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Many researchers have demonstrated anomalous effects with what has become known as the Rodin coil, 

a particular winding of electrical wire around a toroid form. These inductive anomalies include a displaced 
magnetic south pole, levitation, and wireless power transmission. Marko Rodin discovered this special geome-
try from studying number patterns mapped from a two dimensional plane to a closed two-dimensional space 
with the topology of a doughnut. He claims that these number patterns represent the natural flow of energy, 
and therefore winds wire along these natural flow lines. The shears between adjacent currents create a complex 
overall magnetic field, whose properties are as yet not well understood. But since wound coils are essential to 
motors, generators, transformers, and numerous electronic devices, we should not be surprised to discover that 
new 3D geometries for coil windings have the potential to revolutionize all of these components, and possibly 
provide a have model for the electron itself.  This paper introduces some of the theory behind the Rodin coil, in 
particular the 2D Rodin map.  It shows that any repeating 2D pattern can be mapped onto the topological 
equivalent of a toroid, but that the 2D Rodin map has several properties that make it unique. 

 

1. Introduction 

The Rodin number system is more than a mere study of 
numbers, but of topology.  Physical systems always involve 
flows of energy and matter, and if we describe these systems in 
terms of fields, their interactions invariably produce nodes, or 
critical discreet points of inflection.  It is possible in most cases, if 
not in general, to describe systems only in terms of these discreet 
entities, as conventional science knowingly or unknowingly does 
with the Schroedinger equation.  But for any system, the topolo-
gies or relationships within a pattern of nodes are not arbitrary, 
but follow natural laws.  Marko Rodin claims that the patterns 
found in his number system represent the natural topology of 
node-based systems, the way nature organizes itself.  He claims 
that matter and energy always flow in circuits, consistent with 
Newton’s 3rd Law, and thus must be described with finite, closed 
number systems.  This paper will show that the modulo-9 num-
ber system is unique in many ways, particularly in 3D, and has 
properties consistent with Rodin’s views on physical laws. 

Just what exactly a number-system can and cannot describe 
remains an open question, but there is no doubt that the Rodin 
system is interesting and worthy of study for its own sake.  Nei-
ther is there doubt that many people have reported anomalous 
behavior in the coil designed by Rodin, based on his number sys-
tem.  This paper makes no claim to completeness, but introduces 
the Rodin number system and coil to interested readers. 

2. Modulo Arithmetic 

It will be useful to introduce the notation 

 : addition modulo 9 (or other base) 
 : subtraction modulo 9 (or other base) 
 : multiplication modulo 9 (or other base) 
 : division modulo 9 (or other base) 

Thus, for example 

 

 
   
 

6 5 6 5 mod9 2

4 8 4 8 mod9 4 9 mod9 5

3 7 3 7 mod9 3

   

     

   

  (1) 

where even negative numbers accept a modulo 9 value by add-
ing multiples of 9, as in the example. 

Modulo division is more complicated and most easily done 
with a modulo multiplication table, as follows for modulo 9: 
 

  1 2 3 4 5 6 7 8 9 
1 1 2 3 4 5 6 7 8 9 
2 2 4 6 8 1 3 5 7 9 
3 3 6 9 3 6 9 3 6 9 
4 4 8 3 7 2 6 1 5 9 
5 5 1 6 2 7 3 8 4 9 
6 6 3 9 6 3 9 6 3 9 
7 7 5 3 1 8 6 4 2 9 
8 8 7 6 5 4 3 2 1 9 
9 9 9 9 9 9 9 9 9 9 

Table 1.  Modulo 9 multiplication table 

To find 8 Θ 5 , say, we must add 9 to 8 N times until the total is a 
multiple of 5.  In this case N = 3 and the total is 35: 

  8 Θ 5 8 9 3 5 7      (2) 

or we could just look for 8 in the 5th row of Table 1 to see that it 
lies in the 7th column.  As with learning the multiplication table 
in elementary school, it takes some rote memorization and prac-
tice to master modulo division, simple as Table 1 may be. 

However, care must be exercised, since modulo division is 
not necessarily unique or sufficient.  For example 6 Θ 3  could be 
2, 5 or 8, 9 Θ 9x   for all x, and 9 Θ 9  could be any number.  A 
quick glance at Table 1 shows that modulo 9 division is unique 
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and sufficient for all numbers except 3, 6 and 9.  The degeneracy 
of these numbers turns out to be an important feature of the Ro-
din number map. 

