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Preface

In the course of a long career as a physicist, I have investigated quantum
mechanics with electron interferometry and microscopy, radiofrequency and
microwave spectroscopy, coherent laser spectroscopy, nuclear magnetic and
electron paramagnetic resonance, atomic beams, radioactive nuclei, and of
course pencil, paper, and computers. Throughout this time I have had other
scientific interests as well, but none has held such permanent fascination for
me as trying to understand the structure and interactions of the quantum
world. Perhaps one reason is that everything at some sufficiently deep level of
fundamentality is a quantum system.

The range of topics discussed in this book reflect, in part, my diverse quan-
tum interests, but all involve, in one way or another, the unifying element
of quantum superposition. Although by its very etymology the word ‘quan-
tum’ (Latin for ‘how much’) intrinsically stresses the idea of discreteness in
nature, what is actually most distinctive about quantum mechanics, in my
opinion, is the unique character and far-reaching consequences of the concept
of superposition – a superposition not of forces or fluxes or any other directly
measurable, tangible physical quality, but of abstract amplitudes conveying
a measure of probability.

Quantum superpositions can be overtly spatial, as in the familiar example
of superposed waves issuing from two slits leading to a periodic distribution of
independent particles on a distant screen; overtly temporal as in the superposi-
tion of excited-state amplitudes resulting in ensemble quantum properties that
oscillate in time, or subtly internal as in the spin-based symmetry restrictions
on multiparticle wave functions from which different quantum statistics arise.
Quantum superposition can occur in systems ranging in size and complex-
ity from single elementary particles, to widely separated atoms in ‘entangled’
states, to mesoscopic electronic circuits, to degenerate stars of unimaginable
densities and pressures. The number of interesting systems whose properties
are attributable to superposition of quantum amplitudes is virtually limitless.
A monograph, however, is not, but the technical essays included here provide
a sampling of the diversity of quantum interference phenomena arising from
conceptually different kinds of quantum superposition.



VIII Preface

It was originally my intention to have completed this book in time for the
tenth anniversary of its predecessor, More Than One Mystery: Explorations
in Quantum Interference, which, I believe, was at the time (1995) the first
book to be published that was devoted specifically to the subject of quantum
interference. Alas, other research commitments and a heavy teaching sched-
ule thwarted my plan, but I believe the updated and considerably expanded
final product has actually benefited from the delay. Indeed, some of the quan-
tum effects and experiments I proposed well over ten years ago were realized
recently, some even as I was working on the corresponding chapters.

The title of the present book – which is not simply MTOM 2 , or Son of
MTOM , or some such reflection on its progenitor – deserves an explanation.
Like many a physicist, I found the vivid imagery of Richard Feynman’s color-
ful expressions captivating, although I did not always agree with the content.
In particular, his contention (in the famous Lectures), which was subsequently
repeated often by others, that the phenomenon of two-slit electron interference
contains ‘the only mystery’ of quantum mechanics, bothered me. As a scien-
tist developing novel quantum interference experiments involving correlated
pairs of particles in entangled states, or single particles propagating around
magnetic flux tubes in a space with ‘holes’, or the effects of potentials on the
fluctuations of particles restricted by the spin–statistics relation, or other un-
usual examples of quantum superpositions conceptually distinct from Young’s
two-slit experiment, I thought Feynman’s assertion to be misleadingly narrow.
It was, after all, an offhand remark to stimulate a class of struggling CalTech
undergraduates. And so I wrote a book drawn from my own researches illus-
trating why – if one adopts Feynman’s idiom – there really is ‘more than one
mystery’ to quantum mechanics.

In the years since publication of MTOM , I have come to regret that title,
for it appeared to suggest – particularly to someone unfamiliar with its origin
– a point of view the very opposite to that which I held then and hold now. I do
not regard quantum mechanics as a ‘mystery’. Rather, it is a highly developed
and well-understood physical theory, perhaps the most carefully scrutinized
and best understood of all physical theories. The glib assertions by many
scientists and science popularizers that ‘nobody understands quantum me-
chanics’ – another Feynman idiom – is balderdash. Competent physicists (as
opposed to poorly informed science writers or science philosophers), who use
quantum mechanics on a daily basis to elucidate successfully countless physi-
cal phenomena, clearly must understand the instrument with which they are
working. When they pretend otherwise, I am reminded of the exchange be-
tween analyst Jack Ryan and Director of Central Intelligence William Cabot
in the film adaptation of Tom Clancy’s thriller, The Sum of All Fears:

JR: . . . I don’t think that adds up.

WC: It adds up. You just don’t like what it adds up to.



Preface IX

What quantum mechanics ‘adds up to’ is that it is an irreducibly statistical
theory, albeit unlike any necessitated simply by ‘incomplete knowledge’, with
nonlocal features inexplicable from the perspective of classical physics. But
something that is strange is not necessarily incomprehensible, although it may
not be visualizable. Mathematicians, for example, may understand very well
the principles of a 10-dimensional geometry even if no 10-dimensional figure
can be drawn.

In this book I discuss quantum superposition – the “heart of the mat-
ter” to quote another Feynmanism – in its manifold variations. Technical
essays in MTOM have been expanded throughout with new material. I have
enlarged the chapter on the electron two-slit experiment to include discus-
sion of controversial issues like Schrödinger’s cat, Wheeler’s delayed-choice
thought experiment, and macroscopic manifestation of quantum interference
– issues that I have found to be sensationally distorted, especially in publica-
tions for the general reader. The original chapter on correlated particles now
constitutes two chapters with new sections on distinctions between quantum
ensembles, correlated emission from excited atoms, coherence properties of
thermal electrons, and more thorough consideration of the coherence proper-
ties of field-emitted electrons. Several sections were added to the chapter on
the physics of chiral systems. Appendices have been added that clarify points
raised in the text or provide supplementary technical discussions.

I have also added a chapter that addresses one of the most challenging
problems in physics: the collapse of a sufficiently massive relativistic degen-
erate star to a black hole, depicted in the scientific and popular literature as
an invisible gaping singularity in space-time where the laws of physics break
down. There is no doubt that black holes must be among the most exotic
denizens of the cosmos, but the wild flights of fancy that have become part of
their mythology (infinite densities, ‘worm holes’ through space-time to distant
parts of the universe, portals to other universes, etc.) must rival in absurdity
the worst of what I have seen written about Schrödinger’s cat or the many-
worlds interpretation of quantum mechanics. It may be prosaic to say, but
a star – even the most bizarre star – if it is a real physical object, and not
merely a solution to some set of differential equations, cannot be an infinitely
dense hole in space-time. We do not yet know all the laws of physics, nor fully
understand the consequences of those laws we think we know, but we know
enough, I believe, to conceive of mechanisms that would prevent the forma-
tion of such a comic-book caricature of a star. In the last chapter I make some
suggestions whereby quantum superposition, operating in systems of extreme
densities and pressures, could stabilize degenerate matter at a macroscopic
size comparable to that of a neutron star or quark star.1

1 The nature of dark matter in the universe is another outstanding problem of
astrophysics and cosmology for which quantum superposition may provide the
solution (by formation of a condensate of extremely low mass bosons). I have



X Preface

I hope the reader will find the essays in this book as edifying and thought-
provoking to read, as the author found them to write.

Trinity College, Mark P. Silverman
January 2007
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1

The Enigma of Quantum Interference

1.1 The Most Beautiful Experiment

In the late 1980s, I had the pleasure and distinction of being the first occi-
dental professor invited to the then newly created Hitachi Advanced Research
Laboratory (ARL) in Kokubunji, Japan.1 The Hitachi Company was (and still
is) a well known manufacturer of state-of-the-art electron microscopes, among
many other high-tech instruments, but the ARL, which could be likened to
a uniquely Japanese blend of the Princeton Institute for Advanced Studies and
the original Bell Research Labs, was created to do basic, rather than profit-
driven, research. My responsibility as Chief Researcher in quantum physics at
the ARL was to think of innovative, but feasible, fundamental experiments
for the electron microscopy group to do.

Being a teacher, as well as a research scientist, I knew how difficult it was
for students to grasp the profound implications of quantum interference, espe-
cially as they had never observed this phenomenon themselves but only read
about it in textbooks or saw it described on the chalkboard, usually in the
form of the Young’s two-slit experiment with electrons. As my first contribu-
tion, therefore, I proposed an experiment, employing the attenuated beam of
a field-emission electron microscope, to illustrate and capture on videotape the
growth of electron-interference fringes by detection of one electron at a time.
The proposal was duly brought before the top management for consideration,
and I learned later with some disappointment that my idea was declined, as
it was “not the purpose of the lab to make films for school classrooms”.

The idea, however, did not die. The experiment was eventually performed,
the results were recorded on film, and, in gratitude for this and other ideas
during my tenure, I was presented with one of the few existing copies of
this extraordinary five-minute, silent, monochrome videotape (Single-Electron
Build-up of an Interference Pattern) as a gift upon my leaving Japan. It
is quite possible (although I do not know with certainty) that I may now
possess the only existing copy, for Hitachi, once having seen the light that
1 The Hitachi ARL has since moved to Hatoyama, Japan.
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‘classroom films’ could attract potential scientists and engineers from Japanese
high schools and universities, was quick to replace the original with a narrated
full-length color production. Also, with development of the internet, the film
has been made available for viewing at the Hitachi ARL website.

In 2002, science historian Robert Crease, writing a column for Physics
World , asked his readers to “submit candidates for the most beautiful ex-
periment in physics”. Of the ten leading results2 published in the September
edition [1], the first on the list was Young’s double-slit experiment applied to
the interference of single electrons. I was gratified to see that other physicists
shared my belief that there is something definably special about this most
basic demonstration of a quantum interference phenomenon.

What is so special? What is it that makes the electron double-slit experi-
ment ‘beautiful’, in analogy to a work of art or composition of music, forms
of artistic expression to which the concept of beauty is more usually applied?
To be sure, beauty is a subjective quality, but the beauty of a scientific exper-
iment lies less in the eye than in the mind’s eye of the observer. Asked what
makes an experiment beautiful, scientists are wont to talk about the ‘simplic-
ity’ or ‘elegance’ or ‘economy’ of a technique which manifests a difficult or
subtle effect with readily available equipment. Such rhetoric, however, would
hardly seem to describe the experiment I proposed.

A high-voltage field-emission electron microscope, wherein electrons are
accelerated to energies greater than one hundred thousand volts and which,
with its huge oil-filled drums to isolate the high-voltage transformers, takes
up a good-sized room, is perhaps more a thing of awe than of beauty. Ma-
terially, the experiment depended on complex and sophisticated-not simple-
technology. Conceptually, the outcome of the experiment did not simplify
physicists’ understanding of quantum weirdness, but delineated it starkly in
one of its most extreme forms, thereby adding tinder, not water, to philosophi-
cal arguments that have burned for over 75 years. Furthermore, a state-of-the-
art instrument of the kind employed in the experiment was available at the
time (if not also presently) only in a handful of labs throughout the world. By
the time definitive electron double-slit experiments were performed, quantum
mechanics had already been tested in a myriad of ways and never found want-
ing, so the outcomes were neither surprising nor ever in doubt. Why, then, is
the electron double-slit experiment one of the most beautiful experiments in
physics? In my opinion, the most compelling reason is this: the unambiguous
directness of the observable results, despite being expected, have the capacity
to shock the intellect into realizing, like no mathematical proof is capable of

2 The full list of 10 beautiful experiments cited in Physics World is: (1) Young’s
double-slit experiment with single electrons, (2) Galileo’s experiment on falling
bodies, (3) Millikan’s oil-drop experiment, (4) Newton’s decomposition of sunlight
with a prism, (5) Young’s light-interference experiment, (6) Cavendish’s torsion-
bar experiment, (7) Eratosthenes’ measurement of the Earth’s circumference, (8)
Galileo’s experiments with rolling balls down inclined planes, (9) Rutherford’s
discovery of the nucleus, (10) Foucault’s pendulum.
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achieving, that the formalism of quantum mechanics reveals a strange and dis-
turbing reality. Experiments depending on complex apparatus, as is the case
in the study of elementary particles, usually lead to complex outcomes requir-
ing intricate analysis to extract the signature of some sought-for phenomenon.
By contrast, the two-slit interference pattern builds up before one’s eyes, one
electron at a time, and every attempt to determine the specific path of an
individual electron in that pattern is destined to end in futility.

The aesthetic quality of this experiment was aptly depicted-at least in
part-by Crease in the closing remarks of his report:

It is natural to call beautiful those [experiments] that captivate and
transform our thinking, that make the result stand out clearly [. . .]
in a materially embodied way, and that reveal that we are actively
engaging with something beyond us.

1.2 Two-Slit Interference
of Single Electron Wave Packets

In the more than eighty years that have passed since Louis de Broglie first
proposed the wave-like behavior of particles, the idea of particle interference
has become more-or-less familiar to most physicists. The term ‘wave–particle
duality’, which once may have sounded like an oxymoron, for a long while
now has been an integral part of physicists’ working vocabulary. And yet,
despite the fact that technological advances have greatly facilitated experi-
mental demonstrations of the wave-like attributes of matter, these processes
can be no more visualized today than when they first reached the conscious-
ness of the physics community. The interference of massive particles remains
an intriguing phenomenon which “has in it the heart of quantum mechanics”,
in the words Feynman used to introduce quantum concepts to his students.
“In reality,” he wrote, “it contains the only mystery.”

I have reservations about Feynman’s last remark, as well as a number of
quotations by other eminent physicists, which are frequently repeated, often
out of context or without regard to subsequent progress, to give an impression
that “nobody understands quantum mechanics” (another Feynmanism [2]),
but I will leave these issues for later. Let us now take stock of just how
strange the self-interference of single-particle wave packets is, as judged by our
ordinary experience, by examining the experiment I proposed to the Hitachi
electron microscopy group.

In this demonstration [3], a field-emission electron microscope was em-
ployed to produce an electron version of Young’s two-slit experiment with
light as shown in Fig. 1.1. Electrons, drawn from a sharp tungsten filament
by an applied electrostatic potential of about 3–5 kV, were subsequently ac-
celerated through a potential difference of 50 kV to a speed of approximately
0.41 the speed of light (c = 3×108 m/s). Subsequently split by an electrostatic
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Fig. 1.1. Electron interference with a field-emission electron microscope. Wave-front
spitting occurs at the biprism. (Courtesy of A. Tonomura, Hitachi ARL)

device known as a Möllenstedt biprism (effectively the two slits of the appara-
tus), the two components of the electron beam recombined in the observation
plane of the microscope where the build-up of a pattern of interference fringes
was recorded on film and on a TV monitor.

The appearance of a fringe pattern is not in itself extraordinary. After all,
if electrons were actually waves, then the experimental configuration would
represent a type of wavefront-splitting interferometer, and there is nothing un-
usual about the linear superposition of waves to generate an interference pat-
tern. What is startling, however, is the observed emergence of the fringe pat-
tern in a microscope of approximately 1.5 m in length under conditions where
the mean interval between successive electrons is over 100 km! Clearly any
given electron was detected long before the succeeding electron emerged from
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the field-emission tip. Under these circumstances it is unlikely that there could
have been any cooperative interaction between the electrons of the beam.

Electron detection events appear on the TV monitor one by one at ran-
dom locations as illustrated in Fig. 1.2. The first few hundred scattered spots
hardly hint of any organization. However, by the time some hundred thou-
sand electrons have been recorded, stark alternating stripes of white and black
stand out sharply as if made by the two-slit interference of laser light. Indeed,
except for the large difference in wavelengths – about 500 nm for visible light
and 0.005 nm (a tenth the diameter of a hydrogen atom) for the 50 keV elec-
trons3 – the uninformed observer could not tell whether the fringe pattern

Fig. 1.2. Evolution of the electron interference pat-
tern in time. Electrons arrive at the rate of approx-
imately 1000 per second. The number recorded in
each frame is: (a) 10, (b) 100, (c) 3000, (d) 20 000,
and (e) 70 000. (Courtesy of A. Tonomura, Hitachi
ARL)

3 The electron volt (eV) is a unit of energy equal to that gained by a particle with
the charge of the electron (e) transported through a potential difference of 1 volt.
1 eV = 1.6 × 10−19 J.
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was created by light or by particles. If the location of each electron arrival is
random, and there is no communication between electrons, how then can the
overall spatial distribution of detected electrons manifest a coherently orga-
nized pattern? That is the enigma of quantum mechanics to which Feynman
referred.

Since the two-slit electron interference experiment is conceptually the sim-
plest, if not archetypical, example of quantum interference, it is worth exam-
ining it quantitatively in more detail, if only to introduce geometric and dy-
namical quantities that will be encountered again later. The speed β (relative
to that of light) of an electron in the beam is deducible from the relativistic
expression for energy conservation

E =
mc2

√
1 − β2

= mc2 + eV , (1.1)

and takes the form

β =

√(
1 +

eV

mc2

)2

− 1

1 +
eV

mc2

, (1.2)

where m is the electron mass, e the magnitude of the electron charge, and V
the accelerating potential. From relation (1.2), the de Broglie wavelength λ of
the electron, a measure of the magnitude of the linear momentum p,

p =
mv

√
1 − β2

=
h

λ
, (1.3)

can be expressed in the form

λ =
λC√(

1 +
eV

mc2

)2

− 1

, (1.4)

where λC is the electron Compton wavelength

λC =
h

mc
= 2.43 × 10−12 m , (1.5)

and h = 6.26 × 10−34 joule-second (Js) is Planck’s constant. (Later in the
book, we will also use the so-called ‘reduced’ Compton wavelength, λC =
�/mc = 3.87 × 10−13 m, where � ≡ h/2π is the reduced Planck’s constant.)

Strictly speaking, the electron wavelength refers to monoenergetic elec-
trons in much the same way as an optical wavelength characterizes perfectly
monochromatic light. These are idealizations that are only imperfectly real-
ized in nature. Relying again on optical imagery (which is useful, but can be
misleading if taken too literally), one can describe the electron beam more
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appropriately in terms of wave packets as shown in Fig. 1.3. If the energy
uncertainty (or energy dispersion) of the beam is ΔE, then by the Heisen-
berg uncertainty principle there is a characteristic time interval, the beam
coherence time tc

tc =
�

ΔE
, (1.6)

over which an electron wave packet emerges from the source. Propagating at
a mean speed v, the wave packet has a characteristic length, or longitudinal
coherence length

lc = vtc . (1.7)

For a 50 keV beam with dispersion of 0.1 eV, the coherence time and length
are respectively tc = 6.6 × 10−15 s and lc = 7.9 × 10−7 m. In order for wave
packets to overlap and interfere, their optical path length difference between
source and detector must not be much in excess of lc. The coherence length
can greatly exceed the de Broglie wavelength, and does so in the present
experiment by five orders of magnitude.

In addition to a longitudinal extension, the wave packets also have a lateral
extension as characterized by the transverse coherence length lt

lt ∼ λ

2α
, (1.8)

arising from the finite size of the source. Here 2α is the angular diameter of
the source as seen from the diffracting object; equivalently, 2α is the beam
divergence angle as seen from the viewing plane. To understand the relevant
geometrical relations and the origin of expression (1.8), examine Fig. 1.4.
Electrons emitted from the center of the source give rise to a diffraction pat-
tern centered about the symmetry axis, i.e., at the origin O of the viewing

Fig. 1.3. Schematic diagram of an electron wave packet. The de Broglie wavelength
λ is determined by the particle linear momentum. The longitudinal coherence length
lc is determined by the dispersion in particle energy
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Fig. 1.4. The lateral or transverse coherence length lt is determined by the angu-
lar dispersion of the beam. It is a measure of the maximum extent of wave front
separation – here equivalent to slit separation d – at which a diffracting object is
coherently illuminated by an extended source

screen. Electrons emitted from an above axis point X in the source plane pro-
duce a diffraction pattern centered at the below-axis point Y on the viewing
screen. As in light optics, points X and Y are connected by a straight line
through the center of the diffracting object (in this case the midpoint between
two slits a distance d apart); the corresponding distances from the symmetry
axis stand in the same ratio as the separations Z1 between the source and
diffraction plane and Z2 between the diffraction plane and viewing screen.

One can readily show that the relative phase of the electron wave functions
describing electrons arriving at point Y from the origin (O) and periphery (X)
of the source is approximately 2πdX/λZ1. If this phase difference is π radians,
the crests of the waves at Y from source point X overlap the troughs of the
waves at Y from the source point O – and the contrast or visibility of the
interference fringes is zero. This defines (at least approximately) a maximum
slit separation d = λ/(2X/Z1) – to be identified with the lateral coherence
width – below which the diffracting object is coherently illuminated by the
extended source and gives rise to visible interference fringes. The ratio 2X/Z1

(for X � Z1) is the angular diameter of the source appearing in relation (1.8).
The above heuristic argument can be made more rigorous by actually

integrating the diffraction pattern at the viewing screen over all contributing
points of the source. In the resulting theoretical intensity distribution, the
oscillatory term is multiplied by a visibility function V which, in the case of
a diffracting screen with two slits, has the form [4]

V =
| sin(πd/lt)|
πd/lt

, (1.9)

where lt is again the lateral coherence width of relation (1.8). It is seen that V
vanishes for d = lt. In any event, the point of importance is that, as a general
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condition for diffraction, the transverse coherence length must not be greatly
inferior to the size of the diffracting object or aperture. In the Hitachi exper-
iment under discussion, the divergence angle was on the order of 4 × 10−8

radians, and therefore lt ∼ 140 μm, a value larger than the approximately
0.5 μm radius of the anodic filament of the biprism, yet much smaller than
the 10 mm separation of the two adjacent grounded electrodes.

Upon traversing the biprism, the components of the incident electron beam
passing to one side or the other of the filament are deflected towards the
observation plane and overlap there at an angle twice the deflection angle
α, thereby giving rise to interference fringes with fringe spacing λ/2α. The
resulting fringe spacing of approximately 700 nm was subsequently magnified
2000 times by a projector lens.

The details of the detection process, which involved the use of sophisticated
image processing apparatus for recording the number and locations of all
electrons arriving within the field of view, will be left to the original literature.
Suffice it to say that close to 1000 electrons arrived at the detector each second,
and that a pattern of sharp fringes could be created in about one half hour.
However, at an electron speed of ∼ 0.41c there is a mean spatial separation of
approximately 1.23 × 105 m between two sequential electrons detected 1 ms
apart. At any given moment during the experiment, therefore, there is likely
to be only one particle traversing the apparatus. This feature must perplex
anyone seeking to understand experiments of this kind at a deeper level than
simply being able to predict the outcome (which, of course, is what quantum
mechanics enables one to do).

So subtle and contrary to ordinary experience are the implications of elec-
tron self-interference, that one is usually not fully aware of the alternation in
use of language required to describe the experiment. For example, to explain
the action of the biprism one speaks of the deflection of the components of the
beam to one side or the other of the filament. But where is there really a beam,
for effectively only one particle at a time moves through the biprism? To be
sure, knowing the spatial variation of the electrostatic field of the filament,
one can calculate the deflection angle α of an incident electron. However,
the supposition that an electron has with certainty actually taken one of two
classically conceivable pathways through the apparatus theoretically leads to
no interference effect, and, indeed, the experimental capacity to produce an
interference pattern would be destroyed by the intrusive observation to test
that supposition. Conversely, one can speak of the diffraction of waves around
the filament. But where is there really a wave, since the electron is always
produced and detected as an elementary corpuscular entity with discrete elec-
tric charge (4.8 × 10−10 esu or 1.6 × 10−19 C), mass (9.11 × 10−31 kg), and
spin angular momentum (�/2)?

It is frequently said or implied that the wave–particle duality of matter
embodies the notion that a particle – the electron, for example – propagates
like a wave, but registers at a detector like a particle. Here one must again
exercise care in expression, so that what is already intrinsically difficult to
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understand is not made more so by semantic confusion. The manifestations
of wave-like behavior are statistical in nature and always emerge from the
collective outcome of many electron events. In the present experiment nothing
wave-like is discernible in the arrival of single electrons at the observation
plane. It is only after the arrival of perhaps tens of thousands of electrons
that a pattern interpretable as wave-like interference emerges.

Likewise, there is a conceptually significant distinction between the dy-
namical variables with which particle and wave-like characteristics of matter
are quantified, e.g., the variables connected by the Einstein and de Broglie
relations. Characteristics like energy and linear momentum can well pertain
to individual particles. By contrast, the corresponding quantities of frequency
and wavelength – and ultimately, of course, the wave function – although
commonly spoken of in the context of single-particle wave packets, actually
characterize a hypothetical ensemble of particles all similarly prepared. Al-
though one can in principle measure the mass, charge, or energy of a single
electron (held, for example, in an electromagnetic trap), one can not measure
its de Broglie wavelength except by a diffraction or interference experiment
employing many such electrons.

And last, we must be aware that frequently used, but inaccurate, expres-
sions like ‘particle interference’ or ‘interference of particles’ are but casual
abbreviations of the more precise idea of interference of wave packets or wave
functions or probability amplitudes – that is, of mathematical functions by
means of which the probabilities of events (and related statistical quantities
like transition rates and cross-sections) of physical particles can be calculated.

Thus, the original quantum mechanical enigma distills into this: Is the
fabric of nature so constructed that the laws of motion are at best statisti-
cal, ultimately pertaining only to systems of particles or to a single particle
observed repeatedly? Is it physically meaningless even to speak of certain at-
tributes of a particle as objectively real if they can never be simultaneously
observed and measured? Although there is little disagreement among physi-
cists concerning the formulation and mathematical procedures of quantum
mechanics, the interpretation of the theory and assessments of its fundamen-
tality have evoked over the years a broad range of opinion for which the reader
may consult the literature [5].

That electrons behave singly as particles and collectively as waves is in-
deed strange, but, Feynman’s remark notwithstanding, this is not the only
quantum mystery – if, by ‘mystery’, we mean an incapacity to give a deter-
ministic explanation of a quantum phenomenon. Charged particles can do
other things that are equally strange – indeed, in some ways stranger. They
can interact with electric and magnetic fields through which, classically, they
do not pass. They can arrive at detectors in classically inexplicable cluster
patterns although emitted apparently randomly from their source. And, once
part of a localized system of particles, they exhibit long-range correlations
that strongly affect their subsequent self-interference well after the original
system has apparently ceased to exist and the constituent particles have be-



1.3 Confined Fields and Electron Interference 11

come widely dispersed. It is to be stressed, of course, that the rhetorical term
‘mystery’ does not refer in any way to an inability of quantum theory to ac-
count for the phenomena under discussion, but only to the insufficiency of
our ordinary experience (i.e., classical physics) to permit us to imagine some
tangible mechanism by which the processes might occur.

1.3 Confined Fields and Electron Interference

It has long been a fundamental proposition of modern physics (the origin of
which dates back well before the creation of special relativity to at least the
time of Michael Faraday) that material systems interact with one another,
not instantaneously at a distance, but causally through the medium of a field.
The first, and still the most familiar, implementation of this philosophical
perspective of nature was in the area of electromagnetism. The mathematical
embodiment of the field theory of electromagnetism is the set of Maxwell
equations

∇ · E = 4πρ , (1.10)

∇ · B = 0 , (1.11)

∇ × E = −1
c

∂B

∂t
, (1.12)

∇ × B =
1
c

∂E

∂t
+

4π
c

J , (1.13)

and the Lorentz force law

F = ρE +
1
c
J × B , (1.14)

which, together, are considered to represent completely the classical interac-
tions of electric (E) and magnetic (B) fields with each other and with charge
(ρ) and current (J) densities. The very expression of the laws of electrodynam-
ics as differential equations seems to signify that all interactions take place
locally, the charged particles being influenced only by electric and magnetic
fields in their immediate vicinity. Every well-formulated problem in classi-
cal electrodynamics essentially reduces to determining the fields produced by
a system of charges (stationary or moving) and reciprocally the forces exerted
on these charges by the fields. To facilitate the solution of such a problem, vec-
tor and scalar potential fields, A and φ, related to the electric and magnetic
fields by the derivative expressions

E = −∇φ− 1
c

∂A

∂t
, (1.15)

B = ∇ × A , (1.16)
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are ordinarily introduced. The electromagnetic potentials are not unique, but
can be modified by a so-called gauge transformation

A −→ A′ = A + ∇Λ , (1.17)

φ −→ φ′ = φ− 1
c

∂Λ

∂t
, (1.18)

with gauge function Λ which leaves the electromagnetic fields, and hence the
Maxwell equations and Lorentz force law, invariant. In order to leave invariant,
as well, the quantum mechanical equation of motion of a particle with charge
q, the gauge transformation also modifies the wave function

Ψ −→ Ψ ′ = ΨeiqΛ/hc . (1.19)

The transformation function Λ is largely arbitrary although usually required
to be a single-valued function in order that the contour integral of gauge-
transformed vector potentials leads to the same value of magnetic flux Φ
through Stokes’ law ∮

C

A·dS =
∫∫

S

B·dS = Φ , (1.20)

where C is the contour bordering the open and orientable surface S penetrated
by the magnetic field lines. The fields E and B must, themselves, be unique
for a given configuration of charges and currents, because they are directly
related to electromagnetic forces. As a consequence, the classical perspective
has been to regard E and B as the primary or fundamental fields and A and
φ as auxiliary or secondary fields needed for calculational convenience only.

It is of historical interest to note, however, that Maxwell, who introduced
these fields in his famous treatise [6], accorded a more physical significance to
the vector potential.4 Having initially termed A the “vector-potential of mag-
netic induction”, Maxwell subsequently designated it the “electromagnetic
momentum at a point” and interpreted A as representing the “direction and
magnitude of the time-integral of the electromotive intensity which a particle
placed at [a point] would experience if the primary current [in one of two in-
teracting circuits] were suddenly stopped”. In other words, Maxwell regarded
A as a measurable quantity related to momentum, a conception that may
be found, albeit sharpened by the use of modern terminology, in the con-
temporary physics literature [8]. Nevertheless, the requirement that physical
observables be representable by gauge invariant expressions underlies a long-
standing belief that the electromagnetic potentials, though intimately related
to measurable quantities, are not themselves directly observable.5

4 I discuss Maxwell’s designations of electromagnetic fields and potentials more
thoroughly in [7].

5 In general, the vector potential A can be Fourier analyzed and decomposed into
transverse and longitudinal components. The transverse component is invariant
under a gauge transformation and corresponds to a measurable quantity; the
longitudinal component is not invariant under a gauge transformation.
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The theoretical demonstration in 1959 by Y. Aharonov and D. Bohm [9]
(to be designated from this point on as AB) that the diffraction of charged
particles can be influenced by electromagnetic potentials under conditions
where the electromagnetic fields are null opened a new chapter in the study
of quantum interference phenomena and gave rise to controversial issues, both
theoretical and experimental, that to some extent are still debated. One of
the principal questions raised by AB concerned whether or not the vector
and scalar potentials were more fundamental than the electric and magnetic
fields. AB argued that they were. The quantum implications exposed by the
AB paper had actually been revealed some ten years earlier by Ehrenberg
and Siday [10], who were investigating the refractive index of electrons in an
electron microscope. This paper, however, was apparently not widely read,
and it is through AB that physicists came to recognize the extraordinary
consequences of electromagnetic potentials in quantum mechanics.

The basic mathematical relation underlying the AB effect seems to have
been known at least as far back as the early 1930s by P.A.M. Dirac in a cele-
brated study of quantized singularities (magnetic monopoles) [11]. Expressed
more generally to embrace both vector and scalar potentials, it is this. If
Ψ0 is the solution to the quantum equations of motion (e.g., the Dirac or
Schrödinger equation) in the absence of electromagnetic interactions, then
the corresponding wave function Ψ of a charged particle in the presence of
a time-independent vector potential field and a spatially uniform scalar po-
tential field takes the form

Ψ(r, t) = Ψ0(r, t)eiS(r,t) , (1.21)

where the phase S(r, t) is given by

S(r, t) =
q

�c

⎛

⎝
r∫

r0

A·ds −
t∫

t0

cφdt

⎞

⎠ . (1.22)

The integration in the phase is over an arbitary space-time path between some
point of origin (t0, r0) and destination (t, r).

The above result is demonstrable by direct substitution of the wave func-
tion (1.21) into the wave equation

HΨ = i�
∂Ψ

∂t
, (1.23)

where the Hamiltonian H is constructed from the field-free Hamiltonian H0

by replacing the canonical linear momentum p with p− qA/c and adding qφ
to the potential energy. The resulting wave equation is then of the form

H ′Ψ0 = i�
∂Ψ0

∂t
, (1.24)
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where the transformed Hamiltonian

H ′ = U †HU − i�U † ∂U
∂t

(1.25)

reduces to the field-free Hamiltonian H0 when ∂A/∂t and ∇φ both vanish.
It is worth noting that the operator p−qA/c, which corresponds to the ki-

netic linear momentum P (equal tomv for a nonrelativistic classical particle),
gives rise to a gauge-independent expectation value, whereas the expectation
value of p, the dynamical variable entering into the quantum commutation
relation

[r,p] = i�1 , (1.26)

and serving as the generator of spatial translations, is gauge dependent. [In
(1.26), 1 is the unit dyad or second-order tensor.] Although both operators
are Hermitian, P is considered a dynamical observable, but p is not. That the
kinetic and canonical linear momenta are not equivalent in the presence of
electromagnetic potentials is not unique to quantum mechanics, but is known
as well, although is less consequential, in classical mechanics [12].

One type of current configuration that ideally gives rise to a null magnetic
field in a spatial region where the vector potential does not vanish is that of an
infinitely long axial coil or solenoid. Within the solenoid the magnetic field B
is parallel to the symmetry axis with a strength and orientation respectively
determined by the magnitude and sense of the current circulation through the
windings. The magnetic flux Φ within an infinitely long coil of radius R is sim-
ply the product of the field strength and the cross section area πR2. Outside
the solenoid the magnetic field is ideally null. The vector potential, however,
forms cylindrical equipotential surfaces in both regions of space (with a sense
of circulation opposite that of the electron current). In the Coulomb gauge,
i.e., the gauge for which ∇ · A = 0, the tangential (and only) component of
A is a function of the radial coordinate r given by

A(r) =

{
Φ/2πr (r ≥ R) ,
Φr/2πR2 (r ≤ R) .

(1.27)

For any real solenoid, of course, there is a return field in the exterior region,
but the magnitude of this field diminishes with increasing ratio of length to
radius [13]. Besides the ideally infinite solenoid, a toroidal current configura-
tion formed by joining the two ends of a finite solenoid accomplishes the same
task of producing a confined magnetic field (although the expressions for the
resulting vector potential field are not as simple).

Feynman has pointed out the dramatic consequence of the seemingly in-
nocuous relations (1.21) and (1.22) in the context of a two-slit particle inter-
ference experiment [14] with an ideal solenoid placed behind the diffraction
screen and between the slits (the long axis parallel to the slits). The exper-
iment is conceptually simpler than the configuration originally analyzed by
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AB which involved scattering of charged particles directly incident upon the
solenoid. It is the Feynman version of the AB effect (actually first described
in the paper by Ehrenberg and Siday) that has generally found its way into
physics textbooks [15].

Reduced to its essentials, as schematically shown in Fig. 1.5, there are two
types of classically indistinguishable pathways by which an incident particle
can propagate from its source S to the detector D: by going clockwise above
the solenoid (path I) or counterclockwise below the solenoid (path II). It is
assumed that the particles never penetrate the solenoid, and that in the ab-
sence of a current through the solenoid there is complete symmetry above
and below the forward direction of the beam. Since there is a vector potential
(but no scalar potential) in the space accessible to the electrons, the probabil-
ity amplitude for each pathway, when the solenoid interior contains an axial
magnetic field, takes the form of (1.21) with φ equal 0 in the phase (1.22).
Hence the total probability amplitude for a particle to be received at D can
be written as

Ψ(D) =
eiΔ

√
2

[
1 + ei(δ0+δ)

]
, (1.28)

where Δ is an inconsequential global phase, δ0 is the relative phase (dependent
upon optical path length difference) when the magnetic field is zero, and

δ =
q

�c

⎛

⎜
⎝

∫

path I

A·ds −
∫

path II

A·ds

⎞

⎟
⎠ =

q

�c

∮

C

A·ds =
2πΦ
Φ0

(1.29)

Fig. 1.5. Schematic diagram of the two-slit Aharonov–Bohm (AB) effect. A coher-
ently split electron wavefront, issuing from source S, passes to one side or the other
of a region of confined magnetic flux Φ and is recombined at the detector D. The
resulting interference pattern, within an unshifted diffraction envelope, is influenced
by the magnetic field through which the electrons do not pass
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is the relative phase contributed by the confined magnetic field. Φ/Φ0 is the
ratio of magnetic flux through the solenoid to the unit of magnetic flux, or
fluxon, which for an electron is

Φ0 =
hc

e
= 4.14 × 10−7 gauss cm2 . (1.30)

The contour C marking the integral in (1.29) is a closed path between S
and D circumscribing the solenoid in a clockwise sense. If the magnetic field
within the coil is directed into the plane of the paper, then the external vector
potential field circulates in the same sense as the contour C, and the sign of
the magnetic flux is positive. It follows from relations (1.28) and (1.29) that
the probability of receiving a particle at D is

P (D) =
∣∣Ψ(D)

∣∣2 =
1
2

[
1 + cos

(
δ0(D) + 2π

Φ

Φ0

)]
. (1.31)

The physical content of the above relation is that a magnetic field, from
which region the charged particles are totally excluded, can influence the
spatial distribution of the particles. In fact, the influence can be strong. For D
located in the forward direction (δ0 = 0), there is constructive interference and
thus 100% probability of receiving a particle in the absence of the magnetic
field (Φ = 0). However, with a solenoidal magnetic field of such strength that
2πΦ/Φ0 is an integral multiple of π radians, the probability P (D) is zero; the
isolated magnetic field has converted a bright fringe (maximum) into a dark
fringe (minimum) in the resulting interference pattern. What is one to make
of such a phenomenon whereby particles can be apparently displaced from
their ‘intended’ direction without the agency of an external force?

To some, the answer has been that the AB effect does not physically exist,
that it is merely a mathematical self-delusion [16]. Although the details of
the underlying reasoning must be left to the original literature, the core of
the argument, which is not encountered much in discussions of fundamental
quantum physics anymore, concerns the arbitrariness of gauge transforma-
tions. In short, one can find a gauge, the proponents claimed, for which the
vector potential vanishes entirely from the equation of motion which thereby
describes a system in an environment free of any electromagnetic influence.
The argument is fallacious, however, for the proposed transformation removes
not only the vector potential in the space accessible to the particles, but al-
ters the magnetic field in the interior of the solenoid as well. As pointed out
earlier, no gauge transformation is admissible that changes the physical con-
figuration of the electromagnetic fields. Moreover, aside from the theoretical
inconsistency of the argument, there is substantial experimental evidence in
support of the existence of the AB effect.

To others, who accept the experimental confirmations of the predicted
fringe shifts, the answer has been that the AB effect is essentially a con-
sequence of, or is equivalent to, the classical Lorentz force. Feynman, for
example, in his Lectures , described the action of the solenoid as essentially
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equivalent to that of a magnetic strip placed behind the two slits. A magnetic
field, however, would displace the forward beam direction, i.e., the center of
the single-slit diffraction pattern. This is not what should occur in the AB
effect. Analyses of model configurations [17] have shown that, in the absence
of a local magnetic field (i.e., a magnetic field in the space though which the
charged particles propagate), the pattern of interference fringes is displaced
within the enveloping diffraction pattern which is, itself, not affected by the
magnetic field in the excluded region, as illustrated in Fig. 1.5. Were this not
the case, the AB effect would conflict with the Bohr correspondence principle,
which requires quantum mechanics to give results compatible with classical
mechanics in a domain for which both theories are valid. In this regard it is
interesting to note that there is usually more than one way to extract the
classical limit of a quantum calculation – e.g., one can let Planck’s constant h
approach zero, or let some quantum number approach infinity – and the dif-
ferent ways are not always equivalent [18]. The AB effect, as described so far,
occurs with unbound particles; the classical limit is suitably taken by letting
h → 0, in which case the spatial periodicity of the fringe pattern becomes
infinitesimally small and the central diffraction spot undeflected.

To the majority of physicists concerned with this fundamental issue, there
remains the final option of accepting the AB effect for what it appears to be:
a force-free interaction with either a local vector potential field or a nonlo-
cal magnetic field. The issue of a local versus nonlocal interaction is actually
deceptive, for the two points of view are equivalent in representing the AB
effect as an intrinsically nonlocal physical phenomenon. Although it is the
case that charged particles interact directly with the vector potential field at
their instantaneous positions, this local interaction in itself is not sufficient to
produce the AB effect. The allowed paths of the particles must circumscribe
a region of space within which the magnetic field is confined and from which
the particles are excluded. The AB effect, therefore, reflects the global geome-
try (or topology) of the space accessible to the particles. In the simple two-slit
configuration represented in Fig. 1.5, the ambient space has the topology of
a doughnut.

What, in view of the AB effect, is a reasonable posture to take regarding
the fundamentality of electromagnetic fields and potentials? One widely ac-
cepted interpretation (although perhaps not so widely known throughout the
physics community as a whole) has been articulated by Wu and Yang [19],
according to whom a complete description of electromagnetism is provided by
the nonintegrable (i.e., path-dependent) phase factor exp

[
iS(r, t)

]
in (1.21).

It is the phase factor , and not the phase (1.22) alone, that is physically mean-
ingful, because the phase (which manifests the arbitrariness of the potentials)
contains more information than is determinable by measurement. Conversely,
the fields E and B contain less information than is measurable and therefore
provides an incomplete description of electromagnetism when quantum pro-
cesses are taken into account. Note that these are classical fields; the quantum
processes refer here only to matter.
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The experimental confirmation of the AB effect, upon which the post-
Maxwellian interpretation of electrodynamics ultimately rests, has never been
a simple matter, in part because of the extreme difficulty of producing a mag-
netic field with no leakage into the spatial region of the particles. In the ear-
liest AB experiments confined magnetic fields were produced by either tiny
ferromagnetic filaments (or whiskers) or microscopic solenoids. Although the
results were in accord with theoretical predictions derived from the noninte-
grable phase factor, the fact that the ideal conditions of the AB effect had not
been met allowed critics to point to the classical Lorentz force as the causative
agent for any fringe shifts. While a complete survey of AB experiments must
be left to the literature,6 it is relevant to mention here two experiments, one
of the earliest and one of the most definitive, of particular conceptual interest.

In the 1962 experiment of Werner Bayh [21], the AB effect was recorded on
photographic film by a 40 keV electron beam split and recombined by a sys-
tem of three electrostatic biprisms. Between the first and second biprism, at
a location where the extent of separation of the electron beam is greatest,
was inserted a tiny tungsten coil about 5 mm in length and less than 20 μm
in diameter to serve as the AB solenoid. Detailed calculations of the spatial
variation of the coil magnetic field (based on an equation of Buchholz [22])
indicated that for a coil of 20 μm diameter and pitch of 6 μm the radial com-
ponent of the magnetic field in the mid-plane of the coil and at a distance
of 10 μm from the coil windings was weaker than the interior axial field by
a factor of approximately 2 × 10−5. Since the components of the split elec-
tron beam could be separated by 50–60 μm without exceeding the coherence
condition which had to be met for interference to occur, Bayh concluded that
the nonideal effects of the coil should be negligibly small.

The AB phase shift was demonstrated by fastening the film, upon which
the interference pattern was to be recorded, to a small electric motor and
advancing the film at a rate proportional to the rate of increase of current
through the windings of the coil. The film was shielded except for a 0.5 mm
wide slit oriented perpendicular to the interference fringes so that each narrow
horizontal section through the interference pattern corresponded to a well-
defined value of magnetic flux through the solenoid. The resulting interference
pattern, shown in Fig. 1.6, showed the continuous lateral displacement of
the fringes (for a total distance of roughly four times the fringe spacing)
within the enveloping pattern (produced by diffraction around the biprism
filament) which remained unchanged despite the variation in vector potential
and magnetic fields.

What is especially interesting about this experiment is that, as a result
of the time-varying magnetic flux, the fringe shifting may also be accounted
for by an apparently purely classical argument, one based on Faraday’s law
of induction

E(t) = −1
c

∂Φ(t)
∂t

, (1.32)

6 Detailed reviews of AB experiments are provided in [16] and in [20].
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where E(t) is the electromotive force

E(t) =
∮

C

E·ds (1.33)

induced around the solenoid in the exterior region through which the elec-
trons pass. The induced electric field does work on the electrons and thereby
engenders a relative phase

θ =
1
�

∫
eE(t)dt =

e

�c

∫
dΦ = 2π

Φ

Φ0
, (1.34)

which is exactly what one would have expected on the basis of the force-free
AB effect.

The difficulty with this classical interpretation, however, is apparent once
one realizes again that it is not a succession of classical wave fronts, but
rather discrete and uncorrelated electrons that passed through the interfer-
ometer. With an energy of 40 keV, and hence a velocity of ≈ 0.38c, an electron
propagated from source to film – a distance on the order of 1 m – in about
0.01 μs. Although Bayh did not specify the rate at which the current increased
through the solenoid windings, it was undoubtedly over a much longer time
interval. Consequently, the interference pattern was created over a relatively
long period of time by the arrival of a large number of independent electrons,
each one sampling an effectively instantaneous value of the local vector po-
tential field. Neverthless, the fact that the space accessible to the electrons
was not entirely devoid of a force field was a potential source of criticism.

In an effort to avoid such criticism, researchers at the Hitachi Advanced
Research Laboratory produced the AB effect under conditions more closely

Fig. 1.6. Demonstration of the electron wave phase shift in the presence of a vector
potential field (AB effect) in the Bayh experiment. The magnetic field is held con-
stant in the upper and lower third of the figure; in the middle third the variation
in interference fringes follows a linear variation in magnetic field strength. Adapted
from [21]
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duplicating the requirements of an ideal force-free environment than had been
attained previously [23]. As far as I am aware, the Hitachi experiment remains
the definitive test of the AB effect at the time this chapter is being written.
The most important new feature of the Hitachi experiment, which, like earlier
experiments, employed a Möllenstedt biprism to split the beam of an elec-
tron microscope, was the use of a microscopic (≈ 4 μm diameter) toroidal
ferromagnet, in place of a ‘whisker’ or solenoid, as the source of a confined
magnetic field. Ideally, the magnetic field lines circulate within the toroid
about the C∞ symmetry axis (i.e., the axis perpendicular to the plane of the
toroid). However, to guard against possible leakage of the magnetic field, the
toroid was covered completely with a superconductive layer of niobium. When
brought below the critical temperature Tc = 9.2 K, the niobium underwent
a transition to the superconducting state and expelled magnetic flux from its
interior, and therefore into the permalloy toroid, by means of the Meissner
effect.7 An additional layer of (nonsuperconductive) copper further helped
reduce penetration of the 150 keV electrons into the toroid.

In the absence of a magnetic toroid, the split electron beam gives rise
to the standard pattern of parallel fringes in the observation plane. With the
magnet in place (above the biprism), theoretical analysis predicts an AB phase
shift between components of an electron wave packet propagating through the
central hole of the toroid compared with passage around the outer periphery.
When the experiment was performed with an unshielded toroidal magnet, one
could see in the resulting interferogram the continuous displacement of a light
or dark fringe from the exterior region, across the body of the annulus, into
the region of the hole as shown in Fig. 1.7. Of course, without the shielding
layers electrons can penetrate the magnet, and critics could again attribute
phase shifts to classical effects of the Lorentz force.

Fig. 1.7. Observation of the AB effect with an unshielded toroidal ferromagnet.
The fringes in the electron interference pattern, continuous across the outline of the
toroid within which the magnetic field is confined, are uniform, parallel, and shifted
within the zero-field region of the hole. (Courtesy of A. Tonomura, Hitachi ARL)

7 For a discussion of the Meissner effect see, for example, [24].



1.3 Confined Fields and Electron Interference 21

The use of toroids with a superconducting outer layer, however, had an
unanticipated and potentially adverse side effect, namely, that the magnetic
flux trapped within the annulus became quantized in units of one half a fluxon.
This quantization condition

Φ =
nhc

2e
=
nΦ0

2
, (1.35)

where n is an integer, pertains to flux , not fields, and should not be confused
with the quantization of the electromagnetic field – i.e., the description of
electromagnetic waves in terms of photons – which plays no role in the present
system. Rather, the flux quantization condition is a consequence of the fact
that the charge carrier within the superconductor is not a single electron,
but a Cooper pair of electrons, and that the wave function of this pair is
macroscopically coherent around the annulus. As a result of flux quantization
within the toroid, the magnetic phase shift in (1.31) becomes 2πΦ/Φ0 = nπ
and is either 0 (mod 2π) or π (mod 2π) according to whether n is an even or
odd integer. In the first case the AB effect leads to no observable outcome. In
the second case, however, there is a complete fringe reversal from maximum to
minimum between the exterior region and the central hole. Experimentally,
the fabricated toroids used in the Hitachi experiment produced a range of
discrete flux values, both odd and even. The observation of the predicted 180◦

phase reversal shown in Fig. 1.8 provides the strongest evidence I know of that
the spatial distribution of charged particles can be altered by a magnetic field
which the particles never encounter directly.

Fig. 1.8. AB effect experiment performed with a toroidal ferromagnet shielded by an
outer superconducting layer. (a) The fringe reversal between the external rgion and
the region of the hole represents an AB phase shift of 180◦. (b) Photomicrograph
of the toroid. (c) Schematic of cross-section showing external niobium layer and
internal permalloy magnet. (Courtesy of A. Tonomura, Hitachi ARL)
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1.4 ‘No-Slit’ Interference of Single Photons:
Superposition, Probability, and Understanding

Quantum mechanics is a statistical theory of particles and interactions. As
such, it provides a probabilistic description of the outcome of observing many
(in principle, infinitely many) similarly prepared particles or systems of par-
ticles, or, equivalently, many observations of a single system, as, for example,
a trapped ion. Within the mathematical formalism of quantum mechanics,
the seemingly illogical physical effects of self-interfering single-particle wave
packets arise from the radically different rules for treating probabilities, as
compared with the ordinary rules one is taught in a course on probability
and statistics. Why the physical particles of nature must obey such rules (as
countless experiments indicate that they do) may elicit debate, but the rules,
themselves, are self-consistent and, when applied correctly, yield unambigu-
ous, empirically testable outcomes. Within the framework of the quantum
formalism, the results, therefore, are quite logical.

As an example explicitly illustrative of the difference between quantum
and (for want of a better term) classical probability rules, let us consider the
sequential passage of light, one photon at a time, through a polarizer (P1),
birefringent slab (B), and a second polarizer (P2), as shown in Fig. 1.9. The
example is of particular interest because, in contrast to the electron interfer-
ometry experiments discussed in the previous sections, which entailed complex
and exotic apparatus and had never been performed, or even thought of, be-
fore the twentieth century (the electron was discovered only in the late 1890s),
the propagation of light through polarizing materials is a well-understood pro-
cess of classical physical optics (although not when performed one photon at
a time).

Fig. 1.9. Single photons pass through a polarizer, P1 birefringent slab B (with
principal axes along the coordinate axes), and polarizer P2 to reach detector D. The
fraction of incident photons reaching D, as computed by standard probability rules,
differs markedly from the quantum mechanical prediction
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In the context of classical optics, a monochromatic light wave (comprising
a huge number of photons8) passes through polarizer P1, which orients the
electric vector of the transmitted wave at an angle θ to the vertical axis (x
axis in a Cartesian frame where the light propagates along the z axis, and
the y axis is out of the page). I will take the birefringent slab to be oriented
with its principal axes along x and y, whereupon it is well-known that the
proportion of the transmitted light intensity polarized along the x axis is
cos2 θ, and correspondingly sin2 θ for light polarized along the y axis. The
total transmittance sums to 1, as expected, since the slab is presumed to be
transparent.9 From the classical optical rule known as Malus’ Law, one can
also state with certainty that the fractions of x-polarized light and y-polarized
light passing polarizer P2, with a transmission axis oriented at an angle φ to
the vertical, are cos2 φ and sin2 φ, respectively.

If the preceding experiment were performed one photon at a time, we can
ask the question: What is the probability that a photon will pass polarizer P2

if we know with certainty that all photons incident on the birefringent slab
had first passed through polarizer P1? Transcribing the transmittance data
into classical probability statements, we can write:

• P (θ) = 1 = probability that a photon incident on B is polarized along the
transmission axis of P1.

• P (x|θ) = cos2 θ = probability that a photon emerging from B is x-
polarized, given that it was θ-polarized upon entering B.

• P (y|θ) = sin2 θ = probability that a photon emerging from B is y-
polarized, given that it was θ-polarized upon entering B.

• P (φ|x) = cos2 φ = probability that an incident x-polarized photon passes
P2.

• P (φ|y) = sin2 φ = probability that an incident y-polarized photon passes
P2.

The conditional probabilities sum appropriately to unity, as they exhaust all
independent outcomes for the given condition or all conditions for a given
outcome.

From Bayes’ theorem,10 we then deduce:

8 The number of photons per second in a P = 1 mW beam of red HeNe laser light
(λ = 633 nm) is given by: dN/dt = Pλ/hc ≈ 3 × 1013.

9 To keep the example focused on the main point at issue, I am neglecting here
peripheral considerations such as the reflection of light at the incident face and
the spatial separation of the ordinary and extraordinary rays. I discuss the optics
of birefringent media more thoroughly in my earlier book [7].

10 Bayes’ theorem, which follows directly from the standard rules governing proba-
bilities, may be stated as follows. If B1, . . . , Bn is a full set of mutually exclusive
events, then the probability of an event Bk, given the occurrence of an event A, is

P (Bk|A) =
P (A|Bk)P (Bk)

P (A)
=

P (A|Bk)P (Bk)
Pn

i=1 P (A|Bi)P (Bi)
.
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• Probability that an x-polarized photon is incident on P2 is

P (x) = P (x|θ)P (θ) = cos2 θ .

• Probability that a y-polarized photon is incident on P2 is

P (y) = P (y|θ)P (θ) = sin2 θ .

Applying Bayes’ theorem again to determine the probability, P (φ|θ), that
a photon which has passed polarizer P1 will pass polarizer P2, we arrive at
the prediction based on classical probability

Pcl(φ|θ) = P (φ|x)P (x) + P (φ|y)P (y) = cos2 θ cos2 φ+ sin2 θ sin2 φ . (1.36)

Suppose that the transmission axis of P2 is parallel to that of P1, and both
are at 45◦ to the vertical, i.e., φ = θ = π/4. It then follows from (1.36) that
Pcl(φ = θ = π/4) = cos4 θ + sin4 θ = 1/2, which means that 50% of the
photons which have passed P1 are missing, even though the two polarizers are
parallel. The predicted outcome is clearly incorrect.

To deduce the correct probability from the quantum mechanical formal-
ism, we must introduce basis vectors that specify the polarization states of the
photons. We are interested only in the polarization of the light, and can dis-
regard in this section the spatial and temporal variations of a more complete
quantum description. Thus, |x〉 and |y〉 form a complete set of basis states
polarized along x and y, and |e1〉 and |e2〉 and |f1〉 and |f2〉 are likewise two
sets of basis states, where the axes e1 and e2 are oriented at angles θ and
θ + π/2 to the vertical, and the axes f1 and f2 are oriented at angles φ and
φ + π/2 to the vertical. From the completeness relation and quantum rules
for rotating state vectors, the sets of basis states can be expressed in terms of
one another as follows:

|x〉 = |e1〉〈e1|x〉 + |e2〉〈e2|x〉 = |e1〉 cos θ − |e2〉 sin θ ,
|y〉 = |e1〉〈e1|y〉 + |e2〉〈e2|y〉 = |e1〉 sin θ + |e2〉 cos θ ,

(1.37)

|f1〉 = |x〉〈x|f 1〉 + |y〉〈y|f1〉 = |x〉 cosφ+ |y〉 sinφ ,
|f2〉 = |x〉〈x|f 2〉 + |y〉〈y|f2〉 = −|x〉 sinφ+ |y〉 cosφ .

(1.38)

Upon substitution of relations (1.37) into (1.38), we obtain a relation between
polarization states corresponding to the two polarizers

|f1〉 = |e1〉(cos θ cosφ+ sin θ sinφ) + |e2〉(cos θ sinφ− sin θ cosφ)

= |e1〉 cos(θ − φ) − |e2〉 sin(θ − φ) . (1.39)

The probability that a photon polarized by P1 will be transmitted by P2 is
then obtained, according to the rules of quantum mechanics, by projecting
one state on the other,

Pqm(φ|θ) = |〈e1|f1〉|2 = cos2(θ − φ) , (1.40)
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which leads to Pqm(φ|θ) = 100% for a configuration of parallel polarizers,
φ = θ, as has long been known from classical physical optics. The relation
(1.40) depends only on the angle between the two transmission axes, and
not on the orientation of the polarizers relative to the principal axes of the
birefringent slab. Equivalently stated, the final result does not depend on the
polarization of the photons emerging from the slab.

It is worth noting explicitly that the experimental outcome, correctly sum-
marized by (1.40), rather than by (1.36), is no less indicative of a quantum
interference effect than is the electron two-slit experiment, even though the
interference is not manifested as a fringe pattern on a viewing screen. The
interference is evident in the sums of terms in the first line of (1.39), which,
by means of a trigonometric identity, leads to the more compact expression
of (1.40). To refer to this experiment as a ‘no-slit interference of photons’ is
not strictly accurate, for the polarization basis states |x〉 and |y〉 are analogs
of the two slits. However, because these states represent orthogonal polar-
izations, the x and y polarized components of a photon state vector cannot
interfere until projected onto a common axis.

In contrast to the electron interference experiment, where the outcome –
the buildup of an electron fringe pattern, one electron at a time – has surpris-
ing implications, what is surprising about this photon interference experiment
is that the expected outcome should not be surprising to anyone familiar with
classical optics, but becomes surprising and incorrect when analyzed by the
standard rules governing probability.

Much has been made of the ‘incomprehensibility’ of quantum mechanics,
by both scientists and science writers. To the detriment of communicating
a meaningful understanding of epistemological issues raised by quantum me-
chanics, the history of the subject is replete with eminently memorable, but
often nonsensical, aphorisms and images that are all too frequently quoted
out of context or without regard to further conceptual developments. We have
Bohr’s comment that anyone who can think about quantum physics without
getting giddy doesn’t understand the first thing about it. We have the im-
age of Einstein standing by his office window, explaining to a visitor that the
insane asylum across the way houses those madmen who have not thought
about quantum mechanics. We have Feynman telling his students that no one
understands quantum mechanics. We have John Bell’s remark that nobody
knows what quantum mechanics says about any particular situation. And in
one of the most egregiously inappropriate images of all, which pervasively
decorates book covers and conference posters, we have Schrödinger’s cat in
a linear superposition of dead and alive macroscopic states. (Schrödinger, at
least, had the sense to refer to his example as ‘ridiculous’.) With physicists
communicating sentiments like these to one another or to the general public, it
is no wonder that popular exegeses of quantum mechanics may contain much
of what Gell-Mann called ‘quantum flapdoodle’.

The superposition and interference of probability amplitudes, which is,
I believe, the most defining characteristic of quantum mechanics as it is
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presently formulated, does indeed lead to outcomes that stretch the mind’s
capacity to interpret. Nevertheless, it is an abuse of language and inaccurate
representation of the state of physics to suggest at the present time that no
one understands quantum mechanics.

For one thing, if by ‘understanding’ one means seeing the essential reason
behind a successful theoretical description of nature, would it have been any
less true before the development of quantum theory to say that no one un-
derstands classical mechanics? How would one explain the fact that massive
(classical) objects appear to obey Newton’s laws of motion? That ‘F = ma’ is
not regarded as a ‘mystery’ on a par with quantum interference by those who
do not know why it is valid, is due only to the circumstance that familiarity
gives the illusion of understanding. However, it was not until the development
of quantum theory – and, in particular, the path integral formulation by Feyn-
man, which demonstrated most convincingly (in my opinion) the relationship
between quantum phases, classical action, and the variational principle lead-
ing to Newton’s laws – that classical mechanics ceased to be a mystery.

For another thing, if the formalism of quantum mechanics is not applied
appropriately, then the paradoxes that arise likely stem from error and con-
fusion more than from nature’s inscrutable ways. This is especially the case
in the extrapolation of quantum interference effects of elementary particles
or coherent systems of particles to the gross objects of ordinary experience.
What is often forgotten or ignored in taking such artistic license is that not
everything can be ascribed a wave function. Cats, rabbits, chickens, and other
ludicrous examples of fauna and flora, which have been employed in popular
accounts of quantum mysteries, do not have wave functions11 – and, corre-
spondingly, conclusions drawn regarding the superposition and interference of
these functions may be misleading, to say the least. In appropriate quantum
descriptions of macroscopic-sized objects, the coherence parameters that gov-
ern the extent to which the interference of probability amplitudes takes place
are calculable, and the failure to observe a manifestation of such a macroscopic
superposition is readily explicable. That a human being does not diffract upon
walking through a doorway – as an electron beam does when traversing a slit
of width comparable to its transverse coherence length – is no mystery. More-
over, as quantum mechanics is a statistical theory, one human being passing
through a doorway would not, in any event, display wavelike behavior.

And last, much misunderstanding of quantum mechanics resides in the
perpetuation of the term ‘wave function’, which carries the regrettable con-
notation of a mysterious nonobservable, yet physical, wave that somehow
‘guides’ quantum particles to their destinations and dynamically ‘collapses’
when a measurement is made. To regard the wave function in such terms is
analogous to regarding the aether of the nineteenth century as a dynamical
medium. Just as all experimental attempts to reveal the classical aether led to
wilder and weirder attributions of its characteristics, rather than to the simple

11 For an example, see my book review [25].
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recognition it did not exist, so too has the strange behavior of quantum sys-
tems led to fanciful speculations of the role of the wave function. Unlike the
aether, however, the wave function exists mathematically; but it is well to keep
in mind that it signifies a probability amplitude. As such, the wave function is
a construct of the quantum formalism – technically, the projection of a state
vector onto a particular basis state – that gives the probability of a particular
outcome once the conditions of the physical system are well specified.

It is not known why quantum theory so successfully describes the physi-
cal world, in the same sense that we know now why classical mechanics did
within its own domain of validity. Nor is there any evidence, experimental
or theoretical, to suggest that quantum theory is flawed. Nor is there cur-
rently available or on the horizon any comparably successful theory to replace
it. Perhaps one day physicists will again devise a nonstatistical fundamental
theory of particles and their interactions, although I highly doubt it. In the
meantime, quantum mechanics can be understood in much the same way that
classical mechanics was previously understood, i.e., through development of
an intuitive feeling for the outcome of quantum processes based on frequent
and correct application of the quantum formalism.

1.5 Macroscale Objects in Quantum Superpositions

Is it possible for a large object, which Newton’s laws of motion would or-
dinarily describe very well, to manifest a quantum interference of macro-
scopically distinguishable quantum states? The answer to this question, as
discussed briefly in the preceding section, is a qualified ‘No’, the exceptions
being macroscopically coherent systems like a superfluid, superconductor, or
Bose–Einstein condensate. Most large systems do not fit this description. Not
only is there no way to put something like a Volkswagen Beetle or a real beetle
into a coherent linear superposition of macroscopically distinguishable states,
but, even if it were possible, no present or foreseeable experiment could dis-
tinguish the condition from the corresponding incoherent mixture of quantum
states. (I will discuss more thoroughly in a later chapter the differences be-
tween ensembles of mixed states and superposition states.) Nevertheless, it is
instructive to examine this possibility by means of a mathematically tractable
model system.

Consider a system of mass M , which is made up of N particles of mass m.
We are not interested here in any internal interactions between the particles,
but simply consider the entire system a ‘super particle’ which can be found
in either of two quantum states |ψ1〉 or |ψ2〉, representing distinguishable
spatial locations along the x axis. By varying the particle number N from 1
to some very large number, we will be able to see what the ensuing quantum
description leads to for quantum-mechanical scale and classical-mechanical
scale objects.
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The state vector of the system at time t, which describes a linear super-
position of the two states, one (|ψ1〉) centered at the coordinate −L and the
other (|ψ2〉) at coordinate +L, with equal probability, can be written as

|Ψt〉 =

√
N
2

e−iHt/�(|ψ1〉 + |ψ2〉) , (1.41)

where N is a normalization constant to be determined shortly, and H =
P 2/2M is the time-displacement operator (Hamiltonian), representing in the
present case the particle kinetic energy. P is the linear momentum operator
with a complete set of eigenstates |p〉 labeled by the momentum eigenvalue.
The requirement 〈Ψt|Ψt〉 = 1, that the probability of finding the particle some-
where in space be 100%, together with the normalization to unity of the two
basis states, fixes the overall normalization constant

N =
1

1 + Re〈ψ1|ψ2〉 , (1.42)

which reduces to unity if |ψ1〉 and |ψ2〉 are orthogonal states.
In the system under study, the particle is at rest (mean velocity zero), but

interacts with a thermal environment. Thus, the two basis states have a finite
spatial dispersion, and their overlap, as expressed by the scalar product in
(1.42) need not be zero. However, we shall soon consider the case where the
initial width of the basis states is much smaller than their separation. In that
case N is very close to unity and remains so for all time (since the normalization
condition is independent of time).

Projection of (1.41) onto a coordinate basis state 〈x|, insertion of a com-
plete set of momentum projection operators equivalent to the unit operator
1 =

∫ |p〉〈p|dp, substitution of the transformation amplitude

〈x|p〉 =
1√
2π�

eipx/� , (1.43)

and use of the displacement operator relation

〈p|ψ(L)〉 = 〈p|e−ipL|ψ(0)〉 = e−ipL〈p|ψ(0)〉 = e−ipLφ(p) , (1.44)

lead to the wave function

Ψ(x, t) = 〈x|Ψt〉 (1.45)

=

√
N/2√
2π�

[∫
eip(x+L)e−ip2t/2Mφ(p)dp+

∫
eip(x−L)e−ip2t/2Mφ(p)dp

]
.

We assume for this model a real-valued momentum wave function φ(p) which
gives rise to a Gaussian momentum distribution function

|φ(p)|2 =
e−p2/2σ2

p√
2πσp

, (1.46)
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characteristic of an object classically at rest (mean value 〈P 〉 = p = 0),
but whose momentum is distributed about 0 with standard deviation σp as
a consequence of thermal fluctuations. I will elaborate on this point, shortly.
Substitution of (1.46) into (1.45) and evaluation of the integrals result in
a spatial wave function

Ψ(x, t) =

√
N/2σ

√√
2πσp/�

[
e−(x−L)2σ2/2 + e−(x+L)2σ2/2

]
, (1.47)

with

σ2 =
1

�
2

2σ2
p

+
i�t
M

=
2σ2

p/�
2

1 +
2iσ2

pt

�M

, (1.48)

that is a linear superposition of two Gaussian wave packets separated by a dis-
tance 2L. The function σ2, which resembles a variance but is complex-valued,
comprises an initial quantum uncertainty (to be attributable to thermal fluc-
tuations) and a dynamical uncertainty increasing in time.

For comparison with the superposition state, consider first the special case
of the particle initially located at the origin, for which we set L = 0 and
N = 1/2 (because the two basis states are now actually the same state).
Then the spatial probability distribution deduced from (1.47) and (1.48) is
a Gaussian function

P1(x, t) = |Ψ(x, t)|2 =
e−x2/2Δ2

√
2πΔ

, (1.49)

with variance Δ2 given by

1
2Δ2

= Re(σ2) =
2σ2

p/�
2

1 + (2σ2
pt/�M)2

. (1.50)

Thus, a normal momentum probability distribution leads to a normal spatial
probability distribution (because the Fourier transform of a Gaussian function
is a Gaussian function). Equation (1.50) can be re-expressed in the form of
a Heisenberg uncertain relation

(Δ)(σp) =
�

2

⎡

⎣1 +

(
2σ2

pt

�M

)2
⎤

⎦

1/2

, (1.51)

which reduces to the minimum quantum uncertainty �/2 at the initial time
(t = 0).

In the general case of a particle in a superposition state of two spatially
separated Gaussian wave functions, (1.47) leads to a probability distribution
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function P (x, t) that is a sum of two Gaussian functions like (1.49), but cen-
tered at −L and +L respectively, and an interference term

Re(ψ∗
1ψ2) =

(N/2)�|σ|2
√

2πσp

exp

[

−2(x2 + L2)(σ2
p/�

2)
1 + (2σ2

pt/�M)2
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with time-dependent wave number

K(t) ≡ 8Lσ4
pt/�

3M

1 + (2σ2
pt/�M)2

=
8Ltmpk

2
BT

2N2/�3

1 + (2tkBT/�)2N
. (1.53)

Figure 1.10 shows three snapshots in time of P (x, t) starting at t = 0. As
time progresses, the gaussian packets spread, overlap partially and superpose,
and eventually merge, producing a pattern very similar in appearance to the
Young’s two-slit diffraction-interference pattern. Keep in mind, however, that,
in the present case, the particle is not moving around obstacles or through
apertures; it is classically at rest in a superposition state with spatial disper-
sion.

The calculations for Fig. 1.10 were made for a particle of 1 atomic mass unit
(amu), which, for our purposes, is the mass of a proton (mp = 1.67×10−27 kg),
in an environment at room temperature (∼ 300 K). The two basis states com-
prising the superposition state are separated spatially by 10 Bohr radii a0. The
dispersion in internal energy of an object in diathermal contact with a heat
reservoir, under conditions where volume remains constant, can be shown from
thermodynamic fluctuation theory to be given by the expression [26]

Var (E) = σ2
E =

NkBT
2cV

NAv
=⇒ σE ∼

√
NkBT , (1.54)

in which kB is Boltzmann’s constant, T is the absolute temperature, NAv is
Avogadro’s number, and cV is the molar specific heat at constant volume. For
most substances at sufficiently high temperature (e.g., room temperature),
cV ∼ R (to within a numerical factor of order unity), where R = NAvkB is
the universal gas constant; from this relation follows the approximate equiva-
lence to the right of the arrow in (1.54). Assumption that the internal energy
of the particle is exclusively kinetic energy, and use of the statistical properties
of Gaussian functions, lead by the following chain of relations

Var (E) =
Var (P 2)
(2M)2

=
1

(2M)2
(〈P 4〉 − 〈P 2〉2) =

σ4
p

2M2
,

with

〈Pn〉 =
∫
pn|φ(p)|2dp =⇒

{
〈P 2〉 = σ2

p ,

〈P 4〉 = 3σ4
p ,
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to the momentum dispersion parameter

σ2
p = (2M2σ2

E)1/2 ∼ N3/2mpkBT , (1.55)

which is seen to depend on the 3/2 power of the mass number (number of
amu constituting the mass).

Figure 1.10 illustrates that complete superposition of the two Gaussians
to form a diffraction-interference pattern occurs on a time scale of about

Fig. 1.10. Probability distribution of a 1 amu particle at rest described by a coherent
superposition of two Gaussian wave functions initially separated by 2L = 10a0. Time
t (units of 10−13 s) (a) 0, (b) 1, (c) 10. Peak maxima are in the ratio of 1:0.15:0.05.
The dotted line shows the distribution function of an incoherent mixture. Spatial
dispersion is due to interaction with an environment at a temperature of 300 K
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10−13 s after the particle has been prepared in a coherent superposition of
wave packets separated by 10a0, or about 5 atomic diameters. What happens,
however, after a very long time interval has passed? Is the coherence destroyed
and the interference pattern ‘washed out’? The answer is ‘No’. Figure 1.11
shows the isolated interference term at a time of 1 ms, i.e., 10 billion time
units later. The uncertainty in locating the particle has increased enormously,
so that the particle is now located somewhere between −1011 and +1011 Bohr
radii, or over a region of about 10.6 m, but the interference pattern is distinct
with an oscillation periodicity of measurable size. From (1.53) it follows that
the wave number of the oscillatory term

K(t) −→
t→∞ or N→∞

2LmpN

�t
. (1.56)

reduces in either the long-time limit or the large-mass limit to the same quan-
tity in (1.56). The spatial periodicity of the distribution function of a 1 amu
particle at 300 K at a time 1 ms after state preparation can be calculated to
be about 75 cm.

Now consider the system of a macroscale particle of mass 1018 amu (or
about 1.7 nanograms) in a superposition of Gaussian basis states separated
by 2 × 108 Bohr radii (or about 5.3 mm). While this mass may seem rather
small for a macroscopic particle, it will illustrate well enough the foolishness of
discussing quantum interference of cats and chickens! In the limit of very large
mass number N , one can deduce from (1.48) and (1.55) that the prefactor of
the interference term, (1.52), increases as N1/4, the argument of the much
more rapidly decreasing exponential factor grows as N1/2, and the argument
of the oscillatory factor increases linearly with N . Thus, the greater the mass
of the particle, the smaller should be the amplitude of the interference term
and the more rapid should be its spatial variation. Using (1.56), one can
show that the periodicity of the interference term of the 1018 amu particle,

Fig. 1.11. Isolated interference pattern in the probability distribution of the 1 amu
particle described in the last figure: Pint(x, t) = P (x, t)−P1(x−L, t)−P1(x +L, t).
The pattern is shown for a time t = 1 ms after initial preparation. Pmax = 0.507
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observed 1 s after preparation in a superposition of macroscopically separated
basis states, is 3.8×10−23 m, which is approximately four tenths of a trillionth
the diameter of an atom, or twenty billionths the diameter of a proton.

I have seen it asserted in popularizations (. . . ‘sensationalizations’) of quan-
tum physics, whereby some macroscopic object like a cat or a chicken is as-
sumed to be in a coherent superposition of two classically distinct states, that
the interference pattern, however fine, is ‘still there’. This nonsensical conclu-
sion is an outcome of having forgotten what it means physically to produce
and observe a quantum interference pattern. One can no more observe, even in
principle, the oscillatory structure of a quantum interference pattern of wave-
length many powers of ten smaller than an elementary particle, than observe
an acoustic interference of wavelength shorter than the interparticle spacing
of the medium. From (1.56) one can deduce that the periodicity of the inter-
ference pattern becomes comparable to the diameter of an atom after approxi-
mately 1013 s, or 300 000 years – but that is a long time to wait to do a physics
experiment; the system will have become decoherent long before then.

Figure 1.12 shows a series of time snapshots of the probability distribution
function of the 1018 amu particle, comparable to Fig. 1.10 for a 1 amu particle.

Fig. 1.12. Probability distribution function of a 1018 amu particle at rest described
by a coherent superposition of two Gaussian wave functions initially separated by
2L = 2 × 108a0. Time t (ms) (a) 10, (b) 50, (c) 75, (d) 1000. Peak maxima are
in the ratio of 1:0.21:0.20:0.040. Black regions are densely filled by oscillations. The
solid red curve shows the distribution function of an incoherent mixture. Spatial
dispersion is due to interaction with an environment at a temperature of 300 K
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As time passes, the Gaussian wave packets spread, superpose, and give rise
to oscillations so densely distributed that they fill the entire overlap regions
at the scale of the figure. Complete overlap occurs at around 1 s. The solid
red line shows the probability distribution of an incoherent mixture of two
Gaussian packets. Looking at frames (b) and (c) of the figure, one might think
that, periodicity notwithstanding, there is a visual – and therefore detectable
– difference in the particle probability distribution function, depending on
whether the particle is in a coherent superposition state or a mixture. For
example, Fig. 1.12c shows that, at 75 ms after preparation, the mixture gives
rise to a local minimum, whereas the coherent superposition yields a sort
of broad maximum, midway between the positions of the centers of the two
macroscopically separated component states. Aside from the fact that the
maximum probability density of this figure is about 31 million times smaller
than the maximum probability density of the 1 amu particle in Fig. 1.10c,
no physically real experiment would ever be able to observe the (coherent)
pattern in black, but only the (incoherent) pattern in red.

To appreciate fully the grounds for this assertion, one must recall what
such an experiment would entail. The quantum wave function is not a phys-
ical entity comprised of matter or energy; it is a mathematical function that
leads to a probability distribution. The physical system may comprise a single
particle, but the probability distribution is obtained by repeating numerous
times a procedure to detect the location of the particle at a specified instant
(or, more accurately, within a narrow time window), whereby each subsequent
trial is made on a system prepared exactly as in the first trial. Or, equiva-
lently, one can execute a procedure to locate the particle once at the specified
instant in each of a large number of identically prepared systems. Either way,
one must employ a detector to sample a region of finite extent, which here will
be designated R. The detected quantum interference pattern P int(x, t) (i.e.,
the isolated interference corresponding to what is shown in Fig. 1.11) is then
the convolution

P int(x, t) =

∞∫

−∞
Pint(x′, t)FD(x − x′)dx′ (1.57)

of the instantaneous probability density Pint(x, t) with the detector ‘aperture
function’

FD(x) =

{
1/2R (|x| ≤ R) ,
0 (|x| > R) .

(1.58)

Since the probability density in the integrand of (1.57) takes the form [see
(1.52)] Pint(x, t) = P0(x, t) cos

[
K(t)x

]
, in which the first factor varies rel-

atively slowly with x compared to the cosine factor, the evaluation of the
integral to good approximation leads to the expression

P int(x, t) ∼ P0(x, t) cos
[
K(t)x

] sin
[
K(t)R

]

K(t)R
. (1.59)
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For any finite value of R for which KR 1, the third factor in (1.59) becomes
vanishingly small. The physically observable probability density, therefore,
would consist only of the two Gaussian terms like (1.49), and would not be
distinguishable from the probability density of an incoherent mixture. In order
for the interference pattern to be detectable, the size of the detecting aperture
would need to satisfyKR ∼ 1, which would require a detector window a billion
times smaller in size than a proton. No, the interference pattern is not there.

Besides the ultra-small interference wavelength, there is another reason
why the probability distribution of a classical mechanical scale object, even
if it could be prepared in a superposition of quantum states, would almost
certainly be indistinguishable from that of a classical mixture of states. In the
model under discussion, the initial momentum dispersion was ascribed to the
exchange of thermal energy with the environment, yet no account was taken of
the fact that any object at a nonzero absolute temperature will radiate energy.
This process of radiation can reduce the degree of coherence of a superposition
state, as measured by the contrast or visibility of the resulting interference
pattern. Let us examine this point further in the context of the preceding
model, for which the geometry is explicitly shown in Fig. 1.13.

The state of the entire system, now including the radiated photon, is de-
scribed by the entangled state vector

|Ψt〉 =

√
N
2

e−iHt/�
(|ψ1〉|φ1〉 + |ψ2〉|φ2〉

)
, (1.60)

Fig. 1.13. Schematic diagram of a quantum particle, in a superposition state of two
spatially separated Gaussian wave packets, radiating a photon received at point P.
The photon can be emitted from either of the two particle locations. Arrows signify
the vectorial displacement of the detector from the centers of the wave packets and
of the wave packets from one another
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in which the second ket in each term represents the photon state. The state
vector is ‘entangled’ in the sense that it is not factorable into a product of
two vectors, one characterizing the state of the particle, the other the state of
the radiation. The entanglement of state vectors or wave functions, which will
be examined under other circumstances in the next chapter, leads to some
of the most fascinating and counter-intuitive phenomena in quantum physics,
for which there are no classical counterparts. It is worth emphasizing at this
point that, just as there is only one particle, there is only one photon although
it can emerge from two different spatial regions.

Projection of the state vector (1.60) onto a product of coordinate bases
〈x|〈r|, locating the particle (still assumed to be a one-dimensional system)
and photon (which can be radiated isotropically in three dimensions), leads
to the entangled wave function

Ψ(x, t;ω) =

√
N
2
[
ψ1(x, t)eik·r1 + ψ2(x, t)eik·r2

]
e−iωt , (1.61)

where it has been assumed that the photon is described by a plane-wave state
with the familiar dispersion relation k = |k| = ω/c connecting wave number,
wave vector, and frequency. The resulting probability distribution or density
(of finding the particle within a differentially small range centered at location
x and detecting the radiation within a differentially small range centered at
point P ) is then given by

P (x, t;ω) = |Ψ(x, t;ω)|2 =
1
2
[|ψ1(x, t)|2 + |ψ2(x, t)|2 + 2Re

(
ψ1ψ

∗
2e−ik·Δr

)]
,

(1.62)
in which Δr = r2 − r1 and k·Δr = k(2L) cos θ. Only the interference term
in relation (1.62),

Pint(x, t;ω) = |ψ1ψ
∗
2 | cos

(
φ− 2ωL

c
cos θ

)
, (1.63)

differs from what we have calculated previously in Eq. (1.52), which could be
cast into the form of (1.63) without the term containing the radiation angular
frequency ω. The quantum phase φ is the same in both cases.

Since we are interested primarily in the probability distribution of the
particle, and not of the radiation, it is necessary to average the preceding
probability density over all the directions into which the photon can be emitted
and over all the radiation frequencies:

Pint(x, t) = 〈Pint(x, t;ω)〉ω (1.64)

= |ψ1ψ
∗
2 |

1
I

∞∫

0

π∫

0

cos
(
φ− 2ωL

c
cos θ

)
·

e−�ω/kBT 2ω2

(2πc)3
2π sin θdθdω .
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The normalising integral is

I =

∞∫

0

π∫

0

e−�ω/kBT 8πω2dω
(2πc)3

=
2
π2

(
kBT

�c

)3

. (1.65)

The factors in (1.64) can be understood as follows. First is the Boltzmann fac-
tor exp(−�ω/kBT ) which gives the probability (relative to the ground state)
that the particle is in an excited state and therefore can radiate. The statis-
tical factor 2ω2/(2πc)3 is the radiation mode density, i.e., number of modes
per volume per frequency within a differential range centered at ω. There is
a factor 2 in the numerator to account for two polarization modes at each fre-
quency. The factor 2π in the product of differentials is the integrated photon
azimuthal angle. Evaluation of the two integrals in (1.64) is straightforward
after a standard variable change ζ = cos θ and recognition of the gamma
function Γ (x) =

∫∞
0
ux−1e−udu, and leads to the result

P
(1)
int (x, t) =

|ψ1ψ
∗
2 | cosφ

(1 + α2)2
= (1 + α2)−2P

(0)
int (x, t) , (1.66)

with
α =

2kBTL
�c

≡ 2L
Λ
. (1.67)

The superscripts (1) and (0) in (1.66) show explicitly that the corresponding
probability density involves the emission of 1 or 0 photons, respectively.

Equation (1.66) shows that the size of the interference term, upon which
the contrast or visibility of an interference pattern depends, is reduced in the
case of thermal emission by a factor that depends on the parameter α defined
in relation (1.67). There is a straightforward interpretation to this outcome.
The quantity kBT/� defines an angular frequency Ω, and therefore a wave-
length Λ = 2πc/Ω, which may be thought of as a characteristic wavelength
of the radiation emitted by a particle at temperature T . If Λ is much smaller
than the spatial separation of the component states in the superposition, i.e.,
if Λ� 2L, (or α 1), then it would be possible to determine fairly precisely
from where the particle emitted a photon. Because the location of an object
can be tracked by means of the radiation it emits, once it becomes possi-
ble through any means whatever to determine where the object is located,
there must have occurred a concomitant loss in the visibility of the associated
quantum interference pattern. Otherwise, it would be possible to perform ex-
periments that would violate the uncertainty principle. This is substantiated
by (1.67); a large value of α leads to a vanishing P (1)

int (x, t). Conversely, when
Λ  2L, and one cannot tell from which location the photon was emitted,
then α � 1, and P (1)

int (x, t) is hardly changed from P
(0)
int (x, t). Figure 1.14

shows a plot of the relative contrast as a function of α.
The loss in coherence (or decoherence) increases in proportion to the tem-

perature of the emitter and the spatial extent of the coherent superposition
state. Thus, to use the examples we began with of a 1 amu particle with
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Fig. 1.14. Plot of the relative visibility V (α)/V (0) = (1 + α2)−2 as a function of
the parameter α = 2kBTL/�c

approximate coherence length of 5 Bohr radii and a 1018 amu particle with
approximate coherence length of 108 Bohr radii, we find that at room tem-
perature (300 K), the respective decoherence parameters α are 6.96 × 10−5

and 1.39× 103, leading to interference contrasts of 1.00 and 2.66× 10−13. To
prevent the decoherence of a ‘Schrödinger chicken’ (2L ∼ 1 m), one would
have to deep-freeze it at a temperature of about 10−4 K.

The occurrence of decoherence is not merely a theoretical proposition, but
has been demonstrated in the laboratory [27] by means of a two-slit inter-
ference experiment employing a beam of large molecules C70 of the fullerene
class, i.e., molecules consisting purely of carbon atoms bonded to form closed
ball-like structures. A C70 molecule made up of 12C atoms has a mass of
840 amu, which is an impressive size for a quantum particle, but neverthe-
less a very long way from a macroscale one. When the temperature of the
molecules, heated by absorption of light from an argon ion laser, was below
1000 K, the molecules exhibited perfect quantum interference upon passing
through a free-standing gold diffraction grating with grating periodicity of
991 nm. The contrast in the interference pattern diminished as the tempera-
ture was raised, and was entirely lost by 3000 K.

1.6 Quantum Mechanics and Relativity:
The ‘Wrong-Choice’ Experiment

Under circumstances such that the path of a particle through an interfer-
ometer cannot be determined, the collective outcome of numerous detections
exhibits a quantum interference indicative of wavelike behavior. By contrast, if
by some means the path through the interferometer can be determined (even if
such a determination is not made), the outcome exhibits no quantum interfer-
ence. In the early 1980s John Wheeler described a hypothetical modification
of the one-particle-at-a-time split-beam experiment in which the decision by
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the experimenter to configure the interferometer so as to observe an interfer-
ence pattern or not is made after the particle has entered the interferometer,
i.e., after its wave function is in a superposition state-but before the particle
is detected [28]. Actually, to heighten the dramatic impact of the proposal
(and possibly also because of contemporary instrumental limitations in re-
alizing an actual table-top experiment), Wheeler framed his ‘delayed choice’
thought-experiment on a cosmological scale.

Imagine a distant quasar from which an emitted photon on its way to
Earth can take a path to one side or the other of a foreground galaxy which,
by gravitational lensing, directs a photon along the first path to detector D1
and a photon along the second path to detector D2. A fiber optic delay line
of adjustable length inserted before one of the detectors allows data to be
collected as a function of the optical path length difference or, equivalently,
the relative phase Φ between waves along the two paths. Examination of the
results of a large number of counts should show that photons arrive randomly
at the detectors one at a time in approximately equal numbers irrespective
of the difference in optical path lengths. However, the insertion of a half-
silvered mirror at the junction of the two paths before the detectors turns the
configuration into a Mach–Zehnder interferometer, as illustrated schematically
in Fig. 1.15. The counts at the two detectors plotted as a function of Φ should
then produce an oscillatory pattern with one detector registering maximum
counts when the other detector ideally registers zero counts. (I analyze various
quantum interference experiments with a Mach–Zehnder interferometer in
Chap. 3.)

Although the outcomes described above are straightforward and expected,
Wheeler’s original narrative highlighted the unusual feature of delayed choice
which cast a new light on the apparent oddness of quantum mechanics. In
Wheeler’s words:

Fig. 1.15. Schematic diagram of a delayed-choice experiment. The wave function
of an incoming single photon is split at beam splitter BSin into components corres-
ponding to path 1 and path 2. If there is no output beam splitter BSout, then
a photon ‘taking’ path 1 is registered by detector D1 and a photon ‘taking’ path 2
is registered by detector D2. If BSout is present, the configuration becomes a Mach–
Zehnder interferometer with D1 and D2 sensitive to the relative phase corresponding
to the difference in optical path lengths. The choice of whether or not to include
BSout is made after the photon has passed BSin
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We get up in the morning and spend the day in meditation whether
to observe by ‘which route’ or to observe interference between ‘both
routes’. When night comes [. . .] we leave the half-silvered mirror out
or put it in, according to our choice. [. . .] We may have to wait an hour
for the first photon. When it triggers a counter, we discover ‘by which
route’ it came with the one arrangement; or by the other, what the
relative phase is of the waves associated with the passage of the photon
from source to receptor ’by both routes’ – perhaps 50 000 light years
apart as they pass the lensing galaxy [. . .] But the photon has already
passed that galaxy billions of years before we made our decision.

The strange conclusion Wheeler drew from this imagined experiment has sub-
sequently influenced a number of physicists either to suspect or to proclaim
that quantum mechanics somehow violates the special theory of relativity.
Again in Wheeler’s words:

[. . .] we are dealing with an elementary act of creation. It reaches into
the present from billions of years in the past. It is wrong to think
of that past as ‘already existing’ in all detail. The ‘past’ is theory.
The past has no existence except as it is recorded in the present. By
deciding what questions our quantum registering equipment shall put
in the present we have an undeniable choice in what we have the right
to say about the past.

If the quantum behavior of particles should actually lead to the conclusion
that the present determines the past, rather than the reverse, then it would
certainly appear that quantum mechanics and relativity are in conflict. Be
assured, however, that this is not the case. To infer an inconsistency from
the Wheeler delayed-choice experiment is an error of thinking attributable to
incorrect interpretation of the significance of quantum amplitudes.

Before addressing this issue, however, I must comment on what seems
to me a seriously misleading assertion in the above excerpts. Whereas the
‘click’ engendered by the detection of that long-awaited first photon in the
configuration without the second beam splitter could very well inform us of
which path the photon had taken (if we are careful to eliminate ‘dark counts’
by cooling our detectors to a temperature close to 0 K), we certainly will not
‘discover’ what the relative phase is by the registration of that one photon
in the Mach–Zehnder configuration. For one thing, according to Wheeler’s
description of his thought experiment, we already know what the relative
phase will be because we have adjusted the length of the delay line. More to
the point, however, is to recognize that in general the determination of relative
phase requires numerous detection events, as demonstrated dramatically with
the build-up of an electron interference pattern in the experiment I proposed
to the Hitachi electron microscopy group. The registration of one electron or
one photon in a split-beam experiment conveys no information about phase.
Indeed there is a kind of uncertainty relation between particle number and
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phase.12 The lesson here is significant: quantum mechanics is an irreducibly
statistical theory.

Various attempts to implement the delayed-choice experiment in the lab-
oratory have been made since Wheeler’s original proposal. Surprisingly, the
claim to having achieved for the first time a relativistic spacelike separation
between the entry of single photons into the interferometer and the choice be-
tween open and closed interferometer configurations was reported only shortly
before this book was completed in 2007 [30]. Figure 1.15 depicts the experi-
mental configuration. Single-photon pulses, obtained from photoluminescence
of a single nitrogen-vacancy color center in a diamond nanocrystal, were di-
rected by input beam splitter BSin into path 1 or path 2 with orthogonal
linear polarizations. The output beam splitter BSout comprised in part an
electro-optic modulator (EOM) which, when unexcited, allowed the orthog-
onally polarized photons to pass so that photons of one polarization were
received by detector D1 and photons of the other polarization were received
by detector D2. Thus, path identification was possible, and the configuration
corresponded to the absence of the half-silvered mirror. Upon application of
a voltage, the EOM became equivalent to a half-wave plate that rotated the
input polarizations by 45◦, whereupon amplitudes along the two paths could
superpose and interfere, corresponding to the presence of a half-silvered mir-
ror. In the 40 ns time interval to switch the EOM between states, a light signal
could propagate about 12 m, whereas the path length through the interfer-
ometer was 48 m.

In implementing the delayed-choice protocol for each incoming photon,
the decision of whether to excite the EOM or not was made after the photon
passed BSin by a binary quantum random number generator. For each photon
passing BSin, the experimenters recorded the configuration choice (‘which
route’ or ‘both routes’), the detection outcome (D1 or D2), and the position of
a piezoelectric actuator in BSout which determined the phase shift Φ between
the two arms of the interferometer. Figure 1.16 illustrates the results which,
as stated earlier, are precisely in accord with the predictions of quantum
mechanics. Like Wheeler however, the authors remark upon this agreement
“even in surprising situations where a tension with relativity seems to appear”.

Is there any ‘tension’ with special relativity? No, none that I know of from
any quantum mechanical experiment. Indeed, no experimental implementa-
tion of Wheeler’s version of delayed choice, however ingeniously devised and
carefully executed, can ever show the kind of inconsistency between relativity
and quantum physics, i.e., the ‘present’ determines the ‘past’, that has caused

12 In contrast to the uncertainty relation between particle coordinate and linear
momentum, the widely used uncertainty relation between particle number and
relative phase does not derive from quantum commutation conditions because
there is no operator rigorously corresponding to phase. Nevertheless, there are
various ways to express the experimental fact that a single interferometer config-
uration cannot reveal both the exact number of particles and the relative phase
of the divided particle wave function. See, for example, [29].
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Fig. 1.16. Experimental outcome of the delayed-choice experiment of Jacques et
al. [30]. Blue (red) points correspond to detections at D1 (D2) minus dark counts

some physicists anxiety. Why? Because Wheeler’s delayed choice is the wrong
choice.

Quantum mechanical amplitudes (which is perhaps better terminology
than waves or wave functions) do not represent parcels of matter or energy.
They represent information or states of knowledge about a physical system.
Failure to understand this point has often given rise to problematic circum-
stances which some physicists then try to resolve when, in fact, there is no
problem to begin with. The ‘collapse of the wave function’ is one such case
whereby the conclusion of a measurement creates a discontinuous event be-
cause the outcome provides new information which changes the quantum de-
scription of a system and the probabilities of subsequent events. Yet to search
for a physical mechanism of the ‘collapse’ is tantamount, in my opinion, to
searching for some unknown physical force ‘causing’ the Lorentz contraction
or time dilatation, rather than realizing, as nearly all physicists now do, that
these are intrinsic to the process of making and comparing measurements.

In the delayed-choice configuration depicted in Fig. 1.15, quantum am-
plitudes for propagation along path 1 or path 2 are created at the moment
photons encounter the first beam splitter. That act of creation is the one rel-
evant ‘reality’ of the past, and whatever choices are made subsequently take
place at a later time. Nothing the experimenter decides to do can alter the
past or what can be said about the past. If, subsequent to the entry of the
photon into the interferometer, the experimenter decides to insert the second
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beam splitter, then the two already extant coherent amplitudes are ‘available’
for superposition and interference. If the experimenter decides not to insert
the second beam splitter, then the amplitudes are not superposed in the calcu-
lation of detection probabilities. In no case is there a tension with, or violation
of, special relativity because neither choice of what to do with beam splitter
BSout influences the fact that the photon wave function was split earlier at
BSin.

The situation calls to mind (as an analogy, not an equivalence) a dramatic
classroom demonstration of Faraday’s law of induction. One has a conducting
ring containing a small incandescent bulb and a long iron rod whose base
is inserted into a solenoid carrying alternating current. The ring itself is not
connected by any wires to a source of energy, yet the incandescent bulb glows
brightly as the ring is lowered over the rod. We infer from this that the os-
cillating magnetic flux within the iron core gives rise to an electric field of
cylindrical symmetry centered on the bar, and that this electric field drives
a current within the ring. If the ring were made of plastic or some other non-
conducting material, the bulb would not light, but no physicist would conclude
that the induced electric field was not present. The glowing of the light merely
makes the presence of the induced electric field manifest. In a heuristically
similar way, the presence of the second beam splitter makes the presence of
coherent quantum amplitudes manifest through quantum superposition and
interference – but removal of that beam splitter with resulting absence of
interference does not imply that the amplitudes do not exist.

