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PREFACE

The general subject of this book is the physical phenomenon named after the
Dutch physicist Hendrik Brugt Gerhard Casimir, who predicted it in 1948. In
the last fifteen years the Casimir effect has received widespread attention in both
fundamental and applied physics. This is due to the Casimir effect being a direct
manifestation of the most intriguing yet basic type of physical reality, i.e. the
quantum vacuum. The Casimir effect in its simplest form is the attraction of
a pair of neutral, parallel conducting plates resulting from the modification of
the electromagnetic vacuum by the boundaries. It is a purely quantum effect.
There is no force acting between neutral plates in classical electrodynamics. The
roots of the Casimir effect date back to the introduction by Planck in 1911 of
half-quanta in the context of black-body radiation. In quantum field theory, this
results in an infinite energy of the vacuum state (the so-called zero-point energy).
Casimir was the first to provide a method to subtract the infinite vacuum energy
in free Minkowski space from the infinite vacuum energy in the presence of plates.
Both infinite quantities were made finite through the use of a procedure called
regularization. After subtraction, the regularization was removed, leaving a finite
result, which leads to the Casimir force.

The Casimir force is closely connected with the well-known phenomenon of
the van der Waals force. It provides an extension of the van der Waals interactions
to larger separation distances between the interacting bodies, where relativistic
effects come into play. The Casimir effect has become an interdisciplinary sub-
ject. It plays an important role in various fields of physics such as condensed
matter physics, quantum field theory, atomic and molecular physics, gravitation
and cosmology, and also in mathematical physics. Most recently, the Casimir
effect has been applied to nanotechnology and for obtaining constraints on the
predictions of unification theories beyond the Standard Model. In many phys-
ical phenomena the Casimir effect plays a primary role, while in many others
it must be taken into account to provide a complete quantitative description.
Some examples are the formation of hadron masses, the interaction of thin films,
surface tension, bulk and surface critical phenomena, Bose–Einstein condensa-
tion, atom–surface interactions, the problem of the cosmological constant, the
interaction of cosmic strings, compactification of extra dimensions, stiction in
microdevices, and absorption phenomena in carbon nanotubes.

This book attempts to presents a comprehensive picture of the extensive
studies in the field of the Casimir effect and its applications. Equal emphasis
is placed on experiment and theory, and on fundamental and applied aspects.
The book is not a monograph in the literal sense of the word, because it covers a
wider range of diverse topics and even many subdisciplines of physics, for example
quantum field theory, condensed matter physics, atomic and molecular physics,



vi Preface

gravitation and cosmology, mathematical physics, and nanotechnology. This is
due to the extraordinary role played in modern physics by the concepts of the
quantum vacuum and zero-point oscillations. Another unique feature of this book
has already been mentioned. It presents both experiment and theory, including
their mutual influence. To comply with the requirements of experiments, special
attention is paid to the Casimir force acting between real media, including effects
of nonzero skin depth, surface roughness, nonzero temperature, etc.

Although the book is not intended as a textbook (because it requires some
prior basic knowledge of both theory and experiment), it will serve as an intro-
duction to the subject. On problems where there is no consensus, the authors
provide a critical analysis of all the pros and cons. It is intended for all physicists,
both experimentalists and theorists, who are working on the various manifesta-
tions of vacuum oscillations. This includes not only experts in van der Waals
and Casimir forces but also those in elementary particle physics, condensed mat-
ter physics, atomic physics, and gravitation and cosmology. Applied physicists
working, for instance, on single-electron transistors or carbon nanostructures,
or on the design of new generations of microchips, nanotweezers, and nanoscale
actuators will find in the book material that is both interesting and illuminating,
and useful for their research.

Most of the text is written with sufficient detail, with explanations and links
to publications, that it can be used by advanced students, both undergraduate
and graduate, who are beginning work in the field of van der Waals or Casimir
forces and related subjects. It is expected that students will have a prior acquain-
tance with basic courses in electrodynamics and quantum mechanics. Some initial
knowledge of the elements of quantum field theory is also desirable. Postgradu-
ate scientists working on all the above-mentioned subjects can use this book as
a basic source of information and reference in their research.

Leipzig M. B.
St. Petersburg and Leipzig G. L. K.
Riverside U. M.
St. Petersburg and Leipzig V. M. M.
December, 2008
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1

INTRODUCTION

1.1 Zero-point oscillations and their manifestations

The Casimir effect, discovered more than 60 years ago in the seminal paper by
Casimir (1948), is one of the most direct manifestations of the existence of zero-
point vacuum oscillations. For a long time Casimir’s paper remained relatively
unknown, but starting from the 1970s it has rapidly received increasing attention
and in the last few years has become highly admired.

The Casimir effect, in its simplest form, is the attraction between two elec-
trically neutral, infinitely large, parallel conducting planes placed in a vacuum.
This is an entirely quantum effect because in classical electrodynamics the force
acting between two neutral planes is equal to zero. So, it is only the vacuum of
the quantized electromagnetic field, i.e. the ground state of quantum electrody-
namics, which causes the planes to attract each other. According to Casimir’s
prediction, the attractive force per unit area, i.e. the pressure between two in-
finitely large, neutral parallel planes made of an ideal metal at zero temperature,
is given by

P (a) ≡ PIM(a) = − π2

240

�c

a4
. (1.1)

Here a is the separation distance between the planes, � is the Planck constant,
and c is the velocity of light (below, the index IM is used where needed to
distinguish between results obtained for ideal metals and for real materials).

Below, we shall repeatedly derive eqn (1.1) in different formalisms (this will be
done for the first time in Section 2.5) and present the far-reaching generalizations
of this equation for the cases of real materials at nonzero temperature and for
bodies of various geometrical shapes. As an example, for two planes separated by
a relatively large (on the atomic scale) distance of a = 1 µm, the Casimir pressure
(1.1) is P ≈ 1.3 mPa, a macroscopic value. It is remarkable that a macroscopic
effect is caused by the quantum vacuum.

In fact, the roots of the Casimir effect date back to the introduction by Planck
(1911) of half-quanta. According to quantum mechanics, a harmonic oscillator
has discrete energy levels

En = �ω

(
n +

1

2

)
, (1.2)

where ω is the angular frequency of the oscillator, and n = 0, 1, 2, . . . is the
number of energy quanta. From eqn (1.2) it follows that the energy of the ground
(vacuum) state which contains a number n = 0 of energy quanta is
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E0 =
�ω

2
, (1.3)

i.e. it is not equal to zero. This is the energy of a zero-point oscillation with
frequency ω.

The canonical quantization procedure of quantum mechanics relates the gro-
und state energy to the arbitrariness of the operator ordering in the definition
of the Hamiltonian operator Ĥ = Ĥ(p̂, q̂) by replacing the dynamical variables
p and q in the classical Hamiltonian H(p, q) with the corresponding operator
quantities p̂ and q̂. It must be underlined that the energy E0 of a vacuum state
containing a zero number of energy quanta cannot be observed by measurements
within the quantum system under consideration, i.e. in transitions between dif-
ferent quantum states, or, for instance, in scattering experiments. It may happen,
however, that the frequency ω of the oscillator depends on some classical param-
eter (or parameters) external to the quantum system. It was as early as 1919
that the ground state (vacuum) energy was successfully used to explain the va-
por pressures of different isotopes. In this case the mass of the isotope plays
the role of the external parameter, leading to different oscillator frequencies for
isotopes of different masses [a historical review was presented by Milonni (1994)
and Rechenberg (1999)].

In the framework of quantum field theory any quantized field, the electro-
magnetic field for example, is considered as a set of oscillators of all frequencies.
Then, in accordance with eqn (1.3), the energy of the ground state of a field is
given by the sum of the energies of zero-point oscillations

E0 =
�

2

∑
J

ωJ , (1.4)

where the collective index J labels the quantum numbers of the field modes.
For instance, for the electromagnetic field in free Minkowski space, the modes
are labeled by a three-dimensional wave vector k with continuous components
and a two-valued discrete index fixing the polarization state. In bounded regions
of space, however, some of the wave vector components become discrete. As
an example, the tangential component of the electric field vanishes on a metal
surface, leading to a discrete component of the wave vector in the perpendicular
direction. Note that for a quantized spinor field, the right-hand side of eqn (1.4)
is negative (see Section 3.3 for more details). The sum (1.4) is clearly infinite, as
always happens in quantum field theory when one tries to assign a ground state
(vacuum) energy to each mode of the field. This is one of the manifestations of
the problem of ultraviolet divergences.

It was Casimir who first subtracted from the infinite vacuum energy of the
quantized electromagnetic field in the presence of ideal-metal planes the infinite
vacuum energy of the same field in free Minkowski space. Both infinite energies
were regularized, and after subtraction, the regularization was removed, leaving
a finite energy per unit area,
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E(a) ≡ EIM(a) = − π2
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�c

a3
, (1.5)

which depends on the separation distance a between the planes. The Casimir
pressure (1.1) was then obtained as

P (a) = −∂E(a)

∂a
. (1.6)

The removal of the infinite energy of vacuum oscillations in free Minkowski
space performed by Casimir is presently the standard procedure in textbooks
on quantum field theory. It is motivated by the fact that in all fields of physics,
with the exception of Einstein’s gravitational theory, energy is defined only up
to an additive constant. Thus it is generally assumed that all physical energies
should be measured starting from the top of the infinite vacuum energy in free
Minkowski space. As a result, effectively the physical energy of free space is
set to zero rather than being equal to infinity. Mathematically, the removal of
the infinite energy of the zero-point oscillations in free space is achieved by the
so-called normal ordering procedure. This operation is applied to the operators
of all physical observables, defined in free Minkowski space and prewritten in a
symmetrical form with respect to the creation and annihilation operators. It puts
all creation operators to the left of annihilation operators as if they commute
or anticommute depending on the spin of the field (Milonni 1994; Itzykson and
Zuber 2005; Bogoliubov and Shirkov 1982; Weinberg 1995).

It would be incorrect, however, to neglect the infinite zero-point energy found
in the presence of material boundaries, for example parallel metallic planes. In
that case the frequencies of field oscillators depend on the separation distance
between the planes and there is an infinite set of different vacuum states for
different separations. These vacuum states change continuously with adiabatic
changes in the separation distance between the planes. Thus, it is incorrect to
preassign zero energy to several states between which transitions are possible.
Here, in quantum field theory, the state of affairs is in perfect analogy to that
discussed above in quantum mechanics. In the presence of metallic planes, there
is an external parameter (the separation distance) which is similar to the mass
of an isotope and leads to different frequencies of oscillators of the quantized
field for different separation distances between the planes. Because of this, the
finite difference between the infinite zero-point energy in the presence of metallic
planes and that in free Minkowski space is an observable and gives rise to the
Casimir effect.

In the remainder of this section, we briefly discuss the relation of the Casimir
effect to other effects in quantum field theory connected with the existence of
zero-point oscillations. It is well known that classical external fields (the Coulomb
field, for instance) polarize the quantum vacuum (Itzykson and Zuber 2005).
The effect of polarization of the vacuum by an external field is described by
some nonzero vacuum energy depending on the field strength. The strength of
the external field is the classical parameter which plays the same role as the
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isotope mass or the separation distance above. In fact, material boundaries can
be considered as concentrated external fields. In this respect the Casimir effect,
which results in a vacuum energy such as that in eqn (1.5) in quantization vol-
umes restricted by material boundaries, is analogous to the polarization of the
vacuum by an external field. We can say, then, with reasonable accuracy that
material boundaries polarize the vacuum of a quantized field, and the Casimir
force acting on a boundary is a result of this polarization.

Another quantum vacuum effect connected with the existence of zero-point
oscillations is the creation of particles from the vacuum by an external field
(Greiner et al. 1985; Grib et al. 1994). In this effect, energy is transferred from the
external field to the zero-point oscillations (they are often referred to as virtual
particles) transforming them into real particles. As an example, a nonstationary
classical electric field can create electron–positron pairs from the vacuum. Al-
though a material boundary is somewhat analogous to an external field, there is
no particle creation from the vacuum in the case of static boundaries. However, if
the boundaries are nonstationary, and the boundary conditions depend on time,
there is particle creation from the vacuum in addition to the Casimir force. This
effect is often called the nonstationary or dynamical Casimir effect (see Section
7.7 for further discussion).

Zero-point oscillations of the quantized electromagnetic field also contribute
to many other effects of quantum electrodynamics in unbounded Minkowski
space that are not only vacuum processes, but also involve real particles. Exam-
ples are spontaneous emission from atoms, the Lamb shift, and the anomalous
magnetic moment of an electron (Milonni 1994). The contributions of zero-point
oscillations to such processes are usually called “radiative corrections”. These
processes are usually considered in textbooks on quantum electrodynamics. It is
significant that in free Minkowski space zero-point oscillations of quantized fields
may give rise to an observable effect only if real physical particles are involved
in the process. If there are material boundaries in Minkowski space, two types of
effects caused by the zero-point oscillations are possible. The first type includes
purely vacuum effects, such as the Casimir effect at zero temperature. In the
second type, real particles are present in addition to the boundaries.

Quantum processes in the presence of boundaries are studied by quantum
field theory with boundary conditions. This includes quantum field theory at
nonzero temperature in the Matsubara formulation, where, in order to intro-
duce the concept of temperature in quantum field theory, one must impose a
boundary-type “identification” condition in the Euclidean time variable (see Sec-
tion 5.1 for more details). In this book we shall consider quantum field theory
with external conditions only in application to the Casimir effect at both zero and
nonzero temperature. The Casimir effect in spaces with a non-Euclidean topol-
ogy will also be discussed. Similarly to the Matsubara formulation, there are no
boundaries in spaces with a non-Euclidean topology, but there are identification
conditions which play the same role as the boundary conditions.

There are many other effects studied in quantum field theory with boundary
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conditions, where zero-point oscillations lead to important contributions. One
example is provided by an atom whose spontaneous emission is changed in a
cavity. Another example is the so-called apparatus correction to the anomalous
magnetic moment of an electron. Here, the zero-point oscillations of the electro-
magnetic field (i.e. the virtual photons) that are responsible for the anomalous
contribution to the magnetic moment of an electron are affected by the bound-
aries. In both cases a real particle is involved in the process, and the quantity
to be considered is the expectation value of the energy operator in one particle
state instead of the vacuum. The same holds for the cavity shift of the energy
levels of a hydrogen atom. These topics, together with a number of related ones,
are called “cavity quantum electrodynamics” (Dutra 2005). They are outside the
scope of the present book.

1.2 Connection between van der Waals and Casimir forces

The Casimir force is closely related to the familiar phenomenon of the van der
Waals force (Parsegian 2005). The van der Waals attraction acts between two
nearby atoms or molecules even if neither has a permanent dipole moment (i.e.,
it is nonpolar). As a consequence, two neutral macrobodies separated by a short
distance of a few nanometers are also attracted by the van der Waals force.
Similarly to the Casimir effect, the phenomenon of the van der Waals force is
entirely of quantum origin. Although atoms, molecules, and neutral macrobod-
ies have zero net charge, they consist of moving charged particles producing a
fluctuating electromagnetic field in the interatomic (or intermolecular) space, in
close proximity to the surface of a macrobody (Kardar and Golestanian 1999).

The quantum theory of the van der Waals interaction was developed by Lon-
don (1930). The expectation values of the operators of the dipole moment are
zero for nonpolar atoms and molecules. However, the fluctuating electromagnetic
field induces instantaneous dipole moments in atoms and molecules. As a result,
the dispersion of the operator of the dipole moment is not equal to zero. Lon-
don obtained his expression for the interatomic (or intermolecular) interaction
potential in fourth-order perturbation theory for the interaction of a dipole op-
erator with a fluctuating electric field (the interatomic potentials are discussed
in Section 16.1). The result obtained is entirely quantum (because it depends
on �), but it does not contain c, i.e. it is nonrelativistic. In fact the fluctuating
electromagnetic field can be considered as a model for zero-point oscillations. For
closely spaced separate atoms or two atoms belonging to different macrobodies,
a virtual photon emitted by one atom reaches the other atom during its lifetime.
The resulting correlated oscillations of instantaneously induced dipole moments
in both atoms give rise to the nonretarded (i.e. not dependent on c) van der
Waals force.

Let us now consider larger separation distances between the two atoms so
that a virtual photon emitted by one atom cannot reach the other during its
lifetime. This case was considered for the first time by Casimir and Polder (1948),
who investigated van der Waals forces in colloids. At such large distances, the
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usual nonretarded van der Waals force is absent. However, the correlation of
the quantized electromagnetic field in the vacuum state calculated at the two
spatial points where the atoms are situated is not equal to zero. Once again,
this leads to correlated oscillations of the induced atomic dipole moments and
results in an attractive interaction between the two atoms. This interaction,
named after Casimir and Polder, is not only quantum but also relativistic. It
depends on both � and c, and also on the atomic polarizability (see Section
16.1). Sometimes it is referred to as the retarded van der Waals interaction.
The existence of interatomic (or intermolecular) retarded forces leads to similar
forces acting between an atom (or molecule) and a macrobody and between two
macrobodies. The role of the relativistic effects increases with separation distance
and becomes dominant at separations of the order of hundred nanometers. The
generic name for both the van der Waals and Casimir interactions is dispersion
forces, because both of them are caused by dispersions of the operator of the
dipole moment (Mahanty and Ninham 1976).

The work by Casimir and Polder (1948) opened the way for the development
of a unified theory of van der Waals and Casimir forces between real materials.
This was done by Lifshitz (1956) in the case of plane parallel dielectric plates
described by a frequency-dependent dielectric permittivity. As is demonstrated
below, this theory reproduces all of the results of Casimir, London, and Casimir
and Polder in their respective limiting cases, and also provides smooth transitions
between them.

From the above discussion, it can be seen that the Casimir force between
material boundaries can be considered as simply the retarded van der Waals
force. The universality of eqn (1.1), which depends only on the fundamental
constants � and c and does not depend on charges or other interaction constants,
is explained by the ideal-metal approximation used for the planes. On the surfaces
of real metals, the tangential component of an electric field is not precisely equal
to zero. As a result, there arise some corrections to eqn (1.1) for ideal-metal
planes which depend on the electron charge and other parameters. This prompted
Jaffe (2005) to argue that the Casimir effect should be tackled by the same
approaches as used for the vacuum polarization contribution to the Lamb shift.

A slightly different situation arises, however, for the Casimir effect in spaces
with a non-Euclidean topology, i.e. in the closed Friedmann model used in cos-
mology. In this case there are no material boundaries and no moving charged par-
ticles producing the fluctuating electromagnetic field. However, there are identi-
fication conditions imposed on field operators owing to the nontrivial topology
of space–time, which play the same role as boundary conditions due to material
boundaries. The role of a classical parameter is played by the scale factor of the
metric. As a result, a universal Casimir energy density similar to (1.5) arises,
which depends only on the fundamental constants and on the scale factor of the
metric (see Chapter 11). Thus, this kind of Casimir effect cannot be considered
as a close relative of the van der Waals forces.
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1.3 The Casimir effect as a multidisciplinary subject

From the above discussion it follows that the Casimir effect is a quantum and
relativistic phenomenon caused by the zero-point oscillations of quantized fields.
In a general way, it can be characterized as a specific type of vacuum polariza-
tion which depends on some external classical parameters and arises owing to
the presence of material boundaries or the non-Euclidean topology of a quantiza-
tion volume. The electromagnetic Casimir effect in the presence of real material
boundaries is a subset of the general dispersion forces and is closely connected
with subtle aspects of condensed matter physics. At the same time, the Casimir
effect for quantized fields of different spin in topologically nontrivial spaces goes
to the heart of gravitation, cosmology, and modern unification theories beyond
the Standard Model, including string theory. The quantum vacuum is the most
basic type of physical reality. Thus it is not surprising that the Casimir effect is
found to be important in practically all fields of modern physics. Quite recently,
nanotechnological applications of the Casimir effect have also become the subject
of intensive study.

Many fundamental results on the Casimir effect have been obtained using
quantum field theory. The calculation of the Casimir force is a particularly com-
plicated theoretical problem. In the simplest case of flat boundaries, the vac-
uum energy approaches infinity at large momentum, similarly to that in free
Minkowski space. Thus, for Casimir, it was sufficient to subtract the contribu-
tion of free Minkowski space in order to obtain a finite physical result. This is,
however, not the case for arbitrary domains bounded by curved surfaces (for
example, for the interior of a sphere). For curved boundaries, in addition to the
highest-order infinity (which is proportional to the fourth power of the cutoff
momentum and is the only one present for flat boundaries), there exist other,
lower-order infinities. An understanding of the general structure of these infini-
ties for arbitrary domains with ideal boundary conditions has been obtained by
using a combination of zeta function regularization and heat kernel expansion.
Remarkably, for closed configurations, i.e. for the Casimir effect for one body
instead of two, the Casimir force can be not only attractive but also repulsive.
As was shown by Boyer (1968), the latter is true for an ideal metal spherical
shell.

Investigation of the Casimir effect with quantum field theory has resulted
in three main applications which will be considered in the book. It has been
shown that the Casimir energy makes an important contribution to the total en-
ergy of a nucleon. In multidimensional Kaluza–Klein theories, the Casimir effect
provides a mechanism for spontaneous compactification of extra spatial dimen-
sions. Furthermore, measurements of the Casimir force in the laboratory help
us to obtain constraints on the parameters of the light hypothetical particles
predicted by many extensions of the Standard Model and on corrections to New-
ton’s gravitational law predicted by extra-dimensional physics with a low-energy
compactification scale.

In condensed matter physics, the Casimir effect leads to both attractive and
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repulsive forces in layered systems. It contributes to the interaction of a surface
with the tip of an atomic force microscope and should be taken into account in
the investigation of various properties of thin films, surface tension, and latent
heat. The Casimir effect plays a role in both bulk and surface critical phenomena
and depends on the concentration of free carriers in semiconductors.

Experimental and theoretical investigations of the Casimir force between both
metal and semiconductor test bodies have helped to formulate and solve some
important problems in thermodynamics and statistical physics related to the
interaction of a fluctuating electromagnetic field with real materials.

In atomic physics, the Casimir effect is important for the understanding of
atom–atom and atom–wall interactions. The Casimir force influences physical
processes in quantum reflection and Bose–Einstein condensation. Both Casimir
and van der Waals forces play a role in the absorption of atoms by various
microstructures, and specifically by carbon nanotubes.

In astrophysics, gravitation, and cosmology, the Casimir effect arises in space–
times with a nontrivial topology. The polarization of the vacuum due to the
Casimir effect plays a role in the resolution of the problem of the cosmological
constant. In some cosmological scenarios of the early Universe before the Big
Bang, this polarization drives the inflation process. The theory of structure for-
mation in the Universe employs the concept of topological defects, such as cosmic
strings, which produce a Casimir-type polarization of the vacuum.

In mathematical physics, the Casimir effect has stimulated the development
of powerful regularization methods based on the use of the Riemann and Epstein
zeta functions and the heat kernel expansion.

In addition to fundamental physics, the Casimir effect is quickly becoming a
part of nanoscience. Given the shrinking of microdevice dimensions to nanome-
ters, the important role of the Casimir force in the performance, fabrication, and
function of devices is now well recognized. Recent advances in the application
of the Casimir force to nanotechnology show that it is possible to exert control
over the sign of the force and its magnitude by optical modification of the charge
carrier density with laser light. This opens up prospects for a new generation of
nanodevices driven by the Casimir effect.

1.4 A guide to this book

The journal literature on the Casimir effect is quite extensive and contains many
hundreds of papers. However, there are only a few books devoted to this sub-
ject. The first book dedicated to the Casimir effect was published in Russia by
Mostepanenko and Trunov (1990). It covers all aspects of the theory, including
the Casimir interaction between real bodies, before 1989 but contains only a
very brief presentation of the preceding experiments. A slightly enlarged trans-
lation of this book into English was published later (Mostepanenko and Trunov
1997). The book by Milonni (1994) is partially devoted to the Casimir effect and
contains a detailed investigation of Casimir’s discovery in the context of quan-
tum electrodynamics and the concept of the quantum vacuum. This book has
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played an important role in drawing attention to the subject. A more specialized
book by Krech (1994) concentrates on the role of the Casimir effect in critical
systems. A more recent book by Milton (2001) is primarily devoted to the field-
theoretical aspects of the Casimir effect in ideal configurations and covers the
state of knowledge in 2000.

Since the publication of the previous books, the volume of scientific informa-
tion on the Casimir effect has more than doubled. In addition, new fundamental
methods have been developed and some basic concepts revised. This is true for
both experiment and theory. The present book sums up the state of the art in
Casimir research, including fundamental field-theoretical results and their adap-
tation to real material bodies, measurements and their comparison with theory,
and nanotechnological applications. The presentation of the three main lines
(the fundamental theory, real material bodies, and experiment) is performed in
three respective parts of the book, which are closely connected to each other and
contain a number of cross-references. Each part is based on the previous part;
nevertheless, individual parts of the book, with some obvious limitations, can be
used separately by experts in the respective areas.

Part I of the book presents the physical and mathematical foundations of
the Casimir effect in ideal configurations. In this part, all boundary surfaces
are assumed to be perfect, and Dirichlet, Neumann, Robin, semitransparent,
or identification-type boundary conditions are used. Chapter 2 presents simple
models to illustrate some key points in the theory of the Casimir effect. The
elementary approach to the Casimir force between two parallel ideally conduct-
ing planes is also contained here. Chapters 3 and 4 are central to the develop-
ments in Part I. In Chapter 3, field quantization in the presence of boundaries
is performed, and various representations of the vacuum energy are considered.
Propagators with boundary conditions are introduced. Chapter 4 contains the
general theory of regularization and renormalization in the case of the Casimir
effect. The regularization schemes presented here are repeatedly used in other
chapters of the book. The divergent part of the vacuum energy is found using
the heat kernel expansion. The finiteness of the Casimir force acting between
two solid bodies is also proved here.

The foundations of the Casimir effect at nonzero temperature are consid-
ered using the Matsubara approach in Chapter 5. Here, both high- and low-
temperature asymptotic expansions are discussed. In Chapter 6, several approx-
imate methods applicable to the calculation of the Casimir energy in general
geometries are discussed. In some cases, the method used does not by itself al-
low estimation of its accuracy (e.g. the proximity force approximation and semi-
classical approaches). However, by comparison with exact results in cases where
these are available, we can obtain reliable quantitative values for the accuracy
and justify the use of such methods in the comparison of experiment with theory.

Chapters 7 and 8 are devoted to the Casimir effect for the configurations
of two parallel planes and a rectangular box, respectively, with ideal boundary
conditions. The important results for various fields, using various regularizations
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at zero and nonzero temperature, are discussed. The case of mixed boundary
conditions is considered. Nonparallel planes (a wedge) and moving planes (the
dynamical Casimir effect) are also briefly considered. Special attention is paid
to the repulsive Casimir force arising in a rectangular box with particular ratios
of the sides. Novel results on the Casimir piston are also discussed.

Chapter 9 presents important results on the Casimir effect for spherical and
cylindrical shells with various boundary conditions. These configurations present
good and informative examples for the general methods developed in Chapters 3
and 4. Chapter 9 also includes the Casimir effect for a dielectric ball. This finds
applications in the bag model of quantum chromodynamics. In Chapter 10 a new,
powerful description of the Casimir energy based on functional determinants is
presented. This description allows one to make exact calculations of the Casimir
energies and forces in general geometries. Special attention is paid to a spherical
and a cylindrical shell above a plane. In both cases, exact solutions have recently
been obtained. These solutions can be compared with the approximate results
and thus can be used for determination of the accuracy of these results. In
Chapter 11, a few examples of the Casimir effect in spaces with a non-Euclidean
topology are presented. Here, the Casimir effect arises not because of the presence
of material boundaries but because of identification conditions. The interactions
of cosmic strings, along with applications to cosmology and the compactification
of extra dimensions, are briefly discussed.

The primary purpose of Part I is to prepare the reader for the investigations
of the Casimir effect between real bodies. Because of this, many results of purely
mathematical character considered in the literature (such as the Casimir effect
in multidimensional boxes, for automorphic fields, and for numerous topologies
of space) are not covered. Here, we provide only selected references.

In Part II of the book, we concentrate on the Casimir force between real
material bodies. This subject is in fact intermediate between the general theory
and the experimental investigation of the Casimir effect. Experiments deal with
real bodies that have a nonzero skin depth and are bounded by rough surfaces,
not with perfectly shaped surfaces made of an ideal metal. Thus, to compare
experiment with theory, the properties of real material boundaries must be taken
into account. The theoretical methods presented in Part II were mostly developed
during the last ten years in response to experimental advances. As will be clear
from Part II of the book, surprisingly, the adaptation of the general theory of
the Casimir effect between ideal boundaries to the experimental conditions is
physically nontrivial. This presents an important theoretical challenge to some
fundamental physical principles and has given rise to controversial opinions.

In Chapter 12, we present the main results of the Lifshitz theory, giving a
unified description of both the van der Waals and the Casimir force between
plane dielectrics. Various formulations of the well-known Lifshitz formula at zero
and nonzero temperature are considered in terms of both real and imaginary
Matsubara frequencies. The asymptotic expansions of the Lifshitz formula at low
temperature are found, and the consistency of the Lifshitz theory with the third
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law of thermodynamics (which depends on the conductivity properties of the
dielectric) is investigated. The results of numerical computations of the Casimir
free energy per unit area and the pressure in a configuration of two dielectric
semispaces are presented. The version of the Lifshitz formula for anisotropic
plates is also provided. Some attention is paid to the closely related Lifshitz-
type formula for radiative heat transfer through a vacuum gap. At the end of
Chapter 12, we discuss the application region of the Lifshitz theory in connection
with the effects of spatial dispersion.

Chapters 13 and 14 are devoted to the Casimir interaction between two par-
allel plates made of real metals at zero and nonzero temperature, respectively.
Here, a perturbation theory in terms of the relative skin depth of the electro-
magnetic oscillations and the relative temperature is developed. The Kramers–
Kronig relations and tabulated optical data are applied to find the dielectric
permittivity of a real metal along the imaginary frequency axis. The computa-
tional results at zero temperature are shown to be in good agreement with the
analytic perturbation theory. The plasma model, the Drude model, and a gen-
eralized plasma-like model that takes into account interband transitions of core
electrons are considered. Special attention is paid in Chapter 14 to the problem
of the zero-frequency term in the Lifshitz formula. Several approaches to the de-
termination of this term proposed in the literature are analyzed. Computational
results for the Casimir free energy, pressure, and entropy are obtained in the
framework of each approach. The approach based on the use of the Drude model
is shown to be in violation of the third law of thermodynamics in the case of
perfect crystal lattices. It also violates the classical limit. Possible physical rea-
sons for this are discussed. The Lifshitz formula, in application to real metals,
is reformulated in terms of the Leontovich surface impedance. The generalized
plasma-like model and the impedance approach are shown to be in agreement
with both the third law of thermodynamics and the classical limit. The role of
evanescent and traveling waves in the Casimir interaction between metals is con-
sidered. The subjects of Chapters 13 and 14 are used extensively in Part III of
the book in the analysis of measurements of the Casimir force between metal
test bodies.

In Chapter 15, the Casimir interaction between a metallic plate and a dielec-
tric plate is considered. The results for the free energy, pressure, and entropy
are obtained both analytically, using perturbation theory, and numerically, with
the use of optical data. These results are compared with those for two dielectric
plates. The consistency of the Lifshitz formula with the third law of thermody-
namics is demonstrated for the interaction between a metal and a dielectric only
when the static dielectric permittivity of the dielectric is finite. If it is infinite,
the third law of thermodynamics is violated. The results of Chapter 15 are used
in Part III of the book in the interpretation of the experiments on measuring the
Casimir force between metal and semiconductor test bodies.

Chapter 16 deals with the application of the Lifshitz theory to atom–wall in-
teractions. It starts from the derivation of the van der Waals and Casimir–Polder
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interatomic potentials. Then the Lifshitz formula for an atom near a cavity wall
is obtained. The atom–wall interaction is investigated for the cases of metal and
dielectric walls. Various approaches to the inclusion of the dc conductivity of a
dielectric wall are considered in connection with the requirements of thermody-
namics. The impact of magnetic properties on the atom–wall interaction is briefly
presented. The atom–wall interaction out of thermal equilibrium is discussed for
use in the interpretation of experiments on Bose–Einstein condensation (Chapter
22). The interaction of hydrogen atoms with a graphite wall is also calculated,
keeping in mind the application to carbon nanostructures to be discussed in
Chapter 23 of the book.

Chapter 17 is devoted to the calculation of the Casimir force between cor-
rugated surfaces and in the presence of surface roughness. This subject is very
important for all applications of the Casimir effect. The approximate method of
pairwise summation is the simplest method, though not always an exact one, for
taking account of the effect of corrugations and surface roughness described by
analytic functions for real bodies of finite conductivity. This method is devel-
oped in the chapter and compared with the proximity force approximation. The
corrugations and surface roughness are described by using perturbation theory
in terms of relative roughness (or corrugation) amplitudes. Stochastic roughness
is also considered in the same way. The consideration of corrugated surfaces
leads to an important prediction about the existence of a lateral Casimir force.
The experimental confirmation of this prediction is presented in Part III. The
application region of the pairwise summation method for rough and corrugated
surfaces is determined by the more fundamental path integral approach (which
is valid for ideal metal boundaries) and by the statistical approach, taking the
roughness correlation length and the nonideality of the metal into account. The
role of surface roughness in the atom-wall interaction is discussed at the end of
the chapter.

The most striking developments in the Casimir effect during the last ten
years are new, more precise measurements of the Casimir force using modern
technology. These measurements allow a quantitative comparison between ex-
periment and theory. They have opened up promising opportunities for the use
of the Casimir effect in nanotechnology and as a test for fundamental physical
theories. Part III of the book covers all of these subjects.

In Chapter 18, the general requirements for Casimir force measurements are
considered. Here, a brief survey of older experiments is presented and the ex-
perience from these experiments is summarized. Special attention is paid to the
determination of the experimental errors, theoretical errors, and their combina-
tion. The methods for comparison of experiment and theory for measurements
of the Casimir force are described.

Chapter 19 is devoted to measurements of the Casimir force between metal
surfaces. The presentation starts with a discussion of an experiment using a
torsion pendulum and a series of experiments with an atomic force microscope.
The experimental configurations used were those of a spherical lens and a sphere
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above a plate, respectively. The experiments with the atomic force microscope
demonstrated for the first time the corrections to the Casimir force due to the
nonzero skin depth and surface roughness. The discussion of all of the experi-
ments in this and the following chapters of Part III is combined with a careful
comparison with the theory of the Casimir effect between real bodies presented in
Part II of the book. Next, Chapter 19 presents experiments with a micromechan-
ical torsional oscillator. In these experiments, which are the most precise ones
to date, both the Casimir force between a plate and a sphere and the equivalent
Casimir pressure between two parallel plates were measured. The comparison
of the experimental results with theory leads to important conclusions concern-
ing the validity of the various theoretical approaches to the thermal Casimir
force discussed in Part II. In particular, the approach using the Drude dielectric
function to determine the zero-frequency term in the Lifshitz formula is exper-
imentally excluded at the 99.9% confidence level. Then, an experiment using a
linear piezoelectric transducer is presented. This experiment exploits the original
Casimir configuration of two parallel plates. The chapter ends with a discussion
of several related experiments.

Chapters 20 and 21 contain presentations of experiments on measuring the
Casimir force between a metal and a semiconductor and of the force in configu-
rations with corrugated surfaces, respectively. Three experiments on the Casimir
interaction between a metallized sphere and a semiconductor plate, considered
in Chapter 20, allowed one to measure the change in the magnitude of the force
due to a change in the semiconductor charge carrier density and to demonstrate
modulation of the Casimir force with laser light. A comparison of the optical-
modulation experiment with theory shows that an approach taking into account
the zero-frequency conductivity of dielectric materials is experimentally excluded
at a 95% confidence level. The use of corrugated surfaces allows one to study
the nontrivial boundary properties of the Casimir force and to demonstrate for
the first time the physical phenomenon of the lateral Casimir force, which was
previously predicted theoretically (see Chapter 17).

Chapter 22 discusses measurements of the Casimir–Polder force in the exper-
iments on Bose–Einstein condensation and quantum reflection. Special attention
is paid to an experiment where the thermal Casimir–Polder force was measured
for the first time (Obrecht et al. 2007). The experimental data are shown to be in
disagreement with a theoretical approach taking into account the dc conductivity
of dielectric materials.

In Chapter 23, the applications of the Casimir effect in nanotechnology are
considered. This is a new and a rapidly developing subject, driven by the focus
on miniaturization in modern technologies. When the characteristic sizes of the
elements of microdevices and/or the surface separations shrink below a microm-
eter, the Casimir force becomes comparable to the characteristic electrostatic
forces and must be taken into account in device design, operation, and fabrica-
tion. We discuss the actuation of microelectromechanical systems by the Casimir
force and its influence on the oscillatory behavior of microdevices. The role of
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the Casimir effect in carbon nanostructures is also analyzed.
The last chapter in Part III, Chapter 24, is devoted to the constraints on

non-Newtonian gravity which follow from the Casimir effect. Many extensions of
the Standard Model, including supersymmetry, supergravity, and string theory,
predict corrections to Newton’s law of gravitation. These corrections follow from
the exchange of light elementary particles between atoms of macrobodies and
from extra-dimensional physics with a low-energy compactification scale. The
measurements of the Casimir force and the extent of the agreement between the
experimental data and theory lead to the strongest constraints on the correc-
tions to Newtonian gravitation over a wide interaction range. In this chapter we
present the constraints on the Yukawa-type corrections to Newton’s law follow-
ing from older measurements of the Casimir force between dielectric plates and
from all modern measurements between metal plates. The so-called Casimir-less
experiment, where the influence of the Casimir force is canceled, is also discussed.

The book ends with Chapter 25, containing our conclusions and outlook. The
main conclusion is that we have already achieved very good agreement between
the theory, adapted to the case of real material boundaries, which is presented in
Part II of the book, and the measurements of the Casimir force. A generalization
of this theory to the case of materials with spatial dispersion and a more funda-
mental approach to the Casimir effect at nonzero temperature are expected in
the near future. Applications of the Casimir effect in both fundamental physics
and nanotechnology appear very promising and may have an unexpected impact
on basic scientific concepts and technological approaches.

The main notation used in this book is as follows. In relativistically covariant
expressions, Greek indices α, β, . . . , µ, ν, . . . take the values 0, 1, 2, 3, and Latin
indices i, k, l, . . . take the values 1, 2, 3. Capital Latin letters (J, J ′ etc.) are
used as collective indices to denote a collection of quantum numbers. The scalar
product of the 4-vectors a and b is written as

aµbµ = aµbµ = gµνaµbν = gµνaµbν = a0b0 − a · b,

where gµν is the metric tensor having the signature (+,−,−,−). The repetition
of an index in the lower and upper positions implies a summation over this index.

In Part I of the book (with exception of Chapter 2), we use a system of units
in which � = c = 1. However, in some final expressions of major importance,
the usual units are restored. In Parts II and III, which deal with real materials
and experiments, the fundamental constants in all mathematical expressions are
explicitly indicated. The electromagnetic equations are written in the Gaussian
system of units. Some values of experimentally measured quantities and simple
formulas are given in the International System (SI) of units. This is indicated
in the text. When this does not create confusion, operators and c-functions are
notated in a similar way. Other special notations particular to a chapter are
introduced where necessary.
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2

SIMPLE MODELS OF THE CASIMIR EFFECT

In this chapter we discuss several basic ideas and methods related to the calcu-
lation of the Casimir energies and forces in some simple models. The simplicity
of these models allows one to avoid cumbersome mathematical calculations and
to demonstrate the basic problems that will be repeatedly considered in the fol-
lowing chapters of this book in a more sophisticated context. Such important
procedures as regularization and renormalization of infinite quantities are illus-
trated here both physically and mathematically in a manner readily accessible
to all physicists, not just to experts in quantum field theory [see also the re-
view papers by Plunien et al. (1986) and Mostepanenko and Trunov (1988)].
The complete field quantization procedure in the presence of boundaries will be
covered in Chapter 3. Despite the elementary character of the present chapter,
we discuss the main physical situations where the Casimir effect arises (i.e., in
regions with boundaries and in spaces with a nontrivial topology). We consider
also local and global approaches to the Casimir effect and derive well-known
formulas (1.1) and (1.5) for the electromagnetic Casimir pressure and energy per
unit area between two parallel ideal-metal planes. A more detailed derivation
and far-reaching generalizations of these formulas can be found in the following
chapters of the book.

2.1 The scalar Casimir effect on an interval

We start with a scalar field ϕ(t, x) which depends on the time t and one co-
ordinate x = x1, obeying the Klein–Fock–Gordon equation in two-dimensional
space–time

�2 ϕ(t, x) +
m2c2

�2
ϕ(t, x) = 0. (2.1)

Here m is the mass of the field and the two-dimensional d’Alembert operator is
defined by

�2 ϕ(t, x) =
1

c2

∂2ϕ(t, x)

∂t2
− ∂2ϕ(t, x)

∂x2
. (2.2)

Note that this scalar field in two-dimensional space–time is dimensionless.
Let us consider the properties of the scalar field defined on an interval 0 <

x < a with Dirichlet boundary conditions imposed at its ends,

ϕ(t, 0) = ϕ(t, a) = 0. (2.3)

Next we shall consider the scalar field along the entire axis −∞ < x < ∞. In
both cases our primary goal is to find the spectrum of scalar oscillations.
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For the case of the interval [0, a], the scalar product of the two (in general
complex) solutions of eqn (2.1), f and g, is

(f, g) = i

∫ a

0

dx

(
f∗ ∂g

∂x0
− ∂f∗

∂x0
g

)
, (2.4)

where x0 = x0 = ct. From eqn (2.1), it follows that (f, g) does not depend on
time. One may readily check that the complete orthonormal set of the positive-
and negative-frequency solutions of eqn (2.1), obeying the boundary conditions
(2.3) and satisfying the equalities(

ϕ(±)
n , ϕ

(±)
n′

)
= ±δnn′ ,

(
ϕ(±)

n , ϕ
(∓)
n′

)
= 0, (2.5)

is given by

ϕ(±)
n (t, x) =

(
c

aωn

)1/2

e∓iωnt sinknx. (2.6)

Here, the discrete oscillation frequencies and the wave numbers are given by

ωn =

(
m2c4

�2
+ c2k2

n

)1/2

, kn =
πn

a
, n = 1, 2, 3, . . . (2.7)

and δnn′ is the Kronecker delta symbol.
In Section 2.4 we shall consider the quantization procedure of the field ϕ(t, x),

define the vacuum state |0〉, and ensure that the quantities ωn in eqn (2.7) are
exactly the frequencies of the zero-point oscillations entering eqn (1.4) in the
Introduction. Thus, the energy of the ground state (i.e. the vacuum energy) of
a field ϕ(t, x) on an interval is given by

E0(a, m) =
�

2

∞∑
n=1

ωn =
�

2

∞∑
n=1

(
m2c4

�2
+

c2π2n2

a2

)1/2

. (2.8)

If the field ϕ(t, x) is defined on the entire axis −∞ < x < ∞, the scalar
product of the two solutions of eqn (2.1) takes the form

(f, g) = i

∫ ∞

−∞
dx

(
f∗ ∂g

∂x0
− ∂f∗

∂x0
g

)
, (2.9)

which is similar to eqn (2.4). In this case the complete orthonormal set of solu-
tions of eqn (2.1) obeying the boundary conditions (2.3) satisfies the equalities(

ϕ
(±)
k , ϕ

(±)
k′

)
= ±δ(k − k′),

(
ϕ

(±)
k , ϕ

(∓)
k′

)
= 0, (2.10)

where the positive- and negative-frequency solutions are the traveling waves

ϕ
(±)
k (t, x) =

(
c

4πωk

)1/2

e∓i(ωkt−kx). (2.11)
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Here, the continuous oscillation frequencies are defined as

ωk =

(
m2c4

�2
+ c2k2

)1/2

, (2.12)

with a continuous wave number −∞ < k < ∞, and δ(k − k′) is the one-
dimensional delta function.

The energy of the vacuum state of the field ϕ(t, x1) on the entire axis is given
by

E0M(m) =
�

2

∫ ∞

−∞

dk

2π
ωkL =

�

2π

∫ ∞

0

dk

(
m2c4

�2
+ c2k2

)1/2

L. (2.13)

In this case the sum (1.4) is interpreted as an integral with the measure dk/(2π),
and L → ∞ is the length of the axis (referred to as the normalization length).
The lower index M in the vacuum energy (2.13) labels the case of an unbounded
one-dimensional space and one-dimensional time, which is a simple analogue of
the free Minkowski space–time.

The expressions (2.8) and (2.13) for the vacuum energy of the scalar field in
two-dimensional space–time on an interval and on the entire axis, respectively,
are both infinite. They diverge at large values of n and k. Such expressions are
the standard starting point in the theory of the Casimir effect. To deal with
infinite quantities in a meaningful way, one must first make them finite. This
is achieved by using what is referred to as a regularization procedure. There are
many different regularization procedures that have been proposed in the litera-
ture, and some of them are discussed in this book. Here, we use the most simple
one, which introduces an exponential cutoff function of the forms exp(−δckn) and
exp(−δck) after the summation and integration signs in eqns (2.8) and (2.13),
respectively, where δ > 0 is a parameter. After all of the operations with the
regularized finite quantities have been performed, the regularization is removed
by putting δ → 0. It is necessary to prove that the result obtained does not
depend on the specific form of the cutoff function employed in the regularization
procedure.

Now we apply the regularization procedure to eqn (2.8). For simplicity, we
consider only the massless field with m = 0 and omit the argument m in the
vacuum energies. From eqn (2.8), we obtain the regularized vacuum energy of a
massless field on the interval (0, a),

E
(δ)
0 (a) ≡ �

2

∞∑
n=1

cπn

a
exp

(
−δ

cπn

a

)
=

π�c

8a
sinh−2 δcπ

2a
. (2.14)

This quantity is finite, but it diverges when δ goes to zero. In the limit of small
δ, one obtains from eqn (2.14)

E
(δ)
0 (a) =

�a

2πcδ2
− π�c

24a
+ O(δ2). (2.15)
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This equation represents the vacuum energy as the sum of a singular term and
a finite contribution. The latter contains a term E(a) that does not depend on
the regularization parameter δ.

Next we apply the regularization procedure to eqn (2.13), i.e. to the vacuum
energy of a scalar field on the entire axis. Keeping m = 0, we obtain

E
(δ)
0M ≡ �c

2π

∫ ∞

0

k dk e−δckL =
�L

2πcδ2
. (2.16)

This is the regularized vacuum energy for the entire axis.
Let us now separate out the interval (0, a) of the entire axis without imposing

any boundary conditions at x = 0 and x = a. According to eqn (2.16), the
vacuum energy for such an interval is

E
(δ)
0M(a) =

E
(δ)
0M

L
a =

�a

2πcδ2
. (2.17)

This result should be compared with eqn (2.15), obtained for the same interval
with the boundary conditions (2.3). It is notable that eqn (2.17) coincides with
the first term on the right-hand side of eqn (2.15), diverging when δ goes to zero.

Following Section 1.1, in order to obtain a finite physical result one must
subtract the infinite vacuum energy (2.17) for a field on an unconstrained interval
(with no boundary conditions) from the infinite vacuum energy (2.15) for an
interval constrained by the boundaries. This leads to the finite quantity

E(δ)(a) ≡ E
(δ)
0 (a) − E

(δ)
0M(a) = −π�c

24a
+ O(δ2). (2.18)

By removing the regularization, we obtain the Casimir energy for the scalar field
on an interval,

E(a) = lim
δ→0

E(δ)(a) = −π�c

24a
. (2.19)

This result is analogous to eqn (1.5), obtained for the vacuum energy of the elec-
tromagnetic field between ideal-metal planes. In the next section, we shall show
that eqn (2.19) does not depend on the form of cutoff function used. We shall
see that eqn (2.19) retains its validity for any regularization function satisfying
some general requirements. The magnitude of the Casimir energy E(a) increases
monotonically as the boundary points approach each other. From eqn (2.19), the
Casimir force acting between the boundary points of the interval is

F (a) = −∂E(a)

∂a
= − π�c

24a2
. (2.20)

This is similar to the electromagnetic Casimir pressure (1.1) between two parallel,
ideal-metal planes.

Equation (2.18) is a typical example of what are commonly referred to as sub-
traction procedures, used in quantum field theories in order to remove infinities
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from divergent expectation values of physical quantities. Usually, the subtrac-
tion of any infinite quantity is interpreted as a renormalization of some physical
constant in the bare effective action (see Chapter 4 for more details). In the
simplest case considered in this section, we have subtracted a quantity equal to
the vacuum energy for an unbounded axis in a given interval. Below, we shall
demonstrate that the subtraction of the vacuum energy density and pressure of
an unbounded Minkowski space can be formally interpreted as a renormalization
of the cosmological constant.

The above results are easily generalized to other types of boundary conditions.
It is of interest to consider a Dirichlet boundary condition at x = 0 and the
Neumann boundary condition at x = a,

ϕ(t, 0) =
∂ϕ(t, x)

∂x

∣∣∣∣
x=a

= 0. (2.21)

Such conditions are sometimes called unusual, hybrid, or mixed. The complete
orthonormal set of solutions of eqn (2.1) has the same form as eqn (2.6), with

kn =
π

a

(
n +

1

2

)
, n = 0, 1, 2, . . . . (2.22)

For a massless field, the regularized vacuum energy is given by

E
(δ)
0 (a) =

�

2

∞∑
n=0

cπ

a

(
n +

1

2

)
e−δcπ(2n+1)/(2a)

=
�cπ

8a
coth

δcπ

2a
csch

δcπ

2a
. (2.23)

In the limit of small δ, we obtain

E
(δ)
0 (a) =

�a

2πcδ2
+

π�c

48a
+ O(δ2). (2.24)

Importantly, the divergent term has the same form as in eqn (2.15) and is, thus,
equal to the contribution of free space (2.17). As a result, the Casimir energy
of a scalar field on an interval with the boundary conditions (2.21) is positive
(Fulling et al. 2007a), and the respective Casimir force is repulsive:

E(a) =
π�c

48a
, F (a) =

π�c

48a2
. (2.25)

Below, we shall discuss many situations where the Casimir force can be both
attractive and repulsive.

2.2 The Abel–Plana formula and regularization

Discrete sums and integrals with respect to a continuous variable, such as those
in eqns (2.8) and (2.13), respectively, are of frequent occurrence in calculations of
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the Casimir effect. In some cases the handling of such quantities can be simplified
with the help of the Abel–Plana formula (Erdélyi et al. 1981),

∞∑
n=0

F (n) −
∫ ∞

0

F (t) dt =
1

2
F (0) + i

∫ ∞

0

dt

e2πt − 1
[F (it) − F (−it)] , (2.26)

where F (z) is an analytic function in the right half-plane. This formula was first
applied to the theory of the Casimir effect by Mamayev et al. (1976).

To illustrate the utility of eqn (2.26), we apply it to the massive scalar Casimir
effect on an interval. We start by setting

F (n) =
�

2
ωnf(ωn, δ), (2.27)

where ωn is determined in eqn (2.7). Here, f(ω, δ) is some cutoff function which
decreases monotonically sufficiently fast with increasing ω that both the sum
and the integral in eqn (2.26) converge:

f(ω, δ) → 0 when ω → ∞ for all δ �= 0. (2.28)

This function must also satisfy the conditions

f(ω, δ) ≤ 1, f(ω, 0) = 1. (2.29)

It is evident that in the limiting case δ → 0, the integral on the right-hand side of
eqn (2.26) does not depend on the specific form of f(ω, δ). This follows from the
exponentially fast convergence of this integral, which permits taking the limit
δ → 0 under the integral. Thus, one can simply omit the cutoff function in all
calculations, as we do below. At the same time, the independence of the results
obtained of the form of the cutoff function is automatically guaranteed. This is
true for all applications of the Abel–Plana formula, and is not limited to the
scalar Casimir effect on an interval.

As a result, by separating the term with n = 0, we obtain

∞∑
n=0

F (n) =
mc2

2
+ E0(a, m), (2.30)

where E0(a, m) is defined in eqn (2.8). In a similar manner, taking into account
the change of variable ak = πt, we find∫ ∞

0

dt F (t) =
E0M(m)a

L
= E0M(a, m), (2.31)

where E0M(m) is defined in eqn (2.13). Then the Casimir energy

E(a, m) ≡ E0(a, m) − E0M(a, m) (2.32)
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is found from the Abel–Plana formula (2.26) with the regularization already
removed:

E(a, m) = −mc2

4
+ i

π�c

2a

∫ ∞

0

dt

e2πt − 1
[GA(it) − GA(−it)] . (2.33)

Here, the function GA(t) is defined by

GA(t) ≡
(
A2 + t2

)1/2
, A ≡ mca

π�
. (2.34)

It is useful to consider the more general function G
(α)
A (z), which is defined by

G
(α)
A (z) = eα ln(A2+z2). (2.35)

This has branch points z1,2 = ±iA. By going around the branch points, one can
prove the equality

G
(α)
A (it) − G

(α)
A (−it) = 2ieα ln(t2−A2) sin πα θ(t − A), (2.36)

where θ(x) is the step function. For α = 1/2, one obtains eqn (2.34) from
eqn (2.35), and

GA(it) − GA(−it) = 2i
(
t2 − A2

)1/2
θ(t − A) (2.37)

from eqn (2.36).
Substituting eqn (2.37) in eqn (2.33), one arrives at

E(a, m) = −mc2

4
− �c

4πa

∫ ∞

2µ

√
y2 − 4µ2

ey − 1
dy, (2.38)

where 2πt ≡ y and πA = mca/� ≡ µ (the latter parameter has the meaning of a
dimensionless mass). The first contribution on the right-hand side of eqn (2.38)
is associated with the total energy of the boundary points. It does not depend
on a and hence does not contribute to the Casimir force.

For µ = 0 (m = 0), eqn (2.38) leads to

E(a, 0) = E(a) = − �c

4πa

∫ ∞

0

y dy

ey − 1
= −π�c

24a
, (2.39)

in agreement with eqn (2.19). In the opposite case of large masses, µ � 1, we
get

E(a, m) ≈ −mc2

4
− �c

√
µ

4
√

πa
e−2µ, (2.40)

i.e. the distance-dependent term is exponentially small. The same is obtained
for a configuration of two parallel planes in three-dimensional space–time for
massive fields with spins 0, 1/2, and 1. This is valid, however, only for plane
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boundaries. If some curvature is present, either in the boundary or in space–
time, the Casimir energy may depend on the mass of the field in accordance
with powers of some geometrical characteristic, such as the curvature radius.

For scalar fields with mixed or antiperiodic boundary conditions (see the pre-
vious and the next section, respectively) and also for spinor fields, a modification
of the Abel–Plana formula is useful for summation over half-integer numbers:

∞∑
n=0

F

(
n +

1

2

)
−
∫ ∞

0

F (t) dt = −i

∫ ∞

0

dt

e2πt + 1
[F (it) − F (−it)] . (2.41)

Further generalizations of the Abel–Plana formula are discussed by Mostepa-
nenko and Trunov (1997) and by Saharian (2006a).

2.3 The scalar Casimir effect on a circle

As noted in Section 1.1, when the topology of the space is nontrivial (i.e., non-
Euclidean), identification conditions may be imposed on fields. These are similar
to boundary conditions for classical material boundaries. The simplest example
is provided by the interval 0 ≤ x ≤ a whose initial and end points are identified
by means of the following periodic conditions:

ϕ(t, 0) = ϕ(t, a), ∂xϕ(t, x)|x=0 = ∂xϕ(t, x)|x=a . (2.42)

The geometrical image of an interval with the identification conditions (2.42)
is a circle of circumference a. Both manifolds are flat, but their topologies are
different. Interval I [Fig. 2.1(a)] possesses a Euclidean topology, whereas the
same interval with the conditions (2.42) possesses the topology of a circle S1

[Fig. 2.1(b)]. In all cases the scalar field satisfies eqns (2.1) and (2.2). Here, for
S1, in contrast to eqn (2.3), new solutions are allowed, such that ϕ �= 0 at the
points x = 0, a.

The complete orthonormal set of positive- and negative-frequency solutions
of eqns (2.1) and (2.2) with the identification conditions (2.42) can be written
in the form

(c)(b)(a)

I

0 a

S1 M

Fig. 2.1. Three one-dimensional flat manifolds, with (a) Euclidean topology,
and the topology of a circle with (b) periodic and (c) antiperiodic identifica-
tion conditions.
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ϕ(±)
n (t, x) =

(
c

2aωn

)1/2

e∓i(ωnt−knx), (2.43)

ωn =

(
m2c4

�2
+ c2k2

n

)1/2

, kn =
2πn

a
, n = 0, ±1, ±2, . . . .

These solutions satisfy eqn (2.5). The only difference from eqn (2.7) is in the
values of the wave numbers kn. This leads to different oscillator frequencies than
for the scalar field on the interval considered in Section 2.1.

The vacuum energy of the field ϕ(t, x) on a circle S1 is given by

E0(a, m) =
�

2

∞∑
n=−∞

ωn = �

∞∑
n=0

ωn − �

2
ω0 = �

∞∑
n=0

ωn − mc2

2
(2.44)

(here we have used the evenness of ωn in n). In the same way, as in Section 2.2,
the Casimir energy is obtained by subtracting the contribution of free Minkowski
space within the length of the interval

E(a, m) = E0(a, m) − E0M(a, m), (2.45)

where E0M(a, m) is defined in eqns (2.13) and (2.31).
Substituting eqns (2.44), (2.13), and (2.31) in eqn (2.45), we obtain

E(a, m) = −mc2

2
+ �

[ ∞∑
n=0

ωn − a

2π

∫ ∞

0

ωk dk

]

= −mc2

2
+

2π�c

a

[ ∞∑
n=0

√
B2 + n2 −

∫ ∞

0

√
B2 + t2 dt

]
, (2.46)

where B ≡ mac/(2π�) and ak = 2πt. The Casimir energy (2.46) can be calcu-
lated by using the Abel–Plana formula (2.26) and eqns (2.34) and (2.37), leading
to the following result:

E(a, m) = − �c

πa

∫ ∞

µ

√
y2 − µ2

ey − 1
dy. (2.47)

Here, 2πt ≡ y as in eqn (2.38) and the dimensionless mass is µ = mca/� = 2πB.
It is notable that the term

1

2
F (0) =

2π�c

a
B =

mc2

2
(2.48)

on the right-hand side of the Abel–Plana formula cancels out the first term
on the right-hand side of eqn (2.46). Because of this, eqn (2.47), in contrast
to eqn (2.38), does not contain a contribution linear in the mass. The physical
explanation for this fact is that the space with the topology of a circle does not
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contain boundary points and hence the vacuum energy does not contain their
energy.

For a massless field, µ = 0 and eqn (2.47) leads to (Mamayev and Trunov
1979a)

E(a, 0) = E(a) = − �c

πa

∫ ∞

0

y dy

ey − 1
= −π�c

6a
. (2.49)

In the case of a large mass, µ � 1, we obtain from eqn (2.47)

E(a, m) ≈ −�c
√

µ√
2πa

e−µ, (2.50)

i.e. the Casimir energy is exponentially small.
At the end of this section, we briefly discuss what are referred to as antiperi-

odic conditions imposed on a scalar field,

ϕ(t, x + a) = −ϕ(t, x). (2.51)

In the massless case, the allowed oscillator frequencies take the form

ωn =
2πc

a

(
n +

1

2

)
, n = 0, ±1, ±2, . . . (2.52)

[compare with eqn (2.22)]. The application of the Abel–Plana formula (2.41),
adapted for summation over semi-integer numbers, results in the Casimir energy

E(a) =
π�c

12a
. (2.53)

We emphasize that for the antiperiodic conditions (2.51), the sign of the
Casimir energy changes, similarly to the case for mixed boundary conditions.
The periodic conditions (2.42) discussed at the beginning of this section can be
presented as one equation,

ϕ(t, x + a) = ϕ(t, x), (2.54)

similar to eqn (2.51). They were described geometrically by a circle of circumfer-
ence a. If the antiperiodic conditions (2.51) are imposed on the field, one returns
to the same field value

ϕ(t, x) = ϕ(t, x + 2a) (2.55)

only after two round trips, i.e. after traveling a distance 2a [see Fig. 1(c)]. Such
a continuous line can be drawn on a Möbius strip. It is notable that a spinor
wave function is antiperiodic and takes its initial value after two round trips, i.e.
after a rotation by an angle 4π. Fields satisfying the condition (2.51) are often
called twisted.
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2.4 Local and global descriptions of the Casimir effect

In previous sections, the Casimir effect was characterized by the difference be-
tween the total vacuum energy in the presence of boundaries (or in a topologi-
cally nontrivial space) and the free, topologically trivial Minkowski space. Such
an approach is called global because it deals with total energies. In this section
we discuss another, local, approach to the Casimir effect, which starts from vac-
uum energy densities. In this case the total energy of the vacuum is obtained by
the integration of the energy density over the quantization volume. The vacuum
energy density is defined as the expectation value of the energy density opera-
tor of the quantized field in the vacuum state. Here, we present only the most
elementary aspects of field quantization for a scalar field in two-dimensional
space–time. We save the more general discussion of field quantization in the
presence of boundaries for Chapter 3.

The quantization of a real scalar field on an interval 0 ≤ x ≤ a with boundary
conditions (2.3) is performed through the replacement of a c-function field ϕ(t, x)
with the field operator

ϕ(t, x) =
∑

n

[
ϕ(+)

n (t, x)an + ϕ(−)
n (t, x)a+

n

]
, (2.56)

where the positive- and negative-frequency solutions of the field equation (2.1)
are defined in eqns (2.6) and (2.7). The operators an and a+

n are the annihilation
and creation operators of a scalar particle with quantum number n. They obey
the standard commutation relations[

an, a+
n′

]
= δnn′ , [an, an′ ] =

[
a+

n , a+
n′

]
= 0. (2.57)

The vacuum state |0〉 of the field on an interval is defined by

an|0〉 = 0. (2.58)

The energy density operator of the scalar field in two-dimensional space–time
is given by the 00-component of the energy–momentum tensor

T
(0)
00 (t, x) =

�c

2

{
1

c2
[∂tϕ(t, x)]

2
+ [∂xϕ(t, x)]

2
+

m2c2

�2
ϕ2(t, x)

}
. (2.59)

The infinite vacuum energy density of the field on an interval is given by the

expectation value of the operator T
(0)
00 (t, x) in the vacuum state |0〉. It is calcu-

lated by the substitution of eqn (2.56) into eqn (2.59) using eqns (2.6), (2.57),
and (2.58):

〈0|T (0)
00 (t, x)|0〉 =

�

2a

∞∑
n=1

ωn − m2c4

2a�

∞∑
n=1

cos 2knx

ωn
. (2.60)

The total vacuum energy of the field ϕ on an interval is obtained by the integra-
tion of eqn (2.60):
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E0(a, m) =

∫ a

0

〈0|T00(t, x)|0〉 dx =
�

2

∞∑
n=1

ωn. (2.61)

This is in agreement with eqn (2.8) [note that the second, oscillating, term on
the right-hand side of eqn (2.60) does not contribute to the result].

We now consider the quantization of a scalar field on the entire axis −∞ <
x < ∞. The field operator is given by

ϕ(t, x) =

∫ ∞

−∞
dk
[
ϕ

(+)
k (t, x)ak + ϕ

(−)
k (t, x)a+

k

]
, (2.62)

where the positive- and negative-frequency solutions are defined in eqn (2.11)
and the commutation relations are as follows:[

ak, a+
k′

]
= δ(k − k′), [ak, ak′ ] =

[
a+

k , a+
k′

]
= 0. (2.63)

The vacuum state of the scalar field on an unbounded axis is defined by the
equality

ak|0M〉 = 0. (2.64)

Substituting eqn (2.62) into eqn (2.59) and using eqn (2.63), we find the infinite
vacuum energy density of the scalar field on the axis:

〈0M|T (0)
00 (t, x)|0M〉 =

�

4π

∫ ∞

−∞
dk ωk. (2.65)

Then the total vacuum energy for the whole axis is

E0M(m) = 〈0M|T (0)
00 (t, x)|0M〉L =

�

2

∫ ∞

−∞

dk

2π
ωkL, (2.66)

in agreement with eqn (2.13). We recall that L is the infinite length of the axis.
As a result, the Casimir energy density on an interval can be found using the

local version of eqn (2.32),

ε(x) = 〈0|T (0)
00 (t, x)|0〉 − 〈0M|T (0)

00 (t, x)|0M〉, (2.67)

where the vacuum expectation values on the right-hand side of eqn (2.67) are
given by eqns (2.60) and (2.65). From eqn (2.67) we obtain

ε(x) =
E(a, m)

a
− m2c4

2a�

∞∑
n=1

cos 2knx

ωn
, (2.68)

where E(a, m) is defined in eqn (2.32) and, using eqn (2.38), we finally find

ε(x) = −mc2

4a
− �c

4πa2

∫ ∞

2µ

√
y2 − 4µ2

ey − 1
dy − m2c4

2a�

∞∑
n=1

cos 2knx

ωn
. (2.69)
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Integration of eqn (2.69) with respect to x leads to∫ a

0

ε(x) dx = E(a, m), (2.70)

where the total Casimir energy on an interval, E(a, m), is given in eqn (2.38).
This is, however, true only for flat boundaries. In the case of curved boundary
surfaces, there may be nonintegrable singularities in the Casimir energy density
when the boundary surface is approached (see e.g. Chapter 9).

2.5 Elementary approach to the Casimir force between two parallel

planes

As discussed in the Introduction, the Casimir effect is the attractive force act-
ing between parallel ideal-metal planes which arises from vacuum oscillations
of the electromagnetic field. In Chapter 7, we shall present the detailed theory
of the Casimir effect between ideal-metal planes for various fields at both zero
and nonzero temperature. However, it is appropriate to include an elementary
derivation of eqns (1.1) and (1.5) in this chapter, which is devoted to simple
models.

A configuration of two parallel planes of very large area S spaced a distance a
apart is shown in Fig. 2.2. Mathematically, the area S of each plane is supposed to
be infinitely large. However, the results obtained are applicable for the condition
a �

√
S. From classical electrodynamics, the electric field and the magnetic

induction, of both polarizations, satisfy the following boundary conditions on
the surface of an ideal metal:

Et(t, r)|S = Bn(t, r)|S = 0. (2.71)

Here, r is the radius vector of any point, n is the unit vector normal to the
surface, and the index “t” denotes the tangential component, which is parallel to

�
�

�

Fig. 2.2. Two parallel ideal-metal planes of area S spaced a distance a apart.
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the planes. The conditions (2.71) imply that an electromagnetic field can exist
only outside an ideal conductor.

The boundary conditions (2.71) can be viewed as an ideal case of the in-
teraction of real metal surfaces with an electromagnetic field. In general, this
interaction is much more complicated and is modified by the finite conductivity
of a metal, i.e. by the penetration of the electromagnetic field into the metal
to a characteristic length scale given by the skin depth. This problem becomes
particularly involved at nonzero temperature (see Chapters 12 and 14).

We consider the electromagnetic field as an infinite set of harmonic oscillators
with frequencies ωJ and vacuum energy (1.4), where J is the photon wave vector.
In free space (i.e. without boundaries), J = k = (k1, k2, k3), where all ki are
continuous. In the presence of metal planes, this is not so, however. Here and
below, we shall also use the notation x1 ≡ x, x2 ≡ y, x3 ≡ z and k1 ≡ kx,
k2 ≡ ky, k3 ≡ kz where there is no cause for confusion with four-dimensional
quantities. Let us choose Cartesian coordinates with the z-axis perpendicular to
the planes. Then the components kx, ky remain continuous, but the component
kz = kzn = πn/a, n = 0, ±1, ±2, becomes discrete. Note that in contrast to
eqn (2.7) for a scalar field on an interval, here n can be a negative integer,
which takes the two photon polarizations into account. The wave vector of the
form (kx, ky, 0) also leads to a nonzero contribution (see Section 7.2, where the
complete orthonormal set of solutions of the wave equation between the two
parallel planes is explicitly presented).

As a result, the vacuum energy of the electromagnetic field between the ideal-
metal planes can be presented in the form

E0(a) =
�

2

∫ ∞

−∞

dkx

2π

∫ ∞

−∞

dky

2π

∞∑
n=−∞

ωk⊥,nS. (2.72)

Here, k⊥ = (kx, ky) is the projection of the wave vector onto the metal planes
(it is perpendicular to the z-direction, i.e. to the direction of the Casimir force),
k⊥ = |k⊥| = (k2

x + k2
y)1/2, and the oscillator frequencies are given by

ωJ = ωk⊥,n = c

√
k2
⊥ +

(πn

a

)2

. (2.73)

By introducing polar coordinates on the planes and noting that ωk⊥,n is an even
function of n, we can rearrange eqn (2.72) to

E0(a) =
�

2

∫ ∞

0

k⊥dk⊥
2π

(
2

∞∑
n=0

ωk⊥,n − ck⊥

)
S. (2.74)

The respective vacuum energy of the electromagnetic field in the free Minkowski
space in the volume between the planes but with no boundary conditions is given
by
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E0M(a) = �a

∫ ∞

−∞

dkx

2π

∫ ∞

−∞

dky

2π

∫ ∞

−∞

dkz

2π
ωkS, (2.75)

where

ωk = c|k| = c
√

k2
x + k2

y + k2
z (2.76)

and a factor of 2 has been used to take into account the two polarizations of the
electromagnetic field. Equation (2.75) can be rearranged to

E0M(a) =
�a

π

∫ ∞

0

k⊥dk⊥
2π

∫ ∞

0

dkz ωkS. (2.77)

From eqns (2.74) and (2.77) the Casimir energy per unit area of the ideal-
metal planes is defined as

E(a) ≡ E0(a)

S
− E0M(a)

S
(2.78)

= �

∫ ∞

0

k⊥dk⊥
2π

( ∞∑
n=0

ωk⊥,n − ck⊥
2

− a

π

∫ ∞

0

dkz ωk

)
.

Substituting eqns (2.73) and (2.76) here and introducing a new variable t =
akz/π, we arrive at

E(a) =
π�c

a

∫ ∞

0

k⊥dk⊥
2π

( ∞∑
n=0

√
k2
⊥a2

π2
+ n2 (2.79)

−
∫ ∞

0

dt

√
k2
⊥a2

π2
+ t2 − ak⊥

2π

)
.

The difference between the infinite sum and the infinite integral in eqn (2.79) is
calculated using the Abel–Plana formula (2.26) with F = GA(t) defined in eqn
(2.34) and A ≡ k2

⊥a2/π2. The application of this formula leads to the Casimir
energy between the planes,

E(a) = −π2
�c

a3

∫ ∞

0

y dy

∫ ∞

y

√
t2 − y2

e2πt − 1
dt, (2.80)

where the dimensionless variable y = k⊥a/π has been introduced instead of k⊥.
It is notable that E(a) is finite. As in Section 2.2, the result (2.80) does not
depend on the specific form of the regularization that might be applied to make
the quantities E0(a)/S and E0M(a)/S in eqn (2.78) finite.

To evaluate eqn (2.80), it is sufficient to change the order of the integration:

E(a) = −π2
�c

a3

∫ ∞

0

dt

e2πt − 1

∫ t

0

y
√

t2 − y2dy
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= −π2
�c

3a3

1

(2π)4

∫ ∞

0

v3 dv

ev − 1
, (2.81)

where one more new variable, v = 2πt, has been introduced. After integration of
eqn (2.81), we finally obtain (Gradshtein and Ryzhik 1994)

E(a) ≡ EIM(a) = − π2

720

�c

a3
, (2.82)

in agreement with eqn (1.5). We can use eqn (1.6) to reproduce the Casimir
result (1.1) for the Casimir pressure.

Thus, in the case of the electromagnetic vacuum confined between two parallel
ideal-metal planes, the final result is obtained by deleting the energy of free
Minkowski space using the Abel–Plana formula. This is appropriate for the case
under consideration. In more complicated configurations, however, even after the
removal of the contribution from free Minkowski space, the result will in general
be infinite, so that some additional renormalization has to be carried out.
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FIELD QUANTIZATION AND VACUUM ENERGY IN THE

PRESENCE OF BOUNDARIES

From the standpoint of quantum field theory, the Casimir effect is related to
the vacuum polarization arising in quantization volumes restricted by bound-
aries or in spaces with nontrivial topology. Both boundaries and a nontrivial
topology of space–time can be considered as classical external conditions, on
which background the field quantization should be performed. In this chapter
we briefly present some basic facts related to the quantization procedure for fields
of various spin obeying boundary (or identification) conditions. We start with
the classical wave equations and then consider various boundary conditions that
may be imposed on their solutions. The rest of the chapter is devoted to both
the canonical and the path-integral field quantization procedure in the presence
of boundaries, with stress put on several different representations of the vacuum
energy. Propagators with boundary conditions are also introduced. Although we
touch on fields of different spin in both Minkowski and curved space–time, our
presentation is primarily devoted to the case of the electromagnetic field in the
presence of material boundaries, which is the main subject in the second and
third parts of this book.

We recall that, starting from this chapter and throughout Part I of the book,
we use units with � = c = 1.

3.1 Field equations for fields of various spins

In the preceding chapter, we have already considered a scalar field in two-
dimensional space–time. Here, all fields are defined in four-dimensional space–
time, with 4-vector arguments x ≡ xµ = {x0, x1, x2, x3} = {x0, r} and xµ =
gµνxν = {x0, x1, x2, x3} = {x0,−r}. The Klein–Fock–Gordon equation for a free
real scalar field ϕ(x) is given by(

� + m2
)
ϕ(x) = 0, (3.1)

where the four-dimensional d’Alembert operator is defined by

� = �4 ≡ gµν ∂2

∂xµ∂xν
=

∂2

∂x0∂x0
− ∂2

∂x1∂x1
− ∂2

∂x2∂x2
− ∂2

∂x3∂x3
= ∂ν∂ν (3.2)

and m is the mass of the field. If some external source Υ(x) of the scalar field
is present (this is not the case for scalar zero-point oscillations), eqn (3.1) is
generalized to (

� + m2
)
ϕ(x) = Υ(x). (3.3)
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Both eqn (3.1) and eqn (3.3) can be obtained from the Euler–Lagrange equa-
tions from the action of a scalar field

S[ϕ] =

∫
d4xL(0)(x) =

∫
d4x

(
1

2
∂νϕ∂νϕ − m2

2
ϕ2 + Υϕ

)
(3.4)

with Υ = 0 and Υ �= 0, respectively [L(0)(x) is the Lagrangian density]. Using
integration by parts in eqn (3.4), one can present the action in the form

S[ϕ] =

∫
d4x

(
−1

2
ϕKϕ + Υϕ

)
, (3.5)

where the operator
K ≡ K(x) = � + m2 (3.6)

is the kernel of the action.
The scalar product of the two (in general complex) solutions of eqn (3.1) is

defined as

(ϕ1, ϕ2) = i

∫
V

dr

(
ϕ∗

1

∂ϕ2

∂x0
− ∂ϕ∗

1

∂x0
ϕ2

)
, (3.7)

where V is the quantization volume (free infinite space or some region restricted
by boundaries).

From Noether’s theorem, the canonical energy–momentum tensor of the scalar
field (without sources) is

T (0)
µν = ∂µϕ∂νϕ − gµνL(0), (3.8)

where L(0) is defined in eqn (3.4), with Υ = 0. Sometimes what is referred to as
the metrical energy–momentum tensor of the scalar field is also used (Chernikov
and Tagirov 1968, Callan et al. 1970),

T̃ (0)
µν = T (0)

µν − ξ [∂µ∂ν − gµν∂ρ∂
ρ] ϕ2, (3.9)

where ξ = (D − 2)/4(D − 1), which differs from eqn (3.8) by a 4-divergence (D
is the dimensionality of space–time).

Equation (3.1) can be generalized to the case of curved space–time in the
form (

� + ξR + m2
)
ϕ(x) = 0, (3.10)

where � = ∇µ∇µ, ∇µ is the covariant derivative, the scalar curvature R = Rµ
µ is

the trace of the Ricci tensor, and ξ is the coupling coefficient. Equation (3.10)
is conformally invariant in the limit of zero mass if ξ in the above expression is
given by ξ = 1/6 (for D = 4). The case of curved space–times will be considered
only in Chapter 11 and will not be discussed here.

The most important case for us is the electromagnetic field because the elec-
tromagnetic Casimir effect is experimentally observable. Here, we restrict the
discussion to only the electromagnetic field in the vacuum. The case of material
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media is dealt with in the second part of the book. We start with the Maxwell
equations for the electric field E(x) and magnetic induction B(x) (with c = 1):

∇ · E = 4πρ, ∇ × E +
∂B

∂t
= 0, (3.11)

∇ × B − ∂E

∂t
= 4πj, ∇ · B = 0,

where j and ρ are current and charge densities satisfying the local charge con-
servation law

∂ρ

∂t
+ divj = 0. (3.12)

Later, when we consider the electromagnetic zero-point energy, we shall put
ρ = 0 and j = 0.

Electrodynamics is a relativistically invariant theory. Because of this, it is
often convenient to represent the physical fields E and B in terms of the 4-
potential Aµ = (A0, A) such that

E = −∇A0 − ∂A

∂t
, B = ∇ × A, (3.13)

and to introduce the antisymmetric field tensor

Fµν = ∂µAν − ∂νAµ. (3.14)

The components of this tensor are the components of the electric field and mag-
netic induction:

F 0i = −Ei, F 12 = −B3, F 13 = B2, F 23 = −B1. (3.15)

Introducing also the 4-current jµ = (ρ, j), one can rearrange Maxwell’s equations
(3.11) into the covariant form

∂µFµν = 4πjν , ∂µF̃µν = 0, (3.16)

where the dual tensor is

F̃µν =
1

2
εµνβγFβγ , (3.17)

and εµνβγ is the antisymmetric tensor equal to +1 or −1 depending on whether
(µ, ν, β, γ) is an even or odd transposition of the indices (0, 1, 2, 3). The repre-
sentation in terms of the 4-potential Aµ is especially useful for the quantization
of the electromagnetic field.

Equations (3.13) and (3.14) do not define the 4-potential Aµ in a unique way,
leaving the freedom for a gauge transformation

Aµ(x) → Aµ(x) + ∂µφ(x), (3.18)
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where φ(x) is some arbitrary smooth function. In terms of the 4-potential, the
Maxwell equations (3.11) or (3.16) can be rewritten as

�Aµ − ∂µ (∂νAν) = 4πjµ. (3.19)

The form of these equations is preserved under the gauge transformation (3.18).
However, under some conditions that fix the gauge, a certain term in eqn (3.19)
may vanish. The only relativistically invariant condition is

∂νAν = 0, (3.20)

which is called the Lorentz gauge. It is always possible to find a set of functions
φ(x) in eqn (3.18) such that the condition (3.20) is satisfied. Functions belonging
to this set differ from one another by a function φ0 satisfying the equation
�φ0 = 0. In the Lorentz gauge, eqn (3.19) takes the simplest form,

�Aµ = 4πjµ. (3.21)

For us, a particular case of these equations with the source equal to zero is most
important,

�Aµ = 0. (3.22)

The Maxwell equations (3.19) can be obtained from the action of the elec-
tromagnetic field

S =

∫
d4xL(1)(x) =

∫
d4x

[
− 1

16π
FµνFµν − λ

8π
(∂µAµ)2 − Aµjµ

]
, (3.23)

where λ is a coefficient of what is referred to as the gauge-fixing term. The
Euler–Lagrange equations following from eqn (3.23) are

�Aµ − (1 − λ)∂µ (∂νAν) = 4πjµ. (3.24)

If λ = 0, eqn (3.24) coincides with eqn (3.19). The choice of λ = 1 is equivalent
to the fixing of the Lorentz gauge (3.20). In this case eqn (3.24) coincides with
eqn (3.21). After integration by parts, eqn (3.23) can be rearranged into the form

S =

∫
d4x

(
1

8π
AµKµνAν − Aµjµ

)
, (3.25)

where the kernel of the action is given by the differential operator

Kµν ≡ Kµν(x) = gµν
� − (1 − λ)∂µ∂ν . (3.26)

The energy–momentum tensors of the electromagnetic field obtained from
different forms of the action may differ by a 4-divergence. For example, by ap-
plying Noether’s theorem to the action (3.23) with λ = 0, jµ = 0, we obtain

T̃ (1)
µν = − 1

4π
Fµβ∂νAβ +

1

16π
gµνFβγF βγ . (3.27)

This expression is not gauge invariant and not symmetric, i.e. T̃
(1)
µν �= T̃

(1)
νµ .

By adding to T̃
(1)
µν terms having the form of the 4-divergence ∂β(Fµ

βAν), it is
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possible to obtain a gauge-invariant, symmetric energy–momentum tensor of the
electromagnetic field (Itzykson and Zuber 2005)

T (1)
µν =

1

4π

(
FµβF β

ν +
1

4
gµνFβγF βγ

)
. (3.28)

For the 00-component of this tensor, using eqn (3.15), we obtain the familiar
expression in terms of the electric field and the magnetic induction

T
(1)
00 =

E2 + B2

8π
. (3.29)

At the end of this section, we mention briefly the main facts related to a
spinor field of mass m with spin one-half. This field obeys the Dirac equation

(iγµ∂µ − m)ψ(x) = 0, (3.30)

where the γµ are 4 × 4 Dirac matrices satisfying the condition

γµγν + γνγµ ≡ {γµ, γν} = 2gµν (3.31)

and ψ(x) is a 4-component bispinor. Hereafter, we shall use the representation
of Dirac matrices where the matrix γ0 is diagonal, i.e.

γ0 =

(
I 0
0 −I

)
, γk =

(
0 σk

−σk 0

)
, (3.32)

and the σk are the Pauli matrices (I is a 2 × 2 unit matrix).
The action for the Dirac equation is given by

S[ψ] =

∫
d4xL(1/2)(x), (3.33)

where the Lagrangian density is

L(1/2) =
i

2

[
ψ̄γµ∂µψ − (∂µψ̄)γµψ

]
− mψ̄ψ. (3.34)

Here, ψ̄ = ψ+γ0 is the Dirac conjugate bispinor.
The scalar product of two solutions of the Dirac equation takes the form

(ψ1, ψ2) =

∫
V

dr ψ+ψ, (3.35)

where V is the quantization volume (the whole space or some finite region re-
stricted by boundaries).

The energy–momentum tensor of the spinor field is given by

T (1/2)
µν =

i

2

(
ψ̄γµ∂νψ − ∂ν ψ̄γµψ

)
. (3.36)

It is notable that all of the energy–momentum tensors obtained above in the
absence of sources satisfy the conservation law

∂µT (s)
µν = 0, (3.37)

where s = 0, 1/2, or 1 is the spin of the field.
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3.2 Various boundaries and boundary conditions

In Part I of the book, we consider the Casimir effect in regions of space restricted
by ideally smooth boundaries. Mathematically, for scalar and electromagnetic
fields, the problem includes consideration of the field equation (3.1) in the scalar
case and the field equation (3.11) with j = 0 and ρ = 0, or (3.22), in the
electromagnetic case, with appropriate boundary conditions. The boundaries S
are considered to be stationary. This allows the separation of the time variable.
For example, for the scalar field

ϕ
(+)
J (x) =

1√
2ωJ

e−iωJ tΦJ(r) (3.38)

using eqn (3.1) we get

−∇
2ΦJ(r) = ΛJΦJ(r), ΛJ ≡ ω2

J − m2. (3.39)

Here, ∇
2 = ∆ is the Laplace operator

∇
2 ≡ ∇

2
(3) =

∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

, (3.40)

J is a collective index for the generalized wave vector, and ΦJ(r) satisfies some
boundary conditions on the surfaces S. Equation (3.39) together with the bound-
ary conditions imposed on the function ΦJ(r) defines a standard elliptic problem
for the self-adjoint operator ∆.

The most frequently used boundary condition is the Dirichlet one,

ΦJ(r)|S = 0. (3.41)

Physically, this means that the boundary surface is totally impermeable to the
field. The Dirichlet boundary condition can be imposed on several surfaces, i.e.
on two parallel planes or on the four sides of a parallelepiped. In order to solve
the Dirichlet problem (3.39), (3.41), one must find an explicit expression for the
eigenfrequencies ωJ .

If the normal derivative of the function ΦJ (r) on the boundary surface van-
ishes, i.e.

∂ΦJ(r)

∂n

∣∣∣∣
S

= 0, (3.42)

we are dealing with Neumann boundary condition. Together, eqns (3.39) and
(3.42) are called the Neumann boundary problem.

A combination of the Dirichlet and Neumann boundary conditions[
uΦJ(r) +

∂ΦJ(r)

∂n

]∣∣∣∣
S

= 0, (3.43)

where u is some parameter or a function of the radius vector, is called a Robin
boundary condition.
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For the electromagnetic field in the Lorentz gauge (3.20), the field equation
(3.21) has the form of eqn (3.1) with m = 0. After separation of the time variable,
i.e.

A
(+)
J,µ (x) =

1√
ωJ

e−iωJ tAJ,µ(r), (3.44)

we arrive at the same equation as in eqn (3.39),

−∇
2AJ,µ(r) = ΛJAJ,µ(r), ΛJ ≡ ω2

J . (3.45)

If the boundary surfaces S are made of an ideal metal, the boundary con-
ditions (2.71) must be satisfied at each point of S. These conditions can be
equivalently rewritten as

nµF̃µν(t, r)
∣∣∣
S

= 0, (3.46)

where nµ = (0,−n), n is the external normal to the surface at a point r, and

the dual tensor F̃µν is defined in eqn (3.17).
For electromagnetic fields without sources, it is always possible to fix the

vector potential such that

A0
J (r) = 0, divAJ (r) = 0. (3.47)

This is usually referred to as the Coulomb gauge. In the Coulomb gauge, the first
of the boundary conditions (2.71), Et(t, r)|S = 0, results in

AJt(r)|S = 0, (3.48)

where the index “t” marks the components of E and AJ tangential to the
surface. To obtain eqn (3.48), we have used the first equality in eqn (3.13), and
eqn (3.44).

From eqn (3.48), using the second equality in eqn (3.13), it follows that
Bn(t, r)|S = 0, which is the second boundary condition in eqn (2.71). Here, we
have assumed that both the electric field and the magnetic induction vary sinu-
soidally in time as exp(−iωJ t), which is always true for any static configuration
of boundary surfaces.

The boundary condition (3.48) is of Dirichlet type. Thus, the same elliptic
boundary problem as in the case of a scalar field is relevant to the electromag-
netic field. In the next chapters of Part I, the solutions of various boundary
problems will be presented for a number of configurations of boundary surfaces.
We shall also discuss cases where a complete solution of such problems for the
electromagnetic field is not yet known.

At the end of this section, we note that for a spinor field the Dirichlet bound-
ary condition is not meaningful, because it is in contradiction with the Dirac
equation (3.30). Instead, what are referred to as bag boundary conditions are
used, which prevent a current from flowing through the boundary (see Sections
7.5 and 9.4 for details).
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In this section, we restrict ourselves to the case of ideal boundaries. In the
second part of the book, nonideal boundary surfaces consisting of real dielectrics,
semiconductors, and metals will be considered and more complicated boundary
conditions will be discussed.

3.3 Canonical quantization and the vacuum energy as a mode

expansion

The quantization procedure for a scalar field in two-dimensional space–time has
already been illustrated in Section 2.4. Here, we begin with a scalar field in
four-dimensional space–time satisfying the Klein–Fock–Gordon equation (3.1).
For smooth static boundaries of any geometrical shape, it is always possible
to introduce the positive- and negative-frequency solutions of the Klein–Fock–
Gordon equation

ϕ
(+)
J (t, r) =

1√
2ωJ

e−iωJtΦJ(r), ϕ
(−)
J (t, r) =

[
ϕ

(+)
J (t, r)

]∗
, (3.49)

where ΦJ(r) is the solution of the elliptic boundary problem [i.e. of eqn (3.39)
with one of the boundary conditions (3.41)–(3.43)]. The functions (3.49) satisfy
the normalization conditions(

ϕ
(±)
J (x), ϕ

(±)
J′ (x)

)
= ±δJJ′ ,

(
ϕ

(±)
J (x), ϕ

(∓)
J′ (x)

)
= 0, (3.50)

where the scalar product is defined in eqn (3.7). From eqn (3.7), we also obtain
the normalization condition for the solutions ΦJ(r) of the boundary problem,∫

V

dr Φ∗
J (r)ΦJ′(r) = δJJ′ . (3.51)

Following the procedure of canonical quantization, we present the field oper-
ator as the sum of the modes

ϕ(x) =
∑

J

[
ϕ

(+)
J (x)aJ + ϕ

(−)
J (x)a+

J

]
, (3.52)

where aJ and a+
J are the annihilation and creation operators of a particle with

quantum numbers indicated by the collective index J . The summation over J
may also mean integration if some (or all) of the quantum numbers are continu-
ous. The annihilation and creation operators satisfy the commutation relations[

aJ , a+
J′

]
= δJJ′ , [aJ , aJ′ ] =

[
a+

J , a+
J′

]
= 0. (3.53)

The vacuum state of the field is defined by

aJ |0〉 = 0. (3.54)

The states with particles are obtained by applying the creation operators to the
vacuum state. For example, the state with one particle is
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|1〉 = a+
J |0〉. (3.55)

In the case where there are no boundary conditions (i.e. when we consider
the quantized scalar field in free Minkowski space), the index J coincides with
the wave vector, i.e. J ≡ k = (k1, k2, k3), the oscillator frequencies are given by
ωJ = ωk = (m2 + k2)1/2, and

ΦJ(r) = Φk(r) =
eik · r

(2π)3/2
. (3.56)

In this case the symbol δJJ′ in eqns (3.50), (3.51), and (3.53) should be under-
stood as δ3(k−k′). The vacuum state of the scalar field in free Minkowski space
is defined by

ak|0M〉 = 0. (3.57)

The vacuum energy density of the scalar field in the presence of boundaries
is the mean value of the 00-component of the energy–momentum tensor (3.8) in
the vacuum state,

〈0|T (0)
00 (x)|0〉 =

1

2

〈
0

∣∣∣∣∣
[

3∑
µ=0

(
∂ϕ

∂xµ

)2

+ m2ϕ2

]∣∣∣∣∣ 0
〉

. (3.58)

Substituting eqn (3.52) in eqn (3.58) and using eqns (3.49), (3.53), and (3.54),
we obtain

〈0|T (0)
00 (x)|0〉 =

∑
J

1

4ωJ

[(
ω2

J + m2
)
ΦJ (r)Φ∗

J (r) +

3∑
k=1

∂ΦJ(r)

∂xk

∂Φ∗
J(r)

∂xk

]
.

(3.59)
This energy density is divergent and, in the general case, depends on the spatial
point r.

Now we consider the total vacuum energy of the scalar field in the quanti-
zation volume V . We assume that the functions ΦJ(r) satisfy the Dirichlet or
Neumann boundary condition (3.41) or (3.42) on the boundary surface S. By
integrating eqn (3.59) over V using eqns (3.39) and (3.51), the following result
is obtained:

E0 =

∫
V

dr 〈0|T (0)
00 (x)|0〉 =

1

2

∑
J

ωJ . (3.60)

Note that in obtaining this result, the last term on the right-hand side of eqn
(3.59) has been integrated by parts. Thus, the integration of the vacuum energy
density in the presence of boundaries leads to the general result (1.4), which was
discussed in Section 1.1.
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For free Minkowski space without boundaries, the vacuum energy density is
obtained from eqns (3.56) and (3.59):

〈0M|T (0)
00 (x)|0M〉 =

1

2

∫
dk

(2π)3
ωk. (3.61)

The total vacuum energy in the volume V is

E0 =

∫
V

dr 〈0M|T (0)
00 (x)|0M〉 =

1

2

∫
dk

(2π)3
ωk V. (3.62)

Equations (3.61) and (3.62) are analogous to eqns (2.65) and (2.66), obtained
in two-dimensional space–time. Any manipulations with them assume the use of
some regularization (see Section 2.2).

We consider now the quantization of an electromagnetic field in the presence
of boundaries. This is a nontrivial problem, owing to the existence of differ-
ent polarization states of the photon. The point is that the physical boundary
conditions (2.71) are formulated in terms of the electric field and the magnetic
induction, i.e. gauge-invariant quantities. However, it is preferable to perform
the quantization of the electromagnetic field in terms of the vector potential Aµ.
First, we choose the Coulomb gauge, where A0(x) = 0 and divA(x) = 0, as was
done in the previous section devoted to the discussion of boundary conditions.
In this gauge, eqn (3.22) takes the form

∂2A(x)

∂x2
0

− ∇
2A(x) = 0. (3.63)

Thereafter, we separate the time variable and present the positive- and nega-
tive-frequency solutions of the wave equation (3.63) in the form

A
(+)
J (x) =

1√
ωJ

e−iωJ t
AJ (r), A

(−)
J (x) =

[
A

(+)
J (x)

]∗
, (3.64)

where AJ(r) satisfies the equation

−∇
2
AJ (r) = ω2

JAJ(r), (3.65)

following from eqn (3.45) with appropriate boundary conditions. The functions
AJ(r) in eqn (3.64) are orthonormal, satisfying the equation∫

V

dr A
∗
J (r)AJ′(r) = 4πδJJ′ . (3.66)

Now we assume that the boundaries under consideration allow the definition
of two orthonormal polarization vectors ε

(λ)
J :

ε
(λ)
J · ε

(λ′)
J = δλλ′ , λ, λ′ = 1, 2. (3.67)
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These are also perpendicular to the generalized wave vector defined by the quan-
tum number J . The vector function AJ(r) in eqn (3.64) can be expanded in
terms of different polarizations:

AJ (r) =
2∑

λ=1

A
(λ)
J (r) =

2∑
λ=1

Ã(λ)
J (r)ε

(λ)
J , (3.68)

where the expansion coefficients are given by the scalar products

Ã(λ)
J (r) = AJ(r) · ε

(λ)
J . (3.69)

These coefficients satisfy the normalization condition following from eqn (3.66)

2∑
λ=1

∫
V

dr Ã(λ)
J

∗
(r)Ã(λ)

J′ (r) = 4πδJJ′ . (3.70)

The two polarizations are said to be separable if eqns (3.68) and (3.69) are valid.

In this case the expansion coefficients Ã(λ)
J (r) satisfy the boundary conditions.

The quantization of the electromagnetic field can be performed in the follow-
ing way:

A(x) =
∑
J

2∑
λ=1

1√
ωJ

ε
(λ)
J

[
e−iωJ tÃ(λ)

J (r)a
(λ)
J + eiωJtÃ(λ)

J

∗
(r)a

(λ)
J

+]
, (3.71)

where a
(λ)
J and a

(λ)
J

+
are the annihilation and creation operators of a photon

with a generalized momentum J and in the polarization state λ. They satisfy
the commutation relations[

a
(λ)
J , a

(λ′)
J′

+
]

= δJJ′δλλ′ ,
[
a
(λ)
J , a

(λ′)
J′

]
=

[
a
(λ)
J

+
, a

(λ′)
J′

+
]

= 0. (3.72)

The photon vacuum state is defined by

a
(λ)
J |0〉 = 0. (3.73)

We note that in the simplest cases of free Minkowski space and plane boundaries,
the polarization vectors perpendicular to the wave vector k = (k1, k2, k3) have
the form

εk
(1) =

1

k⊥


 k2

−k1

0


 , εk

(2) =
1

kk⊥


k1k3

k2k3

−k2
⊥


 , (3.74)

where k = |k|. If there are no boundary surfaces, the coefficients Ã(λ)
J (r) in eqn

(3.68) depend only on r and do not depend on the polarization state λ. In fact, in
the case of curved boundary surfaces even the polarization vectors may become
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position-dependent and the polarizations may not be separable. Then, one is left
with the general formulation (2.71) or (3.46).

Substituting eqn (3.71) into eqns (3.13) (with A0 = 0) and (3.29) and using
eqn (3.73), we obtain the vacuum energy density of the electromagnetic field in
the presence of boundaries,

〈0|T (1)
00 (x)|0〉 =

1

8π

∑
J

2∑
λ=1

1

ωJ

{
ω2

JÃ
(λ)
J (r)Ã(λ)

J

∗
(r)

+
[
∇ ×

(
Ã(λ)

J (r)ε
(λ)
J

)]
·

[
∇ ×

(
Ã(λ)

J

∗
(r)ε

(λ)
J

)]}
. (3.75)

The total energy of the electromagnetic field in the volume V is obtained from
eqn (3.75), taking account of the ideal-metal boundary conditions (3.48) on the
boundary surface and the Coulomb gauge (3.47). If both polarizations contribute
to the result at all J , one obtains

E0 =

∫
V

dr 〈0|T (1)
00 (x)|0〉 =

1

2

2∑
λ=1

∑
J

ωJ =
∑

J

ωJ . (3.76)

This is different by a factor of 2 from eqn (3.60) and reflects the existence of
two polarization states of the photon. If, for some J , one of the polarizations
does not contribute to the result, the respective term in eqn (3.76) is missing
and there is no doubling of the scalar-field contribution for this J (see Section
7.2 for more details and an example). Similarly, in free Minkowski space we get

〈0M|T (1)
00 (x)|0M〉 =

∫
dk

(2π)3
k, (3.77)

E0M =

∫
V

dr 〈0M|T (1)
00 (x)|0M〉 =

∫
dk

(2π)3
kV,

where, in this case, ωk = k.
For a spinor field, the positive- and negative-frequency solutions of the Dirac

equation (3.30) with appropriate boundary conditions,

ψ
(+)
J,α (x) = e−iωJ tχ

(+)
J,α(r), ψ

(−)
J,α (x) = eiωJtχ

(−)
J,α (r), (3.78)

are orthonormal:(
ψ

(±)
J,α (x), ψ

(±)
J′,α′(x)

)
= δJJ′δαα′ ,

(
ψ

(±)
J,α (x), ψ

(∓)
J′,α′(x)

)
= 0, (3.79)

where J is the generalized wave vector and α = 1, 2 is the spin index. The scalar
product is defined in eqn (3.35). The field operator and the Dirac conjugate
operator can be presented in the form

ψ(x) =
∑

J

∑
α=1, 2

[
ψ

(+)
J,α (x)bJ,α + ψ

(−)
J,α (x)d+

J,α

]
, (3.80)
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ψ̄(x) =
∑

J

∑
α=1, 2

[
ψ

(+)
J,α (x)b+

J,α + ψ
(−)
J,α (x)dJ,α

]
.

Here, bJ,α and b+
J,α are the annihilation and creation operators of particles, and

dJ,α and d+
J,α are the creation and annihilation operators of antiparticles. These

operators satisfy the anticommutation relations{
bJ,α, b+

J′,α′

}
=
{

dJ,α, d+
J′,α′

}
= δJJ′δαα′ , (3.81)

{bJ,α, bJ′,α′} =
{
b+
J,α, b+

J′,α′

}
= {dJ,α, dJ′,α′} =

{
d+

J,α, d+
J′,α′

}
= 0.

The vacuum state of the Dirac field is defined by the operations

bJ,α|0〉 = dJ,α|0〉 = 0. (3.82)

To find the vacuum energy density of the spinor field, we substitute eqn (3.80)
into the 00-component of the energy–momentum tensor (3.36) and use eqns
(3.81) and (3.82):

〈0|T (1/2)
00 (x)|0〉 = −

∑
J,α

ωJχ
(−)
J,α

+

(r)χ
(−)
J,α (r). (3.83)

It is notable that the vacuum energy of the spinor field enters with a minus
sign. Within the formalism of canonical quantization, this follows from the use
of anticommutators in eqn (3.81) instead of the commutators for the scalar and
electromagnetic fields, and it is really a consequence of the spin–statistics theo-
rem. By integrating over the quantization volume with the use of eqn (3.79), we
obtain the total vacuum energy of the spinor field,

E0 =

∫
V

dr 〈0|T (1/2)
00 (x)|0〉 = −

∑
J,α

ωJ = −2
∑
J

ωJ . (3.84)

The magnitude of this result differs from the similar result (3.60) for a scalar
field by a factor of 4. This is due to the two types of particles described by the
spinor field (particles and antiparticles) and the two possible spin states for each
of them.

In free Minkowski space, the vacuum energy density and the total vacuum
energy of the spinor field are given by

〈0M|T (1/2)
00 (x)|0M〉 = −2

∫
dk

(2π)3
ωk, (3.85)

E0M =

∫
V

dr 〈0M|T (1/2)
00 (x)|0M〉 = −2

∫
dk

(2π)3
ωkV.

These differ from eqns (3.61) and (3.62), obtained for a scalar field, by a factor
of 4 and are opposite in sign.
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3.4 Vacuum energy in terms of Green’s functions

In the preceding section, we considered the easiest approach to a representation
of the vacuum energy in terms of a mode expansion. In fact, there are other
approaches and representations which are useful. One such case is the represen-
tation of the vacuum energy in terms of Green’s functions. These are solutions of
the wave equations with a delta function on the right-hand side of the equation.
For a scalar field, the appropriate equation is(

�x + m2
)
G(x, x′) = δ4(x − x′). (3.86)

The Green’s function G(x, x′) can be interpreted as an inhomogeneous solution
of the wave equation (3.3) with a point-like source at x′. The Green’s functions
are not uniquely defined by the equation, since an arbitrary solution of the
homogeneous equation (3.1) can be added. This arbitrariness is used to define
different types of Green’s functions (below, we shall use the causal one) and to
satisfy the boundary conditions.

The Green’s functions can be represented in terms of the solutions (3.38),

G(x, x′) =

∫ ∞

−∞

dω

2π

∑
J

ΦJ(r)Φ∗
J (r′)

−ω2 + ω2
J − i0

e−iω(t−t′). (3.87)

In this integral, the integration over ω has poles at ω = ±ωJ resulting from the
zeros in the denominator. The arbitrariness can be removed by defining a rule
about how to go around the poles. In eqn (3.87), we have defined the causal
Green’s function by means of the infinitesimal addition −i0.

In order to establish the relation between the vacuum energy and the Green’s
function, we first consider the vacuum expectation value of a product of two field
operators,

〈0|ϕ(x)ϕ(x′)|0〉 =
∑

J

1

2ωJ
e−iωJ (t−t′)ΦJ (r)Φ∗

J (r′), (3.88)

which itself is not yet a Green’s function. To obtain a Green’s function, we need
to consider the vacuum expectation value of the time-ordered product of the two
field operators

Tϕ(x)ϕ(x′) = θ(t − t′)ϕ(x)ϕ(x′) + θ(t′ − t)ϕ(x′)ϕ(x), (3.89)

which results in
i〈0|Tϕ(x)ϕ(x′)|0〉 = G(x, x′). (3.90)

The latter relation follows from carrying out the frequency integration in eqn
(3.87) according to the pole-bypassing rule (for the causal Green’s function, the
poles are located in ω = ±

√
ω2

J − i0), to obtain

iG(x, y) =
∑

J

1

2ωJ
eiωJ |t−t′| ΦJ(r)Φ∗

J(r′), (3.91)

and applying eqn (3.88) to eqn (3.89).
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In order to establish the relation to the vacuum energy density as defined
in eqn (3.58), we note that the energy–momentum tensor contains the product
of two field operators at coincident arguments. Such expressions are, by their
mathematical nature, singular and need to be regularized. This will be discussed

in detail in Section 4.1; here we adopt the following procedure. We take T
(0)
µν (x),

eqn (3.8), with the field operators at separate points, x �= x′, and consider the
limit of coincidence of these arguments following the rules for the T -product of
operators (3.89). In this way, we represent the vacuum expectation value of the
energy–momentum tensor in the form

〈0|T (0)
00 (x)|0〉 = − i

2

(
3∑

µ=0

∂

∂xµ

∂

∂x′µ + m2

)
G(x, x′)

∣∣∣∣∣
x′=x

. (3.92)

Here, we need to mention that the definition of the vacuum energy density (and
of the vacuum expectation values of other observables) is not unique. In addition

to the freedom to add a gradient term to T
(0)
µν (x), there is another nonuniqueness

following from taking the limit in eqn (3.92), which can be done in many different
ways. We restrict ourselves here to arguing that eqn (3.92), after insertion of the
expression (3.90) for the Green’s function in terms of solutions, coincides with
the definition (3.59) at least on the formal level.

The global vacuum energy (3.60) can also be expressed in terms of Green’s
functions by taking the spatial integral of eqn (3.92). Under the integral sign,
we integrate the derivatives ∂/∂x′i by parts. Using eqn (3.86) and making use
of the fact that, owing to the time stationarity, the time dependence enters the
Green’s function as a difference x0 − x′

0, we obtain

E0 = i

∫
V

dr
∂2G(x, x′)

∂x2
0

∣∣∣∣
x′=x

. (3.93)

A further necessary remark on the derivation of this representation is that we
have performed the transformations mentioned above for separated arguments,
i.e. for x �= x′. In this way, the delta function on the right-hand side of eqn (3.86)
does not contribute.

For an electromagnetic field, the Green’s function corresponding to the vec-
tor potentials used in Section 3.3 for quantization is a tensor with components
Gij(x, x′). It is defined by the equation

�xGij(x, x′) = δ(t − t′)
[
δij δ3(r − r′)

− ∂xi

∫
dr′′ (

∇
2
)−1

(r, r′′)∂x′′j δ(r′′ − r′)
]

, (3.94)

with a unit tensor in the space of transverse functions ∂xiAJ,i(x) = 0 and the
inverse of the Laplace operator
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∇
2
r

(
∇

2
)−1

(r, r′) = δ3(r − r′) (3.95)

on the right-hand side. The following steps are analogous to the case of a scalar
field. Using the solutions of eqn (3.65), the corresponding representation is

Gij(x, x′) =

∫ ∞

−∞

dω

2π

∑
J

e−iω(t−t′)
AJ,i(r)A∗

J,j(r
′)

−ω2 + ω2
J − i0

. (3.96)

In the final representation of the vacuum energy,

E0 = i

∫
V

dr

3∑
i=1

∂2Gii(x, x′)
∂x2

0

∣∣∣∣
x′=x

, (3.97)

one has to take the trace over the indices of this Green’s function.

3.5 Path-integral quantization

One of the most beautiful methods in quantum field theory is path-integral quan-
tization. The idea (Feynman 1948) is to consider the classical paths (trajectories)
that a system may follow and to sum over these paths with suitable weights. In
this way, quantities defined in quantum theory such as transition amplitudes can
be formulated completely in terms of classical quantities. As a result, however,
infinite-dimensional integrations appear, which are in general not well defined
mathematically. There are nevertheless many applications where path integrals
are very useful. With respect to the vacuum energy, we are usually concerned
with free-field theories (the nontrivial content results from boundaries or back-
ground fields). For these, the path integral is well defined and the problem of its
calculation is reduced to a Gaussian integration, which, in turn, ends up with
functional determinants. The latter can be calculated if, for example, the solu-
tions of the underlying wave equation are known. In this way, the path-integral
formulation results in problems of the same difficulty as in canonical quantiza-
tion. Its advantage is that in many cases it allows a much more elegant and
transparent formulation. In addition, in recent years several methods have been
developed within the path-integral approach which allow more direct calculations
and also numerical computations.

In this section, we restrict ourselves to the case of a scalar field in order to
focus on the representation of the vacuum energy, and postpone any discussion
of the peculiarities related to the gauge freedom in electrodynamics. Also, we do
not consider a spinor field, and restrict ourselves to the remark that the minus
sign entering its vacuum energy is related to the Grassmann variables which one
must use in its path-integral representation.

As the basic quantity to be represented in the path-integral approach, we
take the generating functional Z[Υ] (we use square brackets here to denote a
functional dependence) of the Green’s functions for a scalar field. These can be
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obtained by taking functional derivatives with respect to the source Υ(x). For
the propagator, which in this context is a two-point Green’s function, we get

i
δ

δΥ(x)

δ

δΥ(x′)
Z[Υ]|Υ=0 = G(x, x′). (3.98)

Here, the functional derivative δ/δΥ(x) is defined as

δ

δΥ(x)
Υ(x′) = δ4(x − x′). (3.99)

In terms of a path integral, the generating functional is given by

Z[Υ] = C

∫
Dϕ eiS[ϕ], (3.100)

with the action S[ϕ] = S[ϕ, Υ] given by eqn (3.5), i.e. including the source Υ(x).
In eqn (3.100), the integration goes over all fields in a suitably defined space. A
general discussion of this space can be found, for example, in the book by Vasiliev
(1998). Here and below, we shall be interested only in restrictions imposed on
this space by boundary conditions. Concerning the constant C in front of the
integral in eqn (3.100), it should be mentioned that in quantum field theory, path
integrals are usually defined up to a constant (in general, infinite), which does
not influence the final results. In application to the vacuum energy, this constant
is, for instance, independent of external parameters such as the plate separation.
We choose C = 1.

Another important quantity frequently used in the formulation of the vacuum
energy is the effective action,

iWeff [Υ] = ln Z[Υ]. (3.101)

For vanishing sources and time-independent boundaries and backgrounds, this is
proportional to the total time T and the vacuum energy (Peskin and Schroeder
1995),

Weff [0] = −TE0 (3.102)

such that the latter can be represented by means of

E0 =
i

T
ln Z[0] (3.103)

in terms of a path integral. It must be mentioned that this representation does
not coincide completely with the vacuum energy defined in the preceding sec-
tion. However, as is discussed in Section 4.2.2, the difference between the two
representations does not influence physical quantities.

