, be-
cause he had been awarded the prestigious Procter Fellowship. Among
the letters of recommendation written in support of his application for

this fellowship was the following:

June 1, 1937

Sir,

Mr. A. M. Turing has informed me that he is applying for a Proctor
[sic] Visiting Fellowship to Princeton University from Cambridge for the
academic year 1937-1938. | should like to support his application and
to inform you that | know Mr. Turing very well from previous years: dur-
ing the last term of 1935, when | was a visiting professor in Cambridge,
and during 1936-1937, which year Mr. Turing has spent in Princeton, 1
had opportunity to observe his scientific work. He has done good work in
branches of mathematics in which [ am interested, namely: theory of almost
periodic functions, and theory of continuous groups. [emphasis added]

I think that he is a most deserving candidate for the Proctor Fellow-
ship, and I should be very glad if you should find it possible to award one
to him.

I am, Respectfully, John von Neumann!6

Given that von Neumann had been deeply involved with Hilbert's pro-
gram for the foundations of mathematics, it is very surprising that Turing’s
work on computability and his unsolvability proof for the Entscheidungs-
problem are not mentioned in this letter. It is hard to believe that von
Neumann didn’t know about it. I believe the key to making sense of this is
the phrase “branches of mathematics in which I am interested”: one of the
great mathematicians of the century, an omnivorous reader with an almost
photographic memory, von Neumann evidently decided, after Gédel had
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demonstrated the futility of much of his work in this area, that he wanted
nothing more to do with logic. He is even reputed to have said that af-
ter what Godel did in 1931, he never again read a paper on logic.!” This
matter is of some importance because of the role of Turing’s work on von
Neumann’s thinking about computers during and after World War 1I.
Some evidence is provided by a letter from von Neumann’s friend
and collaborator Stanislaw Ulam written to Turing’s biographer Andrew
Hodges.* This letter mentioned a game that von Neumann had proposed
during the summer of 1938 when he and Ulam were travelling together
in Europe; the game involved “writing down on a piece of paper as big
a number as we could, defining it by a method which indeed has some-
thing to do with some schemata of Turing’s.” Ulam’s letter also stated that
“...von Neumann mentioned to me Turing’s name several times in 1939
in conversations, concerning mechanical ways to develop formal math-
ematical systems.” Ulam’s letter makes it clear that, whatever may have
been the case earlier, by the outbreak of World War I1 in September 1939,
von Neumann was well aware of Turing’s work on computability. '8
Turing’s universal computer was a marvelous conceptual device that
all by itself could execute any algorithmic task. But could one actually
build such a thing? And aside from what such a machine could accom-
plish in principle, could it be designed and constructed so as to be able to
solve real-world problems in an acceptable time frame and using reason-
able available resources? These questions were in Turing’s mind from the
very first. In an obituary article in The Times (of London), Turing’s teacher

Max Newman wrote:

The description that he then gave of a “universal” computing machine was

entirely theoretical in purpose, but Turing’s strong interest in all kinds of

*Stanislaw Ulam (1909-1984) was a leading pure and applied mathematician who
worked in many branches of mathematics and was a good friend of von Neumann.
One of his ideas ultimately led to an important way to extend the ordinary axioms
of set theory in a manner that shed light on Godel’s work on the Continuum Hy-
pothesis. Not everyone will applaud Ulam’s most significant contribution: the basic

design of fission—fusion thermonuclear weapons.
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practical experiment made him even then interested in the possibility of

actually constructing a machine on these lines.!”

He didn’t confine himself to merely thinking about this possibility. To fa-
miliarize himself with the available technology, Turing went to the trouble
of actually building a device, using electromechanical relays, that multi-
plied numbers written in binary notation. For this purpose he gained ac-
cess to the Physics Department graduate student machine shop and con-
structed various parts of the device, building the necessary relays him-

self.*

ALAN TURING’S WAR

Turing returned to Cambridge in the summer of 1938. Although the war
was still over a year in the future, he was recruited for an ongoing effort to
break the codes used in German military communications. Codes and de-
coding had entered Turing’s work and also Gédel’s, but those codes were
deliberately chosen to be transparent, unlike the codes the Germans were
using, which were intended to be impenetrable. Indeed the Germans con-
tinued to believe throughout the war that their codes were indeed impen-
etrable.

Following a pact between Nazi Germany and Communist Russia that
surprised the world, German troops invaded Poland on September 1,
1939. Honoring a commitment, England and France declared war on
Germany a few days later, and on September 4 Turing reported to Bletch-
ley Park, a Victorian estate north of London, where a small team, mostly
made up of academics, had gathered determined to read the messages
the enemy intended to keep from them. The team was not destined to
remain small. By the end of the war the estate was home to approximately
twelve thousand people working on various aspects of the decryption and
analysis of messages. In addition to senior personnel, and of course the

* Conveniently enough, the shop was in the Palmer Physics Laboratory located next
door to Fine Hall, the mathematics building—there was even a passageway joining
the two buildings.
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military, there were a considerable number of “Wrens,” women who had
signed up for the Naval auxiliary corps and found themselves instead
operating machines designed by Turing and his colleagues.

German military communications used a modified commercial en-
crypting machine called the Enigma. This machine had an alphabetic
keyboard, and when a key for a particular letter was pressed, a letter would
appear in a little window, the encrypted version of the original. When an
entire message had been encrypted, it would be sent out by ordinary ra-
dio telegraphy. The intended recipient would enter the encrypted letters
into another Enigma machine, and the original message would appear.
Inside the machine were a number of rotating wheels acting to change
the match between input letter and the letter’s encrypted version from
letter to letter. In the military version security was enhanced by an addi-
tional plugboard. Each day there would be a different inital setting of the
machine which had to be the same for the sender and the recipient.

A group of Polish mathematicians had done an amazing job of decipher-
ing German Enigma messages before the war began, but when the Ger-
mans added a layer of complexity to the machines, they were stymied, and
passed their work on to the British. The cryptanalysts at Bletchley Park
were mostly people who liked to work on puzzles, and at times they were
deeply engrossed in the intellectual aspects of their problems and were
enjoying themselves. But the work was deadly serious. Turing’s particu-
lar responsibility was the communications between German submarines
and their home base. Ships bringing badly needed supplies to the British
Islands were being destroyed by these submarines at an alarming rate. If
the U-boats weren't stopped, it seemed possible that England would sim-
ply be starved out. Success in decrypting the Enigma traffic was helped by
a seized codebook from a captured submarine and by some carelessness
on the part of senders that unintentionally gave away crucial information.
But the crucial role was played by Turing who saw how to design a ma-
chine (called a “Bombe” for no reason anyone seems to be able to recall)
that proved very effective in using this information to deduce the settings
of the German Enigma on a particular day. Fittingly enough the Bombes
systematically carried out chains of logical reasoning that eliminated one

possible Enigma configuration after another from among the huge num-
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ber possible, until only a few were left. These were then worked over by
hand until the correct one emerged.*

There were a number of remarkable things about Turing's Bombes.
Only a few months after Turing had produced his paper design, a dozen
of them were built and delivered. Amazingly, they worked without any
modifications. To obtain the settings of the German naval enigma ma-
chines for a given day was to find the right combination from among
something like 150,000,000,000,000,000,000 possibilities. On the aver-
age Turing’s Bombes solved this problem in three hours, and in one case
it was accomplished in fourteen minutes.

At Bletchley Park, Turing was affectionately called “the prof” and his
eccentricities became the source of anecdotes. Years later people spoke of
his habit of keeping his tea mug chained to the radiator. Perhaps the most
revealing anecdote from the Bletchley Park days concerns how Turing
learned to shoot a rifle. In the dark days of 1940 and 1941 when England
seemed open to invasion, the Churchill government formed a citizen’s
militia, the Home Guard. Although, because of the importance of his
work he wasn't required to join the Home Guard, Alan Turing decided
to do so anyway so he could learn to shoot a rifle. Recruits for the Home
Guard were required to attend regular drills, and, after a while, Turing de-
cided that these were a waste of time—so he stopped attending. Called
to order by one Colonel Fillingham with a reputation for easily becoming
apoplectic, Turing patiently explained that he had joined only to learn to
shoot, and now that he had become an excellent shot, he no longer had
any reason to attend. Said the colonel: “But it is not up to you whether you
attend .. . it is your duty as a soldier to attend . ... You are under military
law.” The colonel reminded Turing that in applying to join, he had filled
out a form with the question: “Do you understand that by enrolling in the

*Gordon Welchman, a mathematician who was six years older than Turing, added
a very important feature to Turing’s design that greatly enhanced its performance.
Readers interested in the technical details of how the Enigma traffic was deciphered
are referred to Welchman’s own account [Welchman] and to [Hodges]. [Hinsley]
contains interesting accounts of life in Bletchley Park during the war by a number
of the participants in the deciphering effort. (References in brackets are to the Ref-
erences section.)



TURING CONCEIVES OF THE ALL-PURPOSE COMPUTER 1173

Home Guard you place yourself liable to military law?” To which Turing
replied that he had indeed answered that question, but that the answer
he had written was “No.” In considering that question, it was evident to
Turing that there would be no advantage to him in a “yes” answer.°

In addition to being amusing, this anecdote reveals much of Alan
Turing’s character. He tended to ignore much of the social framework in
terms of which most of us act, and, in any situation, he would think things
through, starting from scratch, seeking the optimum action. Most people
confronting a question like the one on the Home Guard application form
would realize that only an affirmative answer would be acceptable, but
Turing took the question at face value and thought seriously about what
would be the best answer. Although this way of thinking worked very well
for Turing in his scientific research, it did not work so well in his interac-
tions with people and social institutions, and ultimately, years later, it led
to disaster.

Turing found himself becoming quite friendly with Joan Clarke, a
young mathematician enlisted in the Bletchley Park endeavor. He found
himself, in fact, in love with her, proposed marriage, and was gladly ac-
cepted. She found it definitely worrisome, when, a few days later, he told
her of his homosexual tendencies, but she was willing to carry on with
the engagement. A few months later, shortly after they had taken a va-
cation trip together, Turing decided that although he really loved Joan, it
just wouldn’t work, and he broke off the engagement. Apparently this was
the first and last time that he permitted himself to imagine an amorous
relationship with a woman.

Meanwhile, Turing never stopped thinking about the applicability of
his conception of a universal machine. He guessed that it was this notion
of universality that held the secret of the enormous power of the human
brain, that in some manner our brains are actually universal machines. He
imagined that if a universal machine could be built, it could be made to
play games like chess, that it could be induced to learn much as a child
does, that ultimately it could be made to exhibit behavior one would be
led to call intelligent. There was much conversation along these lines in
Bletchley Park, and Turing even sketched algorithms that a machine could
use in playing chess. At the same time, some of the hardware needed for
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building a universal machine was being developed right there in Bletchley
Park.

Some of the messages being intercepted in England, communications
that originated at the highest levels of the Nazi regime, were not Enigma-
encrypted and were not being transmitted by ordinary telegraphy. The
British soon realized that they had the characteristics of teleprinter out-
put. This was a system in which individual letters in a text were each
represented by a row of holes in a paper tape. Unlike the older Morse
code telegraphy, no human operator was required. It seemed that the
Germans were using a single machine that could encrypt and transmit
a message as a single operation. The recipient would have a machine to
do the decoding. At Bletchley Park, this system was called “fish,” and
Turing’s teacher, Max Newman, undertook the task of decyphering it.
Some of the methods to be used were playfully called turingismus indi-
cating their source.* But turingismus required the processing of lots of
data and for the decryption be of any use, the processing had to be done
very quickly.?!

In the 1930s most people in the United States and Europe owned ra-
dios. In those days, before the invention of transistors, radios contained a
number of vacuum tubes (called “valves” in Britain). In use, these glowed
like low-intensity light bulbs and became quite hot. Like light bulbs, they
burned out frequently and had to be replaced. When one’s radio stopped
working, one could pull the tubes from their sockets and bring them into a
shop for testing. After replacing the ones gone bad, the radio would usually
come back to life. The RCA catalog of tubes, listing hundreds of different
models of tubes with the specific characteristics of each, was indispen-
sible to engineers and popular with hobbyists. In March 1943, Alan Turing
sailed home from a visit of several months in the United States where he
had helped launch the American effort to construct their own bombes
and to take over the monitoring of naval Enigma traffic. He whiled away
the time during his Atlantic passage by studying this RCA catalog, for
it had been found that vacuum tubes could carry out the kind of logical

switching previously done by electric relays. And the tubes were fast: their

*ismus is a German suffix used much like the English isnz.
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electrons moved at speeds close to that of light, while relays depended
on mechanical motion. Vacuum tube circuits had in fact been used ex-
perimentally for telephone switching, and Turing had made contact with
the gifted engineer, T. Flowers, who had spearheaded this research. Under
the direction of Flowers and Newman, a machine, essentially a physical
embodiment of turingismus, was rapidly brought into being. Dubbed the
Colossus and an engineering marvel, this machine contained 1500 vac-
uum tubes. The world’s first electronic automatic calculation device had
been born. Not surprisingly, the computations it carried out were logical
rather than arithmetic in nature. Intercepted German communications
in the form of a punched paper tape were fed to the machine by an ex-
tremely fast tape reader: as the tape moved through the reader, beams of
light passing through holes in the paper were intercepted by photoelectric
cells which passed the signal on to the Colossus. It was important that the
tape be read rapidly in order not to slow down the operation of the vac-
uum tube circuits. Flowers’ outstanding feat was not only getting an op-
erational machine constructed in a few months but also managing to get
useful work done by a machine containing so many tubes. Indeed many
had thought that the inevitable frequency of tube failures would make this
impossible.

By the time the war ended in 1945, Turing possessed a working knowl-
edge of vacuum tube electronics. Convinced that vacuum tube circuits
could be used to construct a universal computer, he devoted much thought
to practical issues of implementation and the great variety of applications.
Now he needed only sufficient support and facilities to bring this great

project to fruition.
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WHO INVENTED THE COMPUTER?