To look for an inconsistency between special relativity and quantum me-
chanics by means of a delayed-choice experiment, it is the first beam splitter
BSin, not the second beam splitter BSout, that one must choose to remove or
insert. If BSin is present when the photon (or other kind of particle) arrives,
then amplitudes are created for a nonvanishing probability of propagation
along path 1 or path 2, and the presence of BSout can manifest quantum
interference. If BSin is not present when the photon arrives, but is inserted
after the photon passes this location but before reaching BSout, there can be
only a single quantum amplitude, and therefore no manifestation of quan-
tum interference is expected. Should the post-passage insertion of BSin lead
to quantum interference (i.e., phase-dependent detection probabilities) in the
registrations of D1 and D2, one could legitimately proclaim a conflict with
relativity.

Personally, I am not worried about the outcome.



2

Correlations and Entanglements I:
Fluctuations of Light and Particles

2.1 Ghostly Correlations of Entangled States

In a 1935 paper [31] that has since become a classic in the literature regard-
ing conceptual implications of quantum mechanics, Einstein and his colleagues
Boris Podolsky and Nathan Rosen (to be designated EPR) raised in one of
its starkest forms the issue of nonlocality – that is, the occurrence of interac-
tions instantaneously at a distance in violation of physicists’ intuitive sense of
cause and effect as embodied in the principles of special relativity. Actually,
Einstein’s primary focus of concern was the completeness of quantum mechan-
ics as a self-consistent theory of individual particles (as opposed to a purely
statistical theory of ensembles of particles), but the Gedankenexperiment pro-
posed by EPR illustrated what many physicists throughout the ensuing years
have considered to be one of the strangest features of quantum mechanics.

In its barest essentials, the EPR experiment concerns the correlation of
coordinates and momenta of two particles that have interacted at some time
in the past and then separated to such an extent that for all practical purposes
(from the perspective of classical physics) they would appear to be distinctly
independent systems at the time a measurement was to be performed on them.
Although it is not possible to measure both the position and momentum of
each particle simultaneously – to do so would violate the uncertainty principle
– one could in principle, according to EPR, measure one of these variables for
one particle of the pair and, without in any way disturbing the state of the
second particle, deduce the corresponding variable with 100% certainty. How-
ever, since the choice of whether to measure coordinate or momentum is a
decision to be made by the experimenter-and this decision can even be made
after the two particles have separated-the remote unprobed particle can not
‘know’ which measurement was made on the examined particle. A different
experimental configuration is required to measure position than to measure
momentum, and, depending upon which configuration is employed, the un-
probed particle would be expected to manifest sharp values of either one or
the other – but not both – of two canonically conjugate variables. Can the fact
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that a measurement was made on one particle be transmitted instantaneously
to the other? If not, then do the particles have well-defined positions and
momenta even though both properties are not simultaneously measurable?
This enigma of completeness versus locality constitutes in part what has been
termed the EPR paradox.

The quantitative features of the one-dimensional model system analyzed
by EPR can be summarized briefly in the following way (as first shown by
Niels Bohr). From the momenta (p1, p2) and coordinates (q1, q2) of the two
separated particles, which satisfy the usual quantum commutation conditions
(with i, j = 1, 2)

[qi, qj ] = 0 , [pi, pj ] = 0 , (2.1)

[qi, pj ] = i�δij , (2.2)

one can define new pairs of conjugate variables (Q1, P1) and (Q2, P2) by means
of a rotational transformation with parameter θ, viz.,

(
Q1

Q2

)
=
(

cos θ sin θ
− sin θ cos θ

)(
q1
q2

)
, (2.3)

(
P1

P2

)
=
(

cos θ sin θ
− sin θ cos θ

)(
p1
p2

)
. (2.4)

The transformed variables satisfy commutation rules identical in form to (2.1)
and (2.2). Although it is not possible to assign definite numerical values to
both Q1 and P1 (since they do not commute), one could, however, prepare
the two-particle system in a state such that Q1 and P2 (which do commute)
have known, sharp values. Then, since

Q1 = q1 cos θ + q2 sin θ , P2 = −p1 sin θ + p2 cos θ , (2.5)

a measurement of either q1 or p1 will allow one to predict respectively the
corresponding quantity q2 or p2.

Although admittedly arbitrary, EPR adopted as a reasonable definition
of reality the criterion that: “If, without in any way disturbing a system, we
can predict with certainty (i.e., with probability equal to unity) the value
of a physical quantity, then there exists an element of physical reality corre-
sponding to this physical quantity.” By this criterion, then, the coordinate and
momentum of particle 2 must be real – since it can be predicted with certainty
by measurements made on distant particle 1. Yet, according to quantum me-
chanics, a complete description of the system does not permit simultaneous
knowledge of the coordinate and momentum of a particle. Thus, quantum me-
chanics is incomplete, or the properties of a particle have no physical reality
until measured, an implication unacceptable to any theory that purports to
make objective sense of the world according to EPR.

Published replies to the EPR paper followed quickly from Bohr [32] and
many others. In fact, as soon as the EPR paper was published, Einstein per-
sonally received a large number of letters from physicists pointing out to him
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where the argument failed. He found it considerably amusing that “while all
the scientists were quite positive that the argument was wrong, they all gave
different reasons for their belief!” [33]. In the ensuing years to the present time,
entire conferences devoted to the conceptual foundations of quantum theory
testify still to the undiminished fascination that many physicists and laymen
alike have with the issues raised by EPR. Numerous experimental tests of the
EPR correlations have since been performed, although not by measuring the
position and momentum of massive particles, but rather the polarization of
correlated photons.1

Because entanglement of photon polarizations provides an instructive sys-
tem for investigating the counter-intuitive nature of quantum correlations, it
is worth examining this consequences in some detail. Moreover, the model to
be discussed here prepares the groundwork for examining the phenomenon
of correlated quantum beats in chapter 4. Consider a process (such as para-
metric down-conversion by a nonlinear optical crystal) which gives rise at the
origin of the z axis to pairs of momentum- and polarization-correlated pho-
tons of angular frequencies ωα and ωβ in a rotationally symmetric state (i.e.,
symmetric with respect to rotation of the polarization basis vectors about
the propagation axis) (see Fig. 2.1). The correlations are such that, if photon
α, propagating to the left along the z axis, is observed to be in one of two
orthogonal polarization states x or y (representing vertical or horizontal lin-
ear polarization, respectively), then photon β, propagating to the right along
the z axis, will be observed to be in the same polarization state (x or y) as
α. Whether photon α goes to the left or right is entirely random, but the

Fig. 2.1. Schematic diagram of a counter-propagating entangled pair of photons
emitted from source S and received at detectors D1 and D2. The transmission axes
of polarizers 1 and 2 are represented, respectively, by unit vectors e1 and e2. The
polarizations eα, eβ of the two photons are randomly oriented from emission to
emission, but correlated with one another

1 See, for example, the comprehensive technical discussion by Clauser and Shimony
[34] and the popular articles by d’Espagnat [35], Heppenheimer [36], Shimony [37],
and Ghirardi [38].
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correlation is 100% that photon β propagates in the opposite direction with
the same polarization as α. The state vector describing such a state can be
written in the form

|Ψ〉 =
1√
2

(|x1x2〉 + |y1y2〉
)
, (2.6)

where

|x1x2〉 =
1√
2

[
|xα〉|xβ〉ei(φα,1+φβ,2) + |xβ〉|xα〉ei(φβ,1+φα,2)

]
, (2.7)

with corresponding definition for |y1y2〉. The subscript 1 or 2 in the two-
photon ket respectively designates the left-going or right-going photon. Like-
wise, in the product of two single-photon kets in (2.7), the first ket represents
the left-going photon and the second ket the right-going photon. The single-
photon polarization basis states are represented by orthonormalized kets:

〈x|x〉 = 〈y|y〉 = 1 , 〈x|y〉 = 〈y|x〉 = 0 . (2.8)

For simplicity, I have assumed the space-time dependence of plane waves with
phases of the form

φμ,i = ωμ

(
ti − zi

c

)
, μ = α, β , i = 1, 2 , (2.9)

but the significant attributes of entanglement that follow do not require this
assumption. The symmetric form of (2.7) takes account of the fact that pho-
tons are bosons; therefore, under particle exchange, the photon state vector
does not change sign.

The state vector of (2.6) represents a pure state; the density matrix (or
density operator) of the system

ρ = |Ψ〉〈Ψ | (2.10)

=
1
2

(
|x1x2〉〈x1x2| + |x1x2〉〈y1y2| + |y1y2〉〈x1x2| + |y1y2〉〈y1y2|

)

satisfies the condition of being an idempotent operator

ρ = ρ2 , (2.11)

as well as the condition for conservation of probability

Tr(ρ) = 1 . (2.12)

Tr symbolizes the operation of taking a trace, i.e., summing the diagonal
elements, of a matrix. One must not misinterpret the state vector (2.6) to
represent a system containing vertically and horizontally polarized pairs of
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photons – or, in other words, a statistical mixture of states of different, but
well-defined, polarizations. A mixture of this kind can not be represented by
a state vector, but by a density matrix of the form

ρmix =
1
2

(
|x1x2〉〈x1x2| + |y1y2〉〈y1y2|

)
, (2.13)

which is not idempotent and which leads to significantly different physical
properties than the pure-state density matrix (2.10).

We can now ask the question: What is the probability that photon 1 (i.e.,
the photon propagating to the left) passes a polarizing filter with transmission
axis at an angle θ1 to the vertical (represented by unit polarization vector e1)
and photon 2 (propagating to the right) passes a polarizing filter with trans-
mission axis at angle θ2 to the vertical (represented by unit polarization vec-
tor e2)? In order not to complicate the discussion unnecessarily, let us assume
the polarizers and detectors are 100% efficient, and there are no reflective
losses or other processes irrelevant to the issue of entanglement. The filtering
action of the two polarizers is formally represented by projection operators
P1 = |e1〉〈e1| and P2 = |e2〉〈e2| upon which the density matrix is projected
and traced as follows:

P12(θ1, θ2) = Tr(P1ρP2) = cos2(θ1 − θ2) cos2
[
1
2
ωαβ

(
Δt− Δz

c

)]
, (2.14)

where ωαβ = ωα−ωβ, and Δt = t1−t2 and Δz = z1−z2 mark the difference in
propagation time and detector separation. The angular dependence of (2.14) is
ultimately a consequence of the scalar products: 〈ei|x〉 = cos θi and 〈ei|y〉 =
sin θi for i = 1, 2. (The effect of spectral width on the correlation function
(2.14) is examined in Appendix 2A.)

If, for the moment, we dispense with the space-time dependence of the
signal by assuming that photons 1 and 2 have identical frequencies, then (2.14)
tells us that the detection probability depends only on the difference in angular
orientation of the two polarizers and not on their individual orientations. Thus,
if photon 1 is x-polarized, then the probability is 100% that photon 2 is also
x-polarized, in accordance with the polarization correlation initially ‘built in’
to the state vector; likewise for a left-detected photon with y-polarization.
As just described, the formal outcome (2.14) is a direct consequence of the
symmetry (particle-exchange and rotational) of the state vector and may not
seem too surprising, but the phenomenological properties of the entangled
state raise some subtle issues when looked at more closely, particularly from
the perspective of the individual observers at each detector.

It is to be borne in mind that the light source is periodically emitting
pairs of counter-propagating photons, not classical waves which comprise large
numbers of photons. A single photon either passes a polarizing filter or it
does not pass; one never observes a fraction of a photon. The probability
that observer 1 detects a photon, irrespective of what observer 2 may find,
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is obtained by summing relation (2.14) over all possible orientations of the
polarizer for photon 2:

P1(θ1) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
2π

2π∫

0

P12(θ1, θ2)dθ2 =
1
2
,

or
1
2

[
P12(θ1, θ2 = 0) + P12(θ1, θ2 = π/2)

]
=

1
2
,

(2.15)

with an identical result for the probability P2(θ2). Thus, from the perspective
of each observer, the regular arrival of single photons generates a random bi-
nary sequence of transmissions (50%) and absorptions (50%) like the outcomes
(H, T) of tossing a fair coin. Each observer may be inclined to believe he is
receiving photons from an unpolarized source. However, if the two observers
subsequently compare their detection sequences, they will find, for parallel
transmission axes of the two polarizers, the sequences to be identical

Observer 1: H H T T T H . . . ,
Observer 2: H H T T T H . . . ,

or, completely opposite

Observer 1: H H T T T H . . . ,
Observer 2: T T H H H T . . . ,

for the two transmission axes perpendicular to one another.
Although the state vector in (2.6) was written in terms of vertical and

horizontal polarization states, it could well have been written in terms of
any two orthogonally polarized basis states. This, in fact, is what is meant
by referring to the entangled state as rotationally symmetric. A rotational
transformation of the basis states from (x,y) to (ea, eb) with ea ⊥ eb leads
to the same probability correlation given by (2.14). This property markedly
distinguishes the system of photons with entangled polarization states from
a system comprising an equal mixture of vertically and horizontally polarized
photons, as described by the density matrix of (2.13). In the latter case, the
correlation function corresponding to (2.14) becomes

Pmix
12 (θ1, θ2) = Tr(P1ρmixP2) =

1
2

(
cos2 θ1 cos2 θ2 + sin2 θ1 sin2 θ2

)
, (2.16)

and depends on the individual angular settings of the two polarizers. (2.16) is
not rotationally invariant. Furthermore, the absence of a space-time dependent
function in (2.16) is not a consequence of assuming for the sake of simplicity
that the frequencies of photons 1 and 2 are identical; rather there occurs in
the analysis leading to (2.16) a sum of the ‘squares’ (i.e., absolute magnitude
squared), and not a ‘square’ of the sum, of plane-wave phase factors, with
the result that the space-time dependence vanishes from the expression for
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probability. As an illustration of the different predictions made by (2.14) and
(2.16), consider the polarizer settings and results shown in Table 2.1.

To some physicists, the preceding experimental configuration with entan-
gled photons leads to philosophical difficulties analogous to those raised in
the EPR paradox. The kernel of the problem goes something like this: Prior
to determining whether a photon, let us say photon 1, passes a polarizer, we
cannot think of the photons in a correlated pair as possessing the attribute
of polarization, since the state vector in (2.6) can give rise to photons of any
polarization; there is no orientation of polarizer 1 or polarizer 2 for which
100% of the incident single photons pass. The photons of the pair, however,
are correlated. Thus, should an observation reveal photon 1 to be vertically
polarized, then we know with 100% certainty that photon 2 will also be found
to be vertically polarized when it is detected. Some physicists argue, therefore,
that the state vector of the system has instantaneously ‘collapsed’ or ‘reduced’
to the form |Ψ ′〉 = |x1x2〉/

√
2, in which case now the two photons do pos-

sess the attribute of vertical polarization. Moreover, the reduction to a form
|Ψ ′〉 = |e1e2〉/

√
2 occurs whenever the first-observed photon is found to have

a polarization e. [Note: the orientation of the polarization vector is specified
by e, not by e1 (or e2); the numerals 1 and 2 signify respectively the direction
of propagation as left and right.] Since the two photons of a correlated pair
can be arbitrarily far apart when the first one is observed, a measurement on
one photon appears to have instantaneously affected the outcome of a mea-
surement to be performed on the second, in violation of our sense of propriety
that physical systems should be influenced only by local interactions. Hence
the alleged paradox:

• either photon 2 (and therefore photon 1) had from the outset the polar-
ization it revealed upon measurement, in which case quantum mechanics
is an incomplete theory because it does not permit this polarization to be
predicted prior to the detection of photon 1;

• or else the polarization of photon 2 was engendered by an instantaneous
action at a distance, in conflict with our sense of causality, if not specifically
with the special theory of special relativity.

Table 2.1. Joint detection probabilities of entangled and mixed states

Joint probability P12

Polarizer 1 Polarizer 2 Entangled Mixed states
θ1 θ2 states

0 0 1.00 0.50
π/2 π/2 1.00 0.50
0 π/2 0.00 0.00
π/2 0 0.00 0.00
π/4 π/4 1.00 0.25
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Frankly, I believe that the preceding perspective, embracing notions like the
collapse of a state vector and instantaneous action at a distance, is not a satis-
factory way to consider the correlations inherent in entangled states. To begin
with, the expression ‘collapse of the state vector’ evokes a kind of mechani-
cal transformation that is inappropriate to the function which a state vector
serves in the quantum formalism, viz., as a theoretical construct for determin-
ing probabilities of allowable outcomes. As such, the projection of the state
vector (as employed above) onto basis states corresponding to the measure-
ment outcome whose probability is sought, is not a physical interaction like
the collapse of a bridge or collapse of an ocean wave reaching the shore, but the
exercise of a standard mathematical procedure linking the quantum formalism
to experimental results. The state vector (2.6) gives a statistical description
of a system of pairs of entangled photons, and, provided the properties of the
light source do not change over the course of the experiment, the same state
vector (2.6) [or density operator (2.10)] continues to describe the correlated
pairs irrespective of measurements made by observer 1 or 2. By interposing
a polarizer between incident photons and the detector, however, observer 1 or
2 has selected out of the original ensemble of correlated photons a subset of
single photons that now manifests a well-defined polarization. Subsequent sta-
tistical predictions concerning this subset must be based on the appropriately
modified (‘collapsed’) state vector or density operator. The so-called collapse
reflects the loss of phase coherence (i.e., correlation) between the two detected
photons.

Whether or not each photon of a correlated pair ‘had’ a polarization before
detection – an issue that deeply concerns some who see a paradox here – is, in
my opinion, not a physically significant, point. Theoretically, i.e., according
to (2.6) or (2.10), only the pair, and not the indistinguishable photons that
comprise it, have sharp properties: zero total linear momentum, zero total
angular momentum. Quantum theory no more permits us to enquire how the
polarization of the first- or second-observed photon came to be what it is, than
it permits us to enquire through which of two slits a single electron passed
on its way to creating a pattern of interference fringes at a distant screen.
Experimentally, there is no way to probe the pair of correlated photons to de-
termine the properties of its constituents without destroying the correlations.
I see little point in a philosophical debate over nonobservable things.

I also believe there is no basis for claiming that the polarization correlation
of widely separately photons is evidence of an instantaneous interaction at
a distance. For one thing, because the sequence of polarizations recorded by
each observer is random, the correlations provide no means by which the
observers could send a superluminal signal to one another. As pointed out
previously, the two observers would not even recognize that the outcomes
of their polarization measurements are correlated until they compare them-
and this cannot be done instantaneously. Thus, the quantum phenomenon
of entanglement does not violate special relativity. The issue is more subtle,
however, for according to special relativity it is not even possible to specify
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uniquely which polarization measurement – that of photon 1 or of photon 2
– instantaneously affected the other.

Suppose, for example, that observer 1 is farther from the light source
than observer 2, as judged by observers at rest with respect to the laboratory
(including the light source, detectors, polarizers, and observers 1 and 2). They
will agree, therefore, that observer 2 makes the first observation. If there is
an instantaneous interaction at a distance, then it is the observation of the
polarization of photon 2 that ‘collapses’ the state vector and ‘forces’ photon
1 into the same polarization state. However, suppose this experiment is being
viewed by an observer (observer 3) traveling at uniform velocity −v towards
the left in the direction of propagation of photon 1. To observer 3, the entire
experimental set-up is traveling at a uniform velocity +v to the right. By
a simple application of the Lorentz transformation, it follows that, according
to observer 3, the time interval t2 − t1 between detections of photon 2 and
photon 1 is given by

t2 − t1 = γ
L2 + L1

c

(
L2 − L1

L2 + L1
+
v

c

)
, (2.17)

in which L1 and L2 are, respectively, the locations of detectors 1 and 2 relative
to the light source at the origin of the laboratory reference frame. Thus,
according to (2.17), if L1 > L2, it is nevertheless possible for t2 > t1 if
the speed of observer 3 satisfies the inequality v/c > (L1 − L2)/(L1 + L2).
Observations made in two different inertial reference frames therefore lead to
opposite conclusions regarding which photon, 1 or 2, was detected first and,
through the agency of ‘state-vector collapse’, instantaneously modified the
polarization state of the other photon.

None of what I have written in the preceding paragraphs need minimize
the fascinating consequences of entanglement, which is one of the features of
quantum mechanics that sets it apart most sharply from classical mechanics.
Strange and counter-intuitive as long-range correlations of entangled states
are, the EPR paradox is not a real paradox. There is no internal inconsistency
in the quantum formalism and no failure – at least as of the moment I write
this sentence – in the capacity of quantum theory to account successfully for
the outcomes of experiments on quantum systems. The ‘paradox’ is primarily
one of unfulfilled expectations of philosophical preferences (‘objective reality’,
‘locality’) and deceptive physical images evoked by semantically poor labels
(‘state-vector collapse’, ‘instantaneous action at a distance’). In its present
form – and most likely for any future incarnation – quantum theory does not
describe single events, but only the statistical properties (count rates, correla-
tions, cross-sections, etc.) of numerous events. The assertion, first enunciated
by EPR, that quantum theory is incomplete may some day be experimentally
vindicated – but that discovery, in my opinion, will have to await entirely
new types of experiments or observations in hitherto unprobed regions of the
scientific wilderness.
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2.2 A Dance of Correlated Fluctuations.
The ‘Hanbury Brown Twiss’

There is a second type of multiparticle correlation that finds its origin, not in
the entanglement of wave functions resulting from special state preparation as
in an EPR configuration, but as an indirect consequence of spin through the
spin–statistics connection discussed earlier. Although neglect of the bosonic
nature of photons in the preceding section would have reduced the magnitude
of the correlation by a factor of two, it did not modify the essential feature
of an angular dependence on the difference in settings of the polarizers, i.e.,
the experimental signature that distinguished the system of entangled photon
pairs from a mixture of photon pairs. Now we will consider a type of mul-
tiparticle interference that depends entirely on the quantum statistics of the
particles.

In the mid-1950s two astronomers, R. Hanbury Brown and R.Q. Twiss (to
be designated HBT) developed a new type of interferometer [39] whose under-
lying explanation was eventually to have as profound an impact on quantum
physics – in particular quantum optics – as did the EPR paradox and the AB
effect. Known as an intensity interferometer, the apparatus operated by corre-
lating (i.e., multiplying together and time-averaging) the output currents from
two photodetectors illuminated by light from a thermal source such as a star
(see Fig. 2.2). Since it is the light intensity to which each detector responds
and to which the output current is proportional, the resulting oscillatory cor-
relation as a function of detector separation was regarded by many as highly
surprising. All physicists know that wave amplitudes , not intensities, interfere.
HBT took pains to point out that the phenomenon did not actually involve
the interference of light intensities and could, in fact, be understood without
difficulty by a radio engineer within the framework of the classical wave the-
ory of radiation. Nevertheless, physicists probing the quantum implications
of the HBT effect were even more surprised, if not altogether incredulous, to
learn that photons, emitted apparently randomly from a thermal source, were
correlated in their arrivals at the two detectors. In the amusing description of
Hanbury Brown, later reminiscing about this period [40]:

Now to a surprising number of people, this idea seemed not only hereti-
cal but patently absurd and they told us so in person, by letter, in pub-
lications, and by actually doing experiments which claimed to show
that we were wrong. At the most basic level they asked how, if photons
are emitted at random in a thermal source, can they appear in pairs
at two detectors. At a more sophisticated level the enraged physicist
would brandish some sacred text, usually by Heitler, and point out
that [. . .] our analysis was invalidated by the uncertainty relation [. . .].

The book by Heitler [41], The Quantum Theory of Radiation, was very well
known to generations of physicists before more modern treatments of radia-
tion theory, like Feynman’s Quantum Electrodynamics [42], became available,
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and together with Dirac’s Principles of Quantum Mechanics [43] constituted
a quantum physicist’s ‘New Testament’ and ‘Old Testament’. Nevertheless,
unfolding developments were to show that HBT were not only not wrong, but
their work-although originally conceived for the purpose of measuring stellar
angular diameters – actually laid the experimental foundation for what has
become contemporary quantum optics and provided new methods for funda-
mental tests of quantum mechanics.

A heuristic understanding of the intensity interferometer, schematically
diagramed in Fig. 2.2, can be gained by examining the superposition at each
detector of the classical electromagnetic waves emitted from two different
locations in an extended optical source. Of the broad range of frequencies
radiated by a thermal source, consider just two Fourier components of the
same linear polarization, E1 sin(ω1t+ φ1) from point P1 and E2 sin(ω2t+ φ2)
from point P2, that reach detector D1. The phases φ1 and φ2 in the argument
vary randomly from one emitted wave front to another. The instantaneous
intensity at D1, to which the output current i1 is proportional (with detector
proportionality constant K1) then takes the form

i1 = K1

[
E1 sin(ω1t+ φ1) + E2 sin(ω2t+ φ2)

]2
. (2.18)

A similar expression

i2 = K2

{
E1 sin

[
ω1(t+ d1/c) + φ1

]
+ E2 sin

[
ω2(t+ d2/c) + φ2

]}2

(2.19)

Fig. 2.2. Hanbury Brown–Twiss (HBT) intensity interferometer. Wave fronts issu-
ing from two points (P1,P2) of an extended source are received at two photodetectors
whose output currents are first filtered to let pass low-frequency harmonics and then
correlated. d1 is the greater distance traveled by the wave front from P1 to detector
1 than to detector 2. (The corresponding interval d2 for the wave front from P2 is
not shown)
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gives the output photocurrent of detector D2 where di (i = 1, 2) is the dif-
ference in optical path lengths between source point i and the two detectors.
By computing the squares in (2.18) and (2.19) and using trigonometric iden-
tities, one finds that the resulting photocurrents contain Fourier components
with frequencies ω1, ω2, 2ω1, 2ω2, ω1 + ω2, and ω1 − ω2. A low-frequency
filter (e.g., with pass-band of approximately 1–100 MHz) that allows only the
Fourier component at the difference frequency ω1−ω2 to pass to the correlator
gives rise to the following photocurrents from D1 and D2

i1 = K1E1E2 cos
[
(ω1 − ω2)t+ (φ1 − φ2)

]
, (2.20)

i2 = K2E1E2 cos
[
(ω1 − ω2)t+ (φ1 − φ2) +

ω1d1 − ω2d2
c

]
. (2.21)

Although the initial phases are random functions of time, the difference in
these phases appears in the expressions for both photocurrents. These two
photocurrents (and therefore the incident light intensities) are clearly correl-
ated since at any instant they have the same frequency and differ in phase only
by a constant term for a given interferometer configuration. Upon multiplying
relations (2.20) and (2.21) and time-averaging over one or more periods, one
obtains the correlation function

〈i1(t)i2(t)〉 ≈ K1K2E
2
1E

2
2 cos

[ω
c

(d1 − d2)
]
, (2.22)

where, within the narrow pass-band, it is adequate to set ω = ω1 ≈ ω2.
A complete analysis of the intensity interferometer, which we do not need here,
would require that (2.22) be integrated over all pairs of points on the source
and that all appropriate Fourier components be included. For our present
purposes, however, the above expression is sufficient to show that the origin of
the intensity ‘interference’ can be readily understood on the basis of amplitude
interference in classical wave theory.

It should be noted that technically HBT did not measure directly a correl-
ation in the output photocurrents, but rather a correlation in the fluctuations
of these currents. Representing each current as the sum of a stationary average
term and a fluctuating term

ik(t) = ik + Δik(t) (k = 1, 2) , (2.23)

one can express the correlation in the fluctuations of the two beams by means
of the so-called second-order correlation function (i.e., second-order in the
intensities or fourth order in the amplitudes)

g
(2)
12 =

〈i1(t1)i2(t2)〉
i1i2

= 1 +
〈Δi1(t1)Δi2(t2)〉

i1i2
. (2.24)

For the generally nonperiodic signals i1(t) and i2(t) the angular bracket sig-
nifies an average over a time interval long compared with the coherence time
tc of the light beam, where tc is the reciprocal of the bandwidth in analogy
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to (1.6). In essence, HBT demonstrated that the fluctuation term, the second
term of the second equality in (2.24), is greater than zero.

If the incident light beams are sufficiently weak, then, rather than multi-
plying the fluctuations in the output currents of the two detectors, one could
in principle count the detected photons individually and establish the number
of coincident arrivals as a function of detector separation. The nature of the
controversial quantum effects revealed by this version of intensity interferom-
etry can be made clearer by considering first an experimental configuration in
which photons incident upon a single detector are counted repeatedly within
a prescribed time interval T . (Afterward, we will re-examine intensity inter-
ferometry as a split-beam experiment where photons are incident upon two
correlated detectors.) The mean number of photoelectrons in the detector
output is proportional to the mean light intensity and T . Now if the incident
photons, all of which are presumed to have the same polarization, could be
thought of as randomly arriving particles, then the variance in count rate
would be predicted to be

(Δn)2 ≡ (
n− n)2 = n2 − n2 = n , (2.25)

where the final equality follows from Poisson statistics. A correct theoretical
analysis [44] leads, however, to a variance larger by an amount proportional
to the mean number of photons counted

(Δn)2 = n
(

1 + n
tc
T

)
, (2.26)

under the circumstances (assumed here) that the spectral density of the light
is uniform over the optical bandwidth Δν = 1/tc. If the light source is un-
polarized, then the supplemental term is to be multiplied by one half, since
fluctuations in orthogonal polarizations are independent. What is the origin
of this additional spread in count rate?

Purcell, has given a simple, visualizable explanation of relation (2.26) in
the above-cited reference which cannot be expressed any clearer than in his
own words:

If one insists on representing photons by wave packets and demands
an explanation in those terms of the extra fluctuation, such an expla-
nation can be given. But I shall have to use language which ought,
as a rule, to be used warily. Think, then, of a stream of wave pack-
ets, each about c/Δν long, in a random sequence. There is a certain
probability that two such trains accidentally overlap. When this oc-
curs they interfere and one may find (to speak rather loosely) four
photons, or none, or something in between as a result. It is proper
to speak of interference in this situation because the conditions of
the experiment are just such as will ensure that these photons are in
the same quantum state. To such interference one may ascribe the
‘abnormal’ density fluctuations in any assemblage of bosons.
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We will see later the wisdom of Purcell’s words and the difficulties to which
a too cavalier use of the imagery of wave packets can lead. In any event,
the broader variance reflects a quantum interference effect deriving from the
statistical properties of light as a system of Bose–Einstein particles.

Figure 2.3 shows an intensity interferometer configuration where the
counts – or more precisely, the fluctuation in counts – at two detectors are
correlated. Let n1 photons be received at detector D1 and n2 photons at de-
tector D2 within a time interval T . For simplicity all photons will be assumed
to have identical polarization. The variance in counts at each detector takes
the form of relation (2.26)

(Δnk)2 = nk

(
1 + nk

tc
T

)
(k = 1, 2) . (2.27)

By correlating the two photodetector outputs, i.e., by linking the two outputs
together, one has effectively a single-detector configuration again, but with
total count rate n = n1 + n2 and variance

(Δn)2 = (Δn1 + Δn2)2 . (2.28)

Expansion of the right hand side of expression (2.28) and comparison with
relation (2.26) leads to the positive cross-correlation

Δn1Δn2 = n1n2
tc
T
, (2.29)

Fig. 2.3. Intensity interferometer based on photon counting. The number of photons
received at each detector is individually determined (n1,n2) as well as the number
(nc) that arrive coincidentally within a specified time window
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observed by HBT. [For an unpolarized light source multiply the right-hand
side of (2.29) by 1/2.]

From the standpoint of quantum physics, the nonvanishing correlation be-
tween the two components of a split light beam is a consequence of, in Purcell’s
words, the ‘clumping’ of the photons. The contemporary term, ‘photon bunch-
ing’, refers to the tendency of a sequence of photon arrival times (registered
at a single photodetector) to be more narrowly spaced than that predicted on
the basis of Poisson statistics for randomly occurring events (e.g., the arrival
of raindrops), as illustrated in Fig. 2.4. The same effect shows up in the num-
ber of joint photon arrivals at two detectors, such as in the configuration of
Fig. 2.3 with the correlator replaced by a coincidence counter. In the case of
polarized light coherent over both detecting surfaces, the number of coinci-
dent detections nc within a time window T much longer than the longitudinal
coherence time tc takes the form

nc = n0
c

(
1 +

tc
T

)
, (2.30)

where the coincidence count for two uncorrelated beams of light is proportional
to the number of counts (n1, n2) received at each detector. The supplementary
positive term in relation (2.30) represents photon bunching, and is seen to have
the same form (to within a proportionality factor) as the cross-correlation
(2.29). It is worth stressing, however, that – as demonstrated by Hanbury
Brown’s classical wave argument summarized above – the explanation of this
phenomenon does not require the introduction of photons.

Indeed, Einstein had examined the same problem, albeit in a different form,
in a 1909 summary of the “present state of the problem of radiation” [45], and

Fig. 2.4. Distribution in time of particle counts illustrating (a) antibunched, (b)
bunched, and (c) random arrivals. The type of clustering is gauged against the
coherence time τc of the source
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it is instructive to look at his results. Concerned with the properties of black-
body radiation, Einstein showed that the variance in dEν – the energy of
thermal radiation in the spectral range between ν and dν and volume V –
can be written as the sum of two terms as follows

(ΔdEν)2 = hνdEν +
c3

8πν2V dν
(dEν)2 . (2.31)

The first term corresponds to shot noise, the fluctuations in energy result-
ing from fluctuations in the number of particles, each of energy hν. This was
the exciting part at the time of Einstein’s report, for it reflected the grainy
or particulate nature of the radiation field and was inexplicable on the basis
of classical electromagnetic theory. The first term supported the notion of
light quanta and indicated that these quanta (the photons) were subject to
the same statistical laws as were the molecules of an ideal gas. On the other
hand, the second term – referred to as wave noise by HBT – is a purely clas-
sical term representing energy fluctuations deriving from fluctuations in the
amplitudes of interfering waves. From the standpoint of optical intensity in-
terferometry, the quantum shot noise at one detector is uncorrelated with that
at the other, and so their product averages away leaving only the correlations
due to classical wave noise.

From the foregoing remarks, which pertain largely to the chaotic sources2

employed by HBT – namely, thermal light (e.g., starlight) or light from arc
lamps – one should not infer that quantum effects play no intrinsic role in
the correlations of all light fields. Quite the contrary. States of light, such as
so-called squeezed light, have been predicted and observed that give rise to
correlation effects totally inexplicable within the framework of classical wave
theory [47]. The study of these effects falls within the province of quantum
optics.

2.3 Measurable Distinctions
Between Quantum Ensembles

Statistical uncertainty and probability have a role to play in both classical
and quantum physics, although at different levels of fundamentality. An ele-
mentary constituent of a classical ensemble of particles can be endowed with
dynamical variables that may not be known, but that are, in principle, know-
able; their determination is not precluded by physical law. An elementary
constituent (e.g., an atom) of a quantum ensemble cannot ordinarily be en-
dowed with definite dynamical variables; the general quantum description –
2 For a comprehensive description the nature of chaotic light, which includes black-

body radiation as a special case, see [46]. A significant feature is that the density
or statistical operator of a chaotic radiation field is diagonal in a basis of photon
number states. For example, in the case of a single optical mode, it would have
the form ρ̂ =

P
〈n〉 ρn,n|n〉〈n|.
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even of a single particle – is not in terms of the observable attributes them-
selves (e.g., energy or momentum), but in terms of probability amplitudes
for the potential realization of these attributes. For a multiparticle quantum
system, there may also be a statistical distribution of probability amplitudes
over the elementary constituents, whereupon the use of statistics as in classical
physics becomes necessary.

Suppose one has in the laboratory two containers, one with an ensemble
of atoms (or some other collection of quantum ‘particles’) each of which is
endowed with definite, although statistically distributed, energy values, and
the other in which each atom is in a linear superposition of energy eigenstates
encompassing the same energy values as the first ensemble. Are the two en-
sembles experimentally distinguishable? Always, never, or only under certain
conditions?

To make the example concrete, consider an ensemble of atoms with effec-
tively just two excited states with energy eigenvalues E1 and E2. Each atom,
initially in its ground state, is subjected to an impulsive excitation at time t0
that prepares it in a linear superposition described by the state vector

|Ψ(t0)〉 = a1|1〉 + a2|2〉 . (2.32)

The atoms are said to be coherently excited. The system constitutes a pure
state whose density matrix or operator ρ0 = |Ψ(t0)〉〈Ψ(t0)| in an energy rep-
resentation has elements

ρ0ii = |ai|2 (i = 1, 2) , (2.33)

ρ012 = |a1a2|e−iφ , φ = arg(a2) − arg(a1) . (2.34)

A measurement of the energy of randomly chosen atoms at t0 would yield
either E1 or E2 with probability |a1|2 or |a2|2, respectively. This outcome is
exactly the same as if the system consisted of a mixture of atoms distributed
with probabilities |a1|2 and |a2|2 over definite states, as characterized by a den-
sity matrix with elements

ρ0ij = |ai|2δij (i, j = 1, 2) , (2.35)

where the Kronecker delta function δij equals unity for i = j, and zero other-
wise. Nevertheless, the two ensembles are quite different; quantum correlations
that distinguish a superposition state from a mixture of definite states can
be manifested by quantum interference effects in atomic fluorescence. The
subject of quantum interference in the time domain will be taken up more
thoroughly in Chap. 4. However, it is instructive to examine in the present
section some aspects of this matter closely tied to HBT-type correlations [48].

The excitation of individual atoms into a superposition state like that of
(2.32) does not necessarily mean that the ensemble as a whole will manifest



62 2 Correlations and Entanglements I

quantum interference effects if subpopulations of atoms are in linear super-
positions of eigenstates with different relative phases. It is of both practical
and conceptual significance to ascertain to what extent the incursion of phase
disorder extinguishes the coherence observable in an ensemble of what one
might call mixed superposition states.

As an experimental problem, the distinction between theoretically differ-
ent quantum ensembles may be difficult. The experimenter is not presented
in the laboratory with the elements of a density matrix, but, at best, with the
ensemble of atoms and the source of excitation. For example, the theoretical
possibility of quantum interference in light emission from coherently excited
atoms was pointed out by Breit in the 1930s [49]. When observed in atomic
beam experiments in the 1960s, the modulated fluorescence (‘quantum beats’),
was incorrectly attributed to electric-field-induced Stark mixing of degenerate
states, rather than being correctly attributed to field-free decay of nondegen-
erate states [50]. In an astrophysical setting, the experimenter has control over
neither the ensemble of atoms nor the source of excitation. Not long after the
correct interpretation of quantum beats in spontaneous emission, the question
was raised of whether atomic excitation by an optical pulsar could engender
observable quantum interference among Zeeman states of atoms in the Crab
Nebula [51]. If such were the case, astronomers could determine the magni-
tude of the magnetic field in an interstellar medium by a spectroscopic method
largely free of Doppler broadening. The atoms of the nebula, however, do not
comprise a pure superposition state; constraints on the direct observation of
a modulated fluorescent intensity are severe. An alternative way to detect
quantum coherence of an ensemble of mixed superposition states would be
useful.

In a certain sense, the answer to the question raised above (are the two
ensembles experimentally distinguishable?) is trivially simple. A phase aver-
age of the density matrix (2.33), (2.34) eliminates the off-diagonal elements
and leads to density matrix (2.35). So the two ensembles are experimentally
indistinguishable with respect to any process that averages over the quan-
tum phases. The core of the issue here, however, is what it means to ‘average
over phases’. For example, it has been demonstrated that a fluctuating phase
still leads to manifestations of quantum interference in the power spectrum
of intensity fluctuations engendered by absorption of a stationary light beam
transmitted through an atomic gas [52]. At any instant in time, the absorption
of radiation produced a well-defined phase for the off-diagonal density matrix
elements of the ensemble. Similarly, it has been shown that the correlation
of intensity fluctuations in spontaneous emission, received at two detectors,
also manifests quantum interference of atomic states if, again, the quantum
phases, even though they fluctuate, are common to all constituents of the sam-
ple at each instant in time [53]. Thus, there may be information in intensity
interferometry that is not accessible in the measurement of intensity alone.

Before considering this point further, it is useful to examine the relation-
ship between the density matrix and the degree of disorder (or entropy) of
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a system. For an ensemble of two-state atoms in a pure state such as (2.32),
the elements of the density matrix (2.33), (2.34) can be parameterized by
a polar angle θ and a phase angle φ in the following way

ρ11 = cos2 θ , ρ22 = sin2 θ , (2.36)

ρ12 = ρ∗21 =
1
2

sin 2θe−iφ . (2.37)

The conservation of probability, Tr(ρ) = 1, for a closed system is reflected
in (2.36). The determinant of ρ is 0, which, together with (2.36), reveals im-
mediately that the two eigenvalues of ρ are 1 and 0. The diagonal elements
(‘populations’) can range from 0 to 1, and the magnitude of the off-diagonal
elements (‘coherences’) can range from 0 to 1/2. For a mixture of states with
no quantum correlations in a designated representation, the off-diagonal ele-
ments vanish.

In general, i.e., for mixed as well as pure states, the density matrix can be
expressed in terms of the elements of the mean population P0 and a polariza-
tion vector P

ρ = P0(1 + P · σ) , (2.38)

where σ is a vector whose components are the Pauli spin matrices.3 P0, which
would be 1/2 for a closed system, and the components of P , given by

P0 =
1
2
(ρ11 + ρ22) , (2.39)

P0P1 =
1
2
(ρ12 + ρ21) , (2.40)

P0P2 =
1
2i

(ρ21 − ρ12) , (2.41)

P0P3 =
1
2
(ρ11 − ρ22) , (2.42)

are analogous to the Stokes parameters familiar in optics [7].
The disorder or information content of a system can be specified by the

statistical entropy function S

S = −Tr(ρ ln ρ) = −
∑

i=1,2

ρi ln ρi , (2.43)

where ρi (i = 1, 2) are the eigenvalues of ρ given by

ρ1,2 =
1
2

[
(ρ11 + ρ22) ±

√
(ρ11 − ρ22)2 + 4|ρ12|2

]

=
1
2

{
Tr(ρ) ±

√[
Tr(ρ)

]2 − det(ρ)
}
, (2.44)

3 The Pauli spin matrices are defined by invariant algebraic relations which have
given rise to a number of standard representations. The explicit form of the spin
matrices used in this book is given in Chap. 4.
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or equivalently, in terms of the polarization, by

ρ1,2 = P0

(
1 ± |P |) , (2.45)

with

|P | =

√
(ρ11 − ρ22)2 + 4|ρ12|2

ρ11 + ρ22
=

√[
Tr(ρ)

]2 − det(ρ)

Tr(ρ)
. (2.46)

The second relation in (2.44) and (2.46) respectively expresses the eigenvalues
and magnitude of the polarization in terms of the trace and determinant of
the density matrix, which are properties of a matrix invariant under changes
of representation.

From (2.43) and (2.44)–(2.46), one can relate the disorder and polarization
by

S = −2P0 lnP0 − P0

[(
1 + |P |) ln

(
1 + |P |)+

(
1− |P |) ln

(
1− |P |)

]
. (2.47)

Thus, a pure state (eigenvalues ρ1,2 = 1, 0) corresponds to a completely
polarized ensemble (P0 = 1/2, |P | = 1) with S = 0. For a weakly polarized
ensemble (|P | � 1), (2.47) reduces approximately to S ∼ −2P0 lnP0−P0|P |2,
which yields S = ln 2 for a completely unpolarized ensemble.

For the system under consideration, each atom, prepared in a linear super-
position of excited states, is presumed to decay radiatively to a lower state.
Strictly speaking, therefore, we do not have a two-state system. The decay
can be included phenomenologically in the equation of motion of the excited
state density matrix by means of a suitable relaxation term. The subsystem
of excited atomic states is then effectively an open one, and after the initial
excitation, the condition Tr(ρ) = 2P0 �= 1 reflects the fact that probability
(within the manifold of excited states) is no longer conserved.

The time-evolution of the excited atoms is governed by a HamiltonianH =
H0 + i�Γ/2 comprising a Hermitian operator H0 with eigenvalues Ei = �ωi

(i = 1, 2) and an anti-Hermitian decay operator i�Γ/2 with eigenvalue i�γ/2
taken to be the same for both excited states.4 The density matrix equation of
motion is then

dρ
dt

= − i
�
[H, ρ] − 1

2
{
Γ, ρ

}
, (2.48)

in which the square brackets and curly brackets designate, respectively, the
operations of commutation and anticommutation. (We discuss the origin of

4 The definition of the decay operator includes a factor 1/2 because the eigenvalue
γ represents the decay rate (inverse lifetime) of a state population. Thus, if the
occupation number of a state decreases exponentially in time as e−γt, then the
corresponding quantum amplitude must decrease as e−γt/2.



2.4 Correlated Emission from Coherently Excited Atoms 65

this relation in Chap. 5.) The phenomenological relaxation term leads to the
exponential decay of the excited state populations, as expressed by

dTr(ρ)
dt

= −Tr(ρΓ ) = −γTr(ρ) . (2.49)

It then follows from (2.43) and (2.48), (2.49) that the excited-state disorder
evolves in time according to

dS
dt

= −Tr(ρΓ ) + Tr(Γρ lnρ) , (2.50)

which, under the present circumstances where Γ is proportional to the unit
two-dimensional matrix, leads to the simpler expression

dS
dt

+ γS = γTr(ρ0)e−γt . (2.51)

The time-evolution of S is therefore independent of H . Integration of (2.51)
with imposition of the initial condition Tr(ρ0) = 1 at t = 0, gives the result

S(t) = (S0 + γt)e−γt , (2.52)

where S0 is the initial measure of disorder. In the absence of decay, the disorder
remains constant, S(t) = S0.

2.4 Correlated Emission
from Coherently Excited Atoms

Experimentally, the impulsive preparation of an ensemble of two-state atoms,
in which the phase φ is common to all the atoms at the interaction time t0,
can be achieved in a variety of ways, such as electron bombardment [54], fast
ion-beam passage through thin foils [55, 56], optical excitation by means of
shuttered spectral lamps [57], and pulsed laser excitation [58]. Integration of
the equation of motion (2.48) leads to the density matrix elements

ρij(t, t0) = ρ0ije
−ωij(t−t0)e−γ(t−t0) , (2.53)

where ωij = ωi −ωj. The initial polarization is |P | = 1; the initial disorder is
S0 = 0; and the evolution of these quantities takes the form

|P (t, t0)| = e−γ(t−t0) , (2.54)

S(t, t0) = γ(t− t0)e−γ(t−t0) . (2.55)

The disorder within the system begins to increase as the two excited states
are depopulated; maximum disorder is reached at a time γ−1 after excitation.
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There is, again, total order at an infinite time after excitation when all atoms
have returned to the (nondegenerate) ground state.

The spontaneous emission from the ensemble of atoms is represented the-
oretically by the expectation value of a detection operator X

I(t, t0) = Tr(ρX) , (2.56)

where
X = e · D|0〉〈0|e · D (2.57)

is defined in terms of the light polarization vector e, the atomic electric dipole
operator D, and the operator |0〉〈0| projecting onto the lower state (ground
state) to which the excited states decay. It is assumed for simplicity that the
matrix elements of e · D are real. The signal (emission intensity) derived from
(2.56), (2.57) is

I(t, t0) =
{
A+B cos

[
ω21(t− t0) − φ

]}
e−γ(t−t0) , (2.58)

where
A = D2

10ρ
0
11 +D2

20ρ
0
22 , (2.59)

B = 2D10D20

∣
∣ρ012

∣
∣ . (2.60)

The exponentially damped fluorescence from the ensemble of atoms is modu-
lated at the Bohr frequency ω21, with a modulation depth B/A. If the transi-
tion matrix elements from states |1〉 and |2〉 to |0〉 are equal, and the excitation
parameter θ = π/4, the contrast B/A will be 100%. The total unpolarized flu-
orescent emission in a given direction is not modulated; oscillations in intensity
are observable only on a polarized component. This can be demonstrated by
the Wigner–Eckart theorem. There is no Doppler spread in the beat frequency
(to first order in v/c) because the interference effect is produced by coherence
in individual atoms, not between different atoms.

For an incoherently prepared state, B = 0. The fluorescent emission then
follows the simple exponential damping

I(t, t0) = Ae−γ(t−t0) , (2.61)

which is characteristic of incoherent decay in a wide variety of processes (e.g.,
the disintegration of radioactive nuclei).

If the system of atoms is subjected to impulsive excitations occurring over
an indefinitely long period of time at a rate given by

r(t) =W (1 +m cosΩt) , (2.62)

the density matrix ρ(t) is obtained by averaging ρ(t, t0) over the excitation
time

ρ(t) =

t∫

−∞
ρ(t, t0)r(t0)dt0 , (2.63)
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to yield the elements

ρij(t) =
W

γ

[
γ

γ + iωij
+
m

2
γeiΩt

γ + i(ωij +Ω)
+
m

2
γe−iΩt

γ + i(ωij −Ω)

]
ρ0ij . (2.64)

The intensity of the emitted light following from (2.56) is then

I(t) =
W

γ

{
A

[
1 +

mγ(γ cosΩt+Ω sinΩt)
γ2 +Ω2

]
+B

γ(γ cosφ+ ω21 sinφ)
γ2 + ω2

21

+
B

2
mγ

[
γ cos(Ωt+ φ) + (ω21 +Ω) sin(Ωt+ φ)

]

γ2 + (ω21 +Ω)2

+
B

2
mγ

[
γ cos(Ωt− φ) − (ω21 −Ω) sin(Ωt− φ)]

γ2 + (ω21 − Ω)2

}

. (2.65)

The rate parameter W is assumed small compared to the atomic decay rate
γ, and one may then neglect the occurrence of cycles of stimulated emission
and absorption over the period of the excitation pulse (a phenomenon that
will be taken up in Chap. 4).

In the case of incoherent excitation leading to an ensemble of mixed def-
inite states, the populations oscillate in time simply as a trivial consequence
of turning the excitation on and off at frequency Ω. For Ω  γ, the popula-
tions respond sluggishly to the time-variation of the excitation; the modulated
components of ρ11 and ρ22 fall off as Ω−1. In effect, the system is described
by a density matrix with elements

ρij =
W

γ
ρ0iiδij (Ω  γ) , (2.66)

which lead to a polarization

|P | =
∣
∣ρ011 − ρ022

∣
∣ (2.67)

and disorder

S = −W
γ

ln
W

γ
− W
γ

(
ρ011 ln ρ011 + ρ022 ln ρ022

)
. (2.68)

The first term of (2.68),

Smin ≡ −W
γ

ln
W

γ
,

is the minimum disorder engendered by the excitation and decay processes.
The fluorescent intensity

I(t) =
WA

γ
(2.69)

is constant.
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For excitation into nondegenerate states (ω21 > γ) at a resonant frequency
(Ω = ω21), the off-diagonal density matrix element is

ρ12(t) =
Wm

2γ
ρ012e

iΩt (Ω = ω21) , (2.70)

and the diagonal elements are as given in (2.66). The system now displays
a greater polarization

|P | =
√(
ρ011 − ρ022

)2 +m2
∣
∣ρ012

∣
∣2 , (2.71)

which results in the maximum value |P | = 1 and minimum disorder Smin for
modulation amplitude m = 2. The resonant intensity,

I(t) =
W

γ

[
A+

1
2
mB cos(Ωt− φ)

]
(Ω = ω21) , (2.72)

characterizes a steady state, not transient, optical emission. Under the condi-
tion of minimum disorder (m = 2), the contrast is B/A, which is the same as
in the case of quantum beats from a pure state.

Far from resonance, Ω  (ω21 or γ), one can ignore the modulation to
good approximation and consider the system of atoms prepared by a random
excitation occurring at a constant rate W . The off-diagonal density matrix
element then becomes independent of time

ρ12 =
W

γ + iω21
ρ012 . (2.73)

The polarization and fluorescent intensity depend on the relative size of the
two (angular) frequencies ω21 and γ

|P | =

√
(
ρ011 − ρ022

)2 + 4
γ2

γ2 + ω2
21

∣
∣ρ012

∣
∣2 , (2.74)

I(t) =
W

γ

[
A+B

γ(γ cosφ+ ω21 sinφ)
γ2 + ω2

21

]
. (2.75)

For degenerate states (ω21 = 0), |P | reduces to the maximum value of 1;
the disorder of the system is again Smin, the same minimum value as in the
case of resonant excitation of nondegenerate states. In both cases, the quantum
coherence in the excitation of single atoms is maximally preserved in the entire
ensemble. For resonant excitation of nondegenerate states, however, the source
of excitation forces the entire system into phased emission. In the case of
degenerate excited states, the quantum oscillations occur at zero frequency
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for each atom, and the emissions from different atoms consequently do not
become dephased in time. The fluorescent intensity is

I(t) =
W

γ
(A+B cosφ) (ω21 = 0) , (2.76)

and depends on the atomic coherence.
If the states are nondegenerate (ω21 > γ), the polarization is not very sen-

sitive to
∣
∣ρ012

∣
∣2 unless the state populations are nearly equal. The dependence

of the fluorescent intensity

I(t) =
W

γ

(
A+B

γ

ω21
sinφ

)
(2.77)

on the atomic coherence is scaled by the ratio of the decay rate to Bohr
frequency.

Let us consider now the situation in which the source of excitation may pro-
duce superpositions of states with randomly distributed relative phase φ. As
stated earlier, the resulting phase-averaged density matrix is indistinguishable
from the density matrix of a mixture of definite energy states. The immedi-
ate consequence of this is that all terms manifesting a quantum interference
will vanish from the expression for the intensity (2.65). This does not mean,
however, that the optical signal from the ensemble of atoms will provide no
retrievable information concerning the atomic energy level structure.

From the perspective of classical optics, the instantaneous intensity can
be represented by an expression similar to (2.23)

I(t) = 〈I(t)〉 + ΔI(t) , (2.78)

where the first term is the phase-averaged intensity and the second term is
the fluctuation about the average. A measure of the intensity correlation is
provided by the degree of second-order coherence, defined by the relation
[analogous to (2.24)]

g(2)(t) ≡ g(2)11 (t) =
〈I(0)I(t)〉
〈I(0)〉〈I(t)〉 = 1 +

〈ΔI(0)ΔI(t)〉
〈I(0)〉〈I(t)〉 . (2.79)

Only the time delay t, and not the origin of time, is of consequence here.
From (2.58)–(2.60) and (2.79), it follows that

g(2)(t) = 1 +
1
2

(
B

A

)2

cos(ω21t) (2.80)

for free radiative decay from a mixture of superposition states impulsively
generated by the same excitation event. For excitations occurring at constant
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rateW � γ over an indefinitely long time, (2.65) and (2.79), with modulation
amplitude m = 0, lead to

g(2)(t) = 1 +
1
2

(
B

A

)2
γ2

γ2 + ω2
21

. (2.81)

The second term in (2.80), (2.81) represents the correlation within the light
field from individual coherently excited atoms. That g(2)(t) contains a term
dependent upon

∣∣ρ012
∣∣ is not unreasonable because the atomic polarization

[see (2.46)] of each subgroup of atoms of given phase depends only on the
magnitude, not on the phase, of the off-diagonal matrix elements.

2.5 The Quantum Optical Perspective

Throughout the preceding section, the radiation emitted from the system
of excited atoms was treated as comprising classical waves. However, from
a quantum mechanical perspective, an atom in a coherent superposition of
excited states emits, at each de-excitation event, only one photon, and it is
the interference between the amplitudes of two undecidable decay pathways
of each atom that leads to quantum beats; photons emitted from different
atoms are not supposed to interfere. To examine more closely the influence of
atomic coherence on the properties of the detected radiation, it is necessary
to calculate the coherence function for a quantized radiation field. This is
interesting to do because the procedure differs radically from that in classical
optics, and can be applied to field states for which there are no classical
counterparts.

In classical physical optics, the measurable properties of light (e.g., the
intensity, degree of linear polarization, and degree of circular polarization5)
emitted from a particular source can be determined completely from knowl-
edge of the electric and magnetic field vectors that comprise the associated
electromagnetic wave. Briefly summarized, the electric and magnetic fields
together are the light wave. Moreover, it is the fields of a detected wave that
act upon the charged particles (electrons, ‘holes’, ions, etc.) of the detector.
However, in the logical structure of quantum optics, a complete exposition of
which must be left to references [59], the electric and magnetic fields are op-
erators, and the state of the field upon which they act is a ket (or bra) vector
labeled by the quantum numbers of a suitable representation. As is often the
case in both classical and quantum optics, the magnetic field is of secondary
importance and will be of no further concern here.

Based on the analogy of the electromagnetic field to a system of harmonic
oscillators, the electric field operators are expanded in a Fourier series of its
modes (i.e., allowed frequencies and polarizations), the expansion coefficients

5 See, for example, [7].
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of which are annihilation (a) and creation (a†) operators satisfying the familiar
commutation relations for each mode

[
a, a†

]
= 1 ,

[
a, a

]
=
[
a†, a†

]
= 0 . (2.82)

Creation and annihilation operators of different modes commute with one
another. The action of these operators on states of well-defined photon number
|n〉 is as follows:

a|n〉 =
√
n− 1|n− 1〉 , a†|n〉 =

√
n+ 1|n+ 1〉 . (2.83)

From the preceding relations, one can readily show that the number operator
n̂ = a†a counts the number of photons in a number state, n̂|n〉 = n|n〉, and
satisfies the commutation relations6

[
n̂, a

]
= −a , [

n̂, a†
]

= a† . (2.84)

The electric field operator of a linearly polarized bimodal field can be de-
composed into a ‘positive-frequency’ component containing annihilation op-
erators

E+(t) ∼ −i
(
ω1a1e−iω1t + ω2a2e−iω2t

)
(2.85)

and ‘negative-frequency’ components containing creation operators

E−(t) ∼ −i
(
ω1a

†
1e

iω1t + ω2a
†
2e

iω2t
)
, (2.86)

the terminology regarding frequency being based on the physicist’s convention
of representing the time dependence of a harmonic wave (of positive frequency)
by the factor e−iωt. The equivalence sign, rather than equal sign, appearing
in (2.85), (2.86) indicates that constant factors irrelevant to the present dis-
cussion have been omitted. Likewise, since spatial retardation plays no role
in the discussion to follow, the creation and annihilation operators, as well as
the photon states, will not be labeled by the wave vector (which is equivalent
to photon momentum). Also dropped from the notation is the unit vector ex-
pressing photon polarization, since all photons will have the same polarization
in the example to be worked out. Finally, the slight dispersion in frequency
resulting from the finite lifetime of the atomic states has been ignored, and the
6 These commutation relations are special cases of more general relations that find

wide usage throughout quantum mechanics and quantum optics. If f(a, a†) is
some general, well-behaved function of the annihilation and creation operators,
then

ˆ
a, f(a†)

˜
=

df(a†)
da† ,

ˆ
a†, f(a)

˜
=

df(a)

da
,

ˆ
n̂, f(a)

˜
= −a

df(a)

da
,

ˆ
n̂, f(a†)

˜
= a† df(a†)

da† .
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optical frequencies ω1 and ω2 will be assumed equal in expressions containing
their product or sum. What is significant here is the frequency difference.

The quantum optical expression for intensity, comparable to the classical-
field relation (2.56), is

I(t) = 〈Ψ |E−(t)E+(t)|Ψ〉 , (2.87)

in which the order of the fields is important. Similarly, the quantum optical
counterpart to (2.79) for intensity correlation, as expressed by the degree of
second-order coherence, is

g(2)(t) =
〈Ψ |E−(0)E−(t)E+(t)E+(0)|Ψ〉

〈Ψ |E−(0)E+(0)|Ψ〉〈Ψ |E−(t)E+(t)|Ψ〉 , (2.88)

where, again, the order of the electric field operators is crucial to obtaining
correct results. From the properties of the annihilation and creation operators
and the conditions articulated above, one can show that the quadratic and
quartic product of field operators, apart from unimportant constant factors,
take the forms

E−(t)E+(t) ∼ n̂1 + n̂2 + a†1a2e
−iω21t + a1a

†
2e

iω21t , (2.89)

E−(0)E−(t)E+(t)E+(0) ∼ (
n̂2

1 − n̂1

)
+
(
n̂2

2 − n̂2

)
+ 2n̂1n̂2(1 + cosω21t)

+
[
(a†1)

2
(
a2
)2e−iω21t +

(
a1
)2(a†2)

2eiω21t
]

+
[
a†1n̂1a2

(
1 + e−iω21t

)
+ n̂1a1a

†
2

(
1 + eiω21t

)]

+
[
a†1n̂2a2

(
1 + e−iω21t

)
+ a1a

†
2n̂2

(
1 + eiω21t

)]
,

(2.90)

where square brackets enclose Hermitian conjugate pairs in the latter equa-
tion.

The state vector of the atom-radiation field, whose coherence properties
we are interested in here, is adapted from the well-known Wigner–Weisskopf
theory of spontaneous emission, as applied to a two-state atom decaying to
a nondegenerate ground state [60]. This state vector, derived on the basis
of single-photon electric dipole processes only, consists in essence of a lin-
ear superposition of the quantum electrodynamic vacuum state |00〉, and the
single-photon states |10〉, |01〉, where |n1n2〉 designates a state with ni pho-
tons of frequency ωi (i = 1, 2). We will consider, however, the more general
state

|Ψ〉 = A0|n1, n2〉 +A1|n1 + 1, n2〉 +A2|n1, n2 + 1〉 (2.91)

+B1|n1 − 1, n2〉 +B2|n1, n2 − 1〉 ,
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which allows for single-photon stimulated absorption and emission processes,
as well as spontaneous emission. The amplitudes Ai, Bi can be related to
atomic dipole transition and density matrix elements. Of particular interest
ultimately, are the relative phases between the amplitudes. The expectation
values on |Ψ〉 indicated in (2.87), (2.88) lead to

〈E−(t)E+(t)〉 = |A0|2(n1 + n2) +
(|A1|2 + |A2|2

)
(n1 + n2 + 1)

+
(|B1|2 + |B2|2

)
(n1 + n2 − 1)

+2
[√

(n1 + 1)(n2 + 1)|A1A2| cos(ω21t− φA)

+
√
n1n2|B1B2| cos(ω21t+ φB)

]
, (2.92)

〈E−(0)E−(t)E+(t)E+(0)〉
= |A0|2(n1 + n2)(n1 + n2 − 1)

+
(|A1|2 + |A2|2

)
(n1 + n2)(n1 + n2 + 1)

+
(|B1|2 + |B2|2

)
(n1 + n2 − 1)(n1 + n2 − 2)

+ 2
[
|A2

0|n1n2 + |A1|2(n1 + 1)n2 + |A2|2n1(n2 + 1)

+ |B1|2(n1 − 1)n2 + |B2
2 |n1(n2 − 1)

]
cosω21t

+ 2|A1A2|
√

(n1 + 1)(n2 + 1)
[
(n1 + n2) cosφA + n1 cos(ω21t− φA)

+ n2 cos(ω21t+ φA)
]

+ 2|B1B2|√n1n2

[
(n1 + n2 − 2) cosφB + (n1 − 1) cos(ω21t+ φB)

+ (n2 − 1) cos(ω21t− φB)
]
, (2.93)

where

φA = arg(A2) − arg(A1) , φB = arg(B2) − arg(B1) . (2.94)

For the case of spontaneous emission into the vacuum (in essence, the
Wigner–Weisskopf state), n1 = n2 = 0 and B1 = B2 = 0. Equation (2.92)
then displays a modulated intensity, which vanishes for random phase φA.
Equation (2.93) results in an intensity correlation that is identically null inde-
pendent of relative phase. There is no contribution from the coherent excita-
tion and decay of individual atoms. The distinction between the classical and
quantum optical results may be understood simply. In the classical picture,
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the light field produced by an atom consists of a superposition of two waves of
different frequencies that may interfere at the detector. In the quantum pic-
ture, however, the emission of one photon of energy �ω1 or �ω2 precludes the
emission of the other by the same atom for a given excitation event. There
can be no correlation between two photons from the same atom under the
above circumstances.

If, however, the atoms are immersed in a sea of photons with (n1, n2)  1
and |A0| ∼ 1  |A1|, |A2|, |B1|, |B2|, the intensity and intensity correlations
become

〈E−(t)E+(t)〉 ∼ |A0|2(n1 + n2) + 2
√
n1n2

[
|A1A2| cos(ω12t− φA) (2.95)

+ |B1B2| cos(ω12t+ φB)
]
,

〈E−(0)E−(t)E+(t)E+(0)〉
= |A0|2

[
(n1 + n2)2 + 2n1n2 cosω21t

]

+ 2|A1A2|√n1n2

[
(n1 + n2) cosφA + n1 cos(ω21t− φA)

+ n2 cos(ω21t+ φA)
]

+ 2|B1B2|√n1n2

[
(n1 + n2) cosφB + n1 cos(ω21t+ φB)

+ n2 cos(ω21t− φB)
]
. (2.96)

For fixed relative phases, the intensity (2.95) shows quantum interference at
the Bohr frequency, resulting from the two undecidable pathways by which
a photon can be absorbed from one field mode (ω1 or ω2) and emitted
into the other. A random distribution of phases results in an unmodulated
intensity. The intensity correlation (2.96), however, displays a modulated
term independent of phase. This is analogous to the classical wave noise
of the Hanbury Brown–Twiss experiment, since it represents correlations in
the light field from different atoms. There is no violation of Dirac’s dictum
that [61]:

Each photon [. . .] interferes only with itself. Interference between two
different photons never occurs.

This is because, in a multiphoton state such as represented by (2.91), there
is no way to determine which atom emitted or absorbed which photon. (We
will consider this point again shortly when examining correlations of massive
particles.) In the quantum description of light, the modulated term in (2.96)
characterizes the bosonic nature of the photon.
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Substitution of relations (2.95) and (2.96) into (2.88) leads to the second-
order correlation function

g(2)(t) = 1 +
2n1n2

(n1 + n2)2
cos(ω21t) . (2.97)

A derivation based on a classical light field gives rise to the same expression,
but with photon number ni replaced by intensity Ii. Since atoms are usually
moving relative to the observer, (2.97) must be averaged over the Doppler
profile. Photons emitted with frequency ω are perceived by the detector to
have frequency ω′ = ω(1 − β), where β = vx/c is the ratio of the line-of-sight
velocity to the speed of light. (β is assumed to be nonrelativistic, so that
only the first-order Doppler effect need be considered.) The distribution of
atomic velocities is given by Maxwell’s distribution law, which is a Gaussian
distribution function, f(vx) ∝ e−mv2

x/2kBT , where m is the atomic mass, kB
is the Boltzmann constant, and T the absolute temperature. The velocity-
average of the cosine factor in (2.97) is then

〈cosω21t〉β =

1∫

−1

cos
[
ω0

21t(1 − β)]e−β2/2σ2 dβ√
2πσ

, (2.98)

where ω0
21 = ω0

2 − ω0
1 is the excited level separation (in angular frequency

units) in the atomic rest frame, and the Doppler width σ =
√
kBT/mc2 � 1.

The integration variable can be be transformed to u = β/σ
√

2 which ranges,
for all practical purposes, from −∞ to +∞, leading to the result

〈
g(2)(t)

〉

β
= 1 +

2n1n2

(n1 + n2)2
e−t2/2τ2

cos(ω0
21t) , (2.99)

with coherence time parameter τ defined by ω0
21τ = 1/σ =

√
mc2/kBT . Thus

the degree of second-order coherence contains information concerning the in-
ternal level structure of the emitting atoms that is not provided by direct
measurement of the intensity. The information can be accessed by measur-
ing the

〈
g(2)(t)

〉
β

as a function of delay time t within an approximate range
2π/ω0

21 ≤ t ≤ 2τ . The lower limit ensures that at least one oscillation occurs,
whereas the upper limit ensures that the correlation term has not decayed to
insignificance. Figure 2.5 illustrates the variation in

〈
g(2)(t)

〉
β

as a function of
the dimensionless ratio t/τ for a system parameter ω0

21τ = 20. One can also
extract structural information from the Fourier transform

G(ω) =

∞∫

0

〈
g(2)(t)

〉

β
e−iωt (2.100)

= πδ(ω) +
√
π

4
2n1n2

n1 + n2

[
e−(ω−ω0

21)
2τ2/2 + e−(ω+ω0

21)
2τ2/2

]
,
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Fig. 2.5. Plot of second-order coherence as a function of t/τ for system parameter
ω0

21τ = 20. Dashed lines show the Gaussian decay envelope. At t = 0, it is seen that
g(2)(0) > 1, indicative of photon bunching

which, apart from the delta spike at ω = 0, shows peaks at ω = ±ω0
21.

As an example, Fig. 2.6 illustrates the Doppler profile

F (ω) = exp
[
− (ω − ω1)2/ω2

1

2σ2

]
+ exp

[
− (ω − ω2)2/ω2

2

2σ2

]

as a function of temperature for a 30 amu atom with two resonances at optical
frequencies separated by ω0

21, which falls in the radiofrequency range. The two
peaks are resolved at the lowest temperature shown (30 K), for which τ = 6.1×
10−4 s, but are broadened into a single peak at the higher temperatures 300 K

Fig. 2.6. Doppler profiles of a 30 amu atom with two absorption resonances at
temperatures T : (a) 30 K, (b) 300 K, (c) 3000 K. The mean absorption frequency
is ω0 = (ω1 + ω2)/2 = 2π × (5.1 × 1014 Hz), and the frequency difference is ω21 =
ω2 − ω1 = 2π × (865 MHz)
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and 3000 K, for which τ = 1.9× 10−4 s and τ = 6.1× 10−5 s, respectively. At
a temperature of 3000 K, therefore, where the peaks in the directly measured
spontaneous emission spectrum completely overlap, one could determine the
energy difference of the two excited states from the second-order correlation
of the light field for delay times within the range (1.2 ns < t < 1.2 μs).

To recapitulate briefly the seminal results of this section, I note that the
quantum interference that distinguishes an ensemble of atoms coherently ex-
cited into a linear superposition of energy eigenstates from an ensemble of
atoms in definite energy states persists in the spontaneous emission intensity,
even if the excitation occurs over an indefinite period of time, provided that
the relative quantum phases are well-defined within the ensemble. Under con-
ditions where the experimenter has access to the atoms and source of excita-
tion, ensembles with maximum polarization |P | = 1, and minimum disorder
S = −(W/γ) ln(W/γ) can be produced by resonant amplitude modulation
of the rate of excitation of nondegenerate states or by external field-induced
degeneracy of states excited at a constant rate. Quantum interference in stim-
ulated emission contributes to the correlation of intensity fluctuations of the
light field and also might serve to indicate coherent excitation of individual
atoms under conditions where the observer has access only to the radiation
and not to the atoms or source of excitation.

If the quantum phases vary randomly at each instant over the ensemble,
quantum interference effects do not appear directly in the fluorescent inten-
sity. In both classical and quantum optics, interference terms may occur in
the second-order coherence resulting from correlations between the light from
different atoms. Unlike the quantum beats from coherently excited individual
atoms, the latter beats are affected by the distribution of atomic velocities.

2.6 Coherence of Thermal Electrons

Although still to be worked out more completely and tested experimentally,
the quantum optics of particles with mass is an emerging counterpart to that
of light, yet embraces processes for which no light optical analogue actually
exists [62]. Thermal electrons for example, like thermal photons, may also
give the impression of being randomly emitted, yet arrive correlated in space
and time at one or more detectors. There are marked differences, however, in
the clustering behavior of thermal electrons and photons owing to differences
in particle number conservation, the tensorial character (vector vs. spinor) of
the basic fields, and the applicable quantum statistics [63]. The correlations
of electrons, or more generally any fermionic system, in contrast to those of
photons, requires a quantum description at the very outset, for with only one
fermion per quantum state, as required by the Pauli exclusion principle, there
is simply no classical wave theory of fermions.

It is instructive to examine the coherence of thermal electrons, which is
a system as fundamental to the study of particles as black-body radiation
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is to the study of light. Massive particles like electrons and neutrons, al-
though subject to a different quantum statistics than that of photons, give
rise under comparable conditions to diffraction-interference patterns that are
indistinguishable, except for wavelength scale, from those of light. Dennis Ga-
bor, who received the Nobel Prize in physics for his researches in electron
microscopy leading primarily, however, to the development of optical hologra-
phy, commented on this point some thirty-five years after quantum mechanics
was created, in referring to “the almost complete identity of light optics and
electron optics” [64]. The identity is only an apparent one, arising from the
circumstance that quantum interference effects produced with free beams of
massive particles have been characterized, until relatively recently, only by the
first-order correlation function (in effect, the intensity) of the particle field.
Such experiments involve the self-interference of single-particle wave packets
and are insensitive to multiparticle effects governed by quantum statistics.

The coherence properties of black-body radiation were studied during the
1960s by Bourret [65] and by Wolf and his colleagues [66]. Bourret has pointed
out that optical coherence functions depend in general upon both the proper-
ties of the source and the geometrical relations between source and detector.
Only in the case of black-body radiation, however, do the coherence functions
depend solely upon the intrinsic statistical properties of the photons, and are
completely determined by the single physical parameter, temperature, apart
from relative coordinates. Thermal electrons constitute a physical system of
similar theoretical significance. In the general case, the coherence functions
are parameterized by both temperature and chemical potential, the latter
quantity being an implicit function of temperature and particle density.

One principal distinction between thermal radiation and thermal electrons
is that the chemical potential of photons is identically null. This reflects the
important fact that the number of black-body photons within an enclosure is
not conserved. For a nondegenerate electron system, the chemical potential is
small compared to the thermal energy, and the coherence functions are then
parameterized primarily by temperature alone. In this case, the analogy to
black-body radiation is close; the coherence time is basically the same for both
the electron and photon systems at a given temperature. There still remain, of
course, explicit quantum-statistical distinctions arising from a sign difference
in the particle distribution function. For a highly degenerate electron system,
the chemical potential is an explicit function of the particle density alone; the
coherence time is then essentially independent of temperature and determined
only by the chemical potential. These points will be elucidated shortly.

A second principal distinction between the coherence functions of thermal
radiation and thermal electrons lies in their tensorial character. The basic
fields (E, H) of electromagnetism are vector-valued functions; the resulting
two-point second-order correlation functions are second-order tensors. The
basic electron field is a spinor-valued function. The electron second-order cor-
relation function, however, can be effectively considered a scalar quantity be-
cause electrons of opposite spin orientation are uncorrelated.
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Consider now the matter of spectral distribution and coherence times. As
in the case of thermal radiation, an examination of the energy distribution
of thermal electrons leads to order-of-magnitude estimates of the characteris-
tic coherence parameters. These parameters also emerge naturally in a field-
theoretical analysis of the second-order coherence of a thermal-electron field.
The coherence time of an electron field is, in essence, the reciprocal of the
energy spread, or

τc =
�

ΔE
=

1
Δω

, (2.101)

where, for nonrelativistic electrons of mass m, the relation εp = p2/2m be-
tween the single-electron kinetic energy and momentum leads to the dispersion
relation

ωk =
εp
�

=
�k2

2m
(2.102)

between angular frequency and wave number.
The average internal energy U per volume V of a system of thermal elec-

trons is given by the quantum statistical expression

u ≡ U

V
=
∫

εg(ε)dε
eβ(ε−μ) + 1

= C

∞∫

0

E(x)dx , (2.103)

in which

g(ε) =
(2m)3/2ε1/2

2π2�3
(2.104)

is the mode density, including a degeneracy factor 2S + 1 = 2 because elec-
trons have spin quantum number S = 1/2. The Fermi–Dirac statistical factor
[eβ(ε−μ) + 1]−1 is the mean particle number per mode, and is distinguished
from the comparable function for bosons by the plus sign in the denomina-
tor. The second equality in (2.103) re-expresses the energy density u as the
product of a constant

C =
(2m)3/2

2π2�3β5/2
=

√
2
π

kBT

λ3
T

, (2.105)

with the dimension of energy (kBT ≡ 1/β) per volume (λ3
T ) and a dimension-

less integral whose integrand

E(x) =
x3/2

ex−βμ + 1
(2.106)

is a function of the dimensionless parameter x = βε. (Regrettably, the sym-
bol β is traditionally employed by physicists to represent both a thermal
parameter inversely proportional to temperature and a dynamical parameter
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proportional to velocity; the context should make it clear, however, how β
is used in this chapter.) The characteristic length in (2.105) is the electron
thermal wavelength

λT ≡ h√
2πmkBT

=
(

2π�
2β

m

)1/2

, (2.107)

which sets the scale at which multiparticle quantum effects become important.
This is the case when the particle density is sufficiently high that more than
one particle is likely to be found within a region of volume λ3

T .
Figures 2.7 and 2.8 show the evolution in form of the density (2.106) as

a function of x as the electron system goes from low degeneracy (or high
temperature), βμ < 1, to high degeneracy (or low temperature), βμ 1. For
the low-degeneracy system, one can verify either analytically or by examining
the plots, that the maximum value of E(x) occurs in the vicinity of x = 2,

Fig. 2.7. Spectral distribution of a low-degeneracy thermal-electron system; x is
the dimensionless variable βε with β = (kBT )−1. The curves are labeled by the
dimensionless parameter βμ: (a) 0, (b) 0.6, (c) 1.0, (d) 1.5, (e) 2.0

Fig. 2.8. Spectral distribution of a degenerate thermal-electron system. The curves
are labeled by the dimensionless parameter βμ: (a) 10, (b) 20, (c) 30, (d) 40, (e) 50
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and that the spread between half-maximum points is approximately Δx ∼ 3.
It then follows from (2.101) that the coherence time of the field is adequately
estimated by

τ (nd)
c =

�β

Δx
∼ 1

3
�β . (2.108)

Thus, for a nondegenerate thermal-electron system, the coherence time is of
the order of �β, which is also the case for a system of thermal radiation in an
equilibrium enclosure.

The situation is quite different for a system of degenerate thermal elec-
trons, as shown in Fig. 2.8. To be noted are the considerably larger ordinate
and abscissa values in comparison with Fig. 2.7, and especially the very rapid
descent of E(x) with x in the region beyond the point xmax ∼ βμ at which E(x)
reaches its maximum value. Since the point below βμ at which E(x) reaches
half its maximum value is approximately 0.63βμ, it follows that Δx ∼ 0.4βμ,
and the coherence time of the degenerate system is then

τ (deg)
c =

�β

Δx
∼ �

0.4μ
. (2.109)

Thus, the coherence time of a highly degenerate thermal-electron system is of
the order �/μ and independent of temperature, since the chemical potential
depends in this case only on particle density. Currently available sources of
thermal electrons almost certainly fall in the nondegenerate category. To pro-
duce coherence times on the order of the response times of the fastest particle
detectors (order of picoseconds) would require source temperatures of a few
kelvin [τ (nd)

c (1 K) ∼ 2.5 ps].
Consider next the second-order correlation function of thermal electrons.

For a spin-polarized electron field characterized by a density matrix

ρ
(
(k1, s1), . . . , (kn, sn)

)
=

n∏

i=1

fsi(ki) (2.110)

that factors into a product of single-particle momentum (or energy) states,
the second-order correlation function can be shown to take the form

g
(2)
pol(ξ, τ) = 1 − F (ξ, τ) , (2.111)

where ξ, τ are respectively the relative spatial and temporal coordinates of
two points in the field. The coherence function

F(d)(ξ, τ) =
∣
∣
∣g(1)(ξ, τ)

∣
∣
∣
2

=

∣
∣
∣
∣∣
f(k)kei(kξ cos θk+ωkτ)dV (d)

k∫
f(k)kdV (d)

k

∣
∣
∣
∣∣

2

, (2.112)

which is the squared modulus of the first-order correlation function, is a quan-
tum interference exchange term arising from the indistinguishability of the
electrons. For an idealized one-dimensional (d = 1) electron beam, the vol-
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ume element is dV (1)
k = dk and θk = 0 in the exponent, whereas for

a three-dimensional (d = 3) electron gas, the volume element is dV (3)
k =

2π sin θkk2dkdθk. Since electrons of opposite spin are uncorrelated, the second-
order correlation function of an unpolarized electron field is

g(2)unp(ξ, τ) = 1 − 1
2
F (ξ, τ) . (2.113)

In view of the preceding remarks on spin orientation and correlation and
the trivial modification of g(2) for a spin-unpolarized field, it is permissible
in the following discussion to neglect spin further (or, equivalently, to con-
sider the system perfectly polarized). The basic field is then the scalar-valued
electron wave function, and the second-order correlation function is likewise
a scalar. Under these circumstances, the single-particle momentum weighting
function fs(k) in (2.110) and (2.112) is independent of spin orientation and
given simply by the Fermi–Dirac statistical factor [eβ(εk−μ) + 1]−1 with εk
expressed in terms of k by the nonrelativistic dispersion relation (2.102). One
sees immediately from (2.111), (2.112) that g(2)(0, 0) = 0, which expresses
the antibunching of fermionic particles. For ξ or τ large in comparison to the
coherence parameters of the system, F approaches 0 and g(2) approaches 1,
indicative of uncorrelated particles.

Consider first the temporal correlation function obtained by evaluating
(2.112) in the case of ξ = 0. The solid angle within which the electrons are
confined drops out of the expression, and one is left with an integral of the
form (for d = 1 or 3)

I(d)(τ) =
∫

kdeiωkτdk
eβ(�ωk−μ) + 1

.

Integrals like this one are frequently encountered in the quantum statistics of
fermionic systems. Although in general they cannot be reduced to closed-form
analytical expressions, procedures exist for transforming them into expressions
more convenient for analytical, numerical, and graphical evaluation. These
details in the present case, while straightforward, are tedious and must be
left to the original literature [67]. In brief, the integration variable is changed
from momentum to energy (i.e., from k to ω), and the resulting integral of
the form

J =

∞∫

0

F (ω)dω
eβ(ω−μ) + 1

is transformed into

J =

μ∫

0

F (ω)dω +
1
β

⎡

⎣
∞∫

0

F (μ+ β−1x)dx
ex + 1

−
βμ∫

0

F (μ− β−1x)dx
ex + 1

⎤

⎦ .

The factor (ex + 1)−1 can be rewritten as 1− (1− ex)−1 and expanded in the
infinite series

∑∞
n=0(−1)nxn, whereupon the integrations over x can then be
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performed, giving rise to expressions recognizable as, or bearing a resemblance
to, generalized Riemann zeta functions

ζ(u, v) ≡
∞∑

n=0

(v + n)−u , Re(u) > 1, v �= 0,−1,−2, . . . . (2.114)

Application of the foregoing procedure to I(d)(τ) leads to an intermediate
expression

J =

μ∫

0

eiωτdω +
eiω(τ/τdeg

c )

β

⎡

⎣
∞∫

0

eix(τ/τnd
c )dx

ex + 1
−

βμ∫

0

e−ix(τ/τnd
c )dx

ex + 1

⎤

⎦ ,

in which the ratio of the correlation time delay τ to the nondegenerate coher-
ence time τnd

c = �β and to the degenerate coherence time τdeg
c = �/μ both

naturally appear. In the case of a nondegenerate thermal electron system, the
analysis leads to the approximate analytical expressions

F(1)(τ) =
∣
∣
∣∣
Φ1(τ/�β)

ln 2

∣
∣
∣∣

2

, (2.115)

F(3)(τ) =
∣
∣
∣
∣
12
π2
Φ2(τ/�β)

∣
∣
∣
∣

2

(2.116)

for the coherence functions, in which

Φ1(t) =

∞∫

0

eitxdx
ex + 1

=
∞∑

n=1

(−1)n−1(n− it)−1 , (2.117)

Φ2(t) =
∞∑

n=1

(−1)n−1(n− it)−2 = ζ(2,−it) − 1
2
ζ(2,−it/2) . (2.118)

At t = 0, the phi functions reduce to Φ1(0) = ln 2 and Φ2(0) = π2/12.
The corresponding coherence functions for the case of a highly degenerate
(βμ 1) electron system take the form

F(1)(τ) =
sin2(τμ/2�)
(τμ/2�)2

, (2.119)

F(3)(τ) =
8

(τμ/�)4

[
1 +

1
2

(τμ
�

)2

−
(
cos
τμ

�
+
τμ

�
sin
τμ

�

)]
. (2.120)

The expressions for intermediate degeneracy are cumbersome and will not be
given here.
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Figures 2.9 and 2.10 show the variation in g(2)pol(0, τ) = 1 − F (0, τ) as
a function of τ/�β for one- and three-dimensional systems, respectively, for
increasing values of βμ that lead from nondegeneracy to high degeneracy. The
plots were obtained by direct numerical integration of the integrals defined
by (2.112). As already noted, the correlation functions are null at zero delay
time, in marked contrast to the behavior of thermal radiation for which the
correlation function is 2 at τ = 0, indicative of the property of bosons to
bunch in phase space. For delay times long in comparison to the coherence
time, the correlation functions of both electrons and photons approach 1,
the value expected for uncorrelated particles. At a fixed temperature (β),

Fig. 2.9. Temporal variation of the second-order correlation function for a one-
dimensional thermal-electron beam as a function of the dimensionless ratio of delay
time to (nondegenerate) coherence time τc = �β. The plots correspond to different
values of βμ: (a) 0, (b) 1.0, (c) 5.0, (d) 10, (e) 50

Fig. 2.10. Temporal variation of the second-order correlation function for a three-
dimensional thermal-electron gas as a function of the dimensionless ratio of delay
time to (nondegenerate) coherence time τc = �β. The plots correspond to different
values of βμ: (a) 0, (b) 1.0, (c) 5.0, (d) 10, (e) 50
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the greater the chemical potential, the faster the correlation function rises
from the temporal region where quantum effects of particle correlation are
significant to the region where the correlations are entirely random.

Consider next the spatial correlation function obtained by evaluating
(2.112) in the case of τ = 0. The defining integrals, after integrating over
the angular variable in the three-dimensional case, can be cast into the forms

I(1)(ξ) =

∞∫

0

ei(ξ/ξc)xdx
ex−βμ

, (2.121)

I(3)(ξ) =
(
ξ

ξc

)−1
∞∫

0

sin
[
(ξ/ξc)x1/2

]
x1/2dx

ex−βμ
, (2.122)

in which

ξc =
β�

2

2m
(2.123)

is the spatial coherence length l(nd)
c for a nondegenerate system, as can be

seen by rewriting (2.123) as l(nd)
c = vτ (nd)

c where v =
√
kBT/2m is a measure

of the root-mean-square thermal speed. For a highly degenerate system, the
integrals in (2.121), (2.122) can be evaluated approximately by the procedure
previously outlined, and lead to expressions (which will not be given here)
that depend on the variable ξ/l(deg)

c , where

l(deg)
c =

�√
2mμ

= vFτ (deg)
c (2.124)

is the spatial coherence length for a degenerate system and vF =
√

2μ/m is
the speed of electrons at the Fermi energy μ.

Fig. 2.11. Spatial variation of the second-order correlation function for a one-
dimensional thermal electron beam as a function of the dimensionless ratio of retar-
dation to (nondegenerate) coherence length lc =

p
�2β/2m. The plots correspond

to different values of βμ: (a) 0, (b) 1.0, (c) 5.0, (d) 10, (e) 50
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Fig. 2.12. Spatial variation of the second-order correlation function for a three-
dimensional thermal electron gas as a function of the dimensionless ratio of retar-
dation to (nondegenerate) coherence length lc =

p
�2β/2m. The plots correspond

to different values of βμ: (a) 0, (b) 1.0, (c) 5.0, (d) 10, (e) 50

Figures 2.11 and 2.12 show the variation of g(2)pol(ξ, 0) = 1 − F (ξ, 0) as
a function of ξ/ξc for one- and three-dimensional systems, respectively, for in-
creasing values of βμ. The plots were again obtained by numerical integration
of the defining integrals, and show spatial properties similar to the temporal
properties represented in Figs. 2.9 and 2.10.

2.7 Comparison of Thermal Electrons
and Thermal Radiation

Past researches have shown that thermal radiation exhibits coherence in a suf-
ficiently small space-time region. One early verification of the second-order co-
herence of thermal radiation is that of the intensity interferometry of starlight
by Hanbury Brown and Twiss [68]. A system of thermal electrons is a fermionic
analogue to black-body radiation, and its second-order coherence properties
are likewise significant for the theoretical insights they provide and the poten-
tial applications to electron microscopy and various electron devices. Although
the first-order coherence functions of massive particles and radiation are vir-
tually identical in mathematical form for a given experimental configuration,
there are marked differences between thermal electrons and thermal radiation
with regard to second-order correlations. These differences derive primarily
from particle conservation, tensor character of the basic fields, and quantum
statistics.

Because the mean energy of thermal radiation at equilibrium depends only
on temperature, the chemical potential μ = (∂U/∂N)S,V of a photon gas is
identically zero, and photons can be emitted or absorbed at the walls of the
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enclosure at no cost of energy. Thus, the number of photons is not conserved.
By contrast, for a system of electrons in thermal equilibrium, particle con-
servation is tantamount to the conservation of electric charge, a law that has
never been known to be violated. Apart from relative coordinates, the electron
correlation functions depend on both temperature and chemical potential. For
a nondegenerate system, βμ � 1, the coherence time is effectively �β, and
the coherence length is essentially v�β, where v is the r.m.s. thermal speed.
In a highly degenerate system, the coherence time is �/μ, and the coherence
length is essentially vF�/μ, where vF is the mean electron speed at the Fermi
energy. Both parameters depend only on particle density, independent of tem-
perature. There is no radiation analogue to this case.

The basic electromagnetic fields are vector-valued functions and lead to
two-point correlation functions that are elements of a second-order tensor. The
basic electron field is a spinor-valued function, which leads to scalar correlation
functions because electrons of opposite spin orientation are uncorrelated.

The second-order correlation function is sensitive to the quantum statistics
that govern the aggregational behavior of the particles for temporal or spa-
tial intervals short compared with the appropriate coherence times or lengths.
Thermal radiation manifests the phenomenon of boson bunching, i.e., the cor-
relation function is greater than unity for time intervals short compared with
the coherence time and falls to unity for long time intervals. Thermal elec-
trons manifest the phenomenon of antibunching, i.e., the correlation function
is less than unity for time intervals short compared with the coherence time,
and rises to unity for long intervals.

Experimental verification of the correlations discussed in this section would
provide new kinds of tests of the wavelike properties, exchange antisymmetry,
and quantum statistics of a multifermion system. Such experiments, however,
have been very difficult to do because of the unavailability of suitable fermion
(primarily electron or neutron) sources. A number of the predictions from
the quantum analyses I first made in the 1980s, which will be examined in
the following chapter, have yet to be tested, while laboratory confirmation of
others have only relatively recently been achieved.

As a final matter of consideration, it is worthwhile to note that the correl-
ations exhibited by a particular class of particles are not necessarily intrinsic
to those particles. Quantum statistics requires that a boson state vector be
symmetric under particle exchange, but photon bunching is not a general
property of photons, since radiation states can also be constructed for which
photons are uncorrelated or anticorrelated. This fact has long been known.
Much less widely known, however, is that a similar circumstance prevails for
fermions. Although thermal electrons – and, in general, ‘chaotic’ fermionic
systems, i.e., systems characterized by a density matrix, like (2.110), diagonal
in a momentum–spin basis – manifest antibunching, other fermion ensembles
are conceivable that can exhibit other types of clustering behavior [69].
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2.8 Brighter Than a Million Suns:
Electron Beams from Atom-Size Sources

The statistical properties of optical fields have been an active area of investi-
gation since first stimulated by the pioneering experiments of Hanbury Brown
and Twiss in the 1950s. As already pointed out, these experiments demon-
strated correlations in intensity fluctuations and in photon arrival times of
partially coherent light beams. In the parlance of optical coherence theory,
the HBT experiments manifest the second-order coherence characteristics of
light deriving from wave noise (in the imagery of classical optics), or photon
clumping (in the imagery of quantum optics). This property of light is to
be contrasted with first-order coherence which, both classically and quantum
mechanically, refers to fringe contrast in an interference pattern.

The wave–particle duality intrinsic to all particles, suggests that what can
be done with light should also be feasible with massive particles, and, in-
deed, intensity interferometry has been used in nuclear physics to investigate,
for example, the geometry of the emission region in high energy nuclear reac-
tions [70]. The relativistic heavy ion beams employed in these experiments are
basically incoherent, and the hadronic interactions to which they give rise are
not sufficiently understood to permit theoretical calculation of the two-particle
correlation functions. Such a source would not be suitable for quantum inter-
ference experiments of the kind to be described in the following chapter. What
is needed is a bright, coherent, charged or neutral (depending on particular
experiment) fermion source whose physical interactions are well understood.
Practically speaking, this means an electron source. Weak interaction phe-
nomena aside, the behavior of electrons (and positrons) is completely speci-
fied by quantum electrodynamics. What are the prospects, then, of observing
quantum correlations of electrons with currently available beams of electrons?

It is well beyond the scope of this chapter to consider the details of all
experimental difficulties that must be surmounted, but one conceptually im-
portant issue merits close attention. First and foremost, it is necessary to have
a source for which there is a reasonable probability of obtaining correlated par-
ticles. Loosely speaking, the wave functions of two particles should in some
sense overlap at the time of production (although it must be stressed again
that classical images can be misleading, especially when employed to explain
quantum effects of multiparticle states). All familiar electron sources – includ-
ing the most coherent, such as the field-emission electron source – produce
for the most part single-particle states. This is not simply a matter of beam
intensity – i.e., a large electron accelerator in place of an electron microscope
would not necessarily solve the problem – but a question of beam brightness ,
which is related to the concept of degeneracy, referred to earlier, but not yet
precisely defined. It is worth examining more quantitatively the connections
between the brightness, coherence, and degeneracy of a particle source.