Of course, other operations, like exponentiation, can also be 

performed in a modulo-based system. Thus 2 2,4,8,7,5,1...n  ,  

3 3,9,9...n  , 4 4,7,1...n  , 5 5,7,8,4,2,1...n  , 6 6,9,9...n  , 

7 7,4,1...n  , 8 8,1...n  , and 9 9,9...n  .  Certainly these patterns 
will come up again. 

3. Nomenclature 

Though several approaches to the number map are available, 
perhaps the simplest is to begin with a degenerate case.  Imagine 
the numbers 1 – 9 cycled in a row, with the same numbers stag-
gered in the opposite direction in the next row, as in Table 2. 
 

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 
7 6 5 4 3 2 1 9 8 7 6 5 4 3 2 1 9 8 

2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 
6 5 4 3 2 1 9 8 7 6 5 4 3 2 1 9 8 7 

3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 
5 4 3 2 1 9 8 7 6 5 4 3 2 1 9 8 7 6 

4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 
4 3 2 1 9 8 7 6 5 4 3 2 1 9 8 7 6 5 

5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 
3 2 1 9 8 7 6 5 4 3 2 1 9 8 7 6 5 4 

6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 
2 1 9 8 7 6 5 4 3 2 1 9 8 7 6 5 4 3 

7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 
1 9 8 7 6 5 4 3 2 1 9 8 7 6 5 4 3 2 

8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 
9 8 7 6 5 4 3 2 1 9 8 7 6 5 4 3 2 1 

9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 
8 7 6 5 4 3 2 1 9 8 7 6 5 4 3 2 1 9 

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 

Table 2.  Degenerate Rodin map 

There are numerous things to observe about this map, but 
first we need to establish some nomenclature.  For this and other 
maps, we’ll refer to each location containing a number as a cell, 
as in an Excel spreadsheet.  Cells will be identified by brackets 
    and    , corresponding to odd and even rows and columns.  

It’s immediately apparent that numbers appear only in odd row-
odd column     or even row – even column     combinations, 

so we can uniquely identify each number by parity,  row r and 
column c, that is, by rc    and rc   .  Since the numbers in the 

10th odd (even) rows (columns) are identical with those in the 1st, 
we don’t need indices larger than 9 to uniquely specify every lo-
cation.  Moreover, we can dispense with comma separators be-
tween r and c unless necessary to distinguish variables. 

In Table 2, the location of the “1” in the upper left corner (first 
odd row and column) is identified as cell 11   , and the location 

of the “2” to its right is 12   .  The “1” and “2” on the bottom 

row are specified with exactly the same coordinates, because the 
pattern continues indefinitely and these numbers relate to their 
neighbors in exactly the same way.  The same holds for the “1” 
and “2” in the 1st row, 10th and 11th odd columns.  The “7” in the 
1st even row and column (down and to the right of the “1” in the 
upper left) is located at 11   , as is the “7” in the same row, 10th 

even column.  Some more examples you should verify, increas-
ing in generality: 

 67 3    43 2    (3) 

 1 1n n n         1 1 8n n n          (4) 

 1rc cr r c          rc cr r c          (5) 

The last two equations compactly summarize the entire table.  
As can be verified, it’s symmetric since indices m and n can be 
reversed.  We could say that odd cells     are “positive” in m 

and n, and the even cells     are “negative” in m and n.  Re-

member that “negative” numbers also modulate into numbers 
ranging from 1 to 9, as in   11 1 1 2 9 mod9 7         . 

We shall refer to specific rows and columns using the same 
nomenclature, so that rows progress from top to bottom as 1, 1,  

2, 2, 3, 3,... , and columns from left to right as 1 ,1 ,2 ,2 ,3 ,3 ,...  

Finally we must distinguish between eight possible directions 
for number patterns to follow.  For this, we might adopt the fa-
miliar directions N, S, E, W plus the diagonals NE, SE, SW, NW, 
but it will prove easier to generalize using the symbols “+”, “-“ 
and “0” for direction.  By convention “+” will mean “down” for 
rows and “to the right” for columns.  The combination “00” will 
not be used.  With these direction identifiers as subscripts, we 
can compactly specify the pattern beginning at any cell in any di-
rection. So for example, in Table 2 11 173553719826446289    , 

0 024 24 567891234         , 19 9    , and 19 9    . 