From the point of view of how to perform the integration in a path integral,
one has to observe that the action (3.5) is quadratic in the fields and hence the
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integrations are Gaussian. The finite-dimensional analogue is an integral over
R

n,

∫
Rn

dnx e−x�Kx/2+x�h = (2π)n/2 (detK)
−1/2

e−h�K−1h, (3.104)

where x, h ∈ R
n, K is a real n×n matrix, and K−1 is its inverse. Written in

components, the quadratic form can be represented as

−1

2
x�Kx + x�h = −1

2

∑
i,j

xiKijxj +
∑

i

xihi. (3.105)

The formula (3.104) assumes that all eigenvalues of K are positive, otherwise the
integral would not converge. It is obvious that K can be assumed to be symmet-
ric. By making the substitution x = x′ +K−1h, i.e. by “completing the square”,
the linear term can be removed, and the remaining integration results in a deter-
minant. The direct generalization of eqn (3.104) to the infinite-dimensional case
can be done by the formal substitution xi → ϕ(x) and hi → Υ(x), where the ar-
gument x takes the place of the index i. The matrix Kij becomes some function
of two arguments, K(x, y), and the sums turn into corresponding integrations.
In this way, the exponential in eqn (3.104) is transformed as follows:

−1

2

∑
i,j

xiKijxj +
∑

i

xihi

→ −1

2

∫
d4x d4x′ ϕ(x)K(x, x′)ϕ(x′) +

∫
d4x ϕ(x)Υ(x). (3.106)

Here K(x, x′) is the kernel of an integral operator

Kf(x) =

∫
d4x′ K(x, x′)f(x′), (3.107)

where f(x) is a test function. The kernel of an integral operator can be equiva-
lently represented in the form

K(x, x′) = 〈x′|K|x〉. (3.108)

All subsequent constructions can be done with such a kernel. The differential
operator K(x) in eqn (3.6) is a special case of the integral operator with a
local kernel K(x, x′) = δ(x − x′)K(x′). It should be mentioned that all of these
constructions can be done for very general fields and space–times. Keeping in
mind the application to the Casimir effect, we restrict ourselves here to the
simplest formulation.
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The generalization of eqn (3.104) in the case of a scalar field leads to the
generating functional

Z[Υ] = C (detK)
−1/2

exp

[
i

2

∫
d4x d4x′ Υ(x)K−1(x, x′)Υ(x′)

]
, (3.109)

where K−1(x, x′) is the inverse of K(x, x′), i.e.∫
d4x′ K(x, x′)K−1(x′, x′′) = δ4(x − x′′) (3.110)

must hold. Comparing eqn (3.109) with eqn (3.98,) we arrive at

K−1(x, x′) = G(x, x′), (3.111)

i.e. the operator K−1 is the propagator of the scalar field.
From this formula, the vacuum energy is given by

E0 =
i

T
ln (detK)

−1/2
= − i

2T
Tr lnK (3.112)

(where we have made use of the well-known formula ln detK = Tr lnK). Here we
have put the source Υ = 0 and have dropped the contribution from the constant
C since it gives only an irrelevant additive constant.

3.6 Propagators with boundary conditions

In the presence of boundaries, the propagator can, in general, be constructed
in terms of the mode functions, for example by use of eqn (3.91). In this case
it is assumed that the mode functions ΦJ(r) satisfy the corresponding bound-
ary conditions, eqn (3.41) or eqn (3.42) for example. This representation is not
always convenient. So, for a boundary of general shape, when the variables in
the wave equation do not separate, explicit expressions are not available, neither
for the mode functions nor for the corresponding eigenvalues. We consider here
another general representation of the Green’s function and of the vacuum energy
which does not rely on the mode expansion and which highlights some general
properties.

In order to derive this representation, we start from the expression (3.100)
for the generating functional of the Green’s functions Z[Υ] in terms of the path
integral. For simplicity, we consider a scalar field ϕ(x) fulfilling Dirichlet bound-
ary conditions (3.41) on a surface S given by some functions x0 = u0(η0) ≡ η0,
r = u(η1, η2) or, in a more compact notation, x = u(η), where u = (u0, u) and
η = (η0, η1, η2).

We denote the corresponding Green’s function by SG(x, x′). It has to obey
eqn (3.86) for x �∈ S, i.e. outside the surface, and to obey the boundary conditions

SG(x, x′) = 0 for x ∈ S or x′ ∈ S. (3.113)

This Green’s function can be obtained from the path-integral representation
(3.100) by choosing the integration space to consist of those fields ϕ(x) which
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fulfill the boundary conditions. By means of eqns (3.109) and (3.111), this is
then reduced to the above-mentioned problem and the corresponding methods
can be applied.

The idea of the new method is to start from a path integral in empty space,
i.e. without boundary conditions, and to restrict the integration space by use
of the corresponding functional delta functions. This method was developed for
quantum electrodynamics with conductor boundary conditions by Bordag et al.
(1985) and, independently, by Li and Kardar (1992) for fluctuations in a fluid. In
this way, the path integral goes over fields which are free of boundary conditions.
The necessary restriction of the integration space is achieved by the insertion of
the functional delta function ∏

x∈S

δ(ϕ(x)) (3.114)

into the path integral (3.100) for the generating functional,

Z[Υ] =

∫
Dϕ

∏
x∈S

δ(ϕ(x)) eiS[ϕ]. (3.115)

By construction, it is clear that this is another representation of the same path
integral as in the case when one integrates over a field ϕ fulfilling the boundary
conditions.

The next steps are technical. We represent the functional delta function by
a Fourier representation,

∏
x∈S

δ(ϕ(x)) = C

∫
Db ei

R
S

dµ(η) b(η)ϕ(u(η)), (3.116)

where C is an irrelevant constant like that in eqn (3.109), dµ(η) is the volume
element on S, and the variable of integration, b(η), is an auxiliary field defined
on the surface S. It is useful to rewrite the exponential in this equation in the
form ∫

S

dµ(η) b(η)ϕ(u(η)) =

∫
S

dµ(η)

∫
d4x b(η)H(η, x)ϕ(x), (3.117)

with a kernel H(η, x), which in this case is simply H(η, x) = δ4(x − u(η)). It
is clear that this construction can easily be generalized to include derivatives
or to carry indices. Now we insert this representation into the path integral
(3.115). The resulting integral is now over two fields, ϕ(x) and b(η). Since it is
bilinear in these fields, the integration is Gaussian. It can be carried out after
diagonalization of the quadratic form, which is achieved by

−1

2

∫
d4x d4x′ ϕ(x)K(x, x′)ϕ(x′) +

∫
d4x ϕ(x)Υ(x)

+

∫
S

dη

∫
d4x b(η)H(η, x)ϕ(x) (3.118)
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=
1

2

[
−
∫

d4x d4x′ (ϕ(x) − ϕ0(x)) K(x, x′) (ϕ(x′) − ϕ0(x
′))

+

∫
S

dη

∫
S

dη′ b(η)K̃−1(η, η′)b(η′) +

∫
d4x

∫
d4x′ Υ(x)SG(x, x′)Υ(x′)

]
,

where

ϕ0(x) =

∫
d4x′ K−1(x, x′)

(
Υ(x′) +

∫
S

dη H(η, x′)b(η)

)
. (3.119)

The kernel K̃(η, η′) is defined by

K̃(η, η′) =

∫
d4x

∫
d4x′ H(η, x)G(x, x′)H(η′, x′) = G(u(η), u(η′)). (3.120)

In the case of Dirichlet boundary conditions, this is just a restriction of the
empty-space propagator G(x, x′) with both of its arguments on the surface S.
The inverse, K̃−1(η, η′), must be taken on S, i.e.∫

S

dµ(η′′) K̃(η, η′′)K̃−1(η′′, η′) = δ3(η − η′). (3.121)

Finally, in eqn (3.118) we have introduced

SG(x, x′) = G(x, x′) −
∫

d4x′′
∫

d4x′′′
∫

S

dµ(η)

∫
S

dµ(η′)

× G(x, x′′)H(η, x′′)K̃−1(η, η′)H(η′, x′′′)G(x′′′, x′)

= G(x, x′) −
∫

S

dµ(η)

∫
S

dµ(η′) G(x, u(η))K̃−1(η, η′)G(u(η′), x′)

≡ G(x, x′) − G(x, x′). (3.122)

Now the functional integration can be carried out by first shifting ϕ(x) → ϕ(x)+
ϕ0(x) and applying eqn (3.109). Subsequently, the integration over b(η) can be
carried out in the same manner. The generating functional then takes the form

Z[Υ] = C (detK)−1/2
(
det K̃

)−1/2

exp

[
i

2

∫
d4x d4x′ Υ(x)SG(x, x′)Υ(x′)

]
,

(3.123)

where the factor
(
det K̃

)−1/2
results from the integration over b(η). In this way,

we have obtained another representation for the generating functional in the
presence of boundaries. The energy according to eqn (3.112) is

E0 = − i

2T
Tr ln K̃ =

i

T
ln
(
detK̃

)−1/2
. (3.124)

Here, along with the constant C, we have also dropped the contribution from
detK. This is possible since K results from empty space and thus does not



54 Field quantization and vacuum energy in the presence of boundaries

depend on the geometry of the boundaries. So it also delivers an irrelevant con-
stant. In fact, this constant, being the contribution from empty space, carries
the divergences associated with it such that in the E0 given by eqn (3.124), only
subleading divergences remain.

From a comparison of eqns (3.122) and (3.123), it follows that SG(x, x′) as
defined by eqn (3.122) is just the propagator in the presence of boundaries.
It has a specific representation. According to the last line of eqn (3.122), it is
given by the difference between the free-space part G(x, x′) and a boundary-
dependent part G(x, x′). It can be easily checked that it fulfills eqn (3.86) and
the boundary conditions. Indeed, let r = u(η1, η2) ∈ S. Then, in the second term
on the right-hand side of the first line in eqn (3.122), we can apply eqn (3.121)
and the resulting expression just cancels the first term. Also, it is easy to check
eqn (3.86). For the first term, this is obvious. For the second term, i.e. for the
boundary-dependent addition, one has to notice that, after applying the wave
operator to G(x, x′) within the resulting expression, a delta function δ4(x−u(η))
appears so that outside the surface, i.e. for x �∈ S, this expression vanishes.

We remark that in terms of homogeneous and inhomogeneous solutions of the
wave equation, the first term is just an inhomogeneous solution and the second
term is a homogeneous solution which is chosen in such a way as to ensure that
the boundary conditions are satisfied. A further remark concerns an alternative
derivation of the representation (3.122). This can be obtained from considering
the boundary conditions as constraints when one is solving the wave equation.
In that case one may use Lagrange multipliers. These just correspond to the
auxiliary fields b(η) introduced in eqn (3.116). In the end, one again arrives at
the representation (3.122).

A last remark concerns the structure of the propagator SG(x, x′). In its deriva-
tion from the path integral, we did not specify on which side of the surface S
the points x or x′ are located. In fact, the representation (3.122) is valid for any
choice. For instance, for a surface S dividing the space into two disconnected
parts this implies that if x and x′ are taken in different parts, the propagator
must vanish. This property can easily be checked.



4

REGULARIZATION AND RENORMALIZATION OF THE

VACUUM ENERGY

As previously discussed, the vacuum energy is a divergent quantity. In the va-
cuum, quantum field theory assigns half a quantum to each of the infinitely
many degrees of freedom. These divergences are of an ultraviolet nature similar
to that known from higher loop expansions. Their treatment, however, requires
special approaches because of the presence of boundaries. Powerful methods are
available for this. The most general one is the heat kernel expansion, which can
be considered as the standard method and the natural language to represent
these divergences. From a mathematical point of view, it is closely related to
spectral geometry [see e.g. the book by Gilkey (1995)]. The heat kernel expansion
is also related to zeta function regularization, which can be considered as the
most elegant among the many different regularization schemes. In the present
chapter, we use this method together with cutoff regularization to separate the
divergent part of the vacuum energy.

After having regularized the vacuum energy, we consider the procedure of
renormalization. We start with the case where some smooth background fields
are present. To some extent this is not central to this book, but it is necessary
for an understanding of the renormalization procedure. In a smooth background
field, the renormalization procedure is the same as that known in quantum field
theory. The divergent contributions have a structure which allows their removal
by a redefinition of the parameters in the “noninteracting theory” (including
the parameters of a classical background field if one is present). However, this
procedure is not always possible. For the case of background fields (if these are
singular or if one uses some limiting process which makes them singular), these
questions are not completely settled, and we shall discuss them briefly in Section
4.3.

For the Casimir energy resulting from the boundary of a single body, geomet-
ric characteristics such as the volume, surface area, and curvature should be used
for renormalization. If such characteristics are not available, the vacuum energy
cannot be given a physical meaning except when the divergences are absent. The
same also holds for other quantities such as the Casimir pressure and force. We
shall discuss some examples below.

The most important case is the Casimir force between separate objects. Here
the situation is completely different. In general, this force is always finite, as
opposed to the interaction energy, which becomes finite when the contribution
of the vacuum energy of free space is removed. This will be discussed in the last
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section of this chapter.

4.1 Regularization schemes

Regularization is a method to change an infinite quantity into a finite one. A
regularization parameter is introduced such that, in the appropriate limit, the
original expression is restored. Of course, this procedure is not unique, and dif-
ferent schemes are possible, some of which will be discussed below. Beyond this
formal definition, regularizations sometimes have a direct physical meaning. For
instance, since ideal conductors do not exist in nature, one has in all real ap-
plications some natural frequency, usually of the order of the plasma frequency,
beyond which the reflectivity rapidly decreases. However, this decrease might not
provide a regularization for some systems. The most important regularization
schemes are frequency cutoff, point splitting, and zeta function regularization.

In a frequency cutoff regularization, one introduces some cutoff function in the
mode expansion which makes the corresponding sum/integral converge. Equation
(3.60) defines the nonregularized (infinite) vacuum energy E0. In this case we
introduce the regularized vacuum energy E0(δ), and in place of eqn (3.60) we
get

E0(δ) =
1

2

∑
J

ωJ e−δωJ . (4.1)

The regularization is removed in the limit δ → 0, restoring eqn (3.60). Obviously,
the sum in eqn (4.1) converges for any δ > 0.

This regularization was used in the original work by Casimir and also in Sec-
tion 2.1. A modification of this scheme would be a sharp frequency cutoff in place
of the exponential in eqn (4.1). In addition, any other sufficiently fast-decreasing
function of ωJ (such as a sufficiently fast-decreasing frequency-dependent per-
mittivity) or a momentum-dependent decreasing function (a momentum cutoff)
can be used.

In a point splitting regularization, one starts from the representation (3.93)
of the vacuum energy in terms of a Green’s function without carrying out the
coincidence limit. Then

E0(ε) = i

∫
V

dr
∂2

∂x2
0

G(x, x′)|x′=x+ε , (4.2)

where the regularization parameter ε is a four-dimensional vector. To obtain a
finite E0(ε), it is frequently sufficient to keep only the time component nonzero
[ε = (ε0,0) with ε0 �= 0]. The point-splitting technique emerged from quantum
field theory. It was used in operator product expansions and for quantum fields
in curved backgrounds. Moretti (1999) has shown that it is equivalent to zeta
function regularization.

In a zeta function regularization, one temporarily changes the power of the
frequency ωJ in the mode sum (3.60), leading to
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E0(s) =
µ2s

2

∑
J

ω1−2s
J . (4.3)

This converges for Re s > (d + 1)/2, where d is the dimensionality of the space.
The factor µ2s, where µ has the dimension of a mass, is arbitrary. It is introduced
in order to keep the dimension of E0. It disappears on removing the regularization
in the limit s → 0. This regularization is called zeta function regularization
because the vacuum energy E0(s) is given by

E0(s) =
µ2s

2
ζP

(
s − 1

2

)
, (4.4)

which is expressed in terms of the generalized zeta function

ζP(s) =
∑

J

1

ω2s
J

. (4.5)

The zeta function ζP(s) is associated with an elliptic boundary value problem.
In our case this problem is specified by eqn (3.39) with the operator −∆ + m2

along with some boundary conditions, such as eqn (3.41) or (3.42). This zeta
function can be viewed as a generalization of the Riemann zeta function

ζR(z) =
∞∑

n=1

1

nz
(4.6)

and shares most of its beautiful properties (Elizalde et al. 1994, Elizalde 1995).
For instance, ζR(z) is meromorphic with a single pole at z = 1 on the real axis
and ζP(s) is meromorphic with a finite number of poles on the real axis. The
special case of the operator −d2/dx2 on the interval x ∈ [0, π] with Dirichlet
boundary conditions leads to ζP(s) = ζR(2s).

It must be mentioned that, owing to the analytic properties of ζP(s), the
vacuum energy in this regularization is defined on the entire complex plane for
the parameter s with the exception of the poles. In three-dimensional space, its
sum representation (4.5) is valid for Re s > 2 only, but still serves as a starting
point for analytic continuation.

4.2 The divergent part of the vacuum energy

The regularizations (4.1), (4.2), and (4.3) were introduced to have a finite repre-
sentation of the vacuum energy. Here, we consider that part of this representation
which becomes singular in the limit of removing the regularization.

4.2.1 The divergent part in the cutoff regularization

We consider the vacuum energy for a scalar field in a finite volume V enclosed by
a surface S where boundary conditions, such as those discussed in Section 3.2, are
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imposed. In this case the eigenvalues in eqn (3.39) can be labeled by an integer
n = 1, 2, . . . . The frequencies ωJ → ωn =

√
Λn + m2 also become labeled by

the same integer n. Note that in some specific cases (e.g. the rectangular boxes
considered in Chapter 8) it is convenient to use several integer indices. However,
the values of these indices can be renumbered and represented by one index with
integer values. For δ → 0, the divergent part of the vacuum energy (4.1) results
from the asymptotic behavior of the eigenvalues for n → ∞,

Λn = C n2/3
(
1 +

c1

n1/3
+

c2

n2/3
+

c3

n
+

c4

n4/3
+ . . .

)
, C =

(
6π2

V

)2/3

, (4.7)

as was first obtained by Weyl (1912). The coefficients ci depend on the area and
other geometric characteristics of S. The easiest way to calculate the asymptotic
expansion of E0(δ) in eqn (4.1) for δ → 0 is to consider its Mellin transform

Ẽ0(s) =

∫ ∞

0

dδ

δ
δ2sE0(δ) =

Γ(2s)

2

∞∑
n=1

ω1−2s
n , Re s > s0, (4.8)

where, in the last equality, we have integrated the individual terms of the sum
over n in eqn (4.1). Ẽ0(s) is defined by eqn (4.8) for Re s > s0 (s0 must be
sufficiently large to ensure the convergence of the integral). It is a meromorphic
function with poles on the real axis for Re s < s0. The inverse Mellin transform
is

E0(δ) =

∫ i∞

−i∞

ds

πi
δ−2sẼ0(s), (4.9)

where the integration goes parallel to the imaginary axis with Re s > s0. In this
representation, the behavior for small δ follows from the residues of Ẽ0(s) at the
poles situated to the left of s0. The poles of Ẽ0(s) can be found by inserting
the asymptotic expansion (4.7) of the eigenvalues into eqn (4.8). We include the
mass term by substituting c2 → c̃2 = c2 + m2/C and obtain

Ẽ0(s) =
Γ(2s)

2
C(1−2s)/2

∞∑
n=1

n(1−2s)/3 (4.10)

×
[
1 +

b1(s)

n1/3
+

b2(s)

n2/3
+

b3(s)

n
+

b4(s)

n4/3
+ . . .

]
,

b1(s) =
1 − 2s

2
c1, b2(s) =

1 − 2s

8

[
4c̃2 − (1 + 2s)c2

1

]
,

b3(s) =
1 − 2s

48

[
24c3 − 12(1 + 2s)c1c̃2 + (3 + 8s + 4s2)c3

1

]
,

b4(s) =
1 − 2s

384

{
192c4 − (1 + 2s)

[
48c̃2

2 + 96c1c3 − 24(3 + 2s)c2
1c̃2

+(15 + 16s + 4s2)c4
1

]}
.

Equation (4.10) can be further transformed using eqn (4.6) into
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Ẽ0(s) =
Γ(2s)

2
C(1−2s)/2

[
ζR

(
2s − 1

3

)
+ b1(s)ζR

(
2s

3

)
+ b2(s)ζR

(
2s + 1

3

)

+b3(s)ζR

(
2s + 2

3

)
+ b4(s)ζR

(
2s + 3

3

)
+ . . .

]
. (4.11)

From the pole of the Riemann zeta function (4.6) at z = 1, it follows that Ẽ0(s)
has simple poles at s = 2, 3/2, 1, 1/2 and double poles at s = 0, −1/2, −1, . . .
because of the poles of the gamma function. From the residues at these poles,
the divergent part of the vacuum energy is

Ediv
0 (δ) =

3V

2π2

1

δ4
+ 3b1(1.5)

(
V

6π2

)2/3
1

δ3
+

3b2(1)

2

(
V

6π2

)1/3
1

δ2

−3b4(0)

2

(
6π2

V

)1/3

ln δ . (4.12)

The highest-order divergence is 1/δ4. This is proportional to the volume and
corresponds to the contribution of empty space. The next-order divergence, 1/δ3,
is proportional to the surface area. The weakest divergence is proportional to ln δ,
which comes from the first double pole.

We note that these are the contributions which must be subtracted from
the vacuum energy in order to get a finite expression when the regularization is
removed. We postpone discussion of the justification and interpretation of the
subtraction procedure. From eqn (4.12), we see that the first five terms in the
asymptotic expansion (4.7) of the eigenvalues contribute to the divergent part of
the vacuum energy. Thus, for an arbitrary surface S, direct numerical approaches
to the calculation of the vacuum energy as a sum over the eigenvalues have not
yet been successful.

4.2.2 The divergent part in the zeta function regularization and the heat kernel
expansion

The powers of the frequency in eqn (4.3) can be identically represented as an
integral,

ω1−2s
J =

∫ ∞

0

dt

t

ts−
1
2

Γ(s − 1
2 )

e−tω2
J . (4.13)

Interchanging the order of the summation and integration, the vacuum energy
in the zeta function regularization can be expressed as

E0(s) =
µ2s

2

∫ ∞

0

dt

t

ts−
1
2

Γ(s − 1
2 )

K(t) e−tm2

, (4.14)

where
K(t) =

∑
J

e−tΛJ (4.15)
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is called the heat kernel. This is the spatial trace over the local heat kernel (Seeley
1969a, 1969b),

K(t) =

∫
V

dr K(r, r′|t)|r′=r . (4.16)

The local heat kernel obeys the heat conduction equation(
∂

∂t
−∇2

r

)
K(r, r′|t) = 0 (4.17)

with the initial condition K(r, r′|t = 0) = δ3(r−r′). It must also fulfill the same
boundary conditions as the field ϕ(x).

In general, the heat kernel is the key object in the theory of heat conduction.
It is important for the Casimir effect because its behavior for small t describes
the divergences in the vacuum energy. An important feature of the heat kernel
is that it has an asymptotic expansion for small t,

K(t) =
1

(4πt)3/2

(
a0 + a1/2

√
t + a1 t + a3/2t

3/2 + . . .
)

, (4.18)

where the ak/2 (k = 0, 1, 2, . . .) are the heat kernel coefficients. In this expan-
sion, the term in front of the parentheses is universal. It depends only on the
dimensionality of the space [it is (4πt)−d/2 in a d-dimensional space]. For an
elliptic differential operator, such as the Laplace operator, the expansion is in
powers of

√
t.

The heat kernel coefficients have a very long history. They were introduced
independently several times and are known under different names such as the
Minakshisundaram–Pleijel coefficients and the Seeley or Seeley–deWitt coeffi-
cients. The heat kernel coefficients have been very well investigated [recently, an
excellent review was given by Vassilevich (2003)]. They are universal in the sense
that they depend only on the geometric characteristics of the volume V and its
enclosing surface S, such as the curvature and its derivatives, and on the type
of the boundary conditions.

In the following, we consider a volume V with a background field U(r), which
can be introduced as a position-dependent mass density by the substitution
m2 → m2 + U(r) in the operator (3.6). We postpone considering a curvature
such as in eqn (3.10) for later. Furthermore, we assume that the volume V is
bounded by a surface S. The geometric properties of the surface can be expressed
in terms of its second fundamental form at a point r,

L11 dη2
1 + 2L12 dη1 dη2 + L22 dη2

2 , (4.19)

where η1, η2 are coordinates on a surface in three-dimensional space and

L11 = n ·
∂2

∂η2
1

r, L12 = L21 = n ·
∂

∂η1

∂

∂η2
r, L22 = n ·

∂2

∂η2
2

r. (4.20)
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Here n is the outward-pointing normal vector to the surface at a point r (Gray
1997). The heat kernel coefficients are represented as a sum of two local integrals,
one over the volume (bulk part) and the other over the surface (surface part),

ak/2 =

∫
V

dr bk/2(r) +

∫
S

dµ(η) ck/2(η). (4.21)

Here, we use the same parametrization for S as in Section 3.6. The surface part
is absent if the volume V has no boundary (for example, an interval with peri-
odic conditions). We must warn readers that several different notations for the
heat kernel coefficients are used in the literature. Sometimes the factor (4π)−3/2

is included in their definition. Sometimes the enumeration is done with inte-
ger numbers, i.e. ak/2 → ak. In the notation of eqns (4.18) and (4.21) and for
Dirichlet boundary conditions (upper entry in the curly brackets) and Neumann
boundary conditions (lower entry in the curly brackets), the first few coefficients
read

b0 = 1, c0 = 0, b1/2 = 0, c1/2 =

{−1

1

} √
π

2
, b1 = U(r), c1 =

1

3
Laa,

b3/2 = 0, c3/2 =

√
π

192

({−1

1

}
96U(u(η)) +

{−7

13

}
L2

aa +

{
10

2

}
LabLab

)
,

b2 =
1

2
U2(r), c2 =

1

360

[{−120

240

}
∂nU(r) + 120U(r)Laa + 24Laa;bb

+
1

21

({
40

280

}
L3

aa +

{−264

168

}
LabLabLcc +

{
320

224

}
LabLbcLca

)]
. (4.22)

Here, there is a summation over the repeated indices a, b = 1, 2, i.e.

Laa = L11 + L22, LabLab = L2
11 + 2L2

12 + L2
22, etc., (4.23)

and the following notation is used:

Laa;bb =
∂2

∂η2
1

Laa +
∂2

∂η2
2

Laa. (4.24)

When inserted into eqn (4.21), the coefficient b0 leads to the volume of V , a0 = V ,
and c1/2 is proportional to the area S of the surface. It should be noted that the
coefficients with half-integer numbers result only from the boundary.

Below, we shall consider a sphere without a background field. Here the sec-
ond fundamental form is simply Lab = δab/R, such that Laa = 2/R and the
coefficients become

a0 =
4π

3
R3, a1/2 =

{−1

1

}
2π3/2R2, a1 =

8π

3
R,

a3/2 =

{−1

7

}
π3/2

6
, a2 =

{−1

35

}
16π

315R
. (4.25)

Thus, in terms of the heat kernel expansion, complete information about the
divergences of the vacuum energy is available. This is contained in the poles of
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E0(s). These poles follow from eqn (4.14) together with eqn (4.18), from the
integration in the vicinity of t = 0. We divide the integration over t into t ∈ [0, 1]
and t ∈ [1,∞). The integral over the second interval gives a regular expression.
The contribution to E0(s) from the interval [0, 1], denoted by Ẽ0(s), can be
calculated after a power series expansion of the exponent in eqn (4.14) has been
performed. The result is

Ẽ0(s) =
µ2s

2(4π)3/2Γ
(
s − 1

2

)
[ ∞∑

n=0

ãn

s − 2 + n
+

∞∑
k=0

ã(2k+1)/2

s − 2 + (2k + 1)/2

]
, (4.26)

where the mass has been included in the redefined coefficients

ãn =

n∑
l=0

(−1)l

l!
an−l m

2l, ã(2k+1)/2 =

k∑
l=0

(−1)l

l!
a(2k+1−2l)/2 m2l. (4.27)

As we are interested in the pole at s = 0, we separate the pole part of Ẽ0(s):

EP
0 (s) = − ã2

32π2s
= −2a2 − 2a1m

2 + a0m
4

64π2s
. (4.28)

This is the part of the vacuum energy which diverges when the regularization
is removed. It contains the coefficients up to and including a2. Higher-order
coefficients do not contribute.

For massive fields, the heat kernel expansion provides an expansion in inverse
powers of m. This can be obtained by inserting the heat kernel expansion (4.18)
into eqn (4.14) and performing the integrations in each term of the sum:

E0(s) =
µ2s

16π3/2

∞∑
k=0

Γ
(
s + k

2 − 2
)

Γ
(
s − 1

2

) m4−2s−k ak/2 . (4.29)

It must be stressed that this is an asymptotic expansion for E0(s).
The terms of this expansion for 0 ≤ k ≤ 4 diverge when s → 0. These terms

contain nonnegative powers of the mass. Expanding the terms with k ≤ 4 in eqn
(4.29) in powers of s around the point s = 0, we arrive at

Ediv
0 (s) = − m4

64π2

(
1

s
+ ln

4µ2

m2
− 1

2

)
a0 −

m3

24π3/2
a1/2 (4.30)

+
m2

32π2

(
1

s
+ ln

4µ2

m2
− 1

)
a1 +

m

16π3/2
a3/2 −

1

32π2

(
1

s
+ ln

4µ2

m2
− 2

)
a2.

We call this the divergent part of the vacuum energy in zeta function regulariza-
tion, although it also contains some finite contributions. This definition makes
sense only for a theory with a nonzero mass m or, equivalently, with a gap in
the spectrum. For a massless field or a gapless spectrum, one must return to the
divergent pole part, eqn (4.28), which is also meaningful for m = 0.
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For comparison, it is instructive to express the vacuum energy using cutoff
regularization, eqn (4.1), in terms of the heat kernel coefficients. As can be
seen from eqns (4.8) and (4.3), the Mellin transform Ẽ0(s) (4.8) of the vacuum
energy in cutoff regularization is related to the vacuum energy in zeta function
regularization by means of

Ẽ0(s) =
Γ(2s)

µ2s
E0(s). (4.31)

Substituting the series (4.26) into eqn (4.31) and using the inverse Mellin trans-
form (4.9), we obtain the divergent part of the vacuum energy in cutoff regular-
ization in terms of the heat kernel coefficients,

Ediv
0 (δ) =

3a0

2π2

1

δ4
+

a1/2

4π3/2

1

δ3
+

ã1

8π2

1

δ2
+

ã2

16π2
ln δ. (4.32)

The coefficients ã1, ã2 are defined in eqn (4.27). We mention that a comparison
of this formula with eqn (4.12) allows one to establish a connection between
the heat kernel coefficients and the coefficients ci in the Weyl expansion of the
eigenvalues (4.7).

Now we consider the representation (3.112) of the vacuum energy which fol-
lows from the effective action. Using eqn (3.111), we represent the effective vac-
uum energy in the form

E0 = E0,eff =
i

2T
Tr ln G(x, x′)|x=x′ . (4.33)

Here “Tr” is understood as the sum of all of the diagonal matrix elements cal-
culated with the functions

φω′J′(x) =
1√
2π

e−iω′tΦJ′(r). (4.34)

It is easily seen that the matrix of the Green’s function (3.87) is diagonal in the
basis (4.34). Because of this, we obtain

ln G(x, x′) = −
∫ ∞

−∞

dω

2π

∑
J

ΦJ(r)Φ∗
J (r′) ln(−ω2 + ω2

J)e−iω(t−t′). (4.35)

Calculating Tr of eqn (4.35) using the orthonormality of the basis functions
(4.34), we get

Tr ln G(x, x′) = − 1

2π

∫ ∞

−∞
dω′∑

J′

∫ ∞

−∞
dt

∫
dr

∫ ∞

−∞
dt′
∫

dr′eiω′(t−t′)

× Φ∗
J′(r)

∫ ∞

−∞

dω

2π

∑
J

ΦJ (r)Φ∗
J(r′) ln(−ω2 + ω2

J)e−iω(t−t′)ΦJ′(r′)
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= −T

∫ ∞

−∞

dω

2π

∑
J

ln(−ω2 + ω2
J). (4.36)

Note that the integration with respect to t in eqn (4.36) results in 2πδ(ω′ − ω)
and the subsequent integration with respect to ω′ and t′ gives a total time T .
Substituting eqn (4.36) into eqn (4.33) and using eqn (3.39), we arrive at

E0,eff = − i

2

∫ ∞

−∞

dω

2π

∑
J

ln(−ω2 + ΛJ + m2) . (4.37)

Again we are faced with an infinite expression. Its zeta function regularization
is

E0,eff(s) =
i

2

∂

∂s
µ2s

∫ ∞

−∞

dω

2π

∑
J

(
−ω2 + ΛJ + m2

)−s
, (4.38)

where µ, which has the dimension of a mass, is again an arbitrary parameter. In
fact, by introducing this parameter we have added a constant in E0,eff(s) which
arises from the differentiation of the factor µ2s. However, this constant does not
depend on the boundary conditions or on the background in the limit of removing
the regularization s → 0. The derivative of the integral in eqn (4.38) restores
the logarithm and, on removal of the regularization, we return to eqn (4.38).
The sum on the right-hand side is also a zeta function, but it is different from
eqn (4.5). Introducing a new variable ω = t

√
ΛJ + m2, we obtain from eqn (4.38)

E0,eff(s) =
i

4π

∂

∂s
µ2s

∑
J

(ΛJ + m2)−(2s−1)/2

∫ ∞

−∞
dt (1 − t2)−s. (4.39)

Using the definition of the generalized zeta function (4.5) and calculating the
integral (Gradshtein and Ryzhik 1994), we get

E0,eff(s) = − 1

4
√

π

∂

∂s
µ2s Γ(s − 1

2 )

Γ(s)
ζP

(
s − 1

2

)
. (4.40)

Comparison with eqn (4.4) allows one to establish the relationship with the
vacuum energy in zeta function regularization, eqn (4.3),

E0,eff(s) = − 1

2
√

π

∂

∂s

Γ(s − 1
2 )

Γ(s)
E0(s). (4.41)

In this representation, a remarkable property of the vacuum energy defined by
eqn (3.112) follows. This energy is not singular if the zeta-function-regularized
vacuum energy has at most a simple pole in s = 0. Indeed, representing this
energy as

E0(s) = EP
0 (s) + Ereg

0 (s), (4.42)

i.e. as a sum of the pole part (4.28) and a regular part for s → 0, we get from
eqn (4.41)
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E0,eff(0) = (ln 2 − 1)
ã2

16π2
+ Ereg

0 (0). (4.43)

We note that this expression does not contain a singularity for s → 0, and, as a
result, E0,eff(s) in eqn (4.38) is finite for s → 0 (provided E0(s) has only a single
pole at s = 0). It should be mentioned that sometimes, because of this property,
the zeta function regularization resulting in eqn (4.43) has been interpreted as
zeta function renormalization. This interpretation, however, has limited applica-
bility since it does not provide a unique definition of the vacuum energy. This
follows from the fact that the quantity Ereg

0 (s) contains terms depending on µ
[see eqn (4.30)],

Ereg
0 (s) = − ã2

16π2
ln

µ

m
+ . . . (4.44)

(unless the heat kernel coefficients in ã2 are zero). In Section 4.3, we shall treat
the renormalization of E0,eff(s) in the same manner as in the other representa-
tions.

We conclude this section with a definition of the divergent part

Ediv
0,eff(s) = − 1

2
√

π

∂

∂s

Γ(s − 1
2 )

Γ(s)
Ediv

0 (s) (4.45)

which uses eqn (4.41) and Ediv
0 (s), found in eqn (4.30). Performing the differen-

tiation in eqn (4.45) and then expanding in powers of s, we obtain

Ediv
0,eff(s) = − ã2

32π2
ln

µ2

m2
(4.46)

+
1

128π2

(
−3m4a0 −

16
√

π

3
m3a1/2 + 4m2a1 + 8

√
πma3/2

)
+ O(s).

Again, similarly to eqn (4.43), this expression is finite for s → 0, and the notation
has been chosen in uniformity with eqns (4.30) and (4.32). As expected, the first
term in eqn (4.46) coincides with that in eqn (4.44).

4.3 Renormalization of the vacuum energy

After we have obtained regularized expressions for the vacuum energy, it is nec-
essary to remove the divergences, give an interpretation of this procedure, and
address the key question about its uniqueness. Nonunique features are always
present owing to the choice of the regularization scheme and parameters such as
µ in eqn (4.3).

The simplest case of renormalization is that of a quantum field coupled to a
smooth background field. We start with this case, where one can follow the well-
known procedures from quantum field theory. Next, complications to this can be
added in two ways, either by adding a boundary or by making the background
field singular. We conclude this section with the easiest (from the renormalization
point of view) case of forces between two separate bodies, which are always finite.
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4.3.1 Smooth background fields

Here we consider the vacuum energy of a quantum field of mass m with a back-
ground of a smooth classical field of mass M in unbounded space-time. Some
physical examples are the quantum fields for matter and radiation in a gravita-
tional or electrodynamic background. However, there are no smooth background
fields in Casimir problems, and we discuss this case only to illustrate the renor-
malization procedure. Thus, it is reasonable not to deal with electromagnetic
or gravitational fields but instead to choose a technically simpler example of a
classical scalar field φ(x) (the background field) and a quantum field ϕ(x) with
the action

S = −1

2

∫
d4xφ(x)

[
� + M2 + λφ2(x)

]
φ(x)

−1

2

∫
d4xϕ(x)

[
� + m2 + λ̃φ2(x)

]
ϕ(x). (4.47)

Here we have included a self-interaction term for the background field with some
constant λ. In the action of the quantum field, the interaction term λ̃φ2(x)ϕ2(x)
can be viewed as an additional position-dependent mass density. We assume the
background field to be static, i.e. φ(x) → φ(r). Thus, when the quantum field is
in the vacuum state, the system has a definite energy,

E = Eclass + E0, (4.48)

where

Eclass =
1

2

∫
dr φ(r)

[
−∇

2 + M2 + λφ2(r)
]
φ(r) (4.49)

is the classical part of the energy. As to the vacuum energy E0, we take this in
the form given by eqn (3.60) and use zeta function regularization (4.3),

E0(s) =
µ2s

2

∑
J

ω1−2s
J . (4.50)

The eigenvalues in eqn (4.50), after the replacement m2 → m2 + λ̃φ2(r), are
subject to the equation[

−∇
2 + λ̃φ2(r)

]
ΦJ (r) = ΛJΦJ(r), (4.51)

a generalization of eqn (3.39). The divergent part of the vacuum energy is given
by eqn (4.30) with the heat kernel coefficients

a1 = λ̃

∫
dr φ2(r), a2 =

λ̃2

2

∫
dr φ4(r). (4.52)

These coefficients follow from the bulk part in eqn (4.22), where we have inserted
U(r) = λ̃φ2(r) (a1/2 and a3/2 are zero since we have no boundary). We drop the
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contribution to eqn (4.30) from a0 = V , which is infinitely large in unbounded
space (see the discussion at the end of this subsection). As a result,

Ediv
0 (s) =

m2λ̃

32π2

(
1

s
+ ln

4µ2

m2
− 1

)∫
dr φ2(r)

− λ̃2

64π2

(
1

s
+ ln

4µ2

m2
− 2

)∫
dr φ4(r). (4.53)

It should be noted that the divergent part repeats the structures present in the
classical energy.

Representing the complete energy (4.48) in the form

E = Eclass + Ediv
0 (s) + E0(s) − Ediv

0 (s), (4.54)

we can absorb Ediv
0 (s) into the classical energy by introducing the renormalized

parameters of the classical field

M2
ren = lim

s→0

[
M2 +

m2λ̃

32π2

(1

s
+ ln

4µ2

m2
− 1

)]
,

λren = lim
s→0

[
λ − λ̃2

64π2

(1

s
+ ln

4µ2

m2
− 2

)]
. (4.55)

Thus, the renormalized classical part of the energy is given by

Eren
class = lim

s→0

[
Eclass + Ediv

0 (s)
]

=
1

2

∫
dr φ(r)

[
−∇

2 + M2
ren + λrenφ2(r)

]
φ(r). (4.56)

The renormalized vacuum energy is then given by

Eren
0 = lim

s→0

[
E0(s) − Ediv

0 (s)
]
. (4.57)

The same approach can be used in other regularization schemes. For instance,
we can consider the cutoff regularization. When using, instead of eqn (4.50), the
vacuum energy in cutoff regularization (4.1), one needs to use the divergent
part given in eqn (4.32). The heat kernel coefficients are the same as before
[eqn (4.52)], and the only change in the above scheme will be slightly different
formulas for the renormalized mass Mren and the self-interaction constant λren,

M2
ren = M2 +

λ̃

16π2

( 2

δ2
− m2 ln δ

)
, λren = λ +

λ̃2

32π2
ln δ. (4.58)

Finally, we consider this procedure for the vacuum energy (3.112),

E0,eff = − i

2T
Tr ln

(
� + m2 + λ̃φ2(r)

)
, (4.59)

which follows from the effective action in Section 3.5 with the replacement m2 →
m2 + λ̃φ2(r).
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In the presence of the background field, the divergent part Ediv
0,eff can be

defined in the same way as in Section 4.2.2. Inserting the heat kernel coefficients
(4.52) into eqn (4.46), we obtain

Ediv
0,eff(s) =

m2λ̃

32π2

(
ln

µ2

m2
+ 1

)∫
dr φ2(r) (4.60)

− λ̃2

64π2
ln

µ2

m2

∫
dr φ4(r) + O(s).

In this case the renormalized parameters of the classical field are

M2
ren = M2 +

m2λ̃

32π2

(
ln

µ2

m2
+ 1

)
, λren = λ − λ̃2

64π2
ln

µ2

m2
. (4.61)

Here, in contrast with eqns (4.55) and (4.58), both Mren, λren and M , λ are
finite, but, as mentioned above, this is only a peculiarity of the representation
used.

We thus obtain a finite vacuum energy (4.57) which must be added to the
classical energy (4.56). As explained above, the parameters of the classical energy
have been renormalized. This is, however, not a problem, since the renormalized
values must be determined independently anyway (usually experimentally). This
is the general scheme of renormalization known in quantum field theory.

It must be mentioned that in this model, renormalization requires the self-
interaction term in the classical part, and this is in agreement with the standard
counting of the superficial degrees of divergence. Furthermore, we remark that
there is no renormalization of the term containing the derivatives in the classical
energy. This follows from the absence of a corresponding structure in the heat
kernel coefficients and implies the nonrenormalization of the classical field Φ(r).

Also, note that a renormalization scheme such as that suggested by eqn (4.55)
or (4.58) is not unique. This is due to the fact that with an infinite renormaliza-
tion, we can always include a finite renormalization and still remove the singu-
larities. This is similar to a change in the definition of the divergent part of the
vacuum energy. Also, the parameter µ and the choice of the regularization lead
to nonuniqueness.

A discussion of this nonuniqueness involves deeply the particular model con-
sidered. For instance, within the model given by eqn (4.47), it would be natural
to look for a minimum of the complete energy E in eqn (4.48). It is clear that one
may perform a redistribution of the energy between the two parts of eqn (4.48).
This can be viewed as an additional finite renormalization. Consequently, here,
the vacuum energy does not have an independent meaning.

Another method of proceeding is to impose a normalization condition on
the renormalized vacuum energy such that it becomes uniquely defined after
the regularization is removed (regardless of the regularization scheme). One of
these conditions is the so-called no-tadpole condition introduced by Graham et
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al. (2004). A second approach follows from a consideration of the mass of the
quantum field together with the large-mass expansion (4.29), by demanding that

Eren
0 → 0 for m → ∞ . (4.62)

The motivation for this condition is that an infinitely heavy field should not have
quantum fluctuations and hence should not produce a vacuum energy. This con-
dition, as follows from the heat kernel expansion, is equivalent to the subtraction
of all contributions involving the heat kernel coefficients a0 through a2 because
these enter the large-mass expansion with nonnegative powers of the mass. In
this manner, one can give the vacuum energy a unique meaning independent
of a classical model. The definitions (4.30), (4.32), and (4.46) of the divergent
part are given in such a way that the corresponding renormalized vacuum energy
fulfills the normalization condition (4.62). As a consequence, the renormalized
vacuum energy given by eqn (4.57) is unique, i.e. it does not depend either on
the regularization chosen or on the parameter µ. This normalization condition
was discussed by Bordag (2000). However, as mentioned there, this condition is
meaningful for massive fields only. In the case of a massless field, this approach
is not applicable, and there is as yet no known way to give a satisfactory renor-
malization condition independent of the classical model (unless, of course, the
corresponding heat kernel coefficients are zero).

Next, we draw special attention to the divergent contribution resulting from
the heat kernel coefficient a0. On the one hand, in this simple model, we do not
have a classical counterpart that has the same structure (proportional to the
volume V , which is infinite here). On the other hand, this contribution does not
depend on the background field. This is clearly the contribution which would be
present in empty space, i.e. in the absence of the background field. Because of
this, we do not relate it to the vacuum energy resulting from the background, and
therefore drop it. This is the same case as when one considers only the response
of the vacuum energy to a change in the background field. There is, however,
one scenario where this is not possible. Namely, when we consider quantum
fluctuations in a gravitational background, we cannot drop this contribution,
because it is the source of the gravitational field. But in that case there exists
a structure for renormalization, namely the term containing the cosmological
constant, which needs to be renormalized in the same way as the gravitational
constant.

4.3.2 Singular background fields and boundary conditions

The situation described in the preceding subsection changes when nonsmooth
background fields are considered. From a formal point of view, one first observes
that the heat kernel coefficients ak/2 become infinite starting from some k. This is
because the coefficients contain powers of the background field and its derivatives
in increasing order. For instance, when the interaction potential in the model
(4.47) becomes proportional to a delta function on a sphere of radius R, i.e.

φ2(r) = αδ(r − R), (4.63)
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a2 becomes singular since it contains the delta function squared, which is not a
well-defined object. Mathematically, the problem is related to the noncommuta-
tivity of the two limits, one arising from the asymptotic expansion of the heat
kernel for small argument t and the other from making the background singu-
lar. The physical meaning can be seen from the model (4.47) considered in the
preceding subsection. If one takes the classical part in order to accommodate
the renormalization, then it must contain the λφ4 self-interaction term. But this
term gives an infinite contribution to the classical energy in the limit (4.63). Thus
one would need an infinite amount of energy in order to make the background
field singular. For these reasons, the scheme of letting the background become
singular does not seem very natural, as observed by Graham et al. (2002, 2003,
2004).

The situation is different when one starts from an already singular back-
ground. Here, the only case which has been investigated so far in any detail is
a one-dimensional delta function potential on a spherical surface. In that case
the spectral problem for the fluctuations is well defined and all the heat kernel
coefficients exist. For example, with eqn (4.63), the heat kernel coefficients are
(Bordag et al. 1999a)

ak/2 = 4πR2ck/2 with c1/2 = 0, c1 = −α,

c3/2 =

√
π

4
α2, c2 = −1

6
α3 . (4.64)

In the above, we have written down only those coefficients which are relevant
to the renormalization. It is a characteristic of this singular background that
the coefficient a3/2, with a half-integer number, appears [for a more general
discussion see Bordag and Vassilevich (1999, 2004)].

Finally, we consider the vacuum energy in the presence of boundary condi-
tions. This case is the most relevant for the Casimir effect. For simplicity, we
restrict ourselves to the case of a sphere with Dirichlet or Neumann boundary
conditions. The heat kernel coefficients are given by eqn (4.25). Since no back-
ground field exists, one needs to introduce other classical parameters in order
to accommodate the renormalization. Blau et al. (1988) suggested the geometric
structure

Eclass = pV + σS + h1R + h2 + h3
1

R
, (4.65)

where p has the meaning of a pressure and σ of a surface tension. But h1, h2, and
h3 do not appear to have standard meanings. Now, taking the vacuum energy in
any regularization, the divergent part can be removed by a corresponding renor-
malization of the parameters p, σ, h1, h2, and h3. This procedure is completely
parallel to that in the preceding subsection, done for smooth background fields.
It is also clear that it can be directly generalized to a surface of a generic shape
using the heat kernel coefficients in eqn (4.22).
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However, a situation may arise where there is no classical system available
for the justification of the renormalization. In that case one could take the nor-
malization condition (4.62), provided the quantum field has a mass. If the field is
massless and the corresponding heat kernel coefficients do not vanish, one cannot
give the vacuum energy a satisfactory interpretation. The most important ex-
amples are that of a conducting sphere of finite thickness and that of a dielectric
ball. These will be discussed in Sections 9.3.3 and 9.3.4.

4.3.3 Finiteness of the Casimir force between separate bodies

We have seen in Section 4.2.2 that the divergent part of the vacuum energy
follows from the heat kernel coefficients a0 through a2. These coefficients are
represented by eqn (4.21) as integrals over local quantities: the background po-
tential and the coefficients of the second fundamental form (4.19), including their
derivatives and powers. This locality is a fundamental property of the heat kernel
coefficients that holds under very general assumptions. It is believed that it is
related to the locality of the ultraviolet divergences in quantum field theory.

With respect to the Casimir effect, the local nature of the coefficients deter-
mining the divergent part of the vacuum energy has a far-reaching consequence.
The definition of the heat kernel coefficients presented in Section 4.2.2 is of a
rather general character. It refers both to simply connected manifolds (a com-
pact body with some finite volume restricted by a boundary surface S) and to
nonsimply connected manifolds. As an example of the latter, let us consider two
separate, i.e. nonintersecting bodies with volumes V1 and V2 and surfaces S1

and S2 having no common points. We also assume that there is no background
field. It follows from the latter that all of the local heat kernel coefficients bk/2 in
eqn (4.22), excepting b0, are equal to zero. Thus, none of the global heat kernel
coefficients ak/2 in eqn (4.21) with k ≥ 1 contain a volume contribution. They
are given by

ak/2 =

∫
S1

dµ(η) c
(1)
k/2(η) +

∫
S2

dµ(η) c
(2)
k/2(η). (4.66)

Here the local coefficients c
(1)
k/2 and c

(2)
k/2 are defined by eqn (4.22) for the respec-

tive parts S1 and S2 of the surface S. These coefficients need not be the same.
Even the boundary conditions on S1 and S2 may be different.

In the case of two separate interacting bodies, it is reasonable to consider
the spatial region V − V1 − V2, where V is the infinite volume of the entire
three-dimensional space, restricted by the boundary surface S consisting of S1

and S2. In doing so, we change the sign of the direction of the local normal
vector n to the surface. This leads to an opposite sign for the coefficients of the
second fundamental form given in eqn (4.19). For example, in the case of the

Casimir interaction between two spheres with radii R1 and R2, L
(1)
aa = −2/R1

and L
(2)
aa = −2/R2. As a result, from eqns (4.21) and (4.22) we obtain

a0 = V − V1 − V2. (4.67)
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We drop the contribution proportional to this coefficient in the divergent part
of the vacuum energy (4.30). This is equivalent to subtraction of the zero-point
energy arising from the free space between the bodies.

The divergent part of the vacuum energy (4.30) is then determined by the
coefficients (4.66) with 1 ≤ k ≤ 4. As is seen from the structure of eqn (4.66), the
ak/2 do not contain any information about the relative location of the parts S1

and S2 of the boundary surface S. In other words, the heat kernel coefficients do
not depend on the distance between the interacting bodies under consideration.
If we now insert the ak/2 into the divergent part (4.30) or (4.32) or the pole part
(4.28) of the vacuum energy in any regularization, that part is also found to be
independent of the distance. The distance dependence is contained only in the
finite renormalized vacuum energy Eren

0 defined in eqn (4.57). We emphasize that
information about the distance dependence of Eren

0 cannot be obtained from the
heat kernel expansion. It is contained in the finite part of the energy remaining
after subtraction of the divergent part. As the divergent part is independent of
the separation, the force between two separate bodies is always finite.



5

THE CASIMIR EFFECT AT NONZERO TEMPERATURE

So far, we have limited our discussion to the Casimir effect resulting from the
energy of the vacuum state of a quantum field in the presence of boundaries.
All excitations were neglected. In practice, the appropriate state of the quantum
field is a state containing real particles. The typical situation is a state containing
particles in thermal equilibrium. In fact, one has to consider an ensemble of states
characterized by a temperature T and a probability distribution. The energy of
such an ensemble in the presence of spatial boundaries is then considered as the
Casimir energy at nonzero temperature.

So, let us consider a quantum system at nonzero temperature T in thermal
equilibrium. It is characterized by a Gibbs distribution and a partition function

Z =
∑

n

e−En/(kBT ), (5.1)

where kB is the Boltzmann constant. The sum is taken over all states n, and
En is the energy of the state n. From the partition function, all thermodynamic
quantities, such as the free energy,

F = −kBT ln Z, (5.2)

the pressure

P = −
(

dF
dV

)
T

, (5.3)

and the entropy

S = −∂F
∂T

, (5.4)

can be derived.
In quantum field theory, there exist several methods to treat a system at

nonzero temperature. The easiest and most frequently used method is the imagi-
nary-time Matsubara formalism, which is applicable to a system at thermal equi-
librium (Matsubara 1955). For time-dependent and nonequilibrium processes,
the real time formalism may be used. But this and other related approaches
have not played a significant role in the study of the Casimir effect.

5.1 The Matsubara formulation

In the Matsubara formalism, one uses a Euclidean field theory, considered as a
continuation of the theory in Minkowski space–time by a rotation of the time
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coordinate t → −iτ . The Euclidean time τ is confined to the interval τ ∈ [0, β],
where β = 1/(kBT ) is the equivalent dimension corresponding to the inverse
temperature. The fields must obey periodicity conditions on this interval; bosonic
fields must be periodic, ϕ(τ + β, r) = ϕ(τ, r), and fermionic fields (which we
do not consider at nonzero temperature) must be antiperiodic, ϕ(τ + β, r) =
−ϕ(τ, r), in accordance with their statistics. In the limit of zero temperature
one reobtains the theory on the whole time axis.

In the Matsubara formalism, the partition function Z in eqn (5.1) has the
following representation in terms of a functional integral:

Z = C

∫
Dϕ e−SE[ϕ], (5.5)

where SE[ϕ] is the Euclidean action. It can be obtained from the corresponding
action in Minkowski space–time (3.100) by the replacement of S with iSE. For
example, using eqn (3.5), for a scalar field with Υ = 0, we have

SE[φ] =
1

2

∫ β

0

dτ

∫
dr ϕKE ϕ, (5.6)

where
KE =

(
−�E + m2

)
. (5.7)

The Euclidean wave operator

�E =
∂2

∂τ2
+ ∇

2 (5.8)

is the continuation of the d’Alembertian (3.2), which in fact is the four-dimen-
sional Laplacian. In the functional integral (5.5), the field to be integrated over
must fulfill the corresponding periodicity conditions.

In general, in the Matsubara formalism, the construction of the theory, to a
large extent, goes in parallel to the zero-temperature case. In this way, most of
the formulas for the vacuum energy in Chapter 3 may be directly translated to
the case of nonzero temperature. This is true, for instance, in the calculation of
the functional integral. Since we are continuing to consider free-field theories, the
functional integral is Gaussian and can be calculated directly. Using an approach
similar to that in Section 3.5 and the infinite-dimensional analogue of eqn (3.104),
we obtain the following from eqn (5.5) for the partition function:

Z = C (detKE)
−1/2

, (5.9)

where C is an irrelevant constant, which will be dropped below. Further, for the
free energy we get

F =
1

2β
Tr lnKE, (5.10)

which is analogous to eqn (3.112). The trace in this expression is taken over the
space of fields to be integrated over in the functional integral (5.5).
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Since we assume thermal equilibrium, it is always possible to separate the
Euclidean time variable from the spatial variables. Assuming for the spatial part
an eigenfunction expansion as in eqn (3.39),

−∇
2ΦJ (r) = ΛJΦJ(r), (5.11)

we obtain a basis in the space of fields ϕ,

Φl,J(τ, r) =
e−iξlτ

√
2π

ΦJ(r), (5.12)

which contains the Matsubara frequencies

ξl = 2πkBT l, l = 0, ±1, ±2, . . . . (5.13)

These functions are periodic in τ (for a fermionic field, one has to take half-
integer values of l), and these are eigenfunctions of KE,

KEΦl,J =
(
ξ2
l + ΛJ + m2

)
Φl,J . (5.14)

As a consequence, the trace in the free energy becomes a sum over the logarithms
of the eigenvalues,

F0 =
1

2
kBT

∞∑
l=−∞

∑
J

ln
(
ξ2
l + ΛJ + m2

)
. (5.15)

As before for the energy, the lower index 0 stands for the nonrenormalized quan-
tity. This formula generalizes eqn (3.112) to the case of nonzero temperature.
Note that if the field is massless and all quantum numbers in the collective index
J are discrete, it is assumed in both eqn (3.112) and eqn (5.15) that there are
no physical states with ΛJ = 0.

In eqn (3.112), E0 is the energy of the vacuum of the corresponding quan-
tum field. In eqn (5.15), F0 is the energy (more exactly, the free energy in the
thermodynamic sense) of an ensemble of states containing particles at the tem-
perature T . In the special case of T → 0, the time interval stretches over the
whole axis and the sum over the Matsubara frequencies becomes an integral over
the frequency ξ:

kBT
∞∑

l=−∞
f(ξl) →

∫ ∞

−∞

dξ

2π
f(ξ) (5.16)

[here f(ξl) is a function which must allow an analytic continuation from discrete
values to continuous ones]. In this way, F0 defined in eqn (5.15) turns into the
vacuum energy E0 in eqn (3.112) [to be exact, in eqn (3.112) one should in
addition pass to the Euclidean time variable].
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The free energy, as given by eqn (5.15), still contains ultraviolet divergences
and one has to introduce a regularization. For this, all cases considered in Chapter
4 apply. In zeta function regularization, the free energy becomes

F0(s) = −1

2

∂

∂s
µ2skBT

∞∑
l=−∞

∑
J

(
ξ2
l + ΛJ + m2

)−s
. (5.17)

The regularization is removed for s → 0, and µ is an arbitrary parameter with
the dimension of mass. The separation of the ultraviolet divergences can be done
quite easily because these are the same as at zero temperature. There are two
ways to proceed. In the first method, one has to apply the Abel–Plana formula
to the frequency sum in eqn (5.17). This way has the advantage that it can also
be applied to the case where there is an additional dependence on l, for example
through a dielectric permittivity entering in the form ξ2 → ε(iξ)ξ2. Another,
to some extent easier, way is through the application of the Poisson summation
formula (Titchmarsh 1948). According to this formula, if c(α) is the Fourier
transform of a function b(x), i.e.

c(α) =
1

2π

∫ ∞

−∞
b(x)e−iαx dx, (5.18)

then it follows that ∞∑
l=−∞

b(l) = 2π

∞∑
l=−∞

c(2πl). (5.19)

By putting

b(x) = e−zx2

, c(α) =
1

2
√

πz
e−α2/(4z), (5.20)

we obtain from eqn (5.19) the following equality:

∞∑
l=−∞

e−zl2 =

√
π

z

∞∑
n=−∞

e−π2n2/z, (5.21)

where Re z > 0 is assumed. In order to use this equality, we represent eqn (5.17)
as a parametric integral,

F0(s) = −1

2

∂

∂s
µ2s

∫ ∞

0

dt

t

ts

Γ(s)
kBT

∞∑
l=−∞

∑
J

e−t(ξ2
l +ΛJ+m2), (5.22)

and apply eqn (5.21) with z = (2πkBT )2t = (2π/β)2t. The result is

F0(s) = −1

2

∂

∂s
µ2s

∞∑
n=−∞

∫ ∞

0

dt

t

ts

Γ(s)
√

4πt

∑
J

e−
[
n2β2+4t2(ΛJ+m2)

]
/(4t). (5.23)

The n-dependent factor in the exponential provides convergence for the t-
integration at t → 0 for all terms in the sum over n except for n = 0. The
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latter is just the zero-temperature contribution. This can be seen by applying
eqn (5.16) to the frequency sum in eqn (5.22):

kBT

∞∑
l=−∞

e−tξ2
l →

T→0

∫ ∞

−∞

dξ

2π
e−tξ2

=
1√
4πt

. (5.24)

As a consequence, we can split the free energy into a zero-temperature part and
a temperature-dependent addition ∆TF0 as

F0(s) = E0,eff(s) + ∆TF0(s). (5.25)

Here, the vacuum energy at zero temperature is

E0,eff(s) = −1

2

∂

∂s
µ2s

∫ ∞

−∞

dξ

2π

∑
J

(
ξ2 + ΛJ + m2

)−s
. (5.26)

This representation coincides with eqn (4.38) after the inverse Wick rotation
ξ = −iω is performed. The temperature-dependent addition (thermal correction)
is given by

∆TF0(s) = − ∂

∂s
µ2s

∞∑
n=1

∫ ∞

0

dt

t

ts

Γ(s)
√

4πt

∑
J

e−
[
n2β2+4t2(ΛJ+m2)

]
/(4t). (5.27)

Note that eqn (5.25) has a transparent physical interpretation only for the
temperature-independent boundary conditions considered here (see Chapter 12
for further discussion).

The ultraviolet divergences are contained in E0,eff(s) and can be dealt with
in the same way as described in Section 4.3. This results in the replacement of
E0,eff(s) with Eren

0 in eqn (5.25). In ∆TF0(s) in eqn (5.27), the integration over
t is convergent and we can remove the regularization, i.e. we can put s = 0 using
the equality

lim
s→0

∂

∂s

f(s)

Γ(s)
= f(0), (5.28)

where f(s) is any regular function at s = 0. Following this, the integration over
t and the summation over n can be carried out explicitly:

∆TF0 = kBT
∑
J

ln
(
1 − e−β

√
ΛJ+m2

)
. (5.29)

In this formula, we see the sum of the T -dependent contributions to the free
energies of the individual degrees of freedom, or modes, ΛJ of the system con-
sidered. Taking ΛJ + m2 = ω2

J into account, the total free energy of all of the
oscillator modes appears to be

F0 = Eren
0 + kBT

∑
J

ln
(
1 − e−βωJ

)
, (5.30)

where the zero-temperature contribution E0 given by eqn (3.60) has already been
replaced with Eren

0 . For instance, if we take the volume V to be a volume of empty
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space, the modes are plane waves, the index J becomes the wave vector k, and
the sum over J turns into the corresponding momentum integration with respect
to dk/(2π)3. As a result, from eqn (5.29) we obtain the free-energy density of
black-body radiation

fbb(T ) = kBT

∫
dk

(2π)3
ln
(
1 − e−β|k|

)
= −π2(kBT )4

90
. (5.31)

We note that eqn (5.31) holds for a scalar field. For an electromagnetic field,
one would have to multiply it by a factor of 2. In fact, for empty space, fbb

defined in eqn (5.31) is the complete free energy. This is because in this case the
zero-temperature part is the vacuum energy of empty space, which we have to
disregard. Using the thermodynamic connection between the energy at a tem-
perature T and the free energy

U(T ) = −T 2 ∂

∂T

F(T )

T
, (5.32)

it is evident that for F(T ) = f em
bb (T ) = 2fbb(T ), the respective energy density is

in agreement with Planck’s black-body radiation density

u =
π2(kBT )4

15
. (5.33)

If we consider the free energy in a restricted volume V , then we have to keep
the zero-temperature part Eren

0 . For the temperature-dependent part, we have
to note that we are interested in the change in energy which comes from the
volume V . Therefore we need to subtract from the temperature-dependent part
∆TF0 of the free energy the corresponding amount related to empty space, i.e.
the black-body radiation density fbb multiplied by the volume V . As a result,
we arrive at the following expression for the renormalized free energy associated
with a finite volume V ,

F̃0 = Eren
0 + ∆TF0 − V fbb. (5.34)

In the general case, however, eqn (5.34) cannot be considered as the physical
Casimir free energy associated with the volume V . As we shall see in Section 5.2,
the asymptotic expression for the quantity ∆TF0 at high temperatures (large
separations) contains the following terms:

α0
(kBT )4

(�c)3
≡ −V

π2(kBT )4

90(�c)3
, α1

(kBT )3

(�c)2
, α2

(kBT )2

�c
. (5.35)

Here, we have returned to the usual units in order to underline that all of these
terms are of quantum character. Note that the first of these terms is just equal
to V fbb. The coefficients α1 and α2 depend on geometrical parameters of the
configuration (e.g. the surface area and the sum of edge lengths, see Section



The Casimir effect at low and high temperature 79

8.5). They can be expressed in terms of the heat kernel coefficients ã1/2 and
ã1 (see the next section). The presence of the terms (5.35) in the free energy
would lead to forces of quantum nature which do not vanish with an increasing
characteristic size of the body. At the same time, the next expansion term in
the high-temperature limit of the free energy has the form of α3kBT , with a
dimensionless coefficient α3. It is of classical origin and does not contribute to
the Casimir force.

In fact, the geometrical structure of the coefficients α1 and α2 is just the
same as that in the respective infinite terms to be subtracted from the zero-
temperature Casimir energy E0 in the cutoff regularization to make it equal to a
finite value Eren

0 (see the explicit examples in Section 8.5). Thus, all of the terms
in eqn (5.35) can be absorbed by means of an additional, finite renormalization
of the free energy. As a result, the physical Casimir free energy takes the form

F = Eren
0 + ∆TF , (5.36)

where the physical thermal correction is given by (Geyer et al. 2008c)

∆TF = ∆TF0 − V fbb − α1(kBT )3 − α2(kBT )2 (5.37)

= ∆TF0 − α0(kBT )4 − α1(kBT )3 − α2(kBT )2.

The respective Casimir force obviously vanishes when the characteristic sizes of
the volume V along all three coordinate axes go to infinity.

Below, we shall use eqns (5.36) and (5.37) to investigate the thermal Casimir
effect in various configurations (see e.g. Sections 7.4.1 and 8.5 for the cases of two
parallel ideal-metal planes and rectangular boxes, respectively). All other ther-
modynamic quantities, such as the pressure and entropy, can be derived from
these formulas using eqns (5.3) and (5.4). For configurations containing trans-
lationally invariant directions, such as parallel planes or a cylinder, one must
bear in mind that all quantities in eqn (5.34) must be divided by correspond-
ing parameters such as the area of a plate so that they become the respective
densities.

5.2 The Casimir effect at low and high temperature

Specific calculations of the Casimir free energy for real bodies will be considered
in subsequent chapters (in Chapter 12 for dielectrics, and Chapter 14 for metals).
Here we consider the low- and high-temperature asymptotic expansions of the
free energy in general terms. We start with the low-temperature case. The leading
contribution is, of course, the zero-temperature part, i.e. the vacuum energy
Eren

0 in eqn (5.36). The correction ∆TF0 in eqn (5.37) is given by eqn (5.29) in
terms of the eigenvalues ΛJ of the spatial part of the system under investigation.
Basically, its behavior depends on the general properties of the spectrum ΛJ ,
particularly on whether it has a gap or is continuous. Further, it depends on the
number of translationally invariant directions. The easiest example is the case
where all directions are translationally invariant, i.e. empty space, which resulted
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in eqn (5.31). Some more complicated examples are provided by parallel planes,
having two translationally invariant directions, or a cylinder, having one. So,
let us assume that we have r (r = 1, 2, . . .) translationally invariant directions.
Then the index J becomes J = (k1, . . . , kr, n) and the eigenvalues ΛJ become
ΛJ = k2

1 + . . . + k2
r + λn, where the λn are the eigenvalues in the remaining

directions, which take on discrete values only. The temperature-dependent part
of the nonrenormalized free energy for this configuration reads

∆TF0 = kBT

∫
drk

(2π)r

∑
n

ln
(
1 − e−β

√
k2+λn+m2

)
. (5.38)

We consider the asymptotic expansion of this expression for T → 0, i.e. for β →
∞, and for a massless field m = 0. It is clear that the dominating contribution
comes from small k and the smallest eigenvalue λ0. The next step depends on
whether the smallest eigenvalue is zero or not, i.e. on whether the spectrum of
λn has a gap. Both situations are possible. For example, for parallel planes we
have λn = (πn/a)

2
(n = 0, 1, . . .), with λ0 = 0, in the electromagnetic case. For

a cylinder we have λ0 ∼ 1/a, where a is the radius of the cylinder.
We first consider the gapless case, i.e. λ0 = 0. Here, the leading contribution

to the sum comes from n = 0, and all higher n result in exponentially suppressed
contributions. After integrations, we arrive at

∆TF0 = Cr�r(kBT )r+1 + . . . , Cr = −2Γ(r)ζR(r + 1)

(4π)r/2Γ(r/2)
, (5.39)

where �r is a length (for r = 1), an area (for r = 2), or a volume (for r = 3).
Equation (5.39) shows a power-like behavior of the thermal corrections. For
r = 3, we get back to the black-body radiation free energy density (5.31). For
r = 1 and r = 2, we get

C1 = −π

6
, C2 = −ζR(3)

2π
. (5.40)

Then, according to eqns (5.36) and (5.37), the renormalized Casimir free energy
associated with a volume V is given by

F = Eren
0 + Cr�r(kBT )r+1 − C3(kBT )4V − α1(kBT )3 − α2(kBT )2. (5.41)

For r = 1, 2, this equation represents the low-temperature behavior of the
Casimir free energy (for the specific example of two parallel planes, α1 = α2 = 0;
see Section 7.4.2). For r = 3, Eren

0 = 0, α1 = α2 = 0, and eqn (5.41) results in a
zero Casimir free energy, as necessary in empty space.

Next we consider the case of a nonzero smallest eigenvalue λ0 �= 0. We expand
the square root in eqn (5.38) for small k and replace ln(1 + x) with x. Then,
after integration, we arrive at

∆TF0 = −
(√

λ0

2π

)r/2

�r(kBT )(r+2)/2 e−
√

λ0/(kBT ) + . . . , (5.42)
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i.e. an exponentially suppressed contribution. Thus we arrive at the result that
the low-temperature asymptotic behavior of ∆TF0 is determined by the lower
part of the spectrum of the spatial operator. The power-like or exponentially
suppressed behavior of the first-order correction depends on the presence or
absence of a gap in the spectrum.

In contrast, the high-temperature behavior is determined by the upper part
of the spectrum and can be expressed in terms of the heat kernel coefficients.
In order to derive this property, we represent eqn (5.22) for the regularized free
energy in the form

F0(s) = −1

2

∂

∂s
µ2s

∫ ∞

0

dt

t

ts

Γ(s)
KT (t)K(t) e−tm2

, (5.43)

where

KT (t) = kBT
∞∑

l=−∞
e−tξ2

l (5.44)

is the heat kernel associated with the temporal part of the operator (5.8) and
K(t) is the heat kernel of the spatial part as given by eqn (4.15). We proceed by
separating the term in eqn (5.44) with l = 0:

KT (t) = kBT + 2kBT
∞∑

l=1

e−tω2
l . (5.45)

Since this term does not depend on t, its contribution to eqn (5.43) can be
expressed in terms of the zeta function ζP(s) of the spatial part, defined in eqn
(4.5). Using eqn (4.13) with 1 − 2s replaced by −2s, we obtain∫ ∞

0

dt

t

ts

Γ(s)
K(t) e−tm2

= ζP(s). (5.46)

Noting that for elliptic problems ζP(s) is regular at s = 0, we have

∂

∂s
µ2sζP(s)

∣∣∣∣
s=0

= ζ′P(0) + ζP(0) lnµ2. (5.47)

Substituting eqns (5.45)–(5.47) into eqn (5.43), we arrive at

F0(s) = −kBT

[
ζ′P(0) + ζP(0) lnµ2

2
+

∂

∂s
µ2s

∞∑
l=1

∫ ∞

0

dt
ts−1

Γ(s)
e−tξ2

l K(t)e−tm2

]
.

(5.48)
The behavior of the integral with respect to t in eqn (5.48) as T → ∞ is com-
pletely determined by the behavior of the heat kernel K(t) at t → 0. Thus, to
find the behavior of F0(s) at T → ∞, we can use the heat kernel expansion
(4.18). It should be mentioned that this statement is equivalent to the corre-
sponding statement for the expansion in inverse powers of the large mass in eqn
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(4.29). Similarly, we can hide the mass in the heat kernel coefficients by passing
from an/2 to ãn/2 with the help of eqn (4.27). Thus, inserting eqn (4.18) into
eqn (5.48) and carrying out the integration with respect to t and the summation
over l, which results in Riemann zeta functions, we obtain

F0(s) = −kBT

2

[
ζ′P(0) + ζP(0) lnµ2

]
(5.49)

− kBT

(4π)3/2

∂

∂s
µ2s

∞∑
n=0

ãn/2

Γ(s + n
2 − 3

2 )

Γ(s)
(2πkBT )

3−2s−n
ζR(2s + n − 3),

which is an asymptotic expansion. Here, the limit s → 0 can be performed. For
this purpose we need to use the reflection property of the Riemann zeta function,

Γ
(z

2

)
ζR(z) = π(2z−1)/2 Γ

(
1 − z

2

)
ζR(1 − z), (5.50)

which provides the analytic continuation of this function to Re z < 0. First we
perform the differentiation in eqn (5.49) with respect to s by considering this
equation as a product of two factors: [µ/(2πkBT )]2s and a sum from 0 to ∞
containing all other quantities. The derivative of the first factor in the limit
s → 0 results in 2 ln[µ/(2πkBT )], whereas only the two terms with n = 3 and 4,
containing poles in the numerator, survive in the sum (one pole in the gamma
function and one in the zeta function). When we differentiate the sum, there is
no dependence on µ in the limit s → 0 and all terms give a nonzero contribution.
As a result, we arrive at the representation

F0 = −kBT

2

[
ζ′P(0) + ζP(0) lnµ2

]
− π2

90
ã0(kBT )4 − ζR(3)

4π3/2
ã1/2(kBT )3

− 1

24
ã1(kBT )2 +

ã3/2

(4π)3/2
kBT ln

µ

kBT
− 1

16π2

(
γ + ln

µ

4πkBT

)
ã2

−
∞∑

n=5

(2π)(3−2n)/2

2
√

2
Γ

(
n − 3

2

)
ζR(n − 3)ãn/2(kBT )4−n. (5.51)

Here, γ = 0.577216 is Euler’s constant. It can be shown that the terms in
eqn (5.51) linear in kBT do not depend on µ. To see this, we substitute eqn
(4.18) into eqn (5.46) and calculate integrals with respect to t. In the limiting
case s → 0, with the help of eqn (4.27), this results in

ζP(0) =
1

(4π)3/2
(−a1/2m

2 + a3/2) =
ã3/2

(4π)3/2
. (5.52)

Using eqn (5.52), we rewrite eqn (5.51) in the form

F0 = −π2

90
ã0(kBT )4 − ζR(3)

4π3/2
ã1/2(kBT )3 − 1

24
ã1(kBT )2
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−kBT

2

[
ζ′P(0) + ζP(0) ln(kBT )2

]
− 1

16π2

(
γ + ln

µ

4πkBT

)
ã2

−
∞∑

n=5

(2π)(3−2n)/2

2
√

2
Γ

(
n − 3

2

)
ζR(n − 3)ãn/2(kBT )4−n. (5.53)

It should be noted that after the substitution of ζ ′
P(0) and ζP(0) for a specific

configuration, the quantity kBT in the logarithm is multiplied by a factor which
makes the argument of the logarithm dimensionless (see the example given in
Section 9.5.2). The expression (5.53) was first derived by Dowker and Kennedy
(1978).

In order to get the final form of the high-temperature expansion for the free
energy, one has to subtract from eqn (5.53) the divergent part of the vacuum
energy Ediv

0,eff(0) given by eqn (4.46) and the three terms presented in eqn (5.35).
Because ã0 = a0 = V , the subtraction of the first term in eqn (5.35) just can-
cels the contribution of order T 4 in eqn (5.53). From this, one concludes that
α0 = −π2a0/90. The subtraction of the second term in eqn (5.35) cancels the
contribution of order T 3. Keeping in mind that from eqns (4.21), (4.22), and
(4.27), ã1/2 = a1/2 = −√

πS/2, for a scalar field with Dirichlet boundary condi-
tions, one arrives at

α1 = − ζR(3)

4π3/2
ã1/2 =

ζR(3)

8π
S. (5.54)

This expression for the coefficient α1 is obtained independently for a rectangular
box in Section 8.5. Finally, the subtraction of the third term in eqn (5.35) from
the right-hand side of eqn (5.53) cancels the contribution of order T 2 if we take
into account the fact that α2 = −ã1/24. In Section 8.5, it is shown that for
a rectangular box ã1 is proportional to the sum of the side lengths of the box.
The ultraviolet renormalization concerns only the term proportional to ã2, which
becomes independent of the arbitrary parameter µ. Note that the contribution
linear in kBT on the right-hand side of eqn (5.53) has the meaning of the classical
limit. It will be discussed repeatedly in the following chapters.
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APPROXIMATE AND NUMERICAL APPROACHES

The calculation of the vacuum energy for nontrivial geometries is a complicated
task. Thus it took 20 years from Casimir’s original work on plane parallel plates
for the first calculation for a spherical shell to appear (see Chapter 9). The main
technical obstacle was the separation of ultraviolet divergences, which required
a detailed knowledge of the asymptotics of the Bessel functions involved. It took
approximately another 20 years before this problem was solved in an efficient
way in terms of the heat kernel expansion, together with zeta function regular-
ization. Still, the progress was limited to geometries which allow a separation
of variables, i.e. a reduction to a one-dimensional problem. Beyond that, the di-
vergences remained a problem, especially for numerical approaches. To solve the
problem, one could consider a mode sum representation of the vacuum energy.
The calculation of the eigenvalues of a wave operator in a cavity to some given
accuracy is a manageable problem. However, this does not provide a direct way
to subtract the ultraviolet divergences. The general structure of the divergences
is known in terms of the heat kernel coefficients together with the high-frequency
expansion of the eigenvalues (see Section 4.2.2). But, after the subtraction of the
first few asymptotic contributions in a numerical calculation, numerical precision
is lost and the problem becomes intractable.

Because of this, before the recent exact methods appeared (see Chapter
10), several approximate methods were developed. One of them is the multiple-
reflection expansion introduced by Balian and Bloch (1970). This allows an it-
erative calculation of the corresponding Green’s function. This expansion works
best for the high-frequency contribution, and it was used mainly to investigate
the dependence of the divergent contributions on the geometry of the boundaries.
Another set of expansions is the semiclassical expansions. These are based on
the idea of the WKB approximation in quantum mechanics, or, equivalently, the
eikonal approximation in optics. In application to the Casimir effect (Schaden
and Spruch 1998, Jaffe and Scardicchio 2004), such methods should work best
if the separation between the interacting bodies is small and the main contri-
butions come from high frequencies. The multiple-reflection expansion and the
semiclassical methods are briefly considered in Sections 6.1 and 6.2, respectively.

Since 2001, the numerical world line approach has been developed (Schubert
2001). Inspired by string theory, it uses the Feynman path-integral representation
of the transition amplitudes. The contributions from the paths are calculated
numerically and the result appears as a sum over a large number of paths (clouds
of paths). This method was originally developed for the calculation of the one-
loop effective action in background fields. Soon it was also applied to Dirichlet
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boundary conditions and some interesting results were obtained, which will be
discussed below (Section 6.3).

Historically, the first two simple approximate methods were pairwise sum-
mation, which goes back to Lennard-Jones (1932), and the proximity force ap-
proximation (Derjaguin 1934). The method of pairwise summation, considered in
Section 6.4, permits one to calculate the Casimir force between two macroscopic
bodies as the sum of the forces between the microparticles belonging to them.
In doing so, all effects of nonadditivity are taken into account approximately by
means of a special normalization procedure. The proximity force approximation,
considered in Section 6.5, is most important for the purpose of applications. Ac-
cording to this method, the surfaces of the interacting bodies are divided into
small plane plates, to which the force per unit area known from the case of in-
finitely extended parallel plates is applied. Then one must sum the energies and
forces from all pairs of plates. This method works well for very small separa-
tions and, so far, it has been sufficient for experimental configurations. In cases
where both of the methods of pairwise summation and the proximity force ap-
proximation are applicable, they lead to coincident leading contributions to the
Casimir energy and force. However, the application region of the proximity force
approximation is much wider.

6.1 The multiple-reflection expansion

The multiple-reflection expansion can be interpreted as the propagation of the
field under consideration from a source point r to a drain point r′, which occurs
freely in between the boundaries and has multiple reflections at the boundaries.
These reflections are not specular, and the reflection point must be integrated
over the whole surface. The multiple-reflection expansion, as initially considered
(Balian and Bloch 1970), is written in terms of the Green’s function

Gω(r, r′) =
∑

J

ΦJ(r)Φ∗
J (r′)

−ω2 + ω2
J − i0

(6.1)

of the Helmholtz equation(
−ω2 − ∇

2
)
Gω(r, r′) = δ(r − r′). (6.2)

The function Gω(r, r′) is related to the Green’s function defined in eqn (3.87)
by

G(x, x′) =

∫ ∞

−∞

dω

2π
Gω(r, r′) e−iω(t−t′). (6.3)

We assume a static boundary S and denote points on the boundary, α ∈ S, by
Greek letters, in contrast to points in the bulk, for which we keep Latin letters.
In this notation, Dirichlet boundary conditions are denoted by

Gω(α, r′) = 0 for ∀ α ∈ S. (6.4)
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The starting point for the multiple-reflection expansion is a representation of the
Green’s function in terms of the potential ν(β, r′) of a double layer known from
electrostatics,

Gω(r, r′) = G(0)
ω (r, r′) +

∫
S

dµ(β)
∂G

(0)
ω (r, β)

∂nβ
ν(β, r′), (6.5)

where dµ(β) is the measure on S and G
(0)
ω (r, r′) is the Green’s function (6.1)

with no boundary conditions, i.e. the free-space Green’s function. Its well-known
explicit expression is

G(0)
ω (r, r′) =

eiωR

4πR
, (6.6)

where R = |r−r′| is the distance between the points r and r′. The derivative in
eqn (6.5) is the normal derivative towards the interior region and must be taken
before the second argument of the Green’s function is put on the surface:

∂G
(0)
ω (r, β)

∂nβ
= nβ∇r′ G(0)

ω (r, r′)
∣∣∣
r′=β

, (6.7)

where nβ is the inward-pointing normal to the surface S at a point β.
In eqn (6.5), the Green’s function obeying the boundary conditions is rep-

resented as the sum of the free-space Green’s function and the potential of a
double layer ν(β, r′). The latter is still unknown. It is determined by imposing
the boundary conditions (6.4) on eqn (6.5). In order to do this, we remind the
reader of a basic property of the potential of a double layer. Namely, the limit
of putting the point r on the surface S, r → α, and the integration over β do
not commute. Instead, the following formula holds:

lim
r→α

∫
dµ(β)

∂G
(0)
ω (r, β)

∂nβ
ν(β, r′) =

∫
dµ(β)

∂G
(0)
ω (r, β)

∂nβ
ν(β, r′) +

1

2
ν(α, r′).

(6.8)
Here it is assumed that r approaches the point α from the interior region (other-
wise an additional contribution would appear with an opposite sign). The integral
on the right-hand side converges.

Using eqn (6.8), we get from eqns (6.4) and (6.5) for r → α

0 = G(0)
ω (α, r′) +

∫
dµ(β)

∂G
(0)
ω (r, β)

∂nβ
ν(β, r′) +

1

2
ν(α, r′). (6.9)

This is an integral equation for the double-layer potential

ν(α, r′) = −2G(0)
ω (α, r′) − 2

∫
dµ(β)

∂G
(0)
ω (r, β)

∂nβ
ν(β, r′), (6.10)

and the multiple-reflection expansion emerges from its iterative solution. The
first step is to put ν(β, r′) = ν(0)(β, r′) = 0 on the right-hand side. This gives
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ν(1)(α, r′) = −2G(0)
ω (α, r′), (6.11)

which is the first iteration for the potential. The next order is obtained by in-
serting eqn (6.11) into the right-hand side of eqn (6.10), and so on.

From these iterations for the potential, the respective expansion of the Green’s
function emerges,

Gω(r, r′) = G(0)
ω (r, r′) + G(1)

ω (r, r′) + G(2)
ω (r, r′) + . . . , (6.12)

which starts from the free-space Green’s function (6.6). The latter appears as
the contribution from zero reflections. The higher-order contributions are

G(p)
ω (r, r′) =

∫
dµ(β)

∂G
(0)
ω (r, β)

∂nβ

[
ν(p)(β, r′) − ν(p−1)(β, r′)

]
, p = 1, 2, . . . .

(6.13)
For instance,

G(1)
ω (r, r′) = −2

∫
dµ(β)

∂G
(0)
ω (r, β)

∂nβ
G(0)

ω (β, r′) (6.14)

is the contribution from one reflection. From the above, the physical interpreta-
tion can be seen. We have a free propagation from r to β, some kind of operator
there (−2∂/∂nβ

), and a free propagation from β to r′. The point β must be
integrated over the whole surface S. The reflection is not specular, and should
be extended over the whole surface, even over shadowed regions.

This expansion was originally derived by Balian and Bloch (1970), who in-
vestigated the asymptotic distribution of the eigenvalues of the Laplace operator
obeying boundary conditions. In fact, in that work, using a different notation,
a systematic way was shown for how to calculate the heat kernel coefficients,
and the coefficient c1 in eqn (4.22) was derived. Several years later, this method
was applied to the Casimir effect (Balian and Duplantier 1978) and the divergent
surface contribution to the vacuum energy for a conducting sphere was obtained.
In the following years, the multiple-reflection expansion was investigated in de-
tail in a number of papers [for instance, by Balian and Bloch (1971) and by
Hansson and Jaffe (1983a, 1983b)]. Several reformulations of this expansion are
possible; for example, in the representation (6.5), a monolayer potential may be
added. It is possible also to consider all kinds of boundary conditions and fields.
Specifically, the multiple-reflection expansion for spinor fields was investigated
by Hansson and Jaffe (1983a).

The convergence of the multiple-reflection expansion is a much-discussed
question. Obviously, this method delivers at least an asymptotic expansion of
the Green’s functions for high frequency. This property makes it possible to ob-
tain any heat kernel coefficient of given order from a finite number of reflections
(Bordag et al. 2001b). The multiple-reflection expansion also proved useful for
obtaining the heat kernel coefficients in singular background fields and in similar
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applications (Bordag et al. 2001b). However, the examples where it was used to
obtain approximate results for the Casimir effect did not go beyond simple ge-
ometries. This was connected primarily with the increasing technical difficulties.
Also, we must mention that in the application of the multiple-reflection expan-
sion to the Casimir effect, there is no natural small expansion parameter (unless
one considers small or large separations).

6.2 Semiclassical approaches

The idea of all semiclassical approaches is to consider situations where the quan-
tum system is in some sense close to some classical ones and where classical
trajectories dominate in a path-integral representation. This idea is the same as
that which relates wave and ray optics. A necessary condition for the applica-
bility of such ideas is that the phenomena under consideration are dominated
by short-wavelength contributions. With respect to the Casimir effect this ap-
plies, for example, at small separations between the interacting bodies. In view
of the big success that semiclassical methods have had in quantum mechanics
and quantum field theory, much effort has been put into this direction, starting
with the work of Schaden and Spruch (1998). Here the vacuum energy was rep-
resented as a sum over paths. Using the well-known Gutzwiller trace formula,
attention was focused on the periodic paths which dominate in the semiclassical
limit (Schaden 2006). More recently, a new semiclassical approach has been pro-
posed (Jaffe and Scardicchio 2004, Scardicchio and Jaffe 2005, 2006, Schröder et
al. 2005), which is inspired by the eikonal approximation of classical optics. This
so-called optical approach includes a larger number of paths than the previous
approach.

It should be mentioned that the notion of a semiclassical approximation is
misleading in applications to the Casimir effect (Scardicchio and Jaffe 2005). In
general, the semiclassical expansions are expansions in powers of the Planck con-
stant �. However, the Casimir energy and force are simply proportional to � [see
eqns (1.1) and (1.5)]. For massless fields, no other dependence on � enters, since
the boundaries are classical objects. Thus, there can be no expansion in powers
of �. Nevertheless, the notion of a semiclassical expansion of the Casimir energy
is widely used, and it is justified insofar as one takes over the corresponding ideas
from quantum mechanics.

Now we describe the basic ideas of the optical approach. The starting point
is the Green’s function of a Schrödinger equation related to the spatial equation
(3.39) with a fictitious time variable t,(

−i
∂

∂t
− ∇

2

)
G(r, r′; t) = δ(r − r′). (6.15)

This is connected with the Green’s function Gω(r, r′) in eqn (6.1) by means of

G(r, r′; t) =

∫ ∞

−∞

dE

2πi
G√

E(r, r′) e−iEt. (6.16)
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It should be mentioned that this Green’s function is quite analogous to the local
heat kernel introduced in eqn (4.17). This can be seen by inserting eqn (6.1) into
eqn (6.16) and carrying out the integration over E:

G(r, r′; t) = K(r, r′|it) θ(t). (6.17)

Here θ(t) is the step function.
The optical approximation for this Green’s function introduced by Jaffe and

Scardicchio (2004) reads

Gopt(r, r′; t) =
∑

n

Dn(r, r′; t) exp[iSn(r, r′; t)]. (6.18)

Here the sum is over all classical paths from a point r to a point r′ obeying the
laws of ray optics, and n is the number of reflections that these paths undergo
on the boundary. If the space between the boundaries is empty, the paths are
straight lines. In eqn (6.18), the function Sn(r, r′; t) is the action along such a
path and is given by

Sn(r, r′; t) =
ln(r, r′)

4t
, (6.19)

where ln(r, r′) is the length of the path. Further, in eqn (6.18),

Dn(r, r′; t) = det

(
∂2l2n(r, r′; t)

∂xi∂x′
j

)
(6.20)

is the Van Vleck determinant. In this case it takes the simple form (Scardicchio
and Jaffe 2005)

Dn(r, r′; t) =
(−1)nln(r, r′)

(4πit)3/2

√
∆n, (6.21)

where

∆n =
dΩr

dAr′

(6.22)

is the enlargement factor known from geometrical optics. Here, dAr′ is the area
of the rays originating from an infinitesimal area dΩr . This approach can be
compared with the eikonal approximation in optics or the WKB approximation
in quantum mechanics. However, it goes a step beyond as it also includes the
effects of the Van Vleck determinant.

In this approximation, the inverse Fourier transform of eqn (6.16),

Gω(r, r′) = i

∫ ∞

0

dt eiω2tG(r, r′; t), (6.23)

gives

Gopt
ω (r, r′) =

∑
n

(−1)n
√

∆n

4π
exp[iωln(r, r′)]. (6.24)
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This function can be used in eqn (3.93) to obtain the optical approximation
to the vacuum energy. Carrying out the frequency integration, one arrives at
(Scardicchio and Jaffe 2005)

Eopt
0 =

∫
dr

∑
n

(−1)n+1
√

∆n

2π2l3n(r, r)
. (6.25)

This is the final general formula for the vacuum energy in the optical approxi-
mation with Dirichlet boundary conditions. For Neumann boundary conditions
one needs to remove the sign factor (−1)n.

The next step is to find all classical paths with coincident start and end
points, and their enlargement factors, for some specific geometry. Then one needs
to integrate over the point r and to sum over the number of reflections. This
task involves, in general, quite complicated geometrical considerations. So here
we restrict ourselves to the simple example of two parallel planes. In this case
the paths are straight lines perpendicular to the planes. We take the planes
perpendicular to the z-axis with a distance a between them. Paths with an even
number of reflections n = 2k (k = 1, 2, . . .) do not depend on the position of the
starting point:

l2k(r, r) = 2ka. (6.26)

Paths with an odd number n = 2k + 1 (k = 0, 1, . . .) do depend on position:

l2k+1(r, r) = 2ka + 2z. (6.27)

Accordingly, the energy becomes a sum of two contributions,

Eopt = Eopt
odd + Eopt

even. (6.28)

The contribution from the even number of reflections to the energy is

Eopt
even = −2

∞∑
k=1

1

2π2

∫ a

0

dz
1

(2ka)4
= − π2

1440a3
(6.29)

This is finite and coincides with the known result for the scalar Casimir energy
per unit area.

The contribution from the odd reflections can be written in the form

Eopt
odd = 2

∞∑
k=0

1

2π2

∫ (k+1)a

ka

dz
1

(2z)4
=

1

π2

∫ ∞

0

dz
1

(2z)4
. (6.30)

This contribution contains the ultraviolet divergence. This results from the zero-
reflection path. If one introduces some length Λ as a regularization, all odd
reflection paths add up to a distance-independent expression which does not
contribute to the Casimir force and can be discarded.

Thus, the optical approach becomes exact for two parallel plates. Much work
has been done to apply it to more complicated geometries aimed at checking
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the precision of the proximity force approximation, which is another approxi-
mate method to calculate the Casimir energy and force, discussed in Section 6.5.
Specifically, the optical approach has been applied to a sphere in front of a plane
(Scardicchio and Jaffe 2005). Up to four reflections were taken into account, and
their contribution to the scalar Casimir energy was calculated numerically. For
small separations, the result can be written in the form

Eopt

EPFA
= 1 + 0.05

a

R
+ O

(
a2

R2

)
, (6.31)

where EPFA is the corresponding energy in the proximity force approximation.
Here a is the separation between the plane and the sphere and R is the radius
of the sphere. The ratio a/R is assumed to be small. In this case the coefficient
0.05 found by optical methods, which is the first correction beyond the proximity
force approximation, can be compared with the analytical result, which is 1/3
[see eqn (10.157)]. However, one can expect that if all of the reflections are
summed, the optical approach will come closer to the analytical result. Similarly
to the multiple-scattering expansion, the optical approach has no internal means
to verify and control the accuracy of the results obtained.

The optical approach has also been applied to a number of other geometries.
Specifically, it has been applied to a hyperboloid in front of a plane, where up
to six reflections were included (Schröder et al. 2005), and to a tilted plane in
front of another plane. Using the optical approach, local energy densities were
considered and nonzero temperature was taken into consideration (Scardicchio
and Jaffe 2006).

6.3 World line numerical methods

The methods considered in this section use a path-integral representation of a
fictitious particle, which, in the end, is evaluated numerically. We start from eqn
(3.112) representing the vacuum energy as a trace,

E0 = − i

2T
Tr lnK, (6.32)

and take the operator in the form

K = −� + λU(r), (6.33)

where U(r) is some background potential and λ is a coupling constant with the
dimension of mass. This method was initially developed for the calculation of
one-loop effective actions in background potentials (Schubert 2001) and was later
applied to boundary conditions as well (Gies et al. 2003).

We restrict ourselves to an introduction to the basic ideas of the approach and
present some of the results obtained. The first step is to switch to an exponential
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representation of the logarithm. Technically, this is the same procedure as that
used in zeta function regularization. So, we write

E0(s) = − 1

2T

∂

∂s

∫ ∞

0

dv

v

vs

Γ(s)
Tr e−vK, (6.34)

where s must be set to zero in the end. In this formula, v is an auxiliary parameter
with the dimension of the second power of length, which can be interpreted as a
fictitious time variable, and the trace is calculated as a space–time integral,

Tr e−vK =

∫
d4x < x|e−vK|x > . (6.35)

For the trace in eqn (6.34), we use the path-integral representation (Gies and
Klingmüller 2006b)

Tr e−vK =

∫
x(0)=x(v)

Dx(τ) exp

{
−
∫ v

0

dτ

[
1

4
ẋ2(τ) + λU

(
x(τ)

)]}
. (6.36)

Here, the integration goes over the paths with coincident start and end points,
and the Wick rotation has already been done. The dot denotes the derivative
with respect to the fictitious variable v. Substitution of eqn (6.36) into eqn (6.34)
leads to

E0(s) = − 1

2T

∂

∂s

∫ ∞

0

dv

v

vs

Γ(s)

∫
x(0)=x(v)

Dx(τ) exp

{
−
∫ v

0

dτ

[
ẋ2(τ)

4
+ λU

(
x(τ)

)]}
.

(6.37)
But this is still not the final expression. For a time-independent background
potential, one has to separate the total time T , which drops out. Also, it is nec-
essary to separate the divergences. Afterwards, the derivative can be calculated
using eqn (5.28). Thus, one arrives at a representation where the path integral
can be evaluated numerically. To do so it is necessary to generate a large number
of random loops, called a cloud of loops, and to evaluate the integral on these
loops.

Computations of Casimir energies by means of world line numerics were ini-
tiated by Gies et al. (2003), who developed the necessary algorithm to create the
clouds of loops. Boundary conditions were implemented by selecting from the
cloud those loops which fulfill the boundary conditions. In this procedure, it is
quite easy to implement Dirichlet boundary conditions. However, implementing
Neumann or other boundary conditions involving a derivative is technically more
complicated. This circumstance has prevented a more general use of the method
beyond Dirichlet boundary conditions.

Later, the numerical precision was increased considerably, and the distance
dependence of the Casimir force acting between a sphere or a cylinder and a
plane were calculated for a scalar field obeying Dirichlet boundary conditions
(Gies and Klingmüller 2006b). The known limiting cases for large and small
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separations were reproduced. Particularly, at short separations, the first analytic
corrections beyond the proximity force approximation found for a cylinder in
front of a plane (Bordag 2006a) and for a sphere in front of a plane (Bordag
and Nikolaev 2008) were reproduced (see Sections 10.3.3 and 10.4.3 for details
of these corrections).

Valuable information was also obtained for a semi-infinite plane (x ≥ 0) par-
allel to an infinite plane (a) or another semi-infinite plane (b) (one stacked exactly
above the other) (Gies and Klingmüller 2006c). In both cases, for dimensional
reasons, the force can be written in the form

F = −γ0
S

a4
− γa,b

L

a3
. (6.38)

Here, the first term is the contribution from the force density for two infinitely
extended plates, i.e. the contribution without any edge effect. It is proportional
to the area S of the upper plate, and

γ0 =
π2

480
= 2.056× 10−2 (6.39)

is the value known for the Casimir effect for a scalar field between such plates (see
Section 7.1.1). For dimensional reasons, the edge contribution is proportional to
the length L of the edge, and it is assumed that the separation a of the planes is
the smallest parameter, i.e. a � L, and that L �

√
S. Under these assumptions,

the numerical results for the coefficients in eqn (6.38) are

γa = 5.23(2)× 10−3, γb = 2.30(1) × 10−3. (6.40)

Here the digits in brackets indicate the numerical error. These results allow one,
at least for a scalar field, to estimate the contribution of the edge effects.

6.4 Pairwise summation

In this section, we consider a simple approximate method which allows calcula-
tion of the Casimir force between two bodies as a sum of the forces acting between
their constituents (atoms or molecules). Although the Casimir force is not an ad-
ditive quantity, the effects of nonadditivity can be partially taken into account
with the help of a special normalization procedure which relates the case under
consideration to a similar configuration where both the additive and the exact
results are available. The additive method has been widely used in the theory
of disperion forces, following Lennard-Jones (1932). This is a simple calculation
for many configurations of experimental interest. Under certain conditions, the
results obtained turn out to be very accurate, although the method of pairwise
summation (PWS) does not contain any internal means for the determination of
their accuracy.

To illustrate the method, we start with a configuration of two thick plates
(semispaces) at a sufficiently large separation a, described by constant dielectric
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permittivities ε
(1)
0 and ε

(2)
0 . This also includes the case of ideal metals in the

limit where ε
(1,2)
0 → ∞. Let the boundary plane of the lower semispace be z = 0

and let that of the upper semispace be z = a. We assume that two atoms (one
in the lower semispace at a point r1 and the other in the upper semispace at a
point r2) are characterized by an interaction energy

EAA(r) = −B

r7
, (6.41)

where B is some constant and r = |r2 − r1|. After integration of eqn (6.41)
over the lower semispace, we find the additive interaction energy of an atom at
a point r2 with the lower semispace,

Eadd
A (z2) = −2πN1B

∫ ∞

0

ρ dρ

∫ 0

−∞

dz1[
(z2 − z1)2 + ρ2

]7/2
= −πN1B

10z4
2

. (6.42)

Here N1 is the number of atoms per unit volume in the lower semispace. Inte-
grating eqn (6.42) over the volume of the upper semispace, we find the additive
Casimir energy of the two plates (semispaces),

Eadd
pp (a) = −πN1N2BS

10

∫ ∞

a

dz2

z4
2

= −πN1N2BS

30a3
, (6.43)

where N2 is the density of atoms in the upper semispace and S is the infinite area
of the boundary surface. Note that the same dependence on separation as in eqn
(6.43) is obtained from the Lifshitz formula for two dilute semispaces sufficiently
far apart from each other (see Section 16.1). There, the constant B is related
to the static atomic polarizabilities. This justifies our choice of the atom–atom
interaction energy in the form (6.41).

As mentioned above, results such as eqn (6.43) do not take the effects of
nonadditivity into account. The role of these effects in a configuration of two
semispaces can be characterized by the normalization constant

KE =
Eadd

pp (a)

E(a)S
=

24BN1N2

πΨ(ε
(1)
0 , ε

(2)
0 )

. (6.44)

Here, the exact expression for the Casimir energy per unit area of the semispaces
at sufficiently large separations, E(a), is obtained from the Lifshitz formula [see
eqn (16.8)]. The latter takes the nonadditivity effects into account. Generally,

it is true that KE > 1. For ideal metals ε
(1)
0 , ε

(2)
0 → ∞, Ψ(ε

(1)
0 , ε

(2)
0 ) → 1, and

E(a) = EIM(a) as defined in eqn (1.5).
We now deal with two arbitrarily shaped bodies V1 and V2. In this case the

additive interaction energy takes the form

Eadd(a) = −BN1N2

∫
V1

dr1

∫
V2

dr2 |r2 − r1|−7. (6.45)
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By assuming that for two arbitrary bodies the effects of nonadditivity play ap-
proximately the same role as for two thick parallel plates, one can define the
normalized interaction energy as (Mostepanenko and Sokolov 1988)

Etot(a) =
Eadd(a)

KE
= − π

24
Ψ(ε

(1)
0 , ε

(2)
0 )

∫
V1

dr1

∫
V2

dr2 |r2 − r1|−7. (6.46)

For ideal-metal plates, the function Ψ(ε
(1)
0 , ε

(2)
0 ) is replaced by unity. In this

case eqn (6.46) represents the Casimir energy of two ideal-metal bodies in the
framework of the PWS method.

As a first application of the PWS method, we consider the configuration
of a sphere of radius R above a plate. This configuration is often used in the
measurement of the Casimir force (see Chapters 19–21). Let both bodies be
made of an ideal metal. The application of eqn (6.45) leads to

Eadd
sp (a) = −BN1N2

∫ a+2R

a

dz2 πρ2
2(z2)

∫ 0

−∞
dz1

∫ ∞

0

2πρ1 dρ1

[ρ2
1 + (z2 − z1)2]7/2

, (6.47)

where
ρ2
2(z2) = R2 − (R + a − z2)

2. (6.48)

All integrations in eqn (6.47) can be performed explicitly, with the result

Eadd
sp (a) = −π2BN1N2

R3(R + 2a)

30a2(R + a)3
= −π2

30
BN1N2

R

a2

[
1 + O

( a

R

)]
. (6.49)

The respective additive Casimir force is given by

F add
sp (a) = −π2

15
BN1N2

R

a3

[
1 + O

( a

R

)]
. (6.50)

By dividing the additive energy (6.49) and force (6.50) into the normalization

constant (6.44) with Ψ(ε
(1)
0 , ε

(2)
0 ) = 1, one obtains the following approximate

expressions for the Casimir energy and force in the sphere–plate configuration,
as given by the PWS method:

Esp
IM(a) = − π3R

720a2
, F sp

IM(a) = − π3R

360a3
. (6.51)

The same results can be obtained directly from eqn (6.46).
Note that in eqns (6.49) and (6.50) and in the final equation (6.51), we do

not include corrections of order a/R and of higher orders in this parameter. The
point is that the PWS method uses a normalization to the case of two parallel
plates. So, the results obtained are meaningful only if the geometrical region that
gives the major contribution to the force corresponds closely to a configuration
of two parallel plates, as happens for very small a/R. In fact, corrections to eqn
(6.51) in powers of a/R obtained from eqn (6.46) are physically meaningless. At
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the same time, for three-dimensional bodies V1 and V2 at arbitrary separation,
the additive result (6.45) correctly reproduces the dependence of the interaction
energy on the separation distance (Barash 1988).

Another configuration of experimental interest is a cylinder of radius R above
a plane plate (a semispace). In the ideal-metal case, the electromagnetic Casimir
force between a cylindrical shell and a plane was recently calculated analytically
starting from the first principles of quantum field theory (see Section 10.3).
However, the approximate methods preserve their usefulness because they are
applicable to nonideal materials also (see the next section).

Let the cylinder be parallel to the (x, y) coordinate plane at the shortest

distance a. The Casimir energy is then given by eqn (6.46) with Ψ(ε
(1)
0 , ε

(2)
0 ) = 1,

Ecp
IM(a) = − π

12

∫ a+2R

a

dz2 ρ2(z2)

∫ 0

−∞
dz1

∫ ∞

0

2πρ1 dρ1

[ρ2
1 + (z2 − z1)2]7/2

, (6.52)

where ρ2(z2) is defined in eqn (6.48). Calculating all integrals in eqn (6.52)
explicitly, one obtains

Ecp
IM(a) = − π3R2

240a5/2

a + R

(a + 2R)5/2
. (6.53)

As in the configuration of a sphere above a plane, only the leading contribution
in the small parameter a/R is physically meaningful. Thus, eqn (6.53) leads to
the following approximate expressions for the Casimir energy and force in the
ideal-metal cylinder–plane configuration:

Ecp
IM(a) = − π3

960a2

√
R

2a
, F cp

IM(a) = − π3

384a3

√
R

2a
. (6.54)

In Section 10.3, these results are reproduced using exact methods, and the first
corrections to them of the order of a/R are also presented.

Finally, we briefly review the application of the PWS method to the case of
a spherical lens of thickness H and radius R at a shortest separation a above
a finite disk of radius L and thickness D (Bezerra et al. 1997). Both the lens
and the plate are supposed to be made of dielectric materials with permittivities

ε
(1)
0 and ε

(2)
0 , respectively. The results obtained are useful for the estimation of

corrections to the Casimir force due to the finiteness of the plate (see Section
19.2.3). It is assumed that the conditions a � H, D, R and D, H � R, L are
satisfied, which are usually fulfilled in experimental configurations.

As shown by Bezerra et al. (1997), the application of eqn (6.46) to the con-
figuration of a spherical lens above a finite plate results in

Efin(a) = − π3

120
Ψ(ε

(1)
0 , ε

(2)
0 )

∫ 1

Q

t dt

∫ Rt

R−H

du

∫ R+D+a

R+a

dv
(v + u)2

(v − u)5
, (6.55)

where Q ≡ max
(
R/

√
R2 + L2, (R − H)/R

)
. Thus, the magnitude of Q de-

pends on the relative sizes of the lens and the plate. If L ≤
√

2RH, then
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Q = R/
√

R2 + L2. However, if L >
√

2RH, then Q = (R − H)/R and the
value of the Casimir force, owing to the rapid decrease of the potential 1/r7 with
separation, does not depend on any further increase in L.

To calculate the Casimir force, we remove one integration in eqn (6.55) and
arrive at

Ffin(a) = − π3

120
Ψ(ε

(1)
0 , ε

(2)
0 )

∫ 1

Q

t dt

∫ Rt

R−H

du

[
(R + a + u)2

(R + a − u)5
− (R + a + D + u)2

(R + a + D − u)5

]
.

(6.56)
In the limiting case of an infinite plate, L → ∞, in the lowest order of the small
parameter a/R, eqn (6.56) results in

F (a) = −Ψ(ε
(1)
0 , ε

(2)
0 )

π3R

360a3
. (6.57)

This equation is a generalization of the second equality in eqn (6.51), which
applies to the case of a dielectric sphere above a dielectric plate. In the limit

ε
(1)
0 , ε

(2)
0 → ∞, eqn (6.57) coincides with the respective equation in eqn (6.51).

Now we perform the remaining integrations in eqn (6.56) explicitly. The main
contribution to the result, which depends on the size of the plate, appears in the
third order in the small parameter a/R and has the form

Ffin(a) ≈
[
1 +

a3

R3

1

1 − Q)3

]
F (a), (6.58)

where F (a) is defined in eqn (6.57). For typical configurations used in an ex-
periment, the correction to the value of unity in this equation is very small (see
Section 19.2.3).

6.5 The proximity force approximation

Another approximate method for the calculation of the Casimir force between
bodies of arbitrary shape is the proximity force approximation (PFA). This pow-
erful method, which allows generalization to the case of bodies made of real
materials and to forces of different physical nature, was suggested by Derjaguin
(1934). It was applied to the interpretation of measurements of the Casimir force
in the sphere–plate configuration by Derjaguin et al. (1956) and reconsidered for
application to various forces by Blocki et al. (1977).