Although the concept of brightness can be rigorously delineated [71], I
adopt here the widely employed experimental definition of mean brightness B
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as the current density j (current per unit area normal to the beam) emitted
into solid angle Ω. Thus, the number of particles received in a time interval
Δt within a solid angle ΔΩ through a detecting surface ΔA can be written
as

Δn =
B

e
ΔAΔtΔΩ , (2.125)

where e is the particle charge. The quantities preceded by Δ are to be re-
garded as sufficiently small (strictly speaking, infinitesimally small) that par-
ticle direction, location, and arrival time are reasonably well defined. The
beam degeneracy δ is defined in the equivalent, expression based on the flux
of unpolarized spin-1/2 particles with momentum p and speed v in phase
space

Δn = (mean number of particles per cell of phase space)

×(number of occupied cells)

= δ
(

2ΔpxΔpyΔpzΔxΔyΔz
h3

)
= δ

(
2(p2ΔpΔΩ)(vΔtΔA)

h3

)
. (2.126)

It is the degeneracy parameter that governs the performance of electron in-
terferometers and fundamentally determines the magnitude of quantum in-
terference effects involving electron correlations [72]. The factor 2 in (2.126)
takes account of the two spin degrees of freedom. Comparison of (2.125) and
(2.126) leads to the expression

B = δBmax , (2.127)

where the maximum brightness

Bmax =
2evp2Δp
h3

=
2ep2Δε
h3

=
2eΔε
hλ2

(2.128)

occurs for degeneracy parameter δ = 1. Conversion of the momentum dis-
persion Δp into energy dispersion Δε by means of the relativistically exact
relation ε2 = p2c2 +m2c4 leads to the second equality in (2.128). The third
equality follows from substitution of the de Broglie relation p = h/λ specify-
ing the electron wavelength. For nonrelativistic electrons (Δε = pΔp/m), the
maximum brightness can be conveniently expressed in terms of kinetic energy
and energy dispersion

B(nr)
max =

4meεΔε
h3

. (2.129)

From (2.127) and the various expressions for Bmax, the essential dependences
of the degeneracy parameter on beam characteristics can be summarized as
follows:

δ = B
h

2e
λ2

ΔE
= B

m

2e
λ3

Δp
∼ B h3

4me
1
εΔε

. (2.130)
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Since the components of a split wave packet interfere to the extent that
they occupy the same region of phase space, one can express the volume of
a cell in phase space in terms of the (longitudinal) coherence length lc ∼
vtc and (transverse) coherence area Ac ∼ l2t of the beam by the relation
(p2ΔpΔΩ)(lcAc) = h3 in which the coherence time and coherence lengths
were defined in the previous chapter. Use of (2.127), (2.128) and the definition
of B then leads to an equivalent expression for degeneracy

δ ∼ j

e
Actc , (2.131)

interpretable as the mean number of particles per coherence time traversing
a coherence area normal to the beam.

To understand better the connections between occupation probability,
brightness, and degeneracy, it is useful to examine the practical case of
thermionic emission of electrons from a metal surface (Richardson effect),
schematically represented in Fig. 2.13. In the absence of an external electric
field, the electrons fill all states up to the Fermi level εF of a square-well poten-
tial of depth W , an approximation suitable for purposes of illustration. The
work function φ is the energy required to escape the surface, which electrons
acquire through thermal interaction with the environment as in the evapora-
tion of molecules from the surface of a liquid. The rate of electron emission
per unit surface area is given by the expression

d2N

dtdA
=

2(2π)
h3

∞∫

√
2mW

dpz
pz

m

∞∫

0

ptdpt
1

eβ(εn+εt−μ) + 1
, (2.132)

Fig. 2.13. Schematic diagram of the potential energy of electrons in a metal whose
surface is located in the plane z = 0. Electrons fill all levels up to the Fermi level
εF. In the absence of an electric field, the work function φ is the energy required
to escape the surface of a square-well potential of depth W . An external electric
field E = −Eẑ and electron image field reduces the work function to φ′ and tapers
the walls of the potential, thereby increasing the probability of electron evaporation
(thermionic emission) or quantum tunneling (field-emission). Coordinates z0 and z1

denote, respectively, the point of maximum potential and the second classical turning
point at which the total energy (ε) of an electron equals the potential energy
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in which the first factor of 2 is the spin degeneracy, the product

dA
pzdt
m

(2πpzptdpt)

h3

is the number of occupied cells in phase space expressed in terms of electron
momentum normal to the surface (pz) and transverse to the surface (pt), and

1
eβ(εn+εt−μ) + 1

is the Fermi–Dirac mean occupation per mode of total energy ε = εn + εt,
where εn = p2z/2m, εt = p2t/2m, and β = 1/kBT . The integral can be re-
expressed exclusively in terms of the normal and transverse energies to give
the current density

j = e
d2N

dtdA
= e

∞∫

W

dεn

∞∫

0

dεtP (εn, εt) = e

∞∫

0

dε′n

∞∫

0

dεtP (ε′n, εt) (2.133)

as an integral over a joint probability density with

P (εn, εt) =
4πm
h3

1
eβ(εn+εt−μ) + 1

or P (ε′n, εt) =
4πm
h3

e−β(εn+εt+φ) .

(2.134)
To go from the first relation to the second in (2.134) it is useful to recall
that Boltzmann’s constant corresponds to about 1 eV per 12 000 K, and the
chemical potential of metals is ordinarily a few electron volts. Thus, the tem-
perature of the electron gas within the solid phase of a metal is effectively at
0 K, and one can equate the Fermi energy εF to the chemical potential μ. (An
expression for the chemical potential of the electron gas within a metal at low
temperature, or equivalently at high degeneracy, is derived in Appendix 2B.)
Next, define ε′n = εn−W , which shifts the origin of energy so that the normal
kinetic energy is measured from 0, and recognize that W − μ = φ. Since the
argument β(ε′n + εt + φ) of the exponential in the first relation of (2.134) is
much greater than unity, we can neglect the 1 in the denominator to obtain the
second form of the probability density which looks exactly like what one would
get by using Maxwell–Boltzmann (MB) statistics instead of Fermi–Dirac (FD)
statistics. However, MB statistics are valid for the condition εF � kBT , i.e.,
opposite that pertaining to the electron gas in a metal, and do not lead to the
correct prediction of the current density, which from (2.133), (2.134), is

j =
4πme
h3

(kBT )2e−φ/kBT . (2.135)

The refractory metal tungsten, with work function φ = 4.5 eV, chemical
potential μ ∼ 8 eV, and melting point of nearly 3700 K, is frequently employed
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as a thermionic emitter. Applied to tungsten at temperatures T = 2500 K and
3000 K, (2.135) leads to current densities 0.65 and 30.2 A/cm2, respectively.

The axial brightness of a source is the current density per solid angle into
which the particles are emitted, in the limit of vanishing transverse energy,
Bc = (djc/dΩ)εt→0, where the subscript c signifies evaluation at the location
of the source (cathode). To implement this derivative, note that the solid
angle defined by a cone of apex angle θ is Ω(θ) = 2π(1 − cos θ) ∼ πθ2, where
the approximation holds for θ � 1 (as is required for a well-defined electron
beam). Thus the differential solid angle

dΩ ∼ 2πθdθ ∼ 2π
pt
pz

dpt
pz

∼ πdεt
ε′n

can be expressed in terms of the differential transverse energy dεt, leading to
dεt = ε′ndΩ/π which is substituted in the integral (2.133) defining the current
density j. It then follows that the axial brightness of a thermionic emitter is

Bc =
e

π

∞∫

0

P (ε′n, 0)ε′ndε
′
n =

4πme
πh3

(kBT )2e−β/kBT =
jc
π
. (2.136)

Figure 2.14 shows the variation in Bc for a thermionic emitter with φ =
4.5 eV as a function of temperature. Within the range of temperatures (2500 K
to 3000 K) at which tungsten can be thus employed, the brightness varies
between approximately 1 and 10 A/cm2sr.

To estimate the theoretical maximum brightness of an electron source
from (2.129), and ultimately the degeneracy, we need the mean energy and

Fig. 2.14. Brightness of a tungsten thermionic source (φ = 4.5 eV) as a function of
emitter temperature for conditions of (a) no accelerating voltage, and (b) an accel-
erating voltage of 150 kV. Dotted lines mark brightnesses of 1 and 105 Acm−2sr−1;
the dashed line marks a lower bound to the temperatures at which the source would
likely be used
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energy dispersion. The joint probability density (2.134) leads to the marginal
probability densities

Pn(ε′n) =

∞∫

0

P (ε′n, εt)dεt

∫ ∫
P (ε′n, εt)dεtdε

′
n

= βe−βε′
n , (2.137)

Pt(εt) =

∞∫

0

P (ε′n, εt)dε
′
n

∫ ∫
P (ε′n, εt)dεtdε

′
n

= βe−βεt , (2.138)

and to the probability density for the total energy ε = ε′n + εt

Pε(ε) =

ε∫

0

Pn(ε− εt)Pt(εt)dεt = β2εe−βε , (2.139)

which is the convolution of the two marginal densities. (The probability den-
sity of the sum of two random variables is derived in Appendix 2C.) Using
(2.139), one can show that the mean and mean-square electron energies are

〈ε〉 =

∞∫

0

εPε(ε)dε = 2β−1 , (2.140)

〈ε2〉 =

∞∫

0

ε2Pε(ε)dε = 6β−2 , (2.141)

and the corresponding energy dispersion is

Δε =
√
〈ε2〉 − 〈ε〉2 =

√
2β . (2.142)

The degeneracy parameter calculated from (2.130) is then

δ =
e−βφ

2π
√

2
∼ e−βφ

10
. (2.143)

Figure 2.15 shows the variation in δ as a function of temperature. At the upper
end of the useful temperature range for a tungsten emitter, the degeneracy
reaches a maximum of the order of 10−8.

The presence of a static electric field can enhance brightness in two dis-
tinctly different ways by (1) changing the shape of the potential energy well,
thereby increasing the rate of electron emission, and (2) modifying the factors
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Fig. 2.15. Field-free degeneracy as a function of temperature for a thermionic
electron source with work function φ = 4.5 eV. The dotted line marks a maximum
degeneracy of about 10−8 at the upper limit of the temperature range of the source

of the phase-space density of electrons accelerated after emission. Consider
the second process first.

Liouville’s theorem, applied to a beam of electrons emitted along the z axis
with mean speed v from a transverse area dS, maintains that the phase-space
density

(d3xd3p) = (dSvdt)(p2dpdΩ) ∝ ε′ndSdε′ndΩ

is constant along the axis. Thus, comparing the phase-space density at the
cathode (c) to the corresponding density at an axial location (a) where elec-
trons have been accelerated to a potential V , one finds

ε′ndScdΩc = (ε′n + eV )dSadΩa ,

which, by (2.136), leads to the relation

Ba = Bc(1 + βeV ) (2.144)

between the brightnesses at the two locations. For thermionic electrons emit-
ted from a 3000 K cathode and accelerated to 150 kV, the brightness enhance-
ment is approximately eV/kBT = 6 × 105.

In the second process, a static electric field perpendicular to the metal sur-
face, as shown in Fig. 2.13, contributes a term −eEz to the potential energy
outside the surface, reshaping the wall of the potential well from a horizontal
‘step’ to a triangular ‘wedge’. Moreover, an emitted electron at a distance z
outside the surface interacts with its positive image charge within the metal
a distance z from the surface, contributing an additional term −(e2/4πε0)/4z
to the potential energy. The net result is a potential energy function in the
form of a ‘rounded’ wedge with maximum value −e3/2E1/2/

√
4πε0 at a dis-

tance

z0 =

√
e/4πε0

4E
.
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The dynamical effect of these two contributions is a reduced work function

φ′ = φ− e
3/2E1/2

√
4πε0

,

which leads, by an analysis identical to the one resulting in (2.135), to a larger
current density

j(E) = j(0) exp
e3/2E1/2

√
4πε0

(2.145)

and corresponding brightness. At a field of 108 Vm−1, beyond which (2.145)
is no longer likely to be valid, the brightness of a field-assisted thermionic
beam would be enhanced by a factor of about 5.81 at T = 2500 K and 4.33
at T = 3000 K. This is helpful, but not a huge increase.

Beyond 108 Vm−1, however, a different field-induced process predomi-
nates, as schematically indicated in Fig. 2.13. Instead of a vertical transition
out of the potential well, corresponding to thermally-induced electron evapo-
ration, an electron can make a horizontal transition through the potential by
quantum tunneling. This is the process of field-emission, the theory of which
was first developed by Fowler and Nordheim for the case of the triangular
wedge potential [73] and subsequently generalized by Nordheim to include
the electron image potential [74]. The Fowler–Nordheim (FN) theory of field-
emission, which entails the solution of the Schrödinger equation in the WKB
(Wentzel–Kramers–Brillouin) approximation will not be examined in detail
here, but it will be instructive to consider the theoretical predictions to which
it leads.

As a baseline for comparison with thermionic emission, we consider the
fundamental case of cold-cathode emission, in which the temperature of the
filament is effectively at 0 K. In contrast to the previous case of thermionic
emission, in which an emitted electron has energy in excess of μ + φ, an
electron tunneling through the potential barrier will have energy less than μ.
According to the FN theory, the joint probability density that an electron has
kinetic energy of motion normal to the surface between εn and εn + dεn and
kinetic energy of motion transverse to the surface between εt and εt + dεt
takes the form [75]

P (εn, εt) =
4πm
h3

e−ce−(μ−εn)/d

1 + e−β(μ−εn−εt)
−→
T→0

4πm
h3

e−ce−(μ−εn)/d , (2.146)

where μ ≥ εn ≥ 0 and μ− εn ≥ εt ≥ 0, and

c =
4
3

(
φ

eEξ

)3/2

, d =
1
2

(eEξ)3/2

φ1/2
, ξ =

(
�

2

2meE

)1/3

. (2.147)

The field-dependent length ξ is defined by the relation eEξ = �
2/2mξ2, which

is interpretable as an application of the work–energy theorem to an electron
which has penetrated a distance ξ through the potential barrier.
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From (2.146) one can calculate by the same procedure used in the case of
thermionic emission, the current density

jFN =
4πme
h3

d2e−c (2.148)

and brightness

B =
1
π
jFN

μ

d
=

4me
h3
μde−c . (2.149)

Comparison of (2.148) and (2.135) suggests that the quantity d plays the role
in field-emission that kBT plays in thermionic emission with an analogous
correspondence between c and φ/kBT . Equation (2.146) leads to the marginal
probability density for εn

Pn(εn) =
μ− εn
d2

e−(μ−εn)/d (2.150)

and to the probability density for total energy

Pε(ε) =
1
d
e−(μ−ε)/d , (2.151)

from which follow the mean energies

〈ε〉 = μ− d , 〈ε2〉 = μ2 − 2μd+ 2d2 , 〈εn〉 = μ− 2d , (2.152)

and total energy dispersion

Δε =
√
〈ε2〉 − 〈ε〉2 = d . (2.153)

The quantity d is therefore interpretable as either the mean transverse energy
〈εt〉 = 〈ε〉 − 〈εn〉, or the dispersion in total energy. In the calculation of the
preceding mean values, the inequality μ/d  1 was employed to eliminate
terms containing the exponential e−μ/d. For cold-cathode field emission from
tungsten, for example, d is a few tenths of an electron volt, and μ/d ∼ 20.

Substitution of the above values of 〈ε〉 and Δε into expression (2.129) for
the maximum brightness leads to a degeneracy parameter

δFN ∼ e−c , (2.154)

to be compared with relation (2.143). Figure 2.16 shows the variation in
brightness and degeneracy as a function of the external electric field strength.
Field emission begins to be significant at fields of about 2 × 109 V/m or
0.2 V/angstrom. At the very high, but still achievable, field of 1 V/angstrom,
a brightness of ∼ 2×107 A/cm2sr and degeneracy of ∼ 8×10−4 are predicted.
Cold-cathode field-emission leads to the brightest and most coherent electron
beams currently available. Experimentally, the brightness, and therefore the
degeneracy, can be obtained directly from measurements of current density
and solid angle or indirectly from coherence parameters inferred from an in-
terference pattern [76]. In the case of a coherent beam such as required for
interferometry, the latter procedure is to be preferred.

Of all the known types of particle sources, field-emission electron sources
are the brightest known, considerably brighter even than the Sun or linear
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Fig. 2.16. Variation in brightness B (in A cm−2sr−1) and degeneracy δ of an elec-
tron field-emission source as a function of electric field (1 V/Å = 1010 V/m) as cal-
culated from the Fowler–Nordheim theory. On the left scale, the dotted lines mark
unit brightness and B = 107.3 which occurs at 1 V/Å. On the right scale, the dotted
lines mark degeneracies of 10−10 (corresponding to a tungsten thermionic emitter
at 2500 K) and 8.4 × 10−4 (corresponding to a tungsten field emitter at 1 V/Å)

Table 2.2. Characteristics of a high-voltage field-emission electron beam

Energy ε 105 eV

Energy dispersion Δε 0.3 eV

Wavelength λ 4 × 10−10 cm

Coherence time tc 1.4 × 10−14 s

Current density j 3.3 × 1013 e cm−2s−1

Angular divergence α 1.3 × 10−7 rad

Transverse coherence length lt 1.5 × 10−3 cm

Coherence area Ac 2.2 × 10−6 cm−2

Brightness 108 Acm−2sr−1

6 × 1026 e cm−2s−1sr−1

Degeneracy δ 10−6

accelerators or synchrotron/wiggler/undulator systems. For example, from
knowledge of the total solar irradiance (∼ 1367 W/m2 measured at the top
of the Earth’s atmosphere) [77], the solar radius (∼ 7 × 108 m), and the
Earth–Sun distance (∼ 1.5 × 1011 m), one can estimate a solar brightness
of approximately 1010 erg s−1cm−2sr−1, which translates into roughly 1021

photons s−1cm−2sr−1, assuming a photon wavelength of 500 nm (peak of the
solar emission spectrum). By contrast, as seen from Table 2.2, the brightness of
a standard 100 kV field-emission microscope7 is of the order of 108 Acm−2sr−1

7 It is to be noted that the 100 kV is the accelerating potential, not the extraction
potential. Because the actual cathode in a field-emission microscope is a very
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or about 6 × 1026 electrons s−1cm−2sr−1. Moreover, from (2.128), the maxi-
mum brightness potentially achievable for an electron source of the specified
energy dispersion and wavelength is about a million times greater.

Nevertheless, a higher brightness does not insure a greater degeneracy
in comparisons between different types of sources. Examination of (2.130)
shows that the beam degeneracy is also proportional to the square of the
wavelength for a fixed energy dispersion-and optical wavelengths are much
longer than the de Broglie wavelength of electrons from field-emission sources.
Unlike photon sources for which the degeneracy parameter can be many orders
of magnitude – about 104 for an ordinary 1 mW HeNe laser, and in excess
of 1016 for a ruby laser8 – the maximum fermion degeneracy is unity. In
practice, thermal neutron and thermal electron sources have a degeneracy
parameter many orders of magnitude smaller than one, and even in the case
of a 150 kV field-emission source the degeneracy is only about 10−6–10−4.
It is the low fermion degeneracy that prompted Gabor to comment on the
“almost complete identity of light optics and electron optics”, as previously
noted. Still, the situation is improving.

An area of development that augurs well for the interferometry of corre-
lated electrons is the fabrication of ultrasharp field-emission tips emitting elec-
trons from one or at most a few surface atoms [79]. Such ‘nanotips’, illustrated
schematically in Fig. 2.17, are expected to produce brighter, and therefore
more degenerate, beams than previous field-emission tips – perhaps by two or
more orders of magnitude. The nanotip consists of a small protrusion or ‘teton’
of nanometer size produced at the end of a sharp tungsten needle of a kind
generally employed in scanning tunneling microscopes. In the method initially
developed for making single-atom emitters, a tungsten atom is deposited onto
a trimer of atoms in the (111) plane at the end of a tungsten needle previously
prepared by controlled field evaporation of the apex. Other methods have been
subsequently developed that employ heat treatment and diffusion of atoms at
the apex. Interestingly, as I was completing this chapter, a research group
at the National Institute for Nanotechnology in Edmonton, Canada, reported
the fabrication of the sharpest needle ever made – radius of curvature less
than 1 nm – by a new method employing the controlled reaction of nitrogen
gas with atoms at the tungsten tip [80]. A striking image of the end of such

sharp pointed tip, a much lower potential can generate the requisite high elec-
tric fields needed for extraction. Also, the Fowler–Nordheim theory, which treats
an idealization of the field-emission process, actually understates the achievable
current densities for a given field strength.

8 The degeneracy of a quasi-monochromatic laser source of power P , frequency ν,
and bandwidth Δν or pulse width τ is effectively the number of photons δ =
Ptc/hν emitted in a coherence time tc = 1/Δν or τ . Thus, a continuous-wave
HeNe beam of wavelength 633 nm and spectral width 0.2 nm can be shown to
have a degeneracy of approximately 2.14× 104. A ruby laser producing a train of
5 mW pulses each of 1 μs duration at 694 nm emits about 1.8× 1016 photons per
pulse. See, for example, [78].
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Fig. 2.17. Idealized model of a field-emission electron nanotip consisting of
a nanometer-size protrusion or ‘teton’ on top of a larger supporting cylindrical tip
similar to that designed for scanning tunneling microscopes. The dimensions of the
nanotip are typically the following: teton height H1 ∼ 3 nm and radius R1 ∼ 1 nm;
base length H2 and radius R2 ∼ 100 nm, and shank angle θ ∼ 10◦

a sub-nanotip, as recorded by field ion microscopy, is shown in Fig. 2.18. The
image was part of a motion picture made by the group, which captured the
displacement of surface atoms during the one-second period of recording.

Fig. 2.18. Atomic-resolution field ion microscope image of the tip of the sharpest
tungsten needle ever made at the time of writing. Small spheres show individual
atoms; smearing at the tip reveals atomic displacement during the imaging time
of approximately 1 s. The tip comprises sequential layers, separated by 0.22 nm,
of stacked spheres, beginning with a single atom of radius 0.15 nm at the apex.
(Courtesy of R. Wolkow)
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2.9 Correlations and Coincidences:
Experimental Possibilities

All things being equal, the greater the degeneracy of the source, the more suit-
able is the source for use in experiments probing higher-order (than one) coher-
ence effects of matter. The degeneracy of the arc light source employed by HBT
in experiments demonstrating photon correlations was about 10−3. Although
low, sufficient statistics were accumulated in approximately 10 hours of count-
ing to demonstrate the sought-for bosonic correlations. With nanometer-sized
field-emission tips of brightness approximately 1010 Acm−2sr−1, one would
have electron sources of degeneracy comparable to that of the light source
employed by HBT. The observation of electron correlations may be difficult,
but, Gabor’s remark notwithstanding, not outside the realm of possibility.

Given an appropriate source, at least four types of experimental ap-
proaches could in principle be employed to manifest electron correlations.
One could count electrons arriving at a single detector to determine:

• the variance in the number of counts about the mean, or
• the conditional probability of receiving a second electron at a predeter-

mined time interval after having detected a first.

Alternatively, one could count electrons at two detectors to determine:

• the correlation in fluctuations in the numbers of counts received within
the same time interval, or

• the number of coincidences as a function of a time delay in one of the input
channels.

There are practical differences in implementation of the different approaches,
and the theoretically expected ratio of signal (i.e., fermionic deviation from
random particle statistics) to noise (the random background counts), for
a given total counting time can differ substantially among them.

Consider, as an illustration, a simple, if somewhat idealized, experiment
involving coincidence counting at two detectors, as illustrated in Fig. 2.19.
Suppose that a field-emission source emits spin-polarized electrons at a rate
of RS particles per second. Two detectors (D1, D2), assumed to be 100%
efficient, are located symmetrically about the optic axis of the source, and
each subtends a solid angle Ω at the source, leading to a count rate of R1 =
R2 = RSΩ ≡ R particles/sec. A coincidence results whenever one of the
detectors receives a particle within a specified interval of time – the detector
resolution or response time tr – of the prior arrival of a particle at the other
detector. In the experiment envisioned here, the number of coincidences is
recorded as a function of the time interval τ = t1 − t2 between the arrival of
a ‘start’ particle at D1 and a ‘stop’ particle at D2.

If particles were emitted randomly and without any correlation, one would
nevertheless expect a certain number of accidental coincidences. With particles
arriving at the rate R1 at detector D1, the counting circuitry will be active
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Fig. 2.19. Schematic diagram of coincidence-counting experiment. Electrons emit-
ted from a source S arrive at detectors D1 and D2. The number of coincident arrivals
within the resolution time tr of the apparatus is registered by a correlating device
C as a function of delay time τ . The counters will be coherently illuminated by the
source if they are positioned well within a transverse coherence length (as determined
by a separate two-slit interference experiment indicated by the dashed diffraction
pattern)

for a fraction R1tr of the total counting time t. Thus, the fraction of the R2

particles/sec that will accidentally arrive at detector D2 with time separation
τ is Ra = R2R1trP0(τ), where P0(τ) is the probability that no particle is
emitted within τ . Therefore, after a total counting time t, the number of
accidental coincidences will be

Na = Rat = R2R1trtP0(τ) = N1N2
tr
t
P0(τ) . (2.155)

Field-emission of electrons is for the most part a Poissson process whereby
the probability that n particles are emitted within a certain time interval τ is
Pn = e−nnn/n!, in which n = R|τ | is the mean number of particles emitted
in that interval. It therefore follows that the probability that no particle is
emitted during the interval – or, equivalently, the probability of receiving
a second particle τ seconds after receipt of a first – is P0 = e−n. Thus, the
number of accidental coincidences to be expected is

Na(τ) = N1N2
tr
t
e−R|τ | . (2.156)

Because electrons are fermions, the probability that a second electron will
be emitted into a coherence area within an interval τ of the first, is less than
that predicted by Poisson statistics. Ideally that probability is 0 for τ = 0 and
approaches unity as |τ | greatly exceeds the coherence time of the source. The
exact dependence of the probability on τ is given by the second-order correl-
ation function, which, for a field-emission source, takes the form of (2.111),
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g(2)(ξ, τ) = 1 − F (ξ, τ), with the coherence function F (ξ, τ) = |g(1)(ξ, τ)|2
given by (2.112) under the currently assumed experimental conditions of
a 100% polarized electron beam and two detectors situated an equal distance
from the source within a coherence length of one another (ξ = 0). The actual
number of coincidences would then be

Nc(τ) = N1N2
tr
t
e−R|τ |[1 − F (τ)

]
, (2.157)

if the detectors (and associated circuitry) could respond instantaneously,
which of course is not possible. Thus the coincidence count must be aver-
aged over the resolution time of the detector

〈Nc(τ)〉 =

τ+tr/2∫

τ−tr/2

Nc(τ ′)FD(τ − τ ′)dτ ′ , (2.158)

where we will adopt a detector window function

FD(t) =
1
tr

{
1 |t| ≤ tr ,
0 |t| > tr ,

(2.159)

of the same form as the spatial aperture function previously used in Chap. 1
[see (1.57) and (1.58)]. For an unpolarized electron beam, the coherence func-
tion in (2.157) must be multiplied by 1/2.

The temporal coherence function F (τ) of a field-emission source modeled
by the Fowler–Nordheim theory is calculable from the probability density
(2.151)

F (τ) =

∣
∣
∣
∣∣
∣
∣
∣
∣∣
∣
∣

1
d

μ∫

0

e−(ε−μ)/de−iετ/�dε

1
d

μ∫

0

e−(ε−μ)/ddε

∣
∣
∣
∣∣
∣
∣
∣
∣∣
∣
∣

2

=
1 + e−2μ/d − 2e−μ/d cos(μτ/�)

1 + (dτ/�)2
,

(2.160)
or

F (τ) −→
μ/d�1

t2c
t2c + τ2

, (2.161)

where definition of the coherence time tc = d/� was employed in the reduc-
tion (2.161) for a beam of sharply defined energy. One can readily perform
the integral (2.158) analytically by treating the exponential factor e−R|τ | in
(2.157) as a constant and removing it from the integrand. This will have lit-
tle effect on the value of the integral because the exponential factor is very
close to unity for τ close to 0 (where electron correlation is important) and
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approaches 0 at large delays (where electrons are essentially uncorrelated).
The averaged coincident count is then

〈Nc(τ)〉 = N1N2
tr
t
e−R|τ |[1 − 〈F (τ)〉] , (2.162)

where convolution of the coherence function with the detector response func-
tion leads to

〈F (τ)〉 =
tc
tr

(
tan−1 τ + tr/2

tc
− tan−1 τ − tr/2

tc

)
. (2.163)

For zero delay and a short response time compared to the coherence time,
〈F (τ)〉 ∼ 1; for a long response time, which is the condition applicable to all
experiments to date with free electron beams, 〈F (τ)〉 ∼ πtc/tr ≡ t0/tr. Then
〈F (τ)〉 vanishes in the limit τ → ∞ irrespective of the response and coherence
times.

Figure 2.20 shows plots of the logarithm of the coincidence count (2.162)
as a function of τ for a decreasing sequence of response times. The plot in
Fig. 2.20a portrays the purely Poissonian statistics of uncorrelated particles,
the straight lines of equal positive or negative slope corresponding to whether
the initiating particle was received by detector D1, whereupon τ > 0, or by
D2, for which τ < 0. The drop in coincidence counts around τ = 0 in plots
Figs. 2.20b through d is greater the closer the response time approaches the
coherence time. Values of this ratio were chosen to accentuate the fermion
anticorrelation beyond what is currently realizable in the laboratory.

Fig. 2.20. Theoretical variation of electron coincidence counts as a function of
delay time τ for different ratios of apparatus response time to coherence time tr/tc:
(a) ∞, (b) 20, (c) 10, (d) 6. The linear rise and decline shown in (a) marks an
incoherent source whose particle emission is governed by Poisson statistics. The
decrease in coincidences around τ = 0 in (b), (c), (d) signifies electron antibunching.
For purposes of comparison, the number of coincidences is divided by N0 = N2tr/t,
where N is the number of particles at each detector in time t = 1 hour from an
incident coherent particle current of ∼ 10−8 A
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The signal of interest, which is the difference between the total number of
coincidences and the accidental number of coincidences observed in a counting
time t, is

S(τ) = 〈Nc(τ)〉 − 〈Na(τ)〉 = N1N2
tr
t
e−R|τ |〈F (τ)〉 . (2.164)

At τ = 0, the signal assumes its largest value, which our model is

S(0) = N1N2
tr
t
〈F (0)〉 = N1N2

2tc
t

tan−1 tr
2tc

. (2.165)

Whether this difference count is statistically significant or not depends on
how it compares to the fluctuations in the number of accidental coincidences,
which we quantify by the root-mean-square value

ΔNa =
√
N2

a −Na
2 ∼

√
N1N2

(
N1 +N2

) tr
t
. (2.166)

The second (approximate) relation in (2.166) was derived by treating the
fluctuations at the two detectors as uncorrelated Poisson processes with mean
counts much larger than unity. A comparison of the signal in (2.165) to the
‘noise’ in (2.166) thus leads to

S

N
=

√
N1N2

N1 +N2

tr
t
〈F (0)〉 −→

√
Rt

2
t0
tr
, (2.167)

where the second expression in (2.167) results from assuming symmetric
counting rates at the two detectors and a resolution time long in compar-
ison to the coherence time. From (2.167) it follows that the total counting
time required (under the ideal conditions assumed for this illustration) to
achieve a given signal-to-noise ratio is

t =
2(S/N)2

R

(
tr
t0

)2

. (2.168)

I leave to Appendix 2D an analogous treatment of the experimental procedure
to observe the cross-correlation in fluctuations of electron counts at two detec-
tors, which would be a fermionic counterpart to the HBT optical experiment
manifesting a correlation between photons in two coherent beams of light [39].

In the 1980s, I began to examine the prospects of observing the antibunch-
ing of electrons and other manifestations (discussed in the following chapter) of
quantum interference resulting from the antisymmetry of multi-fermion wave
functions. The feasibility of detecting the fermionic contribution in autocor-
relation, cross-correlation, and coincidence experiments with electron beams
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was marginal, but not hopeless, as would have been (and still is) the case with
beams of neutrons and other elementary or composite fermions. Few labora-
tories were equipped to perform such experiments, and, to my knowledge, the
attempt to observe fermionic correlations with electron beams was pursued
principally by two groups in friendly rivalry, one led by Franz Hasselbach
at the University of Tübingen, and the other comprising Michael Scheinfein,
John Spence, and me at the NSF High-Resolution Electron Microscope Facil-
ity at Arizona State University. Regrettably, the second group had to abandon
the experiments when anticipated funding was not forthcoming.

With progress in electronic microfabrication techniques, electron anti-
bunching was eventually observed in the correlation of currents in small
solid-state devices [81] (which I discussed in a previous book, A Universe
of Atoms [82]). In such devices, where electrons fill nearly all levels up to the
Fermi level, the degeneracy approaches unity, and manifestations of fermion
quantum statistics are more readily demonstrable. Nevertheless, there are ad-
vantages to the use of free beams in many types of experiments. It is a tribute
to the persistence of the Tübingen group that in 2002, more than a decade
after I visited Dr. Hasselbach to discuss the initiation of such experiments,
he and his associates successfully observed the anticorrelations of free elec-
trons by means of coincidence measurements with a low-voltage field-emission
beam [83].

The electron-optical apparatus of the Tübingen experiment resembled
a miniature version of the HBT stellar interferometer. A 900 eV beam of elec-
trons with effective dispersion of 0.13 eV was focused by quadrupole lenses so
as to produce an elliptically shaped beam of coherent electrons. With the ma-
jor axis of the ellipse oriented so that it passed through the centers of the two
detectors (in a configuration like that of Fig. 2.19), the entire surface of each
detector was coherently illuminated. However, with the ellipse rotated 90◦,
the detectors were only partially coherently illuminated. A statistically signif-
icant difference (3 standard deviations) between the number of coincidences
obtained under the two conditions manifested the antibunching of electrons.

With a coherent particle current R = 4.7 × 109 electrons/sec and a co-
herence time of t0 = 3.25× 10−14 s, the beam degeneracy was approximately
δ = Rt0 = 1.5×10−4. The theoretically expected fractional reduction in coin-
cidences within the time-resolution window tr = 26×10−12 s of the apparatus
can be estimated from (2.156) and (2.165) to be

Na −Nc

Na
∼ t0
tr

=
Rt0
Rtr

=
δ

Nr
= 1.2 × 10−3 ,

in accord with the experimental result.
Although the effect seen is still weak, the experiment represents an impor-

tant first step towards realizing the experimental prototypes of the following
chapter that manifest new quantum interference effects involving correlations
of particles.
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Appendix 2A Consequences of Spectral Width
on Photon Correlations

In real light sources, the photon spectrum is not infinitely sharp, but is broad-
ened by various physical mechanisms like spontaneous decay, collisional in-
teractions, and the presence of a nonuniform electric or magnetic field. An
examination of the effect of spectral broadening on the correlation function,
(2.14), reproduced below

P12(θ, θ2) = cos2(θ1 − θ2) cos2
[
1
2
ωαβ

(
Δt− Δz

c

)]
, (2A.1)

is instructive, for it reveals to what extent spectral broadening may degrade
the perfect correlation produced by monochromatic waves. The simple case
to be analyzed here is that in which the frequencies of the correlated photons
are governed by a Gaussian spectral profile

f(ω) =
1√
2πσ

e−(ω−ω0)
2/2σ2

, (2A.2)

with central angular frequency ω0 and width σ. The spectral average of the
correlation function (2A.1) is simplified by the fact that it is the frequency
difference ωαβ = ωα − ωβ that appears in the argument of the cosine. Thus,
rather than performing separate integrations over the frequency distribution
of each photon of the pair, we can use the properties of a Gaussian distribution
to determine from (2A.2) the frequency distribution of the difference of two
normal random variables. In the case of a random variable ω = ωα − ωβ,
with both terms in the difference governed by the distribution (2A.2), the
distribution of the difference frequency takes the form9

f
(
ω
)

=
1√

2π(
√

2σ)
e−ω2/4σ2

. (2A.3)

In other words, ω itself is a normal random variable of zero mean and standard
deviation

√
2σ.

Averaging the correlation function (2A.1) by means of the spectral distri-
bution (2A.3) leads to

〈P12(θ1, θ2)〉ω =
1
2

cos2(θ1 − θ2)
[
1 + e−2σ2(Δt−Δz/c)2

]
, (2A.4)

9 A normal random variable X of mean μ and standard deviation σ, represented
symbolically by N(μ, σ2), is uniquely defined by its moment-generating function

(mgf) gX(t) = 〈eXt〉 = eμt+σ2t2/2, in which the angular brackets signify the
operation 〈h〉 =

R
h(ω)f(ω)dω. The mgf of the difference of two random variables

Y = X1−X2 is the product gY (t) = gX1(t)gX2(−t). If X1 and X2 are independent

random variables distributed according to N(μ, σ2), then gY (t) = e2σ2t2/2 and
Y = N(0, 2σ2). For a comprehensive discussion of moment-generating functions
and the statistics of functions of normal random variables, see [84].
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where the subscript ω explicitly denotes an average with respect to fre-
quency. Recall that the parenthetical expression in the exponent of (2A.4)
is the difference in the retarded time intervals of detection, i.e., τ = τ1 − τ2,
in which τi = ti − zi/c, i = 1, 2. If correlated photon pairs are produced
at the rate 1/T , then the time-average of the correlation function (2A.4)
yields

〈P12(θ1, θ2)〉ω,τ =
1
T

T∫

0

〈P12(θ1, θ2)〉ωdτ

σT�1−→ 1
2

cos2(θ1 − θ2)
(

1 +
√
π

2
√

2σT

)
. (2A.5)

Thus, if the product of the spectral width and production time interval is
sufficiently large that the second term in the bracketed expression of (2A.5)
can be neglected, the pair correlation function reduces to one-half that for
a monochromatic beam of entangled photons. The result (1/2) cos2(θ1−θ2) is
what one would have obtained initially by not symmetrizing the state vector
in (2.6); i.e., not taking account of the invariance of the state vector under
particle exchange.

Appendix 2B Chemical Potential at T = 0 K

At T = 0 K, the chemical potential μ is equal to the Fermi energy, the
highest level filled by a system of N fermions of mass m in a volume V . Since
the Pauli exclusion principle limits the number of fermions in each distinct
quantum state to 0 or 1, the number of fermions filling all levels to μ is equal
to the product of the number of states per cell of phase space (degeneracy
factor g = 2S + 1 = 2 for spin-1/2 particles) by the number of filled cells, or

N = g
∫

d3xd3p

h3
=

2(4π)V
h3

pF∫

0

p2dp =
8πp3F
3h3

V , (2B.1)

where pF is the Fermi momentum. Thus, the Fermi momentum and number
density of particles n = N/V are related by

pF =
(

3h3n

8π

)1/3

= (3π2
�

3n)1/3 . (2B.2)

The nonrelativistic expression for chemical potential is then

μ =
p2F
2m

=
(3π2

�
3n)2/3

2m
. (2B.3)
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Tungsten is a chemical element with molar mass 184 g, specific gravity 19.25,
and (for purposes of this illustration) 2 outer-shell electrons. The number
density of conduction electrons in tungsten is then approximately

n = (2 e/atom)×(NAv atoms/mol)×(1 mol/0.184 kg)×(1.93 × 104 kg/m3)

= 1.26 × 1029 m−3 ,

leading to μ = 1.46×10−18 J = 7.7 eV, where NAv ∼ 6.02×1023 is Avogadro’s
number.

The exact relativistic expression for chemical potential will play an impor-
tant part in the physics of neutron stars and black holes which I will discuss
in the last chapter.

Appendix 2C Probability Density
of a Sum of Random Variables

Consider the random variable Z = X+Y , which is a sum of two independent
random variables with respective probability densities pX(x) and pY (y). As
is frequently the convention in statistical analyses, upper-case letters will des-
ignate random variables and corresponding lower-case letters will designate
the realizations or values that the variable can have. We assume that X and
Y can range over the entire set of real numbers. If a random variable, let
us say X , is restricted to a given range (e.g., just positive numbers), then
the probability density pX(x) can be defined to be 0 outside the specified
range.

By definition, the cumulative probability that Z is less than or equal to
a certain value z is then

P (Z ≤ z) =

Z∫

−∞
pZ(z′)dz′ = P (X + Y ≤ z)

=

∞∫

−∞
pX(x)dx

z−x∫

−∞
pY (y)dy . (2C.1)

From the first equality in (2C.1), it follows that the probability density pZ(z)
is obtained by taking the first derivative of the cumulative probability with
respect to z,

pZ(z) =
dP (Z ≤ z)

dz
=

∞∫

−∞
pX(x)PY (z − x)dx . (2C.2)
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The second equality in (2C.2) is a special case of Leibniz’s rule for differenti-
ating integrals

d
dx

b(x)∫

a(x)

f(x, y)dy =
db(x)
dx

f(x, b) − da(x)
dx

f(x, a) +

b(x)∫

a(x)

∂f(x, y)
∂x

dy .

Appendix 2D Correlated Fluctuations
of Electrons at Two Detectors

Consider a field-emission beam of 100% spin-polarized electrons (coherence
time tc) split so as to illuminate equally and coherently (at the rate R parti-
cles/sec) each of two detectors (D1 and D2) with the same response time tr. In
contrast to the previously treated case of coincidence counting, the procedure
now is for the counting circuitry associated with each detector to register all
particles that arrive within an interval tr, to multiply the two counts together,
and to repeat this operation over a large number of sequential intervals. The
experimental outcome of the acquired statistics is the cross correlation in
fluctuations ΔN1ΔN2, where the mean-square fluctuation in counts at each
detector takes the form

(ΔNi)2 = N i

(
1 −N i〈F 〉

) ≈ N i

(
1 −N i

t0
tr

)
(i = 1, 2) , (2D.1)

in which the mean counts achieved in time t are N1 = N2 = Rt, and the
average of the coherence function over the response time (tr  tc) is 〈F 〉 ∼
πtc/tr ≡ t0/tr.

To evaluate the cross-correlation in fluctuations we employ an insightful
method of reasoning applied by Purcell [44] to the original HBT intensity
interferometry experiment. Imagine connecting the two detectors together to
form a single detector that has registered a total of N = N1 + N2 counts.
Then the variance in this total count would be

(ΔN)2 = (ΔN1 + ΔN2)2 = (ΔN1)2 + (ΔN2)2 + 2ΔN1ΔN2 , (2D.2)

as well as have the form of (2D.1)

(ΔN)2 = N
(
1 −N〈F 〉) . (2D.3)

Substitution of (2D.1) into (2D.2) and comparison with (2D.3) gives immedi-
ately

ΔN1ΔN2 = −N1N2〈F 〉 . (2D.4)
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For the signal (2D.4) to be statistically significant, it must be detectable
above the noise, which we quantify by the product of the root-mean-square
fluctuations at each detector

√
(ΔN1)2 (ΔN2)2 =

√
N1N2 , (2D.5)

estimated to good approximation by Poisson statistics. The resulting signal-
to-noise ratio is then

S

N
=

|ΔN1ΔN2|√
N1N2

=
√
N1N2〈F 〉 ≈ Rtt0

tr
. (2D.6)

The observing time t to achieve a desired S/N

t =
S/N

R

tr
t0

(2D.7)

is proportional to S/N and the ratio of resolving time to correlation time, in
contrast to the corresponding expression (2.168) for a coincidence-counting
experiment in which the observing time increases with the square of these
quantities.

One further point of interest is to consider an initially unpolarized electron
beam that is divided into two components of opposite 100% spin polarization.
In that case, (2D.3) for the combined detector outputs must be modified by
inserting a factor of 1/2 in the second term

(ΔN)2 = N
(

1 − 1
2
N〈F 〉

)
, (2D.8)

whereas the fluctuations of the polarized electrons at the individual detectors
expressed by (2D.1) remains unchanged. A repetition of the same mode of rea-
soning that led to (2D.4) now leads to ΔN1ΔN2 = 0, showing that electrons
of opposite spin are uncorrelated.
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Correlations and Entanglements II:
Interferometry of Correlated Particles

3.1 Interferometry of Correlated Particles

The quantum processes discussed in the first chapter involved exclusively the
self-interference of single particles passing through apertures or around obsta-
cles or either around or through an external field, depending on whether the
field in question was the magnetic field or vector potential. These variations
on the theme of Young’s two-slit experiment are all examples of the first-order
coherence of quantum particles. The Hanbury Brown–Twiss experiment, dis-
cussed in the previous chapter, was the first to manifest the second-order
coherence of light and provides a prototype for innovative ways to probe the
phenomena arising from multiparticle quantum states.

In the following sections I will consider examples of the interferometry of
correlated charged particles that combine various features of the basic Young’s
two-slit experiment, the Aharonov–Bohm (AB) effect, the Einstein–Podolsky–
Rosen (EPR) paradox, and the Hanbury Brown–Twiss (HBT) experiments.
These novel processes manifest simultaneously three distinct kinds of quantum
interference: (1) interference, dependent upon optical path length difference,
resulting from the wave-like propagation of particles (or, more accurately,
the wave-like description of particle ensembles); (2) interference, dependent
upon confined magnetic flux, resulting from particle charge and spatial topol-
ogy; and (3) interference, dependent upon quantum statistics, resulting from
particle indistinguishability under exchange. Although the self-interference of
single particle amplitudes has been called (by Feynman, especially) a mystery
that cannot be explained but only described mathematically, physicists have
lived with it long enough to develop an intuition for what is likely to occur
in given circumstances. However, the study of correlated particle interference
in vacuum or in the presence of potential fields is still sufficiently unexplored
theoretically and untried experimentally that results can be strange even by
the familiar standards of quantum mechanics.
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3.2 The Aharonov–Bohm (AB) Effect
with Entangled Electrons

It has been noted before in Chap. 1 that the AB effect is an intrinsically nonlo-
cal physical phenomenon in which the spatial distribution of particles diffract-
ing around the solenoid or toroid is modified by a magnetic field through
which the particles never pass. The nonlocal nature of this effect takes on
even stranger dimensions when produced in a context reminiscent of the EPR
paradox [85].

In all AB experiments performed to date, the interference pattern is ef-
fectively built up by transit of one particle at a time through the appara-
tus as with a Young’s two-slit experiment with weak light source. Consider,
however, an experimental configuration like that of Fig. 3.1 with two well
separated solenoids and a source that produces pairs of charged particles si-
multaneously. After production, the two particles separate, each propagating
around one of the regions of confined magnetic flux to be received afterward
at one of two local detectors. The charged particles, which we will suppose
to be electrons, are identical and cannot be distinguished, but are required
to be correlated in linear momentum – that is, if one particle propagates to-
ward a particular mirror to the right of the source (interferometer 1), the
other particle propagates toward a particular mirror to the left of the source
(interferometer 2).

To be correlated in this manner, the two electrons had to have once been
part of a common system. For example, perhaps the source contains a supply
of the exotic atomic species μ+e−e− (analogous to the H− ion). Upon decay of
the muon into a positron, neutrino, and antineutrino, the electrons, which are

Fig. 3.1. Hybrid Aharonov–Bohm and Einstein–Podolsky–Rosen (AB–EPR) ex-
periment. Electrons issue from source S in pairs with one electron entering inter-
ferometer 1 and the other electron, whose linear momentum is correlated with the
first, entering interferometer 2. The AB effect is manifested, not in the counts at
individual detectors, but only in the correlation of counts between one detector at
interferometer 1 and another detector at interferometer 2
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in a 1S0 ground state, would fly off in opposite directions in order to conserve
the total linear momentum of the system. Thus, if one electron propagated
toward mirror M1, the other would propagate toward mirror M2′ , and likewise
for the directions leading to mirrors M1′ and M2. There is nothing intrinsically
quantum mechanical about a system at rest splitting into two constituents
with the foregoing velocity correlation. It is worth noting, however, that this
particular correlation is not required, and that the essential physics would be
unchanged if a different momentum correlation were presumed.

We are interested in the following questions: What is the probability of
receiving an electron at a left-side detector D2 or D2′ given that an electron
was received at one of the right-side detectors, e.g., D1? And what is the
probability of receiving an electron at D1 irrespective of the detector to which
the other electron may have gone?

One may be tempted to answer these questions according to ideas and im-
agery drawn from classical physics that the two electrons – pictured perhaps
as mutually receding wave packets of some specified coherence length – prop-
agate independently (except for the velocity correlation posed by momentum
conservation) and cease to belong to a common system once the packet overlap
has become negligibly small. Then, since the experimental conditions are such
that each observer cannot tell by which pathway (source −→ mirror −→ de-
tector) a locally detected electron has gone around a solenoid, quantum inter-
ference should occur. The electrons, therefore, should give rise independently
to AB effects at each end of the double interferometer with a flux-dependent
probability of a form similar to that of (1.31)

Pj(Φi) = αj + βj cos
(
δj + 2π

Φi

Φ0

)
, (3.1)

where i = 1, 2, respectively, denotes the right-side or left-side solenoid, and j =
1, 1′, 2, 2′ designates one of the detectors; Φ0 = e/hc is the fluxon. Moreover,
the joint probability of particle detection – as for any independent events,
classical or quantum – would simply be the product of the corresponding
probabilities (3.1), e.g.,

Pj,k(Φ1, Φ2) = Pj(Φ1)Pk(Φ2) . (3.2)

Reasonable as it may appear, these deductions are not correct.
Let A(M1,M2;D1,D2) be the amplitude for propagation of one particle via

mirror M1 to detector D1 and the other particle via mirror M2 to detector
D2 with similarly represented amplitudes for the other pathways. Further, let
r1, t1 be the respective reflection and transmission amplitudes for a particle
incident on beam splitter BS1 from above and r′1, t

′
1 the corresponding ampli-

tudes for incidence from below. The analogous amplitudes for beam splitter
BS2 will be subscripted with 2. It may seem redundant to ascribe left-side
and right-side reflection and transmission amplitudes to a device (the beam
splitter) that is apparently symmetric under mirror inversion. Although it is
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indeed the case that the probability of a particle being transmitted or reflected
at a lossless beam splitter does not depend on whether the particle is incident
at one side or the other, the corresponding amplitudes for these two processes
can in fact differ by a relative phase. The origin of this phase may be traced
to the mathematical requirement that the transfer matrix (the elements of
which are the reflection and transmission amplitudes) connecting input and
output states must be unitary. As a consequence of this unitarity, one can
derive the relations [86]

rir
′
i − tit′i = |ri|2 + |ti|2 = 1 , r∗i t

′
i + t∗i r

′
i = 0 , (3.3)

with (i = 1, 2), from which it follows that

r′i = r∗i , t′i = −t∗i . (3.4)

On the basis of relations (3.3) and (2.7) one can take the reflection amplitudes
in the present case to be purely real (ri = r′i ≡ Ri) and the transmission
amplitudes to be purely imaginary (ti = t′i ≡ iTi).

The eight possible amplitudes for joint receipt of particles at the detector
pairs (D1, D2) or (D1, D′

2) are then expressible as

A(M1,M2; D1,D2) = R1R2 exp
[
i(α1 + α2)

]
, (3.5)

A(M1′ ,M2′ ; D1,D2) = −T1T2 exp
[
i(α1′ + α2′)

]
, (3.6)

A(M1,M2′ ; D1,D2) = iR1T2 exp
[
i(α1 + α2′)

]
, (3.7)

A(M1′ ,M2; D1,D2) = iT1R2 exp
[
i(α1′ + α2)

]
, (3.8)

A(M1,M2; D1,D2′) = iR1T2 exp
[
i(α1 + α2)

]
, (3.9)

A(M1′ ,M2′ ; D1,D2′) = iT1R2 exp
[
i(α1′ + α2′)

]
, (3.10)

A(M1,M2′ ; D1,D2′) = R1R2 exp
[
i(α1 + α2′)

]
, (3.11)

A(M1′ ,M2; D1,D2′) = −T1T2 exp
[
i(α1′ + α2)

]
, (3.12)

where the relative phases incurred by passage of a particle (with charge e) to
one side or the other of the solenoids with vector potential fields A1 and A2

take the form of relations (1.21), (1.22)

α1 =
e

�c

∫

path S→Mi→BSk

Ak · dsi , (3.13)

with k = 1 for i = 1, 1′ and k = 2 for i = 2, 2′. In order not to obscure the
principal physics of interest with more complicated notation than is necessary,
I have assumed that:

• the geometrical path lengths of the four specified pathways are equal,
• the mirrors contribute no differential phase shifts,
• the detectors have 100% efficiency.
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If the momentum correlation of the two particles corresponds to that required
by the conservation of linear momentum, i.e., back-to-back separation, then
the amplitude for joint detection of one particle at D1 and the other particle
at D2 (or D2′) is given by the linear superpositions

A(D1,D2) =
1√
2

[
A(M1,M2′ ; D1,D2) +A(M1′ ,M2; D1,D2)

]
, (3.14)

A(D1,D2′) =
1√
2

[
A(M1,M2′ ; D1,D2′) +A(M1′ ,M2; D1,D2′)

]
. (3.15)

The resulting probabilities of joint detection are then

P (D1,D2) = |A(D1,D2)|2 (3.16)

=
1
2

[
(R1T2)2 + (T1R2)2 + 2R1R2T1T2 cos

2π(Φ1 − Φ2)
Φ0

]
,

P (D1,D2′) = |A(D1,D2′)|2 (3.17)

=
1
2

[
(R1R2)2 + (T1T2)2 − 2R1R2T1T2 cos

2π(Φ1 − Φ2)
Φ0

]
,

where, by application of Stokes’ law,

Φ1 = α1 − α1′ , Φ2 = α2 − α2′ (3.18)

are the magnetic fluxes through interferometers 1 and 2, respectively. As indi-
cated by the sense of circulation of the vector potential fields in Fig. 3.1, the
flux Φ1 is positive for a magnetic field directed into the paper, and the flux Φ2

of the other solenoid is positive for a magnetic field directed out of the paper.
The joint detection probabilities of relations (3.16), (3.17) manifest a quan-

tum interference that depends on the difference of the magnetic fluxes in
solenoids 1 and 2. In other words, from the perspective of one of the observers
– let us say the one by detector D1 on the right side – the number of electrons
counted is influenced not only by the nearby solenoid, but also by the distant
solenoid around which the electrons received at D1 could not have propagated.
If the flux through solenoid 1 is null, i.e., Φ1 = 0, then the AB effect inferred
by the observer at D1 is attributable entirely to the flux Φ2 in the remote
solenoid.

The situation is in fact stranger still. Suppose the arrivals of the electrons
emitted into the interferometer on the left side are not observed. Then, from
(3.16), (3.17), the probability of detecting an electron at D1 irrespective of
the path taken by the corresponding electron of the pair is

P (D1) = P (D1,D2) + P (D1,D2′) =
1
2
, (3.19)

which is a constant and displays no quantum interference effect at all.
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Phrased somewhat differently, an observer counting electrons at D1 and
oblivious to the existence of other observers at D2 and D2′ – who may be
arbitrarily far away – will see no AB effect. Only when these particle counts
are correlated with those of a distant observer is the AB effect manifested.
Thus, the inferences drawn by the observer on the right are strongly influenced
by the measurements made (or not made) by a remote observer on the left.
And yet in either case, as seen from the perspective of the right-side observer,
it is the ‘same’ beam of electrons diffracting to one side or the other of his
solenoid.

Had the alternative correlation of electrons propagating via mirror pair
(M1,M2) or (M1′ ,M2′) been chosen, the resulting joint detection probabilities
would depend on different combinations of reflection and transmission ampli-
tudes, but the disappearance of the AB effect, as expressed in (3.19), would
not have changed. The essential condition is that the electron motion be cor-
related. If, however, the jointly produced electrons are uncorrelated , in which
case each pair of pathways from source to mirrors has equal probability, then
the resulting joint detection probability, as expected, is simply the product of
the single-particle detection probabilities for each detector

P (D1,D2) =
1
4

(
1 + 2

√
R1T1 sin

2πΦ1

Φ0

)(
1 + 2

√
R2T2 sin

2πΦ2

Φ0

)
, (3.20)

P (D1,D2′) =
1
4

(
1 + 2

√
R1T1 sin

2πΦ1

Φ0

)(
1 − 2

√
R2T2 sin

2πΦ2

Φ0

)
. (3.21)

In this case the probability of detecting an electron at D1 irrespective of the
fate of the companion electron now becomes

P (D1) =
1
4

(
1 + 2

√
R1T1 sin

2πΦ1

Φ0

)
. (3.22)

Equation (3.22) is a function of the magnetic flux of solenoid 1 only, as would
be expected for the ordinary single-solenoid AB effect with uncorrelated single-
particle wave packets. The appearance of a sine in (3.22) instead of a cosine
as in (3.1) merely reflects the 90◦ phase shift between the amplitudes for
reflection and transmission at a beam splitter.

In the foregoing example, the intrinsic spin of the correlated particles has
played no role. Consider an alternative experimental configuration, shown in
Fig. 3.2, in which the correlated paths of the particles are directly determined
by particle spin. This configuration has the interesting feature of distinguish-
ing fermions from bosons.

We suppose, as before, that the source produces two-particle singlet wave
packets, and that the first set of beam splitters BS1′ and BS2′ reflect spin-up
particles and transmit spin-down particles with 100% probability. This re-
sults in correlated paths between the source and detectors involving mirror
pair (M1 and M2′) for a spin-up particle propagating to the right and spin-
down particle propagating to the left, and mirror pair (M1′ and M2) for the
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Fig. 3.2. Alternative configuration of the AB–EPR experiment sensitive to particle
spin. The correlation in particle counts between one detector at interferometer 1 and
a second detector at interferometer 2 can reveal whether the particles are fermions
or bosons

opposite situation. The spin-statistics connection, however, gives rise to a rel-
ative phase of 0 (ei0 = +1) or π (eiπ = −1) between the amplitudes for the
direct and exchange processes depending on whether the particles are bosons
or fermions, respectively. The beam splitters BS1 and BS2 are not sensitive
to spin and have the reflection and transmission amplitudes R1, R2, iT1, iT2

as designated previously.
By an analysis largely the same as that of the experimental configuration

of Fig. 3.1 which is insensitive to spin, one may demonstrate that the prob-
abilities for joint arrival of particles at the detector pairs (D1, D2) and (D1,
D2′) are

P (D1,D2) =
1
2

[
(R1T2)2 + (T1R2)2 ± 2R1R2T1T2 cos

2π(Φ1 − Φ2)
Φ0

]
,

(3.23)

P (D1,D′
2) =

1
2

[
(R1R2)2 + (T1T2)2 ∓ 2R1R2T1T2 cos

2π(Φ1 − Φ2)
Φ0

]
,

(3.24)
where upper and lower signs of the interference terms, respectively, refer to
bosons and fermions. As before, the single-particle detection probability shows
no quantum interference, i.e., P (D1) = 1/2. Also, if the particles are again
uncorrelated in their motions – i.e., if one particle can take any available
pathway irrespective of the pathway taken by the other particle – then the
detectors on one side of the interferometer would register a quantum interfer-
ence effect independent of the detectors on the other side, and, of course, the
joint detection probability would factor just as in relation (3.2).

When looked at with expectations based on classical physics, there is a sort
of double irony in the outcomes of these proposed AB–EPR experiments. First,
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as with the ordinary AB effect, the local magnetic field through which electrons
do not pass can influence the electron spatial distribution. And second, the
distant magnetic field around which electrons do not pass can also influence
their spatial distribution. In other words, the act of not observing where
electrons go on one side of the interferometer apparently destroys the quantum
interference of the detected electrons on the other side of the interferometer.
There is no restriction in principle on how far apart the separated pairs of
electrons can be at the time of detection.

Although these results may seem to defy common sense – which they do
because common sense is rarely tutored by quantum mechanical experiences
– they are a direct consequence of the entanglement of the electron wave func-
tion as represented, for example, by expressions (3.14), (3.15). In general, the
wave function of a multiparticle system is entangled if it cannot be factored
into a product of single-particle wave functions. From the standpoint of quan-
tum mechanics, the entangled system of particles remains a single system,
despite subsequent separation of its components, until the entanglement is
destroyed by a measurement, thermal contact with the environment, or some
other external interaction.

3.3 Hanbury Brown–Twiss Correlations
of Entangled Electrons

In the first chapter, the AB effect was introduced by means of a Young’s
two-slit experiment with a flux-bearing solenoid inserted between the slits.
Let us now reconsider this experimental configuration modified, as shown in
Fig. 3.3, by the use of a source which generates pairs of electrons and the
addition of a second detector at the viewing screen [87]. Of interest is not
only the probability of electron arrival at each detector singly, but also, as in
the examples of the previous section, the joint probability of electron arrival
at two detectors. For this purpose, the outputs of the two detectors in Fig. 3.3
are schematically linked to a correlator characteristic of the HBT experiment.
In particular, we would like to ascertain the effect of the confined magnetic
flux on the probability of coincident electron detection.

If the AB and AB–EPR effects, as well as a general ‘feel’ for quantum
mechanics are any guide, one may think that the joint detection probability
will be some harmonic function of the confined magnetic flux. But quantum
mechanical intuition can be just as misleading as classical mechanical common
sense. If the AB effect is a subtle one, then the two-slit AB–HBT experiment,
which involves the quantum states of identical particles, is even more so and
illustrates strikingly the potential pitfalls of adopting too literally the visual
imagery of wave packets.

We assume again for simplicity – although the assumption can be readily
relaxed in a more general analysis – that the electrons produced by the source
are spin-polarized so they can interfere, and that one electron is to issue from
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Fig. 3.3. Hybrid AB–HBT experiment. Pairs of electrons issuing from source S
diffract around the solenoid and are rece4ived at two detectors whose outputs are
correlated. The electron antibunching revealed by the correlated counts in unaffected
by the magnetic flux, although the count rate of singly emitted electrons manifests
the AB effect

each slit and be received at each detector. By design of the apparatus, the
passage of two particles through one slit and none through the other can be
made negligibly small. Also, the arrival of two particles at one detector and
none at the other would give rise to a null coincidence count, and therefore
contribute nothing to the signal.

Unlike the momentum correlation required of the (spin-independent) AB–
EPR effect, the entanglement of the electrons in the present case arises in
an entirely different way. From a classical perspective, one can imagine two
alternative emission–detection processes:

• the arrival at detectors D1 and D2 of electrons that issued respectively
from slits 1 and 2,

• the converse situation with the particles exchanged.

Because it is impossible to distinguish these two alternatives experimentally
(without an intrusive observation that would disturb the system and destroy
the quantum interference), the correct quantum mechanical procedure re-
quires that the wave function characterizing the arrival of the electrons at
the two detectors be antisymmetrized under particle exchange as follows:

Ψ(1, 2) =
1√
2

[
φ1(D1)φ2(D2) − φ1(D2)φ2(D1)

]
(3.25)



120 3 Correlations and Entanglements II

where φi(Dj) represents the amplitude of the electron that has propagated
from the ith slit to the j th detector. In the absence of the solenoid, this
amplitude could be appropriately represented by a wave packet of the form

φi(Dj) =
∫
g(k) exp(iksij)dk ≡ ϕ(sij) , (3.26)

comprising a linear superposition of plane wave states of wave number k and
amplitude g(k) that have traversed a geometric path length sij between slit
and detector. In the presence of the vector potential field of the solenoid,
however, each single-particle amplitude is the product of two factors, one of
geometric and the other of magnetic origin

φi(Dj) = ϕ(sij) exp(iαij) , (3.27)

where, as in (3.13) and (3.18), the phase shifts engendered by the field of the
solenoid

αij =
e

�c

(∫
A · ds

)

source→slit i→detector j

(3.28)

are again related to the confined magnetic flux Φ by Stokes’ law

α11 − α21 = α12 − α22 =
e

�c
Φ =

2πΦ
Φ0

. (3.29)

The joint probability that one electron is received at each detector (to
which the coincidence count rate is proportional) is

P (D1,D2) = |Ψ(D1,D2)|2 , (3.30)

which, upon substituting relations (3.26)–(3.28) into (3.25), leads to an ex-
pression of the form

P (D1,D2) =
1
2

{
|ϕ(s11)ϕ(s22)|2 + |ϕ(s12)ϕ(s21)|2

− 2Re
[
ϕ(s11)ϕ(s22)ϕ(s12)∗ϕ(s21)∗

]}
. (3.31)

There is indeed a quantum interference term, but all dependence on the mag-
netic flux has vanished! The magnetic phase shifts for the direct and exchange
processes have mutually cancelled.

Suppose one of the detectors (e.g., D2) is turned off so that only electrons at
the other detector (D1) are counted. What the inactive detector now receives
is seemingly irrelevant, and it may therefore appear reasonable that the total
electron amplitude at the active detector is the linear superposition of electron
‘waves’ from slits 1 and 2, i.e.,

Ψ(D1) ∼ ϕ(s11) exp(iα11) + ϕ(s21) exp(iα21) . (3.32)
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It would then follow that the (appropriately normalized) single-particle de-
tection probability

P (D1) = |Ψ(D1)|2 (3.33)

=
1
2

{
|ϕ(s11)|2 + |ϕ(s21)|2 + 2Re

[
ϕ(s11)ϕ(s21)∗ exp(i2πΦ/Φ0)

]}

clearly depends on the confined magnetic flux. One must be careful, however.
Can it truly be the case that the AB effect occurs if one looks for electrons at
one location, and does not occur if one looks for electrons at two locations? If
so, the present example leads to an extraordinarily puzzling consequence which
I illustrate concretely by resorting to a monochromatic plane wave description
of the electrons. The above expressions for single and joint detection proba-
bilities then reduce to the following relations for electrons of wave number k :

P (D1) =
1
2

{
1 + cos

[
k(s11 − s21)2πΦ

Φ0

]}
, (3.34)

P (D2) =
1
2

{
1 + cos

[
k(s12 − s22)2πΦ

Φ0

]}
, (3.35)

P (D1,D2) =
1
2

{
1 − cos

[
k(s11 − s21 + s22 − s12)

]}
. (3.36)

By arranging experimental conditions so that the geometrical phases are

k(s11 − s21) = k(s22 − s12) = −π
2
,

that is, symmetrical location of D1 and D2 above and below the forward beam
direction, and adjusting the magnetic flux so that Φ/Φ0 = 1/4, one finds that
P (D1,D2) = 1, P (D1) = 1, and P (D2) = 0. How can it be that there is a 100%
coincidence count rate if the individual count rate at one of the detectors is
zero?

It is the inconsistent treatment of correlated and uncorrelated electron
states that lies at the origin of the foregoing paradoxical results. The probabil-
ities P (D1) and P (D2) are derived from single-particle relations (3.32), (3.33)
and therefore depict the case of uncorrelated electron propagation through
the two slits. Although it may seem reasonable, when only one of the two
detectors is registering particles, to imagine the electrons as arriving indepen-
dently at the detector in single-particle wave packets, this is not correct. The
joint probability P (D1,D2) for uncorrelated particles is simply the product
P (D1)P (D2) and is, as expected, a function of the magnetic flux.

For correlated electron pairs, however, the probability that one particle
arrives at a particular detector (D1) irrespective of the subsequent fate of
the unobserved companion electron is determined by integrating the joint
probability over the full coordinate range of the second detector. Thus, for the
special case of plane wave states, one can show that relation (3.36) leads to

P (D1) =

+∞∫

−∞
P (D1,D2)dD2 ∼ 1

2

[
1 − J0(kd) cos(kd sin θ)

]
, (3.37)
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where J0(kd) is the zeroth order Bessel function, d is the slit separation, and
θ is the angle (with respect to the forward direction) of detector D1 seen
from the midpoint between the slits. (As in the case of ordinary Fraunhofer
diffraction, the approximate far-field relation s21 − s11 ∼ d sin θ has been as-
sumed.) Relation (3.37) does not depend on magnetic flux and cannot vanish
for nonvanishing P (D1,D2). Whether or not an actual coincidence experiment
of the type proposed manifests a flux dependence therefore depends on the
quantum composition of the electron beam, i.e., on the nature of the particle
correlations. This point will be discussed further in the next section.

Although emphasis has so far been placed on the effect (or non-effect) of
the isolated magnetic field, the physical implication of the interference term
displayed in (3.31) or (3.36) is also of interest, for it is exhibits the electron
avoidance behavior referred to as antibunching in the previous chapter. The
joint probability of coincident electron detection vanishes when D1 is coinci-
dent with D2, i.e., s11−s21 = s12−s22. In contrast to the bunching of photons
manifested in the HBT experiments, indistinguishable electrons tend not to
arrive in pairs.

3.4 Correlated Particles
in a Mach–Zender Interferometer

The Young’s two slit configuration represents what in optics is termed a wave-
front splitting interferometer. Portions of a primary incident wave front give
rise either directly or indirectly to coherent sources of secondary waves. An
alternative type of interferometer, of which the Mach–Zehnder type schemat-
ically shown in Fig. 3.4 is an example, makes use of amplitude splitting, i.e.,
the division of an incident beam into two components which travel different
paths before recombining and interfering. Although the wave-front splitting
configuration of the previous section resulted in a quantum cancellation ef-
fect for the two-particle AB–HBT experiment, this need not be the case for
other interferometer configurations. In this section we will examine the in-
terferometry of correlated fermions in a Mach–Zehnder interferometer paying
particular attention to the nature of possible fermion correlations and the
effects of external potential fields on fermion fluctuations [88].

It is well known theoretically and verified experimentally that photons
(which are massless bosons) can manifest a variety of clustering behaviors
depending upon the nature of the source. For example, it has already been
mentioned that the fluctuations of chaotic light such as black-body radiation
manifest a positive cross-correlation, or bunching. However, laser light above
threshold, characterized by so-called coherent states,1 ideally give rise to no
fluctuations. The coherent state – which corresponds to the state of a classical

1 The coherent states |α〉 of a single-mode harmonic oscillator (from which model
the optical states are derived) take the following form
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Fig. 3.4. AB–HBT experiment employing a four-port Mach–Zehnder interferom-
eter. Electrons from one or two sources enter the interferometer and propagate
around a region of confined magnetic flux. For chaotic states, the cross-correlation
in counts at the two detectors manifests a magnetic flux-dependent electron anti-
bunching. SU(2) correlated fermion states lead to other kinds of fluctuation behavior

harmonic oscillator as closely as quantum mechanics allows – has the same
coherence properties as a classical stable wave of well-defined amplitude and
phase. Finally, under appropriate circumstances the fluorescent emission from
single two-level atoms manifests an antibunching effect as characterized by
a second-order correlation function less than unity. The photon antibunching
arises from the fact that the atom can radiate only from its excited state.
Thus, having emitted one photon, it can not emit a second until it has been
re-excited.

What about electrons? Is it the case, as has long been thought, that the
antisymmetrization of multielectron wave functions required by the Pauli prin-
ciple always leads to electron anticorrelation, i.e., fluctuations in which elec-
trons tend to avoid arriving in pairs? Surprisingly (perhaps), the answer is
‘no’ [90].

|α〉 = exp

„

−|α|2
2

« ∞X

n=0

αn

√
n!

|n〉 ,

in a basis of energy (or excitation number) states |n〉. For the properties of co-
herent states and a detailed exposition of photon statistics see [89].
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In the general case, particles distributed in some specifiable way over linear
momentum and spin states can enter the interferometer of Fig. 3.4 through
either or both of the two entrance ports. The entering beam is divided at beam
splitter BS1, reflects from mirrors M1 and M2 to propagate around a tube of
magnetic flux confined to the center of the interferometer. At beam splitter
BS2 it is divided again and directed into detectors D1 and D2 whose outputs
are correlated as in the HBT experiment. It is assumed that the mirrors are
100% reflecting and that no particle loss occurs at the beam splitters whose
reflectance and transmittance amplitudes are respectively (r1, t1) and (r2, t2)
for beams incident at the left surface and (r′1, t

′
1) and (r′2, t

′
2) for beams incident

at the right surface. The relations between these amplitudes have been given
by (3.3), (3.4).

As in the case of photon interference with multiphoton states where dis-
crete attributes of light play an important role, the analysis of the Mach–
Zehnder fermion interferometer is also facilitated by means of a field theoretic
(or second-quantized) description. In this approach, similar to that employed
in the correlation of spontaneous emission from coherently excited atoms in
the previous chapter, the fermion fields – which superficially resemble the
wave functions of familiar first-quantized quantum mechanics – are not func-
tions, but operators independent of the state of the system. All information
concerning the latter is represented by the density or statistical operator ρ.
The fermion field operators at the two input and output ports of the inter-
ferometer of Fig. 3.4 can be expressed in a plane-wave basis as follows (with
i = 1, 2)

Ψ
(in)
i (x, t) =

∑

k,s

bi(k, s) exp
[
i(kx − ωt)] , (3.38)

Ψ
(out)
i (x, t) =

∑

k,s

di(k, s) exp
[
i(kx− ωt)] , (3.39)

where the annihilation [bi(k, s) and di(k, s)] and creation [bi(k, s)† and
di(k, s)†] operators satisfy the standard fermion anticommutation relations
of the form

{
bi(k, s), bj(k′, s′)

}
=
{
bi(k, s)†, bj(k′, s′)†

}
= 0 ,

{
bi(k, s), bj(k′, s′)†

}
= δijδss′δ(k − k′) . (3.40)

By taking account of the changes in phase and amplitude resulting from free
propagation between entrance and exit ports and interaction at each beam
splitter one can establish to within a global phase factor the following rela-
tionship between input and output annihilation operators

(
d1
d2

)
=

(
t1t

′
2e

−iθ/2 + r1r2eiθ/2 r′1t
′
2e

−iθ/2 + t′1r2e
iθ/2

t1r
′
2e

−iθ/2 + r1t2eiθ/2 r′1r
′
2e

−iθ/2 + t′1t2e
iθ/2

)(
b1
b2

)
, (3.41)
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where θ is the total phase difference incurred between the left (via M2) and
right (via M1) beam components. Upon implementation of the unitarity rela-
tions (3.3) and (3.4), equation (3.41) leads to

d1(k, s) =
(
|r1r2|eiθ/2 + |t1t2|e−iθ/2

)
b1(k, s)

+ i
(
|r1t2|e−iθ/2 − |t1r2|eiθ/2

)
b2(k, s) ,

(3.42)

d2(k, s) =
(
−i|t1r2|e−iθ/2 − |r1t2|eiθ/2

)
b1(k, s)

+
(
|r1r2|e−iθ/2 + |t1t2|eiθ/2

)
b2(k, s) .

(3.43)

It will be assumed in what follows that the beam is quasi-monochromatic, so
that the momentum spread is much less than the mean particle momentum
(Δk � k0), in which case θ is independent of the momentum distribution
to a good approximation. If the relative phase is produced entirely by the
AB effect, then θ = 2π(Φ/Φ0) depends only on an external parameter (the
magnetic flux) and is rigorously independent of the geometric path length
and momentum distribution of the particles. Since we are concerned princi-
pally with the quantum effects of fields and statistics, we adopt at the outset
a square interferometer geometry to eliminate the relative phase arising from
unequal geometric path lengths. This simplification can be readily relaxed
whenever necessary, and the resulting relative phase easily determined.

From the fermion creation and annihilation operators one can construct
(as in the standard quantum mechanical analysis of a harmonic oscillator)
Hermitian operators corresponding to the number of particles entering the
input ports (i = 1, 2)

Ni =
∑

k,s

bi(k, s)†bi(k, s) , (3.44)

and the number of particles leaving the output ports to be received respec-
tively at detectors D1 and D2

N(Di) =
∑

k,s

di(k, s)†di(k, s) . (3.45)

Substitution of relations (3.42) and (3.43) into (3.45) for the special, but
useful, case of 50–50 beam splitters (|ri| = |ti| = 1/2) allows one to relate the
input and output particle number operators as follows:

N(D1) =
1
2

[
N1 cos2

θ

2
+N2 sin2 θ

2
+M cos

θ

2
sin
θ

2

]
, (3.46)

N(D2) =
1
2

[
N1 sin2 θ

2
+N2 cos2

θ

2
−M cos

θ

2
sin
θ

2

]
. (3.47)
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In the preceding relations

M =
∑

k,s

[
b1(k, s)†b2(k, s) + b2(k, s)†b1(k, s)

]
(3.48)

is an operator that removes a particle from the beam at one input port and
adds it to the beam of the other input port. Note that

N(D1) +N(D2) = N1 +N2 ≡ N , (3.49)

as is required by conservation of particle number. For charged particles, this
is tantamount to the conservation of electric charge.

It is worth noting that if the second beam splitter is opaque (|r2| = 1, |t2| =
0) the configuration is equivalent to an electron version of the original HBT
split-beam photon-counting experiment. The resulting operator expressions
are similar to those of (3.46) and (3.47) but without the trignonometric factors,
since the configuration does not constitute an interferometer, and there is
consequently no phase angle.

The characteristics of any input beam are specified by the mathematical
form of the density operator ρ. Theoretical expressions corresponding to the
expectation values of dynamical observables are determined by taking the
trace of the appropriate operator with ρ. Thus, the mean number of counts
received by each detector in a given sampling time (the time during which
a known number of particles enters the interferometer) is

N(Di) = Tr
[
ρN(Di)

]
, (3.50)

the number of coincident counts at the two detectors is

N(D1)N(D2) = Tr
[
ρN(D1)N(D2)

]
, (3.51)

and the cross-correlation in fluctuations in counts at the two detectors is

C(D1,D2) = Tr
{
ρ
[
N(D1) −N(D1)

] [
N(D2) −N(D2)

]}
(3.52)

= N(D1)N(D2) −N(D1)N(D2) .

Consider the simple case of a beam of electrons of reasonably well-defined
linear momentum and energy entering the interferometer through only one of
the two entrance ports, e.g., port 1. In a basis |n1{k, s};n2{k, s}〉 of eigenstates
of the input particle number operators, relation (3.44), the density operator of
the proposed system would consist of states of the form |n1{k, s}; 0〉, where the
designation ni{k, s} is the total number of particles entering port i (i = 1, 2)
with a given spectrum of linear momentum and spin eigenvalues. (Note that
the eigenvalues of Ni are independent of how the particles are distributed
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over momentum and spin states.) In the case characteristic of thermal and
field-emission electron sources where the number of particles in the input
beam fluctuates about a mean value N1 with dispersion (ΔN1)2, the density
operator is constructed from a mixture of states of different particle number

ρchaotic =
∑

{k,s,n}
ρ(n1{k, s})|n1{k, s}; 0〉〈n1{k, s}; 0| . (3.53)

The source is designated chaotic in analogy to chaotic optical sources for which
the density operator is diagonal in a photon number basis.

Substitution of the density matrix (3.53) into the expressions (3.50)–(3.52)
leads to mean particle counts at each detector

N(D1) =
N1

2
(1 + cos θ) , (3.54)

N(D2) =
N1

2
(1 − cos θ) , (3.55)

the joint count rate

N(D1)N(D2) =
1
4
N1

(
N1 − 1

)
sin2 θ , (3.56)

and the cross-correlation in particle fluctuations

C(D1,D2) =
1
4

[
(ΔN1)2 −N1

]
sin2 θ , (3.57)

all of which clearly show an influence of the magnetic flux through the phase
angle. Note that the coincidence count rate (3.56) vanishes, as it must, for an
input of N1 = N1 = 1, since the one particle must be received at only one of
the detectors, and thus there can be no coincidence. This result contrasts with
that deduced from a classical wave analysis in which a split incident beam of
arbitrarily weak amplitude could still illuminate both detectors.

For a beam of randomly emitted classical particles the fluctuation in par-
ticle number is governed by Poisson statistics for which the variance is equal
to the mean, and the cross-correlation (3.57) vanishes. However, for a chaotic
electron source, the antisymmetrization of the state vectors leads to a vari-
ance that is smaller than the mean incident particle number by an amount
proportional to the beam degeneracy δ, as we have seen in the previous chap-
ter. In the experimentally realistic case of a counting interval tr (the detector
response time) long in comparison to the beam coherence time tc, the variance
takes the form [91]

(ΔN1)2 ≈ N1

[
1 −N1σF (0)

tc
tr

]
, (3.58)
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where σ is a polarization factor (unity for total spin polarization and one-half
for an unpolarized beam), and F (0) is a spatial coherence function (unity for
a beam cross-section equal to a coherence area Ac). Expression (3.58) is the
fermion analogue of (2.26) for thermal light. The beam degeneracy, determined
practically from

δ = N1
tc
tr
, (3.59)

is interpretable as the mean number of particles per cell of phase space. This
number can never exceed unity for fermions, since there can be at most one
fermion per quantum state. Substitution of (3.58) and (3.59) into relation
(3.57) leads to a negative cross-correlation

C(D1,D2) ≈ −1
4
N1σF (0)δ sin2 θ , (3.60)

indicative again of electron antibunching.
Although a vector potential field is ostensibly responsible for the quantum

phase θ in the foregoing analysis, one can envision different experimental con-
figurations for which the phase is attributable to other external potentials.
One interesting example is that of gravity [92]. The force of gravity is the
dominant influence in shaping the macroscopic universe, but it is intrinsically
so weak that its effects on the elementary constituents of matter are for the
most part negligible.2 There are very few physical systems – in particular,
systems directly accessible to laboratory investigation – whose dynamical be-
havior requires a quantum mechanical description with simultaneous inclusion
of a gravitational interaction.

One example, however, is the Colella–Overhauser–Werner (COW) experi-
ment [93] which provided the first experimental demonstration of the effect of
gravity in a circumstance unique to quantum mechanics, i.e., through a gravi-
tational influence on the phase of a wave function leading to quantum interfer-
ence. The COW experiment employed a neutron beam split and recombined
in a single-crystal neutron interferometer, a configuration effectively equiva-
lent to that shown in Fig. 3.4 but with the solenoid removed and the plane of
the interferometer oriented vertically so that the upper path (between mirror
M2 and beam splitter BS2) is actually a distance z above the lower path (be-
tween BS1and M1). Then, for a nonrelativistic particle of mass m and mean
momentum �k0 there is a gravitationally induced phase shift

θ =
m2gzd

�k0
, (3.61)

2 One significant exception is the influence of gravity on constituents of matter,
primarily neutrons and possibly quarks, during the terminal collapse of massive
stars that have exhausted their nuclear fuel. I discuss the role played by fermion
and boson statistics in the end states of such stars in the last chapter of this book.
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where g is the local acceleration of gravity and d is the horizontal path length
between a mirror and beam splitter at the same height. Equations (3.54) and
(3.55) illustrate the effect of the gravitationally induced quantum interference
on the particle distribution at the output ports. Similarly, (3.57) or (3.60)
manifests the effect of gravity on particle correlations. Although the gravi-
tational field is present throughout the interferometer and the particles are
therefore subject to the force of gravity, (in contrast to the AB effect where
the magnetic field is confined to the interior of the solenoid and the particles
are not subject to a magnetic force), it is not the gravitational force but the
gravitational potential that plays a direct role here. The relative phase ex-
pressed in (3.61), which is proportional to the area zd of the interferometer,
may be thought to accrue only over the horizontal segments of the motion
where the classical effect of the gravitational force on the split beam is zero,
since no work is done.

The utilization of both input ports of a fermion interferometer permits, at
least in principle, the construction of fermion ensembles manifesting a variety
of new and surprising statistical properties. One finds that the clustering be-
havior of fermions need not be limited by Fermi–Dirac statistics to antibunch-
ing, but, like light, can depend as well on the specific state composition of the
ensemble. To be sure, each multiparticle basis state that contributes to the
ensemble description must, itself, be compatible with the antisymmetrization
restrictions of quantum statistics. Nevertheless, there is room for considerable
diversity among possible fermion ensembles.

Of particular interest are fermion beams described by basis states that
are labeled by the total number of particles entering the two ports and by
the difference in number of particles between the two input ports. For such
states one does not in general know the number of particles entering each
port individually. It will be seen that these states span representations of an
SU(2) algebra constructed from the fermion creation and annihilation oper-
ators. In other words, the mathematical description is in many ways similar
to that of the familiar treatment of orbital or spin angular momentum. There
is a vector operator J with components Ji (i = x, y, z) from which can be
constructed raising and lowering operators J+ and J− that effectively trans-
fer particles between input ports, and a Casimir operator J2 = J · J which,
under appropriate circumstances, gives the total number of particles entering
the interferometer through the two ports. [A Casimir operator is a nonlinear
invariant operator that commutes with all other members of the algebra; in
general, there are n − 1 of them for the special unitary group SU(n).] The
basis states |j,m〉, which will be termed correlated two-port states, are la-
beled by the quantum numbers specifying the eigenvalues of J2

[
= j(j + 1)

]

and jz (= m), in contrast to the uncorrelated two-port states |n1;n2〉 which
are eigenvectors of the input number operators N1 and N2. To aid in avoiding
confusion between these two different representations, the quantum numbers
of uncorrelated two-port basis states will be separated by a semicolon while
those of correlated two-port basis states will be separated by a comma.
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Let us now look at the development of the correlated two-port states in
detail [90, 94]. From the fermion annihilation and creation operators one can
construct the following bilinear superpositions

Jx =
1
2

∑

k,s

[
b1(k, s)†b2(k, s) + b2(k, s)†b1(k, s)

]
, (3.62)

Jy =
1
2i

∑

k,s

[
b1(k, s)†b2(k, s) − b2(k, s)†b1(k, s)

]
, (3.63)

Jz =
1
2

∑

k,s

[
b1(k, s)†b1(k, s) − b2(k, s)†b2(k, s)

]
=

1
2
(N1 −N2) , (3.64)

and the Casimir invariant

J2 =
N

2

(
N

2
+ 1

)
−W , (3.65)

where N is the total particle number operator in (3.49), and

W =
∑

k,s;k′,s′

[
b1(k, s)†b2(k′, s′)†b2(k, s)b1(k′, s′) (3.66)

+ b1(k, s)†b2(k′, s′)†b2(k′, s′)b1(k, s)
]

is an operator that transfers two particles between input ports. The vector op-
erator J commutes with both N and W , although N and W do not commute
with each other.

When the relative phase θ incurred by passage of a wave packet through
the interferometer is independent of the particle momentum and spin (as is the
case for the AB effect) – or very nearly so in the case of a quasi-monochromatic
beam – the particle number operators for both input and output ports are
expressible in terms of the above SU(2) operators in a relatively simple way

N1 =
1
2
N + Jz , (3.67)

N2 =
1
2
N − Jz , (3.68)

N(D1) =
1
2
N + Jz cos θ + Jx sin θ , (3.69)

N(D2) =
1
2
N − Jz cos θ − Jx sin θ . (3.70)
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It is also useful to denote the operator N(D) which gives the difference in
particle counts at the output ports

N(D) = N(D1) −N(D2) = 2(Jz cos θ + Jx sin θ) . (3.71)

Recall from relation (3.64) that 2Jz gives the particle number difference at the
input ports. In anticipation of our interest in the cross-correlation of particle
counts at the two output ports, we record as well the product

N(D1)N(D2) =
1
2

[
N(D1)2 +N(D2)2 −N(D)2

]
, (3.72)

which follows straightforwardly from squaring N(D) in the first equality of
(3.66).

By means of the raising and lowering operators

J+ = Jx + iJy =
∑

k,s

b1(k, s)†b2(k, s) , (3.73)

J− = Jx − iJy =
∑

k,s

b2(k, s)†b1(k, s) , (3.74)

one can construct all members of a family of states |j,m〉 of given j by know-
ing one of the states. For example, start with the state that corresponds to
all N particles entering the interferometer through port 1, i.e., |N ; 0〉 in the
uncorrelated two-port representation. This state is an eigenstate of W with
eigenvalue 0, and consequently from relations (3.64) and (3.65) an eigenstate
of J2 and Jz with quantum numbers j = m = N/2 in the correlated two-port
representation. By sequential application of J− to the correlated two-port
state |N/2, N/2〉, one can generate the full spectrum of states |j,m〉 in the
manner below

J
N/2−m
−

∣
∣
∣
∣
N

2
,
N

2

〉
=
[
N !(N/2 −m)!
(N/2 +m)!

]1/2 ∣∣
∣
∣
N

2
,m

〉
. (3.75)

As an explicit illustration of the connection between the two representa-
tions, consider a two-particle input beam (N = 2) where the particles can
have momentum–spin values (kα, sα) or (kβ , sβ). To avoid encumbering our
notation with unnecessary symbols, the set of eigenvalues (kγ , sγ) will be rep-
resented simply by the label γ. Thus, the state corresponding to two particles
entering port 1 and no particles entering port 2 can be expressed by the state
vectors

|1, 1〉 = |2; 0〉 =
∣
∣{α, β}; 0〉 , (3.76)

where the first vector is a |j,m〉 state and the second vector is a |n1;n2〉 state
specified in greater detail by the third vector which is implicitly antisymmetric
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under exchange of particle labels α, β. Application of J− to (3.76) leads to
the state

|1, 0〉 = |1; 1〉 = − 1√
2

(|α;β〉 − |β;α〉) , (3.77)

in which one particle enters each port, but we do not know through which
port a particle of particular spin and linear momentum goes. There is a 50%
probability for each particle to enter through each port. Finally, application
of J− a second time results in the state

|1,−1〉 = |0; 2〉 = −∣∣0; {α, β}〉 , (3.78)

in which both particles enter port 2 and none enters port 1.
Since the correlated two-port states can not in general be factored into

state vectors of the two ports individually, they exhibit a novel form of entan-
glement beyond that deriving strictly from the spin–statistics connection. It
is also important to note – and easily verified in the special case of the above
example – that a system characterized by a density operator diagonal in a rep-
resentation of SU(2) correlated states is generally not diagonal in a basis of
momentum-spin states. Thus, the fluctuation behavior characteristic of the
correlated states need not necessarily be similar to that of the chaotic states
examined previously.

Let us first examine the quantum statistical behavior of an ensemble of
entering fermions characterized by a density operator diagonal in a basis of
SU(2) correlated states. From (3.69)–(3.72), the cross-correlation of outputs
at D1 and D2 can be expressed in the form

C(D1,D2) =
1
4
(ΔN)2− (Δm)2 cos2 θ− 1

2

(
1
4
N2 +

1
2
N −m2

)
sin2 θ , (3.79)

where (ΔN)2 is the variance about the mean total particle number entering
the interferometer, and (Δm)2 is the variance about m, which is one half the
difference in mean numbers of particles N1 and N2 entering the two ports.
Equation (3.79) can also be written in the form

C(D1,D2) = C12 cos2 θ +
1
4
[
(ΔN)2 −N − 2N1N2

]
sin2 θ , (3.80)

where
C12 = N1N2 −N1N2 (3.81)

is the cross-correlation in beam fluctuations at the input ports.
As a check of consistency, one can verify that if all the particles enter

the interferometer through one of the ports – let us say port 1 (in which
case N = 2m) – then upon substitution of (ΔN)2 = 4(Δm)2 = (ΔN1)2, the
cross-correlation reduces to relation (3.57) as expected.

Suppose, however, the input beam is in a pure SU(2) correlated state of
precisely known particle number N and particle difference number m. Then
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the variances in N and m vanish, and the values N1 = N/2 +m and N2 =
N/2 − m are also sharp. The cross-correlation in output counts reduces in
that case to

C(D1,D2) = −1
2

[
N1N2 +

1
2
(N1 +N2)

]
sin2 θ , (3.82)

which is again intrinsically negative except at selected phase angles for which
it vanishes.

In the more general case of an input beam comprising an appropriate
mixture of SU(2) correlated states there is a range of phase angles, given by

4C12

2N1N2 +N − (ΔN)2
> tan2 θ , (3.83)

for which the cross-correlation can be positive. For example, at θ = 0, the
condition (ΔN)2 > 4(Δm)2 results in a positive cross-correlation. This con-
dition is most directly met by an ensemble of distributed total particle num-
ber, (ΔN)2 > 0, but sharp particle number difference, (Δm)2 = 0, at the
input ports. An input composed of the states |N/2,m〉 and |N/2+2,m〉 with
|m| ≤ N/2 leads to C(D1,D2) = C12 = 1/4.

Consider next an ensemble described by a mixture of states of the form

|S(N)〉 =
1√
2

(∣∣
∣
∣
1
2
N,

1
2

〉
+
∣
∣
∣
∣
1
2
N,−1

2

〉)
, (3.84)

where N is an odd integer and (ΔN)2 > 1. The analogy with angular mo-
mentum suggests that expression (3.84) is a type of singlet state, hence the
designation |S(N)〉. Since the cross-correlation

C(D1,D2) =
1
4
[
(ΔN)2 − cos2 θ

]
+

1
8

[
(ΔN)2 − 1

2
(
N + 3

)(
N − 1

)
]

sin2 θ

(3.85)
is positive for (ΔN)2 > 0 (which is characteristic of the proposed ensemble)
and θ = 0, the system provides another example of fermionic bunching.

It is unfortunate that there is no way at present (to my knowledge) to
produce these SU(2) correlated states in the laboratory, because not only do
they manifest a complex statistical behavior of theoretical interest, but they
can be of practical use in particle interferometry. A desirable objective is to
enhance the sensitivity of an interferometer to the relative phase angle θ. In
general, one would expect that the dispersion (square root of the variance) of
θ, which can be calculated from expectation values of N(D)

Δθ =

√[
ΔN(D)

]2

|∂N(D)/∂θ| , (3.86)

to diminish as some function of the number of particles, i.e., the larger the
number of particles that pass through the interferometer, the more sharply
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is the relative phase angle θ determined. Ordinarily, this inverse dependence
goes as the square root of the number of particles. For example, in the case
of a beam described by a correlated state |j,m〉, (3.86) reduces to

Δθ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2

⎡

⎢
⎢
⎢
⎣

1
2
N

(
1
2
N + 1

)

m2
− 1

⎤

⎥
⎥
⎥
⎦

+
(Δm)2

m2
cot2 θ

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

1/2

. (3.87)

Consider the special, but widely applicable, example of a single-port input of
N particles described by the state |N/2, N/2〉. From relation (3.87) it is seen
that the minimum dispersion of θ (for an uncorrelated input) is

(
Δθ

)unc

min
=

√
N

N2
−→ 1√

N
, (3.88)

where the limiting expression is rigorously valid for sharp N . For the two-port
singlet states of relation (3.84), however, the dispersion in θ is given by

Δθ =
[

4
(N + 1)2

+
(N + 3)(N − 1)

(N + 1)2
tan2 θ

]1/2

, (3.89)

from which it follows that the expression comparable to (3.88)

(
Δθ

)S(N)

min
=

2
N + 1

(3.90)

is inversely proportion to the number of particles (rather than the square
root). Thus, the use of two-port correlated states can enhance the sensitivity
of a fermion interferometer.
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Quantum Boosts and Quantum Beats

4.1 Superposing Pathways in Time

We have seen in preceding chapters that the potential for quantum interfer-
ence exists whenever a particle can propagate from its source to the detector
by alternative spatial pathways under experimental conditions such that the
exact pathway taken can not be known. The archetypal example is the Young’s
two-slit experiment in which the particle, when probed, passes through one
slit or the other. Unprobed, the resulting particle distribution is explicable
only in terms of probability amplitudes for propagation through both slits.
There is a direct temporal analogue to the two-slit experiment in which the
linearly superposed amplitudes represent – not alternative spatial pathways –
but the evolution of alternative indistinguishable events in time.

Of the many ways in which the structure of atoms, molecules, and other
bound-state quantum systems differs from that of macroscopic classical sys-
tems one of the most striking is the discreteness or quantization of energy.
The internal energy of a classical planetary system is an accident of its for-
mation and likely to differ from one system to another even though the two
systems may be composed of identical masses. By contrast, every ground-state
hydrogen atom has the same energy irrespective of its formation; likewise for
identical atoms in corresponding excited states.