The number of terms in a sequence will always be 18 or one 
of its factors: 1, 2, 3, 6, or 9, since the pattern always repeats after 
18 rows or columns.  We now have a nomenclature allowing 
compact and meaningful discussion of map details. 

4. The Rodin Number Map 

Before moving on to more interesting cases, we need to ex-
amine some details in the degenerate case of Table 2.  It’s “dege-
nerate” precisely because of the diagonal 19 9    , or more 

generally 1 ,n n n     , as 18, 27, 36, etc.  In modulo 9 arith-

metic, the change from n to n  amounts to multiplication by -1 
or by 8.  That is, 1 8 8  , 2 8 7  , 3 8 6  , etc., as shown in 
Table 1.  Can we rearrange the table so that we can find multipli-
cation by numbers other than -1?    Indeed, we can.  But what 
patterns of multiplication are there?  Repeated multiplication of 
any number by 3 or 6 degenerates to 9 after two iterations, as, for 
example 4 6 6   and 6 6 9  .  Since 4 4 7  , 4 7 1  , and 
4 1 4  , repeated multiplication by 4 follows the pattern 471 or 
285. And by the same reasoning, multiplication by 7 results in the 
reverse sequences 741 and 258.  The only remaining possibilities 
are multiplication by 2 and by 5, which result in the patterns 
124875 and 578421.  These “doubling” and “halving” sequences 
are what we seek in the Rodin map. 

But how do we obtain this map?  By shifting the rows or col-
umns in Table 2.  The relative layout of row 1  to row 1  was ar-
bitrarily chosen to give the degenerate result, with all 9s on the 
diagonal.  We could shift row 1  relative to row 2  and obtain a 
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different number map, but once that is established, all the other 
rows must follow the pattern.  That is, if row 1  shifts n place 
relative to row 1 , then row 2  must shift n places relative to 

row 1 , or 2n places relative to row 1 , and so on.  Regardless of 

n, the 10th and 19th rows ( 5  and 1 ) will shift 9n places relative 
to row 1 , and thus remain in place in modulo 9 arithmetic. 

But by how much should we shift row 1 ?  If we shift the 
numbers in 1  by 1 place to the right, we must shift 2  by 2 to 

the right, 2  by 3 to the right, and so on.  This shift pattern re-
sults in an overall map that is the mirror image of Table 1, cen-
tered around the 19 9   .  The “9” in 18    would shift to 19   , 

the “9” in 28    to 21   , etc.  In general, the shifted map is a mir-

ror image of the original, except the “miiror point” shifted from  
19    to 19    as shown in Table 3.  You can verify that Table 3 

also mirrors Table 2 about row 1 . 
 

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 
8 7 6 5 4 3 2 1 9 8 7 6 5 4 3 2 1 9 

9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 
9 8 7 6 5 4 3 2 1 9 8 7 6 5 4 3 2 1 

8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 
1 9 8 7 6 5 4 3 2 1 9 8 7 6 5 4 3 2 

7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 
2 1 9 8 7 6 5 4 3 2 1 9 8 7 6 5 4 3 

6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 
3 2 1 9 8 7 6 5 4 3 2 1 9 8 7 6 5 4 

5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 
4 3 2 1 9 8 7 6 5 4 3 2 1 9 8 7 6 5 

4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 
5 4 3 2 1 9 8 7 6 5 4 3 2 1 9 8 7 6 

3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 
6 5 4 3 2 1 9 8 7 6 5 4 3 2 1 9 8 7 

2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 
7 6 5 4 3 2 1 9 8 7 6 5 4 3 2 1 9 8 