We start from the most general formulation of the prescription given by
the PFA for the calculation of the interaction energy between two arbitrarily
shaped bodies V1 and V2. Let the top surface of the lower body and the bottom
surface of the upper body be described by the equations z1 = z1(x, y) and
z2 = z2(x, y) > z1(x, y) in an appropriate coordinate system. The separation
distance between these surfaces along the z-axis is given by

z(x, y) = z2(x, y) − z1(x, y). (6.59)

This is the variable width of the gap between the two interacting bodies. We
use a to denote the smallest value of z(x, y). Now we consider an arbitrary point
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(x, y) and replace the elements of the curved surfaces dS1 and dS2 around the
points z1(x, y) and z2(x, y), respectively, with parallel surface elements dx dy. In
so doing, we simultaneously replace the unknown interaction energy between the
elements of the curved surfaces dS1 and dS2 with a known energy E

(
z(x, y)

)
per

unit area of plane surface elements spaced at a separation z(x, y), defined in eqn
(6.59). Then the interaction energy between the bodies V1 and V2 is obtained
by the integration of interaction energies between the plane surface elements.
The integration region σ is the part of the (x, y) plane where both surfaces are
defined:

EPFA(a) =

∫ ∫
σ

dx dy E
(
z(x, y)

)
. (6.60)

If E
(
z(x, y)

)
represents the Casimir energy per unit area of ideal-metal planes,

the EPFA obtained is also related to ideal-metal surfaces z1(x, y) and z2(x, y). If,
however, E

(
z(x, y)

)
takes into account real material properties of the interacting

bodies (see Chapters 12–15), so does EPFA. Note that in this case E may depend
on the properties of a real body at a point (x, y): E = E

(
x, y, z(x, y)

)
.

Equation (6.60) is a universal one. It can be applied to arbitrary bodies,
leading to results of varying precision when compared with the respective exact
analytical results where those are available. This precision is usually determined
by the separation distance a in comparison with the geometrical parameters of
the bodies. From eqn (6.60), the force acting between the interacting bodies is
given by

FPFA(a) = −∂EPFA(a)

∂a
. (6.61)

Equations (6.60) and (6.61) can be further simplified in the case where the
surfaces of the interacting bodies are described by continuous functions having
continuous derivatives up to an arbitrary order. If one also assumes that there is
a single point x = y = 0 where the width of the gap z(x, y) reaches a minimum,
one can use a Taylor expansion in the form

z(x, y) = a +
z′′xx(0, 0)

2
x2 +

z′′yy(0, 0)

2
y2 + . . . = a +

x2

2Rx
+

y2

2Ry
+ . . . . (6.62)

Here, the directions x, y are chosen along the principal axes of the quadratic
form of the function z(x, y). Because of this, there is no cross term in xy in eqn
(6.62). Rx and Ry are the principal radii of curvature at the point (0, 0).

Substituting eqn (6.62) into eqn (6.60) and introducing new variables ξ =
x/

√
2Rx, η = y/

√
2Ry, one obtains

EPFA(a) = 2
√

RxRy

∫ ∫
σ

dξ dη E(a + ξ2 + η2). (6.63)

In terms of the polar coordinates ϕ and ζ =
√

ξ2 + η2, this can be rearranged
as
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EPFA(a) = 2
√

RxRy

∫ ∞

0

2πζ dζ E(a + ζ2). (6.64)

Finally, taking into account that a + ζ2 = z, we arrive at (Blocki et al. 1977)

EPFA(a) = 2πR̄P(a), P(a) ≡
∫ ∞

a

E(z) dz, R̄ =
√

RxRy. (6.65)

Using eqn (6.61), one obtains an expression for the force in the framework of the
PFA,

FPFA(a) = 2πR̄ E(a), (6.66)

where E(a) is the energy per unit area in the configuration of two parallel plates.
Note that the geometrical mean of the two principal radii, R̄, is connected with
the Gaussian curvature at the origin K(0, 0) by R̄ = 1/

√
K(0, 0).

We emphasize that eqns (6.65) and (6.66) do not have as wide an application
range as eqn (6.60). In fact, they are applicable only to compact gaps that have a
single point of minimum width and are characterized by a finite mean curvature.
Two typical examples are a sphere above a plane, and two spheres of radii R1 and
R2. However, this formulation of the PFA in the form of eqns (6.65) and (6.66)
is not applicable to cases where at least one radius of curvature is infinitely large
(for instance, for a cylinder above a plane) or when a gap cannot be characterized
by a single mean curvature radius. The latter happens, for instance, when the
boundary surfaces are described by periodic functions. Equations (6.65) and
(6.66) are also not applicable when the characteristic size of the upper body in
the z-direction is smaller than or of the order of a. In fact, for the applicability
of eqn (6.65) it is required that this size goes beyond the range of z where the
interaction energy E(z) drops to zero, so that the integral becomes independent
of its upper limit. In all cases when this condition is not satisfied, the formulation
of the PFA given by eqn (6.60) works well.

The first example of the application of the PFA is an ideal-metal sphere of
radius R above an ideal-metal plane [see Fig. 6.1(a)]. The gap is restricted by
the plane z1(x, y) = 0 and by the lower hemisphere

z2(x, y) = a + R −
√

R2 − x2 − y2. (6.67)

Replacing the surface elements of the sphere dS by the plane plate dx dy parallel
to the plane z1 = 0 and introducing the polar coordinates x = ρ cosϕ, y = ρ sinϕ,
we rearrange eqn (6.60) into the form

EPFA ≡ Esp
IM(a) = −

∫ R

0

2πρ dρ
π2

720z3
2(ρ)

, (6.68)

where z2(ρ) is obtained from eqn (6.67), and E(z2) for ideal-metal plates is taken
from eqn (1.5). The integration in eqn (6.68) results in

Esp
IM(a) = − π3

720

R2

a2(R + a)
= − π3R

720a2

[
1 + O

( a

R

)]
. (6.69)
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Fig. 6.1. Configurations (a) of a sphere above a plane and (b) two spheres of
different radii.

Here, only the leading order is meaningful, and the correction of the order of a/R
should be omitted. The negative differentiation of this expression with respect
to the separation returns us to eqn (6.51) for the Casimir force between an
ideal-metal sphere and an ideal-metal plane obtained using the PWS method.
The same result also follows from eqn (6.66), which is readily applicable to
the sphere–plate configuration. In this case one obtains Rx = Ry = R from
eqn (6.67), so that

FPFA ≡ F sp
IM(a) = 2πREIM(a) = − π3R

360a3
. (6.70)

Equation (6.70) allows a far-reaching generalization to the case of a sphere
and a plate made of real materials and kept at nonzero temperature. In this
case EIM(a) must be replaced with the free energy per unit area, F(a, T ), for a
configuration of two plane parallel plates made of a real dielectric or real metal
(see Chapters 12–15). Then, according to eqn (6.70), the Casimir force between
a large sphere and a plate is given by

F sp(a, T ) = 2πRF(a, T ). (6.71)

This equation is widely used in Part III of the book for comparison of experiment
and theory in relation to measurements of the Casimir force. Qualitatively, the
error introduced by the use of the approximate eqn (6.71) is of the order of the
terms neglected above, i.e. of the order of a/R. More exact, quantitative conclu-
sions concerning the accuracy of the PFA can be found in Sections 10.3.3 and



The proximity force approximation 101

10.4.3, where some exact analytical results valid beyond the PFA are presented.
Experimentally, however, a/R is usually of order 10−3, so that theoretical results
based on the use of eqn (6.71) are highly reliable.

The configuration of two ideal-metal spheres of radii R1 and R2 ≤ R1 can
also be considered using both eqn (6.60) and eqn (6.66). Let the sphere centers
lie on the z-axis [see Fig. 6.1(b)]. The width of the gap between the lower and
the upper sphere is described by the function

z(x, y) = z(ρ) = a + R1 −
√

R2
1 − ρ2 + R2 −

√
R2

2 − ρ2, (6.72)

where ρ2 = x2 + y2. Using eqn (1.5) for the energy per unit area of ideal-metal
planes, we obtain from eqn (6.60)

Ess
IM(a) = − π3

360

∫ R2

0

ρ dρ

z3(ρ)
. (6.73)

Calculating this integral under the condition a/R2 � 1, we arrive at

EPFA(a) ≡ Ess
IM(a) = − π3

720a2

R1R2

R1 + R2

[
1 + O

(
a

R2

)]
. (6.74)

Neglecting the terms of order of a/R2 and using eqn (6.61), we obtain the Casimir
force acting between two ideal-metal spheres,

FPFA(a) ≡ F ss
IM(a) = − π3

360a3

R1R2

R1 + R2
. (6.75)

The same result can be obtained from eqn (6.66). For this purpose, using eqn
(6.72), we find

Rx =
1

z′′xx(0, 0)
=

R1R2

R1 + R2
, Ry =

1

z′′yy(0, 0)
=

R1R2

R1 + R2
. (6.76)

Then eqn (6.66) leads to

F ss
IM(a) = 2π

R1R2

R1 + R2
EIM(a) = − π3

360a3

R1R2

R1 + R2
. (6.77)

We now come to the case of an ideal-metal cylinder of radius R above an ideal
metal plane. In this case one of the principal radii becomes infinite. Because of
this, we use the formulation of the PFA in the form of eqn (6.60). The minimal
separation distance between the plane and cylindrical surface is given by a. The
gap between the two bodies is restricted by the surfaces z1(x, y) = 0 and

z2(y) = R + a −
√

R2 − y2. (6.78)

In this case the cylinder axis coincides with the x-axis. In accordance with eqn
(6.60), the Casimir energy per unit length of the cylinder is given by
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EPFA(a) ≡ Ecp
IM(a) = −2

∫ R

0

dy
π2

720z3
2(y)

. (6.79)

Calculating this integral under the condition a/R � 1, we obtain

Ecp
IM(a) = − π3

960a2

√
R

2a

[
1 + O

( a

R

)]
, (6.80)

in accordance with the first equality in eqn (6.54), derived using the PWS
method. As usual, only the leading contribution is meaningful and the terms
of the order of a/R should be omitted. Then the Casimir force per unit length
is given by the second equality in eqn (6.54). By analogy with eqns (6.70) and
(6.77), the Casimir force per unit length between a cylinder and a plane can be
represented using the Casimir energy per unit area of two parallel planes,

F cp
IM(a) =

15π

8

√
R

2a
EIM(a) = − π3

384a3

√
R

2a
. (6.81)

In this form, the result obtained can be generalized to a cylinder and a plate
made of any real materials.

One more example, where the formulation (6.66) of the PFA does not work,
is the case of a paraboloid of sufficiently small height H , above a plane. For this
configuration, z1(x, y) = 0 and the surface of the paraboloid can be represented
in the form

z2 = a +
H

L2
(x2 + y2) = a +

H

L2
ρ2, (6.82)

where L is the radius of the top cross section. Substituting this in eqn (6.60),
one obtains

EPFA(a) ≡ Epar
IM (a) = −

∫ L

0

2πρ dρ
π2

720z3
2(ρ)

= − π3

720

L2

H

∫ H

0

dt

(a + t)3
= − π3

1440

L2

H

[
1

a2
− 1

(a + H)2

]
. (6.83)

From eqn (6.61), the respective Casimir force is given by

FPFA(a) ≡ F par
IM (a) = − π3

720

L2

H

[
1

a3
− 1

(a + H)3

]
. (6.84)

This result is applicable when H is of the order of a. For paraboloids of large
height H � a, the formulation of the PFA (6.66) is also applicable. This leads
to a Casimir force equal to the first term on the right-hand side of eqn (6.84).
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THE CASIMIR EFFECT FOR TWO IDEAL-METAL PLANES

In the present chapter, we consider the simple, yet most important configuration
of two parallel ideal-metal planes. The original Casimir effect is based on this
configuration (Casimir 1948). First we present the theory of the scalar and elec-
tromagnetic Casimir effects between parallel planes. In comparison with Chapter
2, some basic facts are added concerning the relation between local and global
approaches and the polarizations of the electromagnetic field. The radiative cor-
rections to the Casimir force are considered.

The configuration of two parallel ideal-metal planes is the first configuration
where we investigate the Casimir effect at nonzero temperature. Here, we present
general analytical formulas for the Casimir free energy, entropy, and pressure and
consider the limits of low and high temperature. The agreement with thermo-
dynamics of the results obtained is analyzed. This is the starting point for the
thermal Casimir force between real materials, considered in Part II of the book.
The spinor Casimir effect between planes and the Casimir effect for a wedge are
also discussed.

At the end of the chapter, we briefly consider the dynamic Casimir effect
connected with uniformly moving or oscillating planes.

7.1 The scalar Casimir effect for parallel planes

Here, we consider the Casimir vacuum energy of a scalar field in a configuration
of two parallel planes in three dimensions (see Fig. 2.2) with Dirichlet or mixed
boundary conditions.

7.1.1 Dirichlet boundary conditions

We start from local quantities and pay special attention to the regions of space
external to the plane–plane configuration. Let the two planes be at x3 ≡ z = 0
and z = a.

In the region between the planes, the complete orthonormal set of solutions
to eqn (3.1) satisfying the Dirichlet boundary conditions is given by eqn (3.49),
where

ΦJ(r) = Φk⊥,n(r) =
1

π
√

2a
ei(kxx+kyy) sin kznz, (7.1)

ω2
k⊥,n = m2 + k2

⊥ + k2
zn, kzn =

πn

a
.

Substituting these solutions into eqn (3.59), we obtain the vacuum energy density
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〈0|T (0)
00 (z)|0〉 =

1

2a

∫ ∞

0

k⊥ dk⊥
2π

∞∑
n=1

[
ωk⊥,n − m2 + k2

⊥
ωk⊥,n

cos(2kznz)

]
, (7.2)

where the last term is oscillating and does not contribute to the total energy. In
free Minkowski space, the complete orthonormal set of solutions is given by eqn
(3.56), leading to

〈0M|T (0)
00 |0M〉 =

1

2

∫
dk

(2π)3
ωk, (7.3)

where dk = dkx dky dkz , ωk = (m2 + k2)1/2, and the vacuum states |0〉 and |0M〉
have been defined in eqns (3.54) and (3.57), respectively.

The Casimir energy density

ε(z) = 〈0|T (0)
00 (z)|0〉 − 〈0M|T (0)

00 |0M〉 (7.4)

is found from eqns (7.2) and (7.3) using the Abel–Plana formula (2.26) in the
same manner as in Section 2.5, with the result

ε(z) = − 1

2a

∫ ∞

0

k⊥ dk⊥
2π

[√
m2 + k2

⊥
2

+
2π

a

∫ ∞

A

√
t2 − A2

e2πt − 1
dt (7.5)

+
(
m2 + k2

⊥
) ∞∑

n=1

cos 2kznz

ωk⊥,n

]
,

where

A ≡ a
√

m2 + k2
⊥

π
, t ≡ akz

π
. (7.6)

Note that the first term on the right-hand side of eqn (7.5) is connected with the
energy of the boundary planes (see below), whereas the third term is oscillating
and, as explained previously, does not contribute to the Casimir energy. As a
result, the Casimir energy per unit area of the planes is given by

E(a) =

∫ a

0

dz ε(z) = −1

2

∫ ∞

0

k⊥dk⊥
2π

(√
m2 + k2

⊥
2

+
2π

a

∫ ∞

A

√
t2 − A2

e2πt − 1
dt

)
.

(7.7)
For a massless field (m = 0), we have A = ak⊥/π and the integrals can be
calculated simply, in the same way as at the end of Section 2.5. The result is

E(a) = − π2

1440a3
− 1

8π

∫ ∞

0

k2
⊥ dk⊥. (7.8)

The first term on the right-hand side of this equation is just one-half of eqn (2.82),
obtained for the electromagnetic Casimir effect. From eqn (7.8), the Casimir
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pressure between two parallel planes due to scalar field oscillations takes the
form

P (a) = − π2

480a4
. (7.9)

The second, infinite, term in eqn (7.8) does not depend on the separation distance
and does not contribute to the force. Below, we discuss its physical meaning.

We start by noting that so far, only the region of space 0 < z < a between
the parallel planes has been considered. Now let us find the vacuum energy of a
semispace z < 0 with a Dirichlet boundary condition on the plane z = 0. In this
case the complete orthonormal set of solutions of eqn (3.1) can be presented in
the form

ϕ
(±)
k (t, r) =

1

π
√

2πωk
e∓i(ωkt−kxx−kyy) sin kzz, (7.10)

where 0 ≤ kz < ∞ and ω2
k = m2 + |k|2. These solutions are normalized in terms

of the scalar product (3.7), where the integration is over the semispace z ≤ 0.
The set of solutions of eqn (3.1) in free Minkowski space is given in eqn (3.56).
It can be presented in a form similar to eqn (7.10),

ϕ
(±)
kj (t, r) =

1

2π
√

2πωk
e∓i(ωkt−kxx−kyy)ψkzj(z), (7.11)

where
ψkz1(z) = cos kzz, ψkz2(z) = sin kzz, (7.12)

and 0 ≤ kz < ∞. These functions are normalized for the entire volume of free
Minkowski space.

Calculating the Casimir energy density in the same way as for the region in
between the planes, we arrive at the result

ε(z) = − 1

2π

∫ ∞

0

k⊥dk⊥
2π

∫ ∞

0

dkz
m2 + k2

⊥
ωk

cos 2kzz

= − 1

2π

∫ ∞

0

k⊥dk⊥
2π

(
m2 + k2

⊥
)
K0

(
2
√

m2 + k2
⊥|z|

)
, (7.13)

where the Kν(z) are the Bessel functions of imaginary argument.
The total Casimir energy in the region z ≤ 0 per unit area of the boundary

plane z = 0 is given by

E =

∫ 0

−∞
ε(z) dz = −1

8

∫ ∞

0

k⊥dk⊥
2π

√
m2 + k2

⊥. (7.14)

Note that the first term on the right-hand side of eqn (7.7) is just twice the
expression (7.14). This is because eqn (7.14) represents the Casimir energy arising
from one side of a plane, whereas the respective term in eqn (7.7) originates from
the external sides of two different planes.
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To conclude, when the local approach to the Casimir effect is used for plane
boundary surfaces, the energy densities obtained may contain some constant
and position-dependent terms. This is true for both interior and exterior regions
of the configuration under consideration. The energy densities obtained are not
defined uniquely and can be changed by adding a 4-divergence to the energy–
momentum tensor (Itzykson and Zuber 2005). This does not influence the total
Casimir energy obtained by the integration of the energy density over the vol-
ume of the system. After integration over the volume, there also remain terms
(generally infinite) that do not depend on the separation between the interact-
ing surfaces. In particular, this is the case for the exterior regions outside the
boundary planes. Such constant terms can be interpreted as the proper ener-
gies of these planes, and they do not influence measurable quantities such as
the Casimir force or pressure that are defined as derivatives of the energy with
respect to the separation. Because of this, in the subsequent text we concentrate
only on those contributions to the Casimir energy that are dependent on the
separation between the interacting surfaces. The problem of uniqueness in the
definition of the vacuum energy density will be discussed further in Chapter 11,
devoted to spaces with non-Euclidean topologies.

7.1.2 Mixed boundary conditions

Now we consider a scalar field for a configuration of two parallel planes with a
Dirichlet boundary condition on one plane, z = 0, and a Neumann boundary
condition on the other plane, z = a:

ϕ(t, x, y, 0) =
∂ϕ(t, x, y, z)

∂z

∣∣∣∣
z=a

= 0. (7.15)

The complete orthonormal set of solutions of eqn (3.1) satisfying these conditions
is given by eqns (3.49) and (7.1), where kzn = πn/a is replaced with

kzn =
π

a

(
n +

1

2

)
, n = 0, 1, 2, . . . . (7.16)

The vacuum energy of the scalar field (for simplicity, we consider the massless
case) is expressed as

E0(a) =
1

2

∫ ∞

0

k⊥dk⊥
2π

∞∑
n=0

√
k2
⊥ +

π2

a2

(
n +

1

2

)2

S, (7.17)

where S is the area of the planes.
Now we subtract from eqn (7.17) the vacuum energy of free Minkowski space

for the volume between the planes. This is done using a version of the Abel–
Plana formula (2.41) adapted for summation over half-integers. The resulting
finite Casimir energy per unit area is



The electromagnetic Casimir effect between parallel planes 107

E(a) =
π

a

∫ ∞

0

k⊥dk⊥
2π

∫ ∞

k⊥a/π

√
t2 − (k2

⊥a2/π2)

e2πt + 1
dt. (7.18)

Substituting the new variable y = k⊥a/π and changing the order of the integra-
tions, we obtain

E(a) =
π2

2a3

∫ ∞

0

dt

e2πt + 1

∫ t

0

√
t2 − y2 y dy =

7

8

π2

1440a3
. (7.19)

As is seen from eqn (7.19), the Casimir energy for the case of mixed boundary
conditions is different only by a factor of −7/8 from the first term in eqn (7.8),
related to Dirichlet boundary conditions on both planes. It is also notable that
for mixed boundary conditions there is no separation-independent contribution
to the Casimir energy, such as found in eqn (7.8), which describes the energy
of the boundary planes. This is because, for mixed boundary conditions, the
summation starts from zero instead of unity.

From eqn (7.19), the repulsive Casimir pressure between the planes is equal
to

P (a) = −∂E(a)

∂a
=

7

8

π2

480a4
, (7.20)

i.e. a factor −7/8 different from the Casimir pressure in eqn (7.9). This is another
example where the subtraction of the infinite vacuum energy of free space leaves
us with a positive Casimir energy. The scalar Casimir effect with Robin boundary
conditions on two parallel planes was considered by Romeo and Saharian (2002).

7.2 The electromagnetic Casimir effect between parallel planes

In this section, we present a more detailed picture of the electromagnetic Casimir
effect between two ideal-metal parallel planes and between an ideal-metal plane
and an infinitely permeable plane. This includes the complete orthonormal set of
solutions and a justification of eqn (3.76) for the summation of modes. We also
illustrate the method of zeta function regularization. Our presentation is based
on the canonical quantization of the electromagnetic field in Section 3.3.

7.2.1 Ideal-metal planes

In the case of parallel planes at z = 0, a, the set of solutions of the Dirichlet
boundary problem introduced in eqns (3.64) and (3.65) takes the form

Ak⊥,n(r) =


 bx cos kxx sin kyy sin kznz

by sin kxx cos kyy sinkznz
bz sin kxx sin kyy cos kznz


 . (7.21)

Here, kzn = πn/a, n = 0, 1, 2, . . ., and thus the first and second components
of the vector potential vanish on the planes. This is equivalent to the boundary
condition (2.71) written in terms of the electric field and magnetic induction, as
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discussed in Section 3.2. It is easily seen that the normalization condition (3.66),
with

δJJ′ = δ(kx − k′
x)δ(ky − k′

y)δnn′ , ω2
k⊥,n = k2

⊥ + k2
zn, (7.22)∫

V

dr ≡
∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ a

0

dz,

and the gauge-fixing condition divAk⊥,n = 0, leads to the following values of the
coefficients bx and bz:

bx = by =
4
√

2π√
a

kzn√
(kx + ky)2 + 2k2

zn

,

bz = −4
√

2π√
a

kx + ky√
(kx + ky)2 + 2k2

zn

. (7.23)

Now we introduce the polarizations of the electromagnetic field between the
planes, which will be repeatedly used throughout the book. The plane formed
by the wave vector k = (kx, ky, kzn) and the normal to the boundary plane n

is called the plane of incidence. The two polarization vectors introduced in eqn
(3.74) can be rewritten in the form

εk
(1) =

1

k⊥


 ky

−kx

0


 , εk

(2) =
1

kk⊥


kxkzn

kykzn

−k2
⊥


 . (7.24)

The vector εk
(1) is perpendicular to k and to the plane of incidence, whereas εk

(2)

is perpendicular to k but parallel to the plane of incidence. The electromagnetic
wave with E parallel to εk

(1) is called the transverse electric (TE) mode. For the
TE mode, the magnetic induction B is in the plane of incidence. The electro-
magnetic wave with E parallel to εk

(2) is called the transverse magnetic (TM)
mode. For the TM mode, B is perpendicular to the plane of incidence.

From eqns (7.21) and (7.24), we can find the coefficients (3.69) of the expan-
sion of the vector potential (7.21) in the polarization vectors,

Ã(1)
k⊥,n(r) =

bx

k⊥

(
∂

∂x
− ∂

∂y

)
cos kxx cos kyy sin kznz, (7.25)

Ã(2)
k⊥,n(r) = − 1

kk⊥

(
bx

∂2

∂x∂z
+ bx

∂2

∂y∂z
+ bzk

2
⊥

)
sinkxx sin kyy cos kznz.

We emphasize that Ã(1)
k⊥,0(r) = 0. Thus, for all n ≥ 1 there are two different

polarizations of the electromagnetic field confined between the parallel planes,
but at n = 0 only one polarization survives.
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Now we can use the general equations (3.75) and (3.76) to find the total
Casimir energy of the electromagnetic vacuum:

E0(a) =

(
1

2

∫ ∞

0

k⊥dk⊥
2π

ωk⊥,0 +

∫ ∞

0

k⊥dk⊥
2π

∞∑
n=1

ωk⊥,n

)
S. (7.26)

Here we have accounted for the fact that there is only one polarization state at
n = 0. Equation (7.26), derived using the complete orthonormal set of solutions
of the wave equation (3.63), coincides with eqn (2.72), formally obtained by the
summation of the oscillator frequencies over both negative and positive n. In
Section 2.5, a finite Casimir energy per unit area of the planes was obtained
from eqn (7.26) by subtracting the energy of free Minkowski space and using the
Abel–Plana formula. It was shown that the result obtained does not depend on
the form of the cutoff function used to regularize eqn (7.26) and the respective
expression in free space to be subtracted from eqn (7.26).

Here, we demonstrate the application of zeta function regularization, dis-
cussed in Section 4.1, to the case of two parallel planes. To begin, we disregard
the first term on the right-hand side of eqn (7.26) because it does not depend
on the separation distance (see the previous section). Next, we introduce the
regularization parameter s and rewrite eqn (7.26) in the regularized form

E
(s)
0 (a) =

∞∑
n=1

∫ ∞

0

k⊥dk⊥
2π

(
k2
⊥ +

π2n2

a2

)(1−2s)/2

S. (7.27)

Note that we have dropped the factor µ2s in eqn (4.3). By making the change of
variable k⊥ = πny/a, we obtain

E
(s)
0 (a) =

1

2π

(π

a

)3−2s ∞∑
n=1

1

n2s−3

∫ ∞

0

y dy
(
y2 + 1

)(1−2s)/2
S. (7.28)

The sum in eqn (7.28) reduces to the Riemann zeta function (4.6) with
z = 2s − 3. As was explained in Chapter 4, this function is defined by eqn
(4.6) for Re z > 1, i.e. for Re s > 2. We, however, need the value of ζR(z) at
z = −3 in the limit of removing the regularization, s → 0. If we use the defini-
tion of ζR(z) according to eqn (4.6), the value of ζR(−3) evidently diverges. To

obtain from E
(s)
0 (a) the physical Casimir energy per unit area E(a), the method

of zeta function regularization suggests the use of the analytic continuation of
the Riemann zeta function. As was discussed in Section 4.1, there exists a mero-
morphic function with a simple pole at z = 1 which can be obtained by analytic
continuation of the right-hand side of eqn (4.6) to the entire complex plane. Such
an analytic continuation is unique and well defined, for instance, at the point
z = −3. Needless to say, the values of this analytic continuation for Re z < 1 are
not represented by the right-hand side of eqn (4.6). For Re z < 0, these values
can be obtained from the reflection relation (5.50).
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Equation (5.50) results in ζR(−3) = 1/120. The integral in eqn (7.28) also
can be calculated at Re s > 3/2:∫ ∞

0

y dy
(
y2 + 1

)(1−2s)/2
= − 1

3 − 2s
. (7.29)

Substituting the regularized values of both the sum and the integral in eqn (7.28)

and replacing E
(s)
0 (a)/S with E(a) in the limiting case s → 0, we obtain

E(a) ≡ EIM(a) = − π2

720a3
, (7.30)

i.e. just the Casimir energy per unit area (2.82). From this, the electromagnetic
Casimir pressure is equal to that given by eqn (1.1).

It should be noted that with the use of analytic continuation of the zeta
function at z = −3 (i.e. in the limit s → 0), not only did the vacuum energy
remain finite, but this procedure also made this energy equal to the physical value
(7.30) obtained in Section 2.5 after the subtraction of the vacuum energy of free
Minkowski space. Thus, the application of this method to two parallel planes
is sometimes referred to as renormalization by zeta function regularization. For
more complicated configurations, the final result in the limit of removing the
regularization will in general be infinite and some additional renormalization
might be needed.

As can be seen from the above, the zeta function regularization method for
the configuration of parallel planes is not as physically transparent as regulariza-
tion using a cutoff function. The latter makes the vacuum energy in the presence
of boundary planes and the respective energy in the free Minkowski space indi-
vidually finite. In that case, the Abel–Plana formula allows one to find a finite
difference between the two quantities when the regularization is removed. How-
ever, as was shown in Chapter 4, zeta function regularization has some mathe-
matical advantages and helps one to find the general structure of the ultraviolet
divergences.

7.2.2 An ideal-metal plane and an infinitely permeable plane

The ideal-metal planes considered in Sections 2.5 and 7.2.1 are idealized thin
plates made of a material with an infinitely large magnitude of the dielectric
permittivity (more realistic models of metals will be considered in Part II). It
was H. B. G. Casimir himself who raised a question, in a letter to T. H. Boyer,
regarding magnetic boundary conditions in his effect. Stimulated by this letter,
Boyer (1974) solved the problem of the Casimir interaction between an ideal-
metal plane and an infinitely permeable plane characterized by an infinitely
large magnetic permeability. On the infinitely permeable plane, the tangential
component of the magnetic induction vanishes:

Bt(t, r)|S = 0. (7.31)

We assume that the plane z = 0 is made of an ideal metal and the plane z = a
is infinitely permeable.
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It is easily seen that the complete orthonormal set of solutions (7.21) satis-
fying Dirichlet boundary conditions on the plane at z = 0,

Ax;k⊥,n|z=0 = Ay;k⊥,n|z=0 = 0, (7.32)

also satisfies eqn (7.31) on the plane at z = a if we replace kzn = πn/a with the
kzn defined in eqn (7.16). This follows from the second equality in eqn (3.13)
and from the fact that the vector potential (7.22) with the above replacement of
kzn satisfies the Neumann boundary conditions

∂Ax;k⊥,n

∂z

∣∣∣∣
z=a

=
∂Ax;k⊥,n

∂z

∣∣∣∣
z=a

= 0. (7.33)

With the replacement of kzn, we get

Az;k⊥,n|z=a = 0, (7.34)

and eqn (7.33) becomes equivalent to eqn (7.31). Thus, the configuration of
an ideal-metal plane and an infinitely permeable plane becomes equivalent to
the simpler Casimir problems for a scalar field with mixed boundary conditions
considered in Sections 2.1 and 7.1.2.

In analogy to eqn (7.27), the regularized Casimir energy takes the form

E
(s)
0 (a) =

∞∑
n=0

∫ ∞

0

k⊥dk⊥
2π

[
k2
⊥ +

π2

a2

(
n +

1

2

)2
](1−2s)/2

S. (7.35)

By making the change of variable k⊥ = πy(n + 1/2)/a, this can be rearranged
as

E
(s)
0 (a) =

1

2π

(π

a

)3−2s ∞∑
n=0

(
2

2n + 1

)2s−3 ∫ ∞

0

y dy
(
y2 + 1

)(1−2s)/2
S. (7.36)

The sum can be expressed as ζ(2s−3, 1/2) in terms of the Hurwitz zeta function

ζ(z, q) ≡
∞∑

n=0

1

(n + q)z
, (7.37)

which is well defined for Re z > 1 and q �= 0, −1, −2, . . . . We, however, need
ζ(−3, 1/2) in the limit when the regularization is removed. This value can be ob-
tained from the following analytic continuation (Gradshteyn and Ryzhik 1994):

ζ(z, q) =
2Γ(1 − z)

(2π)1−z

[
sin

πz

2

∞∑
n=1

cos(2πqn)

n1−z
+ cos

πz

2

∞∑
n=1

sin(2πqn)

n1−z

]
. (7.38)

This continuation applies to the region Re z < 0 and 0 < q ≤ 1.



112 The Casimir effect for two ideal-metal planes

In our case, eqn (7.38) leads to

ζ

(
−3,

1

2

)
= −7

8

1

200
. (7.39)

Using eqns (7.29) and (7.39) with the regularization removed, we obtain from
eqn (7.36) the Casimir energy per unit area (Boyer 1974)

E(a) =
7

8

π2

720a3
. (7.40)

This is the positive Casimir energy, leading to the repulsive Casimir pressure

P (a) =
7

8

π2

240a4
, (7.41)

which is equal to a factor of −7/8 times the classical Casimir result for ideal-metal
planes. Note that the change from attraction to repulsion occurs because of the
mixed boundary conditions. If two infinitely permeable planes were considered,
we would return to the results (7.30) and (1.1) for ideal-metal planes.

There are various generalizations of eqn (7.41) to the case of nonzero temper-
ature (Santos et al. 1999). In Part II of the book, we shall discuss the influence
of the magnetic properties of real materials on the Casimir force.

7.3 The radiative corrections to the Casimir force

The interaction of the electromagnetic field with the electron–positron field gives
additional contributions to the Casimir effect. These are the radiative corrections
which occur for all quantum electrodymanic processes. The vacuum energy, as
we have considered it so far, can be represented in terms of Feynman graphs in
the lowest order with respect to this interaction. This is referred to as a one-loop
contribution. The radiative corrections are two- and higher-loop contributions.
Their relative magnitude depends strongly on the configuration considered. First
we consider the physically relevant configuration of conductor boundary condi-
tions and a massive spinor field. For two parallel planes at a separation a, the
vacuum energy, including the first radiative correction, can be written in the
form

E(a) = − π2

720a3

[
1 − α Gp

(
a

λC

)
+ . . .

]
, (7.42)

where the Compton wavelength of the electron λC and the fine structure constant
α (in the Gaussian system of units) are defined as

λC =
�

mec
≈ 3.86 × 10−13 m, α =

e2

�c
≈ 1

137
, (7.43)

and Gp(a/λC) is a dimensionless function. The representation (7.42) follows sim-
ply from dimensional considerations.
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The smallness of the radiative corrections is determined by two factors. The
first is the smallness of the coupling constant α. A similar expression in, for
example, quantum chromodynamics would have a bigger coupling constant in
place of α. The second factor is of geometrical nature, and its smallness follows
from the magnitude of the function Gp(a/λC). This function was derived by
Bordag et al. (1985). In the region of interest, the plate separation a is much
larger than λC in eqn (7.43). For instance, if the separation is about a micrometer,
we have λC/a ∼ 10−7. Thus, we need to know the behavior of the function Gp

for large arguments,

Gp

(
a

λC

)
=

9

128π

λC

a
+ O

(
λ2

C

a2

)
. (7.44)

Thus, in quantum electrodynamics, for a separation of 1 µm, the radiative cor-
rection is suppressed by approximately ten orders of magnitude. It is too small
to be measurable.

Although this chapter is devoted to the configuration of two ideal-metal
planes, we briefly mention here the radiative corrections to the Casimir energy
arising in the configurations of an ideal-metal spherical shell and a rectangu-
lar box. The dominant, one-loop, contributions to the Casimir energy in these
configurations are considered in Chapters 9 and 8, respectively. Thus, for a con-
ducting spherical shell, a similar calculation (Bordag and Lindig 1998) results
in

E(R) =
0.0461766

R

[
1 − α Gs

(
R

λC

)
+ . . .

]
, (7.45)

where R is the radius of the sphere. The leading-order contribution to the Casimir
energy of a spherical shell is considered in Section 9.3.3. The function Gs (R/λC)
was calculated for a large argument and found to have an expansion similar to
eqn (7.44),

Gs

(
R

λC

)
=

(
−0.001306 ln

λC

R
+ 0.01117

)
λC

R
+ O

(
λ2

C

R2

)
. (7.46)

Here, a logarithmic contribution has appeared, which is a result of the curvature.
The smallness of this radiative correction is similar to that for parallel planes.

Thus, at present, the interest in radiative corrections to the Casimir effect
is only theoretical. However, there are a number of interesting problems in this
area of research. First, there is the question of the ultraviolet divergences. From
the calculations by Bordag et al. (1985) and Bordag and Lindig (1998), it can
be seen that the renormalization of the additional loop can be done by charge
renormalization in the same way as in quantum electrodynamics without bound-
ary conditions. None of the remaining divergences affect the Casimir pressure.
However, a general investigation of the divergences resulting from higher loops
in the presence of boundaries is still missing.
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In the remaining part of this section, we discuss some extensions of the above
results and some questions of more theoretical interest. We start with the func-
tion Gp (a/λC). It was derived in the form of a double integral, and its asymptotic
expansion for large argument was found (Bordag et al. 1985). It was also cal-
culated numerically for all arguments (Milton 2001). It is a smooth, monotonic
function and its value at zero argument is Gp(0) = 4.016. This is the radiative
correction in the case of a massless spinor field. A similar result can be expected
for the spherical case. So one can conclude that for massless spinor fields, there
is no geometrical suppression of the radiative correction. The radiative correc-
tions to the Casimir effect between parallel planes at nonzero temperature were
investigated by Robaschik et al. (1987).

For further discussion of the above results, it is necessary to consider some
details of their derivation. In parallel, we shall discuss the corresponding formulas
for a scalar field. The starting point is the functional-integral representation of
the vacuum energy, eqn (3.103). It should be mentioned that the derivation of this
representation in Section 3.5 is also valid for interacting fields. The generating
functional Z[Υ] is given by eqn (3.100) and the action now consists of three
parts,

SQED = Sem + Sspinor + Sint, (7.47)

where the action of the electromagnetic field Sem is given by eqn (3.23) and the
action of the spinor field Sspinor is given by eqns (3.33) and (3.34). The interaction
term,

Sint = −e

∫
d4x ψ̄γµψAµ, (7.48)

is the usual one following from the covariant derivative

Dµ = ∂µ + ieAµ. (7.49)

In case of a scalar field, we would take

Sscalar = S[ϕ] +
λ

4!

∫
d4x ϕ4(x), (7.50)

where S[ϕ] is given by eqn (3.5) and λ is the coupling constant.
In both cases, the general Feynman rules for calculating higher-loop correc-

tions retain their validity in the presence of boundary conditions which enter
through the propagators. According to these rules, the effective action Weff [0] in
eqn (3.101) for a vanishing source is the sum of all connected vacuum graphs, i.e.
all connected graphs with no external legs. Then, from eqn (3.101), the effective
action for a vanishing source can be expressed through

ln Zscalar[0] = lnZ
(0)
scalar[0] +

1

8
+ . . . (7.51)

for the scalar field and
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ln ZQED[0] = lnZ
(0)
QED[0] + + . . . (7.52)

for quantum electrodynamics. Here, the wavy line represents the photon prop-
agator and the solid lines represent the spinor propagator. In eqns (7.51) and
(7.52), the superscript (0) denotes the contribution following from the noninter-
acting parts of the actions and gives rise to the vacuum energies that we have
considered so far. For example, for parallel plates we get the electromagnetic
Casimir energy (1.5) or (2.82), and for the scalar field we get one half of that.
These are the one-loop contributions. The radiative corrections are given by the
graphs in eqns (7.51) and (7.52) and have two loops. Using the corresponding
Feynman rules, and inserting the two-loop contribution for the scalar field into
the vacuum energy (3.103), one obtains

E
(2-loop)
0,scalar =

iλ

2T

∫
d4x

[
SG(x, x)

]2
, (7.53)

where SG(x, x′) is the scalar propagator obeying the corresponding boundary
conditions. This might be given, for example, by eqn (3.122). It should be men-
tioned that any representation of the propagator can be inserted into eqn (7.53),
for example a representation obtained using mirror images.

In quantum electrodynamics, the one-loop part consists of two contributions,
one from the electromagnetic field and one from the spinor field. The former
one, as in the scalar case, just gives the Casimir effect that we have considered
so far: that is, eqn (1.5) or (2.82) for parallel planes with conducting boundary
conditions. For the spinor contribution, the situation is different. Here, the only
local boundary condition is the bag boundary condition [see eqn (7.102)]. How-
ever, in the presence of the interaction (7.48), this condition is not compatible
with the conductor boundary conditions (3.46). The only compatible way is to
keep the spinor field without boundary conditions. Thus, the spinor field must be
considered for the whole space. As a consequence, the electromagnetic field must
also be considered for the whole space, i.e. on both sides of the boundary. In this
configuration, the radiative correction to the energy (3.103) following from the
graph in eqn (7.52) is

E
(2-loop)
0,QED =

i

2T

∫
d4x

∫
d4y SGνµ(x, y) Πµν(y − x). (7.54)

Here, SGµν(x, y) is the photon propagator obeying conductor boundary condi-
tions, which can be constructed as a direct generalization from eqn (3.122), and

Πµν(x − y) = −ie2 Tr γµS(x − y)γνS(y − x) (7.55)

is the quantum electrodynamical polarization tensor for the spinor propagator
S(x − y) in free space. The physical picture for this setup is that we have an
infinitely thin conducting surface and a spinor field which freely penetrates this
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surface. One could think of a metallic mesh whose spacing is bigger than the
Compton wavelength of the electron. Exactly this configuration was used to de-
rive eqs (7.42) and (7.45). The consistency of this configuration was reconfirmed
later (Bordag and Scharnhorst 1998) by considering semitransparent mirrors,
which reproduce the result (7.44) in the limit of becoming ideal conductors.

Another configuration where the boundary conditions are compatible with
respect to the interaction is obtained by taking bag boundary conditions for
both the electromagnetic and the spinor field. These boundary conditions can be
used in both quantum electrodynamics and quantum chromodynamics. However,
in this scheme the radiative corrections to the Casimir effect have not been
considered so far.

The radiative corrections for a scalar field with a self-interaction given by
eqn (7.50) have been calculated more than once. The first calculation was done
by Ford (1979), who, however, did not obtain a finite result for parallel planes.
The finite result, obtained by Kay (1979) and Toms (1980b), is

E(a) = − π2

1440a3

[
1 +

5

64
λ + O

(
λ2
)]

. (7.56)

The number 5/64 is the scalar analogue of Gp (0) in eqn (7.42). This result
has been later reconfirmed several times, and various boundary conditions and
massive fields have been considered (Barone et al. 2004).

For the electrodynamics of photons interacting with a massless scalar field in
a cube of size a, the first radiative correction has been calculated (Peterson et
al. 1982), and results in

E(a) =
0.09166

a

[
1 + 8.07 α + O

(
α2
)]

, (7.57)

where the leading contribution is the energy (8.64) for the electromagnetic field
in a cube, and α is the fine structure constant.

For parallel planes with periodic boundary conditions, the Casimir energy
is the same as the free energy in a finite-temperature theory with no bound-
ary conditions. This was first discussed by Toms (1980a). There and in a large
number of other papers [e.g. Langfeld et al. (1995)], mass generation due to the
vacuum energy was investigated. This includes spontaneous symmetry breaking
and phase transitions which occur when the radiative corrections given by the
graph in eqn (7.51) are taken into account. It should be mentioned that these
studies, strictly speaking, go beyond the Casimir effect as far as it is considered
in this book.

We conclude this section by mentioning some controversies concerning the
leading order of the radiative corrections. Using an effective-action approach,
Kong and Ravndal (1997) and Scharnhorst (1998) found that the leading term
in the radiative correction is of the second order in the fine structure constant and
that, in addition, it is suppressed by geometrical smallness. However, later it was
recognized (Bordag and Scharnhorst 1998, Ravndal and Thomassen 2001) that
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the first-order term is indeed present and does dominate. This was reconfirmed
recently by Aghababaie and Burgess (2004), who identified the correct procedure
to be used in the effective-action framework.

7.4 Two parallel planes at nonzero temperature

As explained in Chapter 5, temperature is an important parameter in the Casimir
effect. Here, we consider the thermal Casimir force in the configuration of two
parallel ideal-metal planes at z = 0, a (Fierz 1960, Mehra 1967, Brown and
Maclay 1969). These planes are supposed to be in thermal equilibrium with
the environment at a temperature T . We start with the general case and then
consider the limiting cases of low and high temperature.

7.4.1 General case

In Section 7.2, eqn (7.22), we have already determined the eigenfrequencies ωk⊥,n

of the electromagnetic oscillations between ideal-metal planes. At nonzero tem-
perature, instead of the energy (7.26), one must consider the free energy. For
the electromagnetic case in the configuration of parallel planes, eqns (5.29) and
(7.26) result in

F0(a, T ) =

∫ ∞

0

k⊥dk⊥
2π

{
1

2
ωk⊥,0 + kBT ln

(
1 − e−ωk⊥,0/kBT

)

+2

∞∑
n=1

[
1

2
ωk⊥,n + kBT ln

(
1 − e−ωk⊥,n/kBT

)]}
S, (7.58)

where S is the (infinite) area of the planes. Equation (7.58) reflects the existence
of two polarization states of the photon for all n ≥ 1, and of only one polarization
state at n = 0. This equation can be identically rewritten as

F0(a, T ) = kBT

∫ ∞

0

k⊥dk⊥
2π

[
ln

(
2 sinh

ωk⊥,0

2kBT

)
+ 2

∞∑
n=1

ln

(
2 sinh

ωk⊥,n

2kBT

)]
S

≡ F (n=0)
0 + F (n≥1)

0 (a). (7.59)

In the limit T → 0, the value of F0 leads to the zero-point energy defined in eqn

(7.26). We notice that F (n=0)
0 does not depend on the separation, and concentrate

our attention on rearrangements of F (n≥1)
0 .

First we use the argument principle (Ahlfors 1979)∑
n

g(an) −
∑
m

g(bm) =
1

2πi

∮
C1

g(z) d ln∆(z), (7.60)

where g(z) is some analytic function and ∆(z) is a meromorphic function inside
a closed contour C1, with an and bm being the zeros and poles of ∆(z) located
inside C1 [∆(z) is assumed to be analytic on C1]. We put

g(ω) = ln

(
2 sinh

ω

2kBT

)
, (7.61)
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Fig. 7.1. Integration paths (a) C1 and (b) C2 in the plane of the complex
frequency. The Matsubara frequencies are ξl and the photon eigenfrequencies
are ωk⊥,n (Geyer et al. 2003).

∆(ω) = e−aq(ω) sina
√

ω2 − k2
⊥, q2(ω) = k2

⊥ − ω2

and choose the contour C1 in the plane of the complex frequency ω to go around
the poles in the counterclockwise direction, as shown in Fig. 7.1(a). Here, the
two arcs have an infinitely small radius ε and an infinitely large radius R, and
the two straight lines L1, L2 are inclined at angles of ±45 degrees to the real
axis. It is clear that ∆(ωk⊥,n) = (−1)n sinπn = 0 and that ∆(ω) has no poles (a
function with these properties is called a mode-generating function; see Chapter
9). Using eqns (7.59)–(7.61), we arrive at

F (n≥1)
0 (a, T ) = kBT

∫ ∞

0

k⊥dk⊥
π

S

2πi

∮
C1

ln

(
2 sinh

ω

2kBT

)
d ln ∆(ω). (7.62)

Note that the function g(ω) in eqn (7.61) has branch points at imaginary
frequencies ωl = iξl, where the ξl = 2πkBT l with l = 0, ±1, ±2, . . . are the
Matsubara frequencies (see Section 5.1). The contour C1 in Fig. 7.1(a) is chosen
so as to avoid all of the branch points and to enclose all oscillation frequencies
ωk⊥,n with n ≥ 1. To calculate the countor integral in eqn (7.62), we represent
it as a sum of four integrals along the contours CR, L1, Cε, and L2. It is easy to
check that the integral along CR vanishes when R → ∞. Then we integrate the
remaining three integrals by parts. It is seen that all of the terms, other than
the integrals obtained after integration by parts, cancel each other or are equal
to zero [such as at the points A and B in Fig. 7.1(a)]. The integral along L1 can
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be calculated using the Cauchy theorem applied to the closed contour C2 [see
Fig. 7.2(b)], inside which the function under consideration is analytic:

−
∫

L1

coth
ω

2kBT
ln ∆(ω) dω =

∫ i∞

iε

coth
ω

2kBT
ln ∆(ω) dω. (7.63)

The path (iε, i∞) contains semicircles of radius ε about the poles iξl of the
function coth(ω/2kBT ). The integral along the line L2 is calculated in a similar
way (details are presented by Geyer et al. 2003). As a result of the integration by

parts, we obtain only poles instead of branch points and represent F (n≥1)
0 (a, T )

in the form

F (n≥1)
0 (a, T ) =

1

2

∫ ∞

0

k⊥dk⊥
π

S

2πi

∫ i∞

−i∞
coth

ω

2kBT
ln ∆(ω ) dω. (7.64)

The integration of this equation, involving poles at the points iξl, leads to

F (n≥1)
0 (a, T ) = − iS

4π

∫ ∞

0

k⊥dk⊥
π

∫ ∞

−∞
cot

ξ

2kBT
ln ∆(iξ) dξ

+
S

4

∫ ∞

0

k⊥dk⊥
π

∞∑
l=−∞

res

[
coth

ω

2kBT
ln ∆(ω); iξl

]
, (7.65)

where

∆(iξ) = e−a
√

k2
⊥

+ξ2
sinh a

√
k2
⊥ + ξ2. (7.66)

Noting that ∆(iξ) is an even function of ξ, we conclude that the apparently
pure imaginary integral on the right-hand side of eqn (7.65) vanishes. After the
calculation of the residues, and using the evenness of the function ∆(iξl), we
arrive at the result

F (n≥1)
0 (a, T ) =

kBTS

π

∫ ∞

0

k⊥dk⊥
∞∑
l=0

′
ln ∆(iξl), (7.67)

where the prime on the summation sign means that the term for l = 0 has to be
multiplied by 1/2.

The free energy (7.59), (7.67) is infinite. The finite Casimir energy per unit
area of the planes is obtained by subtraction from F0(a, T ) of the free energy for
infinitely separated planes,

F(a, T ) =
F0(a, T )

S
− lim

a→∞
F0(a, T )

S
. (7.68)

This is equivalent to the replacement of ∆(iξl) in eqn (7.67),

∆(iξl) =
1

2

(
1 − e−2a

√
k2
⊥

+ξ2
l

)
(7.69)
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[see eqn (7.66)], with ∆/∆∞, where ∆∞ = 1/2. The result is

F(a, T ) =
kBT

π

∞∑
l=0

′ ∫ ∞

0

k⊥dk⊥ ln
(
1 − e−2a

√
k2
⊥

+ξ2
l

)
. (7.70)

From eqn (7.70), the thermal Casimir pressure between the parallel planes
takes the form

P (a, T ) = −∂F(a, T )

∂a
= −2kBT

π

∞∑
l=0

′ ∫ ∞

0

k⊥dk⊥

√
k2
⊥ + ξ2

l

e2a
√

k2
⊥

+ξ2
l − 1

. (7.71)

In Part II of the book, the Casimir entropy, defined as

S(a, T ) = −∂F(a, T )

∂T
, (7.72)

plays an important role in thermodynamic tests of the various approaches to the
calculation of the Casimir force between real materials. From eqns (7.70) and
(7.72), one obtains

S(a, T ) = − 1

T
F(a, T ) +

kB

π

∞∑
l=1

ξ2
l ln

(
1 − e−2aξl

)
. (7.73)

To calculate the Casimir free energy, pressure, and entropy for two ideal-metal
planes, it is convenient to introduce a dimensionless variable and a parameter

y = 2a
√

k2
⊥ + ξ2

l , τ = 2π
T

Teff
= 4πakBT, (7.74)

respectively, where kBTeff = 1/(2a). Expressed in terms of these, the Casimir
free energy per unit area and the pressure are

F(a, T ) =
τ

16π2a3

∞∑
l=0

′ ∫ ∞

τl

y dy ln(1 − e−y), (7.75)

P (a, T ) =
τ

16π2a4

∞∑
l=0

′ ∫ ∞

τl

dy
y2

ey − 1
.

It is very convenient to rewrite eqn (7.75) with the help of the Poisson sum-
mation formula (5.18), (5.19). This formula was first used in the theory of the
Casimir effect by Mehra (1967), Brown and Maclay (1969), and Schwinger et al.
(1978). In the case of the free energy, we substitute

b(l) =
τ

32π2a3

∫ ∞

τ |l|
y dy ln

(
1 − e−y

)
(7.76)

and obtain
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c(α) =
1

π

∫ ∞

0

b(x) cosαx dx (7.77)

because b(x) is an even function of x. Then, according to eqn (5.19),

F(a, T ) =

∞∑
l=−∞

b(l) = 4π

∞∑
l=0

′
c(2πl), (7.78)

where

c(2πl) =
τ

32π3a3

∫ ∞

0

dx cos 2πlx

∫ ∞

τx

y dy ln
(
1 − e−y

)
(7.79)

=
1

32π3a3

∫ ∞

0

dv cos ltv

∫ ∞

v

y dy ln
(
1 − e−y

)
.

Here, a new variable v = τx has been introduced and t ≡ Teff/T .
Substituting eqn (7.79) in eqn (7.78) and changing the order of the integra-

tion, we get

F(a, T ) =
1

8π2a3

∞∑
l=0

′ ∫ ∞

0

y dy ln
(
1 − e−y

) ∫ y

0

dv cos ltv. (7.80)

Calculating the integrals (Gradshteyn and Ryzhik 1994) and separating the l = 0
term, we finally obtain

F(a, T ) = − π2

720a3

{
1 +

45

π3

∞∑
l=1

[
coth(πlt)

t3l3
+

π

t2l2sinh2(πtl)

]
− 1

t4

}
. (7.81)

As is seen from eqn (7.81), the contribution with l = 0 is just the Casimir
energy per unit area at T = 0 obtained in eqn (7.30), whereas the other terms
correspond to the thermal correction.

In a similar way, by applying the Poisson formula to the second equality in
eqn (7.75), we obtain an expression for the thermal Casimir pressure,

P (a, T ) = − π2

240a4

{
1 +

30

π4

∞∑
l=1

[
1

t4l4
− π3

tl

cosh(πlt)

sinh3(πtl)

]}
. (7.82)

As with the free energy, the first term on the right-hand side of eqn (7.82) is
the Casimir pressure at T = 0 (1.1), and the other terms represent the thermal
correction.

In perfect analogy to the Casimir entropy (7.72), (7.73), the entropy per unit
area is given by (Mitter and Robaschik 2000)

S(a, T ) =
3kB

8πa2

{ ∞∑
l=1

[
coth(πlt)

t2l3
+

π

tl2sinh2(πtl)
+

2π2cosh(πlt)

3lsinh3(πtl)

]
− 4π3

135t3

}
.

(7.83)
Note that eqn (7.81) can be obtained directly from the general equations

(5.36) and (5.37), which represent the renormalized free energy associated with
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a volume V . In fact, for two parallel planes, α1 = α2 = 0 and eqns (5.36), (5.37),
and (5.29) represent the electromagnetic Casimir free energy per unit area in the
form

F(a, T ) = − π2

720a3
+

kBT

π

∫ ∞

0

k⊥dk⊥
∞∑

n=0

′
ln
(
1 − e−ωk⊥,n/kBT

)
+

π2(kBT )4a

45
.

(7.84)
By introducing the new variable

z =
1

kBT
ωk⊥,n =

1

kBT

√
k2
⊥ +

(πn

a

)2

(7.85)

and changing the order of summation and integration, we can rearrange eqn
(7.84) as

F(a, T ) = − π2

720a3
+

(kBT )3

π

∞∑
n=0

′ ∫ ∞

2πnt

z dz ln
(
1 − e−z

)
+

π2

720a3t4
. (7.86)

The integral entering eqn (7.86) can be evaluated using the series expansion

∫ ∞

2πnt

z dz ln
(
1 − e−z

)
= −

∞∑
l=1

1

l

∫ ∞

2πnt

z dz e−lz

= − 1

8πa3

∞∑
l=1

1

(lt)3
(1 + 2πnlt)e−2πnlt. (7.87)

Substituting this into eqn (7.86) and performing the summation in n, we again
obtain eqn (7.81).

The limiting cases for low and high temperature of the above expressions for
the free energy, pressure, and entropy are considered below.

7.4.2 The limit of low temperature

Here, we consider the asymptotic behavior of the Casimir free energy, pressure
and entropy at low temperatures, i.e. under the condition T � Teff . This is
equivalent to t ≡ Teff/T � 1. Terms in powers of the small parameter 1/t in eqn
(7.81) result only from those containing coth(πtl) and −1/t4. They are given by

F(a, T ) = − π2

720a3

[
1 +

45ζR(3)

π3

(
T

Teff

)3

−
(

T

Teff

)4
]

, (7.88)

where ζR(3) ≈ 1.202. Equation (7.88) coincides with the low-temperature be-
havior of the Casimir free energy obtained in eqn (5.41) for configurations with
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r = 2 translationally invariant directions. All corrections to eqn (7.88) are expo-
nentially small. The leading exponentially small correction to be added to the
terms in the square brackets in eqn (7.88) is

180

π2

(
T

Teff

)2

e−2πTeff/T . (7.89)

For example, at a separation of a = 1 µm, the effective temperature is Teff ≈
1145 K and the asymptotic expression (7.88) is clearly applicable at room tem-
perature.

In a similar way, the low-temperature behavior of the Casimir pressure (7.82)
is given by

P (a, T ) = − π2

240a4

[
1 +

1

3

(
T

Teff

)4
]

. (7.90)

It is notable that if one obtains eqn (7.90) from eqn (7.88) using the first equality
in eqn (7.71), the second term on the right-hand side of eqn (7.88) does not con-
tribute to the result, because it does not depend on a. The leading exponentially
small correction to be added to the terms in the square brackets in eqn (7.90)
has the form

−120

π

T

Teff
e−2πTeff/T . (7.91)

Now we deal with the low-temperature behavior of the Casimir entropy per
unit area (7.83). Terms in powers of the small parameter 1/t arise from the first
and the fourth term in the curly brackets in eqn (7.83):

S(a, T ) =
3ζR(3)kB

8πa2

(
T

Teff

)2 [
1 − 4π3

135ζR(3)

T

Teff

]
. (7.92)

The leading exponentially small correction inside the square brackets in eqn
(7.92) is

8π2

3ζR(3)

(
Teff

T

)2

e−2πTeff/T . (7.93)

Equation (7.92) can also be obtained from eqn (7.88) using eqn (7.72).
The properties of the Casimir entropy are important as a test of the consis-

tency of the Matsubara quantum field theory with thermodynamics. As can be
observed from eqn (7.83), S(a, T ) > 0 at any a and any T . From eqn (7.92), we
also get

S(a, T ) → 0 when T → 0, (7.94)

i.e. the third law of thermodynamics (the Nernst heat theorem) is satisfied. Thus,
the Matsubara formulation is in agreement with the thermodynamic test when
applied to ideal-metal planes. This test will be an important guide when we deal
with plates made of real materials in Part II of the book.



124 The Casimir effect for two ideal-metal planes

We conclude this section with a remark about units. If the fundamental
constants � and c were restored in eqns (7.81)–(7.88) and (7.90) above, the right-
hand side of each equation would be multiplied by �c. The Casimir free energy,
pressure, and entropy also depend on �c through the definition of the effective
temperature: kBTeff = �c/(2a). In the low-temperature limit considered in this
section, all of the above quantities are of quantum and relativistic character
because they depend on both � and c.

7.4.3 The limit of high temperature

Now we consider the Casimir free energy, pressure, and entropy in the configu-
ration of two parallel ideal-metal planes under the opposite condition T � Teff ,
i.e. t � 1. It is easier to obtain the respective asymptotic expressions from eqn
(7.75) rather than from eqns (7.81)–(7.83).

We consider the contribution to the first equation in eqn (7.75) with l = 0,
i.e. the zero-Matsubara-frequency term:

F(a, T ) =
τ

32π2a3

∫ ∞

0

y dy ln
(
1 − e−y

)
= − kBT

8πa2
ζR(3). (7.95)

It is easy to see that in the limit of high temperature, the neglected contributions
of all terms with l ≥ 1 are exponentially small:

τ

16π2a3

∫ ∞

τl

y dy ln
(
1 − e−y

)
= − τ

16π2a3

∞∑
n=1

1

n

∫ ∞

τl

y e−nydy

= − τ

16π2a3

∞∑
n=1

1

n3
(1 + τln)e−τln. (7.96)

Thus, the leading correction to eqn (7.95) is equal to

−kBT

2a2

T

Teff
e−2πT/Teff . (7.97)

In a similar way, from the second equation in eqn (7.75), one obtains the
following for the Casimir pressure at T � Teff :

P (a, T ) = − kBT

4πa3
ζR(3). (7.98)

The leading correction to eqn (7.98) is given by

−πkBT

a3

(
T

Teff

)2

e−2πT/Teff . (7.99)

For the Casimir entropy per unit area at high temperature, one obtains

S(a, T ) =
kB

8πa2
ζR(3), (7.100)
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where the leading exponentially small correction is

−kBπ

a2

(
T

Teff

)2

e−2πT/Teff . (7.101)

In fact, at room temperature the asymptotic expressions (7.95), (7.98), and
(7.100) work well at separations larger than 6 µm.

We note that eqns (7.95), (7.98), and (7.100) have the same form in units
where � = c = 1 and where � and c are indicated explicitly, because the results
obtained at high temperature do not depend on � and c. This is the so-called
classical limit (Feinberg et al. 2001, Scardicchio and Jaffe 2006). As is known from
quantum statistical physics, in this limit the Bose–Einstein and Fermi–Dirac
quantum distribution functions reduce to the Maxwell–Boltzmann distribution.
In Part II of this book, agreement with the classical limit is also considered as
a test of consistency for any theory of the thermal Casimir force between real
material bodies.

It is also worth noting that the asymptotic behaviors of the thermal Casimir
pressure between ideal-metal planes at low and high temperature are connected
by means of inversion symmetry (Brown and Maclay 1969).

7.5 The spinor Casimir effect between parallel planes

A spinor field of mass m is described by the Dirac equation (3.30) and the
energy–momentum tensor (3.36). As was noted at the end of Section 3.2, a
Dirichlet boundary condition cannot be imposed on a bispinor ψ, because this
would be in contradiction with the Dirac equation. Therefore we use the bag
boundary condition (Johnson 1975)

(iγ · n + 1)ψ(x)|S = 0, (7.102)

where n is the unit vector normal to the surface. It can be easily observed that if
eqn (7.102) is satisfied, the current of Dirac particles flowing through the surface
in the direction n is equal to zero. To make sure that this is really the case, we
multiply eqn (7.102) by the Dirac conjugate bispinor ψ̄ from the left and obtain

j(x) · n|S = iψ̄(x)ψ(x)
∣∣
S

, (7.103)

where j = ψ̄γψ is the current of Dirac particles. By considering the Hermitian
conjugate of eqn (7.102), we obtain[

−iψ+(x)γ+ · n + ψ+(x)
]∣∣

S
= 0. (7.104)

Multiplication of eqn (7.104) from the right by the Dirac matrix γ0 and use of
the anticommutation relations (3.31) leads to[

−iψ̄(x)γ · n + ψ̄(x)
]∣∣

S
= 0. (7.105)
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Finally, multiplication of the above equation by ψ(x) from the right results in

j(x) · n|S = − iψ̄(x)ψ(x)
∣∣
S

. (7.106)

From a comparison of eqns (7.103) and (7.106), we conclude that

j(x) · n|S = iψ̄(x)ψ(x)
∣∣
S

= 0. (7.107)

Now we consider two parallel planes z = 0, a, with the boundary condition
(7.102) on both of them. The normal vector is given by n = (0, 0, 1) and n =
(0, 0,−1) on the planes z = 0 and z = a, respectively. Solutions of the Dirac
equation (3.30) can be obtained in the usual manner:

ψ(x) = e−iωt

(
ϕ(r)
χ(r)

)
, χ(r) = − iσ · ∇ϕ(r)

m + ω
, (7.108)

where ϕ and χ are two-component spinors and we use the standard representation
of the Dirac matrices

γi =

(
0 σi

−σi 0

)
, γ0 =

(
I 0
0 −I

)
(7.109)

[I is the 2 × 2 unit matrix and σ = (σx, σy, σz) is the Pauli matrices].
In the configuration under consideration, the upper spinor takes the form

ϕ(r) = ei(kxx+kyy)
(
ueikzz + ve−ikzz

)
, (7.110)

where u and v are constant spinors. Substituting eqns (7.108) and (7.110) into
the Dirac equation (3.30), we obtain

∇
2ϕ + (ω2 − m2)ϕ = 0, ω2 = m2 + k2

⊥ + k2
z . (7.111)

Equation (7.108) can be also used to eliminate the lower spinor χ from the
boundary condition (7.102):

[(m + ω)σ · nϕ + σ · ∇ϕ]|S = 0. (7.112)

The substitution of eqn (7.110) into eqn (7.112) at z = 0 and z = a leads
to two equations for the spinors u and v, which are compatible only when the
eigenvalues kz = kzn satisfy the following equality (Mamayev and Trunov 1980,
Mostepanenko and Trunov 1997):

f(kzna) = ma sin kzna + kzna cos kzna = 0. (7.113)

Note that eqn (7.113) is obtained with the condition kz �= 0. In fact, kz = 0 does
not satisfy the boundary condition (7.112). The respective eigenfrequencies ωn

are found from eqn (7.111) by replacing kz with kzn.
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The vacuum energy of the spinor field, defined as

E0(a) =

∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ a

0

dz 〈0|T (1/2)
00 (z)|0〉, (7.114)

where T
(1/2)
µν is presented in eqn (3.36), takes the form

E0(a) = −2

∫ ∞

0

k⊥dk⊥
2π

∞∑
n=1

ωnS. (7.115)

It is easy to explicitly find the finite Casimir energy of a spinor field between
the planes in the massless case m = 0. In this case eqn (7.113) can be solved
with the result

kzn =
π

a

(
n +

1

2

)
, n = 0, 1, 2, . . . . (7.116)

Subtracting from eqn (7.115) the vacuum energy of the spinor field in the volume
between the planes in free Minkowski space

E0M(a) = −2a

π

∫ ∞

0

k⊥dk⊥
2π

∫ ∞

0

dkz ωkS (7.117)

[compare this with eqn (2.75) for the electromagnetic field], and dividing by the
area of the planes, we arrive at the Casimir energy per unit area,

E(a) = −1

a

∫ ∞

0

k⊥dk⊥


 ∞∑

n=0

√
A2 +

(
n +

1

2

)2

−
∫ ∞

0

dt
√

A2 + t2


 . (7.118)

Here, A ≡ ak⊥/π and t ≡ akz/π. The application of the Abel–Plana formula
(2.41) adapted for summation over half-integers leads to

E(a) = − 7π2

2880a3
(7.119)

(see the end of Section 2.5 for calculation details, which are the same as for the
electromagnetic case). The respective Casimir pressure is given by

P (a) = − 7π2

960a4
. (7.120)

To change these equations to the usual units, �c must be added to the numerators
of eqns (7.119) and (7.120).

For a massive spinor field, one must perform a summation over the roots of
eqn (7.113). This can be done using the argument principle (7.60). As a result,
for ma � 1, small corrections to eqn (7.119) are obtained. For ma � 1, E(a) is
exponentially small in the parameter ma (Mostepanenko and Trunov 1997).
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7.6 The Casimir effect for a wedge

In this section we calculate the Casimir energy density for an ideal-metal wedge,
i.e. for two planes that are inclined at a given angle ϕ0. Let the wedge axis
coincide with the z-axis and let the polar coordinates in the coordinate plane
(x, y) be (ρ, ϕ). For a massless scalar field, this problem was solved by Dowker
and Kennedy (1978) using zeta function regularization. The electromagnetic case
was considered by Deutsch and Candelas (1979) using Green’s functions and
point-splitting regularization techniques. Later these results were rederived by
means of Schwinger’s source theory (Brevik and Lygren 1996) and in terms of a
local zeta function (Nesterenko et al. 2002). Here we consider only an realistic
case of an electromagnetic field, bearing in mind the application of the results
obtained in Part II of the book to the estimation of the effect of nonparallelity
of the plates.

After separation of the time variable in accordance with eqn (3.64), the set
of solutions of the boundary problem (3.48), (3.65) for the two independent
polarizations of the electromagnetic field can be presented in the form

A
(1)
J (r) = −βJeikzz




(αn/ρ)Jαn(kρρ) sin αnϕ

kρJ
′
αn(kρρ) cosαnϕ

0


 ,

(7.121)

A
(2)
J (r) = βJ

eikzz

ωJ




−kzkρJ
′
αn(kρρ) sinαnϕ

−kz(αn/ρ)Jαn(kρρ) cosαnϕ

ik2
ρJαn(kρρ) sinαnϕ


 .

We note that the Coulomb gauge (3.47) has been used in the above. Here, Jν(z)
is a Bessel function and J ′

ν(z) is the derivative of it with respect to its argument
z. The collective quantum number is J = (kρ, n, kz), where 0 ≤ kρ < ∞, −∞ <
kz < ∞, n = 0, 1, 2, . . . , and the oscillator frequency is equal to ω2

J = k2
z + k2

ρ.
The parameter α is defined by α ≡ π/ϕ0, and the normalization factor is given
by

βJ =
α

π3/2kρ

(
1 − 1

2
δn0

)
. (7.122)

Note that A
(1)
J (r) is the transverse electric mode and A

(2)
J (r) is the transverse

magnetic mode introduced in Section 7.2. The tangential components of both
modes vanish on the wedge faces, at ϕ = 0, ϕ0, as is required by the boundary
conditions [allowance must be made for the fact that the tangential components
of the vector potentials (7.121) are defined by their ρ and z components, i.e. by
the first and the third component instead of the first and the second component,
as was the case in the configuration of two parallel planes perpendicular to the
z-axis]. A set of vector potentials similar to eqn (7.121) was used by Bezerra
de Mello et al. (2007) in an investigation of the electromagnetic Casimir effect
inside an ideal-metal cylindrical shell in a cosmic-string space–time.
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Representing the field operator in the form

A(x) =
∑

J

2∑
λ=1

1√
ωJ

[
e−iωJt

A
(λ)
J (r)a

(λ)
J + eiωJ t

A
(λ)
J

∗
(r)a

(λ)
J

+]
, (7.123)

substituting this in eqn (3.29), and using eqn (3.13) with A0 = 0, eqn (3.72), and
eqn (3.73), we obtain the following expression for the electromagnetic vacuum
energy density inside a wedge:

〈0|T (1)
00 (ρ)|0〉 =

α

4π2

∞∑
n=0

′ ∫ ∞

−∞
dkz

∫ ∞

0

dkρ

k3
ρ√

k2
ρ + k2

z

(7.124)

×
{(

1 + 2
k2

z

k2
ρ

)[
J ′2

αn(kρρ) +
α2n2

k2
ρρ2

J2
αn(kρρ)

]
+ J2

αn(kρρ)

}
.

The respective expression in cylindrical coordinates in free Minkowski space is

〈0M|T (1)
00 |0M〉 =

1

4π2

∫ ∞

−∞
dkz

∫ ∞

0

kρ dkρ ωJ (7.125)

and does not depend on position.
For the case of integer α, eqn (7.124) can be simplified using the following

summation formulas (Prudnikov et al. 1986, Bezerra de Mello et al. 2007):

∞∑
n=0

′
J2

αn(kρρ) =
1

2α

α−1∑
l=0

J0

(
2kρρ sin

πl

α

)
, (7.126)

∞∑
n=0

′
[
J ′2

αn(kρρ) +
α2n2

k2
ρρ2

J2
αn(kρρ)

]
=

1

2α

α−1∑
l=0

cos
2πl

α
J0

(
2kρρ sin

πl

α

)
.

Substituting eqn (7.126) in eqn (7.124), we obtain

〈0|T (1)
00 (ρ)|0〉 =

1

8π2

α−1∑
l=0

∫ ∞

−∞
dkz

∫ ∞

0

dkρ
kρ√

k2
ρ + k2

z

(7.127)

×
[
(k2

ρ + 2k2
z) cos

2πl

α
+ k2

ρ

]
J0

(
2kρρ sin

πl

α

)
.

The term with l = 0 in this equation is equal to the vacuum energy density in
free Minkowski space (7.125). Thus it is canceled in the Casimir energy density

ε(ρ) = 〈0|T (1)
00 (ρ)|0〉 − 〈0M|T (1)

00 |0M〉. (7.128)

Bearing in mind that both of the quantities (7.125) and (7.127) are divergent,
we introduce a cutoff function exp(−δω) in the integrand and change to polar
coordinates (ω, θ) on the plane (kρ, kz). As a result, eqn (7.128) takes the form

ε(ρ) =
1

4π2
lim
δ→0

α−1∑
l=1

∫ π/2

0

dθ cos θ

[
(1 + sin2 θ) cos

2πl

α
+ cos2 θ

]
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×
∫ ∞

0

dω ω3e−δωJ0

(
2ωρ cos θ sin

πl

α

)
. (7.129)

Now we introduce a new variable v = sin θ and use the substitution yl =
1/ sin(πl/α). Then eqn (7.129) can be rearranged to

ε(ρ) =
1

2π2
lim
δ→0

α−1∑
l=1

1

y2
l

∫ 1

0

dv (y2
l − 1 − v2)

∫ ∞

0

dω ω3e−δωJ0

(
ω

2ρ
√

1 − v2

yl

)
.

(7.130)
Using the formula (Prudnikov et al. 1986)

∫ ∞

0

dω ω3e−δωJ0

(
ω

2ρ
√

1 − v2

yl

)
= − ∂3

∂δ3

yl√
δ2y2

l + 4ρ2(1 − v2)
, (7.131)

we rewrite eqn (7.130) in the form

ε(ρ) = − 1

4π2ρ
lim
δ→0

α−1∑
l=1

1

yl

∂3

∂δ3

∫ 1

0

dv
yl(y

2
l − 1 − v2)√

δ2y2
l + 4ρ2(1 − v2)

. (7.132)

By performing the integration, differentiation, and limiting transition in eqn
(7.132), we obtain

ε(ρ) = − 1

16π2ρ4

α−1∑
l=1

y4
l , (7.133)

and after the summation we finally find

ε(ρ) = − 1

720π2ρ4
(α2 − 1)(α2 + 11). (7.134)

This result has been obtained for an integer α (i.e. for ϕ0 = π/2, π/3, . . .).
However, the formula (7.134) obtained can be analytically continued to any non-
integer value of α.

It is interesting to note that for α = 1 (ϕ0 = π) we have ε(ρ) = 0, as
would be expected for the Casimir energy density of a massless field near a
single plane. If we perform the limiting transition ϕ0 → 0, ρ → ∞ under the
condition ϕ0ρ ≡ a = const, the wedge is transformed into two parallel planes
with a separation distance a between them. In agreement with this, it can be
seen in eqn (7.134) that aε goes to −π2/(720a3), i.e. the Casimir energy per unit
area of the planes (7.30). Thus, the results obtained for both configurations are
consistent.

In a similar way, it is not difficult to obtain the Casimir energy density of
a massless scalar field described by the metrical energy–momentum tensor (3.9)
(Deutsch and Candelas 1979),

ε(ρ) = − 1

1440π2ρ4
(α4 − 1). (7.135)
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7.7 The dynamical Casimir effect

There are various dynamical Casimir effects which arise from the movement
of planes. For a uniformly moving plane, the Casimir force acquires a velocity-
dependent correction. For an accelerated plane, the Casimir force is accompanied
by the creation of particles from the vacuum.

7.7.1 Uniformly moving plane

Here, we briefly discuss the simplest case where one of the ideal-metal planes,
at z = 0, is stationary and the other one, at z = a(t) = a0 + vt, moves with a
constant velocity v in the positive direction of the z-axis. For a massless scalar
field, this situation was considered by Bordag et al. (1984) using the Green’s
function method. The vacuum energy density was obtained from eqn (3.92),
in each of the three domains [below the plane z = 0, in between the planes,
and above the plane z = a(t)]. After subtraction of the contribution from free
Minkowski space, the Casimir pressure between the two planes was obtained
under the condition that v � 1 (v � c in the usual units):

P [a(t)] = − π2

480a4(t)

[
1 +

8

3
v2 + O(v4)

]
. (7.136)

It is seen that the first contribution on the right-hand side of eqn (7.136) agrees
with eqn (7.9) if we replace a with a(t). The second contribution is a nontrivial
correction due to the movement of the upper plane.

Similar results were obtained using the same method for the electromagnetic
Casimir effect (Bordag et al. 1986). For v � 1, we get

P [a(t)] = − π2

240a4(t)

[
1 −

(
10

π2
− 2

3

)
v2 + O(v4)

]
. (7.137)

It is notable that for v � 1 the velocity-dependent correction to the Casimir
pressure has opposite signs in the scalar and electromagnetic cases. Formally,
one may consider also the case of large velocities, 1 − v � 1. In this case even
the leading term cannot be obtained from eqn (1.1) by the substitution a → a(t).
The result is

P [a(t)] = − 3

8π2a4(t)

{
1 +

(1 − v2)2

16
+ O

[
(1 − v2)4

]}
. (7.138)

Here we shall leave our discussion of the dynamic Casimir effect due to a uni-
formly moving plane, as it has been discussed previously in the literature (Mos-
tepanenko and Trunov 1997, Bordag et al. 2001a).

7.7.2 Particle creation from an accelerated plane

Another, more interesting, modification of the dynamical Casimir effect is the
creation of particles from the vacuum by accelerated boundaries (Moore 1970,
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Fulling and Davies 1976). The creation of particles from the vacuum by nonsta-
tionary external fields is a well-explored area (Greiner et al. 1985, Grib et al.
1994). Bearing in mind that a material boundary can be considered as a kind
of concentrated external field, it is not surprising that moving boundaries act in
the same way as a nonstationary external field. We shall outline the main ideas
of particle creation by moving boundaries with the example of a massless scalar
field on an interval [0, a(t)], where a(t) = a0 ≡ a(0) for t ≤ 0 and a(t) is some
function of t for t > 0.

The boundary conditions (2.3) now read

ϕ(t, 0) = ϕ (t, a(t)) = 0. (7.139)

We assume that |ϕ′(t)| < 1. This allows one to consider the boundary point (a
mirror) as some material body. The original papers (Moore 1970, Fulling and
Davies 1976) reduced the problem of nonstationary boundary conditions to a
static one by means of a conformal transformation. This, however, is possible
only in two-dimensional space–time. Here, we follow another approach (Razavy
and Terning 1985, Law 1995) applicable both in two and in four dimensions.

At t < 0, the complete orthonormal set of solutions of eqn (2.1) with m = 0
and boundary conditions (7.139) is given by eqn (2.6), where we replace a with
a0. The complete orthonormal set of solutions of the same boundary problem at

t ≥ 0, χ
(±)
n (t, x), should satisfy the initial conditions

χ(±)
n (0, x) = ϕ(±)

n (0, x) =
1√
πn

sin
πnx

a0
, (7.140)

∂χ
(±)
n (t, x)

∂t

∣∣∣∣∣
t=0

=
∂ϕ

(±)
n (t, x)

∂t

∣∣∣∣∣
t=0

= ∓i
πn

a0
ϕ(±)

n (0, x).

The functions χ
(+)
n (t, x), as yet unknown, can be found in the form of a series

χ(+)
n (t, x) =

1√
πn

∑
k

Qnk(t)

√
a0

a(t)
sin

πkx

a(t)
, (7.141)

where the initial conditions for Qnk are given by

Qnk(0) = δnk, Q′
nk(0) = −i

πn

a0
δnk. (7.142)

Note that χ
(−)
n (t, x) = χ

(+)
n

∗
(t, x). It is obvious that both of the boundary con-

ditions in eqn (7.139) are identically satisfied in eqn (7.141). Now we substitute
eqn (7.141) into the field equation (2.1) with m = 0 and, after some rearrange-
ment, arrive at an infinite coupled system of differential equations with respect
to the functions Qnk(t) (Law 1995),

Q′′
nk(t) +

π2k2

a2(t)
Qnk(t) (7.143)
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=
∑

j

[
2ν(t)hkjQ

′
nj(t) + ν′(t)hkjQnj(t) + ν2(t)

∑
l

hjkhjlQnl(t)

]
.

Here, the following notation has been introduced:

ν(t) =
a′(t)
a(t)

, hkj = −hjk = (−1)k−j 2kj

j2 − k2
, j �= k. (7.144)

Let the boundary point a(t) return to its initial position a0 after some time
T and remain at rest. For t > T , we have ν(t) = 0 and the right-hand side of
eqn (7.143) vanishes so that the two linearly independent solutions become the
same as at t < 0:

Q
(1)
nk (t) = e−iπkt/a0 , Q

(2)
nk (t) = eiπkt/a0 . (7.145)

Thus, at t > T the solution of eqn (7.143) with the initial conditions (7.142) can
be represented in the form

Qnk(t) = αnke−iπkt/a0 + βnkeiπkt/a0 , (7.146)

where αnk and βnk are the Bogoliubov coefficients.
This is a familiar situation in the S-matrix theory of particle creation from

the vacuum by a nonstationary external field. The operator of a scalar field called
the in field (i.e. the field defined for t < 0 when the boundary point a0 is at rest)

is given by eqn (2.56), where the functions ϕ
(±)
n (t, x) are defined in eqn (2.6) with

ωn = kn = πn/a0. The annihilation and creation operators an, a+
n are called the

operators of the in particles. The in vacuum state is defined by

an|0in〉 = 0. (7.147)

The field operator at any moment t ≥ 0, expressed in terms of the creation and
annihilation operators a+

n , an, is given by

ϕ(t, x) =
∑

n

[
χ(+)

n (t, x)an + χ(−)
n (t, x)a+

n

]
. (7.148)

However, at t > T it is possible to reexpand this operator in terms of the solutions

ϕ
(±)
k = exp(∓iπkt/a0) sin(πkx/a0)/

√
πk. For this purpose we substitute eqns

(7.141) and (7.146) into eqn (7.148), with the result

ϕ(t, x) =
∑

k

1√
πk

sin
πkx

a0

(
e−iπkt/a0bk + eiπkt/a0b+

k

)
, (7.149)

where the annihilation and creation operators are given by the equality

bk =
∑

n

√
k

n

(
αnkan + β∗

nka+
n

)
(7.150)

and the Hermitian conjugate of this equality. The operators bk and b+
k are called

the operators of the out particles.
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Equation (7.150), connecting the creation and annihilation operators of the
in and out particles, is called the Bogoliubov transformation. The coefficients of
the Bogoliubov transformation satisfy the equality∑

k

k

n

(
|αnk|2 − |βnk|2

)
= 1, (7.151)

which is a consequence of the unitarity condition (Grib et al. 1994, Birrell and
Davies 1982). The vacuum state at t > T (the out vacuum) is defined by

bk|0out〉 = 0. (7.152)

The number of particles with the quantum number k created from the vacuum
state |0in〉 during a time T is given by the following matrix element calculated
using eqn (7.150):

nk = 〈0in|b+
k bk|0in〉 = k

∞∑
n=1

1

n
|βnk|2. (7.153)

The total number of particles created in all modes during the time T is

N =

∞∑
k=1

nk =

∞∑
k=1

k

∞∑
n=1

1

n
|βnk|2. (7.154)

An approximate solution of eqn (7.143) can be found in the case where the
boundary point oscillates harmonically with a small amplitude under the condi-
tion of parametric resonance,

a(t) = a0 [1 + ε sin(2ω1t)] , (7.155)

where ω1 = π/a0, ε � 1. Using the theory of parametrically excited systems
(Bogoliubov and Mitropolsky 1985), the coefficients αnk and βnk in eqn (7.146)
can be treated as slowly varying functions of time. Substitution of eqn (7.146)
into eqn (7.143), after averaging over fast oscillations with frequencies ωk = kω1,
where k = 2, 3, . . ., leads in the first order in powers of ε to a simplified system
of equations (Dodonov and Klimov 1996):

dαn1

dτ
= −βn1 + 3αn3,

dαnk

dτ
= (k + 2)αn,k+2 − (k − 2)αn,k−2,

(7.156)

dβn1

dτ
= −αn1 + 3βn3,

dβnk

dτ
= (k + 2)βn,k+2 − (k − 2)βn,k−2.

Here, the term slow time, represented by τ = εω1t/2, is introduced. Under the
conditions τ � 1 and τ � 1, approximate solutions of eqn (7.156) can be found,
resulting in (Dodonov and Klimov 1996)

n1(t) ≈
1

4
(εω1t)

2, n1(t) ≈
4εω1t

π2
+

2

π2
ln 4 − 1

2
, (7.157)

respectively. The total number of created particles with all quantum numbers is
N ≈ n1(t) if τ � 1, and N ∼ τ2 � n1(t) if τ � 1.
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The energy of the first mode is ω1n1(t). The total energy in all modes is
found from eqn (7.153):

E(t) =
∑

k

ω1knk(t) = ω1

∞∑
k=1

∞∑
n=1

k2

n
|βnk|2. (7.158)

The calculation of this double sum does not require explicit expressions for the
coefficients βnk, and leads to (Dodonov and Klimov 1996)

E(t) =
ω1

4
sinh2(2τ). (7.159)

Thus, the total energy of the created particles increases faster than their num-
ber, indicating a rapid pumping of energy into the high-frequency modes at the
expense of the low-frequency ones.

The above results can be generalized to the case of an electromagnetic field
in a three-dimensional oscillating cavity. In this case both the total number and
the total energy of the created photons grow exponentially with time. Note that
the periodically oscillating boundary (7.155) is mathematically equivalent to an
external electric field periodic in time. The number of bosonic particles created
by such a field from the vacuum depends exponentially on time if the condition of
parametric resonance is satisfied (Narozhnyi and Nikishov 1973, Mostepanenko
and Frolov 1974, Mostepanenko 2003). This concept is promising for the creation
of photons from the vacuum by use of the dynamical Casimir effect.

There is extensive literature on various aspects of the creation of photons due
to the dynamical Casimir effect using various theoretical methods. For example,
a Hamiltonian approach to the description of photon creation was suggested by
Haro and Elizalde (2006). Cavities with the insertion of dispersive mirrors or a
slab with a time-dependent dielectric permittivity were considered (Schaller et
al. 2002, Uhlmann et al. 2004). Multiple-scale analysis was applied to the calcu-
lation of the flux of created particles (Crocce et al. 2002). Photon creation in a
harmonically oscillating one-dimensional cavity with mixed boundary conditions
(see Sections 7.1.2 and 7.2.2) has been analyzed (Alves et al. 2006). A collection
of papers on the subject has been compiled and edited by Barton et al. (2005).

The experimental observation of the dynamical Casimir effect is a compli-
cated problem because the internal mechanical properties of the oscillating wall
do not permit oscillations in the GHz region (Dodonov and Dodonov 2006). Be-
cause of this, instead of a real moving metallic surface, it has been proposed to use
an effective electron–hole plasma mirror created on the surface of a semiconduc-
tor by illuminating it with laser pulses of appropriate frequency (Yablonovitch
1989, Braggio et al. 2004). In this case, the conducting layer is created period-
ically on the surface, simulating mechanical oscillations. The present status of
a proposed experiment which aims at measuring the dynamical Casimir effect
by using the effective motion of a wall of a superconducting microwave resonant
cavity has been reported by Agnesi et al. (2008).
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THE CASIMIR EFFECT IN RECTANGULAR BOXES

As was mentioned in Chapters 1 and 2, the Casimir energy and force may change
sign depending on the geometry of the configuration and the type of boundary
conditions. A dramatic example of this situation, which has given rise to many
discussions in the literature for several decades, is the case of a rectangular box
with sides a, b, and c. Lukosz (1971) noticed that the electromagnetic Casimir
energy inside an ideal-metal box may change sign depending on side lengths
a, b, and c. A detailed investigation of the Casimir energy for fields of different
spins, where it may again be either positive or negative, inside a rectangular box
as a function of the box dimensions was performed by Mamayev and Trunov
(1979a, 1979b). In particular, analytical results for two- and three-dimensional
boxes were obtained by repeated application of the Abel–Plana formula (2.26).
Ambjørn and Wolfram (1983) used the Epstein zeta function to calculate the
Casimir energy for a scalar and an electromagnetic field in hypercuboidal regions
in n-dimensional space–time. The problem of isolation of the divergent terms in
the vacuum energy and their interpretation received the most attention. In recent
years, this problem has been reformulated in terms of a rectangular box divided
into two sections by an ideal-metal movable partition (piston) (Cavalcanti 2004,
Hertzberg et al. 2005). It was shown that the Casimir force acting on a piston
with Dirichlet boundary conditions attracts it to the nearest wall. Based on
this, some doubts about the results previously obtained demonstrating Casimir
repulsion in cubes have been raised. Below, we present both the old classical
results on the Casimir effect in ideal-metal rectangular boxes and the recent
results related to boxes with a piston. We demonstrate that the two sets of
results are in mutual agreement, and the attraction (or repulsion for a piston
with Neumann boundary conditions) of a piston to one of the box faces does
not negate the Casimir repulsion for boxes with some appropriate ratio between
a, b, and c.

8.1 The scalar Casimir effect in a rectangle

In this section, we consider the simplest geometry where the problems connected
with the change of the sign of the Casimir energy and of the force arise. This is
the case of a massless scalar field in a rectangle a× b. For this configuration, we
provide two different regularizations (one using the Abel–Plana formula and the
other using the Epstein zeta function) which lead to coincident results for the
Casimir energy. Then we discuss the Casimir force acting on a partition (piston)
which divides the rectangle into two rectangles.



The scalar Casimir effect in a rectangle 137

�

�

� �

� �

� 	 �

�



� �

�

�

�

� � �

Fig. 8.1. Configurations of (a) a rectangle and (b) a rectangular box, with
pistons at y = b1 and z = c1, respectively.

8.1.1 Regularization using the Abel–Plana formula

Let the massless scalar field ϕ(t, x, y) be defined in a rectangle 0 ≤ x ≤ a,
0 ≤ y ≤ b with Dirichlet boundary conditions on all sides, i.e. x = 0, a and
y = 0, b [see Fig. 8.1(a)]. The complete orthonormal set of solutions of the
equation

�3ϕ(t, x, y) = 0 (8.1)

with these boundary conditions is given by

ϕ
(±)
nl (t, x, y) =

√
2

abωnl
e∓iωnlt sin knx sin kly, (8.2)

where

kn =
πn

a
, kl =

πl

b
, ω2

nl = k2
n + k2

l , n, l = 1, 2, 3, . . . . (8.3)

Note that n and l cannot be equal to zero because in that case the solution (8.2)
vanishes.

Repeating the same calculations as in Section 3.3, but in three-dimensional
space–time, we obtain the total vacuum energy of the scalar field inside a rect-
angle,

E0(a, b) =
π

2

∞∑
n,l=1

√(n

a

)2

+
( l

b

)2

. (8.4)

In order to perform the summation, we apply the Abel–Plana formula (2.26)
twice. As was explained in Section 2.2, in so doing some cutoff function is intro-
duced which makes all of the results finite. However, it is not necessary to write
it out explicitly, because the result obtained after removing the regularization
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does not depend on its specific form. First, we apply the Abel–Plana formula to
perform the summation over l, with the result

E0(a, b) =
π

2

∞∑
n=1

[
− n

2a
+

∫ ∞

0

dt

√(n

a

)2

+
( t

b

)2

−2

∫ ∞

bn/a

√( t

b

)2

−
(n

a

)2 dt

e2πt − 1

]
. (8.5)

Note that in obtaining eqn (8.5), eqn (2.37) has been used.
Next, we apply the Abel–Plana formula (2.26) to perform the first two sum-

mations over n on the right-hand side of eqn (8.5):

− 1

2a

∞∑
n=1

n = − 1

2a

∫ ∞

0

t dt +
1

24a
,

∞∑
n=1

∫ ∞

0

dt

√(n

a

)2

+

(
t

b

)2

= − 1

2b

∫ ∞

0

t dt (8.6)

+

∫ ∞

0

dt

∫ ∞

0

dv

√(v

a

)2

+

(
t

b

)2

− b

8π2a2
ζR(3).

Now we substitute eqn (8.6) into eqn (8.5). We also introduce a new variable
u = at/(nb) in the last integral on the right-hand side of eqn (8.5). The result is

E0 =
π

2

[
−1

2

(1

a
+

1

b

) ∫ ∞

0

t dt +

∫ ∞

0

dt

∫ ∞

0

dv

√(v

a

)2

+
( t

b

)2

+
1

24a
− b

8π2a2
ζR(3) +

2

a
G

(
b

a

)]
, (8.7)

where

G(z) = −z

∫ ∞

1

du
√

u2 − 1

∞∑
n=1

n2

e2πnuz − 1
. (8.8)

Representing G(z) in the form

G(z) = −z

∞∑
n=1

n2
∞∑

l=1

∫ ∞

1

du
√

u2 − 1 e−2πnluz , (8.9)

and using the representation for the Bessel functions of imaginary argument
(Gradshteyn and Ryzhik 1994)

Kν(z) =
(z/2)νΓ (1/2)

Γ
(
ν + 1

2

) ∫ ∞

1

e−zt
(
t2 − 1

)(2ν−1)/2
dt, (8.10)
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we can rearrange eqn (8.8) as

G(z) = − 1

2π

∞∑
n=1

∞∑
l=1

n

l
K1(2πnlz). (8.11)

Equation (8.7) contains two infinite integrals on the right-hand side. The
second one is proportional to the vacuum energy of the free unbounded two-
dimensional space contained within a rectangle of area ab. As was discussed in
Section 1.1, the physical energies are counted from the top of the vacuum energy
in free space, and thus this integral should be omitted. The first integral on the
right-hand side of eqn (8.7) is proportional to the perimeter of the rectangle
2(a + b), which plays the role of the boundary surface in the two-dimensional
case. Omission of this integral is equivalent to a renormalization of the geomet-
rical object inherent in the configuration under consideration, as we discussed in
Chapter 4. We shall return to the physical meaning of this omission below when
we discuss the Casimir force acting on a piston.

As a result, the renormalized Casimir energy of a rectangle is

E(a, b) =
π

48a
− b

16πa2
ζR(3) +

π

a
G

(
b

a

)
. (8.12)

This is, in fact, symmetric with respect to the interchange of a and b. This
symmetry is, however, implicit. The order of performing the summations chosen
above is advantageous when b ≥ a. In this case, as follows from eqn (8.11),
G(b/a) is of order exp(−2πb/a), i.e. is exponentially small. For example, even
for a = b, the contribution from G(b/a) to the Casimir energy is only about 1%.
Numerical computations using the full equation (8.12) show that the Casimir
energy E is positive if

0.36537 ≤ b

a
≤ 2.73686 (8.13)

and negative if b > 2.73686 or b < 0.36537. The Casimir forces acting on opposite
sides of the rectangle

Fa(a, b) = −∂E(a, b)

∂a
=

π

48a2
− b

8πa3
ζR(3) +

π

a2
G

(
b

a

)
+

πb

a3
G′
(

b

a

)
,

Fb(a, b) = −∂E(a, b)

∂b
=

1

16πa2
ζR(3) − π

a2
G′
(

b

a

)
(8.14)

are repulsive and attractive, correspondingly, in the same intervals (a prime is
used here to denote a derivative with respect to the argument).

8.1.2 Regularization using the Epstein zeta function

The Epstein zeta function and its analytic continuation are very convenient tools
for the investigation of the analytic properties of multiple summations. The Ep-
stein zeta function can be defined as (Erdélyi et al. 1981)
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Zp(a1, a2, . . . , ap; s) =

∞∑
n1,...,np=−∞

[
(n1a1)

2 + . . . + (npap)
2
]−s/2

× (1 − δn10 · · · δnp0). (8.15)

The inclusion of the negative product of δ-symbols in eqn (8.15) is equivalent to
the condition that the term with all ni = 0 is omitted.

The series in eqn (8.15) is convergent when Re s > p. It can be analytically
continued over the entire complex plane except for a pole at s = p, using the
reflection formula

a1 · · · apΓ
(s

2

)
π−s/2Zp(a1, . . . , ap; s) (8.16)

= Γ

(
p − s

2

)
π(s−p)/2Zp

(
1

a1
, . . . ,

1

ap
; p − s

)
.

We regularize the expression for the total vacuum energy of the scalar field
in the rectangle (8.4) by introducing a regularization parameter s:

E
(s)
0 (a, b) =

π

2

∞∑
n,l=1

[(n

a

)2

+
( l

b

)2
](1−s)/2

. (8.17)

Equation (8.17) can be expressed in terms of the Epstein and Riemann zeta
functions in the following way:

E
(s)
0 (a, b) =

π

8




∞∑
n,l=−∞

[(n

a

)2

+
( l

b

)2
]−(s−1)/2

(1 − δn0δl0)

−2

a

∞∑
n=1

n−(s−1) − 2

b

∞∑
l=1

l−(s−1)

}

=
π

8

[
Z2

(
1

a
,
1

b
; s − 1

)
− 2

(
1

a
+

1

b

)
ζR(s − 1)

]
. (8.18)

In the limiting case s → 0 (i.e. when the regularization is removed), the quan-
tity (8.18) is divergent. By using the reflection relations (5.50) for the Riemann
zeta function and (8.16) for the Epstein zeta function, we obtain the analytic

continuation of E
(s)
0 ,

E
(s)
0 (a, b) = − ab

32π
Z2(a, b; 3 − s) +

1

8π

(
1

a
+

1

b

)
ζR(2 − s). (8.19)

After removing the regularization (s → 0), we finally obtain the finite Casimir
energy for a rectangle,

E(a, b) = − ab

32π
Z2(a, b; 3) +

π

48

(
1

a
+

1

b

)
. (8.20)

Let us now compare eqn (8.20) with the Casimir energy for the rectangle
(8.12) derived using repeated application of the Abel–Plana formula. For this
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purpose, it is convenient to express the Epstein zeta function Z2 in terms of the
auxiliary function

S(η, κ; q) ≡ π−q/2Γ
(q

2

) ∞∑
k=−∞

[( η

π

)2

+

(
k

κ

)2
]−q/2

, (8.21)

where η �= 0 and the series is convergent for Re q > 1. The result is

Z2(a, b; 3) =
2π3/2

Γ (3/2)

∞∑
l=1

S(πbl,
1

a
; 3) +

2ζR(3)

a3
. (8.22)

There is an integral representation for the function S (Ambjørn and Wolfram
1983),

S(η, κ; q) = κ

{
Γ

(
q − 1

2

)(
η√
π

)1−q

(8.23)

+

∫ ∞

0

dxx−(q+1)/2e−η2/(πx)
[
ϑ(0; κ2x) − 1

]}
,

where

ϑ(z; x) =

∞∑
n=−∞

e−πn2xe2πnz (8.24)

is the Jacobi theta function.
Substituting eqn (8.24) into eqn (8.23) and performing the integration with

respect to x, we arrive at

S(η, κ; q) = κ

(
η√
π

)1−q
[
Γ

(
q − 1

2

)
+ 4

∞∑
n=1

(ηκn)(q−1)/2K(q−1)/2(2ηκn)

]
.

(8.25)
As a result, eqn (8.22) takes the form

Z2(a, b; 3) =
2π2

3ab2
+

16π

a2b

∞∑
n,l=1

n

l
K1

(
2πnl

b

a

)
+

2ζR(3)

a3

=
2π2

3ab2
+

2ζR(3)

a3
− 32π2

a2b
G

(
b

a

)
. (8.26)

The substitution of eqn (8.26) into eqn (8.20) brings us back to eqn (8.12), with
G(z) defined in eqn (8.11). Thus, the methods based on the Abel–Plana formula
and the Epstein zeta function are in agreement. They lead to the same finite
result for the Casimir energy of a scalar field in a rectangle.
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8.1.3 A Casimir piston in a rectangle

Let us now consider a partition (a piston) y = b1 with a Dirichlet boundary
condition on it which divides the rectangle into two rectangles [see Fig. 8.1(a)].
This piston may take any position 0 < b1 < b. Because of this, it is often called
a movable piston. We shall calculate the Casimir force acting on the piston, in-
cluding the infinite integrals in eqn (8.7), making sure that it is finite (Cavalcanti
2004). For this purpose, we explicitly introduce the cutoff function

f(ωnlδ) = exp

[
−δ

√(n

a

)2

+
( l

b

)2
]

(8.27)

when applying the Abel–Plana formula, and rewrite eqn (8.7) before removing
the regularization in the form

E
(δ)
0 (a, b) = I0(a, b) + I1(a, b) + E(a, b), (8.28)

where E(a, b) is the finite Casimir energy defined in eqn (8.12) and the regularized
infinite integrals are

I0(a, b) =
2π2

δ3
ab, I1(a, b) = − π

4δ2
(a + b). (8.29)

Equations (8.28) and (8.29) have been derived in the absence of the piston.
The total regularized energy of the two boxes a × b1 and a × (b − b1) in the
presence of a piston is given by

E
(δ)
0 (a, b1) + E

(δ)
0 (a, b − b1) = − π

4δ2
(2a + b) +

2π2

δ3
ab +

π

24a
− b

16πa2
ζR(3)

+
π

a

[
G

(
b1

a

)
+ G

(
b − b1

a

)]
. (8.30)

As can be seen from eqn (8.30), the divergent terms, and the finite terms outside
the square brackets containing the function G, do not depend on b1. Thus, the
force acting on the piston,

F (a, b, b1) = − ∂

∂b1

[
E

(δ)
0 (a, b1) + E

(δ)
0 (a, b − b1)

]

= − π

a2

[
G′
(

b1

a

)
− G′

(
b − b1

a

)]
, (8.31)

is uniquely defined regardless of the regularization and renormalization proce-
dures used.

It can be shown that F (a, b, b1) is always negative. This means that the piston
is attracted to the nearer side of the rectangle. One can also say that the piston
is repelled from the more remote side. If the forces acting on the piston from
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the top and bottom sides are equal in magnitude (this is the case, for instance,
for b = 2a, b1 = a), the resulting force is equal to zero, i.e. we have a state
of equilibrium. This equilibrium is, however, unstable, and its violation in any
direction would lead to movement of the piston to the nearer side of the rectangle.

In particular, for b � a and b1 ∼ a, eqn (8.31) results in

F (a, b, b1) =
π

a2

∞∑
n,l=1

K ′
1

(
2πnl

b1

a

)
≈ − π

2(a3b1)1/2
exp

(
−2π

b1

a

)
. (8.32)

In this case the piston is attracted to the bottom side a even if, for instance,
b1 = a, i.e. the rectangle a × b1 satisfies the inequality (8.13), under which
the Casimir energy should be positive and the force should be repulsive. This,
however, does not mean that the regularization-independent results obtained for
the piston raise questions about eqns (8.12) and (8.13), obtained after omitting
the two infinite integrals I1 and I2 from eqn (8.29). The reason is that eqn (8.12)
is relevant to the case of an empty space outside the rectangle a × b. In this
case the vacuum energy outside the rectangle does not depend on a and b, and
there is no force acting on the rectangle from the outside, whereas eqn (8.32)
is relevant to the case where there is a long additional rectangle a × (b − b1)
above the rectangle a× b1, with Dirichlet boundary conditions on its sides. The
vacuum energy inside the rectangle a × (b − b1) depends on b1 and gives rise to
an additional force which would be absent for an isolated rectangle a× b1. This
changes the physical situation and leads to a total Casimir force attracting the
piston to the nearer side of the rectangle.

One can conclude that although the regularization-independent results may
be considered as somewhat more transparent than the regularization-dependent
ones, the above consideration of a piston inside a rectangle neither adds to nor
diminishes the reliability of the classical result (8.12) for the Casimir energy
inside an empty rectangle in free space.

8.2 The scalar Casimir effect in a three-dimensional box

In this section we consider the problem of the attractive and repulsive Casimir
forces for a massless scalar field in the more realistic geometry of a three-
dimensional box with sides a, b, and c arranged along the x, y, and z axes,
respectively [see Fig. 8.1(b)]. It will be shown that in spite of additional techni-
cal difficulties, the qualitative results obtained for a rectangle are preserved for
a three-dimensional box [see the review by Actor (1995); a scalar field confined
by soft boundaries represented as a harmonic-oscillator potential was considered
by Actor and Bender (1995)].

The complete orthonormal set of solutions of eqn (3.1) with m = 0 and with
Dirichlet boundary conditions on all six faces of the box takes the form

ϕ
(±)
nlp (t, r) =

√
4

abcωnlp
e∓iωnlpt sin knx sin kly sin kpz, (8.33)
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where
kp =

πp

c
, ω2

nlp = k2
n + k2

l + k2
p, p = 1, 2, 3, . . . , (8.34)

and the other notation has been introduced in eqn (8.3).
The total vacuum energy of the scalar field inside the box is given by

E0(a, b, c) =
π

2

∞∑
n,l,p=1

√(n

a

)2

+
( l

b

)2

+
(p

c

)2

. (8.35)

All desired results can be obtained by repeated application of the Abel–Plana
formula (three times in this case) or by using the Epstein zeta function regular-
ization technique. In this case we begin with the Epstein zeta function approach.

First, we identically rearrange the regularized eqn (8.35) for the vacuum
energy in order to separate the contributions of the various Epstein and Riemann
zeta functions in the sums from unity to infinity:

E
(s)
0 (a, b, c) =

π

8


1

2

∞∑
n,l,p=−∞

(1 − δn0δl0δp0)

[(n

a

)2

+

(
l

b

)2

+
(p

c

)2
]−(s−1)/2

− 1

2

∞∑
l,p=−∞

(1 − δl0δp0)

[(
l

b

)2

+
(p

c

)2
]−(s−1)/2

− 1

2

∞∑
n,p=−∞

(1 − δn0δp0)

[(n

a

)2

+
(p

c

)2
]−(s−1)/2

− 1

2

∞∑
n,l=−∞

(1 − δn0δl0)

[(n

a

)2

+

(
l

b

)2
]−(s−1)/2

+
∞∑

n=1

(n

a

)1−s

+
∞∑

l=1

(
l

b

)1−s

+
∞∑

p=1

(p

c

)1−s


 . (8.36)

Equation (8.35) is obtained from eqn (8.36) when s → 0. Using the definitions
of the Epstein and Riemann zeta functions in eqns (8.15) and (4.6), respectively,
we represent eqn (8.36) in the form

E
(s)
0 (a, b, c) =

π

16

[
Z3

(
1

a
,
1

b
,
1

c
; s − 1

)
− Z2

(
1

b
,
1

c
; s − 1

)
(8.37)

− Z2

(
1

a
,
1

c
; s − 1

)
− Z2

(
1

a
,
1

b
; s − 1

)
+ 2

(
1

a
+

1

b
+

1

c

)
ζR(s − 1)

]
.

All terms on the right-hand side of eqn (8.37) are evidently divergent in the
limiting case s → 0 when the regularization is removed. To perform renormaliza-
tion by means of the zeta function, we use the reflection relations (8.16) (for the
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Epstein zeta function) and (5.50) (for the Riemann zeta function). As a result,
the finite Casimir energy of the massless scalar field inside the box is

E(a, b, c) = − abc

32π2
Z3(a, b, c; 4) +

bc

64π
Z2(b, c; 3) (8.38)

+
ac

64π
Z2(a, c; 3) +

ab

64π
Z2(a, b; 3) − π

96

(
1

a
+

1

b
+

1

c

)
.

Equation (8.26) provides an explicit expression for Z2(a, b; 3) and, with appro-
priate permutations of the arguments, for Z2(b, c; 3) and Z2(a, c; 3). Now we shall
obtain a similar expression for Z3(a, b, c; 4).

For this purpose, we employ once more the function S(η, κ; q) defined in eqn
(8.21). From the definitions of the functions S(η, κ; q) and Z3(a, b, c; 4), it follows
that

Z3(a, b, c; 4) = π2
∞∑

l,p=−∞
(1 − δl0δp0)S(ηlp, κ; 4) +

ζR(4)

a4
, (8.39)

where

κ ≡ 1

a
, ηlp ≡ π

√
(bl)2 + (cp)2. (8.40)

Now we substitute the expression (8.25) for S in eqn (8.39) and arrive at

Z3(a, b, c; 4) =
π4

45a4
+

√
π

a

∞∑
l,p=−∞

(1 − δl0δp0)
[
(bl)2 + (cp)2

]−3/2
(8.41)

×



√

π

2
+ 4

∞∑
j=1

K3/2

[
2πj

√
(bl)2 + (cp)2/a

]
[
πj
√

(bl)2 + (cp)2/a
]−3/2


 .

Equation (8.41) can be identically rewritten as

Z3(a, b, c; 4) =
π4

45a4
+

π

2a
Z2(b, c; 3) +

32π2

a2bc
R

(
b

a
,
c

a

)
, (8.42)

where the following notation has been introduced:

R(z1, z2) ≡
z1z2

8

∞∑
l,p=−∞

(1 − δl0δp0) (8.43)

×
∞∑

j=1

(
j√

l2z2
1 + p2z2

2

)3/2

K3/2

(
2πj

√
l2z2

1 + p2z2
2

)
.

Substituting eqn (8.42) in eqn (8.38), we notice that the contributions of the
form Z2(b, c; 3) cancel each other. Using eqn (8.26), we represent the final result
in the form (Edery 2007)

E(a, b, c) = − π2bc

1440a3
+

ζR(3)(b + c)

32πa2
− π

96a
(8.44)
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− π

2a

[
G

(
b

a

)
+ G

( c

a

)]
− 1

a
R

(
b

a
,
c

a

)
,

where G is defined in eqn (8.11). After division of this equation by bc, we obtain
in the limit b, c → ∞ the scalar Casimir energy per unit area [see the first term
in eqn (7.8)] for a configuration of two plane parallel plates.