Modern computers are such a complex amalgam of logic and engineer-
ing that it would be ludicrous to single out any one person as the inventor.
Nevertheless, in 1973, in resolving a patent dispute (Honeywell v. Sperry
Rand), a judge came close to doing just that. As our story moves from the
underlying logical ideas behind modern all-purpose computers to their ac-
tual construction, engineering issues and the people who were able to deal
effectively with them come to the fore. Accounts of the history of comput-
ing have made varying claims, and before continuing our story, it's worth

having a quick look at the cast of characters:

JOSEPH-MARIE JACQUARD (1752-1834) The Jacquard
loom, a machine that could weave cloth with a pattern specified by a
stack of punched cards, revolutionized weaving practice first in France
and eventually all over the world. With perhaps understandable hyper-
bole, it is commonly said among professional weavers that this was the
first computer. Although it is a wonderful invention, the Jacquard loom

was no more a computer than is a player piano. Like a player piano it per-
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mits a mechanical device to be controlled automatically by the presence

or absence of punched holes in an input medium.

CHARLES BABBAGE (1791-1871) See page 139. Babbage
proposed to use punched cards like Jacquard’s for his never-built analyti-
cal engine. He owned a self-portrait of Jacquard in the form of a weaving.

ADA LoVELACE (1815—1852) Herfather, Lord Byron, never
saw her after her first year. She had a great passion for mathematics and
was particularly enthusiastic about Babbage’s proposed analytical engine.
She translated a French memoir about the analytical engine to which,
with Babbage’s encouragement, she added her own extensive comments.
She has been called the world’s first computer programmer and a major
programming language has been named Ada in her honor. Her aphorism
relating the analytical engine to Jacquard’s loom is often quoted:

We may say most aptly that the Analytical Engine weaves algebraical pat-

terns just as the Jacquard-loom weaves flowers and leaves.!

CLAUDE SHANNON (1916-) In his master’s thesis at MIT
(published in 1938), Shannon showed how George Boole’s algebra of logic
could be used to design complex switching circuits. This thesis “helped to
change digital circuit design from an art to a science.”” His mathematical
theory of information has played a crucial role in contemporary communi-
cation technology. Shannon did pioneering work in computer algorithms
for chess playing. He showed how to construct a universal Turing ma-
chine with only two states. (Shannon was my boss in 1953 when [ had a
summer job at Bell Labs.)

HowARD AIKEN (1900-1973) HisAutomatic Sequence Con-
trolled Calculator, constructed by IBM for Harvard University using
electric relays and inaugurated in 1944, did everything Babbage had en-
visioned. Having developed a machine specifically intended for the kind
of number crunching needed by physicists and engineers, Aiken found
it difficult to see that a machine intended to be all-purpose could be
effective for this kind of computation. See page 140.
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JOHN ATANASOFF (1903-1995) This obscure physicist at
the University of lowa (working with his assistant Clifford Berry) designed
and built a small special-purpose calculator based on vacuum tube elec-
tronics during the years leading up to the U.S. entry into World War II.
Although this machine could only deal with problems of a very special
kind, it was important because it demonstrated the usefulness of vacuum

tube circuits for computation.?

JOHN MAUCHLY (1907-1980) Mauchly’s vision lay behind
the development of the world’s first large-scale number-crunching elec-
tronic calculator, the ENIAC, at the Moore School of Electrical Engi-
neering of the University of Pennsylvania in Philadelphia. Mauchly, also a
physicist, had visited Atanasoff’s laboratory in Ames, Iowa, where he had
had the opportunity to study the electronic calculator that had been con-

structed there.

J. PRESPER ECKERT JR. (1919-1995) Thebrilliant elec-
trical engineer Eckert’s remarkable efforts were mainly responsible for the
successful construction of the ENIAC.

HERMAN GOLDSTINE (19 13-) The mathematician Herman
Goldstine, inducted into the U.S. Army in 1942, was assigned to the Bal-
listic Research Laboratory of Army Ordnance as a First Lieutenant. As the
Army’s representative on the ENIAC project, he brought von Neumann
into the group at the Moore School. In the later disputes with Eckert
and Mauchly he supported von Neumann. After the war, he became von
Neumann'’s chief collaborator in work concerning computation. His book
on the history of computation [Goldstine] emphasized von Neumann’s
role and has been criticized for that reason. {In 1954, he was the person
to whom [ had to apply for permission to make use of the Institute for
Advanced Study computer.)

EARL R. LARSON (191 1-) He was the U.S. District judge
who, in 1973, found invalid the patent that Eckert and Mauchly had
obtained on the ENIAC. His opinion included the statement:
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Eckert and Mauchly did not themselves first invent the automatic elec-
tronic digital computer, but instead derived that subject matter from one
Dr. John Vincent Atanasoff.*

JOHN VON NEUMANN AND THE

MDORE ScHOOL

As we have seen, John von Neumann had taken on the task of explaining
Hilbert’s program at the symposium on the foundations of mathematics
in Kénigsberg in 1930. This was the symposium at which Kurt Godel
had dropped his bombshell asserting that he had proved that formal sys-
tems for mathematics are necessarily incomplete, and apparently von
Neumann had been the first to grasp the significance of Gédel's work.
Soon after, von Neumann wrote Gédel quite excitedly: “T achieved a re-
sult that seems to me to be remarkable. For I was able to show that the
consistency of mathematics is unprovable.” What von Neumann had seen
was that by using Godel's methods, it could be proved that systems like
those Hilbert had in mind were inadequate to prove their own consis-
tency. As we have already noted (page 123), by the time Godel received
this letter, he had reached the same conclusion himself, and could send
by return mail a printed abstract containing that result.

John von Neumann was a vain and brilliant man, well used to putting
his stamp on a mathematical subject by sheer force of intellect. He had
devoted considerable effort to the problem of the consistency of arith-
metic, and in his presentation at the Konigsberg symposium, had even
come forward as an advocate for Hilbert’s program. Seeing at once the
profound implications of Gédel's achievement, he had taken it one step
further—proving the unprovability of consistency, only to find that Gédel
had anticipated him. That was enough. Although full of admiration for
Godel—he’d even lectured on his work—von Neumann vowed never to
have anything more to do with logic. He is said to have boasted that after
Godel, he simply never read another paper on logic. Logic had humili-
ated him, and von Neumann was not used to being humiliated. Even so,
the vow proved impossible to keep, for von Neumann'’s need for powerful

computational machinery eventually forced him to return to logic.
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As with Turing, von Neumann’s wartime work called for large-scale
computation. But, where the cryptanalytic work at Bletchley Park em-
phasized the side of computation involving symbolic patterns so in tune
with Turing’s earlier work, it was old-fashioned heavy number-crunching
that von Neumann needed. Not surprisingly, he jumped at the opportu-
nity to participate in an exciting project at the Moore School of Electrical
Engineering in Philadelphia—the construction of a powerful electronic
calculator, the ENIAC. The thirty-year-old mathematican Herman Gold-
stine brought von Neumann into the ENIAC project. As Goldstine tells
the story, the two met for the first time at a railway station during the sum-
mer of 1944 and von Neumann soon thereafter joined the discussions in
Philadelphia.

If the Colossus with its 1500 vacuum tubes was an engineering mar-
vel, the ENTAC with 18,000 tubes was simply astonishing. Conventional
wisdom at the time held that no such assemblage could do reliable work,
for a tube would surely fail every few seconds. The ENIAC's chief en-
gineer, John Presper Eckert, Jr., was largely responsible for the project’s
success, insisting on very high standards of component reliability. Tubes
were operated at extremely conservative power levels, holding the failure
rate to three tubes per week. An enormous machine, occupying a large
room, and programmed by connecting cables to a plugboard rather like
an old-fashioned telephone switchboard, the ENIAC was modeled on the
most successful computing machines then available—differential analyz-
ers.’ Differential analyzers were not digital devices operating on numbers
digit by digit. Rather numbers were represented by physical quantitites
that could be measured (like electric currents or voltages) and compo-
nents were linked together to emulate the desired mathematical opera-
tions. These analog machines were limited in their accuracy by that of the
instruments used for the measurements. The ENIAC was a digital device,
the first electronic machine able to deal with the same kind of mathemati-
cal problems as differential analyzers. Its designers built it of components
functionally similar to those in differential analyzers, relying on the capa-
bilities of vacuum-tube electronics for greater speed and accuracy.®

By the time von Neumann began meeting with the Moore School

group, it was clear that there were no important obstacles to the success-
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ful completion of the ENIAC, and attention moved to the next computer
to be built, tentatively called the EDVAC. Von Neumann immediately
involved himself with the problems of the logical organization of the new
machine. As Goldstine recalled:

Eckert was delighted that von Neumann was so keenly interested in the
logical problems surrounding the new idea, and these meetings were
scenes of greatest intellectual activity.

This work on the logical plan for the new machine was exactly to von
Neumann’s liking and precisely where his previous work on formal logics
came to play a decisive role. Prior to his appearance on the scene, the
group at the Moore School concentrated primarily on the technological
problems, which were very great; after his arrival he took over leadership

on the logical problems.”

In June 1945 John von Neumann produced his famous First Draft of
a Report on the EDVAC which, in effect, proposed that the soon-to-be-
built EDVAC be realized as a physical model of Turing’s universal ma-
chine. Like the tape on that abstract device, the EDVAC would possess a
storage capability—von Neumann called it “memory”—holding both data
and coded instructions. In the interest of practicality, the EDVAC was to
have an arithmetic component that could perform each basic operation
of arithmetic (addition, subtraction, multiplication, or division) in a single
step, whereas in Turing’s original conception these operations would need
to be built up in terms of primitive operations such as “move one square to
the left.” Whereas the ENIAC had performed its arithmetic operations on
numbers represented in terms of the ten decimal digits, the EDVAC was
to enjoy the simplicity made possible by binary notation. The EDVAC was
also to contain a component exercising logical control by bringing instruc-
tions to be executed one at a time from the memory into the arithmetic
component. This way to organize a computer has come to be known as the
von Neumann architecture, and today’s computers are for the most part
still organized according to this very same basic plan, although they are
built of parts that are very different from those available for the EDVAC.8
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The EDVAC report never advanced beyond the draft stage, and is quite
evidently incomplete in a number of ways. In particular, there are many
places where a reference to be inserted later is indicated. Turing’s name is
never mentioned, but his influence is evident to the discerning eye. The
notion that the EDVAC should be all-purpose is mentioned more than
once. Like Turing, von Neumann surmised that some of the remarkable
capability of the human brain was the result of its possessing the power
of a universal computer. In the EDVAC report, von Neumann refers over
and over again to the analogy between the brain and the machine he is dis-
cussing. Vacuum tube circuits, von Neumann notes, can be designed that
behave in many ways like the neurons in our brains, and, without worrying
about the engineering details, he describes how the arithmetic and logi-
cal control components needed for the EDVAC could be built up of such
circuits. Although almost entirely devoid of references, the report refers
more than once to a paper by a pair of MIT researchers, published in 1943,
that sets out a mathematical theory of just such idealized “neurons.” One
author of this paper later stated that they had been directly inspired by
Turing’s 1936 article (the one in which his universal machine was expli-
cated), and in fact the paper’s only reference is to Turing’s article. More
revealing still, the article’s authors take the trouble to demonstrate that a
universal Turing machine can be modeled using their idealized neurons
and cite this fact as the principal reason for believing that their work is on
the right track.”

Eckert and Mauchly came to bitterly resent von Neumann’s release
of the EDVAC report under his own name. An element of controversy,
which will probably never be fully resolved, is the question of how much
of the EDVAC report represented von Neumann’s personal contribution.
Although Eckert and Mauchly later denied that von Neumann had con-
tributed very much, shortly after the report appeared they wrote as fol-

lows:

During the latter part of 1944, and continuing to the present time, Dr.
John von Neumann...has fortunately been available for consultation.

He has contributed to many discussions on the logical controls of the



184 THE UNIVERSAL COMPUTER

EDVAC, has prepared certain instruction codes, and has tested these
proposed systems by writing out the coded instructions for specific prob-
lems. Dr. von Neumann has also written a preliminary report in which
most of the results of earlier discussions are summarized. .. . In his report,
the physical structures and devices . . . are replaced by idealized elements
to avoid raising engineering problems which might distract attention from

the logical considerations under discussion.!®

There is other evidence that von Neumann wanted to be sure that the
machine he was specifying was as close as was practically possible to be-
ing universal. So he emphasized the “logical control” of a computer as be-
ing crucial for its being “as nearly as possible all-purpose.”!! To test the
general applicability of the EDVAC, von Neumann wrote his first serious
program, not for the kind of number-crunching application for which the
machine was mainly developed, but rather to simply sort data efficiently.
The success of this program helped to convince him that “it is legitimate
to conclude already on the basis of the now available evidence that the
EDVAC is very nearly an ‘all purpose’ machine, and that the present prin-
ciples for the logical controls are sound.”!?

Articles written within a year of the EDVAC report confirm von Neu-
mann’s awareness of the basis in logic for the principles underlying the de-
sign of electronic computers. The introduction to one such article states:

In this article we attempt to discuss [large-scale computing] machines
from the viewpoint not only of the mathematician but also of the engineer
and the logician, i.e., of the .. . person or group of persons really fitted to

plan scientific tools.!3

Another article clearly alludes to Turing’s ideas even as it emphasizes that
purely logical considerations are not enough:

It is easy to see by formal-logical methods that there exist codes that are
in abstracto adequate to control and cause the execution of any sequence
of operations which are individually available in the machine and which

are, in their entirety, conceivable by the problem planner. The really deci-
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sive considerations from the present point of view, in selecting a code, are
of a more practical nature: simplicity of the equipment demanded by the
code, and the clarity of its application to the actually important problems
together with the speed of its handling those problems. It would take us
much too far afield to discuss these questions at all generally or from first

principles.!#

It is well understood that the computers developed after World War
II differed in a fundamental way from earlier automatic calculators. But
the nature of the difference has been less well understood. These post-
war machines were designed to be all-purpose universal devices capable
of carrying out any symbolic process, so long as the steps in the process
were specified precisely. Some processes may require more memory than
is available or may simply be too slow to be feasible, so these machines
can only be approximations to Turing’s idealized universal machine. Nev-
ertheless it was crucial that they had a large memory (corresponding to
Turing’s infinite tape) in which instructions and data could coexist. This
fluid boundary between what was instruction and what was data meant
that programs could be developed that treated other programs as data. In
early years, programmers mainly used this freedom to produce programs
that could and did modify themselves. In today’s world of operating sys-
tems and hierarchies of programming languages, the way has been opened
to far more sophisticated applications. To an operating system, the pro-
grams that it launches (e.g., your word processor or email program) are
data for it to manipulate, providing each program with its own part of the
memory and (when multitasking) keeping track of the tasks each needs
carried out. Compilers translate programs written in one of today’s pop-
ular programming languages into the underlying instructions that can be
directly executed by the computer: for the compiler these programs are
data.