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 

Table 3.  Mirrored degenerate Rodin map 

All this is to reduce the number of possible shifted patterns 
from nine down to five, because left shifts of Table 2 mirror 
rights shifts of Table 3, and one can only shift four places to the 
right or left, before wrapping around.  Thus, the five possibilities 
and their mirrors are then 1R(0L), 2R(1L), 3R(2L), 4R(3L) and 
5R(4L).  Because this is an introduction, we won’t belabor the de-
tails, except to note that of the latter four possibilities, only two 
have the special properties of the Rodin map, namely 3R(2L) and 
4R(3L).  One involves a shift 3R and the other 3L.  Since 3 is the 
square root of modulo base 9, every third row remains in place 
even after shifts.  Effectively in right shifts, the 1st, 4th and 7th 
rows below the top shift right, and the 2nd, 5th and 8th rows shift 
left.  For left shifts, the reverse.  We will actually shift from Table 
3 rather than Table 2, since Rodin maps conventionally display 
the multiplication diagonals,  1 ,n n n      in Table 3, in the ++ 

direction.  Tables 4 and 5 are thus 3R- and 3L-shifts of Table 3. 
Take your time studying these pattern maps, since there are 

scores of minor details to notice, beyond what is described here.  
For example, the modulo-9 sum of the eight nearest neighbors to 
any cell always equals 9, as you can verify in the highlighted case 
of 58 7    in Table 4. 

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 
2 1 9 8 7 6 5 4 3 2 1 9 8 7 6 5 4 3 

3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 
9 8 7 6 5 4 3 2 1 9 8 7 6 5 4 3 2 1 

5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 
7 6 5 4 3 2 1 9 8 7 6 5 4 3 2 1 9 8 

7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 
5 4 3 2 1 9 8 7 6 5 4 3 2 1 9 8 7 6 

9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 
3 2 1 9 8 7 6 5 4 3 2 1 9 8 7 6 5 4 

2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 
1 9 8 7 6 5 4 3 2 1 9 8 7 6 5 4 3 2 

4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 
8 7 6 5 4 3 2 1 9 8 7 6 5 4 3 2 1 9 

6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 
6 5 4 3 2 1 9 8 7 6 5 4 3 2 1 9 8 7 

8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 
4 3 2 1 9 8 7 6 5 4 3 2 1 9 8 7 6 5 

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 

Table 4.  Right-shifted (1x2) or [27] Rodin map 
 

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 
5 4 3 2 1 9 8 7 6 5 4 3 2 1 9 8 7 6 

6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 
9 8 7 6 5 4 3 2 1 9 8 7 6 5 4 3 2 1 

2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 
4 3 2 1 9 8 7 6 5 4 3 2 1 9 8 7 6 5 

7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 
8 7 6 5 4 3 2 1 9 8 7 6 5 4 3 2 1 9 

3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 
3 2 1 9 8 7 6 5 4 3 2 1 9 8 7 6 5 4 

8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 
7 6 5 4 3 2 1 9 8 7 6 5 4 3 2 1 9 8 

4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 
2 1 9 8 7 6 5 4 3 2 1 9 8 7 6 5 4 3 

9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 
6 5 4 3 2 1 9 8 7 6 5 4 3 2 1 9 8 7 

5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 
1 9 8 7 6 5 4 3 2 1 9 8 7 6 5 4 3 2 

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 

Table 5.  Left-shifted (1x4) or [18] Rodin map 

Now  verify the mathematical descriptions of Tables 3-5, ana-
logous to Eq. (5) for Table 1: 

Table 3 1rc cr r c          1rc cr r c           (6) 

Table 4 2 2rc cr r c          2 4rc cr r c           (7) 

Table 5 4 4rc cr r c          4 2rc cr r c           (8) 

Since in modulo-9 arithmetic, 2 7   and 2 7  , we can 
easily spot a 147 pattern in the column and offset coefficients of 
the three tables: 

Table 3 1rc cr r c          1rc cr r c           (6a) 

Table 4 7 7rc cr r c          7 4rc cr r c           (7a) 

Table 5 4 4rc cr r c          4 7rc cr r c           (8a) 

And since 1 8   and 4 5  , we can also reverse the coeffi-
cients to highlight a 258 pattern in the opposite directions. 
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Table 3 8 8rc cr r c          8 8rc cr r c           (6b) 

Table 4 2 2rc cr r c          2 5rc cr r c           (7b) 

Table 5 5 5rc cr r c          5 2rc cr r c           (8b) 

These equations illustrate a very important point, and reveal 
some unique features of the modulo-9 system.  The only non-
degenerate ways to count in modulo-9 are by 1’s , 2’s or 4’s.  
Counting by 3 or 6 from n gives only 3n , 3n  and n itself, 
degenerate in the sense that not all numbers can be reached.  
Moreover, counting by 8, 7, or 5 mirrors counting by 1, 2, or 4, as 
a quick look back at Table 1 depicts.  These three independent 
modes of counting (by 1, 2, or 4) actually correspond nicely with 
the three dimensions of physical space, providing one reason 
modulo-9 arithmetic describes the topology of 3D space so well. 