This equation contains both positive and negative contributions. However, it
is easily seen that for any relationship between a, b, and c, E(a, b, c) < 0 holds.
Thus, for a massless scalar field inside an ideal-metal box, all opposite faces
attract each other independently of the magnitudes of a, b, and c. It is simple
to check analytically that this is really so under the conditions b/a, c/a ≥ 1. In
this case the energy is approximately given by the first three terms on the right-
hand side of eqn (8.44), the other contributions containing the Bessel functions
of imaginary argument being exponentially small. Note that eqn (8.44) is in
fact symmetric relative to cyclic permutations of the arguments a, b, and c. This
symmetry is, however, implicit. In particular, if the above conditions b/a, c/a ≥ 1
are violated, it is worthwhile to use another order of arguments in eqn (8.44).
The absence of a Casimir repulsion for a scalar field in a three-dimensional box
is qualitatively different from the case of a rectangle, where opposite sides repel
each other if the condition (8.13) is fulfilled.

The result (8.44) for the Casimir energy of a scalar field in a box can be
obtained by a three-fold application of the Abel–Plana formula, in analogy to
Section 8.1, where it was applied twice. The advantage of the Abel–Plana formula
in comparison with the Epstein zeta function is that the former permits explicit
separation of divergent terms that are hidden in the analytic continuation of the
latter. To apply the Abel–Plana formula, we introduce the cutoff function

f(ωnlpδ) = e−δ
√

(n/a)2+(l/b)2+(p/c)2 . (8.45)

As a result, we obtain the regularized Casimir energy in the form

E
(δ)
0 (a, b, c) = E(a, b, c) + I0(a, b, c) + I1(a, b, c) + I2(a, b, c), (8.46)

where the finite Casimir energy E(a, b, c) is defined in eqn (8.44) and the regu-
larized integrals are given by

I0(a, b, c) =
π

2

∫ ∞

0

dt

∫ ∞

0

dv

∫ ∞

0

du

√(v

a

)2
+
( t

b

)2
+
(u

c

)2
× e−δ

√
(v/a)2+(t/b)2+(u/c)2 ,

I1(a, b, c) = −π

4

∫ ∞

0

dt

∫ ∞

0

dv

[√(v

a

)2
+
( t

b

)2
e−δ

√
(v/a)2+(t/b)2 (8.47)

+

√(v

a

)2
+
( t

c

)2
e−δ

√
(v/a)2+(t/c)2 +

√(v

b

)2
+
( t

c

)2
e−δ

√
(v/b)2+(t/c)2

]
,
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I2(a, b, c) =
π

8

∫ ∞

0

t dt

[
1

a
e−δt/a +

1

b
e−δt/b +

1

c
e−δt/c

]
.

The analytic continuations of the Epstein and Riemann zeta functions used above
are effectively equivalent to the omission of the integrals (8.47).

A physical interpretation of this omission can be obtained from an explicit
integration in eqn (8.47), which leads to

I0(a, b, c) =
12π2abc

δ4
, I1(a, b, c) = −π2(ab + ac + bc)

δ3
,

I2(a, b, c) =
π(a + b + c)

8δ2
. (8.48)

Note that I0 is proportional to the box volume, I1 is proportional to the total
surface area of the box, and I2 is proportional to the sum of the sides. Thus the
omission of all of these integrals, which is done implicitly in the zeta function
regularization and explicitly in the regularization using the Abel–Plana formula,
can be interpreted as deletion of the vacuum energy of free space in the volume
of the box and renormalization of the respective geometrical objects.

Now we consider a Casimir piston for a massless scalar field in a three-
dimensional box. Let the piston be at a point z = c1, as shown in Fig. 8.1(b).
The total regularized energy of the two three-dimensional boxes a × b × c1 and
a × b × (c − c1) in the presence of the piston is given by

E
(δ)
0 (a, b, c1) + E

(δ)
0 (a, b, c − c1) =

π(2a + 2b + c)

8δ2
− π2(2ab + ac + bc)

δ3

+
12π2abc

δ4
− π2bc

1440a3
+

ζR(3)(2b + c)

32πa2
− π

48a
(8.49)

− π

2a

[
2G
( b

a

)
+ G

(c1

a

)
+ G

(c − c1

a

)
+

2

π
R
( b

a
,
c1

a

)
+

2

π
R
( b

a
,
c − c1

a

)]
.

As can be seen from eqn (8.49), none of the singular terms depend on the piston
position c1. The same is true for all finite terms outside the square brackets.
Thus the Casimir force acting on the piston does not depend on whether the
divergent integrals are omitted. It is given by

F (a, b, c, c1) = − ∂

∂c1

[
E

(δ)
0 (a, b, c1) + E

(δ)
0 (a, b, c − c1)

]
(8.50)

=
π

2a2

[
G′
(c1

a

)
− G′

(c − c1

a

)
+

2

π
R′
( b

a
,
c1

a

)
− 2

π
R′
( b

a
,
c − c1

a

)]
,

where the prime on R denotes the derivative with respect to the second argument.
As in the case of the rectangle, eqn (8.50) determines the Casimir attraction

of a piston to the nearest face of the box. As an example, we consider a box with
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c1 � a = b and c → ∞. In this case eqn (8.50) leads to the following attractive
force (Hertzberg et al. 2005):

F (a, a,∞, c1) = − π2a2

480c4
1

+
ζR(3)a

8πc3
1

− π

96c2
1

+
A

a2
. (8.51)

Here

A =
2πζR(3) − Z2(1, 1; 4)

32π2
≈ 0.00483. (8.52)

Another example is that of a cube a = b = c1, preserving the condition c → ∞
(Edery 2007). In this case the attractive force on the piston originating entirely
from this cube is F1 = −0.005244/a2. However, the force F2 = 0.004832/a2

acting on the piston from the box a× b× (c− c1) repels it from the cube bottom
at z = 0 (Edery 2007). The total force acting on the piston, F = F1 + F2 =
−0.000412/a2, attracts it to the cube bottom at z = 0 and simultaneously repels
it from the top of the box a×b×(c−c1) at z = c. This example demonstrates that
the force depends on whether there is empty space outside the box a×b×(c−c1).
As was shown above, the Casimir force for a scalar field inside any isolated box
(including a box of dimensions a × b × (c − c1) with c → ∞) is attractive.
However, the presence of an adjacent cube a × b × c1 changes the attraction
to a repulsion. The Dirichlet piston problem for a massless scalar field and an
arbitrary rectangular box with dimensions a× b× c was solved by Edery (2007)
and by Hertzberg et al. (2007).

8.3 The electromagnetic Casimir effect in a three-dimensional box

The most realistic configuration related to the Casimir effect in a rectangular
box is the case of an electromagnetic vacuum confined in a three-dimensional box
with arbitrary sides a× b× c. As a first approximation, it is possible to consider
walls made of an ideal metal and impose on them the boundary conditions (2.71).

The complete set of solutions of eqn (3.65) in the Coulomb gauge with the
boundary condition (3.48) on the walls is given by

Anlp(r) =
4
√

2π√
abc


 bx cos kxnx sin kyly sin kzpz

by sin kxnx cos kyly sin kzpz
bz sin kxnx sin kyly cos kzpz


 . (8.53)

Here, kxn = πn/a, kyl = πl/b, and kzp = πp/c, where n, l, p = 0, 1, 2, . . . but
only one of the three indices may have a value zero (otherwise the vector potential
would be equal to zero). As is seen from eqn (8.53), on each wall of the box the
respective pair of components of the vector potential forming a tangential vector
vanishes. The normalization condition (3.66) must be considered with

δJJ′ = δnn′δll′δpp′ , ω2
J = ω2

nlp = k2
xn + k2

yl + k2
zp,
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∫
V

dr ≡
∫ a

0

dx

∫ b

0

dy

∫ c

0

dz. (8.54)

Together with the gauge-fixing condition divAnlp = 0, this leads to

bx = by =
kzp√

(kxn + kyl)2 + 2k2
zp

,

bz = − kxn + kyl√
(kxn + kyl)2 + 2k2

zp

. (8.55)

The total regularized energy of the electromagnetic vacuum inside a box can
be written using eqn (3.76) in the form

E
(s)
0 (a, b, c) =

1

2

(
2

∞∑
n,l,p=1

ω1−s
nlp +

∞∑
l,p=1

ω1−s
0lp +

∞∑
n,p=1

ω1−s
n0p +

∞∑
n,l=1

ω1−s
nl0

)
. (8.56)

In order to express this quantity in terms of the zeta function, we do a transfor-
mation similar to that in the previous section and obtain

E
(s)
0 (a, b, c) =

π

8

[
Z3

(
1

a
,
1

b
,
1

c
; s − 1

)
− 2

(
1

a
+

1

b
+

1

c

)
ζR(s − 1)

]
. (8.57)

If we compare this with eqn (8.37), the electromagnetic case appears somewhat
simpler than the scalar one.

To perform the renormalization by means of the zeta function, we use the
reflection relations (8.16) and (5.50) and arrive at

E(a, b, c) = − abc

16π2
Z3(a, b, c; 4) +

π

48

(
1

a
+

1

b
+

1

c

)
. (8.58)

The Epstein zeta function Z3(a, b, c; 4) contained in this equation has already
been calculated in eqns (8.42) and (8.26). Substituting these equations in eqn
(8.58), we obtain the electromagnetic Casimir energy inside a three-dimensional
box,

E(a, b, c) = − π2bc

720a3
− ζR(3)c

16πb2
+

π

48

(
1

a
+

1

b

)
+

π

b
G
(c

b

)
− 2

a
R

(
b

a
,
c

a

)
. (8.59)

After dividing both sides by bc, we obtain in the limit b, c → ∞ the electromag-
netic Casimir energy per unit area of two plane parallel plates obtained in eqns
(2.82) and (7.30).

The same expression has been obtained using the Abel–Plana formula (Ma-
mayev and Trunov 1979a, 1979b). All of the calculations are similar to those
presented in Section 8.1.1. As was mentioned above, the advantage of the Abel–
Plana formula is that it allows clear identification of the divergent contributions
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that are effectively omitted in the analytic continuation of the zeta functions. In-
troducing the cutoff function (8.45) and applying the Abel–Plana formula three
times, we arrive at the following regularized vacuum energy of the electromag-
netic field inside a box:

E
(δ)
0 (a, b, c) = E(a, b, c) + Ĩ0(a, b, c) + Ĩ2(a, b, c). (8.60)

Here, the finite electromagnetic Casimir energy E(a, b, c) has been presented in
eqn (8.59) and the regularized divergent integrals are

Ĩ0(a, b, c) = 2I0(a, b, c), Ĩ2(a, b, c) = −2I2(a, b, c), (8.61)

where I1(a, b, c) and I3(a, b, c) are defined in eqn (8.47). From eqn (8.48), we
obtain

Ĩ0(a, b, c) =
24π2abc

δ4
, Ĩ2(a, b, c) = −π(a + b + c)

4δ2
. (8.62)

Thus, in the calculation of the electromagnetic Casimir energy inside a box, we
have discarded the vacuum energy of free space inside the volume of the box
and renormalized the constant proportional to the total size of the sides. We
emphasize that eqn (8.60) does not contain a divergent integral proportional to
the total surface area of the box [notated as I2(a, b, c) in eqn (8.48)], which is
present for a scalar field. For the electromagnetic field, the divergent contribu-
tions to the vacuum energy proportional to the areas of the various faces cancel
each other.

The electromagnetic Casimir energy inside a box (8.59) can be both negative
and positive depending on the relationship between the sides a, b, and c. The
respective Casimir forces between the opposite faces of a box

Fx = −∂E(a, b, c)

∂a
, Fy = −∂E(a, b, c)

∂b
, Fz = −∂E(a, b, c)

∂c
(8.63)

can be both attractive and repulsive. Thus, for a cube with a = b = c, computa-
tions using eqn (8.59) result in

E(a) =
0.09166

a
> 0. (8.64)

Because of this, the opposite faces of an ideal-metal cube would attract each
other. For a box with a = b but arbitrary c, the Casimir energy E(a, a, c) is
positive under the condition

0.2942 <
c

a
< 3.429 (8.65)

and negative if this condition is not satisfied. Maclay (2000) performed numerical
computations of Casimir energies and forces for boxes of various dimensions
and found the regions in (a, b, c) space where the energy is negative or positive.
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The electromagnetic Casimir effect in three-dimensional boxes was considered
by Hacyan et al. (1993) using the Hertz potentials.

Next, we consider the electromagnetic Casimir force acting on a piston at
z = c1, shown in Fig. 8.1(b). This was first considered by Hertzberg et al.
(2005). The regularized electromagnetic Casimir energy of the boxes a × b × c1

and a × b × (c − c1) is given by

E
(δ)
0 (a, b, c1) + E

(δ)
0 (a, b, c − c1) = −π(2a + 2b + c)

4δ2
+

24π2abc

δ4

− π2bc

720a3
− ζR(3)c

16πb2
+

π

24

(
1

a
+

1

b

)
+

π

b

[
G
(c1

b

)
+ G

(
c − c1

b

)]

− 2

a

[
R

(
b

a
,
c1

a

)
+ R

(
b

a
,
c − c1

a

)]
. (8.66)

Just as for a scalar field, the divergent terms do not influence the force acting
on the piston, and the force is equal to

F (a, b, c, c1) = − π

b2

[
G′
(c1

b

)
− G′

(
c − c1

b

)]

+
2

a2

[
R′
(

b

a
,
c1

a

)
− R′

(
b

a
,
c − c1

a

)]
. (8.67)

Here, the prime stands for differentiation with respect to the argument (the
second argument in the case of R). For a box with c1 � a = b and c → ∞, the
asymptotic behavior of the force on the piston is given by (Hertzberg et al. 2005)

F (a, a,∞, c1) = − π2a2

240c4
1

+
π

48c2
1

− Z2(1, 1; 4)

16π2a2
< 0, (8.68)

where Z2(1, 1; 4) ≈ 6.027. Thus, this force is attractive. Note that the last term
on the right-hand side of eqn (8.68) originates from the rectangular box a× b ×
(c − c1). This term does not depend on c1, and demonstrates the influence on
the piston of the box a × b × (c − c1) adjacent to the box a × b × c1.

In the electromagnetic case, further generalizations of configurations with
pistons have been considered in the literature. Thus, Barton (2006) found, using
other boundary conditions (weakly reflecting dielectrics) that the force on a
circular piston inside a cylinder can change sign as the distance from the top of
the cylinder increases. In the case of two ideal-metal pistons inside an ideal-metal
cylinder of arbitrary cross section, the force acting on each of the pistons was
shown to be attractive (Marachevsky 2007).

We conclude from the above that the examples of a piston introduced into
a rectangle or a three-dimensional box do not add direct information about the
problem of the reality of the Casimir repulsion in rectangular boxes. So far, all
results on this subject have been obtained using a model of ideal-metal walls.
However, a conclusive resolution of the problem requires consideration of real
material walls of finite conductivity.
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8.4 Rectangular boxes with different boundary conditions

In the previous sections, we have considered Dirichlet boundary conditions im-
posed on scalar and electromagnetic fields at the internal edges and faces of two-
and three-dimensional boxes. Similar results can be obtained for different types
of boundary conditions. As a simple case, let us begin with a massless scalar
field in a rectangle whose opposite sides are identified with each other (we have
the topology of a 2-torus, which can be symbolically written as S1 ×S1). In this
case kn = 2πn/a, kl = 2πl/a [see eqn (2.43)], and the vacuum energy is given by

E0(a, b) = π

∞∑
n,l=−∞

[(n

a

)2

+
( l

b

)2
]1/2

. (8.69)

Bearing in mind that the term with n = l = 0 does not contribute in eqn (8.69),
the regularized vacuum energy can be presented in the form

E
(s)
0 (a, b) = π

∞∑
n,l=−∞

(1 − δn0δl0)

[(n

a

)2

+
( l

b

)2
]−(s−1)/2

= πZ2

(1

a
,
1

b
; s − 1

)
. (8.70)

This should be compared with the more complicated result (8.18) valid for Dirich-
let boundary conditions.

Using the reflection formula (8.16) and removing the regularization, we arrive
at the finite result

E(a, b) = − ab

4π
Z2(a, b; 3). (8.71)

An explicit expression for Z2(a, b; 3) has already been obtained in eqn (8.26).
A massless scalar field in a three-dimensional box with identified opposite

faces (which has the topology S1 × S1 × S1 of a 3-torus) has a vacuum energy

E0(a, b, c) = π
∞∑

n,l,p=−∞

[(n

a

)2

+
( l

b

)2

+
(p

c

)2
]1/2

. (8.72)

The regularized value of this energy is given by

E
(s)
0 (a, b, c) = π

∞∑
n,l,p=−∞

(1 − δn0δl0δp0)

[(n

a

)2

+
( l

b

)2

+
(p

c

)2
]−(s−1)/2

= πZ3

(1

a
,
1

b
,
1

c
; s − 1

)
. (8.73)

This expression is much simpler than the corresponding eqn (8.37) for Dirichlet
boundary conditions. The finite physical result is obtained using the reflection
formula (8.16) and removing the regularization:

E(a, b, c) = − abc

2π2
Z3(a, b, c; 4). (8.74)

An explicit expression for Z3(a, b, c; 4) is contained in eqns (8.42) and (8.26).
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It is of some interest to consider a hybrid situation, for example an identi-
fication condition on one pair of sides of a rectangle, and a Dirichlet boundary
condition on the other (we have the topology of S1 × I, where I is a Euclidean
interval). The vacuum energy of a massless scalar field takes the form

E0(a, b) = π

∞∑
n=−∞

∞∑
l=1

[(n

a

)2

+
( l

2b

)2
]1/2

=
π

2

∞∑
n=−∞

∞∑
l=−∞

(1 − δl0)

[(n

a

)2

+
( l

2b

)2
]1/2

. (8.75)

This can be identically rearranged to

E0(a, b) =
π

2

∞∑
n,l=−∞

(1 − δn0δl0)

[(n

a

)2

+
( l

2b

)2
]1/2

− π

a

∞∑
n=1

n. (8.76)

Then the regularized vacuum energy in the hybrid configuration is

E
(s)
0 (a, b) =

π

2

[
Z2

(1

a
,

1

2b
; s − 1

)
− 2

a
ζR(s − 1)

]
, (8.77)

which should be compared with eqn (8.18). After application of the reflection
relations (5.50) and (8.16), the following finite result is obtained:

E(a, b) = − ab

4π
Z2(a, 2b; 3) +

π

12a
, (8.78)

where Z2(a, 2b; 3) can be expressed using eqn (8.26).
The calculational technique used above can be applied in other cases; for

example, scalar and electromagnetic fields in configurations S1 × I × I, S1 ×
S1 × I, etc. can be considered. Mamayev and Trunov (1979a, 1979b) obtained
the Casimir energy in these configurations using the Abel–Plana formula. Cor-
responding results for multidimensional rectangular cavities, including the case
of Neumann boundary conditions, were obtained by Edery (2006, 2007). Mul-
tidimensional rectangular cavities were also considered by Caruso et al. (1991,
1999) and Li et al. (1997).

We now pursue our discussion with an interesting example of the role of mixed
boundary conditions in rectangular cavities. We demonstrate that if a Neumann
boundary condition is imposed on the piston, and Dirichlet boundary conditions
are imposed on the other sides, the piston is repelled from the nearest side (Zhai
and Li 2007). Let us begin with the simplest case of a rectangle a× b containing
no piston, with Dirichlet boundary conditions on the sides of length b. For the
sides with length a, we impose a Dirichlet boundary condition at 0 ≤ x ≤ a,
y = 0 and a Neumann boundary condition at 0 ≤ x ≤ a, y = b.
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Using the oscillation frequencies obtained when we studied mixed boundary
conditions in Sections 2.1, 7.1.2, and 7.2.2, the nonregularized Casimir energy of
a massless scalar field in such a rectangle is given by

E0(a, b) =
π

2

∞∑
n=1

∞∑
l=0

√(n

a

)2

+

(
l +

1

2

)2
1

b2

=
π

2

∞∑
n,l=1

[√(n

a

)2

+
( l

2b

)2

−
√(n

a

)2

+
( l

b

)2
]

. (8.79)

The regularized energy can be rearranged in the following way:

E
(s)
0 (a, b) =

π

2

∞∑
n,l=1

{[(n

a

)2

+
( l

2b

)2
]−(s−1)/2

−
[(n

a

)2

+
( l

b

)2
]−(s−1)/2

}

=
π
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}

− π

4b

∞∑
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1

2
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=
π

8

[
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(1

a
,

1

2b
; s − 1

)
− Z2

(1

a
,
1

b
; s − 1
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− π

4b
ζ
(
s − 1,

1

2

)
, (8.80)

where the Hurwitz zeta function ζ(z, q) is defined in eqn (7.37).
Using the reflection relations (7.38) and (8.16), we obtain, after removing the

regularization, the following finite Casimir energy for a scalar field in a rectangle
with one pair of mixed boundary conditions and one pair of Dirichlet conditions
(Zhai and Li 2007):

E(a, b) = − ab

32π
[2Z2(a, 2b; 3)− Z2(a, b; 3)] − π

96b
. (8.81)

Using eqn (8.26) for Z2(a, b; 3), we can represent eqn (8.81) in the final form

E(a, b) = −ζR(3)b

16πa2
+

π

a

[
G
(2b

a

)
− G

( b

a

)]
, (8.82)

where the function G(z) is defined in eqn (8.11).
The same result can be obtained by repeated application of the Abel–Plana

formulas (2.26) and (2.31). In so doing, the cutoff function

f(ωnlδ) = e−δ
√

(n/a)2+(2l+1)2/(4b2) (8.83)

is used. This method not only allows one to find E(a, b) but also specifies explicit
expressions for the divergent integrals in the regularized vacuum energy
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E
(δ)
0 (a, b) = I0(b) + I1(a, b) + E(a, b), (8.84)

where

I2(a, b) =
2π2

δ3
ab, I1(b) = − π

4δ2
b. (8.85)

The first integral in eqn (8.85) equals that in eqn (8.29). Its omission is equiva-
lent to the subtraction of the energy of free space corresponding to the area of
the rectangle. The second integral depends only on b. Thus, the use of mixed
boundary conditions on the sides of size a removes the infinity proportional to
a from the vacuum energy.

We now introduce a piston into the rectangle at y = b1 < b [see Fig. 8.1(a)].
Let the boundary condition on the piston be of Neumann type and let that on
the four other sides be of Dirichlet type. Using eqns (8.82), (8.84), and (8.85),
we find that the divergent terms in the energy for the two boxes a × b1 and
a × (b − b1) do not depend on the piston’s position b1:

E
(δ)
0 (a, b1) + E

(δ)
0 (a, b − b1) = − π

2δ2
b +

2π2

δ3
ab − ζR(3)b

16πa2
(8.86)

+
π

a

[
G
(2b1

a

)
− G

(b1

a

)
+ G

(2b − 2b1

a

)
− G

(b − b1

a

)]
.

Thus, the force acting on the piston is given by

F (a, b, b1) =
π

a2

[
− 2G′

(2b1

a

)
+ G′

(b1

a

)
+ 2G′

(2b − 2b1

a

)
− G′

(b − b1

a

)]
. (8.87)

In the limiting case b → ∞, eqn (8.87) reduces to

F (a,∞, b1) =
π

a2

[
− 2G′

(2b1

a

)
+ G′

(b1

a

)]
. (8.88)

Numerical calculations show that this force is positive for all values of a and b1.
Thus, a piston with a Neumann boundary condition is repelled from the nearer
side of the rectangle. The same results are obtained for a massless scalar field
inside a three-dimensional box a×a×c with Dirichlet boundary conditions on all
sides, divided into two sections by an infinitely permeable piston at z = c1 (Zhai
and Li 2007). The force acting on the piston is again repulsive. For example, in
the limiting case c → ∞ and c1 = a (the configuration of a cube), the force F
on the piston is equal to 0.000412/a2.

The above examples demonstrate that rectangular configurations with pistons
leave room for the existence of repulsive Casimir forces. The final resolution of
this problem has to include real material properties of the boundary surfaces.

8.5 Rectangular boxes at nonzero temperature

An independent problem is the thermal Casimir effect in a rectangular box.
The first calculations on this subject (Ambjørn and Wolfram 1983) resulted in
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a divergent free energy after removing the regularization. More recent results
appear to be either infinite (Santos and Tort 2000) or ambiguous (Jáuregui et al.
2006). Lim and Teo (2007) reconsidered the derivation of the Casimir free energy
for massless scalar and electromagnetic fields using zeta function regularization.
However, the renormalization was not complete. This led to irregular conclusions
about the behavior of the free energy as a function of temperature. Here we
consider the thermal Casimir effect in a rectangular box starting from the general
equations (5.36) and (5.37) for the renormalized free energy associated with a
finite volume V . These equations lead to physically meaningful results for the
Casimir free energy and force for rectangular boxes with arbitrary sides a×b×c.

8.5.1 The scalar Casimir effect

We start with the case of a massless scalar field with Dirichlet boundary condi-
tions. Equations (5.36), (5.37), and (5.29) can be written in the form

F(a, b, c, T ) = E(a, b, c) + kBT
∞∑

n,l,p=1

ln
(
1 − e−βωnlp

)
− α0(kBT )4

−α1(kBT )3 − α2(kBT )2, (8.89)

where β = 1/(kBT ), α0 = −π2abc/90, ωnlp is defined in eqn (8.34), and the finite
Casimir energy at zero temperature is given by eqn (8.44).

Equation (8.89) represents the finite renormalized value of the Casimir free
energy for a scalar field with Dirichlet boundary conditions in a box with sides
a, b, and c, valid at any temperature. However, the values of α1 and α2 remain
unknown. To determine them, one must find an asymptotic expression for the
nonrenormalized thermal correction ∆TF0 at high temperature (or large sepa-
ration). To do this, we rearrange ∆TF0 to the form

∆TF0(a, b, c, T ) = kBTX(βa, βb, βc), (8.90)

X(βa, βb, βc) ≡
∞∑

n,l,p=1

ln
(
1 − e−

√
β2

an2+β2
b
l2+β2

cp2
)

,

where

βa =
πβ

a
, βb =

πβ

b
, βc =

πβ

c
. (8.91)

Note that the quantity X does not depend on a, b, c, and T separately, but only
through the products aT, bT , and cT . Below, we find an asymptotic expression for
X under the conditions βa, βb, βc � 1. This can be done by repeated application
of the Abel–Plana formula (2.26).

First we put

F (n) =

∞∑
l,p=1

ln
(
1 − e−

√
β2

an2+β2
b
l2+β2

cp2
)

. (8.92)



Rectangular boxes at nonzero temperature 157

Then the application of eqn (2.26) leads to

X(βa, βb, βc) = −1

2

∞∑
l,p=1

ln
(
1 − e−

√
β2

b
l2+β2

cp2
)

(8.93)

+

∫ ∞

0

dt

∞∑
l,p=1

ln
(
1 − e−

√
β2

at2+β2
b
l2+β2

cp2
)

+ O(ln βa, ln βb, ln βc).

Here, we take into account the fact that the last term on the right-hand side of
eqn (2.26) with F defined in eqn (8.92) is of order ln βa, ln βb, and lnβc.

Applying the Abel–Plana formula to each of the sums in eqn (8.93), we get

X(βa, βb, βc) =
1

4

∞∑
p=1

ln
(
1 − e−βcp

)
(8.94)

− 1

2
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1
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)∫ ∞
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∫ ∞

0
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∫ ∞

0
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∞∑
p=1

ln
(
1 − e−

√
y2+v2+β2

cp2
)

+ O(ln βa, ln βb, ln βc).

Bearing in mind that

∞∑
p=1

ln
(
1 − e−βcp

)
= − π2

6βc
+ O(ln βc) (8.95)

and applying the Abel–Plana formula to the remaining two sums, the following
result is obtained:

X(βa, βb, βc) = − π2

24βc
+

1

4
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1
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0

dy ln
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)
− 1
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dv ln
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√
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+
1
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∫ ∞

0

dy

∫ ∞

0

dv

∫ ∞

0

dw ln
(
1 − e−

√
y2+v2+w2

)
+ O(ln βa, ln βb, ln βc). (8.96)

Calculating all integrals and using eqn (8.90) and the notation in eqn (8.91), we
arrive at the asymptotic expression for the nonrenormalized thermal correction
at high temperature (or large separation):

∆TF0(a, b, c, T ) = − π

24
(kBT )2(a + b + c) +

ζR(3)

4π
(kBT )3(ac + bc + ab)

− π2

90
(kBT )4abc + O(kBT ln βa, kBT ln βb, kBT ln βc). (8.97)

Thus, it has been demonstrated that at high temperature (or large separation)
the nonrenormalized thermal correction really contains terms of the form (5.35).
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From a comparison of eqn (8.97) with eqn (5.35), it follows (Geyer et al. 2008c)
that

α1 =
ζR(3)

4π
(ac + bc + ab), α2 = − π

24
(a + b + c), (8.98)

i.e. α1 is proportional to the total surface area of the box, and α2 is proportional
to the sum of the sides. These geometrical objects (together with the box volume)
are usually renormalized when E0,eff is replaced with Eren

0 (see Sections 8.1.1,
8.2, and 8.3). Thus the subtraction of the last three terms on the right-hand
side of eqn (8.89) can be interpreted as an additional finite renormalization, giv-
ing a physically meaningful temperature-dependent contribution to the Casimir
energy.

As mentioned in Section 5.1, α0, α1, and α2 can be expressed in terms of
heat kernel coeffcients. Thus, keeping in mind that the heat kernel coefficient
a1/2 = −√

πS/2 [this follows from eqn (4.25) and has also been shown in the
review by Vassilevich (2003)], where S is the surface area of box, and comparing
eqn (8.97) with the general asymptotic expression for the free energy (5.53), one
arrives at

α1 = − ζR(3)

4π3/2
a1/2 =

ζR(3)

8π
S (8.99)

in agreement with eqn (8.98). A similar comparison of the general expression
(5.53) with eqn (8.97) leads to α2 = −a1/24. The heat kernel coefficient a1 can
be calculated from the known expression for the heat kernel coefficient for an
angle θ (Nesterenko et al. 2003),

c1(θ) =
π2 − θ2

6θ
. (8.100)

In the case of a rectangle, θ = π/2 and c1 = π/4. In the three-dimensional case,
this must be multiplied by the lengths of all sides, leading to

a1 = 4c1(a + b + c) = π(a + b + c). (8.101)

From this, the expression for α2 in eqn (8.98) is again obtained.
The Casimir force acting between opposite faces of the box is obtained from

(8.89) and (8.98):

Fx(a, b, c, T ) = −∂F(a, b, c, T )

∂a
= Fx(a, b, c) +

π2

a3

∞∑
n,l,p=1

n2

ωnlp

(
eβωnlp − 1

)
− π2(kBT )4

90
bc +

ζR(3)

4π
(kBT )3(b + c) − π

24
(kBT )2. (8.102)

It is well known that the scalar Casimir energy E(a, b, c) is negative and the
respective force Fx(a, b, c) = −∂E(a, b, c)/∂a is attractive for any ratio of a, b,
and c (see Section 8.2). Because of this, we restrict ourselves to the consideration
of a cube a = b = c.
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In the limit of low temperature, T � Teff , the leading terms in eqn (8.89) are

F(a, T ) = E(a) − kBT e−π
√

3/(akBT ) (8.103)

+
π2(kBT )4

90
a3 − 3ζR(3)(kBT )3

4π
a2 +

π(kBT )2

24
a,

where the scalar Casimir energy for a cube can be calculated numerically using
eqns (8.44), (8.11), and (8.43), with the result

E(a) = −0.0102

a
. (8.104)

At an arbitrary temperature, it is convenient to represent both the free energy
and the force in terms of the dimensionless variable t = Teff/T :

F(a, T ) = Eren
0 (a) +

1

2at

∞∑
n,l,p=1

ln
(
1 − e−2πt

√
n2+l2+p2)

+
π2

1440at4
− 3ζR(3)

32π

1

at3
+

π

32

1

at2
, (8.105)

Fx(a, T ) = Fx(a) +
π

a2

∞∑
n,l,p=1

n2√
n2 + l2 + p2

1

e2πt
√

n2+l2+p2 − 1

− π2

1440a2t4
+

ζR(3)

16π

1

a2t3
− π

96

1

a2t2
,

where the force at zero temperature, in agreement with eqn (8.104), is given by

Fx(a) = −0.0102

3a2
. (8.106)

In Fig. 8.2(a), the scalar Casimir free energy in a cube, obtained from (8.105),
is plotted as a function of the side length a at T = 300 K (solid line). As can be
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Fig. 8.2. The scalar Casimir free energy for a cube as a function of (a) side
length a at T = 300 K (solid line; the dashed line shows the energy at T = 0)
and (b) temperature at a = 2 µm (Geyer et al. 2008c).
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Fig. 8.3. The scalar Casimir force between opposite faces of a cube as a function
of (a) side length a at T = 300 K (solid line; the dashed line shows the force
at T = 0) and (b) temperature at a = 2 µm (Geyer et al. 2008c).

seen from this figure, the free energy increases monotonically with increasing a.
At large separations (not shown in the figure), it approaches to a constant. The
Casimir energy E = E(a) at zero temperature is shown in the same figure by the
dashed line. In Fig. 8.2(b), the scalar Casimir free energy is plotted as a function
of temperature for a cube with a = 2 µm. It is seen that at large temperatures
F is proportional to the temperature in accordance with the classical limit.

The magnitude of the scalar Casimir force obtained from eqn (8.105) (on a
logarithmic scale) as a function of a at T = 300 K is shown in Fig. 8.3(a) by the
solid line. The force is attractive for cubes of any size and its magnitude goes to
zero with increasing a. In the same figure, the dashed line shows the magnitude
of the Casimir force (on a logarithmic scale) acting on opposite faces of the cube
at T = 0. Figure 8.3(b) shows the Casimir force as a function of temperature for
a cube with a = 2 µm. It can be seen that for both negative and positive values
of the free energy, the Casimir force is attractive.

8.5.2 The electromagnetic Casimir effect

Now we consider the electromagnetic thermal Casimir effect in a rectangular box
with sides of lengths a, b, and c. For an electromagnetic field, the renormalized
free energy (5.36), (5.37), and (5.29) is specified as

F(a, b, c, T ) = E(a, b, c) + kBT


 ∞∑

l,p=1

ln
(
1 − e−βωlp

)
(8.107)

+

∞∑
n,l=1

ln
(
1 − e−βωnl

)
+

∞∑
n,p=1

ln
(
1 − e−βωnp

)
+ 2

∞∑
n,l,p=1

ln
(
1 − e−βωnlp

)
− α̃0(kBT )4 − α̃1(kBT )3 − α̃2(kBT )2.

Here, α̃0 = −π2abc/45, ωnlp is defined in eqn (8.34), ωnl = ωnl0, and α̃1, α̃2 have
to be determined. The electromagnetic Casimir energy at T = 0, E(a, b, c), is
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given by eqn (8.59).
In order to find the coefficients α̃1 and α̃2, one must determine the asymptotic

behavior of ∆TF0 in the limit of high temperature (or large separation). In the
electromagnetic case, the nonrenormalized thermal correction can be identically
rearranged to the form

∆TF0(a, b, c, T ) = kBT Y (βa, βb, βc), (8.108)

Y (βa, βb, βc) = 2X(βa, βb, βc) +

∞∑
l,p=1

ln
(
1 − e−

√
β2

b
l2+β2

cp2
)

+

∞∑
n,l=1

ln
(
1 − e−

√
β2

an2+β2
b
l2
)

+

∞∑
n,p=1

ln
(
1 − e−

√
β2

an2+β2
cp2
)

,

where the asymptotic behavior of X(βa, βb, βc) at small βa, βb, and βc has been
determined above. Taking eqns (8.90) and (8.97) into account, this is given by

X(βa, βb, βc) = −π2

24

(
1

βa
+

1

βb
+

1

βc

)
+

πζR(3)

4

(
1

βaβb
+

1

βaβc
+

1

βbβc

)

− π5

90

1

βaβbβc
+ O(ln βa, ln βb, ln βc). (8.109)

The asymptotic behavior of Y (βa, βb, βc) at small βa, βb, βc is obtained, in
perfect analogy with the case of a scalar field, by repeated application of the
Abel–Plana formula (2.26) to the remaining three summations in eqn (8.108).
The result obtained, taking account of eqn (8.109), is

Y (βa, βb, βc) =
π2

12

(
1

βa
+

1

βb
+

1

βc

)
− π5

45

1

βaβbβc

+ O(ln βa, ln βb, ln βc). (8.110)

Substituting this into eqn (8.108) and using the notation in eqn (8.91), one
obtains an asymptotic expression for the thermal correction at high temperature
(or large separation)

∆TF0(a, b, c, T ) =
π

12
(kBT )2(a + b + c) − π2

45
(kBT )4abc

+O(kBT ln βa, kBT ln βb, kBT ln βc). (8.111)

It is notable that eqn (8.111) does not contain a contribution proportional to
the surface area of the box [in contrast to eqn (8.97) for the scalar field]. In the
electromagnetic case, such a contribution is also absent in the divergent Casimir
energy of the box E0 at zero temperature (see Section 8.3). Thus, from eqns
(8.111) and (5.35), one arrives at (Geyer et al. 2008c)

α̃1 = 0, α̃2 =
π

12
(a + b + c). (8.112)

Hence, similarly to the scalar case, α̃0, α̃1, and α̃2 have the same geometrical
structure as the infinite expressions in eqn (8.62).
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The Casimir force acting between opposite faces of a box is obtained as the
negative derivative of eqn (8.107) with respect to a:

Fx(a, b, c, T ) = Fx(a, b, c) +
π2

a3


 ∞∑

n,l=1

n2

ωnl

(
eβωnl − 1

) +

∞∑
n,p=1

n2

ωnp

(
eβωnp − 1

)

+2

∞∑
n,l,p=1

n2

ωnlp

(
eβωnlp − 1

)

− π2(kBT )4

45
bc +

π

12
(kBT )2. (8.113)

It is known that the electromagnetic Casimir energy inside a box at T =
0, E(a, b, c), can be both positive and negative and that the Casimir force,
Fx(a, b, c) = −∂E(a, b, c)/∂a, can be both attractive and repulsive depending
on the ratio of the sides a, b, and c (see Section 8.3). Here we consider in more
detail the thermal electromagnetic Casimir effect for a cube a = b = c, where
the electromagnetic Casimir energy at zero temperature (8.64) is positive and
the force is repulsive.

For a cube, the electromagnetic Casimir free energy (8.107) and force (8.113)
are given by

F(a, T ) = E(a) +
3

2at

∞∑
n,l=1

ln
(
1 − e−2πt

√
n2+l2

)

+
1

at

∞∑
n,l,p=1

ln
(
1 − e−2πt

√
n2+l2+p2)

+
π2

720at4
− π

16at2
,

Fx(a, T ) = Fx(a) +
2π

a2


 ∞∑

n,l=1

n2

√
n2 + l2

1

e2πt
√

n2+l2 − 1
(8.114)

+

∞∑
n,l,p=1

n2√
n2 + l2 + p2

1

e2πt
√

n2+l2+p2 − 1


− π2

720a2t4
+

π

48a2t2
,

where the force at T = 0 is

Fx(a) =
0.09166

3a2
. (8.115)

In Fig. 8.4(a), we plot the electromagnetic Casimir free energy in a cube
as a function of a at T = 300 K (solid line). The Casimir energy at T = 0
is shown in the same figure by the dashed line. As can be seen in this figure,
the electromagnetic Casimir free energy decreases with increasing separation.
Similarly to the scalar case, at large separations F approaches a constant. In
Fig. 8.4(b), the electromagnetic Casimir free energy is shown as a function of
temperature for a cube with a = 2 µm. The free energy decreases with increasing
T . At high temperature, F approaches the classical limit. The respective thermal
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Fig. 8.4. The electromagnetic Casimir free energy for a cube as a function of
(a) side length a at T = 300 K (solid line; the dashed line shows the energy
at T = 0) and (b) temperature at a = 2 µm (Geyer et al. 2008c).

electromagnetic Casimir force at T = 300 K, as a function of a, is shown in
Fig. 8.5(a) by the solid line. It is positive (i.e. repulsive) for cubes of any size.
Thus, thermal effects for cubes in the electromagnetic case increase the strength
of the Casimir repulsion. The dashed line in Fig. 8.5(a) shows the electromagnetic
Casimir force at T = 0 as a function of a. This force is given by eqn (8.115), i.e.
it is always repulsive. Figure 8.5(b) shows the electromagnetic Casimir force in
a cube of side a = 2 µm as a function of temperature. It is seen that the force
increases with increasing temperature.

Note that the results presented here differ from those found by Lim and Teo
(2007), where the terms of order (kBT )4 and of lower orders in the Casimir free
energy were obtained in the high-temperature regime. Also, the Casimir free
energy obtained by Lim and Teo (2007) for both the scalar and the electro-
magnetic field is always a decreasing function of temperature, opposite to the
result in Fig. 8.2(b). This is due to the fact that Lim and Teo (2007) did not
perform subtraction of the contributions from black-body radiation and of the
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Fig. 8.5. The electromagnetic Casimir force between the opposite faces of cube
as a function of (a) side length a at T = 300 K (solid line; the dashed line
shows the force at T = 0) and (b) temperature at a = 2 µm (Geyer et al.
2008c).
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terms proportional to the surface area of the box and the sum of its sides.
The above equations (8.89), (8.102), (8.107), and (8.113) can be used to

compute the scalar and electromagnetic free energy and force for boxes with
arbitrary sides a, b, and c. Specifically, it follows that the temperature-depen-
dent contribution to the electromagnetic Casimir force [which is obtained as
−∂∆TF/∂a from the physical thermal correction defined in eqn (5.37)] can be
both positive and negative depending on the sides a, b, and c. On the one hand,
as shown above (see Fig. 8.5), for a cube a × a × a the temperature-dependent
contribution to the Casimir force is positive, and computations show that this
is preserved for any box a × b × b with a > b. On the other hand, for a box
with b = c = 10 µm and a1 = 2.942 µm or a2 = 34.29 µm, the Casimir energy at
T = 0 is equal to zero (see Section 8.3). Computations using eqn (8.113) show
that for a box a1 × b× b the temperature-dependent contribution to the force is
negative, whereas for a box a2 × b × b it is positive.

The thermal corrections to the Casimir energy and force acting on a piston
were investigated by Hertzberg et al. (2007) for a scalar field with Dirichlet or
Neumann boundary conditions using the definition (5.30). The electromagnetic
Casimir free energy and force acting on a piston were found in the case of ideal-
metal rectangular boxes and a cavities with a general cross section (Hertzberg et
al. 2007). In the limit of low temperature, the thermal correction to the Casimir
force on a piston was shown to be exponentially small. In the case of an inter-
mediate temperature a � β � b, c, Hertzberg et al. (2007) obtained terms of
order (kBT )4 and of order (kBT )2 in the electromagnetic Casimir free energy. In
the scalar Casimir free energy, a term of order (kBT )3 was also obtained. This
results in a contribution to the force which does not depend on the position of the
piston. The same results for the thermal correction to the Casimir force acting
on a piston are obtained if the free energy is defined in accordance with eqn
(5.37). This is because the contribution of black-body radiation to the energy of
the entire box in Fig. 8.1 is equal to

−abc1 fbb − ab(c − c1)fbb = −abc fbb, (8.116)

i.e. it does not depend on the position of the piston. This is also true for the
terms of order (kBT )3 and (kBT )2, which are proportional to the surface area of
each section of the box and to the sum of its sides.

Notwithstanding the fact that the two expressions for the Casimir free energy
(5.30) and (5.37) lead to a common Casimir force acting on the piston, the latter
should be considered as preferable on physical grounds. The reason is that from
a thermodynamic point of view (Kubo 1968), any equilibrium system can be
characterized by both the free energy (5.2) and the respective pressure (5.3).
From this point of view, it would not be consistent to allow consideration of the
force acting on the piston but to exclude from consideration those forces which
act on the faces of the box where this piston serves as a partition. Thus, it is
important to use the definition of the Casimir free energy in a box (5.37) which
leads to physically meaningful forces acting not only on the piston, but on all box
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faces as well. The point of view (Hertzberg et al. 2005, 2007) that the definition
of a force acting on a box face requires elastic deformations of a single body
that is treated as perfect is not accurate. To define a force and a pressure in
a static configuration, one need not involve elastic deformations. This is simply
done using the principle of virtual work, and virtual displacements through the
action of real forces (Charlton 1973).

The above results were obtained for rectangular boxes with Dirichlet bound-
ary conditions (in the scalar case) and for ideal-metal boxes (in the electromag-
netic case). In the same way as for zero temperature, the consideration of the
thermal Casimir effect in a rectangular box has to incorporate real material prop-
erties of the boundary surfaces. At present, this problem remains unsolved.



9

SINGLE SPHERICAL AND CYLINDRICAL BOUNDARIES

In this chapter we consider the Casimir effect for simple, single bodies having
a spherical or cylindrical shape. As we have seen in Section 4.3.3, the Casimir
force and the corresponding interaction energy for separate bodies are always
finite. Thus renormalization is not an issue. However, for single bodies, such as
the rectangular boxes considered in the previous chapter, this is not the case,
because the divergent contributions to the vacuum energy depend on the lengths
of the sides. For a sphere, the divergent contributions usually depend on its
radius and cannot be neglected. Therefore renormalization schemes, as discussed
in Section 4.3.2, must be employed. This requires some classical system for the
interpretation of the renormalization. While such schemes are known to work
well in quantum field theory, for example in the case of quantum corrections to
the mass of solitons, for the Casimir effect there is presently a lack of physical
examples.

It must be mentioned that the interest in the Casimir effect for single bodies
such as a sphere is enormous. This is due to a number of reasons. Historically, the
first and most intriguing follows from Casimir’s model for the electron (Casimir
1953). He assumed the charge of the electron to be distributed over a conductive
spherical shell. The resulting electrostatic self-repulsion would be balanced by
an attractive Casimir force (in analogy with the case of parallel metal planes). If
this model has been proved to be correct, it would have revolutionized physics by
allowing calculation of the fine structure constant. However, the question of what
balances the electrostatic self-repulsion of the electron and other charged parti-
cles has still not been answered and is probably poorly formulated. As Casimir
himself said, “It would have been embarrassing if you really got 137 because
such a model can never be very close to reality. . .” (Casimir 1999). But Boyer
(1968) showed that the Casimir effect for a conducting sphere is repulsive. Re-
calculations using different methods (Davies 1972, Balian and Duplantier 1977,
1978, DeRaad and Milton 1981) confirmed this result. The interest in this con-
figuration has continued over the decades. While the initial calculation was very
laborious, the use of advanced computational tools has simplified such calcula-
tions considerably. The basic methods used, are the multiple-reflection expansion
(Balian and Duplantier 1977), the Green’s function method (DeRaad and Milton
1981), and the zeta function method. As we shall see in Section 9.3.3, there is a
complete understanding of the cancellation of the divergences.

The second reason for the interest in the Casimir effect for a sphere is the
phenomenological bag model of hadrons (Chodos et al. 1974), which is intended
to describe their properties until a complete solution of the confinement prob-
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lem is available. Here, boundary conditions are imposed on the quark and gluon
fields in order to prevent the escape of color from some region in space (the
bag, in the simplest case, is a sphere). For gluon fields, because of duality, this
is equivalent to the Casimir energy of a conducting sphere. For quark fields, a
special type of boundary condition appears, which will be considered in Section
9.4. However, within this model, the renormalization issue is not really settled
and the model remains physically unsatisfactory. An attempt to collect different
phenomenological approaches together within the bag model was recently un-
dertaken by Milton (2001). Here we restrict ourselves to a representation of the
Casimir effect for quark fields in a bag and focus on the calculation procedure.

Thirdly, the Casimir effect has received much attention as a possible expla-
nation for sonoluminescence. The latter is the production of short flashes of light
from air bubbles in a liquid driven by an ultrasonic wave. This phenomenon has
been experimentally investigated [see the review by Barber et al. (1997)] but
a complete understanding of the underlying physics has still not been reached.
Schwinger (1992, 1993) attempted to relate the energy release in the light flashes
to differences in the vacuum energy of a collapsing dielectric ball. Eberlein (1996)
adopted the dynamical Casimir effect as an explanation. Work in this direction
was continued by Liberati et al. (2000), but there is as yet no final answer. At
this point it should be mentioned that a spherical geometry is also being used
in connection with attempts to consider the vacuum energy in black holes.

A fourth reason for the interest in spherical geometries is driven by the re-
pulsive character of the force acting on a conducting spherical shell (the same
holds for some rectangular cavities; see Chapter 8). It would be exciting to find
a repulsive Casimir force between real bodies in contrast to the attractive van
der Waals forces between atoms and molecules. If found, this would provide a
means to reduce stiction in nanomechanical systems.

In this chapter, we focus on the technical methods necessary to calculate
the Casimir effect in spherical and cylindrical geometries and on the analysis
of the ultraviolet divergences. In general, most of the technical matter is well
known from classical electrodynamics, and the mathematics involved does not
go much beyond Bessel functions. Nevertheless, we feel it worthwhile to collect
the relevant formulas together in one place and to present them from a common
point of view. Our representation is completely in terms of global quantities. For
a local treatment, especially for a representation in terms of Green’s dyadics, we
refer the reader to the book by Milton (2001), where the relevant literature is
collected together. The physical content of the Casimir effect for a sphere depends
much on the ultraviolet divergences. We discuss them in detail using the approach
of heat kernel coefficients. Adopting the philosophy of renormalization used in
Section 4.3, we discuss for which system (the interior or exterior of a sphere or
the total space) a meaningful definition of the vacuum energy is possible. We
shall come to the conclusion that this is possible only for a few selected cases.
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9.1 Separation of variables and mode summation

Problems with boundary or matching conditions on a sphere or on a cylinder al-
low a separation of variables in the corresponding wave equation (3.1), (3.22), or
(3.30). This reduces the problem to one-dimensional radial equations. However,
because of the necessary summation over the orbital momenta, the details of the
renormalization are quite different from the one-dimensional case. As a conse-
quence, these problems require their own technical tools. The most important
ones are the Green’s function method, especially that based on dyadic Green’s
functions (Milton 2001), the multiple-reflection method (Balian and Duplantier
1977, 1978), and the mode summation method. Thus different regularization
schemes have been employed, which are sometimes referred to as separate meth-
ods. In fact, all these methods are equivalent, at least for the calculation of global
quantities such as the vacuum energy. For the calculation of local quantities such
as the energy density or the charge density, the Green’s function method is prefer-
able. However, since we are interested only in global quantities, in order to avoid
unnecessary technical details, we use only the mode summation method below.

9.1.1 Spherical symmetry

We start from the representations of the vacuum energy in eqn (3.60) for a scalar
field, eqn (3.76) for an electromagnetic field, and eqn (3.84) for a spinor field.
The corresponding eigenvalue problems are eqns (3.39) and (3.45). For the scalar
field, using separation of variables in spherical coordinates (r, θ, ϕ), the solution
to the Laplace equation is

ΦJ(r) = fl,n(r)YlM (θ, ϕ). (9.1)

The index J = (n, l, M) is now composed of the orbital momentum l = 0, 1, . . . ,
its azimuthal component M with |M | ≤ l, and the radial index n = 1, 2, . . . .

For the electromagnetic field, instead of eqn (3.68), the separation of variables
and the separation of polarizations are achieved by use of a representation of the
vector potential in the form

AJ(r) = ETEfTE
l,n (r)YlM (θ, ϕ) + ETMfTM

l,n (r)YlM (θ, ϕ), (9.2)

with the known (nonnormalized) operator polarization vectors

ETE = L , ETM = ∇ × L . (9.3)

Here, L is the operator of the orbital angular momentum, having the property

L2 YlM (θ, ϕ) = l(l + 1)YlM (θ, ϕ) (9.4)

The spherical harmonics YlM (θ, ϕ) are defined as

YlM (θ, ϕ) =
1√
2π

√
2l + 1

2

√
(l − M)!

(l + M)!
eiMϕPM

l (cos θ), (9.5)
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and the P M
l (z) are the associated Legendre functions. The polarization vectors

(9.3) are orthogonal to each other, i.e. ETE
· ETM = 0, and satisfy the equalities

∇ ·ETE = ∇·ETM = 0, ∇ × ETE = ETM, ∇ × ETM = −∇
2 ETE.

(9.6)
These polarization vectors are conveniently chosen in spherical geometry instead

of the ε
(λ)
J in eqn (3.74), which were used in the plane parallel geometry. It must

be mentioned that in the decomposition (9.2) the angular momentum l = 0,
i.e. the s-wave, is absent. This is because the orbital-momentum operator, when
acting on a function which does not depend on the angles such as Y00(θ, ϕ),
leads to zero. Therefore, in contrast to the scalar case, the orbital momenta have
values l = 1, 2, . . . . Note that in accordance with the definition (9.3), ETE is
dimensionless and the dimension of ETM is 1/cm.

Using eqn (3.13), and the time dependence ∼ exp(−iωt) in eqn (3.44), the
electric field and magnetic induction are

EJ (r) = iω
[
ETEfTE

l,n (r) + ETMfTM
l,n (r)

]
YlM (θ, ϕ),

BJ(r) =
[
−∇

2ETEfTM
l,n (r) + ETMfTE

l,n (r)
]
YlM (θ, ϕ). (9.7)

The notation “TE”, denoting a transverse electric field, follows from this repre-
sentation since the vector ETE is perpendicular to the wavefront of a spherical
wave, i.e. n ·ETE = 0, where n is the unit vector in the radial direction. The
case of a transverse magnetic field, denoted by “TM”, is similar owing to duality.
This can be seen in eqn (9.7) where, except for some factors, the two lines differ
only by an interchange of the radial functions fTE

l,n (r) and fTM
l,n (r). The radial

function fTE
l,n (r) has the dimension of 1/cm, whereas fTM

l,n (r) is dimensionless.

Thus, the physical fields (9.7) have the correct dimension of 1/cm2. Similar for-
mulas can be written down for the spinor case. Since these are technically more
involved, we postpone their discussion to Section 9.4.

In all cases, the wave equations (3.39) and (3.45) translate into the radial
equation [

− ∂2

∂r2
− 2

r

∂

∂r
+

l(l + 1)

r2

]
fl,n(r) = Λl,nfl,n(r) (9.8)

for each of the functions fl,n(r) in eqn (9.1) or fTE
l,n (r) or fTM

l,n (r) in eqn (9.2), as
the polarization vectors (9.3) commute with the Laplace operator. In eqn (9.8),
we have used the Laplace operator in spherical coordinates,

∇
2 =

∂2

∂r2
+

2

r

∂

∂r
− L2

r2
, (9.9)

and the eigenvalues of the angular-momentum operator from eqn (9.4). The
solutions of eqn (9.8) are the spherical Bessel functions.

Further progress depends on the boundary conditions. We assume them to
be compatible with the separation of variables such that they translate into
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conditions on the radial functions. We assume further that these conditions,
together with eqn (9.8), constitute a well-posed eigenvalue problem. This may
be on an interval r ∈ [0, R] (the interior of a sphere) or on an infinite interval
r ∈ [R,∞) (the exterior region). In the following, we consider these two cases
separately.

9.1.2 Mode summation for the interior problem

For the interior of the sphere, we have to consider eqn (9.8) on the interval
r ∈ [0, R]. For an arbitrary k, the solutions are spherical Bessel functions jl(z)
obeying [

− ∂2

∂r2
− 2

r

∂

∂r
+

l(l + 1)

r2

]
jl(kr) = k2 jl(kr), (9.10)

which, by means of

jl(z) =

√
π

2z
Jl+ 1

2
(z), (9.11)

are related to the ordinary Bessel functions. The functions jl(z) are chosen be-
cause they are regular at the origin, i.e.

jl(z) ∼
r→0

√
π

2

(z

2

)l 1

Γ
(
l + 3

2

) , (9.12)

ensuring the renormalizability of the wave function.
The discrete eigenvalues of the radial problem appear as solutions of the

corresponding boundary condition. For a scalar field with Dirichlet boundary
conditions, from eqns (3.41) and (9.1), the radial functions fn,l(r) must vanish
at r = R. This is achieved for discrete radial momenta kn,l obtained from

jl(kR) = 0, k =
jν,n

R
, n = 1, 2, . . . , (9.13)

where the jν,n are the zeros of the Bessel functions, i.e.

Jν(jν,n) = 0, ν ≡ l +
1

2
. (9.14)

In this way, the solutions of eqn (9.8) are given by

fl,n(r) = c jl

(
jν,n

R
r

)
, (9.15)

where c is a constant, and the eigenvalues are

Λl,n =

(
jν,n

R

)2

. (9.16)

At this point we introduce a mode-generating function ∆l(k), which is defined as
a function whose zeros are just the eigenvalues Λn,l (9.16). For Dirichlet boundary
conditions, we define
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∆D,i
l (k) = (kR)−(2l+1)/2Jl+ 1

2
(kR). (9.17)

The superscript “D” indicates Dirichlet boundary conditions and the “i” refers
to the interior. The definition of this function is not unique; for instance, it can
always be multiplied by an arbitrary constant. We have introduced the factor
(kR)−ν in order to give the function positive real values along the imaginary
frequency axis, preserving the finiteness at k = 0. Other examples of mode-
generating functions will be given in subsequent sections.

Now we insert the eigenvalues Λl,n, which are given by eqn (9.16) or can be
obtained from a mode-generating function ∆l(k), into the regularized expression
for the vacuum energy. In zeta function regularization (4.3), we then have

E0(s) =
µ2s

2

∞∑
n=1

∞∑
l=0

(2l + 1)
(
Λl,n + m2

)(1−2s)/2
. (9.18)

The summation in eqn (4.3) was over a generic index J , which in this case has
the form J = (n, l, M). The summation over M can be carried out owing to
the azimuthal symmetry of the mode-generating function, and this summation
results in the factor (2l + 1).

Equation (9.18) was derived for a massive scalar field. It is clear that such
a representation holds for any problem with spherical symmetry in an interior
region. In principle, using an asymptotic expansion such as eqn (4.7) for the
eigenvalues, one can use such a representation to construct the analytic continu-
ation to s = 0. This method is attractive because it is in terms of eigenvalues, i.e.
in terms of the physical spectrum. However, it is technically quite complicated
and is not used in practice. An easier way to proceed is to transform the sum
over n into an integral over the radial momentum using the argument principle
(7.60):

E0(s) =
µ2s

2

∞∑
l=0

(2l + 1)

∫
γ

dk

2πi

(
k2 + m2

)(1−2s)/2 ∂

∂k
ln ∆l(k). (9.19)

Here, a closed contour γ contains all of the zeros of the mode-generating function
kl,n =

√
Λl,n. It must be mentioned that the same contour can be chosen for

all l without any loss in convergence of the sum over l. The next step is to
deform γ towards the imaginary axis as was done in Section 7.4.1. Thus we
use the fact that the mode-generating function does not have a pole at k = 0,
which is ensured by the behavior of the Bessel functions for small argument in
eqn (9.17). We assume also that there are no poles in the upper complex half-
plane, which holds at least for all mode-generating functions following from the
boundary conditions. Finally, we assume ∆l(−k) = ∆l(k) to hold. With this, we
turn the upper half of the contour γ towards the positive imaginary axis and the
lower half towards the negative imaginary axis, i.e. make substitutions k → ±ik
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with k ≥ 0. Then we introduce the function G
(α)
m , as defined in eqn (2.35), with

α = (1/2)− s. As a result, eqn (9.19) takes the form

E0(s) = −µ2s

2

∞∑
l=0

(2l + 1)

∫ ∞

m

dk

2πi

[
G(α)

m (ik) − G(α)
m (−ik)

] ∂

∂k
ln ∆l(ik). (9.20)

Using the equality (2.36), we arrive at

E0(s) = −µ2s cos(πs)

2π

∞∑
l=0

(2l+1)

∫ ∞

m

dk
(
k2 − m2

)(1−2s)/2 ∂

∂k
ln ∆l(ik). (9.21)

It should be mentioned that this expression is real since ∆l(ik) is real. For ex-
ample, for Dirichlet boundary conditions, from eqn (9.17),

∆D,i
l (ik) = (kR)−(2l+1)/2Il+ 1

2
(kR) (9.22)

follows, where Iν(z) is a modified Bessel function related to the usual Bessel
functions by Jν(iz) = iνIν(z).

The representation (9.21) for the regularized vacuum energy in an interior
region is the most convenient form for further calculations. This is because an
explicit knowledge of the eigenvalues is not necessary, and the use of the integral
representation instead of the sum over eigenvalues is convenient for analytic
continuation.

9.1.3 Mode summation for the exterior problem

For the exterior of the sphere, the mode summation method is slightly more
complicated since one has, at least partly, a continuous spectrum. This is because
the space is unbounded. At the same time, there is a contribution proportional to
the volume of the space which is infinite, and which must be eliminated because
of the definition of the vacuum energy as the change with respect to empty space.
In general, there are several ways to handle this problem. One is to use the local
energy density and to integrate it over the space, dropping the unwanted volume
contribution. Another way, which we follow here, is to enclose the whole system
inside a large sphere and to take the limit where its radius Rc tends to infinity.
Of course, the two approaches are equivalent, but in the latter it is not necessary
to introduce local quantities.

In a large sphere of radius Rc, the spectrum is discrete and we start from
eqn (9.19) with an appropriate mode-generating function ∆Rc

l (k). We have to
impose boundary conditions on that sphere. In the end, the vacuum energy will
not depend on the type of these boundary conditions, and we take Dirichlet ones
for simplicity. In this way, we return to an interior problem with an additional
smaller sphere inside.

The next task is to remove the large sphere, i.e. to consider the limit Rc → ∞.
To do so, we consider the general problem of scattering on a hard sphere given
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by the boundary conditions at r = R. The corresponding radial equation for this
problem reads[

− ∂2

∂r2
− 2

r

∂

∂r
+

l(l + 1)

r2
+ V (r)

]
φl,k(r) = k2φl,k(r), (9.23)

with k ∈ [0,∞). We take φl,k(r) to be the regular scattering solution, i.e. the
one which becomes the free solution for a vanishing scattering center (R → 0),

φl,k(r) ∼
k→0

jl+ 1
2
(kr). (9.24)

Details of these definitions can be found, for example, in the books by Newton
(1966) and Taylor (1972).

For r → ∞, the scattering solution becomes a superposition of incoming and
outgoing spherical waves,

φl,k(r) ∼
r→∞

1

2

[
fl(k)h

(2)
l (kr) + f ∗l (k)h

(1)
l (kr)

]
, (9.25)

where

h
(1,2)
l (z) =

√
π

2z
H

(1,2)

l+ 1
2

(z) (9.26)

are the spherical Hankel functions of the first and second kind, which also satisfy
eqn (9.10). The coefficients in this superposition are the Jost functions fl(k)
and their complex conjugates. These are uniquely determined by the equation,
the boundary conditions, and the potential V (r). In general, the Jost functions
are commonly used in potential scattering (for details, see the above-mentioned
books). Here we need only their relation to the scattering phase shifts δl(k),

fl(k)

f ∗l (k)
= e−2iδl(k), (9.27)

and some basic properties. The Jost functions are meromorphic functions of the
variable k in the upper half of the complex plane. Their continuation to the real
axis is a continuous function and the only poles in the upper half-plane are on the
imaginary axis (the corresponding solutions describe bound states). In addition,
we should mention their reflection property fl(−k) = f ∗l (k) for real k.

Now we apply the boundary condition on the large sphere to the scattering
solution and define the mode-generating function

∆Rc

l (k) = φl,k(Rc). (9.28)

We insert this function into the representation (9.19) of the vacuum energy and,
in order to perform the limit Rc → ∞, we divide the integration contour into two
parts γ1 and γ2, one above the real axis and the other below. For large Rc, we
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use the asymptotic expression (9.25). Resulting from the asymptotic behavior of
the Hankel functions,

H
(1,2)

l+ 1
2

(kRc) ∼ exp(±ikRc), (9.29)

the primary contribution on γ1 is

ln ∆Rc

l (k) = ln fl(k) + . . . , (9.30)

where we have neglected contributions which vanish when Rc → ∞ or which do
not depend on R. On the other part, γ2, we have

ln ∆Rc

l (k) = ln f ∗l (k) + . . . . (9.31)

Now we return the integration path to the real axis. This is possible because
the poles have been removed together with the dropped contributions. From eqn
(9.19), with the use of eqn (9.27), we get

E0(s) =
µ2s

2

∞∑
l=0

(2l + 1)

∫ ∞

0

dk

π

(
k2 + m2

)(1−2s)/2 ∂

∂k
δl(k). (9.32)

From eqn (9.32), we obtain a representation of the vacuum energy for the exterior
problem. It is parallel to the representation (9.21) for the interior problem. It has
the advantage of being in terms of the physical spectrum and the scattering phase
shifts. Its disadvantage is the oscillating behavior of the phase shifts and their
complicated asymptotic behavior, which makes both the numerical evaluation
and the analytic continuation in s difficult. For these reasons, it is preferable
to rotate the integration to the imaginary axis. For that, with eqn (9.27), we
return to the Jost functions. In the contribution containing fl(k), we rotate the
γ1 part of the contour by means of k → ik and, in the other contribution, we use
f ∗l (k) = fl(−k) and rotate γ2 in the opposite direction. In this way, eqn (9.32)
leads to

E0(s) = −µ2s

2

∞∑
l=0

(2l + 1)

∫ ∞

0

dk

2πi

[
G(α)

m (ik) − G(α)
m (−ik)

] ∂

∂k
ln fl(ik), (9.33)

where G
(α)
m is defined in eqn (2.35) and α = (1/2)−s. Then, by using the equality

(2.36), we obtain

E0(s) = −µ2s cos(πs)

2π

∞∑
l=0

(2l + 1)

∫ ∞

m

dk
(
k2 − m2

)(1−2s)/2 ∂

∂k
ln fl(ik). (9.34)

This is one more representation of the vacuum energy for the exterior region.
Formally, it is identical to eqn (9.21) for the interior region. This allows one to
unify the notation by defining a mode-generating function ∆l(k) for the exterior
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region. From eqns (9.34) and (9.21), it follows that we can use the Jost function
for this purpose:

∆l(k) = fl(k). (9.35)

We remark that this can be multiplied by an arbitrary constant. Now eqn (9.21)
is a representation of the regularized vacuum energy valid in both regions, inside
and outside the sphere.

9.1.4 Cylindrical symmetry

In this subsection, we collect together the formulas for a cylinder with a circular
section. We follow the same method as in the case of a sphere, and elaborate
on the differences. We separate the variables in the wave equation in cylindrical
coordinates (ρ, ϕ, z), and represent the solutions for a scalar field in the form

ΦJ (r) = fl,n(ρ) eilϕ eikzz . (9.36)

Now the index J = (n, l, kz) is composed of the radial index n, the angular
momentum l = 0,±1,±2, . . . , and the momentum kz parallel to the axis of the
cylinder. We have translational invariance in the z-direction for both the interior
and the exterior problems.

The electromagnetic potential can be represented by the decomposition

AJ (r) =
[
ETEfTE

l,n (ρ) + ETMfTM
l,n (ρ)

]
eilϕ eikzz (9.37)

with the operator polarization vectors

ETE = (ez × ∇) , ETM = ∇ × (ez × ∇) . (9.38)

Here,

ez =


0

0
1


 (9.39)

is the unit vector pointing along the axis of the cylinder. These polarization vec-
tors are orthogonal to each other, i.e. ETE

· ETM = 0, and satisfy the equations
∇ · ETE = ∇ · ETM = 0 and the other properties in eqn (9.6). According to
eqn (9.38), the operator polarization vectors ETE and ETM have the dimensions
1/cm and 1/cm2, respectively.

Using eqns (3.13) and (3.47), and the time dependence ∼ exp(−iωt) in eqn
(3.44), the decomposition of the field strengths is

EJ(r) = iω
[
ETEfTE

l,n (ρ) + ETMfTM
l,n (ρ)

]
eilϕ eikzz ,

BJ(r) =
[
−∇

2ETEfTM
l,n (ρ) + ETMfTE

l,n (ρ)
]

eilϕ eikzz. (9.40)

Because of

ETE = −eρ
1

ρ

∂

∂ϕ
+ eϕ

∂

∂ρ
, (9.41)

where eρ and eϕ are the unit vectors in the radial and azimuthal directions, the
amplitude fTE

l,n (ρ) describes an electric field orthogonal to the axis of the cylinder.
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By duality, the amplitude fTM
l,n (ρ) describes a magnetic induction orthogonal to

the axis of the cylinder. The function fTE
l,n (ρ) is dimensionless and the function

fTM
l,n (ρ) has the dimension of length. As in the spherical case, the polarization

vectors commute with the Laplacian, and eqns (3.39) and (3.45) result in the
radial equation(

− ∂2

∂ρ2
− 1

ρ

∂

∂ρ
+

l2

ρ2
+ k2

z

)
fl,n,kz

(ρ) = Λl,n fl,n,kz
(ρ). (9.42)

The dependence on the momentum kz can be separated, and by defining Λl,n =

Λ̃l,n + k2
z we get the pure radial equation(

− ∂2

∂ρ2
− 1

ρ

∂

∂ρ
+

l2

ρ2

)
fl,n(ρ) = Λ̃l,n fl,n(ρ). (9.43)

The vacuum energy takes the form

E0(s) =
µ2s

2

∫ ∞

−∞

dkz

2π

∞∑
n=1

∞∑
l=−∞

(
Λ̃l,n + k2

z + m2
)(1−2s)/2

, (9.44)

which is the general representation for the cylindrical geometry in terms of the
discrete eigenvalues Λ̃l,n in the plane perpendicular to the axis of the cylinder.

We proceed in parallel to the spherical case and define mode-generating func-
tions. We consider first the interior region, ρ ∈ [0, R], and take as an example
Dirichlet boundary conditions. The solutions of eqn (9.43) are Bessel functions
obeying (

− ∂2

∂ρ2
− 1

ρ

∂

∂ρ
+

l2

ρ2

)
Jl(kρ) = k2 Jl(kρ), (9.45)

where we have chosen functions which are regular at ρ = 0. The eigenvalues Λ̃l,n

follow as solutions of the boundary conditions:

Jl(kR) = 0, k2 = Λ̃l,n =
jl,n

R
, n = 1, 2, . . . . (9.46)

The solutions of eqn (9.43) obeying the boundary conditions are

fl,n(ρ) = c Jl

(
jl,n

R
ρ

)
, (9.47)

where c is some constant. Finally we define the mode-generating function,

∆D,i
l (k) = (kR)−lJl(kR), (9.48)

again multiplied by a factor which ensures real values along the imaginary fre-
quency axis. We see that in contrast to the spherical case, described by eqn
(9.17), the orbital momentum is an integer.
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The procedure used to transform the summation over the radial index n into
an integral is identical to that in the spherical case, and from eqn (9.44) we arrive
at the representation

E0(s) = −µ2s cos(πs)

2π

∞∑
l=−∞

∫ ∞

−∞

dkz

2π

×
∫ ∞
√

k2
z+m2

dk
(
k2 − k2

z − m2
)(1−2s)/2 ∂

∂k
ln ∆l(ik). (9.49)

Sometimes a mode-generating function does not depend on the momentum kz . In
that case the integration over kz can be carried out and the representation of the
vacuum energy is simplified. For this purpose, we change the order of integrations
with respect to kz and k and introduce a new variable t = kz/

√
k2 − m2. The

result is

E0(s) = µ2s 1

4
√

πΓ
(
s − 1

2

)
Γ(2 − s)

∞∑
l=−∞

∫ ∞

m

dk
(
k2 − m2

)1−s ∂

∂k
ln ∆l(ik).

(9.50)
A similar formula holds for the exterior region also. However, we first have to

define the mode-generating function. For this purpose, we consider the scattering
problem in the plane perpendicular to the cylinder,

(
− ∂2

∂ρ2
− 1

ρ

∂

∂ρ
+

l2

ρ2

)
φl,k(ρ) = k2 φl,k(ρ). (9.51)

The regular scattering solution φl,k(ρ) is the one which for R → 0 turns into the
free solution. In this case it is the Bessel function Jl(kρ). For large ρ, it becomes
a superposition of incoming and outgoing cylindrical waves,

φl,k(ρ) ∼
ρ→∞

1

2

[
fl(k)H

(2)
l (kρ) + f ∗l (k)H

(1)
l (kρ)

]
, (9.52)

and defines the corresponding Jost functions fl(k). These have the same general
properties as in the spherical case. Now we use a large cylinder with Dirichlet
boundary conditions at ρ = Rc and define the eigenvalues inside this cylinder by

φl,k(Rc) = 0, k2 = Λ̃l,n. (9.53)

The corresponding mode-generating function is given by the formula (9.28) from
the preceding subsection with the function φl,k(r) defined here in eqn (9.51).
Next, we follow the same steps as in the spherical case. We perform the limit
Rc → ∞ by separately considering the two parts of the contour γ in a represen-
tation parallel to eqn (9.19) and, using eqn (9.29), we arrive at formulas identical
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to eqns (9.49) and (9.50) with a mode-generating function now defined by the
Jost function of the cylindrical scattering problem (9.52),

∆l(ik) = fl(ik). (9.54)

Thus we obtain the basic formulas for the calculation of the vacuum energy in
the cylindrical geometry.

It should be mentioned that on the level of these formulas, the difference
with respect to the spherical geometry is just in the indices of the Bessel func-
tions involved and in the kz integration. In general, the cylindrical problem is
less symmetric than the spherical one. For the scalar problem, in the case of a
mode-generating function which is independent of kz , this difference in symme-
try does not show up in the formulas. The same holds for the electromagnetic
field with conductor boundary conditions. However, for a dielectric cylinder, the
mode-generating function does depend on kz and, even more importantly, the
polarizations are not separable (see Section 9.6.2).

9.2 The scalar Casimir effect for a spherical shell

Studying the Casimir effect for a scalar field on a spherical shell is a useful
exercise as the mathematical methods developed are important for both elec-
tromagnetic and spinor fields. In this section we consider a scalar field obeying
eqn (3.39) and certain boundary conditions. First we consider a massive field
and, in the last subsection, the massless case. We collect the relevant formulas
together, especially the heat kernel coefficients. Using the representation of the
vacuum energy derived in Section 9.1, we construct the analytic continuation of
the vacuum energy in zeta function regularization. Then we discuss the relevant
models with respect to their renormalization and, finally, represent the known
results.

9.2.1 Boundary conditions and mode-generating functions

As discussed in Section 3.2, there are independent Dirichlet [eqn (3.41)] and
Neuman [eqn (3.42)] boundary conditions for the scalar field ΦJ (r) which, with
eqn (9.1), imply for the radial function fl,n(r) the conditions

fl,n(r)|r=R = 0 or
∂

∂r
fl,n(r)

∣∣∣∣
r=R

= 0. (9.55)

The Robin boundary condition (3.43) implies[
r

∂

∂r
fl,n(r) + ufl,n(r)

]∣∣∣∣
r=R

= 0, (9.56)

where u is a parameter or a function of the radius r. For u = 0, eqn (9.56)
is the Neumann boundary condition. For u = 1, it is the boundary condition
which appears in the next section for the TM mode of the electromagnetic field.
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In the remaining part of this section, we consider only the Dirichlet and Neu-
mann conditions. It should be mentioned that the separation of variables holds
independently for any set of the indices.

In the following, we consider three cases for each set of boundary conditions.
These are labeled as follows:

• (i), the interior region of the sphere, r ∈ [0, R];

• (e), the exterior region of the sphere, r ∈ [R,∞);

• (b), both regions together, r ∈ [0,∞).

Since the boundaries determined by the conditions (9.55) and (9.56) are impen-
etrable, i.e. the fields in both regions are completely independent of each other,
the corresponding spectral problems are independent. The third case is math-
ematically the sum of the first two. As a result, the vacuum energy or, more
exactly, the regularized vacuum energy of the case (b), is the sum of the energies
of the cases (i) and (e). We also note that the heat kernel coefficients for (b)
are the sum of the coefficients for (i) and (e). However, regarding the physical
interpretation, and especially the renormalization, the third case may behave
quite differently and therefore should be considered independently.

As seen in Section 9.1, the solutions of the wave equation are spherical Bessel
functions. In the interior region, we take those which are regular at the origin,

fl,n(r) = jl(kr), (9.57)

with k following from the boundary conditions. In the Dirichlet case, eqn (9.13)
is satisfied and the mode-generating function can be defined by

∆D,i
l (k) = (kR)−νJν(kR), ν ≡ l +

1

2
. (9.58)

This is the same as that already discussed in Section 9.1.1. We shall use the
notation ν below.

For Neumann boundary conditions, we have to demand

[jl(kR)]
′
= 0, (9.59)

where, here and below, the prime denotes the following differentiation with re-
spect to the argument kr:

dF (kr)

d(kr)

∣∣∣∣
r=R

≡ [F (kR)]
′
. (9.60)

For this condition, the mode-generating function can be taken in the form

∆N,i
l (k) = (kR)1−l

[
1√
kR

Jν(kR)

]′
. (9.61)

Again, the factor in front is chosen appropriately using eqns (9.11) and (9.12).
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Now we consider the exterior region. Here we have to use the regular scat-
tering solution defined in Section 9.1, which for r ≥ R is

φl,k(r) =
1

2

[
fl(k)h

(2)
l (kr) + f ∗l (k)h

(1)
l (kr)

]
, (9.62)

i.e. it coincides with the asymptotic expression (9.25). The Jost functions must
be chosen such that eqn (9.62) satisfies the boundary conditions. In the Dirichlet
case this is achieved by

fD
l (k) = i

2
√

π

Γ(ν)

(
kR

2

)l+1

h
(1)
l (kR). (9.63)

The factors in front are chosen in order to satisfy eqn (9.24), where we have used
eqn (9.26) and

H(1,2)
ν (z) ≈

z→0
∓ i

Γ(ν)

π

(z

2

)−ν

. (9.64)

Now, from eqn (9.35), we can define the mode-generating function for the Dirich-
let boundary conditions in the exterior region with

∆D,e
l (k) = (kR)νH(1)

ν (kR), (9.65)

where we have used eqn (9.26) and have omitted some constants.
For the Neumann boundary conditions (9.55), we proceed in the same way.

The expression (9.62) satisfies the second equality in eqn (9.55) if the Jost func-
tion is chosen to be

fN
l (k) = −i

4
√

π

(l + 1)Γ(ν)

(
kR

2

)l+2

[h
(1)
l (kR)]′. (9.66)

From this, we define the mode-generating function by

∆N,e
l (k) = −(kR)l+2

[
1√
kR

H(1)
ν (kR)

]′
, (9.67)

which ensures the necessary properties along the imaginary frequency axis.

9.2.2 Analytic continuation for regularized vacuum energy and divergent
contributions

In the preceding subsection we derived the mode-generating functions, eqns
(9.58), (9.61), (9.65), and (9.67), which are used in the representation (9.21)
of the vacuum energy in the zeta function regularization. In this subsection we
perform the analytic continuation in the regularization parameter s. In order to
simplify the notation, we represent the vacuum energy (9.21) in the form

E0(s) = − (µR)2s

R

cos(πs)

π

∞∑
l=0

ν

∫ ∞

mR

dk
[
k2 − (mR)2

](1−2s)/2 ∂

∂k
ln ∆̃l(ik),

(9.68)
where we have substituted k → k/R and introduced the notation ∆̃l(ik) ≡
∆l(ik/R). Note that the mode-generating functions derived in the preceding
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subsection depend only on the argument kR. Thus, the generating functions
∆̃l(ik) depend only on k, and they are used in this form in eqn (9.68). The
explicit form for the functions ∆̃l(ik) follows from the relations for the Bessel
functions of imaginary argument

Jν(iz) = iνIν(z), H(1)
ν (iz) = i−ν 2

iπ
Kν(z). (9.69)

The results are displayed in Table 9.1.
The need to perform the analytic continuation follows from the fact that

for a decreasing regularization parameter s, the sum and the integral in eqn
(9.68) become divergent. Since the logarithm of the mode-generating function is
a complicated object, a direct analytic continuation is impossible. A way out is
to use the uniform asymptotic expansion of that logarithm for large ν and k with
fixed z ≡ k/ν. This expansion can be constructed using the uniform asymptotic
expansion of the modified Bessel functions in the following general form:

ln ∆̃l(ik) � νD−1(z) + D0(z) +
1

ν
D1(z) + . . . (9.70)

[the functions Di(z) are discussed below]. Now we define the function

has(ν, z) =
3∑

i=−1

Di(z)

νi
(9.71)

from the first five terms of the expansion (9.70). Then, in eqn (9.68), we first
subtract and then add has(ν, z) from the ∆̃l(ik), such that we obtain two parts
of the regularized vacuum energy:

E0(s) = Efin
0 + Eas

0 (s). (9.72)

Here, the finite part is

Efin
0 = − 1

πR

∞∑
l=0

ν

∫ ∞

mR

dk
√

k2 − (mR)2
∂

∂k

[
ln ∆̃l(ik) − has(ν, z)

]
, (9.73)

where we have put s = 0. The asymptotic part is given by

Table 9.1. The mode-generating functions ∆̃l(ik) for a scalar field.

Region Dirichlet boundary condition Neumann boundary condition

Interior ∆̃D,i
l (ik) = k−νIν(k) ∆̃N,i

l (ik) = k1−l
[
Iν(k)/

√
k
]′

Exterior ∆̃D,e
l (ik) = kνKν(k) ∆̃N,e

l (ik) = −k2+l
[
Kν(k)/

√
k
]′
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Eas
0 (s) = − (µR)2s

R

cos(πs)

π

∞∑
l=0

ν

∫ ∞

mR

dk
[
k2 − (mR)2

](1−2s)/2 ∂

∂k
has(ν, z).

(9.74)
In fact, the finiteness of Efin imposes some conditions on has(ν, z). Note that
it is not defined uniquely. For example, it is possible to include more than five
terms in the expansion (9.71). This would be unnecessary but might be useful
for numerical evaluations. Also, it is possible to obtain the expansion in terms of
the orbital momentum l instead of ν. However, it can be shown that this leads
to unnecessarily complicated intermediate steps. In general, the finite part can
be calculated only numerically. This is, however, an easy task. We finish the
discussion of the finite part with the remark that for the numerical evaluation,
it is useful to integrate by parts and to use the representation

Efin
0 =

1

πR

∞∑
l=0

ν

∫ ∞

mR

dk k√
k2 − (mR)2

[
ln ∆̃l(ik) − has(ν, z)

]
. (9.75)

Surface contributions do not appear provided that, in has(ν, k), all constant
contributions, shown below in Table 9.2, are preserved.

In order to treat the asymptotic part Eas
0 (s) of the vacuum energy, we need the

uniform asymptotic expansions of the mode-generating functions. These follow
from the corresponding expansions of the modified Bessel functions (Abramowitz
and Stegun 1972),

Iν(νz)
Kν(νz)

}
� π∓1/2

√
2ν

1

(1 + z2)1/4
e±νη(z)

[
1 +

∞∑
k=1

(±1)k uk(t)

νk

]
,

(9.76)

I ′ν(νz)
K ′

ν(νz)

}
� ±π∓1/2

√
2ν

(1 + z2)1/4

z
e±νη(z)

[
1 +

∞∑
k=1

(±1)k vk(t)

νk

]

with the following notation:

η(z) =
√

1 + z2 + ln
z

1 +
√

1 + z2
, t =

1√
1 + z2

. (9.77)

The Debye polynomials uk(t) and vk(t) are given by the recurrence relations

u0(t) = 1, v0(t) = 1, (9.78)

uk+1(t) =
1

2
t2(1 − t2)u′

k(t) +
1

8

∫ t

0

dτ (1 − 5τ2)uk(τ), k = 0, 1, . . . ,

vk(t) = uk(t) − t(1 − t2)

[
1

2
uk−1(t) + tu′

k−1(t)

]
, k = 1, 2, . . . .

Inserting eqn (9.76) into the ∆̃l(ik) given in Table 9.1 and expanding the loga-
rithm, we find the functions Di(z). For i = −1, the function D−1(z) is common
to both the Dirichlet and the Neumann boundary conditions. It is given by
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D−1(z) = ± [η(z) − ln z] (9.79)

for the interior region (+) and the exterior region (–). The functions D0(z) are
shown in Table 9.2. Starting from i = 1, the Di(z) are polynomials in t and can
be represented in the form

Di(z) =

3i∑
a=i

xi,ata, i = 1, 2, 3. (9.80)

The coefficients xi,a are real numbers shown in Tables 9.3 and 9.4. The symmetry
between the interior and exterior cases results in the signs shown. A symmetry
between the Dirichlet and Neumann boundary conditions is observed only in
D−1(z) and D0(z).

For future discussion, it is useful to define individual contributions to the
asymptotic part of the vacuum energy by

Eas
0 (s) =

3∑
i=−1

Ai(s), (9.81)

where

Ai(s) = − (µR)2s

R

cos(πs)

π

∞∑
l=0

ν

∫ ∞

mR

dk
[
k2 − (mR)2

](1−2s)/2 ∂

∂k

Di(z)

νi
. (9.82)

It should be mentioned that the analytic continuation requires careful treatment
in the complex plane. Details are presented by Bordag et al. (1997). First we
consider the Dirichlet boundary condition in the interior region. The results for
i = −1, 0 are

A−1(s) = − (µR)2s

R

1

4
√

π Γ
(
s − 1

2

) (9.83)

×
∞∑

j=0

(−i)j

j!

2Γ(s + j − 1)

1 − 2s− 2j
(mR)2jζ

(
2s + 2j − 3,

1

2

)
,

A0(s) = − (µR)2s

R

1

4Γ
(
s − 1

2

) (9.84)

Table 9.2. The functions D0(z) entering the asymptotic expansion
has(ν, z) in eqn (9.71).

Region Dirichlet boundary condition Neumann boundary condition

Interior 1
2 ln t − 1

2 ln(2πν) − ν ln ν − 1
2 ln t + 1

2 ln π
2ν − ν ln ν

Exterior 1
2 ln t + 1

2 ln π
2ν + ν ln ν − 1

2 ln t + 1
2 ln πν

2 + ν ln ν
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Table 9.3. The coefficients xi,a for Dirichlet boundary
conditions. The upper sign is for the interior region and
the lower sign is for the exterior region.

a

i 1 2 3 4 5 6 7 8 9

1 ± 1
8 0 ∓ 5

24 0 0 0 0 0 0

2 0 1
16 0 − 3

8 0 5
16 0 0 0

3 0 0 ± 25
384 0 ∓ 531

640 0 ± 221
128 0 ∓ 1105

1152

Table 9.4. The coefficients xi,a for Neumann boundary
conditions. The upper sign is for the interior region and
the lower sign is for the exterior region.

a

i 1 2 3 4 5 6 7 8 9

1 ∓ 7
8 0 ± 7

24 0 0 0 0 0 0

2 0 − 9
16 0 7

8 0 − 7
16 0 0 0

3 0 0 ∓ 199
384 0 ± 1349

640 0 ∓ 371
128 0 ± 1463

1152

×
∞∑

j=0

(−1)j

j!
Γ

(
s + j − 1

2

)
(mR)2jζ

(
2s + 2j − 2,

1

2

)
.

For i = 1, 2, 3, the contributions Ai(s) are

Ai(s) = − (µR)2s

R

3i∑
a=i

xi,a

Γ
(

a
2

)
Γ
(
s − 1

2

) (9.85)

×
∞∑

j=0

(−1)j

j!
Γ

(
s + j +

a − 1

2

)
(mR)2jζ

(
2s + 2j + i − 2,

1

2

)
,

where ζ(z, q) is the Hurwitz zeta function defined in eqn (7.37). It results from
a summation over the orbital momenta.

With these formulas, the functions Ai(s) can be represented as a power series
in mR, which can be shown to converge for mR < 1. There is also an alternative
representation which is valid for all values of mR (Bordag et al. 1997). From
the representations (9.83)–(9.85), the analytic continuation of Eas

0 , eqn (9.81),
to s = 0 can be found easily. We have poles in Eas

0 (s) originating from the poles
of the gamma functions and the Hurwitz zeta functions, and the corresponding
finite parts. The finite parts result in rather cumbersome formulas, so here we
restrict ourselves to the pole part,
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Eas
0 (s) =

1

s πR

[
1

630
+

1

12
(mR)2 − 1

48
(mR)4

]
+ O(s0). (9.86)

We note that these formulas have been derived for Dirichlet boundary conditions
in the interior region. Using eqn (9.79) and Tables 9.2–9.4, similar formulas can
be derived for the other cases also.

Since the finite part of the vacuum energy Efin
0 , eqn (9.75), by construction

does not have a pole contribution, eqn (9.86) is the complete pole contribution of
the vacuum energy in zeta function regularization. In fact, eqn (9.86) coincides
with the pole part in Ediv

0 (s), eqn (4.30), with the corresponding heat kernel
coefficients inserted from eqn (4.25). It is also possible to calculate the heat
kernel coefficients starting from Eas

0 (s) in eqn (9.74), as is done below in eqn
(9.131). For instance, the coefficients for the outside region follow from those for
the inside region by multiplication by (−1)k+1, where k �= 0.

9.2.3 The renormalized vacuum energy for a massive scalar field

In this subsection, we consider the vacuum energy for a massive scalar field with
boundary conditions on a sphere. We shall concentrate on the mass dependence,
and study some general properties and various contributions to the vacuum en-
ergy. This gives a deeper understanding of the structure of the vacuum energy
and puts the case of massless fields into a broader context.

We start by dividing the renormalized vacuum energy (4.57) into two parts,

Eren
0 = Efin

0 + Ean
0 , (9.87)

where Efin
0 is the finite part, given in eqn (9.73), and the analytical part is defined

by
Ean

0 = lim
s→0

[
Eas

0 (s) − Ediv
0 (s)

]
. (9.88)

The asymptotic part is contained in eqn (9.86) and the divergent part in eqn
(4.30), with the corresponding heat kernel coefficients inserted. The limit s → 0
in eqn (9.88) is finite since the ultraviolet divergences are contained in Eas

0 (s)
and they are subtracted out by means of Ediv

0 (s).
With eqn (9.87), we have a representation of the renormalized vacuum energy

which is suitable for a discussion of its general properties and for numerical
evaluation. First we consider some general properties related to the dependence
on the mass m. These properties can be formulated in terms of the heat kernel
coefficients. For large m, we use the property of the heat kernel formalism that
it provides an asymptotic expansion in the inverse powers of the mass. This can
be seen directly from eqn (4.29). With our renormalization prescription (4.57),
we have subtracted all contributions containing nonnegative powers of the mass
such that Eren

0 vanishes for m → ∞. In fact, this is the large-mass normalization
condition discussed in Section 4.3.1. Therefore, the leading order for m → ∞ in
Eren

0 comes from the first nonvanishing heat kernel coefficient ak/2 with k ≥ 5,

Eren
0 ∼

m→∞
− Γ(k

2 − 2)

32π2

ak/2

m2k−4
. (9.89)
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For a sphere, the first nonvanishing coefficient is a5/2. It was first calculated by
Kennedy (1978) [see also Bordag et al. (1996a)]:

a5/2 =
π3/2

120R2
and a5/2 =

47π3/2

60R2
(9.90)

for Dirichlet and Neumann boundary conditions, respectively. It is the same for
both interior and exterior regions. As a consequence, in all of the cases considered
in Section 9.2.1 this coefficient is nonzero and the vacuum energy decreases
according to

Eren
0 ∼

m→∞
− a5/2

32π3/2m
. (9.91)

Inserting eqn (9.90) here, we obtain the behavior of Eren
0 for R → ∞:

Eren
0 ∼ − 1

3840mR2
and Eren

0 ∼ − 47

1920mR2
(9.92)

for Dirichlet and Neumann boundary conditions, respectively.
The behavior for the opposite case, i.e. for m → 0, is determined by Ediv

0 (s)
which is subtracted in the process of renormalization. This is because the regular-
ized energy E0(s) has a finite limit at m → 0 and this limit can be interchanged
with the limit at s → 0. In Ediv

0 (s), given in eqn (4.30), at m → 0 the logarithmic
contribution dominates such that the renormalized vacuum energy becomes

Eren
0 ∼

m→0
− ln(mR)

16π2
a2. (9.93)

Therefore, this limit is determined by the heat kernel coefficient a2. It must be
mentioned that this is a result of our normalization prescription (4.62). However,
if we were to change this prescription by excluding the logarithmic contribution
from Ediv

0 (s), which would be equivalent to a finite renormalization, the renor-
malized vacuum energy would diverge logarithmically at m → ∞. In this way,
the renormalized vacuum energy, as a function of m, can never be finite in both
limits, i.e. for both large and small masses. Here, it is assumed that the heat
kernel coefficient a2 is nonzero, otherwise the logarithmic contribution is absent
and Eren

0 has a finite limit for m → 0. An example of this is the case (b), where
the interior and exterior regions are considered together.

In eqn (9.93), the radius R appears in the argument of the logarithm. It enters
automatically for dimensional reasons, since a2 does not depend on m and the
argument of the logarithm must be dimensionless. Therefore this formula gives
the dependence of the renormalized vacuum energy on the radius for R → 0.

Now, having studied the general properties of the renormalized vacuum en-
ergy, we consider the two parts in eqn (9.87) separately. The finite part is given
by eqn (9.73) or (9.75), where the latter is more convenient for numerical evalua-
tion. Since the mode-generating functions and the asymptotic part has are given
explicitly or in terms of Bessel functions, the numerical evaluation might appear
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Fig. 9.1. The function efin(x) and the contributions to it from the first three
orbital momenta entering eqn (9.94).

simple. However, in taking the difference between the logarithm of the mode-
generating function and its asymptotic expansion, a small value results from the
difference of two large terms in some regions of parameter space, leading to a
loss of numerical precision. Also, the convergence of the orbital-momentum sum
goes as

∑
ν−2, so a precise numerical evaluation is not trivial.

We take as an example the Dirichlet boundary condition in the interior region
and represent eqn (9.75) in the form

Efin
0 =

efin(mR)

R
≡ 1

R

∞∑
l=0

ef
l+ 1

2
(mR) (9.94)

in terms of a dimensionless function efin(mR) and its contributions efin
ν (mR)

from individual orbital momenta. These functions have a finite value for mR = 0
and decrease for mR → ∞. Examples are shown in Fig. 9.1 as functions of the
argument x = mR. It is seen that the dominating contribution comes from l = 0,
i.e. from the s-wave, in accordance with expectations.

Finally we consider the analytical part Ean
0 , given in eqn (9.88). An explicit

expression can be obtained from eqn (9.81) using eqns (9.83) and (9.85) and sub-
tracting the divergent part of the vacuum energy Ediv

0 (s). As already mentioned
and as can be seen explicitly from eqn (9.74), the pole contributions cancel and
the limit s → 0 in eqn (9.88) is finite. From the above, we obtain Ean

0 as a con-
vergent series, which is an alternative representation (Bordag et al. 1997). Since
the corresponding formulas are too cumbersome to be displayed here, we restrict
ourselves to a graphical representation for Dirichlet boundary conditions in the
interior region. For this purpose, in addition to eqn (9.94), we introduce also the
dimensionless functions eren(mR) and ean(mR):

Eren
0 =

eren(mR)

R
, Ean

0 =
ean(mR)

R
. (9.95)
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Fig. 9.2. The function eren(x) and the contributions to it efin(x) and ean(x).

These functions are plotted versus x = mR in Fig. 9.2. For x → ∞, all of them
decrease no more slowly than what is given by eqn (9.92). For x → 0, the func-
tions ean(mR) and eren(mR) diverge according to eqn (9.93), whereas efin(mR)
has a finite limit. It should be mentioned that this behavior depends on the re-
gion considered (interior, exterior, or both). The logarithmic behavior is present
for the interior and the exterior cases considered separately, as the coefficient a2

is nonzero. In contrast, if one considers both regions together, i.e. the case (b)
defined in Section 9.2.1, the situation is different. Since the coefficients a2 in the
interior and exterior regions differ by a sign only, the logarithmic contributions
cancel in the sum of the energies, and the vacuum energy has a finite limit at
m → 0.

From Fig. 9.2, the relative contributions of the finite and analytic parts can
be observed. For small x, the latter dominates. For large x, both are of the same
order and partly compensate each other. In the intermediate region, they are
mostly of the same order.

In this subsection we considered, as an example, a Dirichlet boundary condi-
tion in the interior region. Using the methods and formulas discussed here, other
cases can also be considered (Bordag et al. 1997, Bordag et al. 2001a, Kirsten
2000). The eren obtained are smooth functions similar to the eren in Fig. 9.2,
interpolating between the asymptotic behaviors for small and large mR.

9.2.4 The vacuum energy for a massless scalar field

In contrast to the massive scalar field considered in the preceding subsection,
here we lack any a priori normalization condition. Therefore, as explained in
Section 4.3, we choose a classical model whose parameters will accommodate a
renormalization. Before considering such a model, we remark that the boundary
conditions (9.55) do not introduce any dimensional parameter. Hence the vacuum
energy in zeta function regularization (4.3) or (9.68) can be represented as
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E0(s) =
(µR)2s

R
e0(s), (9.96)

where e0(s) is a dimensionless function depending only on s. On the other hand,
from the heat kernel expansion and from eqn (4.28) for m = 0, the pole contri-
bution is

e0(s) = − a2R

32π2

1

s
+ ẽ0 + O(s), (9.97)

where we have introduced the notation ẽ0 for that part of e0(s) which is inde-
pendent of s. We note that for dimensional reasons a2R is a number [see eqn
(4.25)]. Combining (9.96) and (9.97), and using (µR)2s ≈ 1 + 2s ln(µR), we get

E0(s) = − a2

32π2

[
1

s
+ 2 ln(µR)

]
+

ẽ0

R
+ O(s). (9.98)

Now we consider the classical model (4.65) together with the vacuum energy
(9.98). For the needs of renormalization, it is sufficient to keep only the last term
in eqn (4.65). Then, for the total energy, we get

Etot =
h3

R
− a2

32π2

[
1

s
+ 2 ln(µR)

]
+

ẽ0

R
+ O(s). (9.99)

Obviously, we can accommodate the ultraviolet divergence by a redefinition of
the parameter h3

h3 → hren
3 = h3 −

a2R

32π2s
. (9.100)

Here, we are left with the remaining, finite renormalization of hren
3 . From this

it follows that the contribution ẽ0/R, which one could naively consider as the
vacuum energy left after removing the ultraviolet divergence, is indistinguishable
from the classical contribution hren

3 /R. In this way, the only meaningful part
of the vacuum energy is that containing the logarithm of R in eqn (9.99). It
should be mentioned that this is a rather trivial contribution, since it depends
only on the heat kernel coefficient. We conclude this discussion with the remark
that any further attempt to give the energy (9.99) a physical meaning requires
additional information from the classical model considered, i.e. from outside the
pure quantum part.

The above considerations have assumed a nonvanishing heat kernel coeffi-
cient a2 �= 0. This holds for all cases, i.e. for Dirichlet and Neumann boundary
conditions in both the interior and the exterior region. In the case of the sum
of the two regions, a2 = 0. In Section 9.4, we shall have another example of a
vanishing a2. In such cases, the vacuum energy in zeta function regularization
is finite. More exactly, it has a finite continuation to s = 0 and no renormal-
ization is required. Also, the arbitrariness arising from the parameter µ drops
out. A similar situation holds in the cutoff regularization (4.32). In the presence
of boundary conditions, for symmetry reasons, it also follows from a2 = 0 that
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a1 = 0. Then one is left with the divergent contribution from a1/2, which is
proportional to the surface area of the sphere. In this case one could consider
the vacuum energy together with the classical model and remove the divergence
by a redefinition of the surface tension σ in eqn (4.65).

Thus, there is an important difference between the cases defined in Section
9.2.1. For (i) or (e), because a2 �= 0, only the logarithmic contribution from the
vacuum energy can have a physical meaning. As regards the case (b), where
a2 = 0, the vacuum energy

Eren
0 =

ẽ0

R
(9.101)

can be considered as having a physical meaning, similar to the Casimir interac-
tion energy for two parallel ideally conducting planes. This meaning, however,
should be understood only in the context of the total energy (9.99). Note that
the scalar field considered here does not have a direct physical application. It is
merely the simplest model for study. However, the conclusions connected with
the renormalization might hold for other fields also.

The calculation of the vacuum energy (9.72) in the massless case proceeds
along the same lines as in the massive case discussed in the preceding subsection.
The corresponding results can be obtained by putting m = 0 in formulas such
as eqns (9.75) and (9.83)–(9.85). For m = 0, these formulas simplify in such
a way that it is instructive to show them in some detail. The starting point
is the separation (9.72) of the vacuum energy into finite and asymptotic parts.
Whereas the calculation of the finite part does not change much, the asymptotic
part simplifies. We define, as before, the asymptotic part Eas

0 (s) by eqn (9.81).
The functions Ai(s) in eqn (9.82) now read

Ai(s) = − (µR)2s

R

cos(πs)

π

∞∑
l=0

ν2−2s

∫ ∞

0

dz z1−2s ∂

∂z

Di(z)

νi
, (9.102)

where we have substituted the variable of integration using k = νz. We see that
the dependence on the orbital momentum factorizes so that the sum over l can
be carried out directly using eqn (7.37). The remaining integrations are simple.
Using ∫ ∞

0

dz z1−2s ∂

∂z
[η(z) − ln z] = −Γ

(
1
2 − s

)
Γ(s − 1)

4
√

π
,∫ ∞

0

dz z1−2s ∂

∂z
ln t =

π

2 cos(πs)
, (9.103)

∫ ∞

0

dz z1−2s ∂

∂z
ta = −Γ

(
3
2 − s

)
Γ
(
s + a−1

2

)
Γ
(

a
2

) ,

we get the functions

A−1(s) =
(µR)2s

R

1

4
√

π

Γ (s − 1)

Γ
(
s + 1

2

) ζ

(
2s − 3,

1

2

)
,
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A0(s) = − (µR)2s

4R
ζ

(
2s − 2,

1

2

)
, (9.104)

Ai(s) = − (µR)2s

R

3i∑
a=i

xi,a

Γ
(

a
2

) Γ
(
s + a−1

2

)
Γ
(
s − 1

2

) ζ

(
2s − 2 + i,

1

2

)
, i = 1, 2, 3.

As discussed above, these formulas also follow from eqns (9.83)–(9.85) for m = 0.
From this representation, using eqn (9.81) and Table 9.3 or 9.4, we immedi-

ately get the asymptotic part of the vacuum energy. For example, for Dirichlet
boundary conditions in the interior region, this part is

Eas,D
0 (s) =

1

630πR

[
1

s
+ 2 ln(µR) +

1385

384
− 229γ

64
− 561

64
ln 2

−315

8
ζ′R(−1) +

2205

8
ζ′R(−3)

]
+ O(s), (9.105)

where γ is Euler’s constant. The corresponding formula for Neumann boundary
conditions is

Eas,N
0 (s) = − 35

630πR

[
1

s
+ 2 ln(µR) − 1411

384
+

451γ

320
+

267

64
ln 2

−63

8
ζ′R(−1) − 63

8
ζ′R(−3)

]
+ O(s). (9.106)

For the exterior region, we get the same expressions with an opposite sign. This is
due to the symmetry between the asymptotic expansions of the Bessel functions
involved and the equality ζ(0, 1/2) = ζ(−2, 1/2) = 0. As a consequence, in the
case (b) the asymptotic part of the vacuum energy is zero.

Therefore, the remaining task is to calculate Efin
0 , which is most conveniently

done using eqn (9.75) in the form

Efin
0 =

1

πR

∞∑
l=0

ν2

∫ ∞

0

dz
[
ln ∆̃l(iνz) − has(ν, z)

]
. (9.107)

This can only be performed numerically. Note that one might attempt to calcu-
late Efin

0 analytically from eqn (9.73) with m = 0 and eqns (9.70) and (9.71).
This leads to a series of the type

Efin
0 � − 1

πR

∞∑
l=0

ν2

∫ ∞

0

dz z
∂

∂z

∞∑
i=3

Di(z)

νi
, (9.108)

which does not converge and, thus, cannot be used for the calculation of Efin
0 .
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Table 9.5. Zeta functions and the Casimir energy of a massless scalar
field for a spherical shell with Dirichlet boundary conditions.

d ζP interior ζP exterior RE0(s)

2 +0.0098540 −0.0084955 +0.0006792

− 0.0039062/s − 0.0039062/s − 0.0039062/s

3 +0.0088920 −0.0032585 +0.0028168

+ 0.0010105/s − 0.0010105/s

4 −0.0017939 +0.0004544 −0.0006698

+ 0.0002670/s + 0.0002670/s + 0.0002670/s

5 −0.0009450 +0.0003739 −0.0002856

− 0.0001343/s + 0.0001343/s

6 +0.0002699 −0.0000611 +0.0001044

− 0.0000335/s − 0.0000335/s − 0.0000335/s

7 +0.0001371 −0.0000555 +0.0000408

+ 0.0000214/s 0.0000214/s

8 −0.0000457 +0.0000101 −0.0000178

+ 5.228 × 10−6/s + 5.228 × 10−6/s + 5.228× 10−6/s

9 −0.0000230 +0.0000094 −0.0000068

− 3.769 × 10−6/s + 3.769 × 10−6/s

Calculations of Efin
0 and Eas

0 have been done repeatedly. The best compilation
has been given by Kirsten (2000). The results are represented in terms of the
generalized zeta function, which is related to the vacuum energy by means of

1

R
ζP

(
s − 1

2

)
= 2E0(s). (9.109)

Computations were performed in d-dimensional space. This is instructive since
the vacuum energy, especially its divergences, is different in odd and even dimen-
sions. Such calculations were pioneered by Bender and Milton (1994). The results
for Dirichlet boundary conditions are presented in Table 9.5 (Kirsten 2000). The
regular contribution to the zeta function ζP and its pole part at s = 0 are
presented for the interior region (first column) and the exterior region (second
column). The third column contains the vacuum energy RE0(s) for both regions
taken together. In odd dimensions, the latter is a finite quantity. Similar results
for Neumann boundary conditions are presented Table 9.6 (Kirsten 2000).

For the case of d = 3 spatial dimensions, the vacuum energies of the scalar
field in the interior and exterior regions taken together are

ED(R) ≡ ED,ren
0 =

0.0028168

R
, EN(R) ≡ EN,ren

0 = −0.2238216

R
, (9.110)
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Table 9.6. Zeta functions and the Casimir energy of a massless scalar
field for a spherical shell with Neumann boundary conditions.

d ζP interior ζP exterior RE0(s)

2 −0.3446767 −0.0215672 −0.1831220

− 0.0195312/s − 0.0195312/s − 0.0195312/s

3 −0.4597174 +0.0120743 −0.2238216

− 0.0353678/s + 0.0353678/s

4 −0.5153790 −0.00603940 −0.2607092

− 0.0447159/s − 0.0447159/s − 0.0447159/s

5 −0.5552071 +0.0030479 −0.2760796

− 0.0489213/s + 0.0489213/s

6 −0.5949395 −0.0128321 −0.3038858

− 0.0513727/s − 0.0513727/s − 0.0513727/s

and their sum is negative.

9.3 The electromagnetic Casimir effect for a spherical shell and for

a dielectric ball

In this section, we study the electromagnetic Casimir energy for a perfectly con-
ducting spherical shell and for a dielectric ball. These two cases have attracted
great attention since the publication of the paper by Boyer (1968). We start
with a derivation of the boundary and matching conditions, using a complete
separation of variables and polarizations, and then derive the mode-generating
functions. An important point is a discussion of the ultraviolet divergences. Fi-
nally, we display numerical and analytical results for the Casimir energy.

9.3.1 Boundary conditions and separation of polarizations

The boundary conditions for an electromagnetic field on a conductor were con-
sidered in Section 3.2. For a sphere of radius R, they are given by

Et|r=R = 0, Bn|r=R = 0. (9.111)

For a dielectric ball, we have to consider the more general problem where one
medium, inside the sphere, has a permittivity ε1 and a permeability µ1, and the
other medium, outside, has a permittivity ε2 and a permeability µ2. We need
to consider the permeability of the material in order to discuss the special case
where the speeds of light, ci = 1/

√
εiµi, are equal inside and outside the ball.