After the experience with the ENIAC and with the Colossus, those in-
terested in computational equipment would not settle for speeds of oper-
ation slower than what they knew could be obtained using vacuum tube
electronics. For an all-purpose computer modeled on Turing’s universal

machine, a physical device was needed that could function as an appro-
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priate large memory. On the tape of Turing’s abstract universal machine,
moving from a particular square to another distant one required a labori-
ous process of repeatedly moving one square at a time. This was fine for
Turing’s purposes in 1936—those theoretical machines were not meant to
do anything practical. However, a fast electronic computer needed a fast
memory. This required that the data stored at any place in the memory
should be directly accessible in a single step, that is, the memory should
be random access.*

In the late 1940s, two devices offered themselves as candidates for use
as computer memory: the mercury delay line and the cathode ray tube.
The delay line consisted of a tube of liquid mercury; data was stored in
the form of an acoustic wave in the mercury bouncing back and forth from
one end of the tube to the other. Cathode ray tubes are familiar nowadays
in TVs and computer monitors. Data could be stored as a pattern on the
surface of the tube. There were serious engineering problems with both
of these devices but fortunately for the EDVAC project, Eckert had de-
veloped improved delay lines during the war for use with radar. However,
by the early 1950s cathode ray tubes had become the preferred memory
medium.

In discussions of this period, the new computers that were being de-
veloped are usually referred to as embodying the stored program concept
because for the first time the programs to be executed were being stored
within the computer. Unfortunately this terminology has served to ob-
scure the fact that what was really revolutionary about these machines
was their universal all-purpose character, while the stored program aspect
was only a means to an end. The point of view of Turing and von Neumann
is conceptually so simple and has so much become part of our intellectual
climate that it is difficult to understand how radically new it was. It is far
easier to appreciate the importance of a new invention like the mercury
delay line than of a new and abstract idea. Eckert later claimed that he
had already thought of the so-called stored program concept well before

*The memory in today’s computers is made of silicon chips called RAM, standing
for “random access memory.”
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von Neumann had appeared on the scene. His evidence was a memo that
spoke of automatic programming set up on alloy discs or etched discs.
There is nothing here that even remotely suggests the concept of the all-
purpose computer with a large flexible memory in which instructions and
data cohabit. But to characterize the great advance that had been made
as the stored program concept is to invite such confusion.'”

The bitterness between Eckert and Mauchly on the one hand, and von
Neumann and Goldstine on the other came to a head when Eckert and
Mauchly attempted to develop a commercial product based on their work.
They sought patents for the ENIAC and for the EDVAC. Their applica-
tion for an EDVAC patent got nowhere precisely because the circulation
of von Neumann’s draft report had placed it in the public domain. As al-
ready explained, they did receive a patent for the ENIAC, later found in-
valid by a court. Eckert and Mauchly were certainly prescient in envision-
ing the commercial possibilities for all-purpose electronic computers, but
they were unable to profit from their prophetic insight.'®

With the departure of Eckert and Mauchly the Moore School lost
much of its edge, and von Neumann and Goldstine went on to develop a
computer at the Institute for Advanced Study in Princeton using a cath-
ode ray tube memory. A special-purpose tube developed by RCA Corp. on
which von Neumann had set his hopes did not work out, but the English
engineer Frederic Williams (1911-1977) developed methods by which or-
dinary cathode ray tubes could be used effectively as a computer memory,
and for some years the “Williams memory” dominated the scene. A num-
ber of machines similar to the Institute machine were built, affectionately
termed “johnniacs” after Johnny von Neumann. When IBM decided that
it was time to market all-purpose electronic computers, their first model
(the 701) was quite similar to the johnniacs.*

*My personal introduction to computer programming occurred in the spring of 1951
when I began writing code for the ORDVAC, a johnniac built at the University of
Illinois in Urbana-Champaign. In the summer of 1954, I wrote a program (not un-
related to Leibniz's dream) that ran on the original johnniac at the Institute for Ad-
vanced Study. That computer can be seen nowadays at the Smithsonian Institution

in Washington.
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ALAN TURING’S ACE

At the end of World War 11, Britain’s National Physics Laboratory (NPL)
underwent a considerable expansion, including a new Mathematics Divi-
sion. J. R. Womersley (1907-1958), appointed head of this division, had
seen the practical implications of Turing’s 1936 Computable Numbers pa-
per quite early on. In 1938 he had gone so far as to undertake the design
of a universal machine using electric relays, but abandoned the idea be-
cause he saw that such a device would be too slow. On a visit to the United
States in February 1945, he saw the ENIAC and obtained a copy of von
Neumann’s EDVAC report. His reaction was to hire Alan Turing.

By the end of 1945, Turing had produced his remarkable ACE (Auto-
matic Computing Engine) report. One detailed comparison of the ACE
report with von Neumann’s EDVAC report notes that whereas the latter
“is a draft and is unfinished ... more important. . .is incomplete ...” the
ACE Report “is a complete description of a computer, right down to the
logical circuit diagrams” and even including “a cost estimate of £11,200.”
In a list of ten problems that might be handled by the ACE, Turing, show-
ing the breadth of his vision, included two that did not directly involve
numerical data: playing chess and solving simple jigsaw puzzles.!’

Turing’s ACE was a very different kind of machine from von Neumann’s
EDVAC, corresponding closely to the different attitudes of the two math-
ematicians. Although von Neumann was concerned that his machine be
truly “all-purpose,” his emphasis was on numerical calculation and the
logical organization of the EDVAC (and of the later johnniacs) was in-
tended to expedite this direction. Since Turing saw the ACE being used
for many tasks for which heavy arithmetic was inappropriate, the ACE was
organized in a much more minimal way, closer to the Turing machines of
the Computable Numbers paper. Arithmetic operations were to be carried
out by programming—by software rather than hardware. For this reason,
the ACE design provided a special mechanism for incorporating previ-
ously programmed operations in a longer program.'® Turing was particu-
larly caustic concerning a proposal to modify the ACE in a von Neumann
direction:
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[1t] is...very contrary to the line of development here, and much more
in the American tradition of solving one’s difficulties by means of much
equipment rather than by thought.... Furthermore certain operations
which we regard as more fundamental than addition and multiplication

have been omitted.!?

Turing’s minimalist ideas were destined to have little or no influence
on computer development. But in retrospect one can see that so-called
microprogramming which makes the most basic computer operations di-
rectly available to the programmer was anticipated by the ACE design.
Also, the personal computers we use nowadays are built around silicon mi-
croprocessors that are in effect universal computers on a chip, and these
have become more and more elaborate. An opposing paradigm, the so-
called RISC (reduced instruction set computing) architecture, adopted
by a number of computer manufacturers, uses a minimal instruction set
on the chip, with needed functionality supplied by programming, again
very much in line with the ACE philosophy.

On February 20, 1947, Turing addressed the London Mathematical So-
ciety on the subject of the ACE in particular and digital electronic com-
puters in general. He began by referring to his 1936 Computable Numbers

paper:

I considered a type of machine which had a central mechanism, and an
infinite memory which was contained on an infinite tape. ... One of my
conclusions was that the idea of a “rule of thumb” process and a “machine
process” were synonymous. . .Machines such as the ACE may be regarded
as practical versions of . . . the type of machine I was considering. . .There
is at least a very close analogy . . . digital computing machines such as the

ACE ... are in fact practical versions of the universal machine.?

Turing went on to raise the question of “how far it is in principle possi-
ble for a computing machine to simulate human activities.” This led him
to propose the possibility of a computing machine programmed to learn
and permitted to make mistakes. “There are several theorems which say
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almost exactly that . . .if a machine is expected to be infallible, it cannot
also be intelligent. .. But these theorems say nothing about how much
intelligence may be displayed if a machine makes no pretence at infalli-
bility.” This was an oblique reference to Gédel’s incompleteness theorem
about which there will be more to say in the next chapter. Turing con-
cluded his lecture with a plea for “fair play for computers” which should
not be expected to be more infallible than human beings and a sugges-
tion that chess playing would be an appropriate exercise on which to
begin. All of this was at a time when not a single one of these devices
had yet been completed! By all reports, the audience was stunned into
silence.?!

When the Bletchley Park leaders were having trouble getting adequate
resources and support, they sent a letter to Winston Churchill, who im-
mediately saw to it that they got what they needed. Construction of the
ACE could command no such priority. Further, the administration of the
NPL behaved in a most inept manner. T. Flowers, who had done such a
bravura job of getting the Colossus built, would have been the ideal per-
son to build the ACE, but although he did some work on delay lines for
computer memory under contract with NPL, he was much too busy with
postwar telecommunications work to be of much help. There was con-
cern about the minimalist design of the ACE, perhaps tinged with a feel-
ing that the Americans were the ones to trust with technological issues
rather than an eccentric English don. What this don had done to help win
the war remained a deeply guarded secret for many years. When Williams
showed that his cathode ray tube memory would work (see page 187), he
was offered a contract to work on the ACE but he declined. The NPL ad-
ministration naively imagined that Williams could be hired to build the
NPL computer, but Williams had access to sufficient resources to build
his own computer at Manchester. Finally Turing had had enough and left,
first taking up his fellowship at Cambridge and then accepting a job of-
fer from the University of Manchester, where his old friend and wartime
comrade Max Newman was starting a computer project. Afterwards, with
a change of personnel, a small version of the ACE was built successfully

at NPL. Called the “Pilot ACE,” it worked well for years.
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ECKERT, VON NEUMANN, AND TURING

In the story of what is usually called the stored program concept, there
have been three principal versions. The first account saw the concept
as the product of von Neumann’s genius as promulgated in his EDVAC
report. Eckert cried “foul” and insisted that he had proposed a stored
program computer before von Neumann had joined the Moore School
group. The EDVAC report, he asserted, represented the joint thinking of
the group. Publications appeared supporting Eckert’s position.?? Turing's
name was not mentioned at all. Supporting von Neumann’s claim and

oblivious to Turing’s role, Goldstine wrote:

Von Neumann was the first person, as far as I am concerned, who under-
stood explicitly that a computer essentially performed logical functions,

and that the electrical aspects were ancillary.23

Of course, Turing understood that very well indeed.

The gap between the thinking that went into the ENIAC and the uni-
versal computer is so immense that I find it difficult to believe that Eckert
had envisioned anything like the latter. When Turing complained about
“the American tradition of solving one’s difficulties by means of much
equipment rather than by thought,” he likely had the ENIAC very much
in mind. From Turing’s conclusion that “the idea of a ‘rule of thumb’ pro-
cess and a ‘machine process’ [are] synonymous” it is plain that converting
numbers from decimal to binary and back is the most trivial of machine
operations. Not seeing this, and concerned with the need for quantities to
be input and output in decimal notation, Eckert and Mauchly solved their
problem by designing their behemoth of a machine that carried out all of
its internal operations in decimal notation. Many problems that occur in
practice require finding approximate values for certain limit operations
of the calculus. Because the analog machines called differential analyz-
ers included special modules that could compute such approximations,
Eckert and Mauchly incorporated modules performing similar functions
in their ENIAC. But this is totally unnecessary and inappropriate for
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a digital machine. Calculus textbooks describe methods for calculating
these values requiring nothing more than the four basic operations of
arithmetic.

Eckert did perform one immense service in connection with the
EDVAC: he proposed the mercury delay line as an answer to the prob-
lem of the need for a large memory. Eckert had worked with these delay
lines for use with radar and knew a great deal about them. Therefore, it
is telling that in the memo he later cited as proving that he had thought
of the stored program concept first, he spoke of automatic programming
set up on alloy discs without mentioning the delay lines that he knew all
about and that would have been far more creditable as a memory medium.

[t is interesting to contrast von Neumann’s view of computer program-
ming as an activity with Turing’s. Von Neumann called it “coding” and
made it clear that he thought of it as a clerical task requiring little intel-
lect. A revealing anecdote tells of a practice at the Institute for Advanced
Study computer facility of using students to translate by hand computer
instructions written using human-readable mnemonics into machine lan-
guage. A young hot-shot programmer proposed to write an assembler that
would do this conversion automatically. Von Neumann is said to have re-
sponded angrily that it would be wasteful to use a valuable scientific tool
to do a mere clerical job. In his ACE report, Turing said that the process
of computer programming “should be very fascinating. There need be no
real danger of it ever becoming a drudge, for any processes that are quite
mechanical may be turned over to the machine itself.”>*

Although the Eckert and the von Neumann versions of the story are
still heard, a third version has become quite prominent. This third version
has von Neumann getting the idea of a practical universal computer from
Turing’s work. In 1987, when I wrote an article expounding that point of
view, I felt myself to be very much alone.?> Since then information about
Turing’s role in decrypting German communications during the war has
become much more widely known. Also many people have become aware
of the shameful way he was persecuted for having had a homosexual af-
fair. Breaking the Code, a play performed in London and on Broadway that
was also the basis for a television play shown on PBS, has dramatized these
matters as well as the importance of Turing’s mathematical ideas.?® Tele-
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vision documentaries have also told his story. And so, lo and behold, Alan
Turing’s name was on the list of the twenty greatest scientists and thinkers
of the twentieth century as proposed by Time magazine (March 29, 1999

issue).* Said Time:

So many ideas and technological advances converged to create the mod-
ern computer that it is foolhardy to give one person the credit for inventing
it. But the fact remains that everyone who taps at a keyboard, opening a
spreadsheet or a word-processing program, is working on an incarnation

of a Turing machine.
Exactly! And here is what Time had to say about von Neumann:

Virtually all computers today from $10 million supercomputers to the tiny
chips that power cell phones and Furbies, have one thing in common: they
are all “von Neumann machines,” variations on the basic computer archi-
tecture that John von Neumann, building on the work of Alan Turing, laid
out in the 1940s.