Although the idea of electrons populating quantized energy eigenstates is
a familiar one, it is nevertheless necessary to be careful lest uncritical usage
provide a misleading picture of the atom and its interactions. The Russian
spectroscopist E.B. Aleksandrov expressed this point well when he wrote [95]:

In connection with the remarkable progress made in the interpretation
of atomic spectra, the concepts of energy levels and their populations
have become so firmly entrenched in atomic physics and spectroscopy
that they became gradually independent concepts, losing the meaning
attributed to them by quantum mechanics. Yet the statement com-
monly made in spectroscopy, that the atom is at a given (excited)
level, is incorrect in the overwhelming majority of cases.
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In such circumstances the energy of an atom is actually indeterminate, the
atomic state being represented by a linear superposition (with appropriate
amplitudes) of all possible stationary states that can be reached by the par-
ticular type of excitation employed. One optical consequence of this coherent
superposition is that the rate of spontaneous emission (i.e., the fluorescence
intensity) from an ensemble of atoms excited in this manner can oscillate in
time while diminishing exponentially, such as illustrated in Fig. 4.1 for the
case of a four-level atom with two closely spaced excited states. For these
‘quantum beats’ to be observable, the emission events among the various
atoms must be in some sense synchronized; otherwise the superposition of
oscillating intensities widely out of phase would display no net modulation.
Had the atoms decayed from well-defined energy states, the temporal varia-
tion in fluorescence would have been strictly an exponential decay. Thus, there
is a significant conceptual and experimental distinction between a quantum
ensemble designated a mixture of states, wherein each constituent is endowed
with definite, although statistically distributed energy values, and another en-
semble designated a superposition of states, with each constituent in a linear
superposition of energy eigenstates encompassing the same energy values and
populations as the first ensemble [96].

Fig. 4.1. Coherent excitation of two close-lying excited states by a pulsed laser
giving rise to oscillations (quantum beats) in the spontaneous emission as a function
of time. A light pulse narrow in the time domain has a broad frequency spectrum
which, shown in the upper insert , contains Fourier components capable of inducing
transitions from the ground state to both excited states
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We have discussed these distinctions to a limited extent in Chap. 2 in
the context of the information carried by first- and second-order correlation
functions. In the present chapter we will examine in more detail the features –
some rather surprising – of the quantum interference in time of the radiation
from an ensemble of coherently excited atoms.

Production of an atom (or molecule) in a linear superposition of excited
energy states ordinarily requires an impulsive excitation (‘quantum boosts’),
i.e., a process of sufficiently short duration that its Fourier spectrum contains
frequency components corresponding to the energy intervals between ground
and excited states. Thus, for the example shown in the insert of Fig. 4.1, the
spectral width of the excitation must satisfy the relation

Δω ≥ ω0 ≡ E2 − E1

�
= ω2 − ω1 , (4.1)

where ω0 is the Bohr angular frequency of the excited level. Although the
theoretical feasibility of such light oscillations was discussed in papers shortly
following the creation of quantum mechanics [97], the actual experimental im-
plications were not conceptually appreciated or experimentally realized until
some thirty years later [98] principally by those involved with optical pumping.
(Optical pumping refers to the use of light to populate a set of energy levels
with a distribution different from that of a normal Boltzmann distribution at
the temperature of the experiment.) There are a variety of ways of achieving
the impulsive excitation required to generate a superposition state and the
ensuing modulated fluorescence, as, for example, by light pulses [99], pulsed
electron impact [100], and electron capture collisions with a thin carbon foil
target [101].

Like the quantum interference phenomena described in earlier sections, the
phenomenon of quantum beats is intrinsic to each atom and not a cooperative
interaction between atoms. In other words, the spontaneous emission from
single atoms is not modulated, but registers at the detector as one quantum
of light at a time; the pattern of beats (measured at one location in real
time or, equivalently, at different spatial locations along an accelerated atomic
beam) can nevertheless be built up by the decay of many such single atoms.
This is again the old ‘mystery’ of quantum interference translated to the time
domain: How can independently excited, randomly decaying, noninteracting
atoms produce a pattern of photon arrivals that oscillates in time? Note that
the synchronization required for the beats to survive ensemble averaging does
not imply that emitting atoms communicate with or influence one another.
Rather, an apt classical analogy, if there be any, would be that of a large
number of independent clocks all separately wound and set to the same time
by the clockmaker.

There is no visualisable classical mechanism for the interference (built up
one photon at a time through repeated excitations), but quantum mechanics
allows one to analyze the phenomenon mathematically. Consider, again, the
system illustrated in Fig. 4.1 in which it is assumed for simplicity that the
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two excited states have the same lifetime τ = 1/Γ where Γ is the decay rate.
Let agi be the amplitude for a transition from the ground state g to excited
state ei (i = 1, 2), and bif be the corresponding amplitude for radiative decay
from ei to the lower state f (which could be the ground state). Then, the net
amplitude for excitation to state ei and subsequent decay after a time interval
t takes the form

Agif (t) = agie−iEit/�e−Γt/2bif = agif e−iEit/�e−Γt/2 , (4.2)

where agif = agibif . We have made the heuristic assumption – to be examined
further in the next section – that the excitation occurs effectively instanta-
neously. If the energy dispersion of the excitation mechanism is sufficiently
broad, and quantum selection rules do not forbid the indicated transitions,
there are two indistinguishable pathways in time by which the atom can pass
from the initial level g to the final level f ; the corresponding total amplitude
for the process is

Agf (t) =
(
ag1fe−iE1t/� + ag2fe−iE2t/�

)
e−Γt/2 . (4.3)

Hence, the probability for the transition to occur at time t with emission
of one quantum of light – although from which state the observer does not
know – is

Pgf (t) = |Agf (t)|2 =
[|ag1f |2 + |ag2f |2 + 2|ag1fag2f | cos(ω0t− φ)

]
e−Γt ,

(4.4)
where each amplitude can be a complex number agif = |agif |eiφgif and φ =
φg2f − φg1f . If, by some means – for example, by placing an optical narrow-
band filter before the detector – the observer can select only photons of energy
E1 or E2 and thereby determine the temporal pathway by which the system
evolved, the quantum beats would disappear and the system would simply
decay exponentially in time.

As a spectroscopic method, the observation of quantum beats has a num-
ber of significant advantages compared with alternative procedures that probe
the atom with resonant oscillatory fields. For one thing, the presence of an
external oscillating field, as will be shown in the next chapter, can affect
the level separation and decay of the states being examined. With quan-
tum beat spectroscopy the atoms ‘ring out’ their level structure without be-
ing probed. Since the strong impulsive fields that produce the excited states
can be made to vanish substantially by the time the atoms are likely to de-
cay, one can investigate a sample of interest in a resonance cell (or ‘bot-
tle’) – rather than employ the more complicated technology of an acceler-
ated beam – and still be able to separate the processes of excitation and
detection. Secondly, even though the atoms in a gas or vapor may be mov-
ing randomly about the interior of a resonance cell, rather than moving
with well-defined linear momentum along a beam, the optical signal , i.e.,
the low-frequency modulation, as opposed to the high-frequency optical car-
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rier wave, is largely free of Doppler broadening. Since the beat frequency is
proportional to the difference in energy of two levels of the same atom, the
Doppler shifts of the photons potentially emissable from each level nearly
cancel. The italicized words again emphasize the fact that under the given
circumstances only one quantum or light, not two, actually emerges from the
spontaneous decay of a single atom. The beat is intrinsic to each atom, but
made manifest only by the decay of a large number of similarly prepared
atoms.

4.2 Laser-Generated Quantum Beats

Of the many ways to excite an atom impulsively into a linear superposition
of states, one of the most practically useful and conceptually interesting is
the application of pulsed laser light [102, 103]. The use of light in general –
as opposed to impulsive excitation by some form of particle bombardment,
for example – is most amenable to theoretical analysis, since the interaction
of matter with light is completely accounted for by quantum electrodynam-
ics, the most thoroughly understood of all physical interactions. (By contrast,
coherent atomic excitation by particle bombardment is not as simply ana-
lyzable or well understood.) It was, in fact, by means of pulsed light from
shuttered spectral (i.e., nearly monochromatic) lamps that the phenomenon
of field-free quantum beats was first observed. These sources, however, were
weak in the sense that the probability of atomic excitation was low; at any
moment the likelihood was greatest to find the illuminated atom in its ground
state.

The development of tunable pulsed lasers has made possible the high in-
tensity, short pulse duration, and broad spectral width that are advantageous
in the study of some intriguing, if not outright exotic, physical systems such as
Rydberg atoms [104], i.e., atoms so highly excited that they begin to resemble
in many ways (but not all [105]) minute classical planetary systems. The wide
range over which such lasers can be tuned allows one to excite a large num-
ber of UV, visible, and IR transitions. The high power makes it possible to
saturate even weakly allowed transitions. And when, because of parity restric-
tions, a single laser can not induce transitions between two states of interest,
two or more lasers used sequentially can effect the desired result by a stepwise
excitation. These three advantages, besides those already cited common to
quantum beat spectroscopy irrespective of the method of excitation, permit
an experimenter to select almost any Rydberg state of interest or to study
with facility an entire series of states.

It is the high intensity of pulsed lasers, however, that enriches (or compli-
cates – depending on one’s point of view) the interaction between the atoms
and light. The weak-pumping approximation implicit in the simple analysis
of the previous section is, strictly speaking, a first-order perturbation calcu-
lation in which the atomic system interacts at most once with the exciting
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light. In other words, the atom is presumed to absorb a single photon during
the passage of the pulse and to spontaneously emit a photon once after the
pulse has passed. Thus, this mode of treatment is also known as the linear
absorption approximation. While valid for classical light sources, the linear
absorption approximation is no longer a priori justified when the light source
is a high-power pulsed laser. For one thing, while illuminated by the light
pulse, a particular atom can be driven back and forth a number of times be-
tween the ground and excited states by the processes of photon absorption
followed by stimulated emission. In addition, if the spectral profile of the ex-
citing light is not symmetric, or if it is not centered precisely on the transition
to be effected, the light could displace the atomic energy levels from their vac-
uum values. These processes, absent under conditions of weak pumping, can
modify the amplitude and phase of the ensuing quantum beats – sometimes
in an extraordinary way as will be discussed shortly.

The theory of light-induced quantum interference that will be discussed
in this section is valid under the relatively nonrestrictive limitation to broad-
band pulse excitation. This condition, realized in most quantum-beat experi-
ments, permits the theory to be formulated within the framework of the clas-
sical optical pumping cycle developed by Barrat and Cohen-Tannoudji [106]
for weak light sources and subsequently generalized by others for continuous
lasers [107].

Let us generalize somewhat the simple atomic structure assumed in
Sect. 4.1 by considering an atom with three groupings (or manifolds) of states:

• ground g,
• excited e,
• final f ,

where each manifold can contain more than one state. In a quantum beat
experiment envisioned here the atoms are excited from the g to e manifold
by means of a light pulse of polarization ε and duration T and subsequently
decay optically at rate Γ to the lower manifold f . (Different excited states
could have different lifetimes, but this would unnecessarily complicate the con-
ceptual ideas to be elucidated here.) After passage of the pulse, fluorescence
of a particular polarization εd is observed. In order that the preparation of
the excited states be well separated in time from the detection of the sponta-
neous emission, it is necessary that T be short in comparison to the lifetime
τ = Γ−1.

The existence of a multiplicity of states (at least two) in the e manifold is
essential to the production of quantum beats. While substructure in the lower
g and f manifolds is not essential, such structure can affect the phase and
amplitude of the beats. Similarly, the energy resolution of the detector – and
therefore the number of final states involved in the decay process – may also
influence the beat signal. It is of interest to note that a semi-classical theory
of radiative phenomena (termed the neoclassical theory [108]) proposed in the
1960s predicted quantum beats from single atoms with one excited state and
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a multiplicity of lower states. This is forbidden by quantum electrodynamics
(QED) which – excluding processes involving the weak nuclear interactions
(discussed in Chap. 6) – remains unchallenged within its domain of validity by
any reliably reproducible experiment. QED does, however, permit quantum
beats arising from lower-state splittings in the case of cooperative interactions
between two or more identical atoms [109].

In contrast to the heuristic linear-approximation analysis of Sect. 4.1,
which determines the net amplitude for transition from the g to the f mani-
folds, the optical pumping equations determine the atomic density matrix ρ(t),
which enters directly into the calculation of the mean value of an observable
(represented by operator O) through the trace relation

〈O〉 = Tr(ρO) . (4.5)

The elements of the density matrix are ensemble-averaged bilinear combina-
tions of transition amplitudes.

In determining the time evolution of a quantum system subject to an
external interaction, it is often convenient to eliminate at the outset from
the equations of motion the time-dependence arising from the internal in-
teractions governed by the field-free Hamiltonian H0, since this evolution is
already known and generally involves the highest frequencies. To do this, one
transforms the equations of motion into the interaction representation. The
transformed density matrix

ρ̃(t) = eiH0t/�ρ(t)e−iH0t/� (4.6)

is independent of t before and after the passage of the light pulse when the
external interaction vanishes. Let ρ− = ρ̃(−∞) and ρ+ = ρ̃(+∞) characterize
the atom at the temporal limits t → −∞ and t → +∞, respectively. The
effect of the laser pulse is then entirely known if one can determine the time
evolution of ρ− into ρ+.

The time evolution of the atomic density matrix can be determined from
a set of optical pumping equations generalized to include pulsed laser excita-
tion [96]. Although the derivation of these equations will not be given here,
the structure of the equations and the assumptions underlying the derivation
will be discussed. First, one decomposes the atomic density matrix into a sub-
matrix of excited states ρe and of ground states ρg by means of projection
operators Pe and Pg in the following standard way

ρe = PeρPe , ρg = PgρPg , (4.7)

where each projection operator has the form

Pμ =
∑

i

|μi〉〈μi| , (4.8)
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with the summation extending over the states of the appropriate manifold
(μ = e or g). This leads to the following system of equations coupling the
elements of ρe and ρg

dρe

dt
= − i

�
[H0, ρe] − 1

2
{Γe, ρe} +

1
Tp(t)

Peε · DPgρgPgε
∗·DPe (4.9)

− 1
2Tp(t)

{
Peε · DPgε

∗·DPe, ρe

}− iΔE(t)
[
Peε · DPgε

∗·DPe, ρe

]
,

dρg

dt
= − i

�
[H0, ρg] +

1
Tp(t)

Pgε
∗·DPeρePeε · DPg (4.10)

− 1
2Tp(t)

{
Pgε

∗·DPeε · DPg, ρg

}
+ iΔE(t)

[
Pgε

∗·DPeε · DPg, ρg

]
.

Although seemingly complicated, the various terms of the above equations
(where [x, y] represents the commutator and {x, y} the anticommutator of
two operators x and y) are amenable to simple interpretation. The first term
of (4.9) and (4.10) involving the commutator with H0 represents the free evo-
lution in time of the two sets of states. The other terms depending only on the
elements of the ground state matrix ρg represent the effects of optical absorp-
tion. This process in (4.9) populates the excited states at a rate proportional
to the reciprocal of the so-called pumping time Tp(t) which is, itself, inversely
related to the strength of the exciting pulse in the following way

1
Tp(t)

=
π

�2
F (t, ωeg)|(Dr)eg|2 . (4.11)

Here F (t, ω) is the spectral density of the electric field E of the laser pulse,
i.e., the Fourier transform (at angular frequency ω) of the electric field auto-
correlation function

F (t, ω) =
∫ 〈
E(t)E∗(t− t′)〉eiωt′dt′ . (4.12)

The transform in relation (4.11) is evaluated at the Bohr frequency ωeg char-
acterizing the energy interval between the ground and excited states. The
factor

(Dr)eg = 〈e|Dr|g〉 (4.13)

is the radial matrix element of the electric dipole operator μE = DrD here
written as the product of a scalar radial part Dr and vectorial angular com-
ponent D. Absorption also serves in (4.10) to depopulate the ground states
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at a rate proportional to 1/2Tp(t) and to displace the different substates of g
by an amount ΔE(t) (expressed as a frequency shift)

ΔE(t) =
1
�

∣
∣(Dr)eg

∣
∣2P

∞∫

−∞

F (t, ω)
ω − ωeg

dω . (4.14)

The symbol P in (4.14) represents the Cauchy principal value of the integral.
Correspondingly, except for the second term of (4.9) which is responsible

for state decay by spontaneous emission, all other terms in the optical pump-
ing equations depending on the elements of the excited state density matrix
ρe represent the effects of stimulated emission. This process is symmetrical
to that of absorption; it serves to populate the ground states in (4.10) and
to depopulate and displace the excited states in (4.9). The process of spon-
taneous emission in (4.9) is accounted for by an anticommutation operation
with a phenomenological decay operator Γe which takes the form (in an en-
ergy representation) of a diagonal matrix whose elements are the decay rates
(inverse lifetimes) of the excited states. This procedure is justifiable by rigor-
ous application of quantum electrodynamics [110] and is applicable even if the
atomic system is subjected to external fields [111]. To a good approximation
the theoretical effect of decay is to multiply the atomic density matrix ρ+ in
the absence of spontaneous emission by the factor e−Γet. (I discuss the inter-
action of atoms with optical and radiofrequency electromagnetic fields, both
classical and quantized, in more detail in my book Probing The Atom [56].)

In the derivation of (4.9) and (4.10), it has been assumed that the corre-
lation time tc of the light pulse, i.e., the inverse of the spectral width Δ, is
much shorter than the pulse duration T , i.e.,

tc =
1
Δ

� T . (4.15)

The correlation time is a measure of the time interval over which the phase
of the electric field is well-defined. The further assumption that

tc � Tp (4.16)

signifies that the phase of the incident pulse undergoes many random fluctua-
tions over the period required to pump an atom out of its ground state. Equa-
tion (4.16) places an upper limit on the pulse intensity – since the stronger
the pulse, the shorter the pumping time – beyond which the optical pump-
ing equations may no longer be valid. The above two conditions are not too
restrictive, however, and are generally satisfied in standard quantum beat ex-
periments. For example, a dye laser of a few hundred watts peak power yields
temporal parameters on the order of:

pulse width pumping time coherence time

T ∼ 10−9 s > Tp(t) ∼ 10−10 s > tc ∼ 10−11 s

for an allowed pumping transition.
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The assumption has also been made in deriving (4.9), (4.10) that the
Bohr frequencies in the manifolds e and g are small in comparison to Δ. This
simplifies the analysis by leading to a unique pumping time and level shift for
all the substates of a given manifold, but is not essential to the validity of the
basic theoretical approach. The added complication of Tp(t) and ΔE varying
with the states of a manifold can be incorporated into the theory whenever
necessary.

It is to be noted that no density matrix elements of the form ρeg or ρge,
which characterize optical coherence terms, appear in the optical pumping
equations. These contributions – interpretable according to classical imagery
as a macroscopic electric dipole moment precessing at optical frequencies –
vanish when averaged over many correlation times of the field. In the broad-
band approximation, as the above theoretical approach is known, all relevant
time parameters are long in comparison to the correlation time.

Solving the equations of motion and implementing the appropriate initial
conditions lead to the matrix ρ+ and, from (4.6), to the expression

ρe(t) = Peρ(t)Pe = Pee−iH0t/�ρ+eiH0t/�Pee−Γet (4.17)

for the total atomic density matrix projected onto the excited states. The
optical signal, observed in the spontaneous emission after the pulse excitation
is concluded, is obtained from (4.5)

I(εd) = KTr
[
ρe(t)O

†
det(εd)

]
e−Γet , (4.18)

where the detection operator Odet(εd) describes the optical transition (with
polarization εd) between the e and f manifolds

Odet(εd) = Peεd·DPfε∗
d·DPe . (4.19)

Note that only the angular component of the electric dipole operator appears
in (4.19); the radial part has already been incorporated in the definition of
the pumping time Tp. The constant K depends on geometrical factors such
as the solid angle of acceptance of the detector and distance of the detector
from the decaying atoms. As a scaling factor, it does not affect the form of
the quantum beat signal and will henceforth be disregarded.

From the mathematical form of (4.18) one clearly sees that superposed on
the exponential decay are modulations of the fluorescence at the various Bohr
frequencies of the excited manifold. The amplitude of each Fourier component
of the beat signal depends on the elements of Odet(εd) and ρ+. To illustrate
the use and physical content of the optical pumping equations, with an eye on
the specific effects of nonlinearity in the interaction between the atoms and
the light pulse, we will examine in the next section the quantum beat signals
produced by a three-level system subjected to different excitation conditions.
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4.3 Nonlinear Effects in a Three-Level Atom

Consider an atom with nondegenerate ground state g and two excited states e1
and e2, both of which decay at the rate Γ ; the Bohr frequency is ω0 = ω2−ω1.
This system is almost the same as that treated in Sect. 4.1, except that states
g and f are here taken to be identical. The processes of excitation and decay,
summarized in Fig. 4.2, are characterized by the respective matrix elements

aj ≡ 〈ej |ε · D|g〉 (j = 1, 2) , (4.20)

bj ≡ 〈ej |εd·D|g〉 (j = 1, 2) , (4.21)

which, for the sake of simplicity, are assumed to be real. The matrix repre-
sentation of the detection operator then takes the form

Odet =
(
b21 b1b2
b1b2 b22

)
. (4.22)

There are four independent elements to the density matrix of the atomic
system which are designated as follows

x ≡ 〈g|ρ|g〉 ,

yj ≡ 〈ej|ρ|ej〉 (j = 1, 2) , (4.23)

z ≡ 〈e2|ρ|e1〉 = 〈e1|ρ|e2〉∗ ,
where the initial conditions before the laser excitation

x− = 1 , y1− = y2− = z− = 0 (4.24)

Fig. 4.2. Nondegenerate three-level system showing amplitudes for excitation and
decay processes
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characterize a ground-state atom. The corresponding density matrix elements
describing the state of the atom after passage of the pulse will be sub-
scripted with a plus sign. The quantum beat signal (4.18) then takes the
form of (4.4)

I =
[
b21y1+ + b22y2+ + b1b2(z+ + z∗+) cos(ω0t)

]
e−Γt . (4.25)

To calculate the signal intensity I explicitly one must solve the optical
pumping equations

dx
dt

=
1

Tp(t)

[
a21y1 + a22y2 + a1a2(z + z∗) − (a21 + a22)x

]
, (4.26)

dyj
dt

=
1

Tp(t)

[
a2j (x− yj) −

a1a2
2

(z + z∗)
]
± ia1a2ΔE(t)(z∗ − z) , (4.27)

with ± referring to j = 1, 2 respectively, and

dz
dt

=
1

Tp(t)

[
a1a2

(
x− y1 + y2

2

)
− a

2
1 + a22

2
z

]
(4.28)

−iω0z − iΔE(t)
[
a1a2(y1 − y2) + (a22 − a21)z

]

to determine the time evolution of the density matrix elements y1, y2, z. [The
element x does not appear in (4.25).]

Under the conditions of weak pumping (T/Tp � 1) and short pulses
(ω0T � 1) one can neglect in the right hand side of the above equations
all terms involving the elements of ρe (i.e., y1, y2, and z) and assume x = 1.
This is the linear absorption approximation discussed previously. The equa-
tions can be integrated immediately and lead to the density matrix (after
pulse passage)

(ρe)+ =
(
y2+ z+
z∗+ y1+

)
= k0(∞)

(
a22 a1a2
a1a2 a21

)
, (4.29)

with resulting quantum beat signal

I0 = k0(∞)
[
a21b

2
1 + a22b

2
2 + 2a1a2b1b2 cos(ω0t)

]
e−Γt , (4.30)

where the preparation factor

k0(∞) =

∞∫

−∞

dt′

Tp(t′)
(4.31)



4.3 Nonlinear Effects in a Three-Level Atom 147

is a measure of the efficiency of excited state preparation. The beats occur at
frequency ω0/2π with a modulation depth η0 (equivalent to the visibility of
fringes in a Young’s two-slit experiment) given by

η0 = 2
a1a2b1b2
a21b

2
1 + a22b22

. (4.32)

Under conditions where a1 = a2 and b1 = b2 the modulation depth can reach
100% This occurs, for example, in the case of Zeeman quantum beats following
a J = 0 to J = 1 transition where both the excitation and decay radiation
are polarized perpendicular to the external magnetic field, and only mJ = ±1
substates are excited.

Now let us continue to assume that the pulse duration T is short compared
to the quantum beat period ω0/2π, and that the effects of light shifts are
negligible

ω0T � 1 , (ΔE)T � 1 , (4.33)

but that the optical pumping need no longer be weak. One can therefore drop
from (4.27) and (4.28) those terms in which ω0 and ΔE appear. Surprisingly,
integration of the optical pumping equations gives rise to an excited state
density matrix and quantum beat signal of the same form as in (4.29) and
(4.30), but with k0(∞) replaced by the time-dependent preparation factor

k(t) =
1

2(a21 + a22)

⎧
⎨

⎩
1 − exp

⎡

⎣−
t∫

−∞

2(a21 + a22)dt
′

Tp(t′)

⎤

⎦

⎫
⎬

⎭
. (4.34)

If the pumping is weak, relation (4.34) reduces to (4.31) upon a first-order
expansion of the exponential. If the pumping is sufficiently strong, the ex-
ponential term becomes negligible, and k(∞) reduces to a constant and is
independent of the pumping time Tp(t). Regardless of the pumping strength,
however, the signals I and I0 are proportional. In other words, the strength
of pumping, as usually expressed by the so-called saturation parameter

S ≡ T

Tp
, (4.35)

has no influence on the modulation depth under the experimental condition
of short pulse duration.

The physical significance of this result can be understood as follows. The
evolution of the system may be thought of as a sequence of absorption and
stimulated emission processes occurring on average every Tp seconds. In the
weak-pumping approximation (with S � 1) one takes account only of the
first absorption process which, starting from the ground state g, creates the
excited-state populations y1 and y2 and the coherence z proportional to a21, a22,
and a1a2, respectively. For an intense pulse (with S  1) many such sequences
of absorption and stimulated emission can occur during the passage of one
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pulse. Nevertheless, stimulated emission destroys the excited state populations
and coherence in the same proportions as absorption creates them with the
consequence that the modulation depth is unaltered. Equation (4.25) shows
that the modulation depth can change only if the relative magnitude of the
excited state coherence and populations change.

If the system has a more complex level structure than that of a three-
level atom, the form of the quantum beat signal can change with increasing
saturation. Consider, for example, an atomic system with a pair of ground
states, each one coupled by the laser pulse (and by spontaneous emission) to
a distinct pair of excited states. Analysis of such a system leads to an op-
tical signal that is the sum of two contributions of the form of (4.30) with
different preparation factor, excitation and decay matrix elements, and beat
frequency for the two uncoupled sets of three states. In this case the ratio of
the preparation factors and the modulation depth of each frequency compo-
nent will depend on the saturation parameter T/Tp although, in general, this
dependence is not very marked.

The effects of saturation show up in a much more interesting and surprising
way when one considers the example of a long pulse excitation, i.e., a pulse
length no longer negligible in comparison to the beat period (ω0T  1).
Intuitively, one might anticipate that the contributions to the signal from each
(differentially) small time interval during passage of the pulse would interfere
destructively when spread over a total interval T that exceeds the period of
beats to be observed. The modulated component of the optical signal should
then diminish and eventually vanish as T is lengthened beyond 2π/ω0. In the
case of weak optical pumping, this expectation is indeed correct as will now
be demonstrated.

Retaining ω0 in (4.28) for the coherence z – but neglecting the excited
state populations and level shifts – leads to

z+ = a1a2

∞∫

−∞

exp(−ω0t
′)dt′

Tp(t′)
. (4.36)

In the weak-pumping limit the populations y1+ and y2+ are still independent
of ω0 and given in the density matrix (4.29). The quantum beat signal then
takes the form

I0 =
[
k0(∞)(a21b

2
1 + a22b

2
2) + 2kω0(∞)a1a2b1b2 cos(ω0t)

]
e−Γt , (4.37)

where

kω0(∞) =

∞∫

−∞

e−iω0t′dt′

Tp(t′)
(4.38)

is the Fourier transform of the pulse profile at the beat frequency ω0. For the
time-independent or dc component of the beat signal, the preparation factor
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k0(∞) is the Fourier transform at frequency 0. Compared to the corresponding
case of a short pulse width, the modulation depth is now a function of the
beat frequency

η = η0
kω0(∞)
k0(∞)

. (4.39)

From the integral in relation (4.38) it is seen that the modulation depth –
and hence the visibility of the beats – vanishes when the pulse duration is
sufficiently long to permit variation of the phase ω0t

′ over at least 2π radians.
Intuition fails, however, in the case of both long pulse duration and strong

pumping. If the linear approximation is no longer valid and the pulse duration
no longer negligible, the entire set of coupled optical pumping equations must
be solved as they stand. We will disregard for the moment, however, the
light shifts and set ΔE = 0. This is always possible if one restricts attention
to a symmetric excitation profile centered on the frequency of the optical
transition. Nevertheless, this simplification does not permit the equations to
be solved in a simple, physically interpretable analytic form, and it is necessary
to resort to numerical analysis by computer.

Let us adopt a Gaussian pulse profile

1
Tp(t)

= ζ exp
[
− t

2 ln 2
(T/2)2

]
, (4.40)

with an amplitude ζ which determines the saturation parameter

S =

∞∫

−∞

dt
Tp(t)

. (4.41)

In Fig. 4.3 are shown computer simulations of the quantum beat signal for
two pumping strengths – one low (S = 0.1) and one high (S = 4000). For
purposes of illustration, the excitation and detection matrix elements have all
been chosen to be unity, and the condition of long pulse duration is expressed
by the assignment ω0T = 5. Since it is the modulation depth, and not the
exponential decay, that is of significance here, the beat profiles are shown for
decay rate Γ = 0.

Although the modulation depth is seen to be small, as expected, in the
lower trace where the pumping is weak, the striking feature of Fig. 4.3 is
that strong pumping gives rise to large beat visibility in the upper trace even
though the pulse duration is long compared to the beat period. Why are the
beats not washed out as in the case of weak pumping?

This effect, which is known as the saturation regeneration of quantum
beats, can be understood qualitatively in terms of a random-walk model. It is
useful to recall first that a coupled two-level quantum system (with periodic
transitions between the two levels) may be likened to a classical electric dipole
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Fig. 4.3. Restitution of quantum beats
for excitations of sufficiently high inten-
sity (as gauged by the saturation parame-
ter S) and pulse length long with respect
to the beat period. Under the conditions
of weak pumping (small S), a long pulse
length leads, as shown, to low beat visi-
bility. The theoretical parameters for the
above plots are: a1 = a2 = b1 = b2 = 1,
ω0T = 5, Γ = 0. (Adapted from Silverman
et al. [102])

moment undergoing precession. (This point will be examined in greater detail
in the next chapter when we consider the effects of resonant radiofrequency
fields on excited states.) It is the off-diagonal elements – the coherence term
z – in the density matrix that corresponds to the classical precession; the
conjugate pair z and z∗ represent precessional motion in opposite senses.
We have previously described the time evolution of the atomic system as
a succession of absorption and stimulated emission processes each occurring
on average every Tp seconds. When the atom evolves freely in the excited
manifold, the coherence z is said to precess at the angular frequency ω0.
However, this precession is eventually interrupted by a stimulated emission
coupling z to the ground-state population x. (Since the state lifetime τ  T ,
the effect of spontaneous emission can be neglected over the duration of the
pulse.) When a subsequent absorption process occurs, it renews the excited
states (both populations and coherence), but the precession of the coherence
term can take place either in the original sense (x coupled to z) or in the
opposite sense (x coupled to z∗).

During passage of the pulse the number of elementary absorption and emis-
sion processes is of the order of T/Tp. Over the interval of time (∼ Tp) that an
atom temporarily remains in the excited manifold, the phase of the coherence
term – i.e., the precession angle of the analogous classical dipole – is of the
order ω0Tp. It is assumed in this heuristic argument that the laser pulse is suf-
ficiently intense, and the pumping time correspondingly short, that ω0Tp � 1.
Although the precession can occur sometimes in one direction, sometimes in
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the other, so that the mean precession angle is zero, the dispersion in phase
is not zero, but is given by the root mean square of the individual phase
variations

(Δφ)2 = (ω0Tp)2
T

Tp
= ω2

0TpT =⇒ Δφ = ω0

√
TpT . (4.42)

In order that the pulse create a substantial coherence in the excited state, the
dispersion in phase must be less than about 1 radian (Δφ ≤ 1) which, from
(4.42) is equivalent to requiring

S =
T

Tp
 (ω0T )2 . (4.43)

Thus, one learns from (4.43) that even if the pulse duration is long (ω0T  1),
as long as the saturation parameter – or, equivalently, the pumping strength
– is sufficiently high, it should still be possible to observe quantum beats in
the fluorescence signal.

An alternative way of considering this phenomenon is that the effect of
saturation is to slow down the coherence precession rate – in the analogous
way that virtual absorption and emission of light propagating through a trans-
parent material lead to a phase velocity below c (or refractive index greater
than unity) – and thereby prevent destructive interference from wiping out
the beats during passage of the pulse. Once the pulsed excitation is completed,
the coherence term resumes its normal precession rate, and the modulation
of the fluorescence occurs at the frequencies characterizing the energy level
structure of the field-free atom. Although, to my knowledge, the predicted
saturation regeneration of quantum beats has not yet been observed in spon-
taneous emission from excited states because of the high value of S required
(S > 100), the slackening of the precession rate, as a result of nonlinear in-
teractions with the exciting light, has been reported in other types of optical
pumping experiments.

One such example is the Hanle effect [112]. The Hanle effect refers to the
variation in fluorescent intensity of specified polarization when an external
static magnetic field is varied about its null value at which point the radiat-
ing Zeeman substates become degenerate. A second example, also employing
a static magnetic field, is the occurrence of quantum beats in the radiofre-
quency domain from optically-induced Zeeman coherences within an atomic
ground state, a process referred to as free-induction decay [113]. This process
is particularly interesting and warrants a closer examination.

The basic idea can be simply illustrated with a three-state atom compris-
ing two degenerate ground states (1 and 2) and one excited state (3) as shown
in the left frame of Fig. 4.4. The atom is irradiated by a continuous-wave (cw)
laser which drives transitions 1–3 and 2–3, but not 1–2. There is no initial
coherence between states 1 and 2, but a steady-state (i.e., time-independent)
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Fig. 4.4. Schematic level diagram for observation of ground-level Zeeman quantum
beats (free-induction decay) in a three-state atom. In the absence of a magnetic field
(left), the ground level is doubly degenerate; an incident cw laser drives transitions
between the two ground states and the excited state, thereby creating a ground-
state coherence ρ12. When the laser irradiation is terminated and a magnetic field
switched on (right), the ground-level degeneracy is broken and the coherence evolves
in time at the Bohr frequency ω21, which can be observed as an oscillatory decay of
the system magnetization

coherence develops as a consequence of the laser irradiation. Upon extinc-
tion of the laser light and sudden initiation of a static field (e.g., magnetic or
electric) of appropriate symmetry (right frame), the atomic coherence begins
evolving in time at the Bohr frequency ω21 = (E2 − E1)/� and can be de-
tected by observing the oscillatory decay of a macroscopic magnetization or
polarization of the sample.

The outcome stated above may seem surprising at first, if not in outright
violation of quantum electrodynamics (QED) which predicts that radiative
decay into substates of a ground level cannot lead to ground-state quantum
beats. (Mathematically, one must sum the QED probabilities for transitions
from states of an excited manifold to a given ground state.) There is, in
fact, no inconsistency, as may be seen from the following heuristic argument,
which outlines what, in effect, is the reasoning behind a Raman scattering
process. In the presence of the cw laser radiation, the ground eigenstates of
the system are no longer the eigenstates of the field-free Hamiltonian, but
linear superpositions that may be written as

ψ1 = a11|1〉 + a13|3〉 , ψ2 = a22|2〉 + a23|3〉 ,

where amplitudes a11 and a22 are close to unity and amplitudes a13 and
a23 are much smaller in the case of weak optical pumping. The ground-state
component of the total system density matrix, ρg = ΨgΨ

†
g , in which

Ψg =
(
ψ1

ψ2

)
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and the overbar signifies an average with respect to distributed quantum
phases, then takes the form

ρg =

(
|a11|2 a13a∗32
a∗13a32 |a22|2

)

,

from which it is clear that a nonvanishing ground-state coherence (ρg)12 =
a13a∗32 has been established.

The elements of the density matrix can be calculated, although by a mathe-
matically more expedient method than that suggested by the preceding heuris-
tic argument, and leads to a steady-state coherence

(ρg)12 =

1
4
V13V23

(ω − ω0)2 + (V 2
13 + V 2

23)
,

where Vij is the electric dipole matrix element coupling states i and j, ω is
the pump laser angular frequency, and ω0 is the resonance frequency of the
optical transition between state 3 and either of the two degenerate ground
states. In this illustrative example, the natural lifetime of the excited state
and the pumping time of the ground states have been disregarded. Since the
solution of this problem employs concepts and techniques introduced in the
next chapter on the interactions of atoms with radiofrequency fields, I defer
discussion of it to Appendix 5B.

In the cited experiment [113], Zeeman coherences were induced in the
3s2S1/2 ground state of atomic sodium by a long laser pulse close to the
D1 resonance line. A static magnetic field was switched on and the induced
ground-state coherence was subsequently observed (in the absence of the pump
beam) by measuring the magnetization along the axis of a separate cw probe
beam by means of the difference of the dispersion of right and left circularly po-
larized components. Figure 4.5 shows the quantum beat signal (free-induction
decay) after termination of the pump pulse of duration much longer than the
period of the beats.

Up to this point in the analysis of laser-induced quantum beats, there
has been no (or very small) light-induced displacement of energy levels. We
consider next situations in which light shifts could have a potentially sig-
nificant effect on the quantum beat signal. To isolate this effect from other
consequences of saturation connected with pulse length, assume at first that
the free precession of the atom during passage of the pulse is negligibly small
(ω0T � 1). It may seem plausible that, if the light shifts are large and different
for each substate of the excited manifold, the dephasing of the atomic coher-
ence during passage of the pulse would lead to disappearance of the quantum
beats. This reasoning is deceptive, however. One can show rigorously that,
regardless of the magnitude of the displacement-and even if (ΔE)T  1, the
level displacement has no effect on the signal under the currently assumed ex-
perimental conditions. This result follows from integrating the optical pump-
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Fig. 4.5. Free-induction decay (ground-state Zeeman quantum beats) arising from
a 70 mW square-wave pulse of cw laser radiation of atomic sodium, demonstrating
the regeneration of quantum beats from a long pulse (pulse width � beat period)
of sufficiently large intensity. (Adapted from Rosatzin et al. [113])

ing equations (4.27) and (4.28) with ω0 = 0. The solutions y1, y2, z obtained
for t→ ∞ are all independent of ΔE.

An explanation of the above puzzling result may be found in the symmetry
of the original density matrix equations (4.9) and (4.10). It will be seen that
the effective Hamiltonian characterizing light shifts in the excited states

ΔE Peε · DPgε
∗·DPe

has exactly the same structure as the product of operators

1
Tp
Peε · DPgρgPgε

∗·DPe

governing the preparation of the excited manifold provided the ground state is
isotropic (i.e, ρg is proportional to Pg). In other words, absorption of a photon
puts the atom into an eigenstate of the effective Hamiltonian governing level
displacement, and therefore cannot create an atomic coherence among these
eigenstates evolving in time at frequencies of the order of ΔE during passage
of the pulse even if (ΔE)T is large. The saturation effects tied to light shifts
in this case are rigorously null.

If, however, the phase ω0T  1, the foregoing reasoning is no longer valid.
It is then necessary to consider contributions of both the atomic Hamilto-
nian and the effective light-shift Hamiltonian to the evolution of the excited
state during passage of the pulse. The quantization axis for energy eigenstates
depends in that case upon the relative magnitudes of ω0 and ΔE and, in ad-
dition, varies in time. Furthermore, if the atomic system is more complex
than the one studied here and is characterized by a nondiagonal ground-state
density matrix, then the pumping operator above need no longer have the
same symmetry as the effective light-shift Hamiltonian. In that case, optical
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excitation could create coherence terms during the passage of the pulse even
for ω0 = 0.

In general, the cases for which light shifts play a role in the determination
of the quantum beat signal are complicated situations in which other effects
of saturation are involved as well. The manifestation of these effects demands
particular experimental conditions (such as light pulses with strong nonreso-
nant spectral components) not likely to be realized in an actual quantum beat
experiment.

4.4 Quantum Beats in External Fields

Although the introductory remarks of this chapter specifically pointed to the
avoidance of time-varying external fields as one of the advantages of quantum
beat spectroscopy, there are nevertheless circumstances under which the use
of external fields can be conceptually and practically helpful. Indeed, as will
be illustrated in the following chapter, the interaction of a coherently prepared
atom with time-varying fields can lead to some very interesting physics. In this
section, however, we are concerned primarily with theoretically interesting
effects of magnetic fields on laser-induced quantum beats.

To determine the time evolution of an atomic system one must add to
the field-free Hamiltonian H0 the Hamiltonian of the appropriate external
interaction Hext whose specific form differs according to whether an electric or
magnetic field is involved. In the case of coupling to a static magnetic field B0,
the Zeeman Hamiltonian (in the absence of hyperfine structure) is given by

Hext = −μBB0·(L + 2S) , (4.44)

where μB is the Bohr magneton

μB =
|e|�
2mc

= 9.274 × 10−21 erg G−1 = 9.274× 10−24 J T−1 , (4.45)

and L and S are respectively the orbital and spin angular momentum oper-
ators (in units of �). For coupling of a fine-structure state |nLJmJ〉, where
J = L + S, to a static electric field E0 the effective Stark Hamiltonian can
be written in the form

Hext =
∑

(n′L′J′m′)

E0·μE|n′L′J ′m′〉〈n′L′J ′m′|E0·μE

EnLJ − En′L′J′
. (4.46)

The energy level structure, which determines the possible quantum beat fre-
quencies, is then obtained by diagonalizing H0 +Hext.

In general, the actual spectral composition of the quantum beats following
excitation by one or more lasers depends on the polarization of the light
and the relative strengths of the parameters governing the internal (e.g., fine
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structure) and external interactions. Even for hydrogenic systems like atomic
Rydberg states, the calculation of the quantum beat profiles is by no means
a trivial matter, and I will leave the details to the original scientific papers
[102, 103]. It is instructive, however, to illustrate the effects of an external
magnetic field in the case of an atom whose internal Hamiltonian includes
a spin-orbit coupling term

Hso = �AL · S , (4.47)

where A is a measure of the strength of this fine-structure interaction (in units
of angular frequency since L and S are in units of �).

Figure 4.6 shows the variation in energy of the nD sublevels of atomic
sodium as a function of magnetic field strength. Note that the ordering of the
J = 3/2 and J = 5/2 levels is opposite that of normal ordering – i.e., the
ordering of atomic hydrogen fine structure – as a result of complex interac-
tions with the core electrons.1 Since D and S states have the same parity,

Fig. 4.6. Variation in energy with mag-
netic field of the nD sublevels of the
sodium atom. The fine structure ordering
is reversed from that of hydrogen. Arrows
indicate the expected transitions leading
to quantum beats in the region of low and
high fields. (Adapted from Silverman et
al. [102,103])

1 The origin of the anomalous fine structure ordering is discussed in my books
And Yet It Moves: Strange Systems and Subtle Questions in Physics [114] and
A Universe of Atoms, An Atom in the Universe [82]. For a detailed relativistic
treatment, see [115].
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a direct transition from the 3S ground level cannot be effected by single laser
excitation. Two laser pulses, however, properly timed and of appropriate fre-
quency, can induce sequential 3S–3P and 3P–nD transitions thereby exciting
the atom into a linear superposition of D3/2 and D5/2 states [116]. The rel-
ative orientation of the two excitation polarizations influences strongly the
visibility of ensuing quantum beats; examination of a number of special cases
suggests that greater beat contrast occurs for crossed polarizations.

In Figs. 4.7, 4.8, and 4.9 are illustrated the quantum beat transients cal-
culated numerically for the respective conditions of zero, weak, and strong
magnetic fields. The level of field strength is defined by the relative magni-
tude of the fine structure interaction parameter A and the cyclotron frequency

ωc =
μBB0

�
, (4.48)

Fig. 4.7. Theoretical zero-field quantum beat signal. (Adapted from Silverman et
al. [102,103])

Fig. 4.8. Theoretical weak-field (ω0 	 A) quantum beat signal. B0 is the
applied magnetic field, and μB is the Bohr magneton. (Adapted from Silverman
et al. [102,103])
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Fig. 4.9. Theoretical strong-field (ω0 � A) quantum beat signal. ωL is the Lar-
mor frequency, and A is the fine-structure interaction parameter. (Adapted from
Silverman et al. [102,103])

both of which enter the expression for the eigenvalues (in units of angular
frequency)

ωL±1/2,m = −A
4

+mωc ± 1
2

{
(Am+ ωc)2 +A2

[
L(L+ 1) −

(
m2 − 1

4

)]}1/2

(4.49)
of the basis vectors |Jm〉′ of the Hamiltonian H0 +Hext. A configuration was
chosen such that the two light polarizations are parallel to each other and
perpendicular to the external magnetic field.

The theoretical zero-field quantum beat signal (Fig. 4.7) displays a beat
frequency ω0 = 5A/2, corresponding to the fine-structure level separation,
with shallow modulation depth as expected. The application of a weak mag-
netic field (ω0 � A), however, enhances the beat visibility as shown in Fig. 4.8.
The signal is seen to be modulated primarily at the frequency 2gJμBB0 where
gJ = 1.2 is the Landé factor of the D5/2 level. The calculation shows that in
this case the signal is particularly sensitive to the Δm = 2 coherence in the
D5/2 level. Contributions of other coherence terms either within the D3/2

level or between the D3/2 and D5/2 levels evolving at different frequencies are
much weaker. Arrows in the low-field region of the energy level diagram of
Fig. 4.6 indicate the couplings contributing to the quantum beat signal. Thus,
measurement of the weak-field Zeeman beats can directly yield the Landé g
factor for excited states, a point of practical spectroscopic interest.

When the magnetic field is sufficiently strong (ω0  A), the pattern of
beats is completely changed, as Fig. 4.9 shows. For the example of sodium D
states the analytic form of the signal is

I = 198.15 + 105.55 cos(At) cos(ωLt) , (4.50)

where the two frequencies appearing in the signal are indicated by arrows
on the high-field region of the energy level diagram of Fig. 4.6. The signal
now consists of a carrier wave at the Larmor frequency ωL = 2ωc modulated
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strongly at the frequency A of the fine-structure interaction. What is the
origin of this beats-within-beats structure?

A simple interpretation can be given in terms of the classical vector model
of the atom [117]. In a high magnetic field the angular momenta L and S are
decoupled and each can precess freely about the magnetic field. This explains
the appearance of the Larmor frequency ωL in place of 2gJωc. One must also
take account, however, of the diagonal part (AmLmS) of the fine structure
interaction (4.47), which acts as a perturbation adding to the applied field
a small internal magnetic field B′ = �AmS/μB. This internal magnetic field
may be oriented parallel or antiparallel to the applied field according to the
sign of mS = ±1/2, the projection of spin along the quantization axis (i.e.,
the direction of the external magnetic field). There are therefore two Larmor
frequencies ωL± = ωL ± A, and correspondingly the sum of two cosinusoidal
terms at these frequencies gives the frequency dependence of relation (4.50) as

cos
[
(ωL +A)t

]
+ cos

[
(ωL −A)t

]
= 2 cos(At) cos(ωLt) .

The foregoing high-field quantum beam experiment, which to my knowl-
edge has yet to be performed, suggests an alternative to zero-field experiments
for measuring the fine structure interaction constant. As seen in the forego-
ing example, high-field quantum beats show a marked enhancement in the
signal-to-noise ratio.

4.5 Correlated Beats from Entangled States

An entangled state, so designated by Schrödinger [118] in 1935, refers to
a quantum state of a multiparticle system that cannot be expressed as a prod-
uct of single-particle states. Such states give rise to correlations between sep-
arated particles which are unaccountable within the framework of classical
physics and sometimes bizarre even by the standards of quantum physics if
one’s expectations are based on the study of single-particle systems or systems
of uncorrelated particles. Entangled states are therefore of considerable inter-
est to those concerned with the foundations of quantum physics. Schrödinger,
himself, regarded the property of entanglement as the foremost characteristic
property of quantum mechanics.

We have already encountered quantum entanglement in the discussion of
the EPR paradox and the correlations manifested in the AB–EPR and AB–
HBT experimental configurations of previous chapters. It will be recalled that
the EPR paradox was advanced as an argument that quantum mechanics
could not be a complete theory and most likely had to be supplemented by
additional (and possibly unknowable) variables. Since the appearance in 1935
of the seminal EPR paper, a number of experiments have been performed with
entangled photon states for the purpose of revealing the possible existence of
such local hidden variables by testing the correlations expressed in a set of
inequalities derived by J.S. Bell [119]. An essential feature common to these
EPR-type experiments is the correlation in space, time, or polarization of two
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photons emitted during radiative decay of an excited atomic state. In these
experiments the two-photon entangled states were produced by cascade transi-
tions from single atoms excited incoherently by optical or electronic transitions
or by the nonlinear optical process of parametric down-conversion [120].

In this section we examine a remarkable example of nonlocal correlations
manifested by quantum beats in the radiative decay of entangled states of
two identical, but widely separated, excited atoms [121]. What makes the
example of particular interest is that this quantum interference effect occurs
even though each individual atom is not prepared in a linear superposition of
excited states.

To appreciate the extraordinary nature of the effect recall that the spon-
taneous emission from incoherently populated atomic states decays exponen-
tially in time. A percussional excitation sharply defined in time – produced,
for example, by pulsed laser – and sufficiently uncertain in energy can put
an atom into a linear superposition of close-lying excited states. Only then,
it would seem, should the subsequent atomic fluorescence be modulated at
the Bohr frequencies corresponding to the energy intervals of the superposed
states. If the spectral width of the exciting pulse is much smaller than the
Bohr frequencies, the atom will be prepared in a sharp energy eigenstate, and
no quantum beats will be induced.

In striking contrast to the conditions characteristic of standard quantum
beat spectroscopy, the quantum interference phenomenon to be described now
can be produced by spectrally narrow but correlated photons. The quantum
beats then appear – not in the fluorescence from individual atoms – but in
the joint detection of photon pairs, one light quantum arising from each of
two separated atoms.

Figure 4.10 shows a schematic diagram of a possible experimental con-
figuration. A light source – created, for example, by decay of S-state sys-

Fig. 4.10. Configuration of a long-distance or EPR-type quantum-beat experiment.
Pairs of photons emerge in opposite directions from source S, exciting separated
atoms A and B into state e1 or e2, but not a superposition of the two. Photode-
tectors DA and DB individually reveal no quantum beats although beats appear at
frequency ω2 − ω1 in their correlated output. (Adapted from Silverman [121])
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tems – produces photons in pairs, one photon of frequency ω1 and the other
of frequency ω2, that propagate in opposite directions through polarizers εA

and εB to excite two arbitrarily separated atoms. Which direction a photon of
particular frequency takes is entirely random and unpredictable, although if it
is known that a photon of frequency ω1 has propagated to the left, then a pho-
ton of frequency ω2 must necessarily have propagated to the right. Depending
on whether the frequency is ω1 or ω2, a photon can induce a transition from
the atomic ground state g to the excited state e1 or e2 respectively. Neither
photon, however, prepares an atom in a linear superposition of states e1 and
e2. Finally, the fluorescent photons created by radiative decay of the atoms
from states e1, e2 to some final state f pass through polarizers εDA and εDB

and are monitored without energy selection at detectors DA and DB.
Time-ordered diagrams representing the two modes of excitation and decay

are illustrated in Fig. 4.11. Since the two modes give rise to indistinguishable
final states of the whole system, their amplitudes are to be added, and the
resulting probability for the process will display a quantum interference term.
However, the single-atom density matrix, which reveals all that can be known
by measurements on one of the two atoms (A or B), is equivalent (as will be
demonstrated shortly) to that of an atom with incoherently populated excited
states. Thus, no beats will appear at the output of one detector alone. The
quantum beats occur only in the joint probability of receiving photons at the
two detectors.

Pursuant to the foregoing description, the state of the two-atom system
immediately following excitation by two correlated photons is representable
by the entangled superposition of state vectors

|φ(0)〉 = a12|eA1 ; eB2 〉 + a21|eA2 ; eB1 〉 , (4.51)

where the label eKj designates excited state j (1 or 2) of atom K (A or B). To
within a constant factor unimportant for our present purposes the coefficients
of the superposition can be written as

aij ∼ 〈g|μA·εA|ei〉〈g|μB·εB|ej〉 , (4.52)

Fig. 4.11. Time-ordered diagrams for the excitation and decay processes giving rise
to long-distance quantum beats. Vertical lines represent the evolution of atoms A
and B from ground state g to final state f via intermediate excited states e1 or e2.
Oblique lines represent absorption (arrows in) and emission (arrows out) of photons
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where μK is the electric dipole moment of atom K. The density operator of
the total system is then

ρ(0) = |φ(0)〉〈φ(0)| , (4.53)

from which it readily follows by tracing over the states of atom B that the
single-atom density operator of atom A takes the form

ρA(0) = TrB

[
ρ(0)

]
= |a12|2|eA1 〉〈eA1 | + |a21|2|eA2 〉〈eA2 | . (4.54)

By tracing (4.53) over the states of atom A, one arrives at a similar expression
for the single-atom density operator of atom B. Since the matrix represented
by expression (4.54) is diagonal in an energy representation – i.e., displays
only populations and no coherence terms – measurements made on A or B
alone would not distinguish systems represented by state vector (4.51) from
two ensembles of atoms with incoherently populated excited states.

After the initial excitation, the states of the two atoms evolve freely and
independently under their respective Hamiltonians. Thus, the state of atom
A at time tA and of atom B at time tB (where the sharp excitation defines
the time origin) is represented by the vector

∣
∣φ(tA, tB)

〉
(4.55)

= a12 exp
[
−i

(
ωA

1 − i
2
ΓA

1

)
tA

]
exp

[
−i

(
ωB

2 − i
2
ΓB

2

)
tB

] ∣
∣eA1 ; eB2

〉

+ a21 exp
[
−i

(
ωA

2 − i
2
ΓA

2

)
tA

]
exp

[
−i

(
ωB

1 − i
2
ΓB

1

)
tB

] ∣∣eA2 ; eB1
〉
,

where ωK
i is the angular frequency corresponding to excited state i of atom

K, and ΓK
i is the associated spontaneous emission decay rate. Although the

two atoms A and B are of identical kind, the Bohr frequencies and decay
rates are specifically labeled by A or B since the atoms may be moving with
different velocities with respect to the stationary detectors of the laboratory
frame and therefore subject to Doppler shifts.

The joint probability that one photon is received at detector DA within
an interval ΔtA about time tA and a second is received at detector DB within
an interval ΔtB about time tB is given by

P (tA, tB) = I(tA, tB)ΔtAΔtB . (4.56)

By generalization of the theory of quantum beats developed in the previous
sections, one can determine I(tA, tB) to within a constant instrumental factor
by calculating the mean value of the detection operator

Odet =
[
(εDA ·μA)(εDB ·μB)

]|fAfB〉〈fAfB|[(εDA ·μA)(εDB ·μB)
]† (4.57)
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as follows
I(tA, tB) = Tr

[∣
∣φ(t′A, t

′
B)
〉〈
φ(t′A, t

′
B)
∣
∣Odet

]
, (4.58)

where
t′K = tK − rK

c
(4.59)

is the retarded emission time of atom K (A or B) a distance rK from detector
DK .

Evaluation of the trace in (4.58) leads to the joint intensity function

I(tA, tB) = |a12b12|2 exp
[
− (
ΓA

1 t
′
A + ΓB

2 t
′
B

)]
(4.60)

+|a21b21|2 exp
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1 t
′
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2
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21b12b

∗
21 exp

[
− i

(
ωA

21t
′
A − ωB

21t
′
B

)]}
,

in which
bij ∼ 〈f |μA·εDA |ei〉〈f |μB·εDB |ej〉 (4.61)

are the spontaneous emission matrix elements, and

ωK
21 = ωK

2 − ωK
1 (4.62)

is the beat frequency of the fluorescent emission from atomK in the laboratory
frame. This frequency is related to the corresponding frequency ω21 in the
atomic rest frame by the Doppler effect

ωK
21 = ω21

(
1 + kK ·vK

c

)
, (4.63)

where kK is a unit vector from detector K to atom K and vK is the velocity
of atom K.

Since it is a Doppler-shifted beat frequency, rather than optical frequency,
that comprises the signal, the quantum interference effect described here is
largely insensitive to atomic motion. For example, for a thermal distribution
of atoms at room temperature (T ∼ 300 K), the atomic velocities span an
approximate range 0 < v/c < 10−3, and the Doppler effect leads to a spread
of ∼ 1011 s−1 about an optical frequency of ω2 ∼ ω1 ∼ 1014 s−1. This may well
be much larger than the quantum beat frequency ω21 (derived, for example,
from atomic fine structure) which could be typically of the order of 108 s−1. or
lower. The Doppler spread of the beats, however, would span the much smaller
range 0 < ω21 < 105 s−1, and therefore have negligible effect on dephasing
of the observed signal. Similarly, for an atom with sharply defined energy
eigenvalues, ωi  ω21  Γi (i = 1, 2), one can ignore the effect of atomic
motion on the excited state decay rates.



164 4 Quantum Boosts and Quantum Beats

Assume for purposes of illustration that the excitation and decay matrix
elements expressed by relations (4.52) and (4.61) are real-valued numbers,
and let us disregard the weak effects of atomic motion. Equation (4.60) then
reduces to the following simpler expression for the jointly detected two-photon
fluorescent signal

I(tA, tB) = (a12b12)2 exp
[
− (
Γ1t

′
A + Γ2t

′
B

)]
(4.64)

+(a21b21)2 exp
[
− (
Γ2t

′
A + Γ1t

′
B

)]

+2a12a21b12b21 exp
[
−1

2
(
Γ1 + Γ2

)
(t′A + t′B)

]

× cos
{
ω21

[
(tB − tA) − rB − rA

c

]}
.

Note in particular the argument of the cosine factor of the interference term in
which the retarded times have been replaced by the actual detection times by
means of defining relation (4.59). A significant feature of the above expression
is that a large dispersion in the difference in retardation times can be tolerated
without the quantum interference term being averaged away. Although in the
foregoing discussion reference is made to ‘atom A’ or ‘atom B’, what is really
implied, of course, are two distinct atomic ensembles within each of which
many identical atoms are in motion and instantaneously located at different
distances from the closest light detector. Thus, the spatial intervals rA and
rB are distributed quantities. For the quantum beats to persist, the term
ω21|rB − rA|/c must remain less than about one radian as the optical path
lengths from atoms A and B to all points on the detecting surfaces of DA

and DB, respectively, vary. For a beat frequency ω21 on the order of 108 s−1,
one must have |rB − rA| < c/ω21 ∼ 300 cm, which is experimentally easy to
satisfy.

The possibility of quantum beats in the fluorescence of a multi-atom sys-
tem has long been known [109] for the standard procedure of single-photon
excitation of a localized system of atoms. In that case nearly contiguous atoms
constitute a single quantum system, and quantum beats arise from the inter-
ference of decay pathways involving one or another of the associated atoms.
These beats are highly sensitive to the dispersion in retardation times, as they
are in general to the Doppler effect, and would be totally dephased for mean
atom separations that exceed an optical wavelength (∼ 10−5 cm). Moreover,
such an interference can occur in elastic scattering only – i.e., the states g
and f must be the same, otherwise the emitting atom can in principal be
identified.

In striking contrast, the ‘long-distance’ quantum beat phenomenon aris-
ing from entangled states can occur in inelastic (f �= g) as well as elastic
scattering, and is largely insensitive to atomic motion or location.
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Sympathetic Vibrations:
The Atom in Resonant Fields

5.1 Beams, Bottles, and Resonance

Science, according to the articulate writer and Nobel Laureate in medicine,
Peter Medawar, is the “art of the soluble” [122], and as there is virtually no
system in nature that is exactly soluble, the application to the real world of
physics – the quintessential science – is to a great extent the art of model-
ing. To recount the great successes of physics is in large measure to unfold
a historical record of aptly chosen, albeit hypothetical, models of reality such
as frictionless free-fall, point electrical charges, and ideal gases. Among these
immensely useful abstractions is the two-level quantum system.

Quantum systems (depending on the nature of the potential energy func-
tion) ordinarily have many, perhaps an infinite, number of eigenstates, but
can be regarded as having only two to the extent that one may neglect all
couplings except those between a given pair of interest. Then the quantitative
description of such a system can be cast into the same aesthetic mathemat-
ical form irrespective of whether the two states are the spin states of an
electron, the hyperfine states of a hydrogen atom, the inversion modes of an
ammonia molecule, or the macroscopic states of the two superconducting re-
gions comprising a Josephson junction. With an anticipated application to
atomic physics in mind, we shall take the two-level system of this chapter
to be an atom and consider its interaction with a classical linearly polarized
monochromatic oscillating field. We have then the ‘purest’ form of wave in-
ducing transitions in the most elementary bound-state matter – and yet no
exact analytical solution of this deceptively simple system has yet been found.
How one can handle this situation will be addressed shortly.

The importance of the two-level atom to physics, however, can hardly be
overestimated. Investigations of a two-level atom in an oscillating field go back
at least to the mid-1930s, to the magnetic resonance experiments of I.I. Rabi
whose interest in determining the signs of nuclear magnetic moments led him
to derive the fundamental Rabi ‘flopping formula’ [123] which has since served
as a basis for nearly all successive magnetic resonance experiments. In this
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paper Rabi calculated the probability that an atom subject to a ‘gyrating’ (or
rotating) magnetic field of specified frequency (primarily in the radiofrequency
domain) undergoes a transition from one to the other of its quantum states
– or, viewed in terms of classical imagery, that the atomic magnetic moment
undergoes a reorientation. The significance of this paper is succinctly captured
by Rabi’s biographer, J.S. Rigden [124]: “Today, fifty years later, this paper
is cited by laser physicists who use Rabi’s ‘flopping formula’, derived in the
1937 paper, thus showing how a great paper can be applicable far beyond the
immediate intentions of its author.”

One particularly significant issue of Rabi’s resonance method was the sub-
sequent development of the atomic beam electric resonance technique pio-
neered by Lamb and Retherford [125] to make high-precision tests of rela-
tivistic atomic structure and quantum electrodynamics. Profiting from the
development of radiofrequency and microwave sources needed for radar dur-
ing the Second World War, the Lamb–Retherford experiment marked the first
major innovation in the study of excited-state atomic structure beyond tra-
ditional optical spectroscopy. The advantage of an atomic beam, as already
mentioned, was that atoms could be studied in a region separate from the
source of their production which was generally filled with rapidly fluctuat-
ing electromagnetic fields (as in the vicinity of an electrical discharge or an
electron beam). Use of radiofrequency (rf) techniques permitted the direct
coupling of excited states within the same electronic manifold with greatly
reduced Doppler broadening.

In the Lamb–Retherford experiment, a beam of excited hydrogen atoms
was produced by thermal dissociation of H2 in a tungsten oven and then bom-
barded by a transverse beam of 10.8 eV electrons (whose energy corresponds
to the transition n = 1 to n = 2). Except for the 22S1/2 metastable state,
which has a relatively long lifetime of 1/7 second due primarily to a two-
photon transition to the 12S1/2 ground level (since single photon transitions
are forbidden by angular momentum conservation), all the other excited states
were rapidly extinguished. A virtually pure beam of 22S1/2 atoms then passed
through a microwave interaction region where 22S1/2–22P1/2 electric dipole
transitions were driven. This diminished the metastable population which ul-
timately reached the detector where they were observed by monitoring the
electrons ejected by impact of the surviving atoms upon a tungsten plate.

The resonance curve or line shape, from which the 22S1/2–22P1/2 level sep-
aration could be determined, is ideally a measure of the variation of transition
probability with the frequency of the applied oscillating field. From a practi-
cal standpoint, however, it was not feasible at the time for the experimenters
to sweep a microwave or rf oscillator without simultaneously encountering
marked changes in the output power. Had they conducted the experiment
under these conditions, the line shapes would have been distorted and there-
fore useless for rendering accurate information on atomic structure. Lamb
circumvented this problem by keeping the oscillator frequency constant and
varying, instead, the strength of a transverse, homogeneous magnetic field
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through which the atomic beam passed. The magnetic field served at least
two purposes. First, by deflecting charged particles away from the detector,
it reduced the noise background. Principally, however, by altering the sepa-
ration of the magnetic substates within each fine-structure level (the Zeeman
effect), it afforded a means of selecting specific pairs of substates to investigate
and of ‘sweeping out’ the resonance line shape by scanning, not the applied
frequency of the oscillator, but the resonance frequency of the atom.

The Lamb–Retherford experiment demonstrated conclusively the long-
suspected failure of the Dirac relativistic theory of the hydrogen atom to
predict correctly the energy separation of states of the same n, J quantum
numbers. In addition, many fascinating points of atomic physics were brought
to light. However, as a general method for investigating excited atomic states,
this approach left much to be desired. For one, it was restricted to the study
of 2S metastables, since only atoms thus prepared could survive traveling
a macroscopic distance before decaying. The lifetime of a 2P state, for exam-
ple, is approximately 2 ns; emerging from a 2500 K oven at a probable speed
of nearly 8 × 105 cm/s, a 2P atom would not likely travel more than a few
microns. There were also a large number of systematic effects, most traceable
to the presence of the magnetic field, which distorted and/or shifted the reso-
nance curves and required correction. Such effects included the variation of the
transition matrix elements with magnetic field, the production (by the Lorentz
transformation) of a ‘motional’ electric field in the atom rest frame with re-
sulting displacement of the line center (Stark effect) and selected quenching of
hyperfine states, the unsymmetrical distribution of the hyperfine levels about
the mean fine structure energy caused by incomplete decoupling of the nuclear
and electron angular momenta (Back–Goudsmit effect), and ‘curvature’ of the
Zeeman levels due to partial decoupling of the electron orbital and spin angu-
lar momenta (Paschen–Back effect). In the words of Lamb [126]: “A lengthy
programme of calculations and measurements is required to allow for all such
sources of error.”

To investigate non-metastable excited states, Lamb and his co-workers
later introduced a new radio-frequency–optical technique in which the use
of an atomic beam was abandoned for a resonance cell (‘bottle’ experiment)
[127]. The method involved the excitation of hydrogen atoms to 3S, 3P , and
3D states by a low energy electron beam, simultaneous irradiation by a rf
field of fixed frequency, and detection of atomic transitions by monitoring the
variation in Balmer α emission as a function of magnetic field strength. As is
characteristic of a bottle experiment, production, irradiation, and detection
all took place in the same region for which the “understanding of the origin
and magnitudes of electric fields . . . was distinctly incomplete”, in the words of
Lamb and Sanders [127]. Electrical perturbations possibly due to space charge
within the electron beam, charges on the walls of the glass vessel, motion of
excited atoms across the magnetic field, and fluctuating fields of neighboring
ions and electrons gave rise to line shifts and signal variations as conditions
within the vessel changed with time. Since the sensitivity of hydrogen to
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electric perturbations increases rapidly with principal quantum number (the
Stark shift, for example, varies roughly as n6), the bottle method – in the
period before quantum beat spectroscopy – promised serious difficulties as
a general technique to probe excited atomic states.

If I have dwelt rather long upon Lamb’s experimental methods, it is be-
cause – problems notwithstanding – they are the ingenious prototypes which,
like Rabi’s, inspired a variety of succeeding methods to expose the inner work-
ings of the atom by approaching ever more closely the ideal of a two-level
quantum system in a purely oscillating field. It is clear from the foregoing
remarks that reaching such an ideal would be greatly facilitated if:

• atomic states were produced in quantity at one place and rapidly trans-
ported to a separate region for examination,

• state selection and spectroscopy were performed in the absence of an ex-
ternal static magnetic field.

One notably successful way this has been accomplished is by the electrostatic
acceleration of atoms to a high (but nonrelativistic) speed and subsequent
mapping out of resonance line shapes by the originally desired, and ideally
simplest, procedure of sweeping the frequency ω of an applied rf or microwave
field in an otherwise field-free environment. A representative experimental
configuration is illustrated in Fig. 5.1. Typically, the signal

signal(ω) =
N(0) −N(ω)

N(0)
(5.1)

is obtained by counting photons in the decay radiation for a set period of time
with the oscillating field off [N(0)] and on [N(ω)], respectively. Since changes
in the resonant response of the atoms with frequency modify the intensity and
polarization of spontaneous emission and can therefore be detected optically,
I have designated this method fast-beam optical electric resonance or simply
OER [128]. The basic principles of OER spectroscopy, delineated in the early
1970s [129], still provide one of the most straightforward ways of probing
atomic structure [56]. A comparative summary of slow (thermal) beam, bottle,
and accelerator-based OER methods is given in Table 5.1.

Although the direct acceleration of neutral atoms to an energy of tens of
keV is not feasible, the conversion of accelerated protons by charge-capture
collisions with gas or carbon-foil targets can provide a means of generating
a beam of hydrogen atoms moving at speeds on the order of 108 cm/s, or nearly
one hundredth the speed of light. As a consequence of the very short impact
time, the fast-moving hydrogen atoms emerge from the target distributed over
a large number of excited states with only a small loss in translational energy.
The beam subsequently passes through one or more rf interaction regions in
which transitions of interest are driven, while use of a precise power monitor
ensures a constant rf power across the resonance line. Downstream from the
rf interaction region the fluorescence of the atoms is detected as a function of
the rf frequency. No external magnetic fields are applied, and the field of the
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Table 5.1. Comparison of spectroscopic methods

Slow beam Bottle Fast beam OER

Source Thermal dissociation Electron Charge exchange
bombardment conversion of

a fast ion beam
Electron bombardment

Spectroscopy RF or static RF electric field Swept RF
electric field electric field

Swept magnetic Swept magnetic Zero magnetic
field field field

Detection Metastable current Decay radiation Decay radiation

Limitations Long-lived states Complex electrical Specifications
perturbations of RF field

Systematic errors Variation in bottle
from magnetic field environment

Earth, itself, can be nulled by surrounding the apparatus with three mutually
orthogonal sets of current-carrying coils known as Helmholtz coils.

An example of one of the first panoramic sweeps through the level structure
of hydrogen is illustrated in Fig. 5.2 for the n = 4 manifold [130]. The ac-
companying level diagram shows in broad outline the types of single-quantum
electric dipole transitions that can occur. In the event that transitions be-
tween two different pairs of fine structure levels have neighboring resonance
frequencies – as in the case of 42S1/2–42P3/2 and 42P1/2–42D3/2 transitions
– the use of two or more separated rf interaction chambers can often prove
helpful, one field serving as the spectroscopy field and the others as quench-
ing fields to drive atoms in unwanted long-lived states into shorter-lived states
that decay before reaching the detection chamber. Figure 5.2 illustrates state
selection for the preceding pair of transitions. Generated by a single oscillating
field, the 42P1/2–42D3/2 resonance is seen as a poorly delineated plateau in
the high-frequency tail of the 42S1/2–42P3/2 resonance curve. However, with
a quenching field set at 1225 MHz close to the resonance frequency of the
42S1/2–42P3/2 transitions, the 42S1/2 states are eliminated, and the profile of
the 42P1/2–42D3/2 resonance curve shows up clearly.

Besides overlapping fine-structure resonances, the hydrogen spectrum is
further complicated by the magnetic interaction between electron and nuclear
spins which divides each fine structure level into two hyperfine components
with total angular momentum quantum numbers F = J ± 1/2 and associated
substates with magnetic quantum numbers −F ≤ mF ≤ +F . Thus, transi-
tions at three different resonant frequencies corresponding to quantum jumps
with ΔF = ±1, 0 can be induced between a pair of fine structure levels of
opposite parity. In such a case sequential rf fields can be employed again to
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Fig. 5.2. Panorama of fine structure resonances in the n = 4 manifold of atomic
hydrogen. Insert A shows the level structure and frequencies of allowed transitions.
Inserts in part B show line shapes resolved by rf quenching of overlapping transitions.
(Adapted from [130])

remove populations of atoms in unwanted hyperfine states. An example of hy-
perfine state selection is shown in Fig. 5.3 where the 42S1/2–42P1/2 resonance
curve is simplified by total quenching of atoms in the 42S1/2(F = 0) state.

In addition to furnishing resonance frequencies – and therefore details of
the internal atomic structure – electric resonance spectroscopy is also sensi-
tive to the initial relative populations of the coupled states, and consequently
can provide significant information regarding the charge-changing interactions
that created the atom. This information is coded in the exact shape of the
resonance profile. Depending on the initial populations, the transitions in-
duced by an oscillating field can lead to either a greater or lesser fluorescent
emission than with the field turned off. As illustrated in Fig. 5.2, most reso-
nances are above the baseline; the oscillating field has driven the atoms from
relatively long-lived states like 42S1/2 (lifetime 23 μs) to short-lived states like
42P1/2 (lifetime 12 ns) thereby diminishing the number of atoms that reach
the detection chamber. The signal (5.1) is then positive. However, transitions
induced between initially populated states of comparable lifetime can sup-
press the rate of spontaneous decay, as in the case of coupled 42D5/2 (lifetime
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Fig. 5.3. Example of hyperfine state selection. Hydrogen 42S1/2–4
2P1/2 resonance

with complete removal of atoms in the 42S1/2 (F = 0) hyperfine state and consequent
suppression of transition a as ascertained by a theoretical fit to the data of three
Lorentzian line shapes. Numerical values for the level separations are in units of
MHz. (Adapted from [128])

36 ns) and 42F7/2 (lifetime 73 ns) states, giving rise to a resonance curve
below the baseline. Since the net rate and direction of transitions between
coupled states depend on the initial occupation probabilities, one would ex-
pect to see a variation in line shape with the choice of target atom from which
an incoming proton captures an electron to form a neutral hydrogen atom.
An example of this is illustrated in the upper row of Fig. 5.4 for the over-
lapping transitions 42D5/2–42P3/2 and 42F5/2–42D3/2. The lower row shows
computer simulations of these spectra for different initial state assignments
according to a spin-independent Coulomb interaction model of the electron
capture process [56, 128].

Traditional charge transfer experiments employing fast particle detection
are based on measurements of either the total current of ions produced in
various charge states, the attenuation of the primary beam, or the angular
distribution of products scattered by violent close-encounter collisions. Such
experiments yield information on the total electron capture cross-sections and
cannot distinguish scattering events which lead to different excited states of
products of the same charge. Subsequent methods depending on electric field
ionization are limited to manifolds of large principal quantum number and
provide a sum over the cross-sections of the component orbital sublevels. Sim-
ilarly, methods that depend on the resolution of multi-state radiative decay
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Fig. 5.4. Sensitivity of electric resonance line shapes to initial state populations:
hydrogen 42D3/2, 42D5/2, and 42F5/2 states prepared by electron capture collisions
with different targets. Experimental spectra are shown in the top row ; theoretical
spectra based on different initial D and F state amplitudes are shown in the bottom
row . (Adapted from [129], Part III)

curves are incapable of resolving different states of the same lifetime such as
fine or hyperfine structure states of the same orbital quantum number. By con-
trast, electric resonance line shapes differ in structure and occur in different
portions of the frequency spectrum even for states of the same lifetime.

To extract both level structure and relative populations from an electric
resonance line shape requires a detailed understanding of the interaction of
a decaying multi-level atom with an applied oscillating field (and of the sub-
sequent optical detection process as well). The analysis of so broad a problem
goes well beyond the scope of this chapter and must be left to the cited lit-
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erature. It is grounded, however, in the study of the two-level atom in an
oscillating field whose solution we will take up next, for, in addition to spec-
troscopy, it is an important component of several experimental configurations
exhibiting novel aspects of quantum superposition and interference.

5.2 The Two-Level Atom Looked at Two Ways

The dynamics of the two-level atom with energy eigenstates |1〉, |2〉 is de-
ducible from the Schrödinger equation, which can be conveniently expressed
in a matrix representation as follows

HΨ = i
∂Ψ

∂t
=⇒

(
h11 h12

h21 h22

)(
c1
c2

)
= i

(
∂c1/∂t
∂c2/∂t

)
, (5.2)

where
hij = 〈i|H |j〉 , ci = 〈i|Ψ〉 (i, j = 1, 2) . (5.3)

The constant � is not shown explicitly, but has been divided out of both sides
of the equation so that the elements of H are expressed in units of angular
frequency. The diagonal elements of the Hamiltonian matrix (to be designated
by the same symbol H as the Hamiltonian operator) characterize the energy
of the states which can be complex numbers for decaying states where the
real part is the actual energy (divided by �) and the imaginary part is the
decay rate. The off-diagonal elements govern transitions between the states.
To keep notation simple, the state vector will be symbolized by Ψ except
where it is part of a scalar product operation in which case the Dirac ket |Ψ〉
or corresponding bra will be used. In a matrix representation Ψ takes the form
of a two-dimensional column vector whose elements c1 and c2, the projection
of the state vector onto the basis states, are probability amplitudes (i.e., wave
functions).

Any 2 × 2 matrix can be uniquely expressed as a linear superposition

H = h01 +
3∑

i=1

hiσi = h01 + h · σ (5.4)

of the unit 2 × 2 matrix 1 and the Pauli matrices σi (i = 1, 2, 3) defined by
the algebraic properties

σiσj =
3∑

i=1

εijkσk + δij1 , (5.5)

where εijk is the completely antisymmetric tensor or Levi-Civita symbol, and
δij is the Kronecker delta symbol.1 In the second equality of (5.4), σ is a three-
1 The symbol εijk where i, j, k, can each take values 1,2,3, is ±1 for respectively

even and odd permutations of the sequence 1,2,3, and is 0 if any two indices are
equal. Thus, for example, ε123 = ε312 = +1, ε213 = ε132 = −1, and ε121 = 0. The
symbol δij is +1 if i = j, and 0 if i 
= j.
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dimensional vector whose elements are the Pauli matrices. There are infinitely
many representations of the Pauli matrices (all related by unitary transfor-
mations) of which perhaps the most widely used is the following

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (5.6)

Adopting the above representation leads to the following elements of the
Hamiltonian four-vector H = (h0,h) whose components are the coefficients
of the basis vectors 1, σ

h0 =
1
2
(h11 + h22) , h1 =

1
2
(h12 + h21) ,

h2 =
1
2i

(h21 − h12) , h3 =
1
2
(h11 − h22) .

(5.7)

If the Hamiltonian is Hermitian, H† = H , then h12 = h∗21 and h1, h2 respec-
tively are seen to be the real and imaginary parts of h12.

Those familiar with physical optics will recognize the components h0, h as
an analogue of the Stokes parameters2 that uniquely characterize the polariza-
tion of a light beam [7]. The analogy follows because an arbitrarily polarized
light wave can be described in terms of two mutually orthogonal basis states-
for example, vertical and horizontal linear polarizations or left and right circu-
lar polarizations; light is consequently an example of a two-state system. Since
the quantum description of light is formulated in terms of photons, which are
spin-1 bosons, one might wonder why there are only two components and not
three, as is ordinarily the case for spin-1 particles. The answer, expounded in
a delightful essay by Wigner [131], is intimately related to the fact that the
photon has zero rest mass.

In the above formalism the Schrödinger equation (5.2) takes the succinct
form

dΨ
dt

= −i(h01 + h · σ)Ψ , (5.8)

which can be integrated immediately

Ψ(t) = e−iH0tΨ(0) = e−ih0te−ih·σtΨ(0) , (5.9)

if the elements of H are independent of time. The first exponential factor in
the second equality is an unimportant global phase factor that depends on
the (arbitrarily adjustable) mean energy of the states and does not appear
in expressions related to measurable quantities. (Note, however, that what
may initially appear to be a global phase factor can have experimental conse-
quences when the two coupled states must actually be regarded as a part of
2 The Stokes parameters (I , U , V , Q) are related to the total light intensity (I),

the angular orientation and eccentricity of the elliptical motion traced out by
the electric vector of the light wave (U and Q), and the handedness or sense of
circulation of the electric vector (V ).
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a larger quantum system. We will return to this point later in the chapter.) It
is the second exponential factor of (5.9) upon which the time-evolution of the
system depends significantly. Operationally, expressions of the form of (5.9)
that involve exponential powers of matrices are defined by a Taylor series
expansion of the exponential function

e−ih·σt ≡
∞∑

n=0

(−ih · σt)n

n!
= 1 cos(ht) − i

h · σ

h
sin(ht) , (5.10)

in which the scalar h (not to be confused with Planck’s constant which shall
rarely be needed in this chapter) is the magnitude of the vector h

h =
√

h · h =
√
h2

1 + h2
2 + h2

3 =
1
2

√
(h11 − h22)2 + 4h12h21 . (5.11)

The reduction to the closed-form expression of (5.10) follows straightforwardly
from the algebraic properties of the Pauli matrices summarized in (5.5) and
from the Taylor series for sine and cosine.

One can also evaluate expressions of the form of (5.9) by a more general
procedure, the solution of an eigenvalue problem, that is independent of the
dimension of the representation of H and therefore does not rely on the alge-
bra of the Pauli matrices. It is instructive to examine this alternative method
for it provides another mathematical interpretation of h0 and h. The idea
is to diagonalize H – i.e., to transform it to a matrix η containing elements
ηij = ηiδij only along the principal diagonal – since the exponential of a diag-
onal matrix eη is readily shown to take the form of a diagonal matrix whose
elements are eηi . (To show this one employs again the Taylor series representa-
tion of the exponential function.) Then the solution given by the first equality
of (5.9) can be explicitly evaluated. The diagonalization of H is accomplished
by first solving the eigenvalue problem

HXi = ηiXi , (5.12)

which yields n eigenvalues ηi for an n-dimensional matrix, and relating H and
η by the transformation

H = DηD−1 , (5.13)

where η displays the eigenvalues of H along the principal diagonal in some
designated order η1, η2, . . ., ηn; the diagonalizing matrixD is then constructed
by juxtaposing the corresponding eigenvectorsXi ofH in the same order (from
left to right)

D = X1X2 · · ·Xn . (5.14)

By employing the Taylor series definition of the exponential yet again, one
can demonstrate that

e−iHt = e−iDηD−1t = De−iηtD−1 , (5.15)
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from which the solution to the Schrödinger equation in the case of a two-level
system can be written explicitly

Ψ(t) = e−iH0tΨ(0) = D
(

e−iη1t 0
0 e−iη2t

)
D−1Ψ(0) . (5.16)

The equivalence of solutions (5.9) and (5.16) is apparent once the eigenvalue
problem is actually solved. In the case of the two-level atom, the two eigen-
values of H deducible from solution of a quadratic secular equation are

η1,2 =
1
2

[
(h11 + h22) ±

√
(h11 − h22)2 + 4h12h21

]
. (5.17)

The components of the four-vector (h0,h) are therefore related to the eigen-
values of H by

η1,2 = h0 ± h . (5.18)

If the elements of H depend on time, then the resulting solution does not,
in general, take the simple form of relations (5.9). Indeed, as pointed out at
the beginning of the chapter, there may be no known exact analytical so-
lution at all even in the simplest case of a two-level atom interacting with
a harmonically oscillating field. Where a closed-form analytical solution is not
achievable, one must then either seek an approximate solution to the original
equations or simplify the model further to obtain an analytical solution to re-
duced equations. In the latter case the strategy is to remove from H by means
of appropriate transformations as much of the time-dependence as possible, so
that the solution to the transformed Schrödinger equation can be cast in the
form of (5.9). One customary way in which this has been done is to assume
(although it is ordinarily not the case experimentally) that the atom is inter-
acting with a rotating field, rather than with an oscillating field. In the next
section we will discuss this procedure and a more general one, designated the
‘oscillating field theory’ [132], which produces a closed-form analytical solu-
tion almost identical to the exact solution obtainable by numerical integration
of the Schrödinger equation.

Before examining the specific problem of an external radiofrequency or
microwave field, it is conceptually useful to re-examine the dynamics of a two-
level system from the perspective of a second general mathematical formalism,
that of the density operator ρ whose elements in a matrix representation enter
directly into theoretical expressions for observable quantities. Consider first
a system with two coupled stable states for which the Hamiltonian matrix
is necessarily Hermitian. By multiplying the two sides of the Schrödinger
equation (5.2) by Ψ on the right, and subtracting from the result the Hermitian
conjugate of the Schrödinger equation multiplied by Ψ † on the left, one obtains
the equation of motion in the Heisenberg form

dρ
dt

= −i[H, ρ] (5.19)
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(which we used, but did not derive, in the discussion of laser-induced quantum
beats). Employing again the decomposition in (5.4), we can express he two-
dimensional matrix representation of the density operator as

ρ ≡ ΨΨ † =
(
ρ11 ρ12
ρ21 ρ22

)
= ρ01 + ρ · σ , (5.20)

where the expressions of ρ0 and ρ in terms of the elements ρij are formally
the same as those given by (5.5) and (5.6) for the elements of H . The di-
agonal elements represent the relative populations of each level, and hence
the trace, Tr(ρ) = ρ11 + ρ22, to which ρ0 is proportional, is a measure of the
total probability of finding the atom in one or the other of the two available
states. The off-diagonal elements characterize the coherence properties of the
system, i.e., the capacity to produce quantum interference effects. Note that
in the definition of the density operator the order of the state vector and its
Hermitian conjugate is significant; the reverse order Ψ †Ψ produces a number
[Tr(ρ)] and not a matrix.

Substitution of the expansion of ρ in (5.20) into the commutator of (5.19),
use of the commutation properties of the Pauli matrices

[σi, σj ] = 2i
3∑

k=1

εijkσk (5.21)

that follow from (5.5), and extraction of the coefficients of the bases 1 and σ
lead to the scalar and vector equations of motion

dρ0
dt

= 0 , (5.22)

dρ

dt
= 2(h × ρ) ≡ Ωr × ρ . (5.23)

In view of the interpretation of ρ0, the first relation (5.22) is a statement of
the conservation of probability for a closed system. If the two coupled states of
interest were not stable, and the atom could decay radiatively to lower states
whose dynamics were not taken into account, then ρ0 would not be constant
in time. We will see shortly how this case can be treated. The dynamics of
the stable two-state system is effectively contained in relation (5.23) which
formally resembles the equation of motion of an angular momentum vector
precessing at an angular velocity Ωr = 2h. The relationship is only a formal
one – nothing in the two-level atom need actually be precessing – but it
provides a useful classical picture of the time evolution of the system.

The connection to rotation may also be seen directly in the solution for
the state vector, (5.9) since the unitary operator U(θ) for rotating a spin-1/2
system with angular momentum S = σ/2 (in units of �) by an angle θ about
the unit normal vector n is

U(θ) = e−iσ·nθ/2 . (5.24)
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Comparison of (5.9) and (5.24) shows that the rotation axis is

n =
h

h
, (5.25)

with angle of rotation
θ = 2ht ≡ Ωrt . (5.26)

Thus, one may imagine an ensemble of precessing dipoles as an analogue of
the transitions between two quantum states. When the atoms are subjected
to the interaction h over a time t, the corresponding dipoles precess through
an angle θ = 2ht.

If the elements of H are independent of time, it follows from relations (5.9)
and (5.20) that the time-evolution of the density matrix takes the form

ρ(t) = e−ih·σtρ(0)eih·σt . (5.27)

Upon use of (5.10) to evaluate (5.27) explicitly, one finds that the atomic
system returns to its initial state described by ρ(0) when the interaction is of
such strength and duration that the precession angle θ equals π radians. One
might have expected that the periodicity of θ should be 2π radians, but this
is not the case for a two-level system. Although ρ(θ = π) = ρ(0), the corres-
ponding state vectors differ by a sign: Ψ(θ = π) = −Ψ(0). As I mentioned
previously, global phase factors such as eiπ = −1 ordinarily have no observ-
able consequences. However, if the two coupled states should subsequently be
regarded as part of a larger system of states, then the once global phase may
actually become a relative phase that can be manifested through a quantum
interference experiment [133]. We shall examine this possibility in more detail
in a subsequent section.

In analyzing the two-level atom – or, indeed, a quantum system with ar-
bitrary number of levels – it is often convenient to remove at the outset the
highest frequency terms in the diagonal elements of H corresponding to the
energy eigenvalues. The precession of the system vector ρ then takes place
more slowly under the influence of the weaker interactions, both internal and
external, which are of principal interest. (It is assumed that the unperturbed
energies have already been determined by solution of the appropriate eigen-
value problem.) This simplification is effected by decomposing the Hamilto-
nian into a diagonal part H0 yielding the unperturbed energies

H0 =

(
ω1 0
0 ω2

)

(5.28)

and an interaction V given by

V =

(
V11 V12

V21 V22

)

(5.29)
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(all matrix elements expressed in units of angular frequency) and then trans-
forming to the so-called interaction representation by substituting

Ψ = e−iH0tΨI (5.30)

into the Schrödinger equation to obtain the transformed equation

HIΨI = i
∂ΨI

∂t
, (5.31)

with interaction Hamiltonian

HI = U †
IHUI − iU †

I

∂UI

∂t
= U †

I V UI . (5.32)

If V does not contribute to the level energies – i.e., if V serves only to couple
different states – then the resulting interaction Hamiltonian

HI =
(

0 v12eiω0t

v21e−iω0t 0

)
, (5.33)

with energy interval
ω0 ≡ ω1 − ω2 (5.34)

has no elements along the principal diagonal.
Under the preceding conditions where v11 = v22 = 0, the interaction vec-

tor V – in the four-vector representation V = (V0,V ) – has a null component
V3. If, in addition, V is purely real-valued, then v12 = v21, and component
V2 = Im(v21) also vanishes. The angular velocity Ωr = 2h then has compo-
nents (Ωr)1 = 2v12 and (Ωr)3 = ω0. For transitions induced by an optical
interaction between the atomic ground state and an electronic excited state,
the frequency ω0 – if atomic energy levels are to have any meaning – must
be much greater than the corresponding frequency 2v12 of the interaction. In
that case, one could regard the system vector as precessing around the ‘3-axis’
at the rate ω0 with a much slower nutational motion about the ‘1-axis’ at the
frequency 2v12. However, for the example of rf coupling of atomic fine or hy-
perfine states, the frequencies ω0 and |V | can be of comparable magnitude.
Let us examine this point quantitatively.

The energy of an electron with principal quantum number n in a hydro-
genic atom with atomic number Z

εn ∼ Z2

n2
Ry (5.35)

is proportional to the Rydberg unit Ry ≡ e2/2a0, where e is the electron
charge and a0 is the Bohr radius. The splitting of this level arising from the
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interaction of the electron spin and orbital motion (fine structure) is smaller
by the square of the fine structure constant αf = e2/�c ∼ 1/137, or more
precisely

ω0 ∼ Z2α2
f

n
εn ∼ Z4α2

f

n3
Ry . (5.36)

Since the orbital radius r(n,Z) of the electron varies in the Bohr model as
n2/Z, the electric dipole interaction between the electron and an external
oscillating electric field of amplitude E0 can be estimated by

v12 = er(n,Z)E0 ∼ en2a0
Z

E0 . (5.37)

Comparing expressions (5.36) and (5.37), one has

v12
ω0

∼ n5E0

α2
f Z

5Ea
, (5.38)

where the atomic unit of electric field strength is

Ea =
e

a20
= 5.14 × 109 V cm−1 . (5.39)

Thus, in the case of the hydrogen atom (Z = 1) subjected to an external field
of E0 ∼ 10 V cm−1 for example, the ratio of precession frequencies v12/ω0

would be about 10−3 in the level n = 2 and slightly greater than 1 in n = 8.
The fact that the interaction with an external rf field can be comparable to,
or even exceed, the internal interactions that split the coupled levels makes
the analysis of the rf resonance problem in some ways more difficult than that
of optical resonance for which the ratio in (5.38) is ordinarily very small.

We conclude this section by taking account of the radiative decay of the
coupled states, for it is by atomic fluorescence that the rf-induced transitions
are observed in optical electric resonance experiments. As I indicated previ-
ously, unstable levels can be described by a complex frequency of the form
ω − iγ where �ω is the energy eigenvalue of the state in the absence of spon-
taneous emission and γ is the decay rate, or reciprocal of the mean lifetime τ .
One then adds to the Hamiltonians (5.28) and (5.29) for stable levels a pure
imaginary diagonal decay operator −i�Γ/2 for which the representation of Γ
as a 2 × 2 matrix takes the form

Γ =

(
γ1 0
0 γ2

)

= Γ01 + Γ · σ . (5.40)

The total Hamiltonian is no longer Hermitian, and the procedure by which
the Heisenberg form of the equation of motion (5.19) was derived now leads
to an equation of motion

dρ

dt
= −i[H,ρ] − {Γ,ρ} , (5.41)
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in which curly brackets signify the anticommutator {A,B} ≡ AB + BA as
before. The components of the density matrix in the l, σ basis then satisfy
the coupled relations

dρ0
dt

= −Γ0ρ0 − Γ · ρ , (5.42)

dρ

dt
= h × ρ − Γ0ρ − ρ0Γ , (5.43)

where the vector h comes from the Hermitian part of the HamiltonianH0+V .
From (5.42) it is seen that probability of finding the atom in one or the other
of the two specified levels is no longer conserved, but decays exponentially.
The level instability also influences the precession of the system vector ρ in
accordance with (5.43).

5.3 Oscillating Field Theory

The foregoing equations of motion of a two-level decaying atom, whether ex-
pressed in terms of amplitudes or density matrix elements, have no known
exact analytical solution for the case of a pure oscillatory interaction. To the
extent that high accuracy is not required in the study of experimental reso-
nance line shapes, an exact solution can be obtained for a simplified interac-
tion, that of the rotating-field or rotating-wave approximation, first employed
by Rabi in his derivation of the ‘flopping formula’. The underlying physical
idea, expressed in classical imagery, is that a linear oscillation can be decom-
posed into a sum of two counter-rotating motions, one of which will be nearly
resonant with the precessing dipole moment (representative of the quantum
transitions between two states), and the other anti-resonant, i.e., rotating in
a sense opposite that of the dipole precession. From a classical perspective
the component of the applied field rotating with the dipole exerts a steady
torque whose effect is cumulative over many precession periods. The torque
exerted by the counter-rotating component, however, reverses itself at a rate
2ω and therefore might be expected to have no significant long-time effect.
The rotating-wave approximation (RWA) consists of neglecting all terms at
the counter-rotating frequency.

Unless, of course, one actually has a rotating field, neglect of the anti-
resonant interaction has theoretical consequences. The first consideration of
these effects was given by Bloch and Siegert [134] and by Stevenson [135] who
showed that the resonance maximum undergoes a small displacement. These
results, derived for the case of magnetic resonance in a stable spin-1/2 system,
are not a priori applicable in the case of decaying states. In this section the
problem of a two-level atom subjected to an oscillating field is examined more
generally by a procedure I have designated the oscillating field (OF) approx-
imation [132]. By means of several matrix transformations a representation
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is found in which the major effects of the applied field are independent of
time – so that the procedure of the foregoing section is applicable – and the
residual time-dependent portion contributes negligibly to observable atom–
field interactions. It will be seen that, besides a frequency shift, the linearly
oscillating field alters as well the difference in level decay rates, and indeed can
affect the details of the overall line shape. The oscillating field approximation
yields results that are virtually identical to those obtained by exact numerical
integration of the Schrödinger equation.