Nevertheless, we continue to refer to the ball as a dielectric ball.
From classical electrodynamics, the continuity boundary conditions across

the surface of the dielectric ball at r = R require that the quantities

εEn, Et, Bn,
1

µ
Bt (9.112)
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are continuous. Sometimes these are referred to as matching conditions. In the
case of a conducting spherical shell, the eigenvalue equation (3.45) remains un-
changed. However, for the dielectric ball, because of the different speeds of light
inside and outside, the eigenvalues in eqn (3.45) take the form

ΛJ = −εiµiω
2
J . (9.113)

For the boundary and matching conditions in eqns (9.111) and (9.112), the po-
larizations can be separated using the polarization vectors (9.3) and (9.6). Then
we need to apply the conditions (9.111) or (9.112) to the fields (9.7). The normal
component can be obtained by multiplying by the normal vector n:

En = n · E, Bn = n ·B. (9.114)

For the two tangential components, it is convenient to take the projections

E
(1)
t = L · E, E

(2)
t = (L × n) · E,

B
(1)
t = L · B, B

(2)
t = (L × n) ·B. (9.115)

In order to insert eqn (9.7) into eqns (9.114) and (9.115), we need the following
properties of the operator polarization vectors (9.3):

L ·ETE = L2, L ·ETM = 0, n ·ETE = 0, n ·ETM =
i

r
L2,

(L × n) ·ETE = 0, (L × n) · ETM = −1

r

∂

∂r
L2r. (9.116)

These can be easily verified using identities such as

n · L = 0, n · (∇ × L) =
i

r
L2, (L × n) · (∇ × L) = −1

r

∂

∂r
L2r. (9.117)

With these relations, the projections of the field strengths are

E
(1)
t = iωL2fTE

l (r)YlM (θ, ϕ), B
(1)
t = −∇

2L2fTM
l (r)YlM (θ, ϕ), (9.118)

E
(2)
t = − iω

r
L2 ∂

∂r
rfTM

l (r)YlM (θ, ϕ), B
(2)
t = − i

r
L2 ∂

∂r
rfTE

l (r)YlM (θ, ϕ),

En =
i

r
L2fTE

l (r)YlM (θ, ϕ), Bn =
i

r
L2fTM

l (r)YlM (θ, ϕ).

Then the conductor boundary conditions (9.111) imply

fTE
l (r)

∣∣
r=R

= 0,
[
rfTM

l (r)
]′∣∣∣

r=R
= 0, (9.119)

where the prime denotes differentiation with respect to r. For the TE mode, this
is a Dirichlet boundary condition. For the TM mode, this is a Robin condition
(9.56) with u = 1. For the dielectric ball, eqn (9.112) results in the following
terms being continuous across r = R:

fTE
l (r),

1

µ

[
rfTE

l (r)
]′

, εfTM
l (r),

[
rfTM

l (r)
]′

. (9.120)

In the above, simpler matching conditions follow if we set µ = 1.
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9.3.2 The mode-generating functions

In the electromagnetic case, the mode-generating functions follow from the bound-
ary conditions similarly to the scalar case. For the TE mode, this is obvious,
since the boundary condition is of Dirichlet type. For the TM mode, there is
an additional radius in the condition. All discussions related to the interior and
exterior regions are the same as in Section 9.2.1 and we can write down the
mode-generating functions immediately. For the TE mode, we have in the inte-
rior ∆TE,i

l (k) = (kR)−νJν(kR), which is the same as eqn (9.58). In the exterior,

∆TE,e
l (k) = (kR)νH

(1)
ν (kR), which is the same as eqn (9.65). Correspondingly,

for the TM mode we have

∆TM,i
l (k) = (kR)−l

[√
kRJν(kR)

]′
, ∆TM,e

l (k) = −(kR)l+1
[√

kRH(1)
ν (kR)

]′
(9.121)

instead of eqns (9.61) and (9.67). We have modified the factors in front of the
Bessel functions to ensure all of the required properties at k = 0 and along
the imaginary frequency axis. The next step is to rotate the momentum k to
the imaginary axis. For this it is common to use the modified Riccati–Bessel
functions, which, by means of

sl(z) =

√
πz

2
Iν(z), el(z) =

√
2z

π
Kν(z), (9.122)

are related to the modified Bessel functions. The mode-generating functions for
the electromagnetic field are shown in terms of these functions in Table 9.7.
Here we have substituted k → k/R, used the notation ∆̃l(ik) ≡ ∆l(ik/R), and
omitted unimportant numerical factors.

For the dielectric ball with the matching conditions (9.120), we have to con-
sider the problem on the whole axis r ∈ [0,∞). It can be treated similarly to
the case of the exterior region in Section 9.1.3. We have to write down the reg-
ular scattering solutions to eqn (9.23) satisfying the matching conditions. These
solutions can be written in the form

φ
(T)
l,k (r) = jl(qr)θ(R − r) +

1

2

[
f
(T)
l (k)h

(2)
l (kr) + f

(T)∗

l (k) h
(1)
l (kr)

]
θ(r − R),

(9.123)
where the index “(T)” stands for either TE or TM. The radial momenta are
defined according to eqn (9.113):

Table 9.7. The mode-generating functions for the electro-
magnetic field with conductor boundary conditions.

Region TE mode TM mode

Interior ∆̃TE,i
l (ik) = k−l−1sl(k) ∆̃TM,i

l (ik) = k−ls′l(k)

Exterior ∆̃TE,e
l (ik) = klel(k) ∆̃TM,e

l (ik) = −kl+1e′l(k)
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q =
√

ε1µ1 ω, k =
√

ε2µ2 ω. (9.124)

This is a free solution in the interior and it coincides with the asymptotic form
(9.25) in the exterior. The Jost functions can be found by inserting eqn (9.123)
into the matching conditions (9.120). The resulting equations can be solved.
Then, using the Wronskian

h
(1)
l (z) [h

(2)
l (z)]′ − [h

(1)
l (z)]′ h(2)

l (z) = −2
i

z2
, (9.125)

the Jost functions can be obtained in the form

fTE
l (k) = −ikR

√
ε2

µ2

{
µ1jl(qR)

[
kR h

(1)
l (kR)

]′
− µ2 [qR jl(qR)]

′
h

(1)
l (kR)

}
,

(9.126)

fTM
l (k) = −ikR

√
µ2

ε2

{
ε1 jl(qR)

[
kR h

(1)
l (kR)

]′
− ε2 [qR jl(qR)]

′
h

(1)
l (kR)

}
.

Note that this spectral problem has a purely continuous spectrum, i.e. there
are no bound states and no surface plasmons. Accordingly, the Jost functions
(9.126) have no zeros on the positive imaginary k-axis. By rotating the argument
to the imaginary axis, we arrive at the final expressions which define the mode-
generating functions for the dielectric ball,

∆̃TE(ik) =
√

ε1µ2 s′l(q)el(k) −√
ε2µ1 sl(q)e

′
l(k),

∆̃TM(ik) =
√

µ1ε2 s′l(q)el(k) −√
µ2ε1 sl(q)e

′
l(k). (9.127)

Here, we have used the same change of variable k → k/R as before.

9.3.3 The electromagnetic Casimir effect for a conducting spherical shell

The mode-generating functions obtained in the preceding subsection allow one
to write the regularized vacuum energy (9.68) in the form

E0(s) = − (µR)2s

R

cos(πs)

π

∞∑
l=1

ν

∫ ∞

0

dk k1−2s ∂

∂k
ln ∆̃l(ik). (9.128)

Here, we taken into account the fact that the electromagnetic field is massless
and that the values of the orbital momentum start from l = 1. For ∆̃l(ik), we
have to insert only one generating function or a product of the mode-generating
functions listed in Table 9.7, depending on the case considered. As before for the
scalar field, we define the asymptotic part of the vacuum energy by eqn (9.74).
For this purpose, we expand the mode-generating function in a series (9.70)
and determine has(ν, z) according to eqn (9.71). The asymptotic part Eas

0 (s) is
represented by eqn (9.81), where, in the massless case, the functions Ai(s) are

Ai(s) = − (µR)2s

R

cos(πs)

π

∞∑
l=1

ν2−2s

∫ ∞

0

dz z1−2s ∂

∂z

Di(z)

νi
. (9.129)
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The functions Di(z) can be obtained in the same way as in the scalar case. For
i = −1, they coincide with those given in eqn (9.79). For i = 0, the functions
D0(z) are shown in Table 9.8. The functions Di(z) with i = 1, 2, 3 are given by
eqn (9.80) with the coefficients xi,a presented in Table 9.9. Using the integrals
in eqns (9.103), we arrive at

A−1(s) =
(µR)2s

R

Γ (s − 1)

Γ
(
s + 1

2

) ζ

(
2s − 3,

3

2

)
,

A0(s) = − (µR)2s

4R
ζ

(
2s − 2,

3

2

)
, (9.130)

Ai(s) = − (µR)2s

R

3i∑
a=i

xi,a

Γ
(

a
2

) Γ
(
s + a−1

2

)
Γ
(
s − 1

2

) ζ

(
2s − 2 + i,

3

2

)
, i = 1, 2, 3

instead of eqn (9.104). In comparison with eqns (9.83)–(9.85), here the coeffi-
cients xi,a must be taken from Table 9.9 instead of Table 9.3, and the parameters
of the Hurwitz zeta functions are different. Now, we can substitute eqn (9.130)
into eqn (9.81) and get the asymptotic part of the vacuum energy Eas

0 (s). In
order to discuss the ultraviolet divergences, we calculate the first five heat ker-
nel coefficients. These can be obtained from the vacuum energy in zeta function
regularization (4.26) with m = 0 by taking the corresponding residues,

ak/2 = 16π3/2res

[
Γ

(
s − 1

2

)
E0(s); 2 − k

2

]
. (9.131)

Note that Efin
0 does not contribute to the poles in eqn (9.131). Thus, according

to eqn (9.72), we can use Eas
0 (s) for the calculation of ak/2. The results are

a0 =
4π

3
R3, a1/2 =

{−1

1

}
2π3/2R2, a1 = −

{
2

14

}
2π

3
R,

a3/2 =

{
23

7

}
π3/2

6
, a2 = −

{
1

7

}
16π

315R
. (9.132)

The upper entries in the curly brackets are for the TE mode and the lower are
for the TM mode. These heat kernel coefficients are different from those for a
scalar field given in eqn (4.25). They were calculated for a general surface by
Bernasconi et al. (2003).

Table 9.8. The functions D0(z) entering the asymptotic expansion (9.71)
in the electromagnetic case.

Region Dirichlet boundary condition Neumann boundary condition

Interior 1
2 ln t −

(
ν + 1

2

)
ln ν − ln 2 − 1

2 ln t +
(
−ν + 1

2

)
ln ν + ln 2

Exterior 1
2 ln t +

(
ν − 1

2

)
ln ν − 1

2 ln t +
(
ν + 1

2

)
ln ν
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Table 9.9. The coefficients xi,a for the TM mode. The
upper signs are for the interior region, and the lower signs
are for the exterior region.

a

i 1 2 3 4 5 6 7 8 9

1 ∓ 1
8 0 ± 7

24 0 0 0 0 0 0

2 0 − 1
16 0 3

8 0 − 7
16 0 0 0

3 0 0 ∓ 23
384 0 ± 549

640 0 ∓ 259
128 0 ± 1463

1152

The coefficients ak/2 in eqn (9.132) are for the interior region. Those for the

exterior region follow, as in the scalar case, by multiplication by (−1)k+1 (k �= 0),
except for a3/2. The latter, in the exterior region, is given by a3/2 = −π3/2/6 for

the TE mode and a3/2 = −17π3/2/6 for the TM mode. Note that the coefficients
a1/2 for the TE and TM modes differ only in sign, as a consequence of conformal
symmetry. Therefore they cancel when the two modes are added together.

With these coefficients, we are in a position to discuss the ultraviolet di-
vergences of the Casimir energy for an ideally conducting spherical shell. Since
a2 �= 0, the vacuum energies for the interior and exterior regions taken sepa-
rately are divergent and cannot be uniquely defined. This holds for each mode
and also for their sum. However, if one considers the interior and exterior regions
together, there is a cancellation in the coefficients a2 and a1 such that their com-
bined contribution vanishes. Similarly to the case of a massless scalar field, here
also the vacuum energy can be uniquely defined, and in zeta function regular-
ization one obtains a finite result. In other regularization schemes there is, in
general, a surface divergence which must be removed by some renormalization.
In addition, in the electromagnetic case, if the TE and TM modes are taken
together, this divergence disappears because of the above-mentioned symmetry
in the coefficients a1/2. The only remaining potentially divergent contribution
comes from the coefficients a3/2. In zeta function regularization (4.3) and in
cutoff regularization (4.1), this contribution does not show up. Hence, in these
regularization schemes the Casimir energy for a conducting sphere is finite when
the interior and exterior and both polarizations are taken together. In other reg-
ularization schemes, a divergence arising from a3/2 may show up. However, since
a3/2, for dimensional reasons, does not depend on the radius, this divergence is
also independent of the radius (provided that the regularization does not intro-
duce any artificial dependence on the radius). Therefore it may be dropped, as
it does not contribute to the Casimir force acting on the spherical shell. It must
be remarked that, historically, just these fortunate compensations enabled Boyer
(1968) to obtain his well-known result for a conducting sphere.

At this point it may be useful to make a comment on the physical interpre-
tation. We have seen that the Casimir effect for a spherical shell can give a finite
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result if the interior and exterior regions are taken together. However, it must
be underlined that this implies an infinitely thin conducting shell. Any attempt
to consider a shell with a finite thickness will necessarily destroy the symmetry.
Specifically, the coefficient a2 becomes proportional to the difference between
the two radii (Bordag et al. 1999a). Thus, it becomes impossible to define the
Casimir energy in a meaningful way.

We now continue discussing the case of an infinitely thin, ideally conducting
spherical shell. Substituting Ai(s) from eqn (9.130) into eqn (9.81), we obtain
the asymptotic part of the vacuum energy in the form

Eas,TE,i
0 (s) =

1

630πR

[
1

s
+ 2 ln(µR) − 561 ln 2

64
+

5355π

128
− 229γ

64
+

52013

384

−315

8
ζ′R(−1) +

2205

8
ζ′R(−3)

]
+ O(s),

Eas,TM,i
0 (s) =

1

630πR

[
1

s
+ 2 ln(µR) +

1743 ln2

64
− 3465π

128
+

539γ

64
− 18067

384

−315

8
ζ′R(−1) +

2205

8
ζ′R(−3)

]
+ O(s). (9.133)

These expressions are for the interior region. If we add the corresponding expres-
sions for the exterior region to eqn (9.133), the result is

Eas,TE,b
0 (s) =

17

128R
+ O(s), Eas,TM,b

0 (s) = − 11

128R
+ O(s). (9.134)

In the derivation of these formulas, a number of cancellations have occurred,
which are the same as in the scalar case [however, here we have nonzero contri-
butions from ζ(2, 3/2) = −1/4 and ζ(0, 3/2) = −1]. Thus, in the case (b), i.e.
when the interior and exterior regions are taken together, the asymptotic part
of the vacuum energy is finite and nonzero. It is also nonzero if the TE and TM
contributions are added:

Eas,TE,b
0 (s) + Eas,TM,b

0 (s) =
3

64R
. (9.135)

It is equal to the analytic part defined in eqn (9.88), since the divergent part is
zero. The finite part can be calculated in the same way as in Section 9.2.4. These
calculations have been carried out many times and reported in the literature for
different spatial dimensions [the results compiled in the book by Kirsten (2000)
are presented in Table 9.10]. Specifically, in three dimensions, the electromagnetic
Casimir energy for an ideally conducting spherical shell,

E(R) ≡ Eren
0 =

0.0461766

R
, (9.136)

is repulsive.
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Table 9.10. Zeta functions and electromagnetic Casimir energy for
a perfectly conducting spherical shell.

d ζP interior ζP exterior RE0(s)

2 −0.3446767 −0.0215672 −0.1831220

− 0.0195312/s − 0.0195312/s − 0.0195312/s

3 +0.1678471 −0.0754938 +0.0461766

+ 0.0080841/s − 0.0080841/s

4 +0.5008593 −0.1942082 +0.1533255

+ 0.0231719/s − 0.0564056/s − 0.0332337/s

5 +1.0463255 −0.2981425 +0.3740915

+ 0.1838665/s − 0.1838665/s

9.3.4 The Casimir effect for a dielectric ball

As mentioned in Section 9.3.1, we consider a dielectric ball where the inside
medium has a permittivity ε1 and a permeability µ1 and the outside medium
has a permittivity ε2 and a permeability µ2. Such a configuration may describe
scenarios such as a dielectric ball made of an insulator, a bubble in a liquid,
or a hadronic bag. The electromagnetic field couples through the macroscopic
Maxwell equations and its vacuum energy depends on the radius of the ball
and on the parameters εi and µi (i = 1, 2). Since such a dielectric can be
considered as a reasonable idealization of a real physical body, one could expect
that the vacuum energy of the electromagnetic field (or at least the corresponding
pressure) would be finite. However, as discussed below, this is not the case, as
the ultraviolet divergences cannot be satisfactorily removed. In fact, this is still
an unresolved puzzle which continues to stimulate interest in this configuration.

The dielectric ball was originally considered in connection with the Casimir
model of an electron (Milton 1980, Brevik and Kolbenstvedt 1982). Soon it was
realized that this configuration has unremovable ultraviolet divergences which
do not allow one to obtain a finite result like that for an ideal-metal spherical
shell. An exception is the case for equal speeds of light ci = 1/

√
εiµi (in relation

to the value in vacuum) in the inside and outside regions, as found by Brevik
and Kolbenstvedt (1982). These authors discussed this case in connection with
the hadronic bag model.

A decade later, this configuration became popular owing to attempts to ex-
plain sonoluminescence as the release of vacuum energy from the collapse of
air bubbles in water (Schwinger 1992, 1993). Although this phenomenon can
probably be explained by different physical processes (Liberati et al. 2000), the
vacuum energy of a dielectric ball was intensively investigated. In terms of heat
kernel coefficients, it was shown (Bordag et al. 1999a) that beyond the dilute
approximation, ultraviolet divergences are present independent of the regular-
ization scheme used. This prevents any conclusive result. At the same time, in
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the dilute approximation, after removal of the residual divergences, there are
regularization schemes which lead to a unique result. Here, the dilute approxi-
mation is understood as the contribution to the vacuum energy up to the second
order of some small parameter characterizing the diluteness of the ball material.
Definite results for E(R) are obtained in the following two cases. In the first
case, it is assumed that |c1 − c2| � c1, c2 and, thus, |c1 − c2| plays the role of
a small parameter. In this case it is usually also assumed that µ1 = µ2 = 1 but
ε1 �= ε2 (ε1,2 ≈ 1). In the second case, it is assumed that c1 = c2 but there is a
nonzero parameter

ξ =
ε1 − ε2

ε1 + ε2
=

µ2 − µ1

µ1 + µ2
. (9.137)

In this case, the results are obtained for small ξ and for ξ = 1. Both cases
have been solved by several authors, who obtained agreement using different
approaches.

We start with the consideration of the heat kernel coefficients of the electro-
magnetic field in the presence of a dielectric ball. These can be obtained using
eqn (9.131) from the vacuum energy in zeta function regularization, where the
asymptotic part given by eqns (9.81) and (9.82) must be inserted. The functions
Di(z) follow from the uniform asymptotic expansion of the mode-generating
functions (9.127). Changing the factor in front for convenience, we denote them
by

∆̃
(ρ)
l (ik) = αρs′l(q)el(k) − sl(q)e

′
l(k), α =

√
ε1µ2

ε2µ1
, (9.138)

with ρ = ±1 for the TE and TM modes, respectively. With this notation, we cal-
culate the heat kernel coefficients (9.131) using the formulas (9.128) and (9.129)
and the mode-generating functions (9.138). The only difference from the preced-
ing sections is that the functions Di(z) are now more complicated. With eqns
(9.70) and (9.76), we get

D
(ρ)
−1(z) = η

(
z

c1

)
− η

(
z

c2

)
, D

(ρ)
0 (z) = ln

(
αρc1t2c2t1
2
√

c1c2t1t2

)
, (9.139)

where η(z) is defined in eqn (9.77) and

t1,2 =
1√

1 + c1,2z2
. (9.140)

The expressions for D
(ρ)
i (i = 1, 2, 3) have been presented by Bordag et al.

(1999a). As before, the sum over the orbital momenta can be carried out, leading
to the Hurwitz zeta function. For i = −1, using the first line in eqn (9.103), we
obtain

A−1(s) =
(µR)2s

R

Γ
(
s − 1

2

)
4
√

πΓ(s + 1)
ζ

(
2s − 3,

3

2

)(
c1−2s
1 − c1−2s

2

)
. (9.141)
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For i = 0, 1, 2, 3, the integration over z cannot be carried out and we are left
with

Ai(s) = − (µR)2s

R

cos(πs)

π
ζ

(
2s + i − 2,

3

2

)∫ ∞

0

dz z1−2s ∂

∂z
D

(ρ)
i (z). (9.142)

Let us consider, as an example, the calculation of the heat kernel coefficient
a2. For this purpose, according to eqn (9.131), we need the residue of Eas

0 (s) at
s = 0. For i = −1, the pole comes from the gamma function in eqn (9.141) and
we get

res [A−1(s); 0] =
127

1920πR
(c1 − c2). (9.143)

For i = 0, there is no pole contribution, since the z-integration is convergent at
s = 0. The same holds for i = 2. For i = 1, the z-integration is divergent in the

upper bound because D
(ρ)
1 (z) = (c1 − c2)/(8z) + O(z−3). This results in a pole

contribution with

res [A1(s); 0] = − 11

192πR
(c1 − c2). (9.144)

The last contribution is for i = 3. Here the pole comes from the Hurwitz zeta
function and the residue is

res [A3(s); 0] =
1

πR

∫ ∞

0

dz D
(ρ)
3 (z), (9.145)

where an integration by parts has been done. This remaining integration cannot
be performed analytically. However, eqn (9.145) is a smooth function of the
parameter α and of the speed of light ci. This function can be expanded in
powers of (c1 − c2). When this is done, the zeroth and all even orders are absent.
To get the heat kernel coefficient a2, we take the sum of eqns (9.143), (9.144),
and (9.145) [multiplied by 16π3/2Γ(−1/2) = −32π2 according to eqn (9.131)] for
both values ρ = ±1. It so happens that in this sum the first-order contributions
cancel whereas the third order and higher are present:

a2 = − 2656π

5005R

(c1 − c2)
3

c2
2

+ O
[
(c1 − c2)

4
]
. (9.146)

The other coefficients have been calculated using the same methods (Bordag et
al. 1999a):

a0 =
8π

3
R3

(
c−3
1 − c−3

2

)
, a1/2 = −2π3/2R2

(
c2
1 − c2

2

)2
c2
1c

2
2 (c2

1 + c2
2)

2 ,

a1 = −22π

3
R
(
c−1
1 − c−1

2

)
+ 8πR

∫ ∞

0

dz

z

∂

∂z

[
D

(1)
1 (z) + D

(−1)
1 (z)

]
,

a3/2 = π3/2

(
c2
1 − c2

2

)2
(c2

1 + c2
2)

2 . (9.147)

Equations (9.146) and (9.147) determine the ultraviolet divergences for the di-
electric ball for any regularization. For instance, in zeta function regularization,
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where we have a divergent contribution from a2 only, it follows that in the dilute
approximation the vacuum energy E0(s) has a finite and unique continuation to
s = 0. This is because eqn (9.146) starts from the third-order term. However, the
vacuum energy is not finite and cannot be uniquely defined beyond the dilute
approximation. In the cutoff regularization, from eqn (9.147), inserted into eqn
(4.32), divergences follow which are proportional to 1/δ4 and 1/δ3. They are
linear and quadratic in c1− c2. However,by removing them in some way, one can
be sure that because of eqn (9.146), the result for the energy in the second order
will always be the same.

Thus, the vacuum energy for the dielectric ball is uniquely defined in the
dilute approximation but not beyond it. The latter case is still an unresolved
problem. As discussed, the case of a zero-point electromagnetic field interacting
with a material body is a physical one and should result in finite measurable
quantities, such as the surface stress. It has been argued that the permittivity
cannot be considered as a constant but should be a function of the frequency
which approaches unity at high frequencies. Because of this, the divergences
which result from the high frequencies might disappear. To investigate this pos-
sibility, a frequency-dependent dielectric permittivity inside the ball

ε1(ω) = 1 − w1

ω2
+

w2

ω4
− . . . (9.148)

and ε2 = 1 outside were considered (Bordag and Kirsten 2002). As a result, a
nonvanishing contribution to the heat kernel coefficient a2 was found,

a2 =
4π

3
w2

1R
3 +

16π

3
w2R

3. (9.149)

Thus, the divergence is weakened by dispersion, as expected, but not sufficiently
to resolve the problem. The reason is that the permittivity does not decrease
faster than ∼ ω−2 (see Section 12.1). Another attempt to resolve the problem
considers a smooth function ε(r) instead of a function with a jump at r = R. As
shown by Bordag et al. (1998a), however, for a smooth function the heat kernel
coefficient a2 is nonzero even in the dilute approximation. Thus, this approach
does not work either.

In the remainder of this subsection, we consider the vacuum energy in the
dilute approximation, for which reliable results can be obtained. As explained,
depending on the regularization scheme, either the vacuum energy is finite or
the divergent contributions can be discarded, leaving a unique result. We start
with the first case, putting µ1 = µ2 = 1, and keep contributions up to the second
order in c1 − c2. It is assumed that both of the dielectric permittivities ε1,2 are
approximately unity. In this case, the vacuum energy is

E(R) = Eren
0 =

23

384πR
(c1 − c2)

2 + O
[
(c1 − c2)

3
]
. (9.150)

This has been found independently using several methods.
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Barton (1999) treated the dielectric ball as a small perturbation with respect
to empty space and arrived at eqn (9.150) in second-order perturbation theory. A
completely different approach is based on the integration of the Casimir-Polder
forces acting between the molecules of the ball in a vacuum (Milton and Ng
1998). The starting point is the physical picture of a ball composed of a finite
number of polarizable molecules. In Section 16.1, it will be shown that any two
molecules at points r1 and r2 in a dilute medium interact through the Casimir-
Polder potential

V (r1, r2) = − 23

(4π)3N2

(ε1 − 1)2

|r1 − r2|7
, (9.151)

where N is the density of molecules. Integrating with respect to both coordinates
in eqn (9.151) over the volume of the ball, taking into account the density of
molecules (see Section 6.4) and dividing by 2 to avoid double counting, the
interaction energy becomes

E = − 23

8π

(ε1 − 1)2

(4π)2

∫
V

dr1

∫
V

dr2
1

|r1 − r2|γ
. (9.152)

Here we have changed the power in the denominator to γ in order to make the
integrations convergent. This is a regularization and, to make the integrals con-
vergent, one needs to make γ < 3. At the end, one has to perform a continuation
to γ = 7. The integrations can be carried out explicitly (Milton and Ng 1998),
and one arrives at

E = − 23

22+γπ
(ε1 − 1)2

Γ
(
2 − γ

2

)
Γ
(
4 − γ

2

)
(3 − γ)

1

Rγ−6
. (9.153)

This expression has a unique analytic continuation to γ = 7, where it takes
a finite value coinciding with eqn (9.150), where c2 is set equal to unity. The
regularization used in eqn (9.152) is not the only possible one. Another choice
could be to use point splitting, i.e. the replacement r1 − r2 → r1 − r2 + δ
in the denominator, with δ → 0 at the end. In that case one finds divergent
contributions proportional to the inverse powers of δ. Disregarding them, one
arrives at the same result, i.e. eqn (9.150) with c2 = 1.

It is interesting that the energy (9.150) is positive although it is represented in
eqn (9.152) as an integral over pairwise energies which are negative. The change
in sign comes from the analytic continuation in eqn (9.153) and demonstrates
that a finite, physically meaningful quantity, such as the vacuum energy for a
dilute dielectric ball, may have a sign contrary to expectation.

There is also a way to calculate the same vacuum energy from the mode-
generating functions that we have obtained so far. One has to insert eqn (9.138)
into eqn (9.128) and take the expansion in 2δc ≡ c2 − c1 up to the second order.
In this case it is convenient to start from eqn (9.127) and to write

√
ε1,2 = 1±δc.

Then the product of the mode-generating functions can be written in the form

∆̃ball
l (ik) ≡ ∆̃TE

l (ik)∆̃TM
l (ik) (9.154)
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= [s′l(q)el(k) − sl(q)e
′
l(k)]

2 − δ2
c [s′l(q)el(k) + sl(q)e

′
l(k)]

2
.

The Riccati–Bessel functions in eqn (9.154) can be expanded in powers of a small
parameter δc. Then, using the above procedure, the vacuum energy E0 in eqn
(9.128) can be calculated (Lambiase et al. 2001), leading to the result (9.150).
This result has also been confirmed numerically with high precision (Brevik et
al. 1999).

Finally, we consider the second case discussed above, i.e. a dielectric–diamag-
netic ball where the speeds of light inside and outside are equal. In this case the
arguments of the Riccati–Bessel functions in the mode-generating functions are
equal, and from eqn (9.127) we get (Brevik et al. 1999)

∆̃(c1=c2)(ik) ≡ ∆̃TE
l (ik)∆̃TM

l (ik) =
√

ε1µ1ε2µ2

{
[sl(k)e′l(k)]

2
+ [s′l(k)el(k)]

2
}

−(ε1µ2 + ε2µ1)sl(k)s′l(k)el(k)e′l(k) =
µ1

4ε1
(ε1 + ε2)

2
(
1 − ξ2σ2

l

)
. (9.155)

Here, a simplification has been done using ε1µ1 = ε2µ2, the definition (9.137) of
the parameter ξ, and the identity

σ2
l = 4sl(k)s′l(k)el(k)e′l(k) + 1, where σl = [sl(k)el(k)]′ . (9.156)

Dropping a constant, the mode-generating function can be rewritten as

∆̃
(c1=c2)
l (ik) = 1 − ξ2σ2

l . (9.157)

Note that for ξ = 1 this is just the mode-generating function of a conducting
sphere when both polarizations and the interior and exterior regions are taken
together, i.e. it is the product of the functions in Table 9.7. In this way, for the
dielectric–diamagnetic ball with equal speeds of light, the vacuum energy for
ξ = 1 is known. This has also been calculated for small ξ in the perturbation
order to ξ2. In that case the vacuum energy is

E0(s) = ξ2 (µR)2s

R

cos(πs)

π

∞∑
l=1

ν

∫ ∞

0

dk k1−2s ∂

∂k
σ2

l . (9.158)

As explained above, this expression has a finite analytic continuation to s = 0.
This continuation can be constructed in the usual way by subtracting and adding
back the corresponding part of the asymptotic expansion for the logarithm of
the mode-generating function, as we did for the scalar field in Section 9.2.2.

Sometimes the mode-generating function (9.157) is presented in the form of
an asymptotic series, and the higher orders of this series have been discussed
(Brevik et al. 1998). The resulting series representation for the vacuum energy
allows the limit s → 0. However, this series diverges and cannot be used to get
reliable approximations for the vacuum energy. It should be mentioned that the
same also holds for scalar, electromagnetic, and other fields and for all boundary
conditions.
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There is a much more elegant way to calculate the vacuum energy (9.158) ex-
plicitly (Klich 2000). For this purpose, the summation over the orbital momenta
in eqn (9.158) is performed using the addition theorem for the Bessel functions
(Abramowitz and Stegun 1972)

∞∑
l=0

(2l + 1)sl(k)el(q)Pl(υ) =
kq

Q
e−Q, (9.159)

where Q =
√

k2 + q2 − 2kqυ, |υ| ≤ 1. Putting q = k and taking the derivative
with respect to k, we arrive at

∞∑
l=0

(2l + 1)σlPl(υ) =
1 − kQ̃

Q̃
e−kQ̃, (9.160)

where Q̃ =
√

2 − 2υ. Now we square this equation and integrate over υ using the
orthogonality relation of the Legendre polynomials,∫ 1

−1

dυ Pl(υ)Pl′ (υ) =
2δll′

2l + 1
. (9.161)

Again taking the derivative with respect to k, we obtain the relation

∞∑
l=0

(2l + 1)
(
σ2

l

)′
=

∫ 1

−1

dυ
(1 − kQ̃)(−2 + kQ̃)

Q̃
e−2kQ̃ =

1

2k

[
(1 + 2k)2 e−4k − 1

]
.

(9.162)
It remains to subtract the contribution from l = 0 on the right-hand side of this
equation. Using s0(k) = sinh(k) and e0(k) = exp(−k), we arrive at

∞∑
l=1

(2l + 1)
(
σ2

l

)′
=

1

2k

[
(1 − 2k)2 e−4k − 1

]
. (9.163)

Since the sum here converges, this formula can be substituted into eqn (9.158)
and we arrive at

E0(s) =
ξ2

4

(µR)2s

R

cos(πs)

π

∫ ∞

0

dk k−2s
[
(1 − 2k)2 e−4k − 1

]
. (9.164)

The integral converges for 1/2 < s < 3/2. When we integrate by parts, it becomes

E0(s) =
ξ2

4

(µR)2s

R

cos(πs)

π

1

2s− 1

∫ ∞

0

dk k1−2s ∂

∂k

[
(1 − 2k)2 e−4k − 1

]
.

(9.165)
In this representation, we can put s = 0 in the integral. Now the integration can
be carried out and we arrive at

Eren
0 =

5

32π

ξ2

R
+ O

(
ξ4
)
. (9.166)

To conclude, the only results known so far for the Casimir effect for a dielectric
ball are eqn (9.166), which is for c1 = c2 and small ξ; the limiting case of it for
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ξ = 1, which is for a conducting sphere; and eqn (9.150), for the dilute case. It
is also known that beyond the dilute approximation there are unremovable (at
least so far) ultraviolet divergences. This is a rather unsatisfactory situation, and
further work is necessary.

9.4 The spinor Casimir effect for a sphere

In this section we consider the Casimir effect for a spinor field obeying bag
boundary conditions on a sphere. The physical motivation is its relevance to the
bag model in QCD which describes hadrons. Although this model is phenomeno-
logically quite successful, all attempts to include the vacuum energy of gluons
and quarks have remained unsatisfactory owing to ultraviolet divergences. One
might expect that a renormalization scheme, as outlined in Section 4.3.2, should
be applicable. However, the ultraviolet divergences calculated in terms of the
heat kernel coefficients have not yet been incorporated into the bag model in
a satisfactory way (Milton 2001). Note that this problem is more likely to be
connected with the formulation of the bag model than with the calculation of
the vacuum energy. As we shall see below, the divergences of the spinor vac-
uum energy can be isolated in terms of the heat kernel coefficients similarly to
other fields. The finite parts of the vacuum energy can be calculated numerically,
whereas the interpretation of these results within the bag model remains an open
question.

Here we focus on the spinor field. As to the gluon field, the results for the
vacuum energy are the same as for conductor boundary conditions if one ignores
the higher-loop corrections. In this case the corresponding results from Section
9.3.3 apply. We allow the spinor field to be massive, in which case additional
ultraviolet divergences are present. As is seen below, the methods previously
applied in this chapter for a scalar field work in the spinor case also.

We start from the Dirac equation (3.30) with the bag boundary conditions
(7.102). The solutions of the Dirac equation in spherical coordinates have the
form

ψj,M,σ,k(r) =
1√
r

( √
k0 + m J(2j+1−σ)/2(kr) iΩl

j,M (θ, ϕ)

−σ
√

k0 − mJ(2j+1+σ)/2(kr)(n ·σ)Ωl
j,M (θ, ϕ)

)
, (9.167)

where n = r/r, and σ is the Pauli matrices. The Pauli spinors

Ωl
j,M (θ, ϕ) =



√

2l+2σM+1
2(2l+1) Yl,M− 1

2
(θ, ϕ)

σ
√

2l−2σM+1
2(2l+1) Yl,M+ 1

2
(θ, ϕ)


 (9.168)

are the eigenstates of the total momentum J = L + 1
2σ. The eigenvalues of the

operators J2, L2, Jz , and I + σ ·L are j(j + 1), l(l + 1), M , and σ(2j + 1)/2,
respectively. These eigenvalues are related by j = (2l+σ)/2 with spin projections
σ = ±1. Each solution (9.167) describes two states with k0 = ±

√
m2 + k2, cor-

responding to a particle and an antiparticle. The radial functions in eqn (9.167)



208 Single spherical and cylindrical boundaries

are the Bessel functions. The solution is regular at r = 0, as is required for the in-
terior region of a sphere. The corresponding solutions for the exterior region, i.e.
the scattering solutions, can be obtained by replacement of the Bessel functions
with Hankel functions.

The matrix on the left-hand side of the bag boundary condition (7.102) can
be written in the form

iγ · n + 1 =

(
I i (σ ·n)

−i(σ · n) I

)
. (9.169)

When applied to eqn (9.167), this leads to the condition[√
k0 + mJ(2j+1−σ)/2(kr) − σ

√
k0 − mJ(2j+1+σ)/2(kr)

]∣∣∣
r=R

= 0, (9.170)

where we have used (σ ·n)(σ ·n) = 1. In fact, two conditions are obtained,
one from the upper two components of the bispinor and another one from the
lower two. They are identical up to a constant factor. The solutions of eqn
(9.170) with respect to k are the discrete eigenvalues. Therefore we can take the
left-hand side of it as the mode-generating function. However, the formulas are
simplified if one takes the product of the mode-generating functions for particles
and antiparticles, i.e. for the two signs of k0. One has to be careful with the
signs. From this the mode-generating function, up to a constant factor, is

∆j(k) = σ
[
J2

(2j+1+σ)/2(kR) − J2
(2j+1−σ)/2(kR)

]
−2m

k
J(2j+1+σ)/2(kR)J(2j+1−σ)/2(kR). (9.171)

The function (9.171) takes the same value for σ = 1 and σ = −1. Because of this,
one can take either value of σ. Finally, we turn to the imaginary radial momentum
k → ik/R and, again dropping the constant factor, the mode-generating function
for the bag boundary condition becomes

∆̃j(ik) = I2
j+1(k) + I2

j (k) +
2mR

k
Ij+1(k)Ij(k). (9.172)

The regularized vacuum energy can be derived in the same way as for the
scalar field [see eqn (9.68)], and it becomes

E0(s) = 4
(µR)2s

R

cos(πs)

π

∞∑
n=1

n

∫ ∞

mR

dk
[
k2 − (mR)2

](1−2s)/2 ∂

∂k
ln ∆̃j(ik).

(9.173)
Here, j = (2n − 1)/2 and we have taken into account the fact that the vacuum
energy of a spinor field enters with the opposite sign and that we have an addi-
tional factor of 4 from the two kinds of particles and two spin projections (see
Section 3.3). There is also another difference with respect to the scalar field;
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namely, in the spinor case, the mode-generating function (9.172) depends on the
mass m.

Next we consider the asymptotic expansion of the mode-generating function.
For convenience, we rewrite it in the form

∆̃j(ik) = I2
j (k)

(
1 +

j2

k2
− 2mRj

k2

)
+
[
I ′j(k)

]2
+ 2

mR − j

k
Ij(k)I ′j(k) (9.174)

using the recurrence relation

Ij+1(k) = I ′
j(k) − j

k
Ij(k). (9.175)

From eqn (9.76), we represent the logarithm of the mode-generating function
(9.174) in the form (9.70) with z ≡ k/j. Then, similarly to eqn (9.71), we define

has(j, z) =

3∑
i=−1

Di(z)

ji
. (9.176)

Here, the functions Di(z) are given by

D−1(z) = 2 [η(z) − ln z] , D0(z) = ln
2

1 +
√

1 + z2
− ln(2πj),

Di(z) =

3i∑
a=i

xi,ata, i = 1, 2, 3. (9.177)

The coefficients xi,a are shown in Table 9.11.
The corresponding formulas for the exterior region are obtained by multipli-

cation of the functions Di(z) by (−1)2i+1. In addition, one must reverse the sign
of the mass, i.e. m → −m, because of the different sign in the recursion formula

Kj+1(k) = −K ′
j(k) +

j

k
Kj(k). (9.178)

Now we insert has(j, z) (9.176) into the vacuum energy (9.173) and follow
the same calculation procedure that was used in Section 9.2.2 in the case of the
massive scalar field. The result is (Elizalde et al. 1998)

Table 9.11. The coefficients xi,a for a spinor field, using the notation x = mR.

a

i 1 2 3 4 5 6 7 8 9

1 4x−1
4 0 1

12 0 0 0 0 0 0

2 0 −x2

12
1
8 − x

2
1
8 − x

2 − 1
8 − 1

8 0 0 0

3 0 0 5
192 − x

8 + x3

3
1
8 − x

2 + x2

2
9

320 − x
4 + x2

2
x−1

2
56x−23

64
3
8

179
576
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A−1(z) =
(µR)2s

R2
√

π Γ
(
s − 1

2

) ∞∑
k=0

(−1)k

k!
(mR)2k Γ (k + s − 1)

2k + 2s− 1

×
[
2ζ

(
2k + 2s − 3,

1

2

)
+ ζ

(
2k + 2s − 2,

1

2

)]
,

A0(z) = − (µR)2s

R2
√

π Γ
(
s − 1

2

) ∞∑
k=0

(−1)k

k!
(mR)2k Γ (k + s)

2k + 2s− 1
(9.179)

×
[
2ζ

(
2k + 2s − 2,

1

2

)
+ ζ

(
2k + 2s − 1,

1

2

)]
,

Ai(z) = − (µR)2s

R2
√

π Γ
(
s − 1

2

) ∞∑
k=0

(−1)k

k!
(mR)2k

3i∑
a=i

Γ
(
k + s + a−1

2

)
Γ(a/2)

×
[
2ζ

(
2k + 2s + i − 2,

1

2

)
+ ζ

(
2k + 2s + i − 1,

1

2

)]

for i = 1, 2, 3. This is a power series representation which converges for mR < 1.
A representation which is valid for mR ≥ 1 was also given by Elizalde et al.
(1998).

From eqn (9.179), with eqn (9.131), it is possible to find the heat kernel
coefficients. These are given by

a0 = −16πR3

3
, a1/2 = 0, a1 =

16πR

3

[
1 + 3mR + (mR)2

]
,

a3/2 = 8π3/2
[
mR + (mR)2

]
, (9.180)

a2 =
16

63πR

[
1 +

21

5
mR − 21(mR)2 + 21(mR)3 +

21

2
(mR)4

]
.

The magnitude of the coefficient a0 represents the volume of the sphere multi-
plied by a factor of 4, accounting for particles, antiparticles, and the two spin
projections. The negative sign is due to the Fermi statistics. There is no simple
explanation for why the next coefficient, a1/2, vanishes. The higher coefficients
depend on the mass of the field. This is the mass dependence which appears
through the mode-generating function (9.172). Thus, all parameters in the renor-
malization procedure, as discussed in Section 4.3.2, except for σ, are needed. This
is the case for a massless spinor field also. Note that if one takes the interior and
exterior regions of the sphere together, the situation for the massive spinor field
is worse in comparison with the scalar and electromagnetic cases, where the heat
kernel coefficients a1 and a2 from both sides of the surface compensated each
other. This happens only partly in the spinor case. Owing to the mass depen-
dence of the mode-generating functions, there are remaining contributions. In
this case the heat kernel coefficients are

a0 = 0, a1/2 = 0, a1 = −32πmR2,
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Fig. 9.3. The vacuum energy of a spinor field of mass m in the interior of a bag
as a function of mR (Elizalde et al. 2008).

a3/2 = 16π3/2(mR)2, a2 =
32πm

15

[
1 + 5(mR)2

]
. (9.181)

As a result, there are additional divergences which are proportional to powers of
the mass.

As already mentioned, it is not clear if the formulation of the bag model can
accommodate the renormalization of these divergences. If one ignores this prob-
lem, it is possible to calculate the finite part of the vacuum energy (Elizalde et
al. 1998). The finite part was defined using the large-mass normalization condi-
tion (4.62). However, its application in this case is more complicated than for a
massive scalar field, where the large-mass behavior was given by the heat kernel
expansion. For the spinor field, an additional mass dependence is contained in
the mode-generating function. As a result, it is not possible to determine the
large-mass behavior analytically. Elizalde et al. (1998) implemented the renor-
malization condition (4.62) after a numerical analysis of the large-mass behavior.
Within this approach, the renormalized vacuum energy in the interior region of
the bag was calculated numerically (see Fig. 9.3). Note that this is a demonstra-
tion of the ability to calculate the finite part of the vacuum energy rather than a
physical result related to the bag model, because the renormalization issues are
not settled.

For a massless spinor field in the interior and exterior regions taken together,
the heat kernel coefficient a2 is zero. In this case a unique finite result can be
calculated. The corresponding energy is (Milton 1983, Elizalde et al. 1998)

E(R) ≡ Eren
0 =

0.0204

R
. (9.182)
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9.5 Spherical shell at nonzero temperature

The calculation of the free energy and other thermodynamic quantities for a
spherical shell follows the general lines of Chapter 5. The limiting cases of high
and low temperature can be obtained analytically. In this section, we focus on
these cases.

9.5.1 Low-temperature expansion

The low-temperature expansion of the Casimir free energy was discussed in Sec-
tion 5.2. As with all configurations with a finite volume, a gap in the spectrum is
present for a sphere. In this case the physical thermal correction for the interior
of the sphere is defined by eqns (5.37) and (5.29) with m = 0:

∆TFi = kBT

∞∑
n=1

∑
l

(2l + 1) ln
(
1 − e−βΛl,n

)
(9.183)

− α0,i(kBT )4 − α1,i(kBT )3 − α2,i(kBT )2.

Here, the Λl,n are the eigenvalues of the Laplace operator [for instance eqn (9.16)
for Dirichlet boundary conditions]. For T → 0 (β → ∞), the first term on the
right-hand side of eqn (9.183) decreases exponentially as exp(−β/R) according
to the scale set by the radius R of the sphere. A similar suppression takes place
for a massive field.

Now we consider a massless field in the exterior region of the sphere. Here,
we have a gapless continuous spectrum. In this case the asymptotic expansion
for low temperature can be derived from eqn (9.183) using the same methods as
in Section 9.1.3. We place the whole system into a large sphere with radius Rc

and mode-generating function φl,k(Rc). Then the radial sum in the temperature-
dependent part of the free energy (9.183) can be written as an integral,

∆TFe = kBT
∑

l

(2l + 1)

∫
γ

dk

2πi
ln
(
1 − e−βk

) ∂

∂k
ln φl,k(Rc) (9.184)

− α0,e(kBT )4 − α1,e(kBT )3 − α2,e(kBT )2.

Here, the limit Rc → ∞ can be performed by the same sequence of steps as that
which resulted in eqn (9.32). In so doing, the contribution depending only on
Rc was dropped. Now we explicitly write out this contribution, which originates
from the black-body radiation inside a sphere with radius Rc. The result is

∆TFe = kBT
∑

l

(2l + 1)

∫ ∞

0

dk

π
ln
(
1 − e−βk

) ∂

∂k
δl(k) (9.185)

− 4π

3
R3

c

π2

90
(kBT )4 − α0,e(kBT )4 − α1,e(kBT )3 − α2,e(kBT )2,

where the δl(k) are the scattering phase shifts defined in eqn (9.27).
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The expansion of the first term on the right-hand side of eqn (9.185) at low
temperature can be obtained by expanding the phase shifts for small argument
into a Taylor series. Taking into account also the fact that α0,e = −Veπ

2/90,
where Ve is the difference between the volumes of spheres with radii Rc and R,
one arrives at

∆TFe = − 1

π

∞∑
j=1

ζR(j + 1)(kBT )j+1
∑

l

(2l + 1) δ
(j)
l (0) (9.186)

+ α0,i(kBT )4 − α1,e(kBT )3 − α2,e(kBT )2.

The Riemann zeta functions appear from the integration over k.
As examples, we consider a massless scalar field and an electromagnetic field

with boundary conditions on a spherical shell of radius R. According to Sections
9.2.4 and 9.3.3, a finite vacuum energy at zero temperature, Eren

0 , can be obtained
by considering the interior and exterior regions together. The physical thermal
correction can also be obtained as a sum of eqns (9.183) and (9.186). In the
calculation of this sum, one must take into account the proportionalities α1 ∼
a1/2 and α2 ∼ a1 (see the end of Section 5.2) and the symmetry properties of
the heat kernel coefficients a1/2,i = a1/2,e, a1,i = −a1,e (see the end of Section
9.2.2). As a result,

∆TF = − 1

π

∞∑
j=1

ζR(j + 1)(kBT )j+1
∑

l

(2l + 1) δ
(j)
l (0) − 2α1,i(kBT )3. (9.187)

To calculate the derivatives in eqn (9.187), it is convenient to express the
phase shifts in terms of the mode-generating functions using eqns (9.27) and
(9.35). The expressions for the mode-generating functions can be taken from
eqns (9.65) and (9.67) for the scalar field and from Section 9.3.2 for the electro-
magnetic field. The lowest-order nonzero contributions for the scalar field are

δ′0(0) = −R, δ
′′′

1 (0) = −2R3 (9.188)

for the Dirichlet boundary condition and

δ
′′′

0 (0) = −2R3, δ
′′′

1 (0) = R3 (9.189)

for the Neumann boundary condition. For the electromagnetic field, where the
orbital momenta start from l = 1, we have

δ
′′′

1 (0) = −2R3, δ
′′′

1 (0) = 4R3 (9.190)

for the TE and TM modes, respectively.
From these expressions, using eqn (9.187), the low-temperature behavior of

the thermal correction follows. For the scalar field, using also eqn (5.54) and the
expressions for the heat kernel coefficient a1/2 in eqn (4.25), we obtain

∆TFD =
π3R

6
(kBT )2 − ζR(3)R2(kBT )3,
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∆TFN = ζR(3)R2(kBT )3 − π3R3

90
(kBT )4. (9.191)

For the electromagnetic field, we get

∆TFTE = −ζR(3)R2(kBT )3 +
π3R3

15
(kBT )4,

∆TFTM = ζR(3)R2(kBT )3 − 2π3R3

15
(kBT )4. (9.192)

Note that above expressions hold for kBTR � 1 such that the limit R → ∞
cannot be performed here.

The total thermal correction for the electromagnetic field can be obtained as
a sum of the two contributions in eqn (9.192):

∆TF(R, T ) = −π3R3

15
(kBT )4. (9.193)

Combining eqn (9.193) with the energy at zero temperature (9.136) we get
(Balian and Duplantier 1977, 1978)

F(R, T ) =
0.0461766

R
− π3R3

15
(kBT )4. (9.194)

The corresponding radial force acting on the spherical shell is repulsive:

F (R, T ) =
0.0461766

R2
+

π3R2

5
(kBT )4. (9.195)

Thus, for a spherical shell, the thermal correction is of the same sign as the
electromagnetic Casimir force at zero temperature, i.e. it leads to additional
repulsion.

9.5.2 High-temperature expansion

For the high-temperature expansion of the free energy, we use eqn (5.53) with
m = 0. Equation (5.53) contains the derivative of the zeta function in addition
to the heat kernel coefficients. Using the definition (4.5), this derivative can be
expressed through the determinant of the operator P , which in our case is the
negative Laplace operator:

ζ′P(0) = − ln detP. (9.196)

The determinant of the operator P entering eqn (9.196) is of wider interest and
can be found in the literature for various configurations. For a scalar field in
the interior region of a spherical shell with a Dirichlet boundary condition, one
obtains (Bordag et al. 1996a)

ζ′P(0) = − 3

32
− ln 2

12
− ln R

24
+

3ζR(3)

16π2
+

1

2
ζ′R(−1). (9.197)

Note that detP in eqn (9.196) and R in eqn (9.197) are understood mathemat-
ically as dimensionless quantities. After the substitution of these equations and
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the heat kernel coefficients in eqn (5.53), the correct dimensions are restored.
For the exterior region of a sphere with Dirichlet boundary conditions, we get

ζ′P(0) = − 3

32
+

ln 2

6
− ln R

24
− 3ζR(3)

16π2
+

1

2
ζ′R(−1). (9.198)

For an electromagnetic field with the interior and exterior regions taken to-
gether, the following result is obtained (Bordag et al. 2002):

ζ′P(0) = −1

8
+

13 ln 2

6
+

ln R

2
+ 6ζ ′R(−1). (9.199)

According to the discussion at the end of Section 5.2, the contributions pro-
portional to (kBT )4, (kBT )3, and (kBT )2 should be subtracted [see also eqns
(9.183) and (9.186)]. Using eqn (9.197) for a scalar field with a Dirichlet bound-
ary condition in the interior region, we obtain

FD
i (R, T ) =

[
3

64
+

ln 2

24
− 3ζR(3)

32π2
− ζ′R(−1)

4
+

ln(RkBT )

48

]
kBT + O(T 0).

(9.200)
Now we consider the interior and exterior regions together. In this case the

high-temperature expansion of the free energy of the scalar field is given by

FD(R, T ) =

[
3

32
− ln 2

24
− ζ′(−1)

2
+

ln(RkBT )

24

]
kBT + O(T−1). (9.201)

Note that the term O(T 0) in eqn (9.200) contains the vacuum energy at T = 0
and contributions proportional to an/2 with n ≥ 4. As to eqn (9.201), here
the term O(T 0) contains only the vacuum energy at T = 0 and contributions
proportional to an/2 with odd n.

A similar formula holds for an electromagnetic field. Taking the TE and TM
modes together, the high-temperature expansion of the free energy in the entire
space is

F(R, T ) =

[
1

16
− 13 ln 2

12
− 3ζ ′(−1) − ln(RkBT )

4

]
kBT + O(T 0). (9.202)

We conclude with the remark that the dependence on Planck’s constant can
be restored by the substitution T → T/(�c) in the logarithms in eqns (9.200)–
(9.202). The terms of F which are linear in kBT do not depend on �. This is the
classical limit (see Section 7.4.3), or the entropic contribution. It does not enter
the internal energy (5.32).

9.6 The Casimir effect for a cylinder

Other than for a sphere, there are only a few cases where a separation of variables
is possible and explicit calculations of the Casimir energy can be done. Among
them, the case of a cylinder is the only one without corners or edges. For this
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reason, it has attracted attention as the next object of study. However, because
of the lower symmetry it is technically more involved. The first results for a
cylinder were published only at the beginning of the 1980’s (DeRaad and Milton
1981). For a conducting cylindrical shell, the electromagnetic Casimir force is
attractive. This is somewhat analogous to the case of a sufficiently long rectan-
gular box (see Section 8.3). This result was confirmed by Gosdzinsky and Romeo
(1998), who also considered a scalar field. A dielectric cylinder was discussed by
Brevik and Nyland (1994). Divergences similar to those for a dielectric sphere
were noted. Later it was found that the heat kernel coefficient a2 for a dielectric
cylinder behaves in the same way as for a dielectric sphere, i.e. it vanishes in the
dilute approximation and is nonzero beyond it (Bordag and Pirozhenko 2001).
As a consequence, a meaningful result can be obtained in the dilute approxima-
tion only. The same two descriptions of the dilute approximation as in Section
9.4.3 can be considered. In the cases of both different and equal speeds of light,
the Casimir energy calculated up to the second order of the respective small
parameter was found to be equal to zero (Milton et al. 1999). These results were
analytically reconfirmed by Klich and Romeo (2000) for equal speeds of light and
by Barton (2001) for the dilute approximation using a perturbative expansion in
(c2−c1). Further reconfirmations have been obtained by several authors (Romeo
and Milton 2005, 2006, Cavero-Pelaez and Milton 2005, 2006).

In the first subsection we derive the basic formulas in the case of a cylin-
drical geometry for a conducting shell and a dielectric cylinder. For the latter,
the polarizations do not separate. As a result, the formulas are more involved
and a generalization of the mode summation method is required. We sketch
the derivation of the heat kernel coefficients, highlighting the differences from
the spherical case. The differences arise from the need to consider zero orbital
momentum separately. Then we collect together the expressions necessary for
the numerical evaluation of the vacuum energy and present the known results.
In the second subsection, the case of a dielectric cylinder is considered. Again,
we present some basic formulas and sketch the calculation of the heat kernel
coefficients.

9.6.1 Conducting cylindrical shell

In the cylindrical case, the vacuum energy is given by eqn (9.50) with m = 0.
We use the mode decomposition (9.40) of the field strengths in a cylindrical
geometry and apply the general boundary condition (3.46) in the form (9.111),
where r is replaced with ρ. In this case the azimuthal and z-components play the
role of the tangential components, whereas the normal component is the radial
one. Thus eqns (9.40) and (9.41) lead to the conditions

∂

∂ρ
fTE

l,n (ρ)

∣∣∣∣
ρ=R

= 0, fTM
l,n (ρ)

∣∣
ρ=R

= 0. (9.203)

In the cylindrical configuration all solutions to the wave equation are Bessel and
Hankel functions, following the particular case (9.48). We can write down all of
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Table 9.12. The mode-generating functions ∆̃l(ik) for the
two polarizations of an electromagnetic field for a conducting
cylindrical shell.

Region TE mode TM mode

Interior ∆̃TE,i
l (ik) = k1−lI ′l(k) ∆̃TM,i

l (ik) = k−lIl(k)

Exterior ∆̃TE,e
l (ik) = −k1+lK ′

l(k) ∆̃TM,e
l (ik) = klKl(k)

the mode-generating functions immediately. These mode-generating functions,
after rotation of the momentum to the imaginary axis and with the usual substi-
tution k → k/R, are shown in Table 9.12. Here again, multiples have been chosen
to satisfy all of the requirements imposed on the mode-generating functions. To
make progress, one hopes that the corresponding steps for the spherical case can
be followed directly. In fact, this is possible to a large extent. Especially, the
discussion of the heat kernel coefficients and of the divergences is similar. For
the cases of the interior and exterior regions taken separately, the heat kernel
coefficient a2 is nonzero. Consequently, as the field is massless, we do not have
a natural renormalization condition and the vacuum energy cannot be defined
uniquely. For the case where both regions are taken together, the sum of the
coefficients a2 is zero (the contributions from inside and outside the shell cancel
each other) and the vacuum energy can be uniquely defined. Since the coefficient
a1 is zero for the same reasons, a divergent contribution may arise only from the
coefficients a1/2 and a3/2. Further, just as in the spherical case, the contributions
to the coefficient a1/2 resulting from the two polarizations cancel. The remain-
ing coefficient, a3/2, for dimensional reasons, delivers a divergent contribution
which does not depend on the radius of the cylinder and may be omitted as not
physical. Because of these close similarities with the spherical case, we restrict
ourselves to the case where the interior and exterior regions are taken together.
Here, the vacuum energy for the two polarizations is uniquely defined and takes
finite values in zeta function regularization. There is, however, a difference with
respect to the spherical case because one needs to consider the orbital momentum
l = 0 separately (see below).

In order to simplify the notation, we define the mode-generating functions
for the interior and exterior regions taken together,

∆̃TE
l = −k2I ′l (k)K ′

l(k), ∆̃TM
l = Il(k)Kl(k), (9.204)

Further, we divide the vacuum energy into two contributions,

E0(s) = El=0(s) + El=0(s). (9.205)

Here, El=0(s) is the term in the sum (9.50) with l = 0 and El=0(s) is the
remaining part. In the latter contribution, we act exactly as in the spherical
case. First we define the asymptotic part has(l, z) from the first several terms of
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the uniform asymptotic expansion of the mode-generating functions for large k
and l, while z = k/l is fixed. We arrive at the general formula

has(l, z) =

3∑
i=−1

Di(z)

li
, (9.206)

which is similar to eqn (9.71). Using eqn (9.76), we find the following for the
nonzero coefficients Di(z) in the case of the interior and exterior regions taken
together:

DTE
0 = − ln t, DTM

0 = ln t, DTE,TM
2 =

3∑
j=1

xTE,TM
2j t2j , (9.207)

xTE
2 = −3

8
, xTE

4 =
5

4
, xTE

6 = −7

8
, xTM

2 =
1

8
, xTM

4 = −3

4
, xTM

6 =
5

8
,

where t is defined in eqn (9.77).
To continue, we represent El=0(s) as a sum of finite and asymptotic parts

similarly to eqn (9.72). The asymptotic part is represented as in eqn (9.81), where
the functions Ai(s) are obtained from eqn (9.50):

Ai(s) =
(µR)2s

R2

1

2
√

πΓ(s − 1
2 )Γ(2 − s)

∞∑
l=1

l2−2s−i

∫ ∞

0

dz z2−2s ∂

∂z
Di(z) .

(9.208)
The sum over l results in a Riemann zeta function. Integrating over z with the
use of eqn (9.103), we get

A0 = ∓ (µR)2s

R2

√
π

4Γ(s − 1
2 )Γ(2 − s) sin(πs)

ζR(2s − 2),

A2 = − (µR)2s

R2

1

2
√

πΓ(s − 1
2 )

3∑
j=1

x2j
Γ(s + j − 1)

Γ(j)
ζR(2s), (9.209)

where the signs in A0 denote the TE and TM modes, respectively, and the x2j

are defined in eqn (9.207). We note that the quantity Eas
l=0(s) = A0 + A2 has a

pole at s = 0 arising from the term with j = 1 in A2:

Eas,TE
l=0 (s) =

3

64πR2s
+ O(1), Eas,TM

l=0 (s) = − 1

64πR2s
+ O(1). (9.210)

Now we consider the contribution to E0(s) from l = 0 which will compensate this
pole part. This contribution consists only of an integration and no summation:

El=0(s) =
(µR)2s

R2

1

4
√

πΓ(s − 1
2 )Γ(2 − s)

∫ ∞

0

dk k2−2s ∂

∂k
ln ∆̃0(ik). (9.211)
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Here, in order to get the asymptotic expansion of the mode-generating function,
we need the asymptotic expansions of the modified Bessel functions for large
argument (Abramowitz and Stegun 1972),

Il(k)
Kl(k)

}
� π∓1/2

√
2k

e±k

[
1 +

∞∑
i=1

(±1)i ũi

ki

]
, (9.212)

I ′l (k)
K ′

l(k)

}
� ±π∓1/2

√
2k

e±k

[
1 +

∞∑
i=1

(±1)i ṽi

ki

]
.

The quantities ũi and ṽi are numbers which can be obtained as a limiting case
ũi = limt→0 t−iui(t) from the Debye polynomials (9.78) (and similarly for ṽi).
Inserting these formulas into the mode-generating functions (9.204), we get

ln ∆̃TE
0 = ln k − ln 2 − 3

8k2
+ . . . ,

ln ∆̃TM
0 = − lnk − ln 2 +

1

8k2
+ . . . . (9.213)

The higher expansion orders are not needed for the determination of the diver-
gences which appear in El=0(s) in the limit s → 0. However, eqn (9.213) cannot
be inserted directly into eqn (9.211) because the integral would diverge at k = 0.
For this reason we define the asymptotic functions h̃as(k) as

h̃TE
as (k) = ln

√
1 + k2 − 7

8(1 + k2)
, h̃TM

as (k) = − ln
√

1 + k2 +
5

8(1 + k2)
.

(9.214)
These functions differ from eqn (9.213) in higher orders in k [not shown in eqn
(9.213)] and by a constant, which does not contribute to eqn (9.211) because
of the derivative. Inserting eqn (9.214) into eqn (9.211), we get the respective
contributions to Eas

l=0(s),

Eas,TE
l=0 (s) =

(µR)2s

R2

(−3 + 7s)Γ(s − 1)

32
√

πΓ
(
s − 1

2

) ,

Eas,TM
l=0 (s) =

(µR)2s

R2

(1 − 5s)Γ(s − 1)

32
√

πΓ
(
s − 1

2

) . (9.215)

It can be checked that the pole part in eqn (9.215) cancels the poles in eqn
(9.210). It can be shown that the same holds for the pole at s = 1, i.e. for the
heat kernel coefficient a1. Now the nonzero heat kernel coefficients can be easily
calculated. Using eqn (9.131), we get

aTE
1/2 = 2π5/2R, aTE

3/2 =
5

16
π5/2 1

R
, (9.216)

aTM
1/2 = −2π5/2R, aTM

3/2 = − 1

16
π5/2 1

R
.

A compensation between the TE and TM modes in a1/2 can be observed.



220 Single spherical and cylindrical boundaries

Finally, in order to calculate the finite part of the vacuum energy, we define

Efin
0 = Efin

l=0 + Efin
l=0. (9.217)

The expression for Efin
l=0 (and a similar one for Efin

l=0) is obtained from eqn (9.211)
using integration by parts:

Efin,TE
l=0 =

1

4πR2

∫ ∞

0

dk k
[
ln ∆̃TE

0 (ik) − h̃TE
as (k)

]
,

Efin,TE
l=0 =

1

2πR2

∞∑
l=1

∫ ∞

0

dk k
[
ln ∆̃TE

l (ik) − hTE
as (l, k)

]
. (9.218)

Similar equations can be written for the TM mode. Further, we need to add to
eqn (9.218) the regular part of Eas

0 , which in this case coincides with Ean
0 defined

in eqn (9.88). This is the sum of the two contributions. From eqn (9.209), we get
the contribution to the regular part with l �= 0:

Ean,TE
l=0 =

1

πR2

[
− 25

128
+

3

32
ln(4π) − 1

16π2
ζR(3)

]
,

Ean,TM
l=0 =

1

πR2

[
11

128
− 1

32
ln(4π) +

1

16π2
ζR(3)

]
. (9.219)

The contribution with l = 0 can be obtained from eqn (9.215):

Ean,TE
l=0 =

5 − ln 8

32πR2
, Ean,TM

l=0 =
−3 + ln 2

32πR2
. (9.220)

The complete vacuum energy for the TE mode is given by

Eren,TE
0 = Efin,TE

l=0 + Ean,TE
l=0 + Efin,TE

l=0 + Ean,TE
l=0 , (9.221)

and similarly for the TM mode.
A numerical evaluation of Eren, TE

0 and Eren,TM
0 was done by Gosdzinsky and

Romeo (1998). The results for the renormalized vacuum energy are

Eren,TE
0 = −0.002256

R2
, Eren,TM

0 =
0.000098

R2
. (9.222)

The sum of these results gives the vacuum energy for the electromagnetic field
in the case of a conducting cylindrical shell,

E(R) ≡ Eren
0 = −0.002158

R2
, (9.223)

in accordance with the original result of DeRaad and Milton (1981). It is seen
that the TE mode dominates in the energy and that the force is attractive.
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9.6.2 Dielectric cylinder

For the case of a dielectric cylinder, the polarizations of an electromagnetic
field do not separate, and we need to generalize the derivation of the mode
sum representation of the vacuum energy. We start from the expansions (9.40)
of the field strengths and define the cylindrical components Ea and Ba, where
a = (ρ, ϕ, z), by

E =
∑

a

eaEa ≡
∑

a

eaẼa eilϕeikzz, B =
∑

a

eaBa ≡
∑

a

eaB̃a eilϕeikzz.

(9.224)
Using eqn (9.41) and the corresponding formula for ETM,

ETM = −eρ
∂

∂ρ

∂

∂z
− eϕ

1

ρ

∂

∂ϕ

∂

∂z
+ ez

(
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2

∂2

∂ϕ2

)
, (9.225)

we get

Ẽρ =
ωl

ρ
fTE

l,n (ρ) + ωkz

[
fTM

l,n (ρ)
]′

, Ẽϕ = iω
[
fTE

l,n (ρ)
]′

+ i
ωlkz

ρ
fTM

l,n (ρ),

Ẽz = −iω(εiµiω
2 − k2

z)fTM
l,n (ρ), B̃ρ = −ikz

[
fTE

l,n (ρ)
]′ − iεiµiω

2 ωl

ρ
fTM

l,n (ρ),

B̃ϕ =
kzl

ρ
fTE

l,n (ρ) + εiµiω
2
[
fTM

l,n (ρ)
]′

, B̃z = −(εiµiω
2 − k2

z)fTE
l,n (ρ). (9.226)

Here we have also used eqn (9.113), taking into account the fact that there are
two different dielectric media inside and outside the cylinder.

In terms of these cylindrical components, the matching conditions at ρ = R
require that

εEρ, Eϕ, Ez , Bρ,
1

µ
Bϕ,

1

µ
Bz (9.227)

should be continuous. These conditions define a scattering problem on the entire
axis ρ ∈ [0,∞), and for this case the scattering solutions are

φTE
l,k (ρ) = αJl(qρ)θ(R − ρ)

+
1

2

[
f TE
l (k, kz)H

(2)
l (kρ) + f TE∗

l (k, kz)H
(1)
l (kρ)

]
θ(ρ − R),

φTM
l,k (ρ) = βJl(qρ)θ(R − ρ) (9.228)

+
1

2

[
f TM
l (k, kz)H

(2)
l (kρ) + f TM∗

l (k, kz)H
(1)
l (kρ)

]
θ(ρ − R).

Here the notation q =
√

ε1µ1ω2 − k2
z and k =

√
ε2µ2ω2 − k2

z has been used and
we have inserted two arbitrary constants α and β, where α is dimensionless and β
has the dimension of length. This is necessary because the two solutions are not
independent. The Jost functions f TE

l (k, kz) and f TM
l (k, kz) must be determined

from the matching conditions (9.227). In fact, only four of the six conditions
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(9.227) are independent, and we impose continuity boundary conditions on the
following four combinations:

Eϕ +
kzl

ρk2
Ez , Ez, Bϕ +

kzl

ρk2
Bz, Bz . (9.229)

The resulting equations are

Re
[
f TE
l (k, kz)H

(2)′

l (kR)
]

=
q

k
J ′

l (qR)α +
kzl

R

k2 − q2

k3
Jl(qR)β,

Re
[
f TM
l (k, kz)H

(2)
l (kR)

]
=

q2

k2
Jl(qR)β, (9.230)

Re
[
f TM
l (k, kz)H

(2)′

l (kR)
]

=
kzl

R

k2 − q2

ε2µ1ω2k3
Jl(qR)α +

ε1q

ε2k
J ′

l (qR)β,

Re
[
f TE
l (k, kz)H

(2)
l (kR)

]
=

µ2q
2

µ1k2
Jl(qR)α.

The important difference with respect to the spherical case is that these equations
cannot be separated into TE and TM parts. This can be observed on using the
Jost functions following from eqn (9.230),

f TE
l (k, kz) =

iπkR

2
(w11 α + w12 β) , f TM

l (k, kz) =
iπkR

2
(w21 α + w22 β) ,

(9.231)
where

w11 =
q

k
J ′

l (qR)H
(1)
l (kR) − µ2q

2

µ1k2
Jl(qR)H

(1)′

l (kR),

w12 =
kzl

R

k2 − q2

k3
Jl(qR)H

(1)
l (kR), (9.232)

w21 =
kzl

R

k2 − q2

ε2µ1ω2k3
Jl(qR)H

(1)
l (kR),

w22 =
ε1q

ε2k
J ′

l (qR)H
(1)
l (kR) − q2

k2
Jl(qR)H

(1)′

l (kR).

With these Jost functions, the scattering solutions (9.228) are determined as
functions of the parameters α and β, which describe, up to a common factor,
the relative weights of the two polarizations. The polarizations do not decouple,
because a solution with a single polarization on one side of the boundary (say
with β = 0, i.e. a pure TE wave inside the cylinder) has both polarizations
outside.

However, this mixing does not create a problem in the calculation of the vac-
uum energy. As before, we place the dielectric cylinder inside a larger concentric
cylinder with radius Rc > R. On that cylinder, we impose conductor boundary
conditions. In this way, we get a discrete spectrum which includes both polariza-
tions. We apply the boundary conditions to the field strengths in the same way
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as in the preceding subsection. So we can use eqn (9.203), where now we have to
insert the solutions (9.228) at ρ = Rc > R. The resulting equations are

f TE
l (k, kz)H

(2)′

l (kRc) + f TE∗

l (k, kz)H
(1)′

l (kRc) = 0,

f TM
l (k, kz)H

(2)
l (kRc) + f TM∗

l (k, kz)H
(1)
l (kRc) = 0. (9.233)

Then we substitute eqn (9.231), for the Jost functions, into eqn (9.233). The
result is

Re
[
w11H

(2)′

l (kRc)
]
α + Re

[
w12H

(2)′

l (kRc)
]
β = 0, (9.234)

Re
[
w21H

(2)
l (kRc)

]
α + Re

[
w22H

(2)
l (kRc)

]
β = 0.

This is a homogeneous system of equations for the coefficients α and β. It has
nontrivial solutions only if its determinant, which we denote by ∆l(k, kz , R, Rc),
is equal to zero. The solutions of the equation ∆l(k, kz , R, Rc) = 0 with respect
to k give discrete frequencies inside the large conducting cylinder. So we can
take ∆l(k, kz, R, Rc) as a mode-generating function, as defined in Section 9.1.2.
The next step is to remove the large cylinder, and we can do this in the same
way as in Section 9.1.3. We represent the sum over the discrete eigenvalues as
an integral as in eqn (9.19) and divide the integration contour into two parts,
one above the real axis and the other below. On the upper part, for Rc → ∞,
the contributions which contain a product of two Hankel functions of the second
kind dominate [see eqn (9.29)], and we keep them. On the lower part, we keep the
contributions which contain a product of two Hankel functions of the first kind.
All other parts of the mode-generating function deliver vanishing contributions
and can be omitted. We denote the part of the mode-generating function which
we keep on the upper part by ∆l(k, kz). From eqn (9.234), this is equal to

∆l(k, kz) = w11w22 − w12w21. (9.235)

On the lower part of the contour, we take the complex conjugate. The remain-
ing steps, for instance the deformation of the integration contour towards the
imaginary axis, proceed in the same way as in Section 9.1.4 and we end with eqn
(9.49) for m = 0, with eqn (9.235) inserted. Note that in this case the integration
with respect to kz cannot be done, since ∆l(k, kz) depends on kz.

Finally, after a rotation k → ik, the mode-generating function can be ex-
pressed in terms of modified Bessel functions. Now we change the variables by
the substitutions k → k/R and kz → kz/R. Omitting the constant factor, we
rewrite the mode-generating function of the dimensionless variables in the form

∆̃l(ik, kz) = DTE
l (q, k)DTM

l (q, k) +

[
c2
1 − c2

2

c2
1c

2
2

ωkzl

qk
Il(q)Kl(k)

]2

, (9.236)

where ci = 1/
√

εiµi and

DTE
l (q, k) = µ1kI ′l(q)Kl(k) − µ2qIl(q)K

′
l(k),
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DTM
l (q, k) = ε1kI ′l(q)Kl(k) − ε2qIl(q)K

′
l(k). (9.237)

The second term in eqn (9.236) results from the coupling between the two po-
larizations. It is absent, for example, for the s-wave, i.e. for l = 0, and also for
equal speeds of light inside and outside. In the absence of polarization coupling,
DTE

l (q, k) and DTM
l (q, k) are the mode-generating functions for the correspond-

ing polarizations.
Now we are in a position to obtain the mode sum representation of the

Casimir energy for a dielectric cylinder. For this purpose we make the same
change of variables (k → k/R, kz → kz/R) in eqn (9.49) with m = 0, and
substitute the mode-generating function from eqn (9.236). The result is

E0(s) = − (µR)2s

R2

cos(πs)

2π

∞∑
l=−∞

∫ ∞

−∞

dkz

2π

∫ ∞

kz

dk
(
k2 − k2

z

)(1−2s)/2 ∂

∂k
ln ∆̃l(ik, kz).

(9.238)
This equation can be used for the calculation of the heat kernel coefficients. The
calculation procedure follows the same lines as for the dielectric ball. However,
it is more involved technically (Bordag and Pirozhenko 2001). The reasons are
that it is necessary to investigate the asymptotics of double integrals (since
the integration with respect to kz cannot be carried out explicitly) and the
contribution with l = 0 requires a separate treatment. The calculations are
rather cumbersome, but straightforward. The starting point is eqn (9.238). The
heat kernel coefficients can be calculated using eqn (9.131) and, as before, we can
replace the mode-generating function with its asymptotic expansion. We have to
consider large l, k, and kz with fixed z = k/l and η = kz/(zl). Using eqn (9.76),
the expansion of the mode-generating function (9.236) with l �= 0 takes the form

ln ∆̃l(ik, kz) �
∞∑

i=−1

Di(z, η)

li
. (9.239)

For l = 0, we consider large k and kz with η̃ = kz/k fixed, and the asymptotic
expansion is

ln ∆̃0(ik, kz) �
∞∑

i=−1

D̃i(η̃)

ki
, (9.240)

where we have used eqn (9.212). Explicit formulas for the functions Di(z, η) and
D̃i(η̃) are given by Bordag and Pirozhenko (2001). For the calculation of the
asymptotic part, it is sufficient to take i ≤ 3 in eqn (9.239) and i ≤ 2 in eqn
(9.240). Then the asymptotic part of the vacuum energy is given as a sum of the
corresponding contributions

Eas
0 (s) =

3∑
i=−1

Ai(s) + Ã(s). (9.241)

The functions Ai(s) are found with the help of eqns (9.238) and (9.239). In
doing so, we change the order of integrations with respect to k and kz and use
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the relation between variables kz = ηzl. The summation over all l �= 0 results in
the Riemann zeta function:

Ai(s) = − (µR)2s

R2

cos(πs)

π2
ζR(2s + i − 2) (9.242)

×
∫ ∞

0

dk k2−2s

∫ 1

0

dη
(
1 − η2

)(1−2s)/2
(

∂

∂k
− η

k

∂

∂η

)
Di(z, η).

The function Ã(s) is found similarly by using eqn (9.240) instead of eqn (9.239),
and the relation between the variables kz = η̃k:

Ã(s) = − (µR)2s

R2

cos(πs)

2π2
(9.243)

×
∫ ∞

0

dk k2−2s

∫ 1

0

dη̃
(
1 − η̃2

)(1−2s)/2
(

∂

∂k
− η̃

k

∂

∂η̃

)[
D̃1(η̃)

k
+

D̃2(η̃)

k2

]
.

The calculation of the heat kernel coefficients is a repeat of that for the dielectric
ball. Again, for a2 there is a compensation, this time between A2(s) and Ã(s).
The total contribution to a2 comes from the pole of the zeta function in A3(s):

a2 =
2c2

R2

∫ ∞

0

dk k2−2s

∫ 1

0

dη
√

1 − η2

(
∂

∂k
− η

k

∂

∂η

)
D3(z, η). (9.244)

It is not possible to calculate this expression explicitly, but it has been shown
that the expansion of a2 in powers of the difference of speeds of light starts from
the third order:

a2 = O
[
(c1 − c2)

3
]
. (9.245)

The values of a2 in eqn (9.244) have been calculated numerically and plotted as
a function of c1/c2 (Bordag and Pirozhenko 2001). Also, the lower coefficients
have been calculated. For example,

a0 = −2πR2
(
c−3
1 − c−3

2

)
, a1/2 = −2π3/2R

(
c2
1 − c2

2

)
c4
1c

4
2(µ1 + µ2)(ε1 + ε2)

, (9.246)

which are similar to eqn (9.147).
As mentioned at the beginning of this subsection, in the dilute approximation

the vacuum energy is defined uniquely. This is now confirmed by eqn (9.245),
which states that the coefficient a2 is equal to zero when defined in the pertur-
bation order of (c1 − c2)

2. The respective vacuum energy has been calculated
using various methods. As an example, we mention here the pairwise summation
of the Casimir-Polder potentials (9.151) in the dilute approximation. In place of
eqn (9.152), we now have the formula

E(γ) = − 23

8π

(ε1 − 1)2

(4π)2
(9.247)
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×
∫

d3r1 d3r2

[
(z1 − z2)

2 + ρ2
1 + ρ2

2 − 2ρ1ρ2 cos(ϕ1 − ϕ2)
]−γ/2

.

Here, γ is a regularization parameter and we have to set γ → 7 at the end. The
energy (9.247) is equal to (Milton et al. 1999)

E(γ) = − 23

23+γπ
(ε1 − 1)2

Γ
(

γ−1
2

)
Γ
(
2 − γ

2

)
(3 − γ)Γ

(
γ
2

)
Γ
(

7−γ
2

) L

Rγ−5
, (9.248)

where L is the infinite length of the cylinder. For γ = 7, one obtains E(7) =
0. This result was confirmed by Barton (2001) using the perturbative method
and by Cavero-Pelaez and Milton (2005) by first taking the orbital-momentum
sum. It should be mentioned that the latter calculation, though it follows the
same lines as that for the ball starting from eqn (9.159) (see Section 9.3.4), is
considerably more involved, and it cannot be represented here.

Finite results have been obtained also for the case of equal speeds of light
inside and outside the cylinder. In this case the mode-generating function (9.236)
can be written in a simpler form,

∆l(ik, kz) = DTE
l (k)DTM

l (k) =
(ε1 + ε2)(µ1 + µ2)

4

[
1 − ξ2k2σ2

l (k)
]
. (9.249)

Here, we have used the notation σl(k) = [Il(k)Kl(k)]
′
and the identity

σ2
l (k) =

1

k2
+ 4Il(k)I ′l (k)Kl(k)K ′

l(k). (9.250)

For ξ = 1, this mode-generating function coincides, up to a factor, with the prod-
uct of the functions (9.204) for a conducting cylindrical shell. We can denote the
corresponding vacuum energy by E(ξ2). As has been found numerically (Milton
et al. 1999) and analytically (Klich and Romeo 2000), this quantity is equal to
zero for small ξ to the order ξ2. Higher orders in the expansion for small ξ have
also been calculated (Nesterenko and Pirozhenko 1999, Klich and Romeo 2000).
Numerical results for the energy, calculated as a function of ξ2 for 0 ≤ ξ ≤ 1, in-
terpolate smoothly between E(0) = 0 and the ideal-conductor value E(1) = Eren

0

in eqn (9.223) (Nesterenko and Pirozhenko 1999). Thus, the vacuum energy for
a dilute cylinder has been calculated in those cases where a unique result can be
obtained.
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THE CASIMIR FORCE BETWEEN OBJECTS OF ARBITRARY

SHAPE

In Chapter 3, the vacuum energy of quantum fields with boundary conditions
on bodies of arbitrary shape was expressed in general terms. The force acting
between two bodies can be obtained as a derivative of the energy with respect to
the distance between them. As argued in Section 4.3.3, this force is always finite,
in agreement with what is expected on physical grounds, since force is a directly
measurable quantity. However, calculation of the Casimir force using the general
expressions of Chapter 3 is plagued by ultraviolet divergences at intermediate
steps. None of the expressions given there represents the force in terms of con-
vergent sums and integrals. All of them contain regularizations which cannot be
removed in general expressions. As a consequence, even a direct numerical ap-
proach is nearly impossible. For instance, when working with mode expansion,
one has to calculate the eigenvalues for a general geometry with a very high
precision, since it is necessary to subtract several terms of the asymptotic ex-
pansion of the eigenvalues. To date, there has been no successful attempt in the
literature to numerically calculate the Casimir force for a complicated geometry
in this manner.

A new approach has been found only recently. As shown by Bulgac et al.
(2006) and Emig et al. (2006), it is possible to rewrite a representation of the
vacuum energy in terms of a functional determinant such as eqn (3.124) which
does not contain any ultraviolet divergences and which is finite at all inter-
mediate steps. The key idea is to subtract the vacuum energy of each of the
interacting bodies separately. These are the only contributions which contain
divergences. The remaining expression can be rewritten in a compact form in
terms of convergent sums and integrals. The first applications of this method
were to the force between two parallel cylinders or between two spheres, which
are considered below. Here, reliable numerical results were obtained together
with asymptotic expansions to high orders for large separation. Also, the tech-
nically more involved asymptotic expansion for small separation was obtained.
To leading order, this reproduces the proximity force approximation (PFA) and,
from the next-to-leading order, the first corrections beyond the PFA were calcu-
lated (Bordag 2006a).

An independent and different derivation of the above-mentioned representa-
tion was performed in a remarkable paper by Kenneth and Klich (2006) using the
block structure of the functional determinants for potentials with disjoint sup-
port. Using general assumptions, it was shown that the Casimir force between
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two bodies which are mirror images of each other is always attractive. As we
shall see, this is quite illuminating for the understanding of the representation of
the vacuum energy in terms of functional determinants. We note also that a mi-
croscopic derivation of the Lifshitz formula in terms of functional determinants
was performed by Renne (1971).

It should be mentioned that the technical tools necessary for the new ap-
proach were developed earlier, in applications to corrugated planes (Li and Kar-
dar 1992, Büscher and Emig 2004, 2005). The calculations for corrugated surfaces
are more complicated than those for a sphere or a cylinder in front of a plane.
The reason is that inversion of matrices for a single plane with corrugations is
not possible in an explicit way. In this chapter, we provide only a brief summary
of the results obtained for corrugated surfaces.

We need to add a remark about the notation. In this chapter we use a va-
riety of different operators, infinite-dimensional matrices, and expansions. The
most appropriate mathematical language for this is in terms of operators and
mappings. This is, however, quite abstract and would hide the structure and
the physical meaning of the mathematical expressions. Therefore we use more
specific notations which, we hope, provide more physical intuition.

10.1 Various approaches to the calculation of the Casimir energy

The various techniques used for obtaining a finite representation of the interac-
tion energy in the form of simple formulas are quite different from each other.
We divide them into two groups. One group applies to boundary conditions, i.e.
to the case where the interaction of the quantum field with the bodies is limited
to their surface. The other is relevant to background fields. Here the interaction
takes place in the whole volume of the bodies; this group can be applied, for
example, to the case of the Casimir force acting between dielectrics.

The general starting point is the representation in eqns (3.111) and (3.112)
for the vacuum energy in terms of the trace of the logarithm of the Green’s func-
tion or, equivalently, in terms of a functional determinant. This is the complete
vacuum energy, in the sense that it still includes the contribution from empty
space which must be removed at a later step. Here, the Green’s function includes
the complete interaction with the background. We elaborate on this represen-
tation in Section 10.1.2 and derive the T-matrix approach. Although the latter
approach is also applicable to the case of boundaries, for these we start in the
next section from eqn (3.124), where the contribution of empty space has al-
ready been removed, and which is formulated in terms of the boundary surface.
It should be mentioned that an alternative derivation of this representation has
recently been given in terms of source theory (Emig et al. 2007, 2008).

10.1.1 Functional-determinant representation for the case of boundary
conditions on separate bodies

In this section, we consider the vacuum energy of a scalar field obeying Dirichlet
or Neumann boundary conditions and that of an electromagnetic field obeying
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ideal-metal boundary conditions on the surfaces of two separate bodies. For
these, we introduce the following notation. Let S be the boundary surface given
by

r = u(η) = u(η1, η2), (10.1)

where r is a radius vector in the initial space. The surface is assumed to be static,
such that it can be defined by functions u(η) with parameters η = (η1, η2), which
can be viewed as coordinates on S. Further, we assume the surface to consist of
two nonintersecting parts, SA and SB, with

S = SA ∪ SB, SA ∩ SB = 0. (10.2)

Accordingly, we have to define two parametrizations, uA(ηA) and uB(ηB). Some
specific examples are considered below.

For the vacuum energy, we start from the representation (3.124) in terms
of the trace of the logarithm of the operator K̃. Since we consider only static
boundary surfaces here it is convenient to first perform the Wick rotation x0 →
ix4 and to calculate the trace over the time variable,

Tr ln K̃ = i

∫ ∞

−∞
dx4 〈x4|Tr ln K̃|x4〉, (10.3)

where “Tr” on the right-hand side of eqn (10.3) and below in this section is
calculated over only the spatial variables. Taking into account the translational
invariance with respect to the time variable, we represent the expression on the
right-hand side of eqn (10.3) in the form

i

∫ ∞

−∞
dx4 〈x4|Tr ln K̃|x4〉 = i

∫ ∞

−∞
dx4

∫ ∞

−∞

dξ

2π
Tr ln K̃ξ

= 2iT

∫ ∞

−∞

dξ

2π
Tr ln K̃ξ, (10.4)

where Tr ln K̃ξ is the Fourier image of Tr ln K̃.
Substituting eqns (10.3) and (10.4) into eqn (3.124), we arrive at the expres-

sion for the vacuum energy,

E0 =
1

2π

∫ ∞

0

dξ Tr ln K̃ξ. (10.5)

Considering that the translational invariance with respect to the time variable
is equivalent to the diagonality of the operators K̃ and ln K̃ in the basis |x4〉 =
exp(iξx4)/

√
2π, the integral kernel of the operator K̃ξ is given by [see eqn (3.120)]

K̃ξ(η, η′) =

∫
dr

∫
dr′ H(η, r)Gξ(r, r′)H(η′, r′). (10.6)

For the scalar field, the Green’s function Gξ(r, r′) is
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Gξ(r, r′) =

∫
dk

(2π)3
eik · (r−r′)

ξ2 + k2 . (10.7)

This is the Fourier image with respect to the time variable of the Green’s function
(3.87) for a scalar field in free space. For an electromagnetic field (see Section
3.2), we take the Coulomb gauge, and the relevant field is the vector potential
A(x). For this field, ∇ · A = 0, and the corresponding Green’s function is

Gξ(r, r′)ij =

∫
dk

(2π)3

(
δij −

kikj

k2

)
eik · (r−r′)

ξ2 + k2 . (10.8)

In Section 3.6, we introduced the projector H(η, x) for a scalar field with
Dirichlet boundary conditions. With the notation used in this section, this is

H(η, r) = δ3
(
r − u(η)

)
. (10.9)

By integration over r, it puts the argument of the Green’s function onto the
surface, as in eqn. (3.120). This projector can be generalized in an obvious way
to the case of Neumann boundary conditions:

H(η, r) = δ3
(
r − u(η)

)
(n · ∇r). (10.10)

Another generalization is that for the case of an electromagnetic field. Here the
boundary conditions are for a generic boundary surface, given by eqn (3.46). In
fact, these are two independent conditions, and it is always possible to define

two projection vectors H
(s)
i with s = 1, 2 such that these boundary conditions

are equivalent to

H
(s)
i (η, r) = H

(s)
i δ3

(
r − u(η)

)
. (10.11)

In the following, we do not use the most general form of H
(s)
i . We restrict

ourselves to special cases. The first is that of a plane surface perpendicular to
the z-axis, for which an obvious choice is

H(1) = ez × ∇, H(2) = ez × (ez × ∇). (10.12)

The second example is that of a spherical surface. Here we define

H(1) = L, H(2) = L × n, (10.13)

where L is the orbital-momentum operator and n is the normal vector (see
Section 9.1.1). Using eqn (9.6), the fulfillment of the boundary conditions (9.111)
can be checked immediately. It must be mentioned that the kernel (10.6) now
carries additional indices indicating the two polarizations and, in place of eqn
(10.6), we have to write

K̃s,t
ξ (η, η′) =

∫
dr

∫
dr′ H(s)

i (η, r) [Gξ(r, r′)]ijH
(t)
j

+
(η′, r′). (10.14)

Here, the second factor is taken in Hermitian conjugation. For this, we note that
(L × n)+ = −n × L. When inserting this kernel into the representation (10.5)
for the vacuum energy, one needs to take the trace over the indices s and t also.
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After having defined all necessary objects on a generic surface, we consider
the division (10.2) of the surface into two parts and represent the kernel of K̃ as
a block matrix with respect to the two surfaces,

K̃
(b)
ξ =

(
K̃ξ,AA(ηA, η′

A) , K̃ξ,AB(ηA, η′
B)

K̃ξ,BA(ηB, η′
A) , K̃ξ,BB(ηB, η′

B)

)
. (10.15)

It must be mentioned that the kernels K̃ξ,AA(ηA, η′
A) and K̃ξ,BB(ηB, η′

B), if
viewed as matrices, are square matrices whereas, in general, the off-diagonal
kernels are rectangular. Also, the parameters ηA and ηB may have completely
different structures, since the two parts of the surface S may be different.

The multiplication of two matrices such as those in eqn (10.15) must involve
a summation and integration over the corresponding variables. This becomes
important if, for example, we consider the inverse of one of the kernels on the
diagonal. The square matrices can be inverted using∫

dµ(ηA′′) K̃ξ,AA(ηA, η′′
A) K̃−1

ξ,AA(η′′
A, η′

A) = δ2(ηA − η′
A). (10.16)

The measure is given by the induced metric,

dµ(ηA) =
√

gA dηA, (10.17)

where

gA = det

(
∂r

∂ηi
·

∂r

∂ηj

)
. (10.18)

Similar equations hold with A → B.
With eqns (10.5) and (10.15), we have a representation for the complete

vacuum energy related to the two surfaces SA and SB. It also contains the
vacuum self-energies of the individual surfaces, which are infinite. The most
important step is the separation of these energies into a distance-independent
part carrying all the divergences. This can be done by rewriting eqn (10.15) as

K̃
(b)
ξ =

(
K̃ξ,AA 0

0 1

)(
1 0

0 K̃ξ,BB

)(
1 K̃−1

ξ,AAK̃ξ,AB

K̃−1
ξ,BBK̃ξ,BA 1

)
. (10.19)

Here, in order to simplify the notation, we have dropped the arguments. This
is a product of three matrices. The first two are diagonal and depend only on
the corresponding individual surfaces, whereas the third matrix includes the
nondiagonal contributions. The matrix element “1” in all of the matrices must
be understood as the unit matrix in the corresponding subspace, and the inverse
matrices are the same as those defined in eqn (10.16). The next step is to note
that in eqn (10.5), Tr lnK = ln detK. Thus, from eqn (10.19), we get three
additive contributions to the vacuum energy. The first two of these contributions
can be dropped, since they do not depend on the distance between the surfaces.
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In so doing, we have replaced the operator K in eqn (10.5) with its integral
kernel. This is possible if one includes all integrations with respect to the kernel
arguments in the definition of the trace. The last step is to rewrite the resulting
expression using the following simple relation which holds for block matrices:

det

(
1 B

C 1

)
= det(1 − BC) = det(1 − CB). (10.20)

We then arrive at the following representation for the contribution to the vacuum
energy depending on the distance between the two surfaces,

E =
1

2π

∫ ∞

0

dξ Tr ln
(
1 − K̃−1

ξ,AAK̃ξ,ABK̃−1
ξ,BBK̃ξ,BA

)
. (10.21)

Here, the arguments have been dropped and we emphasize once again that the
integration over them is included in the definition of the “Tr”.

It must be mentioned that the contributions to the energy from the first
two factors on the right-hand side of eqn (10.19) are just what one would get if
each of the surfaces SA and SB were present alone. Hence, these are the energies
associated with a single surface and therefore they do not depend on the distance
between the two surfaces. Keeping in mind the general statement in Section 4.3.3
that the force between two bodies must be finite, it is the subtraction of these
energies which removes the infinities. To indicate that the expression for the
vacuum energy (10.21) is finite, we have dropped the lower index 0.

Equation (10.21) is a representation of the vacuum interaction energy between
two surfaces SA and SB which does not contain ultraviolet divergences. In fact,
all integrations and summations in this expression are convergent. Below, we
shall use it in specific calculations.

10.1.2 T -matrix approach for potentials with disjoint support

In the preceding subsection, we considered the vacuum energy in the presence
of boundaries. There the role of the interaction was played by some boundary
conditions. In this subsection, we consider a different scenario, where the quan-
tum field interacts with a background potential V (r). For this, we have in mind
primarily the interaction of an electromagnetic field with a dielectric body. In
contrast to the case of ideal-metal boundary conditions, here the quantum field
penetrates into the body and the interaction takes place throughout the whole
volume, not just at the surface.

For the vacuum energy, we use the representation (3.112). As in Section
10.1.1, we assume a static background, and, similarly to eqn (10.5), arrive at

E0 = − 1

2π

∫ ∞

0

dξ Tr lnG(V )
ξ . (10.22)

Here, G(V )
ξ is the operator whose integral kernel is the Green’s function of the

field in the background potential V (r), obeying the equation
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[
ξ2 − ∇

2 + V (r)
]
G

(V )
ξ (r, r′) = δ3(r − r′). (10.23)

Note that in eqn (10.5), the operator K̃ξ is used, whereas eqn (10.22) is expressed

in terms of the operator G(V )
ξ . Keeping in mind eqn (3.111), this resulted in the

negative sign on the right-hand side of eqn (10.22). A specific example of the
potential would be provided by a region D given by a characteristic function χ(r)
defined as χ(r) = 1 for r ∈ D and χ(r) = 0 for r �∈ D, filled with a dielectric of
permittivity ε, so that

V (r) = (ε − 1)χ(r)ξ2. (10.24)

However, the following derivations are valid for any background potential V (r).
Note that the frequency dependence of this potential does not pose any difficulty,
since we consider only a static region D.

We continue by introducing the T -matrix operator. For this, it is necessary to
perform a number of transformations, which are done at the operator level. For
all quantities involved, we introduce corresponding operators and denote them
by calligraphic letters. Thus, we rewrite eqn (10.23) in the form

[
ξ2 − ∇

2 + V
]
G(V )

ξ = 1, (10.25)

where 1 is the unit operator and V is the operator for multiplication by the

function V (r). The operator G(0)
ξ for the Green’s function without a potential is

defined by (
ξ2 − ∇

2
)
G(0)

ξ = 1. (10.26)

The integral kernel of G(0)
ξ is given by eqn (10.7). Using eqn (10.26), we rewrite

eqn (10.25) in the form of an integral equation for the Green’s function,

G(V )
ξ = G(0)

ξ − G(0)
ξ VG(V )

ξ . (10.27)

In scattering theory, this is known as the Lippmann–Schwinger equation. Another
expression for the same quantity is

G(V )
ξ =

(
1 + G(0)

ξ V
)−1

G(0)
ξ , (10.28)

which is a formal solution of eqn (10.25). This also gives a perturbative solution
if expanded in powers of the potential. Equation (10.27) can be rewritten with
the help of eqn (10.28) in the form

G(V )
ξ = G(0)

ξ − G(0)
ξ T G(0)

ξ , (10.29)

where

T = V
(
1 + G(0)

ξ V
)−1

(10.30)
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is called the T-matrix. This is widely used in the theory of light scattering, where
it is the basic object for expressing the properties of scatterers [see e.g. the book
by Bohren and Huffmann (1998)]. Using

S = 1 − G(0)
ξ T , (10.31)

the T -matrix can be related to the scattering matrix (S-matrix). Using eqn (10.28),
the T -matrix (10.30) can also be related to the Green’s function:

T = V − VG(V )
ξ V . (10.32)

Below, we shall also use the relation

VG(V )
ξ = T G(0)

ξ , (10.33)

which follows from eqn (10.28) by multiplication by V using eqn (10.30).
In this section, we are interested in the vacuum interaction of two disjoint

bodies. Therefore we consider a potential consisting of the sum

V (r) = VA(r) + VB(r). (10.34)

We define the corresponding operators GVA

ξ and GVB

ξ using eqn (10.25) for the
individual potentials VA(r) and VB(r), respectively. In a similar way, we define
the individual T -matrices T A and T B . Now we separate the contributions from
the individual potentials. For this purpose, we rewrite the following expression
entering eqn (10.28):

1 + G(0)
ξ (VA + VB) =

(
1 + G(0)

ξ VA

)(
1 + G(0)

ξ VB

)
− G(0)

ξ VAG(0)
ξ VB

=
(
1 + G(0)VA

)
(1 −Mξ)

(
1 + G(0)VB

)
. (10.35)

Here we have introduced

Mξ =
(
1 + G(0)

ξ VA

)−1

G(0)
ξ VAG(0)

ξ VB

(
1 + G(0)

ξ VB

)−1

, (10.36)

which can be expressed, using eqn (10.30) applied to the potentials VA and VB ,
in terms of the T -matrices:

Mξ = G(0)
ξ T AG(0)

ξ T B. (10.37)

To obtain this equation, we have also made use of

(1 + G(0)
ξ V)−1G(0)

ξ = G(0)
ξ (1 + VG(0)

ξ )−1,

V(1 + G(0)
ξ V)−1 = (1 + VG(0)

ξ )−1V . (10.38)

Inserting eqn (10.35) into eqn (10.28) and substituting the result into Tr lnGV
ξ

in eqn (10.22), we arrive at

Tr lnG(VA+VB)
ξ = −Tr lnG(0)

ξ +Tr lnG(VA)
ξ +Tr lnG(VB)

ξ −Tr ln (1 −Mξ) . (10.39)

Note that eqn (10.39) holds for any background potential. On a formal level,
it can also be justified by an expansion in powers of the potentials. In this sense,
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eqn (10.39) can be viewed as a resummation of the perturbative expansion. With
respect to the vacuum energy, the first three contributions on the right-hand side
of eqn (10.39) do not depend on the distance between the two bodies described by
the potentials VA(r) and VB(r). This is because the first term does not depend
on the potentials, and the second and the third terms depend individually on
only one of them. Therefore the vacuum interaction between the two bodies is
contained solely in the last term. Dropping the first three terms in eqn (10.39), we
arrive at a finite expression for the part of the vacuum energy (10.22) depending
on the separation distance:

E =
1

2π

∫ ∞

0

dξ Tr ln (1 −Mξ) =
1

2π

∫ ∞

0

dξ Tr ln
(
1 − G(0)

ξ T AG(0)
ξ T B

)
. (10.40)

This equation is sometimes referred to as the TGTG representation or the T -
matrix representation. Note that it is possible to perform cyclic permutations of
the operators within a trace.

Now we take the final step in the derivation using the fact that the two
potentials have a disjoint support. We denote by

A = supp VA(r), B = supp VB(r) (10.41)

the regions in space where the potentials take nonvanishing values, and we as-
sume that these regions do not overlap, i.e. A ∩ B = 0. We are going to use this
property in the representation (10.37) of the operator Mξ. For this, we note that
the integral kernel T (r, r′) of a T -matrix obtained using eqn (10.32) [or, equiv-
alently, eqn (10.30)] is nonvanishing only if both arguments are in one support
region. As a consequence, the kernel of the operator Mξ in eqn (10.40), with all
arguments and integrations shown explicitly, is given by

Mξ(r, r′) =

∫
A

dr′′
∫

B

dr̃

∫
B

dr̃′ T VA(r, r′′)

× G
(0)
ξ (r′′, r̃)T VB(r̃, r̃′)G(0)

ξ (r̃′, r′), (10.42)

where T (r, r′) is the integral kernel of the operator T . Here we have marked
the arguments from region B with a tilde; those from region A are without a
tilde. We note that after insertion of Mξ into the expansion of the logarithm,
the arguments r and r′ will take values from region A only. This structure makes
it meaningful to change the notation and to write TAA for the T -matrix whose
integral kernel is T VA(r, r′′), with both arguments belonging to region A, and

to write TBB for the kernel T VB (r̃, r̃′). In a similar way, we introduce G(0)
ξ,AB

and G(0)
ξ,BA. These are the operators for the free-space Green’s functions with

arguments in the corresponding regions. With this notation, again dropping the
arguments for brevity, and performing cyclic permutations of the operators, we
represent the vacuum energy (10.40) in the form (Kenneth and Klich 2006, 2008)

E =
1

2π

∫ ∞

0

dξ Tr ln
(
1 − TAAG(0)

ξ,ABTBBG(0)
ξ,BA

)
. (10.43)
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This is the final form for the vacuum interaction energy for two background
potentials with nonoverlapping supports. It can be used, for example, with the
potential (10.24) for two dielectric bodies. The expression (10.43) does not con-
tain ultraviolet divergences, which go away after the first three terms in eqn
(10.39) are dropped in the case of nonoverlapping support regions. The latter
is necessary, since any overlap of the two background potentials may result in a
nonvanishing contribution to some heat kernel coefficients, which are connected
with corresponding divergences (these coefficients, however, would not depend
on the relative location of the two potentials).

The representation (10.43) of the vacuum energy for background potentials
is complementary to the representation (10.21) for boundary conditions. The
structures of the two are similar. The main difference is in the integration regions:
the surfaces of the interacting bodies in eqn (10.21) and the volumes bounded
by these surfaces in eqn (10.43). The operator K̃AB in eqn (10.21) is in fact the

same free-space Green’s function as G(0)
ξ,AB in eqn (10.43), and the inverse kernels

K̃−1
AA, K̃−1

BB are the T -matrices for scattering on an impermeable surface. In this
sense, the representation (10.21) is the limiting case of eqn (10.43).

It should be mentioned that other equivalent representations have been inde-
pendently derived, using the block structure of the functional determinant that
appears for nonintersecting support regions (Kenneth and Klich 2006) and using
the multi-scattering approach (Bulgac et al. 2006).

10.2 Casimir attraction between two bodies

The sign of the Casimir force continues to be a topic of great interest. Histori-
cally, it first appeared in connection with Boyer’s result for a conducting sphere
(see Section 9.3.3). At present, the interest in the sign of the Casimir force is
generated by the search for nonadhesive configurations in nanomechanical appli-
cations. The following general rules for this sign can be formulated. For dielectric
bodies, in the dilute approximation, one may start with the pairwise summation
of attractive forces. This results in an attractive force between two distinct bod-
ies, since the corresponding integration is convergent. The sign may change if
the integration is divergent. For example, this happens for a single dielectric ball
in the dilute approximation (see Section 9.3.4). To what extent these statements
are valid beyond the dilute approximation is, in general, not known. A sign
change of the Casimir force can also occur owing to the boundary conditions.
The simplest cases are the repulsion between two planes, when one of them has
Dirichlet and the other has Neumann boundary conditions (see Section 7.2.2),
and the repulsion between dielectric layers sandwiching a third body such that
the permittivities are ε1 > ε2 > ε3 (see Section 19.5.3). Except for above situa-
tions, there is currently only one general statement about the sign of the Casimir
force [which has been formulated as a theorem by Kenneth and Klich (2006)]:
For two nonmagnetic bodies which are mirror images of each other, the electro-
magnetic and scalar Casimir forces are attractive. An immediate consequence of
this statement is that the force between a single body and a plane is attractive
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provided that the same boundary conditions are imposed on both of them (see
below).

The proof of the above statement gives a deeper insight into the structure
of general representations of the vacuum energy as in eqns (10.21) and (10.43).
We start with the definition of an operator J which performs a reflection in the
symmetry plane z = 0:

Jr ≡ J


x

y
z


 =


 x

y
−z


 . (10.44)

Let the two regions A and B be connected by a mirror symmetry relative to the
z = 0 symmetry plane:

JA = B. (10.45)

We assume the region A to be entirely in the half-space z < 0. The mapping
(10.44) leads to an unitary operator J that transforms the wave functions and
Green’s functions by means of

Jψ(r) = ψ(Jr). (10.46)

For a vector field, we also have to reflect its third component:

J


Ax

Ay

Az


 =


 Ax

Ay

−Az


 . (10.47)

Now we consider the representation (10.43) of the vacuum energy for two
interacting bodies given by background potentials in the regions A and B, which
are related by eqn (10.45). The two potentials introduced in eqn (10.34) are
assumed to be related accordingly:

VB(r) = VA(Jr). (10.48)

Under these assumptions, the operators of the free-space Green’s functions and
T -matrices are connected by

G(0)
ξ,AB = J+G(0)

ξ,BAJ +, TAA = J+TBBJ , (10.49)

respectively. Using cyclic permutations within the trace, this allows one to rep-
resent the vacuum energy (10.43) in the form

E =
1

2π

∫ ∞

0

dξ Tr ln
(
1 − Y 2

ξ

)
, (10.50)

where
Yξ =

√
TBBG(0)

ξ,BA J+
√
TBB . (10.51)
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The proof continues by showing that, in the operator sense, the following in-
equalities hold:

G(0)
ξ,BA J + > 0,

∂

∂a
G(0)

ξ,BA J + < 0. (10.52)

Here a is the minimal distance between points in A and their mirror images.
To prove eqn (10.52), we assume that ψ(r) is a function with support in B and
consider

I(a) =

∫
B

dr

∫
B

dr′ ψ∗(r)G(0)
ξ,BA J +ψ(r′). (10.53)

Using the representation (10.7) for the Green’s function, we arrive at

I(a) =

∫
B

dr

∫
B

dr′ ψ∗(r)

∫
dk⊥
(2π)2

1

2γ
eik⊥ · (r⊥−r′

⊥)−γ(z+z′)ψ(r′), (10.54)

where the subscript ⊥ denotes two-dimensional vectors perpendicular to the z
axis (i.e. parallel to the symmetry plane). In eqn (10.54), we have carried out
the integration over k3 making use of the fact that z and z′ take only positive
values, i.e. z > 0 and z′ > 0, and have defined γ =

√
ξ2 + k2

⊥. This expression
can be rewritten in the form

I(a) =

∫
dk⊥
(2π)2

1

2γ

∣∣∣∣
∫

B

dr ψ∗(r)eik⊥· r⊥−γz

∣∣∣∣
2

, (10.55)

demonstrating the first statement in eqn (10.52).
To prove the second statement, we replace the integration variable r = (r⊥, z)

with r1 = (r⊥, z1), where z1 = z − a/2. Then eqn (10.55) takes the form

I(a) =

∫
dk⊥
(2π)2

1

2γ
e−γa

∣∣∣∣
∫

B

dr1 ψ∗(r1)e
ik⊥· r⊥−γz1

∣∣∣∣
2

. (10.56)

The derivative of eqn (10.56) with respect to a is evidently negative. Now we
note that Yξ > 0 follows from eqns (10.52) and (10.51), since the operator
for the T -matrix is Hermitian. Therefore one can apply a Feynman-Hellman
argument and conclude that the eigenvalues of the operator Yξ, λn, satisfy the
inequality 0 ≤ λn < 1 [the right-hand inequality follows from the unitarity
of the scattering matrix (10.31)]. As a consequence, the logarithm ln

(
1 − λ2

n

)
is a monotonically decreasing function of a. Finally, the absolute convergence
of the sums and integrations involved in the trace in eqn (10.50) transfers these
properties to the vacuum energy which, thus, is shown to be a monotonic function
of a. Obviously, it takes negative values and provides an attractive force. Note
that from the above formulas it is also clear that the logarithm and, thus, the
energy vanish for a → ∞. Hence, after dropping the distance-independent terms,
as was done in the preceding sections, only a correctly normalized interaction
energy emerges.

The above derivation was done for a scalar field. However, essentially the same
arguments allow one to extend these results to an electromagnetic field (Kenneth
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and Klich 2006). It should also be noted that although we have used the T -matrix
approach here, the same statement can be proved using the representation (10.21)
for the vacuum energy in the presence of boundary conditions. Here one needs
to assume that the surfaces SA and SB are related by mirror symmetry and
that the same boundary conditions are imposed on both. A generalization of the
above results by Kenneth and Klich (2006) was given by Bachas (2007).