A GRATEFUL NATION REWARDS ITS HERD

When Turing arrived in Manchester in the fall of 1948, it was still recov-
ering from the war, and there were neighborhoods that retained their grim
aspect left over from the city’s role in the early days of the industrial revo-
lution. One writer uses a famous book by Friedrich Engels as a source in
commenting on the squalor of working-class housing in the Manchester
of 1844:

What he [Engels] .. . describes.. . . fall[s] within a uniform context of mass
immisseration, degradation, brutalization, and imhumanization, the like
of which had never before been seen on the face of the earth.... On
reaching these courts, he finds himself met with an assault of “dirt and
revolting filth, the like of which is not to be found . .. [and] without qual-

*Kurt Gédel was another of the twenty.
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ification the most horrible dwellings I have until now beheld . . . In one of
these courts, right at the entrance. .. is a privy without a door. The privy
is so dirty that the inhabitants can only enter or leave by wading through

puddles of stale urine and excrement.”’

Of course, mass sanitation had seen dramatic improvements during the
ensuing century, and in any case, someone of Turing’s social class would
not be living in a working-class neighborhood. Nevertheless, Turing’s as-
sociation with a member of the “lower” classes was to lead to disaster.

One can only imagine how bitter Turing must have felt about the in-
ept management at NPL that had squandered his talent and had nullified
the confident dream he had revealed in his ACE report and in his address
to the London Mathematical Society. Meanwhile, computers were being
built. At the University of Cambridge itself, Maurice Wilkes (1913-) di-
rected the construction of an EDVAC-type computer called the EDSAC.
Unlike Turing’s situation at NPL, Wilkes had adequate funding in house
for his project. It must have been particularly galling to Turing to recollect
that at NPL he had scorned a memo from Wilkes as being in “the Amer-
ican tradition of solving one’s difficulties by means of much equipment
rather than by thought.” By 1949 the EDSAC was operational and open
for business. The supposed discoveries by Wilkes and his collaborators of
microprogramming and the systematic use of subroutines, both of which
were clearly spelled out in Turing’s ACE report, can only have added to his
distress. At Manchester, where Turing was supposed to be somehow di-
recting the computer project, Williams (see page 187) made it quite clear
that he was not interested in some mathematician’s ideas about the con-
struction of his computer. The Mark I Manchester computer, also run-
ning successfully in 1949, was a brilliant vindication of Williams’s tech-
nique for using off-the-shelf cathode ray tubes as his memory device, soon
copied in American computers. But again, its basic logical design derived
from von Neumann’s EDVAC report and not from Alan Turing.%®

About Turing's ACE, Herman Goldstine remarks that although the de-
sign was “attractive in some respects,” it “did not in the long run flourish
and selection weeded it out.””® The suggestion that this was somehow
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the result of a kind of natural selection is really unfair. The Pilot ACE em-
bodying Turing’s ideas worked perfectly well. There is no reason to think
that a full-scale ACE-style computer would not have worked well if the
organization and resources to build one had been there. The issue is best
understood in the more general context of the question of which computer
functions should be supplied by hardware and which by software. Turing
had proposed a relatively simple machine in which a lot was left to be sup-
plied by software, but where, in compensation, the programmer had very
substantial control of underlying machine operations. This would be par-
ticularly advantageous for writing programs that are intended to carry out
logical rather than numerical calculations. As the field developed, people
continued to debate this trade-off, most recently in connection with RISC
architecture (see page 189).*

When Turing arrived at the University of Manchester in 1948, few peo-
ple had any notion of what he had done during the war, although he con-
tinued to be consulted by the government. He had been hired with the
understanding that he would exercise some administrative functions in
connection with Williams’s Mark I computer, but as things worked out,
the engineers pretty much ran their own show, and what Turing did do
along these lines was carried out in a rather desultary fashion. Instead
of using his position to introduce some of the elegant ideas proposed in
his ACE report to make the programmer’s job pleasant and easy, he be-
came a user of the machine and worked directly with the Os and 1s of
machine language. He worked on some computational problems that he
had thought about before the war, but his interests soon turned to biology.

*1 personally wrestled with the basically number-crunching instruction set of von
Neumann'’s Institute for Advanced Study computer during the summer of 1954. 1
was implementing an algorithm for testing the truth of sentences of PA (defined
in Chapter 6) that involved addition, but not multiplication. (The editors of an an-
thology of technical papers in this field of computational logic said in their preface,
referring to my program: “In 1954 a computer program produced what appears to
be the first computer-generated mathematical proof” [Siek-Wright] p. ix.} 1 don't
doubt that the ACE instruction set would have been a good deal more suitable for

my purpose.
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He sought to answer the question of how it was that living things, starting
out as assemblages of identical cells, manage to develop the varied forms
encountered in the natural world. This problem of morphogenesis gave
rise to differential equations and Turing naturally turned to the computer
for information about the solutions of these equations. While using the
machine for exactly the kind of number-crunching application he had pro-
posed to go beyond, in popular articles and public addresses he demon-
strated his continuing imaginative vision of the potential of computers for
human-like intelligence.

Just before Christmas 1951 Turing managed to launch a brief affair
with a nineteen-year-old youth, Arnold Murray. Murray was a very bright
young man from a poor working-class family. When Turing accosted him
in the street, Murray was on probation, having been caught in a petty
theft. Turing invited him to his house which must have seemed a palace
to Murray. Less than a month after Christmas, Turing returned home one
evening to discover that his house had been burglarized. Although the to-
tal value of what had been taken amounted to no more than £50, Turing
was quite upset. It turned out that Murray had a pretty good idea who
had carried out the theft—someone he knew named Harry. Harry had
evidently felt secure in robbing a homosexual who presumably would not
dare go to the police. He was certainly right that a prudent man in Alan’s
position would not do anything so foolish as to go to the police. But that
is exactly what Turing did.

The police had little trouble working out what had happened between
Turing and Murray, and when confronted, Turing denied nothing. He did
not believe that there was anything shameful or wrong about the nature of
his sexual feelings or in the harmless ways he went about fulfilling them.
Be that as it may, the law was quite clear on the matter: what Turing and
Murray had done in giving one another pleasure were acts of “gross inde-
cency,” punishable by up to two years in prison. The judge before whom
Turing’s case came, acting out of what he believed were humane motives,
permitted Turing to escape prison if he would agree to be treated by hor-
mone injections for a year in order to diminish his sex drive. The hormone
chosen was estrogen, and, whatever effect it may have had on Turing’s sex

drive, it had the incidental effect of causing him to grow breasts.
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In October 1938, Alan saw Walt Disney’s Snow White and the Seven
Dwarfs. “He was very taken with the scene where the Wicked Witch dan-

gled an apple on a string into a boiling brew of poison, muttering

Dip the apple in the brew

Let the Sleeping Death seep through.”
It seems that he took pleasure in chanting this verse over and over again.3°
On June 7, 1954, Alan Turing ended his life by biting into an apple half
that had been dipped into a cyanide solution. There has been much spec-
ulation about what led him to this irreversible act. The play Breaking the
Code proposes that governmental authorities were objecting to the vaca-
tion trips abroad that, after his conviction, had become his most promising
source of sex partners. Sex in England had become dangerous, perhaps too
dangerous to attempt. That in the atmosphere of the 1950s the authorities
did object to his trips abroad seems not in the least implausible. After his
conviction, he lost his security clearance. But there was no way to erase
the secret information he carried in his brain. What is definitely known is
that a man he had met on a trip to Norway had been stopped by the police
and deported when he came to England to visit Turing. Alas, it seems all
too possible that Alan Turing was hounded to his death by the governing
authorities of a nation he had—unsung—done so much to save.
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BEYOND
LEIBNIZ’S DREAM

In his address before the London Mathematical Society, Turing said:

I expect that digital computing machines will eventually stimulate a con-
siderable interest in symbolic logic . .. The language in which one com-

municates with these machines . .. forms a sort of symbolic logic.!

The connection between logic and computation to which Turing alludes
has been a principal theme of this book. Nevertheless, readers may still
ask: how is it that logic and computation are related? What does arith-
metic have to do with reasoning? A clue is provided by a colloquial use
of the verb “to reckon,” in which it does not have its usual meaning: “to

calculate.”
I reckon he’s sweet-talking her in the moonlight right now.

We are listening to the melancholy hero of a grade-B film speaking of his
rival, not knowing (as we do) that it was our hero who had already won
her heart. In his statement, he is not thinking of arithmetic; he is talking
about reasoning. He reasons based on what he thinks he knows about his
rival’s perfidious ways. The connection between calculation and reason-
ing suggested by this use of the word “reckon” is genuine and profound.
Reckoning with numbers is itself a form of reasoning, and a great deal of
the reasoning that people do can be regarded as a kind of computation. It
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is very interesting that, as our example shows, this relationship is generally
understood, at least on a subliminal level. We can see this appreciation as
well when someone is described as being a calculating sort of person.
Reducing logical reasoning to formal rules is an endeavor going back
to Aristotle. It was the underlying basis for Leibniz’s dream of a universal
computational language. And it underlay Turing’s achievement in show-
ing that all computation could be carried out on his universal machines.
Computation and logical reasoning are indeed two sides of the same coin.
This insight is used not only to make it possible to program computers to
perform a bewildering variety of tasks, but also to design and build them.
In January 1999, the American Association for the Advancement of
Science held its annual meeting in Anaheim, California, under the head-
ing Challenges for a New Century. This was a serious, very rich meeting
with lectures and symposia covering an enormous array of topics. While I
was surveying the program, a symposium entitled On the Unusual Effec-
tiveness of Logic in Computer Science caught my attention. The presenta-
tions by five leading computer scientists (who are also logicians) attested
to the correctness of Turing’s prediction. Their statement in the program

about the symposium reads in part:

During the past twenty-five years there has been an extensive, continuous,
and growing interaction between logic and computer science. In many
respects, logic provides computer science with both a unifying founda-
tional framework and a tool for modeling ... This symposium provides
an overview of the surprising effectiveness of logic in computer science
by presenting some of the areas in which logic played a crucial role in
computer science: artificial intelligence, computational complexity, dis-

tributed computing, database systems, and design verification,
COMPUTERS, BRAINS, AND MINDS
In 1965, Joseph Weizenbaum, a computer scientist at MIT, wrote a pro-

gram called ELIZA that engaged in a dialogue with a user entering English

sentences from a keyboard. ELIZA was meant to simulate in a very crude
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manner a psychotherapist of the nondirective school. Here is a transcrip-
tion of an actual conversation between a version of ELIZA and me:3

ELIZA: HOW DO YOU DO. PLEASE TELL ME YOUR PROB-
LEM.
MARTIN: My problem is indescribable.

ELIZA: WHY DO YOU SAY YOUR PROBLEM IS INDESCRIB-
ABLE?

MARTIN: Because whenever I attempt to describe it, I cry.
ELIZA: IS THAT THE REAL REASON?

MARTIN: Perhaps not.

ELIZA: YOU DON'T SEEM QUITE CERTAIN.
MARTIN: Ah, certainty.

ELIZA: CAN YOU EXPAND ON THAT?

MARTIN: Yes. But it will lead to intimate matters.
ELIZA: WHY ARE YOU SO POSITIVE?

MARTIN: I try to maintain my dignity.

ELIZA: YOUR DIGNITY?

MARTIN: You wouldn’t understand that.

ELIZA: WE WERE DISCUSSING YOU—NOT ME.
MARTIN: I have had quite enough. Goodbye!

ELIZA: YOU SAY YOU HAVE HAD QUITE ENOUGH.
MARTIN: [ said Goodbye.

ELIZA: CAN YOU ELABORATE ON THAT?

MARTIN: Goodbye.

ELIZA: GOODBYE. THAT WILL BE $75, PLEASE.



202 THE UNIVERSAL COMPUTER

Of course, ELIZA understands nothing. The program implements a very
simple algorithm that responds to key words when they are present and
otherwise echoes the user’s sentence. For example “you” is a key word and
its presence will generally cause the response WE WERE DISCUSSING
YOU—NOT ME. The sentence “You are my mother” contains the two key
words “mother” and “you.” It will elicit the response TELL ME MORE
ABOUT YOUR FAMILY because the key word “mother” overrides the
key word “you.” The key word “yes” elicits the reponse WHY ARE YOU
SO POSITIVE? Notice that ELIZA responds to the word “goodbye” only
when it begins a sentence.

In 1950, Alan Turing published his classic essay “Computing Machin-
ery and Intelligence” in which he predicted that by the end of the cen-
tury, there would be computer programs that could really carry on a con-
versation with such facility that one would not be able to tell whether it
was another person or a computer with whom one was chatting.* He got
that prediction wrong: Interactive programs that purport to respond to or-
dinary English sentences are now far more sophisticated than ELIZA in
their processing, but the best of them still falls far short of the facility with
language of a typical five-year-old child.

Turing was after a way, without getting into a morass of philosophi-
cal and theological questions, to discuss whether a computer could be
said to exhibit intelligent behavior. For this purpose he proposed an ob-
jective, easy-to-administer test: if a computer can be programmed to carry
on a conversation with a reasonably intelligent person on whatever top-
ics are raised, so effectively that a user simply cannot tell whether he or
she is talking to a person or to a machine, then, said Turing, we should
be prepared to agree that the computer is exhibiting intelligence. How-
ever, we are very far from being able to produce such a computer program,
and many remain unconvinced that doing so would constitute intelligent
behavior.

While computational linguists continue to seek the holy grail of imbu-
ing computers with the capability of using ordinary language, it is natural
to seek machine intelligence in domains not dependent on ordinary lan-
guage. One such domain is the game of chess. It would be difficult to deny

that a person playing even a reasonably good game of chess is exercising
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intelligent thought. And it is common knowledge that chess-playing pro-
grams that play very good games of chess are readily available. Most or-
dinary players must set these to play at less than the program’s best in
order not to be regularly defeated. In February 1996, the chess-playing
computer Deep Blue managed to defeat world champion Garry Kasparow.
May we then say that Deep Blue exhibited intelligence? In an article writ-
ten in his usual provocative style, the philosopher John R. Searle tells us
that Deep Blue cannot properly even be said to play chess:

Here is what is going on inside Deep Blue. The computer has a bunch of
meaningless symbols that the programmers use to represent the positions
of the pieces on the board. It has a bunch of equally meaningless sym-
bols that the programmers use to represent options for possible moves.
The computer does not know that the symbols represent chess pieces and

chess moves, because it does not know anything.'5

To hammer the point home, Searle has recourse to a variant of a parable
that he has made quite famous. The original story tells of a man in a room
who receives symbols from outside the room and by looking things up in a
book determines which symbols he should send out in reply. It turns out
that the book is so written that the symbols flying back and forth constitute
a conversation in Chinese. But the man knows no Chinese and has no idea
what the symbols represent. Leaving aside what conclusion one may draw

from this bizarre tale, let us move on to Searle’s “Chess Room”™:

Imagine that a man who does not know how to play chess is locked in-
side a room, and there he is given a set of, to him, meaningless symbols.
Unknown to him, these represent positions on a chessboard. He looks up
in a book what he is supposed to do, and he passes back more meaning-
less symbols. We can suppose that if the rule book, i.e., the program, is
skillfully written, he will win chess games. People outside the room will
say, “This man understands chess, and in fact he is a good chess player
because he wins.” They will be totally mistaken. The man understands

nothing of chess, he is just a computer. And the point of the parable is this:
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if the man does not understand chess en the basis of running the chess-

playing program, neither does any other computer solely on that basis.