Our quantum system consists of two quasi-stationary states |1〉, |2〉 inter-
acting through the electric dipole moment μE with a classical oscillating field
E0 cos(ωt) of well defined phase (here chosen to be zero). These atomic states
are quasi-stationary in the sense that, although they are energy eigenfunctions
of a Hermitian Hamiltonian, their interaction with the vacuum electromag-
netic field results in a finite lifetime and hence level width. For well-defined
states to exist, however, the level width must be much smaller than the energy
eigenvalue, or ωi  γi (for i = 1, 2). The dynamics of the atom-rf field system
is described by the Hamiltonian operator

H = H0 − 1
2
i�Γ − μE·E0 cos(ωt) , (5.44)

which leads to a matrix differential equation of the form of (5.2)
⎛

⎜
⎜
⎝

−
(

iω1 +
1
2
γ1

)
−iV12

(
eiωt + e−iωt

)

iV12

(
eiωt + e−iωt

) −
(

iω2 +
1
2
γ2

)

⎞

⎟
⎟
⎠

(
c1(t)
c2(t)

)
=

d
dt

(
c1(t)
c2(t)

)
, (5.45)

in which

V12 =
〈1| − μE·E0|2〉

2
(5.46)

is the interaction matrix element in units of angular frequency.
Upon transforming to the interaction representation, as described in the

previous section (5.30)–(5.32), one eliminates from (5.45) the high-frequency
eigenvalues of H0 to obtain the equation

(
−γ1/2 −iV12

(
eiΩ̃t + e−iΩt

)

−iV12

(
e−iΩ̃t + eiΩt

) −γ2/2

)

ΨI =
d
dt
ΨI , (5.47)

where
Ω = ω − ω0 (5.48)

is the deviation of the applied frequency from the unperturbed resonance
frequency ω0 and

Ω̃ = ω + ω0 (5.49)

is the frequency of the anti-resonant component.
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At this point the rotating-wave approximation is usually invoked by ne-
glecting all terms containing Ω̃. It is instructive for purposes of comparison
to complete the RWA solution for decaying states before taking up the more
accurate oscillating-field solution. The problem is in fact solved by (5.9) once
a transformation is found to remove the residual resonant time dependence
from the matrix of (5.47). This task is accomplished by the unitary transfor-
mation

ΨR =
(

eiΩt/2 0
0 e−iΩt/2

)
ΨI , (5.50)

which leads to the time-independent Schrödinger equation in the rotating
frame ⎛

⎜
⎝

−1
2
(γ1 − iΩ) −iV12

−iV12 −1
2
(γ2 + iΩ)

⎞

⎟
⎠ΨR =

dΨR

dt
. (5.51)

Upon integrating (5.51) and making the subsequent inverse transformations
back to the original representation of (5.45), one obtains the complete solution

Ψ(t) =

(
e−( 1

2 γ1+iω1)t 0

0 e−( 1
2 γ2+iω2)t

)(
I11 I12
I21 I22

)
Ψ(0) , (5.52)

where the elements Iij of the interaction matrix are

I11 = exp
[
(G− iΩ)t

2

] [
cos(νt) − G− iΩ

2ν
sin(νt)

]
, (5.53)

I12 = −2i exp
[
(G− iΩ)t

2

]
V12

2ν
sin(νt) , (5.54)

I21 = −2i exp
[
− (G− iΩ)t

2

]
V12

2ν
sin(νt) , (5.55)

I22 = exp
[
− (G− iΩ)t

2

] [
cos(νt) +

G− iΩ
2ν

sin(νt)
]
, (5.56)

with ‘precession frequency’ ν given by

ν =

√
(Ω + iG)2

4
+ V 2

12 (5.57)

and system decay constant

G =
1
2
(γ1 − γ2) . (5.58)

From relations (5.53)–(5.56) and (5.57) one can infer that Iij(−Ω) = Iij(Ω)∗,
and therefore the magnitude of each element Iij is symmetric about the reso-
nance center Ω = 0; the predicted resonance frequency is exactly ω0. For the
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case where one state is initially populated and the other unpopulated, the oc-
cupation or transition probabilities |ci(t)|2 (i = 1, 2) as a function of frequency
produce symmetric oscillatory line shapes. Note that only the difference in de-
cay rates (as expressed by G), and not the individual decay constants, enter
each element Iij . Consequently, the RWA resonance line shape for transitions
induced between two decaying states of the same lifetime is identical to that
for stable states except for the diminution in overall intensity due to the decay
matrix. This is, of course, not the case if the coupled states have different life-
times.

Let us return to the initial problem of solving the Schrödinger equation
for a two-level atom in an oscillating field and determine the effects of the
anti-resonant component. We start again with the exact Schrödinger equa-
tion (5.47), in the interaction representation and transform it – not into the
‘rotating’ reference frame – but into the frame of the counter-rotating com-
ponent of the oscillating field

ΨA =

(
e−iΩ̃t/2 0

0 eiΩ̃t/2

)

ΨI , (5.59)

by a transformation analogous to (5.50). This leads to a Schrödinger equation
in which the Hamiltonian can be decomposed into a time-independent part
and a part that oscillates at 2ω. Following the procedure outlined in the
previous section, we next diagonalize the time-independent part and re-express
the equation in a basis of its eigenstates. At this point, the substantive part
of the anti-resonant interaction has been captured, so to speak, in the time-
independent eigenvalues and eigenvectors, and one transforms the Schrödinger
equation to the reference frame of the rotating component by setting

ΨR =
(

eiωt 0
0 e−iωt

)(
C−1

A ΨA

)
, (5.60)

where the matrix

CA =

(
1 −κA

κA 1

)

(5.61)

executes the diagonalization in the anti-rotating frame. The element κA, de-
fined by

κA =
ϑ√

1 + ϑ2 + 1
, (5.62)

where
ϑ =

2iV12

G+ iΩ̃
, (5.63)

will ordinarily be a small quantity (since V12 � ω + ω0 ∼ 2ω0) and serves as
a weak coupling parameter characterizing the interaction of the atom with the
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anti-resonant part of the oscillating field. The resulting Schrödinger equation
in the rotating frame now takes the form

d
dt
ΨR (5.64)

=

⎡

⎢
⎢
⎣

⎛

⎜
⎜
⎝

ε−A + iω − iV12

1 + κ2
A

− iV12

1 + κ2
A

ε+A − iω

⎞

⎟
⎟
⎠+

⎛

⎜
⎜
⎝

−2iV12κA

1 + κ2
A

cos(2ωt)
iV12κ

2
A

1 + κ2
A

e4iωt

iV12κ
2
A

1 + κ2
A

e−4iωt 2iV12κA

1 + κ2
A

cos(2ωt)

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦ΨR ,

in which

ε±A = −1
4
(γ1 + γ2) ∓ 1

2

√
(G+ iΩ̃)2 − 4V 2

12 (5.65)

are the eigenvalues obtained in the anti-rotating frame.
It should be emphasized that the OF analysis to this point is exact; no

approximations have yet been made, and (5.64) contains all the information
of the initial Schrödinger equation (5.45). The virtue of (5.64) lies in the fol-
lowing considerations. Not only is the parameter κA usually small-diminishing
steadily in magnitude across the resonance profile roughly as the inverse of
the applied frequency – but it multiplies highly oscillatory terms in 2ω and
4ω which have a negligible effect on the solution close to resonance. Thus,
to a good approximation, one can ignore the time-dependent part of (5.64)
and apply the theory of the preceding section to solve the residual time-
independent equation. The details of obtaining the resulting closed form so-
lution, which is somewhat complicated, are left to the original literature, and
the solution, itself, designated by the interaction elements Jij (i, j = 1, 2) cor-
responding to the RWA expressions (5.53)–(5.56), is given in Appendix 5A.

Let us examine, however, the precession frequency μ,

μ =

√√
√
√
[
Ω̃ − iG

2
(1 + ϑ2)1/2 − ω

]2

+
V 2

12

(1 + κ2
A)
, (5.66)

obtained by diagonalizing the time-independent part of (5.64). This is the
frequency at which transitions between the two states are induced and from
which the observed central frequency of an electric resonance line shape can
be determined. By expanding the inside radical in a Taylor series to order ϑ2

and neglecting the small term κ2
A in the denominator of the second term, one

can reduce (5.66) to the form

μ ∼
√[

(Ω − δΩ) + i(G− δG)
]2

4
+ V 2

12 , (5.67)
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directly comparable to the corresponding expression for ν, (5.57) of the
rotating-field theory. One would then find that the oscillating field gives rise
to an apparent shift in resonance frequency of

δΩ =
2V 2

12Ω̃

Ω̃2 +G2
, (5.68)

and change in the decay rate difference of

δG =
2V 2

12G

Ω̃2 +G2
. (5.69)

At resonance (Ω̃ = 2ω0) the frequency shift (5.68) reduces in the case of stable
states to (V 2

12/ω0) as derived by Bloch and Siegert. [Equation (5.68) differs
from the result derived by Willis Lamb [136], but has been confirmed by exact
numerical integration of the Schrödinger equation [137].]

An oscillatory field can do more than just shift the resonance frequency and
decay rate difference, however. Particularly in the case of transitions induced
between unstable states, the entire line shape – i.e., either the occupation
or transition probability as a function of frequency – can exhibit additional
structure, a high-frequency modulation of the basic line shape derived by
the rotating-field approximation. An example of this is illustrated in Fig. 5.5
for transitions induced between an initially populated hydrogen 42S1/2 state
[c1(0) = 1] and initially unpopulated 42P1/2 state [c2(0) = 0], where the
lifetimes are respectively τ1 = 232 ns and τ2 = 12.4 ns. In the case of the
longer-lived S state, the resonance profile (not shown), calculated from the
expressions

P1(t) =
∣
∣〈1|ΨOF(t)〉∣∣2 = |J11(t)|2e−γ1t , (5.70)

P 0
1 (t) =

∣
∣〈1|ΨRWA(t)〉∣∣2 = |I11(t)|2e−γ1t , (5.71)

is virtually the same for the RWA and OF solutions. This is not the case in
a corresponding comparison of the OF and RWA profiles of the short-lived P
state

P2(t) =
∣
∣〈2|ΨOF(t)〉∣∣2 = |J21(t)|2e−γ2t , (5.72)

P 0
2 (t) =

∣
∣〈2|ΨRWA(t)〉∣∣2 = |I21(t)|2e−γ2t , (5.73)

which differ markedly outside the immediate vicinity of resonance. In all cases
the resonance line shapes determined from the oscillating-field solution and
numerical integration of the Schrödinger equation are nearly indistinguishable.

The modification of the RWA line shape by the counter-rotating compo-
nent of the oscillating field can be approximated by retaining in the expression
for J21 [see (5A.4) in Appendix 5A] only factors linear in κA. This leads to
the approximate relation

P2(t) = P 0
2 (t) +

1
Ω̃

Im
{
(
1 − e−2iωt

)
[
2ν cos(νt)
sin(νt)

−G+ iΩ
]}
P 0

2 (t) . (5.74)
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Thus, the total line shape is the sum of the RWA line shape and a smaller term
inversely proportional to ω + ω0 and modulated at the frequency 2ω [which
accounts for the separation Δω between modulation maxima in Fig. 5.5 given
by (Δω)t = 1/2].

Those familiar with experimental electric or magnetic resonance line
shapes may wonder why the high-frequency modulation is not usually evident.
First, this additional structure is most pronounced in the case of short-lived
states, whereas the observed signal ordinarily results from transitions between
long-lived states, as, for example, in the pioneering experiments of Rabi and
Lamb. Second, if there is a sufficiently wide dispersion in the atomic velocities,
as in the case of a thermal beam, the transition probability must be averaged
over the interaction time and this tends to smooth out the resonance line
shape. It is worth noting, however, that the modulation is largely unaffected

Fig. 5.5. Comparison of oscillating-field theory (OFT), rotating-wave approxima-
tion (RWA) and exact numerical integration. Occupation probability of a short-lived
state |2〉 = |4P 〉 coupled to a long-lived state |1〉 = |4S〉 as a function of driv-
ing frequency for theoretical parameters: V12/ω0 = 5/140; c1(0) = 1, c2(0) = 0;
γ1 = 4.35× 106 s−1, γ2 = 80.6× 106 s−1; interaction time t = 80 ns [line shapes (a)
and (b)], 125 ns [line shapes (c) and (d)]. (Adapted from [132])
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by the phase of the field. In the preceding analysis the initial phase of the
oscillating field was arbitrarily chosen to be zero. For an experimental config-
uration such as an atomic beam, however, where atoms are continually passing
through the interaction region, the initial phase of the field sampled by dif-
ferent atoms spans the full range of possibilities from 0 to 2π. To correspond
to the experimental signal, therefore, theoretical expressions for occupation
or transition probabilities must be averaged over the phase of the field. The
phase, as will be shown in Sect. 5.5, appears in a phase factor multiplying the
off-diagonal elements of the matrix (Iij) or (Jij). The probability of transition
out of an initially pure state is totally insensitive to the phase of the field. This
is not to say, however, that phase plays no role. In the following sections im-
portant experimental consequences of a sharp relative phase will be explored
further in experimental configurations giving rise to quantum interference.

A detailed examination of the variation of the oscillating field solution with
diverse experimental parameters (frequency and power of the applied field and
duration of interaction) must again be left to the cited literature. However,
it is worth mentioning one further unusual, or perhaps unanticipated, fact
concerning the response of the atom to an increasing applied field strength
(as represented by the matrix element V12) in the case of decaying states.

First note that in the absence of spontaneous decay the occupation prob-
abilities at resonance predicted by the rotating-field approximation reduce to
the familiar results

P1(t) = cos2(V12t) , (5.75)

P2(t) = sin2(V12t) , (5.76)

which oscillate between 0 and 1 with a recurrence relation (ΔV12)t = π. From
these expressions it is obvious that, for a fixed interaction time, the maximum
probability for transition out of one state occurs at the field strength at which
the transition into the other state is also maximum. This must be so, for there
are but two states, and it is obvious from relations (5.75) and (5.76) that total
probability is conserved.

Figure 5.6 shows the variation in RWA probabilities P1(t) and P2(t) at
resonance (ω = ω0) as a function of coupling strength for the coupling of
hydrogen 42S1/2 and 42P1/2 states whose lifetimes were given earlier. The
duration of the interaction of the atoms with the field is 50 ns. Since the
numerically exact and OF calculations yield virtually identical results, they
are not shown. When V12 = 0, and therefore no transitions are induced, the
probabilities are seen to be P1 = 0.8 and P2 = 0 as determined by the initial
conditions. With increasing strength of the applied field, the probability of
remaining in the longer lived state 1 rapidly decreases and then oscillates
between zero and a constant maximum value less than unity with the same
recurrence relation (ΔV12)t = π. The occupation probability of the initially
unpopulated state 2 reaches a maximum at a certain value of V12, then exhibits
analogous oscillatory behavior although with a periodicity that depends on
the decay parameter G.
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Fig. 5.6. Variation of resonant occupation probabilities P1 and P2 with the ratio
of the strength of atom–field coupling to the level separation for a long-lived 4S
state and short-lived 4P state, respectively. The interaction time is 50 ns; initial
amplitudes and decay rates are the same as for Fig. 5.5

As clearly illustrated in the figure, however, for transitions between un-
stable states a maximum quenching of one state need no longer occur at the
same field strength as a maximum pumping of the other. This can be read-
ily inferred from the theoretical resonance expressions analogous to (5.75)
and (5.76)

P1(t) = e−(γ1+γ2)t/2

(
cosXt− G

2X
sinXt

)2

, (5.77)

P2(t) = e−(γ1+γ2)t/2

(
V12

X

)2

sin2Xt , (5.78)

where

X =
√
V 2

12 − (G/2)2 . (5.79)

The reason for this is that an unstable two-level atom is not really a two-
level system, being coupled by the vacuum electromagnetic field to all states
of lower energy and appropriate symmetry. Indeed, as readily verified from
Fig. 5.6 and (5.77) and (5.78), or (5.42), the sum of the probabilities at reso-
nance – or indeed at any frequency – is not unity.

5.4 Resonance and Interference:
Tell-Tale Mark of a Quantum Jump

All physicists at some time during their study of the quantum theory of an-
gular momentum undoubtedly encounter the seemingly peculiar property of
spinors that a rotation of 4π, rather than 2π, radians is required to return
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them to their original state. A rotation of 2π radians, which intuitively ought
to correspond to no rotation at all, multiplies the spinor wave function by
−1, or equivalently by the phase factor eiπ. Theoretically, this follows from
the form of the unitary operator U(θ) = e−iJ·nθ, which rotates a state vector
of angular momentum J (in units of �) by an angle θ about the direction
specified by unit vector n. If the magnitude of J is an odd half integer (e.g.,
J = 1/2, 3/2, etc.), then U(2π) = −1 independent of the rotation axis.

In so far as one is discussing the properties of an abstract mathematical ob-
ject, the above rotational property is not at all disturbing. Mathematics need
satisfy no criteria imposed by the real world for its justification. But physics
clearly must, and if spinors are to be suitable representations of fermionic sys-
tems, then it becomes a legitimate question to ask whether the consequences
of rotating a spinorial system by 2π are observable.

The pedagogical literature has not been encouraging in this regard. Dirac,
himself, asserted as a ‘general result’ in his classic treatise on the principles of
quantum mechanics that [138]: “[. . .] the application of one revolution about
any axis leaves a ket unchanged or changes its sign. A state, of course, is
always unaffected by the revolution, since a state is unaffected by a change of
sign of the ket corresponding to it.” This sentiment has been repeated often
in physics textbooks. One finds, for example, in one well-known book [139]:
“That the rotation of a ket through 2π does not give the same ket raises no
difficulty of principle so long as no observable effect is produced.” Underlying
all such remarks is the basic idea that the result of any measurement is rep-
resentable by expectation values bilinear in the wave function. Therefore two
wave functions differing only in overall sign cannot lead to different physical
predictions.

There is, in fact, nothing incorrect in the above assertions. Indeed, the
rotation of an isolated system – measuring apparatus included – does not
lead to experimental consequences. This is not, however, what one ordinarily
means by a rotation. Only a part of a system can be rotated; part must remain
fixed to provide a reference against which the rotation is to be measured. The
global phase change resulting from the former process has no experimental
counterpart and therefore no physical implications. The latter process, the
rotation of a spinor-characterized portion by 2π radians with respect to a fixed
portion of an encompassing larger system, does have physical implications, as
demonstrated in particular by a number of clever experiments.3

In the first, and perhaps best known, of these experiments the rotation
of neutrons, which are spin-1/2 particles, was observed by means of neutron
interferometry [140]. In basic outline, a beam of unpolarized neutrons was
coherently divided at a single-crystal beam splitter, one component passing
between the poles of a magnet, the other component passing directly through
field-free space to the analyzer where both components were subsequently

3 For a discussion of experimental confirmations of the properties of spinor rotation
see [123], and my book [114], Chap. 2, or [82], Chap. 4.
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recombined. As a result of the two-beam interference, the neutron intensity
transmitted by the analyzer exhibited oscillations as a function of the magnetic
field strength.

Considered classically, each neutron is a small magnetic dipole and there-
fore undergoes Larmor precession in a magnetic field. For appropriate values
of magnetic field and interaction time, any desired angle of precession can
be realized. Quantum mechanically, the precession angle corresponds to the
relative phase shift between the two components of the total wave function.
Thus, from the periodicity of the observed oscillations in neutron intensity,
such as shown in Fig. 5.7, one could conclude that a neutron returned to its
original state after precessing through 4π (rather than 2π) radians.

Although seemingly straightforward, the neutron rotation experiments
gave rise to some conceptual difficulties of interpretation [141]. At the root
of the difficulty was the Heisenberg uncertainty principle; for fermions the si-
multaneous observation of the relative rotation of the spins in the two beams

Fig. 5.7. Demonstration of spinor rotation by neutron interferometry. A single-
crystal interferometer splits an incident neutron beam into two components, one
of which passes between the poles of a magnet. The two beams recombine at the
rear face of the interferometer and emerge in a forward beam (O) and a deviated
diffracted beam (H). The intensity of each, determined by neutron counting, man-
ifests oscillations with a 4π periodicity as a function of magnetic field. (Adapted
from Rauch et al. [140])
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and of the interference pattern is incompatible. In the context of an interfer-
ence experiment one can never know whether a particular neutron followed
a classical path through the magnetic field or the field-free region. Although
one can measure the rotation of neutrons along one path relative to the rota-
tion of neutrons along the other, an intrusive measurement of this kind would
destroy the interference pattern. Thus, according to Byrne, who first called
attention to this complication, “[. . .] the notion of relative rotation ceases to
have a meaning as it corresponds to nothing which is measurable”.

The objection derives from examination of the density matrix of the beam
of neutrons. For unpolarized neutrons the experimental possibilities are ex-
hausted by observation of the interference pattern and determination of the
fringe visibility. If the neutrons are polarized, one can determine the degree of
polarization parallel to and transverse to the magnetic field. The former, the
longitudinal polarization, is unchanged by division and subsequent recombi-
nation of the wave function. From Byrne’s analysis, it is the rotation of the
transverse polarization that is measured by neutron interferometry, and this
observable corresponds to either a rotation or nutation of the particles in the
recombined beam relative to those in the incident beam. In no case, however,
does one observe the relative rotation of particles in the split beams.

The reinterpretation of the neutron interferometry experiments may at
first glance seem like quibbling over semantics. It is not, however, since a sim-
ilar situation does not arise in the case of massive bosons which always have
a transverse spin component (ms = 0) whose complex amplitude is unaffected
by passage through the magnetic field. The transverse polarization in this case
is expressible as the incoherent sum of a fixed polarization and a rotated po-
larization. Experimentally, the observed angle of rotation corresponds to the
angle between two orientations of the analyzing axis of a filter giving maxi-
mum transmission of the particles – in contrast to fermions for which there is
but one transmission axis. Thus, the concept of relative spin rotation retains
a meaning for massive bosons in the context of an interference experiment.
The rotation of a boson, however, is not of particular conceptual interest,
since it returns to its original state with the usual angular periodicity of 2π.

In the preceding chapter we have examined various facets of the physics
of laser-induced quantum beats. It will be recalled that, from the standpoint
of spectroscopy, one of the principal advantages of this technique was to elim-
inate the need for external radiofrequency or microwave fields. Spectroscopy
aside, however, the application of an oscillating field to states prepared in
a coherent linear superposition permits one to determine the relative phase
of different components of the wave function – a result of interest in its own
right. One noteworthy application pertinent to the above discussion of spinors
is that under appropriate circumstances a quantum beat resonance experiment
can reveal the 4π periodicity of spinor rotation. Actually, the experiment is
of more general scope, for, it does not require two beams of spin-1/2 parti-
cles. Furthermore, since particles are neither physically rotated nor spatially
diffracted, no conceptual difficulties arise concerning the classical interpre-
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tation of rotation in a quantum mechanical context. Indeed, examined from
a purely quantum perspective, what the experiment directly shows is the per-
haps more surprising fact that an atom which has undergone a transition
from one state to a second and then back again to the first may still be ex-
perimentally distinguishable from an identical atom which has undergone no
transition at all [142].

Let us consider a beam of atoms with ground state |0〉 and three close-lying
excited states |1〉, |2〉, |3〉 labeled in order of increasing energy (expressed in
units of �) ω1 < ω2 < ω3 such that the energy (i.e., angular frequency)
intervals ω32 and ω21 (where ωij = ωi − ωj) are unequal. The configuration
of states is shown in Fig. 5.8. At a fixed time, t = 0, a laser pulse of mean
frequency ν0 where ω1 < ν0 < ω2 and bandwidth Δν satisfying ω21 < Δν <
ω32 prepares the beam in a linear superposition of states |1〉 and |2〉 with
respective amplitudes a1 and a2. Were the atoms to evolve freely in time
under the Hamiltonian H0 whose eigenvalues are the frequencies ωi, the state
vector at some subsequent time t would take the form

Ψ(t) = e−iH0tΨ(0) = a1e−iω1t|1〉 + a2e−iω2t|2〉 . (5.80)

In what follows the ground state plays no role and has been eliminated from
the above superposition. Also, each amplitude should in principle be multi-
plied by an exponential damping factor of the form e−t/2τi , where τi is the
mean lifetime of the i th state. However, in the case of a sufficiently long,
although finite, lifetime for which τ−1 � ωij , so many oscillations between
superposed states occur within one e-folding time, that it is permissible to
simplify the ensuing mathematics without sacrificing essential physical ideas
by omitting the decay factors.

Fig. 5.8. Diagram of a quantum beat resonance experiment illustrating the observ-
able effect of a cyclic quantum transition. A laser pulse of intensity I(ν) centered
on frequency ν0 excites an atom into a linear superposition of states 1 and 2. A rf
field of frequency ω induces the cyclic transition 2 → 3 → 2. The associated phase
change is observable in the quantum beats of the radiative decay to lower level f
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Following the analysis of Chap. 4, one can express the radiation intensity
of polarization ε emitted at time t as a result of a spontaneous transition to
a lower state |f〉 by

I(t) =
[〈f |μE·ε|Ψ(t)〉∣∣2 , (5.81)

where μE is the electric dipole operator. Thus, substitution of (5.80) into
(5.81) leads to an optical signal with harmonic component, the quantum beat,
at frequency ω21. For the production of the beat it is essential that the tran-
sition matrix elements Dij ≡ 〈i|μE·ε|j〉 of both initial states (i = 1, 2) to the
same final state (j = f) be non-zero.

The atoms in the beam, however, are not permitted to evolve freely, but
are subjected instead to an oscillating electric field of adjustable frequency ω
and arbitrary phase φ giving rise to the perturbation V (t) (in units of angular
frequency). The oscillation frequency is chosen so as to be in the vicinity of ω32

and to differ appreciably from ω21, i.e., to couple states |3〉 and |2〉 without
appreciably coupling states |2〉 and |1〉. Alternatively, the interaction V (t)
may be of such symmetry that only the element V32 = 〈3|V0|2〉 is non-null
[where V0 is the amplitude of the oscillatory potential V (t)]. Thus, in regard
to this interaction, the atom behaves like a two-state system, since transitions
can be induced only between states |3〉 and |2〉. The state of the atom at
time t, whose initial state is given by (5.80) with t = 0, is obtained from
solution of the time-dependent Schrödinger equation with potential V (t). The
equation immediately reduces to two uncoupled equations: one for a1, whose
time dependence is already given in (5.80), and a second for the coupled
amplitudes a2 and a3.

For a weak perturbation, i.e., where the matrix elements of V are small
compared to state eigenfrequencies, one can apply the rotating-field approx-
imation developed in the preceding section. Then, with neglect of the small
shift in resonance frequency and radiative decay rates during passage through
the field, the solution to the two-state equation can be written in the form of
a spinor rotation followed by free evolution

(
b1
b2

)
= e−iH0teiσ3Ωt/2e−in·σθ/2

(
a2
0

)
. (5.82)

Here, σ = (σ1, σ2, σ3) is again the vector of Pauli spin matrices,

Ω = ω − ω32 (5.83)

is the deviation from resonance, and

θ = 2
(
|V32|2 +

1
4
Ω2

)1/2

t ≡ 2Ωrt (5.84)
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is the ‘rotation’ or ‘precession’ angle with corresponding angular frequency
Ωr. The unit vector n specifying the rotation axis has components (n1, n2, n3)
given by

n =
(
V32 cosφ
Ωr

,
V32 sinφ
Ωr

,
Ω

2Ωr

)
. (5.85)

For simplicity V32 has been taken to be real-valued. Note, too, that the arbi-
trary phase φ of the rf field is contained only in the components n1 and n2,
and this feature is unchanged should V32 be complex-valued.

At resonance, Ω = 0, and the rotational parameters reduce to the simple
expressions

n = (cosφ, sinφ, 0)sgn(V32) , (5.86)

θ = 2|V32|t . (5.87)

The signum function sgn(x) returns the sign of its argument. By adjustment
of the oscillating field strength (to which V32 is proportional) and duration
t of the atom–field interaction, the angle θ can be appropriately selected.
Equations (5.86) and (5.87) show that under resonant conditions a variation
in the field strength does not alter the rotation axis, since n is independent
of |V32|. Moreover, for rotations of an integer multiple of 2π radians, the state
of the system is independent of n and therefore of the arbitrary phase φ.

From (5.82) through (5.87) – with application of the identity in relation
(5.10) – it follows that at resonance a rotation of θ = π results in all atoms
initially in state |2〉 being driven into state |3〉

(
b2
b3

)

Ω=0,θ=π

= e−iH0t

(
0

−ia2eiφ

)
, (5.88)

whereas a rotation of θ = 2π corresponds to a transition from |2〉 to |3〉 and
back again to |2〉

(
b2
b3

)

Ω=0,θ=2π

= −e−iH0t

(
a2
0

)
. (5.89)

The occurrence of the minus sign is normally not observed since it is not
revealed by any bilinear products of the wave function. In the present ex-
periment, however, this sign change is important and will be seen to have
experimental consequences. A minimal resonant rotation of θ = 4π, which
corresponds to two cyclic transitions between |2〉 to |3〉, is required to return
the system to the same state as if no transition had occurred.

We now return to a description of the full three-state system. At the time
of emergence from the oscillating field, the state vector of the atom is generally
given by

Ψ(t) = e−iH0t

[
a1|1〉 + eiσ3Ωt/2e−in·σθ/2

(
a2
0

)]
, (5.90)
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which, when expanded, takes the explicit form

Ψ(t) = e−iH0t

[
a1|1〉 + a2eiΩt/2

(
cos
θ

2
− in3 sin

θ

2

)
|2〉 (5.91)

− ia2e−iΩt/2(n1 + in2) sin
θ

2
|3〉

]
.

The operator e−iH0t acts on each basis ket |i〉 to generate the phase factor
e−iωit which occurs under free evolution. Thus, after passage through the
oscillating field, free evolution for a time T is accounted for by replacing t
by t+ T in the first factor of (5.91). One can also easily verify that the total
state vector is still properly normalized to |Ψ |2 = 1 as expected (spontaneous
decay having been neglected).

At an arbitrary time T after emergence from a resonant field the atom is
characterized by the state vector

ΨΩ=0(t+ T ) = e−iH0(t+T )

(
a1|1〉 + a2 cos

θ

2
|2〉 − ia2eiφ sin

θ

2
|3〉

)
. (5.92)

At this point the spontaneous emission from the atom plays a role, for it
furnishes the optical signal to be observed. The general expression for the
resonant atomic fluorescence of polarization ε emitted at time t+T , obtained
by substituting (5.92) into (5.81), is somewhat complicated (with quantum
beats at frequencies ω21, ω31, and ω32) and need not be given explicitly. Of
particular significance, however, is the result that for ‘rotations’ of 0 and 2π,
the quantum beat signals at frequency ω21 are independent of the arbitrary
initial phase of the oscillating field and differ in relative phase by 180◦ as
shown in the expression

I0,2π
Ω=0(t+ T ) = |a1|2|Df1|2 + |a2|2|Df2|2 (5.93)

±2Re
{
a1a

∗
2Df1D

∗
f2 exp

[
iω21(t+ T )

]}
,

where the upper and lower signs correspond to 0 and 2π, respectively.
Experimentally, one can measure the above fluorescent intensities in the

traditional way as a function of T for fixed amplitude of the oscillating field.
The effect of the sign change can be enhanced by taking the difference signal

S(t+T ) = I0Ω=0(t+T )−I2π
Ω=0(t+T ) = 4|a1a∗2||Df1D

∗
f2| cos(ω12t+β) (5.94)

to obtain ideally a harmonic transient with 100% contrast. (The signal, of
course, is exponentially damped when state decay is explicitly included in
the analysis.) The phase β depends on the interaction time t and on constant
phase factors arising from possibly complex-valued matrix elements and initial
amplitudes. Thus, the distinction between a cyclic transition between two
states (θ = 2π) and no transition at all is revealed by a tell-tale minus sign in
the wave function.
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To show explicitly the 4π periodicity of the transition one can modify
the foregoing procedure to measure, at fixed time t + T , the fluorescence as
a function of the oscillating field strength or equivalently θ. Since the atoms
passing through the field experience all values of the initial phase on which
the signal in general depends, one must in this case average I(t+ T ) over the
range 0 ≤ φ ≤ 2π. Assuming that the atomic states have a well-defined parity
– which is valid upon neglect of small effects on the electron wave function
due to weak nuclear interactions – the states |2〉 and |3〉 must have opposite
parities to be coupled by an oscillating electric field. Thus, for an electric
dipole decay transition to the lower state |f〉, one of the matrix elements Df2

or Df3 must be null. With |f〉 chosen so that Df3 = 0, for example, the
calculated phase-averaged intensity at resonance can be shown to be

〈IΩ=0(t+ T )〉φ = |a1|2|Df1|2 + |a2|2|Df2|2 cos2
θ

2
(5.95)

+2Re
[
a1a

∗
2Df1D

∗
f2e

iω21(t+T )
]
cos
θ

2
.

The signal represented by (5.95) is then processed by taking pointwise over
a range of θ the difference

S(θ) = 〈IΩ=0(θ)〉φ − 〈IΩ=0(θ + π)〉φ = 4Re
[
a1a

∗
2Df1D

∗
f2e

iω21(t+T )
]
cos
θ

2
,

(5.96)
which results in a signal explicitly showing the 4π periodicity of spinor rota-
tion.

It is worth noting expressly that the phase change under a cyclic transition
is observable in this experiment precisely because it is not a global phase, but
rather a relative phase between the components of the wave function charac-
terizing states |2〉 and |1〉. The latter is unaffected by the external oscillating
field and thereby assumes the role of a reference state in much the same way
in which phase information of light scattered from an object is recorded holo-
graphically.

As a final consideration on spinors, I would like to point out an amusing,
if not intellectually mystifying, demonstration that I have often used before
lecture audiences to illustrate the spinor rotational property concretely by
means of a classical object – rather than a purely quantum system like an
electron or neutron. Invented originally by Dirac, as far as I am aware, and
referred to as a ‘spinor spanner’, the apparatus consists of a spanner (or
wrench) fastened by three parallel cords – one from each of its ends – to two
vertical walls as shown in Fig. 5.9. If the spanner is rotated 360◦ about its
axis, the cords become twisted, and no maneuvering of the object or cords –
short of a counter-rotation or cutting of the cords – can undo the tangle. If
the spanner is now turned another 360◦ in the same sense, the entanglement
appears at first even worse than before. But the astonishing thing is that
by looping the cords around the spanner in an appropriate manner – the
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Fig. 5.9. The spinor spanner. Rotating the spanner around its axis by 360◦ entangles
the cords which can be made to untangle by a further 360◦ rotation in the same
sense. The initial impression following a 720◦ rotation, however, is that the cords
are even more entangled than before

orientation of the spanner all the while kept fixed – one can untangle the
snarl and recover the original configuration of the system as shown in the
figure. Why a 4π rotation is equivalent to the identify operation in this case
is an instructive exercise in topology [143] which cannot be pursued further
in this book. The demonstration itself, however, is easy enough to construct
and will undoubtedly fascinate the reader as it has for many years the author.

5.5 Quantum Interference
in Separated Oscillating Fields

In the discussion of atomic state selection in Sect. 5.1, the various oscillators
that furnished the distinct spectroscopy and quenching fields were uncorre-
lated, i.e., they had in general different frequencies and no well-defined relative
phase. A configuration of two (or more) sequential oscillating fields, such as
illustrated in Fig. 5.10, which together comprise a single spectroscopy region
was proposed in 1949 by Norman Ramsey [144] and contributed to his award
of the Nobel Prize for physics for 1989. In this configuration two spatially
separated interaction regions created from the same oscillator have identical
frequencies and a well-defined relative phase which is adjustable by a phase-
shifter. A sensitive spectroscopic tool for resolving resonance line shapes [56,
Chap. 7], this field configuration is of conceptual interest here because it leads
to a different kind of particle self-interference in the time domain than dis-
cussed so far.

Under the usual circumstances where an atom in a beam is not observed
until after having passed through both fields, an observer cannot know in
which of the two interaction regions a transition between atomic states may
have occurred. Thus, the entire configuration is again analogous to the electron
two-slit experiment, except that in the present case the slits are not laterally
spaced apertures, but longitudinally separated windows in time. All the same,
the transition probability contains an interference term with the experimental
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Fig. 5.10. Separated oscillating field configuration. Two rf fields driven by the same
oscillator have the same frequency and well-defined relative phase Δ. The atoms in
the beam interact with each field for a time Ti with a time of transition T between
fields

consequence that the resonance curve exhibits an oscillatory profile narrower
by nearly a factor of two than the width of the resonance produced by a single
oscillatory field of the same overall length. One may have anticipated this
by analogy with diffraction and interference in physical optics. The central
diffraction peak of a single slit of given width is broader than the fringes of
an interference pattern produced by two slits of equivalent total width. It is
this interference narrowing that in part gives the separated oscillatory field
configuration its spectroscopic utility, for it is difficult to determine a precise
resonance frequency from a broad line shape.

There is a second interesting feature associated with the coherently oscil-
lating field configuration when the coupled atomic states are unstable (a situ-
ation that Ramsey did not treat). As illustrated later in the section (in
Fig. 5.12), the greater the separation between the two interaction regions,
the more oscillatory is the resulting line shape – and hence the more sharply
defined is the resonant transition frequency. This is a practical consequence
of the uncertainty principle. Recall that the lifetime of a quantum state is
a statistical measure of the duration of that state. In an ensemble of similarly
prepared unstable systems, some decay sooner and others last longer than
the mean lifetime. Of course, the probability of surviving much longer than
the mean lifetime τ diminishes exponentially as e−t/τ . Thus, the probability
that an atom remains in an unstable state for a period of five lifetimes before
decaying is e−5 ∼ 6.7×10−3, or approximately seven atoms out of every thou-
sand. By contrast, the number surviving for 10 lifetimes is e−10 ∼ 4.5× 10−5

or approximately five out of one hundred thousand. Nevertheless, with a suf-
ficiently intense initial beam, one can have a measurable population of atoms
in an unstable excited state pass from the first to the second transition region
if the separation between regions is not too great. The mean lifetime of this
population, however, is now longer than that of the original unselected popu-
lation of atoms in the same state. According to the version of the uncertainty
principle concerning time intervals and energy, (Δε)(Δt) ≥ �, the longer the
time interval Δt = τ over which a state can last, the smaller is the uncertainty
Δε, and hence the narrower will be the corresponding resonance line shape.



5.5 Quantum Interference in Separated Oscillating Fields 201

Let us examine quantitatively the quantum mechanics of a two-level atom
with energy interval ω0 = ω1−ω2 traversing the configuration of two separated
oscillating fields. As it passes the two interaction regions, the atom experiences
the electric field E0 cos(ωt+δ1) for a time Ti, field-free space for a time T , and
a second electric field E0 cos(ωt+ δ2) again for a time Ti. (The more general
case of different field amplitudes, frequencies, and interaction times is treated
in [56, 128].) We take the two fields to be linearly polarized parallel to one
another. At the time t = 0 of entry into the first field, the state of the atom
is specified by the wave function Ψ(0) which is representable as a vector, as
in (5.2) and (5.3), where the upper component is the amplitude of state 1
and the lower component the amplitude of state 2. Upon leaving the second
field a time interval t = 2Ti + T later, the state of the atom is represented by
a wave function Ψ(t) which can be cast in the form

Ψ(t) = e−iXtMΨ(0) , (5.97)

where X is the operator H0 − i�Γ/2 in (5.44) responsible for free evolution
and spontaneous decay, and M is the transition matrix whose elements are
sought. To determine M we utilize the results of the preceding section and
calculate the state of the atom at the entry and exit of each of the interaction
regions.

At the time of emergence Ti from the first field, the wave function has
evolved according to

Ψ(Ti) = e−iXTiK(Ti, δ1)Ψ(0) , (5.98)

where the matrix representation of X is diagonal with elements

Xj = ωj − i
1
2
γj (j = 1, 2) , (5.99)

and the elements of K(Ti, δ1), obtained in the rotating-field approximation
from (5.53)–(5.56), take the form

K11 = I11 , K22 = I22 , K12 = I12e−iδ1 , K21 = I21eiδ1 . (5.100)

The phase δ1 is a distributed variable, differing from one atom to the next
that enters the first field.

The time-evolution of the wave function in field-free space is generated sim-
ply by the matrix operator e−iXT . To account for passage through the second
interaction region one merely repeats the application of (5.98), replacing the
initial wave function Ψ(0) by the expression

Ψ(T + Ti) = e−iXTΨ(Ti) , (5.101)

to obtain
Ψ(t) = e−iXTiK(Ti, φ2)e−iX(T+Ti)K(Ti, δ1)Ψ(0) . (5.102)
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The elements of the matrix K(Ti, φ2) have the same form as those of (5.100)
but with the phase δ1 replaced by

φ2 = ω(T + Ti) + δ2 , (5.103)

which is also a distributed variable. [In general, the phase to be inserted in
relations (5.100) for an atom entering the field E0 cos(ωt + δ) at time t0 is
φ = ωt0 + δ.]

Upon inverting the order of the inside exponential and transition matrix
K(Ti, φ2) in expression (5.102), and taking account of their noncommutativity,
one obtains (5.97) where the elements of M are

M11 = I211 + I12I21 exp
[
G(T + Ti) − iΘ

]
, (5.104)

M12 = e−iδ1
{
I11I12 + I12I22 exp

[
G(T + Ti) − iΘ

]}
, (5.105)

M21 = eiδ1
{
I22I21 + I21I11 exp

[−G(T + Ti) + iΘ
]}
, (5.106)

M22 = I222 + I21I12 exp
[−G(T + Ti) + iΘ

]
, (5.107)

and the phase Θ is
Θ = Ω(T + Ti) + (δ2 − δ1) . (5.108)

G is the decay rate difference given in (5.58), and Ω is the displacement from
resonance of (5.48). Although δ1 and δ2 are distributed quantities, the phase
difference

Δ ≡ δ2 − δ1 (5.109)

is an experimentally adjustable, well-defined parameter in the case of two
interaction regions driven by the same oscillator.

The density matrix of the two-level atom is now determined by averaging
the product Ψ(t)Ψ(t)† over the variable δ1 while keeping Δ constant

ρ(t) = 〈Ψ(t)Ψ(t)†〉δ1 = 〈e−iXtMρ(0)M †eiX†t〉δ1 . (5.110)

Assuming for the sake of illustration – and because it is often the case exper-
imentally – that the initial density matrix ρ(0) represents an atom initially
prepared in one of the two coupled states, for example the longer-lived state
|1〉,

ρ(0) =

(
1 0
0 0

)

(5.111)

leads to the following occupation probabilities after passage of the atom
through both interaction regions

ρ11(t) = e−γ1t
∣∣
∣I211 + I12I21e(G−iΩ)(T+Ti)e−iΔ

∣∣
∣
2

, (5.112)

ρ22(t) = e−γ2t
∣
∣
∣I22I21 + I21I11e−(G−iΩ)(T+Ti)eiΔ

∣
∣
∣
2

. (5.113)



5.5 Quantum Interference in Separated Oscillating Fields 203

The order of the interaction matrix elements Iij in each term of (5.112) and
(5.113) corresponds from right to left to the first and second interaction re-
gions, respectively Thus, in ρ11(t), for example, one sees that the first term
characterizes an atom in state |1〉 that remains in state |1〉 after passage
through both fields, whereas the second term characterizes an atom that un-
dergoes a transition from |1〉 to |2〉 in the first field and back again from |2〉
to |1〉 in the second field. Under the conditions of the experiment there is no
way to distinguish which process produced an atom emerging in state |1〉 from
the second field; the total amplitude is therefore the sum of the amplitudes
for these two processes, and the occupation probability ρ11(t) [and likewise
for ρ22(t)] contains an interference term. In keeping with the earlier heuristic
argument based on the uncertainty principle, note that the relative phase be-
tween the two terms depends on the field-free interaction time T ; the larger T ,
the more oscillatory is the exponential phase factor. Under the conditions of
resonance (Ω = 0) between two states of the same lifetime (G = 0), however,
the relative phase between the two terms is independent of T ; the separa-
tion between the interaction regions then has no effect except to diminish the
overall intensity if the states are unstable.

Let us examine the case of exact resonance between two states of the same
lifetime more closely to see better the physical effect of the relative phase Δ.
When the matrix element V12 is greater than G/2, it follows from (5.53)–(5.56)
and (5.57) that the products of interaction matrix elements Iij in (5.112) and
(5.113) are real, and therefore the interference terms in (5.112) and (5.113)
are proportional to cosΔ. When G = 0, the precession frequency ν is simply
equal to the dipole matrix element V12, and the occupation probability of
state |1〉, for example, becomes

ρ11(t) = e−γ1t
[
cos4(V12Ti) + sin4(V12Ti) − 2 cos2(V12Ti) sin2(V12Ti) cosΔ

]
.

(5.114)
For a choice of field strength and interaction time such that V12Ti = π/4
radians, the above expression reduces to

ρ11(t) =
1
2
e−γ1t(1 − cosΔ) , (5.115)

and the interference term in ρ11 shows oscillations with 100% contrast. If the
two coherently oscillating fields are in phase (Δ = 0), then all nondecaying
atoms initially in state |1〉 emerge in state |2〉. On the other hand, if the two
fields are 180◦ out of phase (Δ = π), all nondecaying atoms emerging from
the second interaction region will be found in the original state |1〉.

Under conditions where the frequency is not exactly at resonance or the
two states decay at different rates, the interference term still diminishes the
|1〉 component of the wave function for in-phase oscillating fields and aug-
ments this component for fields oscillating out of phase. However, the con-
trast in these cases may be too low for different choices of Δ to be directly
noticeable in the variation of ρ11 or ρ22 with oscillation frequency. One can
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then isolate the interference term, as was done in the preceding section for
a quantum beat signal, by measuring the difference in occupation probability
of state |i〉

Si(Δ1, Δ2) = ρii(Δ1) − ρii(Δ2) (i = 1, 2) , (5.116)

for two appropriately chosen values of the relative phase Δ. One loses, of
course, in overall intensity, but this need not be a problem for a sufficiently
large initial flux of atoms. The pairs Δ = (π, 0) and Δ = (π/2,−π/2), as first
shown by Ramsey, are particularly useful, and lead in the present case to the
signals

S1(π, 0) = 4e−γ1teG(T+Ti)Re
[
I211I

∗
12I

∗
21e

iΩ(T+Ti)
]
, (5.117)

S1(π/2,−π/2) = 4e−γ1teG(T+Ti)Im
[
I211I

∗
12I

∗
21e

iΩ(T+Ti)
]
, (5.118)

with comparable expressions for S2 derivable from (5.113).
In Fig. 5.11 the variation with frequency of S1(π, 0) and ρ11(Δ = 0) are

superposed in the case of two coupled unstable states (hydrogen 3S and 3P ).
From the scale of the figure, it is seen that the interference term is approxi-

Fig. 5.11. Isolation of the quantum interference effect produced by two separated
coherently oscillating fields with adjustable relative phase Δ. The oscillatory curve
is the difference in occupation probabilities ρ11(Δ = π) − ρ11(Δ = 0) of a long-
lived state (3S coupled to 3P ) as a function of the frequency interval Ω = ω − ω0.
The interference is not visible in the frequency variation of the individual occupa-
tion probabilities (thin solid line). Theoretical parameters are: V12 = 2π × 6 MHz,
c1(0) = 1, c2(0) = 0, γ1 = 6.25 × 106 s−1, γ2 = 172.4 × 106 s−1; interaction time
Ti = 40 ns, transit time T = 50 ns. (Adapted from Silverman [128])
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mately one hundred times smaller than ρ11 in the vicinity of resonance, and
therefore the contrast of the interference pattern is greatly enhanced in the
difference signal S1(π, 0). In the absence of the counter-rotating component of
the oscillating field, the interference pattern of Si(π, 0) (i = 1, 2) is symmetric
about the resonance frequency. The narrowing of the central portion of the
line shape (compared with ρii), and therefore the advantage to spectroscopy,
are readily apparent. This narrowing becomes more pronounced, as already
explained, for longer transit times T between interaction regions, as illustrated
in Fig. 5.12.

Figure 5.12 also shows the results of choosing the alternative pair of
phases, Δ = (π/2,−π/2). The line shape, resembling that of a dispersion
curve, is antisymmetric about the resonance frequency (Ω = 0) at which
point S(π/2,−π/2) is theoretically null and the slope of the curve is steep-
est. This, too, is spectroscopically useful, for it can be more advantageous to
determine the zero-crossing of a resonance line than to locate the maximum
point in a region of near-zero slope. A line shape of the dispersion type is very
sensitive to small shifts in the resonance frequency.

Fig. 5.12. Illustration of separated oscillating field interference patterns for different
field-free transit times T and for two choices of pairs of relative phases Δ = (π, 0)
and Δ = (π/2,−π/2). The greater T , the more rapid is the oscillatory structure,
and therefore the narrower is the line shape near resonance. The initial amplitudes
and decay rates are the same as for Fig. 5.11; V12 = 2π × 16 MHz; Ti = 60 ns.
(Adapted from Silverman [128])
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5.6 Ion Interferometry and Tests of Gauge Invariance

Upon learning of the diffraction of helium atoms and hydrogen molecules from
a crystal, I.I. Rabi allegedly remarked: “They will be diffracting grand pianos
next!” While this is unlikely, to say the least, the coherent splitting and sub-
sequent interference of beams of atoms, once also a remote possibility, has
been achieved and is an actively pursued area of physics research [145]. Since
atoms are not charged (like electrons) or penetrate matter (like neutrons), the
construction of atom interferometers required first the development of new
techniques for simulating necessary optical elements. Recent developments in
optics and atomic physics have made possible various types of atom inter-
ferometers such as those based on (i) wavefront splitting at nanometer-sized
mechanical structures [146], (ii) amplitude division at gratings constructed
from standing waves of light [147], and (iii) pulsed laser-induced transitions
within an atomic ‘fountain’ [148], i.e., a beam of atoms that first rises verti-
cally through an interaction region and subsequently descends slowly through
the same region under the action of gravity. The creation in the laboratory
of Bose–Einstein condensates of atoms (which have a significant role to play
in the last chapter of this book) has led to numerous experiments employing
atom interferometry [149].

An atomic interferometer has a number of potential advantages, not the
least of which is that atoms can be produced in beams of high flux. Prin-
cipally, however, it is on the basis of its high phase sensitivity that atomic
interferometers hold great promise as inertial and gravitational sensors in
novel experiments to test relativity, search for new physical interactions (such
as an intermediate range deviation from Newtonian gravity or so-called ‘fifth
force’ [150]), or measure with hitherto unprecedented precision the local ac-
celeration of gravity.

The optical techniques by which neutral atom beam splitters, mirrors, and
lenses have been made are generally suitable as well for charged atoms, and
the wide applications of ion interferometers at some future time can be safely
anticipated. Although ions can be controlled by electric fields in the same way
that point charges like electrons can (and that neutral atoms cannot), it is
the internal structure of ions that in part makes them particularly interesting
systems to study with the techniques employed in neutral atom interferometry.
The interferometry of ions with internal state labeling would permit, in a way
that hitherto has been beyond reach, tests of fundamental physical principles
related to gauge invariance.

In the previous chapters we discussed various aspects of the Aharonov–
Bohm (AB) effect, a quantum mechanical phenomenon concerning the interac-
tion of a charged particle with the electromagnetic vector (or scalar) potential
under conditions where static electric and magnetic fields are ideally null. Al-
though once the subject of long theoretical and experimental controversy, the
AB effect has since been established as a seminal part of quantum theory
required by the gauge invariance of the equations of motion. The AB effect
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illustrates the nonlocal influence of topology in physics, as well as the funda-
mental primacy of potentials (which relate to energy) over fields (which relate
to forces) [151]. However, as far as I am aware, all successful AB-effect ex-
periments performed to date, whether based on particle beams or mesoscopic
metal rings (to be discussed in the next chapter), employed the same type
of structureless charged particle, the electron. The reason for this is obvious:
coherent electrons are readily available. Nevertheless, novel and conceptually
significant modifications of the AB effect can be studied by using composite
charged particles with an internal structure, such as ionized atoms [152].

One consequence of the usually assumed minimal coupling between par-
ticle charge and potential field is that the AB phase shift for single-electron
wave packets is independent of the electron energy–momentum–spin state, and
depends only on the magnetic flux enclosed by the particle path. Presuming
the same coupling holds within a composite structure of bound charges – and
this is one of the interesting issues worth testing – it can nevertheless follow
that the AB phase shift in ions may be observed on selected excited states .
We will examine this possibility momentarily. Furthermore, under appropriate
circumstances, the AB-phase shift can be manifested in the resonance fluores-
cence of the ions, but not, as traditionally detected, in the particle count rate
itself. This optical manifestation of the AB effect is still attributable to the
direct coupling of real particles with the vector potential, and is to be distin-
guished from predicted AB effects of the photon arising from the coupling of
virtual electron–positron pairs with an external potential [153].

As an illustration of the new kinds of experiments made possible by ion
interferometry, consider the interferometer configuration of Fig. 5.13 through
which passes a beam of ions of charge q. Each ion is assumed to be a three-
level system with ground state |g〉 and two close-lying excited states |e1〉, |e2〉
with respective energies ω1, ω2 (as usual in units of �) and common decay
rate Γ . Although the figure shows an interferometer of the Mach–Zehnder
type, the beam splitters and mirrors need not be massive structures; they are
merely interaction regions for changing particle momentum or internal state,
and can in practice be regions of electromagnetic radiation such as employed
in atomic interferometers with internal state labeling [154]. The ions, excited
by laser to lower state |e1〉, for example, are split equally at interaction region
(beam splitter) BS1 into components that follow paths I or II through the
interferometer around a region of confined magnetic flux Φ.

Along the horizontal segment of each path the ions pass through a reso-
nantly oscillating radiofrequency or microwave field that can induce transi-
tions between the two excited states at the Bohr frequency Ω0 = ω2 − ω1.
The two transition fields V1, V2 oscillate coherently with some adjustable,
but well-defined, relative phase δ, as analyzed in the preceding section. After
traversing the oscillating fields, the ion beam recombines at interaction region
(beam splitter) BS2 and passes on to detector D1 or D2. We assume the ex-
cited state lifetime 1/Γ to be sufficiently long (as in the case of metastable or
Rydberg states) for the ions to traverse the interferometer.
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Fig. 5.13. Variations of the AB effect on a composite quantum system by means
of ion interferometry. A beam of ions, excited into state e1 by a laser, is coherently
divided into components passing through one or the other of two coherently oscil-
lating fields V1 and V2 (with relative phase δ) before recombining and exiting the
interferometer. The effect of confined magnetic flux Φ may appear in either the ex-
cited ion count or in the ion resonance fluorescence, depending upon the transitions
induced by the oscillating fields

Although, to avoid a linguistic awkwardness, the above description refers
to ion ‘beams’ taking paths I and II, one must again bear in mind that, strictly
speaking, it is single-ion wave packets that split and propagate through the
interferometer. Moreover, in contrast to the standard Ramsey field configura-
tion where ideally an entire atom or molecule passes sequentially through both
fields with 100% probability, it is now the case that each component of the
ion wave function passes through only one of the fields. Under the conditions
of the experiment, the observer does not know through which oscillating field
a given ion passes. There is thus the potential for interference to occur because
of the geometrical (including topological) effects of spatial separation, as well
as the temporal (or dynamic) effects of internal state transitions.

After passing interaction region BS2, the amplitudes of the two compo-
nents take the general forms

Path I
[
α11eiχ

(1)
I |e1〉 + α12eiχ

(2)
I |e2〉

]
eiγI , (5.119)

Path II
[
α21eiχ

(1)
II |e1〉 + α22eiχ

(2)
II |e2〉

]
eiγII , (5.120)

where χ(i)
J is the phase shift of excited state i along path J with possible con-

tributions from excitation, reflection and transmission, and space-time prop-
agation in free space and within the transition regions VJ . The effect of the
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confined magnetic flux is contained in the nonintegrable phase shift

γJ =
q

�c

∫

path J

A · ds , (5.121)

where A(s) is the local vector potential field at some point s along path J .
The real-valued amplitudes αij (i, j = 1, 2) likewise express the net result

of excitation, decay, diffraction, induced transition, and space-time propa-
gation, but they are independent of the vector potential field (or magnetic
flux). Their exact expressions can be constructed from the previously derived
functions (Iij) of the preceding section, but will not be needed to illustrate
the points of principal interest in this section. Upon recombination, the net
amplitude at each detector, for example D1, takes the form

ψ(D1) ∼
[
α11eiχ

(1)
I eiγI + α21eiχ

(1)
II eiγII

]
|e1〉 (5.122)

+
[
α12eiχ

(2)
I eiγI + α22eiχ

(2)
II eiγII

]
|e2〉 ,

where to avoid unnecessary complexity in the mathematical formalism, the
additional effects of space-time propagation and decay over the path from BS2

to D1 have simply been absorbed in αij and χ(i)
J .

The arrival of excited ions can be observed in two experimentally distinct
ways. One can, in principal, count particles, in which case the detector D1

is sensitive only to excited states, as, for example, by means of a resonant
ionization procedure. On the other hand, one can count the photons in the
decay radiation, in which case D1 represents a photomultiplier and associated
electronics. The probability of direct particle detection at D1 is given by

P (D1) = |ψ(D1)|2 (5.123)

for a suitably normalized wave function ψ. By contrast, the fluorescent signal
with polarization ε deriving from electric dipole (μE) transitions to some final
state – here taken for simplicity to be the ground state |g〉 – is obtained from

S(D1) = Tr
[
ρOdet(ε)

]
, (5.124)

where ρ is the density operator of the system

ρ = |ψ(D1)〉〈ψ(D1)| (5.125)

and Odet(ε) is the detection operator

Odet(ε) = (μE · ε)|g〉〈g|(μE · ε)† , (5.126)

as described in the chapter on quantum beats.
There are a variety of outcomes depending upon the effects of the oscil-

lating fields V1, V2, but we shall consider two. Suppose that the transition
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regions convert incident states |e1〉 into pure states |e2〉. Then α21 = α11 = 0,
and the probability of detecting an excited ion directly is

P (D1) = α2
12 + α2

22 + 2α12α22 cos
(
Δ2 + 2π

Φ

Φ0

)
, (5.127)

where
Δi = χ(i)

II − χ(i)
I (i = 1, 2) (5.128)

is the phase shift between component waves of state |ei〉 due to a difference
in optical path length through the interferometer. The ratio of magnetic flux
enclosed by the interferometer to the fluxon is

Φ

Φ0
=
q

hc
=

∮

path (II–I)

A · ds = γII − γI . (5.129)

The optical signal deriving from the radiative decay of ions is in this case
simply proportional to the particle detection probability

S(D1) = |μ2g|2P (D1) , (5.130)

where
μig = 〈ei|μE · ε|g〉 (i = 1, 2) (5.131)

is the electric dipole matrix element between states |ei〉 and |g〉. It is to be
noted that the phase Δ2 which enters (5.127) and (5.130) is independent of
observation time, since the phase factor e−iω2t appears in the amplitudes for
both paths. Thus, (5.127) and (5.130) show a stationary manifestation of the
AB effect in both the particle and photon counts. (A similar conclusion follows
if pure |e1〉 states emerge from both transition regions VJ .) A conceptually
significant feature of this experiment – in which the electric charge, but not
the detected bound state, has followed a closed contour about the magnetic
flux – is that it tests the state independence of minimal charge coupling and
the consistency in formulation of hierarchical quantum equations of motion
(a point to be discussed further below).

Suppose, however, that transition region V1 produces pure states |e1〉 and
V2 produces pure states |e2〉. Then α21 = α12 = 0, and it follows from (5.122)
that the probability of particle detection and the optical signal are respectively

P (D1) = α2
11 + α2

22 , (5.132)

S(D1) = α2
11|μ1g|2 + α2

22|μ2g|2 + 2α11α22|μ1g||μ2g| cos
(
Δ12 + 2π

Φ

Φ0

)
,

(5.133)
where

Δij = χ(j)
II − χ(i)

I . (5.134)

In this case, the particle count rate shows no quantum interference at all –
which is to be expected since the excited state spatial paths are known. On
the other hand, the AB effect is now imprinted in the optical signal, which is
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permissible since the exact temporal path from ground state to excited state
and back to ground state is not known (provided the bandwidth of the detector
is wider than the total spectral emission of the excited manifold). The phase
Δ12 (in which is absorbed any supplementary contribution from the possibly
complex-valued electric dipole matrix elements) contains the observation time
in the term (ω2−ω1)t = Ω0t. Thus, the optical signal manifests quantum beats
at the Bohr frequency Ω0 with an initial phase linearly dependent upon the
enclosed magnetic flux.

The essential contribution of the two coherently oscillating transition re-
gions is to ensure production of adjustable coherent superpositions of excited
states. In an alternative configuration illustrated in Fig. 5.14, the separate
beam-splitting and transition regions are replaced by two coherently oscillat-
ing counter-propagating sets of laser fields, with two co-propagating waves
in each set to give, as before, a total of four interaction regions. A beam
of two-level ions – one ground level and one pertinent excited level – en-
ters the interferometer in the ground state. The atomic recoil (analogous to
the Kapitza–Dirac effect4) produced by resonant absorption and stimulated
emission of photons serves to split the ion wave packet coherently in each
interaction region into two components depending on the ion state. Emerging
from the final laser field are two separated beams, one of ground-state ions
and the other of excited-state ions. An excited state ion, however, could have
been generated by a transition (with corresponding deflection) induced by
the fourth laser field in the lower ground-state beam (path I), or could have
originated by interaction of a ground-state ion in the upper beam (path II)
with the third laser field. Under the given experimental conditions, one can

Fig. 5.14. Ion AB experiment employing an interferometer consisting of two pairs
of coherently oscillating laser fields. Ions are separated according to their internal
state by the momentum exchanges attendant to resonant photon absorption and
emission

4 The Kapitza–Dirac effect is the scattering of a particle beam from a periodic
lattice of light created by a standing wave intensity pattern. See, for example,
[155].
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not know by which process an emerging ion was put into the excited state.
Likewise for the output beam of ground-state ions. The probability that an
excited- or ground-state ion emerges should therefore manifest a quantum in-
terference with a phase dependent on the enclosed magnetic flux – provided
that the process of state separation does not destroy the phase memory of the
system. Such a system has in fact already been demonstrated in the construc-
tion of a neutral atom Sagnac interferometer5 in which rotation, rather than
magnetic flux, influences the relative phase. (The analogy between rotation
and magnetism will be discussed in more detail in the following chapter.)

The above caveat raises an interesting general point regarding separability
and coherence. It is well known that a Stern–Gerlach apparatus with a static
inhomogeneous magnetic field dephases a superposition of spin substates to
the extent that the substates are separated spatially [157]. The argument
leading to this conclusion, however, does not apply to dynamic separation
methods where time-varying fields do not literally separate previously existing
states, but rather generate states in situ by inducing transitions.

Aside from the practical applications of atom interferometry – many of
which apply as well to ions – there is a particular conceptual interest in
examining the Aharonov–Bohm effect in a charged system with composite
structure. In quantum mechanics the structure and interactions of atoms are
routinely described – depending upon the question at hand – by different
mathematical formulations of the equations of motion, e.g., those of the Dirac,
Pauli, and Schrödinger theories. These three formulations are of course inti-
mately related, the second derivable from the first in the approximation of
small electron velocity, and the third derivable from the second upon neglect
of spin. Nevertheless, each theory must be supplemented by physical assump-
tions prescribing how observables are to be deduced from the wave function.
Furthermore, these theories did not arise in this hierarchical order, but were
developed independently.

It has been pointed out years ago [158, 159], in a context different from
that under examination here, that there is an inconsistency between the cus-
tomary formulation of the Schrödinger and Pauli theories and results derived
from the Dirac equation. For example, the Schrödinger equation has long been
regarded as the nonrelativistic wave equation for a spinless particle, a seem-
ingly reasonable interpretation since one arrives at the Schrödinger equation
from a nonrelativistic reduction of the Klein–Gordon equation, as well as the
Dirac, equation. On the contrary, according to Hestenes and Gurtler, the re-
quirement that the Schrödinger theory be identical to the Pauli theory in the

5 This interferometer is described in [154]. In a Sagnac interferometer two light
(or particle) beams counter-propagate around the same closed path of a rotating
interferometer. As a result of the Doppler effect, the recombined beam manifests
an optical frequency shift proportional to the rotational angular frequency. It is
of interest to note that there is a close analogy beween the Sagnac effect and the
Aharonov–Bohm effect with isomorphic connection qA/c = mΩ × r between
angular velocity Ω and vector potential A. See, for example, [156].
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absence of a magnetic field necessitates a different interpretation, namely that
the Schrödinger equation describe – not a particle without spin – but a par-
ticle in a fixed eigenstate of spin. The difference is important and leads to
different expressions for the charge current density and a re-interpretation of
how the Schrödinger and Pauli currents are associated with momentum and
energy. In the words of the authors [158, p. 574]:

To put it bluntly, everyone to date has been using the wrong expression
for charge current density in the Schrödinger theory. Of course there
is no way that this error could be revealed directly by experiment,
because the only direct experimental means of testing for the existence
of a magnetization current is by introducing a magnetic field. But in
that case everyone knows enough to discard the Schrödinger theory
and use the Pauli or Dirac theories.

The interaction of ions with a vector potential field provides another sig-
nificant circumstance in which the inconsistency between these various for-
malisms can not only potentially arise, but be tested. Succinctly stated, it is
the replacement – required for the maintenance of gauge invariance by mini-
mal coupling – of momentum p in the field-free Hamiltonian of a system by
the operator p − (q/c)A that ultimately leads to the unitary relation [see
(1.21) and (1.22)]

ψ(x) = ψ0(x) exp

⎛

⎝i
q

�c

x∫
A · ds

⎞

⎠ , (5.135)

from which arises the predicted AB phase shift in a space of appropriate topol-
ogy. Here ψ0 is a field-free solution of the Dirac equation – or of a spinless
nonrelativistic wave equation – and ψ is the corresponding solution in the
presence of a time-independent vector potential. However, the same applica-
tion of minimal coupling to a nonrelativistic reduction of the Dirac equation
with spin–orbit interaction (such as would apply to the internal structure of
ions) leads to anomalous gauge-dependent, spin-dependent terms that, if truly
present in the Hamiltonian, could conceivably alter the nature of the AB effect
in ions through spin-assisted transitions.

There are theoretical reasons for believing these terms to be unwarranted,
that correct implementation of gauge invariance must begin at the level of
the Dirac equation, and that a proper nonrelativistic reduction of the Dirac
equation does not lead in any gauge to nonvanishing spin-dependent terms
under the conditions of the AB effect (where A is ordinarily assumed to be
time-independent to avoid classical effects attributable to Faraday induction).
Whether or not this reduction leads to gauge-invariant, spin-dependent effects
that might show up under other circumstances is not, to my knowledge, a set-
tled issue [160].

Nevertheless, for all its theoretical maturity, physics is ultimately an em-
pirical science. Thus, even apart from the particular issue of hierarchy and
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gauge invariance discussed above, the uncertainty of an unexpected interac-
tion between a vector potential field and the ionic internal degrees of freedom
exists until the question is laid to rest by experiment.

Appendix 5A Oscillatory Field Solution
to the Two-State Schrödinger Equation

The oscillatory field (OF) solution to (5.45) can be expressed in the form

Ψ(t) =

(
exp

[− (γ1/2 + iω1)t
]

0
0 exp

[− (γ2/2 + iω2)t
]

)(
J11 J12

J21 J22

)
Ψ(0) ,

(5A.1)
where

J11 =
e(G−iΩ)t/2

D

{

(1 + κ2
Ae2iωt)

[
(1 − κAK)2e−μt/2 + (κA +K)2eμt/2

]

−2(1 − e2iωt)κA(1 − κAK)(κA +K) sinh
μt

2

}

, (5A.2)

J12 =
−2e(G−iΩ)t/2

D

{

(1 + κ2
Ae2iωt)(1 − κAK)(κA +K) sinh

μt

2
(5A.3)

−1
2
(1 − e2iωt)κA

[
(1 − κAK)2eμt/2 + (κA +K)2e−μt/2

]}

,

J21 =
−2e−(G−iΩ)t/2

D

{

(1 + κ2
Ae−2iωt)(1 − κAK)(κA +K) sinh

μt

2

+
1
2
(1 − e−2iωt)κA

[
(1 − κAK)2e−μt/2 + (κA +K)2eμt/2

]
}

,

(5A.4)

J22 =
e−(G−iΩ)t/2

D

{

(1 + κ2
Ae−2iωt)

[
(1 − κAK)2eμt/2 + (κA +K)2e−μt/2

]

+2(1 − e−2iωt)κA(1 − κAK)(κA +K) sinh
μt

2

}

. (5A.5)
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The denominator D is

D = (1 + κ2
A)(1 +Δ2) , (5A.6)

with
Δ2 = κ2

A +K2 + (κAK)2 . (5A.7)

κA given by (5.62), is the off-diagonal element in the matrix CA of (5.61)
which diagonalizes the time-independent part of the Schrödinger equation in
the anti-rotating frame. The function K, defined by

K =
iV

ε+A + λ− − iω
, (5A.8)

is the off-diagonal element in a matrix of the same form as in (5.61) which
diagonalizes the time-independent part of the Schrödinger equation (5.64)
transformed back into the rotating frame. ε±A given in (5.65), are the eigen-
values obtained by diagonalization in the anti-rotating frame, and

λ± = −1
4
(γ1 + γ2) ± iμ (5A.9)

are the eigenvalues obtained by diagonalization in the rotating frame; μ, de-
fined by (5.66), is interpretable as the precession frequency.

Upon approximating the radical (1+ϑ2)1/2 that appears in μ by 1, one ob-
tains the rotating field solution, i.e., the approximate solution resulting from
transformation of the original Schrödinger equation (5.45) directly into the ro-
tating frame with subsequent neglect of all anti-resonant terms. In particular,
it follows that λ± = ε±R, and K = κR, and κA = 0, where the rotating-field
eigenvalues are

ε± = −1
4
(γ1 + γ2) ± iν , (5A.10)

with precession frequency ν defined by (5.57); the associated off-diagonal ma-
trix element is

κR =
Θ√

1 +Θ2 + 1
, (5A.11)

with
Θ =

2iV12

G− iΩ
, (5A.12)

to be compared with the corresponding equations (5.62) and (5.63).

Appendix 5B Generalized Rotating Field Theory
and Optically-Induced Ground State Coherence
in a 3-State Atom

The system of three states depicted in the left frame of Fig. 4.4 – one excited
state and two degenerate ground states coupled by an optical perturbation
of the form V (t) = V cosωt in the absence of a static external field – can be
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solved to good approximation by a generalization of the rotating field theory.
A comprehensive explanation of this approach for a multilevel system of ar-
bitrary number of coupled states is given in my book Probing the Atom [56],
but the description can be considerably simplified for the present illustration
of just three states with field-free eigenvalues (in units of �) ω1 = ω2 = 0,
ω3 ≡ ω0.

Substitution of the state vector Ψ(t) = a1|1〉 + a2|2〉 + a3|3〉 into the
Schrödinger equation with Hamiltonian (also in units of �) H = H0+V cosωt,
in which V12 = V21 = 0 leads to the coupled equations

da1
dt

= −iV13a3 cosωt ,

da2
dt

= −iV23a3 cosωt , (5B.1)

da3
dt

+ iω0a3 = (−iV31a1 − iV32a2) cosωt .

It is assumed here that the elements of V are real, and therefore Vij = Vji.
The strategy of the analysis is to remove the time-dependence from the set
of equations so that the resulting transformed set can be integrated easily.
To accomplish this use Euler’s theorem to express the cosine in terms of
exponentials, substitute into (5B.1) the redefined set of amplitudes

a1 = eiΩtb1 ,

a2 = eiΩtb2 , (5B.2)

a3 = e−iω0tb2 ,

where Ω = ω−ω0 is the displacement from resonance, and discard terms that
oscillate at the antiresonant frequency ω + ω0. The original set of equations
then reduces to the time-independent set

db1
dt

= −iΩb1 − i
1
2
V13b3 ,

db2
dt

= −iΩb2 − i
1
2
V23b3 , (5B.3)

db3
dt

= −i
1
2
V13b1 − i

1
2
V23b2 ,

which can be written in matrix form as

db

dt
= −iMb . (5B.4)

To integrate (5B.4), one must transform M into diagonal form D

M = CDC−1 , (5B.5)
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where C is a matrix whose columns are the eigenvectors ofM . The integration
of (5B.4) then follows immediately

b(t) = Ce−iDtC−1b(0) , (5B.6)

where
(e−iDt)ij = e−iDiitδij ,

and the initial amplitudes are given by b(0). For the system in question, I
assume that both ground states are initially incoherently populated, i.e.,

b(0) =
1√
2

⎛

⎝
1

eiφ

0

⎞

⎠ , (5B.7)

where φ is a distributed phase.
Solution of the eigenvalue problem for M yields the eigenvalues

ε0 = Ω , ε± =
1
2

(
Ω ±

√
Ω2 + V 2

13 + V 2
23

)
≡ 1

2
(Ω ±Δ) (5B.8)

and corresponding matrices

C =
1
2

⎛

⎜
⎝

V23 V13 −V13

−V13 V23 −V23

0 Δ−Ω Δ+Ω

⎞

⎟
⎠ , (5B.9)

C−1 =

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

2V23

V 2
13 + V 2

23

−2V13

V 2
13 + V 2

23

0

V13

V 2
13 + V 2

23

(
1 +

Ω

Δ

)
V23

V 2
13 + V 2

23

(
1 +

Ω

Δ

)
1
Δ

−V13

V 2
13 + V 2

23

(
1 − Ω

Δ

) −V23

V 2
13 + V 2

23

(
1 − Ω

Δ

)
1
Δ

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

. (5B.10)

Returning to the ‘a’ amplitudes by substituting the inverse transformation of
(5B.2) into (5B.6) and (5B.7), and performing the matrix multiplication leads
to a solution of the form

ai(t) = Ci1C
−1
1i + Ci2C

−1
2i ei(Ω−Δ)t/2 + Ci3C

−1
3i ei(Ω+Δ)t/2 , (5B.11)

for i = 1, 2, 3, from which the elements

ρij(t) = aia∗j (5B.12)

of the density matrix are constructed.
With regard to the free-induction decay experiment confirming the predic-

tion of saturation regeneration of quantum beats, discussed in the preceding
chapter, the density matrix element of interest is the time-independent part
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of ρ12(t) = a1a∗2. Only those terms contribute, therefore, that result from mul-
tiplying a phase factor in (5B.11) by its complex conjugate. The final result
is then

ρ012 =
V13V23/4

Ω2 + V 2
13 + V 2

23

. (5B.13)

It bears emphasizing that the solution (5B.6) and (5B.7), from which the
entire density matrix of the system follows, is not a first-order perturbation
or weak-pumping solution. The only approximation that has been made is
to drop antiresonant terms (generalized rotating field approximation). The
procedure outlined here can be applied as well to a system with unstable
excited states and finite ground-state lifetime resulting from optical pumping,
although the resulting equations will of course be more complicated.



6

Symmetries and Insights:
The Circulating Electron
in Electromagnetic Fields

6.1 Broken Symmetry of the Charged Planar Rotator

In the atomic model introduced by Niels Bohr in 1913 the electron was pre-
sumed to follow a circular orbit about the atomic nucleus. Although the non-
relativistic quantum theory of the hydrogen atom later confirmed the Bohr
atom energy spectrum (in absence of spin-related relativistic interactions), it
also showed that the concept of orbits was in general no longer tenable. The
bound electron could have any possible separation from the nucleus according
to a distribution function determined from the radial wave equation.

Nevertheless, the two-dimensional charged rotator (Fig. 6.1) – superficially
a Bohr atom without nucleus in which the electron is confined by unspecified
forces to a circular space of radius R – is an interesting quantum system to
consider. The orbiting particle does not, of course, follow a trajectory just
like that of the electron in the Bohr atom. A more appropriate, albeit ap-

Fig. 6.1. Configuration of the electric (E) and magnetic (B) fields for the Stark
and Zeeman effects of the two-dimensional charged rotator circulating in a space of
radius R
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proximate, real-world counterpart to this model system is a pi electron in
a conjugated hydrocarbon ring,1 as shown in Fig. 6.2. Indeed, the planar ro-
tator (with concomitant application of the Pauli exclusion principle) yields
a moderately successful prediction of the center of gravity of the rotational
Raman spectrum of the hexagonal molecule benzene, the archetype of conju-
gated aromatic molecules [161].

The field-free planar rotator is a quantum system that, like the particle in
a rectangular box with infinite walls, is trivially easy to analyze. The spectral
degeneracy can be predicted simply on the basis of circular symmetry. Since
the two possible classical motions of clockwise and counterclockwise rotation
at the same angular frequency are energetically equivalent, all rotationally
excited levels are doubly degenerate. The ground state, in which the angular
momentum, and therefore the rotational energy, is zero, is nondegenerate. It
is worth noting that there is no zero-point energy as, for example, in the case
of the harmonic oscillator, since the electron is not bound in a potential well
but occupies the entire space available to it. This space happens to be a one-
dimensional space of constant curvature. From the form of the Hamiltonian
for a particle with mass m confined to a ring of radius R

H0 =
L2

z

2mR2
, (6.1)

it follows immediately that the state vectors can be labeled by an integer quan-
tum number μ (with μ = 0, ±1, ±2, etc.) designating the eigenvalues μ� of

Fig. 6.2. The benzene molecule C6H6. Each vertex represents a carbon atom; the
hydrogen atoms (one bonded to each carbon) are not shown. Sigma bonds, strong
linkages of carbon 2s electrons directed between adjacent atoms in the molecular
plane hold the framework together. Weaker pi bonds, linkages of carbon 2p electrons
oriented normal to the plane, provide a ring-like network (indicated schematically
by the rings) over which the pi electrons are delocalized

1 The diagrammatic representation of a ‘conjugated’ molecule like benzene (C6H6)
shows alternating single and double bonds, but, as a result of the pi electron
delocalization, any pair of adjacent carbon atoms in the ring is indistinguishable
from any other pair.
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Lz, the component of angular momentum along the rotation axis (and, in fact,
the only component of angular momentum). The energy eigenvalues are then

Eμ = E−μ =
�

2μ2

2mR2
, (6.2)

with associated normalized wave functions

〈φ|μ〉 ≡ ψμ(φ) =
eiμφ

√
2π

(6.3)

that satisfy the boundary condition

ψμ(φ+ 2π) = ψμ(φ) (6.4)

required for single-valued functions. The azimuthal angle φ is measured in
a positive sense from some arbitrarily chosen axis (which is usually the x axis
of a Cartesian coordinate system). The states represented by wave function
(6.3) are also eigenstates of the parity operator Π which reflects the particle
through the origin (φ → φ + π) with eigenvalues eiμπ = (−1)μ. Thus, states
of even or odd μ respectively have even or odd parity. It should also be noted,
in anticipation of an important point to be discussed shortly, that any linear
superposition of states of fixed |μ| is also a valid solution of the Schrödinger
equation.

With the introduction of external electric or magnetic fields or electro-
magnetic potentials, the problem of the charged planar rotator ceases to be
a trivial one [162, 163], and indeed full, correct solutions of these systems
were first published long after the development of quantum theory [164,165].
Although the system may still seem simple, this simplicity is somewhat de-
ceiving. As one of few quantum mechanical systems involving electromagnetic
interactions amenable to exact solution, there is much of conceptual impor-
tance that one can learn from studying it. For one thing, the Schrödinger
equations for both the Stark and Zeeman effects lead to differential equations
of a type not frequently encountered in quantum mechanics: one with peri-
odic coefficients and a three-term recursion relation. Such an equation is not
expressible in terms of the generators of a particular symmetry group [known
as the SU(1,1) dynamical group [166]] as are those of a number of commonly
encountered solvable quantum systems, as for example the Coulomb and har-
monic oscillator potentials. More interesting still, the energy spectrum of the
resulting Stark and Zeeman states exhibits an unusual broken degeneracy pat-
tern. Indeed, in at least one standard reference, the author had not suspected
that the degeneracy is broken at all [167].

The planar rotator in a vector potential field in the absence of all elec-
tric and magnetic fields – in other words, the bound-state counterpart to the
AB effect – is a particularly interesting model system for examining another
problematic aspect of the nonclassical effects of potentials. At issue is not
the flux dependence of a diffraction pattern or scattering cross section, but
rather the angular momentum spectrum, rotational behavior, and statistics
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of particles in rotational motion about tubes of magnetic flux [168,169]. Some
have proposed that a charged particle orbiting a magnetic flux tube can have
a flux-dependent – and therefore arbitrary – angular momentum, in which
case the wave function would acquire a flux-dependent rotational phase factor.
An ensemble of such systems would follow statistics that interpolate between
boson and fermion statistics [170]. Others have maintained instead that the
orbital angular momentum spectrum remains integer-valued, and the wave
function of the rotated particle is unaffected by the flux [171]. A collection
of composite rotator–flux systems would then obey the traditional quantum
statistics determined by the spin of the particle. Thus, as with earlier contro-
versies of the AB effect, these, too, raise questions of fundamental import that
transcend in scope the particularities of the individual systems under study.
These questions concern, for example, the role, spectrum, and observability of
various gauge invariant and non-invariant dynamical quantities in quantum
mechanics.

In the following sections we will examine the quantum behavior of a two-
dimension rotator in the presence of electric and magnetic fields and the in-
teraction of a rotator with a vector potential in an otherwise field-free space.

6.2 The Planar Rotator in an Electric Field

Let us start with Stark effect. Without loss of generality consider the electron
(of charge q = −e) to be confined to a circle of radius R in the x–y plane
centered on the z axis. Since only components of an electric field E within
the orbital plane can influence the state of motion of the electron, we orient
E along the x axis as shown in Fig. 6.1. The Hamiltonian characterizing the
total rotational and electric energy of a two-dimensional rotator with electric
dipole moment

μE = qr = qR(cosφ, sinφ, 0) (6.5)

is then

H = H0 +HE =
L2

z

2mR2
− qEx , (6.6)

or, in a coordinate representation,

H = −ε
(
∂2

∂φ2
− λ cosφ

)
, (6.7)

with energy parameter

ε =
�

2

2mR2
(6.8)

and electric interaction parameter (which is positive and dimensionless)

λ =
2meR3E

�2
. (6.9)
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One may be tempted on the basis of common textbook examples of per-
turbation theory to predict that the perturbed energy spectrum of the planar
rotator would display a quadratic Stark effect in the nondegenerate ground
state (i.e., energy increases as E2), and a linear Stark effect in the doubly
degenerate excited states (energy of one state increases and that of the other
decreases as E). This description of the degeneracy breaking, however, is not
correct. The matrix elements of HE between the unperturbed states are read-
ily calculated to be

〈μ|HE|μ′〉 =
1
2
eER (δμ,μ′+1 + δμ,μ′−1) . (6.10)

As expected, the first-order contribution to the ground state vanishes sinceHE

has no diagonal matrix elements. It also follows from relation (6.10), perhaps
surprisingly, that there can be no first-order splitting of the degenerate pairs
|± |μ|〉. For splitting to occur, as in the case of the degenerate 2S, 2P (m = 0)
states of hydrogen (in the absence of spin), the degenerate states must be
coupled by a matrix element of the interaction. In the case of hydrogen, the
element 〈2P (m = 0)|z|2S〉 is not zero. In the case of the planar rotator,
however, the matrix element 〈−μ|x|μ〉 vanishes unless −μ = μ± 1, leading to
μ = ±1/2. Since there are no half-integer eigenvalues in the spectrum of the
orbital angular momentum Lz, breaking of the excited state degeneracy must
occur at least quadratically in E.

Additional physical insight can be gained by considering the relationships
between parity and reflection symmetry and the electric dipole moment. The
ground states of both the planar rotator and the hydrogen atom are parity
eigenstates. Hence, the expectation value of the electric dipole moment in
these states vanishes identically because

〈0|μE|0〉 = 〈0Π |(ΠμEΠ)|Π0〉 = 〈0| − μE|0〉 = 0 , (6.11)

where Π2 = Π . However, the external electric field can induce a dipole mo-
ment in the nondegenerate ground state proportional to E, in which the pro-
portionality constant is the polarizability α. The induced moment then cou-
ples to the field giving an electric energy proportional to E2. Classically, this
energy is given by −αE2/2.

For degenerate states a different mechanism is possible. Although two de-
generate eigenstates of the Hamiltonian may each be a parity eigenstate, linear
combinations of these states need not be. Thus, for example, the hydrogen 2S
and 2P (m = 0) states have parity eigenvalues +1, −1 respectively, but the
degenerate linear superpositions

1√
2

[
|2S〉 ± |2P (m = 0)〉

]

are obviously not parity eigenvectors. They form field-free degenerate eigen-
states with a nonvanishing mean electric dipole moment. The external field
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can couple directly to these dipole moments, and the energy acquired by their
alignment is therefore linear in E.

For the two-dimensional rotator the comparable linear combinations

|μ±〉 =
1√
2

(
|μ〉 ± | − μ〉

)

are also not parity eigenstates. However, unlike the hydrogenic states, they
do not represent zero-field states with a nonvanishing electric dipole moment.
The reason for this is traceable to the reflection symmetry of the Hamiltonian
(6.6) and(6.7). Under the operations Πx and Πy for reflection across the x
and y axes, the angular coordinate φ undergoes the changes (φ → −φ) and
(φ→ π − φ), respectively, and

Πx|μ±〉 = ±|μ±〉 , (6.12)

Πy|μ±〉 = ±eiμπ|μ±〉 . (6.13)

It is then straightforward to show by steps analogous to those in (6.11) that

〈μ± |x|μ±〉 = 〈μ± |x|μ∓〉 = 0 . (6.14)

Because the |μ±〉 are linearly independent states, there is no possible linear
combination of them that can lead to a nonvanishing electric dipole moment.
Unlike the case of the hydrogen atom, therefore, the symmetry of the planar
rotator precludes a linear Stark effect. It is worth remarking at this point
that the relations summarized in (6.14) are precisely the mathematical con-
ditions for the failure of first-order degenerate perturbation theory to lift the
degeneracy of a pair of states.

Let us examine more quantitatively the application of perturbation theory
to this system. The states are to be labeled as |ημπ〉, where η2 → μ2 for λ→ 0
(vanishing electric field) and π = ± is the eigenvalue under the reflection Πx.
The energy eigenvalues can be written in the form

Eμπ = εη2μπ , (6.15)

and are therefore completely specified by the dimensionless functions ημπ(λ).
Upon application of standard second-order perturbation theory [172], one

obtains
η0+ = −λ2/2 (6.16)

for the ground-state. Only the states with μ = ±1 contribute to the infinite
summation over unperturbed eigenstates. In view of the preceding discussion,
the ground-state polarizability of the two-dimensional rotator is α0 = 2R4/a0,
where a0 = �

2/me2 is the Bohr radius; a planar rotator the size of a Bohr
atom has twice the polarizability.

Applying second-order degenerate perturbation theory to the excited
states requires solving the secular equation of a 2 × 2 matrix where each
of the elements is an infinite summation over the unperturbed eigenstates.
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The two solutions of the resulting quadratic equation yield the second-order
correction to the energy of the two degenerate states. For the μ = ±1 states
one obtains

η1+ = 1 + 5λ2/12 , (6.17)

η1− = 1 − λ2/12 , (6.18)

which leads to a level separation of λ2/2. For all higher states, |μ| > 1, the
energy to order E2 is determined from the equation

η2μ± = μ2 +
λ2/2

4μ2 − 1
(|μ| > 1) , (6.19)

which is a function of the square of μ. It may seem surprising that to second
order in E the degeneracy of only the μ = ±1 states is lifted. I will comment
on this matter in greater detail shortly.

To remove the degeneracy of the states with |μ| > 1 one can try degenerate
perturbation theory in still higher orders, but the calculations rapidly become
tedious. It is better, instead, to reconsider the entire Schrödinger equation
and cast it in a form such that the properties of the exact solution may be
obtained most readily. Substitution into the Hamiltonian (6.7) of

φ = 2θ ,

a = 4μ2 ,

q = 2λ

(6.20)

brings the Schrödinger equation into the form
[

d2

dθ2
+ (a− 2q cos 2θ)

]
ψμ(θ) = 0 , (6.21)

recognizable to mathematicians as the canonical form of Mathieu’s equation
[173]. [The specific context should eliminate any confusion between use of q
for electric charge or for the Mathieu parameter defined in (6.20).]

The Mathieu equation has its origin in investigations of vibrating sys-
tems with elliptical boundary conditions and is not uncommonly encountered
in wave propagation problems in electromagnetism and acoustics, as well as
electron propagation through crystal lattices [174]. Although the above linear
differential equation with periodic coefficients is invariant under the transfor-
mation θ → θ+π, the solutions need not be, a point of interest in view of the
significance to physics of spontaneous symmetry breaking in quantum field
theory. When the parameter a assumes certain characteristic values (related
to the energy eigenvalues in the present case), the solution, known as Math-
ieu functions, are periodic with periods of either π or 2π; for arbitrary a the
solutions are not periodic (and are not called Mathieu functions). Upon sub-
stitution of z = cos(2θ), the equation assumes the so-called Lindemann form
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which resembles somewhat the hypergeometric equation [175]. It is quite dif-
ferent, however, having two regular singularities at 0 and 1 and an irregular
singularity at ∞. This equation is not one of the factorization types expressible
in terms of the generators of the SU(1,1) dynamical group.

The physical requirement that a quantum mechanical wave function be
single-valued (a limitation that does not necessarily apply in a multi-connected
space, as will be seen shortly) and continuous restricts our attention to the
periodic solutions or Mathieu functions. These solutions can be classified into
four types on the basis of their periodicity and reflection symmetry under Πx.
They are traditionally designated as follows (where k = 0, 1, 2, . . .):

• ce2k(θ, q): even solutions of period π that reduce to cos(2kθ) as q → 0;
associated eigenvalues are a = a2k.

• ce2k+1(θ, q): even solutions of period 2π that reduce to cos
[
(2k + 1)θ

]
as

q → 0; associated eigenvalues are a = a2k+1.
• se2k+1(θ, q): odd solutions of period π that reduce to sin

[
(2k + 1)θ

]
as

q → 0; associated eigenvalues are a = b2k+1.
• se2k+2(θ, q): odd solutions of period 2π that reduce to sin

[
(2k + 2)θ

]
as

q → 0; associated eigenvalues are a = b2k+2.

The symbols ce and se derive from E.T. Whittaker’s designations cosine-
elliptic and sine-elliptic, respectively.

Each of the above solutions can be represented by an infinite Fourier series
of either cos(jθ) or sin(jθ) – depending on the reflection symmetry – where the
integer j is of the same form (2k, 2k + 1, 2k + 2) as that which characterizes
the solution. Thus, for example, the even-index Mathieu functions can be
represented as

ce2K(θ, q) =
∞∑

k=0

A2K
2k cos(2kθ) , (6.22)

se2K+2(θ, q) =
∞∑

k=0

B2K+2
2k+2 sin

[
(2k + 2)θ

]
. (6.23)

The determination of the Fourier coefficients and eigenvalues can be accom-
plished to arbitrary accuracy through more powerful mathematical techniques
than perturbation theory. Two such methods employ continued fractions and
the solution of Hill’s determinantal equation. There is no general closed-form
expression for the eigenvalues, as is the case with the hypergeometric equa-
tion and its related forms. This is a consequence of the fact that the Mathieu
equation leads to an irreducible three-term, rather than two-term, recursion
relation.

With regard to the planar rotator it is important to recognize that the
physically significant angular variable is φ, not θ. Thus, the criterion of wave
function continuity, ψ(φ+2π) = ψ(φ), implies that ψ(θ+π) = ψ(θ), in which
case the admissible solutions are only those Mathieu functions with periodicity
π, i.e., ce2k(θ, q) and se2k+2(θ, q). From relations (6.15), (6.20), and the form
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of the solutions (6.22) and (6.23), it is clear that the eigenfunctions of the
Hamiltonian and the associated energy eigenvalues can be written as

ψμ+(φ) = ce2μ

(
1
2
φ, λ

)
, Eμ+ =

1
4
εa2μ (μ = 0, 1, 2, 3, . . .) , (6.24)

ψμ−(φ) = se2μ

(
1
2
φ, λ

)
, Eμ− =

1
4
εb2μ (μ = 0, 1, 2, 3, . . .) . (6.25)

In the limit of vanishing electric field (λ → 0), the above solutions reduce
to cos(μφ) and sin(μφ) respectively, i.e., to the coordinate representation of
the basis |μ±〉. This is an important point, for it shows that even though
the original basis | ± |μ|〉 is uncoupled by HE, the choice of which linear
superpositions of degenerate states are required for the analytical continuity
of a perturbation series is not arbitrary. We shall return to this point again.

From the characteristic values of Mathieu functions (summarized to order
q6 in Table 6.1) one can verify the eigenvalues η0, η1± previously obtained by
perturbation theory and readily derive the energies of the next two excited
states

η22+ = 42 +
1
30
λ2 +

433
216 000

λ4 + · · · , (6.26)

η22− = 42 +
1
30
λ2 − 317

216 000
λ4 + · · · . (6.27)

Table 6.1. Characteristic values of Mathieu functions (to order q6)

a0 = −1

2
q2 +

7

128
q4 − 29

2304
q6

a1 = 1 + q − 1

8
q2 − 1

64
q3 − 1

1536
q4 +

11

36 864
q5 +

49

589 824
q6

b1 = (substitute −q for q)

a2 = 4 +
5

12
q2 − 763

13 824
q4 +

1002 401

79 626 240
q6

b2 = 4 − 1

12
q2 +

5

13 824
q4 − 289

79 626 240
q6

a3 = 9 +
1

16
q2 +

1

64
q3 +

13

20 480
q4 − 5

16 384
q5 − 1961

23 592 960
q6

b3 = (substitute −q for q)

a4 = 16 +
1

30
q2 +

433

864 000
q4 − 5 701

2 721 600 000
q6

b4 = 16 +
1

30
q2 − 317

864 000
q4 +

10 049

2 721 600 000
q6

a5 = 25 +
1

48
q2 +

11

774 144
q4 +

1

147 456
q5 +

37

891 813 888
q6

b5 = (substitute −q for q)

a6 = 36 +
1

70
q2 +

187

43 904 000
q4 +

6743 617

92 935 987 200 000
q6

b6 = 36 +
1

70
q2 +

187

43 904 000
q4 − 5 861 633

92 935 987 200 000
q6
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The unusual broken degeneracy pattern evident in the expressions for the
μ = 0, 1, 2 manifolds does in fact extend to all excited levels of the planar
rotator: each field-free degenerate pair of states of fixed μ is broken only
in order E2μ. Thus, degenerate perturbation theory in sixth order would be
needed to break the degeneracy within the μ = 3 level. Upon lifting of the
degeneracy, it is the states of odd reflection parity that lie lower in energy.