The derivation presented in this section leads to more insights. Making use
of the cyclic property of the trace, we can change the representation (10.50) of
the vacuum energy to

E =
1

2π

∫ ∞

0

dξ Tr ln
(
1 −N 2

ξ

)
, (10.57)

where

Nξ = TBBG(0)
ξ,BA J+. (10.58)

This representation allows us to split the vacuum energy into two terms:

E = E(+) + E(−), E(±) =
1

2π

∫ ∞

0

dξ Tr ln (1 ±Nξ) . (10.59)

Here, E(+) and E(−) are the vacuum energies for when the symmetry plane
has Neumann and Dirichlet boundary conditions, respectively, for the body B.
This follows from general symmetry considerations, since the corresponding wave
functions, owing to the mirror symmetry, separate into symmetric and antisym-
metric ones. Thus, the corresponding boundary condition on the plane is au-
tomatically fulfilled. The same can also be shown by applying the formalism
developed in the two preceding sections to the body B and a plane.

By means of eqn (10.59), the vacuum energy for two mirror-symmetric bodies
becomes the sum of two vacuum energies, each between one of these bodies
and the symmetry plane. For one of them, we have to use Dirichlet boundary
conditions and, for the other, Neumann boundary conditions on the plane. It is
not difficult to show that the same holds for an electromagnetic field. Therefore
the body may be a dielectric or an ideal metal. The two boundary conditions on
the plane are in one case ideal-metal boundary conditions and in the other case,
for duality reasons, bag boundary conditions (see Section 7.5).

10.3 Application to cylindrical geometry

Here we consider some specific applications of the general results obtained in
the preceding sections, starting with the simplest cases (other than the config-
uration of two parallel planes). These are the cases of parallel cylinders and a
cylinder parallel to a plane. We restrict ourselves to a scalar field obeying Dirich-
let or Neumann boundary conditions on the surfaces. Since these are waveguide
geometries, the results cover the electromagnetic case also. We start with a spec-
ification of the general formulas for the given geometry. Then we consider the



240 The Casimir force between objects of arbitrary shape

case of large separations. The technically more involved case of short separations
is also considered. From this we obtain the PFA and calculate the first correction
to it.

10.3.1 Two parallel cylinders and a cylinder parallel to a plane

We start with a scalar field obeying Dirichlet boundary conditions on two cylin-
ders with radii RA and RB (see Fig. 10.1). The cylinder axes are parallel to the
z-axis, x = 0 is the symmetry plane of the cylinder axes, and L = 2b is the
distance between the centers of the two cylinders. We employ the representation
(10.21) for the vacuum energy and make use of the translational invariance along
the z-axis. In fact, we have to consider the energy per unit length of the cylinders.
For this purpose, we explicitly perform the integration with respect to z con-
tained inside the “Tr” in eqn (10.21). Taking into account eqns (10.6) and (10.7)
and introducing the polar coordinates γ =

√
ξ2 + k2

z and −π/2 ≤ ϕγ ≤ π/2 on
the right half-plane (ξ, kz), we obtain an expression for the Casimir energy per
unit length of the cylinders,

E =
1

4π

∫ ∞

0

dγ γ Tr ln
(
1 − K̃−1

γ,AAK̃γ,ABK̃−1
γ,BBK̃γ,BA

)
. (10.60)

Here, the trace does not contain an integration with respect to z. The kernels
K̃γ are represented similarly to eqn (10.14), where the Green’s function Gξ(r, r′)
must be replaced with

Gγ(r⊥ − r′
⊥) =

∫
dk⊥
(2π)2

eik⊥ · (r⊥−r′
⊥)

γ2 + k2
⊥

, (10.61)

where the vectors r⊥ = (x, y) and r′
⊥ = (x′, y′) describe points belonging to the

cylindrical shells A and B, respectively. It is convenient to describe the surfaces
of the cylinders in polar coordinates centered on the cylinder axes. Then the
cylindrical shell A is described by a vector ρ = (RA cosϕ, RA sinϕ) defined in a
coordinate system centered at the point (−b, 0, 0). In a similar way, the surface
of the cylinder B is described by a vector ρ′ = (RB cosϕ′, RB sin ϕ′) defined
relative to the origin (b, 0, 0). According to eqns (10.6) and (10.9), one can write

K̃γ,AB = Gγ(ρ − L − ρ′)|ρ=RA, ρ′=RB
, (10.62)

where L is the vector connecting the points (−b, 0, 0) and (b, 0, 0). For the coor-
dinate η on the surfaces we can take an angle, i.e. η → ϕ, and the corresponding
integration is over the interval [0, 2π]. The measure (10.17) amounts to a con-
stant on which the vacuum energy does not depend. In this way, all quantities
entering eqn (10.60) are defined. In order to start the calculations, it is useful to
write the trace in a convenient basis. We take

|l〉 =
eilϕ

√
2π

, (10.63)
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Fig. 10.1. A configuration of two cylinders or of one cylinder parallel to a plane.

where l is an integer. Then all quantities K̃γ become matrices with matrix ele-
ments enumerated by the indices l and l′,(

K̃γ,AB

)
ll′

= 〈l|K̃γ,AB|l′〉. (10.64)

It is convenient to represent the propagator (10.61) in the basis

ul(k⊥; ρ) = Jl(k⊥ρ)
eilϕ

√
2π

, (10.65)

where the Jl(z) are Bessel functions. For this purpose, we express the difference
r⊥ − r′

⊥ and k⊥ = (k⊥ cosϕk, k⊥ sinϕk) in polar coordinates with the origin at
the point (−b, 0, 0):

r⊥ − r′
⊥ = ρ − ρ′

1 = ρ − (L + ρ′). (10.66)

Using the expansion of two-dimensional plane waves into cylindrical waves

eik⊥· ρ =
∞∑

l=−∞
ilJl(k⊥ρ)eil(ϕ−ϕk), (10.67)

we arrive at the representation

Gγ(ρ − ρ′
1) =

∫ ∞

0

dk⊥ k⊥
γ2 + k2

⊥

∞∑
l=−∞

ul(k⊥; ρ)u∗
l (k⊥; ρ′

1). (10.68)

Instead of the functions ul(k⊥; ρ′
1), it is convenient to use basis functions in

polar coordinates with the origin at the point (b, 0, 0). To do so, we apply the
translation formula
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ul(k⊥; L + ρ′) =

∞∑
l′=−∞

All′(k⊥; L)ul′(k⊥; ρ′), (10.69)

where

All′ (k⊥; L) = Jl−l′(k⊥L)ei(l−l′)ϕL (10.70)

(in our case we have to put ϕL = 0). Inserting eqn (10.68), with account of
eqns (10.69) and (10.70), into eqn (10.62), we can calculate the matrix element
(10.64):

(
K̃γ,AB

)
ll′

=

∫ ∞

0

dk⊥ k⊥
γ2 + k2

⊥
Jl(k⊥RA)Jl′(k⊥RB)Jl−l′(k⊥L). (10.71)

For kernels with both arguments on the same surface, as a special case of the
above expression, we find

(
K̃γ,AA

)
ll′

= δll′

∫ ∞

0

dk⊥ k⊥
γ2 + k2

⊥
Jl(k⊥RA)Jl(k⊥RA), (10.72)

and similarly for A → B. This formula can be made more explicit by carrying
out the integration with respect to k⊥ (Gradshteyn and Ryzhik 1994):

(
K̃γ,AA

)
ll′

= δll′ Il(γRA)Kl(γRA). (10.73)

This is a well-known representation of the propagator in terms of the modified
Bessel functions. From eqn (10.73), it follows that

(
K̃−1

γ,AA

)
ll′

= δll′
1

Il(γRA)Kl(γRA)
. (10.74)

In a similar way, we can perform the integration with respect to k⊥ in eqn
(10.71). For this purpose Jl−l′ (k⊥L) must be represented as a sum of two Hankel
functions:

Jl−l′ (k⊥L) =
1

2

[
H

(1)
l−l′(k⊥L) + H

(2)
l−l′(k⊥L)

]
(10.75)

=
1

2

[
H

(1)
l−l′(k⊥L) − (−1)l−l′H

(1)
l−l′(−k⊥L)

]
.

Substituting eqn (10.75) into eqn (10.71), we can represent the matrix element
(K̃γ,AB)ll′ as a sum of two integrals. A change of the variable k⊥ → −k⊥ in the
second of these integrals leads to

(K̃γ,AB)ll′ =
1

2

∫ ∞

0

k⊥dk⊥
k2
⊥ + γ2

Jl(k⊥RA)Jl′ (k⊥RB)H
(1)
l−l′ (k⊥L) (10.76)
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+
1

2
(−1)l−l′

∫ 0

−∞

k⊥dk⊥
k2
⊥ + γ2

Jl(−k⊥RA)Jl′(−k⊥RB)H
(1)
l−l′ (k⊥L).

Note that both integrals on the right-hand side are convergent. Using the prop-
erties of Bessel functions, we get

(K̃γ,AB)ll′ =
1

2

∫ ∞

−∞

k⊥dk⊥
k2
⊥ + γ2

Jl(k⊥RA)Jl′(k⊥RB)H
(1)
l−l′(k⊥L). (10.77)

Now we integrate in the upper half-plane of the complex variable k⊥, over the
real axis and an infinitely remote semicircle bypassed in the counterclockwise
direction. Calculating the residue at the simple pole k⊥ = iγ, we obtain(

K̃γ,AB

)
ll′

= (−1)l′Il(γRA)Kl−l′(γL)Il′(γRB). (10.78)

Using these formulas, the vacuum energy (10.60) for a scalar field with Dirichlet
boundary conditions on two parallel cylinders can be represented in the form

E =
1

4π

∫ ∞

0

dγ γ Tr ln (1 −Mγ) . (10.79)

The matrix elements of M are

Mγ,ll′ =
Il′(γRA)

Kl(γRA)

∑
l′′

Kl−l′′(γL) Il′′(γRB)
1

Kl′′(γRB)
Kl′′−l′(γL). (10.80)

Here, we take into account the fact that for the quantity K̃γ,BA, the matrix
elements (10.64) are calculated with the basis functions (10.65) defined in polar
coordinates centered at the point (b, 0, 0). In this case, in the transition matrix
(10.70), we have ϕL = π. As a result, the matrix element (K̃γ,BA)ll′ is defined

by eqn (10.78), where (−1)l′ is replaced with (−1)l. Note that in eqn (10.80) and
below, the summations with respect to indices l are performed from −∞ to ∞.

Now we consider two cylinders of equal radii R = RA = RB, and take into
account the mirror symmetry given by J ϕ = π − ϕ. The symmetry operator J
in the basis (10.63) is

Jll′ = (−1)lδl,−l′ . (10.81)

Using this operator, we define, in analogy with eqn (10.58), the operator N with
the following matrix elements:

ND
γ,ll′ =

∑
l′′,l′′′

(
K̃−1

γ,AA

)
l,l′′

(
K̃γ,AB

)
l′′,l′′′

Jl′′′,l′

= (−1)l′
(
K̃−1

γ,AA

)
l,l

(
K̃γ,AB

)
l,−l′

. (10.82)

This expression can be simplified using eqns (10.74) and (10.78), with the result
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ND
γ,ll′ =

1

Kl(γR)
Kl+l′(γL) Il′(γR). (10.83)

Then the final formula for the vacuum energy per unit length of two parallel
cylinders of equal radii, for a scalar field with Dirichlet boundary conditions, is

E =
1

4π

∫ ∞

0

dγ γ Tr ln
(
1 −N 2

γ

)
. (10.84)

This energy can also be split into a sum of two terms as in eqn (10.59), where
now

E(±) =
1

4π

∫ ∞

0

dγ γ Tr ln (1 ±Nγ) (10.85)

is the vacuum energy for a cylinder with Dirichlet boundary conditions and a
plane with Neumann (upper sign) or Dirichlet (lower sign) boundary conditions.
Note that the distance from the plane to the center of the cylinder is L/2.

Now we discuss the changes arising for two cylinders with Neumann boundary
conditions. In this case the projector is defined by eqn (10.10). The normal
derivative is now the derivative with respect to the variable ρ. Then, instead of
eqn (10.62), in accordance with eqn (10.14), we must take

K̃γ,AB =
∂

∂ρ

∂

∂ρ′
Gγ(ρ − L − ρ′)

∣∣∣∣
ρ=RA, ρ′=RB

. (10.86)

We have to add these derivatives to all of the quantities K̃γ . Therefore for two
cylinders of equal radii with Neumann boundary conditions, the vacuum energies
per unit length are given by eqns (10.84) and (10.85) with

NN
γ,ll′ =

1

K ′
l(γR)

Kl+l′(γL) I ′l′(γR). (10.87)

Here, the prime denotes differentiation with respect to the argument of the Bessel
functions.

This approach was first developed by Emig et al. (2006). It is interesting to
remark that the above formulas show a very transparent origin of the different
signs of the Casimir energy in its dependence on the boundary conditions. For
example, in the case of a cylinder parallel to a plane, for Dirichlet conditions
on the cylinder and Dirichlet or Neumann conditions on the plane, E(+) > 0
and E(−) < 0, corresponding to repulsion and attraction, respectively. However,
the magnitude of the repulsive contribution is smaller than the magnitude of
the attractive one. For Neumann conditions on the cylinder, we have to use
eqn (10.87) and take into account the fact that the derivative of the modified
Bessel function Kl(z) is negative. So we get the same picture, i.e. for similar
boundary conditions on the cylinder and the plane we have attraction, and for
different boundary conditions we have repulsion, which is, however, weaker than
the attraction.



Application to cylindrical geometry 245

10.3.2 Cylinder parallel to a plane at large separation

We consider Dirichlet boundary conditions on both the cylinder and the plane
and, expanding the logarithm, rewrite the vacuum energy (10.85) in the form

ED ≡ E(−) = − 1

4π

∫ ∞

0

dγ γ

∞∑
s=0

1

s + 1

∑
l1,l2,...,ls+1

Nγ,l1l2Nγ,l2l3 . . .Nγ,ls+1l1 .

(10.88)
The matrix elements Nγ,ll′ are given by eqn (10.83). At large separations, the
inequality R � L is true and one can use the asymptotic expansion for small
arguments for the Bessel functions containing R. The leading contribution to the
Casimir energy per unit length (10.88) at large separations is given by the terms
with li = 0. Taking into account the fact that

K0(z) = − ln
z

2
− C + O(z2), I0(z) = 1 + O(z2), (10.89)

where C is Euler’s constant, we can rewrite the matrix element (10.83) in the
form

ND
γ,ll′ =

δl0δl′0K0(γL)

− ln(γR/2)− C
+ O

[
(γR)

2
]
. (10.90)

Now we substitute eqn (10.90) into eqn (10.88) and introduce the new variable
y = γL:

ED = − 1

4πL2

∫ ∞

0

dy y

∞∑
s=0

1

s + 1

Ks+1
0 (y)

[− ln(R/L)]
s+1

[
1 +

ln(y/2) + C

ln(R/L)

]−s−1

+ O

(
R2

L2

)
. (10.91)

Expanding this in powers of the small parameter 1/ ln(R/L) and taking into
account the fact that the main term is obtained with s = 0, we arrive at (Emig
et al. 2006)

ED =
1

4πL2

1

ln(R/L)
+ O

(
ln−2 R

L

)
. (10.92)

The respective leading contribution to the Casimir force at large separations
between the cylinder and the plate is

FD = −∂ED

∂a
= −2

∂ED

∂L
=

1

πL3

1

ln(R/L)
. (10.93)

The origin of this logarithmic behavior is connected with the properties of the
two-dimensional Green’s function. Thus, the vacuum energy for a circle in front
of a line, i.e. the same problem without the third spatial dimension, shows this
logarithmic behavior too (Bordag 2006a).

The corresponding energy per unit length for Neumann boundary conditions
on the plane and on the cylinder follows from eqn (10.87). In this case the leading
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contribution to the Casimir energy per unit length (10.88) is given by terms with
l = 0 and l = ±1. Using the integration variable y, we have

EN = − 1

8π

R2

L4

∫ ∞

0

y3dy [K0(y) + 2K2(y)] + O

(
R4

L4
ln

R

L

)
. (10.94)

Here, the first term under the integral results from l = 0 and the second one
from l = ±1. Performing the integration in eqn (10.94), we obtain (Emig et al.
2006)

EN = − 5R2

2πL4
+ O

(
R4

L4
ln

R

L

)
. (10.95)

The respective main contribution to the Casimir force per unit length is given
by

FN = −20R2

π

1

L5
. (10.96)

The energy and force per unit length obtained decrease faster than those for
Dirichlet boundary conditions. Therefore the electromagnetic case, which is the
sum of the cases with Dirichlet and Neumann conditions, is given by eqns (10.92)
and (10.93).

10.3.3 The limit of short separations, and corrections beyond the proximity
force approximation

For short separations between the cylinder and the plane, we introduce a small
parameter describing this limit,

ε =
a

R
� 1, a =

L

2
− R. (10.97)

We start from eqn (10.88) and introduce a new integration variable γ̃ = γR and
new summation indices l1 = l, li+1 = l + l̃i (i ≥ 1). The result is

ED = − 1

4πR2

∞∑
s=0

1

s + 1

∫ ∞

0

dγ̃ γ̃
∑

l

∑
l̃1

. . .
∑
l̃s

Qγ̃;l,l̃1,...,l̃s
, (10.98)

where
Qγ̃;l,l̃1,...,l̃s

= Nγ̃,l,l+l̃1
Nγ̃,l+l̃1,l+l̃2

. . .Nγ̃,l+l̃s,l (10.99)

and

ND
γ̃,ll′ =

1

Kl(γ̃)
Kl+l′

(
2γ̃(1 + ε)

)
Il′(γ̃). (10.100)

In eqn (10.98), the summations are done over all integers.
In this representation, it is not possible to perform the limit ε → 0 directly.

The reason is that with decreasing separation, larger and larger momenta γ̃
and orbital momenta become important. For example, the convergence of the
integration in γ̃ may be lost, as can be seen from eqn (10.100).
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Since, in the limit ε → 0, large values of γ̃, l, and l̃i give the main contribution
to the energy, we replace the Bessel functions with their uniform asymptotic
expansions and approximate the sums by integrals. Further, we use the symmetry
under l → −l and represent the Casimir energy (10.98) as

ED = − 1

2πR2

∞∑
s=0

1

s + 1
(10.101)

×
∫ ∞

0

dγ̃ γ̃

∫ ∞

0

dl

∫ ∞

−∞
dl̃1

∫ ∞

−∞
dl̃2 . . .

∫ ∞

−∞
dl̃s Qγ̃;l,l̃1,...,l̃s

.

Here, Q is still given by eqn (10.99); however, the Bessel functions in eqn (10.100)
are replaced with their uniform asymptotic expansions (9.76). First we consider
the exponential factors in Nll′ . These combine into

Nγ̃,ll′ ∼ e−η̃, (10.102)

where

η̃ = (l + l′) η

(
2γ̃(1 + ε)

l + l′

)
− l η

(
γ̃

l

)
− l′ η

(
γ̃

l′

)
(10.103)

and η(z) is defined in eqn (9.77). From this result it can be observed that the
dominating contribution to eqn (10.101) comes from γ̃ ∼ l ∼ 1/ε, l̃i ∼ 1/

√
ε.

Hence we substitute

γ̃ =
t
√

1 − τ2

ε
, l =

tτ

ε
, l̃i = ni

√
4t

ε
, (10.104)

where the factor
√

4t has been introduced for the sake of convenience. With these
substitutions, the energy becomes

ED = − 1

2πR2ε3

∞∑
s=0

1

s + 1
(10.105)

×
∫ ∞

0

dt t2
∫ 1

0

dτ

∫ ∞

−∞
dn1

∫ ∞

−∞
dn2 . . .

∫ ∞

−∞
dns

(
4t

ε

)s/2

Q(t, τ, n1, . . . , ns).

Next we consider eqn (10.100) with the asymptotic expansions of the Bessel
functions and the substitutions (10.104) inserted. After changing the notation to

Nγ̃,ll′ → Nas
nn′ , (10.106)

we get

Nas
nn′ =

√
ε

4πt
e−η̃as

(
1 + a

(1/2)
nn′ (t, τ)

√
ε + a

(1)
nn′(t, τ)ε + . . .

)
, (10.107)

where
η̃as = 2t + (n − n′)2. (10.108)

Details, including the explicit form of the functions a
(1/2)
nn′ and a

(1)
nn′ , are presented

by Bordag (2006a).



248 The Casimir force between objects of arbitrary shape

Now we insert eqn (10.107) into the energy (10.105):

ED = − 1

2πa2

√
R

a

∞∑
s=0

1

s + 1

∫ ∞

0

dt

t

t5/2e−2(s+1)t

√
4π

(10.109)

×
∫ 1

0

dτ

∫ ∞

−∞

dn1√
π

. . .

∫ ∞

−∞

dns√
π

Qas(t, τ, n1, . . . , ns).

Here the asymptotic expansion of the function Qas is

Qas(t, τ, n1, . . . , ns) = e−η1

[
1 +

√
ε

s∑
i=0

a(1/2)
ni,ni+1

(t, τ) (10.110)

+ ε
( ∑

0≤i<j≤s

a(1/2)
ni,ni+1

(t, τ) a(1/2)
nj ,nj+1

(t, τ) +

s∑
i=0

a(1)
ni,ni+1

(t, τ)
)

+ . . .

]
,

where

η1 =

s∑
i=0

(ni − ni+1)
2
. (10.111)

We note that in Qas, a reexpansion has been performed. Now, with eqn (10.109),
we have an expression which delivers an expansion for small ε and has a remark-
ably simple structure. First of all, the integrations over the ni are Gaussian and
can be carried out in a closed form. For example, in the leading order, we note
that ∫ ∞

−∞

dn1√
π

. . .

∫ ∞

−∞

dns√
π

e−η1 =
1√

s + 1
. (10.112)

For symmetry reasons, the contributions proportional to
√

ε in eqn (10.110) drop
out and the contributions of order ε become the leading-order corrections. Then,
the integrations over t and τ can also be carried out, with the result (Bordag
2006a)

ED = − π3

1920a2

√
R

2a

[
1 +

7

36

a

R
+ O

(
a2

R2

)]
, (10.113)

where we have substituted ε using eqn (10.97). In this formula, the leading term
coincides with the PFA (see Section 6.5), giving it an independent confirmation.
The next-to-leading order is the first correction beyond the PFA. It should be
mentioned that eqn (10.113) was the first analytical result for a correction be-
yond the PFA. Shortly after this result was obtained, it was confirmed by the
numerical world line methods considered in Section 6.3 (Gies and Klingmüller
2006a, 2006b).

The calculation for Neumann boundary conditions is completely parallel to
the above Dirichlet case, and the result is (Bordag 2006a)

EN = − π3

1920a2

√
R

2a

[
1 +

(
7

36
− 40

3π2

)
a

R
+ O

(
a2

R2

)]
. (10.114)
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Finally, because in the geometry considered above the polarizations of the elec-
tromagnetic field separate, the sum of eqns (10.113) and (10.114) is the vacuum
energy for the electromagnetic field (Bordag 2006a):

Eem(a) = − π3

960a2

√
R

2a

[
1 +

(
7

36
− 20

3π2

)
a

R
+ O

(
a2

R2

)]
. (10.115)

Note that the numerical coefficient in the correction of order a/R to the PFA is
equal to −0.48103. From eqn (10.115), the electromagnetic Casimir force between
an ideal-metal cylinder and an ideal-metal plane in close proximity per unit
length of the cylinder is given by (Mostepanenko 2008)

F em(a) = − π3

384a3

√
R

2a

[
1 −

(
4

π2
− 7

60

)
a

R
+ O

(
a2

R2

)]
. (10.116)

Here, the coefficient to the correction of order a/R to the PFA is equal to
−0.288618, demonstrating that for the force, the PFA is even more precise than
for the energy.

There are a few other exact results for configurations involving cylinders.
Thus, the electromagnetic Casimir energy per unit length for a configuration of
two concentric cylinders with radii RA < RB was obtained by Mazzitelli et al.
(2003). Here, in contrast to the configuration of a cylinder above a plate, the
variables do separate. Specifically, for a small gap a = RB − RA between the
cylinders, where a/RA � 1, both the first- and the second-order corrections to
the result given by the PFA for this configuration were obtained (Lombardo et
al. 2008):

Eem(a) = −π3RA

360a3

[
1 +

1

2

a

RA
−
(

2

π2
+

1

10

)
a2

R2
A

+ O

(
a3

R3
A

)]
. (10.117)

An exact result for the Casimir energy per unit length for two eccentric cylinders
was obtained by Dalvit et al. (2006) and Mazzitelli et al. (2006). Exact results
for the Casimir energy for various configurations involving cylinders and plates
were found by Rahi et al. (2008).

10.4 Applications to spherical geometry

From the point of view of experimental applications, the configuration of a (large)
sphere in front of a plane is the most important one. In this section, we apply
the method of Section 10.1.1 to a scalar field obeying boundary conditions on
two spheres and on a sphere in front of a plane. This case is largely parallel to
the cylindrical case considered in the preceding section. However, it is techni-
cally somewhat more complicated, since we have to deal with one more orbital
momentum, and with 3j-symbols, which enter the mathematical expressions for
the Casimir energy. Although this should not create any special problem, the
calculation turns out to be not so trivial. As before, we start from the case of
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two spheres of different radii and then consider a sphere in front of a plane us-
ing the symmetry arguments of Section 10.2. As an application, we consider the
Casimir force between a sphere and a plane at large and small separations, where
we present the analytical correction beyond the PFA.

10.4.1 General formulas for two spheres and for a sphere in front of a plane

We start from a scalar field obeying Dirichlet boundary conditions on two spheres
of radii RA and RB separated by a distance L. Figure 10.1, which was previously
used as a representation of two cylinders or of a cylinder near a plane, will now
be used as a schematic of two spheres or of a sphere in front of a plane. We
parametrize each surface by the spherical coordinates (r, θ, ϕ) and (r′, θ′, ϕ′),
with r = RA and r′ = RB, respectively (the angles θ and θ′ are measured from
the y-axis, which goes through the centers of both spheres; see Fig. 10.1). We take
the vacuum energy as given by eqn (10.21), and we have to specify the kernels
K̃AB. For the parameters η on the surfaces, we take the angular variables (θ, ϕ)
such that, similarly to (10.62),

K̃ξ,AB(η, η′) = Gξ(r − L − r′)|r=RA, r′=RB
, (10.118)

where L is the vector pointing from the center of sphere A to the center of B.
Considering one sphere, we get

K̃ξ,AA(η, η′) = Gξ(r − r′)|r=RA, r′=RA
, (10.119)

and similarly with A → B. The integrations and the trace in (10.21) go over
the solid angle Ω in the corresponding variables. The measure is dµ(η) = dΩ ≡
dϕdθ sin θ, where we have dropped the radius since it gives only a constant factor
which will cancel in eqn (10.21).

With these formulas, we have defined all quantities entering the energy (10.21).
The trace must be calculated in an appropriate basis. Owing to the geometry
considered, this basis is given by the spherical harmonics | l, M〉 = YlM (θ, ϕ)
defined in eqn (9.5). Thus, the kernels are

(
K̃ξ,AB

)
lM,l′M

= 〈l, M | K̃ξ,AB | l′, M〉

=

∫ 2π

0

dϕ

∫ π

0

dθ sin θ

∫ 2π

0

dϕ′
∫ π

0

dθ′ sin θ′ (10.120)

×Y ∗
lM (θ, ϕ) Gξ(r − L − r′)|r=RA, r′=RB

Yl′M (θ′, ϕ′).

Note that in the coordinates chosen, the configuration of two spheres has an
azimuthal symmetry. For this reason, all matrix elements are diagonal in the
magnetic quantum number M . The trace in eqn (10.21) includes a sum over M ,
and in the remaining trace, the orbital momenta take values l ≥ |M |. In addition,
the matrices in eqn (10.21) depend only on |M |.
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For the calculation of the matrix elements in eqn (10.120), it is useful to
introduce the basis

ulM (k; r) = jl(kr)YlM (θ, ϕ), (10.121)

where the jl(z) are the spherical Bessel functions (9.11). Using the expansion of
plane waves into spherical waves

eik · r = 4π
∞∑
l=0

l∑
M=−l

iljl(kr)Y ∗
lM (θk, ϕk)YlM (θ, ϕ), (10.122)

where k = |k|, we can represent the Green’s function (10.7) in the form

Gξ(r − r′) =
2

π

∫ ∞

0

dk k2

ξ2 + k2

∑
l,M

ulM (k; r)u∗
lM (k; r′). (10.123)

This formula can be used to calculate the matrix elements of the kernel (10.119),
where both arguments are defined in the same coordinate system. In order to use
different coordinate systems, in the case of the kernel (10.118), we must apply
the translation formula, which, for the basis functions (10.121), is given by

ulM (k; r′ + L) =
∑
l′,M ′

AlM,l′M ′(k; L)ul′M ′ (k; r′). (10.124)

The translation coefficients AlM,l′M ′ can be obtained by the repeated application
of eqn (10.122):

AlM,l′M ′(k; L) = il
′−l(−1)M ′

∫
dΩk YlM (θk, ϕk)Yl′,−M ′(θk, ϕk)eik · L

= 4πil
′−l(−1)M ′

∑
l′′,M ′′

il
′′

jl′′ (kL)Yl′′M ′′ (θL, ϕL) (10.125)

×(−1)M ′′

∫
dΩk YlM (θk, ϕk)Yl′,−M ′(θk, ϕk)Yl′′,−M ′′(θk, ϕk).

Here we have used Y ∗
lM (θ, ϕ) = (−1)MYl,−M (θ, ϕ). Now we take into considera-

tion the fact that the vector L is directed along the axis connecting the centers
of our spheres. As a consequence, θL ≡ 0 and

Yl′′M ′′(θL, ϕL) = δ0M ′′

√
2l′′ + 1

4π
. (10.126)

Using the integral over three spherical harmonics∫
dΩ YlM (θ, ϕ)Yl′M ′(θ, ϕ)Yl′′M ′′(θ, ϕ)
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=

√
(2l + 1)(2l′ + 1)(2l′′ + 1)

4π

(
l l′ l′′

M M ′ M ′′

)(
l l′ l′′

0 0 0

)
, (10.127)

and the standard properties of 3j-symbols (Varshalovich et al. 1988), the trans-
lation coefficients (10.125) can be represented in the form

AlM,l′M ′(k; L) = δMM ′ il
′−l(−1)M

l+l′∑
l′′=|l−l′|

il
′′

jl′′ (kL)H l′′

ll′M , (10.128)

where

H l′′

ll′M =
√

(2l + 1)(2l′ + 1)(2l′′ + 1)

(
l l′ l′′

0 0 0

)(
l l′ l′′

M −M 0

)
. (10.129)

Note that the first 3j-symbol on the right-hand side of eqn (10.129) is not equal
to zero only when l + l′ + l′′ is even. There is also an alternative derivation for
the translation coefficients, which may be useful for computations (Wittmann
1988).

Using eqns (10.123), (10.124), and (10.128), we get the following for the
matrix element (10.120):

(
K̃ξ,AB

)
lM,l′M

=
2

π

∫ ∞

0

dk k2

ξ2 + k2
jl(kRA)jl′ (kRB)A∗

lM,l′M (k; L) (10.130)

=
2

π

∫ ∞

0

dk k2

ξ2 + k2
jl(kRA)jl′ (kRB)il−l′ (−1)M

∑
l′′

i−l′′jl′′(kL)H l′′

ll′M .

Here and below, the summation over l′′ is performed in the same limits as in eqn
(10.128).

For the matrix element of the kernel (10.119), we get the following expression
from eqn (10.123):

(
K̃ξ,AA

)
lM,l′M

= δll′
2

π

∫ ∞

0

dk k2

ξ2 + k2
jl(kRA)jl′ (kRA), (10.131)

which is diagonal in the indices l and l′. Substituting the definition (9.11) of the
spherical Bessel functions here and integrating similarly to eqn (10.72), we arrive
at (

K̃ξ,AA

)
lM,l′M

= δll′
1

RA
Iν(ξRA)Kν(ξRA), (10.132)

where ν ≡ l + 1/2. In fact, eqn (10.132) is a well-known representation of the
free-space propagator in spherical coordinates. A similar formula results from
A → B. For the inverse operator, we get(

K̃−1
ξ,AA

)
lM,l′M

= δll′
RA

Iν(ξRA)Kν(ξRA)
. (10.133)
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In the matrix element (10.130), the k-integration can also be carried out. For
this purpose, we substitute eqn (9.11) into eqn (10.130) and obtain(

K̃ξ,AB

)
lM,l′M

=

√
π

2RARBL
il−l′ (−1)M

∑
l′′

i−l′′ H l′′

ll′M

×
∫ ∞

0

dk
√

k

ξ2 + k2
Jν(kRA)Jν′(kRB)Jν′′(kL). (10.134)

The integral on the right-hand side of eqn (10.134) is calculated in perfect analogy
to the integral (10.71), leading to(

K̃ξ,AB

)
lM,l′M

= (−1)l+M

√
π

2ξRARBL
Iν(ξRA)Iν′ (ξRB)

×
∑
l′′

(−1)l′′Kν′′(ξL)H l′′

ll′M . (10.135)

The vacuum energy for a scalar field obeying Dirichlet boundary conditions
on two spheres can now be represented in the form

E =
1

2π

∫ ∞

0

dξ Tr ln (1 −Mξ) . (10.136)

Here the matrix Mξ is a product of two matrices,

Mξ,lM,l′M ′ = δMM ′

∑
l̃

(Pξ,AB)lM,l̃M (Pξ,BA)l̃M,l′M , (10.137)

where

(Pξ,AB)lM,l̃M ≡
(
K̃−1

ξ,AA

)
lM,lM

(
K̃ξ,AB

)
lM,l̃M

(10.138)

= (−1)l+M

√
πRA

2ξLRB

Iν̃(ξRB)

Kν(ξRA)

∑
l′′

(−1)l′′Kν′′(ξL)H l′′

ll̃M
.

The matrix elements of Pξ,BA can be obtained from this equation by interchang-
ing the radii RA and RB and taking into account the fact that in eqn (10.126),
θL = π. In eqn (10.137), we have explicitly indicated that the matrix is diagonal
in the magnetic quantum numbers. The trace in eqn (10.136) is over all of the
orbital quantum numbers.

The vacuum energy (10.136) is for the case of two different spheres. Now we
consider two similar spheres with R = RA = RB. They are symmetric under the
mirror symmetry θ → π − θ, ϕ → ϕ. The corresponding operator J in the (ll′)
representation is given by

JlM,l′M = (−1)l+Mδll′ . (10.139)

Following eqn (10.58), this allows us to define

ND
ξ,lM,l′M =

∑
l̃

(
K̃−1

ξ,AA

)
lM,lM

(
K̃ξ,AB

)
lM,l̃M ′

Jl̃M,l′M (10.140)
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=

√
π

2ξL

Iν′(ξR)

Kν(ξR)

∑
l′′

Kν′′(ξL)H l′′

ll′M .

Here, we have taken into account the fact that H l′′

ll′M in eqn (10.129) is not equal
to zero only for even l + l′ + l′′. With the superscript D, we have indicated that
Dirichlet boundary conditions are imposed on the sphere. With this definition,
following eqn (10.57), the matrix elements of the operator M become a product
of two matrices:

Mξ,lM,l′M ′ = δMM ′

∑
l̃

Nξ,lM,l̃MNξ,l̃M,l′M . (10.141)

As a consequence, the vacuum energy of the two spheres becomes a sum of the
vacuum energies:

E(±) =
1

2π

∫ ∞

0

dξ Tr ln (1 ±Nξ) . (10.142)

Here, if the matrix element (10.140) is used, E(+) is the vacuum energy for a
sphere with Dirichlet boundary conditions in front of a plane with Neumann
boundary conditions. In this case, E(−) corresponds to Dirichlet boundary con-
ditions both on the sphere and on the plane. We note that the distance between
the center of the sphere and the plane is L/2.

Here we add some necessary remarks for generalizing these formulas to the
case of Neumann boundary conditions on the sphere. We have to go back to eqn
(10.10) to define the projection of the free-space Green’s function. The normal
derivative here is the derivative with respect to the radial variable, which must
be taken into account in eqns (10.118) and (10.119). After these changes, all
other steps can be done in the same way as for Dirichlet boundary conditions,
and we can write down the matrix elements of the operator Nξ to be inserted
into eqn (10.142) as

NN
ξ,lM,l′M =

√
π

2ξL

(
Iν′ (z)/

√
z
)′∣∣∣

z=ξR(
Kν(z)/

√
z
)′∣∣∣

z=ξR

∑
l′′

Kν′′(ξL)H l′′

ll′M . (10.143)

Here, the derivatives act on the arguments of the Bessel functions, and we have
taken into account the relation between the spherical Bessel functions and the
ordinary bessel functions. Finally, we mention that all remarks concerning the
sign of the energy made at the end of Section 10.3.1 apply to this case also.

10.4.2 A sphere and a plane at large separation

We consider a sphere in front of a plane with Dirichlet boundary conditions.
Following eqn (10.142), the vacuum energy is given by

ED≡ E(−) = − 1

π

∫ ∞

0

dξ
∞∑

s=0

1

s + 1

∞∑
M=0

′ ∞∑
l1=M

. . .
∞∑

ls+1=M

Nξ,l1M,l2M . . .Nξ,ls+1M,l1M .

(10.144)
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Here, the prime denotes an extra factor of 1/2 in the sum over M for M = 0.
The energy EN ≡ E(+) for Neumann boundary conditions on the plane can
be obtained by replacement of 1/(s + 1) with (−1)s+1/(s + 1). The boundary
conditions on the sphere are determined by the matrix elements in eqn (10.140)
or eqn (10.143), which we insert into eqn (10.144).

First we consider large separations, or, equivalently, a small sphere, i.e. R �
L/2 = b (see Fig. 10.1). In this case the Bessel functions depending on R
can be expanded directly under the integration sign and in the summations
in eqn (10.144). Similarly to Section 10.3.2, the leading contribution comes from
l = l′ = 0 and s = 0 (this is the first order of the expansion of the logarithm).
Higher orders can also be generated. For Dirichlet boundary conditions on both
the sphere and the plane, we get

EDD = − R

8πb2

[
1 +

5

8

R

b
+

421

144

R2

b2
+ O

(
R3

b3

)]
. (10.145)

In the same way for Neumann boundary conditions on the plane and Dirichlet
boundary conditions on the sphere, we get

END =
R

8πb2

[
1 +

3

8

R

b
+

403

144

R2

b2
+ O

(
R3

b3

)]
. (10.146)

A slightly different picture appears for Neumann boundary conditions on the
sphere. Because, for l = 0, the expansion of the Bessel function K1/2(z) ∼ √

z in
eqn (10.143) starts from the square root of the radius, the leading order of the
expansion inside the derivative in eqn (10.143) is a constant and drops out. As
a consequence, for Neumann conditions on the plane, we find

ENN = − 17R3

96πb4

[
1 +

379

170

R2

b2
+

801

4352

R3

b3
+ O

(
R4

b4

)]
(10.147)

and, for Dirichlet boundary conditions on the plane, the result is

EDN =
17R3

96πb4

[
1 +

379

170

R2

b2
+

479

4352

R3

b3
+ O

(
R4

b4

)]
. (10.148)

The results in eqns (10.145)–(10.148) were obtained by Emig (2008). The energy
for two spheres with Dirichlet boundary conditions on both is EDD + END, and
for Neumann boundary conditions on both it is EDN + ENN. It can be seen that
for two spheres with Dirichlet boundary conditions, the Casimir energy decreases
faster than for a sphere with Dirichlet boundary conditions in front of a plane. A
similar statement is valid for two spheres with Neumann boundary conditions.

10.4.3 Corrections beyond the proximity force approximation at small
separations

The limit of small separations a � R between a sphere and a plane is the most
interesting case from an experimental point of view (see e.g. Section 18.1.2). The
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small parameter ε in this problem is defined in eqn (10.97). The spherical case
can be considered in a similar way to the cylindrical one (see Section 10.3.3),
with the exception that an asymptotic expansion of the 3j-symbols is needed.

We start from the representation (10.144) for the vacuum energy. We intro-
duce a new integration variable ξ̃ = ξR and new summation indices according
to l1 = l, li+1 = l + l̃i (i ≥ 1). Then the vacuum energy is given by

ED = − 1

πR

∫ ∞

0

dξ̃

∞∑
s=0

1

s + 1

∞∑
M=0

′ ∞∑
l=M

∞∑
l̃1=−l

. . .

∞∑
l̃s=−l

Zξ̃;M,l,l̃1,...,l̃s
, (10.149)

where

Zξ̃;M,l,l̃1,···,l̃s = Nξ̃,lM,l+l̃1,MNξ̃,l+l̃1,M,l+l̃2,M . . . Nξ̃,l+l̃s,M,lM . (10.150)

For Dirichlet boundary conditions on the sphere, the matrix elements are given
by

ND
ξ̃,lM,l′M

=

√
π

2
√

ξ̃(1 + ε)

Iν′(ξ)

Kν(ξ)

∑
l′′

Kν′′

(
2ξ(1 + ε)

)
H l′′

ll′M . (10.151)

For Neumann boundary conditions, the matrix elements are

NN
ξ̃,lM,l′M

=

√
π

2
√

ξ̃(1 + ε)

(
Iν′(z)/

√
z
)′∣∣∣

z=ξ̃(
Kν(z)/

√
z
)′∣∣∣

z=ξ̃

∑
l′′

Kν′′

(
2ξ(1 + ε)

)
H l′′

ll′M . (10.152)

Now, similarly to Section 10.3.3, we take into account the fact that at small
separations the dominating contributions come from the large frequencies ξ̃ and
the large summation indices involved in eqn (10.149). As we are interested in
the asymptotic expansion for small ε, we replace all sums with integrals. The
error introduced is assumed to be exponentially small. After that, we make the
following substitutions in eqn (10.149),

ξ̃ =
t

ε

√
1 − τ2, l =

tτ

ε
, M =

√
t

ε
τµ, l̃i = ni

√
4t

ε
, (10.153)

as the main contributions come from ξ̃ ∼ 1/ε, l ∼ 1/ε, l̃i ∼ 1/
√

ε (i = 1, . . . , s),
and M ∼ 1/

√
ε. The variable τ is the cosine of the angle in the (ξ, l) plane.

After this, we expand the matrix elements for ε → 0 and calculate the remaining
integrals.

With the new variables, the expression for the energy reads

ED = − 1

4πRε2

∞∑
s=0

1

s + 1

∫ ∞

0

dt t

∫ 1

0

dτ τ√
1 − τ2

∫ ∞

−∞

dµ√
π

(10.154)
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×
∫ ∞

−∞

dn1√
π

. . .

∫ ∞

−∞

dns√
π

(
4πt

ε

)(s+1)/2

Zas(t, τ, µ, n1, . . . , ns),

where Zas is given by eqn (10.150), under the condition that in eqns (10.151)
and (10.152) the Bessel functions and the 3j-symbols are replaced with their
asymptotic expansions. The key difference in comparison with the cylindrical
case is the asymptotic expansion of the 3j-symbols for large l and M . It is
different from the known semiclassical expansions and can be obtained using the
saddle point method in an integral representation. The result is (Bordag and
Nikolaev 2008)

ND,as

ξ̃,l+li,M,l+li+1,M
=

√
ε

4πt
e−η̃as

e−µ2

(10.155)

×
[
1 + a(1/2)

ni,ni+1
(t, τ, µ)

√
ε + a(1)

ni,ni+1
(t, τ, µ)ε + . . .

]
,

where η̃as is defined in eqn (10.108). The functions a
(1/2)
nn′ and a

(1)
nn′ are polyno-

mials in n and n′.
Substituting eqn (10.155) into eqn (10.150), we obtain Zas in the form

Zas(t, τ, µ, n1, . . . , ns) = e−η1

[
1 +

√
ε

s∑
i=0

a(1/2)
ni,ni+1

(t, τ, µ) (10.156)

+ε


 ∑

0≤i<j≤s

a(1/2)
ni,ni+1

(t, τ, µ)a(1/2)(t,τ,µ)
nj ,nj+1

+

s∑
i=0

a(1)
ni,ni+1

(t, τ, µ)


+ . . .


 ,

where η1 is defined in eqn (10.111).
With this expression, the integrations over the ni in eqn (10.154) are Gaussian

and can be carried out [see e.g. eqn (10.112)]. The remaining integrations can
also be carried out. Finally, we arrive at the result (Bordag and Nikolaev 2008)

ED(a) = − π3

1440

R

a2

[
1 +

1

3

a

R
+ O

(
a2

R2

)]
(10.157)

for the Casimir energy with Dirichlet boundary conditions on both the sphere
and the plane. In eqn (10.157), the leading order is the known result from the
PFA. The contribution of order

√
ε has dropped out in the integrations over ni,

because of symmetry. Thus the first correction beyond the PFA is of order ε.
Note that the coefficient 1/3 in eqn (10.157) has been confirmed numerically

by world line methods (Gies and Klingmüller 2006b) and by extrapolation from
direct numerical calculation at medium separations (Emig 2008).

The corresponding calculations for Neumann boundary conditions are anal-
ogous. One has to take into account the derivatives in eqn (10.152). The result
is (Bordag and Nikolaev 2008, 2009)
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EN(a) = − π3

1440

R

a2

[
1 +

(
1

3
− 10

π2

)
a

R
+ O

(
a2

R2

)]
, (10.158)

where the structure is very similar to that in the cylindrical case [eqn (10.115)].

10.5 Corrugated planes

An experimentally important configuration is that of two planes covered by
corrugations. These corrugations may be of various shapes and sizes, ranging
from corrugations of small amplitude (compared with the separation between
the planes) to ones of large amplitude. The structure of the corrugations can
also vary, from stochastic to periodic, with various periods. From a theoretical
point of view, the general formulas of Section 10.1 apply to all cases and provide
a representation of the Casimir energy which is free of divergences and is acces-
sible to direct numerical computation. However, in practice this has turned out
to be a complicated task and, at present, corrugations of various shapes remain
an active area of research.

For many applications it is realistic to consider the corrugations as small
perturbations of a flat surface. In this section, we briefly present the theoretical
results for corrugated planes in the lowest perturbation order. For corrugations
of arbitrary shape, only a scalar field with Dirichlet or Neumann boundary con-
ditions can be considered. This is because, in general, the polarizations of an elec-

tromagnetic field do not separate. We consider two parallel planes z
(0)
n = ±a/2

(n = 1, 2) perpendicular to the z-axis, covered with small corrugations. The
functions describing the corrugations, hn(r⊥), where r⊥ is a vector in the plane
perpendicular to the z-axis, satisfy the conditions

∫
dr⊥ hn(r⊥) = 0, max |hn(r⊥)| � a. (10.159)

The surfaces of the corrugated planes are described by the equations

zn(r⊥) = z(0)
n + hn(r⊥). (10.160)

If we restrict ourselves to second-order perturbation theory in the corrugation
functions, the vacuum energy per unit area takes the following form:

E(a) = E(0)(a) +
1

2

∑
n,n′

∫
dr⊥

∫
dr′

⊥ hn(r⊥)hn′(r′
⊥)Rnn′(r⊥ − r′

⊥). (10.161)

Here, E(0)(a) is the Casimir energy per unit area between flat planes with the
corresponding boundary conditions, and the kernel Rnn′ does not depend on
the corrugations. It is determined by the type of boundary conditions and is
symmetric in n and n′ (Li and Kardar 1992).
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In the case of periodic uniaxial corrugations, the polarizations of an electro-
magnetic field do separate. For corrugations of sinusoidal form on only one plane,
one has the functions

h1(r⊥) = A sin
2πx

Λ
, h2(r⊥) = 0. (10.162)

Emig et al. (2003) obtained an explicit expression for the electromagnetic Casimir
energy per unit area (10.161) in the ideal-metal case:

Eem(a) = − π2

720a3
− A2

a5

[
GTM

( a

Λ

)
+ GTE

( a

Λ

)]
. (10.163)

The explicit form of the functions GTM(ξ) and GTE(ξ) is

GTM(ξ) =
π3ξ

480
− π2ξ4

30
ln(1 − u) +

π

1920ξ
Li2(1 − u) +

πξ3

24
Li2(u)

+
ξ2

24
Li3(u) +

ξ

32π
Li4(u) +

1

64π2
Li5(u) +

1

256π3ξ

[
Li6(u) − π6

945

]
,

GTE(ξ) =
π3ξ

1440
− π2ξ4

30
ln(1 − u) +

π

1920ξ
Li2(1 − u) − πξ

48
(1 + 2ξ2)Li2(u)

+

(
ξ2

48
− 1

64

)
Li3(u) +

5ξ

64π
Li4(u) +

7

128π2
Li5(u)

+
1

256π3ξ

[
7

2
Li6(u) − π2Li4(u) +

π6

135

]
. (10.164)

Here, Lin(u) is the polylogarithm function and u ≡ exp(−4πξ).
The behavior of these functions for small ξ, i.e. for a � Λ, is

GTM(ξ) =
π2

480
+ O(ξ2), GTE(ξ) =

π2

480
+ O(ξ2). (10.165)

For large ξ, i.e. for a � Λ, one obtains

GTM(ξ) =
π3ξ

480

(
1 +

5

126ξ2

)
+ O

(
e−4πξ

)
,

GTE(ξ) =
π3ξ

1440

(
1 +

1

6ξ2

)
+ O

(
e−4πξ

)
. (10.166)

As can be seen from these formulas, for corrugations with a large wavelength Λ,
i.e. for ξ → 0, the energy is

Eem(a) = − π2

720a3

(
1 + 3

A2

a2

)
, (10.167)

where both polarizations give the same contribution. For short-wavelength cor-
rugations, i.e. for ξ → ∞, there are only two contributions from each mode all
the way up to exponentially small terms, which together give the expression
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Eem(a) = − π2

720a3

(
1 + 2π

A2

aΛ

)
. (10.168)

Now we consider the case of uniaxial sinusoidal corrugations of equal ampli-
tudes and periods on both planes,

h1(r⊥) = A sin
2πx

Λ
, h2(r⊥) = A sin

2π(x + x0)

Λ
, (10.169)

where x0 is the relative phase shift between the corrugations. In this case, instead
of eqn (10.163), the Casimir energy per unit area is given by (Emig et al. 2003)

Eem(a) = − π2

720a3
− 2A2

a5

[
GTM

( a

Λ

)
+ GTE

( a

Λ

)]
+

A2

a5
cos

2πx0

Λ

[
JTM

( a

Λ

)
+ JTE

( a

Λ

)]
. (10.170)

The explicit expressions for the functions JTM(ξ) and JTE(ξ) are

JTM(ξ) =
π2

120
(16ξ4 − 1)arctanh(

√
u) +

√
u

[
π

12

(
ξ3 − 1

80ξ

)
Φ

(
u, 2,

1

2

)

+
ξ2

12
Φ

(
u, 3,

1

2

)
+

ξ

16π
Φ

(
u, 4,

1

2

)
+

1

32π2
Φ

(
u, 5,

1

2

)

+
1

128π3ξ
Φ

(
u, 6,

1

2

)]
,

JTE(ξ) =
π2

120
(16ξ4 − 1)arctanh(

√
u) +

√
u

[
− π

12

(
ξ3 +

ξ

2
+

1

80ξ

)
Φ

(
u, 2,

1

2

)

+
1

24

(
ξ2 − 3

4

)
Φ

(
u, 3,

1

2

)
+

5

32π

(
ξ − 1

20ξ

)
Φ

(
u, 4,

1

2

)

+
7

64π2
Φ

(
u, 5,

1

2

)
+

7

256π3ξ
Φ

(
u, 6,

1

2

)]
. (10.171)

Here, the Lerch transcendental function is defined as

Φ(z, s, p) =

∞∑
n=0

zn

(n + p)s
. (10.172)

The behavior of the functions (10.171) for small argument ξ, i.e. for long-wavelength
corrugations with Λ � a, is

JTM(ξ) + JTE(ξ) =
π2

120
+ O(ξ2). (10.173)

For large ξ, i.e. in the limit of short wavelengths of the corrugations, Λ � a,
the contribution of the functions (10.171) in the energy (10.170) is exponentially
small:
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JTM(ξ) + JTE(ξ) =
4π2

15
e−2πξ

[
ξ4 + O(ξ2)

]
. (10.174)

Equations (10.163) and (10.170) are used in Section 17.5.3 for the calculation
of the normal and lateral Casimir force and for estimation of the accuracy of
various approximate methods.

Note that in the case of ideal-metal plates with rectangular periodic corruga-
tions, exact expressions for the Casimir energy have been obtained (Emig 2003,
Büscher and Emig, 2004, 2005) which do not use perturbative expansions in
powers of the corrugation amplitudes. We discuss some of the results obtained
in Section 21.5 in connection with an experiment on the measurement of the
Casimir force between a sphere and a plate covered with rectangular trenches.
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SPACES WITH NON-EUCLIDEAN TOPOLOGY

In Section 2.3, we considered the simplest example of a case where the Casimir
effect arises owing to identification conditions, signifying the topology of a circle
S1 in this case. This is in fact the single topologically nontrivial one-dimensional
spatial manifold in two-dimensional space–time. Here, we briefly review some
more complicated spaces with nontrivial topology (both flat and curved) with
respect to the Casimir effect. As an important application of the numerous results
obtained in this field, we consider in more detail the vacuum energy–momentum
tensor due to the Casimir effect in the closed Friedmann model. A related sub-
ject is the role of the Casimir effect in multidimensional Kaluza–Klein theories,
where it provides one of the mechanisms for compactification of extra spatial di-
mensions. This is also reflected in the present chapter. We conclude with a brief
discussion of the Casimir effect for topological defects, such as cosmic strings and
domain walls. Some grand unification theories predict the formation of such de-
fects in the early Universe. Although cosmic strings are not considered anymore
as a primary source of primordial density perturbations, there are astrophysical
effects where they play a large role.

11.1 Topologically nontrivial flat spaces

Here, we consider examples of the Casimir effect of topological origin in three-
and four-dimensional space–times.

11.1.1 Three-dimensional space–time

Following S1 in complexity are the topologically nontrivial flat spaces in two-
dimensional space (three-dimensional space–time). In fact, we have already con-
sidered one such example in Section 8.4. This is the case of a massless scalar
field in a rectangle with identified opposite sides (with the topology of a 2-torus
S1×S1). In fact, a 2-torus can be described as a Euclidean plane R2 with identi-
fied points having coordinates (x, y) and (x+na, y + lb), where n and l take any
integer values from −∞ to +∞. The manifold obtained is compact and a scalar
field defined on it satisfies periodic identification conditions in both coordinates:

ϕ(t, 0, y) = ϕ(t, a, y), ϕ(t, x, 0) = ϕ(t, x, b),

(11.1)

∂ϕ(t, x, y)

∂x

∣∣∣∣
x=0

=
∂ϕ(t, x, y)

∂x

∣∣∣∣
x=a

,
∂ϕ(t, x, y)

∂y

∣∣∣∣
y=0

=
∂ϕ(t, x, y)

∂y

∣∣∣∣
y=b

.

An explicit expression for the vacuum energy density in this case is obtained
from eqns (8.71) and (8.26),
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ε(a, b) =
E(a, b)

ab
= − π

6ab2
− ζR(3)

2πa3
+

8π

a2b
G

(
b

a

)
, (11.2)

where the function G(z) is defined in eqn (8.11).
Another topologically nontrivial two-dimensional flat space has the topol-

ogy of a cylinder S1 × R1; i.e. points with the coordinates (x + na, y), where
n = 0, ±1, ±2, . . . , are identified. A scalar field ϕ(t, x, y) defined on such a
noncompact manifold satisfies the boundary conditions

ϕ(t, 0, y) = ϕ(t, a, y),
∂ϕ(t, x, y)

∂x

∣∣∣∣
x=0

=
∂ϕ(t, x, y)

∂x

∣∣∣∣
x=a

. (11.3)

The Casimir energy density for a massless scalar field defined on a plane with
the topology of a cylinder can be obtained from eqn (11.2) in the limiting case
b → ∞:

ε(a) = lim
b→∞

ε(a, b) = −ζR(3)

2πa3
. (11.4)

Note that the flat manifolds with the topologies of a 2-torus and a cylinder are
homogeneous. As a result, the energy densities ε(a, b) and ε(a) defined in eqns
(11.2) and (11.4) do not depend on the coordinates.

It has been known that there are only four complete two-dimensional flat
spaces with topologies different from the topology of the Euclidean plane R2

(Efimov 1980). Two of them, S1 × S1 and S1 × R1, have already been consid-
ered. The third is a plane with the topology of the Klein surface. This manifold
is inhomogeneous. It is obtained by the identification of all points with the co-
ordinates [x + na, (−1)ny + lb], where n, l = 0, ±1, ±2, . . . . This results in the
following periodic identification conditions imposed on the scalar field:

ϕ(t, x, 0) = ϕ(t, x, b), ϕ(t, 0, y) = ϕ(t, a, b − y),

(11.5)

∂ϕ(t, x, y)

∂y

∣∣∣∣
y=0

=
∂ϕ(t, x, y)

∂y

∣∣∣∣
y=b

,
∂ϕ(t, x, y)

∂x

∣∣∣∣
x=0

=
∂ϕ(t, x, b − y)

∂x

∣∣∣∣
x=a

.

Here, finite expressions for the vacuum energy density can be found not by using
the canonical energy–momentum tensor of the scalar field (3.8) but by using
the metrical energy–momentum tensor (3.9) with ξ = 1/8 and D = 3. The final
result is obtained by the application of the Abel–Plana formulas (2.26) and (2.41)
(Mamayev and Mostepanenko 1985):

ε̃(a, b; y) = − π

12ab2
− π

8a2b
− ζR(3)

16πa3
+

2π

a2b
G

(
b

2a

)
+

4π

b3
H(a, b; y), (11.6)

where

H(a, b; y) = −
∞∑

k=1

k2 cos
4πky

b

∫ ∞

1

ds

sinh(2πksa/b)

2s2 − 1√
s2 − 1

. (11.7)
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As can be seen from eqn (11.7),∫ b

0

H(a, b; y) dy = 0. (11.8)

The last complete two-dimensional manifold with a non-Euclidean topology is
the Möbius strip of infinite width. It is obtained from a plane by the identification
of all points with coordinates [x + na, (−1)ny]. A scalar field defined on this
noncompact manifold must satisfy the identification conditions

ϕ(t, 0, y) = ϕ(t, a,−y),
∂ϕ(t, x, y)

∂x

∣∣∣∣
x=0

=
∂ϕ(t, x,−y)

∂x

∣∣∣∣
x=a

. (11.9)

Using the metrical energy–momentum tensor (3.9) with ξ = 1/8, the following
Casimir energy density is obtained:

ε̃(a; y) = − ζR(3)

16πa3
− 1

16π2a3

∫ ∞

0

dq q2 cos
(qy

a

)∫ ∞

1

ds

sinh(qs/2)

2s2 − 1√
s2 − 1

.

(11.10)
It is easily seen that eqn (11.10) is the limiting case of eqns (11.6) and (11.7),
found for the Klein surface, when b → ∞.

The above four configurations with different topologies are complete flat man-
ifolds. As an example of an incomplete flat manifold, we consider a Möbius strip
of finite width b. This is a one-sided nonorientable surface and can be obtained by
giving a paper strip a half-twist, and then gluing the ends of the strip together to
form a single strip. For this topology the identification conditions (11.9), imposed
on a scalar field, must be supplemented with

ϕ(t, x, 0) = ϕ(t, x, b) = 0. (11.11)

Using the same technique based on the Abel–Plana formulas, and omitting the
exponentially small terms for b ≥ a and the oscillating terms, we obtain (Ma-
mayev and Trunov 1979c)

ε̃(a, b) = − ζR(3)

16πa3
+

π

24a2b
− π

24ab2
. (11.12)

11.1.2 Four-dimensional space–time

Now we turn to the Casimir energy density in three-dimensional flat spaces with
non-Euclidean topologies (i.e. in four-dimensional space–time). There are many
complete flat manifolds in this case, and we shall restrict ourselves to only one
example, briefly mentioned in Section 8.4. This is the massless scalar field in a
three-dimensional box with identified opposite faces (with the topology of a 3-
torus S1×S1×S1). From eqns (8.74), (8.42), and (8.26), we obtain the following
for the Casimir energy density (Mamayev and Trunov 1979a):

ε(a, b, c) = − π2

90a4
− π2

6abc2
− ζR(3)

2πab3
+

8π

ab2c
G
(c

b

)
− 16

a2bc
R
( b

a
,
c

a

)
, (11.13)

where G(z) and R(z1, z2) are defined in eqns (8.11) and (8.43), respectively.
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In the limiting case c → ∞, the 3-torus S1 × S1 × S1 transforms into S1 ×
S1 × R1 and the energy density takes the form

ε(a, b,∞) = − π2

90a4
− ζR(3)

2πab3
. (11.14)

From this, for a = b, one obtains (Dowker and Critchley 1976, Goncharov 1982)

ε(a, a,∞) = −0.301

a4
. (11.15)

If, in addition to c → ∞, the limiting case b → ∞ is considered, our manifold
transforms into S1×R2 and, from eqn (11.14), the corresponding Casimir energy
density is

ε(a,∞,∞) = − π2

90a4
. (11.16)

Flat spaces with non-Euclidean topology give rise to Casimir effects for fields
of various spin. As an example, we consider a massless spinor field in a space
with a topology of a 3-torus S1 × S1 × S1. For a ≤ b ≤ c, one obtains a positive
energy density (Mamayev and Trunov 1980)

ε(a, b, c) ≈ 2π2

45a4
+

2π

3abc2
+

2ζR(3)

πab3
, (11.17)

where the exponentially small terms have been omitted.
Topologically nontrivial spaces with a nonzero vacuum energy density are of

interest both for cosmology and for multidimensional physics with spontaneously
compactified extra dimensions. In both cases, considered below, not only the
non-Euclidean topology but also the curvature of the space plays an important
role. For topologically nontrivial flat spaces, many results for the Casimir energy
density have been obtained for both scalar and spinor twisted fields (DeWitt et
al. 1979; Isham 1978a, 1978b). Twisted fields have already been mentioned in
Section 2.3. For a space with the topology S1 ×R2, Casimir energy densities for
twisted spinor fields were found by Ford (1980). The intermediate case between
the usual type of fields and that of twisted fields is the case of automorphic
fields. The Casimir energy densities for such fields in topologically nontrivial flat
spaces were studied by Banach and Dowker (1979a, 1979b). All these questions
are, however, outside the scope of this book; they have been considered in more
detail by Mostepanenko and Trunov (1997).

11.2 Topologically nontrivial curved spaces

Let us consider a curved Riemann space–time of arbitrary dimensionality, keep-
ing in mind the applications to cosmology and extra-dimensional physics. In
general, the metric takes the form

ds2 = gµν(x) dxµ dxν , (11.18)

where gµν is the metric tensor. A generalization of the scalar field equation
to curved space–time was presented in eqn (3.10), where all of the necessary
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notation was also introduced. The respective energy–momentum tensor (below
we consider cases where only the diagonal components are nonzero) is obtained
by the variation of the action with respect to gµν (Grib et al. 1994, Birrell and
Davies 1982):

T (0)
µµ = (1 − 2ξ)∂µϕ∂µϕ +

(
2ξ − 1

2

)
gµµ∂νϕ∂νϕ (11.19)

− ξ(ϕ∇µ∇µϕ + ∇µ∇µϕ · ϕ) +

[(1

2
− 2ξ

)
m2gµµ − ξGµµ − 2ξ2Rgµµ

]
ϕ2.

Here

Gµν = Rµν − 1

2
Rgµν (11.20)

is the Einstein tensor, and Rµν is the Ricci tensor. The generalization of the
Dirac equation to the case of curved space–time requires the introduction of local
orthonormal tetrad vectors. This is considered in the books mentioned above.

11.2.1 Three-dimensional space–time

An example of a manifold with a non-Euclidean topology and curvature is the
surface of a 2-sphere S2 with a constant radius a0. The metric of the correspond-
ing space–time is given by

ds2 = dt2 − a2
0(dθ2 + sin2θ dϕ2). (11.21)

This is the three-dimensional analogue of Einstein space–time. Equation (3.10)
with ξ = 1/8 and R = 2/a2

0 takes the form

∂2ϕ(x)

∂t2
− 1

a2
0

∇
2
(2)ϕ(x)+

(
m2 +

1

4a2
0

)
ϕ(x) = 0. (11.22)

The complete orthonormal set of positive- and negative-frequency solutions of
eqn (11.22) can be expressed in terms of the spherical harmonics:

ϕ
(+)
lM (t, θ, ϕ) =

1

a0

√
2ωl

e−iωltYlM (θ, ϕ), (11.23)

ϕ
(−)
lM = ϕ

(+)
lM

∗
, l = 0, 1, 2, . . . , M = 0, ±1, . . . ± l,

ω2
l = m2 +

1

a2
0

(
l +

1

2

)2

.

The spherical harmonics YlM (θ, ϕ) are defined in eqn (9.5). Bearing in mind the
applications to gravitational theory, we consider below all of the components of
the vacuum energy–momentum tensor, and not just the energy density.

Substituting the field operator (3.52) expressed in terms of the set of solu-
tions (11.23) into the energy–momentum tensor (11.19) and calculating the mean
values in the vacuum state, we arrive at

〈0|T0
0|0〉 =

1

4πa2
0

∞∑
l=0

(
l +

1

2

)
ωl, (11.24)
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−〈0|Ti
k|0〉 =

1

8πa4
0

∞∑
l=0

(
l +

1

2

)3 1

ωl
δi

k.

To obtain these expressions, summation theorems for the spherical functions
have been used, which follow from the equality (Varshalovich et al. 1988)

l∑
M=−l

YlM (θ1, ϕ1)Y
∗
lM (θ2, ϕ2) =

2l + 1

4π
Pl(cosω), (11.25)

cosω = cos θ1 cos θ2 + sin θ1 sin θ2 cos(ϕ1 − ϕ2),

where the Pl(z) are the Legendre polynomials.
The expressions (11.24) are, as usual, divergent. In the case of flat space–

time, we made them finite by subtracting the contributions of free Minkowski
space with Euclidean topology. Here we proceed in the same spirit and subtract
from the expressions (11.24) the corresponding expressions in the Minkowski
space–time tangential at any fixed point to the Riemann space–time under con-
sideration. This can be most easily done by introducing a cutoff function to make
all quantities finite, and then using the Abel–Plana formula (2.41) adapted for
summation over half-integers. The result is independent of the form of the cutoff
function, as explained in Section 2.2. It is given by

ε =
m3

2π

∫ 1

0

dξ ξ
√

1 − ξ2

exp(2πma0ξ) + 1
, (11.26)

P = −m3

4π

∫ 1

0

dξ ξ3√
1 − ξ2

[
exp(2πma0ξ) + 1

] .
Recall that the quantity −Ti

i (with no summation over the three-space index
i) has the physical meaning of a pressure. The Casimir energy density in eqn
(11.26) is positive and nonzero only for a massive field. Together, the energy
density and pressure satisfy the thermodynamic relation

P = −∂E

∂S
, (11.27)

where E = εS and S = 4πa2
0 is the area of the sphere.

Under the condition a0 � m−1, eqn (11.26) leads to

ε ≈ m

96πa2
0

[
1 − 7

40(ma0)2

]
, P ≈ − 7

3840πma4
0

. (11.28)

Under the opposite condition a0 � m−1, one obtains

ε ≈ −P ≈ m3

12π
. (11.29)



268 Spaces with non-Euclidean topology

11.2.2 Four-dimensional space–time

The most interesting example of a topologically nontrivial three-dimensional
space with nonzero curvature is a three-dimensional sphere S3 with a constant
radius a0. In cosmology, the related static space–time R1 × S3 is known as the
Einstein model. The metric of this space–time is

ds2 = dt2 − a2
0

[
dr2 + sin2r (dθ2 + sin2θ dϕ2)

]
(11.30)

= a2
0

[
dη2 − dr2 − sin2r (dθ2 + sin2θ dϕ2)

]
,

where r, θ, ϕ are dimensionless coordinates on a three-space of constant curvature
+1 and η = t/a0 is what is usually referred to as the conformal time. The field
equation (3.10), with ξ = 1/6 and R = 6/a2

0, is transformed to the form

∂2ϕ(x)

∂t2
− 1

a2
0

∇
2
(3)ϕ(x)+

(
m2 +

1

a2
0

)
ϕ(x) = 0. (11.31)

The complete orthonormal set of solutions of this equation can be represented
as

ϕ
(+)
klM (t, r, θ, ϕ) =

1√
2ωla3

0

e−iωltΦklM (r, θ, ϕ), (11.32)

ϕ
(−)
klM = ϕ

(+)
klM

∗
, k = 1, 2, 3, . . . , l = 0, 1, 2, . . . , k − 1,

M = 0, ±1, . . . ± l, ω2
k = m2 +

k2

a2
0

.

The four-dimensional spherical functions are given by

ΦklM (r, θ, ϕ) =
1√
sin r

√
k(k + l)!

(k − l + 1)!
P
−l−1/2
k−1/2 (cos r)YlM (θ, ϕ), (11.33)

where the Pν
µ(z) are the associated Legendre functions defined on the cut.

The vacuum energy–momentum tensor of a scalar field is calculated in a man-
ner analogous to eqn (11.24), using summation formulas for the four-dimensional
spherical functions following from the equality (Grib et al. 1994)

k−1∑
l=0

l∑
M=−l

ΦklM (r1, θ1, ϕ1)Φ
∗
klM (r2, θ2, ϕ2) =

k

π2

sin kρ

sin ρ
, (11.34)

cos ρ = cos r1 cos r2 + sin r1 sin r2

[
cos θ1 cos θ2 + sin θ1 sin θ2 cos(ϕ1 − ϕ2)

]
,

where ρ is the geodesic distance between the points (r1, θ1, ϕ1) and (r2, θ2, ϕ2).
The result is given by

〈0|T0
0|0〉 =

1

4π2a3
0

∞∑
k=1

k2ωk, (11.35)
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−〈0|Ti
k|0〉 =

1

12π2a5
0

∞∑
k=1

k4

ωk
δi

k.

Subtracting from eqn (11.35) the respective contributions in the tangential Min-
kowski space–time and using the Abel–Plana formula (2.26), we obtain the finite
Casimir energy density and the pressure of a scalar field in the Einstein model:

ε =
1

2π2a4
0

∫ ∞

ma0

ξ2 dξ

exp(2πξ) − 1

√
ξ2 − m2a2

0, (11.36)

P =
1

6π2a4
0

∫ ∞

ma0

ξ4 dξ[
exp(2πξ) − 1

]√
ξ2 − m2a2

0

.

The thermodynamic relation between the Casimir energy and pressure now takes
the form

P = −∂E

∂V
, (11.37)

where E = εV , and V = 2π2a3
0 is the volume of the spherical space S3. Here,

ε > 0 as in the case of the two-dimensional sphere S2.
In the massless case eqn (11.36) leads to (Ford 1975, 1976)

ε =
1

2π2a4
0

∫ ∞

0

ξ3 dξ

exp(2πξ) − 1
=

1

480π2a4
0

, (11.38)

P =
ε

3
=

1

1440π2a4
0

.

Here, the spectral density of the vacuum energy density has the Planck form,
with the temperature defined from the equality kBT = 1/(2πa0).

For a massive field with ma0 � 1, we obtain the following from eqn (11.36)
(Mamayev et al. 1976):

ε ≈ (ma0)
5/2

8π3a4
0

e−2πma0 , P ≈ (ma0)
7/2

12π2a4
0

e−2πma0 . (11.39)

It is notable that the Casimir energy density and pressure of a massive field on
S3 are exponentially small. This is not typical for spaces with nonzero curvature
[compare with eqn (11.28) for S2].

Similar results can be obtained for the Casimir effect for spinor and electro-
magnetic fields on S3. For example, for a massive spinor field, the Casimir energy
density and pressure are given by (Grib et al. 1980, 1994)

ε =
1

2π2a4
0

∫ ∞

ma0

(4ξ2 + 1) dξ

exp(2πξ) + 1

√
ξ2 − m2a2

0, (11.40)
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P =
1

6π2a4
0

∫ ∞

ma0

ξ2(4ξ2 + 1) dξ[
exp(2πξ) + 1

]√
ξ2 − m2a2

0

.

In the massless case eqn (11.40) leads to

ε =
1

2π2a4
0

∫ ∞

0

ξ(4ξ2 + 1)

exp(2πξ) + 1
dξ =

17

960π2a4
0

, (11.41)

P =
ε

3
=

17

2880π2a4
0

.

Finally, for the electromagnetic Casimir effect on S3,

ε = 3P =
11

240π2a4
0

. (11.42)

It is significant that for all of the examples considered in Sections 11.1 and
11.2, the Casimir energy densities and pressures do not depend on the energies
attributed to material walls. Here, the Casimir effect arises owing to the nontriv-
ial topology, and not to material boundaries, which are not present. This allows
one to uniquely define not only the separation-dependent global energies but also
the energy densities.

11.3 Nontrivial topologies in cosmology

The most important physical system where spaces with nontrivial topology play
a role is our Universe. The cosmological models that describe the structure and
evolution of the Universe are the solutions of Einstein’s equations

Gµν = −8πGTµν , (11.43)

where Einstein’s tensor Gµν is defined in eqn (11.20), G is the gravitational con-
stant, and Tµν is the energy–momentum tensor of matter. For example, in the
case of a spatially homogeneous and isotropic closed space–time, the metric is
given by eqn (11.30) with the replacement of a0 → a(t), where a(t) is the scale
factor. This gives rise to the closed Friedmann model, which expands from a sin-
gular state to some maximum radius and then contracts to a singular state when
the energy–momentum tensor of classical matter (dust and radiation) is substi-
tuted on the right-hand side of eqn (11.43). Like the Einstein model considered
in the previous section, the closed Friedmann model has the topology R1 × S3,
but it is not static. From this it follows that eqns (11.36)–(11.42) for the Casimir
energy density and pressure of various fields in the Einstein model preserve their
validity in the closed Friedmann model provided that a0 is replaced by a(t).

In a nonstatic homogeneous isotropic space, however, the vacuum energy-mo-
mentum tensor contains contributions not only from the terms of Casimir origin
discussed above, but also terms describing vacuum polarization and production
of particles from the vacuum that occur for nonstationary external fields. Both
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of these latter effects are determined by the nonstationarity of the metric and
depend on the derivatives of the scale factor with respect to time. They are not of
topological origin and are also present in open and quasi-Euclidean models, which
retain the same topology as flat Minkowski space–time with no identification
conditions. In the closed model, the scalar curvature is given by

R =
6

a3
(
..
a +a), (11.44)

where the dot stands for the derivative with respect to the conformal time η,
defined by dη = dt/a(η) [compare with eqn (11.30)]. The scalar-field equation
(3.10) with ξ = 1/6 takes the form

∂2ϕ

∂η2
+ 2

ȧ

a

∂ϕ

∂η
− ∇

2
(3)ϕ +

(
m2a2 +

..
a

a
+ 1

)
ϕ = 0, (11.45)

which should be compared with (11.31). It can be transformed to an oscilla-
tor equation with a time-dependent frequency [equation (11.31) is an oscillator
equation with a constant frequency],

d2g(η)

dη2
+ [k2 + m2a2(η)]g(η) = 0, (11.46)

by the substitution

ϕ(x) =
1

a(η)
gk(η)ΦklM (r, θ, ϕ) (11.47)

and using the eigenvalue equation

−∇
2
(3)ΦklM (r, θ, ϕ) = (k2 − 1)ΦklM (r, θ, ϕ). (11.48)

Regarding the effect of particle production from the vacuum, only massive
particles are created in homogeneous, isotropic cosmological models. This is be-
cause these models are conformally flat, and the field equations are conformally
invariant in the limit of zero mass [with the exception of the scalar field equation
(3.10) with an arbitrary value of the coupling coefficient ξ]. From eqn (11.46),
it is seen that for m = 0 the oscillator frequency does not depend on time and,
thus, particle production does not occur. Details of particle production from the
vacuum in a gravitational field can be found in the books by Birrell and Davies
(1982) and by Grib et al. (1994).

The contribution to the energy–momentum tensor of a scalar field due to the
vacuum polarization of non-Casimir origin is given by (Mamayev 1980, Grib et
al. 1994)

εpol =
1

960π2a4
(2

..
c c − ċ2 − 2c4), (11.49)

P pol =
1

2880π2a4
(−2

...
c +2

..
c c − ċ2 + 8ċc − 2c4),

where c ≡ ȧ/a [note that the above references deal with a complex scalar field
and, thus, the energy–momentum tensor there is twice that in eqn (11.49)]. If the
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scale factor of the metric a(η) is determined by classical radiation, the Casimir
energy density (11.38) [with the replacement of a0 by a(η)] is much smaller
than the polarization energy (11.49) due to the nonstationarity of the metric.
Thus, at the Compton time t = m−1 the Casimir energy density in the closed
Friedmann model is smaller than the polarization energy density by a factor
of 10−74. By the time the classical background matter becomes dust-like (t ∼
1014 s), the Casimir energy density is as small as 10−6 of the polarization energy
density (11.49) originating from the nonstationarity of space–time. Note also that
sometimes, in the literature, any vacuum polarization energy in a nonstationary
gravitational background is called a gravitational Casimir effect by analogy with
the dynamical Casimir effect (see Section 7.7). Such terminology is, however, not
justified. The reason is that neither the vacuum polarization of a massless field
(11.49) (which is often called the conformal anomaly) nor the creation of massive
particles from the vacuum is related to the periodicity (identification) conditions
giving rise to the Casimir effect. In particular, both the conformal anomaly and
the effect of particle creation from the vacuum occur also in the quasi-Euclidean
and open Friedmann models, where no identification conditions are imposed on
the quantum field and the Casimir effect does not arise.

In eqn (11.43), classical matter is the source of the gravitational field. In
the Planck epoch, when classical matter was absent, some kind of semiclassical
Einstein equations can be considered,

Gµν = −8πG〈0|Tµν |0〉ren, (11.50)

where the renormalized vacuum energy–momentum tensor of the quantized fields
plays the role of the source. The equations (11.50) are called self-consistent. For
a massless scalar field in a closed homogeneous, isotropic model, the quantity
〈0|Tµν |0〉ren is determined by the sum of the Casimir contribution (11.38) [with
a0 replaced by a(η)] and the polarization contribution (11.49). The 00-component
of eqn (11.50) reduces to the following (the spatial components are connected
with this component by the conservativity condition):

3(c2 + 1) =
G

120πa2
(2

..
c c − ċ2 − 2c4 + 2). (11.51)

Here, the last contribution on the right-hand side is due to the Casimir effect.
The following nonsingular solution of eqn (11.51) was obtained by Mamayev and
Mostepanenko (1980) and by Starobinsky (1980):

a =

√
G

360π

1

cos η
=

√
G

360π
cosh

(
t

√
360π

G

)
. (11.52)

Note that in the absence of classical background matter, the vacuum polarization
energies of Casimir and non-Casimir origin are of the same order of magnitude.
The solution (11.52) describes a scale factor exponentially increasing with time.
Similar solutions were obtained also for spinor and electromagnetic fields. Later,
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such scale factors were used in the theory of inflation driven by the classical
inflaton field (Guth 1981, Linde 1990).

As is seen in eqn (11.50), the vacuum energy–momentum tensor of a quan-
tized field serves as a source of a gravitational field. This makes it unique and
particularly important. The advantage of spaces with non-Euclidean topology,
as compared with regions restricted by material boundaries, is that in the former
case the identification conditions should be understood in a literal sense. By con-
trast, for material boundaries the boundary conditions are usually idealizations.
This creates difficulties in interpretation, as discussed in Chapter 4. In any case,
the finite, renormalized Casimir energy density gravitates in the same way as all
other types of energy, i.e. as is required by the equivalence principle (Bimonte et
al. 2007, Fulling et al. 2007b).

From a theoretical standpoint, on cosmological scales, space–time may pos-
sess different possible topologies [see the review by Lachièze-Rey and Luminet
(1995)]. It is common knowledge that the metric tensor does not fix the topo-
logical structure. For example, one may consider a quasi-Euclidean space–time
with a metric

ds2 = dt2 − a2(t)(dx2 + dy2 + dz2), (11.53)

where the coordinates x, y, z are supposed to be dimensionless and a(t) is the
scale factor measured in meters. For a quasi-Euclidean metric, the curvature of
three-space is equal to zero. If the three-space has a Euclidean topology, the
Casimir energy density also is equal to zero. However, one may introduce in a
three-space the topology of a 3-torus, i.e. identify all points with coordinates
(x+ lL, y+nL, z+pL), where l, n, p = 0, ±1, ±2, . . . and L is the identification
scale. In this case, the Casimir energy density is obtained from eqn (11.13) by
the replacement of a, b, and c with a(t)L:

ε(a) = − A

a4(t)L4
, A = 0.8375. (11.54)

In recent formulations, the self-consistent Einstein equations usually include
the cosmological term:

Gµν + Λgµν = −8πG〈0|Tµν|0〉ren. (11.55)

It is of interest that the 00-component of these equations with the source (11.54),

− 3

a3

(
da

dt

)2

+ Λ =
8πGA

L4a4
, (11.56)

has a nonsingular solution (Zel’dovich and Starobinsky 1984)

a(t) =
1

L

(
8πGA

Λ

)1/4
[
cosh

(
2

√
Λ

3
t
)]1/2

. (11.57)

Thus, for spatially flat, homogeneous isotropic models of the Universe with the
topology S1×S1×S1, the Casimir energy density (11.54) can drive the inflation
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process [recall that the asymptotic behavior of the scale factor (11.57) at large
t is the same as in (11.52)]. Note that, in the literature, the cosmological term
Λgµν in eqn (11.55) is identified on occasion with some energy–momentum tensor
of Casimir origin. This is, however, not supported by the above results, because
the Casimir energy–momentum tensor, as a rule, does not have a vacuum-type
but a radiation-type equation of state.

Phenomenologically, the nontrivial topology of space–time may lead to some
observable effects if the identification scale is smaller than the horizon. This was
first discussed by Ellis (1971) and by Sokolov and Shvartsman (1974). Nontrivial
topologies result in multiple images of some cosmic sources [several specific ex-
amples were analyzed by Fagundes (1989), Müller et al. (2002), and Mota et al.
(2005)]. Numerous calculations of the Casimir energy density in spherical and
cylindrical models of the Universe with various dimensionalities can be found in
the book by Elizalde et al. (1994) and in the review by Bytsenko et al. (1996).

11.4 Compactification of extra dimensions

The Casimir effect in spaces with a non-Euclidean topology provides one of the
mechanisms for the compactification of extra spatial dimensions in multidimen-
sional Kaluza–Klein theories. These theories are widely used in modern schemes
for the unification of all fundamental interactions, including the gravitational
interaction. The main idea of the Kaluza–Klein approach is that the true dimen-
sionality of space–time is D = 4+N , where the additional N spatial dimensions
are compactified and form a compact space. Originally this idea was used in the
1920s for the unification of gravitation and electromagnetism. For this purpose a
five-dimensional space–time with a topology M 4 × S1 was employed, where M 4

is a flat four-dimensional Minkowski space–time. The geometrical size of S1 was
supposed to be of the order of the Planck length lPl =

√
G ∼ 10−33 cm (Wesson

2006).
According to present concepts, a promising unified theory of fundamental

interactions is superstring theory (Polchinski 1998). String theory usually deals
with a ten-dimensional space–time of the form M 4 × K6, where K6 is a six-
dimensional compact space. It was common to assume that the extra dimensions
were compactified on the Planck scale, as in the old Kaluza–Klein theory. At
the present time, however, theoretical schemes with low-energy compactification
scale of the order of 1TeV have become popular (Antoniadis et al. 1998, Arkani-
Hamed et al. 1999). In these schemes the compactification length can be as large
as 1 nm or even 1 µm. The important problem of string theories is to find the
compactification mechanism responsible for the stability of a compact manifold
K6. It is remarkable that one such mechanism is provided by the Casimir effect.

To illustrate how the Casimir effect compactifies extra dimensions, we con-
sider the multidimensional Einstein equations of the form

GAB + ΛDgAB = −8πGD〈0|TAB|0〉ren. (11.58)
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Here, GAB and TAB are the Einstein tensor and the energy–momentum tensor,
respectively, in D = (4 + N)-dimensional space–time. The indices A and B take
values 0, 1, . . . , D − 1, and ΛD and GD are the cosmological and gravitational
constants in D dimensions. The space–time is assumed to be M 4 × KN , where
KN is an N -dimensional compact manifold (the internal space). The vacuum
energy–momentum tensor on the right-hand side of eqn (11.58) is of Casimir
origin. The question arises whether or not the equations (11.58) have a solution
describing an internal compact space KN with reasonable physical properties.

This question is the start of a large body of research. However, a satisfactory
solution has not been found yet. Because of this, we shall only list briefly some
of the results obtained. Birmingham et al. (1988) computed Casimir energies
for scalar and spinor fields in even-dimensional Kaluza–Klein spaces of the form
M4 × SN1 × SN2 × · · · . In the massless case, they found a stable solution of eqn
(11.58) in a space–time of the form M 4 × S2 × S2 (i.e. for a four-dimensional
compact internal space). The Casimir energy densities arising in a multidimen-
sional space–time M 4×T N , where T N is an N -dimensional torus, were discussed
by Buchbinder and Odintsov (1989). This includes the case N = 6, which is of
interest in superstring theory. A space–time of the form M 4 ×B, where B is the
Klein bottle, was considered by Blau et al. (1984). Solutions of eqn (11.58) for a
space–time with a spatial section S3×S3 were obtained by Dowker (1984) at any
nonzero temperature. It was found that the Casimir energy–momentum tensor
of a massless spinor field determines a definite value for the radius of the sphere.
The literature on the subject is quite extensive, and many more complicated
Kaluza–Klein geometries have been studied (Elizalde et al. 1994).

As an example, we consider Casimir energy densities and the corresponding
solutions of eqn (11.58) in the space–time M 4 × SN (Chodos and Myers 1984,
Candelas and Weinberg 1984). To preserve the Poincaré invariance in Minkowski
space–time M 4, we look for solutions with block diagonal metric and Ricci ten-
sors

gAB =

(
gµν 0
0 gab(u)

)
, RAB =

(
0 0
0 Rab(u)

)
. (11.59)

Here, gµν , with µ, ν = 0, 1, 2, 3, is the usual diagonal metric tensor in Minkowski
space–time M 4, and gab(u) is the metric tensor on a manifold SN with coordi-
nates u (a, b = 4, 5, . . . , D−1). The Ricci tensor Rab on a sphere and the scalar
curvature RD coincide with those calculated using the metric tensor gab(u). The
Casimir energy–momentum tensor also has the block structure

〈0|Tµν |0〉ren = T1gµν , 〈0|Tab(u)|0〉ren = T2gab(u), (11.60)

where T1 and T2 do not depend on u, owing to the homogeneity of space.
Candelas and Weinberg (1984) expressed T1 and T2 for massless scalar and

spinor fields in terms of the effective potential V (a) = CN/a4:

T1ΩN = −V (a), T2ΩN = −2a2

N

dV (a)

d(a2)
. (11.61)
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Here, a is the sphere radius, and

ΩN =

∫
dNu

√
|det gab| (11.62)

is the sphere volume. As a result, T1,2 ∼ a−D as expected from dimensional con-
siderations in D-dimensional space–time. Explicit values of CN were calculated
for odd N (i.e. for odd-dimensional internal spaces) using dimensional regulariza-
tion and the generalized zeta function. For a massless scalar field with conformal
coupling and for a massless spinor field, CN > 0 for N = 3 and 7 but CN < 0
for N = 5 and 9. It was shown also that in these cases |CN | � 1. For example,
C3 = 0.7146×10−5 for the conformally coupled scalar field and C3 = 19.45×10−5

for the spinor field. For scalar fields with minimal coupling [ξ = 0 in eqn (3.10)],
CN > 0 for any odd N . In this case, for example, C3 = 7.569× 10−5.

Substitution of eqns (11.59)–(11.62) in eqn (11.58) leads to the following
consistency conditions on the sphere radius and on the cosmological constant:

a2 =
8πCN (N + 4)G

N(N − 1)
, ΛD = −N2(N − 1)2(N + 2)

16πCN (N + 4)2G
, (11.63)

where G is the usual gravitational constant connected with the multidimensional
one by the equality G = GD/ΩN . As is seen from eqn (11.63), the Casimir energy
density of a massless conformally coupled scalar field or a massless spinor field
defines a consistent sphere radius for N = 3 and 7, where CN is positive. The
Casimir energy density of a minimally coupled scalar field defines a consistent
sphere radius for any odd N . In all cases the cosmological constant remains
negative.

The semiclassical Einstein equations (11.58) are written in one-loop approxi-
mations, i.e. under the assumption that the gravitational field remains classical.
Thus, the result obtained for a compactification radius

a =

√
8πCN (N + 4)

N(N − 1)
lPl (11.64)

is meaningful only if CN ≥ 1 and, consequently, a > lPl. This, however, demands
a large number of fields. Depending on the field type, this number may be of
order 102 or 103. A large number of required fields is a characteristic feature of
spontaneous-compactification schemes using the Casimir effect.

11.5 Topological defects

A vacuum polarization of the Casimir type arises in the space–time of the topolog-
ical defects which may be formed in phase transitions in the very early Universe
(Vilenkin and Shellard 1994). One of the most popular topological defects is the
cosmic string, which can be formed owing to the spontaneous breaking of an
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axial symmetry. The space–time of an infinitely thin cosmic string is described
by the metric

ds2 = dt2 − dρ2 − ρ2dϕ2 − dz2, (11.65)

where the spatial points (ρ, ϕ, z) and (ρ, ϕ + β, z) are to be identified (Dowker
1987). This leads to a periodicity of quantized fields in the variable ϕ with a
period β and results in a nonzero vacuum energy density. The metric (11.65)
describes a locally flat space–time for all ρ �= 0 that has a cone-like singularity
at ρ = 0. Frolov and Serebriany (1987) determined the general structure of
the renormalized vacuum energy–momentum tensor for conformally invariant
massless fields in the space–time (11.65) as

〈0|Tµ
ν |0〉ren = − 1

1440π2ρ4
f(δ) diag(1, 1,−3, 1), (11.66)

where f(δ) depends on the spin of the field and δ = 2π/β. From the theory
of cosmological phase transitions, δ−1 = 1 − 4µ∗, where µ∗ = Gµ ∼ 10−6 and
µ ∼ 1022 g/cm is the mass per unit length of the string.

For a conformally invariant scalar field [eqn (3.10) with m = 0 and ξ = 1/6],
we get f(δ) = δ4 − 1 and eqn (11.66) leads to the result obtained earlier by
Helliwell and Konkowski (1986),

〈0|Tµ
ν |0〉ren = − δ4 − 1

1440π2ρ4
diag(1, 1,−3, 1). (11.67)

The Casimir energy density following from this equation,

ε(ρ) = 〈0|T0
0|0〉ren = − δ4 − 1

1440π2ρ4
, (11.68)

coincides with the Casimir energy density of a conformally invariant scalar field
inside a wedge (7.135) if one replaces α with δ. For an electromagnetic field,
f(δ) = 2(δ2−1)(δ2 +11) and the Casimir energy density, as given by eqn (11.66)
with µ = ν = 0, coincides with the electromagnetic Casimir energy density inside
a wedge (7.134) if the same replacement is made. The case of a massive scalar
field was considered by Linet (1987).

As can be seen in eqns (11.66)–(11.68), the local vacuum energy density
has a singularity proportional to ρ−4, where ρ is the distance from the string.
Therefore the global vacuum energy of the cosmic string diverges. One may avoid
this problem by considering a string of finite thickness. Some partial results in
this direction were obtained by Khusnutdinov and Bordag (1999). The vacuum
energy of quantized fields at nonzero temperature in the space–time of a cosmic
string has been investigated by, for example, Linet (1992) and Frolov et al. (1995).

Casimir-type effects can also be expected in the interaction between two
parallel cosmic strings. Here, the attractive force arises because of vacuum fluc-
tuations analogously to the force acting between two metal planes. The metric
of two parallel cosmic strings can be represented in the form (Letelier 1987)



278 Spaces with non-Euclidean topology

ds2 = dt2 − e−2Λ(r⊥)(dx2 + dy2) − dz2, (11.69)

where

Λ(r⊥) = 4

2∑
k=1

µ∗
k ln

|r⊥ − ak)|
ρ0

. (11.70)

Here, r⊥ = (x, y) is a vector in the (x, y) plane, which is perpendicular to the
strings; the ak are the positions of the strings in that plane, and ρ0 is the unit
of length.

The calculation of the Casimir energy and force in the metric (11.69) is com-
plicated because the variables do not separate. However, perturbative calculation
in powers of the small parameters µ∗

k is possible. The result can be represented
in the form

E(a) = −σ
µ∗

1µ
∗
2

a2
, F (a) = −2σ

µ∗
1µ

∗
2

a3
, (11.71)

where a is the distance between the strings and σ is a number. The values of
σ were calculated by Bordag (1990) and by Gal’tsov et al. (1995) for a mass-
less scalar field, by Aliev et al. (1997) for a massless spinor field, and by Aliev
(1997) for an electromagnetic field. The same Casimir-type attraction occurs for
magnetic strings (Bordag 1991) and for cosmic strings carrying magnetic flux.
Heat kernel coefficients in space–times with cone-like singularities have been
calculated by Fursaev (1994), Cognola et al. (1994), and Bordag et al. (1996b).
Similar methods have been applied also to other topological defects, for instance,
global monopoles (Bezerra de Mello et al. 1999), which are formed when spherical
symmetry is broken at a phase transition, and domain walls, which are formed
owing to the violation of some discrete symmetry.

Very recently, what are referred to as braneworld cosmological scenarios have
become more and more popular. These scenarios are connected with superstring
theory. They assume that the four-dimensional Universe that we are living in
is positioned on a brane embedded in a bulk multidimensional space. It is also
assumed that the known elementary particles and their interactions described
by the Standard Model are confined to the brane. The quantum fields that can
propagate in the bulk result in a Casimir-type contribution to the vacuum en-
ergy and in forces acting on branes. These forces must be taken into account in
investigations of world brane dynamics (Fabinger and Hořava 2000, Nojiri et al.
2000). Many different models have been suggested to describe braneworlds, and
here we shall not discuss the extensive literature on the subject, which would
demand a separate book. It is worth noting only that most frequently used brane
models were suggested by Randall and Sundrum (1999a). The surface and bulk
Casimir energy densities and the interaction forces in models of this type were
investigated by Elizalde (2006) and Saharian (2004, 2006b, 2006c).
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THE CASIMIR FORCE BETWEEN REAL

BODIES



This page intentionally left blank 



12

THE LIFSHITZ THEORY OF THE VAN DER WAALS AND

CASIMIR FORCES BETWEEN PLANE DIELECTRICS

Starting with this chapter, we deal with the Casimir effect for real bodies made
of various materials rather than idealized boundaries. This means that the elec-
trical, optical, and mechanical properties of real materials will be properly ac-
counted for to provide a consistent theory of the Casimir force. The great di-
versity of the available materials and their properties makes this problem rather
challenging. However, some general theoretical results of broad interest can be
obtained [see the review by Klimchitskaya et al. (2009a)]. These results will be
used for comparing experiment and theory in Part III of the book.

The basic theory providing a unified description of both the van der Waals
interaction and the Casimir interaction between planar dielectrics was given by
Lifshitz (1956). This theory is the subject of the present chapter. Some results
of general character presented here will be also used in later chapters devoted
to metals. In condensed matter physics, all materials can be separated into di-
electrics or metals based on their conductivity properties at zero temperature
(Mott 1990). Dielectrics have zero conductivity at T = 0. There are different
kinds of dielectrics in nature. They are classified by the behavior of the elec-
tron density of states N as a function of the electron energy Ee at T = 0. If
N(EF) = 0, where EF is the Fermi energy, and the bandgap between the filled
valence band and empty conduction band is wide in comparison with the ther-
mal energy, then the material is called an insulator. When N(EF) = 0 but the
bandgap is not as wide, a dielectric is called an intrinsic semiconductor. There
are also dielectrics where N(EF) �= 0 but the conductivity at T = 0 is equal to
zero owing to electron correlations (Mott 1990). These are called Mott–Hubbard
dielectrics. All doped semiconductors with a doping concentration n below the
critical value (n < ncr) are also dielectrics. For them N(EF) �= 0, but the con-
ductivity at T = 0 is equal to zero because the charge carriers are localized in
the vicinity of the impurity centers (Shklovskii and Efros 1984). At T �= 0 all
dielectrics possess some nonzero conductivity, which may be extremely small (as
for insulators) or relatively large (as for doped semiconductors with n < ncr).
Metals have a nonzero conductivity at zero temperature. Semiconductors with a
doping concentration above critical behave like metals.

In this chapter, we present the Lifshitz theory as applied to dielectric plates
at both zero and nonzero temperature, leaving the case of metals for Chapters
13 and 14. Various planar configurations are considered. The consistency of the
theory with the requirements of thermodynamics, and its application region are
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discussed. Note that in Parts II and III of the book, we explicitly write out the
fundamental constants � and c in all formulas.

12.1 The Lifshitz formula for two semispaces at zero temperature

Here, we consider the simplest configuration of two identical parallel dielectric
semispaces, separated by a vacuum gap of width a, at zero temperature. Let the
boundary planes (x, y) of the semispaces be described by the equations z = ±a/2.
Considering only nonmagnetic materials in the absence of charge and current
densities, the Maxwell equations take the form

∇ · D(t, r) = 0, ∇ × E(t, r) +
1

c

∂B(t, r)

∂t
= 0,

∇ × B(t, r) − 1

c

∂D(t, r)

∂t
= 0, ∇ · B(t, r) = 0, (12.1)

where D is the electric displacement, and E and B are the electric field and
magnetic induction, respectively [compare with eqn (3.11)]. The oscillation fre-
quencies of the electromagnetic field between and inside the dielectric semispaces
must be found from the solution of eqn (12.1), supplemented by the standard con-
tinuity boundary conditions of classical electrodynamics imposed at the planes
z = ±a/2 (Jackson 1999, Landau et al. 1984),

E1t(t, r) = E2t(t, r), D1n(t, r) = D2n(t, r),

B1n(t, r) = B2n(t, r), B1t(t, r) = B2t(t, r). (12.2)

Here, n is the normal to the boundary plane directed inside the dielectric, and the
subscripts “n” and “t” refer to the normal and tangential components, respec-
tively (the subscript 1 refers to the vacuum and the subscript 2 to the semispace).

The Lifshitz theory ignores spatial dispersion. In this case the material equa-
tion connecting D and E takes the form

D(t, r) =

∫ t

−∞
ε(t − t′, r)E(t′, r) dt′, (12.3)

where the kernel of the integral operator is ε(τ, r) (here we consider an isotropic
dielectric with time-independent properties; the generalization to the anisotropic
case is straightforward). According to eqn (12.3), the electric displacement D(t, r)
at position r and time t is determined by the electric field E at the same point
r but at different times t′ ≤ t. This indicates the role of temporal dispersion.
Representing fields as Fourier transforms,

E(t, r) =

∫ ∞

−∞
E(ω, r)e−iωt dω, D(t, r) =

∫ ∞

−∞
D(ω, r)e−iωt dω, (12.4)

and substituting this in eqn (12.3), we arrive at
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D(ω, r) = ε(ω, r)E(ω, r). (12.5)

Here, the frequency-dependent dielectric permittivity,

ε(ω, r) =

∫ ∞

0

ε(τ, r)eiωτ dτ, (12.6)

a concept central to the Lifshitz theory, is introduced. For the case of two similar
homogeneous dielectric plates separated by a vacuum gap of width a, we get

ε(ω, r) =

{
ε(ω), |z| ≥ a/2,

1, |z| < a/2.
(12.7)

The standard analytical representation of the frequency-dependent dielectric per-
mittivity of a dielectric material is given by (Parsegian 2005)

ε(ω) = 1 +

K∑
j=1

gj

ω2
j − ω2 − iγjω

, (12.8)

where the ωj �= 0 are the oscillator frequencies, the gj are the oscillator strengths,
the γj are the damping parameters, and K is the number of oscillators. Usually,
γj � ωj. From eqn (12.8), the dielectric permittivity of a dielectric at zero
frequency takes the form

ε0 ≡ ε(0) = 1 +

K∑
j=1

gj

ω2
j

< ∞. (12.9)

For polar dielectrics consisting of molecules having an intrinsic dipole moment
(see Section 12.7), an additional term must be added on the right-hand side of
eqn (12.8).

There are many different derivations of the well-known Lifshitz formula for
the Casimir force per unit area of the semispaces present in the literature. The
original derivation by Lifshitz (1956) was based on the assumption that dielec-
tric materials in a state of thermal equilibrium are characterized by randomly
fluctuating sources of long-wavelength electromagnetic fields. The force acting
between the semispaces was found as the zz-component of the Maxwell energy–
momentum tensor statistically averaged using the fluctuation–dissipation the-
orem. Later, the correlation functions of the fluctuating electromagnetic field
were expressed in terms of the Green’s functions of the Maxwell equations
(Dzyaloshinskii et al. 1961, Lifshitz and Pitaevskii 1980). Another approach to
the derivation of the Lifshitz formula is based on scattering theory (Bordag et
al. 2001a, Genet et al. 2003b). In this approach, an electromagnetic wave prop-
agating in the dielectric material is scattered in the empty gap between the two
semispaces and the transmitted and reflected waves are considered. The final
results for the energy and force per unit area of the plates are expressed in terms
of the reflection coefficients.
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12.1.1 Representation in terms of imaginary frequencies

Here, we present another derivation of the Lifshitz formula, starting directly from
the zero-point energy of the electromagnetic field in the presence of dielectric
semispaces. The main ideas of such a derivation were formulated by van Kam-
pen et al. (1968) and later elaborated by Ninham et al. (1970), Schram (1973),
Langbein (1973), Zhou and Spruch (1995), and Klimchitskaya et al. (2000). Let
us consider a monochromatic electromagnetic field

E(t, r) = E(r) e−iωt, B(t, r) = B(r) e−iωt (12.10)

[it is assumed that the physical fields are equal to the real parts of eqn (12.10)].
Substituting eqn (12.10) into the Maxwell equations (12.1) and using eqns (12.5)
and (12.7), we obtain equations inside the dielectric semispaces in the form

∇ · E(r) = 0, ∇ × E(r) − i
ω

c
B(r) = 0,

∇ × B(r) + iε(ω)
ω

c
E(r) = 0, ∇ · B(r) = 0, (12.11)

where D(r) = ε(ω)E(r) has been used. In the gap between the semispaces,
ε(ω) in eqn (12.11) must be replaced with unity. From eqn (12.11), second-order
equations for the fields follow:

∇
2E(r) + ε(ω)

ω2

c2
E(r) = 0, ∇

2B(r) + ε(ω)
ω2

c2
B(r) = 0. (12.12)

The complete orthonormal set of solutions of eqn (12.12) can be found to be

EJ(r) = ep(z, k⊥) exp(ik⊥ · r⊥), BJ (r) = gp(z, k⊥) exp(ik⊥ · r⊥). (12.13)

Here, r = (x, y, z) = (r⊥, z), k⊥ = (kx, ky), and the collective index J =
{p, k⊥, ω}, where p = TM, TE labels the two independent polarizations of the
electromagnetic field (transverse magnetic and transverse electric) defined in
Section 7.2.1.

Substituting eqn (12.13) into eqn (12.12), we obtain the oscillator equations
for the functions ep and gp,

e′′
p(z, k⊥) − k2ep(z, k⊥) = 0, g′′

p(z, k⊥) − k2gp(z, k⊥) = 0, (12.14)

where

k2 = k2(ω, k⊥) = k2
⊥ − ε(ω)

ω2

c2
(12.15)

and a prime denotes a derivative with respect to z. In the vacuum gap between
the semispaces, k2 must be replaced with

q2 = q2(ω, k⊥) = k2
⊥ − ω2

c2
. (12.16)

In a similar way, the first and fourth Maxwell equations in eqn (12.11) lead to
equations for the projections of the vectors ep and gp on the x, y, and z axes:

e′p,z(z, k⊥) + ikxep,x(z, k⊥) + ikyep,y(z, k⊥) = 0,



The Lifshitz formula for two semispaces at zero temperature 285

g′p,z(z, k⊥) + ikxgp,x(z, k⊥) + ikygp,y(z, k⊥) = 0. (12.17)

Now let us satisfy the continuity boundary conditions (12.2). We start by
considering the electric field and electric displacement. The first condition in
eqn (12.2), for the electric field, is satisfied if ep,x and ep,y are continuous when
crossing the boundary planes z = ±a/2. From the first equation in eqn (12.17),
this is equivalent to the continuity of e′p,z. The second equation in eqn (12.2),
for the electric displacement, is satisfied if εep,z is continuous when crossing
the boundary planes. Note that ep,z is not equal to zero for p = TM only, so
that we now consider the transverse magnetic mode. By using the exponentially
decreasing solutions of the first equation in eqn (12.14) inside the semispaces,
we can represent eTM,z in the form

eTM,z(z, k⊥) =




A exp(kz), z < −a/2,
B exp(qz) + C exp(−qz), |z| < a/2,
D exp(−kz), z > a/2.

(12.18)

Then the continuity of e′TM,z and ε(r, ω)eTM,z at z = ±a/2 implies the following
system of equations:

Ak exp(−ka/2) = Bq exp(−qa/2)− Cq exp(qa/2),

−Dk exp(−ka/2) = Bq exp(qa/2) − Cq exp(−qa/2), (12.19)

Aε exp(−ka/2) = B exp(−qa/2) + C exp(qa/2),

Dε exp(−ka/2) = B exp(qa/2) + C exp(−qa/2).

This is a linear homogeneous system of algebraic equations with unknown quan-
tities A, B, C, and D. It has a nontrivial solution under the condition that the
determinant of its known coefficients is equal to zero,

∆TM(ω, k⊥) ≡ e−ka
[
(εq + k)2eqa − (εq − k)2e−qa

]
= 0. (12.20)

In a similar way, the third and fourth continuity conditions in eqn (12.2),
for the magnetic induction, are satisfied if all of the components gp,x, gp,y, and
gp,z are continuous when crossing the boundary planes z = ±a/2. Owing to the
second equation in (12.17), the continuity of gp,x and gp,y is equivalent to the
continuity of g′

p,z. The component gp,z is not equal to zero for the transverse
electric mode p = TE (see Section 7.2.1). Representing gTE,z(z, k⊥) in the form
of eqn (12.18) with some coefficients E, F, G, H , we obtain from the third and
fourth conditions in eqn (12.2) the same system of equations as in eqn (12.19),
where ε is replaced with unity. The condition that this system has a nontrivial
solution is

∆TE(ω, k⊥) ≡ e−ka
[
(q + k)2eqa − (q − k)2e−qa

]
= 0. (12.21)

The solutions of the transcendental equations (12.20) and (12.21) are the pho-
ton eigenfrequencies ωTM

k⊥,n and ωTE
k⊥,n for the configuration of two dielectric semis-

paces separated by a vacuum gap. Thus ∆TM and ∆TE are the mode-generating
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functions, as discussed in Section 9.3.2. Note that in reality these eigenfrequencies
are complex [because the dielectric permittivity (12.8) is complex], with positive
imaginary parts which are much smaller than the real parts. But we now con-
tinue the derivation of the Lifshitz formula by neglecting the imaginary parts of
the photon eigenfrequencies. The justification for this approach was provided by
Barash and Ginzburg (1975). It is discussed below.

In terms of the as yet unknown photon eigenfrequencies, the vacuum energy
of the electromagnetic field in thermal equilibrium with the dielectric plates at
zero temperature is given by

E0(a) =
�

4π

∫ ∞

0

k⊥dk⊥
∑

n

(
ωTM

k⊥,n + ωTE
k⊥,n

)
S. (12.22)

The sums over the solutions of eqns (12.20) and (12.21) can be calculated by
using the argument principle (7.60). We consider a closed contour consisting
of a semicircle C+ of infinite radius in the right half of the complex plane ω
with its center at the origin, and the imaginary axis [i∞,−i∞] bypassed in a
counterclockwise manner. Given that the functions ∆TM and ∆TE do not have
poles inside this contour, we obtain

∑
n

ωTM,TE
k⊥,n =

1

2πi

[∫ −i∞

i∞
ω d ln ∆TM,TE(ω, k⊥) +

∫
C+

ω d ln ∆TM,TE(ω, k⊥)

]
.