Readers of this book will perhaps notice the arbitrary separation of soft-
ware from hardware in this example. The man in the room simply func-
tions as a crude version of a universal computer. Of course a bare-bones
computer doesn'’t play chess. It is only the man together with the instruc-
tion book for which any such claim might be made. Here is my version of

Searle’s parable:

A precocious child whose mother is passionate about chess becomes tired
of watching her play and demands that he be allowed to play her oppo-
nent. His mother agrees on the condition that he move the pieces only
when she tells him to and exactly where she says. He does as requested
and doing what his mother whispers in his ear achieves a checkmate. Ob-
serving the scene, Searle tells us that the child doesn’t know anything

about chess, and is certainly not playing chess. Who could disagree?

[t is part of the contemporary philosophers’ method to tell stories they
know to be quite preposterous for the purpose of bringing out connections
that might otherwise not be apparent. But it may not be entirely pointless
to bring the Chess Room down to earth. I once had a colleague who had
been part of the team that designed Deep Thought, the powerful chess-
playing computer that was the predecessor of Deep Blue. He provided me
with some numbers on the basis of which I calculated that if the hardware
and software constituting Deep Thought were put in the form of a book
(more likely a library) of instructions that a human being could carry out,
then it would take several years to do the processing needed to make one
move. Better put a family in that Chess Room, so the children can take
over when the parents die! Otherwise, no game will actually be completed.

Searle tells us that Deep Blue “has a bunch of meaningless symbols.”
Well, if you could look inside Deep Blue while it was in operation, you
wouldn't see any symbols, meaningful or not. At the level of circuits, elec-
trons are moving around. Just as, if you look inside Kasparov’s skull while
he is playing, you wouldn't see any chess pieces, you'd see neurons firing.
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The way our brains are organized to deal with what we think of as sym-
bolic information is still only dimly understood. The way computers (like
Deep Blue) are organized for this purpose is much better understood, be-
cause the engineers and programmers build it in. But in both cases pro-
cesses that function at something like the molecular level are integrated
into patterns that it's helpful to think of as involving symbolic manipula-
tion. Searle tells us that the symbols that Deep Blue has are meaningless.
WEell, whatever does a pawn or a knight “mean”? This is not a useful ques-
tion,

Searle makes much of the fact that Deep Blue doesn’t “know” that it is
playing chess. In fact he insists it doesn’t know anything. Actually profes-
sional knowledge engineers would likely insist that Deep Blue does know
all sorts of things. For example, it knows to which squares a bishop at a
given square can move. It all depends on what “knows” means. Be that as
it may, we can agree that Deep Blue does not know that it is playing chess.
Can we therefore conclude that it is not in fact playing chess? Here’s an-

other parable:

Anthropologists studying the Xlupu people of northern New Guinea have
made a remarkable discovery of something which must surely be one of
the greatest coincidences of all time. Although the Xlupu have lived in to-
tal isolation until this year, it appears they engage in a religious ceremony
in which pairs of them engage in a symbolic ritual exactly equivalent to our
game of chess. They do not use a board or pieces, but rather make intricate
designs in boxes of sand. It is only because Dr. Splendid, the leader of the
anthropological expedition that first encountered the Xlupu, is himself an
enthusiastic amateur chess player that he was able to see in the patterns

being drawn equivalents of the successive moves in a chess game.

Are these Xlupu playing chess? They surely don’t know that that is what
they are doing. Ah! Searle might reply, “But the Xlupu are conscious, and
Deep Blue is not.” The question of whether a programmed computer
might ever be conscious has played a major role in discussions of these
matters by Searle and others. Whatever may come to pass in the future,

one certainly must agree that Deep Blue is not conscious.
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Our consciousness is a principal way in which we experience our
unique individuality. But we know it only from the inside. We experi-
ence our own consciousness but not that of anyone else. I experience my
consciousness as an internal conversation. My wife assures me that her
consciousness is dominated by visual images. Is her consciousness and
mine really the same kind of thing? What is it and what purpose does it
serve? As | write, I seek the right word, and (when I'm lucky) it appears
in my consciousness from the depths below. How my brain manages to
do such a clever thing I have no idea. The simple truth is that at this time
the phenomenon of consciousness remains mysterious.

Turing and von Neumann were both led to compare computers with
the human brain for an excellent reason. Knowing that people were capa-
ble of so many diverse patterns of thought, they conjectured that we can
do so many very different things because embedded in our brain is a uni-
versal computer. That’s the reason that von Neumann was so struck by a
theory of artificial neurons when he set out to design the EDVAC. What
universal computers can do is to execute algorithms. Searle says, “humans
do rather little that is literally computing. Very little of our time is spent
working out algorithms” Is he so sure? When asked the question: Have
you ever read anything by Charles Dickens? the answer (yes or no) comes
welling up from the depths. How do we do it? We have no idea. But the hy-
pothesis that it is done by some kind of algorithmic processes that access
the required information from some databases in our brain is on the face
of it quite attractive. Research on computer processing of raw visual data
entering a computer from one or more TV cameras is very suggestive of the
kind of process needed to produce the sharp picture our brain presents to
us from the raw data going from the retina to the brain. We don'’t know
that the way we do such things is by means of our brains carrying out al-
gorithms, but we certainly don’t know that that’s not how it's done.

Roger Penrose, an outstanding mathematician and mathematical physi-
cist who has done exciting work on the geometry of the universe, has
considered the question of whether the functioning of the human mind
is fundamentally algorithmic. Invoking Gédel’s incompleteness theorem,

Penrose responded with a resounding No. One way to express Godel’s
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theorem is as follows:

Given an algorithm that produces true statements about the natural num-
bers one after another, we can always obtain another true statement about
the natural numbers, let us call it the Gédel sentence, that is not generated

by that algorithm.®

Penrose argues that no particular algorithm proposed to be equivalent to
the mind’s working can possibly be adequate for that purpose because by
an act of “insight” we can that see that the Godel sentence for that algo-
rithm is true. This argument is deeply fallacious for a reason that Turing
had already explained in his lecture to the London Mathematical Soci-
ety in 1947 four decades before Penrose wrote on the subject (see pages
189-90). What Turing pointed out is that Gédel’s theorem applies only to
algorithms that generate only true sentences. But no human mathemati-
cian can claim infallibility. We all make mistakes! So there is nothing in
Godel’s theorem to preclude the mathematical powers of a human mind
being equivalent to an algorithmic process that produces false as well as
true statements.’

Searle and Penrose reject the conjecture that the human mind is in all
essentials equivalent to a computer. But both of them tacitly accept the
premise that whatever the human mind may be, it is produced by the hu-
man brain, subject to the the laws of physics and chemistry. Kurt Gédel,
on the other hand, was quite prepared to believe that the brain is in ef-
fect a computer, but rejected the idea that there is no mind beyond what
the human brain can do. Most readers will recognize that the classical
mind-body problem is at the core of Godel's concerns. His position that
the mind is in some way independent of our existence as physical entities
is usually called Cartesian dualism.®

This discussion has taken us far beyond Leibniz’s dream, to a realm
somewhere between philosophy and science fiction. Surely, taking note
of what has become of computers since the days of the EDVAC and ACE
reports, one would be well advised to be cautious in predicting what they

may or may not be able to do in the future.



EPILOGUE

We have followed the lives of a group of brilliant innovators spanning
three centuries. Each of them in one way or another was concerned with
the nature of human reason. Their individual contributions added up to
the intellectual matrix out of which emerged the all-purpose digital com-
puter. Except for Turing, none of them had any idea that his work might
be so applied. Leibniz saw far, but not that far. Boole could hardly have
imagined that his algebra of logic would be used to design complex elec-
tric circuits. Frege would have been amazed to find equivalents of his log-
ical rules incorporated into computer programs for carrying out deduc-
tions. Cantor certainly never anticipated the ramifications of his diagonal
method. Hilbert’s program to secure the foundations of mathematics was
pointed in a very different direction. And Gédel, living his life of the mind,
hardly thought of applications to mechanical devices.

This story underscores the power of ideas and the futility of predict-
ing where they will lead. The Dukes of Hanover thought they knew what
Leibniz should be doing with his time: working on their family history. Too
often today, those who provide scientists with the resources necessary for
their lives and work try to steer them in directions deemed most likely to
provide quick results. This is not only likely to be futile in the short run,
but more importantly, by discouraging investigations with no obvious im-
mediate payof, it shortchanges the future.
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All references in brackets are to the References section that follows.

INTRODUCTION

I'The quotation is from [Ceruzzi], p. 43. Howard Aiken (1900-1973) founded
the Harvard Computation Laboratory and was instrumental in the design and
construction of large-scale calculating devices at Harvard during the 1940s and
early 1950s.

2The quotation is from an address to the London Mathematical Society [Turing 1],
p- 112. Alan Turing is the subject of Chapters 7 and 8 of this book.

CHAPTER ONE

IFor biographical information about Leibniz, I have relied mainly on [Aiton)].
2For Leibniz’s Dissertatio de Arte Combinatoria (alas, in the original Latin), see
[Leibniz 1].

3Leibniz's mathematical work in Paris is discussed in [Aiton] and more exten-
sively in [Hofmann].

4Quoted from [Leibniz 3].

5For Leibniz's writings about machinery for reasoning and for equation solving,

see [Couturat], p. 115.
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Readers interested in the mathematical details of the development of the cal-
culus by Newton and Leibniz and their predecessors will enjoy the fine treat-
ment in [Edwards]. The reader is also referred to [Bourbaki], pp. 207-49, for
an excellent account of the historical development of the calculus.

"There is another interesting story (but one that really belongs in another book)
about Leibniz’s differential and integral calculus: his systematic use of infinites-
imal numbers. Infinitesimals were supposed to be positive numbers so very tiny
that no matter how many times such a number was added to itself, the number
1 (or even the number .0000001) would never be reached. The legitimacy of
such quantities was challenged from the outset; the philosopher Bishop Berke-
ley scoffed at infinitesimals as “ghosts of departed quantities.” By the end of the
nineteenth century mathematicians were in agreement that the use of infinites-
imals could not be justified (although physicists and engineers continued to em-
ploy them). For discussion of infinitesimal methods as used by Leibniz as well as
their eventual rehabilitation in the twentieth century by the logician Abraham
Robinson see [Edwards]. The Scientific American article [Dav-Hersh 1] gives
another account of Robinson’s achievement.

8[Aiton], p. 53.

9[Mates], p. 27. See also pp. 26-27 of this source for more about these remark-
able women, for information about Leibniz’s beliefs about the intellectual capa-
bilities of women, and for further references.

19The letter to L'Hospital quoted was dated April 28, 1693 ([Couturat], p. 83).
The quote from Couturat is from the same page of the same source. For the
“thread of Ariadne,” see [Bourbaki], p. 16.

'The letter from Leibniz to Jean Galloys [Leibniz 2] on his universal charac-
teristic was dated December 1678. The translation from French is mine.
12[Gerhardt], vol. 7, p. 200.

13[Parkinson], p- 105.

14For Leibnizs logical calculus, of which a small sample is exhibited here, see
[Lewis], pp. 297-305. Leibniz did not use the = symbol, but instead used co.
The interesting article [Swoyer] gives a thorough reconstruction of this system
from a twentieth century perspective.

15For some discussion of Leibniz's attempts to go beyond Aristotle’s analysis,
see [Mates], pp. 178-83.
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16[Huber], pp. 267-69.
17[Aiton], p. 212.

CHAPTER TwD

nformation about Leibniz’s friendship with Princess Caroline and his corre-
spondence with Samuel Clarke is from [Aiton], pp. 232, 341-46, and the arti-
cles “Caroline (1683—1737)" and “Clarke, Samuel (1675-1729)” in [ Britannica].
2 Biographical information about George Boole is principally from [MacHale].
3[MacHale], pp. 17-19.

4“Gross appetites and passions”: [MacHale], p. 19.

3[MacHale], pp. 30-31.

%[MacHale], pp. 24-25.

7[MacHale], p- 41.

8 Among the most important of the laws of algebra are the commutative laws for

addition and multiplication:
xty=y+x xy=px
and the distributive law
x(y +2) = xy +xz.

We are using the usual algebraic convention of writing, for example, xy instead
of x X y.

Multiplication of two differential operators (which is taken to mean applying
first one and then the other) doesn't always obey the commutative law.
19Boole’s gold medal: [MacHale], pp. 5962, 64—66. In addition to Boole’s work
employing the methods of the calculus, he published a paper in two parts in the
Cambridge Mathematical Journal for 1842 that can be thought of as founding a
new and important branch of algebra, the theory of invariants. However, after
this first contribution, Boole never again worked on invariants. We will be con-
sidering invariants again in the chapter on David Hilbert.

Boole’s casual attitude to proof in connection with limit processes may be

contrasted with contemporary efforts on the continent to develop an appro-
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priate rigorous foundation for such matters. Interested readers are referred to

[Edwards], especially Chap. 11.

12The Scottish philosopher Sir William Hamilton is not to be confused with his

contemporary, the Irish mathematician, Sir William Rowan Hamilton.

13[Boole 2], pp. 28-29.

14[Daly], [Kinealy].

15[MacHale], p. 173.

16[MacHale]

17IMacHale], p- 107.
[MacHale], pp. 240-43.

19[MacHale], p. 111.

29MacHale], pp. 252-76.

2I'The modern notation for the intersection of x and y is x N y rather than xy.