From Fig. 6.3, which shows the characteristic curves of the Mathieu func-
tions, i.e., the variation of aμ and bμ with q, it is seen that the greater the
value of |μ|, the greater is the field strength required to effect a noticeable
separation between the field-free degenerate states. For sufficiently large val-
ues of E, the interaction with the electric field dominates the Hamiltonian,
and one would then expect the energy to become negative. This expectation
is borne out in Fig. 6.3. In the high-q region of the diagram the eigenvalue
expansions are no longer valid, and one must utilize the asymptotic properties
of the Mathieu functions

a2k(q) = b2k+1(q) ∼ −2q + (8k + 2)q1/2 , (6.28)

a2k+1(q) = b2k+2(q) ∼ −2q + (8k + 6)q1/2 , (6.29)
for k = 0, 1, 2, . . . , and q large and positive, to determine the energy spectrum.
The resulting energy eigenvalues take the form

Eμ± = −eRE +
(
μ± 1

2

)
�

(
eE

mR

)1/2

, (6.30)

which is amenable to a simple physical interpretation. The first term, which
is negative and dominates the expression for large E, represents the energy of

Fig. 6.3. Variation of the Mathieu func-
tions aμ and bμ as a function of the par-
ameter q which, for the two-dimensional
rotator, depends on the electric or mag-
netic field strength. (Adapted from Silver-
man [162])
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a classical electric dipole μE = eR aligned parallel to the field. The second term
characterizes a harmonic oscillator spectrum with equidistant level separations
of �ω where

ω =
(
eE

mR

)1/2

=
(
μEE

I

)1/2

(6.31)

is the oscillation angular frequency of a dipole μE with moment of inertia
I = mR2. The reason for this behavior will become apparent when we examine
the eigenfunctions.

Before concluding this discussion of the energy spectrum of the planar
rotator in an electric field, I would like to clarify an important general point
concerning degenerate perturbation theory and the symmetry properties of the
Hamiltonian. In particular, consider the seemingly paradoxical question: Why
does one use degenerate perturbation theory when treating the interactions of
degenerate states? It would seem that the answer is obvious. Nondegenerate
perturbation theory fails, as is signaled by the appearance of terms with van-
ishing energy denominators. Degenerate perturbation theory eliminates these
terms through construction of linear combinations of unperturbed states for
which the matrix elements in the numerator likewise vanish. Thus, singular
terms do not appear.

Suppose, however, that the degenerate basis with which one begins is al-
ready uncoupled by the interaction; this is the case with the planar rotator
since 〈−μ|HE|μ〉 = 0. Under these circumstances, where singularities do not
occur, it may seem – and the pedagogical literature has encouraged this view
– that it is permissible to use nondegenerate perturbation theory. This pro-
cedure cannot be correct, for the application of nondegenerate perturbation
theory to the two-dimensional rotator leads to energy eigenvalues that are
functions of μ2 and therefore remain doubly degenerate to all orders. The
error lies in the failure to recognize the primary objective of degenerate per-
turbation theory which is not merely to eliminate singular terms, but to select
unambiguously the appropriate linear superposition of degenerate states from
among an infinite number of possibilities. To start with any other combination
leads to a discontinuous change of states in the limit of vanishing interaction
parameter, so that the perturbative expansions are not valid.

But how is one to know whether or not a particular interaction term-let
us call it H ′ – removes the original degeneracy in some order? This knowledge
is presumably the outcome of the calculation – yet which calculation one per-
forms (degenerate vs. nondegenerate perturbation theory) seems to depend
on it. For the case of the planar rotator the fact that the eigenvalues of degen-
erate perturbation theory agree with the characteristic values of the Mathieu
functions is proof that the degeneracy is indeed lifted and that one must con-
struct an appropriate initial basis

(
cos(μφ), sin(μφ)

)
even though the matrix

elements between the original basis (eiμφ, e−iμφ) vanish. What must one do,
however, when an exact solution is not known? Would it actually have been
necessary to employ eighth order perturbation theory to discover that the
degeneracy is lifted between μ = 4 states?
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It is at this point where the theory of groups comes to the rescue. One must
examine the symmetries of the unperturbed Hamiltonian H0 and the pertur-
bation H ′ in order to ascertain whether the original degenerate basis, which
spans an irreducible representation of the symmetry group H0, remains an ir-
reducible representation of the (possibly lower) symmetry group of H0 +H ′.

In the case of the planar rotator the HamiltonianH0 = L2
z/2mR

2 is invari-
ant under the elements of the continuous group SO(2), the group of rotations
in the plane. It is also invariant under the discrete symmetry group compris-
ing the identity I, the reflections Πx and Πy, and the inversion Π ; this group
is isomorphic to the four-group (Vierergruppe) V . The total symmetry of H0

is the two-dimensional rotation–reflection group, a mixed continuous group
that can be parameterized by a continuous parameter φ (the rotation angle)
and a discrete parameter d = ±1 (a determinant). One matrix representation
of this group is

{φ, d} =
(

cosφ sinφ
−d sinφ d cosφ

)
, (6.32)

where
{φ, d} · {φ′, d′} = {d′φ+ φ′, dd′} (6.33)

gives the group composition function [176]. This group is clearly non-Abelian
(i.e., the group operations do not commute) although the subgroups SO(2)
and V are Abelian. The basis e±iμφ spans a two-dimensional representation
for μ �= 0.

Upon addition of an electric field E perpendicular to the rotation axis the
total HamiltonianH = H0+H ′ (with H ′ = −μE·E) is invariant under a much
smaller symmetry group comprising only the elements I and Πx. This group
is isomorphic to the so-called symmetric or permutation group S2 which is
Abelian and therefore can have only one-dimensional representations. There
are two such representations designated respectively Γ S (which is symmetric
under Πx) and ΓA (which is antisymmetric under Πx). A simple character
analysis shows that if Γμd is an irreducible representation of the rotation–
reflection group, then Γμd → Γ S + ΓA upon the lowering of the symmetry
to S2 by addition of the electric field. Thus, the degenerate basis splits under
the action of E; the exact solutions ce2μ(φ/2, λ) and se2μ(φ/2, λ) display the
group-theoretically predicted symmetries.

Group theoretical arguments cannot in general give the scale of an interac-
tion, i.e., they cannot yield the magnitude of the splitting. The power of group
theory is that it can give the degeneracy pattern which, moreover, is valid to all
orders of perturbation theory. An important example is the three-dimensional
rigid rotator in an electric field along the rotation axis [177]. Group theory
shows that the degeneracy of states with different angular momentum quan-
tum numbers l and |μ| is lifted, but, for given l, there is a residual degeneracy
of states differing only in the sign of μ; this degeneracy is never lifted as long
as the axial symmetry is not broken.

Mention should also be made of so-called accidental degeneracies [178], i.e.,
the occurrences of degenerate states belonging to different irreducible repre-
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sentations of the symmetry group of the Hamiltonian. The hydrogen atom, or
more precisely the spinless Coulomb problem, is a well-known example; the
degeneracy among the n2 states of fixed principal quantum number n and
different orbital quantum numbers l cannot be explained on the basis of the
most obvious symmetry group, SO(3), the three-dimensional rotation group.
In such cases one can usually find a larger invariance group that does account
for the degeneracies. For hydrogen this group is SO(4), the four-dimensional
rotation group. Accidental degeneracy, while characteristic of a specific dy-
namical law, is not necessarily an unexplainable degeneracy.

In short, then, if by group theoretical or other means it is clear that an
interaction will lift the degeneracy of an initially degenerate set of states,
nondegenerate perturbation theory cannot be used even though the states of
the basis may not be directly coupled by the interaction.

Let us consider next the wave functions and corresponding electron distri-
butions of the planar rotator. The exact solutions (to within a normalization
constant) are the Mathieu functions given by (6.24) and (6.25) which are
representable in the following Fourier decompositions to order q2

cek(φ, q) = cos kφ− 1
4
q

[
cos(k + 2)φ
k + 1

− cos(k − 2)φ
k − 1

]
(6.34)

+
1
32
q2
[

cos(k + 4)φ
(k + 1)(k + 2)

+
cos(k − 4)φ

(k − 1)(k − 2)

]
,

sek(φ, q) = sinφ− 1
4
q

[
sin(k + 2)φ
k + 1

− sin(k − 2)φ
k − 1

]
(6.35)

+
1
32
q2
[

sin(k + 4)φ
(k + 1)(k + 2)

+
sin(k − 4)φ

(k − 1)(k − 2)

]
,

valid for q2/[2(k2 − 1)] � k2 with k > 0. To first order in q (or λ) these
expansions correspond to the results of first-order perturbation theory for
which, as emphasized previously, analytical continuity at λ = 0 requires the
use of the appropriate zero-field states |μ±〉.

The ground-state wave function, obtained from first-order perturbation
theory, is

ψ0+ =
1√
2π

(1 − λ cosφ) (6.36)

and leads to the probability distribution (to order λ)

P0+(φ) = |ψ0+(φ)|2 =
1
2π

(1 − 2λ cosφ) . (6.37)

Thus, the electron density is seen to be greatest at φ = π and least at φ = 0.
This can be understood on the basis of a classical model; a static electric
dipole will align itself along the field so as to minimize its energy. The wave
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functions of the excited states, deducible from relations (6.34) and (6.35), lead
again in first order to the probability densities

Pμ+(φ) =
1
π

[
cos2(μφ)

(
1 +

2λ
4μ2 − 1

cosφ
)

+
2μλ

4μ2 − 1
sin(2μφ) sinφ

]
,

(6.38)

Pμ−(φ) =
1
π

[
sin2(μφ)

(
1 +

2λ
4μ2 − 1

cosφ
)
− 2μλ

4μ2 − 1
sin(2μφ) sinφ

]
.

(6.39)
Recall that in perturbation theory wave functions to order λk−1 determine
the energy eigenvalues to order λk. Since degeneracy breaking in the present
case does not occur until order λ2μ for degenerate states | ± μ〉, the wave
functions characterizing nondegenerate states must be of order λ2μ−1. To order
λ1 therefore, (6.38) and (6.39) represent a pair of degenerate states.

The physical interpretation of the above excited-state probability densi-
ties which characterize a rotating electric dipole is not as straightforward as
the interpretation of the ground-state distribution characterizing a stationary
dipole. For small λ the dominating feature of the probability densities is the
cos2(μφ) and sin2(μφ) dependence in the states of even and odd reflection
parity, respectively. The average probability distribution of the two states,
however,

Pμ =
1
2
(Pμ+ + Pμ−) =

1
2π

(
1 +

2λ
4μ2 − 1

cosφ
)

(6.40)

yields a simpler expression that is amenable to interpretation according to
a classical model. Equation (6.40) predicts a maximum electron density at
φ = 0 and a minimum density at φ = π in direct opposition to the ground-state
distribution. One can account for this by arguing that the classical rotating
dipole passes the minimum potential region around φ = π with a higher speed
than that with which it passes the maximum potential region around φ = 0.
Hence the dipole spends less time in the vicinity of φ = π than it does in
the region of φ = 0. It is of interest to note that by incorrectly applying
nondegenerate perturbation theory to the planar rotator one obtains (6.40)
directly as the excited-state electron density.

For high field strengths the perturbation expansions in λ are no longer
valid, and one must utilize asymptotic expressions for the Mathieu functions
which, for sufficiently large and positive q, can be written in terms of elliptic
functions or Hermite polynomials. These expressions are not particularly illu-
minating and will not be discussed here further. The most important attribute
of the asymptotic Mathieu functions, however, is that they are significant only
in the vicinity of θ = ±π/2, dropping off rapidly to very small values near
θ = 0 and π as q increases. Thus the strong-field wave functions of both re-
flection symmetries become more tightly confined about φ = π as the field
strength increases. The system is again interpretable in terms of a classical
dipole aligned closely along the field direction. The dipole is not stationary,
however, but undergoes small-amplitude oscillations about the equilibrium
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position. This is readily confirmed by expanding the Hamiltonian (6.7) about
the point φ = π to obtain the Hamiltonian of a harmonic oscillator. In this
way the occurrence of an oscillator spectrum in (6.30) is accounted for.

6.3 The Planar Rotator in a Magnetic Field

The interaction of the planar rotator with a magnetic field (Zeeman effect)
provides some instructive similarities and contrasts to the previously discussed
behavior in an electric field. As before, symmetry considerations can reveal
significant features of the system before any detailed analytic solution of the
equation of motion is attempted. Let the rotator (of radius R) again be in
the x–y plane with the magnetic field B in the y–z plane at angle β to the
rotation axis z as shown in Fig. 6.1. The position vector of the electron is
completely determined by the rotation angle φ with respect to the x axis.

The total Hamiltonian of the system is then expressible in the form (de-
rived in Appendix 6A)

H = H0 +HM =
L2

z

2mR2
+ ωLLz cosβ +

1
2
mω2

LR
2
(
cos2 φ+ sin2 φ cos2 β

)
,

(6.41)
where

ωL =
eB

2mc
(6.42)

is the Larmor frequency (a positive number for an electron). The term in HM

linear in ωL and independent of the electron coordinate is the paramagnetic
term; the diamagnetic contribution to HM is quadratic in ωL and proportional
to the component of the magnetic field normal to the electron position vec-
tor. As seen from (6.41), there are two inequivalent basic orientations of the
magnetic field that can influence the state of motion of the electron within
the plane of rotation:

• B along the rotation axis,
• B normal to the rotation axis.

In the case of the Stark effect there is only one orientation of the electric field;
an electric field along the rotation axis merely results in a constant potential
that can be set equal to zero by locating the electron in the plane z = 0.

The case of B parallel to the rotation axis, however, is trivially solvable, for
the energy eigenvectors are simply the eigenstates |μ〉 of Lz. The eigenvalues
are then

Eμ = εμ2 + μ�ωL +
1
2
mω2

LR
2 , (6.43)

where ε has been defined in (6.8). Thus, an axially-oriented magnetic field lifts
the double degeneracy of the excited states, whereas an axial electric field has
no effect. It is perhaps not superfluous to point out the reason for this. An
electric field (a polar vector) represents a preferential direction. By contrast,
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a magnetic field (an axial vector) is a chiral structure with a preferential sense
(clockwise or counterclockwise) or handedness (left or right). These charac-
teristics, of which much more will be said in Chap. 7, stem from the origin
of the two fields: an electric field is produced by charges, whereas a magnetic
field arises from currents. The states |± |μ|〉 have probability current densities
that circulate parallel and antiparallel, respectively, to the current produc-
ing the magnetic field and therefore represent two inequivalent orientations of
a magnetic dipole in the magnetic field.

The case of B lying within the plane of rotation (β = π/2) is not trivially
solvable and will be the focus of our attention in this section. In the analysis
of the rotator in an electric field, it was shown that the Stark solutions span
the symmetric and antisymmetric one-dimensional irreducible representations
of a group isomorphic to the symmetric group S2. An examination of the
Hamiltonian including the rotational kinetic energy and diamagnetic potential
energy – there is no paramagnetic term (term linear in the Larmor frequency)
for the chosen field orientation – shows that it is invariant under a group of
operations comprising the identity, reflection across an axis in the rotation
plane normal to the field, and inversion through the origin. This group is
isomorphic to the (Abelian) four-group V . Since the degenerate field-free basis
spans a two-dimensional irreducible representation of the rotation-reflection
group, it must split under the magnetic interaction into nondegenerate states
that span the irreducible representations of V . A simple character analysis
shows that states of even or odd |μ|, respectively, span representations of even
or odd inversion parity. However, the two states of the same inversion parity
that belong to a rotational level of given |μ| differ in their reflection parities.
One would therefore expect the Zeeman effect to give rise to stationary states
of four possible symmetry types in contrast to the two possible symmetry types
of the Stark effect. The higher symmetry also leads to marked differences in the
energy spectra between the two cases, particularly in the high-field domain.
Let us now examine this system in more detail.

In a coordinate representation the Hamiltonian (6.41) without paramag-
netic term can be written in the form

H = −ε
(
∂2

∂φ2
− ξ2 cosφ

)
, (6.44)

where the magnetic interaction parameter ξ is

ξ =
mωLR

2

�
. (6.45)

With energy eigenvalues again expressed in the form of relation (6.15) (but
with the appropriate quantum labels to be specified), Hamiltonian (6.44) leads
to a Schrödinger equation which can be cast once more into the canonical form
of Mathieu’s equation

[
d2

dφ2
+ (a− 2q cos 2φ)

]
ψη(φ) = 0 , (6.46)
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where
a = μ2 − 1

2
ξ2 (6.47)

and
q =

1
4
ξ2 . (6.48)

Note that the physically significant angular coordinate φ appears, and not
θ = φ/2 as in the case of the Stark effect, (6.21). As a consequence, the
boundary condition ψ(φ+ 2π) = ψ(φ) imposed by the continuity of the wave
function can be satisfied by Mathieu functions of both 2π and π periodicity.

The exact solutions (up to a normalization constant) are therefore the
four types of Mathieu functions described earlier, and the wave functions and
energy eigenvalues can be written as

ψπ
μ+(φ) = ceμ(φ, ξ) , Eπ

μ+ = ε
[
aμ(ξ) +

ξ2

2

]
(μ = 0, 2, 4, . . .) , (6.49)

ψπ
μ−(φ) = seμ(φ, ξ) , Eπ

μ− = ε
[
bμ(ξ) +

ξ2

2

]
(μ = 2, 4, 6, . . .) , (6.50)

ψ2π
μ+(φ) = ceμ(φ, ξ) , E2π

μ+ = ε
[
aμ(ξ) +

ξ2

2

]
(μ = 1, 3, 5, . . .) , (6.51)

ψ2π
μ−(φ) = seμ(φ, ξ) , E2π

μ− = ε
[
bμ(ξ) +

ξ2

2

]
(μ = 1, 3, 5, . . .) , (6.52)

where, in addition to eigenvalues of Lz, the states are labeled by their peri-
odicity and reflection symmetry with respect to Πx.

For a weak magnetic field the eigenvalues can be expanded in a perturba-
tion series in the parameter ξ2. From Table 6.1, the energy eigenvalues of the
ground state and first six excited states, truncated at the lowest order in ξ2

that breaks the degeneracy, are as follows:
(
ηπ
0+

)2 =
1
2
ξ2 , (6.53)

(
η2π
1+

)2
= 1 +

3
4
ξ2 , (6.54)

(
η2π
1−
)2

= 1 +
1
4
ξ2 , (6.55)

(
ηπ
2+

)2 = 4 +
1
2
ξ2 +

5
192
ξ4 , (6.56)

(
ηπ
2−
)2 = 4 +

1
2
ξ2 − 1

192
ξ4 , (6.57)

(
η2π
3+

)2
= 9 +

1
2
ξ2 +

1
256
ξ4 +

1
4096

ξ6 , (6.58)

(
η2π
3−
)2

= 9 +
1
2
ξ2 +

1
256
ξ4 − 1

4096
ξ6 . (6.59)
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We see from the above relations that the double degeneracy of zero-field states
of specified |μ| is broken by a magnetic field (in the rotator plane) in order ξμ

in contrast to the Stark effect in which degeneracy breaking occurs in order
λ2μ.

When the magnetic field is sufficiently great that the eigenvalue expansions
are no longer valid, one must again turn to the asymptotic properties of the
Mathieu functions. From equations (6.28), (6.29) and (6.47), (6.48) we find
that the quadratic dependence of the energy on ξ (or B) drops out, and
the eigenvalue spectrum again assumes a form highly suggestive of that of
a harmonic oscillator

E2π
μ+ =

(
μ+

1
2

)
�ωL (μ = 0, 2, 4, . . .) , (6.60)

E2π
μ− =

(
μ− 1

2

)
�ωL (μ = 2, 4, 6, . . .) , (6.61)

Eπ
μ± =

(
μ± 1

2

)
�ωL (μ = 1, 3, 5, . . .) . (6.62)

An interesting and significant distinction between the high-field Zeeman and
Stark spectra is that states split by an electric field E remain nondegenerate
for all values of E, but a very strong magnetic field actually recreates a double
degeneracy as evident in Fig. 6.3 and analytically verified in relations (6.60)–
(6.62). A given degenerate level consists of two states of opposite reflection
symmetry and periodicity. In the next higher level the periodicity labels are
reversed. Thus, for example, the lowest level consists of the states ceπ

0 and
se2π

1 ; the first excited level consists of the states ce2π
1 and seπ

2 . Every two
successive levels exhaust all four types of Mathieu functions.

These high-field states give rise to a quasi-Landau energy spectrum. The
true Landau energies for a free electron orbiting in a plane perpendicular to
a static uniform magnetic field are

En =
(
n+

1
2

)
�ωC (n = 0, 1, 2, . . .) , (6.63)

where
ωC = 2ωL (6.64)

is the cyclotron frequency. Differences between the spectra of (6.60)–(6.62)
and (6.63) and (6.64) are to be expected since the two physical systems are
not exactly comparable, differing in both the orientation of the magnetic field
(normal versus parallel to the rotation axis) and the accessible space (a cir-
cular perimeter versus the entire x–y plane). The resemblance of the Landau
or quasi-Landau spectrum to the harmonic oscillator spectrum is again not
merely fortuitous, but a consequence of the fact that the diamagnetic con-
tribution to the Hamiltonian (6.41) is of the form of a harmonic oscillator
potential.
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Although the exact solutions given above allow one to deduce all the prop-
erties of the planar rotator in a magnetic field, several important physical con-
cepts can be further clarified by examining the system from the perspectives
of both perturbation theory and group theory, as was done with the Stark
effect. In the absence of a paramagnetic term, the matrix elements of HM in
the field-free basis |μ〉 are

〈μ|HM|μ′〉 =
1
2
εξ2

[
δμ,μ′ +

1
2
(δμ,μ′+2 + δμ,μ′−2)

]
, (6.65)

from which it is clear that the diagonal elements of HM are nonvanishing
in contrast to the diagonal elements of HE. This indicates that the states
|μ〉 already constitute a field-free basis with nonvanishing magnetic dipole
moment. A comparable electric dipole moment is precluded by the symmetry
of the Hamiltonian (6.6). The off-diagonal elements (HM)−μ,μ are in general
zero. There is an exception, however, for μ = ±1 where, for each choice
of sign, one term in (6.65) survives. As a consequence of this coupling, the
double degeneracy of the first excited level is split by first-order degenerate
perturbation theory in contrast to the Stark effect. A splitting linear in HM,
however, is still quadratic in the magnetic field. Thus, the symmetry of the
planar rotator is such that, despite the degeneracy of its excited states, no
splitting linear in either the electric or magnetic field occurs for a weak field
normal to the rotation axis. The degeneracy of the states with |μ| > 1 can
be removed by successively higher orders of perturbation theory, and these
calculations must yield, of course, the same expansions as obtained from the
characteristic values of the Mathieu functions.

Having begun the discussion of the magnetic interaction of the planar ro-
tator with a brief remark on symmetry, let us conclude by noting once more
the power of group theory to provide a more fundamental way of understand-
ing the correlations of state symmetries with rotational excitation other than
by solving the Schrödinger equation and discovering these correlations in the
Mathieu function solutions. In particular, I address the questions why is it pos-
sible for a strong magnetic field to recreate degeneracy among states, whereas
the degeneracy lifted by an electric field remains broken independent of the
field strength, and what leads to the correlations in periodicity and reflection
symmetry of the strong-field states that become degenerate. The answers lie
in the symmetry of the Hamiltonian.

The rotational kinetic energy H0, as discussed before, is invariant under
the two-dimensional rotation-reflection group, and the zero-field basis e±iμφ

spans a two-dimensional irreducible representation Γμd of this group. The
total Hamiltonian (6.41), as pointed out earlier, is invariant under a smaller
group of symmetry operations, the Abelian four-group or V , comprising the
elements I, Πx, Πy and Π . It is clear, therefore, that the degenerate basis
must split in a magnetic field although, since V is a higher symmetry group
than S2 and has twice as many irreducible representations, it is perhaps not
so obvious which zero-field states go into which irreducible representations.
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Using the character table of the four-group and the orthogonality properties
of group characters, one can verify that the degeneracy breaking must occur
as follows

Γμd −→
{
Γ1 + Γ2 , μ even ,
Γ3 + Γ4 , μ odd ,

(6.66)

where the irreducible representations are defined and correlated with the
Mathieu functions in Table 6.2. The above decomposition implies that states
of even or odd rotational quantum number μ are respectively split into states
of even or odd inversion parity. Since ΠxΠy = Π , even (odd) inversion par-
ity comes about only if the reflection parities of the states are respectively
the same (opposite). Translated into the symmetry properties of the Mathieu
functions, the above group theoretical results require that field-free states of
even or odd μ split into pairs ceμ, seμ with respectively even or odd μ. These
split pairs remain split independent of the strength of the magnetic field.

However, there is no group theoretical restriction against a basis state of Γ1

or Γ2 becoming degenerate with a basis state of Γ3 or Γ4 as the field strength
increases. This follows from the fact that these two pairs of representations
arise from different irreducible representations of the rotation-reflection group.
Thus, should degeneracy occur , group theory requires that the degenerate
states occur in the pairs (ce2μ, se2μ+1) and (ce2μ+1, se2μ+2), where, for both
cases, μ = 0, 1, 2, etc.

Group theory can not say whether a degeneracy in this case will occur –
and, in fact, an exact degeneracy in the high-field spectrum does not really
occur. The asymptotic relation aμ ≈ bμ+1 between the characteristic values
of the Mathieu functions holds ideally only in the limit q → ∞; for finite
q the difference bμ+1 − aμ falls off exponentially with the square root of q,
a difference that is effectively negligible for the high values of q at which the
asymptotic formulas are valid.

We will not consider the properties of the Zeeman wave functions in the
same detail as for the Stark effect because the discussions would be similar.
From the Fourier decompositions given by relations (6.34) and (6.35) one can
construct the perturbation series for each state. The basic distinction to keep
in mind is that the angular variable which appears is now φ, the electron coor-
dinate. This has an important consequence for the high-field asymptotic wave

Table 6.2. Character table of the four group (V )

V I Πx Πy Π Basis (n = 0, 1, 2, . . .)

Γ1 1 1 1 1 ceπ
2n

Γ2 1 −1 −1 1 seπ
2n+2

Γ3 1 1 −1 −1 ce2π
2n+1

Γ4 1 −1 1 −1 se2π
2n+1

Γnd 2 0 0 (−2)n einφ, e−inφ
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functions. As discussed in the previous section, the Mathieu functions for large
q assumed their maximum values in the vicinity of θ = ±π/2 and dropped
rapidly to small values at θ = 0, π, which represented the same location.
Since θ = φ in the present case, the electron density is greatest about the two
points where the magnetic field axis intersects the orbital circle. Expansion of
the Hamiltonian about these points again results in the Hamiltonian of a har-
monic oscillator. Interpreted classically, the rotator can no longer rotate freely,
but executes small-amplitude oscillations about the direction either parallel
or antiparallel to the field. This is consistent with the observation that the
Mathieu functions are linear superpositions of components with both positive
and negative magnetic dipole moments.

6.4 The Planar Rotator in a Vector Potential Field

We have seen that the presence of electric and magnetic fields alter the en-
ergy and wave functions of a charged particle confined to a circular orbit (or,
more precisely, to a linear space of constant curvature 1/R). They break the
level degeneracy in interesting ways that can be elucidated by symmetry ar-
guments and give rise to a range of motions that, depending on field strength,
vary between free rotation with well defined angular momentum and harmonic
oscillation about points of equilibrium. While there are aspects of the inter-
action of the two-dimensional rotator with electromagnetic fields that can be
correctly determined only by quantum mechanics, the system nevertheless has
classical counterparts in the behavior of electric and magnetic dipoles which,
at least in the domain of applicability of the Bohr correspondence principle,
yield quantitative results comparable to those arrived at quantum mechani-
cally.

Consider next, however, the configuration of Fig. 6.4 for which – depending
on the history of the system – there may or may not be a classical analogue.

Fig. 6.4. Configuration of the two-dimensional charged rotator in a vector potential
field A produced by magnetic flux Φ manifesting a bound-state AB effect
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This is the bound-state counterpart of the AB effect treated earlier in the
context of a charged particle beam. The particle of mass m and charge g is
constrained to a circular space of radius R through which is now threaded,
so to speak, a long tube of magnetic flux. We can imagine the flux confined
to the interior of a long solenoid of radius a � R. Then, as in Chap. 1, the
circulating electron is in an environment permeated by a vector potential field
[specified in the Coulomb gauge by (1.27)] ideally free of electric and magnetic
fields, excluding the fields of the particle, itself. Although there is no splitting
of wave packets in this case, and hence no recombination and interference to
speak of, there can still be a physical effect of the local vector potential (or
remote magnetic field) on the state of motion of the orbiting particle. The
nature of this effect is the issue we will examine.

Since there is a certain measure of arbitrariness in the specification of
a gauge field like the magnetic vector potential, it is pertinent to comment
briefly here on the matter of gauge invariance and observability of a dynamical
variable. It is well known that to be an observable, a dynamical variable must
be representable by a Hermitian operator with complete set of eigenstates.
For a mechanical system coupled to a gauge field, a further criterion must be
met so that physically meaningful quantities do not depend on the arbitrary
choice of gauge. All theoretical expressions, e.g., quantum mechanical expecta-
tion values and transition matrix elements, representing measurable quantities
must be invariant under a gauge transformation as summarized by relations
(1.17)–(1.19). In the case of a charged particle orbiting a tube of magnetic
flux, a gauge transformation cannot change the magnetic field B inside the
tube if the vector potentials A and A′ outside the tube satisfy Stokes’ theorem

∮

C

A · ds =
∮

C

A′ · ds = total magnetic flux = Φ , (6.67)

where the contour circumscribes the solenoid. It then follows from (1.17) that
∮

C

∇Λ · ds =
∮

C

dΛ = 0 , (6.68)

and the gauge function Λ(r, t) is single-valued, a mathematical property of im-
portance in previous defenses of the theoretical existence of the AB effect [179].

Under a gauge transformation the (nonrelativistic) Hamiltonian

H =
1

2m

(
p − qA

c

)2

+ qφ (6.69)

and Schrödinger equation

HΨ = i�
∂Ψ

∂t
(6.70)

are form-invariant, the transformed Hamiltonian being given by relation (1.25)
with U = eiqΛ/�c as follows:

H ′ = eiqΛ/�cHe−iqΛ/�c − q

�c

∂Λ

∂t
=

1
2m

(
p − qA

′

c

)2

+ qφ′ . (6.71)
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Thus, the time-evolution of the physical system is unaffected by a gauge trans-
formation, i.e., Ψ ′ evolves under H ′ in the same way that Ψ evolves under H .

The eigenvalue spectrum of H , however, is not invariant under a gauge
transformation. If ΨE = Ψ0

Ee−iEt/� is a stationary state of H ′ with eigenvalue
E, then Ψ ′

E = eiqΛ/�cΨE is also an eigenstate, but not necessarily a stationary
state, of H ′ with eigenvalue E′ = E − (q/�c)∂Λ/∂t. Thus, E′ is both gauge-
and time-dependent unless Λ is independent of time. If the latter condition
holds, the Hamiltonians H ′ and H are simply related by a unitary transfor-
mation and necessarily have the same eigenvalue spectrum.

Since the eigenvalues of H are not gauge-invariant, does this imply that
energy is not an observable? The answer is clearly ‘no’, for the reason that in
quantum mechanics, as in classical mechanics, the Hamiltonian need not rep-
resent the energy of the system (a known, but not widely appreciated, point).
A suitable operator that does represent the energy of the system should have
a time-independent scalar potential φ(x). Under an arbitrary gauge transfor-
mation, the true energy operator W , whose eigenvalues are obtained from

WΨ = EΨ , (6.72)

and characterize the allowed energies of the system, becomes [180]

W = H ′ +
q

�c

∂Λ

∂t
= eiqΛ/�cHe−iqΛ/�c . (6.73)

It is evident that the eigenvalue spectrum and expectation values of W are
independent of gauge and correspond to observable quantities. W , of course,
does not ordinarily generate the time evolution of the system; that is the role
of the Hamiltonian.

The Hamiltonian (6.69) of the planar rotator in the vector potential field
(1.27) of a tube of magnetic flux (with scalar potential φ = 0) can be succinctly
written in the form

H = εK2
z = ε(Lz − α)2 , (6.74)

where Kz is the component of the kinetic angular momentum

K = r×
(

p − qA
c

)
(6.75)

normal to the rotator plane (the only component) and

α =
Φ

Φ0
(6.76)

is the ratio of enclosed magnetic flux to the fluxon Φ0 [see (1.30)].
Since the distinctions between canonical and kinetic dynamical variables

have at times been the source of some confusion, it is worth noting here the
properties and roles of K and the canonical orbital angular momentum L.
The components of L, which satisfy the commutation relations

[Li, Lj] = i�
∑

k

εijkLk , (6.77)
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where εijk is again the Levi-Civita permutation symbol (or the completely
antisymmetric tensor), are the generators of an infinitesimal rotational trans-
formation of angle θ about direction n according to

〈r|
(

1 +
i
�
n · Ldθ

)
= 〈r + (n × r)dθ| . (6.78)

The matrix elements of L, however, are not invariant under a gauge transfor-
mation, but transform as follows

〈L〉Ψ ′ = 〈L〉Ψ +
q

�c
〈r × ∇Λ〉Ψ , (6.79)

where the bracket represents either a transition moment or expectation value.
L, therefore, ceases in general to be an observable in a mechanical system
coupled to an electromagnetic vector potential. By contrast, the dynamical
variable K represents the mechanical angular momentum of a particle (cor-
responding, for example, to mvR for a classical particle in uniform circular
motion with speed v); it has gauge-invariant matrix elements and satisfies
a different set of commutation relations [181]

[Ki,Kj] = i�
∑

k

εijk

{
Kk +

e

�c
xk

[
x·(∇ × A)

]}
. (6.80)

For a particle in the field-free region outside the solenoid (where B =
∇ × A = 0) the commutation relations of K reduce to those of L.

Consider a system for which the magnetic flux Φ is constant in time, and
therefore does not produce a local electric field at the particle by means of
Faraday’s law of induction. Thus, with α independent of time, the Schrödinger
equation

ε

(
− i

�

∂

∂φ
− α

)2

Ψ = i�
∂Ψ

∂t
(6.81)

readily admits of two stationary-state solutions with the following wave func-
tions, energy, and angular momentum eigenvalues:

• Solution I

Ψ I
μ(φ, t) =

1√
2π

ei(μ+α)φe−iE0
μt/� (μ = 0,±1,±2, . . .) , (6.82)

energy E0
μ = μ2ε , (6.83)

canonical angular momentum lμ = (μ+ α)� , (6.84)
kinetic angular momentum kμ = μ� . (6.85)

• Solution II

Ψ II
μ (φ, t) =

1√
2π

eiμφe−iEμt/� (μ = 0,±1,±2, . . .) , (6.86)

energy Eμ = (μ− α)2ε , (6.87)
canonical angular momentum lμ = μ� , (6.88)

kinetic angular momentum kμ = (μ− α)� . (6.89)
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A cursory examination of the solutions shows that if the magnetic flux were
quantized in units of the fluxon, then α would be integer-valued and the two
solutions entirely equivalent; i.e., to each state of Solution I labeled by μ would
correspond a state of Solution II with identical eigenvalues although different
label. However, the flux through a current ring (like the planar rotator) is
not ordinarily quantized in which case α can take on a continuum of values,
and the two sets of solutions are not equivalent. Solution I has the energy
spectrum of the field-free planar rotator, an integer kinetic angular momen-
tum spectrum, and a flux-dependent canonical angular momentum spectrum.
For non-integral values of α, the wave function is multiple-valued. Solution II,
by contrast, is characterized by an integer-valued canonical angular momen-
tum spectrum, a flux-dependent kinetic angular momentum spectrum, and
a single-valued wave function. The property of single-valuedness was invoked
earlier [see (6.4)] to obtain the wave functions and energy spectrum of the
field-free rotator; without single-valuedness, the angular momentum (canoni-
cal and kinetic are in this case equivalent) eigenvalue spectrum would not be
integer-valued. Does this mean one should discard Solution I as unphysical?
On the other hand, Solution I (6.82) has the form of (1.21) which gives rise
to the AB effect. What is one to make of this?

The physical content of these two sets of solutions may be understood by
examining them as special cases of the general solution to the rotator in the
presence of a time-dependent flux. This solution is given by

ψ(t) = exp

⎡

⎣− i
�

t∫
H(t′)dt′

⎤

⎦ψ(0) = exp

⎧
⎨

⎩
−iε

t∫ [
Lz − α(t′)

]2dt′

⎫
⎬

⎭
ψ(0) ,

(6.90)
where the first equality is the general solution to the time-dependent Schrö-
dinger equation whenever the Hamiltonian at two different times commutes,
i.e., [H(t), H(t′)] = 0. If, at t = 0, the potential-free rotator is in an eigenstate
of angular momentum with quantum number μ, then, by relation (1.21), the
state of the rotator in the presence of a static vector potential A0 with sole
tangential component A0φ(r) = Φ(0)/2πr is represented by the wave function

ψμ(0) =
1√
2π

ei(μ+α0)φ , (6.91)

where evaluation of the phase integral in (1.21) has led to

e

�c

x∫
A0·ds =

e

�c

φ∫
Φ(0)
2πR

dφ′ =
Φ(0)
Φ0
φ = α0φ . (6.92)

Substitution of relation (6.91) into (6.90) then yields the solution

ψμ(φ, t) =
1√
2π

ei(μ+α0)φ exp

⎧
⎨

⎩
−iε

t∫ [
μ+ α0 − α(t′)

]2

dt′

⎫
⎬

⎭
. (6.93)
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Consider two cases for the time dependence of α(t).
In the first case the flux Φ(0) is null for t < 0 and is subsequently

brought to the constant value Φ at t = 0+. Then α0 = 0 for t ≤ 0, and
α(t) = α = constant for t > 0. By Faraday’s law of induction the initiation
of the magnetic flux generates an electric field, whose tangential (and only)
component is given by

Eφ(t) = − 1
2πRc

∂Φ

∂t
, (6.94)

which exerts a torque on the rotating particle

τz = qREφ = − q

2π
∂Φ

∂t
(6.95)

along the axis of rotation. The torque changes the initial angular momentum
Lz = μ� by the amount

ΔLz =

∞∫

0

τzdt = − qΦ
2πc

= −α� , (6.96)

thereby giving the state a final mechanical angular momentum

Kz = Lz + ΔLz = (μ− α)� . (6.97)

In a similar way the induced electric field also does work on the particle at
a rate

dW
dt

= ωrotτz =
Lz

mR2
τz = −2ε(μ− α)

∂α

∂t
, (6.98)

leading to a change in energy by the amount

ΔE =
∫

dW
dt

dt = −2εα
(
μ− 1

2
α

)
. (6.99)

The final energy is then

Eμ = E0
μ + ΔE = (μ− α)2ε . (6.100)

The properties of Solution II can therefore be thought to derive from the
local interaction of the particle with an induced electric field over the period
of initiation of the magnetic flux (which, in fact, can be implemented at an
entirely arbitrary rate).

In the second case we allow the flux through the circular space of the
rotator to remain at its initial value throughout the existence of the rotator
system. Then α0 = α(t) = α = constant, and it is seen that the resulting
wave function is that of Solution I. As there is no induced electric field to
exert torques and do work on the charged particle, one would expect – as
indeed is the case – that there is no effect of the flux on the characteristic
energy and mechanical angular momentum of the system. Nevertheless, there
is a purely quantum mechanical influence, a bound-state AB effect, reflected
in the flux-dependent shift of the canonical angular momentum eigenvalue
spectrum.
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It is interesting to note the general significance of past history on the
present state of a quantum system as illustrated by the example of the two-
dimensional rotator in a vector potential field. Although both solutions repre-
sent a rotator threaded by a ‘constant’ magnetic flux – constant, that is, from
the perspective of one examining the system long after its formation – the
manner of formation has played a seminal role. The properties of the orbit-
ing particle, which at some point in its past experienced the initiation of the
magnetic flux, are different from an apparently identical particle which began
its orbital motion about an already existing tube of flux. There is nothing
in this perspective that violates quantum mechanical principles although the
present situation is not frequently encountered. After all, is not a 2S state the
same for all hydrogen atoms whether it was the end result of an excitation
from the 1S ground state or a decay transition from a 3P excited state? In
most cases the answer is undoubtedly ‘yes’, but there are circumstances, such
as just illustrated, where the mode of origination of a quantum system leaves
a distinct legacy.

What about the admissibility of multiple-valued wave functions? This has
been a long-debated and somewhat thorny issue. Some have argued that
single-valuedness is a necessary criterion for solutions to be physically mean-
ingful [179, 182]; others have taken the position that multiple-valued wave
functions should not be rejected a priori [183,184]. Whereas the imposition of
single-valuedness as a criterion for an electromagnetic or gravitational field to
be physically meaningful is equivalent to requiring that the classical forces act-
ing on a particle be uniquely specified, the same criterion applied to a quantum
field, such as the quantum mechanical wave function, is not so transparent
and readily motivated; it is a bilinear product of wave functions (like the
probability density), and not the wave function itself, that is directly related
to experimentally observable quantities.

In a simply connected space, such as that of the planar rotator in the
absence of magnetic flux, specification of single-valuedness ensures against
spurious solutions introduced by the arbitrary choice of a particularly conve-
nient coordinate system with the polar axis through the loop. An alternative
choice of polar axis outside the loop leads to single-valued solutions only. The
mathematical equivalence of the two descriptions reflects the topological cir-
cumstance that there is no unambiguous meaning to the ‘inside’ of a closed
loop in a simply-connected space. Topologically, any such loop can be de-
formed continuously to a point. In the case of a non-simply connected space,
however, such as that of the planar rotator threaded by a tube of magnetic
flux, there is a significant topological distinction between loops that thread
once, twice, thrice, etc., about a hole in the space. Two loops that wind about
the excluded region of space a different number of times cannot be contin-
uously deformed into one another because of the hole. Mathematically, they
fall into different so-called homotopy classes.

The argument for rejection of multiple-valued wave functions has also been
made on the grounds that they fail to regenerate the expected single-valued
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solutions upon adiabatic extinction of the magnetic flux. Such an argument
would not be relevant, however, to a composite system for which the particle
experiences an invariable flux beyond the control of the experimenter.

Finally, it has often been asserted that the two-dimensional system of
a particle orbiting an infinitely long tube of flux is in reality just an idealiza-
tion of a three-dimensional system with high, but finite, potential barrier and
finite return flux. Then, there would again no longer be a distinction between
paths that wind about a designated origin and paths that do not (for all such
paths could be continuously deformed into one another), and wave functions
should once more be single-valued. This point of view entirely sidesteps the
original problem by converting it to a three-dimensional one. The cogency of
the premise will not be discussed here further except to say that the two-
dimensional system as introduced is a conceptually valid one, and numerous
theoretical and experimental studies have shown that the physics of two di-
mensions usually differs qualitatively from the physics of three.

6.5 Fermions, Bosons, and Things In-Between

If real systems analogous to the planar rotator threaded by a temporally
invariant magnetic flux should exist in nature, these systems would manifest
curious physical properties indeed. As discussed earlier, the wave function of
a particle rotated, let us say by an angle θ, undergoes a unitary transformation
generated by the canonical angular momentum operator

ψ(φ+ θ) = e−iLzθ/�ψ(φ) . (6.101)

Thus, an eigenfunction of Lz with the flux-dependent eigenvalue spectrum
(6.84) subjected to an integral number of complete rotations – equivalent to
the identity operation in a simply-connected space – takes the form

ψ(φ+ 2πn) = e−i2πnΦ/Φ0ψ(φ) . (6.102)

In the absence of magnetic flux, or more generally for a magnetic flux quan-
tized in integral units of the fluxon, the initial and rotated wave functions
are identical, and the system behaves like a scalar under rotation. For nΦ/Φ0

equal to an odd-integer multiple of 1/2, however, the phase factor equals −1,
and the wave function rotates like a spinor. Spinors ordinarily provide a math-
ematical description of fermions, particles (like the electron or neutron) with
half odd integer values of intrinsic angular momentum or spin. In the present
circumstances, the actual spin of the system is irrelevant, and therefore even
a spinless charged boson could, according to (6.102) exhibit the rotation prop-
erties of a fermion [168,169]. Of course, the system must not be thought of as
the particle alone, but rather as the composite bound system of a particle and
magnetic flux tube. If the magnetic flux is arbitrary, then the phase factor in
(6.102) is neither +1 nor −1, but is in general a complex number.

The connection between the angular momentum (and therefore the rota-
tional properties) of individual particles and the quantum statistical behavior
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of many such identical particles has never been particularly transparent as
quantum analyses go, and, in fact, actually lies outside quantum mechan-
ics proper, having its origin in arcane propositions relating to the microscopic
causality of relativistic quantum fields [185,186]. It is indeed amazing, as some
authors have pointed out, that “such a deep connection, essential to the sta-
bility of matter in circumstances apparently very remote from the relativistic
domain, does require these concepts. We do not know any alternative basis for
it” [186]. The end result, however, can be simply stated and is widely known
– namely, all matter should fall into one of two categories of particles: bosons
and fermions. The wave function of a multi-boson system is unaltered by the
exchange of location of any two particles, one consequence of which is that
there is no upper limit to the number of bosons that can occupy a given quan-
tum state. In contrast, the wave function of a multi-fermion system undergoes
a change of sign for each pair of particles exchanged, and not more than one
fermion within the system can occupy a specified quantum state. From a group
theoretical perspective the wave function of n bosons or n fermions is respec-
tively the fully symmetric or fully antisymmetric irreducible representation
of the permutation group Sn, the other representations of Sn apparently not
being used by Nature in this regard.2

However, theoretical examination of composites like the planar rotator
bound to a tube of magnetic flux indicates that the exchange of two identi-
cal composites multiplies the wave function of the total system by a complex
phase factor like that in (6.102). Since the phase in this factor can have any
value, the composite of particle and flux has been termed an ‘anyon’. The
study of anyons raises the fascinating question of whether Fermi–Dirac and
Bose–Einstein statistics are actually special cases of a more general quan-
tum statistics and, indeed, a general theory of the quantum statistics of two-
dimensional systems has been developed [188].

Do anyons – or anything closely resembling them in the three-dimensional
world – actually exist? The answer is quite possibly an affirmative one, al-
though definitive proof has yet to be provided. Nevertheless, their existence
has been postulated in theories of diverse phenomena like the fractional quan-
tum Hall effect (where the effective charge carriers appear to come in fractions
of a single electron charge) and high-temperature superconductivity [189].

Two objections are perhaps likely to arise at this point concerning the dir-
ect observability, even in principle, of the flux-dependent phase factor. First,
how would one be able to know whether the bound particle has rotated around
the flux tube or not? The canonical angular momentum and the angular coor-
dinate φ (or, more precisely, harmonic functions of φ) are effectively conjugate
variables which, by the uncertainty principle cannot be known simultaneously.

2 The total number of classes r(n) of the permutation group Sn is equal to the
number of ways to partition n into a set of positive integers that sum to n. This
is given by the coefficient of xn in the formal power series expansion of the Euler
generating function. See [187].
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Since the states of the planar rotator are characterized by sharp (albeit flux-
dependent) values of angular momentum, the wave function is delocalized
over the entire available space like a standing wave, rather than like a par-
ticle. Second, the phase factor is a global factor independent of the state of
the system, and therefore vanishes when one calculates expectation values or
transition probabilities. How can it then enter the mathematical expression
for some observable quantity?

Although it is impossible to ascertain the angle of rotation of a particle
in one of the planar rotator eigenstates, one can always conceive of a particle
in a state described by a linear superposition of such eigenstates spanning
a range of quantum numbers μ. The greater the uncertainty in angular mo-
mentum, the more localized will be the wave packet representing the state of
the particle. Moreover, since each superposed eigenstate contributes the same
flux-dependent phase factor under rotation, the rotationally transformed wave
packet will have exactly the same form as expression (6.102). With regard to
the second question, it should be noted that under the conditions of a quan-
tum interference experiment in which rotational pathways about two magnetic
flux tubes are available to the particle, the phase in (6.102) would cease to be
global, the experimental outcome then being sensitive to the relative phase of
the two probability amplitudes.

To test the predicted influence of the isolated magnetic flux, it is not nec-
essary to limit one’s considerations to a strictly periodic system like the 2D

Fig. 6.5. Split-beam electron interference experiment manifesting the influence of
winding number in the AB effect. Depending on the value of the magnetic flux,
a spinless charged particle can behave under rotation like a fermion. (Adapted from
Silverman [168])
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rotator. Consider instead a configuration such as that of Fig. 6.5 in which
a collimated beam of charged particles (with or without spin) is split into two
coherent beams and made to circulate in orbits of equal radius and opposite
sense about similar solenoids generating fluxes Φ1, Φ2 respectively [168]. As
before, use of the classical terminology of ‘splitting a beam’, should not dis-
guise the intrinsically quantum nature of the experiment; what is intended is
that one particle at a time propagate through the apparatus – just as in the
interference experiments with an electron microscope beam. It is therefore the
two components of a single-particle wave packet that propagate around the
two solenoids. If ever probed, one would find, of course, that there is but one
particle and that it had taken one circular path or the other, but not both. To
make particles circulate in the prescribed manner one could in principle em-
ploy uniform, time-independent background magnetic fields of equal strength
and opposite orientation; these background fields would then contribute no
net relative phase to the AB phase shift.

Upon recombination of the coherently split beam after n revolutions about
one or the other solenoid, the wave function (for parallel tubes of flux) takes
the form

ψ(φ+ 2πn) =
1√
2

[
e−i2πnΦ1/Φ0ψ1(φ) + e−i2πnΦ2/Φ0ψ2(φ)

]
. (6.103)

For equal amplitudes ψ1 and ψ2 the state (6.103) leads to a forward beam
intensity

I(2πn) ∝ ∣
∣ψ(φ+ 2πn)

∣
∣2 ∝ cos2

(
2πn

Φ1 + Φ2

Φ0

)
I0 , (6.104)

where I0 is the incident beam intensity. Thus, the predicted phase factor
can be made to have experimental consequences in a split-beam quantum
interference configuration. Although there is no direct contact between the
particles of the beam and the magnetic fields within the two solenoids, the
forward beam intensity reveals the number of times a particle has circulated
around one of the solenoids (although, of course, not which one).

The quantum number n in (6.102) and ensuing relations is related to the
topological concept of winding number which plays a fundamental role in the
study of the connectivity of spaces. Paths through a space can be defined in
such a way that they form a group known as the homotopy group [190]. One
might think that there would ordinarily be an infinite number of different
paths, but from the perspective of group theory this is not necessarily so.
There are as many distinct homotopic classes of paths – paths that cannot be
continuously deformed into one another (i.e., without cutting and pasting) –
as there are distinct group operations. In a three-dimensional space without
holes, representable by the unit sphere, there are only two classes of paths.
All paths that begin at the origin and cut the surface of the sphere an even
number of times can be deformed to a single point at the origin. Conversely,
all paths that cut the surface an odd number of times can be deformed into
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a simple closed path between the origin and a single point on the surface.
Thus, there are only two homotopy classes for a three-dimensional sphere:
even and odd. Surprisingly, the smaller two-dimensional space of an annulus
is homotopically the richer. Paths that have the same end points and the same
winding number can be deformed into one another and therefore belong to
the same class; they are homotopically equivalent. The homotopy group of an
annulus contains an infinite number of classes.

In the two-slit AB experiment of Chap. 1, only the classical paths available
to the electron – those that pass above and below the solenoid – were included
in the superposition of probability amplitudes [see (1.28)]. Is it conceivable,
however, that every once in a while an electron in the beam makes one or
more full loops about the solenoid before propagating to the detector? The
existence of such nonclassical paths of higher winding number can be justified
by theory [191], but the amplitudes for these processes must be very weak,
for no evidence of their contribution has yet been discerned in the resulting
interference patterns.

6.6 Quantum Interference in a Metal Ring

Although electron beam experiments in vacuum have so far exhibited no dis-
tinguishable quantum effects attributable to particle winding, such effects
have been seen in a two-dimensional system that at first thought would ap-
pear most unlikely to display any quantum interference at all. Experimental
investigations of very small, normal (i.e., not superconducting) metal rings
have revealed surprising quantum behavior in total contrast to that antici-
pated from the classical theory of metals (or even from a number of incautious
applications of quantum theory) [192].

Figure 6.6 shows a representative sample, a gold ring of approximately
1 μm in diameter with wire thickness of a few hundredths of a micron. The
ring, which contains about 108 atoms, is said to be of mesoscopic size, i.e.,
a scale between atomic and macroscopic dimensions. (Cells of the human body
are roughly 5–20 μm in size.) The tiny ring is part of a circuit; electrons are
introduced at one terminal, flow through the ring, and exit at the diametrically
opposite terminal.

Except for topology, there is seemingly little in common between a metal
ring with its lattice of some millions of positive ions and ambient sea of bound
and conduction electrons, and the single electron circulating in a space de-
void of other matter. Indeed, the latter system does not have a resistance.
By contrast, a conduction electron in a normal disordered metal ring does
not propagate freely, but diffuses through the metal in the manner of a ran-
dom walk, undergoing collisions with impurity atoms and lattice defects. The
mean free path of such an electron, typically on the order of 10 nm (0.01 μm),
is about 100 times smaller than the sample length. As a consequence of the
frequent collisions, it is intuitively reasonable to suppose that the phase of



6.6 Quantum Interference in a Metal Ring 251

the wave function of the electron at the exit terminal should be essentially
unrelated to the phase at the entrance. In other words, there should be no
electron coherence across the ring, so that the probability amplitudes for pas-
sage between entrance and exit by clockwise or counterclockwise paths about
the hole could not interfere. Thus, one would not expect to observe the AB
effect in a mesoscopic metal ring subjected to a magnetic field through the
central hole.

Contrary to such expectations, the metal ring does exhibit the AB effect,
as revealed by oscillations (with period Φ0 = hc/e) in the resistance of the
ring as a function of the magnetic field, as also shown in Fig. 6.6. Strictly
speaking, the conditions for the AB effect do not hold in these experiments,
for the magnetic field penetrates the entire ring and not solely the central
hole. The unbound electrons are therefore subject to the Lorentz force, but
this is not the source of the oscillations (although field penetration of the ring
has important consequences as will be discussed shortly). The main point

Fig. 6.6. Electron interference in a mesoscopic normal metal ring shown in the
insert . The resistance as a function of magnetic field (curve a) displays oscillations
with period Φ0 attributable to the AB effect for electron trajectories between the
entrance and exit terminals. The Fourier transform (curve b) also reveals an oscilla-
tion period of Φ0/2 for cyclic electron trajectories beginning and ending at the point
of entry. (Courtesy of S. Washburn)
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at present which requires explanation is the surprising survival of electron
coherence. How can a particle that has undergone hundreds or thousands of
scatterings exhibit self-interference?

The solution to the enigma is that elastic collisions, which predominate in
a reasonably pure metal at low temperature (below 1 K), do not cause loss of
phase memory; the electron coherence is destroyed only by inelastic collisions.
Consequently, the coherence length of the electron is not to be identified with
the total mean free path, but rather only with the mean distance between
inelastic scatterings or other phase-randomizing events, which can attain val-
ues of a few microns – i.e., a size larger than the ring. Until the experiments
on mesoscopic rings, prevailing opinion held that all scattering would destroy
the electron coherence. This belief is now known to be mistaken.

The idea of coherence, which ordinarily refers to an ensemble of similarly
prepared systems, must be interpreted a little differently in the present case,
since the phase of the exiting electron wave function is a function of the
random path through the metal. One, therefore, cannot prepare the quantum
states of conduction electrons in the ring in such a way as to control the
phase of exiting electrons. Nevertheless, as elastic collisions are reversible, the
phase is well determined for any given path, and therefore all electrons that
follow the identical path will exhibit self-interference with the same relative
phase. The conductance of a mesoscopic metal ring can vary markedly from
one sample to another, the average over many such rings yielding the bulk
value deducible theoretically by a quantum mechanical ensemble average. An
ensemble average, however, does not in general apply to an individual ring.

As a consequence of mesoscopic coherence, there is a nonvanishing inter-
ference between probability amplitudes of a carrier that has diffused from the
entrance to the exit terminal by passing (once) to one side or the other of the
hole. In addition to a random geometrical phase shift acquired by propagation
and scattering (and therefore sensitive to the distribution of impurities in the
metal), the interference term acquires, as in the AB effect with free particles,
a supplementary magnetic phase shift (2πΦ/Φ0) determined by the amount
of magnetic flux enclosed by the path. However, because the magnetic field in
the mesoscopic ring experiments was not confined to the hole, but uniformly
permeated the entire annulus, different pairs of paths can enclose different
values of flux. Thus, the AB phase shift, like the geometrical phase shift, is
also path dependent. Nevertheless, the fluctuation in enclosed flux is smaller
than the flux through the central hole by approximately the ratio of the area
of the annulus to the area of the hole, which, by experimental design, is a very
small number. Because of the path sensitivity of both geometric and magnetic
phase shifts, the variation of resistance with magnetic field displays an aperi-
odic random background upon which is superposed – as the signature of the
AB effect – an oscillatory fine structure with period Φ0.

The periodicity of the oscillations can be accurately established by elec-
tronically determining the Fourier transform of the magneto-resistance data.
With judicious choice of ring geometry, however, the Fourier transform shows
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an additional peak at a magnetic field corresponding to an oscillation period
Φ0/2 as shown again Fig. 6.6. It is perhaps no surprise, in view of the preceding
discussion on winding, that an oscillation with phase angle Φ/(Φ0/2) = 2Φ/Φ0

is attributable to interference involving two paths – one clockwise, the other
counterclockwise – making one complete revolution about the ring. (Since
electrons following a 360◦ path return to their point of injection and do not
leave the ring, they therefore contribute to a diminution in conductance or
increase in resistance.) The two counter-revolving paths need not be identical,
in which case they enclose different values of flux, and the contribution of all
such pairs of paths within the ring is again a statistical one. Theoretically, the
total electrical resistance of the ring as a function of magnetic field B can be
expressed in the form

R(B) = Rb +
∑

n=1

Rn cos
(
αn + 2πn

Φ

Φ0

)
, (6.105)

where Rb is the aperiodic background comprising the classical resistance (in-
cluding a magneto-resistance term proportional to B2) and the zero-frequency
part of the AB effect, and Rn and αn (for integer n = 1, 2, . . .) are random
functions of B approximately inversely proportional to the winding number
n and varying over a domain of B proportional to the area of the annulus.

There is one circumstance, however, where the AB effect in a mesoscopic
disordered metal is not a statistical one, by which I mean it is totally in-
sensitive to the distribution of impurities along path. This is the case where
the magnetic field is confined to the central hole, and contributing paths
through the metal are precisely time-reversed images of one another. In other
words, if one path through the metal involves electron scattering at impurity
sites 1, 2, 3, . . . , N , then the other path involves the same scattering events
in reverse order, N, . . . , 3, 2, 1. Such pairs of time-reversed trajectories can
only occur for complete revolutions about the ring, and therefore give rise to
magneto-resistance oscillations with maximum period Φ0/2.

Ironically, it was just this condition that prevailed in the first observa-
tion of the AB effect in a normal metal structure – with the configuration of
a cylinder, not a two-dimensional ring [193]. The sample was a quartz fiber
about 1 cm in length and 1 μm in diameter upon which a metal film had
been deposited. In stark contrast to the features of the AB effect in a ring
described above, the variation of sample resistance with magnetic field yielded
a smoothly oscillatory function with period Φ0/2 only. There was no contri-
bution at the fundamental period Φ0. Here is an example in which the AB
effect derives exclusively from the occurrence of winding.

One might have expected that mesoscopic cylinders and rings – which,
after all, are topologically equivalent – should exhibit similar magneto-
resistance behavior. Why, then, were no AB oscillations observed at the fun-
damental period Φ0 in the cylinder? A cylinder may be thought of as a parallel
stack of mesoscopic rings. If the length of the stack is much greater than the
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coherence length of a ring, the AB oscillations with period Φ0 from different
rings (i.e., from segments of the cylinder separated by more than the coherence
length) are uncorrelated and average out, leaving only a contribution from the
special subset of time-reversed paths. In essence, the three-dimensional cylin-
drical geometry executes an ensemble average of mesoscopic rings [194].

Nevertheless, whether in a single ring or cylindrical stack, the contribution
of time-reversed paths to the AB effect is rapidly extinguished when magnetic
flux penetrates the metal to an extent on the order of Φ0. Different pairs of
paths then enclose different values of flux, and the resulting oscillations are
no longer in phase.

Appendix 6A Magnetic Hamiltonian
of the Two-Dimensional Rotator

The Hamiltonian of a particle with charge q and mass m in a static magnetic
field B is

HM =
P 2

2m
=

1
2m

(
p − qA

c

)2

, (6A.1)

in which P is the kinetic linear momentum, p is the canonical linear momen-
tum, and the vector potential A can be written in the form

A = −1
2
r × B , (6A.2)

whose curl is identically B. Expanding the square in (6A.1) with substitution
of (6A.2) leads to the expression

HM =
p2

2m
+ ωL·L +

1
2
mω2

Lr
2 sin2 θ , (6A.3)

in which

ωL = − qB
2mc

(6A.4)

is the Larmor angular velocity and θ is the angle between the particle coordi-
nate vector r (of constant magnitude R) and the magnetic field. For a nega-
tively charged particle (q = −e), ωL and B are parallel.

In the example of the two-dimensional electron rotator depicted in Fig. 6.1,
the Cartesian components of the coordinate vector and magnetic field are

r = R(cosφ, sin φ, 0) , (6A.5)

B = B(0, sinβ, cosβ) , (6A.6)
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from which it follows that cos θ = sinφ sinβ. Moreover, the differential op-
erator p2 = −�

2∇2, where ∇2 is the two-dimensional Laplacian, is simply
related to the square of the angular momentum operator L2

z = −∇2/�2R2

by p2 = L2
z/R

2. Reduction of (6A.3), with account taken of the preceding
relations, leads directly to the expression

HM =
L2

z

2mR2
+ ωLLz cosβ +

1
2
mω2

LR
2(cos2 φ+ sin2 φ cos2 β) (6A.7)

of (6.41).
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Chiral Asymmetry:
The Quantum Physics of Handedness

7.1 Optical Activity of Mirror-Image Molecules

By the end of the second decade of the 19th century – long before the discov-
ery of X-rays and the invention of the electron microscope – it still would have
been possible, using nothing more than a beam of light and two polarizing
crystals (e.g., calcite), to determine that the intrinsic structure of at least some
molecules was three-dimensional (assuming one believed in molecules then).
The revealing phenomenon of ‘optical activity’ – a rotation of the plane of
polarization of the light upon transmission through the sample as shown in
Fig. 7.1 – does not occur for all molecules, but only for those which can-
not be superimposed on their mirror image. Such a structure, subsequently
termed ‘dissymmetric’ by Louis Pasteur but referred to as ‘chiral’ (derived
from the Greek for ‘hand’) in current terminology – must necessarily be three-
dimensional because a flat object and its mirror image could always be made
to superimpose. Reflection, as illustrated in Fig. 7.2, reverses the chirality or
handedness of an object, thereby interchanging, for example, the right and
left winding of a helix or screw.

Fig. 7.1. Optical rotation of linearly polarized light by a chiral sample. Upon emerg-
ing from a sample of length d, the polarization vector Eo has been turned through
an angle θ relative to the incident polarization vector E i
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Fig. 7.2. Mirror reflection reverses the handedness of chiral objects. a chiral object
and its mirror image cannot be superposed. The tetrahedron with four different
vertex objects is representative of an asymmetric carbon atom, a common chiral
building block in chemistry. Some materials, like crystalline quartz, are constructed
from achiral molecules arranged in a helical structure

For a molecule to exist in two nonsuperposable mirror-image forms (called
enantiomers), it must have no center or planes of symmetry, nor any rotation-
reflection axes.1 A dissymetric shape is not necessarily devoid of all symmetry,
however; it may possess pure rotation axes like the C2 or two-fold rotation
axis of a helix. One of the most common manifestations of natural molecular
chirality is that associated with tetrahedrally valent carbon atoms bonded
to four different substituents (Fig. 7.2). Materials composed of distinct enan-
tiomeric forms of the same molecule have identical bulk chemical and physical
properties such as mass density, fusion and vaporization points, and rates of
reaction (when chemically combining with nonchiral reactants). They also ro-
tate the polarization of a linearly polarized light beam to the same extent per
unit length of material, but in opposite senses. It is by their optical activity
that one can most readily distinguish mirror-image molecules.

1 Optically active substances can also be constructed from mirror-inequivalent ar-
rangements of achiral molecules. Crystalline quartz is one such example; repeat-
ing units of silicon dioxide wind in helical fashion (with left or right circulations)
about the optic axis. Unlike substances composed of intrinsically chiral molecules,
however, the chirality, and therefore the optical activity, vanish when these enan-
tiomorphic forms are melted or dissolved in solution. Thus, fused quartz exhibits
no optical activity.
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In certain cases, however, one could distinguish enantiomeric forms of
a substance without any optical apparatus at all, but merely by their aroma.
How can the human nose serve as a chiral detector? Herein is one indication
of perhaps the most outstanding unsolved problem of the life sciences: the
origin of biomolecular homochirality. All life forms – from the lowliest virus
to the human body – are built from only one of the two possible enantiomeric
forms of its chiral constituents and not from both forms in more-or-less equal
measure as perhaps one might have expected. An organism may be composed,
for example, of right-handed sugar molecules or left-handed amino acids. In-
deed, the capacity (if not necessity) to synthesize and consume homochiral
molecules is the very hallmark of the living state.2

Light, too, comes in two basic enantiomeric forms although they are not
usually designated as such. These are the left and right circular polarizations.
From the perspective of classical physical optics – as first explained by Au-
gustin Fresnel in the 1820s – the phenomenon of optical rotation is attributable
to circular birefringence, i.e., the difference in indices of refraction (nL, nR) for
left and right circularly polarized light. A circularly polarized wave of angular
frequency ω and wave number kL,R = nL,Rω/c can be regarded as a super-
position of two orthogonal linearly polarized waves oscillating with a relative
phase of ±π/2 radians as represented by the polarization states

|L〉 =
1√
2
(x + eiπ/2y) =

1√
2
(x + iy) , (7.1)

|R〉 =
1√
2
(x + e−iπ/2y) =

1√
2
(x − iy) . (7.2)

Here |L〉 and |R〉 are complex-valued unit vectors representing left and right
circular polarizations respectively for a wave propagating along the z axis. The
unit vectors x and y (together with z) are directed along the corresponding
axes of an orthogonal right-handed coordinate system, i.e., x × y · z = 1.
The use of Dirac notation in (7.1) and (7.2) signifies that, from a quantum
perspective, the same expressions serve as the basis states of circularly polar-
ized photons. To obtain the physical traveling wave at location z and time t,
which in classical optics is necessarily a real-valued function, one multiplies
the expressions in (7.1) and (7.2) by a phase factor of the form ei(kz−ωt) and
then takes the real part. This leads to expressions

L(z, t) =
1√
2

[
x cos(kLz − ωt) + y sin(kLz − ωt)

]
, (7.3)

R(z, t) =
1√
2

[
x cos(kRz − ωt) − y sin(kRz − ωt)

]
, (7.4)

in which the feature of ‘rotation’ is plainly evident.
According to standard optical convention, the electric field of a left circu-

larly polarized (LCP) wave rotates towards the left side of an observer facing
2 Thorough discussions of the problem of biomolecular homochirality may be found

in [195], and in the special issue of Biosystems [196].
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the light source-with corresponding definition of right circular polarization
(RCP) [7].3 We will not need to distinguish by separate symbols the complex
and real polarization vectors. The complex form is generally the more con-
venient to use, since the differential effects of a medium on the two states
of polarization can be accounted for simply by appropriate phase factors of
the form eiφ where, as we will see shortly, φ can be complex-valued if light
absorption (or emission) occurs.

Consider, therefore, an x-polarized wave incident upon a sample of trans-
parent optically active active material (see, again, Fig. 7.1). Representing the
incident wave by its electric field Ein, and inverting the relations (7.1) and
(7.2), one can write

Ein = x =
1√
2
(L + R) . (7.5)

Inside the chiral medium, the left- and right-circularly polarized components
of the incident wave advance at a phase velocity determined by their respective
refractive indices nL,R. The recombined wave emerging from the sample after
a geometric path length d then has the form

Eout =
1√
2

(
LeinLωd/c + ReinRωd/c

)
=

1√
2
(x cos θ − y sin θ)einωd/c (7.6)

of a linearly polarized wave rotated by the angle

θ =
(nL − nR)ωd

2c
(7.7)

in a medium of mean refractive index

n =
nL + nR

2
. (7.8)

If nL > nR the rotation angle is positive and the polarization vector is rotated
towards the right side of an observer facing the source. In other words, the
rotation is in the sense of the wave with the larger phase velocity. The global
phase factor in (7.6) is of no consequence unless the wave is subsequently
superposed with a reference wave.

Optical rotation of linearly polarized light is but one example of opti-
cal activity, the assortment of optical responses that can distinguish chiral
forms. Circular dichroism is another in which linearly polarized light propa-
gating through a nontransparent chiral substance is converted to elliptically
polarized light. Elliptical polarization is a linear superposition of linear and
circular polarizations; the motion of the electric vector projected onto a plane
perpendicular to the direction of light propagation traces out an ellipse. In
this case the phenomenon is attributable to the difference in absorption of
left and right circular polarizations. Both optical rotation and circular dichro-
3 It is a common error to think that the electric vector of circularly polarized light

traces out a circle in time. Since the light wave is advancing as the electric vector
is rotating, the actual locus of points traced out would resemble something like
the twisted ribbon on a barber’s pole.
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ism can be treated together by assigning different complex-valued refractive
indices of the form ñ = n + iκ for left and right circular polarizations. The
absorption coefficient κ then leads to a diminution in amplitude with distance:
eiñd/c = eind/ce−κd/c. In addition to the manifestations of optical activity in
transmitted light, there are other effects, more difficult to observe, but of
conceptual and practical importance, associated with reflected light [197]4 or
scattered light [199]. This includes, for example, the difference in reflection of
incident LCP and RCP light, and the conversion by reflection of an incident
linearly polarized wave into an elliptically polarized wave.

Optics, alone, does not account for the origin of the circular birefringence
of chiral media. For this, one must have a microscopic model of the way in
which a chiral molecule interacts with electromagnetic radiation. Within the
framework of classical physics, a simplified heuristic explanation of optical
rotation may be had by examining a system of conducting helices irradi-
ated by linearly polarized electromagnetic waves. Consider first a single helix.
The electric field of the incident wave drives charges back and forth along
the helical pathway thereby inducing oscillating electric and magnetic dipole
moments which radiate secondary (or scattered) waves with their own charac-
teristic dipole patterns. The electric dipole arises because of charge separation
along the helix; the magnetic dipole is a consequence of the projected circular
motion of the charges in a plane perpendicular to the helical axis. Depending
upon the handedness of the helix, the induced moments will be either paral-
lel or antiparallel to one another, and the net electric field of the scattered
radiation from both dipoles can therefore take on two different orientations
relative to the electric field of the incident wave. The plane of vibration of
the resultant transmitted wave, a superposition of the incident and scattered
waves, will consequently depend on the sense of the helix. Although, in a sys-
tem of randomly oriented helical molecules, the extent of optical rotation will
depend on the projection of the incident electric field along each helix, the
sense of rotation will always be the same for helices of the same handedness.

From the perspective of quantum theory, optical rotation is the outcome of
a quantum interference process occurring in the elastic scattering of incident
photons by the induced electric and magnetic dipoles of a chiral molecule.
There are several interesting features that distinguish this process from other
examples of quantum interference we have considered previously. First, limit-
ing this discussion to nonabsorbing molecules, one can remark that the light
scattering involves virtual, as opposed to real, processes. A molecule, initially
in its ground state, undergoes a nonresonant cyclic transition to an excited
state and back again to the ground state by one of several indistinguishable
interaction pathways. The apparent violation in energy conservation for each

4 A long-standing controversy over the phenomenological description of optical ac-
tivity resolved theoretically in this paper is described in detail in [114], Chap. 4.
Reflective measures of chirality and the experimental procedures for observing
them are described in [198].
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one-way transition is, of course, undetectable, for the final state of the sys-
tem conserves energy, and any attempt to probe the system during scattering
would perturb it and destroy the sought-for interference effect. Second, the
various interaction pathways correspond to different time sequences of absorp-
tion and emission by the electric and magnetic dipoles. However, since electric
and magnetic dipole interactions are connecting the same two states (ground
and excited), the states of the chiral molecule cannot be eigenstates of well-
defined parity, and the process would appear to violate parity conservation.
This is a consequence of the molecular dissymmetry. (The constituent atoms
have a center of symmetry.) Yet structural optical activity is, after all, the
result of an electromagnetic process-and the laws of electrodynamics, both
classical and quantum, are invariant under parity transformations.

The invariance of electromagnetism under both parity (or coordinate inver-
sion x → −x) and time reversal (t→ −t) can be demonstrated directly from
Maxwell’s equations. Under inversion of coordinates the electric and magnetic
fields transform as follows: E(x) → −E(−x), B(x) → B(−x). Likewise, re-
versing time leads to the transformation: E(t) → E(−t), B(t) → −B(−t).
Since all fields of a particular kind, irrespective of the charge or current con-
figuration producing them, must behave in the same way under symmetry
transformations, one can understand the above transformations by examin-
ing the simple systems of a charged parallel-plate capacitor and a current-
carrying solenoid. Under inversion, the plates of the capacitor exchange po-
sitions, and the orientation of the electric field is thereby reversed. Since the
charges are stationary, they (and the electric field) are unaffected by time re-
versal. Similarly, coordinate inversion has no effect on either the handedness
of the solenoid or the direction of charge flow, in which case the magnetic field
is unaffected. Under time reversal, however, charge flows through the solenoid
in the opposite direction, and the orientation of the magnetic field is there-
fore reversed. The net effect of these transformations is to leave Maxwell’s
equations invariant.

In the following section we will examine more closely optical activity as
a quantum interference process and the issue of symmetry. It will be seen that
optical activity deriving from chiral molecular structure does not violate the
conservation laws of electrodynamics. On the other hand, optical activity in
unbound atoms would. Atomic optical rotation and other manifestations of
optical activity in atoms have in fact been observed and can not be accounted
for by electromagnetic processes alone, but arise from the weak nuclear inter-
actions [200].

7.2 Quantum Interference and Parity Conservation

The interaction of an electromagnetic wave with a chiral molecule or crystal
is in general a complicated process to treat. However, to illustrate simply how
just one facet of optical activity, namely optical rotation, arises as a quan-
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tum interference process, we adopt a model [201] which discards all but the
most essential features of the interaction and reduces the problem to the fa-
miliar form of a two-level system. In this unadorned quantum electrodynamic
(QED) model, the direction of propagation, wave number, total energy, and
occupation number of an incident photon are unchanged; the influence of the
medium is manifested exclusively in its effects on the state of the photon’s po-
larization. Since the photon is undeviated in its passage through the sample,
the process is known as forward scattering.

The quantum optical attribute corresponding to circular polarization is
technically designated ‘helicity’, the projection S · k/|k| of the photon angular
momentum S (in units of �) onto the linear momentum k (also in units of �).
Since the photon is a massless spin-1 boson, this projection may have the two
values ±1, which corresponds, respectively to LCP and RCP states. Suppose
the incident light propagates along the z axis and is polarized along the x
axis. One can represent this state quantum mechanically by the spinor

(
1
0

)
,

where the corresponding spinor
(

0
1

)
,

characterizes a y-polarized photon. The complete state of a forward scattered
photon (within the framework of our assumptions above) then takes the form

(
φ1

φ2

)
,

where the complex-valued amplitudes φi (i = 1, 2) are to be determined by so-
lution of the Schrödinger equation with appropriate Hamiltonian. The general
form, however, is one which we have encountered in Chap. 5

HΨ =
(
Ω ω
ω∗ Ω

)(
φ1

φ2

)
= i
∂Ψ

∂t
. (7.9)

All elements of the Hamiltonian matrix are again expressed in angular fre-
quency units. The diagonal elements characterize the energy of the light in
the chiral medium which is the same for either state of linear polarization.
The off-diagonal elements characterize the interaction (to be specified shortly)
which breaks the degeneracy of the polarization states and induces transitions
between them. Since no absorption or dissipation occurs in the processes under
consideration, the Hamiltonian is Hermitian, and the off-diagonal elements in
general satisfy the relation hij = h∗ji as indicated explicitly in the matrix form
of H in (7.9). The interaction ω can be written in the form

ω =Meiα , (7.10)

with real-valued modulus M and phase α.
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The chiral molecules and light together comprise a single, closed system in
which total energy is conserved and the Hamiltonian is independent of time.
Using the relations of Chap. 5 [in particular (5.7), (5.10) and (5.11)] with the
correspondences

h0 = Ω , h1 = Re(ω) , h3 = Im(ω) , h3 = 0 , (7.11)

one can integrate (7.9) immediately to obtain the polarization state
(
φ1

φ2

)
= e−iΩt

(
cosMt −ieiα sinMt

−ie−iα sinMt cosMt

)(
φ0

1

φ0
2

)
. (7.12)

If the incident light is x-polarized, the above state reduces to
(
φ1

φ2

)
= e−iΩt

(
cosMt

−ie−iα sinMt

)
, (7.13)

which represents the geometrical polarization vector

e = x cos
Mnd

c
− yei(π/2−α) sin

Mnd

c
, (7.14)

where, as usual, the global phase factor has been suppressed, and the time for
a photon with phase velocity c/n to propagate a length d is t = nd/c. (There
is no distinction to be made in this idealized model between phase velocity
and group velocity because the photons are assumed to be in monochromatic
plane wave states.)

It will be demonstrated soon that the matrix element ω is a pure imag-
inary number, with a phase α = ±π/2 depending on the light frequency
and the sign of a particular product of electric and magnetic dipole matrix
elements referred to as the ‘rotational strength’. If the rotational strength is
positive and the frequency is below that of the nearest electronic resonance,
then α = π/2, and therefore ω = iM . The matrix element ω changes sign
as the light frequency passes through each resonance. Ordinarily, molecular
electronic transitions fall in the ultraviolet portion of the spectrum, and one
observes optical rotation by means of lower-frequency visible light. Substitu-
tion of α = π/2 in (7.14) leads to a polarization vector identical in form to
that in relation (7.6) with the optical rotation angle now given by

θ =
Mnd

c
. (7.15)

Although (7.6) [or (7.14)] and (7.13) characterize the same physical state,
their interpretations are quite different. In the classical picture of optical ro-
tation the electric vector of the light wave undergoes a continuous rotation as
the beam passes through the chiral medium. At any moment the polarization
is a well-determined quantity. According to QED, however, the exact polar-
ization of the photon is uncertain until a measurement is performed. A meas-
urement at time t would reveal a state of x-polarization with a probability

Px(t) = cos2(Mt) (7.16)
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and a state of y-polarization with corresponding probability

Py(t) = sin2(Mt) . (7.17)

Rotating the analyzer (aligned initially along x) through the angle θ of (7.15)
would reveal a polarization state of (7.14) with 100% probability.

Comparing (7.7) and (7.15) allows one to express the circular birefringence
in terms of the QED matrix element

nL − nR =
2Mn
ω

. (7.18)

Since the two refractive indices for circular polarization must reduce to the
mean index n in the absence of a chiral interaction (ω = 0), and interchange
under a change of sign of ω, it follows that

nL,R = n
(

1 ± M
ω

)
, (7.19)

where the upper sign corresponds to left circular polarization.
The consistency of the above reasoning, based on a comparison of results

from QED and classical optics, can be checked by returning to the Schrödinger
equation (7.9) and diagonalizing the Hamiltonian to obtain the eigenvalues
and eigenvectors of the photon in a chiral medium. For the present case of
a frequency below resonance where α = π/2, solution of this simple eigenvalue
problem leads to the characteristic frequencies

Ω± = Ω ±M (7.20)

and associated vectors (normalized to unit magnitude)

φ± =
1√
2

(
1
∓i

)
. (7.21)

Inspection of relations (7.1) and (7.2) and (7.21) shows that φ± are states of
right and left circular polarization, respectively. However, do the eigenvalues
in (7.20) correlate correctly with the appropriate refractive indices? Applying
the dispersion relation between frequency and wave number

Ω =
ck

n
, (7.22)

to the eigenfrequencies in (7.20) leads to the expressions

ck

n±
=
ck

n
±M , (7.23)

from which the chiral refractive indices can be determined. Since the chiral
interaction M is orders of magnitude smaller than an optical frequency (as
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will be demonstrated shortly), one can solve for n± in the approximation of
M � ck to find

n± = n
(

1 ∓ Mn
ck

)
= n

(
1 ∓ M

Ω

)
, (7.24)

in agreement with (7.19) and (7.21) where n+ is associated with right circular
polarization and n− with left circular polarization. According to our model,
there is no energy gained or lost when a photon enters the chiral medium; the
diagonal element Ω can then be identified with the vacuum angular frequency
ω. The significance of the eigenvectors φ± is that they propagate through the
chiral medium unchanged in form and at well-defined phase speeds character-
ized by their respective indices of refraction.

We examine next the dynamical part of the problem leading to the in-
teraction element Meiα. To simplify matters, consider first the interaction of
a photon and a single chiral molecule with ground state |0〉 and spectrum
of excited states |n〉. The Hamiltonian for the total system of radiation and
molecule is then the sum

H = Hrad +Hmol +Hint , (7.25)

where the interaction term

Hint = −μE·E − μM·B (7.26)

expresses the coupling of the molecular electric dipole moment μE and mag-
netic dipole moment μM to the electric and magnetic fields of the photon.
Explicit expressions for the other terms of the Hamiltonian are not needed;
the first leads to the energy of the free radiation field (represented in our
problem by the frequency ω) and the second to the molecular energies Ωn

which we shall assume to be known. As before, the Hamiltonians are in units
of �, and we will refer to energy and angular frequency interchangeably.

One might wonder how the interaction Hamiltonian of (7.26) relates to
the standard Hamiltonian

H =
1

2m

(
p − qA

c

)2

+ qφ

obtained by minimal coupling of a charged particle with linear momentum
p and charge q to electromagnetic vector and scalar potentials (A, φ) in an
explicitly gauge-invariant way. This question is by no means a trivial one, and
has led to repeated discussion in the physics literature even though the prob-
lem was effectively resolved long ago [202]. In brief, the electric and magnetic
dipole interaction terms correspond to the terms −qA · p/mc + q2A2/2mc2

in the expansion of the preceding Hamiltonian after implementation of an
appropriate gauge transformation.

Within the framework of QED, the electric and magnetic fields in (7.26) are
operators which act on photon states |kσ〉 of momentum k and polarization
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label σ = 1, 2 designating the two orthonormal linearly polarized basis vectors
e(σ) for each wave vector k. Strictly speaking, one should write e(σ)(k), but
we will not do this to avoid encumbering the notation unnecessarily, since the
direction of k – and therefore of e(σ) – remains unchanged throughout the
scattering. The total system of radiation and matter can then be represented
initially by a state vector of the form |0; k1〉 for a molecule in its ground
state and one photon of polarization e(1). From the explicit representation
of the radiation fields in terms of creation a(k, σ)† and annihilation a(k, σ)
operators [203]

E(r) =
∑

k,σ

(
2π�ω

V

)1/2

ie(σ)
[
a(k, σ)eik·r − a(k, σ)†e−ik·r

]
, (7.27)

B(r) =
∑

k,σ

(
2π�ω

V

)1/2 ik × e(σ)

k

[
a(k, σ)eik·r − a(k, σ)†e−ik·r

]
, (7.28)

it is seen that E and B create or annihilate one photon at a time. In the
above expressions V is the quantization volume – i.e., the volume within
which the field modes are defined – which we identify here with the total
volume of the sample containing chiral molecules. Although the frequency
of the incident photon is assumed not to correspond to a resonance of the
molecule, the Hamiltonian Hint induces transitions to intermediate states of
the form |n; 0〉 in which the incoming photon has been absorbed and |n; k1,k2〉
in which an additional photon has been emitted, the molecule in both cases
being in an excited state. These violations of energy conservation are imme-
diately rectified by de-excitation of the molecule and subsequent emission or
absorption of a photon to result in the final state |0; k2〉. Thus, in the overall
energy-conserving process of forward elastic scattering, the molecular state is
unchanged and an incoming photon of polarization e(1) emerges with polar-
ization e(2).

The probability amplitude for this process is given by perturbation theory
to lowest nonvanishing order as

V12 =
∑

I

〈0; k2|Hint|I〉〈I|Hint|0; k1〉
E0 − EI

, (7.29)

where the sum is over all possible intermediate states I. The energy (fre-
quency) of the initial state is E0 = Ω0 + ω; the energy of an intermediate
state I is either EI = Ωn or EI = Ωn + 2ω depending on whether the transi-
tion was effected by absorption or emission of a photon. Substitution of Hint

into (7.29) and evaluation of the resulting expression by means of (7.27) and
(7.28), lead to a sum of four distinct matrix elements which contribute to
the change in photon polarization. These are represented diagrammatically in
Fig. 7.3 in which the time-ordered sequence of events in each diagram pro-
ceeds from bottom to top. At each vertex the interaction between molecule
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and light can be mediated by either an electric or magnetic dipole coupling in
which the coupled field either annihilates the incoming photon or creates the
outgoing photon. Two interactions (electric or magnetic) of the same kind do
not appear in any of the diagrams, for these processes do not change photon
polarization.

It may seem particularly strange that a molecule can radiate an outgoing
photon from its ground state – i.e., before the arrival of the incoming photon
– but such processes are permitted by QED and must in fact be included if
the calculation is to be in accord with experiment. Indeed, the individual ver-
tices of every diagram in the figure violate energy conservation; only in toto
does a diagram represent a process in accord with physical law. The separate
scattering processes of Fig. 7.3 are indistinguishable; all that can be observed
is that a photon e(1) is incident on a sample of ground-state molecules, and a
photon e(2) leaves the same sample. One can disregard, I suppose, the physical
interpretation of the diagrams and consider the associated mathematics sim-

Fig. 7.3. Time-ordered diagrams of forward scattering processes contributing to
optical rotation. Vertical lines represent the transition of a molecule out of, and
back into, its ground state 0 via a virtual transition to intermediate excited state n.
Oblique lines represent absorption of a photon with polarization e(1) and emission of
a photon with polarization e(2). The diagrams are distinguished by the order of elec-
tric and magnetic dipole interactions and by the sequence of absorption and emission
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ply as an exercise in the approximate solution of a differential equation. How-
ever, I think this would take away from physics much of the richness of its im-
agery, for the purpose of physics is not merely to compute, but to understand.

Evaluation of the matrix element (7.29) leads to the expression

V12 =
4πω
V

∑

n

1
ω2 −Ω2

n0

{
iωIm

[
(μE)0n;1(μM)n0;1 + (μE)0n;2(μM)n0;2

]
(7.30)

−Ωn0Re
[
(μE)0n;1(μM)n0;1 − (μE)0n;2(μM)n0;2

]}
,

where the energy interval between ground and excited state is

Ωn0 = Ωn −Ω0 (7.31)

and the dipole matrix elements are defined by

(μK)0n;σ ≡ 〈0|μK ·e(σ)|n〉 , (7.32)

with K = E, M and σ = 1, 2. Equation (7.30) pertains to a single molecule. In
an actual experiment the sample contains a density of η molecules per unit of
volume randomly oriented and uniformly distributed over the volume V . One
must therefore average (7.30) over all orientations of the electric and magnetic
dipole moments. Then, presuming that each molecule contributes individually
to the overall optical rotation (i.e., that there is no cooperative interaction
between molecules), one must multiply V12 by the number of molecules in the
sample, ηV . This leads to the final expression for Meiα in the Schrödinger
equation (7.9)

ω ≡Meiα =
8πηω2eiπ/2

3

∑

n

Rn0

ω2 −Ω2
n0

, (7.33)

where
Rn0 ≡ Im

[
(μE)0n·(μM)n0

]
(7.34)

is designated the rotational strength for level n.
Although the exact evaluation of Rn0, and thereforeM , for a real molecule

is a difficult calculation, it is worthwhile to make a rough estimate to see the
extent of contribution of the chiral interaction to the refractive indices of
(7.19). We can approximate the electric dipole moment by ea0, the product
of electron charge and the Bohr radius of a ground-state hydrogen atom.
Similarly, the magnetic dipole moment can represented by the Bohr magneton,
e�/2mc, where m is the electron mass. We then obtain Rn0 ∼ 2.3 × 10−38 in
cgs units – or ∼ 2.2 × 10−11 when divided by � – which is more or less an
upper limit to actual values, since the induced electric and magnetic dipoles
need not in general be parallel nor is the product of the matrix elements
necessarily a pure imaginary number. Assuming, further, a sample density of
that of water (η ∼ 3.3×1022 molecules/cm3), a red probe beam (λ = 600 nm,
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or ω = 3.14 × 1015 s−1), and a resonance in the ultraviolet (λ = 100 nm or
Ωn0 = 6ω), we obtain M ∼ 1.7 × 1011 s−1. The chiral parameter in (7.19), is
thenM/ω ∼ 5.3×10−5. Though small, a chiral parameter of this magnitude is
easily measurable and is actually one to two orders of magnitude larger than
the corresponding parameters of many naturally occurring chiral molecules.
Indeed, one of the recent significant achievements in chiral metrology was the
measurement to one part in 107 of the difference with which chiral matter
reflects LCP and RCP light [204].5

We return again to the question of whether or not optical activity – as rep-
resented, for example, by the matrix element (7.33) – violates the conservation
of parity, since Rn0 would be expected to vanish for states of well-defined par-
ity. The fact that the eigenstates of each enantiomeric form of a molecule are
not parity eigenstates does not mean, however, that optical activity is neces-
sarily a parity nonconserving process. This question can be answered only by
considering the entire system, matter plus radiation. Figure 7.4 illustrates the
configuration of a linearly polarized wave incident from the right on a sample
of chiral molecules which rotates the polarization clockwise for an observer
facing the source. The mirror image of this process transforms the config-
uration to a linearly polarized wave incident from the left upon the other
enantiomeric form of the original molecules; the polarization of the forward
scattered light is rotated counterclockwise to an observer facing the source.
But this is exactly what one expects to happen. The two enantiomeric forms
of a chiral molecule rotate linearly polarized light in opposite senses, the sense
of rotation being defined with respect to the direction of light propagation.
(There is no other unique direction in the system.) Since both the original
and mirror-image processes occur in nature, there is no violation of parity
conservation. The mere fact that one can physically separate (or synthesize
separately) the two forms of a chiral molecule and carry out optical experi-
ments on only one of these forms does not constitute any violation of physical
law.

Suppose, however, that instead of molecules in Fig. 7.4, the sample con-
sisted of unbound atoms. Electrodynamically, an atom has a center of sym-
metry, since the electrons are bound to the nucleus by the isotropic Coulomb
force. One would therefore not expect an atom to come in enantiomeric forms
or to rotate the plane of incident linearly polarized light. Nevertheless, atoms
have been shown both theoretically and experimentally to be optically active.

One significant outcome of the unification of electromagnetism and the
weak nuclear interactions into a single ‘electroweak’ theory, was the prediction
of weak neutral currents – in effect, a charge-preserving interaction between
charged particles mediated by the exchange of the Z0 boson, a neutral particle
with mass one hundred times that of the proton mass. Because the range of
an interaction is of the order of the Compton wavelength λC = �/Mc for

5 The conceptual background to this experiment, as well as the experimental de-
tails, are discussed in greater detail in [7].
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a mediating particle of mass M , the effects of weak neutral currents in atoms
are largely confined to a region of radius 10−7a0 about the atomic center.
Only electronic S states substantially overlap the atomic nucleus. Thus, as
a result of the weak interaction between atomic S electrons with nucleons in
the nucleus, electronic S and P states are mixed to a very small extent

|S′〉 ∼ |S〉 + ε|P 〉 (7.35)

(with ε ∼ 10−11 in hydrogen) and are no longer exact parity eigenstates [205].
The strength of the coupling grows rapidly with atomic number Z, since the
orbital radius of an S electron decreases with Z, and the electron orbital
velocity near the nucleus – upon which the weak interaction also depends –
increases with Z.

There is an important distinction, however, between structural optical ac-
tivity and optical activity attributable to weak neutral currents. Whereas the
mirror-image process of the former leads, as illustrated in Fig. 7.4, to another
process allowed in nature, the mirror-image process of the latter does not
occur. The weak nuclear interactions are truly parity violating, and therefore
atoms come in but one chiral form; the enantiomeric form does not exist.

Although the chirality of the weak interactions lies essentially in math-
ematical laws rather than in an explicitly visible geometric structure (as in
the case of molecules), one can nevertheless construct dynamical quantities
that reveal a sense of ‘handed’ motion [206]. Figure 7.5 illustrates the electron
probability current density for the hydrogenic 2P1/2 state

J(r) = Re〈2P ′
1/2|p/m|2P ′

1/2〉 , (7.36)

where p is the linear momentum operator, m is the electron mass, and the
designation P ′ indicates that the actual state has a weak admixture of 2S1/2

similar to that expressed in (7.35). S states of other principal quantum number
are present as well, but their contributions are comparatively negligible. Each
streamline, or locus of points everywhere tangent to J , manifests a helical

Fig. 7.4. Structural optical activity is an electromagnetic process that conserves
parity. The mirror inversion (left) of the optical rotation of linearly polarized light
transmitted through an enantiomerically pure sample (right) is also an allowable
process – namely, a rotation in the opposite sense by a sample of opposite chirality
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Fig. 7.5. Helicity of the hydrogen 2P1/2 probability density current resulting from
weak neutral currents. Shown is the streamline of probability current density J
with greatly exaggerated mixing coefficient ε = 0.5 and initial point taken to be
(x, y, z) = (6, 0, 0) in units of the Bohr radius. (Adapted from Hegstrom et al. [206])

structure as it winds in a preferred sense over a toroidal surface whose axis of
rotation (z axis) is the quantization axis. The pitch of the helix, determined
by the mixing amplitude ε, is greatly exaggerated in the figure for purposes of
visibility. In the absence of weak neutral currents, however, ε would be zero,
and the corresponding streamlines of a pure 2P1/2 state of sharp parity would
generate circles about the axis of quantization.

7.3 Optical Activity of Rotating Matter

It has been stressed before that optical activity is displayed by chiral materials
– i.e., structures than can not be superposed on their mirror image. The re-
quired chirality, however, need not always arise from matter alone, but can be
a property intrinsic to the larger system encompassing both matter and fields.
For example, consider the phenomenon of Faraday rotation in which a sample
of achiral molecules rotates the plane of linear polarization of a transmit-
ted light beam propagating parallel or antiparallel to a static magnetic field.
Although the molecules have no preferential handedness, the magnetic field,
which is an axial vector (and not a polar vector like the electric field) imparts
a sense of handedness to the system.