(12.23)
The second integral on the right-hand side of eqn (12.23) is calculated simply,
under the natural assumption

lim
ω→∞

ε(ω) = 1, lim
ω→∞

dε(ω)

dω
= 0 (12.24)

satisfied by the dielectric permittivity (12.8). The result is infinite and does not
depend on a: ∫

C+

ω d ln ∆TM,TE(ω, k⊥) = 4

∫
C+

dω. (12.25)

Introducing a new variable ξ = −iω, we rearrange eqn (12.23) to the form

∑
n

ωTM,TE
k⊥,n =

1

2π

∫ −∞

∞
ξ d ln ∆TM,TE(iξ, k⊥) +

2

π

∫
C+

dξ, (12.26)

where the last term on the right-hand side does not depend on a.
The energy given by eqns (12.22) and (12.26) is infinite. The finite Casimir

energy per unit area of the boundary planes z = ±a/2 is obtained by the sub-
traction from E0(a) of the energy for infinitely separated semispaces:

E(a) =
E0(a)

S
− lim

a→∞
E0(a)

S
. (12.27)
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This is equivalent to the dropping of the integral along C+ and the replacement
of ∆TM,TE(iξ, k⊥) with ∆TM,TE/∆TM,TE

∞ , where

∆TM
∞ (iξ, k⊥) = e(q−k)a(εq + k)2, ∆TE

∞ (iξ, k⊥) = e(q−k)a(q + k)2,

q2 = q2(iξ, k⊥) = k2
⊥ +

ξ2

c2
, k2 = k2(iξ, k⊥) = k2

⊥ + ε(iξ)
ξ2

c2
. (12.28)

The result is

E(a) =
�

8π2

∫ ∞

0

k⊥dk⊥

∫ −∞

∞
ξ d

[
ln

∆TM(iξ, k⊥)

∆TM∞ (iξ, k⊥)
+ ln

∆TE(iξ, k⊥)

∆TE∞ (iξ, k⊥)

]
. (12.29)

Integrating eqn (12.29) by parts and using the explicit expressions (12.20),
(12.21), and (12.28), we arrive at the Lifshitz formula at zero temperature,

E(a) =
�

4π2

∫ ∞

0

k⊥dk⊥

∫ ∞

0

dξ
{
ln
[
1 − r2

TM(iξ, k⊥)e−2qa
]

(12.30)

+ ln
[
1 − r2

TE(iξ, k⊥)e−2qa
]}

.

In the above, the following notation has been introduced:

rTM(iξ, k⊥) =
ε(iξ)q(iξ, k⊥) − k(iξ, k⊥)

ε(iξ)q(iξ, k⊥) + k(iξ, k⊥)
, rTE(iξ, k⊥) =

q(iξ, k⊥) − k(iξ, k⊥)

q(iξ, k⊥) + k(iξ, k⊥)
,

(12.31)
where q and k are defined in eqn (12.28).

The quantities rTM and rTE are the familiar Fresnel reflection coefficients for
the transverse magnetic and electric waves (Landau et al. 1984),

rTM(θ0) =
ε cos θ0 −

√
ε − sin2 θ0

ε cos θ0 +
√

ε − sin2 θ0

, rTE(θ0) =
cos θ0 −

√
ε − sin2 θ0

cos θ0 +
√

ε − sin2 θ0

, (12.32)

where θ0 is the angle of incidence from the vacuum gap onto the semispace.
Considering that for real electromagnetic waves in vacuum sin θ0 = k⊥c/ω, we
see that rTM(θ0) and rTE(θ0) coincide with rTM(ω, k⊥) and rTE(ω, k⊥), respec-
tively. However, an important property of the coefficients (12.31) is that they
are calculated along the imaginary frequency axis and depend on the two inde-
pendent variables ξ and k⊥. There are no constraints such as k⊥c ≤ ξ in the two
integrations with respect to k⊥ and ξ in the Lifshitz formula (12.30). Using eqn
(1.6), the Lifshitz formula for the Casimir pressure is obtained:

P (a) = − �

2π2

∫ ∞

0

k⊥dk⊥

∫ ∞

0

dξ q
{[

r−2
TM(iξ, k⊥)e2qa − 1

]−1
(12.33)

+
[
r−2
TE(iξ, k⊥)e2qa − 1

]−1
}

.

In the above derivation, the small imaginary parts of the photon eigenfre-
quencies were neglected. If the complex nature of the photon eigenfrequencies is
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taken into account, the vacuum energy of the electromagnetic field is not given
by eqn (12.22), which is already clear from the complexity of the right-hand side
of this equation. In fact, a dielectric medium with a dielectric permittivity (12.8)
is represented as a set of oscillators

d2x(t)

dt2
+ γj

dx(t)

dt
+ ω2

j x(t) = f(t), (12.34)

where f(t) = fω exp(−iωt) is a harmonically varying external force modeling
the influence of electromagnetic fluctuations. If the solutions of eqns (12.20)
and (12.21), ωTM

k⊥,n and ωTE
k⊥,n, are complex, the respective eigenfunctions are not

orthogonal. They can, however, be expanded in terms of the orthogonal eigen-
functions of some auxiliary electrodynamic system that has real eigenfrequencies.
This leads to the result that although the representation of the energy as a sum
(12.22) of complex eigenfrequencies is invalid, the representation (12.30) remains
correct for complex eigenfrequencies. The qualitative reason for the validity of
this statement is that the energy (12.30) depends only on the dielectric permit-
tivity along the imaginary frequency axis, which is always real. A rigorous proof
of the validity of eqns (12.30) and (12.33) in the case of complex photon eigen-
frequencies, and an exact formulation of the auxiliary electrodynamic problem
can be found in the review by Barash and Ginzburg (1975) and in the book by
Milonni (1994). Note that in the case of complex photon eigenfrequencies, the
correct expression for the Casimir energy must be written as an integral with
respect to ξ with limits from 0 to ∞ [see eqn (12.30)]. Although an integration
from −∞ to ∞ [as in eqn (12.29)] can be equivalently used for real eigenfre-
quencies, it is not permitted for complex eigenfrequencies because the functions
∆TM,TE and the reflection coefficients are not, in this case, even functions of ξ
(Barash and Ginzburg 1984).

12.1.2 Representation in terms of real frequencies

Equations (12.30) and (12.33) represent the Casimir energy and pressure as func-
tions of the separation in terms of integrals over imaginary frequencies. Equiv-
alently, these equations can be expressed in terms of real frequencies. To do so,
we notice that for any function f(ω) that is analytic in the first quadrant of the
complex ω plane, ∫

Cq

dω f(ω) = 0, (12.35)

where the contour Cq consists of the positive half (0,∞) of the real axis, a 90◦ arc
of infinitely large radius, and the half (i∞, 0) of the imaginary axis. By assuming
that f(ω) vanishes on the arc of infinitely large radius and that f(iξ) is real,
from eqn (12.35) we get

Im

∫ ∞

0

dω f(ω) = Im

[
i

∫ ∞

0

dξ f(iξ)

]
=

∫ ∞

0

dξ f(iξ). (12.36)
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Now we apply eqn (12.36) to eqn (12.30). This is possible because, in the
renormalized energy per unit area and the pressure, the respective integrals along
the arcs of infinitely large radius vanish. Then eqn (12.30) takes the form

E(a) =
�

4π2

∫ ∞

0

k⊥dk⊥

∫ ∞

0

dω Im
{
ln
[
1 − r2

TM(ω, k⊥)e−2qa
]

(12.37)

+ ln
[
1 − r2

TE(ω, k⊥)e−2qa
]}

,

where q = q(ω, k⊥) has been defined in eqn (12.16), and rTM and rTE are ob-
tained from eqn (12.31) by the replacement of iξ with ω. Note that in contrast to
eqn (12.30), where q ≡ q(iξ, k⊥) is real and positive, in eqn (12.37) q ≡ q(ω, k⊥)
takes both real and pure imaginary values depending on whether k⊥ ≥ ω/c
or k⊥ < ω/c. As a result, eqn (12.37) contains integrals of rapidly oscillating
functions. This makes the representation (12.30) more convenient for numerical
computations.

In a similar way, eqn (12.33) for the Casimir pressure can be rearranged to a
form containing an integration along the real frequency axis,

P (a) = − �

2π2

∫ ∞

0

k⊥dk⊥

∫ ∞

0

dω Im
{
q
[
r−2
TM(ω, k⊥)e2qa − 1

]−1
(12.38)

+ q
[
r−2
TE(ω, k⊥)e2qa − 1

]−1
}

.

We note that pure imaginary values of q(ω, k⊥) in eqns (12.37) and (12.38) (which
are taken at ω > ck⊥) correspond to the contributions of propagating waves,
while real values of q(ω, k⊥) (taken at ω ≤ ck⊥) describe what are referred to as
evanescent waves.

12.1.3 The limiting cases of small and large separations

Computational results for the Casimir energy and pressure obtained using eqns
(12.30) and (12.33) for some typical dielectrics are presented in Section 12.6.2.
Here, we consider the characteristic behavior of the pressure P (a) at small and
large separations in comparison with the characteristic absorption wavelength
of the dielectric material λ0. At a � λ0, the most important region, qa ∼ 1,
in the integral with respect to k⊥ in eqn (12.33) corresponds to a rather large
q. This is the region of high frequencies ξ, where q ≈ k and, thus, rTE � rTM.
By introducing a new variable y = 2aq instead of k⊥, and changing the order of
integration with respect to ξ and to k⊥, we get

P (a) = − �

16π2a3

∫ ∞

0

dξ

∫ ∞

ξ/ωc

y2 dy
[
r−2
TM(iξ, y)ey − 1

]−1
, (12.39)

where ωc = c/(2a) is the characteristic frequency. Now, in the same approxi-
mation, it is possible to replace the lower integration limit ξ/ωc with zero and
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cancel the q and k in the numerator and denominator in the definition (12.31)
of the reflection coefficient rTM. As a result (Lifshitz and Pitaevskii 1980)

P (a) = − H

6πa3
, H =

3�

8π

∫ ∞

0

dξ

∫ ∞

0

y2 dy

{[
ε(iξ) + 1

ε(iξ) − 1

]2

ey − 1

}−1

,

(12.40)
where H is called the Hamaker constant. This is the nonretarded van der Waals
pressure in the configuration of two semispaces. It is of nonrelativistic character
and thus does not depend on the velocity of light c.

Now we consider the opposite limit of large separation, satisfying the condi-
tion a � λ0. At the same time, it is assumed that the separation is small enough
to neglect thermal effects (see Section 12.3). In this case, low frequencies provide
the dominant contribution to the pressure. As a result, the dielectric permittiv-
ity along the imaginary frequency axis can be replaced with its static value ε0

defined in eqn (12.9). Introducing dimensionless variables

y = 2aq, ζ =
ξ

ωc
, (12.41)

and using eqn (12.31), we represent the pressure at large separations in the form

P (a) = − π2

240

�c

a4
Ψ(ε0). (12.42)

Here, the function Ψ(ε0) is defined as

Ψ(ε0) =
15

2π4

∫ ∞

0

dζ

∫ ∞

ζ

y2 dy





(

ε0y +
√

y2 + ζ2(ε0 − 1)

ε0y −
√

y2 + ζ2(ε0 − 1)

)2

ey − 1



−1

+



(

y +
√

y2 + ζ2(ε0 − 1)

y −
√

y2 + ζ2(ε0 − 1)

)2

ey − 1



−1

 . (12.43)

Equation (12.42) includes retardation effects, an essential factor at large sepa-
rations. The relativistic character of eqn (12.42) is reflected in the explicit de-
pendence on the velocity of light c. In the limiting case ε0 → ∞, the function
Ψ(ε0) → 1 and one obtains the case of ideal-metal plates.

12.2 The Lifshitz formula for stratified and magnetic media

The formalism presented in the previous section can be easily generalized to the
case of two dissimilar semispaces, to stratified media consisting of several plane
parallel layers, to two plates of finite thickness, etc. We start with the case of two
semispaces made of dissimilar dielectric materials with dielectric permittivities
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ε(1)(ω) and ε(2)(ω). A straightforward repetition of the derivation in Section
12.1.1 results in the following expression for the Casimir energy:

E(a) =
�

4π2

∫ ∞

0

k⊥dk⊥

∫ ∞

0

dξ
{
ln
[
1 − r

(1)
TM(iξ, k⊥)r

(2)
TM(iξ, k⊥)e−2qa

]
+ ln

[
1 − r

(1)
TE(iξ, k⊥)r

(2)
TE(iξ, k⊥)e−2qa

]}
, (12.44)

where the reflection coefficients are given by

r
(n)
TM(iξ, k⊥) =

ε(n)(iξ)q(iξ, k⊥) − k(n)(iξ, k⊥)

ε(n)(iξ)q(iξ, k⊥) + k(n)(iξ, k⊥)
, (12.45)

r
(n)
TE(iξ, k⊥) =

q(iξ, k⊥) − k(n)(iξ, k⊥)

q(iξ, k⊥) + k(n)(iξ, k⊥)
, k(n)(iξ, k⊥) =

[
k2
⊥ + ε(n)(iξ)

ξ2

c2

]1/2

.

In a similar manner, the generalization of the Casimir pressure to the case of
two dissimilar semispaces reads

P (a) = − �

2π2

∫ ∞

0

k⊥dk⊥

∫ ∞

0

dξ q



[

e2qa

r
(1)
TM(iξ, k⊥)r

(2)
TM(iξ, k⊥)

− 1

]−1

+

[
e2qa

r
(1)
TE(iξ, k⊥)r

(2)
TE(iξ, k⊥)

− 1

]−1

 . (12.46)

Next we consider a stratified medium consisting of three layers of finite thick-
ness a and d±1 with dielectric permittivities ε(n)(ω) (n = 0, ±1) enclosed be-
tween two semispaces with dielectric permittivities ε(±2)(ω) (see Fig. 12.1). For

� � � �

� � �

� � � � � 
 � 

� � � � 
 

�

�
� � � � � � �

� �  � � � �

� �  � � � �

� � �  � � � �

� � � � � � � �

Fig. 12.1. Stratified medium consisting of three layers of finite thickness d−1, a,
and d1 with dielectric permittivities ε(−1)(ω), ε(0)(ω), and ε(1)(ω), enclosed
between two semispaces z ≤ −a/2 − d−1 and z ≥ a/2 + d1 with dielectric
permittivities ε(−2)(ω) and ε(−2)(ω), respectively.
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this purpose, the electrodynamic boundary conditions (12.2) are imposed on the
four boundary planes z = ±a/2, z = a/2 + d1, and z = −a/2 − d−1 for the
solutions of the Maxwell equations (12.11) written for each of the five strata.
This leads to two homogeneous algebraic systems, each containing eight linear
equations. By setting the determinants of these systems equal to zero, we arrive
at two transcendental equations for the determination of the photon eigenfre-
quencies in the stratified medium. Then, using eqn (12.22) and applying the
argument principle under the renormalization condition that the physical energy
should vanish when a → ∞, we arrive at the Casimir energy per unit area [see
Bordag et al. (2001a) for details]:

E(a) =
�

4π2

∫ ∞

0

k⊥dk⊥

∫ ∞

0

dξ
{
ln
[
1 − R

(+)
TM(iξ, k⊥)R

(−)
TM(iξ, k⊥)e−2k(0)a

]
+ ln

[
1 − R

(+)
TE (iξ, k⊥)R

(−)
TE (iξ, k⊥)e−2k(0)a

]}
. (12.47)

Here,

k(n) ≡ k(n)(iξ, k⊥) =

[
k2
⊥ + ε(n)(iξ)

ξ2

c2

]1/2

, n = 0, ±1, ±2, (12.48)

and the reflection coefficients in the region |z| < a/2 for electromagnetic waves
incident on the planes z = ±a/2 are given by

R
(±)
TM(iξ, k⊥) =

r
(0,±1)
TM + r

(±1,±2)
TM e−2k(±1)d±1

1 + r
(0,±1)
TM r

(±1,±2)
TM e−2k(±1)d±1

,

(12.49)

R
(±)
TE (iξ, k⊥) =

r
(0,±1)
TE + r

(±1,±2)
TE e−2k(±1)d±1

1 + r
(0,±1)
TE r

(±1,±2)
TE e−2k(±1)d±1

.

In these formulas, all upper signs or, alternatively, all lower signs must be chosen.

The reflection coefficients r
(n,n′)
TM,TE on the various boundary planes are defined as

follows:

r
(n,n′)
TM ≡ r

(n,n′)
TM (iξ, k⊥) =

ε(n′)(iξ)k(n) − ε(n)(iξ)k(n′)

ε(n′)(iξ)k(n) + ε(n)(iξ)k(n′)
,

r
(n,n′)
TE ≡ r

(n,n′)
TE (iξ, k⊥) =

k(n) − k(n′)

k(n) + k(n′)
. (12.50)

Note that the coefficients given by eqn (12.50) coincide with eqn (12.31), obtained
for the case of two semispaces, if n = 0, n′ = 1, and ε(0)(iξ) = 1, i.e. there is a
vacuum in the region |z| < a/2.

For the Casimir pressure in the region |z| < a/2, the following expression is
obtained from eqn (12.47):

P (a) = − �

2π2

∫ ∞

0

k⊥dk⊥

∫ ∞

0

dξ k(0)



[

e2k(0)a

R
(+)
TM(iξ, k⊥)R

(−)
TM(iξ, k⊥)

− 1

]−1
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+

[
e2k(0)a

R
(+)
TE (iξ, k⊥)R

(−)
TE (iξ, k⊥)

− 1

]−1

 . (12.51)

Equations (12.47) and (12.51) can be easily generalized to an arbitrary number
of plane parallel layers [see e.g. Tomaš (2002) and Raabe et al. (2003)].

Using the reflection coefficients (12.49) for the planes z = ±a/2, it is possible
to consider various configurations which are of interest for the experimental
applications in Part III of the book. In particular, one can investigate the effect
of thin layers deposited on thick plates. It is also simple to obtain an expression
for the Casimir energy and pressure in a configuration of two plates of finite
thickness d with a dielectric permittivity ε(ω). For this purpose we put in the
above equations d1 = d−1 = d, ε(0)(iξ) = ε(±2)(iξ) = 1, and ε(±1)(iξ) = ε(iξ).
Then the Casimir energy per unit area and the Casimir pressure are given by
eqns (12.30) and (12.33), where the reflection coefficients must be replaced with

rTM(iξ, k⊥) =
ε2(iξ)q2 − k2

ε2(iξ)q2 + k2 + 2qkε(iξ) coth(kd)
,

rTE(iξ, k⊥) =
q2 − k2

q2 + k2 + 2qk coth(kd)
. (12.52)

The quantities q and k are defined in eqn (12.28). Another configuration of
interest in applications is a system consisting of two thick plates (semispaces)
with a layer of thickness a sandwiched between them. In this case the Casimir
energy per unit area and the Casimir pressure are given by eqns (12.47) and
(12.51). The reflection coefficients are obtained from eqn (12.49) in the limit
d1, d−1 → ∞. The result is

R
(±)
TM(iξ, k⊥) = r

(0,±1)
TM (iξ, k⊥), R

(±)
TE (iξ, k⊥) = r

(0,±1)
TE (iξ, k⊥), (12.53)

where r
(0,±1)
TM and r

(0,±1)
TE are defined in eqn (12.50).

In the above, we have considered nonmagnetic dielectrics. The results ob-
tained, however, can easily be generalized to the case of magnetodielectrics with
a frequency-dependent magnetic permeability µ(ω). We consider a configuration
of two magnetodielectric semispaces at a separation a. In this case the third
Maxwell equation in eqn (12.11) inside the dielectrics must be replaced with

∇ × H(r) + iε(ω)
ω

c
E(r) = 0, (12.54)

where H(r) = B(r)/µ(ω) is the magnetic field. The first three continuity bound-
ary conditions imposed at the boundary planes z = ±a/2 in eqn (12.2) remain
the same, whilst the fourth is replaced with

H1t(t, r) = H2t(t, r). (12.55)

By repeating all calculations performed in Section 12.1.1, we once more arrive
at the Lifshitz formulas for the Casimir energy per unit area (12.30) and the
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pressure (12.33). However, the reflection coefficients for the transverse magnetic
and transverse electric fields must be replaced with

rTM,µ(iξ, k⊥) =
ε(iξ)q(iξ, k⊥) − kµ(iξ, k⊥)

ε(iξ)q(iξ, k⊥) + kµ(iξ, k⊥)
,

(12.56)

rTE,µ(iξ, k⊥) =
µ(iξ)q(iξ, k⊥) − kµ(iξ, k⊥)

µ(iξ)q(iξ, k⊥) + kµ(iξ, k⊥)
,

where

k2
µ(iξ, k⊥) = k2

⊥ + ε(iξ)µ(iξ)
ξ2

c2
. (12.57)

For nonmagnetic dielectrics, µ(ω) = 1 and the reflection coefficients (12.56) co-
incide with eqn (12.31). The Lifshitz formulas can be generalized to an arbitrary
number of plane parallel layers of magnetodielectrics (Buhmann et al. 2005,
Tomaš 2005).

Kenneth et al. (2002) have shown that, for the case of materials with frequen-
cy-independent ε and µ, there exists a range of values for ε and µ for which the
Casimir energy (free energy) is positive and, thus, the Casimir force between
the two magnetodielectric semispaces is repulsive. Later, it was shown, however,
that in the range of frequencies which contributes most to the Casimir force, the
magnetic permeability µ of real materials is nearly equal to unity, and its mag-
nitude is always far away from the values needed for achieving Casimir repulsion
(Iannuzzi and Capasso 2003).

12.3 Two semispaces at nonzero temperature

Now we return to the simplest configuration of two semispaces at a separation a
described by a frequency-dependent dielectric permittivity. In contrast to Section
12.1, where temperature was equal to zero, we now assume that the semispaces
are at a temperature T in thermal equilibrium with the environment. In this
section we consider two different representations for the Casimir free energy and
pressure in the Lifshitz theory.

12.3.1 Representation in terms of Matsubara frequencies

The material of the semispaces is described by the dielectric permittivity (12.8),
which may depend slightly on T through the temperature dependence of the
oscillator parameters. However, for most dielectrics whose permittivity can be
represented in the form of eqn (12.8), the dependence of the oscillator parameters
on the temperature is negligible and the photon eigenfrequencies for both the
TM and the TE polarizations satisfy eqns (12.20) and (12.21) derived in Section
12.1.1. By considering the free energy of each oscillator mode instead of the
energy (as was done in Section 7.4.1 for two ideal-metal planes), we get the
following expression for the free energy, analogous to eqn (7.59):
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F0(a, T ) = kBT

∫ ∞

0

k⊥dk⊥
2π

∑
n

[
ln

(
2 sinh

�ωTM
k⊥,n

2kBT

)
+ ln

(
2 sinh

�ωTE
k⊥,n

2kBT

)]
S.

(12.58)

As in Section 12.1.1, we first consider the case of real eigenfrequencies ωTM,TE
k⊥,n .

The summation over the roots of eqns (12.20) and (12.21) can be performed
by using the argument principle (7.60). This results in

F0(a, T ) = kBT

∫ ∞

0

k⊥dk⊥
2π

1

2πi

∮
C1

ln

(
2 sinh

�ω

2kBT

)
×d

[
ln ∆TM(ω, k⊥) + ln ∆TE(ω, k⊥)

]
S, (12.59)

where the contour C1 is shown in Fig. 7.1(a) (note that the functions ∆TM and
∆TE have no poles). The integral along the contour C1 is calculated similarly to
what was done in Section 7.4.1. The contour C1 in Fig. 7.1(a) is chosen so as
to avoid all of the branch points of the logarithm at the imaginary frequencies
ωl = iξl, where

ξl = 2π
kBT

�
l (12.60)

are the Matsubara frequencies, written here with all fundamental constants in
contrast to Chapter 5 (l = 0, ±1, ±2, . . . ). The integral along C1 can be pre-
sented as a sum of four integrals along the contours L1, Cε, L2, and the arc
CR [see Fig. 7.1(a)]. The integrals along L1, Cε, and L2 can be integrated by
parts. The terms besides the integrals cancel each other at the points ±iε and
contribute to a separation-independent infinite constant at points A and B [com-
pare with eqn (12.26)]. The integral along L1 is calculated by the application of
the Cauchy theorem to the closed contour C2 in Fig. 7.1(b):

−
∫

L1

coth
�ω

2kBT
ln ∆TM,TE(ω, k⊥) dω =

∫ i∞

iε

coth
�ω

2kBT
ln ∆TM,TE(ω, k⊥) dω,

(12.61)
where the infinite separation-independent contribution from the arc CR has
been omitted. Note that the integration path (iε, i∞) contains semicircles of
infinitely small radius ε about the singular points iξl (poles) of the function
coth(�ω/2kBT ). The analogous formula for the integral along L2 is

−
∫

L2

coth
�ω

2kBT
ln ∆TM,TE(ω, k⊥) dω =

∫ −iε

−i∞
coth

�ω

2kBT
ln ∆TM,TE(ω, k⊥) dω.

(12.62)
As a result, the Casimir free energy without the contribution from the complete
semicircle CR is given by

F0(a, T ) =
�S

8π2i

∫ ∞

0

k⊥dk⊥

∫ i∞

−i∞
coth

�ω

2kBT

[
ln ∆TM(ω, k⊥) + ln ∆TE(ω, k⊥)

]
dω,

(12.63)
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where the integration with respect to ω runs along the segments of the imaginary
axis between the Matsubara frequencies ξl and around infinitely small semicircles
with centers at ξl [see Fig. 7.1(b)].

The expression (12.63) is still infinite. To remove the divergence, we use
the renormalization condition that the free energy should be equal to zero in
the case of infinitely separated interacting bodies. Thus, the finite Casimir free
energy per unit area is defined by eqn (7.68). This definition is equivalent to
the replacement of ∆TM,TE(ω, k⊥) with the ratio ∆TM,TE(ω, k⊥)/∆TM,TE

∞ (ω, k⊥),
where ∆TM,TE

∞ (ω, k⊥) is defined in eqn (12.28), with iξ = ω. The result is

F(a, T ) =
�

8π2i

∫ ∞

0

k⊥dk⊥

∫ i∞

−i∞
dω coth

�ω

2kBT

{
ln
[
1 − r2

TM(ω, k⊥)e−2aq
]

+ ln
[
1 − r2

TE(ω, k⊥)e−2aq
]}

, (12.64)

where the reflection coefficients are defined in eqn (12.31) with iξ = ω and q is
defined in (12.16).

The integration in eqn (12.64), involving poles at the Matsubara frequencies
iξl, leads to

F(a, T ) =
�

8π2i

∫ ∞

0

k⊥dk⊥

∫ ∞

−∞
dξ cot

�ξ

2kBT

{
ln
[
1 − r2

TM(iξ, k⊥)e−2aq
]

+ ln
[
1 − r2

TE(iξ, k⊥)e−2aq
]}

+
�

8π

∫ ∞

0

k⊥dk⊥
∞∑

l=−∞
res

{
coth

�ω

2kBT

[
ln
(
1 − r2

TM(ω, k⊥)e−2aq
)

+ ln
(
1 − r2

TE(ω, k⊥)e−2aq
)]

; iξl

}
. (12.65)

In the case of real photon eigenfrequencies under consideration here, rTM and
rTE are even functions of both ω and ξ. As a consequence, the seemingly pure
imaginary integral on the right-hand side of eqn (12.65) vanishes. Using the
evenness of the functions rTM and rTE with respect to ξ and calculating the
residues, we obtain

F(a, T ) =
kBT

2π

∞∑
l=0

′ ∫ ∞

0

k⊥dk⊥
{
ln
[
1 − r2

TM(iξl, k⊥)e−2aql
]

+ ln
[
1 − r2

TE(iξl, k⊥)e−2aql
]}

. (12.66)

The explicit expressions for the reflection coefficients computed at the Matsubara
frequencies (12.60) are

rTM(iξl, k⊥) =
εlql − kl

εlql + kl
, rTE(iξl, k⊥) =

ql − kl

ql + kl
, (12.67)

where
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q2
l = k2

⊥ +
ξ2
l

c2
, k2

l = k2
⊥ + εl

ξ2
l

c2
, εl = ε(iξl). (12.68)

It should be noted that eqn (12.66) for the Casimir free energy can be ob-
tained from eqn (12.30) for the energy at T = 0 (and vice versa) by the formal
substitution

�

2π

∫ ∞

0

dξ ←→ kBT

∞∑
l=0

′
(12.69)

and the replacement of the continuous frequencies ξ with the discrete Matsub-
ara frequencies ξl. With the same replacement, the Casimir pressure at zero
temperature (12.33) can be transformed into the Casimir pressure at nonzero
temperature following from eqn (12.66),

P (a, T ) = −kBT

π

∞∑
l=0

′ ∫ ∞

0

qlk⊥dk⊥
{[

r−2
TM(iξl, k⊥)e2aql − 1

]−1

+
[
r−2
TE(iξl, k⊥)e2aql − 1

]−1
}

. (12.70)

We note, however, that the substitution (12.69) is somewhat formal because, for
real materials, the dielectric properties may be different at T = 0 and T �= 0.

In the same way as in Section 12.1.1, the Lifshitz formulas (12.66) and (12.70)
derived in the case of real photon eigenfrequencies can be generalized to the case
of complex eigenfrequencies with small imaginary parts. Similarly to the case
of zero temperature, for complex eigenfrequencies the free energy is not given
by eqn (12.58), but the auxiliary electrodynamic problem results in eqn (12.66),
which becomes applicable for both real and complex dielectric permittivities of
the form (12.8). For this to be applicable in thermal equilibrium, net heat losses
should be absent on average (Barash and Ginzburg 1975, Ginzburg 1989). In
other words, the allowable dissipative processes in dielectrics lead to a nonzero
imaginary part for the photon eigenfrequencies, but each act of absorption must
be followed by a corresponding emission. This condition is explained in more
detail in Section 14.3.4.

The above derivation can be easily generalized to the case of arbitrary strat-
ified media considered in Section 12.2. In particular, the Casimir free energy per
unit area and the Casimir pressure for two dissimilar semispaces are given by
eqns (12.44) and (12.46), where the replacement (12.69) is made:

F(a, T ) =
kBT

2π

∞∑
l=0

′ ∫ ∞

0

k⊥dk⊥
{

ln
[
1 − r

(1)
TM(iξl, k⊥)r

(2)
TM(iξl, k⊥)e−2aql

]

+ ln
[
1 − r

(1)
TE(iξl, k⊥)r

(2)
TE(iξl, k⊥)e−2aql

]}
, (12.71)

P (a, T ) = −kBT

π

∞∑
l=0

′ ∫ ∞

0

qlk⊥dk⊥



[

e2aql

r
(1)
TM(iξl, k⊥)r

(2)
TM(iξl, k⊥)

− 1

]−1
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+

[
e2aql

r
(1)
TE(iξl, k⊥)r

(2)
TE(iξl, k⊥)

− 1

]−1

 .

The Casimir free energy and pressure at nonzero temperature for the three-
layer system enclosed between two semispaces considered in Section 12.2 are
obtained from eqns (12.47) and (12.51) with the same replacement. The use in
eqns (12.66) and (12.70) of the reflection coefficients (12.52), where ε(iξ), q, and
k are replaced with εl, ql, and kl, allows one to calculate the Casimir free energy
per unit area and the pressure at nonzero temperature in the configuration of two
dielectric plates of finite thickness. Computational results obtained using eqns
(12.66) and (12.70) for some specific materials are presented in Section 12.6.2.
Note also that by using the proximity force approximation (Section 6.5), one
can convert computational results for the free energy (12.66) into a force acting
between a plate and a sphere of radius R � a. For this purpose, the values of
F(a, T ) must be multiplied by 2πR. This will be used in Part III of the book for
the comparison between experiment and theory.

12.3.2 Representation in terms of real frequencies

Here, we present another form of the Lifshitz formulas for the Casimir free energy
per unit area and the Casimir pressure at nonzero temperature, using integration
over real frequencies rather than a summation over the Matsubara frequencies.
To do so we start from eqn (12.64), where the integration path of the integral
with respect to ω consists of segments of the imaginary frequency axis between
the imaginary Matsubara frequencies iξl, and semicircles centered on iξl. Using
the evenness of the functions rTM, rTE, and q with respect to ω, we can rearrange
eqn (12.64) as

F(a, T ) = − �i

4π2

∫ ∞

0

k⊥dk⊥

∫ i∞

0

dω coth
�ω

2kBT

{
ln
[
1 − r2

TM(ω, k⊥)e−2aq
]

+ ln
[
1 − r2

TE(ω, k⊥)e−2aq
]}

. (12.72)

Similarly to Section 12.1.2, we now consider a function −if(ω) such that its inte-
gral along the imaginary frequency axis is real. The function −if(ω) is supposed
to be analytic inside a contour Cq which consists of the positive half (0,∞) of
the real axis, a 90◦ arc of infinitely large radius, and the half (i∞, 0) of the imag-
inary axis, with infinitely small semicircles centered on the imaginary Matsubara
frequencies. For the renormalized quantities, the infinitely remote arc does not
contribute, and thus we assume the same property for the function −if(ω). Then
the application of the Cauchy theorem results in

Im

∫ ∞

0

f(ω) dω = Re

[
−i

∫ i∞

0

f(ω) dω

]
= −i

∫ i∞

0

f(ω) dω. (12.73)

The application of the equality (12.73) to eqn (12.72) leads to
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F(a, T ) =
�

4π2

∫ ∞

0

k⊥dk⊥

∫ ∞

0

dω coth
�ω

2kBT
Im

{
ln
[
1 − r2

TM(ω, k⊥)e−2aq
]

+ ln
[
1 − r2

TE(ω, k⊥)e−2aq
]}

. (12.74)

This is the Lifshitz formula for the Casimir free energy along the real frequency
axis. In a similar way, the Casimir pressure (12.70) can be represented in the
form

P (a, T ) = − �

2π2

∫ ∞

0

k⊥dk⊥

∫ ∞

0

dω coth
�ω

2kBT
Im

{
q
[
r−2
TM(ω, k⊥)e2aq − 1

]−1

+ q
[
r−2
TE(ω, k⊥)e2aq − 1

]−1
}

. (12.75)

In the limit T → 0, eqns (12.74) and (12.75) coincide with the respective equa-
tions (12.37) and (12.38) obtained for the case of zero temperature. The contribu-
tions of propagating waves to eqns (12.74) and (12.75) are obtained for ω > ck⊥
(pure imaginary q), and the contributions of evanescent waves for ω ≤ ck⊥ (real
q).

12.4 Correlation of energy and free energy

At nonzero temperature T , the physical quantities describing the Casimir effect
are determined by both the zero-point oscillations of the electromagnetic field
and thermal photons. For real physical bodies, however, there may be a nontrivial
interplay between the influences of the virtual and thermal photons. Here, we
discuss this problem in a general form applicable not only to dielectrics but also
to metals. We define the important concept of the thermal correction in relation
to real materials.

The Casimir free energy per unit area (12.66) and the Casimir pressure
(12.70) are conventionally represented in the form of the two contributions

F(a, T ) = E(a, T ) + ∆F(a, T ),

P (a, T ) = P(a, T ) + ∆P (a, T ), (12.76)

using the Abel–Plana formula (2.26) (Bordag et al. 2000a). The first terms on
the right-hand sides of eqn (12.76), E(a, T ) and P(a, T ), have the same form
as the right-hand sides of eqns (12.30) and (12.33) for the Casimir energy and
pressure at T = 0, E(a) and P (a), respectively. The only difference is that in
E(a) and P (a), the dielectric permittivity ε(ω) at T = 0 is used in the reflection
coefficients, whereas in E(a, T ) and P(a, T ) the dielectric permittivity ε = ε(ω, T )
is substituted. The second terms on the right-hand sides of eqn (12.76), with the
Abel–Plana formula, lead to

∆F(a, T ) =
ikBT

2π

∫ ∞

0

dt
F (iξ1t) − F (−iξ1t)

e2πt − 1
,

(12.77)
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∆P (a, T ) = − ikBT

π

∫ ∞

0

dt
Φ(iξ1t) − Φ(−iξ1t)

e2πt − 1
,

where the functions F (x) and Φ(x) are defined as follows:

F (x) =

∫ ∞

0

k⊥dk⊥
{
ln
[
1 − r2

TM(ix, k⊥)e−2aq
]
+ ln

[
1 − r2

TE(ix, k⊥)e−2aq
]}

,

Φ(x) =

∫ ∞

0

k⊥dk⊥q
{[

r−2
TM(ix, k⊥)e2aq − 1

]−1
+
[
r−2
TE(ix, k⊥)e2aq − 1

]−1
}

,

q ≡ q(ix, k⊥) =

√
k2
⊥ +

x2

c2
. (12.78)

These functions are also calculated using the dielectric permittivity ε(ω, T ).
Sometimes, in the literature, the argument T in the quantities E(a, T ) and

P(a, T ) is omitted and they are identified with the Casimir energy per unit area,
E(a), and the Casimir pressure, P (a), respectively, at zero temperature, and the
quantities ∆F(a, T ) and ∆P (a, T ) are called the thermal corrections. This is,
however, not always justified. Physically, a thermal correction is the difference
between the value of some quantity at a temperature T and at T = 0. Because
of this, the thermal corrections to the zero-temperature Casimir energy per unit
area, E(a), and to the Casimir pressure, P (a), should be rigorously defined as

∆TF(a, T ) = F(a, T )− E(a), ∆T P (a, T ) = P (a, T ) − P (a). (12.79)

Importantly, for some materials

∆TF(a, T ) �= ∆F(a, T ), ∆T P (a, T ) �= ∆P (a, T ), (12.80)

where ∆F(a, T ) and ∆P (a, T ) are defined in eqns (12.76) and (12.77). This is
the case for all materials whose permittivity depends on the temperature, i.e.
ε = ε(ω, T ). As a result, the quantities E(a, T ) and P(a, T ) in eqn (12.76) do
not have a clearly defined physical meaning at any nonzero temperature. At
zero temperature, the equalities E(a, 0) = E(a) and F(a, 0) = E(a) are valid.
However, at T > 0 the quantity E(a, T ) is not equal to the Casimir energy at
nonzero temperature as defined in thermodynamics,

E(a, T ) = −T 2 ∂

∂T

F(a, T )

T
(12.81)

[compare with eqn (5.32) for the energy from black-body radiation]. By using
the Lifshitz formula (12.66), the Casimir energy at nonzero temperature can be
expressed as

E(a, T ) =
kBT 2

2π

∫ ∞

0

k⊥dk⊥
∞∑

l=0

′
(

2πkBl

�

∂

∂ξl
+

∂ε

∂T

∂

∂ε

)
(12.82)

×
{
ln
[
1 − r2

TM(iξl, k⊥)e−2aql
]
+ ln

[
1 − r2

TE(iξl, k⊥)e−2aql
]}

.

If ε is temperature-independent, i.e. ∂ε/∂T = 0, the differentiation with
respect to ε does not contribute to E(a, T ). In this case only, E does not depend
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on T and is equal to the Casimir energy per unit area at T = 0: E = E(a) = E(a).
For a temperature-independent ε, P = P(a) = P (a) is also valid. For the case
when ∂ε/∂T = 0, eqn (12.82) allows an obvious interpretation as the combined
energy due to the zero-point and thermal photons. To confirm that this is the
case, we consider the additive sum of the photon eigenfrequencies between the
semispaces and the Planck photons (Barash 1988),

E0(a, T ) = �

∫ ∞

0

k⊥dk⊥
2π

∑
n

[
ωTM

k⊥,n

(
1

2
+

1

e
�ωTM

k⊥,n
/(kBT ) − 1

)

+ ωTE
k⊥,n

(
1

2
+

1

e
�ωTE

k⊥,n
/(kBT ) − 1

)]
S. (12.83)

This can be rearranged to give

E0(a, T ) =
�

2

∫ ∞

0

k⊥dk⊥
2π

∑
n

(
ωTM

k⊥,n coth
�ωTM

k⊥,n

2kBT
+ ωTE

k⊥,n coth
�ωTE

k⊥,n

2kBT

)
.

(12.84)
The sum in eqn (12.84) can be calculated using the argument principle (7.60).
The integration path in the complex plane of ω consists of a semicircle of infinite
radius in the right half-plane and the segments of the imaginary frequency axis
between the imaginary Matsubara frequencies, with infinitely small semicircles
centered at iξl. By calculating the residuals of the function ω coth[�ω/(2kBT )]
at the points ωl = iξl and subtracting the energy of infinitely separated semis-
paces, we arrive at a finite Casimir energy per unit area at nonzero temperature,
E(a, T ), as given in eqn (12.82) with ∂ε/∂T = 0 [see Bezerra et al. (2002b) for
details]. This quantity depends on T through the Matsubara frequencies only.

Thus, in the case of a temperature-independent dielectric permittivity, the
effects due to zero-point and thermal photons can be considered as additive. This
is, however, not so for real materials with dielectric properties which depend on
the temperature. For such materials, a complicated interplay between the effects
of zero-point and thermal photons can be expected. Nevertheless, a representa-
tion of the Casimir free energy per unit area and the Casimir pressure in the
form of eqn (12.76) may be formally useful, although the quantities ∆F and ∆P
have no physical meaning with regard to the thermal corrections in this case.

12.5 Asymptotic properties of the Lifshitz formula at low and high

temperature

It is useful to investigate the behavior of the Casimir free energy per unit area and
the Casimir pressure for dielectrics, as given by the Lifshitz formulas (12.66) and
(12.70), at both low and high temperature. This allows one to find the Casimir
entropy and to check the consistency of the Lifshitz theory with thermodynamics,
for various models of the dielectric response.
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12.5.1 Finite static dielectric permittivity

As explained in Section 7.4, the regions of low and high temperature are defined
with respect to the effective temperature, which, in the usual units, takes the
form

kBTeff =
�c

2a
. (12.85)

From eqn (12.85), it becomes clear that the regions of low and high temperature
(T � Teff and T � Teff , respectively) can be understood as the regions of small
and large separations between the plates. This makes the asymptotic properties
of the Lifshitz formula experimentally important. The theoretical meaningfulness
of the asymptotic properties is connected with requirements on the behavior of
the Casimir free energy at low temperature imposed by the Nernst heat theorem,
and with the validity of the classical limit at high temperature. As we shall
see below, thermodynamic constraints serve as a useful guide for clarifying the
question of what properties of real materials should be included in the model of
the dielectric response in the Lifshitz theory.

We start with the Casimir free energy per unit area (12.66) in a configuration
of two dielectric semispaces. The dielectric permittivity along the imaginary
frequency axis is obtained from eqn (12.8),

εl = ε(iξl) = 1 +
K∑

j=1

gj

ω2
j + ξ2

l + γjξl
. (12.86)

Note that in the case of dielectrics, both of the reflection coefficients rTM(iξ, k⊥)
and rTE(iξ, k⊥) in eqn (12.31) are discontinuous at the point (0, 0) when consid-
ered as functions of the two variables ξ and k⊥. This is because their limiting
values at the point (0, 0) depend on the path chosen to approach (0, 0) in the
(ξ, k⊥) plane. Thus, if one approaches the point (0, 0) along a straight line k⊥ = 0
(the case of normal incidence) the limiting values of the reflection coefficients
(12.31),

rTM(0, 0) =

√
ε0 − 1√
ε0 + 1

, rTE(0, 0) = −
√

ε0 − 1√
ε0 + 1

, (12.87)

are equal to the reflection coefficients of physical electromagnetic waves on a
dielectric surface (Landau et al. 1984). If, however, one approaches the point
(0, 0) along a line ξ = 0, the limiting values of the reflection coefficients are

rTM(0, 0) =
ε0 − 1

ε0 + 1
, rTE(0, 0) = 0. (12.88)

The latter result follows from eqn (12.31) and describes the zero-frequency con-
tribution in the Lifshitz formula.
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To find the low-temperature behavior of the free energy, we exploit the rep-
resentation (12.76). Fortunately, the oscillator parameters are almost indepen-
dent of the temperature for most dielectrics, in which case E(a, T ) ≈ E(a) and
P(a, T ) ≈ P (a). In terms of the dimensionless variables

y = 2qla, ζl =
ξl

ωc
= τl, τ = 4π

kBaT

�c
= 2π

T

Teff
(12.89)

[recall that ωc = c/(2a) was introduced in Section 12.1.3], the quantities E(a)
and ∆F(a, T ) defined in eqns (12.30) and (12.77) take the form

E(a) =
�c

32π2a3

∫ ∞

0

dζ

∫ ∞

ζ

dy f(ζ, y),

f(ζ, y) = y
{
ln
[
1 − r2

TM(iζ, y)e−y
]
+ ln

[
1 − r2

TE(iζ, y)e−y
]}

,

∆F(a, T ) =
i�cτ

32π2a3

∫ ∞

0

dt
F (itτ) − F (−itτ)

e2πt − 1
,

F (x) ≡
∫ ∞

x

dy f(x, y). (12.90)

The reflection coefficients (12.31), expressed in terms of the same variables, are

rTM(iζ, y) =
εy −

√
y2 + ζ2(ε − 1)

εy +
√

y2 + ζ2(ε − 1)
, (12.91)

rTE(iζ, y) =
y −

√
y2 + ζ2(ε − 1)

y +
√

y2 + ζ2(ε − 1)
, ε ≡ ε(iωcζ).

In this representation, they depend on the separation through the characteristic
frequency ωc. The dielectric permittivity (12.86), as a function of the continuous
dimensionless variables, is given by

ε(iωcζ) = 1 +
K∑

j=1

g̃j

1 + αjζ2 + βjζ
, (12.92)

where

g̃j =
gj

ω2
j

, αj = αj(a) =
ω2

c

ω2
j

, βj = βj(a) =
ωcγj

ω2
j

. (12.93)

Now we substitute ε(iωcζ) from eqn (12.92) into the reflection coefficients
(12.91). We are seeking the asymptotic behavior of ∆F(a, T ) at low temperature
or, equivalently, at τ � 1. To find this, we expand the function f(x, y) defined
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in eqn (12.90) in powers of x = tτ . The subsequent integration of this expansion
with respect to y from x to infinity results in

F (ix)−F (−ix) =
8ibx

ε2
0 − 1

Li2(r
2
0) +

iπ

2
r2
0(ε0 + 1)x2 − 240iC4x

3 + O(x4). (12.94)

Here, Lin(z) is the polylogarithm function, and the following notation has been
used:

b = b(a) =

K∑
j=1

g̃jβj(a), r0 =
ε0 − 1

ε0 + 1
. (12.95)

We note that ε0 = ε(0) and that the dependence of b on a comes from the defini-
tion of the characteristic frequency ωc. Substituting eqn (12.94) into eqn (12.90)
and integrating with respect to t from zero to infinity, we obtain (Klimchitskaya
and Geyer 2008)

F(a, T ) = E(a)− �c

32π2a3

[
b(a)Li2(r

2
0)

3(ε2
0 − 1)

τ2 +
ζR(3)r2

0(ε0 + 1)

8π2
τ3 − C4τ

4 + O(τ5)

]
.

(12.96)
Note that the expression (12.96) was obtained by Geyer et al. (2005b) and Klim-
chitskaya et al. (2006c) for a simplified model of a dielectric with γj = 0 and,
consequently, b(a) = 0. In that model the perturbative expansion starts from
the term of order τ3, which does not contribute to the Casimir pressure. The
coefficient of τ3 in the simplified model is the same as for the complete dielectric
permittivity (12.8). In the simplified model, the coefficient C4 is given by

C4 =
1

720
(
√

ε0 − 1)(ε2
0 + ε0

√
ε0 − 2). (12.97)

Now we find the first terms in the asymptotic expansion at τ � 1 for the
Casimir pressure. In terms of dimensionless variables, the quantity ∆P (a, T )
defined in eqns (12.77) and (12.78) takes the form

∆P (a, T ) = − i�cτ

32π2a4

∫ ∞

0

dt
Φ(itτ) − Φ(−itτ)

e2πt − 1
, (12.98)

and the function Φ(x) ≡ ΦTM(x) + ΦTE(x) is given by

Φλ(x) =

∫ ∞

x

y2 dy r2
λ(ix, y)

ey − r2
λ(ix, y)

, (12.99)

where λ = TM or TE.
First, let us determine the leading term of the expansion of ΦTE(x) in powers

of x. By introducing a new variable v = y/x, we arrive at

ΦTE(x) = x3

∫ ∞

1

v2 dv r2
TE(ix, v)

evx − r2
TE(ix, v)

. (12.100)
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Note that the reflection coefficient rTE(ix, v) depends on x only through the
frequency dependence of ε according to eqn (12.92). Expanding in powers of x
in eqn (12.100), we obtain

ΦTE(ix) − ΦTE(−ix) = −i
[
1 −

√
ε0

2
(3 − ε0)

] x3

2
+ O(x5). (12.101)

The expansion of ΦTM(x) from eqn (12.99) in powers of x is somewhat more
cumbersome. Following a procedure presented by Geyer et al. (2005b), we arrive
at

ΦTM(ix) − ΦTM(−ix) = −i
32b(a)x

ε2
0 − 1

Li2(r
2
0) − i

{
1 +

√
ε0

2
(2ε2

0 − 3ε0 − 1)

+
3b(a)

2(ε2
0 − 1)

[
(ε0 − 1)2

ε2
0

(1 + 5ε0 + 2ε2
0) +

32b(a)

ε0 − 1

ln(1 − r2
0)

r0

]}
x3

3

+ O(x5). (12.102)

Adding eqns (12.101) and (12.102), substituting the result obtained into eqn
(12.98), and integrating with respect to t, we find the asymptotic expression for
the Casimir pressure at low temperature as

P (a, T ) = P (a) − �c

32π2a4

{
2b(a)Li2(r

2
0)

3(ε2
0 − 1)

τ2 (12.103)

+
τ4

240

[
1

3
(
√

ε0 − 1)(ε2
0 + ε0

√
ε0 − 2) +

b(a)r0

2ε2
0

(1 + 5ε0 + 2ε2
0)

+
16b2(a)

(ε0 − 1)3
ln(1 − r2

0)

]
+ O(τ5)

}
.

Note that the term of order τ2 can be also obtained by differentiation of the term
of order τ2 in the free energy (12.96), taking into account the fact that b = b(a)
(recall that b(a) ∼ 1/a and τ ∼ a).

Now we are in a position to calculate the Casimir entropy and to perform a
thermodynamic test of the Lifshitz theory. Using the definition of the entropy
(5.4), we get

S(a, T ) =
kBτ

8πa2

[
2b(a)Li2(r

2
0)

3(ε2
0 − 1)

+
3ζR(3)r2

0(ε0 + 1)

8π2
τ − 4C4τ

2 + O(τ3)

]
.

(12.104)
As is seen from eqn (12.104), the Casimir entropy goes to zero when T goes
to zero (note that τ ∼ T ), i.e. the Nernst heat theorem is satisfied when the
dielectric permittivity is given by eqn (12.8) with a finite value of ε0 defined in
eqn (12.9). In this limiting case, the entropy depends on � through the definition
of τ in eqn (12.89).

The results obtained for the Casimir free energy, pressure, and entropy can
be generalized to the case of two dissimilar semispaces described by dielectric



306 The Lifshitz theory of the van der Waals and Casimir forces

permittivities ε(1)(ω) and ε(2)(ω), each having the form of eqn (12.8) but with
different values of the oscillator parameters. The respective static permittivities

are ε
(1)
0 = ε(1)(0) and ε

(2)
0 = ε(2)(0). Restricting ourselves to the lower perturba-

tion orders, the generalized expressions are the following:

∆F(a, T ) = − �c

32π2a3

{
Li2(r

(1)
0 r

(2)
0 )

6

[
b(1)(a)

(ε
(1)
0 )2 − 1

+
b(2)(a)

(ε
(2)
0 )2 − 1

]
τ2

+
ζR(3)r

(1)
0 r

(2)
0

8π2

ε
(1)
0 + ε

(2)
0 + 2ε

(1)
0 ε

(2)
0

ε
(1)
0 + ε

(2)
0

τ3

}
, (12.105)

∆P (a, T ) = − �c

32π2a4

Li2(r
(1)
0 r

(2)
0 )

3

[
b(1)(a)

(ε
(1)
0 )2 − 1

+
b(2)(a)

(ε
(2)
0 )2 − 1

]
τ2,

S(a, T ) =
kBτ

8πa2

{
Li2(r

(1)
0 r

(2)
0 )

3

[
b(1)(a)

(ε
(1)
0 )2 − 1

+
b(2)(a)

(ε
(2)
0 )2 − 1

]

+
3ζR(3)r

(1)
0 r

(2)
0

8π2

ε
(1)
0 + ε

(2)
0 + 2ε

(1)
0 ε

(2)
0

ε
(1)
0 + ε

(2)
0

τ

}
.

Here,

r
(n)
0 =

ε
(n)
0 − 1

ε
(n)
0 + 1

, b(n)(a) =

K∑
j=1

g̃
(n)
j β

(n)
j (a). (12.106)

It is interesting to note that if ε
(n)
0 decreases to unity (i.e. when rarefied materials

are considered), some of the denominators in the above formulas go to zero. This
does not mean, however, that the respective physical quantities, such as the free
energy, pressure, or entropy, are larger for more rarefied bodies, because the
respective magnitudes of the oscillator parameters decrease more rapidly.

To end this subsection, we consider the case of high temperature (τ � 1)
or, equivalently, of a large separation distance between the plates. In this case
the approximation of a static dielectric permittivity is applicable, and only the
zero-frequency term of the Lifshitz formula determines the total result (similarly
to Section 7.4.3, where all terms with Matsubara frequencies ξl, l ≥ 1, are expo-
nentially small). At zero frequency, we obtain the following from eqn (12.91) for
the reflection coefficients:

r
(n)
TM(0, y) = r

(n)
0 , r

(n)
TE(0, y) = 0. (12.107)

The Lifshitz formula (12.71), written in terms of the dimensionless variables
(12.89), for a configuration of two dissimilar semispaces takes the form

F(a, T ) =
kBT

8πa2

∞∑
l=0

′ ∫ ∞

ζl

y dy
{
ln
[
1 − r

(1)
TM(iζl, y)r

(2)
TM(iζl, y)e−y

]
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+ ln
[
1 − r

(1)
TE(iζl, y)r

(2)
TE(iζl, y)e−y

]}
. (12.108)

Neglecting all terms with l ≥ 1, we obtain

F(a, T ) =
kBT

16πa2

∫ ∞

0

y dy ln
[
1 − r

(1)
0 r

(2)
0 e−y

]
, (12.109)

where r
(n)
0 is defined in eqn (12.106). The integration with respect to y in this

equation results in

F(a, T ) = − kBT

16πa2
Li3[r

(1)
0 r

(2)
0 ]. (12.110)

In a similar manner, at τ � 1 the Casimir pressure is given by

P (a, T ) = − kBT

8πa3
Li3[r

(1)
0 r

(2)
0 ]. (12.111)

The respective Casimir entropy,

S(a, T ) =
kB

16πa2
Li3[r

(1)
0 r

(2)
0 ], (12.112)

is positive and independent of the temperature, and does not depend on �, i.e.
the classical limit is achieved (Feinberg et al. 2001).

12.5.2 Static conductivity of the dielectric material and the third law of
thermodynamics

As remarked in the introduction to this chapter, at nonzero temperature all
dielectrics possess some nonzero conductivity. The value of this conductivity
may be different for different types of dielectrics, but in all cases it is several
orders of magnitude smaller than the conductivity of metals. In the calculations
in the preceding section we have ignored the conductivity properties of dielectric
materials at T �= 0 by assuming that the dielectric permittivity is independent of
temperature and has a finite value at zero frequency. One might expect that the
inclusion of a negligible or relatively small conductivity for a dielectric at nonzero
temperature in the model of the dielectric response would not lead to theoretical
results significantly different from those obtained neglecting this conductivity.
What is more, one would expect that computations using the Lifshitz theory
with the conductivity included at T �= 0 would be more exact. However, as we
demonstrate below, the results of such computations are simply invalid, as they
are in contradiction with thermodynamics.

Now we repeat the calculation of the Casimir free energy and entropy for two
dissimilar dielectrics at low temperature, taking into account the conductivity
that arises for T > 0 at zero frequency. To do so, we must replace the dielectric
permittivity ε(ω) defined in eqn (12.8) with (Palik 1985)

ε̃(n)(ω, T ) = ε(n)(ω) + i
4πσ

(n)
0 (T )

ω
, n = 1, 2, (12.113)
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where σ
(n)
0 (T ) is the static conductivity. There is a universal behavior for the

conductivity of dielectric materials as a function of temperature. For pure insu-
lators and intrinsic semiconductors, it is given by

σ
(n)
0 (T ) ∼ exp

[
− ∆(n)

2kBT

]
, (12.114)

where ∆ is the bandgap. By convention, the material is called an insulator if
∆ ≥ 2–3 eV and an intrinsic semiconductor if ∆ < 2–3 eV (Mott 1990). For
Mott–Hubbard dielectrics and doped semiconductors with a doping concentra-
tion below the critical value (at sufficiently low T ), a similar dependence of the
conductivity on the temperature occurs:

σ
(n)
0 (T ) ∼ exp

[
− C(n)

2kBT

]
, (12.115)

where C(n) is a parameter (Mott 1990, Shklovskii and Efros 1984).
The dielectric permittivity (12.113) at the imaginary Matsubara frequencies

takes the form

ε̃
(n)
l ≡ ε̃(n)(iξl, T ) = ε(n)(iξl) +

β(n)(T )

l
, (12.116)

where ε
(n)
l = ε(n)(iξl) is defined in eqn (12.86) and β(n)(T ) = 2�σ

(n)
0 (T )/(kBT ).

We note that the parameter β is very small. For example, for SiO2 at T =
300 K, β ∼ 10−12 (Shackelford and Alexander 2001). Substituting the dielectric
permittivity (12.116) into the reflection coefficients (12.91), we obtain

r̃
(n)
TM(0, y) = 1, r̃

(n)
TE(0, y) = 0. (12.117)

Comparing this with eqn (12.107), we see that the magnitude of r̃TM at zero
frequency is different when the conductivity is included, regardless of whether
it is high or low [for the nonrelativistic van der Waals force, this was noticed
by Davies and Ninham (1972)]. In fact, the inclusion of the static conductivity
leads to a discontinuity in the transverse-magnetic reflection coefficient at zero
frequency. Bearing in mind that the conductivity is nonzero only when T �= 0,
we conclude that r̃TM, as a function of ξ and T , is discontinuous at the point
ξ = 0, T = 0.

The free energy F̃(a, T ) calculated with the dielectric permittivities ε̃
(n)
l is

expressed by eqn (12.108), where the reflection coefficients denoted with a tilde
are used. We separate the term with l = 0 from the terms with l ≥ 1 and subtract
and add the term

kBT

16πa2

∫ ∞

0

y dy ln
[
1 − r

(1)
0 r

(2)
0 e−y

]
. (12.118)

As a result, the free energy takes the form

F̃(a, T ) =
kBT

16πa2

∫ ∞

0

y dy
{

ln(1 − e−y) − ln
[
1 − r

(1)
0 r

(2)
0 e−y

]}
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+
kBT

16πa2

∫ ∞

0

y dy ln
[
1 − r

(1)
0 r

(2)
0 e−y

]
(12.119)

+
kBT

16πa2

∞∑
l=1

∫ ∞

ζl

y dy
{
ln
[
1 − r̃

(1)
TM(iζl, y)r̃

(2)
TM(iζl, y)e−y

]
+ ln

[
1 − r̃

(1)
TE(iζl, y)r̃

(2)
TE(iζl, y)e−y

]}
.

Now we expand the last, third term on the right-hand side of eqn (12.119), con-
taining a summation over l, in powers of the small parameters β(n)/l. Combining
the zero-order contribution in this expansion with the second term on the right-
hand side of eqn (12.119), we obtain the free energy F(a, T ) calculated with the

dielectric permittivities ε
(n)
l , which neglects the conductivity (see Section 12.5.1).

Calculating the first integral on the right-hand side of eqn (12.119), we arrive at

F̃(a, T ) = F(a, T ) − kBT

16πa2

[
ζR(3) − Li3

(
r
(1)
0 r

(2)
0

)]
+ R(a, T ). (12.120)

Here, R(a, T ) = O(β(n)) stands for the first and higher-order contributions in
the expansion of the third term on the right-hand side of eqn (12.119) in pow-
ers of β(n)/l. It can be proven that both R(a, T ) and ∂R(a, T )/∂T go to zero
exponentially fast when T goes to zero [see Geyer et al. (2005b) for details].

Equation (12.120) leads to an important conclusion about the thermody-
namic inconsistency of the Lifshitz theory for dielectrics when one includes the
dc conductivity in the model of the dielectric response. Substituting eqn (12.120)
into eqn (5.4), we obtain the entropy per unit area for the two semispaces de-
scribed by the dielectric permittivities (12.116),

S̃(a, T ) = S(a, T ) +
kB

16πa2

[
ζR(3) − Li3

(
r
(1)
0 r

(2)
0

)]
− ∂R(a, T )

∂T
, (12.121)

where S(a, T ), given by eqn (12.105), is the entropy for plates with dielectric
permittivities ε(n).

In the limit of T → 0, we obtain from eqn (12.121)

S̃(a, 0) =
kB

16πa2

[
ζR(3) − Li3

(
r
(1)
0 r

(2)
0

)]
> 0. (12.122)

The right-hand side of this equation depends on the parameters of the sys-
tem under consideration (the separation distance a) and implies a violation of
the third law of thermodynamics (the Nernst heat theorem). This conclusion is
general for any material that has zero conductivity at zero temperature. Such
materials include not only simple insulators, but also intrinsic semiconductors,
Mott–Hubbard dielectrics, solids with ionic conductivity, and doped semiconduc-
tors with doping concentrations below the critical value. The formal reason for
the violation of Nernst’s theorem, as was noticed by Intravaia and Henkel (2008),
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is connected with the discontinuity of the transverse-magnetic reflection coeffi-
cient r̃TM indicated above, as a function of ξ and T at the point ξ = 0, T = 0.
Physically, the disagreement with the Nernst theorem is explained by the drift
current which arises in dielectric semispaces described by the dielectric permittiv-
ity (12.113) and leads to Joule heating. As explained in detail in Section 14.3.4,
this violates thermal equilibrium, which is the basic application condition for the
Lifshitz theory.

Thus, in the framework of the Lifshitz theory, one should neglect the dc con-
ductivity of dielectrics at nonzero temperature. Violation of this rule leads to
theoretical results significantly different from those obtained with the neglect of
conductivity at nonzero temperature. In Section 12.6.3, we compute the Casimir
free energy and pressure between specific dielectric materials and show that
the inclusion of the dc conductivity would lead to an enormously large, non-
physical thermal correction. Recent experiments by Chen et al. (2007a, 2007b)
demonstrated that theoretical results obtained by neglecting the dc conductivity
of doped semiconductors with a concentration of charge carriers below critical
were consistent with measurement data, whereas results obtained by taking the
dc conductivity into account were excluded by the data. A detailed analysis of
these experiments and a comparison with theory are contained in Section 20.3.

12.6 Computational results for typical dielectrics

In this section, we present computational results for the Casimir free energy
per unit area and the Casimir pressure for a configuration of two semispaces at
different separations and temperatures, with different models of the dielectric
response.

12.6.1 Dielectric permittivity along the imaginary frequency axis

To perform computations using the Lifshitz formulas (12.66) and (12.70) with
the reflection coefficients (12.67), one needs to know the dielectric permittivity
ε(iξl) at the imaginary Matsubara frequencies. Computations at zero tempera-
ture using eqns (12.30) and (12.33) require a knowledge of ε(iξ) at all imaginary
frequencies from zero to infinity.

The calculation of the dielectric permittivity can be performed using tabu-
lated optical data for the complex index of refraction n(ω) = n1(ω)+in2(ω). The
most complete set of such data, for various materials over wide frequency regions,
has been provided by Palik (1985). Using the data for n1(ω) and n2(ω), one can
obtain both the real and the imaginary part of the dielectric permittivity:

Re ε(ω) = n2
1(ω) − n2

2(ω), Im ε(ω) = 2n1(ω)n2(ω). (12.123)

The permittivity of a dielectric material is characterized by a finite static
value of ε0, defined in eqn (12.9). For dielectric permittivities ε(ω) which are
regular at ω = 0, the standard Kramers–Kronig relations apply (Landau et al.
1984):
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Re ε(ω) = 1 +
1

π
P

∫ ∞

−∞

Im ε(ξ)

ξ − ω
dξ, Im ε(ω) = − 1

π
P

∫ ∞

−∞

Re ε(ξ)

ξ − ω
dξ, (12.124)

where the integrals are understood as principal values. From these equations,
one can obtain the Kramers–Kronig relation for the dielectric permittivity along
the imaginary frequency axis,

ε(iξ) = 1 +
2

π

∫ ∞

0

ω Im ε(ω)

ω2 + ξ2
dω (12.125)

[here we have used the fact that Im ε(−ω) = −Im ε(ω)].
There are two procedures, which lead to practically the same result, for de-

termining ε(iξ) using optical data for the complex index of refraction. One pro-
cedure is to numerically integrate the data for Im ε(ω), as given by eqn (12.123),
in accordance with eqn (12.125). Another procedure is to make a fit between the
optical data for Im ε(ω) and the oscillator analytical expression following from
eqn (12.8),

Im ε(ω) =
K∑

j=1

gjγjω

(ω2
j − ω2)2 + γ2

j ω2
. (12.126)

In this fit, the number of oscillators K and the oscillator parameters gj, ωj ,
and γj are determined. Then the dielectric permittivity along the imaginary fre-
quency axis is given by the analytic expression (12.86). The use of the imaginary
part of ε is preferred over the real part for the oscillator fit because, in the region
of absorption bands, n1 ∼ n2 and Re ε � Im ε.

Let us illustrate both procedures for two typical dielectrics. First we consider
silicon (Si), which is the main dielectric material (an intrinsic semiconductor
in the above classification) used in the semiconductor industry. The tabulated
optical data for the complex refractive index of Si extend from 0.00496eV to
2000 eV (Palik 1985). Let us use the first procedure to obtain ε(iξ) for Si. The
tabulated optical data have been measured across such a wide frequency region
that there is no need to use any extrapolation of the data to smaller frequen-
cies when using eqn (12.125) in order to find the dielectric permittivity at all
contributing imaginary Matsubara frequencies. Computational results for Si are
presented in Fig. 12.2(a), where ε(iξ) is plotted as a function of log10ξ (ξ is mea-
sured in rad/s; 1 eV = 1.51927 × 1015 rad/s). The first Matsubara frequency at
T = 300 K, ξ1 = 2.47 × 1014 rad/s, is indicated by the dashed line. As is seen
in the figure, ε(iξ) is practically constant below approximately 1015 rad/s and
decreases rapidly at higher frequencies. The static dielectric permittivity of Si
is equal to ε0 = ε(0) = 11.66. Silicon is a material which is characterized by an
electronic polarization only. Thus, there is only one step in Fig. 12.2(a) in the
behavior of ε along the imaginary frequency axis.

Another dielectric material, with a different behavior of the dielectric per-
mittivity as a function of iξ, is vitreous SiO2. We shall obtain ε(iξ) for SiO2

using the second procedure. For many materials, including SiO2, the dielectric
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Fig. 12.2. The dielectric permittivities along the imaginary frequency axis as
functions of the logarithm of the frequency for (a) Si and (b) SiO2. The dashed
lines indicate the position of the first Matsubara frequency at T = 300 K.

permittivity along the imaginary frequency axis can be approximated to a high
accuracy by the Ninham–Parsegian representation (Mahanty and Ninham 1976)

ε(iξ) = 1 +
CUV ω2

UV

ξ2 + ω2
UV

+
CIR ω2

IR

ξ2 + ω2
IR

, (12.127)

which is obtained from eqn (12.92) with K = 2, βj = 0, g1 = CUVω2
UV,

g2 = CIRω2
IR, ω1 = ωUV, and ω2 = ωIR. The Ninham–Parsegian approxima-

tion represents the effects of electronic polarization by one effective oscillator
with a frequency in the ultraviolet spectrum. For dielectrics with ionic polar-
ization, one more oscillator term is present, with a frequency in the infrared
spectrum. For SiO2, the values of the parameters CUV = 1.098, CIR = 1.703,
ωUV = 2.033×1016 rad/s, and ωIR = 1.88×1014 rad/s have been determined from
a fit to optical data (Hough and White 1980). The tabulated data for the com-
plex refractive index of SiO2 extend from 0.0025eV to 2000 eV. The dependence
of ε(iξ) on log10ξ for SiO2, as given by eqn (12.127), is shown in Fig. 12.2(b). A
characteristic feature of SiO2 is that the dependence of ε(iξ) on ξ in Fig. 12.2(b)
contains two steps. One of them (to the right of the first Matsubara frequency,
indicated by the dashed vertical line) is due to electronic polarization, and the
second is due to ionic polarization. The static dielectric permittivity of SiO2 is
equal to ε0 = ε(0) = 3.81. The two dielectric permittivities in Fig. 12.2 can be
used to compute the Casimir free energy per unit area and the Casimir pressure
for a configuration of two dielectric semispaces.

12.6.2 Free energy and pressure as functions of separation and temperature

We start with the computation of the Casimir free energy as a function of sepa-
ration distance in a configuration of two semispaces (thick plates) made of Si and
SiO2. For this purpose, the dielectric permittivities computed at the imaginary
Matsubara frequencies (see Fig. 12.2) have been substituted into the Lifshitz for-
mula (12.66). The computational results for the logarithm of the magnitude of
the free energy at T = 300 K are shown in Fig. 12.3(a). As is seen in Fig. 12.3(a),
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Fig. 12.3. Logarithm of the magnitude of (a) the Casimir free energy per unit
area and (b) the Casimir pressure for a configuration of two semispaces made
of Si and SiO2 at T = 300 K, as a function of the separation distance.

the magnitude of the free energy for Si is larger than for SiO2 at all separations.
At large separations, the magnitude of the free energy per unit area is very
small (for example, at a = 10 µm, it is only 100 fJm−2 for SiO2; recall that
1 fJ = 10−15 J). However, at separations below 1 µm, the magnitude of the free
energy per unit area can be millions of times larger.

In Table 12.1, the magnitude of the free energy per unit area for Si (column
3) and for SiO2 (column 5) computed at T = 300 K is presented for separation

Table 12.1. Magnitude of the Casimir free energy per
unit area (nJ m−2) at two different temperatures, T = 0
and T = 300 K, as a function of separation.

a Si Vitreous SiO2

(µm) T = 0 T = 300 K T = 0 T = 300 K

0.1 120.39 120.43 22.954 23.020

0.2 15.930 15.958 3.3234 3.3473

0.3 4.7850 4.8070 1.0884 1.1032

0.4 2.0292 2.0471 0.49558 0.50662

0.5 1.0416 1.0566 0.26964 0.27858

0.6 0.6036 0.6165 0.16400 0.17157

0.7 0.3804 0.3916 0.10766 0.11425

0.8 0.2550 0.2649 0.74717 0.80556

0.9 0.1792 0.1880 0.05409 0.05934

1.0 0.1306 0.1386 0.04048 0.04525
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distances from 100nm to 1 µm. For the purpose of comparison, the magnitude
of the Casimir energy per unit area has been computed by using the Lifshitz
formula (12.30) derived for T = 0. The results for Si are presented in column 2
and for SiO2 in column 4. As can be seen from a comparison of columns 3 and
2, and also columns 5 and 4, the relative thermal correction

δTF(a, T ) =
F(a, T ) − E(a)

E(a)
(12.128)

increases with an increase in separation distance. For example, at a = 100 nm we
have δTF(a, 300 K) = 0.033% for Si and 0.29% for SiO2. However, at a = 1 µm,
the relative thermal correction δTF(a, 300 K) is 6.12% for Si and 11.8% for SiO2.
This means that in the Casimir regime, the thermal correction is not significant
at the shortest separations but it must be taken into account at separations larger
than several hundred nanometers. We note that the absolute thermal correction
∆TF(a, T ) has the same sign (negative) as the Casimir free energy, and increases
its magnitude.

In Fig. 12.3(b), the computational results for the logarithm of the magnitude
of the Casimir pressure at T = 300 K are presented. They were computed using
the Lifshitz formula (12.70). The magnitude of the pressure for Si is larger than
for SiO2. At separations below 1 µm, the magnitude of the Casimir pressure
reaches measurable levels. In Table 12.2, the magnitude of the pressure for Si
(column 3) and for SiO2 (column 5) computed at T = 300 K is presented for
various separations below 1 µm. In columns 2 (for Si) and 4 (for SiO2), the

Table 12.2. Magnitude of the Casimir pressure (mPa)
at two different temperatures, T = 0 and T = 300 K, as
a function of separation.

a Si Vitreous SiO2

(µm) T = 0 T = 300 K T = 0 T = 300 K

0.1 3457.95 3458.07 643.896 644.985

0.2 235.24 235.32 45.966 46.119

0.3 47.478 47.523 9.9445 9.9978

0.4 15.149 15.183 3.3818 3.4088

0.5 6.2306 6.2553 1.4703 1.4869

0.6 3.0116 3.0304 0.74571 0.75713

0.7 1.6279 1.6425 0.42032 0.42878

0.8 0.9551 0.9667 0.25583 0.26240

0.9 0.5966 0.6060 0.16507 0.17037

1.0 0.3916 0.3993 0.11151 0.11588
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Fig. 12.4. Magnitude of (a) the Casimir free energy per unit area and (b) the
Casimir pressure for a configuration of two semispaces made of SiO2 at a sep-
aration of a = 1 µm, as a function of temperature. The dashed line indicates
the magnitude of (a) the Casimir energy and (b) the Casimir pressure at zero
temperature.

magnitude of the Casimir pressure at T = 0 computed using eqn (12.33) is given.
As can be seen from a comparison of columns 3 and 2 for Si and 5 and 4 for SiO2,
the relative thermal correction to the pressure, defined similarly to eqn (12.128),
plays an important role at a = 1 µm. Thus, for Si we have δT P (a, 300 K) = 1.96%
and, for SiO2, δT P (a, 300 K) = 3.92%. However, these are of smaller magnitude
than the relative thermal correction for the free energy. Keeping in mind that
in the proximity force approximation (see Section 6.5), the Casimir force for
the experimental configuration of a sphere above a plate is proportional to the
Casimir free energy in the configuration of two plates, the large magnitude of
the thermal correction to the free energy is significant (see Part III for discussion
on this subject).

Next we turn our attention to the dependence of the Casimir free energy
per unit area and the Casimir pressure on the temperature when the separation
is fixed. The computations were performed using the Lifshitz formulas (12.66)
for the free energy and (12.70) for the pressure in a configuration of two SiO2

semispaces at a separation a = 1 µm. The computational results for the mag-
nitude of the Casimir free energy as a function of temperature are presented
in Fig. 12.4(a). For the purpose of comparison, the Casimir energy computed
at T = 0 using eqn (12.30) is shown in the same figure by a dashed line. It is
seen that at high temperatures the thermal correction reaches tens of percent.
However, the role of the thermal correction is noticeable even at T = 100 K and
thus cannot be neglected at T = 300 K, where it contributes more than 10% (as
was discussed above).

In Fig. 12.4(b), the computational results for the magnitude of the Casimir
pressure between the two SiO2 semispaces at a = 1 µm apart are presented as a
function of temperature. The Casimir pressure at zero temperature between the
same semispaces was computed using the Lifshitz formula (12.33). This is shown
by the dashed line. Similarly to the Casimir free energy, the thermal correction
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becomes noticeable at T = 100 K, reaches several percent at T = 300 K, and
increases rapidly with an increase in temperature.

Additional results related to SiO2 and Si can be found in Chapter 16 in
connection with the atom–wall interaction and in Chapter 20 in connection with
experimental investigation of the Casimir force.

12.6.3 The inclusion of dc conductivity

As was shown in Section 12.5.2, the inclusion of the dc conductivity always
present in dielectric materials at nonzero temperature leads to a situation out
of thermal equilibrium, which is the basic application condition for the Lifshitz
theory, and results in a contradiction with thermodynamics. Thus, such an in-
clusion is theoretically not acceptable. Because of this, the dc conductivity was
ignored in the computations in Section 12.6.2.

Are there significant differences between the results obtained using the Lif-
shitz formula with the dielectric permittivity ε(iξ), ignoring the conductivity at
nonzero temperature, and with the permittivity ε̃(iξ), taking this conductivity
into account? To answer this question, here we describe computations of the
relative thermal correction δTF to the Casimir energy per unit area [see eqn
(12.128)] and the corresponding correction δT P to the Casimir pressure using
the Lifshitz formulas (12.66), (12.70), (12.30), and (12.33). Computations for Si
ignoring the conductivity were performed with the dielectric permittivity ε(iξ),
as given in Fig. 12.2(a). The results for δTF , as a function of separation, are
presented in Fig. 12.5(a) by the solid line. Corresponding computations for Si
were performed with the dielectric permittivity

ε̃(iξ) = ε(iξ) +
4πσ0(T )

ξ
(12.129)

[see eqn (12.113)], where, at T = 300 K, a typical value of the conductivity of Si,
σ0 = 1.4×107 s−1, was used. Importantly, the calculation results including the dc
conductivity of Si do not depend on the value of σ0 over a wide range 0 < σ0 <
1013 s−1. This is because the difference between the calculational results using
ε̃(iξ) and ε(iξ) is determined mostly by contributions to the zero-frequency term
in the Lifshitz formula. As with the contributions from all Matsubara frequencies
ξl with l ≥ 1, these contributions are approximately the same in both cases if
σ0 < 1013 s−1. The calculational results for δTF for Si with the conductivity
included are presented in Fig. 12.5(a) by the dashed line.

As is seen in Fig. 12.5(a), the inclusion of the dc conductivity of Si leads to
an enormous increase in the thermal correction at all separations. Thus, when
the conductivity is ignored (solid line), the thermal correction is equal to 1.44%,
6.13%, 14.1%, and 25.7% at separations a = 0.5 µm, 1 µm, 1.5 µm, and 2 µm,
respectively. When the conductivity is included (dashed line), the thermal cor-
rection is equal to 39.5%, 81.9%, 127.7%, and 177.2% at the same separations.

Similar results are obtained for the thermal correction to the Casimir pressure
between Si semispaces. Calculational results obtained using the Lifshitz formulas
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Fig. 12.5. Relative thermal correction (a) to the Casimir energy per unit area
and (b) to the Casimir pressure as a function of separation. Computations
were performed for Si at T = 300 K by using a dielectric permittivity with
a finite static value (solid lines) and taking into account the conductivity at
nonzero temperature (dashed lines).

with the dielectric permittivities ε(iξl) and ε̃(iξl) are shown in Fig. 12.5(b) by
the solid and dashed lines, respectively. It can be clearly seen that the inclusion
of the dc conductivity leads to a large increase in the thermal correction. Thus,
at separations of 1 µm and 2 µm, the thermal correction computed using ε(iξl) is
equal to 1.96% and 7.7%, whereas the thermal correction computed using ε̃(iξl)
with the conductivity included is equal to 52.5% and 108.7%, respectively.

An even greater increase in the thermal correction due to the inclusion of
conductivity in the model of the dielectric response takes place for SiO2. For
SiO2, computations were performed with the help of the same Lifshitz formulas,
using the dielectric permittivity ε(iξ) shown in Fig. 12.2(b), with the neglect of
the dc conductivity, and using the permittivity ε̃(iξ) given in eqn (12.129), which
includes the dc conductivity. The conductivity of SiO2 at T = 300 K is equal to
σ0 = 29.7 s−1 (Shackelford and Alexander 2001). The calculational results for
δTF and δT P are shown in Fig. 12.6(a,b), respectively. In both part (a) and part
(b), the solid line indicates results calculated with the dc conductivity neglected
and the dashed line indicates results with the dc conductivity included. As is seen
in Fig. 12.6(a), the thermal correction to the Casimir energy increases from 11.8%
and 41.5% to 256% and 464% at separations of a = 1 µm and 2 µm, respectively,
when the conductivity of SiO2 is included in the model of the dielectric response.
In Fig. 12.6(b), the calculational results demonstrate a dramatic increase in the
thermal correction to the Casimir pressure. Thus, at separations of 1 µm and
2 µm, the thermal corrections are only 3.9% and 15.4%, respectively, when the
conductivity of SiO2 is not included. If the conductivity of SiO2 at T = 300 K
is taken into account, δT P is equal to 182% and 314% at the same separation
distances.

It is instructive also to compare the behavior of the Casimir free energy and
the Casimir pressure at large separations (high temperatures) for the cases where
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Fig. 12.6. Relative thermal correction (a) to the Casimir energy per unit area
and (b) to the Casimir pressure as a function of separation. Computations
were performed for SiO2 at T = 300 K by using a dielectric permittivity with
a finite value at zero frequency (solid lines) and taking into account the dc
conductivity at nonzero temperature (dashed lines).

the dc conductivity of the dielectric materials is neglected or included. In the
absence of dc conductivity, the analytical asymptotic behavior of the free energy
and pressure for a configuration of two dissimilar dielectric semispaces is given
in eqns (12.110) and (12.111), respectively. If the dc conductivity is included in
the model of the dielectric response, the reflection coefficients at zero frequency
are given by eqn (12.117) and the asymptotic behaviors of the free energy and
pressure are given by the zero-frequency terms of the Lifshitz formulas (12.66)
and (12.70), respectively:

F̃(a, T ) = − kBT

16πa2
ζR(3), P̃ (a, T ) = − kBT

8πa3
ζR(3). (12.130)

For two Si semispaces, r
(1)
0 = r

(2)
0 = rSi

0 = 0.842. This leads to

F̃(a, T )

F(a, T )
=

P̃ (a, T )

P (a, T )
=

ζR(3)

Li
(
rSi
0 )2

] = 1.52. (12.131)

For two SiO2 semispaces, r
(1)
0 = r

(2)
0 = rSiO2

0 = 0.584 and the corresponding
ratios are equal to 3.36. Thus, the inclusion of the static conductivity leads to a
large increase in the magnitudes of both the Casimir free energy per unit area
and the Casimir pressure in the asymptotic limit of large separation or high
temperature.

Such large thermal corrections and magnitudes of the free energy and pres-
sure, as calculated in this section with inclusion of the static conductivities of
dielectrics, are inconsistent with the basic principles of thermodynamics. As men-
tioned in Section 12.5.2 and considered in detail in Section 20.3, these corrections
have already been excluded experimentally.
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12.7 Problems with polar dielectrics

In the above, we have considered dielectric permittivities in the form of eqn
(12.8). This form is commonly used for the description of nonpolar dielectrics
(see Section 12.6.1). Equation (12.8) includes the electronic polarization which is
inherent in all dielectrics. The respective oscillator frequencies ωj belong to the
ultraviolet spectrum. Some dielectrics, however, have an ionic component (typ-
ical examples are SiO2 and Al2O3). These dielectrics possess ionic polarization.
Their dielectric permittivity can also be represented in the form of eqn (12.8)
but with oscillator frequencies in the infrared spectrum [see e.g. the Ninham–
Parsegian representation (12.127)]. In both cases the molecules do not possess
intrinsic dipole moments, but only induced dipole moments due to the influence
of the fluctuating electromagnetic field. Another type of dielectric is the polar
dielectrics, whose molecules possess intrinsic dipole moments which are oriented
in an external electromagnetic field. In general, the dielectric permittivity of a
dielectric with all three types of polarization can be approximately represented,
on the imaginary frequency axis, in the form (Parsegian 2005)

ε(iξ) = 1 +
CUV ω2

UV

ξ2 + ω2
UV

+
CIR ω2

IR

ξ2 + ω2
IR

+
d

1 + ξτd
. (12.132)

Here, we have included for simplicity only one oscillator term describing the elec-
tronic polarization and one oscillator term describing the ionic polarization (the
Ninham–Parsegian model). These terms can be obtained from eqn (12.86) with
γj = 0. The last term on the right-hand side of eqn (12.132), with temperature-
dependent parameters d and τd, is the Debye term, which describes the dipole
orientation polarization. The typical values of 1/τ are in the microwave region
of the spectrum.

Let us consider mica as an example of a polar dielectric which possesses
all three types of polarization. The dielectric permittivity of mica along the
imaginary frequency axis is plotted in Fig. 12.7(a). It corresponds to the following
values of the parameters in eqn (12.132): ωUV = 10.33 eV, CUV = 1.48, ωIR =
3.95 × 10−2 eV, CUV = 2.0, and, at room temperature, τd = 5 × 10−8 s and
d = 0.4 (Parsegian 2005). As is seen in Fig. 12.7(a), there are three horizontal
steps in the functional dependence of ε(iξ) on log10 ξ due to the three types of
polarization. The step due to the electronic polarization is in the frequency region
around 1015 rad/s. If it were extrapolated to zero frequency, this step would lead
to εe

0 = 2.45. The step due to both the electronic and the ionic polarization is
in a region of order 1011–1012 rad/s. Extrapolation of this step to zero frequency
leads to εei

0 = 4.45. Finally, there is a third step at frequencies below 108 rad/s
due to the electronic, ionic, and orientation polarizations together. As a result,
the static permittivity of mica due to all three types of polarization, εp

0 , is equal
to 4.85.

At separations below 1 µm the Casimir energy at zero temperature, E(a), is
mostly determined by the electronic polarization. It is instructive to compare the
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Fig. 12.7. (a) Dielectric permittivity of mica along the imaginary frequency
axis. The dashed line indicates the first Matsubara frequency at T = 300 K
(Klimchitskaya and Geyer 2008). (b) The relative thermal correction to the
Casimir energy of mica plates as a function of separation at T = 300 K.
The solid line was computed with inclusion of the electronic and ionic po-
larizations, whereas the dashed line includes the orientation polarization as
well.

values of the thermal correction δTF(a, T ) defined in eqn (12.128) calculated in-
cluding the various types of polarization. Thus, for Si, which possesses electronic
polarization only, we obtain from Table 12.1 δTF(a, T ) = 1.44% at T = 300 K
and a = 500 nm. If we disregard both the ionic and the orientation polarization
of mica and take into account only its electronic polarization, the relative ther-
mal correction is δTF(a, T ) = 1.25% at the same T and a. Thus, the roles of the
electronic polarization for Si and mica are in fairly good agreement. However,
in mica, the ionic and orientation polarizations are also present. In Fig. 12.7(b),
we plot the relative thermal correction δTF(a, T ) for mica versus the separation
at T = 300 K. The solid line was computed taking the electronic and ionic po-
larizations into account, i.e. using a dielectric permittivity with εei

0 = 4.45. The
dashed line was computed by using the complete dielectric permittivity (12.132),
i.e. including the orientation polarization also. As is seen in Fig. 12.7(b) (solid
line), at a = 500 nm the relative thermal correction reaches 13.5% (compare
with the 1.25% found above when only the electronic polarization was included).
Thus, inclusion of the ionic polarization leads to a marked increase in the relative
thermal correction.

In Fig. 12.7(b), it is also seen that the role of the orientation polarization
increases with an increase in separation distance. Thus, at a = 100 nm the inclu-
sion of the orientation polarization leads to a 1% increase in the relative thermal
correction, but at a = 1 µm it leads to an 8% increase. We should emphasize that
the Debye term in the dielectric permittivity (12.132) leads to problems in the
Lifshitz theory. This term influences only the zero-frequency contribution to the
Casimir free energy (12.66). As a result, the thermal correction (12.79) with the
inclusion of the orientation polarization is given by (Klimchitskaya and Geyer
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2008)

∆TF (p)(a, T ) = ∆TF(a, T ) − kBT

16πa2

[
Li3(r

2
0,p) − Li3(r

2
0,ei)

]
. (12.133)

Here, ∆TF(a, T ) is the thermal correction due to the electronic and ionic polar-
izations only, and

r0,p =
εp
0 − 1

εp
0 + 1

, r0,ei =
εei
0 − 1

εei
0 + 1

. (12.134)

Note that r0,p depends on the temperature through the parameter d in eqn
(12.132). At temperatures of about 300 K, eqn (12.133) contains a contribution
approximately linear in the temperature. The first term on the right-hand side
of eqn (12.133), ∆TF(a, T ), has a standard form, considered in Section 12.5.1.
Hough and White (1980) questioned whether or not the Debye term should be
included in the model of dielectric response used in the Lifshitz theory. According
to them, the inclusion of the orientation degrees of freedom that come into play
at very low frequencies much below the first Matsubara frequency is not justified.
This problem calls for further investigation.

12.8 The Lifshitz formula for anisotropic plates

In the above, only isotropic plates were considered. In this case the dielectric
permittivity of a plate material can be described by one function ε(ω). The results
obtained, however, can be generalized simply to anisotropic plates described by a
diagonal tensor with the components εxx(ω), εyy(ω), and εzz(ω). A derivation of
the Lifshitz formula following the lines of Section 12.1.1 (at zero temperature) or
12.3.1 (at nonzero temperature) returns us to eqn (12.30) or (12.66), respectively.
However, the expressions for the reflection coefficients must be modified to take
into account the character of the crystal anisotropy and the orientation of the
optical axis.

12.8.1 Uniaxial crystals

Here, we consider two semispaces or two plates of finite thickness d made of a
uniaxial crystal (graphite, for example) which is characterized by two dissimilar
dielectric permittivities εx(ω) = εy(ω) and εz(ω). Bearing in mind the applica-
tions to graphite plates and carbon nanostructures in Part III of the book, we
assume that the boundary planes of the semispaces are in the plane (x, y) and the
crystal optical axis z is perpendicular to it. For the two semispaces, the Casimir
free energy per unit area is given by eqn (12.66) and the Casimir pressure by
eqn (12.70), with the following generalized reflection coefficients (Greenaway et
al. 1969):

r
(u)
TM(iξl, k⊥) =

√
εxlεzlql − kzl√
εxlεzlql + kzl

, r
(u)
TE(iξl, k⊥) =

ql − kxl

ql + kxl
. (12.135)

Here, the following notation has been introduced:
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k2
xl = k2

⊥ + εxl
ξ2
l

c2
, k2

zl = k2
⊥ + εzl

ξ2
l

c2
, εxl = εx(iξl), εzl = εz(iξl). (12.136)

For an isotropic crystal, εx = εy = εz and eqn (12.135) coincides with eqn
(12.67).

For two plates of finite thickness d made of a uniaxial crystal, the Casimir
free energy per unit area and the Casimir pressure are once more given by eqns
(12.66) and (12.70), with the following generalized reflection coefficients:

r
(u)
TM(iξl, k⊥) =

εxlεzlq
2
l − k2

zl

εxlεzlq2
l + k2

zl + 2
√

εxlεzlqlkzl coth(kzld)
,

r
(u)
TE(iξl, k⊥) =

q2
l − k2

xl

q2
l + k2

xl + 2qlkxl coth(kxld)
. (12.137)

In the limiting case of thick plates (d → ∞), eqn (12.137) coincides with eqn
(12.135). For an isotropic material, eqn (12.137) coincides with the previously
derived eqn (12.52).

12.8.2 Casimir torque

We now consider a plate made of a uniaxial crystal described by the dielectric
permittivities εx(ω) and εy(ω) = εz(ω). Thus, the optical axis of one of the plates
is aligned with the x-axis. Let the optical axis of the second plate [which is also
in the (x, y) plane] be rotated by an angle ϕ with respect to the x-axis. As was
shown by Parsegian and Weiss (1972) in the nonretarded case and by Barash
(1973) with retardation effects taken into account, a torque arises between the
two plates. This torque is due to the modification of the electromagnetic zero-
point energy in the presence of the plates. It leads to a rotation of the plates until
their optical axes are aligned. The free energy F = F(a, ϕ, T ) can be expressed
by the Lifshitz formula, but the formulas for the reflection coefficients are rather
cumbersome [they have been presented by Munday et al. (2005)]. The torque is
given by

M(a, ϕ, T ) = −∂F(a, ϕ, T )

∂ϕ
S. (12.138)

In the nonretarded limit (a � λ0, see Section 12.1.3) and for small anisotropies
|εx − εy|/εy � 1, one obtains (Munday et al. 2005)

M(a, ϕ, T ) = − ω̄S

64π2a2
sin(2ϕ), (12.139)

where ω̄ is the effective frequency, calculated using the dielectric permittivities of
both plates along the imaginary frequency axis. In the relativistic limit (a � λ0),
M ∼ −S sin(2ϕ)/a3 (Mostepanenko and Trunov 1997).

A Casimir torque also arises in a configuration consisting of asymmetric bod-
ies. In the same way as for the case of similar bodies with anisotropic properties,
the torque tends to change the mutual orientation of the bodies. Typical ex-
amples are those of two finite plates with uniaxial sinusoidal corrugations and



Lifshitz-type formula for radiative heat transfer 323

of a corrugated sphere above a corrugated plate. These configurations will be
considered in more detail in Chapter 21 in connection with the measurements of
the lateral Casimir force by Chen et al. (2002a, 2002b).

12.9 Lifshitz-type formula for radiative heat transfer

There are a number of physical phenomena apart from the Casimir effect that are
caused by zero-point and thermal fluctuations of the electromagnetic field. One
example is the radiative heat transfer between two plane, parallel plates (semis-
paces) at different temperatures T1 > T2, separated by an empty gap of width
a. This phenomenon was studied by Rytov (1959), and later on reconsidered
by Polder and van Hove (1971), by Loomis and Maris (1994), and by Volokitin
and Persson (2001, 2004) [see also the review by Volokitin and Persson (2007)].
The approach followed by Polder and van Hove is closely related to the Lifshitz
theory of the van der Waals and Casimir interaction between macroscopic bod-
ies. In this approach the heat transfer is regarded as occurring via fluctuating
electromagnetic fields radiated by the two bodies, whose sources are the random
thermal electric currents that are present inside the plates. The statistical prop-
erties of the random currents are determined by using the fluctuation–dissipation
theorem. The same assumptions about the properties of dielectric materials as in
the Lifshitz theory are used to describe the radiative heat transfer. Specifically,
it is supposed that the materials can be described by a frequency-dependent di-
electric permittivity ε(ω). Keeping in mind that in this case the plates are kept
at different temperatures, it is assumed that each of the plates is in local thermal
equilibrium.

This phenomenon is characterized by the power G per unit area of the heat
transfer from plate one to plate two. An expression for G was found by Loomis
and Maris (1994) using the average value of the Poynting vector in the gap
between the two plates. In terms of the reflection coefficients (12.45) along the
real axis (i.e. iξ must be replaced with ω), the power of the heat transfer is given
by (Volokitin and Persson, 2001, 2007, Bezerra et al. 2007)

G(a, T1, T2) =
�

4π2

∫ ∞

0

ω dω

[
1

exp(�ω/kBT1) − 1
− 1

exp(�ω/kBT2) − 1

]

×
{∫ ω/c

0

k⊥dk⊥

[[
1 − |r(1)

TM(ω, k⊥)|2
] [

1 − |r(2)
TM(ω, k⊥)|2

]
|1 − r

(1)
TM(ω, k⊥)r

(2)
TM(ω, k⊥)e−2aq|2

+

[
1 − |r(1)

TE(ω, k⊥)|2
][

1 − |r(2)
TE(ω, k⊥)|2

]
|1 − r

(1)
TE(ω, k⊥)r

(2)
TE(ω, k⊥)e−2aq|2

]
(12.140)

+ 4

∫ ∞

ω/c

k⊥dk⊥e−2qa

[
Im r

(1)
TM(ω, k⊥) Im r

(2)
TM(ω, k⊥)

|1 − r
(1)
TM(ω, k⊥)r

(2)
TM(ω, k⊥)e−2aq|2

+
Im r

(1)
TE(ω, k⊥) Im r

(2)
TE(ω, k⊥)

|1 − r
(1)
TE(ω, k⊥)r

(2)
TE(ω, k⊥)e−2aq|2

]}
.
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Equation (12.140) is similar to the Lifshitz formula (12.74) expressed in terms
of reflection coefficients along the real frequency axis. It is presented as a sum of
contributions of propagating waves (the integration with limits from 0 to ω/c)
and evanescent waves (the integration with limits from ω/c to infinity).

Note that for r
(2)
TM = r

(2)
TE = 0, the contribution of the evanescent waves

vanishes. For r
(2)
TM = r

(2)
TE = 0 and T2 = 0 (i.e. in the absence of the second

semispace), the contribution of the propagating waves reduces to the well-known
Kirchhoff formula for the flux of radiation from a single surface with reflection

coefficients rTM = r
(1)
TM and rTE = r

(1)
TE at a temperature T = T1:

G(T ) =
�

4π2c2

∫ ∞

0

dω
ω3

exp(�ω/kBT )− 1
(12.141)

×
∫ 1

0

p dp
[
2 − |rTM(ω, k⊥)|2 − |rTE(ω, k⊥)|2

]
,

where p = k⊥c/ω. In Section 14.5, we present the results of calculations for the
power of radiative heat transfer between metallic surfaces using eqn (12.140).

12.10 Application region of the Lifshitz formula

The application region of the Lifshitz formula is a challenging question. On the
one hand, it was derived in Sections 12.1.1.and 12.3.1 for dielectric media de-
scribed by real dielectric permittivities depending only on the frequency; under
some conditions, including the condition of thermal equilibrium, that derivation
was generalized to the case of complex ε(ω). The validity of this generalization
was independently confirmed in the original derivation of the Lifshitz formula
using the fluctuation–dissipation theorem and the scattering approach (see the
references in Section 12.1.1). We emphasize that the formulas obtained are valid
only in a state of thermal equilibrium. On the other hand, as was demonstrated in
Section 12.5.2, the application of the Lifshitz formula to complex permittivities
that include the dc conductivity of dielectric materials at nonzero temperature
leads to a violation of the third law of thermodynamics and to contradictions
with experimental data (see Section 20.3). Such anomalies occur because in the
presence of a drift current, the condition of thermal equilibrium is violated. As
a result, the fluctuation–dissipation theorem becomes inapplicable. It was con-
cluded that for all materials that have zero conductivity at zero temperature, the
conductivity arising at nonzero temperature must be neglected in the framework
of the Lifshitz theory. A related rule for metals is formulated in Section 14.6.3.

An important assumption used in all derivations of the Lifshitz formula is that
the dielectric permittivity depends only on the frequency, i.e. only the temporal
dispersion is taken into account. However, the final representation of the Lifshitz
formula in terms of the reflection coefficients for various systems [see, e.g. eqns
(12.30), (12.33), (12.66), and (12.70)] tempts one to apply these formulas to a
wider class of media possessing not only temporal but also spatial dispersion.
When this is done, the dielectric permittivity ε(ω) is replaced with ε(ω, k) and
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the modified reflection coefficients for reflection of electromagnetic waves from a
medium with spatial dispersion are substituted into the usual Lifshitz formulas.
Such an approach was used long ago (Heinrichs 1973, Kleinman and Landman
1974). The results obtained were criticized by Barash and Ginzburg (1975) as
not reliable. In the last few years, however, some others have applied the Lifshitz
formula to media with spatial dispersion [see e.g. Sernelius (2005), Svetovoy
and Esquivel (2005), Esquivel and Svetovoy (2004), Esquivel et al. (2003), and
Contreras-Reyes and Mochán (2005)]. Below, we demonstrate why the case of
media with spatial dispersion is outside the application region of the standard
Lifshitz theory (Klimchitskaya and Mostepanenko 2007).

As was shown in Section 12.1.1, the starting point for the derivation of the
photon eigenfrequencies and reflection coefficients (12.31) is the set of continuity
boundary conditions (12.2). These conditions form the basis for all of the deriva-
tions of the Fresnel reflection coefficients available in the literature. However,
if the material in the semispaces possesses spatial dispersion, these boundary
conditions do not apply. In electrodynamics with spatial dispersion, the physical
fields E and B at the interface are usually finite, though the electric displace-
ment D can tend to infinity (Agranovich and Ginzburg 1984). Taking this fact
into account and integrating the Maxwell equations (12.1) over the thickness of
the boundary layer [see e.g. Stratton (1941)], one reproduces the first and third
boundary conditions in eqn (12.2), but arrives at modified second and fourth
conditions at z = ±a/2 (Agranovich and Ginzburg 1984, Ginzburg 1985):

E1t(t, r) = E2t(t, r), D2n(t, r) − D1n(t, r) = 4πσ(t, r), (12.142)

B1n(t, r) = B2n(t, r),
[
n ×

(
B2(t, r) − B1(t, r)

)]
=

4π

c
j(t, r).

Here, the induced surface charge and current densities are given by

σ(t, r) =
1

4π

∫ 2

1

∇ ·
[
n ×

[
D(t, r) × n

]]
dl, j(t, r) =

1

4π

∫ 2

1

∂D(t, r)

∂t
dl

(12.143)
[all of the notation used here was described immediately after eqn (12.2)]. If
one uses eqn (12.3), which is valid in the absence of spatial dispersion, eqn
(12.143) leads to σ = 0 and j = 0, and eqn (12.142) coincides with the standard
continuity boundary conditions (12.2). If, however, spatial dispersion is present,
it is necessary to use the boundary conditions (12.142).

Now we turn to the possibility of using the permittivity ε(ω, k) and related
reflection coefficients in the Lifshitz theory. If the material of the semispaces
possesses both temporal and spatial dispersion, eqn (12.3) should be generalized
to

Dk(t, r) =

∫ t

−∞
dt′
∫

dr ε̂kl(t − t′, r, r′)El(t
′, r′) (12.144)

(this equation also includes anisotropic materials). If the medium is uniform in
space (i.e. all points are equivalent), the kernel ε̂ does not depend on r and r′
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separately, but only on the difference R ≡ r−r′. In this case, by performing the
Fourier transformation

E(t, r) =

∫ ∞

−∞
dω

∫
dk E(ω, k)ei(k · r−ωt) (12.145)

(and similarly for D) and substituting the result into eqn (12.144), one can
introduce dielectric permittivities

εml(ω, k) =

∫ ∞

0

dτ

∫
dR ε̂ml(τ, R)e−i(k · R−ωτ). (12.146)

These permittivities depend on both the wave vector and the frequency and
bring eqn (12.144) into a form analogous to eqn (12.5),

Dm(ω, k) = εml(ω, k)El(ω, k). (12.147)

However, for a Casimir configuration of two semispaces with a separation a,
the system is not uniform, owing to the presence of a gap. Here, it is incorrect to
assume that the kernel ε̂ depends only on R and τ , and hence it is not possible
to introduce εml(ω, k). Specifically, owing to the translational invariance in the
plane of the plates, one can introduce εx(ω, k⊥) = εy(ω, k⊥), but one cannot
introduce εz(ω, k), because the translational invariance along the z-axis is vio-
lated. Thus, the Lifshitz formulas cannot be used with the generalized reflection
coefficients (12.135) derived for uniaxial crystals. In the presence of boundaries,
the kernel ε̂ for systems with spatial dispersion depends not only on R and τ
but also on the distance from the boundary (Agranovich and Ginzburg 1984).
An approximate phenomenological approach to dealing with this case, applicable
to some physical problems other than the Casimir effect, has been described by
Agranovich and Ginzburg (1984). The main features of this approach are the
following. For electromagnetic waves with a wavelength λ, the kernel ε̂(τ, r, r′)
is significantly large only in the vicinity of the point r, in a region with a char-
acteristic dimension l � λ (in fact, for nonmetallic condensed media, l is of
the order of the lattice constant). One can then assume that ε̂ is a function of
R = r− r′, except for a layer of thickness l adjacent to the boundary surface. If
one is not interested in this subsurface layer, the quantity εml(ω, k) can be used
to describe the remainder of the medium.

Note that the approximate phenomenological approach outlined above, is
widely used in the theory of the anomalous skin effect for the investigation of
bulk physical phenomena involving electromagnetic fields (Kliewer and Fuchs
1968). To take the boundary into account, some fictitious infinite system is in-
troduced and the electromagnetic fields in this system are discontinuous on the
boundary surface. This discontinuity should not be confused with the disconti-
nuity in the physical fields of the real system in the presence of spatial dispersion
given by eqns (12.142) and (12.143). There is, however, another approach to the
anomalous skin effect in polycrystals (Kaganova and Kaganov 2001), based on
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the use of the local Leontovich impedance, taking into account the shape of the
Fermi surface (the concept of the Leontovich impedance is discussed in connec-
tion with the Lifshitz formula in Sections 13.4 and 14.4). The frequency- and
wave-vector-dependent dielectric permittivity in the presence of boundaries has
also been successfully applied in some other problems, for example the study of
electromagnetic interactions of molecules with a surface (Ford and Weber 1984).
However, from a fundamental theoretical point of view, for a bounded medium, it
is incorrect to use the same kernel in eqn (12.144), depending on R = r−r′, as for
an unbounded medium. According to Foley and Devaney (1975), this would lead
to nonconservation of the number of particles and, consequently, to a violation
of the law of conservation of energy (Barash and Ginzburg 1975). Nevertheless,
this approach has recently been used by Svetovoy (2008). Additionally, specular
reflection of charge carriers from the boundary planes was assumed. It has been
proven, however, that for spatially dispersive materials the scattering of carriers
is neither specular nor diffuse (Foley and Devaney 1975).

Thus, it is unlikely that a phenomenological approach using a frequency- and
wave-vector-dependent dielectric permittivity ε(ω, k) for the spatially nonuni-
form configuration of two parallel plates separated by a gap could be applicable
in combination with the usual Lifshitz formula to calculating the Casimir force
for cases with spatial dispersion. The Casimir force is very sensitive to the be-
havior of the dielectric permittivity in the layer of thickness l adjacent to the
boundary surface, i.e. where the approximate description by means of ε(ω, k) is
not applicable. A consistent theory of the Casimir force taking spatial dispersion
into account should start from the boundary conditions (12.142) and (12.143)
and the general connection (12.144) between the electric field and electric dis-
placement. Some steps towards a theory of the van der Waals and Casimir force
including spatial dispersion were taken by Barash and Ginzburg (1975), where
a general expression for the free energy was obtained in terms of the thermal
Green’s function of the electromagnetic field and the polarization operator. The
generalization of the Lifshitz formula in terms of the scattering matrices (10.43)
opens up opportunities to include the effect of spatial dispersion. To do so, one
must find the corresponding T -matrices of the operators TAA and TBB. In prin-
ciple, this could be done by solving Maxwell’s equations for a given Casimir
configuration with nonlocally responding materials. As regards the standard Lif-
shitz formulas considered in this book, they are applicable only in the absence
of spatial dispersion.



13

THE CASIMIR INTERACTION BETWEEN REAL-METAL

PLATES AT ZERO TEMPERATURE

In contrast to dielectrics, metals are materials that have a nonzero conductivity
at zero temperature. This conductivity is determined by the presence of free
electrons. For metals, the valence band is the conduction band as well (i.e. this
band is half-filled). The ideal-metal boundary conditions considered in the first
part of the book do not allow any penetration of the electromagnetic field inside
the metal. In reality, however, there is some nonzero penetration depth (the skin
depth) of an electromagnetic wave into the metal interior which depends on the
quality of the metal and on the wave frequency. Thus, there should be corrections
to the original Casimir expressions (1.1) and (1.5) for the pressure and energy
per unit area due to the nonzero skin depth.

The effect of the skin depth on the Casimir force can be investigated in the
framework of the Lifshitz theory. To do this, it is necessary to model the prop-
erties of the metal by a dielectric function which depends only on the frequency.
Traditionally, the effect of the skin depth has been studied at zero temperature
using the free-electron plasma model. A first-order correction to the Casimir
result (1.1) in the relative penetration depth of electromagnetic waves into the
metal was obtained in this way by Dzyaloshinskii et al. (1961), with an error in
the numerical coefficient which was corrected by Hargreaves (1965).

In this chapter, we consider both analytical calculations of the Casimir en-
ergies and forces between real metal plates and numerical computations using
tabulated optical data for the complex index of refraction of metals. Comparison
between the results of the analytical and numerical computations permits one
to infer the main properties of metals affecting the Casimir force and how they
enter into the Lifshitz theory. We also introduce the concept of the Leontovich
surface impedance and related boundary condition and indicate the application
region of the impedance approach. This chapter should be considered as a prepa-
ration for Chapter 14, where the complicated problem of the thermal Casimir
force between real metal plates is considered.

13.1 Perturbation theory in the relative skin depth, and the plasma

model

We consider two parallel metal semispaces separated by a gap of width a at zero
temperature. It is reasonable to consider separation distances from about 0.1 µm
to 1 µm. The contributing frequencies in this region are those of visible light and
infrared optics. In addition, thermal corrections cannot exceed a few percent.
This justifies our assumption that the temperature is equal to zero.
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At the relatively high frequencies of infrared optics, a good approximation for
the dielectric properties of metals is provided by the free-electron plasma model

εp(ω) = 1 −
ω2

p

ω2
, (13.1)

where the plasma frequency is given by

ω2
p =

4πnee
2

m∗ . (13.2)

Here, ne is the density of electrons, m∗ is their effective mass, and e is the
electron charge. The problem can easily be framed in terms of the relative skin
depth based on the plasma wavelength,

δ0

a
=

λp

2πa
=

c

ωpa
� 1, (13.3)

where δ0 is the skin depth and λp is the plasma wavelength.
In terms of the dimensionless variables (12.41), the Casimir energy (12.30)

takes the form

E(a) =
�c

32π2a3

∫ ∞

0

y dy

∫ y

0

dζ
{
ln
[
1 − r2

TM(iζ, y)e−y
]

+ ln
[
1 − r2

TE(iζ, y)e−y
]}

, (13.4)

equivalent to that in the first two lines of eqn (12.90). The reflection coefficients
are expressed in terms of dimensionless variables in eqn (12.91). The dielectric
permittivity (13.1) along the imaginary frequency axis reads

εp(iξ) = εp(iωcζ) = 1 +
ω2

p

ω2
cζ

2
= 1 +

4a2

δ2
0ζ

2
, (13.5)

where ωc = c/(2a) is the characteristic frequency.
Now we introduce the quantity

A(y) =

∫ y

0

dζ
{
ln
[
1 − r2

TM(iζ, y)e−y
]
+ ln

[
1 − r2

TE(iζ, y)e−y
]}

(13.6)

and expand it in powers of the small parameter δ0/a up to the fourth order,

A(y) = 2y ln(1 − e−y) +
8

3

δ0

a

y2

ey − 1
− 12

5

(
δ0

a

)2
y3ey

(ey − 1)2
(13.7)

+
8

105

(
δ0

a

)3
y4(−1 + 22ey + 19e2y)

(ey − 1)3
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− 1

135

(
δ0

a

)4
y5ey(179 + 1042ey + 179e2y)

(ey − 1)4
.