7
18

Also, the empty set is usually represented by the Danish letter @} rather than by
0. Of course the notation he used was important for Boole because it made it
easy to connect with ordinary algebra.
22Boole restricted the operation + to classes having no elements in common.
Here we follow contemporary usage and do not enforce this restriction. So x+y
is the class of things belonging to x or y or both. Nowadays one speaks of the
union of x and y, written x Uy. Also, Boole restricted the notation x — y to the
case that the class that y represents is part of the class that x represents. But
there is no need for this restriction either.
23[Boole 2], p. 49.
24As Boole emphasizes, what is involved algebraically in demonstrating the va-
lidity of a syllogism is the elimination of one variable from two simultaneous
equations in three variables.

Although Boole realized perfectly well that propositions of the form “All X are
Y” could be represented in his algebra as X(1 —Y) = 0, he preferred to use X =
vY, where v is what he called an indefinite symbol. This was apparently suggested
by the mathematician Charles Graves ([MacHale], p. 70). It was really a terrible
idea and a quite unnecessary complication of Boole’s system.
25Boole’s method of relating secondary propositions to his algebra of classes was
to bring time into the picture. With each proposition Boole would in effect as-
sociate the class of instants of time for which that proposition was true. To say

that proposition X is true, Boole would write X = 1 meaning that the class of
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instants in which the proposition is true encompasses the entire time span un-
der consideration. Likewise, X = 0 would express that X is false, because there
are no instants of time in which X is true. Given a proposition X&Y which ex-
presses the truth of both X and Y, the set of instants in which it is true is just
the set intersection XY. Finally, for a proposition if X, then Y to be true, what
is required is that any time that X is true, Y is also true, that is, that there is no
time when X is true and Y is false. As an equation, X(1 — Y) = 0 ([Boole 2],
pp- 162-64.)

26[Boole 2], pp. 188-211.

CHAPTER THREE

IFor Russell’s letter, Frege’s reply, and Russell’s later comment, see [van Heijen-
oort], pp. 124-28.

2For Frege's notorious diary as well as Michael Dummett’s comment, see
[Frege 2].

3] am very much indebted to Professor Lothar Kreiser of the University of
Leipzig who graciously replied to my request for information about Frege. Pro-
fessor Kreiser took the time to answer my request although, as he explained,
his energies were fully engaged in dealing with problems resulting from the
unification of Germany. Terrall Bynum’s brief biography in [Bynum] was also
helpful.

*1 found [Craig] an excellent source on German History. For the origins of the
first world war, see also [Geiss], [Kagan]. A number of postcards from Frege
to the philosopher Ludwig Wittgenstein, who was an artillery observer in the
Austrian army during the war, have survived. Not surprisingly, they show Frege
to have been a patriotic German [Frege 1].

>[Frege 2].

é1bid.

7[Sluga), [Frege 1], pp. 8-9.

8For the quoted comment, see [van Heijenoort], p. 1. The same source includes
an excellent translation of Frege’s Begriffsschrift with commentary, pp. 1-82. An-
other translation is in [Bynum], pp. 101-66.
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9The symbols we are using are those in common use today, not those used by
Frege. Of course the fundamental insight was recognizing what needed to be
symbolized rather than what specific symbols were used. Frege’s were not widely
adopted in part because they presented difficulties for the typesetter but mainly
because the notation used by the Italian logician Giuseppe Peano as adapted by
Bertrand Russell became much better known.

19Frege wrote “What [ wanted to create was not a mere calculus ratiocinator but
alingua charactera in Leibniz’s sense.” Quoted in [van Heijenoort], p. 2. See also
[Kluge].

"This rule is known as modus ponens. The terminology derives from the
scholastic logicians of the twelfth century.

2What we are calling Frege’s logic is usually called first-order logic. This is to
distinguish it from systems of logic in which the quantifiers ¥ and 3 are applied
to properties as well as to individuals. Here is an example of a sentence in what

is known as second-order logic:
(VF)(YG)[(Vx)(F(x) D G(x)) D (x)(Fx) D (3x)G(x))].

Actually, Frege went beyond first-order logic in that he did consider quantifi-
cation of properties, so our speaking of first-order logic as “Frege’s logic” is not
quite accurate.

BStrictly speaking, this explanation of “number” is closer to what Bertrand
Russell proposed than to Frege's own exposition. But it is close enough to show
why it was vulnerable to Russell's paradox.

4Interesting work done while this book was being written showed that a con-
siderable part of Frege’s program for the logical development of arithmetic can
be saved [Boolos].

1'S[Frege 3].

16|Dummett], [Baker—-Hacker].

17For clarity it is important to be able to state precisely the meaning of the lo-
cutions that occur in computer programming languages, that is, to provide the
semantics of such a language. One approach to this question that has been much
studied, known as denotational semantics, is ultimately based on Frege's ideas.
See [Dav-Sig-Wey], pp. 465-556.
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CHAPTER FOUR

'[Rucker], p- 3.

2Quoted from [Dauben 1], p. 124. This is a translation from Leibniz’s original
in French [Cantor 1], p. 179.

3[Dauben 1], p. 120.

*[Frege 4], p. 272. This citation is of a review by Frege of some of Cantor’s work.
More will be said about this review later in this chapter.

>For biographical information about Cantor, I have relied on [Grattan-Guinness],
[Purkert-Ilgauds], and [Meschkowski].

6[Meschkowski], p. 1 (my translation).

’Great interest by mathematicians and physicists in trigonometric series was
stimulated by the surprising discovery by the French mathematician Fourier
early in the nineteenth century that there was little apparent limitation to what

they could converge to. An example of a trigonometric series is

cos2x  cos 3x + cos 4x + COs 5x
4 9 16 25

cosx +

2

Remarkably, this series converges to §x% — 3 mx+ £ 72 if x has any value between

0 and 2. (The “angle” x is measured in radians.) If x is set equal to 0, we get

7r2_1+1+1 L1
6 Tatstitm T
a result which, like Leibniz’s series for T, connects 7 with the natural numbers,

in this case with the perfect squares:
Ix1=1,2Xx2=43%x3=94%x4=16,5%x5=25,---.

8[Euclid], p-232.

9[Gerhardt], vol. 1, p. 338. The translation from Latin is by Alexis Manaster
Ramer.

10As we all learned in elementary school, different fractions can represent the

same number, for example,

1 2 3

2 4 6
So the one—one match between fractions and natural numbers shown is a match
with the fractions as symbols rather than with the numbers the symbols stand
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for. But this is easily fixed: just remove from the list of fractions all those not in
lowest terms.

'The existence of transcendental numbers had been proved by the French
mathematician Liouville in an entirely different manner three decades earlier.
What Liouville had been able to prove is that a number whose decimal expan-
sion includes enormously long stretches of Os has to be transcendental. An
example to which Liouville’s method would apply is the number

.10100001 000000000000000000000000000 1 000...0 10.. ..
~ o N’

e —

27 64

Here the successive blocks of 0s between the 1s are of lengths 1! = 1,22 =
4,33 = 27,4* = 64, and so on. At the time Cantor wrote his paper, a proof that
7 is transcendental was still a decade away. The fact that 2V2 i transcendental
was not proved until 1934.

12[Grattan-Guinness], p. 358.

13Cantor’s notation for cardinal numbers is not used much today. Instead of M,
contemporary authors write |M|.

141n fact, the proposition that of any two unequal cardinal numbers, one must
be larger than the other is not so evident in the case of infinite sets. The matter
was not really cleared up during Cantor’s lifetime.

15To see why the cardinal number of the set of all sets of natural numbers is the
same as that of the set of real numbers, it is helpful to consider the representa-
tion of numbers using the binary system, in which there are only the two digits

0 and 1. When we write % = .33333..., that simply means

l—3+3 + 3 + 3 +
37 10 100 1000 ' 10000

In the binary system, positive real numbers less than 1 are represented by infi-

nite strings of Os and s. For example

%: .0100000000. . .,
1
S = 0101010101,
1
= = .0101000101. ...
iy
I
S = 1011010100....
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Here when we write % = .0101010101.. ., that means

(The denominators are successive powers of 2 instead of 10.)

Now, starting with any set of natural numbers, we can find a unique corre-
sponding real number as follows: we generate a string of Os and 1s by writing 1
in the nth place if # is a member of the given set and 0 otherwise. For example,
if we begin with the set of even numbers, we end up with .01010101.. ., that
is, as we have seen, % If instead we begin with the set of odd numbers, we get
.10101010... = 3.

This shows that the set of all sets of natural numbers has the same cardinal
number as the set of real numbers between 0 and 1. But Cantor was able to
prove (and it's not really difficult) that this set has the same cardinal number as
the set of all real numbers.

There is a minor technical nuisance that in good conscience I must men-
tion. Certain rational numbers will have two different binary representations
and hence will be matched with two different sets of natural numbers. An ex-

ample is

= = .1000000....
OITIIT ...

So the real number % corresponds both to the set consisting only of the number
1 and to the set consisting of all natural numbers except 1. Although this spoils
our one—one matchup, the difficulty can be overcome using the fact that the set
of rational numbers for which this happens has cardinal number Xy.

16 A5 Cantor pointed out, the cardinal number of the set of all sets of real num-
bers is also the cardinal number of the set of all functions from real numbers to
real numbers.

17Gee [Grattan-Guinness] and [Dauben 1]. Dr. Barbara Rosen kindly provided
professional advice to me on this matter.

18Pm grateful to Michael Friedman for help with Kant and related matters (al-
though he should not be held responsible for my attack on Hegel).

9Cantor 1], p. 382
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20[Frege 4]. 1 greatly acknowledge the help of Egon Borger, William Craig,
Michael Richter, and Wilfried Sieg in translating this passage as well as the one

cited in the preceding note.

CHAPTER FIVE

IFor information about Hilbert, I've made use of the biography [Reid], the bi-
ographical essay by Otto Blumenthal [Hilbert], pp. 388-429, and Hermann
Weyl's obituary essay [Weyl].
2Many readers will be familiar with the fact that v/2 is an irrational number. (As
explained in the previous chapter, this means that it cannot be expressed as a
fraction with natural numbers as numerator and denominator or, equivalently,
that its decimal representation is nonrepeating.) Using this fact, it is possible
to give an elegant nonconstructive proof of the following theorem: There exist
irrational numbers a and b such that a® is rational.

In carrying out the proof, we use the letter g to stand for the number \/5\/5
Now g must be either rational or irrational. If g is rational, we get what we

wanted to prove by lettinga = b = /2. If g is irrational, we can take @ = g and
b = V2. Then,

20t ()L ()

so, once again we have an irrational number raised to an irrational exponent giv-
ing a rational number as result. The proof is nonconstructive because it doesn’t
give specific numbers a and b that satisfy the theorem but only two separate pos-
sibilites, one of which must work. (Actually g is irrational but there is no known
easy proof of that fact.)

31n the theory of algebraic invariants, it was the so-called unimodular transfor-
mations that were of particular interest. These took the form of substituting for
an unknown quantity (say x) in an equation the expression (py + q)/(ry + s),
where y is a new unknown and p, g, 1, s are particular numbers chosen so that
ps—rq = 1 or —1. Boole found that for the general quadratic equation ax? 4 bx+
¢ = 0 (where a, b, ¢ can stand for any numbers), the expression b? — 4ac (called
the discriminant of the equation) is an invariant of such unimodular transfor-

mations in the following sense:
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After the indicated substitution is made in the given quadratic equation and
after clearing of fractions, a new quadratic equation in the unknown y results.
This equation can be written Ay> + By +C = 0, where A, B, C depend on all the
quantities a, b, ¢, p, g, 1, s. The precise sense in which b? — 4ac is an invariant is
that the new equation has the same discriminant as the given equation, that is,
b* — 4ac = B - 4AC.

Without the special condition ps — rqg = %1, the relation between the two

discriminants is
B? — 4AC = (b* — 4ac)(ps — rq)*.

Any readers wishing to work this out for themselves are advised to begin by writ-
ing
ax® + bx + ¢ = alx — x1)(x — x2),

where x1,x, are the two roots of the equation, and by noting that, using the

quadratic formula,
b? — dac = 4a®(x) — x2)°.

“In his obituary notice [Weyl], Hermann Weyl writes:

Indeed, by discovering new ideas and introducing new powerful methods
he not only brought the subject up to the level set for algebra by Kronecker
and Dedekind, but made such a thorough job of it that he all but finished
it .. .With justifiable pride he concludes his paper, Uber die vollen Invari-
antensysteme, with the words: “Thus I believe the most important goals of
the theory of .. . [algebraic] invariants have been attained,” and therewith

quits the scene.

>In its classical form, the theory of numbers deals with the remarkable relation-
ships and patterns to be found among the natural numbers 1,2,3, ..., partic-
ularly questions involving prime numbers and divisibility. In algebraic number
theory, some of these matters are considered in domains obtained by adjoining
to the integers roots (real or complex) of certain algebraic equations. Gauss had
worked with numbers of the form m +#+/—1, where m, n are ordinary integers,

had found which of these “Gaussian integers” were prime, and had proved that
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the theorem that numbers can be factored into primes in exactly one way holds
for these numbers just as it does for the ordinary integers. However, if one works
with numbers having the form m + #1/10, this turns out not to be the case. A

counterexample is
6=2-3=2+v10)(=2 + V10),

where it can be shown that 2, 3,2 + /10, and —2 + /10 are all primes so that
unique factorization fails. Cantor’s friend Dedekind and his nemesis Kronecker
had each shown how to restore unique factorization by considering what came
to be called prime ideals. On their strolls, Hilbert and his friend Hurwitz had
discussed these competing approaches and agreed that both were scheusslich
(atrocious). In contrast, the treatment in Hilbert’s Zahlbericht is elegant.
S[Hilbert], pp. 400, 401.

"There wasn't time during the lecture for Hilbert to state all twenty-three of his
problems, and he contented himself with a selection. For the full address with
all twenty-three problems in an English translation by Mary Winston Newson,
see [Browder], pp. 1-34.

8See [Browder]. (I'm a coauthor of the article on the tenth problem.)

9The quotation is given in detail at the close of Chapter 4.

10[van Heijenoort], pp. 129-38.

"[Poincaré], Chap. 3.

121bid.

131bid.

14The technical term for Russell’s “elaborate and unwieldy” layers is “the rami-
fied theory of types.”