To see that correspondence between counting intervals and 
dimension, notice that rows in all three tables count by 1, but that 
columns in Table 3 count by 1, in Table 4 by 2, and in Table 5 by 
4.  Tables 2 and 3 are degenerate precisely because the counting 
in the rows is the same as the counting in the columns.  We ob-
tain a complete map only when the counting in the rows and 
columns differ.  In fact, the method of counting in the rows and 
columns is an excellent way to identify each map.  Thus, the map 
is Table 4 is a 1x2 map because it features counting by 1 in the 
rows and by 2 in the columns.  Similarly the map in Table 5 is a 
1x4 map. 

The only remaining non-degenerate possibility is a 2x4 map, 
bringing the total to three possible maps, again in correspon-
dence with three dimensions. The 2x4 map can’t be created by 
row shifting Tables 2-5 alone, but can be obtained from Tables 4 
(1x2) or 5 (1x4) via column shifting.  In Table 4, if column 1  is 
shifted down relative to column 1 , we obtain a degenerate 2x2 
map, but if shifted up, we get a 4x2 map, as in Table 6.  
 

1 5 9 4 8 3 7 2 6 1 5 9 4 8 3 7 2 6 1 
5 1 6 2 7 3 8 4 9 5 1 6 2 7 3 8 4 9 

3 7 2 6 1 5 9 4 8 3 7 2 6 1 5 9 4 8 3 
3 8 4 9 5 1 6 2 7 3 8 4 9 5 1 6 2 7 

5 9 4 8 3 7 2 6 1 5 9 4 8 3 7 2 6 1 5 
1 6 2 7 3 8 4 9 5 1 6 2 7 3 8 4 9 5 

7 2 6 1 5 9 4 8 3 7 2 6 1 5 9 4 8 3 7 
8 4 9 5 1 6 2 7 3 8 4 9 5 1 6 2 7 3 

9 4 8 3 7 2 6 1 5 9 4 8 3 7 2 6 1 5 9 
6 2 7 3 8 4 9 5 1 6 2 7 3 8 4 9 5 1 

2 6 1 5 9 4 8 3 7 2 6 1 5 9 4 8 3 7 2 
4 9 5 1 6 2 7 3 8 4 9 5 1 6 2 7 3 8 

4 8 3 7 2 6 1 5 9 4 8 3 7 2 6 1 5 9 4 
2 7 3 8 4 9 5 1 6 2 7 3 8 4 9 5 1 6 

6 1 5 9 4 8 3 7 2 6 1 5 9 4 8 3 7 2 6 
9 5 1 6 2 7 3 8 4 9 5 1 6 2 7 3 8 4 

8 3 7 2 6 1 5 9 4 8 3 7 2 6 1 5 9 4 8 
7 3 8 4 9 5 1 6 2 7 3 8 4 9 5 1 6 2 

1 5 9 4 8 3 7 2 6 1 5 9 4 8 3 7 2 6 1 

Table 6.  4x2 or [45] Rodin map 

Similarly in Table 5, if column 1  is shifted up relative to col-
umn 1 , we obtain a degenerate 4x4 map, but if shifted down we 
get a 2x4 map, as in Table 6.  Verify that these two maps are to-
pologically equivalent by exchanging rows with columns and 

shifting  11 1    in Table 7 to 22 1    in Table 6.  Table 7 is 

thus redundant, and Tables 4-6 suffice for all three topologically 
independent Rodin maps. 
 