Faraday rotation, like natural optical rotation, is parity conserving. Fig-
ure 7.6 illustrates the clockwise optical rotation of a light beam propagating to
the left, parallel to the magnetic field. Under mirror reflection, the molecules
are unaffected since they are presumed to be achiral, the magnetic field is
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Fig. 7.6. The Faraday effect, like structural optical activity, is also an electromag-
netic process that conserves parity. The mirror inversion (left) of the optical rotation
of linearly polarized light propagating through an achiral sample parallel to a static
magnetic field is an allowable process – namely, a rotation in the same sense relative
to the magnetic field direction

unchanged (as discussed at the beginning of the previous section), and the
light, now propagating to the right (antiparallel to the magnetic field), dis-
plays a counterclockwise optical rotation. This is exactly what one would
expect. Faraday rotation occurs in a fixed sense with respect to the mag-
netic field and not with respect to the direction of light propagation as in the
case of structural optical activity. The stark contrast between the Faraday
effect and (field-free) optical rotation by intrinsically chiral molecules can be
demonstrated by actually reflecting a transmitted light beam back through
the sample with a mirror. Upon emerging from a sample of naturally chiral
molecules, the net optical rotation will be zero. The rotation along the re-
turn path will have reversed the rotation along the forward path because the
wave vector of the light is reversed. For both passages, however, the rotation
will have occurred in a fixed sense (clockwise or counterclockwise) to an ob-
server facing the source. On the other hand, if the system consists of achiral
molecules in a static magnetic field, the optical rotation of the emerging light
will be twice that of a one-way passage, since the orientation of the magnetic
field has remained the same.

From the perspective of quantum theory, the presence of a static mag-
netic field B splits the degeneracy of magnetic substates of the molecules
(Zeeman effect) and leads, by means of perturbation theory, to molecular po-
larizabilities that depend differently on the magnitude B for left and right
circularly polarized light. This chiral asymmetry in the polarizabilities trans-
lates, through standard relations of electrodynamics, into chirally inequivalent
indices of refraction, and hence, by (7.7) and (7.8) into an optical rotation. We
will examine these connections shortly in a different and somewhat unusual
context.

There is an insightful analogy known as Larmor’s theorem in classical
mechanics [207], whereby the motion of a charged particle (charge q, mass m)
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in a static magnetic field B can be analyzed to a first-order approximation
in B as if the particle were in a field-free environment in a rotating reference
frame. The hypothetical angular velocity of mechanical rotation ΩL is related
to the magnetic field as follows

ΩL = − qB
2mc

, (7.37)

where the magnitude of ΩL is the Larmor frequency. The converse of this
analogy – namely, that a system undergoing uniform rotation can be treated
as if it were subjected to a static magnetic field in a stationary reference frame
– has interesting and not widely realized implications for molecular structure
and the manifestation of optical activity [208]. Indeed, in judging whether or
not a system is chiral, one must take account of not only the material sample
and any electromagnetic fields present, but the reference frame as well.

Let us designate the Hamiltonian and state vector of a quantum system
in an inertial reference frame by H and |Ψ〉 and the corresponding quantities
in a rotated reference frame by H ′ and |Ψ ′〉. Upon rotation of the system
through an angle θ about the unit vector n, the two state vectors are related
by a unitary transformation

|Ψ ′〉 = U |Ψ〉 = e−iJ·nθ|Ψ〉 , (7.38)

where the generator of rotation J is the total angular momentum of the system
(and not to be confused with the current density of the previous section).
Substitution of (7.38) into the Schrödinger form of the equation of motion

H |Ψ〉 = −i
d
dt

|Ψ〉 (7.39)

yields an equation of identical form in |Ψ ′〉, but with the transformed Hamil-
tonian

H ′ = UHU−1 + iU
dU−1

dt
. (7.40)

Use of the explicit expression for U from (7.38) and assumption of rotational
invariance in the inertial frame ([H,J ] = 0) results in the Hamiltonian

H ′ = H − Ω · J , (7.41)

where Ω = ndθ/dt is the angular velocity of rotation. For a nonrelativistic
system in an inertial reference frame, the Hamiltonian can be expressed as
the sum of two terms, one for the motion of the center of mass and the other
governing the internal dynamics of the system. This same separation can be
performed for a rotating system, and it will be hereafter assumed that H ′

determines the bound state energy spectrum and that J refers to the total
relative angular momentum of the constituent particles. From (7.41) it follows
immediately that the energy eigenvectors of the Schrödinger equation are the
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same in the rotating and inertial frames, but the eigenvalues of the initially
degenerate magnetic substates now depend on the magnetic quantum number
mJ (i.e., the eigenvalues of Jz, where the quantization axis is identified with
the axis of rotation). Two substates of the same manifold differing in mag-
netic quantum number by ΔmJ = 1 are separated by the energy (frequency)
interval Ω. In keeping with the aforementioned analogy, the additional term
in (7.41) has the form of the magnetic Hamiltonian HM = −(q/2mc)L · B for
a bound charged particle with orbital angular momentum L. In other words,
the isomorphic relation

Ω ⇐⇒ qB

2mc
(7.42)

has the opposite sign to that of Larmor’s theorem (7.37). This is to be ex-
pected, since in Larmor’s theorem ΩL was chosen to cancel (to first order)
the effects of the extant magnetic field. It is also important to note that the
quantum mechanical generator of rotations J is not necessarily identical with
L, but can include nonclassical contributions from electron and nuclear spin
angular momenta.

The fact that rotation formally influences the energy eigenstates of a quan-
tum system as if a magnetic field were present suggests that intrinsically achi-
ral rotating atoms and molecules should display optical activity analogous to
the Faraday effect. Suppose such a sample to be irradiated with LCP or RCP
light of amplitude E0 and frequency ω propagating parallel to the axis of ro-
tation. The interaction between the molecule and light is governed principally
by the electric dipole Hamiltonian

HE = −μ · EL,R = −1
2
E0

(
μ∓eiωt + μ±e−iωt

)
, (7.43)

where
μ± = μx ± iμy , (7.44)

and the upper and lower signs correspond respectively to LCP and RCP. In
contrast to the analysis of Sect. 7.2, the rotation-induced optical activity which
we are now considering does not arise as an interference between electric and
magnetic dipole interactions, and we can neglect here the contribution of the
latter which is ordinarily weaker than the former by the ratio v/c, where v is
the bound electron speed. (When the angular momentum J derives exclusively
from electron and nuclear spins, however – as in the case of ground-state
hydrogen hyperfine states – the magnetic dipole coupling plays an important
role [209].)

Let us assume that the ground state |0〉 of the system is an S state. It
then follows from first-order time-dependent perturbation theory that the
perturbed state vectors |ΨL,R〉 contain contributions from virtual transitions
to higher P states. Calculation of the electric dipole moments induced by LCP
and RCP light

〈μ〉L,R = Re〈ΨL,R|μ|ΨL,R〉 = αL,REL,R (7.45)
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then leads to the chirally inequivalent polarizabilities

αL,R =
1
�

∑

n

Ωn0μ
2
n0

Ω2
n0 − (ω ±Ω)2

, (7.46)

where
μ2

n0 ≡ |〈n|μ+|0〉|2 = |〈n|μ−|0〉|2 , (7.47)

and Ωn0, given by (7.31), is the energy interval between the ground state
and excited state n. Only P states with mL = 1 enter expression (7.46),
the contributions from states with mL = −1 having already been included
through prior use of the symmetry in relations (7.47).

Neglecting, for simplicity, the possible distinction between the electric field
of the incident wave and the local electric field at a molecular site – an approx-
imation that could, if necessary, be improved by means of the Lorentz-Lorenz
formula [210] – we deduce the LCP and RCP dielectric constants and refrac-
tive indices from the relation

εL,R = 1 + 4πηαL,R = n2
L,R , (7.48)

where η is again the number of molecules per unit of volume. From (7.48) it
then follows that matter in rotation should exhibit a circular birefringence of
the form

nL − nR ≈ 8πη
�

∑

k

Ωn0μ
2
n0

(Ω2
n0 − ω2)2

ωΩ , (7.49)

which is linearly proportional to the angular frequency of rotation Ω.
The predicted effect is quite small in comparison to the circular birefrin-

gence (7.18) of a naturally optically active medium. For the same conditions
as before of a sample with the density of water, a resonance at 100 nm, and
a red probe beam of 600 nm, (7.49) leads to a proportionality coefficient of
∼ 2.3 × 10−18 s, where we have approximated the dipole matrix element by
the product of electron charge and the Bohr radius. The consequences of this
circular birefringence, however, are not beyond detection. Thus, for a rotation
rate of 100 Hz (which is probably close to the upper limit of what is achiev-
able in the laboratory) and a total path length of 10 m (obtained by multiple
reflection of the light through the sample), one could expect an optical ro-
tation of about 4 × 10−6 degrees. Note that multiple passage of the light is
helpful here, because the phenomenon is analogous to the Faraday effect. Use
of a nonresonant ultraviolet probe beam could enhance the signal by one to
two orders of magnitude.

Established techniques such as photoelastic modulation and synchronous
detection can detect Faraday rotations with a sensitivity of 10−4 degrees,
while recently developed laser polarimeters, designed for the study of optical
activity associated with parity violations in atoms, can detect optical rotations
at the level of 10−6 degrees with an expectation of improvement by several
orders of magnitude [211].
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The phenomenon of rotational optical activity, analyzed above within the
framework of quantum mechanics, is amenable, as well, to a classical mechan-
ical interpretation [212] which affords a visual image of the effect of classical
forces on the orbits of the bound electrons. According to this viewpoint, it is
principally the Coriolis pseudo-force that acts differently on particles circu-
lating in clockwise or counterclockwise orbits as driven by the electric field of
incident circularly polarized light. This leads to chirally inequivalent orbital
radii, and therefore to different polarizabilities and refractive indices.

It is instructive to examine this point of view more closely in the simple
case of a model atomic system with single particle of mass m and charge q
in an isotropic harmonic oscillator potential U(r) = mΩ2

0r
2/2 with angular

frequency of oscillation Ω0. If the particle is subjected to an electromagnetic
plane wave E(t) of angular frequency ω propagating parallel to the rotation
axis of a frame rotating with angular velocity Ω, it experiences an effective
force6

F eff = F − 2m(Ω × v) −mΩ×(Ω × v) , (7.50)

where the ‘true’ force, determined in an inertial frame, is

F = −∇U(r) + qE . (7.51)

The second and third terms in (7.50) will be recognized as the Coriolis and
centrifugal pseudo-forces.

Solution of Newton’s equation of motion in the rotating frame

m
d2r

dt2
= F eff (7.52)

for the magnitudes of the steady-state coordinates rL, rR produced by LCP
and RCP waves, respectively, leads to the polarizabilities

αL,R =
q2/m

Ω2
0 − (ω ±Ω)2

, (7.53)

and ultimately to the circular birefringence

nL − nR ≈ 8πηq2

m

ωΩ

(Ω2
0 − ω2)2

. (7.54)

In both the quantum and classical analyses the plane of polarization is rotated
clockwise for an observer facing the light source.

6 We have again separated the center of mass motion and the internal or relative mo-
tion. Equation (7.50) is the force on the ‘relative’ particle in a two-particle system
– i.e., the hypothetical particle whose mass is the reduced mass m1m2/(m1 +m2)
and whose velocity is the relative velocity v2 − v1. If the mass of one particle is
much greater than that of the other, then the motion of the bound particle with
smaller mass is virtually the same as that of the ‘relative’ particle.
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One can formally correlate the classical expressions in (7.53) and (7.54)
with the quantum mechanical expressions of (7.46) and (7.49) by identifying
the classical dipole moment qr with the matrix element μn0 and the oscillation
frequency Ω0 with the resonance frequency Ωn0 (for a particular state n in
the summation), and equating twice the potential energy mΩ2

0r
2 to �Ωn0.

From (7.42) it is seen that the magnetic analogue of the Coriolis force is
the Lorentz force

F M =
q

c
v × B , (7.55)

and one could account classically for the Faraday rotation by a formally identi-
cal mathematical analysis. There is an important distinction between the two
forces, Lorentz and Coriolis, however, which illustrates the limitations of the
analogy between magnetism and rotation. Note that the chiral polarizabilities
(7.53) are independent of the sign of charge for both the Faraday effect and
rotational optical activity, although the Coriolis and Lorentz forces differ in
this respect. Consider first the magnetic case illustrated in the left hand side
of Fig. 7.7. If the charge q is positive, it is driven by an incident LCP wave
(traveling parallel to the magnetic field) to orbit counterclockwise as viewed by
an observer facing the source. The Lorentz force then accelerates the particle
radially outward . If the charge is negative, the LCP wave drives it clockwise,
but the Lorentz force, whose direction is also reversed, again accelerates the
particle radially outward . In either case the LCP wave leads to an orbital ra-
dius, and therefore polarizability and refractive index, larger than those in the
absence of the magnetic field. Correspondingly, a RCP wave leads to a smaller
refractive index, with the result that the birefringence (7.54) is positive.

Since the Coriolis force, unlike the Lorentz force, is not proportional to
electric charge, it accelerates counter-circulating positive and negative parti-

Fig. 7.7. Effects of Lorentz and Coriolis forces on a charged particle driven by an
incident traveling wave E of left circular polarization. Irrespective of the sign of
charge q, the Lorentz force of a magnetic field B parallel to the wave vector of the
light is directed radially outward. The Coriolis force, attributable to a frame rotating
with angular velocity Ω parallel to the wave vector of the light, is directed outward
for a positive charge and inward for a negative charge. The instantaneous particle
velocities and accelerations are v± and a± where ± specifies the sign of the charge
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cles in opposite radial directions as shown in the right hand side of Fig. 7.7.
From relation (7.42), it is seen that reversing the sign of the charge in a mag-
netic configuration actually corresponds to reversing the angular velocity of
the rotating reference frame in the present circumstance. We are consider-
ing, however, a fixed sense of rotation. One might intuitively think, therefore,
that by the foregoing argument the Coriolis force should lead to nL > nR

for a positive charge and nR > nL for a negative charge – but this is not so.
With account taken of all contributions to (7.50), it is found that the sign of
q determines the relative orientation (parallel or antiparallel) of EL,R and the
corresponding rL,R, but not the magnitude of rL,R.

Looked at from an inertial frame, the inequivalent action of LCP and RCP
radiation is effectively attributable to the Doppler effect. A LCP wave of fre-
quency ω propagating parallel to the axis of a frame rotating with angular
frequency Ω is perceived to have the frequency ω+Ω by an inertial observer.
Similarly, the inertially measured frequency of the corresponding RCP wave
would be ω−Ω. Thus, LCP and RCP waves of the same frequency in the ro-
tating reference frame have different frequencies in an inertial reference frame
in which case the chiral asymmetry expressed by (7.53) can be interpreted as
a consequence of the frequency dispersion of the polarizability function. For
a fixed sense of mechanical rotation, only the sense of rotation of the elec-
tric field of the incident light matters, and not the sign of the charge of the
particle.

In general, theoretical analyses of terrestrial atomic and molecular systems
ordinarily take for granted at the outset that the frame of reference is inertial,
and actual experiments are usually executed under such conditions that this
assumption is thought to be adequate. In point of fact, of course, the Earth
is not an inertial frame, and the manifestations of the Earth’s rotation on
macroscale systems, both mechanical (e.g., Foucault pendulum) and electro-
magnetic (e.g., Sagnac effect, discussed in [212]), have been known for a long
time. Neutron interferometry has made it possible to demonstrate the effect
of the Earth’s gravity and diurnal rotation on a quantum system [213]. Such
experiments, which employ beams of free neutrons, raise interesting questions
regarding the influence of the Earth’s spin on the optical properties of bound-
state systems. Would it be possible, for example, to observe optical activity
induced in materials by the Earth’s rotation where Ω/2π = 1.2 × 10−5 Hz?
The coresponding optical rotations would be smaller than those calculated for
a rapidly rotating laboratory turntable by some seven orders of magnitude,
and, until the present, were beyond the sensitivity of any technique known to
the author. Nevertheless, the field of polarimetry has been advancing rapidly,
and developments in ring-laser interferometry, in particular, give cause for
a cautiously optimistic response [214].

A ring laser interferometer is a self-excited optical oscillator in which two
counter-propagating beams can be made to interfere upon exiting through
a mirror. If the ring is subject to a nonreciprocal effect on the two beams, the
interference fringes will be shifted. One such cause, referred to as the Sagnac
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effect, would be a rotation of the rest frame of the interferometer. A second
cause would be a circularly birefringent sample – either natural or rotationally
induced – in one arm of the interferometer. It is instructive to examine the
Sagnac effect briefly in order to appreciate the degree of sensitivity of ring
laser interferometry.

Consider two light beams (angular frequency ω and wavelength λ) propa-
gating in opposite senses around a circular ring interferometer of radiusR. The
circular geometry is not required, but is merely simpler to treat for purposes
of illustration than a polygonal geometry. If the interferometer is stationary,
the two waves, issuing from a common point on the ring, return to that point
with a time difference Δt = 0. However, if the interferometer is rotating at
an angular frequency Ω = v/R, where v is the linear speed of a point on
the ring, then the wave propagating in the direction in which the interfer-
ometer is circulating will complete a revolution in a longer period than the
counter-propagating wave. The difference in periods is then given by

Δt = 2πR
(

1
c− v − 1

c+ v

)
=

4πRv
c2 − v2 ≈ 4AΩ

c2
, (7.56)

in which the ring area is A = πR2, and a nonrelativistic speed (v � c) is
assumed in the last relation of (7.56). The phase difference between the two
beams is

φ = ωΔt ≈ 2πc
λ

4AΩ
c2

=
8πAΩ
λc

. (7.57)

Analyses of ring laser performance [215] have shown that a ring of ap-
proximately 1 m2 area, operating at a single mode at 633 nm (the red line of
a helium–neon laser) with state-of-the-art dielectric mirror coatings, ought to
be able to detect variations in the rotation of the Earth at the level of parts
per million, or, in other words, phase shifts

Δφ =
8πA
λc

ΔΩ , (7.58)

where ΔΩ ∼ 10−6ΩEarth, with ΩEarth = 7.3 × 10−5 rad/s. Insertion of the
preceding numerical values into (7.58) indicates that a state-of-the-art ring
laser interferometer ideally should be capable of detecting phase differences
as small as ∼ 10−11 radians. If the interferometer is stationary but contains
a circularly birefringent sample (Δn = |nL − nR|), then the phase shift that
results takes the form

Δφ =
2πd
λ

Δn , (7.59)

in which the optical path length difference d = 2πR. It then follows from (7.59)
and (7.58) that the birefringence equivalent to a given variation in angular
rotation rate is

Δn =
2R
c

ΔΩ , (7.60)

which leads to a resolvable index difference of Δn ∼ 3 × 10−19. This value
is a factor 10 smaller than the predicted anisotropy realizable by the Earth’s
rotation for nonresonant radiation with ‘detuning’ parameter ω/Ω0 ∼ 0.95.
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Ring-laser interferometers of this projected sensitivity and better are un-
der construction or in development at various laboratories in North America,
Europe, and New Zealand. For example, as of 2001, the University of Can-
terbury’s UG1 ring laser with area of approximately 367 m2, constructed in
the Cashmere Cavern in Christchurch, New Zealand, became fully operational
and has been used to investigate the subtleties in the Earth’s rotation.7 An
even larger laser of 800 m2 is in planning. Size alone, of course, does not lead
to enhanced resolutions; there are critical issues of thermal and mechanical
stability, and numerous sources of noise to overcome. Nevertheless, it would
seem that the prospects of detecting the optical activity engendered in atoms
by the Earth’s rotation should be feasible.

7.4 ‘Electron Activity’ in a Chiral Medium

If left and right circularly polarized light interact differently with chiral mat-
ter, then one may also expect to find a difference in the scattering of ‘spin-up’
and ‘spin-down’ electrons (or other massive spin-1/2 particles like neutrons
or protons) by chiral matter. Although photons are bosons and electrons are
fermions, the state of polarization of both kinds of particles is representable
by a mathematical formalism employing two-dimensional spinors and 2 × 2
density matrices. The reason for this, as has been pointed out previously, is
that a massless particle is characterized by two helicity states, i.e., the projec-
tion S · p/|p| = ±S of intrinsic angular momentum S on linear momentum
p, and not by 2S + 1 spin substates. We will now examine again the process
of forward scattering, but in a more general way so as to include other chiral
processes besides that of the rotation of the plane of polarization.

Forward elastic scattering is a coherent process in that there is a well de-
fined phase relationship between the waves issuing from each scattering center
in the target material, as illustrated in Fig. 7.8. As a simple system illustrating
the connection between optical parameters and scattering parameters, con-
sider first a beam of scalar particles incident on a thin slab (thickness d) of
achiral molecules of number density η. The incident wave function ψinc ∼ eikz

is taken to be a plane wave propagating along the positive z axis with wave
vector (i.e., linear momentum in units of �) k = kz. The total wave at a point
a distance z above the thin slab is then the superposition of the incident plane
wave and secondary spherical wavelets issuing from each scattering center

ψ(z; d) = eikz + ηd

∞∫

z

eikrf(k, ϑ)2πrdr
r

, (7.61)

where the (complex-valued) scattering amplitude f(k, ϑ) is a function of k
and the scattering angle ϑ = cos−1(z/r). Upon expanding f(k, ϑ) in a Taylor
7 The Canterbury Ring Laser [216].
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Fig. 7.8. Forward scattering of a beam of particles, described by a plane wave
function of wave vector k, incident upon a thin slab of material with η scatterers
per unit volume. The amplitude of the wave a distance Z above the plane is a linear
superposition of the incident plane wave and secondary spherical wavelets emitted
from all points of the slab

series in ϑ, imposing the far-field condition (ϑ→ 0), and discarding the rapidly
oscillating contribution of the upper limit leads to the transmitted wave

ψ(z; d) = eikz

[
1 +

2πiηd
k
f(k)

]
≡ (1 + iGd)ψinc(z) . (7.62)

(Although it is not mathematically rigorous simply to drop the ill-defined term
resulting from the upper limit, the integral can be made convergent by the
expedient of adding a positive imaginary term to the wave vector.) From the
second expression in (7.62) it is clear that the effect of transmission through
a finite slab of thickness D can be derived by regarding the sample as an
infinitely large number of differentially thin layers to obtain

ψ(z;D) = lim
N→∞

(
1 + i

GD

N

)N

ψinc(z) = eiGDψinc(z) = eik(ñ−1)Dψinc(z) .

(7.63)
The last expression in (7.63) is the general form of an optical wave that
has propagated a distance D through a medium of complex refractive index
ñ = n+ iκ.

From (7.62) and the last two relations in (7.63) we see that the scattering
amplitude and complex refractive index are related by

ñ = n+ iκ = 1 +
2πη
k2
f(k) =⇒

⎧
⎪⎨

⎪⎩

n− 1 =
2πη
k2

Ref(k) ,

κ =
2πη
k2

Imf(k) .
(7.64)
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The relative intensity of the transmitted wave is then

I(k) =
∣∣
∣
∣
ψ(z;D)
ψinc(z)

∣∣
∣
∣

2

=
∣
∣
∣eik(ñ−1)D

∣
∣
∣
2

= e−2kκD = e−σηD , (7.65)

where the last expression in (7.65) is an outcome of the definition of the total
scattering cross-section σ and leads to the relation

κ =
η

2k
σ . (7.66)

Equating the expressions for κ in (7.64) and (7.66) leads directly to the quan-
tum mechanical optical theorem8

σ =
4π
k

Imf(k) . (7.67)

Let us now return to the problem of particle transmission through a chiral
medium. The basis states are taken to be spinors

|ψ1〉 =
(

1
0

)
, |ψ2〉 =

(
0
1

)
,

representing respectively ‘spin-up’ and ‘spin-down’ states where the axis of
quantization (z) and two other mutually orthogonal coordinate axes (x, y)
are defined in terms of the wave vectors of the particle k, k′ before and after
scattering as follows:

x =
k′ − k

|k′ − k| , y =
k × k′

|k × k′| , z =
k + k′

|k + k′| . (7.68)

It may be shown that the coordinate axes form a right-handed triad with
unit vectors satisfying x · y × z = 1 for forward elastic scattering (|k′| =
|k| ≡ k), which is the case of interest here. Actually, the familiar terminology
‘up’ and ‘down’ is not as appropriate as ‘parallel’ and ‘antiparallel’ under the
present condition where the quantization axis coincides with the direction of
propagation. The states |ψ1〉 and |ψ2〉 are then electron states of helicity ±1/2
whose optical analogues are left and right circularly polarized light.

The forward scattering amplitude f(k) must now be replaced by an inter-
action matrix F (k)

F (k) =
(
F11 F12

F21 F22

)
= F01 + F1(σ · x) + F2(σ · y) + F3(σ · z)

= F01 + F1σ1 + F2σ2 + F3σ3 , (7.69)
8 For a more rigorous derivation of the optical theorem see, for example, [203]

pp. 201–202.
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which is expressed above in a basis (1,σ) of the unit 2 × 2 matrix and Pauli
spin matrices. For the problem under discussion, several symmetries pertain
which reduce the general interaction (7.69) to diagonal form in the chiral
basis [217]. First, because the origin of chirality lies in the geometric struc-
ture of molecular targets which interact with the electron projectiles via the
electromagnetic interaction, the scattering matrix F must be time-reversal
invariant, i.e., TFT−1 = F , where T is the time-reversal operator, i.e., an op-
erator reversing the sequence of events in a scattering process and the sense
of rotation of angular momenta. T therefore effects the following transforma-
tions: k → −k′, k′ → −k, and σ → −σ, whereupon T (σ · x)T−1 → −σ · x,
all other terms in (7.69) remaining invariant. Thus the component F1 = 0 for
F to be time-reversal invariant. Second, in forward scattering the initial and
final wave vectors are parallel, whereupon y = 0, and the component F2 can
be eliminated. The final form of the interaction matrix is then

F = F01 + F3σ3 =
(
F0 + F3 0

0 F0 − F3

)
. (7.70)

Substitution of F in place of f in (7.62) and (7.63), and application of the
identity

eik·σθ = 1 cos θ + i(k · σ) sin θ ,

which we have used previously in the book, leads to the state vector

|ψ〉 = eikzeiQ0

(
eiQ3z 0

0 e−iQ3z

)
|ψinc〉 (7.71)

and density matrix

ρ = |ψ〉〈ψ| =

(
e−2Im(Q0+Q3)ρ

(0)
11 e2iReQ3e−2Im(Q0−Q3)ρ

(0)
12

e−2iReQ3e−2Im(Q0−Q3)ρ
(0)
21 e−2Im(Q0−Q3)ρ

(0)
22

)

,

(7.72)
where the amplitudes appearing in the exponential are defined by

Q0 ≡ 2πηz
k
F0 , Q3 ≡ 2πηz

k
F3 , (7.73)

and ρ(0) is the density matrix of the incident beam.
From the form of the density matrix (7.72), we can distinguish at least

four distinct kinds of chiral signals in forward scattering:

• creation of a longitudinal polarization in an initially unpolarized beam,
• attenuation of the longitudinal polarization in an initially polarized beam,
• difference in the intensity of transmitted beams of initially opposite longi-

tudinal polarizations,
• rotation of the transverse polarization in an initially polarized beam.

We now examine these effects in more detail.
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7.4.1 Longitudinal Polarization

Consider an incident unpolarized electron beam characterized by the density
matrix

ρ(0)unp =
(

1/2 0
0 1/2

)
, (7.74)

which contains only relative state populations and no coherence terms. Sub-
stitution of the elements ρ(0)ij into (7.72) likewise leads to a density matrix
with no coherence terms, but with unequal populations of spin-parallel and
spin-antiparallel electrons, giving rise to a longitudinal polarization

P3 ≡ ρ3
ρ0

=
ρ11 − ρ22
ρ11 + ρ22

= − tanh
[
2πηz
k

Im(F3)
]

= − tanh
[
1
2
ηz(σp − σa)

]
.

(7.75)
The last expression in (7.75) follows from the optical theorem, (7.67), in which
σp and σa are the total elastic scattering cross-sections respectively for helicity
+1/2 and helicity −1/2 electrons.

Two experimental procedures based on (7.75) are to measure:

• the growth of P3 as a function of path length z through the chiral medium,
• the variation in P3 as a function of the wave number k (or correspondingly

the particle energy).

The latter measurement yields a signal which is the analogue of the optical
phenomenon of circular dichroism, i.e., the variation in differential absorption
of circularly polarized light with wavelength.

If the incident beam is partially polarized but still incoherent, then the
density matrix elements and the initial longitudinal polarization P (with
|P | ≤ 1) are related by

particle conservation ρ
(0)
11 + ρ(0)22 = 1 ,

initial polarization ρ
(0)
11 − ρ(0)22 = P ,

(7.76)

from which it follows that the initial density matrix can be expressed in the
form

ρ
(0)
pol =

⎛

⎜
⎝

1
2
(1 + P ) 0

0
1
2
(1 − P )

⎞

⎟
⎠ . (7.77)

Using relations (7.77) and (7.73), one can readily show that the density matrix
(7.72) after passage of the beam through a chiral medium of length z and
molecular density η, is expressible as

ρ =

⎛

⎜
⎝

1
2
(1 + P )e−ηzσp 0

0
1
2
(1 − P )e−ηzσa

⎞

⎟
⎠ . (7.78)
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Besides measuring the longitudinal polarization (see Fig. 7.9), which with
a little algebraic manipulation can be cast into the form

P3 =
ρ11 − ρ22
ρ11 + ρ22

=
P − tanh

[
1
2
ηz(σp − σa)

]

1 − P tanh
[
1
2
ηz(σp − σa)

] , (7.79)

an equivalently useful experimental procedure in this case is to measure the
intensity of the beam

I(P ) ∝ Tr(ρ) =
1
2
(1 + P )e−ηzσp +

1
2
(1 − P )e−ηzσa (7.80)

for initial polarizations +P and −P and take the difference to enhance the
chiral contribution to the signal. This yields the differential chiral transmission
(DCT)

DCT(P ) =
I(P ) − I(−P )
I(P ) + I(−P )

= −P tanh
[
1
2
ηz(σp − σa)

]
, (7.81)

which vanishes for an initially unpolarized beam or for an achiral medium.
Under the circumstance (common for naturally optically active organic com-
pounds) that the difference in chiral cross-sections is sufficiently small that

Fig. 7.9. Variation in longitudinal polarization as a function of ξ = ηz(σp − σa)/2
for (a) an initially unpolarized beam (plot of −P3 = tanh ξ), and polarized beams
with initial polarization P equal to (b) 0.2, (c) 0.4, (d) 0.6, (e) 0.8, (f) 0.9, (g) 0.99.
[Plot of P3 given by (7.79)]
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one need retain only the first term in a Taylor series expansion of the hyper-
bolic tangent, the DCT is then linearly proportional to the difference in chiral
cross-sections

DCT(P ) ≈ −1
2
Pηz(σp − σa) = −Pηzσσp − σa

σp + σa
, (7.82)

where the mean cross-section

σ =
1
2
(σp + σa)

is inferable from the imaginary part of the complex refractive index of an
enantiomeric mixture of the two chiral forms.

One sees that (7.75), (7.79), and (7.81) all provide the same information,
although the three experimental procedures to which these signals correspond
are not necessarily implementable with equal facility or likely to yield the
same signal-to-noise ratios.

7.4.2 Transverse Polarization

Consider next an incident beam of electrons whose wave function is a linear
superposition of helicity states

|ψ±〉 =
1√
2

(|ψ1〉 ± |ψ2〉
)
, (7.83)

resulting in the initial density matrix

ρ
(0)
± =

1
2

(
1 ±1
±1 1

)

. (7.84)

The optical analogue of the states in (7.83) – suggested by the inverse of (7.1)
and (7.2) – is a coherent superposition of left and right circular polarizations
leading to linearly polarized light oriented along the x and y axes, respectively.
Insertion of the elements of (7.84) into the density matrix (7.72) leads to
transverse polarization components

P1 ≡ ρ1
ρ0

=
ρ12 + ρ21
ρ11 + ρ22

= ± cos
[
Re(2Q3)

]

cosh
[
Im(2Q3)

] , (7.85)

P2 ≡ ρ2
ρ0

= − i(ρ21 − ρ12)
ρ11 + ρ22

= ∓ sin
[
Re(2Q3)

]

cosh
[
Im(2Q3)

] , (7.86)

and a longitudinal polarization given by (7.75). Equations (7.85) and (7.86)
represent a rotation of the transverse polarization by the angle

θ = Re(2Q3) =
4πηz
k

Re(F3) ⇐⇒ k(np − na)z , (7.87)
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which, for an observer facing the particle source, is in a clockwise sense for
Re(F3) > 0 and counterclockwise for Re(F3) < 0. The last expression in (7.87),
based on the relation between scattering amplitude and refractive index in
(7.64), indicates the correspondence with the phenomenon of optical rotation
in which np − na is the difference in refractive indices for spin-parallel and
spin-antiparallel electrons.

It is of interest to note that the transverse polarization, which is a measur-
able quantity, rotates through twice the angle that the state vector, which is
not a measurable quantity, rotates upon passage through the chiral medium.
[Compare the angles in (7.87) and in (7.7) which, with replacement of ω/c by
k, applies to electrons as well as to light.] There is no inconsistency here. We
have encountered this feature before in a different context in the discussion in
Chap. 5 of spinor rotations and quantum jumps. Although the electron state
vector or wave function is not observable, the phase of the spinorial part of
a wave function linearly superposed with a reference wave is an observable
quantity. Also to be noted is the contrast in experimental significance be-
tween the wave function of an electron and the electric field [e.g., in (7.6)] of
a classical light wave. The former is a mathematical function associated with
probability, whereas the latter is associated directly with a classical force and
is consequently a measurable quantity.

Because the difference in chiral cross-sections for the scattering of elec-
trons from naturally optically active molecules is ordinarily very small, exper-
iments to observe the manifestations of such scattering are difficult. The first
reported case [218] of polarized electron transmission through the vapor of op-
tically active camphor was not replicable and has been attributed to instru-
mental artifacts. A successful observation of electron optical dichroism was
eventually achieved [219, 220] by enhancing electron scattering through the
addition of an ytterbium atom to camphor-based organic molecules to form
the jaw-breaking compound tris[(3-heptafluorpropylhydroxymethylene)cam-
phorato]ytterbium or more simply Yb(hfc)3 – and analogous compounds with
other heavy lanthanoid metal atoms. The experimentally observed differential
chiral transmission, quantified in (7.81) and (7.82), is shown in Fig. 7.10 as
a function of electron energy. Asymmetries in transmission on the order of
10−4 were observed, which, for the reported experimental conditions, implied
a comparable magnitude for the ratio (σp − σa)/(σp + σa).

In the experiment cited above, the researchers created an incident beam of
transversely polarized electrons with P ∼ 0.4 by irradiating a photoemissive
GaAs cathode with circularly polarized light. The sense of circular polariza-
tion of the light, and therefore the sign of P of the electrons, was switched
harmonically by means of an electro-optic switch known as a Pockels cell. Be-
fore the electron beam entered the cell containing the chiral target molecules,
the electron polarization was rotated from the transverse to longitudinal direc-
tion by a Wien filter, a device with crossed electric and magnetic fields usually
employed as a velocity selector. After passage of the beam through the sample
cell, the electron polarization was converted again to a transverse polarization
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Fig. 7.10. Differential chiral transmission (DCT) of electrons of energy E through
a vapor of chiral molecules D-Yb(hfc)3 (filled circles) and L-Yb(hfc)3 (open circles).
Error bars indicate the statistical uncertainty whenever it is larger than the symbols
denoting the measured asymmetry. (Adapted from Mayer et al. [219])

by a second Wien filter and measured by means of a Mott analyzer. In a Mott
detector the electrons are accelerated to energies on the order of 100 eV and
made to scatter from a thin metal foil (usually gold) of high atomic number.
This Mott scattering – i.e., the Rutherford scattering of charged spin-1/2 par-
ticles – is spin-dependent because of a spin–orbit interaction of the projectile
electrons with the atoms in the foil.

The foregoing brief description of the first successful detection of electron
optical activity gives no hint of the numerous small instrumental effects that
had to be eliminated or compensated for. For that the reader must consult
the original literature. As one who has himself struggled to detect for the
first time another weak chiral signal of comparable difficulty (discussed in
the following section), I express my admiration for this elegant experiment.
Other experiments have since been done to observe the asymmetric scattering
(DCT) of polarized electrons by organic thin films of chiral molecules [221]. As
of this writing, I am not aware of experiments that have observed the electron
analogue of optical rotation (of the transverse polarization).

Besides its intrinsic interest as a quantum phenomenon or its potential
application as a source of polarized particles, the preferential interaction
of spin-polarized electrons with chiral molecules has attracted attention as
a conceivable mechanism leading to the homochirality of terrestrial organ-
isms. Numerous such mechanisms have been proposed over the years, but
as of this writing I know of none that is regarded as definitive. Any viable
mechanism must contend with the likelihood that precursors of biologically
significant molecules existed in racemic mixtures. However, the production of
spin-polarized electrons by beta decay of terrestrial elements could provide one
reasonably common process that violates parity conservation. Perhaps it was
the case that beta electrons selectively decomposed, or in some way rendered
less stable, one of the two enantiomeric forms of certain critical molecules.
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Moreover, the efficacy of such a mechanism would be expected to be greater
for molecules adsorbed on solid surfaces than in gas phase or solution [222].
Future experiments to ascertain whether polarized electrons engender dissym-
metric chemical transformations should help resolve the matter.

7.5 Chiral Light Reflection

Augustin Fresnel (1788–1827) was one of those few scientific geniuses who
died very young (39 years), yet accomplished so much as to have his name
perpetuated all throughout his field of endeavor (physical optics). A glance
through the index of a standard optics textbook would reveal his eponymous
diffraction, integral, reflectance and transmittance relations, double-mirror
experiment, double-prism device, lens (used for many more purposes than
lighthouses), and zone plate, to mention a few. It was Fresnel who, more than
anyone else before Maxwell, wrought the change in paradigm from a corpus-
cular theory to a wave theory of light. Of particular interest here, however,
are his researches on light reflection and optical activity.

To my knowledge, Fresnel was the first to:

(a) deduce the relative amplitudes for light reflection and refraction at the
interface of two transparent, homogeneous, isotropic, achiral media;

(b) conceive of the idea of transverse circularly polarized states of light, demon-
strate the existence of these states experimentally by separating an inci-
dent beam of unpolarized light into its circularly polarized components
(by multiple refraction through a composite prism of alternating left- and
right-handed quartz segments), and explain the phenomenon of optical
rotation as a manifestation of circular birefringence, i.e., the difference in
phase velocities of states of opposite circular polarization.9

One might have thought that Fresnel, having achieved (a) and (b) separately,
would have turned his attention subsequently to examining their ‘intersection’,
i.e., the reflection of light at the surface of an optically active material, but
I have seen no evidence to suggest he ever had.10 Perhaps the idea never
occurred to him; perhaps, in the crush of other thoughts that raced through his
fertile mind, he simply placed the project on the back burner and died too soon
to follow through; or perhaps, like Isaac Newton, who preferred the income and
prestige of becoming a high-ranking civil servant of the Crown, Fresnel may
9 A comprehensive discussion of light polarization and the theory and observation

of light reflection from a chiral medium is given in [7].
10 During the 1980s, when I held the Frederic Joliot Chair of Physics at the Ecole

Supérieure de Physique et Chimie in Paris, France, the office in which I worked
contained a large old volume of Fresnel’s complete works, musty and dusty from
lying many years unread. I may have missed it, but I found no mention of a theo-
retical or experimental exploration of light reflection and refraction at the surface
of an optically active medium.
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have lost interest in problems of ‘natural philosophy’ as he concentrated on
more practical matters as an employee of the French Lighthouse Commission.
In any event, he did not appear to pursue the matter of light reflection from
an optically active medium.

What is perhaps more surprising is that by the mid-1980s the experimen-
tal observation of light reflection from a naturally optically active material
was still unachieved. Furthermore, theoretical descriptions of the phenomenon
were not correct and had led to violations of energy conservation. In 1985,
shortly after publication of my correct theory of light reflection from a homo-
geneous, isotropic, transparent chiral medium [223] and its generalization to
absorbing chiral media [197], I began work with my students on the experi-
mental procedures to detect the predicted chiral effects [224]. The difficulty of
the endeavor may be gauged by the fact that the undertaking, initially thought
to require one summer, was successfully concluded with other colleagues seven
years later [204]!

Specular reflection of light is a form of coherent light scattering. Indeed,
the scattering amplitudes can be calculated quantum mechanically by de-
termining the oscillatory currents created in the receiving medium by the
incident electromagnetic field and then coherently superposing the radiated
secondary wavelets which, in their totality, comprise the reflected wave and
transmitted waves. I am not aware, however, that this calculation has ever
been done for light reflection from a chiral medium, since the scattering am-
plitudes, i.e., the chiral Fresnel relations, can be obtained more simply by
solving Maxwell’s equations with the appropriate chiral constitutive relations
and correct boundary conditions.

For both conceptual and practical reasons, there is considerable interest in
specular light reflection from a chiral medium. As the basis for a novel form of
spectroscopy of naturally chiral materials, reflection gives rise to a strong light
flux that can be detected by standard procedures for measuring voltage and
current, rather than by counting photons, and would facilitate investigations
of strongly absorbing materials and materials in micro-quantities such as thin
films. But there are obstacles. The net optical rotation or circular dichroism of
a beam propagating through a chiral medium increases with the optical path
length, as expressed by (7.7), (7.8) and (7.73). In effect, the chiral parameter
[equivalent to the circular birefringence (7.18)] is amplified by the ratio of
the optical path length to the optical wavelength, which for 500 nm visible
light passing through a 1 cm sample cell is about 20 000. Specular reflection
from a chiral medium, on the other hand, is a ‘one-shot’ process. For most
naturally optically active materials of interest, the chiral parameter is of the
order of one part in 105 or 106. The weakness of this signal level is best seen in
comparison. On the basis of electrodynamics alone, optical activity is strictly
forbidden in centrosymmetric systems such as atoms, as was pointed out in
Sect. 7.2. However, parity-nonconserving weak nuclear interactions give rise
to a circular dichroism in caesium and thallium atoms on the order of one part
in 105 or 106 and to an optical rotary power in bismuth on the order of one
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part in 107 [225]. Thus the experimental task of observing ‘classical’ optical
activity by reflection is of comparable difficulty to discerning the influence of
the nuclear weak interactions on atomic electrons.

Nevertheless, there are ways to achieve stronger chiral effects in reflection
by taking advantage of (a) sample symmetry and (b) signal enhancement.

(a) Symmetry

Most chiral materials are anisotropic. Although the intrinsic chirality of these
anisotropic substances is in many cases stronger than that of the few naturally
occurring isotropic chiral materials (e.g., sodium chlorate or bismuth silicon
oxide), the chiral contribution to the index of refraction of the medium is
largely dominated by the intrinsic linear birefringence, except for light polar-
ization along specific optical axes where the birefringence vanishes. For non-
vanishing linear birefringence, the chiral contribution appears as a quadratic
term in the index of refraction. Theoretical studies of light reflection from
birefringent, optically active media have shown, however, that the differen-
tial chiral (or circular) reflection (DCR), i.e., the counterpart to DCT of the
previous section, is linear in the chiral parameter(s), just as in the case for
isotropic media [226]. Thus, one can try to observe the DCR from anisotropic
samples with stronger intrinsic chirality.

(b) Enhancement

Theoretical analysis of light reflection at the interface of a transparent achiral
dielectric and a chiral medium (either transparent or absorbing) under condi-
tions permitting total reflection have shown that enhancement in the DCR by
several orders of magnitude is possible in the vicinity of critical angle [227].
Correspondingly, analysis of total reflection from a chiral amplifying medium
predicts that not only is the DCR enhanced, but circularly polarized light is
amplified [228].

Recognition that chiral effects in transmission are enhanced by increasing the
optical path length suggest by analogy that multiple reflections from a chiral
medium may also lead to an enhancement of the DCR. This, indeed, has been
found to be the case [229]. However, the two situations, although related, are
not identical, and the conceptual differences have significant implications for
experiment.

The net optical rotation of a light beam that has made an even number of
passes back and forth through a naturally optically active medium is zero, in
contrast to the additive effect of the Faraday rotation of a light beam multiply
reflected in a medium with magnetically-induced optical activity. The reason
for this was explained previously and is tied to the fact that, in the absence
of external fields, the only direction by which to define optical rotation is
the wave vector of the light. One sees an example of this in light reflection
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from a naturally optically active medium at normal incidence. The Fresnel
amplitudes derived from Maxwell’s equations with the physically correct set
of chiral constitutive relations lead to a null DCR at normal incidence even
though the medium has an intrinsic handedness.

A heuristic explanation of this puzzling feature may be sought in the mi-
croscopic model of reflection justified by the Ewald–Oseen extinction theo-
rem.11 According to the theorem, the incident light does not interact with the
reflecting medium at the surface only, but propagates into the medium and
is absorbed (i.e., extinguished), thereby inducing molecular dipoles to radiate
secondary waves that superpose coherently to form the reflected wave. (This is
precisely the quantum picture of coherent light scattering with which I began
the section.) At normal incidence this interaction is equivalent to a penetra-
tion of the wave by some characteristic thickness followed by reflection from
a perfect mirror. The reversal of wave helicity upon reflection leads to two
contributions of opposite circular polarization within the penetration depth,
and the net chiral effect (like optical rotation) vanishes. However, at larger
angles of incidence, the cancellation does not occur, and indeed one finds that
the predicted magnitude of the DCR reaches a maximum at a little beyond
Brewster’s angle, i.e., the angle at which incident unpolarized light becomes
100% linearly polarized upon reflection in the absence of optical activity.

In a similar manner, one might expect that multiple reflection of light from
a chiral medium at large angle of incidence could lead to an enhancement of
the DCR proportional to the number N of reflections. Theoretical analysis
shows, however, that although this enhancement does not occur for ordinary
reflection, a significant enhancement does occur in the case of total reflection
[228]. For light incident on a transparent chiral medium near critical angle,
the enhancement is to a good approximation proportional to N . For absorbing
media the functional relationship is more complicated, but the enhancement
is nevertheless substantial. Moreover, if the medium is absorbing, even weakly,
the range of incident angles over which enhancement occurs is sufficiently wide
to be of interest in spectroscopy or ellipsometry. Under these circumstances,
the use of a reflection-based method for investigating chiral materials would
compare favorably with the classical methods based on light transmission.

Figure 7.11 illustrates the pertinent geometrical features of light reflec-
tion at the interface of a transparent achiral medium (within which the light
originates) and a chiral medium (transparent or absorbing). The plane of in-
cidence, determined by the incident, reflected, and transmitted wave vectors,
is normal to the reflecting surface. Basis states for describing the electric field
of the three waves are designated σ or π, respectively, depending on whether
they are perpendicular (senkrecht in German) or parallel to the plane of inci-
dence. [These states of polarization are also referred to as transverse electric
(TE) and transverse magnetic (TM).] The angles of incidence (θ) and trans-

11 This theorem is discussed in detail for achiral media in [210, p. 100]. I am unaware
of a comparable mathematical treatment of chiral media.
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Fig. 7.11. Specular reflection at the interface of a chiral medium and achiral
medium. The wave vectors of the incident (ki), reflected (kr), and transmitted
(k+, k−) waves all lie in the plane of incidence. The angles of incidence (θ) and
transmission (φ+, φ−) are defined with respect to the normal to the interface. The
subscripts σ and π on the electric field basis vectors designate polarizations normal
and parallel to the plane of incidence, respectively

mission (φ±) are defined with respect to the normal to the reflecting surface
and are governed by the familiar relations:

Law of the mirror: angle of incidence = angle of reflection , (7.88)

Snell’s law of refraction: n0 sin θ = ñ± sinφ± , (7.89)

where n0 is the (real-valued) refractive index of the incident medium and

ñ± = ñ± g̃ (7.90)

are the (possibly complex-valued) refractive indices for RCP (upper sign)
and LCP (lower sign) states of light in a medium with chiral (also called
gyrotropic12) parameter g̃. It is assumed that the two media are intrinsically
nonmagnetic, whereupon the refractive indices and dielectric functions are
related by

ε0 = n2
0 , (7.91)

ε± ≡ ε± γ = ñ2
± = ñ2 ± 2g̃ñ+ g̃2 . (7.92)

In the familiar case of reflection of σ or π polarized light from a homogeneous,
isotropic achiral medium, there is no change in the polarization state of the
light. However, upon reflecting from a chiral medium, a σ or π polarized wave
acquires a (usually small) component of orthogonal linear polarization. We
can describe the reflected waves succinctly in matrix notation

(
rπ

rσ

)
=
(
a11 a12
a21 a22

)(
e′

π

e′
σ

)
=
(
a1 −iδ
iδ a2

)(
e′

π

e′
σ

)
, (7.93)

12 The term ‘gyrotropy’ derives from Greek roots meaning ‘turn in a circle’ and refers
to chiral optical phenomena like natural optical activity and the Faraday effect.
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where the elements aij are the chiral Fresnel amplitudes, and I have shown
in the cited references that the off-diagonal elements created by the chirality
of the reflecting medium take the antisymmetric form of the last expression
of (7.93). The exact expressions for the chiral Fresnel amplitudes are some-
what cumbersome and will be left to the original literature [197]. In view of
the weakness of the chiral parameter for naturally optically active substances,
one can reduce these amplitudes to the following simplified expressions

a1 ∼ cos θ − q
cos θ + q

, a2 ∼ (ε/ε0) cos θ − q
(ε/ε0) cos θ + q

, (7.94)

δ ∼ (ε/ε0)(z+ − z−) cos θ
(cos θ + q)

[
(ε/ε0) cos θ + q

] , (7.95)

in which

q =
(
ε

ε0
− sin2 θ

)1/2

(7.96)

and

z± =
(

1 − sin2 θ

ε±/ε0

)1/2

. (7.97)

The expressions in (7.94) and (7.96) will be recognized as the standard Fres-
nel relations for an achiral dielectric in which q is proportional to the normal
component (relative to the reflecting surface) of the wave vector of the trans-
mitted wave in the absence of optical activity. In the case of ordinary reflection
and transparent media, the dielectric functions and refractive indices are real-
valued, and (by use of Snell’s law) q corresponds to (n/n0) cosφ, where φ is
the angle of refraction. Under the same circumstances, but for a chiral reflec-
tor, z± corresponds to cosφ±. The chiral influence of the medium, as shown
in (7.95), appears principally in the factor z+−z−, which can be re-expressed
as a difference in chiral dielectric functions

z+ − z− =
ε0(ε+ − ε−) sin2 θ

ε+ε−(z+ + z−)
. (7.98)

Equation (7.98) is an exact relation. For a weakly chiral medium, however,
it reduces in the cases of ordinary reflection and total reflection at critical
angle13 to the following approximate relations:

Ordinary reflection: z+ − z− ∼ 2gn0 sin2 θ

εq
, (7.99)

Total reflection at critical angle: z+ − z− ∼ 2
√
g

n
. (7.100)

13 For a weakly optically active medium, the critical angles for LCP and RCP waves
are given approximately by

θ± ∼ θc ± g
p

n2
0 − n2

,
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Since |g| � 1, one sees from the square-root dependence in (7.100) the ad-
vantage of performing chiral reflectance measurements near critical angle.

The Fresnel amplitudes for reflected LCP and RCP waves can be deduced
from (7.93) by applying the transformation equivalent to (7.1) and (7.2)

(
rL

rR

)
=

1√
2

(
1 i
1 −i

)(
rπ

rσ

)
. (7.101)

It is not necessary, however, to obtain these amplitudes explicitly, because the
differential chiral reflection (DCR),

DCR ≡ IL − IR
IL + IR

=
|rL|2 − |rR|2
|rL|2 + |rR|2 , (7.102)

which is the experimental quantity of interest here, is deducible directly from
the scalar invariant r∗

π · rσ as follows [197]

DCR ≡ 2Im(rσ · r∗
π)

|rσ|2 + |rπ|2 =
2Re(a∗1δ + a2δ∗)

|a1|2 + |a2|2 + 2|δ|2 . (7.103)

For weakly gyrotropic media one can neglect the chiral contribution |δ|2 in
the denominator. Examination of the configuration corresponding to a chiral
Fabry–Perot interferometer, whereby waves introduced into an achiral layer
undergo an arbitrary numberN of reflections between upper and lower bound-
ing chiral media, have led to an exact closed-form expression for the DCR(N)
as a function ofN . For ordinary reflection, the maximum value of the DCR(N)
(in the vicinity of Brewster’s angle) is about the same as single-pass reflection.
However, at critical angle, DCR(N) ∼ 2N |δ|.

The first experiment to have observed successfully the DCR from a chiral
substance, a solution of the chiral molecule camphorquinone (Fig. 7.12) in
methanol, with chiral indices,

ñL,R = nL,R + iκL,R = (1.3327 + i1.46 × 10−4)
[
1 ∓ (0.94 + i6.02) × 10−7

]
,

where

sin θc =

√
n2 − κ2

n0
,

with n the mean refractive index and κ the mean absorption coefficient of the
chiral medium. The two critical angles are sufficiently close together that for
most practical purposes one can approximate them by the mean critical angle θc.
However, (7.100) was obtained by evaluating z+ − z− at θ−, whereupon

z+(θ−) =

s

1 − ε−/ε0

ε+/ε0
and z−(θ−) = 0 .

To have evaluated the expression at θc would result in z−(θc) being complex-
valued. For more details, see [226].
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Fig. 7.12. Mirror-image forms (enantiomers) of the molecule camphorquinone (2-3-
bornanedione), which is frequently used as a standard in the measurement of optical
activity. The chiral base, camphor, lacks the second (rear) oxygen atom, which is
replaced by two hydrogen atoms as at the other unsubstituted vertices

tested the theoretical predictions of enhancement by total reflection and mul-
tiple reflection. The reflection cell, shown in Fig. 7.13, was constructed of
fused silica (n0 = 1.4637) with two sample compartments which, depending
on whether they were filled with chiral solution or achiral solvent, permitted
0, 1, or 2 light reflections before the incident beam exited the cell. Because the
differential reflection, even with enhancement, was very small in magnitude,
one could not measure separately the reflection of left and right circularly
polarized light beams and take the difference. Instead, this difference was ob-
tained in a single measurement by modulating the phase of the incident beam,
derived from a xenon-arc lamp, at a fixed frequency (f = 50 kHz) with a pho-
toelastic modulator and using phase-sensitive detection to extract from the
output current I of the photodetector (a photomultiplier tube) the compo-

Fig. 7.13. Horizontal and vertical views of the two-compartment (C1, C2) fused-
silica reflection cell. The angle ABD of the rhombus is 68◦, which is close to the
theoretical critical angle 65.58◦. The DCR was measured under conditions where
none, one, and both of the compartments contained a chiral solution. (Adapted
from Silverman et al. [204])
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nents oscillating at 0 Hz (i.e., dc) and f . The sought-for experimental signal
was then obtained from the ratio I(f)/I(0) according to the formula

DCR =
I(f)/I(0)
2J1(φm)

(7.104)

(whose origin [197,222] is outside the scope of this chapter), where J1(φm) is
a Bessel function of order 1, and φm ∼ 2.4 (the first zero of the Bessel function
J0) is the modulation amplitude.

The results are shown in Fig. 7.14 which records the variation in DCR at
θ = 67◦ for one and two reflections as a function of light energy expressed
in the common spectroscopic unit of wavenumbers: 104 cm−1 ∼ 1.24 eV. At
21 000 cm−1 (476 nm), the DCR(1) was measured to be 17× 10−5 with a rms
noise of 10−6 when θ was adjusted as closely as experimentally possible to
θc = 65.58◦. Thus the measured signal represented an enhancement of nearly
300 times the signal level expected for a single-pass ordinary reflection. The
excellent match of theoretical prediction (7.102) and (7.103) and experimental
outcome (7.104), as shown in the figure, confirms the identity of the signal.

No DCR signal above noise was observed for reflection from compartments
filled with pure solvent. Furthermore, to ensure that the observed chiral sig-
nal did not arise from artifacts related to the absorption band of the cam-
phorquinone, measurements were also made for methanol and a concentrated
solution of the achiral dye Rhodamine 6G, which has nearly the same absorp-
tion spectrum as camphorquinone. No DCR was observed in this case either.

Fig. 7.14. Differential circular reflection (DCR) of light at 67◦ to the interface of
a chiral solution of camphorquinone dissolved in methanol and achiral fused silica. D
denotes a single chiral reflection; 2D denotes two chiral reflections. The solid curve
is the theoretical DCR calculated from the optical constants of the solution. The
energy of the light is expressed in wavenumbers (104 cm−1 = 1.24 eV). (Adapted
from Silverman et al. [204])
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Successful observation of the difference with which a chiral medium reflects
left and right circularly polarized light completed, in a certain sense, the ‘cir-
cle’ of Fresnel’s studies on light reflection and optical activity and has opened
the door to new spectroscopic and ellipsometric possibilities at a time when
the chirality of molecules is of especial concern for both practical reasons (e.g.,
in production of homochiral pharmaceutical products) and theoretical reasons
(e.g., the origin of homochirality as a hallmark of life on Earth). My colleagues
and I, however, did not attempt to separate spatially the two reflected cir-
cularly polarized components of an incident linearly polarized beam, as this
would have required a compound prism, like Fresnel’s, with a large number of
compartments alternately filled with chiral solutions of opposite handedness.
Fresnel had constructed his compound prism out of alternating enantiomor-
phic forms of quartz. The term enantiomorphic – rather than enantiomeric
– is employed because the optical activity of quartz derives from the helical
arrangement of intrinsically achiral silicon dioxide molecules. When melted,
a quartz crystal loses its optical activity. That was why the sample cell in
Fig. 7.13 could be constructed of fused quartz. Interestingly, as this chapter
was being written, a modern replication of Fresnel’s experiment employing
intrinsically chiral molecules of opposite handedness, was published [230]. In-
tensity plots recorded with a CCD camera showed separation of LCP and
RCP components from an incident linearly polarized light beam after passage
through 20 interfaces between enantiomerically opposite solutions.

7.6 Chirality in a Medium with Broken Symmetry

Quantum mechanics, as we have seen in Sect. 7.2, applied to the interaction
of light with a system that can undergo simultaneous electric and magnetic
dipole transitions – e.g., an enantiomeric form of a chiral molecule – leads
to left and right circularly polarized eigenstates of light propagating with
different phase velocities. The circular birefringence of this chiral medium is
expressed macroscopically by indices of refraction of the form shown in (7.19).
An intrinsically achiral medium subject to a chiral condition like rotation or
an external magnetic field, as discussed in Sect. 7.3, likewise gives rise to
circular birefringence, characterized for example by the refractive indices in
(7.49). The symmetries underlying the origin of circular birefringence in these
two cases are different as can be revealed by the different net optical rotation
of a linearly polarized light beam made to pass back and forth through the
medium.

We conclude this chapter by considering interesting features exhibited by
light passing through a medium that displays both kinds of optical activity-
i.e., an intrinsically isotropic, homogeneous chiral medium whose symmetry
is broken by the presence of an external field [231]. The most expedient way
to handle this case is to examine the constitutive relations of the medium.
Consider first the simpler case already treated of a field-free naturally optically
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active medium. As a consequence of the quantum interaction with light leading
to the perturbation, (7.30), it can be shown that the electric displacement field
D of the medium depends not only on the electric field E of the light, but
also on the variation in time of the magnetic field H [232]. Correspondingly,
the magnetic induction B of the medium depends not only on the magnetic
field H , but also on the variation in time of the electric field E. With use of
Maxwell’s equations to replace the time-derivatives of fields, the two relations
can be expressed in the compact form

D = ε(E − if k̂×E) , B = μ(H − if k̂×H) , (7.105)

in which the dimensionless quantitities ε and μ are respectively the mean
permittivity (dielectric function) and permeability of the medium, f is an
empirical chiral parameter (f � 1) arising from the interaction (7.30), and
the unit vector k̂ gives the direction of light propagation. The relations in
(7.105) are valid to first-order in f . We limit this discussion to an intrinsi-
cally nonmagnetic medium, for which μ = 1, but will retain the symbol μ
throughout to manifest a certain symmetry in the resulting expressions.

Substitution of D and B, as given in (7.105), into the Maxwell equations
corresponding to Faraday’s law and the Ampere–Maxwell law

∇ × E = −1
c

∂B

∂t
, ∇ × H =

1
c

∂D

∂t
, (7.106)

with assumption of transverse plane-wave fields leads to the eigenvalue equa-
tion

(1 −m2)E − if(1 +m2)k̂×E = 0 (7.107)

for the refractive index n defined by the dimensionless quantity m = n/
√
εμ.

The two independent solutions of the equation are

m2
± =

1 ± f
1 ∓ f =⇒ n± ≈ √

εμ(1 ± f) , (7.108)

corresponding to right (upper sign) and left (lower sign) circular polarizations
(i.e., helicities ∓1). We see, then, that the quantum and phenomenological
descriptions of light in a chiral medium are consistent.

A significant point worth noting explicitly is that, although the medium
is assumed to be intrinsically nonmagnetic, the constitutive relations (7.105)
show a light-induced magnetization. The origin of this induced magnetization,
of course, is obvious from the quantum mechanical derivation. Nevertheless,
since magnetic interactions of light with matter are ordinarily much weaker
than electric interactions, it is not uncommon to find in optics or electrody-
namics books [233] the modified relations

D = ε(E − if k̂×E) , B = μH , (7.109)
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which omit the light-induced magnetization. Repeating the preceding analysis
with the constitutive relations (7.109) results in chiral refractive indices n′± ≈√
εμ(1± f/2) that differ from those of (7.108) merely by a scale factor. Since

f is a phenomenological parameter anyway, there is no harm in describing
light propagation through a chiral medium by means of the relations (7.109).
However, (7.109) is not in accord with the quantum picture of optical activity
and, upon implementation of Maxwellian boundary conditions, does not lead
to correct chiral Fresnel amplitudes for coherent light reflection.

Because this section is concerned primarily with effects of chirality on light
propagation, I will adopt (7.109) as the simpler starting point for examining
the consequences of symmetry breaking through the addition of an external
field g = gĝ. The total gyrotropic effect on light can then be described to
a good approximation by the relations

D = ε(E − if k̂×E − igĝ×E) , B = μH , (7.110)

where the real-valued parameters f and g characterize, respectively, the
strengths of natural and induced optical activity. The phenomena of inter-
est here derive exclusively from the electric relation which can be cast in the
form D = ε̃E with dielectric tensor

ε̃ = ε

⎛

⎜
⎝

1 i(g + fγ) −ifβ
−i(g + fγ) 1 0

ifβ 0 1

⎞

⎟
⎠ , (7.111)

defined with respect to a right-handed Cartesian coordinate system in which
g is oriented along the z axis and x is normal to the plane defined by g and
the wave vector k. The direction cosines of k with respect to the y and z axes
are respectively β and γ, i.e., the unit propagation vector is k̂ = (0, β, γ).

Assuming plane waves of angular frequency ω with propagation vector
k = n(ω/c)k̂ for the light fields E and H in the medium and substituting
these waveforms into Maxwell’s equations, one arrives at a set of three linearly
coupled equations for the components of E, which can be written as

⎛

⎜
⎝

m2 − 1 −i(g + fγ) ifβ
i(g + fγ) m2γ2 − 1 −m2γβ

−ifβ −m2γβ m2β2 − 1

⎞

⎟
⎠

⎛

⎝
Ex

Ey

Ez

⎞

⎠ = 0 , (7.112)

where again m = n/
√
εμ. A nontrivial solution exists only if the determinant

of the coefficient matrix vanishes, which yields a secular equation quadratic
in m2 from which the refractive indices n2(k̂) are obtained

n2
± = εμ

⎡

⎣1 − 1
2
g2β2 ±

√

(f + gγ)2 +
(

1
2
g2β2

)2
⎤

⎦ . (7.113)
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From the preceding general result we note the following special cases:

• inactive dielectric (f = g = 0):

n2
± = εμ , (7.114)

• natural optical activity (f = 0 , g �= 0):

n2
± = εμ(1 ± f) , (7.115)

• pure induced gyrotropy (f = 0 , g �= 0):

n2
± = εμ

(

1 − 1
2
g2β2 ± g

√

γ2 +
1
4
g2β4

)

, (7.116)

• weak simultaneous natural and induced gyrotropy (f ∼ g � 1):

n2
± = εμ

[
1 ± (f + gγ)

]
. (7.117)

We consider next the implications of the above relations for a plane wave
propagating through the medium and reflecting at a flat boundary, as shown
in Fig. 7.15. Our concern is not with the reflection amplitudes for which a more
appropriate set of constitutive relations would be required, but only with the
angles of reflection – in essence, Snell’s law for a chiral medium with broken
symmetry. Note that the direction cosines γ, γ′ of the incident and reflected
light have opposite signs, whereas the corresponding direction cosines β, β′

have the same sign. For example, consider waves propagating normal to the
surface either parallel or antiparallel to g; then γ = −γ′ = 1. From (7.113) it
is seen that the indices of refraction for the incident and reflected light must

Fig. 7.15. Geometric configuration of specular reflection within a naturally optically
active medium with external field g at angle δ to the normal to the reflecting surface.
The medium is circularly birefringent with refractive indices n(±) that depend on
the relative orientation of g and the wave vectors ki and k

(±)
r , and therefore differ for

incident and reflected light. The angular interval (greatly exaggerated for visibility)

between k
(+)
r and k

(−)
r is θ

(−)
r − θ

(+)
r = 2α
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in general differ in a medium with both natural and induced gyrotropy, in
contrast to the widely assumed (but not universally applicable) ‘law of the
mirror’ according to which angles of incidence and reflection must be equal in
specular reflection.

Quantitatively, for ĝ oriented at an angle δ to the surface normal, the
direction cosines are related to the angles of incidence θi and reflection θr by

β = sin(θi + δ) , β′ = sin(θr − δ) ,
γ = − cos(θi + δ) , γ′ = cos(θr − δ) .

(7.118)

Continuity of the tangential component of E across the boundary requires
that the phases of the incident and reflected waves at the boundary be equal,
which leads to the generalization of Snell’s law

n
(±)
i sin θi = n(±)

r sin θ(±)
r . (7.119)

To estimate the size of the difference between θi and θ(±)
r , we can employ

(7.117) for a weakly gyrotropic medium, express the reflection angle in the
form θ(±)

r = θi±α which is substituted into (7.119). Expansion of the resulting
expression in a Taylor series to first order in small quantities (f , g, α) leads to

α =

[
n

(±)
i − n(±)

r

]
sin θi

n
(±)
r cos θi

≈ ∓g sin θi cosα . (7.120)

The inequality of the angles of incidence and reflection illustrates a su-
perficially puzzling aspect of light interactiion with a gyrotropic medium. It
appears that the system violates the reciprocity theorem,14 or, equivalently,
time-reversal invariance. If light propagates through the medium with k̂ par-
allel to ĝ, the natural and induced gyrotropic interactions may, for example,
act in concert to rotate the plane of polarization; for k̂ antiparallel to ĝ, the
two interactions would then act in opposition to rotate the polarization by
a different amount. The state of a light wave therefore depends on whether it
has moved ‘forward’ or ‘backward’ through the medium. There is no paradox
here, however. Examination of Maxwell’s equations shows that they are time-
reversal invariant when the velocities of the field sources are reversed along
with the transformation t→ −t. This implies that time-reversal invariance of
the system now under consideration should be restored if, in addition to re-
versal of the light propagation directions, the symmetry-breaking field g were
also reversed, since the current flow giving rise to g is reversed. Equations
(7.112) and (7.113)–(7.117) show that the indices of refraction and electric
fields are indeed invariant under the transformation k → −k and g → −g.

14 See, for example, [210, p. 381], which gives the reciprocity theorem of Helmholtz:
A point source at P0 will produce at P the same effect as a point source of equal
intensity at P will produce at P0.
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We will conclude this chapter by examining the properties of the light
fields that propagate in selected directions relative to the symmetry-breaking
field:

• Case A: Propagation along the gyroelectric axis k̂ ‖ (ĝ = z). With β = 0,
γ = 1, the refractive indices reduce to

n± =
√
εμ
[
1 ± (f + g)

]1/2
, (7.121)

which is of the same form as (7.115). Substitution into (7.112) leads to
circularly polarized waves with right- and left-handed sense, respectively15

E(+)(x, t) = E0(x − iy)eiω[n+(z/c)−t] ,

E(−)(x, t) = E0(x + iy)eiω[n−(z/c)−t] .
(7.122)

The waves are transverse (normal to the propagation direction) and ho-
mogeneous (planes of constant phase coincide with planes of constant am-
plitude).

• Case B: Propagation normal to the gyroelectric axis k̂ ⊥ (ĝ = x). With
β = 1, γ = 0, the refractive indices reduce to

n± =
√
εμ

(

1 − 1
2
g2 ±

√

f2 +
1
4
g4

)1/2

. (7.123)

If the medium were intrinsically inactive (f = 0), there would result a wave
linearly polarized along the gyrotropic axis

E(+)(x, t) = E0zeiω[n+(y/c)−t] , (7.124)

with index n+ ≈ √
εμ analogous to the ‘ordinary’ wave in a calcite crystal,

and an elliptically polarized wave in the plane determined by g and k

E(−)(x, t) = E0(x + igy)eiω[n−(y/c)−t] , (7.125)

with index n− =
√
εμ(1 − g2)1/2 analogous to the ‘extraordinary’ wave

in a calcite crystal. The two rotating components are 90◦ out of phase
and trace out in time the ellipse x cosωt+ gy sinωt with semimajor axis
a = 1 and semiminor axis b = g (for g < 1). The elliptical polarization is
characterized by the ellipticity e ≡ b/a = g.

15 The handedness of the fields here are opposite those in my original paper because
of the difference in convention employed. In the latter, the handedness was de-
termined by pointing the thumb of the designated hand in the direction of the
propagation vector; the fingers then curled in the direction of the field rotation.
Thus the fingers of the right hand designate the rotational sense of a left-circularly
polarized wave. In this book, I employ the convention widely used by optical physi-
cists in which the electric field of a right (left) circularly polarized wave rotates
towards the right (left) of an observer facing the source.
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If the medium has a weak intrinsic chirality f < g, then the fields in both
cases are elliptically polarized, nontransverse, with waveforms and refractive
indices that can be worked out but will not be given here.

The time-averaged energy flux in a gyrotropic medium is calculable from
the Poynting vector 〈S〉 = (c/8π)Re(E × H∗) exactly as in the case of a non-
grytropic medium. The hermiticity of the dielectric tensor (7.111) leads to an
energy conservation expression of the same form (Poynting’s theorem) as that
to which the symmetric dielectric tensor of a nongyrotropic medium gives
rise. Using the fields derived from this tensor, one finds that the energy flow
is along the direction of propagation k̂ only if f is null or if k and g are paral-
lel. The interpretation of this is that k̂ is normal to the wave fronts (planes of
constant phase), but that the wave fronts advance in the direction of 〈S〉, the
ray direction. That the directions of 〈S〉 and k need not coincide is a familiar
circumstance in the optics of anisotropic, optically inactive crystals. That it
may also occur for intrinsically isotropic optically active liquids subject to an
external field is not well known.
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Condensates in the Cosmos:
Quantum Stabilization of Degenerate Stars

8.1 Stellar End States

How stars form may still be a matter of some controversy [234], but the essen-
tial features of how stars end are considered fairly well established. Although
many details remain to be understood better about the terminal evolution of
stars that have fully exhausted their nuclear fuel, there is nevertheless a broad
consensus regarding the following basic conclusions. A star whose collapse can
be halted by electron degeneracy pressure ends its life as a white dwarf – in
effect, a giant atom with approximately the mass of the Sun compacted to
the size of a planet (∼ 5 000 km). If, on the contrary, electron degeneracy
pressure cannot achieve hydrostatic equilibrium, the collapse continues until
inverse beta decay (p + e −→ n + ν) converts the constituent electrons and
protons into neutrons whose degeneracy pressure halts the collapse, creating
in effect a giant nucleus with approximately the mass of the Sun compacted
to the size of a city (∼ 20 km) [235]. (The resulting neutrinos escape the star.)
But if neutron degeneracy pressure cannot halt the collapse, then it is believed
nothing can spare the star from its subsequent fate: collapse to a singularity
in the space-time continuum detectable only through its gravitational field,
i.e., a stellar black hole.1

The collapse of a massive relativistic degenerate star to a stellar black
hole poses what is perhaps the most serious challenge to the laws of physics
as they are currently understood. Prevailing theory, starting with the earliest
comprehensive analyses of the problem by Chandrasekhar [236], who inves-
tigated stellar collapse under Newtonian gravity, and Oppenheimer and his
group [237], who employed general relativity, holds that all matter and energy,
once having passed through the event horizon – a spherical surface defined by
the Schwarzschild radius RS = 2GM/c2 with M the total mass–energy, c the
speed of light, and G the universal gravitational constant – fall irreversibly
into a central singularity. Nevertheless, to the extent that a black hole is

1 I am referring here to an isolated black hole, i.e., a star without an accretion disk
of infalling matter which can radiate.



308 8 Condensates in the Cosmos: Quantum Stabilization of Degenerate Stars

a real physical object and not merely a mathematical solution to the differen-
tial equations of general relativity, it is difficult to believe that 1030 or more
kilograms of matter can actually collapse to a geometric point – or to a region
of the size of the so-called Planck length lP =

√
G�/c3 ∼ 1.6×10−35 m, when

quantum principles and Planck’s constant � ≡ h/2π are taken into account.
Clearly something important has been omitted from the relevant physics.

Although the physics of the terminal stages of a relativistic degenerate
star beyond the Chandrasekhar or Oppenheimer–Volkoff (OV) mass limits is
highly complex, the basic conclusion that total collapse is unavoidable derives
essentially from two fundamental results, one classical and the other quan-
tum. The first result, a kinematic consequence of general relativity, is that,
within the region bounded by the Schwarzschild surface, the roles of spatial
and temporal coordinates are interchanged. Thus, for an object at radial co-
ordinate r < RS to reverse direction and pass outward through the horizon
would be tantamount to moving backward in time, which is not permissible.
The authors Misner, Thorne, and Wheeler, in their weighty tome on gravity,
have described this restriction dramatically, if not grimly, as follows [238]:

That unseen power of the world which drags everyone forward willy-
nilly from age twenty to forty and from forty to eighty also drags the
rocket in from time coordinate r = 2M to the later value . . . r = 0. No
human act of will, no engine, no rocket, no force . . . can make time
stand still. As surely as cells die, as surely as the traveler’s watch ticks
away ‘the unforgiving minutes,’ with equal certainty, and with never
one halt along the way, r drops from 2M to 0.

The second result, a dynamical consequence of quantum statistics, follows
from the dependence of the relativistic fermion degeneracy pressure on the
4/3 power of the mass density, in contrast to the 5/3 power dependence of
the nonrelativistic degeneracy pressure. Thus, for masses beyond a certain
limit, the relativistic degeneracy pressure within a collapsing neutron star is
insufficient to match the overpowering weight of infalling matter, whereupon
it is presumed that nothing further can halt the collapse.

A simple model, which will be developed in greater detail shortly, illus-
trates this critical modification in the density dependence of the degeneracy
pressure. Consider a system of N noninteracting fermions of mass m within
a spherical volume V ∼ R3. Since, by the Pauli principle, no two fermions
can occupy the same quantum state (i.e., cell of phase space), the momen-
tum of a fermion is then approximately p ∼ �/(R/N1/3), where R/N1/3

is the mean distance between fermions. The total energy of the system,
U ∼ N

√
p2c2 +m2c4, can be expressed in dimensionless quantities as

U

mc2
= N

(
1 +N2/3 λ

2

R2

)1/2

, (8.1)

with λ = �/mc the reduced fermion Compton wavelength (λ ≡ λ/2π).
The preceding expression leads to the following nonrelativistic and rela-
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tivistic approximations for energy and corresponding degeneracy pressures
P = −(∂U/∂V )N :

Unr

mc2
= N +

1
2
N5/3 λ

2

R2
,

Pnr

P0
=

1
3
n5/3λ5 , (8.2)

and
Ur

mc2
= N4/3 λ

R
,

Pnr

P0
=

1
3
n4/3λ4 , (8.3)

in which n = N/V is the fermion number density and

P0 =
mc2

λ3 =
m4c5

�3
(8.4)

is the pressure (or mass–energy density) in a system with one particle per
cubic Compton wavelength. For a system of compressed neutrons (mass
mn = 1.67 × 10−27 kg), this pressure is P0 = 1.63 × 1037 Pa. (For compar-
ison, recall that 1 atm ∼ 105 Pa.)

For a uniformly dense self-gravitating system of fermions interacting via
Newtonian gravity, the addition to (8.1) of the gravitational binding energy
(derived in Appendix 8A) leads to the expression

U

mc2
= N

(
1 +N2/3 λ

2

R2

)1/2

− 3
5

(
M

mP

)2
λ

R
, (8.5)

where mP =
√

�c/G ∼ 2.2× 10−8 kg is the Planck mass. (The Planck length
is the reduced Compton wavelength of a particle with Planck mass.2) One
sees immediately that the condition for hydrostatic equilibrium, dU = 0, in
the relativistic case, (8.3), can be satisfied only for a single value of the stellar
mass, Mmax ∼ N2/3mP, because the fermion energy and the gravitational
energy both depend on the same power of the stellar radius R, and the total
energy consequently has no minimum. Since the nonrelativistic expression for
total energy has a minimum, the mass Mmax must be an upper limit above
which no equilibrium state exists. Approximating the mass of a neutron star by
M = Nmn and equatingM to Mmax leads to the limiting number of nucleons
Nmax ∼ (mP/mn)3 = 2.3 × 1057 and a limiting mass Mmax of approximately
1.9 solar masses (MS = 2 × 1030 kg), in basic accord with previous results of
more refined calculations.

It is good, however, to bear in mind Alfred North Whitehead’s wise ob-
servation that [239]:

2 The Compton wavelength λ is the de Broglie wavelength of a particle whose rel-
ativistic kinetic energy (pc = hc/λ) is equal to its rest-mass energy (mc2), or
λ = h/mc. The reduced Compton wavelength is then λ = �/mc. The Planck
mass mP is defined here by the equality mPc2 = Gm2

P/λ, which leads to
mP =

p
�c/G = 2.18 × 10−8 kg. The Planck length is the Compton wavelength

corresponding to the Planck mass: lP = �/mPc =
p

�G/c3 = 1.62 × 10−35 m.
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There is no more common error than to assume that, because pro-
longed and accurate mathematical calculations have been made, the
application of the result to some fact of nature is absolutely certain.

Neither of the preceding two objections need be definitive when one recognizes
the intrinsically quantum nature of a stellar black hole. (If a neutron star is
like a giant nucleus, then a stellar black hole must assuredly represent an even
more fundamentally quantum mechanical kind of system.) Thus, with respect
to classical kinematics, the coordinatization of the interior of a black hole
and subsequent general relativistic analysis of collapse trajectories can be no
more valid than would be a semi-classical (Bohr-like) description of electron
orbits within a hydrogen atom. And with respect to the equation of state,
hitherto neglected quantum processes must take place within a collapsing rel-
ativistic degenerate star to alter the pressure–density dependence and restore
hydrostatic equilibrium. Such processes are elucidated in this chapter.

Of the various processes that may intervene to stabilize the collapse of
a degenerate star beyond the OV mass limit I have investigated the following:

1. phase transitions that transform neutrons into other forms of matter with
a different equation of state [240];

2. long-range magnetic interactions among nucleons [241], which, among
other things, affect the radial dependence of the internal energy;

3. existence of a vacuum quantum field process referred to as particle resorp-
tion [242], which is complementary to the process responsible for Hawking
radiation [243] and affects the fermion number density.

These are processes which are accountable within the framework of currently
known principles of physics. There have also been attempts to suppress the
formation of an event horizon by appeal to as yet incomplete and untested
theories of quantum gravity [244].

The possibility of stabilizing a collapsing star (and preserving the laws of
physics) by means of an appropriate phase change is of particular interest in
light of very recent advances in the investigation of degenerate atomic Fermi
gases at ultra-low temperature [245]. This possibility concerns the pairwise
(or other even-numbered) condensation of fermions to produce an equilibrium
two-phase system of fermions and composite bosons. It may seem surprising
at first that such processes occur, as one is long used to thinking of fermions
and bosons as entirely distinct quantum entities obeying radically different
statistical laws (except in the high-temperature regime where both forms of
quantum statistics resemble classical Maxwell–Boltzmann statistics).

Currently under intensive theoretical and experimental investigation, ultra-
cold gases of fermionic atoms, such as 40K and 6Li, with magnetically tunable
interactions provide a means of exploring the predicted transition between two
extreme types of fermionic associations: Bardeen–Cooper–Schrieffer (BCS)
superfluidity and Bose–Einstein condensation (BEC) into composite bosons.
Both kinds of behavior have been observed with ultra-cold fermionic atoms.
Theorists have predicted, and experiments are confirming, that behavior of
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the fermionic atoms becomes universal in the strong-interaction regime; i.e.,
that the interactions become independent of the details of the atomic po-
tential [246]. Thus, degenerate atomic fermi gases provide experimentally ac-
cessible model systems for exploring processes that may also occur in dense
nuclear matter such as in relativistic degenerate stars and in a quark–gluon
plasma [247].

The occurrence of BCS-type superfluids in neutron stars (primarily neu-
tron superfluidity and proton superconductivity) is believed to account for
sudden period changes (‘glitches’ or ‘starquakes’) and their subsequent slow
relaxation [248], although some questions remain concerning the exact na-
ture and distribution of these hadronic superfluids [249]. The universality of
fermionic condensation in the strong-interaction regime, based on the theory
and laboratory investigations of fermionic atoms, would suggest, therefore,
the possibility that BEC-type behavior could occur as well under conditions of
even greater compression. Qualitatively, if a sufficiently massive gas of degen-
erate fermions should undergo an equilibrium transformation to a condensate
of composite bosons, one would expect a subsequent (and likely rapid) phase
separation as the fermion component continued to collapse inward, whilst the
condensate phase, by virtue of the quantum laws to which it is subject, cannot
collapse to a domain much smaller than the volume defined by its coherence
length.3 The collapsing fermion sphere, therefore, need no longer terminate in
a singularity because, having fewer particles and correspondingly lower Fermi
energy than initially as a consequence of the phase transition, it can then
achieve hydrostatic equilibrium at a stellar radius of finite (and, as we shall
see, macroscopic) size.

Although the formation of boson condensates comprising pions or kaons at
the center of a neutron star, as well as promotion of neutrons into more massive
baryons like Λ-hyperons, have been proposed in the past [250], the physical
circumstances of these models were such as to lead to a weaker degeneracy
pressure that facilitated, rather than prevented, stellar collapse. These earlier
proposals are quite different from the process outlined above and examined
in the following sections.4

8.2 Quantum Properties
of a Self-Gravitating Condensate

A distinctive feature of the fermion condensation process to stabilize the col-
lapse of a relativistic degenerate star otherwise destined to terminate in a sin-
gularity is the formation of a condensate of composite bosons. As we shall see,
the condensate is at a temperature so far below the theoretical transition tem-
perature that for all practical purposes it can be considered at absolute zero,
3 I discuss this property of boson condensates in [82].
4 The idea of a fermion condensation to bosons within a collapsing neutron star

were first presented in the brief reports [251].
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i.e., all bosons have condensed into the ground state. As is well known, an
ideal condensate of noninteracting bosons at 0 K exerts no pressure because
all particles are in a state of zero relative momentum [252]. (The pressure
of a nonrelativistic Bose gas approaches zero with temperature as T 5/2 in-
dependent of volume.) An essential feature of a self-gravitating condensate,
however, recognized in the author’s previous investigations of the nature of
galactic dark matter as a condensate of very low mass bosons [82,253], is that
a quantum condensate cannot be localized to a region much smaller than its
coherence length; i.e., it cannot collapse to a singularity. Thus, the conden-
sate can contribute comparatively little to the weight that must be supported
by fermion degeneracy pressure if the bulk of the condensate at equilibrium
lies outside the core of collapsed fermionic matter. The maintenance of a fi-
nite condensate size on the order of the condensate coherence length may be
understood heuristically to follow from the Heisenberg uncertainty principle.
Equivalently, were the condensate to collapse radially inwards, the particles
would acquire relative momentum and therefore kinetic energy, but such an
excitation cannot occur at 0 K. Moreover, direct observation of condensate
phase separation in an ultra-cold, strongly interacting Fermi gas of 6Li atoms
gives reason to believe that a phase separation would also occur in a system
of dense nuclear matter even in the absence of gravity [254].

To estimate the size of a spherical self-gravitating condensate, consider
a system of Nb bosons of mass mb (reduced Compton wavelength λb) for
which the quantum equation of motion is the nonlinear wave equation known
as the Gross–Pitaevskii (GP) equation

[
− �

2

2mb
∇2 + V (r) + g|ψ|2

]
ψ = μbψ . (8.6)

V (r) is the confining potential energy function, μb is the chemical potential,
and

g =
4π�

2Nba

mb
= 4πNbmbc

2λ2
ba (8.7)

is the coupling parameter containing the scattering length a [255]. The solution
to the GP equation in the Thomas–Fermi (TF) approximation, where kinetic
energy is negligible compared with potential energy, takes the simple form
[256]

|ψ(r)|2 = A2

(
1 − r2

R2

)
=
μb

g

[
1 − V (r)

μb

]
, (8.8)

in which the first equality results from normalization of the wave function
(approximated by a gaussian of effective size R with normalization constant
A2 = 15/(8πR3), and the second equality follows directly from the GP equa-
tion with neglect of the kinetic energy (i.e., Laplacian) term. Comparison of
(8.7) and (8.8) with substitution of the normalization constant leads to the
relation

μb =
R2V (r)
r2

=
15
8π

g

R3
. (8.9)
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In the table-top experiments on atomic condensates, external magnetic fields
created a harmonic oscillator trapping potential energy V (r) = mω2r2/2 with
angular frequency ω. In a formally similar way (although the physics is quite
different), a boson at the surface (r = R) of a self-gravitating condensate mass
M of uniform density ρb, has a gravitational potential energy of magnitude
GMmb/R = mbω

2R2/2 with angular frequency parameter ω =
√

8πGρb/3.
Substitution of ω into V (r) in (8.9) yields an expression for the condensate
size, which can be recast in the form

R =

√
15
2
aλb

mP

mb
. (8.10)

An alternative, but basically equivalent, procedure is to minimize the internal
energy

Ub(r) = ρb

(
4
3
πR3

)
c2 − 3

5
GM2

R
(8.11)

with respect to R, in which it will be shown later that the condensate mass
density (excluding gravitational binding energy) is related to the condensate
number density nb by

ρb = mbnb(1 + 4πλ2
banb) , (8.12)

and the total condensate mass is here approximated by M = Nbmb. This
approach, employing uniform density nb = 3Nb/4πR3, yields a condensate
radius

R =
√

15aλb
mP

mb
, (8.13)

which differs from (8.10) only by a factor of
√

2.
If, for example, we consider a more or less minimal magnitude of a to

be comparable to λb for a composite boson comprising a pair of neutrons,
then, upon inserting m = 2mn and a = λb = �/(2mn)c in (8.13), we obtain
R ∼ 2.64 km, which is numerically close to the Schwarzschild radius

RS =
2GMSun

c2
∼ 2λn

(
mn

mP

)2

NSun , (8.14)

of a solar-mass neutron star (NSun ∼ 1.2 × 1057, RS ∼ 2.97 km).
It is worth noting explicitly that the exact numerical value of R esti-

mated above is not the point of emphasis. In a later section we will deter-
mine the size, mass, and other stellar properties of hybrid fermion-condensate
stars more rigorously and precisely. What is significant now is that the radius
of a self-gravitating condensate sphere is expected to be comparable to the
macroscopic-sized Schwarzschild radius. If the collapse of the neutron compo-
nent is arrested at some substantial fraction of the condensate radius, then
the terminal equilibrium state of the entire star will be of macroscopic size
and finite density, and there will be no singularity. This will be demonstrated
in detail shortly. It is also to be noted that the quantum relation for conden-
sate number density, n = N |ψ|2, derived from the TF approximation to the
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GP equation is not uniform, but takes the shape of an inverted parabola with
central density n0 = Nμ/g ∼ N/R3. This refinement does not invalidate the
preceding conclusion, and the assumption of uniform number density will be
retained for analytical convenience wherever possible.

Consider next the transition temperature TC at which a self-gravitating
boson condensate can form. Standard statistical theory for an ideal noninter-
acting Bose gas [257] relates the condensate number density n to the ther-
mal de Broglie wavelength λT = h/

√
2πmkBTC by n = ζ(3/2)/λ3

T, where
ζ(3.2) = 2.612 is a zeta function. From this follows the relation

kBTC ∼ 3.313�
2n2/3

m
, (8.15)

where kB is Boltzmann’s constant. For a condensate of Nb = 1057 composite
bosons of mass m = 2mn in a volume of radius R = 2.64 km, one estimates
kBTC ∼ 377 MeV or TC ∼ 4.4 × 1012 K. This theoretical deduction, however,
is not strictly applicable to a condensate subject to a harmonic trapping po-
tential. In that case the theoretical transition temperature has been shown to
be [258]

kTC ∼ 0.94�ωN1/3 , (8.16)
which, for the same parameters assumed above, leads to the even higher criti-
cal temperature TC ∼ 1.1×1013 K. From numerical studies of cold Fermi atom
gases [259], a critical temperature TC ∼ 0.23TF was deduced, in which TF is
the Fermi temperature. The Fermi temperature of a degenerate neutron star
with baryon number comparable to that of the Sun but collapsed to a radius
approximately that of the Schwarzschild radius is of the order of 1012–1013 K,
as will be demonstrated in the following section. Since the temperature within
the core of a neutron star ordinarily falls within the range 106–108 K, well be-
low TC, and since the number of bosons in the ground state relative to the total
number of bosons in a condensate varies with temperature as 1 − (T/TC)3/2

for T < TC, it is safe to conclude that both fermionic and bosonic phases
within the collapsed star can be treated as if at absolute zero, and that the
condensate is entirely in its ground state for the purposes of this analysis.

8.3 Quantum Properties of a Self-Gravitating System
of Degenerate Fermions

A relativistic degenerate star at its thermonuclear end point prior to fermion
condensation can be modeled as a self-gravitating system of N fermions (as-
sumed here to be neutrons) of uniform number density nn in volume V at abso-
lute zero and stable to beta decay. The internal energy function of this system,
according to standard quantum statistics and general relativity (Schwarzschild
geometry) [260,261] can be expressed in the form

Un = Uf + Ug =
mnc

2g(yF)V
8π2λ2

n

+
[
1 − f(x)]Mc2 =Mc2 , (8.17)
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in which M is the total mass–energy of the star. We shall examine the two
terms, Uf and Ug, in sequence.

The fermionic kinetic energy (including mass–energy) term Uf is a function
of the dimensionless Fermi parameter yF

yF ≡ pF
mnc

=
(

3π2Nn

V

)1/3

λn = (3π2nn)1/3λn , (8.18)

where pF is the Fermi momentum. It is to be recalled that in a fully degenerate
system of fermions all quantum states from the lowest (mnc

2) to the Fermi
energy (εF) are filled with one particle of specified spin orientation per state.
Thus, for spin-1/2 particles, there are two particles per state, and the highest
energy state reached by the system of N particles is

εF = mnc
2
√

1 + y2F . (8.19)

The quantum statistical function g(y)

g(y) ≡ y(2y2 + 1)
√
y2 + 1 − sinh−1(y) (8.20)

is obtained by summing the energy (i.e., integrating the momentum) of all
the particles in the system. The expansions of g(y) for both nonrelativistic
(y < 1) and relativistic (y > 1) cases are

g(y) ∼
⎧
⎨

⎩

8
3
y3
(

1 +
3
10
y2
)

(y < 1) ,

2y4 (y > 1) ,
(8.21)

leading to the respective fermion energy expressions

Uf

mnc2
≈

⎧
⎪⎪⎨

⎪⎪⎩

N

(
1 +

3
10
y2F

)
∼ N + const.

N5/3

R2
(yF < 1) ,

3
4
Ny ∼ const.

N4/3

R
(yF > 1) ,

(8.22)

which justify the previously used simplified relation of (8.1).
The fermion pressure (i.e., the neutron degeneracy pressure) Pn and chem-

ical potential μn follow from the energy function Uf by taking appropriate
derivatives. The exact expression for pressure

Pf = −
(
∂Uf

∂V

)

N

=
mnc

2

24π2λ3
n

[
yF(2y2F − 3)

√
y2F + 1 + 3 sinh−1 yF

]
(8.23)

can be expanded in the nonrelativistic and relativistic cases to yield

Pn ≈

⎧
⎪⎪⎨

⎪⎪⎩

(3π2)2/3

5
�

2

mn
n5/3

n (yF < 1) ,

(3π2)1/3

4
�cn4/3

n (yF > 1) ,

(8.24)
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producing again the expected dependences on particle number density nn. The
neutron degeneracy pressure factor in (8.23) [to be compared to that of (8.4)] is

P0 =
mnc

2

24π2λ3
n

= 6.9 × 1034 Pa . (8.25)

Also, as expected, the chemical potential at T = 0

μn =
(
∂Uf

∂Nn

)

V

= mnc
2
√

1 + y2F (8.26)

is identical to the Fermi energy.
From (8.24), it follows that the threshold value of the Fermi parameter

yF at which the nonrelativistic and relativistic expressions for degeneracy
pressure are equal is determined by the particle density nn = (5/4)3/3π2λ3 ∼
7.2×1045 m−3 and is evaluated to be y0F ∼ 1.25. This is equivalent to a Fermi
temperature TF = μn(y0F)/kB ∼ 1.7 × 1013 K, as indicated in the previous
section. For a solar mass neutron star, comprising very nearly 1057 neutrons,
of radius 3 km (which is marginally larger than the Schwarzschild radius of
the Sun), the number density is 8.8 × 1045 m−3 and the Fermi parameter is
yF = 1.34. We shall see shortly that the equilibrium Fermi parameter after
fermion condensation lies unmistakably in the nonrelativistic domain.

Consider next the gravitational term Ug in (8.17). In the Schwarzschild
solution to the equations of general relativity, the total mass M of the system,
i.e., the manifestation of the energy of the star to a distant observer, is defined
by the relation

M ≡
R∫

0

4πr2ρdr =
4π
3
R3ρ , (8.27)

which is evaluated above for uniform density ρ. There is a subtlety to the fore-
going expression, however, because it is not an integral over a spherical volume
in the Schwarzschild geometry for which the actual volume element would be

dV =
4πr2dr

√

1 − 2GM(r)
rc2

=
4πr2dr

√

1 − 8πGρ
3c2

r2

.