15As with Frege’s Begriffsschrift, the main rule of inference in Principia is that
which proceeds from a pair of formulas of the form .A O B and A to the cor-
responding formula B (known as modus ponens or as the rule of detachment).
Although Frege is very clear about this, Whitehead and Russell muddy the wa-
ters by expressing the rule as their “primitive proposition”: Anything implied by
a true proposition is true ([White—Russ], p. 94).

16[Brouwer 2].

17Brouwer’s doctoral dissertation was written in Dutch. An English translation
appears in [Brouwer 1], pp. 13-97.

18[van Stigt], p. 41.



NOTES 223

19The quote is from Brouwer’s dissertation ([Brouwer 1], p. 96).

201n the example given of a nonconstructive proof, the law of the excluded mid-
dle is used in the assertion “g must be either rational or irrational.”

21\Weyl was particularly upset by the use of so-called impredicative definitions
in the work of Cantor and Dedekind. Something is defined impredicatively if
the definition is in terms of a set of which the item being defined is a member.
From the point of view of a philosophy in which mathematical objects are con-
structed a bit at a time, such a definition is seen as being objectionable because
the set in question cannot have been constructed before one of its elements. The
contrary philosophical view that mathematical objects are pre-exisitng and defi-
nitions merely single them out (like the characterization: Mathilda is the tallest
person in the room) rather than construct them is called Platonism and was un-
acceptable to Weyl.

22This was part of an address delivered in 1922—first in Copenhagen and then
in Hamburg. I'm indebted to Walter Felscher for calling my attention to the con-
nection between Hilbert’s heated rhetoric and the times he was living through.
The full text of the address can be found (in English translation) in [Mancosu],
pp- 198-214. I found the translation accurate enough but not communicating
adequately the fire in the original. In my own attempt to do better, I consulted
several translations as well as the original ([Hilbert], pp. 159-60).

23[Reid], pp. 137-138, 144, 145. For the background of the manifesto by Ger-
man intellectuals, see [Tuchman], p. 322.

24[Reid], p. 143.

25[Hilbert], p. 146 (my translation).

26Hilbert's program is discussed in an interesting essay in [Mancosu], pp. 149—
97. See also [Sieg] for a thorough discussion and analysis based on unpublished
documents showing clearly the evolution of Hilbert’s thought. For interesting in-
formation about Bernays's contributions, see [Zach]. For von Neumann on in-
tuitionism ad absurdum, see [Mancosu], p. 168. It should be mentioned that
although Hilbert’s description of just which methods would be permitted as be-
ing “finitary” was never made completely explicit, it is generally agreed that what
he had in mind was even more restrictive than what Brouwer was prepared to

permit.
27[
28[

van Heijenoort], p. 373.
van Heijenoort], p. 376.
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291van Heijenoort], p. 336.

[
30[Reid], p. 187.
3llvan Stigt], p. 272.
32[van Stigt], p. 110.
33[van Stigt], pp. 285-94; [Mancosu], pp. 275-85.
34See [Constable] for intuitionistic logic in computer science.
35[Hilbert], pp. 378-87.

36[Dawson], p. 69.

CHAPTER 851X

IFor Einstein on Godel voting for Eisenhower, see [Dawson], p. 209. I've been
fortunate to have this superb biography of Gédel available. I've also made use
of the brief collection [Gédel-Symp] based on an invitation-only symposium on
Godel in Salzburg in 1983 (that I was privileged to attend). There is much in-
teresting material in the obituary memoir [Kreisel] by Georg Kreisel, who for a
time had been a close friend of Gédel, but unfortunately, it is not entirely reli-
able. A brief, sensitive biography of Gédel by the logician Solomon Feferman is
in [Godel], vol. I, pp. 1-36.

2[Gédel], vol. 111, pp. 202-59.

3[Dawson], pp. 58, 61, 66.

4[Godel-Symp], p. 27.

>The phrase “The symbolic logic of Frege—Russell-Hilbert” is an oversimplifica-
tion. The basic logic that Hilbert singled out, what is known today as first-order
logic, was only part of the systems of Frege and of Russell.

For Godel on the blindness of logicians, see [Dawson], p. 58. The complete
text of Godel's dissertation as well as the published article based on it (in the
original German as well as in English translation) can be found in [Gédel], vol. I,
pp- 60-123. An illuminating introductory note by Burton Dreben and Jean van
Heijenoort precedes these on pp. 44-59.

7 Although Hilbert's finitistic methods in metamathematics are often character-
ized as “intuitionistic,” it is likely that what Hilbert had in mind was even more
restrictive than what Brouwer would permit. For a discussion of this matter, see
[Mancosu], pp. 167-68.
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8[Godel], vol. 1, p. 65.

9When Os are placed at the front of the decimal representation of a natural num-
ber, the number does not change. For example, 17 = 017 = 0017 and so on.
So the strings Ly and , Ly and , , Ly are all coded by the same number 17. How-
ever, because we have no interest in strings beginning with a comma, this am-
biguity is no cause for concern. Although it is of no real importance, it might be
mentioned that the actual technique Godel used for coding strings did not use
the representation of numbers by decimal digits. Instead he used the fact that
factorization of a natural number into prime factors is unique and placed the
code numbers assigned to individual symbols as exponents on the correspond-
ing prime numbers. A simple example should make the difference clear. The
string L{x,y) would be coded in our scheme by 186079. In Gédel's scheme the
code number would be 21385670117137,

10There have been a number of English translations of this epochal article.
The best translation (and the one approved by Godel) is available both in
[Godel], vol. I, pp. 144-45 (page facing with the original German) and in
[van Heijenoort], pp. 596-616. Readers interested in Gédel's story of how he
discovered his incompleteness theorem should see [Dawson], p. 61.

To avoid the use of a philosophically suspect notion like “truth,” Gédel had re-
course to a technical substitute he called omega-consistency, a kind of strength-
ened consistency property. So the correct statement of his theorem is: if PM is
omega-consistent, then there is a proposition U such that neither U nor —U is prov-
able in PM. An important improvement came a few years later when ]. B. Rosser
showed how to replace the assumption of omega-consistency by that of ordinary
consistency. Together with other work that had been done in the meantime (in
particular that of Alan Turing to be discussed in the following chapter) it be-
came possible to state Godel's results in the attractive form: no matter what ad-
ditional axioms are added to PM, so long as the new axioms are specified by an
algorithm and so long as they do not lead to a contradiction (i.e., a proposition
of the form A A —A) being provable, there will be a proposition U undecidable
in the system.

12The system PM is much too complicated to describe here. Instead the sim-
pler system PA will be used to show some of the ingredients entering into the
construction of undecidable propositions. PA can be set up using the sixteen

symbols
DoVvAVIle®xyz() =
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Eccentric versions of the symbols 1, +, x, = have been used to emphasize
that these are to be regarded as mere symbols, while at the same time suggest-
ing their intended meaning. The letters x, y, z are used as variables intended to
range over the natural numbers. Because it is necessary to provide for more than
three variables, the symbol / is available to produce as many variables as one

! are variables. Be-

pleases by tacking it on to the those letters. Thus j’ and z
cause there are more than ten symbols, we'll use a coding scheme in which each

symbol is replaced by a pair of decimal digits:

> - V. A VYV I 1 & ® x y z () ! =

L L O e 2 e T S A A &
10 11 12 13 14 15 21 22 23 31 32 33 41 42 43 44

The natural numbers themselves are represented by certain strings of these

symbols called numerals as follows:

Numeral Number represented  Code

1 1 21

1lel) 2 4121222142

(el el 3 414121222142222142
(lelelol) 4 41414121222142222142222142

Most strings of the sixteen symbols are just gibberish, for example:
I3 ®@xV- or =D 1'()

whose codes are 152223311411 and 441021434142, respectively. But certain
of these strings, called sentences, can be used to express propositions, true or

false, about the natural numbers. Thus, the string
(lelelel)=(Qleloel)el)
whose code is

414121222142234121222142444141412122214222214222214242
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expresses the true proposition that 2 times 2 is 4, while
(lehedel)=(1el)el)
expresses the false proposition that 2 times 2 is 3. The sentence
(Vx)(~le =1) D Fy)x =y o 1))
whose code is
4114314241114131442142104115324241314441322221424242

expresses the proposition that every natural number except 1 has an immediate
predecessor.

To complete our description of PA it would be necessary to specify certain
sentences as axioms as well as the rules of inference to be used in proceeding
from the axioms to the provable sentences. The list of steps along the way, be-
ginning with axioms and ending with a sentence provable in PA is called the
proof of that sentence. Although to do this in full detail would take us too far

afield, let’s consider the simple example
(Vx)~(1=(x@ 1))

which is intended to express the proposition that 1 is not the immediate suc-
cessor of any natural number. This sentence might well be chosen as one of the
axioms. Since sentences beginning with the symbol V express assertions stating
that some property holds for all natural numbers, one natural rule of inference
that is applicable permits a substitution of some numeral for x (after removing
the universal quantifier (Vx)). This is just a matter of proceeding from a general

statement to a specific instance of it. Here is a simple example:

(Vx)-(1=(x®1))
-1=Q1%1)

The conclusion, a provable sentence of PA, is obtained by substituting 1 for the
variable x, and expresses the fact that 1 and 2 aren’t equal.

In addition to strings that express propositions, there are others, called unary,
that can be used to define sets of natural numbers. Such strings are to contain
the symbol x but not the “quantifiers” (¥x) or (3x) (although it may contain

quantifiers with respect to other variables such as y or x”/). In addition, unary
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strings are to possess the crucial property that if x is replaced everywhere by
some numeral, the resulting string is a sentence. An example of a unary string
is

@yx=({(1el)®y)
whose code is

4115324241314441412122214223324242
If x is replaced by the numeral (1 @ 1), the true sentence
GFyQel =1el)®y)

is obtained. If the numeral 1 is used instead, the false sentence

FyA=(1el)®y)

is obtained. This unary string can be thought of as providing a definition of the

set of even numbers. The more complicated unary string:
(WVz)(x = (y®2)) D (=D V (y =x)))
whose code is
41143242411433424141314441322333424210414132441421241324431424242

defines the set consisting of 1 and all prime numbers. For a given unary string
A and natural number # we'll use the notation [A : n] to stand for the sentence
obtained by replacing x in A by the numeral that represents the number n. For

example,
Byx=(1eDey): 2
stands for the sentence
Gylel) =((1el)ey)

Now we can explain how Gddel’s methods can be used to produce a sentence
U of PA that expresses the proposition that it itself is not provable in PA. Using
the code numbers assigned to unary strings, we can arrange all of them in order
of the size of their codes. In this ordering the unary string with the smallest code
is (x = 1), and even its code is 4131442142, over four billion. We write A; to
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stand for this unary string, and imagine all unary strings arranged in a sequence
Al,A)As, ...

according to the size of their codes. Because these are unary strings, for any
natural numbers 7, m, the string [A,, : m] will be a sentence. Some of these
sentences will be provable in PA; others will not. For each # we can consider
the set of those values of m for which [A,, : m] is not provable in PA. Recall-
ing our discussion of Cantor’s diagonal method, we see that such a set can be
thought of as a package with # as its label. Applying the diagonal method, that
is, identifying the label with one of the elements in the package it labels, we
form the set K consisting of those numbers # such that [A,, : #] is not provable
in PA. The fact that provability in PA turns out to be definable in PA enables us
to find a unary string B that defines this very set K in PA. Now there must be
some number g such that B = A4 because all unary strings were included in
the sequence of As. Thus, for every natural number #, the sentence [A4 : n]

expresses the proposition
[An : n] is not provable in PA.

In particular, with » being given the value q, we can see that [A, : q] expresses

the proposition:
[A4 : q] is not provable in PA.

So [A4 : q] is a sentence of PA that expresses the proposition that it itself is not
provable in PA.

13 After Godel had proved that the consistency of PM could not be proved using
all of the mathematical resources encapsulated in PM, it would have been nat-
ural to conclude that it was hopeless to expect success for Hilbert’s goal of prov-
ing this consistency using the limited finitary methods he was willing to permit.
This was certainly von Neumann's conclusion. Gédel himself was not so sure;
the hope he held out was that there might be some proof methods not permit-
ted inside PM that could be accepted as being finitary and which would lead to
consistency proofs. What has happened in the decades since Gédel's discovery
is that methods have been developed with some claim to meeting this criterion.
As aresult, Hilbertian proof theory continues to undergo vigorous development

as aresearch area, although few would claim that the consistency theorems that
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have been proved have added any confidence in the validity of the systems in
question.

1%The programming languages that are mainly in use in the software industry
(like C and FORTRAN) are usually described as being imperative. This is be-
cause the successive lines of programs written in these languages can be thought
of as commands to be executed by the computer. Object-oriented languages like
C++ are also imperative. In the so-called functional programming languages
(like LISP) the lines of a program are definitions of operations. Rather than
telling the computer what to do, they define what it is that the computer is to
provide. Godel's special language is very much like a functional programming
language.

I5Returning to the example of PA with the specific encoding we had suggested,
we can examine some of the issues involved in translating metamathematical
concepts into numerical operations. The first question one can raise is, Given
the code number for some string, how can we tell how long the string is? Now,
since we allowed two digits per symbol, the answer is simple: the length is half
the number of digits in the code. For a code number r, let's write £(r) for the
length of the corresponding string. Next, given two strings, a new string can al-
ways be formed by placing the second immediately after the first; what is the
code of this new string given that the given strings have codes r and s, respec-
tively? The answer is given by the formula r10%£¢) s This is because multi-
plying r by this power of 10 has the effect of placing just as many Os after it as
there are digits in s. Following Gédel, we write this r * s. Now suppose that r
and s are the codes of two sentences; what is the code of the new sentence we
get by placing the symbol O between them and parentheses around the result?
Consulting the coding table we see that the answer is 41 * r % 10 x s x 42. Con-
tinuing in this way, ever more complex metamathematical notions translate into
arithmetic operations.