1 8 6 4 2 9 7 5 3 1 8 6 4 2 9 7 5 3 1 
2 4 6 8 1 3 5 7 9 2 4 6 8 1 3 5 7 9 

6 4 2 9 7 5 3 1 8 6 4 2 9 7 5 3 1 8 6 
6 8 1 3 5 7 9 2 4 6 8 1 3 5 7 9 2 4 

2 9 7 5 3 1 8 6 4 2 9 7 5 3 1 8 6 4 2 
1 3 5 7 9 2 4 6 8 1 3 5 7 9 2 4 6 8 

7 5 3 1 8 6 4 2 9 7 5 3 1 8 6 4 2 9 7 
5 7 9 2 4 6 8 1 3 5 7 9 2 4 6 8 1 3 

3 1 8 6 4 2 9 7 5 3 1 8 6 4 2 9 7 5 3 
9 2 4 6 8 1 3 5 7 9 2 4 6 8 1 3 5 7 

8 6 4 2 9 7 5 3 1 8 6 4 2 9 7 5 3 1 8 
4 6 8 1 3 5 7 9 2 4 6 8 1 3 5 7 9 2 

4 2 9 7 5 3 1 8 6 4 2 9 7 5 3 1 8 6 4 
8 1 3 5 7 9 2 4 6 8 1 3 5 7 9 2 4 6 

9 7 5 3 1 8 6 4 2 9 7 5 3 1 8 6 4 2 9 
3 5 7 9 2 4 6 8 1 3 5 7 9 2 4 6 8 1 

5 3 1 8 6 4 2 9 7 5 3 1 8 6 4 2 9 7 5 
7 9 2 4 6 8 1 3 5 7 9 2 4 6 8 1 3 5 

1 8 6 4 2 9 7 5 3 1 8 6 4 2 9 7 5 3 1 

Table 7.  2x4 or [45] Rodin map 

Though beyond the scope of this paper, one can create a 3D 
Rodin map by assigning xyz axes to the three modes of counting 
(by 1, 2 and 4).  Thus, xy-planes would contain 1x2 maps, xz-
planes 1x4 maps, and yz-planes 2x4 maps.  Polarity is a concern, 
and the relationships between map layers are nontrivial, not to 
mention the difficulty of displaying such a 3D map.  But one can 
certainly imagine a unique number assigned to every point in 
space. 

In fact, there exists an interesting shape associated with each 
cell in the 3D Rodin map.  Draw diagonal lines along the ++ and 
+- directions to obtain a diamond shape surrounding each cell.  
There exists a similar diamond in each of the other two planes, 
and each number therefore has 12 neighbors, 4 in each plane.  It 
turns out that the implied diamond shape surrounding each cell 
becomes a 12-sided rhombic dodecahedron in 3D.  Several inter-
esting relationships between this shape and other tessellating 
shapes will be explored in a future paper by Volk. 

Finally, there exist Rodin number systems for moduli other 
than 9.  The modulus must be odd, or counting by 2 would de-
generate, and must be a square, so that N shifts of N restores a 

map to its original settings in modulus 2N .  Just as there are 2+1 
possible maps in the modulo-9 system, there are 4+3+2+1=10 
maps in the modulus-25 system, and in general the number of 

possible maps in a modulus- 2N  system is: 

 
 1

1

1

2

N

n

N N
n






  (9) 

So it is possible to construct Rodin maps in modulo-25, modulo-
49, modulo-81, etc., but only in the modulus-9 system does the 
number of possible maps equal the number of shifts required to 
construct all the topologically different kinds of maps.  Also only 
in the moduls-9 system are the counting axes themselves powers 
of 2 (1,2 and 4).  For example, in the modulus-25 system, the 
counting axes are by 1, 6, 1, 16, 21 or equivalently 24, 19, 14, 9, 4.  
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This paper will not examine higher-modulus systems, though 
Table 8 displays a 1x4 example of a modulus-25 system.  It uses 
letters A-Y in place of the numbers 1-25, so that each “number” 
in the pattern requires only one character.  In the interest of 
space, this map does not display even one complete cycle in ei-
ther direction, but enough to validate the pattern. 