Integration over this volume element leads to the volume

V =
(

4π
3
R3

)
f(xS) (8.28)

of a sphere of coordinate radius R, in which the function f(x) is

f(x) ≡ 3
2x2

(
sin−1 x

x
−
√

1 − x2

)
, (8.29)
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and the dimensionless Schwarzschild parameter xS, defined by

xS ≡
√

2GM
Rc2

=

√
8πGρ
3c2

R , (8.30)

must lie in the range 0 ≤ xS ≤ 1; f(x) approaches 1 for vanishing x and equals
3π/4 for x = 1. Equation (8.27) for the mass M is, in effect, an integral over
volume of the quantity

ρ

√

1 − 8πGρ
3c2

r2 ,

which is less than the density by virtue of the (negative) gravitational binding
energy. The general relativistic expression for gravitational potential energy is
then the fraction 1−f(x) of the total mass energyMc2. Justification of this in-
terpretation is obtained by expanding f(x) ∼ 1+3x2/10 to obtain the Newto-
nian gravitational binding energy of a uniformly dense sphere (Appendix 8A)

U (Newton)
g = − 3

10
x2Mc2 = −3

5
GM2

R
. (8.31)

The precise relation between mass density ρ and the product mn, which
were treated as equal peviously, can be deduced from (8.17) in the tractable
case of uniform density by adding the gravitational and total mass energy
terms and dividing all terms of the equation by the volume V to obtain

ρ =
mng(yF)
8π2λ3 ≈

⎧
⎪⎪⎨

⎪⎪⎩

mnnn

(
1 +

3
10
y2F

)
= mnnn +

3
2
Pn

c2
(yF < 1) ,

3
4
mnnnyF =

3Pn

c2
(yF > 1) ,

(8.32)

where the nonrelativistic and relativistic expansions follow from (8.21). The
second equalities in the half-bracketed expression above follow readily from
general thermodynamic relations linking density, chemical potential, and pres-
sure:5

μ ≡ dρc2

dn
, (8.33)

P ≡ −d(ρc2/n)
d(1/n)

= nμ− ρc2 . (8.34)

It follows immediately from the preceding set of equations that the pressure
must vanish in a system for which ρ = mn.

5 At T = 0, the first law of thermodynamics dU = −PdV + μdN leads to
μ = (∂U/∂N)V . Since the volume is held constant, one can divide both numer-
ator and denominator by V to obtain a derivative involving energy and particle
densities μ = (dε/dn)V , which, upon setting ε = ρc2, is equivalent to (8.33). From
the property that energy (and entropy) are first-order homogeneous functions of
the extensive parameters of a system, one can write that U = −PV + μN at
T = 0. Dividing both sides by V leads immediately to ε = −P + μn, which is
equivalent to (8.34). See, for example, [262].
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Within the framework of general relativity, the condition of hydrostatic
equilibrium is expressed by the Tolman–Oppenheimer–Volkoff (TOV) equa-
tion, which, in the case of uniform density, takes the form

−dp
dr

=
4πG

3
(ρ+ P/c2)(ρ+ 3P/c2)r

1 − 8πGρ
3c2

r2
, (8.35)

or
−dz

dx
=

1
2

(1 + z)(1 + 3z)x
1 − x2

when written in terms of the dimensionless quantities z ≡ P/ρc2 and x =
(8πGρ/3c2)1/2r. Evaluated at the stellar surface (r = R), x becomes the
Schwarzschild parameter of (8.30). Equation (8.35) can be integrated to yield
the pressure-density relation at the center of the star (x = 0)

z0 =
1 −√

1 − x2
S

3
√

1 − x2
S − 1

. (8.36)

When the ratio of pressure to mass–energy density is much less than unity,
and all points of the stellar surface lie outside the Schwarzschild radius, (8.35)
and (8.36) reduce to the Newtonian relations

−dp
dr

=
4π
3
Gρ2r or − dz

dx
=

1
2
x , (8.37)

z0 =
1
4
x2

S . (8.38)

Figure 8.1 shows the variation of z0 with x for the TOV and Newtonian
relations. As deducible from (8.36), the TOV central pressure becomes com-
parable to mass–energy density at x2

S = 3/4 and approaches infinity as x2
S

approaches 8/9 ∼ 0.889. One might expect the Newtonian relation to prove
at least qualitatively reliable, if not actually quite good, for x2

S below about
0.6, or, equivalently, R/RS > 1.7.

In the following section, we will employ the Newtonian condition for hy-
drostatic equilibrium for several reasons. First, as a matter of justification in
hindsight, it will be seen that implementation of Newtonian hydrostatic equi-
librium, together with other applicable equilibrium conditions, leads to stellar
densities and radii for which the Newtonian reduction of the TOV relation
is largely applicable. Second, it is in fact problematical whether the TOV
equation actually would apply in its current form to the processes discussed
here, since the conditions of its derivation, as summarized particularly clearly
by Oppenheimer and Volkoff, require fermion conservation and positive pres-
sure, whereas the number of fermions markedly changes in the formation of
the boson condensate and, as we shall see shortly, circumstances can arise for
which the condensate pressure is negative. Third, as was noted previously,
general relativity is a classical theory, and it is not at all clear whether there
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Fig. 8.1. Variation of the central pressure-to-mass density ratio with the square of
the Schwarzschild parameter for (A) the general relativistic TOV equation and (B)
the Newtonian equation of hydrostatic equilibrium

can continue to be a well-defined event horizon in a fully quantum theory
of ultra-dense self-gravitating nuclear matter. And fourth, even if the TOV
equation can be made to apply to models with variable fermion number and
negative pressure, there may be little point in utilizing a general relativistic
equation of hydrostatic equilibrium without taking account comprehensively
of all circumstances in which a highly curved space-time may influence the
physical components of the model. For example, in evaluating the partition
function for a self-gravitating system of fermions, one calculates the Fermi
energy, Fermi parameter, and other thermo-statistical quantities by integrat-
ing separately over regions of coordinate space and momentum space. Such
a separation would not be possible, however, and the resulting integrals would
be incomparably more difficult, if fermion momentum depended on location
within a space-time region of high curvature.

Such issues, as raised above, are being investigated, but little progress
would be made to begin with them. It may be argued that if the TOV equa-
tion, or, more broadly, general relativity itself, does not apply, then almost
certainly neither would Newtonian theory. Nevertheless, as a matter of practi-
cality, one has to begin somewhere, and one may hope to make more progress
with a simpler theory whose limitations are understood, than with a math-
ematically much more difficult one which, in the present case, raises deep
conceptual issues. In this regard it is interesting to note that Schrödinger ini-
tially failed in describing the hydrogen atom by a relativistic quantum theory,
but succeeded brilliantly only when forced to revert to what at the time may
have seemed to him a less inclusive nonrelativistic approach.
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8.4 Fermion Condensation in a Degenerate Star

In an evolving star, such as the Sun, which supports itself against collapse
by nuclear fusion, there are four basic equilibrium conditions in the form of
differential equations [263], which, expressed simply in words, are:

1. Hydrostatic Equilibrium: (a) Mass increases as one moves out from the
center [(8.27)]. (b) Pressure increases as one moves in towards the center
[(8.35) or (8.37)].

2. Thermal Equilibrium: Energy produced in the core must balance the en-
ergy radiated from the surface.

3. Energy Transport: (a) Radiative: The more opaque the interior, the
steeper is the temperature gradient. (b) Convective: The temperature gra-
dient follows the pressure gradient.

These conditions must be maintained at each point within the star, the math-
ematical implementation of which requires substantial computing power.

The equilibrium conditions developed in this section are considerably sim-
plified as a consequence of two assumptions. First, because the initial state
of the matter in the star is at its thermonuclear end point and is assumed
to be purely neutronic and beta stable at a temperature of 0 K, there is no
energy generation, transport, or radiation to deal with. Second, the two re-
sulting phases (fermion and condensate) are assumed to be quantum gases of
uniform density, and pressure is proportional to a power of the density in both
the nonrelativistic and relativistic domains. Thus the conditions of chemical
and hydrostatic equilibrium to be developed take the form of algebraic, rather
than differential, equations, an approximation which, while not strictly rig-
orous, is often adopted in astrophysics to obtain a mathematically tractable
understanding of the physical behavior of a complex system.

Consider, first, the condition of chemical equilibrium in the reversible
transformation sn ↔ b, whereby an even number s of fermions (assumed
to be neutrons) associate to produce a composite boson with mass param-
eter Q = mb/smn. Studies of hadron superfluidity in neutron stars [264] have
generally assumed s = 2, but other combinations are conceivable given the
enormous densities occurring in stars destined to form black holes. Assump-
tion of neutron conservation requires that

Nn + sNb = N0
n , (8.39)

where N0
n is the initial number of neutrons before onset of condensate for-

mation, and Nn and Nb are respectively the equilibrium numbers of neutrons
and composite bosons. The condition of chemical equilibrium is expressed by
the equality of chemical potentials

sμn = μb , (8.40)

in which (8.26) gives the chemical potential of the fermion component. Inves-
tigations of ultra-cold atomic condensates described earlier indicate that the
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chemical potential of a condensate of interacting particles is proportional to
the number density nb, which, with addition of the mass–energy term (not
pertinent to tabletop atomic experiments, but of critical importance in the
present astrophysical context), lead to the form

μb = mbc
2(1 + εnb) , (8.41)

with parameter [258, p. 106]
ε = 4πλ2

ba (8.42)

defined in terms of the reduced Compton wavelength λb = �/mbc and in-
teraction parameter (scattering length) a of the bosons. Equation (8.41) is
equivalent to (8.6) and (8.7) in the TF approximation in absence of gravity,
which is accounted for separately in the relations of hydrostatic equilibrium.6

Substitution of (8.26) and (8.41) into (8.40) leads to the condition of chemical
equilibrium: √

1 + y2F = Q(1 + εnb) . (8.43)

It is to be noted that a, and therefore ε, can be either positive or negative,
signifying either a repulsive or attractive interaction between condensate par-
ticles. The physical implications of this difference will made apparent shortly.

Consider next the conditions of hydrostatic equilibrium at the boundary
of radius R between the neutron core and condensate shell and at the outer
condensate boundary of radius R0 defining the size of the star, as shown in
Fig. 8.2. Insertion of chemical potential (8.41) into relations (8.33) and (8.34)
leads to the following expressions for the condensate mass density and pressure

ρb = mbnb(1 + εnb) , (8.44)

Pb =
1
2
εmbc

2n2
b . (8.45)

Pursuant to the approximations outlined at the beginning of this section,
implementation of hydrostatic equilibrium at the inner boundary leads to the
relation

Pn(0) = Pb(R) +
2π
3
Gρ2nR

2 , (8.46)

and, assuming for the present an interaction a > 0, the relation

Pb(R) =
4π
3
Gρ2bR

2
0(1 − ζ)

[(
ρn
ρb

− 1
)
ζ2 +

1
2
(1 + ζ)

]
, (8.47)

6 Gravitational potential energy is not ordinarily included in the chemical potential,
because, in accordance with the equivalence principle, one can always consider
chemical equilibrium in a local Lorentz frame where gravity vanishes. However,
comparison of chemical potentials at different locations in a star does require
taking account of the gravitational potential, and this can influence the condition
of chemical equilibrium. See [265].
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Fig. 8.2. Schematic cross-section through a degenerate star comprising two sepa-
rated phases (fermionic and bosonic) in chemical and hydrostatic equilibrium after
fermion condensation

with
ζ ≡ R

R0
(8.48)

at the outer boundary, where the boundary condition Pb(R0) = 0 has been
imposed.

To implement the model, one specifies at the outset the initial neutron
number N0 and condensate parameters Q, s, a, and solves the equations of
equilibrium to obtain the equilibrium neutron fraction X ≡ Nn/N0, the Fermi
parameter yF, and radial ratio ζ, from which follow all the pertinent stellar
properties formulated in Table 8.1. Re-expressed dimensionlessly in terms of
the three convenient independent variables, the equations of equilibrium take
the form:

• Chemical equilibrium:
√

1 + y2F −Q
Qy3F

=
1

3π2s

ε

λ3
n

1 −X
X

ζ3

1 − ζ3 . (8.49)

• Hydrostatic equilibrium at R :

y2F

[
yF(2y2F − 3)

√
y2F + 1 + 3 sinh−1 yF

]

=
1
4π

(
mn

mP

)2 (9π
4
N0

)2/3 [
yF(2y2F + 1)

√
y2F + 1 − sinh−1 yF

]
X2/3

+ 12π2 λ
4
n

λbε
y2F

(√
y2F + 1 −Q
Q

)2

. (8.50)
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Table 8.1. Evaluation of equilibrium stellar properties from X, yF, ζ

Fermion number Nn = XN0

Boson number Nb =
1

s
(N0 − Nn)

Inner radius R =

„
9π

4
N0

«1/3
X1/3λn

yF

Outer radius R0 = R/ζ

Fermion number density nn =
Nn

4πR3/3
=

1

3π2

„
yF

λn

«3

Boson number density nb =
Nb

4π(R3
0 − R3)/3

=

p
1 + y2

F − Q

εQ

Fermion mass density ρn =
mng(yF)

8π2λ3

Boson mass density ρb = mbnb(1 + εnb)

Gravitational binding
energy

Ug = −3

5

„
4π

3

«2

Gρ2
bR5

0

(

1 +
5

2

„
ρn

ρb
− 1

«

ζ3(1 − ζ2)

+

"„
ρn

ρb

«2

− 1

#

ζ5

)

Total fermion mass Mn =
4π

3
R3ρn

Total boson mass Mb =
4π

3
(R3

0 − R3)ρb

Total mass M = Mn + Mb + Ug/c2

Schwarzschild radius RS = 2GM/c2

• Hydrostatic equilibrium at R0 :

1 − ζ
ζ2

{[
εQ2λb

8π2λ4
n

yF(2y2F + 1)
√
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n
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)2

Q2y2F

(
9π
4
N0X

)2/3

(1 + y2F)

. (8.51)

The three coupled equations are highly nonlinear in the sought-for variables
and must be solved numerically. For this purpose an iterative Levenberg–
Marquardt method was employed [266] to obtain solutions to a tolerance of
10−10 for nearly all the model conditions presented in Tables 8.2 through 8.7.
The iterative procedure requires an estimation of the unknowns as input, but
in most of the cases summarized in the tables a ‘ballpark’ guess was sufficient
for rapid convergence. In a few noted instances, however, convergence was
very slow, and results were obtained to a lower tolerance of 10−4.
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The fixed parameters Q, s, a of the model define the physics of the fermion
condensation process and are not specified by the model. In principle, they
would be deducible from a (currently unknown) comprehensive theory of nu-
clear or subnuclear matter at extreme pressures and densities. Nevertheless,
it is worth noting that the model does, in fact, impose informatively restric-
tive limits on the values of the parameters, since initial choices of parameter
values well outside these limits did not lead to viable solutions or, in most
instances, to any solutions at all. Because an iterative method of solution can
require very closely estimated initial values, it was not always possible to say
with certainty that failure to find a solution to the equations of equilibrium
for a particular set of condensate parameters meant that no solution existed.
Graphical analysis, i.e., plotting the three equilibrium relations on one graph
as a function of yF for selected values of X and ζ and searching for a three-
line intersection, could be executed comparatively rapidly and was helpful
in locating and confirming solutions when the iterative routine failed to find
a solution at a tolerance of 10−10.

An important question is how one would recognize that a solution repre-
sents a state of stable equilibrium. In this regard it is helpful to consider first
a self-gravitating system of fermions only, i.e., a fermion sphere of radius R
and no condensate shell. The condition (8.50) of hydrostatic equilibrium at R
(the only boundary) can then be reduced to an equality between a universal
function F (yF) of the Fermi parameter and a constant term determined by
the number of fermions, as follows:

F (yF) =
y2F
[
yF(2y2F − 3)

√
y2F + 1 + 3 sinh−1(yF)

]

[
yF(2y2F + 1)

√
y2F + 1 − sinh−1(yF)

]2

=
1
4π

(
9π
4

)2/3 (
mn

mP

)2

N2/3
n . (8.52)

Figure 8.3 shows a plot of the above function, which reaches a maximum value
of 0.11 at yF = 0.905. A horizontal straight line [the constant on the right
hand side of (8.52)] can intersect this plot at two points, or at one point (the
peak), or else lie above and not intersect at all. The first case leads to two
equilibrium solutions of which the intersection at the lower value of yF, i.e., at
a point of positive slope, is the stable equilibrium. Since the plot represents
the ratio of degeneracy pressure to hydrostatic pressure, a small departure
from the first intersection to larger yF results in an increase of degeneracy
pressure over gravity, and therefore a resistance to collapse. At the second
intersection (i.e., higher value of yF), gravity prevails, and the system will
experience irreversible collapse. Intersection at the point of zero slope (peak)
represents the threshold beyond which there are no equilibrium solutions.
From the maximum value of F (yF) one can calculate the maximum number
of particles that can form a stable system in the absence of any mechanism
of fermion reduction, which, for the case of neutrons treated as a degenerate
fermi gas, is N0 = 5.07 × 1056.
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Fig. 8.3. Universal curve F (y) for the ratio of fermion degeneracy pressure to
hydrostatic pressure as a function of the Fermi parameter y. The maximum value
of the function is 0.11 at the coordinate y = 0.905

An example of a comparable plot when fermion condensation occurs and
the full set of equations (8.49)–(8.51) are required is shown in Fig. 8.4 for the
case of N0 = 4 × 1057 neutrons and the condensate parameters specified in
the figure caption. The chemical equilibrium condition (8.49) has reduced the
number of fermions although the shape of the plot of the ratio of degeneracy
pressure to the sum of condensate and hydrostatic pressures is substantially
the same as the plot in Fig. 8.3. A dashed horizontal line in Fig. 8.4 at unit

Fig. 8.4. Ratio of the neutron degeneracy pressure at the stellar center to the sum
of the condensate pressure and hydrostatic pressure at R for the equilibrium state
characterized by parameters N0 = 4×1057 , Q = 0.9, s = 2, and a = 1×10−12 m. The
dashed line indicates a ratio of unity, and therefore the value yF at which hydrostatic
equilibrium occurs. The rising section of the plot (positive slope) is the region for
stable equilibrium
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ordinate intersects the plot at the two points of hydrostatic equilibrium, the
first intersection (lower value of yF) again marking the state of stable equi-
librium. In Fig. 8.5 is plotted, for the same initial number of neutrons and
condensate parameters as in the preceding figure, the variation with yF of the
separate pressures, i.e., the logarithm of the ratio of these pressures, which is
more convenient for display. Figure 8.6 provides a companion plot for the same
parameters, showing the logarithm of the ratio of fermion-to-boson number
density and mass density.

We consider now the principal features of the resulting stellar equilibrium
states, as summarized in Tables 8.2 through 8.7, beginning with a condensate
formed by exothermic (Q < 1) pairing (s = 2) of neutrons with a positive
interaction parameter (a = 1× 10−12 m) which is very large in comparison to
the (reduced) Compton wavelength λb, as well as to the mean separation be-
tween bosons n−1/3

b (a circumstance establishable only after the equations are
solved). The choice of large a approximates what is called the unitarity limit,
signifying a short-range, strong two-body interaction between constituents.
The unitary limit is thought to be realized approximately in the inner crust
of neutron stars, where the neutron–neutron scattering length is at least a fac-
tor of ten larger than the mean interparticle separation [267]. As pointed out
at the beginning of this chapter, the behavior of the fermion condensates in
the unitarity limit is expected to be applicable to a wide range of systems
from cold atomic gases to dense nuclear matter.

An examination of Table 8.2, which records equilibrium values of the stellar
properties summarized in Table 8.1 for initial neutron numbers N0 increasing
sequentially from approximately 4 to 10 times that of the Sun shows, first

Fig. 8.5. Variation with y of log of the following pressure ratios: (A) Pn/Pb, (B)
Pn/P0, (C) Pb/P0. The dashed horizontal line indicates a unit ratio. The fermion
number and condensate parameters are the same as for Fig. 8.4
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Fig. 8.6. Variation with yF of the logarithm of the neutron-to-condensate density
ratios: (A) mass density ρn/ρb, (B) number density nn/nb. The fermion number
and condensate parameters are the same as for Fig. 8.4

Table 8.2. Equilibrium states for condensate parameters a = 10−12, Q = 0.9, s = 2

N0/10
57 4 5 6 7 8 9 10

yF 0.383 0.338 0.297 0.261 0.228 0.200 0.176
Nn/N0 0.068 0.046 0.031 0.021 0.013 6.33(−03) 1.66(−03)
Nb/N0 0.932 0.954 0.969 0.979 0.987 9.94(−01) 9.98(−01)
ζ 0.093 0.088 0.085 0.083 0.078 0.070 0.050
R [km] 6.81 7.30 7.74 8.10 8.21 7.75 5.83
R0 [km] 73.64 82.53 90.59 98.00 104.80 111.00 116.56
nn [m−3] 2.07(44) 1.41(44) 9.62(43) 6.49(43) 4.35(43) 2.92(43) 2.00(43)
nb [m−3] 1.12(42) 1.01(42) 9.34(41) 8.70(41) 8.20(41) 7.81(41) 7.53(41)
ρn [kg/m3] 3.60(17) 2.44(17) 1.65(17) 1.11(17) 7.37(16) 4.93(16) 3.38(16)
ρb [kg/m3] 3.67(15) 3.31(15) 3.03(15) 2.81(15) 2.64(15) 2.50(15) 2.41(15)
M/MSun 3.16 3.90 4.64 5.36 6.08 6.80 7.51
RS [km] 9.37 11.57 13.75 15.90 18.03 20.15 22.26
R0/RS 7.86 7.13 6.59 6.17 5.81 5.51 5.24

of all, that an equilibrium state is actually reached in each case with a stel-
lar radius comparable to the radius of a neutron star and larger than the
associated Schwarzschild radius. Yet in all cases the resulting stellar masses
exceed the Chandrasekhar and Oppenheimer–Volkoff limits for white dwarf
and neutron stars, respectively. In other words, the predicted final state is
not a black hole and has no central singularity, although, in the absence of
the mechanism herein proposed, a black hole would assuredly have been the
expected outcome. Basic trends predicted by the theory, as one progresses
from lowest to highest values of N0, are (a) the Fermi parameter falls, as ini-
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tially expected, from a relativistic value7 to a nonrelativistic value; (b) the
equilibrium neutron fraction decreases; (c) the radius of the neutron core in-
creases up to approximately 8 times NSun and then begins to fall; (d) the
outer radius of the condensate shell increases monotonically; and (e) the neu-
tron number density and mass density, both of which decrease with increasing
initial neutron number, remain larger than the corresponding densities of the
condensate.

The fermion condensation model presented here also allows for an exotic,
but by no means inconceivable, possibility whereby a condensate can form by
endothermic (Q > 1) pairing (s = 2) with large negative interaction parameter
(a = −1× 10−12 m). In this case the interaction between composite bosons is
attractive, but the constituent fermions require input of energy to overcome
repulsive interactions. This energy is supplied by the fermion kinetic energy as
accounted for quantitatively by the equilibrium relation (8.49). Nevertheless,
one might think such a composite would be unstable. This is not the case,
however, for systems in a structured environment in the absence of dissipation,
and, in fact, repulsively bound atom pairs have been reported [268] (while
this chapter was being written) for a boson condensate of 87Rb. Such systems
are expected to occur ubiquitously in cold-atom physics, a circumstance that
encourages the belief, therefore, that comparable processes may also take place
in ultra-dense nuclear matter.

Equally significant as the value of Q, are the implications for a negative-
valued interaction parameter a, which, according to (8.42) and (8.45), results
in a negative condensate pressure or a kind of suction at the outer bound-
ary. A heuristic way to envision this would be to imagine a droplet of water
immersed in a hydrophobic environment. Since stable hydrostatic equilibrium
requires that the condensate pressure increase from the outer boundary in-
wards, and since the composite bosons interact only very weakly with the
neutrons, we must modify the boundary conditions by setting P (R) = 0 and
P (R0) = −Pb. The resulting equations to be solved then take the form:

• Chemical equilibrium:

Q−√
1 + y2F

Qy3F
=

1
3π2s

|ε|
λ3

n

1 −X
X

ζ3

1 − ζ3 . (8.53)

• Hydrostatic equilibrium at R :
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X2/3 .

(8.54)
7 If the hypothesized fermion condensation process did not occur, and a neutron star

collapsed to the density in which the mean interparticle separation is the reduced
Compton wavelength λn, then the Fermi parameter would be yF = (3π2)1/3 ∼
3.094, which is highly relativistic.
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• Hydrostatic equilibrium at R0 :
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Table 8.3 records the properties of the stellar equilibrium states resulting
from solution of the foregoing equations for condensate parameters Q = 1.1,
s = 2, a = −1 × 10−12 m and the same sequence of initial fermion numbers
as recorded in Table 8.2. Basic trends predicted by the theory for increas-
ing values of N0 are that (a) the Fermi parameter decreases, as before, to
nonrelativistic values; (b) the equilibrium neutron fraction decreases; (c) the
radius of the neutron core increases monotonically; (d) the outer radius of
the condensate shell increases monotonically, remaining larger than the cor-
responding Schwarzschild radius; (e) the neutron number density and mass
density are larger than the corresponding densities of the condensate, but by
smaller factors until the trend is reversed at approximately 10 times NSun.
In all cases the resulting stellar masses exceed the Chandrasekhar and OV
limits, but, again, no stellar black hole is formed.

The preceding calculations were also carried out for magnitudes of the
interaction parameter a comparable to the boson Compton wavelength, and
therefore smaller (by about 1/10 to 1/5) than the mean separation between

Table 8.3. Equilibrium states for condensate parameters a = −10−12, Q = 1.1,
s = 2

N0/10
57 4 5 6 7 8 9 10

yF 0.196 0.175 0.152 0.128 0.101 0.071 0.046
Nn/N0 0.031 0.021 0.014 9.46(−03) 5.85(−03) 3.08(−03) 1.73(−03)
Nb/N0 0.969 0.979 0.986 0.991 0.994 0.997 0.998
ζ 0.113 0.113 0.116 0.122 0.133 0.154 0.198
R [km] 10.16 10.81 11.63 12.72 14.37 17.19 22.73
R0 [km] 89.58 95.30 100.09 104.23 107.94 111.42 115.04
nn [m−3] 2.78(43) 1.96(43) 1.29(43) 7.68(42) 3.77(42) 1.31(42) 3.53(41)
nb [m−3] 6.45(41) 6.76(41) 7.05(41) 7.32(41) 7.57(41) 7.77(41) 7.89(41)
ρn [kg/m3] 4.69(16) 3.30(16) 2.18(16) 1.29(16) 6.32(15) 2.18(15) 5.89(14)
ρb [kg/m3] 2.28(15) 2.39(15) 2.49(15) 2.58(15) 2.66(15) 2.73(15) 2.77(15)
M/MSun 3.41 4.23 5.04 5.83 6.62 7.40 8.18
RS [km] 10.10 12.53 14.93 17.29 19.63 21.94 24.24
R0/RS 8.87 7.60 6.70 6.03 5.50 5.08 4.75
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particles. Table 8.4 shows the results for increasing N0 for condensate param-
eters Q = 1.1, s = 2, and a = −1 × 10−16 m. Most noticeable here is that
a smaller interaction parameter has led to lower equilibrium stellar masses
and much lower equilibrium stellar radii than before for corresponding values
of N0. The ratios of stellar radius (i.e., the outer radius of the condensate
shell) to Schwarzschild radius are marginally larger than unity. Also, because
the outer radius of the condensate is not much larger than the inner radius
(ζ ∼ 0.9), the condensate number and mass densities are significantly larger
than the neutron densities. Because this is a less familiar occurrence, one
might question whether a distribution of self-gravitating matter with a lower
density core and higher density shell can be stable, since it is well known that
in a stratified system of immiscible fluids the least dense fluid floats on top.
The two situations, however, are not at all parallel, for, within the framework
of the model calculation, the condensate exerts a negative pressure which van-
ishes at the surface of the neutron sphere. In Appendix 8B it is shown that
an object of density ρ immersed in a spherical self-gravitating environment
of density ρ0 with negative pressure always sinks to the center irrespective of
the relative density ρ/ρ0.

The consequences of a negative interaction parameter are followed system-
atically in Table 8.5, which records the equilibrium properties of a degenerate
star with N0 = 4 × 1057 neutrons initially and magnitudes |a|/λb increasing
from approximately 1 to 104. Properties evolve monotonically with increas-
ing |a|/λb, with decreasing densities and condensate-to-neutron density ra-
tios greater than unity, until a value of |a|/λb somewhere between 103–104

is reached at which point there is a reversal of trend, the neutron density
surpassing that of the condensate, and the stellar radius markedly increasing.
What interaction parameter actually may pertain to a condensed neutron sys-

Table 8.4. Equilibrium states for condensate parameters a = −10−16, Q = 1.1,
s = 2

N0/10
57 4 5 6 7 8 9 10

yF 0.320 0.296 0.276 0.257 0.241 0.226 0.212
Nn/N0 0.058 0.042 0.032 0.025 0.020 0.016 0.014
Nb/N0 0.942 0.958 0.968 0.975 0.980 0.984 0.986
ζ 0.930 0.931 0.933 0.935 0.936 0.938 0.940
R [km] 7.73 8.09 8.43 8.77 9.10 9.43 9.75
R0 [km] 8.32 8.68 9.04 9.28 9.72 10.05 10.37
nn [m−3] 1.20(44) 9.56(43) 7.69(43) 6.24(43) 5.10(43) 4.21(43) 3.50(43)
nb [m−3] 3.99(45) 4.54(45) 5.00(45) 5.38(45) 5.70(45) 5.97(45) 6.20(45)
ρn [kg/m3] 2.07(17) 1.64(17) 1.31(17) 1.06(17) 8.67(16) 7.14(16) 5.92(16)
ρb [kg/m3] 1.43(19) 1.63(19) 1.78(19) 1.92(19) 2.03(19) 2.12(19) 2.20(19)
M/MSun 2.41 2.72 2.95 3.10 3.17 3.19 3.14
RS [km] 7.14 8.07 8.74 9.17 9.40 9.44 9.31
R0/RS 1.16 1.08 1.03 1.01 1.03 1.06 1.11
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Table 8.5. Equilibrium states for parameters N0 = 4 × 1057, Q = 1.1, s = 2

a [m] −1.00(−16) −1.00(−15) −1.00(−14) −1.00(−13) −1.00(−12)

yF 0.320 0.204 0.112 0.098 0.196
Nn/N0 0.058 0.032 0.014 0.011 0.031
Nb/N0 0.942 0.968 0.986 0.989 0.969
ζ 0.93 0.832 0.659 0.362 0.113
R [km] 7.732 9.965 13.621 14.595 10.163
R0 [km] 8.315 11.979 20.668 40.27 89.576
nn [m−3] 1.20(44) 3.10(43) 5.16(42) 3.44(42) 2.78(43)
nb [m−3] 3.99(45) 6.34(44) 7.47(43) 7.59(42) 6.45(41)
ρn [kg/m3] 2.07(17) 5.24(16) 8.64(15) 5.75(15) 4.69(16)
ρb [kg/m3] 1.43(19) 2.24(18) 2.63(17) 2.67(16) 2.28(15)
M/MSun 2.41 2.72 3.02 3.25 3.41
RS [km] 7.14 8.06 8.96 9.62 10.10
R0/RS 1.16 1.49 2.31 4.19 8.87

tem, and how that parameter depends on density, are questions that await
a comprehensive theory of ultra-dense nuclear matter.

Similar calculations were attempted to investigate the equilibrium proper-
ties resulting from assumption of a positive interaction parameter comparable
in magnitude to the Compton wavelength. In these instances, however, the
Levenberg–Marquardt procedure failed to converge for tolerances stricter than
10−2, although graphical analysis showed a ‘crossing’ of the three equations
of equilibrium at the point yF = 0.0802, X = 0.00104, ζ = 0.962 to within ap-
proximately ±1× 10−6. The equilibrium properties represented by this point
characterize a terminal state similar to that resulting from a negative inter-
action parameter of the same magnitude, namely: a small star (R = 8.07 km,
R0 = 8.39 km), slightly larger than its Schwarzschild radius (R0/RS = 1.24),
with condensate densities (in MKS units) (nb = 7.37×1045, ρb = 2.35×1019)
greatly larger than neutron densities (nn = 1.89×1042, ρn = 3.17×1015), and
a total mass M/MSun = 2.28, although N0/NSun = 3.33. As in the previous
cases, the terminal state is not a black hole, although the proximity in size
to the Schwarzschild radius and the huge condensate density suggests that
an appropriate general relativistic analysis would be justified. In any event,
because of the difficulty of obtaining solutions in the case of a positive inter-
action parameter comparable in magnitude to the Compton wavelength, and
the question of whether such results obtained by graphical analysis actually
represent true solutions, the search for additional solutions was not pursued.

In all the foregoing cases, the condensation of neutrons was assumed to
occur in pairs. A preliminary investigation was also made of fermion condensa-
tion in clusters ranging from s = 4 to s = 10, which is summarized in Table 8.6
for a range ofN0 and condensate parameters s = 4,Q = 1.1, a = −1×10−12 m,
and in Table 8.7 for fixed N0 = 4 × 1057 over a range of s. As N0 increases
sequentially (for s = 4) over the same range as before, one finds that (a) the
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Table 8.6. Equilibrium states for condensate parameters a = −10−12, Q = 1.1,
s = 4

N0/10
57 4 5 6 7 8 9 10

yF 0.104 0.068 0.048 0.034 0.026 0.021 0.018
Nn/N0 0.012 0.005 0.003 1.30(−03) 7.78(−04) 4.93(−04) 3.79(−04)
Nb/N0 0.988 0.995 0.997 0.999 0.999 1.000 1.000
ζ 0.327 0.378 0.431 0.474 0.510 0.539 0.564
R [km] 14.13 17.59 21.44 25.03 28.49 31.55 34.50
R0 [km] 43.27 46.53 48.75 52.81 55.80 58.50 61.13
nn [m−3] 4.16(42) 1.14(42) 4.00(41) 1.39(41) 6.48(40) 3.37(40) 2.21(40)
nb [m−3] 3.02(42) 3.12(42) 3.15(42) 3.17(42) 3.18(42) 3.18(42) 3.19(42)
ρn [kg/m3] 6.96(15) 1.90(15) 6.69(14) 2.31(14) 1.08(14) 5.63(13) 3.68(13)
ρb [kg/m3] 2.12(16) 2.19(16) 2.21(16) 2.22(16) 2.23(16) 2.23(16) 2.23(16)
M/MSun 3.26 4.03 4.78 5.53 6.26 6.99 7.71
RS [km] 9.67 11.93 14.17 16.38 18.57 20.72 22.86
R0/RS 4.47 3.90 3.44 3.22 3.01 2.82 2.67

Table 8.7. Equilibrium states for parameters a = −1×10−12 , N0 = 4×1057 , Q = 1.1

s 2 4 6 8 10

yF 0.196 0.104 0.018 0.017 0.012
Nn/N0 0.031 0.012 6.48(−05) 4.40(−05) 1.39(−05)
Nb/N0 0.969 0.988 1.000 1.000 1.000
ζ 0.113 0.327 0.485 0.592 0.657
R [km] 10.16 14.13 14.19 13.47 12.38
R0 [km] 89.58 43.27 29.27 22.78 18.84
nn [m−3] 2.78(43) 4.16(42) 2.17(40) 1.72(40) 6.99(39)
nb [m−3] 6.45(41) 3.02(42) 7.16(42) 1.27(43) 1.99(43)
ρn [kg/m3] 4.69(16) 6.96(15) 3.62(13) 2.87(13) 1.17(13)
ρb [kg/m3] 2.28(15) 2.12(16) 7.54(16) 1.79(17) 3.49(17)
M/MSun 3.41 3.26 3.15 3.06 2.97
RS [km] 10.10 9.67 9.33 9.06 8.80
R0/RS 8.87 4.47 3.14 2.51 2.14

Fermi parameter decreases monotonically to nonrelativistic values; (b) the
equilibrium neutron fraction decreases; (c) the radius of the neutron core in-
creases monotonically; (d) the outer radius of the condensate shell increases
monotonically, remaining larger than the corresponding Schwarzschild radius;
and (e) the neutron number density and mass density become significantly
lower than the corresponding condensate densities. The stellar masses again
exceed the Chandrasekhar and OV limits, but no black hole forms.

For a star of initial neutron number N0 = 4 × 1057, an increase in cluster
size from s = 2 to s = 10 leads to (a) a decrease in Fermi parameter by
an order of magnitude; (b) a decrease in the equilibrium neutron fraction by
two orders of magnitude; (c) a relatively small change in the radius of the
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neutron core; (d) a decrease in the outer radius of the condensate shell by
approximately a factor of five; (e) a decrease in the neutron number density
and mass density and an associated increase in the condensate densities by
about two orders of magnitude. In general, for a large negative interaction
parameter, condensation into larger neutron clusters results in a denser star,
comprising nearly 100% condensate with an outer radius approaching (but
not falling below) the Schwarzschild radius.

Use of the Levenberg–Marquardt algorithm failed to yield solutions for the
condensation into composite neutron quartets with large positive interaction
parameter (a = 1×10−12 m). Indeed, cursory attempts to solve the equations
of equilibrium for positive a and fermion combinations other than s = 2
generally failed, even for tolerances as low as 10−4.

8.5 Fermicon Stars vs Black Holes

The objective of the previous sections has been to examine the implications
of a relatively recently observed quantum phenomenon – the condensation of
fermions to form systems of composite bosons – as a possible mechanism pre-
venting the unremitting collapse to a singularity of a relativistic degenerate
star that exceeds the Chandrasekhar and OV mass limits. It is to be noted
that the designation ‘black hole’ need not imply a central singularity, for it is
conceivable that a process can be found whereby a star collapses to a volume
within its event horizon, yet nevertheless reaches a state of nonvanishing ra-
dius and finite density. Such a situation is not permitted by general relativity,
but general relativity and quantum mechanics are not mutually compatible. In
the following section I discuss such a possibility arising from the ultra-strong
magnetic fields associated with neutron stars. In any event, the solutions to the
equations of equilibrium for neutronic matter undergoing fermion condensa-
tion to composite bosons describe end states of finite size and finite mass den-
sity for degenerate stars that would otherwise have collapsed to a black hole.

The terminal equilibrium states predicted by the model, however, are nei-
ther black holes, since the predicted stellar surfaces lie outside the associated
Schwarzschild horizons, nor ordinary neutron stars, since the stars comprise
separated neutron and condensate phases, with the latter more often than not
(for the calculations discussed here) the major component. I have proposed
the term ‘fermicon hybrid stars’, or simply fermicon stars, to designate termi-
nal equilibrium states of thermonuclear end-point stars produced by partial
fermion condensation (either neutron or quark) into a condensate of composite
bosons.

Bosonic pairing of neutrons with either large positive or large negative in-
teraction parameters lead in both cases to fermicon stars with a neutron core
denser than the condensate shell, although a fermicon star with negative con-
densate pressure may also have, for sufficiently large initial neutron number,
a neutron core less dense than the condensate shell. In all cases so far studied
with interaction parameters much larger in magnitude than the interparticle
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separation, the resulting stellar radii are approximately 4 to 8 times the asso-
ciated Schwarzschild radii, yielding Schwarzschild parameters x2

S sufficiently
small to justify use of Newtonian gravity. In the cases involving interaction
parameters comparable to the boson Compton wavelength, however, the re-
sulting stars are marginally larger than their Schwarzschild radii with thin
(ζ ∼ 0.9) highly dense shells, and a general relativistic analysis would be war-
ranted here although a more appropriate condition of hydrostatic equilibrium
than the classical TOV equation is probably needed.

Looking beyond neutron pairs to even-numbered bosonic clusters of 4 or
more neutrons, one finds that, all other parameters held fixed, the larger
the cluster, the denser and thicker is the condensate shell, the smaller is the
Schwarzschild radius, and the closer it is approached from above by the stellar
radius. For clusters of 6 or more, a general relativistic analysis would again be
appropriate, although what is needed most is advancement of nuclear theory
to ascertain whether, and under what circumstances, these clusters can form.

In considering the fermion condensation process in this chapter, I have
focused attention on neutrons, in contrast to quarks, because neutron stars,
after all, are known to exist, and quark stars are, as yet, largely hypothetical,
albeit conceivable, stellar end states.8 The dissolution of nucleons into quarks
is expected to occur at densities corresponding approximately to 3 to 10 times
the saturation density of nuclear matter [270] (nN ∼ 1.5 × 1044 m−3), which
is comparable to the densities predicted by the fermicon model for certain
values of the condensate interaction parameter, both positive and negative.
At the time this chapter is being written there is some evidence, based on
inferences regarding the rate of cooling and the ratio of mass to radius, that
at least two stars containing quark cores may have been observed,9 although
the arguments for this conclusion are not definitive and other interpretations
of the stars’ properties have been given. Moreover, recent observation of the
gravitational redshift of absorption lines in the X-ray burst spectra of a neu-
tron star with relatively low magnetic field (107–109 gauss) seems to indicate
that the star is made up of normal nuclear matter, rather than exotic matter
such as quarks [272]. In time, more redshift measurements of more neutron
stars should help clarify the question of their composition. In Appendix 8C I
discuss a simple model of the neutron–quark phase transition which predicts
the pressure and density at which such a transition should occur. Such results
are highly model dependent and are by no means to be regarded as conclusive.
Moreover, the predicted occurrence of a neutron–quark phase transition does
not necessarily mean that a stable stellar end state results. Nevertheless, the
fact the various models employing different equations of state seem to support
the ‘melting’ of nucleons to form an equilibrium free quark phase encourages

8 There is a substantial literature on the possibility of a quark phase in neutron
stars. See, for example, [269].

9 Several quark stars may possibly have been found by the Chandra and Hubble
space telescopes [271].
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further investigation into the consideration of quark pairs to form composite
bosons and possible equilibrium stellar end states. These investigations are in
progress.

The question also arises of how one might determine observationally
whether a degenerate star of mass greater than the OV limit is a black hole
with an event horizon and interior singularity or a type of fermicon hybrid
star predicted here. The usual distinguishing criteria of mass (estimated from
orbital data for stars in binary associations or from gravitational microlensing
events) and size (estimated from fluctuations in X-ray emissions by accreting
matter) may be inconclusive. What is necessary are astronomical observations
that can reveal the characteristics of the stellar surface, in particular to de-
termine the presence of a a physical crust in contrast to a mere mathematical
horizon at the Schwarzschild radius. Evidence for a degenerate star more mas-
sive than about 3 solar masses with a physical surface would be definitive, as
such a system cannot exist as a neutron star according to classical general
relativity.

Hawking radiation aside (which has not been confirmed observationally
or experimentally), neither an isolated black hole nor an isolated fermicon
star can illuminate itself, and therefore cannot be observed directly. However,
a compact degenerate star in binary association with a much larger (although
not necessarily more massive) normal star with gaseous atmosphere is likely
to be surrounded by dense swirls of infalling matter drawn from the normal
companion. The accumulation of this energetic matter, arriving at the com-
pact star at close to the speed of light, gives rise at irregular intervals to
diffuse thermonuclear explosions that can illuminate not only the surface but
part of the interior of the compact star as well. Events of this kind have been
observed [272] for the neutron star EXO 0748-676 by the European Space
Agency’s XMM Newton X-ray satellite and provide important details about
the equation of state the matter comprising the star [273]. Such a process can-
not occur for black holes because they have no physical surface upon which
infalling matter could accumulate. However, self-illuminating thermonuclear
surface explosions could occur for fermicon stars, if they exist. Besides appro-
priate instrumentation, one needs the good fortune to be looking at the right
star at the right moment.

Although the model discussed in this section disregards the attribute of
stellar rotation, it is likely that a precursor to a black hole or fermicon star
has angular momentum. Thus, if by continued good fortune, one could observe
a star undergoing the predicted phase transformation, then a change in stellar
moment of inertia may also reveal the nature of the terminal state.

8.6 Can Ultra-Strong Magnetic Fields
Prevent Collapse?

Neutron stars and their variants give evidence of the strongest magnetic fields
in the cosmos [274]. For example, mean field strengths typical of radio pulsars



336 8 Condensates in the Cosmos: Quantum Stabilization of Degenerate Stars

are of the order of 1012–1013 gauss; soft-gamma-ray repeaters and ‘anoma-
lous’ X-ray pulsars are thought to be neutron stars with superstrong magnetic
fields exceeding 1014 gauss. How such fields came into existence is not known
with certainty. Neutron stars derive from the cores of main-sequence stars
with masses greater than about 8 solar masses that terminate in a supernova
explosion upon the exhaustion of their nuclear fuel supply. One possibility,
therefore, is that the considerably weaker magnetic fields present in the pro-
genitor star become greatly amplified by magnetic flux conservation during
core collapse. As a rough order-of-magnitude estimate, the magnetic field B0

of a progenitor with radius 10 times the solar radius (RSun = 7 × 108 m),
collapsing to a neutron star with radius 10−5RSun, would be amplified by the
factor 1012. Thus an initial field B0 in the range of 1–103 gauss would lead to
the range of enormous fields manifested by neutron stars.

An alternative and possibly more likely scenario is that the magnetic field
is generated by a sort of convective dynamo in the first minute or so after
the neutron star has formed, during which time the differential rate of flow
of charged particles (protons, electrons, ionized atoms) in the predominantly
neutral matter is high. In such a dynamo, the kinetic energy of stellar material
of mass density ρ undergoing convective motion at speed vcon is transformed
into magnetic energy according to B2/8π ∼ ρv2con/2, leading to an estimate
Bmax ∼ √

4πρvcon for the upper limit of the dipolar magnetic field strength of
the neutron star [275]. Although a wide range of circumstances can character-
ize the formation of neutron stars, it is perhaps not far off the mark to say that
a newly born neutron star may rotate with a period trot approximately ten
times longer than the convective turn-over time tcon. If at formation a solar-
mass neutron star of radius 10 km rotates at approximately one-tenth the
angular frequency at which it would break up,10 then its rotational period
would be about 10 ms, and therefore tcon ∼ 1 ms. Supposing that the size of
a convective cell is approximately one-tenth the radius of the star, then one
obtains a convective speed vcon ∼ (1 km/ms) = 108 cm/s. Under the preceding
assumptions, a convecting fluid at the saturation density of nuclear matter,
ρN ∼ mnnsat ∼ 2.5 × 1014 g/cm3, could generate maximum field strengths
of about Bmax ∼ 3 × 1015 gauss. (Mechanical quantities are expressed in cgs
units above because the magnetic energy density is expressed in the esu–emu
system of units.)

However the magnetic field of neutron stars is formed, the essential point
here is that they can be extremely large, and one could reasonably expect the

10 A lump of matter of unit mass at the equator of a rotating sphere of mass M and
radius R can no longer rotate as part of the sphere when the gravitational force
GM/R2 attracting it towards the center is insufficient to provide the necessary
centripetal acceleration ω2R at angular frequency ω. This leads to a maximum
angular frequency ωmax =

p
GM/R3 or minimum period Tmin = 2π

p
R3/GM .

Symbolically, the relation is the same as that of Kepler’s third law relating the
square of the period to the cube of the orbital radius (or, more accurately, the
semi-major axis of the orbit).
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field to become even stronger and have a significant effect on the dynamics
of a compact star that cannot achieve hydrostatic equilibrium by means of
fermion degeneracy pressure alone. A heuristic argument [241] shows that this
may be so. We develop the argument in the context of Newtonian gravity for
the reasons previously given in Sect. 8.3, but also because the claim is fre-
quently made that, even within the framework of Newtonian gravity, a cold
star of noninteracting fermions of total mass greater than a certain limit can-
not reach stable equilibrium [276]. The explanation given, as discussed at the
beginning of this chapter, refers to the weaker dependence on density of the
degeneracy pressure of relativistic fermions than of nonrelativistic fermions.
This conclusion, however, does not take account of quantum interactions be-
tween fermions which conceivably may increase pressure and lead to stable
equilibria. It evokes a mental image of the collapse process – unbound, un-
correlated nuclear particles hurtling at breakneck speeds from all directions
towards a bottomless abyss at the center of a collapsing sphere – which may
be unfounded under the circumstances to be examined.

We consider in this section the affect of an ultra-strong magnetic field on
the internal energy of a compact star modeled, as in Sect. 8.1, as an ideal gas
of N fermi particles of mass m, each now endowed with a magnetic moment
of magnitude μN = gN(e�/2mc). For neutrons, the nuclear g-factor is −1.91
(compared to gN = 1 for a classical particle and gN = 2 for a spin-1/2 Dirac
particle). Although a compact star at the densities to be considered would
hardly constitute an ideal fermion gas, we will use that equation of state
nevertheless because it is the model previously employed by others to reach
the conclusion we are now contesting. Moreover, that model, augmented by
the magnetic interaction, will be seen to lead to stable equilibrium states of
macroscopic size. Thus a more accurate equation of state for which pressure
depends more strongly on density should also lead to stable equilibrium states.

Expressed in dimensionless quantities as in (8.5), the total energy of the
star (excluding rest mass) as a function of its radius R takes the form

U

mc2
= N

[(
1 +

N2/3λ2

R2

)1/2

− 1

]

+ δN2 3g2Nαf

16π
λ3

R3
− 3

5

(
M

mP

)2
λ

R
, (8.56)

in which the three terms on the right represent respectively the relativistic
kinetic energy Uk, the fermion magnetic dipole coupling energy Um, and the
Newtonian gravitational potential energy Ug of a star of mass M . The di-
mensionless fine-structure constant αf = e2/�c ∼ 1/137 is a measure of the
electromagnetic coupling strength. The expression for the magnetic energy
term derives from the magnetic dipole interaction Um = Nμ2/r3, where (a)
r = R/N1/3 approximates the mean distance between particles or, equiv-
alently, the coherence length of the fermion wave function, (b) only near-
est neighbor interactions have been taken into account, and (c) contiguous
moments are either aligned (δ = +1) for minimum entropy or antiparallel
(δ = −1) for minimum magnetic energy. It will be seen shortly that in a de-
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generate star, for which the fermions are effectively at 0 K, stable equilibrium
results from the parallel alignment of magnetic moments.

The assumption of maximally aligned magnetic moments is motivated by
the following considerations. If a neutronic star – let us say of solar mass – were
to collapse to a sphere of radius equal to its Schwarzschild radius (∼ 3 km),
the density of the star, assuming it to be uniform and applying (8.27), would
be approximately ρS = 1.8 × 1019 kg/m3. To estimate the corresponding
density of particles (which we will assume to be all neutrons), one needs
to employ a particular equation of state. The simplest and least accurate
estimate is to divide the foregoing density by the mass of a neutron, in effect
to apply an equation of state describing a system with null pressure, to arrive
at nn = 11.1 fm−3. A better estimate is to employ the ideal fermi gas equation
of state and solve the relation [see (8.20)]

g(y) = 8π2 ρS

mn/λ
3
n

,

to obtain yS ≡ (3π2nS)1/3λn = 1.1, from which follows nn = 4.97 fm−3. A still
more reliable estimate would be to use the nuclear equation of state employed
in Appendix 8C (to study the disruption of neutrons into quarks), which
leads to nn = 3.86 fm−3. There is no need to go further; the basic outcome
is that at this stage of collapse there are about 4 or 5 neutrons within the
volume (a sphere of radius ∼ 1 fm) ordinarily occupied by approximately 0.15
neutrons in normal nuclear matter.

Under such circumstances of tight compaction, it is not unreasonable to
assume that the wave functions of the neutrons overlap significantly to form
a highly-correlated magnetic fluid rather than a turbulent gas of uncorrelated
dipoles, presuming for this discussion that baryon disruption into quarks does
not occur. Previous studies of intense magnetic fields in gravitationally col-
lapsed bodies have predicted that a degenerate fermion gas can give rise to
a state of ferromagnetism which is the sum of all microscopic magnetic mo-
ments associated with particles in their respective Landau levels, while the
Landau levels of the system are in turn maintained by the macroscopic magne-
tization [277]. Although the analysis was performed for degenerate fermionic
systems terminating as white dwarfs or neutron stars, it is plausible to as-
sume that an equilibrium state reached by further collapse would also mani-
fest a strong ferromagnetism arising from dipole alignment. This would seem
inescapable as the strong poloidal magnetic field characteristic of neutron
stars must become even stronger (by flux conservation) during a more or
less isotropic contraction. The alternative possibility of an anti-ferromagnetic
state is highly unlikely, for such a state would require the reversal of some
1057 nuclear moments (for a solar-mass star). In that regard, it is worth not-
ing explicitly that the phenomenon of stellar ferromagnetism, if it exists, is
a macroscopic quantum effect analogous to the sustained rotation of a super-
fluid or the sustained circulation of current in a superconductor, the cessation
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of either process requiring a nearly simultaneous change in quantum state of
a macroscopic number of elementary constituents.

In the absence of the magnetic interaction (δ = 0), the nonrelativistic and
relativistic reductions of Uk respectively lead to N5/3λ3/2R2 and N4/3λ/R as
pointed out previously. Since the radial dependence of the relativistic Fermi
energy is the same as that of the gravitational term Ug, the minimization of
total energy U for constant M and N leads to an upper limit of the mass of
a relativistic degenerate star, as is well known.

However, with inclusion of the magnetic interaction, the energy U in the
relativistic limit takes the form

U =
a

R
+
b

R3
,

leading to a real-valued stable equilibrium radius Req =
√−3b/a under the

conditions a < 0 and b > 0, which requires that δ = +1 in (8.56). Expressed
in terms of the stellar parameters, the equilibrium radius is

Req = Nλ
[

β

(3/5)(M/mp)2 −N4/3

]1/2

, (8.57)

where β = 9g2αf/16π. Expressing the mass of the star in terms of the solar
mass (M = σMS) and the number of fermions in terms of the number of neu-
trons in a solar-mass neutron star [N = τ(M/mn)] reduces (8.57) to the form

Req

λ
=

(1.2 × 1018)τ
√

1 − 2.52(τ2/σ)2/3
. (8.58)

According to (8.57), the model of a self-gravitating ferromagnetic Fermi gas
leads to stable compact stars with masses greater than a minimum threshold:
M >

√
5/3N2/3mp. Note, too, that the fermion mass appears only in the

Compton wavelength and therefore does not affect the stability criteria.
Applied to the case of a fully spin-aligned star comprised primarily of

neutrons (mn = 1.67 × 10−27 kg, λ = 2.1 × 10−16 m, τ = 1), (8.58) leads to
stellar radii

Req(km) =
0.245√

1 − 2.52σ−2/3
, (8.59)

and a threshold mass parameter σ > 4, i.e., a minimum of 4 solar masses. For
σ = 5 for example, the predicted stellar radius would be ∼ 637 m (compared
with the associated Schwarzschild radius of 14.9 km) and the mass density
∼ 9.2×1018 g/cm3. Such end products of stellar evolution, if they exist, would
be cold, highly magnetized, degenerate systems like neutron stars, but with
masses greater than the currently accepted Chandrasekhar or Oppenheimer–
Volkoff mass limits (σ < 2) and radii that can fall below the corresponding
classical Schwarzschild radii. In contrast to fermicon stars, they would be
like black holes in the sense that light could not escape, but there would
be no central singularity. However, unlike black holes whose mass and size



340 8 Condensates in the Cosmos: Quantum Stabilization of Degenerate Stars

(i.e., Schwarzschild radius) are linearly proportional, the stars described by
(8.57)–(8.59) are smaller in size the greater the mass. In this regard, they
would resemble nonrelativistic neutron stars for which the mass varies in-
versely with the cube of the radius.11

It must be borne in mind, however, that the model presented here is
a heuristic one meant only to illustrate that extreme magnetism can mod-
ify the stability conditions for a compact star so that it does not necessarily
follow that a relativistic Fermi gas of sufficient mass will ineluctably collapse
to a singularity in space. Although the use of Newtonian gravity has led to sta-
ble structures smaller than the Schwarzschild radius, a fully general relativis-
tic quantum calculation may conceivably support stable equilibrium states of
radius larger than the Schwarzschild radius. Also, in some successful future
merger of quantum theory and gravity, the very concept of the Schwarzschild
horizon may need to be modified, if not eliminated.

8.7 Gravitationally-Induced Particle Resorption
into the Vacuum

Everything comes from something. This broad principle of evolution applies
not only to the development of life on Earth but to the cosmos as a whole.
Looking into space is literally like looking back in time, and the views of deep-
field objects through the Hubble Space Telescope and other land- and satellite-
based telescopes have revealed that the size and content of the Universe today
is far different than it was 5 billion years ago or 10 billion years ago. We do
not live in a steady-state universe. Stars evolve; galaxies evolve; matter and
energy undergo transformations.

The Standard Model of particle physics together with Einstein’s theory of
general relativity and the hypothesis of inflation provides a cosmological ‘con-
cordance model’ that describes the evolution of the universe from its earliest
moments (< 10−30 s?) with astonishing success, as gauged by the capacity
of the model to account for such details as the frequency distribution and
power spectrum of the cosmic microwave background radiation, and the rela-
tive abundance of light elements (primarily isotopes of H, He, and Li).12 The

11 The relationship between mass and radius for a neutron star may be deduced
readily as follows. From the Newtonian equation for hydrostatic equilibrium one
obtains the relation P ∝ ρ2R2 for pressure, density, and radius. But the equation
of state for a nonrelativistic degenerate Fermi gas leads to P ∝ ρ5/3 where by def-
inition ρ ∝ M/R3. The three relations yield ρ ∝ R−6 or M ∝ R−3. Applying the
same reasoning to the relativistic degenerate Fermi gas leads to M independent
of R, as we have seen.

12 The temperature of the expanding (and therefore cooling) universe remained high
enough for formation of isotopes primarily of H, He, and Li. Heavier elements
through Fe and Ni, which have the highest binding energy per nucleon, were forged
much later by sequential fusion reactions within stars. The elements beyond the
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currently known laws of physics even permit an answer – albeit still specu-
lative – to the ultimate question of origins: Whence arose all the matter and
energy of the universe in the first place?

From the perspective of quantum physics, the ultimate source of matter
and energy is the quantum vacuum. Far from the image of nothingness evoked
by vernacular use of the term, the vacuum is a pervasive roiling background
from which virtual particles continually emerge and back to which they sub-
sequently decay. The ‘big-bang’ origin of the universe could be thought of
as one of those improbable, yet not impossible, occurrences when a quantum
fluctuation of the vacuum occurred on a sustainable scale and continued ex-
panding. However, if the total energy of the universe, which is initially zero, is
to remain a conserved quantity, then there must be a corresponding source of
negative energy to compensate for the positive mass–energy created by the big
bang. Negative energy is provided by the universal gravitational attraction of
all forms of matter and radiation. If this supposition is correct, then the total
gravitational potential energy within the universe should balance the total
energy of matter and radiation. An estimate (see Appendix 8D) of the energy
balance within the accessible universe appears to support this hypothesis.

The creation of matter from the vacuum, even with conservation of energy,
violates other conservation laws that are believed to hold rigorously under less
extreme circumstances. Most prominent among these violations would be the
conservation of baryon number and lepton number, since both are assumed
to be zero for the vacuum prior to the big bang. Had particles of matter and
antimatter been produced in equal numbers, then baryon number and lepton
number would be conserved quantities. However, the apparent predominance
of matter over antimatter, as inferred, for example, from the fact that in no
interstellar region of the spectroscopically visible universe is found a signifi-
cant 511 keV gamma-ray flux from electron–positron annihilations, calls for
an explanation. Either the creation process was asymmetric or else the asym-
metry arose dynamically afterwards. Although the precise mechanism is not
understood, it is believed that nonequilibrium processes that violated charge-
conjugation symmetry (C) and the combined symmetry (CP ) of charge conju-
gation and space inversion (parity) resulted in a universe with nonzero baryon
and lepton numbers very shortly after formation [278]. It seems reasonable
to assume, therefore, that baryon-number violating processes can also occur
under other circumstances involving extreme gravity, density, and pressure,
such as prevail in the collapse of a degenerate compact star to a black hole.

One of the consequential predictions concerning the quantum properties
of black holes is that these stars should give rise to gravitationally-induced
thermal radiation (Hawking radiation) at the Schwarzschild horizon [243].
Hawking radiation refers to the predicted flux of particles from the immedi-
ate vicinity of a black hole, a surprising revelation when it was first made

iron family were created in supernova explosions by which sufficiently massive
stars ended their lives.



342 8 Condensates in the Cosmos: Quantum Stabilization of Degenerate Stars

because black holes were long considered to be ‘black’, i.e., to have so great
a gravitational attraction that nothing could escape. A heuristic explanation
of the origin of this radiation is that the gravitational field of a black hole per-
turbs the quantum vacuum giving rise to virtual particle–antiparticle pairs.
One of the particles escapes with positive energy and appears as a real par-
ticle, while the other with negative energy falls into the black hole, thereby
reducing the black hole mass. Hawking radiation, if it occurs, would eventu-
ally result in black hole evaporation, although for black holes of stellar mass
the time scale of complete evaporation would be orders of magnitude longer
than the age of the universe.

If extreme gravity can lead to the emission of particles from the vacuum,
then it is to be expected on thermodynamic grounds (principle of detailed
balance), as supported by the Hermitian structure of the transition ampli-
tudes of standard quantum field theory, that there must exist a corresponding
process by which, under appropriate circumstances, an intense gravitational
field induces the vacuum to absorb particles. I have termed such a process
particle resorption since, from a field-theoretical perspective, the particles are
returned to the vacuum whence they arose initially. Resorption would be ex-
pected to occur significantly when the density of gravitational energy released
by in-falling particles of mass m becomes comparable tomc2/λ3. For neutrons,
this threshold energy density would be about 103 GeV/fm3, corresponding to
a particle density of approximately 110 fm−3. In a collapsing neutronic star,
neutron resorption would raise the (increasingly negative) gravitational po-
tential and lower the (increasingly positive) particle Fermi energy, thereby
conceivably leading to an equilibrium state of macroscopic extent. Interest-
ingly, the process of gravitationally-induced resorption would be an example
of Le Chatelier’s principle operating, not just in chemistry, but under the most
extreme physical circumstances imaginable, apart from the big bang.

At the densities cited above, the disruption of hadrons into quarks would
almost certainly have taken place. Nevertheless, as a heuristic exploration of
particle resorption into the vacuum in the absence of all interactions except
for gravity in the tractable case of a flat space-time, let us examine again the
variation of the total energy function U of a spherically symmetric system
of fermions, assumed to be neutrons, with arbitrary particle number N and
radius R. As in the previous section, but without the magnetic interaction, we
write the total energy (now including mass–energy) in the dimensionless form

U

mnc2
= N

(
N2/3λ2

R2
+ 1

)1/2

− 3
5

(
mn

mP

)2

N2 λ

R
, (8.60)

in whichmP =
√

�c/G is the Planck mass, and we have approximated the stel-
lar mass in the gravitational binding energy by M = mnN . In the relativistic
limit y ≡ pF/mnc > 1, where pF is the Fermi momentum, (8.60) reduces to

U

mnc2
=
N4/3 − aN2

z
, (8.61)
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with constant

a =
3
5

(
m

mP

)2

and dimensionless radius z = R/λ. For a star with fixed baryon number, the
minimum of the internal energy U = Uk + Ug locates the equilibrium state.
However, as pointed out several times already, (8.61) does not have a minimum
because both the kinetic and gravitational energy terms vary with the same
power of the stellar radius. Instead, there is an upper limit to the baryon num-
ber of the relativistic degenerate star, Nmax = a−3/2 ∼ (mP/m)3 ∼ 1.85NSun.
[Worked out more exactly, this limit is the Chandrasekhar limit for white
dwarf stars and Oppenheimer–Volkoff (OV) limit for neutron stars.] The fore-
going conclusion does not follow, however, when N is a function of z.

In the model examined here, we assume that contraction of the star by
an amount dR, leading to a release of gravitational energy dUg results in the
resorption of dN = dUg/mc

2 particles. The hypothesized connection between
collapse and resorption yields differential equations for the radial variation of
the particle number

(z2 + 2aNz)
dN
dz

− aN2 = 0 (8.62)

and energy

1
mc2

dU
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⎟
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dN
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,

(8.63)
which reduces in the relativistic limit (y = N1/3z−1  1) to

1
mc2

dU
dz

=
aN2 −N4/3

z2
− 2aN − 4N1/3/3

z

dN
dz

. (8.64)

At equilibrium, one has dU = 0 and d2U < 0, from which follows
from (8.62) and (8.63) an implicit relation for the equilibrium stellar radius
(Req = λzeq)

az2eqyeq

(√
y2eq + 1 + 1 − 2

3
y2eq

)
= 1 (yeq = N1/3

eq z
−1
eq ) . (8.65)

In the relativistic limit, (8.65) reduces to the explicit solution

zeq =
2aNeq/3

aN
2/3
eq − 1

, (8.66)

in terms of the equilibrium number of particles Neq. The latter, however, must
be obtained by solving the nonlinear equation (8.62). This was done numeri-
cally by use of a fourth-order Runge–Kutta method. Figure 8.7 shows the vari-
ation with radius of the particle number N and internal energy U determined
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Fig. 8.7. Plot of particle number N (in units of the solar baryon number) and
resulting internal energy U (in units of the initial stellar mass energy) versus radius
(in km). As particle resorption into the vacuum occurs, neutrons are removed from
the system, the Fermi energy decreases, and the potential energy of the star develops
a minimum

from the relativistic approximation (8.64) for a degenerate fermion star of ini-
tially 10 solar masses. As the star collapses within the Schwarzschild horizon,
the resorption of neutrons into the vacuum raises the gravitational potential,
leading to an equilibrium state of 8.2 km (compared with the Schwarzschild
radius of 23.1 km) and fermion ratio Neq/N0 = 0.78, where N0 is the initial
number of neutrons. Figure 8.8 shows a plot comparing the equilibrium ra-
dius (8.66) and Schwarzschild radius of the star as a function of initial mass.

Fig. 8.8. Logarithmic plot of (a) equilibrium radius (Req) and (b) Schwarzschild
radius (RSch) (in km) as a function of stellar mass (in units of solar mass)
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One sees that for masses beyond about 10 solar masses, where the relativistic
reduction leading to (8.66) should hold reasonably well, the equilibrium radii
vary relatively slowly.

Because dN/dz in (8.62) is always positive, any sufficiently massive de-
generate fermion star will collapse to an equilibrium state13 rather than to
a singular point, although it is to be noted that the masses of black hole
progenitor stars are limited to about 150 solar masses [279].

I have focused attention on a relativistic degenerate system in this section
because this is the case that leads to singular collapse when baryon number is
conserved and the stellar mass exceeds the OV limit. Since a non-relativistic
degenerate fermion star always settles into an equilibrium state, it is to be
expected – and calculations confirm – that the exact energy function based
on (8.63) has a minimum. The equilibrium radius corresponding to this min-
imum is reproduced by the relativistic approximation with greater accuracy,
the more massive the star is. For example, for M/MSun = 10, 20, 40, the
equilibrium radius determined graphically from a plot of the exact energy
function (8.63) and the radius given by the relativistic approximation (8.66)
are respectively (in km): (5.2, 9.5), (5.6, 6.5) and (6.4, 6.2). It is to be em-
phasized, however, that the significant outcome of the analysis presented here
is not the precise numerical value of the radius, but the fact that, for a rel-
ativistic degenerate fermion star initially over the OV mass limit, there is
a macroscale equilibrium radius.

Other resorption mechanisms leading to a particle variation law different
from (8.65) and (8.66) have been examined, but it is beyond the scope of this
chapter to discuss them in detail. Let it suffice to say that all such variations
which I have investigated lead to stable equilibrium states of macroscopic ex-
tent. These calculations, however, were based on the use of Newtonian gravity.
There remains the task of demonstrating rigorously whether a cold fermion
star, supported by particle resorption against complete collapse in a New-
tonian gravitational potential, will also be supported in the Schwarzschild
space-time of general relativity. A preliminary examination of this question is
presented in Appendix 8E.

In concluding this description of proposed quantum stabilization processes,
it is perhaps pertinent to recall the desperate comment made by Sir Arthur
Eddington concerning Chandrasekhar’s startling discovery that degenerate
stars of mass greater than about 1.4 solar masses cannot end as a white
dwarf, but inevitably must collapse to a singular point. Eddington remarked
in dismay that [280]:

Various accidents may intervene to save the star, but I want more
protection than that. I think there should be a law of nature to prevent
a star from behaving in this absurd way.

13 The relativistic approximation (8.66) requires Neq > (5/3)3/2(mP/m)3 ∼ 4NSun

for positive radius zeq > 0. This restriction does not apply to the exact relation
(8.65).
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If subsequent research can demonstrate convincingly that self-gravitating
ultra-dense fermionic nuclear matter, either as baryons or quarks, must in-
deed undergo the bosonic condensation or ferromagnetic transition or particle
resorption herein proposed, then astrophysics will at long last have the ‘law
of nature’ that Eddington wished for.

Appendix 8A Gravitational Binding Energy
of a Uniform Sphere of Matter

The gravitational binding energy of an object is the work required to assem-
ble it against the force of gravity or, equivalently, the gravitational potential
energy of the assembly. To assemble matter into a uniformly dense sphere of
radius R, one can add concentric spherical shells of mass one shell at a time.
The gravitational potential at the surface of a uniform sphere of mass density
ρ and radius r is

φ(r) = −GM(r)
r

, (8A.1)

in which
M(r) =

4
3
πr3ρ (8A.2)

is the total mass contained within the surface. The differential change in
potential energy of the sphere resulting from addition of a concentric spherical
shell of thickness dr and mass dm = 4πr2ρdr is

dU = φ(r)dm = −GM(r)dm
r

= −3G
(

4
3
πρ

)2

r4dr . (8A.3)

Integration of (8A.3) over the radial coordinate from the center of the sphere
to the final radius R leads to the binding energy

U = −3
5
G

(
4
3
πρ

)2

R5 = −3
5
GM2

R
, (8A.4)

where M is the total mass of the sphere.
Upon expressing G in terms of the Planck massmP =

√
�c/G and dividing

both sides of (8A.4) by the rest-mass energy mc2 of the constituent baryons,
one obtains the dimensionless expression for gravitational binding energy

U

mc2
= −3

5

(
M

mP

)2
λ

R
, (8A.5)

in which λ = �/mc is the reduced Compton wavelength. A useful approxima-
tion (which neglects the gravitational binding energy in second order) is to
regard the mass M as the sum of the masses m of the N constituent baryons,
whereupon the preceding equation becomes a function of baryon number

U

mc2
= −3

5

(
m

mP

)2
λ

R
N2 . (8A.6)
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Appendix 8B Stability in a Self-Gravitating System
with Negative Pressure

Consider a self-gravitating spherically symmetric ball of matter of uniform
density ρ0 and radius R and a small cylindrical object of uniform density ρ
aligned along a radial line and initially at rest near the surface, as shown in
Fig. 8.9. For comparative purposes, we will examine first the familiar case of
positive pressure.

Application of Newton’s second law to the immersed object leads to the
relation

1
ρ

dP
dr

+ g(r) = −a , (8B.7)

in which
g(r) =

4π
3
Gρ0r (8B.8)

is the gravitational acceleration at radius r, a is the acceleration of the object,
and the pressure at any point r is given by

P (r) =
2π
3
Gρ20(R

2 − r2) . (8B.9)

(8B.9) is obtained by integrating the equation of hydrostatic equilibrium with
boundary condition P(R) = 0. Substitution of (8B.8) and (8B.9) into (8B.7)

Fig. 8.9. Schematic diagram of a cylindrical object of mass density ρ immersed in
a self-gravitating sphere of radius R and density ρ0. The heavy arrows indicate the
pressures P1 and P2 at the bottom and top of the object, respectively. In a positive-
pressure environment (as illustrated), P2 acts towards the center, parallel to the
gravitational acceleration. In a negative-pressure environment, the direction of each
pressure arrow is reversed. The coordinate s measures radial displacement from the
surface
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and evaluation of the integral yields the acceleration

a(r) = r̈ = −4π
3
Gρ0

(
1 − ρ0

ρ

)
r . (8B.10)

Inspection of (8B.10) shows immediately that an object of greater density
than the surrounding matter (ρ0/ρ < 1) will accelerate towards the center;
i.e., a < 0. By contrast, if ρ0/ρ > 1, then a > 0, and the object will accelerate
away from the center.

Re-expression of (8B.10) in terms of the displacement s from the surface,
and integration with boundary conditions s(0) = 0 and ṡ(0) = 0 lead to the
displacement and velocity functions (positive directive is radially inwards)

s(t) = R
[
1 − cos(αt)

]
(R ≥ s ≥ 0) , (8B.11)

ṡ(t) = αR sin(αt) , (8B.12)

with real-valued rate

α =

√
4π
3
Gρ0

(
1 − ρ0

ρ

)
, (8B.13)

for ρ0/ρ < 1. (For ρ0/ρ > 1, the trigonometric functions become hyperbolic
trigonometric functions.) The time τ required for the object to sink to the
center is determined from ατ = π/2, or14

τ =
π/2

√
4π
3
Gρ0

(
1 − ρ0

ρ

) . (8B.14)

We consider next, in the light of the foregoing analysis, the case of the ob-
ject immersed in a uniform environment with negative pressure and negative
pressure gradient. The arrows designating pressure on the object in Fig. 8.9
are reversed, and integration of the hydrostatic equation with boundary con-
dition P (0) = 0, as explained in the text, results in the radial dependence

P (r) = −2π
3
Gρ20r

2 , (8B.15)

so that pressure at the center of the sphere is still greater than pressure at
the surface. This leads to the acceleration

a(r) = r̈ = −4π
3
Gρ0

(
1 +

ρ0
ρ

)
r . (8B.16)

14 It is interesting to note that the kinematics of uniform accelaration (s = 1
2
at2)

applied to a free fall displacement of magnitude R lead to the close result

τapprox =

√
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r
4π
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” ∼ 1.414
r

4π
3
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” .
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It is clear from (8B.16) that the object sinks towards the center (a < 0)
irrespective of the relative density. One may have expected this on the grounds
that at equilibrium the tension on the lower surface of the object is greater
than the tension on the upper surface, but now directed radially inwards. The
time of free fall to the center, determined in the same way as that leading to
(8B.14), is

τ =
π/2

√
4π
3
Gρ0

(
1 +

ρ0
ρ

) . (8B.17)

Appendix 8C Quark Deconfinement in a Neutron Star

A relativistic degenerate star ending its life as a neutron star does not neces-
sarily consist exclusively of neutrons, although other constituents have been
neglected in the development of the fermicon model described in the text. For
sufficiently high densities (nn > nN, where the saturation density of nuclear
matter is nN ∼ 0.15 fm−3 with 1 fm = 10−15 m), the neutron again becomes
a beta-unstable particle and can undergo weak decay

n −→ p + e + ν

to a proton, electron, and electron antineutrino. Naive application of Le Chate-
lier’s principle might suggest that the reaction is thermodynamically unfavor-
able because it leads to an increased number of particles. However, the reaction
proceeds under the circumstances because it reduces the neutron Fermi energy
and increases the total entropy of the system. Assuming that all particles are
describable as constituents of ideal relativistic Fermi gases and that the neu-
trinos escape the system, one can determine the relative number of protons
and neutrons from the relations for:

(A) chemical equilibrium μn = μp + μe ,
(B) charge conservation np = ne ,

where, according to the relativistic reduction of (8.18) and (8.19), the chemical
potential and particle density of each particle type are related by

μ = �c(3π2n)1/3 . (8C.18)

It is then a matter of simple algebra to deduce that np/nn = 1/8.
If the system is opaque to (anti)neutrinos, then the antineutrino chemical

potential must be added to the right side of condition (A), and one has the
additional constraint of:

(C) lepton number conservation nν = ne .



350 8 Condensates in the Cosmos: Quantum Stabilization of Degenerate Stars

Solution of the three equilibrium relations leads to an even greater prepon-
derance of neutrons np/nn = 1/27. The neglect of neutron beta decay in the
fermicon model is justified.

In contrast to the electron, the neutron (as well as the proton) is not an
elementary particle, but is regarded as a bound state of three quarks: one ‘up’
quark (u) of charge +2e/3 and two ‘down’ quarks (d) of charge −e/3, each
‘flavor’ of quark being characterized by a spin angular momentum Sq = �/2
and one of three possible strong-interaction charges referred to as ‘color’. Ac-
cording to quantum chromodynamics (QCD), the prevailing theory of the
strong interactions, quarks combine to form hadrons of zero color charge. (It
is this analogy to the formation of white light, i.e., no color, from the combi-
nation of the three primary colors that led to the whimsical nomenclature for
the strong-interaction charge.) Moreover, QCD predicts that under ordinary
circumstances free quarks do not exist; quarks will be bound to form hadrons,
i.e., the strongly interacting baryons and mesons that comprise normal nu-
clear matter. The question addressed in this appendix is whether extraordi-
nary thermodynamic conditions within a collapsed relativistic degenerate star
can lead to the deconfinement of quarks, in effect the rupture of the neutron
via the reaction

n −→ 2d + u ,

and the formation of a separate quark core in equilibrium with a surrounding
neutron shell. The hypothesized system is analogous to the fermicon model
of a compact star comprising a neutron core and boson condensate shell. The
neutron–quark phase transformation requires that three equilibrium condi-
tions be satisfied:

(A) chemical equilibrium μn = 2μd + μu ,

(B) charge conservation
2
3
nu − 1

3
nd = 0 =⇒ nu =

1
2
nd ,

(C) hydrostatic equilibrium Pn = Pd + Pu .

At the density and pressure at which a neutron–quark phase transition might
be expected to occur, the system of neutrons is unlikely to behave like an
ideal degenerate Fermi gas. For illustrative purposes, therefore, we adopt an
equation of state [281] taking account of neutron interactions and leading to
a stronger dependence of pressure on density. The neutron energy density,
chemical potential, and pressure can be expressed in the respective forms

εn = mnc
2nn

[

1 +
(
nn

n0

)ν−1
]

, (8C.19)

μn =
dεn
dnn

= mnc
2

[

1 + ν
(
nn

n0

)ν−1
]

, (8C.20)

Pn = nnμn − εn = mnc
2n0(ν − 1)

(
nn

n0

)ν

, (8C.21)
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where the parameters of the model have the approximate values ν = 2.5
and n0 = 15nN (with saturation density nN ∼ 0.15 fm−3 of normal nuclear
matter). Thus the neutron pressure increases with particle density as ap-
proximately n7.5/3, in comparison to n5/3 or n4/3 for the nonrelativistic or
relativistic limits of the ideal degenerate Fermi gas.

One of the striking features of QCD, which simplifies the analysis of the
quark phase, is the phenomenon of asymptotic freedom. Although QCD is an
exceedingly complex, nonlinear theory of interacting quarks and gluons, the
effective quark–gluon coupling parameter αc (which plays the same role in
QCD as does the fine structure constant αf ∼ 1/137 in QED) is not constant
but vanishes in the limit of an infinitely high interaction energy.15 A sim-
ple, but useful, model accounting for this behavior is the so-called MIT ‘bag
model’, in which quarks in a hadron (such as a neutron) are confined by a bag
pressure B, but otherwise behave like an ideal gas of relativistic fermions.
However, whereas the ordinarily observable spin-1/2 fermions (e, p, n) are
doubly degenerate, a spin-1/2 quark is sixfold degenerate because of the three
additional color degrees of freedom. The quantum statistical expressions for
an ideal fermion gas of arbitrary degeneracy g are

ε =
gmc2

16π2λ3

[
y(2y2 + 1)

√
1 + y2 − sinh−1 y

]
, (8C.22)

μ = mc2
√

1 + y2 , (8C.23)

P =
gmc2

48π2λ3

[
y(2y2 − 3)

√
1 + y2 + 3 sinh−1 y

]
, (8C.24)

with

y ≡ pF

mc
=
(

6π2n

g

)1/3

λ , (8C.25)

and reduce in the case of relativistic quarks (g = 6) to

ε =
3mc2

4π2λ3 y
4 =

3
4
π2/3

�cn4/3 , (8C.26)

μ = mc2y = �cπ2/3n1/3 , (8C.27)

P =
mc2

4π2λ3 y
4 =

1
4
π2/3

�cn4/3 , (8C.28)

15 It is to be noted that the electron–photon coupling parameter αf in QED is not
constant either, but increases with increasing energy of interaction or, equiva-
lently, with decreasing distance at which a charged particle is probed.
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with
y ≡ pF

mc
= π2/3n1/3λ . (8C.29)

In implementing the conditions of equilibrium, it is useful to express the par-
ticle density, energy density, and pressure of each relevant species as a dimen-
sionless function of its respective chemical potential. For the neutron compo-
nent, the relations are

nn = n0

[
1
ν

(ζ − 1)
]1/(ν−1)

, (8C.30)

εn

mnc2/λ
3
n

= n0λ
3
n

[
1
ν

(ζ − 1)
]1/(ν−1) [

1 +
1
ν

(ζ − 1)
]
, (8C.31)

Pn

mnc2/λ
3
n

= n0λ
3
n(ν − 1)

[
1
ν

(ζ − 1)
]ν/(ν−1)

, (8C.32)

where we have defined the dimensionless variable

ζ =
μn

mnc2
. (8C.33)

Corresponding expressions for the total quark component comprising d and u
quarks whose ground-state energy density relative to the vacuum is B are

nq = nd + nu =
1
π2

μ3
d + μ3

u

(�c)3
=

3(1 + 2−4/3)−3

16π2

(
ζ

λn

)3

, (8C.34)

εq

mnc2/λ
3
n

=
3

64π2
(1 + 2−4/3)−3ζ4 +

B

mnc2/λ
3
n

, (8C.35)

Pq

mnc2/λ
3
n

=
1

64π2
(1 + 2−4/3)−3ζ4 − B

mnc2/λ
3
n

. (8C.36)

In deriving the preceding set of equations, we have used the conditions of equi-
librium (A) and (B) which connect the quark and neutron chemical potentials
by

μu = 2−1/3μd (8C.37)

and
μd =

μn

2(1 + 2−4/3)
. (8C.38)

The pressure and density at which the neutron–quark transition occurs is
deduced by equating pressures (8C.32) and (8C.36) and solving for ζ either
numerically by an appropriate algorithm or graphically as shown in Fig. 8.10
for a bag parameter B1/4/(�c)3 = 200 MeV (or B = 3.36×1034 Pa) character-
istic of the upper limit16 employed with the MIT bag model. The solution, ζ =
16 A bag parameter B1/4/(�c)3 = 150 MeV characteristic of the lower limit leads to

ζ = 1.039 and densities nn = 0.16 fm−3, nq = 0.86 fm−3, ρn = 2.69×1017 kg/m3,
ρq = 4.90 × 1017 kg/m3. The resulting neutron density is comparable to the
saturation density of nuclear matter for which it is already evident that nucleons
do not disrupt to form free quarks.
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Fig. 8.10. Plot of the log of pressure (in units of P0 = mnc2/λ3
n = 1.65 × 1037 Pa)

as a function of the neutron chemical potential parameter ζ = μn/mnc2 for (a)
quark pressure Pq determined from the bag model (8C.36); (b) neutron pressure
determined from the equation of state (8C.21); and (c) neutron pressure determined
from the degenerate fermion gas model (8C.24) with degeneracy g = 2. The latter
does not lead to a physically valid neutron–quark phase transition

2.049, results in particle densities nn = 1.43 fm−3, nq = 6.57 fm−3 and mass
densities (ρ = ε/c2) of ρn = 3.40 × 1018 kg/m3 and ρq = 6.01 × 1018 kg/m3.
It would seem, therefore, that at a neutron density roughly 8 or 9 times that
of the saturation density of nuclear matter it may be possible for neutrons to
‘melt’ to form a denser phase of unbound quarks. However, whether a dense
quark core surrounded by a neutron shell results in a stable star or not is
at present an open question requiring more accurate equations of state for
both nuclear and quark matter and solution of the TOV equation or perhaps
a more appropriate gravitational relation for hydrostatic equilibrium. These
considerations go beyond the intended scope of this appendix.

Appendix 8D Energy Balance
in the Creation of the Universe

Although a thorough treatment of almost any cosmological problem requires
the use of general relativity, a simple model based on Newtonian gravity suf-
fices to demonstrate that the positive mass–energy and negative gravitational
energy in the accessible universe are close in magnitude. We must note at the
outset, however, several important cosmological findings established primar-
ily from measurements of the cosmological microwave background radiation
(CMB) and the distance–brightness relation of Type Ia supernovae.
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The CMB is the redshifted relic electromagnetic radiation from the forma-
tion of the universe over ten billion years (Gyr) ago. Satellite-based measure-
ments17 of the spectral distribution have established a radiation temperature
T very close to 2.7 K. Measurements of the angular size of temperature fluc-
tuations across the sky have established that the geometry of the universe is
most likely flat (i.e., of zero curvature) in agreement with predictions based
on cosmological models with inflation.

According to general relativity (Einstein–de Sitter model), the mass den-
sity of a universe with zero curvature is the critical density

ρc =
3H2

0

8πG
, (8D.39)

in which the Hubble parameter H0 is the fractional rate of increase of the size
of the universe. More precisely,

H0 =
1
R

dR
dt
,

where R is the scale factor giving the size of the universe at some time before
the present at which R(0) = 1. Operationally, the Hubble parameter relates
the speed of recession of galaxies to their distance from our own galaxy (Milky
Way). In this regard, Type Ia supernovae serve as standard candles whose
intrinsic brightness is known and whose distance (and therefore the distance
of the galaxies in which they are embedded) can be determined from the
observed brightness. The speed of recession of a galaxy is deducible from the
redshift of known spectral lines. Although at one time highly contentious,
the value of H0 is now considered to be close to 73 km/s per megaparsec
(1 parsec ∼ 3.3 light-years), or H0 ∼ 2.3 × 10−18 s−1 [283]. It then follows
from (8D.39) that ρc ∼ 6 amu/m3. (1 amu is essentially the mass of a proton
mp = 1.67 × 10−27 kg.)

Let us model the matter in the universe as a homogeneous gas comprising
particles of mass m = 1 amu filling a spherical volume of radius R with
uniform number density n and mass density ρ = mn. Correspondingly, the
radiation in the universe is taken to be a uniform photon gas of energy density
εγ = (σ/4c)T 4 where σ = 5.67 × 10−8 W/m2K4 is the Stefan–Boltzmann
constant and T ∼ 3 K. The energy density of matter, which for the most part
is nonrelativistic, is then εm = ρc2. Comparing energy densities of radiation
and matter (taking the current value to be ρc) leads to εγ/εm ∼ 8×10−5. For
our present purposes we can disregard the energy contribution from radiation.

Using the result of Appendix 8A to calculate the gravitational energy
density

εg = −3GM2/5R
4πR3/3

17 The most extensive measurements of the CMB to date have been made by the
Wilkinson Microwave Anisotropy Probe (WMAP) [282].
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of a uniformly dense sphere of matter of radius R, our model for the total
energy density of the universe leads to

εT = ρc2
(

1 − 4π
5
GρR2

c2

)
. (8D.40)

For εT to vanish, the mean density of matter in the universe must be

ρ =
5c2

4πGR2
=

5
4πGt2

, (8D.41)

in which R = ct, where t is the age of the universe.
Lower limits to the age of the universe can be estimated from the age

of the oldest star clusters, the age of the oldest white dwarf stars, and from
the age of various chemical elements. At the time of writing, the most re-
cent and precise estimate of this age, independent of uncertainties associated
with CMB fluctuations or models of stellar evolution, is t ∼ 14.5± 2 Gyr de-
termined from the 238U/232Th abundance ratio in meteorites in conjunction
with observations of low-metallicity stars in the halo of the Milky Way [284].
Substitution of this value into (8D.41) yields ρ ∼ 17 amu/m3, which differs
from ρc by merely a factor of 2.8 – as opposed to orders of magnitude, which
could have been the case.

To within experimental uncertainties of our knowledge of the mean mass
density and the age of the universe, it appears that the total energy of the
universe may well be close to zero.

Appendix 8E Particle Resorption
in a Schwarzschild Geometry

As in the process of cosmological particle creation, the cost of producing pos-
itive matter is a negative gravitational potential energy. The gravitational
field, therefore, lowers the chemical potential of the particles. When the grav-
itational field is sufficiently strong that the chemical potential vanishes, then
no net energy is expended to create or remove a particle from the system, and
particle number is no longer a conserved quantity (provided no violation of
electrical charge conservation occurs). The condition of chemical equilibrium
is then

μn + μg = 0 , (8E.42)

where the first term on the left hand side is the (positive) contribution to
the chemical potential of the particles (assumed to be neutrons) from mass,
motion, and compression, and the second term is the (negative) contribution
from gravity.

For a description of dense nuclear matter, we again adopt relations
(8C.19)–(8C.21) for the energy density εn, chemical potential μn, and degen-
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eracy pressure Pn, respectively, which we express below in the dimensionless
forms

εn
mnc2n0

= η + ην , (8E.43)

μn

mnc2
= 1 + νην−1 , (8E.44)

Pn

mnc2n0
= (ν − 1)ην , (8E.45)

where
η ≡ nn

n0
. (8E.46)

It is to be recalled that this equation of state for dense nuclear matter is
defined by two parameters, a characteristic particle density n0, which we take
to be 15 times the saturation density of nuclear matter (nsat ∼ 0.15 fm−3),
and an exponent ν, which we take to be 2.5.

From the perspective of Einstein’s theory of general relativity, gravity is
not a force between particles, but a consequence of the geometrical structure
of space-time. The gravitational field of a nonrotating spherically symmet-
ric distribution of matter is described uniquely by the Schwarzschild solution
to Einstein’s field equations. Based on this solution, the gravitational poten-
tial energy of a sphere of uniform mass density ρ and radius R in a static
Schwarzschild geometry is defined to be [261]

Ug = ρc2
R∫

0

[

1 −
(

1 − 8π
3c2
Gρr2

)−1/2
]

4πr2dr . (8E.47)

The gravitational energy per volume εg = dUg/dV , where the differential
volume element dV must be that of the Schwarzschild geometry (given in
Sect. 8.3), can be written in the dimensionless form

εg
mnn0c2

= −
[
1 − (1 − βη)1/2

]
, (8E.48)

where we have approximated the mass density by ρ = mnnn and defined
the dimensionless ratio β = (R/Λ)2 of the radius to a characteristic length
parameter

Λ =

[
8π
3

(
mn

mP

)2

n0λn

]−1/2

. (8E.49)

As encountered before, mP is the Planck mass and λn is the neutron reduced
Compton wavelength. The gravitational contribution to the chemical poten-
tial, calculated from (8E.48), is then

μg

mnc2
=

1
mnc2

dεg
dnn

= −
[
1 − 1 − 3βη/2

(1 − βη)1/2

]
. (8E.50)
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From the sum of (8E.44) and (8E.50) one arrives at the condition

νην−1 +
1 − 3βη/2
(1 − βη)1/2

= 0 (8E.51)

for the chemical equilibrium of a particle (neutron) in a gravitational field cor-
responding to the Schwarzschild solution of Einstein’s field equations. Before
continuing with the analysis, let us relate (8E.51), which is not a familiar re-
sult, to a more widely known application of nonrelativistic statistical physics.
Expansion of μ = μn + μg in a Taylor series in βη (which must be less than
1) and truncation at first order leads to

μ = μn + μg ∼ mnc
2 + μ′n +mnφ(R) ,

where μ′n is the chemical potential of the particles exclusive of mass–energy
and φ(R) = −GM(R)/R is the Newtonian gravitational potential. Applied to
a particle of mass m at a height z above the surface of a spherical mass M
of radius R, with the zero of potential defined at the surface, one obtains the
‘textbook’ condition for equilibrium in a weak gravitational field [252, p. 72]:
μ′n +mgz = constant with acceleration of gravity g = GM/R2.

Rearrangement of (8E.51) leads to a quadratic equation for β with the
solution

β(η) =
2

9η2
(
3η − ν2η2ν−1 + νην

√
3 + ν2η2ν−2

)
, (8E.52)

from which is determined the stellar radius R as a function of density nn

(or the inverse relation). A quadratic equation has two solutions, but the
physically significant solution here is the one for which β → 0 for η  1.
The stellar mass, and therefore the Schwarzschild radius, corresponding to
a given density is calculable from (8.27). Figure 8.11 shows the variation
of the stellar radius and the Schwarzschild radius as a function of particle
density. In contrast to the example based on Newtonian gravity treated in
the text, the surface of the collapsed star at equilibrium lies outside its event
horizon.

There still remains the condition of hydrostatic equilibrium to be satisfied.
In a rigorous calculation, one ordinarily proceeds by assigning a value to the
central density and integrating the TOV equation outward to a radius where
the pressure vanishes. This radius then marks the surface of the star, and
a family of solutions is obtained for different values of central density. We will
proceed differently in the spirit of the simple model expounded here by equat-
ing the neutron degeneracy pressure (8E.45) and the central pressure (8.36)

Pg

mnc2n0
= η

[
1 − (1 − βη)1/2

3(1 − βη)1/2 − 1

]
, (8E.53)
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Fig. 8.11. Plot of (a) stellar radius and (b) Schwarzschild radius as a function of
neutron density calculated from (8E.52) derived from a model of gravitationally-
induced particle resorption in a Schwarzschild geometry. The parameters used in
the nuclear equation of state are n0 = 2.25 fm−3 and ν = 2.5

Table 8.8. Stellar radius, mass, and Schwarzschild radius obtained for several values
of the nuclear density parameter n0 (with nsat = 0.15 fm−3)

n0/nsat nn [fm−3] R [km] M/MSun RS [km]

10 1.61 7.62 2.49 7.41

15 2.41 6.22 2.03 6.05

20 3.21 5.39 1.76 5.24

obtained by solution of the TOV equation for a uniformly dense star and re-
expressed here in terms of the dimensionless variables pertinent to our model.
The condition of hydrostatic equilibrium then becomes

(ν − 1)ην−1 +
1 − (1 − βη)1/2

3(1 − βη)1/2 − 1
= 0 , (8E.54)

where at equilibrium β(η) is given by (8E.52).
If the expressions (8E.48) for energy and (8E.53) for pressure are not to

become singular, then the product βη is restricted to the range 1 > βη > 8/9.
Solving (8E.54) numerically or graphically yields η = 1.07 for ν = 2.5 in
the nuclear equation of state. The stellar radius, mass, and Schwarzschild
radius obtained for several values of the nuclear density parameter n0 (with
nsat = 0.15 fm−3), are summarized in Table 8.8.

The stellar radius and mass decrease as the nuclear density parameter
increases, i.e., as the equation of state stiffens (the degeneracy pressure is
larger for a given particle density). Because the stellar surface lies marginally
outside the event horizon, technically such a star would not be a black hole
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although, as remarked previously, it remains to be seen what becomes of the
Schwarzschild horizon in some future quantum theory of gravity.

The significant outcome, however, is that the gravitationally-induced par-
ticle resorption leads to equilibrium states of finite size irrespective of the
initial baryon particle number.
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quantum beats
and energy indeterminacy 136
and resonance 194
in entangled states 160
laser-induced 139
multi-atom 164
regeneration 149
Zeeman 156

quantum boost 137
quantum vacuum 72, 183, 190, 341
quark deconfinement 349
quark star 333–334, 349

R
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