16The Chinese Remainder Theorem apparently goes back to the eleventh cen-
tury in China. The theorem can be illustrated by the following exercise: find a
number which when divided by 6 will leave a remainder of 2 and when divided
by 11 will leave a remainder of 5. A little experimenting shows that 38 does the
job. The Chinese Remainder Theorem guarantees that a number can always be
found leaving given numbers as remainders when divided by other given num-

bers, so long as no two of these other given numbers have any common factor
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(except of course 1). So, for example, there will be a number whose remain-
ders on dividing by 3,7, 10, 11 are 69, 17,25, 91, respectively. But the conclu-
sion cannot be guaranteed if 7 is replaced by 14 (because then the divisors 14
and 10 would have the factor 2 in common). Gédel used the Chinese Remain-
der Theorem as a coding device: a long sequence of numbers can be specified by
a collection of divisors designed to have no pair with a common factor and a sin-
gle number to be divided by each of them. Since “remainder” is easily definable
in the basic language of arithmetic, this could be used to express relationships
involving sequences of natural numbers in this language.

Godel's technique for using the Chinese Remainder Theorem to code finite
sequences of natural numbers played an important role in my own professional
life. As part of the research for my doctoral dissertation (accepted by Princeton
University in 1950) I worked on the tenth problem in Hilbert’s 1900 list, and
the Chinese Remainder Theorem was extremely important for the partial re-
sults I was able to obtain. Later work with Hilary Putnam and with Julia Robin-
son continued to make essential use of this theorem. The crucial final step in
the solution of Hilbert’s tenth problem was provided by the twenty-two-year-
old Russian mathematician Yuri Matiyasevich in 1970. Interested readers can
consult the article [Dav-Hersh 2] intended for a general audience.
7The full text of the three Konigsberg addresses by Carnap, Heyting, and von
Neumann can be found in [Ben—Put], pp. 41-65.
18For the complete statements of Godel's remarks at the Kénigsberg roundtable
(in the original German as well as English translations) together with illumi-
nating comments by John Dawson, see [Gédel], vol. I, pp. 196-203. See also
[Dawson], pp. 68-71.
®[Dawson], p. 70.
20[Goldstine], p. 174.

*11bid.

22This research involves very very large transfinite cardinal numbers and is well
beyond the scope of this book. For an interesting article by a leading skeptic,
see [Feferman].

23 Dawson], pp- 32-33, p. 277.

24 Dawson], p. 34.
Dawson], p. 111.

il
25[
26[Godel-Symp], p. 27.
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27The most interesting of these contributions had to do with certain formal sys-
tems developed by Brouwer’s student, Heyting, that were intended to encapsu-
late Brouwer’s foundational ideas. Brouwer himself remained convinced that no
precisely defined formal language could do justice to his concepts, but he did
express a grudging interest in what Heyting had done. One of Heyting’s systems,
HA (for Heyting arithmetic) is very much like PA except that for the underlying
logic rules in keeping with what Brouwer thought acceptable are used instead
of Frege’s rules. In particular, the law of the excluded middle is not available in
HA. What Gédel found was a simple way of translating PA into HA, so that,
contrary to the idea that intuitionism is narrower than classical mathemtics, in
this case there is a sense in which it includes it. In particular, any proof of the
consistency of HA translates at once into a proof of the consistency of PA.
28[Dawson], pp. 103—6.
29[Godel-Symp], p. 20.
30[Dawson), pp. 142, 146.
31[Kreisel], p- 155.
32[Dawson], p- 91
3

34[

35[

9
0
1
2
3[Dawson], pp. 143-45, pp. 148-51.

Dawson], p. 153.

Browder], p. 8.

36 More precisely, what Gédel showed is that if systems like PM or those based
on axioms for set theory are consistent, then they remain consistent if the Con-
tinuum Hypothesis is adjoined as a new axiom. So if these systems are consis-
tent, the Continuum Hypothesis cannot be disproved in them.

37The battle rages on. That the Continuum Hypothesis is “inherently vague”
was the position taken by the eminent logician Solomon Feferman in an article
[Feferman] that appeared while this book was being written. After some initial
wavering, Godel eventually came to believe that the Continuum Hypothesis is
not at all vague, that in fact it is a perfectly meaningful assertion and that most
likely it is false. Very recent work by the logician W. Hugh Woodin strongly sug-
gests that Godel was right.

38[Gadel], vol. 11, pp- 108, 186.

39[Gsdel], vol. 11, pp- 49-50.

40[Gadel], vol. I, pp. 140-41.

41[Gédel], vol. 111, contains most of the previously unpublished works of Gédel.
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42[Dauben 2]. For Godel's hope that Robinson would be his successor, p. 458;
for the quoted letter, pp. 485-86.
43[Dawson], pp. 153, 158, 179-80, 245-53.

CHAPTER SEVEN

1[Huskey], p- 300.
2[Ceruzzi], p. 43.

3 was fortunate to have available Andrew Hodges’s poignant, beautifully writ-
ten biography of Turing; see [Hodges].

4[Hodges], p- 29.

>Turing expressed his feelings about his dead friend in vivid terms: Alan “wor-
shipped the ground he trod on” and “He made everyone else seem so ordinary.”
See [Hodges], pp. 35, 53.

6[Hodges), p. 57.

’[Hodges], p. 94.

8Actually, Hilbert did not put the Entscheidunsproblem in quite that way: he
asked for a procedure to determine whether a given expression of first-order
logic is valid in every possible interpretation. However, after Gédel had proved
his completeness theorem, it became clear that the form in which the problem
is stated here is equivalent to Hilbert’s formulation.

Work on the Entscheidungsproblem mainly dealt with expressions called
prenex formulas. These are expressions involving the logical symbols =, D, A,
V, 3, V with the property that all occurrences of the so-called existential and
univeral quantifiers, (3...) (V.. .) at the beginning of the expression preceding
all other symbols. It was not difficult to prove that the Entscheidungsproblem
could be reduced to the problem of providing an algorithm for determining for
a given prenex formula whether it is satisfiable, that is, whether there is some
way to interpret the nonlogical symbols in the formula so that it expresses a true

sentence. To illustrate this concept, consider the two prenex formulas
(Vx)(Fy)(rix) D six,y) and (Vx)(Ty)(gx) A q(y)).

The first is satisfiable: for example, we can take the variables x,y to stand for

people alive at some particular moment, we can interpret r(x) to mean “x is a
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monogamously married man” and s(x,y) to mean “y is the wife of x”; so, with
this interpretation, the first prenex formula says simply “every monogamously
married man has a wife”—certainly a true statement. On the other hand, the
second prenex formula is not satisfiable because no matter what universe of in-
dividuals is selected and no matter how the symbol q is interpreted, this formula
would stipulate both that all individuals have the property that q represents and
that some individual does not.

Prenex formulas can be classified by the particular pattern of existential and
universal quantifiers with which they begin. Thus, for example, one speaks of
the prefix class V3 V to mean the set of all prenex formulas beginning (V.. .)(3.. )
(V...), and so on. In a paper published by Kurt Gédel in 1932, he produced an
algorithm that could test for satisfiability any prenex formula belonging to the

prefix class
vv3.. .3

In a paper published a year later, he proved that to solve the Entscheidungs-
problem it would suffice to provide an algorithm to test the satisfiability of all

prenex formulas in the prefix class
vvv3.. .3

Thus, the gap between what had been done and what was needed had been
reduced to a single universal quantifier, a single V.

The relevant papers by Gédel (in the original German as well as in English
translation) will be found in [Gédel], vol. I, pp. 230-35, 306-27. The illuminat-
ing introduction by Warren Goldfarb in the same volume, pp. 226-31, describes
some of the earlier work on the problem as well.
1O[Hodges], p- 93.

" Turing’s discussion of this point was more careful; see [Turing 2], pp. 250-51.
See also the anthology [Davis 1], pp. 136-37.

12 Although the unsolvability of the Entscheidungsproblem could be proved in
the manner described it would be pretty messy because of the need to develop
Turing machine structures for handling integers written in decimal notation. To
approach what Turing actually did, we first show that the problem of determin-
ing whether a given Turing machine will ever halt when started with a totally

blank tape is unsolvable. For suppose there was an algorithm for this problem.
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Then to test whether a code number # belongs to D, we first write out the quin-
tuples making up the Turing machine 7" with code number . Next we write out
quintuples that cause that very number » to be written on a Turing machine
tape. Adjoining those quintuples to those of the machine 7", we get a new ma-
chine that will first put # on its tape and then do what T would have done with
that input. This new machine will eventually halt when started with a blank tape
if and only if 7 will eventually halt when started with # on its tape, which in
turn is true if and only if # doesn’t belong to D. So a supposed algorithm for
testing whether a given Turing machine started on a blank tape will eventually
halt could be used to solve the unsolvable probem of determining membership
in D.

Next we notice that the problem of finding out whether a given Turing ma-
chine ever prints one particular symbol is also unsolvable. This because it is easy
to arrange matters so that whenever a Turing machine halts it finds itself in a
state F which begins no quintuples. We choose a new symbol X that doesn’t

occur in any of the quintuples of the machine. We then adjoin the quintuples:
Fa : X %xF

where a can be any of the symbols that occur in the original quintuples. This
new machine will then print X whenever the original machine would have
halted. Thus we have that there is no algorithm to determine whether a Turing
machine starting with a blank tape will ever print some particular symbol. This
is the problem that Turing expressed in the language of first-order logic and
thus obtained the unsolvability of the Entscheidungsproblem.

13[Turing 2], pp. 129-32.

14 Davis 2].

15For a reprint of Turing’s dissertation, see [Davis 1], pp. 155-222. The hier-
archies mentioned extend into Cantor's transfinite, so after a 1%, 2™, 3d
system would come system number w, followed by system number w + 1, and
$0 On.

16[Hodges], p. 131.

17[Hodges], p- 124.

18[Hodges], p. 145. To those familiar with the later work of Kolmogorov and
Chaitin on descriptive complexity, this game may well suggest that von Neumann

was thinking along those lines.
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19[Hodges], p. 545.

20The anecdote about Turing’s adventures with the Home Guard was recounted
by the mathematician Peter Hilton, a co-worker with Turing at Bletchley Park.
See [Hodges], p. 232.

21This work was by no means a solo undertaking. Probably the person who made
the greatest contribution was W. T. Tutte. For a technical description of the
issues by Professor Tutte including the part played by Turing see the website
http://home.cern.ch/frode/crypto/tutte.html.

CHAPTER EIGHT

For this quote, see [Goldstine], p. 22. The fascinating biography of Ada
Lovelace [Stein] suggests that much that has been written about her is myth
rather than fact.

2[Goldstine], p. 120.

3Atanasoff’s machine was designed to solve simultaneous systems of linear

equations. An example of this kind of problem is

22x+3y—4z=5
3x —4y 4+ 22 =2

x—3y—5=4

The machine was designed to handle as many as thirty equations in thirty un-
knowns.

4[Lee], p. 44. The biographical material in this section is largely derived from
this source.

>[Burks-Burks].

¢Differential analyzers contained a number of modules designed to calcu-
late suitable numerical approximations to the value of definite integrals. The
ENIAC contained modules that did the same thing but more accurately, using
well-known algorithmns for this purpose.

’[Goldstine], pp. 186, 188.

8Although von Neumann's Draft of a Report on the EDVAC was widely circu-

lated and was very influential, it was only published in 1981 as an appendix to
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a book rather skeptical about the significance of his contributions. See [Stern],
pp. 177-246.
9[McCull-Pitts]; [von Neumann 2], p. 319.
19[Goldstine], p. 191.
11[Randell] p- 384.

12[Goldstine], p. 209; [Knuth).

13[von Neumann 2], pp. 1-32.

4[von Neumann 2], pp- 34-79.
I5For examples of studies that minimize von Neumann’s contributions to the
development of computers and ignore Turing’s entirely, see [Metrop-Worlt] and
[Stern]. For excerpts from Eckert’s memo (it is an engineer’s “disclosure”), see
[Stern], p. 28.
16[Stern] discusses the vicissitudes of the Eckert-Mauchly commercial endeav-
ors.
17The analysis of the ACE Report quoted is the excellent paper [Carp-Doran).
The report itself can be found in [Turing 1], pp. 1-105. For many years it cir-
culated only in mimeographed form and was not easily available.
18What Turing proposed was, in contemporary terminology, the use of a stack
for subroutine management. A stack is simply an arrangement of data in a last-
in-first-out (LIFO) structure. Thus, when a computation is interrupted to make
use of a previously programmed subroutine, a reminder would be noted of what
had to be done after the subroutine terminated. Since subroutines could call
other subroutines, this would lead to a stack of such reminders. Turing sug-
gested the picturesque terms “bury” for placing a reminder on the stack and
“unbury” for retrieving it from the “top” of the stack. (Nowadays the terms push
and pop are used.)
19[Hodges] p. 352.

20[Turing 1], pp. 106—7.
2 Turing 1], pp. 102-5; [Hodges], p. 361.
22[Metrop-Worlt]; [Stern].
23[Goldstine], pp. 191-92.
24[Turing 1], p. 25.
[Davis 3].
|

25
26[Whitemore].
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27[Marcus), pp. 183-84. The book quoted is Engels’s famous The Condition of
the Working Class in England in 1844.

28 [Lavington], pp. 31-47.
29[Goldstine], p. 218.

39[Hodges], p. 149.

CHAPTER NINE

U Turing 1], p. 122.

°The five computer scientists who spoke at the AAAS meeting together with
the titles of their presentations were as follows: Joseph Y. Halpern, Epistemic
Logic in Multi-Agent Systems; Phokion G. Kolaitis, Logic in Computer Science—
An Overview; Christos Papadimitriou, Complexity As Metaphor; Moshe Y. Vardi,
From Boole to the Pentium; Victor D. Vianu, Logic As a Query Language.

3For a brief biographical note about Joseph Weizenbaum, see [Lee], p. 724.
4[Turing 1], pp. 133-60.

>The article [Searle] contains references to some of his other writing on related
topics. The piece is actually a review of a popular book by Ray Kurzweil. It is
no part of my purpose to defend Kurzweil against Searle’s onslaught, but only
to use the review as a convenient source for some of Searle’s often expressed
views.

6Godel’s theorem could only have been stated in this way after the notion of
algorithmic process had been elucidated by Turing, Church, and others.

7 Penrose first made this case in his popular and entertaining book [Penrose 1].
Although a number of logicians have tried to set him straight, he continues to
hold his misguided views. For an essay that I have written on this subject, see
[Davis 4]. [Penrose 2] contains replies to his critics, and [Davis 5] is my reply
to his replies.

8 For more information about this and further references, see [Gédel], vol. 11,
p. 297.
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