A B C D E F G H I J K L M N O 

I H G F E D C B A Y X W V U 

E F G H I J K L M N O P Q R S 

E D C B A Y X W V U T S R Q 

I J K L M N O P Q R S T U V W 

A Y X W V U T S R Q P O N M 

M N O P Q R S T U V W X Y A B 

V U T S R Q P O N M L K J I 

Q R S T U V W X Y A B C D E F 

R Q P O N M L K J I H G F E 

U V W X Y A B C D E F G H I J 

Table 8.  1x4 modulo-25 Rodin map (characters A-Y) 

5. Doubling, Halving, and the Enneagram 

Undoubtedly the most striking feature of all three Rodin 
maps (Tables 4-6) is the recurrence of certain number patterns 
along the ++ direction.  We find the pattern 396693 in every 3rd 
diagonal, and 124875 in opposite directions along the two di-
agonals between.  For example, in Table 6 11 578421     and 

12 124875    .  But as noted in the end of Section 2, the se-

quence 124875 reproduces the powers of 2 in modulo-9 arithmet-
ic, and 157842 reproduces the powers of 5. Since division by 2 is 
synonymous with multiplication by 5, the Rodin Number system 
is usually regarded as a base-10 system, though all calculations 
are performed modulo-9. 

In passing, note that the patterns in the +- direction exhibit 
certain regularities as well.  Each of the three Rodin maps carries 
a signature in the +- direction, namely: 

1x2 231495867 27 Table 4 
1x4 165297438 18 Table 5 
2x4 462891735 45 Table 6 

In each case, the patterns appear both forward and backward in 
every +- diagonal, so that, for example, the 2’s and 7’s in Table 4 
are repeated as the +- pattern is reversed.  Therefore, the 1x2 
chart can actually be identified by the repeated numbers in the +- 
series.  That is, the 1x2 map is aka the “27” map, the 1x4 is aka 
the “18” map, and the 2x4 map is aka the “45” map.  Not only 
that, but the first four digits in each series (“2314” for the 27 map) 
precisely mirror the last four (“5867”).  That is, the 2 and 7, 3 and 
6, 1 and 8 and 4 and 5 all form conjugate pairs in modulo-9.  The 
same holds for the 18 and 45 maps.  Finally, all three patterns 
have 9 always in the middle, and 3’s and 6’s always second to the 
outside.  But however satisfying this regularity, the greater inter-
est lies in the ++ patterns. 

The ++ paths of doubling or halving constitute the most im-
portant feature of the Rodin map.  Marko Rodin postulates that 
matter and energy naturally flow along these paths.  While the 
claim admittedly sounds outlandish at first, the idea is consistent 

with several things known about flows.  That everything ulti-
mately flows in circuits is really an extension of Newton’s 3rd 
Law to continuums, since every infinitesimal motion must ac-
company a returning motion.  This can’t hold for every infinite-
simal element of matter unless matter flows in circuits.  Moreo-
ver every circuit must accompany another circuit with opposite 
sense, or we have a rotation without counter-rotation, in viola-
tion of the principle behind Newton’s 3rd Law.  If the doubling 
and halving paths represent flows, the Rodin map can be inter-
preted as depicting “flow out, flow back, gap, flow out…”  This 
kind of sequencing is found in matter, anti-matter pairs, the posi-
tive nucleus to negative shell of atoms, and even to DNA se-
quencing.  It gets to the very heart of Rodin’s concept of motion. 

One way to visualize this flow process is with the enneagram, 
which is nothing more than a 9-pointed geometric figure, based 
on a regular nonagon.  To this day the enneagram is associated 
with occultic and pagan mysticism, though it is in fact nothing 
more than a geometric figure.  The drive by the western mediev-
al church to ban anything connected with paganism, in particular 
harmonic science, has enshrouded in mystery what the ancients 
might have known about this symbol, though assuredly the 
symbol has very ancient origins.  Very possibly the ancients had 
knowledge of these very number patterns, and Rodin’s discovery 
is actually a rediscovery.  Be that as it may, here are some ennea-
grams from the Rodin website depicting doubling and halving: 
[1]  

    

Fig 1.  Doubling and halving enneagrams 

It’s easy to confirm that the numbers 32 and 16 in the left fig-
ure become 5 and 7 respectively in modulo-9.  Further, the digits 
in the halving enneagram also match the number pattern, as, for 
example 0.03125 3 1 2 5 2     .  These patterns continue 
indefinitely in both directions, strengthening the connection be-
tween modulo-9 arithmetic and the base-10 number system.  The 
enneagram becomes even more provocative if we replace 
9,8,7,6,5 with 0, -1, -2, -3, -4, giving it a symmetry surrounding 
the number 0.  In this case, the doubling sequence becomes 1,2,4, 
-1,-2, -4, again corresponding to the xyz axes in 3D space.  Note 
also that the degenerate 3, 6 and 9 remain aloof from the pattern. 

6. Toroid Mapping and the Rodin Coil 

Playing with numbers is all very well, but what can be done 
with numbers?  How does one apply these ideas to physics?  
How can one test the hypothesis that doubling and halving cir-
cuits actually represent the natural flow directions of energy and 
matter?  The answers may come from asking the right question, 
namely: “How can we map this infinite pattern onto a finite sur-
face?”  This is a question of topology, and one that leads to some 
interesting results. 
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Since we are dealing with a 2D map, we must find two ways 
to “recycle” the map, as it were.  To make the top row 1  actually 
the same as the bottom row 1  in any of the above maps, we 
have to wrap the map around a cylindrical form.  The resulting 
cylindrical tube is finite around the cross-section, but infinite in 
length, so we’re half way to our goal. To connect the ends of a cy-
lindrical tube, we can only wrap the tube into a toroid.  There is 
no other way to map an infinite, but repeating pattern onto a fi-
nite surface.  This is the connection between the Rodin map and 
the toroid shape. 

However, there are several ways to connect the maps.  For 
example, there could be more than one cycle or generation of 
maps around the cylinder (cross section), or around the toroid it-
self.  But even more interesting is the possibility of twisting the 
cylinder before connecting the ends.  Why do this?  To reduce the 
number of circuits in each direction from three to one.  In the 
case of the 1x2 map in Table 4, imagine joining the top and bot-
tom rows with the map wrapped horizontally around a cylinder.  
If we simply joined the right and left ends, the circuit 11     

would wrap back into itself, but never connect with 14     or 

17    , which are also “positive” flowing circuits.  To connect 

the three circuits, we must deliberately add or subtract some 
non-degenerate (not 3, 6, or 9) number of columns, and twist the 
cylinder before connecting. 
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Table 9.  20/9 (4x1) or [18] Rodin map (360 cells) 

Table 9 is an inverted version of Table 5, but with four (two 

 and two ) extra columns to the right, accounting for 22 9  

or 20
9  horizontal generations of the map.  Since each generation 

contains 22 9 162   cells or tiles, the total number of tiles in this 
choice is 360, appropriate for description in terms of degrees.  
Each circuit then flows through 120 tiles.  The 11 1    in the 

upper left flows through to the same cell in the lower middle, 
which is identical with the same cell in the upper middle.  The 
flow continues to the next 11 1    pair near the right.  Thence 

the flow at the 33 4    cell on the right merges into the 41 4    

cell on the left.  This process continues through 63 7    on the 

right to 71 7    on the left, and finally back to 93 1    on the 

right to  11 1    on the left.  Such a wrapping can produce a to-

rus similar to the one depicted in Fig. 2. 

 

Fig 2.  The Rodin torus [2] 

Of course, the actual Rodin coil consists of electrical wires 
wrapped along the “doubling” circuit paths.  Two adjacent wires 
are wound to carry currents in opposite directions, but with gap 
spaces between pairs, represented in the torus by the 396693 pat-
tern.  The recommended wrapping traverses 12 times around the 
cross section, but only 5 times around the toroid circumference. 
Interestingly the non-degenerate ratio 5/12 is found in music as 

the perfect 4th (or 5th) on the even-tempered scale.  Harmonic 
scientists like Richard Merrick argue that the 12-note even tem-
pering is not arbitrary, but fundamental to the very structure of 

matter. [3] Possibly the Rodin coil depicts this structure. 

 

Fig 3a,b.  Sample Rodin coils [4,5] 

7. Conclusion 

The Rodin number map and coil create an interesting chal-
lenge to science today.   Unquestionably a lot of people are inter-
ested in them, as evidenced by the number of submissions and 
views on youtube related to them.  Many have reported unusual 
phenomena with the coil, but to date no scientifically disciplined, 
quantitative, controlled studies have been published.  The proper 
attitude for open-minded scientists is the middle ground, neither 
accepting unsupported claims, nor rejecting ideas simply for ly-
ing outside conventional experience.  Clearly modulo arithmetic, 
the Rodin number map, and the Rodin coil all provide yet-to-be-
explored areas of research. 
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