Substituting eqn (13.7) into eqn (13.4) and integrating with respect to y, we
finally find

Ep(a) = − π2
�c

720a3

[
1 − 4

δ0

a
+

72

5

(
δ0

a

)2

(13.8)

−320

7

(
1 − π2

210

) (
δ0

a

)3

+
400

3

(
1 − 163π2

7350

) (
δ0

a

)4
]

,

where the subscript “p” indicates that the Casimir energy is obtained using the
plasma model. The zeroth-order term in eqn (13.8) coincides with eqn (2.82), ob-
tained for ideal-metal planes, as expected. Note that multiplication of eqn (13.8)
by 2πR leads to the Casimir force acting between a plate and a large sphere of
radius R (see Section 6.5).

In a similar way, the Casimir pressure (12.33) is given in terms of the dimen-
sionless variables (12.41) by

P (a) = − �c

32π2a4

∫ ∞

0

y2 dy B(y), (13.9)

B(y) =

∫ y

0

dζ
{[

r−2
TM(iζ, y)ey − 1

]−1
+
[
r−2
TE(iζ, y)ey − 1

]−1
}

.

Expanding the integrand in B(y) up to the fourth power in δ0/a and integrating
with respect to ζ, we obtain

B(y) =
2y

ey − 1
− 8

3

δ0

a

y2ey

(ey − 1)2
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5

(
δ0

a
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(13.10)
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.

After substitution of this expansion in eqn (13.9) and integration with respect
to y, the result is

Pp(a) = − π2
�c

240a4

[
1 − 16

3

δ0

a
+ 24

(
δ0

a

)2

(13.11)
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) (
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) (
δ0

a

)4
]

.

The coefficient of δ0/a was calculated by Hargreaves (1965) [see also Schwinger et
al. (1978) and Milonni (1994)]. The coefficient of (δ0/a)2 was found by Mostepa-
nenko and Trunov (1985). The coefficients of the third and fourth powers of δ0/a
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were calculated by Bezerra et al. (2000a). Bezerra et al. (2001) have also found
the coefficients of the fifth and sixth powers of δ0/a.

Equations (13.8) and (13.11) were generalized by Geyer et al. (2002) to the

case of two semispaces made of dissimilar metals with plasma frequencies ω
(1)
p

and ω
(2)
p . In this case there are two small parameters δ1/a and δ2/a, defined as

in eqn (13.3) via the respective plasma wavelengths and plasma frequencies. The
resulting Casimir energy per unit area and Casimir pressure are given by (Geyer
et al. 2002)

Ep(a) = − π2
�c

720a3

{
1 − 4

δ

a
+
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5

(
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)2

− 320

7

(
δ

a

)3 [
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+
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, (13.12)
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Here, the effective quantities δ and κ are defined as

δ =
δ1 + δ2

2
, κ =

δ1δ2

(δ1 + δ2)2
. (13.13)

In the case of similar semispaces, δ1 = δ2 = δ0, δ = δ0, κ = 1/4, and eqn (13.12)
coincides with eqns (13.8) and (13.11).

In what follows, we compare computational results obtained using eqns (13.8)
and (13.11) with those obtained by other methods used in the literature at zero
temperature.

13.2 Drude model and the Lifshitz formula at zero temperature

Here, we introduce the dielectric permittivity in the Drude model, which has been
the subject of many discussions in connection with the thermal Casimir force.
We derive the Drude dielectric permittivity starting from the Maxwell equations
and present some computational results for the Casimir energy per unit area and
the Casimir pressure obtained using the Drude and plasma models.

13.2.1 The Drude dielectric permittivity

As was discussed in Section 12.6.1, one method to describe the behavior of the
dielectric permittivity along the imaginary frequency axis is the numerical in-
tegration of the optical data for Im ε(ω) using the Kramers–Kronig relations.
This approach will be used for metals in next section. Here, we note only that
for metals, the optical data are usually not known in the required frequency
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region. Thus, for gold (the most important metal in the experimental investi-
gations of the Casimir force; see Chapters 19 and 20), data are available only
at ω ≥ 0.125 eV. Because of this, it is necessary to extrapolate the available
data for Im ε(ω) to lower frequencies using some reasonable procedure. It was
suggested (Lamoreaux 1999, Lambrecht and Reynaud 2000a, Boström and Ser-
nelius 2000a) that this extrapolation should be performed using the imaginary
part of the Drude dielectric permittivity (or dielectric function)

εD(ω) = 1 −
ω2

p

ω(ω + iγ)
, (13.14)

where γ is the relaxation parameter. In contrast to the plasma model, the Drude
model takes into account the relaxation processes of conduction electrons.

The Drude dielectric function (or the Drude model) plays an outstanding
role in the theory of the Casimir effect between real metals. Because of this, it
is necessary to dwell on this subject in more detail and discuss the origin and
application region of eqn (13.14). Let us derive the Drude dielectric permittivity
(13.14) starting from the Maxwell equations (12.1) for an unbounded nonmag-
netic medium without spatial dispersion. As mentioned at the beginning of this
chapter, the most important property of metals is their nonzero conductivity at
zero temperature. For metals, the electric displacement is determined by

∂D(t, r)

∂t
=

∂E(t, r)

∂t
+

4π

c
j(t, r), (13.15)

where j(t, r) = σ0E(t, r) is the electric current density induced in the metal, and
σ0 is the conductivity at zero frequency. Physically, the condition that the metal
is unbounded means that it should be much larger than the size of the wavefront
of the electromagnetic waves under consideration. Representing the solutions of
the Maxwell equations (12.1) and (13.15) in the form of monochromatic waves
(12.10), we obtain

∇
2E(r) + k2E(r) = 0, ∇

2B(r) + k2B(r) = 0, (13.16)

where

k2 =
ω2

c2
+ i

4πσ0ω

c2
≡ εn(ω)

ω2

c2
. (13.17)

Here, the dielectric permittivity for the normal skin effect has been introduced,

εn(ω) = 1 + i
4πσ0

ω
. (13.18)

This dielectric permittivity is applicable at sufficiently low frequencies (the region
of the normal skin effect), where the relation j = σ0E is valid. These frequencies
are lower than the frequencies of infrared optics. In fact, a permittivity of the
form (13.18) has already been used in Chapter 12 for the description of the
conductivity of dielectrics at nonzero temperature [see eqn (12.129)].
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For the frequency range of interest, one could hope to interpolate between
eqn (13.1), applicable at the relatively high frequencies of infrared optics up to
ωp and eqn (13.18), applicable at the relatively low frequencies of the normal
skin effect. This interpolation is provided by the replacement

σ0 → σ(ω) =
σ0[1 + i(ω/γ)]

1 + (ω2/γ2)
. (13.19)

Substituting eqn (13.19) into eqn (13.18) and taking into account the relation-
ship between the static conductivity and the relaxation parameter (Ashcroft and
Mermin 1976)

σ0 =
ω2

p

4πγ
, (13.20)

we recover the dielectric permittivity of the Drude model (13.14). Thus, the
Drude model (13.14) is approximately applicable in a wide frequency region from
quasistatic frequencies (where relaxation processes are important) to infrared
optics (where relaxation does not play any role). At ω � γ, one can neglect ω
in comparison with iγ in eqn (13.14), and εD(ω) ≈ εn(ω), whereas at ω � γ one
can neglect iγ in comparison with ω, and εD(ω) ≈ εp(ω) (here we disregard the
region of frequencies of the anomalous skin effect, which will be considered in
Section 13.4 in connection with the Leontovich surface impedance).

The Drude dielectric function has a simple pole at zero frequency. Because of
this, the second of the Kramers–Kronig relations (12.124), derived for functions
that are regular at ω = 0, does not apply in this case. It is replaced by (Landau
et al. 1984)

Im ε(ω) = − 1

π
P

∫ ∞

−∞

Re ε(ξ)

ξ − ω
dξ +

4πσ0

ω
. (13.21)

This, however, does not affect the Kramers–Kronig relation expressing ε(iξ) via
Im ε(ω), so that eqn (12.125) remains valid.

It should be stressed that the Drude dielectric permittivity (13.14) is in fact
a function of temperature, i.e. εD ≡ εD(ω, T ), through the temperature depen-
dence of the relaxation parameter γ = γ(T ). In Section 14.3.2, this point will be
considered in detail, including the functional form of this dependence. However,
for the purpose of extrapolation of the tabulated optical data to lower frequen-
cies, the value of the relaxation parameter at room temperature, T = 300 K, is
commonly used (Lamoreaux 1999, Lambrecht and Reynaud 2000a, Boström and
Sernelius 2000a). The Casimir energy per unit area and the Casimir pressure
at zero temperature calculated in this way have a somewhat dubious physical
meaning. On the one hand, the Lifshitz formulas used [eqns (13.4) and (13.9)]
describe the Casimir effect at zero temperature. On the other hand, the Drude
dielectric function substituted into these formulas is related to the temperature
T = 300 K.
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13.2.2 Computations using the plasma and Drude models

Now we consider some computational results obtained using the dielectric per-
mittivities of the plasma and Drude models at zero temperature (with the
caveat that the relaxation parameter of the Drude model has been determined
at T = 300 K). We have used the following values of the Drude parameters
for gold: ωp = 9.0 eV, and γ = 0.035 eV (Palik 1985, Lambrecht and Reynaud
2000a). The choice of these values is explained in the next section. We start
with the plasma model. Bearing in mind that the Casimir energy per unit area
and pressure vary rapidly with a change in separation distance, we present the
computational results in the form of correction factors

ηE(a) =
Ep(a)

E(a)
, ηP (a) =

Pp(a)

P (a)
. (13.22)

Here, Ep(a) and Pp(a) are computed by the substitution of the dielectric per-
mittivity of the plasma model (13.1) into the Lifshitz formulas (13.4) and (13.9),
respectively. The quantities E(a) and P (a) are the Casimir energy per unit area
and pressure for ideal-metal planes defined in eqns (1.5) and (1.1), respectively.

The computational results for the correction factor ηE are presented in Fig.
13.1(a) by the solid line labeled 1 and those for the correction factor ηP by the
solid line labeled 2, within the range of separations from 100 nm to 1 µm. The
dashed lines 1 and 2 in Fig. 13.1(a) show the same correction factors where
Ep(a) and Pp(a) are calculated using the perturbative expansions (13.8) and
(13.11), respectively. As can be seen in Fig. 13.1(a), the perturbation expan-
sions reproduce the results obtained using the Lifshitz formulas very accurately
over a wide range of separations. Relatively large deviations between the dashed
and solid lines occur only at separations below the plasma wavelength (for gold,
λp = 2πc/ωp ≈ 137 nm). Thus, at a = 130 nm the relative deviation between

the correction factor η
(per)
E computed using the perturbative formulas and η

(L)
E

computed using the Lifshitz formula, [η
(per)
E − η

(L)
E ]/η

(L)
E , reaches 3.4%. The rel-

ative deviation between the computational results for ηE decreases rapidly with
increasing separation. For example, at separations of 150nm, 200 nm, and 1 µm,
this deviation is equal to 1.6%, 0.36%, and 0.01%, respectively. Similarly, at
a = 130 nm the relative deviation of the correction factors for the Casimir pres-

sure, [η
(per)
P − η

(L)
P ]/η

(L)
P , is equal to 10.4% (solid and dashed lines labeled 2). At

separations of 150nm, 200nm, and 1 µm, this deviation is equal to 4.85%, 1.1%,
and 0.06%, respectively.

Now we consider the computational results obtained from the substitution of
the Drude model (13.14) into the Lifshitz formulas (13.4) for the Casimir energy
per unit area and (13.9) for the Casimir pressure. They are presented in the form
of correction factors ηE and ηP in Fig. 13.1(b) by the dashed line 1 (for the energy
per unit area) and the dashed line 2 (for the pressure) as functions of separation
distance. For comparison purposes, the same correction factors as in Fig. 13.1(a),
computed using the plasma model, are shown by the solid lines. In Fig. 13.1(b),



Computations using tabulated optical data 335

0.2 0.4 0.6 0.8 1

0.5

0.6

0.7

0.8

0.9

1

� � � � 	




�

�

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

 � � � �

�

�

�

� � � � � �

Fig. 13.1. (a) Correction factors to the Casimir energy per unit area, ηE (solid
line 1), and to the Casimir pressure, ηP (solid line 2), computed using the
Lifshitz formula and the plasma model as functions of separation. The dashed
lines 1 and 2 show the correction factors ηE and ηP calculated using the
perturbative expansions in the relative skin depth. (b) Correction factors to
the Casimir energy per unit area (dashed line 1) and to the Casimir pressure
(dashed line 2), computed using the Lifshitz formula and the Drude model.
The solid lines 1 and 2 show the correction factors ηE and ηP calculated using
the plasma model.

a wider range of separations than in Fig. 13.1(a) has been chosen, i.e. from 50nm
to 1 µm. As is seen in Fig. 13.1(b), at the shortest separations, from 50nm to
100 nm, the computational results obtained using the Drude and plasma models
for both the Casimir energy per unit area and the Casimir pressure are very
close. With increasing separation distance, there are slightly increasing deviations
between the results obtained with the use of the Drude and plasma models. Thus,
for the Casimir energy per unit area the deviation between the correction factors

η
(L)
E computed using the plasma and Drude models normalized to the plasma

value is equal to only 1.1% and 1.5% at separations a = 50 nm and 100nm,
respectively. At separations a = 200 nm and 1 µm, this deviation increases to
1.75% and 1.8%, respectively. For the Casimir pressure, the respective quantity
is equal to 0.88% and 1.3% at separations a = 50 nm and 100 nm, respectively.
At a = 200 nm and 1 µm, it reaches 1.7% and 1.8%, respectively.

Thus, at separations below 1 µm, where one might expect that thermal effects
are not important, the Drude and plasma models lead to results differing by less
than 2%, and this difference decreases with a decrease in separation distance.

13.3 Computations using tabulated optical data

Both the plasma and the Drude model disregard important physical processes
determined by interband transitions of core electrons. As was mentioned in Sec-
tion 13.2.1, the dielectric permittivity along the imaginary frequency axis ε(iξ)
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can be obtained using the Kramers–Kronig relation (12.125) through the numer-
ical integration of tabulated optical data for Im ε(ω). As an example, we shall
illustrate this procedure using gold semispaces described by the tabulated optical
data collected by Palik (1985).

At high frequencies the available data extend up to ω = 10 000 eV. This is
quite sufficient to compute highly accurate values of ε(iξ) at all frequencies con-
tributing to the Casimir energy per unit area (13.4) and to the Casimir pressure
(13.9). Note that the characteristic frequency at a typical separation a = 0.5 µm
is equal to ωc = c/(2a) = 3 × 1014 rad/s = 0.197 eV. Numerical analysis of the
Lifshitz formulas demonstrates that highly accurate results (up to five significant
figures) can be obtained if the upper integration limit with respect to ξ is chosen
equal to a value from 10ωc to 15ωc instead of infinity. A further increase of the
upper integration limit does not noticeably influence the results obtained.

The situation at low frequencies is more complicated. Here, optical data are
available only for ω ≥ 0.125 eV, i.e. starting from a frequency of the same order as
ωc. This does not permit one to obtain ε(iξ) from the Kramers–Kronig relation
using the tabulated data alone. At the same time, numerical analysis of the
Lifshitz formulas shows that to obtain highly accurate results, one must take
the lower integration limit with respect to ξ as low as 10−3ωc instead of zero (a
further decrease of the lower integration limit has only a negligible influence on
the results obtained). Thus, values of ε(iξ) at frequencies ξ ≥ 10−3ωc must be
available in order to obtain highly accurate values of the Casimir energy per unit
area and the Casimir pressure. For this reason, it is necessary to extrapolate the
tabulated optical data for gold to frequencies ω < 0.125 eV using some reasonable
analytical procedure. Lamoreaux (1999) suggested extrapolation of the data to
lower frequencies using 1/ω, the expected behavior for a metal. This is the same
behavior as that given by the Drude model (13.14). Extrapolation of the optical
data for Im ε(ω) to low frequencies by use of the imaginary part of the Drude
dielectric permittivity,

Im εD(ω) =
ω2

pγ

ω(ω2 + γ2)
, (13.23)

was done in papers by Lambrecht and Reynaud (2000a,b), Boström and Ser-
nelius (2000a), and Klimchitskaya et al. (2000). The results of these four papers
are in mutual agreement. It was also shown that the computations by Lamore-
aux (1999) contained errors in the interpolation and extrapolation procedures.
On the basis of the optical data collected by Palik (1985), Lambrecht and Rey-
naud (2000a) arrived at the following values of the Drude parameters at room
temperature:

ωp = 9.0 eV, γ = 0.035 eV. (13.24)

Different sets of the Drude parameters and their impact on the calculated values
of ε(iξ) and the Casimir pressure have been discussed by Pirozhenko et al. (2006).
We shall return to this point in Section 18.3 in connection with the comparison
between experiment and theory. It should be emphasized that only the room
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Fig. 13.2. The dashed line shows the dielectric permittivity of gold along the
imaginary frequency axis computed using the Kramers–Kronig relations and
tabulated optical data extrapolated to low frequencies by use of the Drude
dielectric function, as discussed in the text. The solid line shows the same
permittivity computed using the generalized plasma model (see Section 13.5).

temperature (300K) value of the relaxation parameter and the optical data were
used.

In Fig. 13.2 (dashed line), we present computational results for ε(iξ), as a
function of ξ, over a wide frequency region from 1010 rad/s to 3.16× 1017 rad/s.
These results were obtained from the Kramers–Kronig relation (12.125) using the
tabulated optical data for Im ε(ω) (Palik 1985), extrapolated to low frequencies
by use of eqn (13.23) with the Drude parameters (13.24). The ε(iξ) obtained can
be used for computations of the Casimir effect at separations a > 5 nm, where
the characteristic frequencies are less than 3×1016 rad/s. The dielectric function
ε(iξ) was substituted into the Lifshitz formulas at zero temperature (13.4) and
(13.9) for the Casimir energy per unit area and the pressure, written in terms
of dimensionless variables, which are more convenient for numerical integration.
The results were computed over a range of separations from a = 50 nm to a =
1 µm (note that computations at larger separations using the Lifshitz formula at
T = 0 would be meaningless because of the role played by thermal effects).

In Fig. 13.3, the correction factor to the Casimir energy per unit area, ηE ,
calculated using the tabulated optical data extrapolated by use of the Drude
model to low frequencies, is shown by the solid line labeled 1. The dashed line
labeled 1 shows the same correction factor calculated using the Drude model
(13.14) over the entire frequency range from zero to infinity. As is seen in Fig.
13.3, at large separations the deviations between the solid and dashed lines la-
beled 1 are minimal. Thus, at a = 1 µm the deviation between the correction
factors ηE computed using the optical data and the Drude model, normalized to
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Fig. 13.3. Correction factors to the Casimir energy per unit area, ηE (solid line
1), and to the Casimir pressure, ηP (solid line 2), as functions of separation
computed using the Lifshitz formula and the tabulated optical data extrapo-
lated to low frequencies by use of the Drude model. The dashed lines 1 and 2
show the correction factors ηE and ηP computed using just the Drude model.

ηE computed using the optical data, is equal to only 0.08%. At lower separations
of a = 200 nm, 100nm, and 50 nm, the relative deviation between the correction
factors computed in the two different ways is equal to 1.7%, 5%, and 12%, re-
spectively. This deviation is connected with the fact that the Drude model does
not take into account the interband transitions of core electrons occurring at
high frequencies that contribute more and more to the Casimir energy as the
separation distance decreases.

Similar calculations can be performed for the Casimir pressure. The correc-
tion factor ηP calculated using the tabulated optical data extrapolated by use
of the Drude model to low frequencies is shown by the solid line labeled 2 in
Fig. 13.3. The dashed line labeled 2 indicates the factor ηP computed using
the Drude model (13.14). At the largest separation a = 1 µm, the relative de-
viation between the factors calculated by the two different methods is equal to
0.14%. However, this deviation increases rapidly with decreasing the separation
distance. As an illustration, at separations of a = 200 nm, 100 nm, and 50nm
this deviation is equal to 2.8%, 7.7%, and 16%, respectively. What this means
is that the interband transitions of core electrons neglected by the Drude model
but taken into account in the optical data are an even more important factor in
the Casimir pressure than in the Casimir energy. At separations below 50 nm, the
deviation between the computational results obtained using the optical data and
the simple Drude model increases further. In fact, the Lifshitz formula at zero
temperature using the tabulated optical data extrapolated by use of the Drude
model provides an adequate approach to the calculation of van der Waals forces
in the range of separations from a few nanometers to several tens of nanometers.
Its applicability at larger separations will be discussed in Chapter 14.
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13.4 Surface impedance approach

The reflection properties of electromagnetic waves on metal surfaces can be de-
scribed in terms of the Leontovich surface impedance (Landau et al. 1984), as
an alternative concept to the frequency-dependent permittivity. In this section
we present the analytic expressions for the Leontovich impedance in different
frequency regions and discuss the impedance representations of the reflection
coefficients.

13.4.1 The concept of the Leontovich impedance

The possibility of introducing the Leontovich impedance Z is based on the fact
that the angle of transmission for an electromagnetic wave inside a metal near
its surface is approximately zero, i.e. the plane wave propagates perpendicular
to the surface. As a consequence, the fields Et and Bt are related by

Et = Z[Ht×n], (13.25)

where n is a unit vector normal to the surface directed inside the metal. Ac-
cording to Leontovich, eqn (13.25) can be used as a boundary condition imposed
on a metal surface for the determination of the field outside the metal. Equa-
tion (13.25) allows one to determine the electromagnetic field outside the metal,
without considering the propagation of the electromagnetic field in the interior
of the metal. It is close in spirit to the original Casimir approach for ideal metals
and to a special reformulation of the standard continuity boundary conditions
(12.2), which also does not require consideration of field propagation inside a
metal (Emig and Büscher 2004). For an ideal metal, Z = 0. The boundary con-
dition (13.25) is valid when |Z| � 1. For good conductors, this inequality is
satisfied over a wide frequency region.

The asymptotic form of the Leontovich impedance in various frequency re-
gions can be obtained from the solution of the kinetic equations (Lifshitz and
Pitaevskii 1981). We consider a conducting semispace in an external electro-
magnetic field of frequency ω. At low frequencies (the region of the normal skin
effect), the following conditions hold:

l � δn(ω) =
c√

2πσ0ω
, l � vF

ω
, (13.26)

where l is the mean free path of the conduction electrons, δn(ω) is the penetration
depth of the field inside the metal, σ0 is the static conductivity, and vF is the
Fermi velocity. In the frequency region determined by the inequalities (13.26), the
external field leads to the initiation of a real current of the conduction electrons.
The normal skin effect is characterized by a volume relaxation described by the
relaxation parameter γ = γ(T ) (see Section 13.2.1). As a result, the mean free
path of the conduction electrons is also temperature-dependent, l = l(T ) =
vF/γ(T ), and increases with a decrease in temperature (this is discussed in more
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detail in Section 14.4). In the domain of the normal skin effect, the surface
impedance takes the form (Landau et al. 1984)

Z = Zn(ω) = (1 − i)

√
ω

8πσ0
. (13.27)

Note that Re Z describes the relaxation processes and the inequality Re Z > 0 is
always satisfied. As discussed in Section 13.2.1, in the region of the normal skin
effect the connection between the electric field and electric current has the form

j(t, r) = σ0E(t, r), (13.28)

i.e. it is local.
At higher frequencies or larger l, eqn (13.28) is violated and the connection

between the electric field and the current becomes nonlocal. This is what is
referred to as the anomalous skin effect. This occurs when the inequalities

δa(ω) � l, δa(ω) � vF

ω
, (13.29)

are obeyed, where for an isotropic metal with a spherical Fermi surface, the skin
depth is given by (Kaganova and Kaganov 2001)

δa(ω) =

(
4πc2

�
3

ωe2SF

)1/3

, (13.30)

where SF is the total area of the Fermi surface. Owing to the spatial nonlocal-
ity, the concept of a dielectric permittivity depending only on the frequency is
incorrect for the description of a metal in the frequency region of the anomalous
skin effect. The Leontovich impedance in the frequency region (13.29) is given
by (Kaganova and Kaganov 2001)

Za(ω) =
2(1 − i

√
3)

3
√

3

ωδa(ω)

c
, (13.31)

where δa(ω) is defined in (13.30). Note that for some metals, especially for alloys,
instead of eqn (13.29), the inequalities vF/ω � l � δ hold, specifying the relax-
ation domain (Wooten 1972, Casimir and Ubbink 1967); here, spatial relaxation
is also important.

On further increase of the frequency, the inequalities

vF

ω
� δ0 � l (13.32)

hold, where the penetration depth δ0 is defined in eqn (13.3). These inequalities
determine the frequency region of infrared optics (note that the condition �ω �
εF = �ωp is also obeyed here). In this domain, volume relaxation does not play
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any role and spatial dispersion is absent. The respective impedance function is
pure imaginary (Lifshitz and Pitaevskii 1981):

Zi(ω) = −i
ω√

ω2
p − ω2

. (13.33)

In the frequency regions of the normal skin effect and of infrared optics, where
spatial locality is preserved, we get

Z(ω) =
1√
ε(ω)

. (13.34)

However, in the frequency region of the anomalous skin effect, spatial locality is
violated and the metal cannot be characterized by a dielectric permittivity de-
pending only on the frequency. In this frequency region, eqn (13.34) is meaning-
less but, nevertheless, the impedance boundary condition (13.25) is appropriate.

13.4.2 The Lifshitz formula with the Leontovich impedance

The derivation of the photon eigenfrequencies between two metallic semispaces
z ≥ a/2 and z ≤ −a/2 is performed in the same way as in Section 12.1.1. Now the
electromagnetic field E(t, r), B(t, r) is considered only in the free space between
the semispaces. The electric field and magnetic induction are represented in the
form of eqns (12.10) and (12.13). This leads to eqn (12.14), following from the
Maxwell equations, where the k2 defined in eqn (12.15) must be replaced with q2

defined in eqn (12.16). The equations (12.17) remain unchanged. Now we need
to satisfy the impedance boundary conditions (13.25) imposed at z = ±a/2.
Expressing the magnetic induction using the Maxwell equations and taking the
direction of the normal vector into account [n = (0, 0, 1) at the plane z = a/2
and n = (0, 0,−1) at z = −a/2], we find

ep,x

(
±a

2
, k⊥

)
= ± iZc

ω

[
ikxep,z

(
±a

2
, k⊥

)
− e′p,x

(
±a

2
, k⊥

)]
,

ep,y

(
±a

2
, k⊥

)
= ± iZc

ω

[
ikyep,z

(
±a

2
, k⊥

)
− e′p,y

(
±a

2
, k⊥

)]
. (13.35)

Similar equations also hold for gp. The equations (12.14) (where k2 is replaced
with q2) and (12.17) together with eqn (13.35) lead to the following equations
for the determination of the photon eigenfrequencies (Geyer et al. 2003):

∆TM(ω, k⊥) = e−aq(1 − η2)

(
sinh aq − 2iη

1 − η2
coshaq

)
= 0,

∆TE(ω, k⊥) = e−aq(1 − κ2)

(
sinh aq − 2iκ

1 − κ2
coshaq

)
= 0, (13.36)

where
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η = η(ω) =
Zω

cq
, κ = κ(ω) =

Zcq

ω
. (13.37)

The calculation of the Casimir energy E0(a) is performed analogously to that
in Section 12.1.1 using the argument principle. One must take into account that
in this case, if the impedance functions satisfy the conditions

lim
ω→∞

Z(ω) = const, lim
ω→∞

dZ(ω)

dω
= 0, (13.38)

the integral along the semicircle of infinitely large radius C+ vanishes. As in
Section 12.1.1, the finite Casimir energy per unit area E(a) is obtained by the
subtraction from E0(a) of the energy for infinitely separated plates [see eqn
(12.27)]. Thus, E(a) is represented by eqn (12.29) with

∆TM
∞ (iξ, k⊥) =

1

2

[
1 +

Z(iξ) ξ

cq(iξ, k⊥)

]2

, ∆TE
∞ (iξ, k⊥) =

1

2

[
1 +

Z(iξ)cq(iξ, k⊥)

ξ

]2

,

(13.39)
where q is defined in eqn (12.28). Finally, the Casimir energy per unit area is
given by the Lifshitz formula (12.30), where new expressions for the reflection
coefficients are obtained from eqns (13.36) and (13.39) as follows:

rTM(iξ, k⊥) =
cq(iξ, k⊥) − Z(iξ)ξ

cq(iξ, k⊥) + Z(iξ)ξ
, rTE(iξ, k⊥) =

cq(iξ, k⊥)Z(iξ) − ξ

cq(iξ, k⊥)Z(iξ) + ξ
.

(13.40)
The Casimir pressure expressed in terms of the Leontovich impedance is given
by eqn (12.33) with the reflection coefficients (13.40). A Lifshitz formula with
the impedance reflection coefficients (13.40) was obtained by Kats (1977).

The Casimir energy per unit area and the Casimir pressure, as given by the
Lifshitz formulas with the impedance reflection coefficients (13.40), were com-
puted by Bezerra et al. (2002c). The results obtained were compared with those
obtained from the Lifshitz formulas with the reflection coefficients (12.31) ex-
pressed in terms of the dielectric permittivity. In the range of separations from
100nm to 1 µm, the dielectric permittivity (13.1) and the Leontovich impedance
(13.33) for infrared optics are applicable. It was shown that the difference be-
tween the Casimir energies computed using εp and Zi normalized to the en-
ergy computed using εp was less than 0.3% in the range of separations from
100nm to 400nm. In the range from 400nm to 1 µm, the computational results
obtained from εp and Zi were practically coincident. Similar computational re-
sults were obtained for the Casimir pressure. The largest relative deviation, of
0.5%, between the Casimir pressures computed using εp and Zi was reached at
a = 100 nm. With increasing separation, this deviation quickly goes to zero. The
application regions of the impedances for the anomalous skin effect (13.31) and
for the normal skin effect (13.27) are at separations a > 1 µm, where thermal
effects are important. That is why these impedances are considered in Chapter
14, devoted to the Casimir effect between real metals at nonzero temperature.
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Sometimes, in the literature, the so-called exact surface impedances are con-
sidered, along with the related boundary conditions (Esquivel et al. 2003, Brevik
et al. 2005)

Et = ZTE(ω, k⊥)[Ht×n], ZTM(ω, k⊥)Ht = n × Et. (13.41)

If the connection between the electric field and electric current is local, i.e. is
given by eqn (13.28), the Maxwell equations lead to

ZTM(ω, k⊥) =
1√
ε(ω)

[
1 − c2k2

⊥
ε(ω)ω2

]1/2

,

ZTE(ω, k⊥) =
1√
ε(ω)

[
1 − c2k2

⊥
ε(ω)ω2

]−1/2

. (13.42)

In terms of these impedances, the reflection coefficients take the form

rTM(iξ, k⊥) =
cq − ZTMξ

cq + ZTMξ
, rTE(iξ, k⊥) =

cqZTE − ξ

cqZTE + ξ
. (13.43)

The impedances (13.42) coincide with the Leontovich impedance (13.34) under
the condition c2k2

⊥/(|ε|ω2) � 1. However, the Leontovich impedance and the
Leontovich boundary condition (13.25) should not be considered as only approx-
imations to the impedances (13.42) and boundary conditions (13.41). A point to
be noted is that the impedances (13.42) are obtained from the Maxwell equa-
tions by using the local equation (13.28), whereas the Leontovich impedance
is applicable when the connection between the electric field and the current be-
comes nonlocal. Thus, the physical meaning of the Leontovich impedance and the
Leontovich boundary condition (13.25) is different from that of the impedances
(13.42) and the “exact” impedance boundary conditions (13.41). In fact, the
substitution of the impedances (13.42) in eqn (13.43) simply returns us back to
the reflection coefficients (12.31) expressed in terms of the frequency-dependent
dielectric permittivity. In this sense, the use of the “exact” impedances is equiv-
alent to the use of the dielectric permittivity, while the use of the Leontovich
surface impedance is not. In Chapter 14, we shall see that this leads to important
consequences for the theoretical description of the thermal Casimir force.

13.5 The generalized plasma-like dielectric permittivity

In the above, we have considered several models for the dielectric response of a
metal used in the literature to calculate the Casimir force at zero temperature
in the framework of the Lifshitz theory. These are the plasma model (13.1), the
Drude model (13.14), the dielectric function obtained using tabulated optical
data extrapolated to low frequencies by use of the Drude model, and the Leon-
tovich surface impedance. Although each model leads to different results for the
Casimir energy per unit area and for the Casimir pressure, the approach based
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on the use of real optical data may seem preferable because it takes more com-
plete account of all of the available information about the dielectric properties
of the metal. As was shown in Section 12.5.2, however, some real properties of
dielectrics and semiconductors (i.e. the conductivity at nonzero temperature)
must not be included in the model of the dielectric response if we wish to pre-
serve the agreement between the Lifshitz theory and thermodynamics. As we
shall see in Chapter 14, the relaxation properties of conduction electrons play
the same crucial role in the theory of the thermal Casimir force, leading to its
inconsistency with thermodynamics. Because of this, here we consider a model of
a metal in terms of a generalized plasma-like permittivity taking into account all
of its properties with the exception of the relaxation properties of the conduction
electrons. These properties are primarily due to the electron–phonon interaction
and also due to the scattering of electrons on other electrons, on impurities, and
on grain boundaries. In reality, the relaxation properties are almost absent at
T = 0, but they enter into computations performed using the tabulated optical
data and the parameters of the Drude model determined at T = 300 K (this
inconsistency in the formalism used was discussed at the end of Section 13.2.1).
Here, we consider the formulation of the generalized plasma-like model, derive
the generalized Kramers–Kronig relations, and present computational results.

13.5.1 Generalized plasma-like permittivity and optical data

A generalized plasma-like dielectric permittivity was considered, for instance, by
Jackson (1999) for the description of a metal at frequencies much larger than
the Drude relaxation parameter. In the theory of the Casimir effect, it was first
used by Klimchitskaya et al. (2007a). We represent it in a form similar to the
permittivity of a dielectric material (12.8),

εgp(ω) = 1 −
ω2

p

ω2
+

K∑
j=1

gj

ω2
j − ω2 − iγjω

. (13.44)

We recall that the ωj �= 0 are the resonant frequencies of the oscillators de-
scribing the core electrons, the γj are the relaxation frequencies, and the gj are
the oscillator strengths. The term −ω2

p/ω2 takes the conduction electrons into
account with their relaxation properties being ignored.

For any metal, the parameters of the oscillators ωj , gj, and γj and the num-
ber of oscillators K must be determined from a fit to the available optical data.
As was explained in Sections 12.6.1 and 13.3, it is convenient to perform a fit to
the imaginary part of the dielectric permittivity (13.44) given by eqn (12.126).
Before making a fit, we must subtract from the optical data the contribution
from the relaxation properties of the conduction electrons. This can be approx-
imately done by subtraction from Im ε(ω) in eqn (12.123), as determined from
the complete optical data, of the imaginary part of the Drude function (13.23).
The resulting expression for Im εs(ω) to be used in the fit is
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Fig. 13.4. Tabulated optical data for the imaginary part of the dielectric per-
mittivity for gold with the contribution from the relaxation of conduction
electrons subtracted, shown by the solid line, as a function of frequency
(Decca et al. 2007b). The oscillator fits are shown by the long-dashed line
(three oscillators) and the short-dashed line (six oscillators).

Im εs(ω) = 2n1(ω)n2(ω) −
ω2

pγ

ω(ω2 + γ2)
, (13.45)

where n1 and n2 are the real and imaginary parts of the complex index of re-
fraction.

As an example, we have performed a six-oscillator fit of eqn (12.126) to eqn
(13.45) for gold by using the tabulated optical data from the handbook by Palik
(1985), and ωp = 9.0 eV and γ = 0.035 eV (Lambrecht and Reynaud 2000a). In
Fig. 13.4, we plot the quantity Im εs(ω), as defined in eqn (13.45), within the fre-
quency region from 2.0 eV to 25 eV (solid line). For ω < 2 eV, the imaginary part
of the dielectric permittivity (13.45) vanishes rapidly because we have subtracted
the contribution from the relaxation properties of the conduction electrons. For
ω > 2.5 eV, there is only a negligible contribution from the conduction elec-
trons, so that Im ε(ω) ≈ Im εs(ω). The upper limit of the frequency region under
consideration (25 eV) is sufficiently high to consider separation distances above
a = 100 nm. The resulting set of oscillator parameters ωj, γj , and gj is presented
in Table 13.1. Also, in Fig. 13.4, the imaginary part (12.126) of the permittivity
(13.44), computed with the oscillator parameters in Table 13.1, is shown by the
short-dashed line. In the same figure, the three-oscillator fit by Parsegian and
Weiss (1981) is shown by the long-dashed line. As is seen in Fig. 13.4, the short-
dashed line based on the six-oscillator fit reproduces the actual data better than
does the long-dashed line using the three-oscillator fit.

Using the oscillator parameters in Table 13.1, the dielectric permittivity along
the imaginary frequency axis can be found from eqn (13.44):
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Table 13.1. The oscillator parameters for Au in
eqn (13.44) found from the six-oscillator fit to the
tabulated optical data (Palik 1985).

j ωj (eV) γj (eV) gj (eV2)

1 3.05 0.75 7.091

2 4.15 1.85 41.46

3 5.4 1.0 2.700

4 8.5 7.0 154.7

5 13.5 6.0 44.55

6 21.5 9.0 309.6

εgp(iξ) = 1 +
ω2

p

ξ2
+

6∑
j=1

gj

ω2
j + ξ2 + γjξ

. (13.46)

This correctly reproduces εgp(iξ) for the generalized plasma-like permittivity, as
a function of imaginary frequency, up to ξ ≈ 15 eV. This corresponds to approxi-
mately 15ωc, where the characteristic frequency ωc is computed for a separation
a = 100 nm. At shorter separations, a more precise determination of εgp(iξ) at
higher ξ is needed. This can be done by numerical integration of the optical data
with the contribution of the relaxation of conduction electrons subtracted, as
given in eqn (13.45), by using the Kramers–Kronig relations. However, the stan-
dard Kramers–Kronig relations (12.124), (12.125), and (13.21) are not applicable
because they do not take into account the presence of the second-order pole at
ω = 0 in eqn (13.44).

13.5.2 Generalized Kramers–Kronig relations for the plasma and plasma-like
permittivities

The derivation of the Kramers–Kronig relations for the dielectric permittivity
(13.44) is direct, but one must take care of the fact that there is a pole of second
order at ω = 0. We consider the contour C1 presented in Fig. 13.5(a). According
to the Cauchy theorem, ∫

C1

ε(ω) − 1

ω − ω0
dω = 0, (13.47)

where ε(ω) is equal to either εp(ω) or εgp(ω), because inside C1 the function
under the integral is analytic. At infinity, ε(ω) → 1 and therefore the function
under the integral tends to zero more rapidly than 1/ω. Thus, the integral along
the semicircle of infinite radius is equal to zero. We pass around the points 0
and ω0 along the semicircles Cρ and Cδ with radii ρ and δ, respectively. It can
be easily seen that
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Fig. 13.5. The integration contours in (a) eqn (13.47) and (b) eqn (13.58),
consisting of the real frequency axis, semicircles Cρ and Cδ around the points
0 and ω0 of infinitely small radii ρ and δ, respectively, and semicircles of
infinitely large radii centered at ω = 0 (Klimchitskaya et al. 2007a).

∫
Cδ

ε(ω) − 1

ω − ω0
dω = −πi Res

ε(ω) − 1

ω − ω0

∣∣∣∣
ω=ω0

= −πi[ε(ω0) − 1]. (13.48)

The similar integral around the point ω = 0 is more involved. Using eqn
(13.44), we represent it as the sum of the integral∫

Cρ

A(ω)

ω − ω0
dω = −2A(0)

ω0
ρ, (13.49)

where

A(ω) ≡
K∑

j=1

gj

ω2
j − ω2 − iγjω

, (13.50)

and

−ω2
p

∫
Cρ

dω

ω2(ω − ω0)
≡

ω2
p

ω2
0

∫
Cρ

[
ω0

ω2
− 1

ω − ω0
+

1

ω

]
dω. (13.51)

It is clear that eqn (13.49) vanishes when ρ → 0. The second and third integrals
on the right-hand side of eqn (13.51) are calculated as follows:∫

Cρ

dω

ω − ω0
= − 2

ω0
ρ,

∫
Cρ

dω

ω
= −πi. (13.52)

The first integral can be represented as the principal value of an integral of
another function along the real frequency axis:∫

Cρ

dω

ω2
=

2

ρ
= ω0P

∫ ∞

−∞

dω

ω2(ω − ω0)
. (13.53)

This integral is divergent. To be exact, in eqn (13.47) it must be considered
together with the integral
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P

∫ ∞

−∞

ε(ω) − 1

ω − ω0
dω. (13.54)

By doing accordingly and substituting eqns (13.48), (13.49), and (13.51)–(13.53)
into eqn (13.47), we arrive at

−
iπω2

p

ω2
0

− iπ[ε(ω0) − 1] + P

∫ ∞

−∞

dω

ω − ω0

[
ε(ω) − 1 +

ω2
p

ω2

]
= 0. (13.55)

The last integral on the left-hand side of eqn (13.55) is already finite, as expected.
Now we replace the integration variable ω with ξ, replace ω0 with ω, and

represent the function ε(ω) as ε(ω) = Re ε(ω) + i Im ε(ω). Taking into account
that

P

∫ ∞

−∞

dω

ω − ω0
= 0 (13.56)

and separating the real and imaginary parts in eqn (13.55), we obtain the gen-
eralized Kramers–Kronig relations (Klimchitskaya et al. 2007a)

Re ε(ω) = 1 +
1

π
P

∫ ∞

−∞

Im ε(ξ)

ξ − ω
dξ −

ω2
p

ω2
, (13.57)

Im ε(ω) = − 1

π
P

∫ ∞

−∞

dξ

ξ − ω

[
Re ε(ξ) +

ω2
p

ξ2

]
[in contrast to the standard relations (12.124) for an ε(ω) which is regular at
ω = 0, or to (13.21) for an ε(ω) with a simple pole at ω = 0].

The dielectric permittivity along the imaginary frequency axis can be deter-
mined through the use of the integral∫

C2

ω[ε(ω) − 1]

ω2 + ω2
0

dω = πi[ε(iω0) − 1] (13.58)

along the contour C2 in Fig. 13.5(b). By integrating along C2, we get

iπ
ω2

p

ω2
0

+ P

∫ ∞

−∞

ω[ε(ω) − 1]

ω2 + ω2
0

dω = iπ[ε(iω0) − 1]. (13.59)

Now we replace ω0 with ξ, separate the real and imaginary parts of ε(ω) under
the integral, and make use of the identities

P

∫ ∞

−∞

ξ dξ

ξ2 + ω2
= 0, P

∫ ∞

−∞

ξ Re ε(ξ) dξ

ξ2 + ω2
= 0. (13.60)

Thus, the result to be compared with eqn (12.125) is (Klimchitskaya et al. 2007a)

ε(iξ) = 1 +
2

π

∫ ∞

0

ω Im ε(ω)

ω2 + ξ2
dω +

ω2
p

ξ2
. (13.61)

For the usual plasma model with ε = εp in eqn (13.1), Im ε(ω) = 0 and
the generalized Kramers–Kronig relations (13.57) and (13.61) are satisfied iden-
tically. Direct substitution of eqn (13.44) into eqns (13.57) and (13.61) shows
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that the generalized plasma-like dielectric permittivity εgp exactly satisfies the
generalized Kramers–Kronig relations as well (Klimchitskaya et al. 2007a).

Now we are in a position to calculate the generalized plasma-like dielectric
permittivity along the imaginary frequency axis directly from the tabulated op-
tical data without using the analytic representation (13.44). For this purpose we
substitute the imaginary part of the dielectric permittivity (13.45), as given by
the optical data after subtraction of the contribution of the relaxation of conduc-
tion electrons, into the right-hand side of the Kramers–Kronig relation (13.61).
The εgp(iξ) obtained, as a function of the frequency, is plotted by the solid line
in Fig. 13.2 in the frequency interval from 1010 rad/s to 3.16 × 1017 rad/s. This
interval can be easily widened using the available data at higher frequencies.
In the frequency region ξ < 2.3 × 1016 rad/s, the same values of εgp(iξ) are
obtained analytically from eqn (13.46) with the oscillator parameters in Table
13.1. At higher frequencies, there are minor deviations between the results of the
numerical computations of εgp(iξ), as given by the solid line in Fig. 13.2, and
the analytical eqn (13.46). To obtain a more exact analytic representation for
εgp(iξ) over a wider frequency region, one must perform an oscillator fit with a
larger number of oscillators valid at higher frequencies (i.e. at frequencies above
25 eV = 3.8 × 1016 rad/s).

Note that at frequencies larger than 1015 rad/s, the generalized plasma-like di-
electric permittivity along the imaginary frequency axis is equal to that obtained
using the optical data extrapolated to low frequencies by means of the Drude
model. From this it follows that at short separation distances, the calculation
results for the Casimir effect at zero temperature using the two permittivities
should be almost equal.

13.5.3 Computations using the generalized plasma-like model

We have substituted the dielectric permittivity of the generalized plasma-like
model along the imaginary frequency axis, εgp(iξ), as shown by the solid line in
Fig. 13.2, into the Lifshitz formula (13.4) for the Casimir energy per unit area.
The results obtained, Egp(a), were normalized by the Casimir energy between
ideal-metal planes E(a) defined in eqn (1.5). The resulting correction factor
ηE(a) = Egp(a)/E(a), as a function of separation in the region from a = 50 nm
to a = 1 µm, is shown by the solid line in Fig. 13.6(a). In the same figure, the
dashed line shows the correction factor ηE(a) computed by using the tabulated
optical data extrapolated to low frequencies by means of the Drude model. As
expected, the largest deviation between the two factors is at the largest separa-
tion of a = 1 µm. Here, the difference between ηE(a) computed using the optical
data extrapolated by use of the Drude model and ηE(a) computed with the gen-
eralized plasma model, normalized by ηE(a) found using the optical data and
the Drude model, reaches –1.7%. At smaller separations, the relative difference
between the correction factors computed by the two different methods decreases
rapidly. Thus, at separations a = 200 nm, 100 nm, and 50 nm this relative differ-
ence is equal to –1.2%, –0.7%, and 0.02%, respectively. This is explained by the
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Fig. 13.6. Correction factors as functions of separation (a) to the Casimir en-
ergy per unit area and (b) to the Casimir pressure, calculated using the
dielectric permittivity of the generalized plasma-like model (solid lines) and
using tabulated optical data extrapolated to low frequencies by use of the
Drude model (dashed lines).

decreasing role of low frequencies, where the dielectric permittivities in the two
approaches differ, in the calculation results at smaller separations.

The Casimir pressure for the generalized plasma-like model, Pgp(a), was com-
puted by substitution of the dielectric permittivity shown by the solid line
in Fig. 13.2 into the Lifshitz formula (13.9). The resulting correction factor
ηP = Pgp(a)/P (a), as a function of separation distance, is shown in Fig. 13.6(b)
[P (a) is defined in eqn (1.1)]. In the same figure, the correction factor ηP com-
puted using the tabulated optical data extrapolated by use of the Drude model
to low frequencies is shown by the dashed line. The largest relative deviation
between the two values of ηP computed by the two different methods indicated
above is equal to –1.7% at a separation a = 1 µm. At separations a = 200 nm,
100nm, and 50 nm the relative deviation between the two calculated values of ηP

is equal to –0.86%, –0.18%, and 0.44%, respectively. Similarly to the case of the
Casimir energy, the effect of the differences between the dielectric permittivities
represented by the solid and dashed lines in Fig. 13.2 on the correction factor
ηP decreases at small separations.

At the end of this section, we note that the application of the generalized
plasma model at zero temperature is free of any of the ambiguity discussed in
Section 13.2.1 with respect to the Drude model. This is because the generalized
plasma-like dielectric permittivity ignores the temperature-dependent relaxation
processes of conduction electrons and takes into account the relaxation due to
core electrons alone, which depends negligibly on the temperature.
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THE CASIMIR INTERACTION BETWEEN REAL METALS AT

NONZERO TEMPERATURE

As discussed in Chapter 12, the theoretical description of the thermal Casimir
force between dielectrics at nonzero temperature runs into puzzling difficulties.
It appears that the conductivity of a dielectric material resulting from nonzero
temperature should not be included in the model of the dielectric response if
one wishes to comply with the applicability conditions of the Lifshitz theory and
preserve its agreement with thermodynamics.

Conductivity is an inherent property of metals at any temperature. At nonzero
temperature, conductivity is inevitably linked with the dissipation of energy. Be-
cause of this, one may expect that for real metals the difficulties experienced with
the Lifshitz theory discussed in the case of dielectrics may deepen. This is indeed
so, and historically such problems with the Lifshitz theory were first discovered
not for dielectrics but for metals. In particular, it was shown that the substitution
of the Drude dielectric function into the Lifshitz formula at nonzero temperature
leads to a violation of Nernst’s heat theorem in the case of metals with perfect
crystal lattices (Bezerra et al. 2002a, 2002b, 2004). This unexpected result gave
rise to several different opinions in the literature, and a consensus has not yet
been reached. Because of this, we present below several different points of view
and several different approaches to the resolution of the problem contained in
the literature.

We show that the root of the problem is in the discontinuity of the zero-
frequency term of the Lifshitz formula for the TE mode, as a function of frequency
and temperature, which arises when the Drude model is used to characterize the
low-frequency dielectric permittivity of metals. The thermal Casimir free energy
and pressure are computed using both the plasma and the Drude model, and
using tabulated optical data for the complex index of refraction extrapolated by
use of the Drude model to low frequencies. The thermodynamic consistency of
the plasma and Drude models is analyzed. It is shown that the plasma model
combined with the Lifshitz formula is in agreement with thermodynamics, while
the Drude model is not if the metal crystal lattice is perfect. For lattices with
impurities the Drude model satisfies the Nernst theorem, although the Casimir
entropy is negative over a wide temperature region. We present physical argu-
ments for why the Drude model is outside the application region of the Lifshitz
formula. The approximate approach based on the Leontovich surface impedance
is considered and its consistency with thermodynamics is investigated. The role
of evanescent and traveling waves in the Casimir effect between metals is also
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considered. We conclude the chapter with the approach to the thermal Casimir
force using the generalized plasma-like dielectric permittivity. This approach is
shown to be thermodynamically consistent and universally applicable at all sep-
arations.

14.1 The problem associated with the zero-frequency term in the

Lifshitz formula

As was discussed in Section 12.5.2, for dielectrics, the problem concerning the
physical role of the dc conductivity is connected with the discontinuity of the
zero-frequency transverse magnetic coefficient rTM, as a function of frequency
and temperature. With the dc conductivity disregarded, this coefficient is given
by eqn (12.107), but with the dc conductivity included at T �= 0, it is equal to
unity in accordance with eqn (12.117). A similar situation arises for metals, but
the roles of the reflection coefficients for the two different polarizations of the
electromagnetic field are reversed.

We first recall that eqns (12.66)–(12.68), representing the Casimir free energy
per unit area for dielectric semispaces, are also applicable to metals with an
appropriately chosen dielectric permittivity. It is useful to begin with the case
of ideal metals and compare eqn (7.70), obtained in this case, with the Lifshitz
formula (12.66). From this comparison, we arrive at the conclusion that the
Casimir interaction between ideal metals is described by the Lifshitz formula
with reflection coefficients equal to plus or minus unity at any frequency:

rTM(iξl, k⊥) = 1, rTE(iξl, k⊥) = −1. (14.1)

This conclusion is in agreement with eqn (12.67), expressing the reflection coef-
ficients under the assumption that for an ideal metal εl is infinitely large at any
l. There is, however, a problem concerning the value of rTE(iξl, k⊥) at l = 0. It
contains a term εlξ

2
l /c2 through the definition of kl in eqn (12.68) which makes

the value of k0 indefinite when ε0 = ∞ and ξ0 = 0. To avoid this difficulty and
achieve agreement between the definition of the reflection coefficients and the
Lifshitz formula on the one hand, and the independently obtained Casimir free
energy between ideal metals on the other hand, Schwinger et al. (1978) proposed
a special prescription (in the literature, this is often referred to as Schwinger’s
prescription). According to this prescription, the limit ε → ∞ should be taken
first, which provides agreement with both of the equalities in eqn (14.1) at all
ξ > 0, and the limit ξ → 0, to obtain the zero-frequency term of the Lifshitz
formula (12.66), should be taken afterwards.

The Schwinger prescription works well when we are dealing with ideal metals.
For real metals, however, the dielectric permittivity is finite at any ξ > 0. The
functional form of its approach to infinity when ξ goes to zero is fixed. This
converts the limiting value of

1

c2
lim
ξ→0

ε(iξ)ξ2 (14.2)
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into a subject for calculation and does not leave room for any special prescrip-
tions.

From this point of view, let us consider the reflection coefficients at ξ = 0
and the zero-frequency term of the Lifshitz formula for the various models of real
metals used in Chapter 13. Substituting the dielectric permittivity of the plasma
model (13.1) or the generalized plasma-like model (13.46) into the reflection
coefficients (12.66), we arrive at

rTM(0, k⊥) = 1, rTE(0, k⊥) =
k⊥c −

√
k2
⊥c2 + ω2

p

k⊥c +
√

k2
⊥c2 + ω2

p

. (14.3)

The case of an ideal metal results from εp in the limit ωp → ∞. In this limiting
case, eqn (14.3) coincides with eqn (14.1). Thus, descriptions of real metals using
the plasma model or the generalized plasma-like model in the Lifshitz theory are
in agreement with the independently investigated case of ideal metals.

This conclusion is supported by a consideration of large separation distances
(or, alternatively, high temperatures), where, as discussed in Section 12.5.1, the
zero-frequency term of the Lifshitz formula determines the total result. Substi-
tuting eqn (14.3) into the zero-frequency term of eqns (12.66) and (12.70), we
obtain asymptotic expressions for the Casimir free energy per unit area and the
Casimir pressure, as given by the plasma model,

Fp(a, T ) = −kBTζR(3)

16πa2
+

kBT

16πa2

∫ ∞

0

y dy ln


1 − ω4

c

ω4
p


y −

√
y2 +

ω2
p

ω2
c




4

e−y


,

(14.4)

Pp(a, T ) = −kBTζR(3)

8πa3
− kBT

16πa3

∫ ∞

0

y2 dy


ω4

c

ω4
p


y +

√
y2 +

ω2
p

ω2
c




4

ey − 1



−1

,

where ωc = c/(2a). In the limiting case ωp → ∞, eqn (14.4) leads to

Fp(a, T ) = −kBTζR(3)

16πa2
+

kBT

16πa2

∫ ∞

0

y dy ln
(
1 − e−y

)
= −kBTζR(3)

8πa2
,

(14.5)

Pp(a, T ) = −kBTζR(3)

8πa3
− kBT

16πa3

∫ ∞

0

y2 dy

ey − 1
= −kBTζR(3)

4πa3
,

i.e. it returns us to eqns (7.95) and (7.98) obtained for ideal metals. Thus, real
metals described by the plasma model or the generalized plasma-like model sat-
isfy the classical limit discussed in Section 7.4.3 (Feinberg et al. 2001, Scardicchio
and Jaffe 2006).
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A different situation arises when real metals are characterized by the dielectric
permittivity of the Drude model (13.14) or any other dielectric permittivity
inversely proportional to the first power of the frequency [see e.g. the dielectric
permittivity for the normal skin effect in eqn (13.18)]. This case is very important,
because the same behavior of the permittivity follows from the Maxwell equations
in the region of quasistatic frequencies (see Section 13.2.1). Substituting the
dielectric permittivity of the Drude model (13.14) into the reflection coefficients
(12.67), we obtain

rTM(0, k⊥) = 1, rTE(0, k⊥) = 0. (14.6)

The difference between the second equations in eqns (14.3) and (14.6) is caused
by the fact that for the plasma and plasma-like models the limit in eqn (14.2) is
equal to ω2

p/c2, but for the Drude model this limit is equal to zero.
The second equality in eqn (14.6) is in contrast to the second equality in

eqn (14.1) given for the case of ideal metals. This shows that the description
of metals using the Drude model is in direct disagreement with the idealized
case of ideal metals. This can be clearly seen from the asymptotic limit of large
separations (high temperatures), where the zero-frequency term of the Lifshitz
formula alone determines the total result. Substituting eqn (14.6) into the terms
with l = 0 in eqns (12.66) and (12.70), we obtain asymptotic expressions for the
Casimir free energy and pressure, as given by the Drude model,

FD(a, T ) = − kBT

16πa2
ζR(3), PD(a, T ) = − kBT

8πa3
ζR(3). (14.7)

These expressions are just one-half of the respective expressions (7.95) and (7.98)
obtained in the case of ideal metals. In fact, the results (14.7) are counterintuitive
because at large separation distances the corrections due to the finite conductiv-
ity of a metal do not play any role, and real metals should behave like ideal ones.
Moreover, eqn (14.7) does not make any distinction between real metals with
different relaxation parameters γ. The relaxation parameter may be arbitrarily
small but, surprisingly, the asymptotic values for the Casimir free energy and
pressure (14.7) are equal to one-half of those obtained for ideal metals. Thus, the
theoretical description using the Drude model violates the classical limit given
by eqns (7.95) and (7.98). The missing contribution from the transverse electric
mode at zero frequency in the Lifshitz formula combined with the Drude model
was first mentioned by Barash (1988). Recently, attention to this problem has
been rekindled in relation to the work by Boström and Sernelius (2000b), who
predicted a large thermal correction to the Casimir force at short separations us-
ing the Drude model (see Section 14.3.1 below). At large separations, eqn (14.7)
was also reobtained using a microscopic statistical approach to the Casimir force
(Buenzli and Martin 2008). In this approach, plates are considered as a set of
nonrelativistic point particles of several types confined by walls.

The peculiarities in the behavior of the reflection coefficient rTE(iξ, k⊥) in
the case of the Drude dielectric permittivity are connected with the fact that
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this coefficient is discontinuous at the point ξ = 0, k⊥ = 0 as a function of the
two variables ξ and k⊥. To be a continuous function of (ξ, k⊥) at the point (0, 0),
rTE(iξ, k⊥) must have the same limiting value when the point (ξ, k⊥) approaches
the point (0, 0) along any path. This is, however, not the case. Substituting the
Drude dielectric function (13.14) into eqn (12.31), one obtains

rTE(iξ, k⊥) =
(c2k2

⊥ + ξ2)1/2 −
{
c2k2

⊥ + ξ2 + ω2
p[ξ/(ξ + γ)]

}1/2

(c2k2
⊥ + ξ2)1/2 +

{
c2k2

⊥ + ξ2 + ω2
p[ξ/(ξ + γ)]

}1/2
. (14.8)

If the point (ξ, k⊥) approaches the point (0, 0) along the path k⊥ = 0, we obtain
rTE → −1 from eqn (14.8). The same holds if (ξ, k⊥) approaches (0, 0) along any
path k⊥ = αξ with α �= 0. In contrast, if the point (ξ, k⊥) approaches the point
(0, 0) along the path ξ = 0, as happens in the zero-frequency term of the Lifshitz
formula, we get rTE → 0. Note that for real electromagnetic waves satisfying the
mass-shell equation c2k2 = ω2 incident on real metals, the reflection coefficients
always satisfy eqn (14.1) in the limit of zero frequency and k⊥ (the Hagen–
Rubens law). The same holds for the reflection coefficients (14.3) determined by
the plasma model. Actually, from eqn (14.3), one obtains rTM → 1 and rTE → −1
when k⊥ → 0, as it should be. This is connected with the fact that both of the
reflection coefficients rTM(iξ, k⊥) and rTE(iξ, k⊥) determined by the permittivity
of the plasma model are continuous functions of the two variables ξ and k⊥ at
the point (0, 0). Below, we consider the physical consequences which follow when
different dielectric permittivities are used to compute the thermal Casimir force.
The zero-frequency term of the Lifshitz formula calculated using the Leontovich
impedance is considered separately in Section 14.4.

14.2 Perturbation theory for metals described by the plasma model

Here, we consider in more detail the plasma model approach to the thermal
Casimir force, based on the use of the Lifshitz formulas at nonzero temperature
(12.66) and (12.70) combined with the permittivity of the plasma model (13.1).
This approach was suggested independently by Genet et al. (2000) and by Bordag
et al. (2000a). In the paper by Genet et al. (2000), numerical computations were
performed and analytic espressions were obtained up to first order in the relative
skin depth of electromagnetic oscillations in the metal defined in eqn (13.3). In
the paper by Bordag et al. (2000a), corrections to the Casimir force due to both
nonzero temperature and the skin depth were treated perturbatively to several
perturbation orders. The analytic results were found to be in good agreement
with the results of the numerical computations. We present numerical computa-
tions using the plasma model in Section 14.3.1, where they are compared with
corresponding computations using the Drude model. In this section, we restrict
ourselves to the use of perturbation theory and demonstrate the agreement of
the results obtained with the Nernst heat theorem.



356 The Casimir interaction between real metals at nonzero temperature

14.2.1 Casimir free energy per unit area and Casimir pressure

We start with the Lifshitz formula for the Casimir free energy per unit area
(12.108) expressed in terms of the dimensionless variables (12.89). For simplicity,

we consider the case of similar semispaces, so that r
(1)
TM = r

(2)
TM and r

(1)
TE = r

(2)
TE.

Applying the Poisson summation formulas (5.18) and (5.19), we obtain from eqn
(12.108)

F(a, T ) =
�c

16π2a3

∞∑
l=0

′ ∫ ∞

0

y dy

∫ y

0

dζ cos(ltζ) (14.9)

×
{
ln
[
1 − r2

TM(iζ, y)e−y
]
+ ln

[
1 − r2

TE(iζ, y)e−y
]}

.

In accordance with eqn (12.90), the term of the sum with l = 0 is the Casimir
energy per unit area at zero temperature. The terms with l ≥ 1 represent the
temperature corrections to it, ∆TF(a, T ) (recall that the permittivity of the
plasma model is independent of the temperature). In accordance with eqn (14.9),
the temperature correction can be represented as a sum

∆TF(a, T ) = ∆TM
T F(a, T ) + ∆TE

T F(a, T ), (14.10)

where

∆TM
T F(a, T ) =

�c

16π2a3

∞∑
l=1

∫ ∞

0

y dy

∫ y

0

dζ cos(ltζ) ln
[
1 − r2

TM(iζ, y)e−y
]
, (14.11)

and similarly for ∆TE
T F(a, T ) with the index TM replaced with TE. The reflection

coefficients are defined in eqn (12.91).
We are now going to account fully for the thermal effects. The effect of the

skin depth will be treated perturbatively up to the second power of the small
parameter δ0/a defined in eqn (13.3). We substitute the dielectric permittivity
of the plasma model (13.5) into eqn (14.11) (and into a similar equation for the
TE mode) and use the following expansions:

ln
[
1 − r2

TM(iζ, y)e−y
]

= ln(1 − e−y) + 2
δ0

a

ζ2

y(ey − 1)
− 2

(
δ0

a

)2
ζ4ey

y2(ey − 1)2
,

(14.12)

ln
[
1 − r2

TE(iζ, y)e−y
]

= ln(1 − e−y) + 2
δ0

a

y

ey − 1
− 2

(
δ0

a

)2
y2ey

(ey − 1)2
.

The integrations of eqn (14.12) with respect to ζ in eqn (14.11) are trivial. All
further integrations with respect to y as required in eqn (14.11) can be performed
with the help of the table by Gradshteyn and Ryzhik (1994). Putting together the
contributions from both modes, the total thermal correction for two semispaces
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made of a metal described by the plasma model takes the form [see Geyer et al.
(2001) for details]

∆TFp(a, T ) = − �c

8π2a3

∞∑
l=1

{
π

2(lt)3
coth(πlt) − 1

(lt)4
+

π2

2(lt)2
1

sinh2(πlt)

+
δ0

a

[
π

(lt)3
coth(πlt) − 4

(lt)4
+

π2

(lt)2
1

sinh2(πlt)
+

2π3

lt

coth(πlt)

sinh2(πlt)

]
(14.13)

−
(

δ0

a

)2 [
π

(lt)5
+

2π4

sinh2(πlt)

(
1 − 3 coth2(πlt) +

coth(πlt)

πlt
− 1

(πlt)2

)

+
12

(lt)4
ln
(
1 − e−2πlt

)
− 12π

(lt)3
(
e2πlt − 1

) − 6

π(lt)5
Li2

(
e−2πlt

)]}
.

Here, t = Teff/T and the effective temperature Teff is defined in eqn (12.85). The
zeroth-order terms in δ0/a on the right-hand side of eqn (14.13) coincide with
the thermal correction for an ideal metal in eqn (7.81) if one takes into account
that ζR(4) = π4/90.

Now we consider the limiting cases of eqn (14.13) at low and high temperature
(or small and large separation, respectively). At low temperature, t � 1, and,
keeping only the largest of the exponentially small contributions, we obtain

∆TFp(a, T ) = − �c

8πa3

{
ζR(3)

2t3
− π3

90t4
+

2π

t2
e−2πt (14.14)

+
δ0

a

[
ζR(3)

t3
− 2π3

45t4
+

8π2

t
e−2πt

]
−
(

δ0

a

)2 [
ζR(5)

t5
− 16π3e−2πt

]}
.

The power-type corrections of zeroth order in δ0/a in eqn (14.14) coincide with
the thermal correction for an ideal metal at low temperature in eqn (7.88), and
the exponentially small term in it coincides with the respective result (7.89)
obtained for an ideal metal. We remark that the second-order term in δ0/a in
eqn (14.14) contains term in powers of t, not just the exponentially small term.
It is, however, of order t−5 in agreement with the result of Bordag et al. (2000a),
who proved the absence of thermal corrections with powers lower than 1/t5 in
the terms of order (δ0/a)k with k = 2, 3, 4, 5, and 6.

Now we consider the limiting case of high temperature (or large separation).
It is easier to extract it directly from eqns (14.10)–(14.12) than from eqn (14.13).
To do this, we must perform the integration with respect to ζ in the same manner
as above and then change the order of summation and integration with respect to
y. Owing to the small value of the parameter t, all summations can be performed
by the use of the formula (Gradshteyn and Ryzhik 1994)

∞∑
l=1

sin(lty)

l
=

π − ty

2
, (14.15)
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which is valid under the condition 0 < ty < 2π. For the integration with respect
to y, all functions under the integrals decrease with y as exp(−y), so the infinity
in the upper integration limit can be replaced with the required accuracy by
ỹ = 2π/t−α, where α > 0. As a result, the high-temperature limit of the thermal
correction to the Casimir energy per unit area with neglect of exponentially small
corrections is given by

∆TFp(a, T ) = − �c

8πa3

{
ζR(3)

2t
− π3

90
(14.16)

+
δ0

a

[
−ζR(3)

t
+

2π3

45

]
+

(
δ0

a

)2 [
3ζR(3)

t
− 4π3

25

]}
.

The terms of zeroth order in δ0/a on the right-hand side of eqn (14.16) coincide
with the high-temperature limit of the thermal correction for an ideal metal,
F(a, T ) − E(a), where F(a, T ) and E(a) are defined in eqns (7.95) and (1.5),
respectively.

Similar analytic expressions can be obtained for the Casimir pressure calcu-
lated using the Lifshitz formula (12.70) and the plasma dielectric function (13.5).
In terms of the dimensionless variables (12.89), the Casimir pressure takes the
form

P (a, T ) = − �c

16π2a4

∞∑
l=0

′∫ ∞

ζl

y2 dy
{[

r−2
TM(iζl, y)ey − 1

]−1
+
[
r−2
TE(iζ, y)ey − 1

]−1
}
,

(14.17)
where the reflection coefficients are given in eqn (12.91). Applying the Poisson
summation formula (5.18), (5.19), we rearrange eqn (14.17) to the form

P (a, T ) = − �c

16π2a4

∞∑
l=0

′ ∫ ∞

0

y2 dy

∫ y

0

dζ cos(ltζ) (14.18)

×
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r−2
TM(iζ, y)ey − 1

]−1
+
[
r−2
TE(iζ, y)ey − 1

]−1
}

.

In the same way as in the case of the Casimir free energy (14.9), the term with
l = 0 is the Casimir pressure at zero temperature, P (a), whereas the terms with
l ≥ 1 represent the thermal correction

∆T P (a, T ) = − �c

16π2a4

∞∑
l=1

∫ ∞

0

y2 dy

∫ y

0

dζ cos(ltζ) (14.19)

×
{[

r−2
TM(iζ, y)ey − 1

]−1
+
[
r−2
TE(iζ, y)ey − 1

]−1
}

.

To obtain an analytic expression for the thermal correction to the Casimir
pressure, we expand the terms in eqn (14.19) containing the reflection coefficients
up to the second power of the small parameter δ0/a:

[
r−2
TM(iζ, y)ey − 1

]−1
=

1

ey − 1
− 2

δ0

a

ζ2ey

y(ey − 1)2
+ 2

(
δ0

a

)2
ζ4ey(ey + 1)

y2(ey − 1)3
,
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(14.20)[
r−2
TE(iζ, y)ey − 1

]−1
=

1

ey − 1
− 2

δ0

a

yey

(ey − 1)2
+ 2

(
δ0

a

)2
y2ey(ey + 1)

(ey − 1)3
.

Substituting eqn (14.20) into eqn (14.19) and calculating all integrals with re-
spect to ζ and y, we obtain the thermal correction to the Casimir pressure,

∆T Pp(a, T ) = − �c

8π2a4

∞∑
l=1

{
1

(lt)4
− π3

lt

cosh(πlt)

sinh3(πlt)
(14.21)

+
δ0

a

π3

lt sinh 2(πlt)

[
1

(πlt)2
sinh(πlt) cosh(πlt)

+ 4 coth(πlt) + 2πlt − 6πlt coth2(πlt) +
1

πlt

]

+3

(
δ0

a

)2
π3

lt sinh2(πlt)

[
−4πlt + 5(πlt)2 coth(πlt)

+ 12πlt coth2(πlt) − 8(πlt)2 coth3(πlt) − 4 coth(πlt)
]}

.

Note that the first two terms on the right-hand side of this equation, which
are of zeroth order in δ0/a, coincide with the thermal correction to the Casimir
pressure for ideal-metal planes in eqn (7.82).

In the case of low temperature (or small separation), where t � 1, we can
replace the hyperbolic functions with their asymptotic expressions. Keeping the
exponentially small contributions and performing summations, we obtain from
eqn (14.21)

∆T Pp(a, T ) = − �c

8πa4

{
π3

90t4
− 4π2

t
e−2πt (14.22)

+
δ0

a

[
ζR(3)

t3
− 16π3e−2πt

]
− 36π4t

(
δ0

a

)2

e−2πt

}
.

The leading term of zeroth order in δ0/a in this equation coincides with the
thermal correction for the case of an ideal metal in the asymptotic expression
(7.90). The exponentially small correction to it coincides with that obtained for
an ideal metal in eqn (7.91).

The case of high temperature (or large separation) can be considered in the
same way as for the Casimir energy. We start directly from eqns (14.21) and
(14.20) and use eqn (14.15). The result is

∆T Pp(a, T ) = − �c

8πa4

{
ζR(3)

t
− π3

30
(14.23)
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+
δ0

a

[
−3ζR(3)

t
+

8π3

45

]
+

(
δ0

a

)2 [
12ζR(3)

t
− 4π3

5

]}
.

Here, the first two terms of zeroth order in δ0/a coincide with P (a, T ) − P (a),
where P (a, T ) and P (a) are defined in eqns (7.98) and (1.1), respectively, i.e.
they coincide with the thermal correction to the Casimir pressure in the case of
an ideal metal.

Equations (14.13) and (14.21) take account exactly of the thermal effects
but are restricted to a second-order expansion with respect to the parameter
δ0/a. Note that at small separation (or low temperature) the perturbation orders
∼ (δ0/a)k with k = 2, 3, 4, 5, 6 contain a contribution from thermal corrections
only to order t−5 and higher (Bordag et al. 2000a). Because of this, eqns (14.14)
and (14.22) obtained at T � Teff can be made more exact by adding higher-order
corrections in the relative skin depth as discussed in Section 13.1.

14.2.2 Agreement with the Nernst heat theorem

In Sections 12.5.1 and 12.5.2, the third law of thermodynamics (the Nernst heat
theorem) was used as a test of consistency for the model of the dielectric re-
sponse. In this chapter we shall repeatedly apply Nernst’s theorem to verify if
the models under consideration are thermodynamically consistent. The asymp-
totic expression (14.14) for the Casimir free energy per unit area leads to the
following expression for the Casimir entropy in the plasma model (Bezerra et al.
2002b, 2004)

Sp(a, T ) = −∂Fp(a, T )

∂T
= −∂∆TFp(a, T )

∂T
(14.24)

=
kBτ2

16π3a2

{
3

2
ζR(3) − π2

45
τ +

δ0

a

[
3ζR(3) − 4π2

45
τ

]
−
(

δ0

a

)2
5ζR(5)

4π2
τ2

}
.

Here, we have omitted terms that vanish as exp(−4π2/τ) when τ vanishes. For
convenience when we compare this result with the results obtained in previous
chapters, we have returned to the variable τ = 2π/t = 2πT/Teff defined in eqn
(12.89), which is linear in the temperature. The zeroth-order contribution in the
parameter δ0/a on the right-hand side of eqn (14.24) coincides with the Casimir
entropy of an ideal metal found in eqn (7.92). The terms of order δ0/a and
(δ0/a)2 are the corrections to this result due to the skin depth. Equation (14.24)
should be compared also with the Casimir entropy between dielectric semispaces
given in eqn (12.104). It can be seen that the main contribution in eqn (12.104)
is of order τ , whereas for metals described by the plasma model it is of order τ 2.

As can be seen in eqn (14.24), the Casimir entropy goes to zero when the tem-
perature vanishes. This means that the Nernst heat theorem is satisfied. Thus,
the Lifshitz theory in combination with the plasma model is thermodynamically
consistent. The Casimir entropy, as given by the Lifshitz formula and the plasma
model, is positive at all temperatures. To illustrate this, in Fig. 14.1(a) we present
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Fig. 14.1. The Casimir entropy per unit area as a function of temperature com-
puted for (a) two ideal-metal planes and (b) two metallic semispaces described
by the plasma model. The separation distance is a = 300 nm (Mostepanenko
and Geyer 2008).

computational results for the Casimir entropy, as a function of temperature, in
a configuration of two ideal-metal planes at a separation a = 300 nm. In Fig.
14.1(b), the Casimir entropy computed by using the Lifshitz formula for metallic
plates described by the plasma model with ωp = 9.0 eV and spaced at the same
separation is presented. As can be seen from a comparison of the two figures,
qualitatively the behavior of the Casimir entropy in the two cases is very similar.
The asymptotic result (14.24) is in good agreement with the results of numeri-
cal computations. Of particular interest is the fact that the analytic expressions
obtained for the Casimir free energy, pressure, and entropy are applicable at
arbitrarily low temperatures and provide a rigorous proof of the consistency of
the Casimir entropy with the third law of thermodynamics, whereas numerical
computations are valid at some small but not arbitrarily low temperature.

14.3 Metals described by the Drude model

Systematic computations of the thermal Casimir force using the Drude model
approach were started by Boström and Sernelius (2000b). These authors found
that the use of the Drude model results in an anomalously large thermal cor-
rection, in qualitative disagreement with the result for ideal-metal planes and
also for real metal plates described by the plasma model. The predicted thermal
correction becomes appreciable even at relatively small separations below 1 µm.
In addition, the thermal correction is opposite in sign to the main contribution
to the Casimir force within a wide range of separations, i.e. it decreases the
magnitude of the total force. This effect pertains equally to the Drude model
and to the dielectric permittivity obtained from optical data extrapolated by
use of the Drude model to low frequencies (the latter procedure was discussed in
Section 13.3). It is due to the fact that the large magnitude of the correction is
determined solely by the zero-frequency term of the Lifshitz formula. According
to eqn (14.6), the reflection coefficient for the transverse electric mode at zero
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frequency vanishes if the Drude model is used, and this leads to the large thermal
correction. After presenting computational results, we shall show that the Drude
model approach violates the Nernst heat theorem for metals with perfect crys-
tal lattices. Then we consider the role of impurities and discuss why the Drude
model is not applicable in the Lifshitz theory. We arrive at the conclusion that
the Drude current violates thermal equilibrium, which is the basic applicability
condition of the Lifshitz theory. At the end of the section, various attempts to
modify the reflection coefficients are considered.

14.3.1 Prediction of large thermal corrections below 1µm

To illustrate this situation, we first consider the results of numerical computa-
tions obtained by using the Drude model alone and then present some results ob-
tained using tabulated optical data extrapolated by use of the Drude model. The
most informative characteristic is the relative thermal correction to the Casimir
energy per unit area defined in eqn (12.128). For comparison purposes, we have
computed this correction for both the Drude and the plasma model, given in
eqns (13.14) and (13.1), using the Lifshitz formulas (12.108) [with r(1) = r(2)]
and (13.4). Such a comparison between the two models was performed by Klim-
chitskaya and Mostepanenko (2001). The same values of the parameters for gold,
ωp = 9.0 eV and γ = 0.035 eV, as in Section 13.3, were used in the computations.
In Fig. 14.2(a), the computational results for the relative thermal correction at
T = 300 K, as a function of separation, are shown by the solid line (the Drude
model) and by the dashed line (the plasma model) within the range of sepa-
rations from 100 nm to 10 µm. In the figure, a dramatic difference between the
two lines is immediately apparent. The dashed line obtained using the plasma
model is in qualitative agreement with the case of an ideal metal. It demon-
strates only a small thermal correction at short separations. At separations of
100nm, 500nm, and 1 µm the relative thermal correction, as given by the plasma
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Fig. 14.2. The relative thermal correction to (a) the Casimir energy per unit
area and (b) the Casimir pressure as a function of separation for two metallic
semispaces at T = 300 K. The solid lines indicate results computed using
the Drude model. The dashed lines show results computed using the plasma
model (see text for details).
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model, is equal to 0.18%, 0.67%, and 3.22%, respectively. However, the solid line,
obtained using the Drude model, is qualitatively different from the case of an
ideal metal. Within the range of separations from 100 nm to 4.1 µm, the thermal
correction shown by the solid line is negative. This means that thermal effects
decrease the magnitude of the Casimir energy. At a separation a ≈ 4.1 µm, the
solid line demonstrates zero thermal effect. This is counterintuitive because, at
a separation of 4 µm, the effective temperature Teff = 286 K is only a little lower
than the temperature for which the computation was performed (T = 300 K).
Thus, there should be a considerable thermal effect. The most striking feature
of the solid line is the prediction of a large thermal correction at separations be-
low 1 µm. Thus, at separations of 300 nm, 500nm, 700nm, and 1 µm the Drude
model predicts thermal corrections equal to –5.8%, –10%, –13.9%, and –18.9%,
respectively, of the Casimir energy at zero temperature.

A similar comparison between the Drude and plasma models was performed
by calculating the Casimir pressure (Klimchitskaya and Mostepanenko 2001).
The pressure was computed at T = 300 K using eqn (12.70) and at zero temper-
ature using eqn (12.46). The relative thermal correction was defined as in eqn
(12.128):

δT PD(p)(a, T ) =
PD(p)(a, T )− PD(p)(a)

PD(p)(a, T )
. (14.25)

In Fig. 14.2(b), the computational results obtained by using the Drude model
are shown by the solid line, and those obtained by using the plasma model by
the dashed line. The dashed line demonstrates a positive thermal correction,
in qualitative agreement with the case of an ideal metal. At separations below
one micrometer, the thermal effect predicted by the dashed line is relatively
small. Thus, at a = 100 nm, 500nm, and 1 µm the relative thermal correction
to the Casimir pressure is equal to 0.0016%, 0.058%, and 0.29%, respectively. A
different behavior of the thermal correction to the Casimir pressure is predicted
by the solid line in Fig. 14.2(b), computed using the Drude model. This thermal
correction is negative over a wide range of separations from a = 100 nm to
a = 6.3 µm. At 6.3 µm the thermal correction becomes equal to zero, and it
changes its sign to positive at larger separations. The magnitude of the thermal
correction at separations below 1 µm is quite large. At separations of 300nm,
500 nm, 700nm, and 1 µm it takes values of –3.5%, –6.4%, –9.4%, and –13.8%,
respectively.

The large magnitudes of the thermal correction predicted by the Drude model
at short separation distances make it possible to test this experimentally. Re-
lated precision measurements of the Casimir pressure were performed in several
experiments by Decca et al. (2003a, 2003b, 2004, 2005b, 2007a, 2007b). The
large thermal corrections predicted by the Drude model were excluded at the
99.9% confidence level. These experiments are discussed in detail in Section 19.3.
Note that according to Yampol’skii et al. (2008), a decreasing magnitude of the
Casimir pressure occurs only for a thin film described by the Drude model near
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a semispace, whereas for bulk samples the magnitude of the Casimir pressure in-
creases with temperature (or separation). Geyer et al. (2008e) demonstrated that
this statement was incorrect. What actually happens is that for two semispaces
described by the Drude model, the decrease of the magnitude of the Casimir
pressure is much larger than for a film near a semispace.

Now we consider some computational results obtained using the tabulated
optical data for gold extrapolated to low frequencies by using the Drude model.
The extrapolation procedure was considered in Section 13.3. It results in the
dielectric permittivity ε(iξ) shown by the dashed line in Fig. 13.2. The results
of a calculation using this permittivity practically coincide with results obtained
using the permittivity of the Drude model εD(iξ) at separations a larger than
300 or 400nm. Relatively large deviations (25% and more) are obtained at sepa-
rations below 50 nm. In Fig. 14.3(a), we plot the correction factor to the Casimir
energy, ηE = FD(a, T )/E(a), as a function of the separation (solid line), where
FD(a, T ) was computed at T = 300 K with the tabulated optical data extrapo-
lated by use of the Drude model, and E(a) is defined in eqn (1.5). In the same
figure, we reproduce the correction factor to the Casimir energy also computed
using the optical data extrapolated by use of the Drude model, but at zero tem-
perature (see solid line 1 in Fig. 13.3). Here, the same calculation procedure as
described in Section 12.6 was used. The separation range from 50nm to 1 µm
has been chosen to illustrate the anomalously large thermal correction predicted
by the Drude model approach at short separations.

From a comparison of the solid and dashed lines in Fig. 14.3(a), the rela-
tive thermal correction to the Casimir energy, δTFD(a, T ), is equal to –0.54%,
–1.5%, and –3.6% at separations of 50 nm, 100nm, and 200nm, respectively.
At separations larger than 300 or 400nm, the magnitudes of the thermal cor-
rection coincide with those listed above, obtained from computations using the
simple Drude model. It is important to note that even at short separations the
Casimir energy at zero temperature, shown by the dashed line, deviates signifi-
cantly from the Casimir free energy, shown by the solid line. This demonstrates
that the Casimir energy at zero temperature computed using the tabulated data
extrapolated by use of the Drude model is in fact physically meaningless even at
relatively short separations in the region from 50nm to 1 µm.

The dielectric permittivity obtained from the optical data and extrapolated
to low frequencies by means of the Drude model can be used also to compute the
Casimir pressure. In Fig. 14.3(b), we plot the correction factor to the Casimir
pressure, ηP = PD(a, T )/P (a), as a function of the separation (solid line), where
PD(a, T ) was computed at T = 300 K and P (a) is defined in eqn (1.5). The
dashed line reproduces the correction factor to the Casimir pressure computed
at zero temperature using the tabulated optical data extrapolated by use of the
Drude model. The relative thermal correction, δT PD(a, T ), is equal to –0.2%,
–0.71%, and −2.0% at separations of 50 nm, 100 nm, and 200 nm, respectively.
Similarly to the case considered above, the Casimir pressure at nonzero temper-
ature [solid line in Fig. 14.3(b)] deviates significantly from the dashed line. Thus,
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Fig. 14.3. The correction factor to (a) the Casimir energy and (b) the Casimir
pressure as a function of separation for two semispaces at T = 300 K. The
solid lines indicate results computed using the optical data extrapolated by
use of the Drude model. The dashed lines show results computed in the same
way but at T = 0 (see text for details).

the Casimir pressure at T = 0, computed using the optical data extrapolated to
low frequencies by means of the Drude model, has no definite physical meaning
in the separation region a ≥ 50 nm.

The Drude model approach to the thermal Casimir force, as suggested by
Boström and Sernelius (2000b), was developed further and used in computations
by Brevik et al. (2002), Høye et al. (2003), Milton (2004), and Brevik et al.
(2005). The last paper led to extended discussions [see the Comment by Bezerra
et al. (2006) and the Reply by Høye et al. (2006)]. The important theoretical
question about this approach is whether it is consistent with thermodynamics.
This problem is analyzed below in detail.

14.3.2 Violation of Nernst’s theorem for Drude metals with perfect crystal
lattices

Bezerra et al. (2002a, 2002b) first demonstrated that the Drude model combined
with the Lifshitz formula results in a nonzero (negative) Casimir entropy at
zero temperature which is a function of the separation distance between the
plates and, thus, violates the third law of thermodynamics (the Nernst heat
theorem). Later, Bezerra et al. (2004) presented a rigorous proof of this statement
for metals with perfect crystal lattices having no impurities. Keeping in mind
the fundamental importance of the agreement between the Lifshitz theory and
thermodynamics, demonstrated already in the case of dielectrics in Chapter 12,
we now consider this subject for metals.

We start from the Lifshitz formula for the Casimir free energy per unit area,
eqn (12.108), expressed in terms of the dimensionless variables (12.89), in the

case of two similar plates, so that r
(1)
TM = r

(2)
TM and r

(1)
TE = r

(2)
TE. The reflection

coefficients are given in eqn (12.91). We consider metals described by the dielec-
tric permittivity of the Drude model (13.14). We replace ω in eqn (13.14) with
the imaginary Matsubara frequencies and rearrange this equation in terms of the
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dimensionless variables:

εD(iωcζl) = 1 +
ω̃2

p

ζl[ζl + γ̃(T )]
. (14.26)

Here, ω̃p = ωp/ωc and γ̃(T ) = γ(T )/ωc. We have also indicated explicitly that
the relaxation parameter of the Drude model depends on the temperature. This
dependence is very important in the proof given below. We recall that in the
absence of relaxation, γ̃(T ) = 0 and εD coincides with the dielectric permittiv-
ity of the plasma model (13.1), (13.5). In this section, the reflection coefficients
obtained by the substitution of eqn (14.26) into eqn (12.91) are denoted by

r
(D)
TM(iζl, y) and r

(D)
TE (iζl, y). The reflection coefficients obtained by the substi-

tution of the plasma model (13.5) into (12.91) are notated as r
(p)
TM(iζl, y) and

r
(p)
TE(iζl, y). The superscripts “D” and “p” will be used for the respective Casimir

energies. In terms of dimensionless variables, we obtain from eqn (12.91) that

r
(D)
TE (0, y) = 0, whereas

r
(p)
TE(0, y) = r

(p)
TE(iζl, y) =

y −
√

ω̃2
p + y2

y +
√

ω̃2
p + y2

�= 0. (14.27)

What this means is that there is no smooth transition from FD to Fp when
γ(T ) → 0. This nonanalyticity originates from the vanishing zero-frequency con-
tribution of the transverse electric mode to the free energy FD(a, T ). When
we consider the limiting case T → 0 for a perfect crystal lattice [i.e. with

γ(T ) → 0; see below], the reflection coefficient r
(D)
TE (iζ, y) with ζ �= 0 goes to

the frequency-independent value r
(p)
TE given in eqn (14.27). If the limiting case

ζ → 0 is then considered, we arrive at the same value (14.27), but not at the zero

value, r
(D)
TE (0, y) = 0. Thus, the reflection coefficient r

(D)
TE (iζ, y) is discontinuous

as a function of ζ and T at the point ζ = 0, T = 0.
For the calculation of the Drude free energy FD(a, T ), it is useful to add to

and subtract from it the free energy Fp(a, T ) calculated using the plasma model.
We also write out separately the zero-frequency terms of the Drude free energy
and of the subtracted plasma free energy, taking into account that

r
(D)
TE (0, y) = 0, r

(p)
TM(0, y) = r

(D)
TM(0, y) = 1. (14.28)

The representation of the Drude free energy then takes the form

FD(a, T ) = Fp(a, T )− kBT

16πa2

∫ ∞

0

y dy ln
[
1 − r

(p)
TE

2
(0, y)e−y

]
(14.29)

+
kBT

8πa2

∞∑
l=1

∫ ∞

ζl

y dy
{
ln
[
1 − r

(D)
TM

2
(iζl, y)e−y

]
− ln

[
1 − r

(p)
TM

2
(iζl, y)e−y

]
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+ ln
[
1 − r

(D)
TE

2
(iζl, y)e−y

]
− ln

[
1 − r

(p)
TE

2
(iζl, y)e−y

]}
.

An important feature of this representation is that the zero-frequency contri-
butions are contained only in the first two terms on the right-hand side of eqn
(14.29). All other terms contain integration from some nonzero lower integra-
tion limit to infinity because the summation starts from a nonzero Matsubara
frequency ζ1.

Let us find the asymptotic behavior of the Drude free energy (14.29) in the
limiting case T → 0. This problem is solved differently for perfect crystal lattices
and for crystal lattices with impurities. In the present subsection, we consider
perfect crystal lattices, postponing the discussion of impurities to the next sub-
section. Note that for perfect crystal lattices γ̃(T ) is the smallest of the three
dimensionless parameters, ω̃p, ζl with l ≥ 1, and γ̃(T ) contained in eqn (14.26),
at any T . This is clear from the following.

At T = 300 K, for good metals, γ ∼ 1013–1014 rad/s (in the case of gold,
for example, γ = 0.035 eV = 5.32 × 1013 rad/s), whereas ξ1 = 2πkBT/� =
2.46 × 1014 rad/s. Keeping in mind that ξl = lξ1, we obtain γ < ξl. When T
decreases from room temperature to approximately TD/4, where TD is the De-
bye temperature, γ(T ) ∼ T , i.e. it decreases so that it shows the same behavior
as ξl, preserving the inequality γ < ξl. Note that for gold, TD = 165 K (Kit-
tel 1996). At temperatures below TD/4 the relaxation parameter decreases even
more rapidly than ξl with decreasing T . At first it decreases as ∼ T 5 accord-
ing to the Bloch–Grüneisen law, taking electron–phonon collisions into account
(Ashcroft and Mermin 1976). As a result, at T = 30 K γ(T )/ξ1(T ) = 4.9× 10−2,
and at T = 10 K γ(T )/ξ1(T ) = 1.8 × 10−3. At liquid helium temperatures the
relaxation parameter decreases as ∼ T 2 owing to electron–electron scattering
(Kittel 1996). For perfect crystal lattices the rule γ(T ) ∼ T 2 is followed down
to zero temperature. Because of this, at very low temperatures the condition
γ(T ) � ξ1(T ) is satisfied.

The largest parameter of the above three is ωp (recall that for gold we use
ωp = 9.0 eV = 1.37× 1016 rad/s). For example, for gold at T = 300 K, 70K, and
10K we have γ(T )/ωp = γ̃(T )/ω̃p = 3.88 × 10−3, 6.71 × 10−4, and 1.06 × 10−6,
respectively.

Now we return to eqn (14.29) and notice that for all l ≥ 1, the reflec-
tion coefficients (12.91) have continuous derivatives with respect to the ratio
γ(T )/ξl(T ) at the point γ(T )/ξl(T ) = 0. Under the condition γ(T ) � ξl(T )
proven above, which is satisfied at all sufficiently low temperatures, the parame-
ter γ(T )/ξl(T ) = γ̃(T )/ζl(T ) is small. So we can expand the reflection coefficients
in a Taylor series around the point γ̃(T )/ζl(T ) = 0 keeping only the first-order
terms

r
(D)
TM

2
(iζl, y) = r

(p)
TM

2
(iζl, y) − γ̃(T )

ζl(T )
RTM(iζl, y),
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r
(D)
TE

2
(iζl, y) = r

(p)
TE

2
(iζl, y) − γ̃(T )

ζl(T )
RTE(iζl, y), (14.30)

where

RTM(iζl, y) =
2ζ2

l αy
[
1 + α2(2y2 − ζ2

l )
]
r
(p)
TM(iζl, y)√

1 + α2y2
[
y + αζ2

l (αy +
√

1 + α2y2)
]2 ,

RTE(iζl, y) = − 2α y r
(p)
TE(iζl, y)√

1 + α2y2(αy +
√

1 + α2y2)2
, (14.31)

and α ≡ 1/ω̃p = δ0/(2a) � 1 (note that we keep the argument T when ζl

participates in the expansion parameter but omit it otherwise).
Similar expansions for the logarithms which appear in eqn (14.29) are

ln
[
1 − r

(D)
TM

2
(iζl, y)e−y

]
= ln

[
1 − r

(p)
TM

2
(iζl, y)e−y

]
− γ̃(T )

ζl(T )

RTM(iζl, y) e−y

1 − r
(p)
TM

2
(iζl, y)e−y

, (14.32)

ln
[
1 − r

(D)
TE

2
(iζl, y)e−y

]
= ln

[
1 − r

(p)
TE

2
(iζl, y)e−y

]
− γ̃(T )

ζl(T )

RTE(iζl, y) e−y

1 − r
(p)
TE

2
(iζl, y)e−y

.

Substituting eqn (14.32) into eqn (14.29), we obtain

FD(a, T ) = Fp(a, T )− kBT

16πa2

∫ ∞

0

y dy ln
[
1− r

(p)
TE

2
(0, y)e−y

]
+Fγ(a, T ). (14.33)

Here, Fγ(a, T ) is the contribution to the Drude free energy which depends on
the relaxation parameter γ. It is given by

Fγ(a, T ) =
γ̃(T )

ω̃p

kBT

8πa2

∞∑
l=1

ω̃p

ζl(T )

∫ ∞

0

y dy (14.34)

×


 RTM(iζl, y) e−y

1 − r
(p)
TM

2
(iζl, y)e−y

+
RTE(iζl, y) e−y

1 − r
(p)
TE

2
(iζl, y)e−y


 .

Note that in this expression the small parameter γ̃(T )/ω̃p = γ(T )/ωp is factored
out, as it does not depend on the summation index.

The asymptotic expression for the plasma free energy Fp(a, T ) at low tem-
perature is given by

Fp(a, T ) = Ep(a) + ∆TFp(a, T ), (14.35)

where Ep(a) is the Casimir energy per unit area at T = 0, and the thermal
correction is obtained from eqn (14.14). The respective Casimir entropy Sp(a, T )
is presented in eqn (14.24). It goes to zero as ∼ T 2 when T vanishes.
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The second term on the right-hand side of eqn (14.33) is linear in the tem-
perature. The coefficient of T can be calculated perturbatively. For this purpose
we use eqn (14.27) and expand the logarithm under the integral in powers of the
relative skin depth δ0/a. Then the integral with respect to y in eqn (14.33) is
evaluated explicitly, resulting in

− kBT

16πa2

∫ ∞

0

y dy ln
[
1 − r

(p)
TE

2
(0, y)e−y

]
=

kBTζR(3)

16πa2

{
1 − 4

δ0

a
+ 12

(
δ0

a

)2

−32

(
δ0

a

)3 [
1 − ζR(5)

16ζR(3)

]
+ 80

(
δ0

a

)4 [
1 − ζR(5)

4ζR(3)

]}
. (14.36)

Now we consider the low-temperature behavior of the last term on the right-
hand side of eqn (14.33), Fγ(a, T ), which depends on the relaxation parameter.
As pointed out above, in the case of a perfect crystal lattice γ(T ) → 0 when
T → 0 no slower than ∼ T 2. We shall show that the Fγ(a, T ) expressed by
eqn (14.34) also goes to zero when T vanishes as ∼ T 2 ln T . For this purpose we
expand RTM and RTE in eqn (14.31) up to the first order in the small parameter α
(recall that Fγ is already proportional to the smallest parameter in our problem,
γ/ωp):

RTM(iζl, y) =
2ζ2

l α

y
, RTE(iζl, y) = 2yα. (14.37)

Substituting eqn (14.36) into eqn (14.33), we obtain

Fγ(a, T ) =
γ(T )

ωp

kBT

4πa2

∞∑
l=1

(
ζl

∫ ∞

ζl

dy

ey − 1
+

1

ζl

∫ ∞

ζl

y2 dy

ey − 1

)
. (14.38)

In the limiting case T → 0, both sums in eqn (14.38) can be evaluated easily.
The asymptotic form of the first sum is given by

∞∑
l=1

ζl

∫ ∞

ζl

dy

ey − 1
=

2πT

Teff

∞∑
k=1

1

k

[
1

ekτ − 1
+

1

(ekτ − 1)2

]
=

1

τ
ζR(3) + ζR(2).

(14.39)
Here, we have used the notation τ = 2πT/Teff and kept only two terms in the
expansion of exp(kτ) in the denominators. For the second sum in eqn (14.38),
we obtain

∞∑
l=1

1

ζl

∫ ∞

ζl

y2 dy

ey − 1
=

1

τ

∞∑
k=1

[
− 2

k3
ln(1 − e−kτ ) +

2τ

ekτ − 1
+

τ2

k

ekτ

(ekτ − 1)2

]

= −2ζR(3)

τ
ln τ +

3ζR(3)

τ
+ 2ζR(2). (14.40)

Substituting eqns (14.39) and (14.40) into eqn (14.38), we arrive at
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Fγ(a, T ) =
γ(T )

ωp

kBTeffζR(3)

4π2a2

[
− ln τ + 2 +

3ζR(2)

2ζR(3)
τ

]
. (14.41)

As can be seen in eqn (14.41), the leading term in Fγ(a, T ), as a function of
temperature, behaves as −γ(T ) ln(T/Teff) and goes to zero when T → 0 because
for a perfect crystal lattice γ(T ) ∼ T 2 at liquid helium and lower temperatures.

Now we are in a position to find the low-temperature behavior of the Casimir
entropy, as defined by the Drude model. It is obtained from eqn (14.33):

SD(a, T ) = −∂FD(a, T )

∂T
(14.42)

= Sp(a, T ) +
kB

16πa2

∫ ∞

0

y dy ln
[
1 − r

(p)
TE

2
(0, y)e−y

]
− ∂Fγ(a, T )

∂T
.

Here, Sp(a, T ) is the low-temperature asymptotic expression (14.24) for the
Casimir entropy given by the plasma model. It goes to zero when T vanishes. The
second contribution on the right-hand side of eqn (14.42) is independent of the
temperature. The asymptotic behavior of the last contribution in the limit of low
temperature is obtained from eqn (14.41) taking into account that γ(T ) = γ0T

2:

−∂Fγ(a, T )

∂T
= −kBζR(3)

2πa2

γ(T )

ωp

1

τ

[
−2 ln τ + 3 +

9ζR(2)

2ζR(3)
τ

]
. (14.43)

At low T , this contribution goes to zero as T ln(T/Teff). Taking the limit T → 0
on both sides of eqn (14.42), we arrive at

SD(a, 0) =
kB

16πa2

∫ ∞

0

y dy ln
[
1 − r

(p)
TE

2
(0, y)e−y

]

= −kBζR(3)

16πa2

[
1 − 4

δ0

a
+ 12

(
δ0

a

)2

− · · ·
]

< 0, (14.44)

where the higher-order contributions are presented in eqn (14.36).
Thus, at zero temperature the Casimir entropy calculated using the Drude

model for metals with perfect crystal lattices takes a nonzero negative value. This
value, in violation of the Nernst heat theorem, depends on the parameters of the
system, such as the separation distance between the plates and the plasma fre-
quency. The asymptotic expression (14.44) is in good agreement with the results
of numerical computations using the Lifshitz formula. In Fig. 14.4(a), we present
computational results for the Casimir entropy in a configuration of two plates
made of a Drude metal with a perfect crystal lattice at a separation a = 1 µm (the
same Drude parameters as above, i.e. ωp = 9.0 eV and γ(T = 300 K) = 0.035 eV,
have been used). As is seen in the figure, the Casimir entropy is negative over
a wide temperature region and nonzero at T = 0. Keeping in mind that the
Drude parameter γ describes the relaxation properties of conduction electrons,
the demonstrated contradiction with thermodynamics questions the possibility
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Fig. 14.4. The Casimir entropy per unit area as a function of temperature in a
configuration of two metallic semispaces at a separation a = 1 µm described
by the Drude model for (a) a metal with a perfect crystal lattice (b) a metal
with a typical concentration of impurities (Mostepanenko and Geyer 2008).
See text for further discussion.

to describe these properties within the framework of the Lifshitz theory by means
of the Drude model. As was mentioned in Section 14.3.1, the large thermal cor-
rections to the Casimir pressure predicted by the Drude model at separations
below 1 µm are excluded experimentally (see Section 19.3 for details). The vi-
olation of the Nernst theorem under the condition that one of the reflection
coefficients is discontinuous as a function of the frequency and temperature was
demonstrated on general grounds by Intravaia and Henkel (2008). Their proof is
applicable to both the case of dielectrics, as discussed in Section 12.5.2, and the
case of metals.

Note that the use of the Drude model in the Lifshitz formula is usually justi-
fied by the fact that it provides a smooth transition between the regions of the
normal skin effect and infrared optics. This ignores the region of the anomalous
skin effect, where the Lifshitz formula in terms of ε(ω) is not applicable (see
Section 13.4.1). With a decrease in T , the application region of the normal skin
effect becomes narrower and the application region of the anomalous skin effect
widens (see Section 14.4.2). However, at any T > 0, there exists a frequency range
of small frequencies where the normal skin effect is applicable. Bearing in mind
that the violation of the Nernst heat theorem demonstrated above is completely
determined by the zero-frequency term of the Lifshitz formula, it is worthwhile to
use the Drude model at low T when considering the thermodynamic consistency
of the Lifshitz theory (Klimchitskaya et al. 2009a). This invalidates the critical
remarks (Pitaevskii 2008b) concerning the violation of the Nernst theorem in
the Drude model approach proved by Bezerra et al. (2004).

14.3.3 The role of impurities

As noted in the previous subsection, for perfect crystal lattices the relaxation
parameter γ(T ) is less than the other two parameters, ωp and ξl, used in the
theoretical description of the thermal Casimir force by means of the Drude model.
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It was shown that at arbitrarily low temperatures the following inequality is
satisfied:

γ(T ) � ξl(T ), l = 1, 2, 3, . . . (14.45)

This was used to demonstrate the violation of the Nernst theorem.
Boström and Sernelius (2004) noticed, however, that the Drude model can be

in agreement with the Nernst theorem if the crystal lattice of the metal contains
some fraction of impurities. This conclusion was supported by numerical compu-
tations of the Casimir entropy as a function of temperature, showing a negative
entropy which undergoes an abrupt increase to zero at very low temperatures.
The validity of the Nernst theorem for metals with impurities is not in contradic-
tion with the above results on the violation of this theorem for a perfect crystal
lattice. The reason is that for metals with impurities, the relaxation parameter
reaches some minimal (residual) value γres > 0 when the temperature decreases.
With a further decrease of temperature, the value γres remains unchanged and
the inequality (14.45) used in Section 14.3.2 is not valid anymore. Thus, the
conclusions based on eqn (14.45) are not applicable to metals with impurities.

The magnitude of the residual relaxation can be determined from the resistiv-
ity ratio of a sample. This is defined as the ratio of the resistivity of the sample at
room temperature to its residual resistivity. For relatively pure samples contain-
ing only a small fraction of impurities, the resistivity ratio may be as high as 106

(Kittel 1996). For typical samples, the resistivity ratio is of order 103. Thus, for
gold, with γ(T = 300 K) = 5.32 × 1013 rad/s, the residual relaxation parameter
is equal to γres = 5.32 × 107 rad/s for pure samples and γres = 5.32 × 1010 rad/s
for typical samples. For relatively pure samples, the inequality (14.45) is valid
at T � �γres/(2πkB) = 6.5 × 10−5 K and not applicable at lower temperatures.

Høye et al. (2007) considered gold samples with impurities and obtained an
analytic expression for the thermal correction to the Casimir energy at very low
temperatures. They based their derivation on the inequality [opposite to eqn
(14.45)]

ξl(T ) � γ(T ). (14.46)

The resulting asymptotic expression for the thermal correction to the Casimir
energy per unit area was found in the form

∆TFD(a, T ) = C1T
2(1 − C2T

1/2 + · · · ) (14.47)

and approximated as

∆TFD(a, T ) =
C1T

2

1 + C2T 1/2
. (14.48)

The respective Casimir entropy

SD(a, T ) = −∂∆TFD(a, T )

∂T
= −C1T

4 + 3C2T
1/2

2(1 + C2T 1/2)2
(14.49)

goes to zero when T vanishes.
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Høye et al. (2007) assumed γ = γ(T = 300 K) in eqn (14.46) and determined
the coefficients C1 and C2 under this assumption. Klimchitskaya and Mostepa-
nenko (2008a) noted that for samples with impurities, one should instead use
γ = γres. As a result, for typical gold samples the following coefficients were
obtained:

C1 = 5.81 × 10−10 Jm−2 K−2, C2 = 95.75 K−1/2 (14.50)

[to be compared with C1 = 5.81 × 10−13 J m−2 K−2 and C2 = 3.03 K−1/2 as
found by Høye et al. (2007)].

For illustration, in Fig. 14.4(b) we present the Casimir entropy, as a function
of temperature, computed using eqns (14.49) and (14.50) for gold plates at a sep-
aration a = 1 µm with a typical concentration of impurities. The asymptotic re-
sults at low temperatures in the application region of eqn (14.49) were connected
smoothly to the results of numerical computations at higher temperatures. As
can be seen from a comparison of Figs. 14.4(a) and (b), at a temperature above
approximately 10−3 K the Casimir entropies for the perfect crystal lattice and
for the lattice with impurities coincide. However, at T < 10−3 K the Casimir en-
tropy of the lattice with impurities undergoes an abrupt increase to zero. Based
on the zero Casimir entropy at zero temperature for lattices with impurities,
Høye et al. (2007) concluded that the Nernst heat theorem is not violated when
a realistic Drude dispersion model is used.

It must be emphasized, however, that the vanishing of the Casimir entropy
at zero temperature for lattices with impurities does not solve the problem of
the inconsistency of the Drude model when combined with the Lifshitz formula
with basic thermodynamic principles. The reason is that for metals with perfect
crystal lattices the Drude model, as was shown above, violates the Nernst the-
orem. This fact alone makes the Drude approach to the thermal Casimir force
unacceptable, as being in violation of quantum statistical physics. As discussed
by Mostepanenko et al. (2006b), a perfect crystal lattice is a truly equilibrium
system with a nondegenerate dynamical state of lowest energy. The entropy at
zero temperature is proportional to the logarithm of the number of states with
the lowest energy, i.e. to the logarithm of unity. Thus, in accordance with quan-
tum statistical physics, in the case of a perfect crystal lattice the Casimir entropy
must vanish. Any theoretical approach that violates this demand is thermody-
namically inconsistent. It is pertinent to note also that a perfect crystal lattice
is one of the basic models used in condensed matter physics. It provides a cor-
rect description of quantum states in a lattice and of many physical processes,
including electron–phonon and electron–electron interactions. The model of a
perfect crystal lattice describes relaxation processes leading to the dissipation of
energy. Because of this, although a perfect crystal lattice is an idealization (as
is any physical model), it is much more realistic than, for instance, the model
of an ideal metal. If, for some reason, the model of a perfect crystal lattice were
recognized to be in contradiction with thermodynamics, this would lead to the
eventual abandonment of most of condensed matter physics. That is the reason
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why the attempt to attain agreement between the Drude model approach to the
thermal Casimir force and thermodynamics at the cost of introducing impurities
cannot be considered as satisfactory.

In this connection, Høye et al. (2008) have argued that the Drude model
combined with the Lifshitz formula is thermodynamically consistent in the case
of a perfect crystal lattice also. To justify this statement, they introduced a
definition of a perfect crystal lattice as a limiting case of a lattice with impurities
when γres → 0. However, the common definition of a perfect crystal lattice in
condensed matter physics (Kittel 1996) defines it as a lattice with a perfect
crystal structure without impurities, i.e. with γres = 0 from the outset. This
common definition allows one to develop a quantum theory of electron–phonon
interactions which is based on the symmetry properties of the lattice. Specifically,
the relaxation parameter γ turns out to be temperature-dependent and vanishes
with vanishing temperature. The definition of a perfect crystal lattice introduced
by Høye et al. (2008) violates lattice symmetry properties. For example, it would
not be possible to reproduce the standard results of the theory of elementary
excitations on the basis of this definition. Thus, for metals with perfect crystal
lattices as commonly understood, the Lifshitz theory combined with the Drude
model violates the Nernst heat theorem and is thermodynamically inconsistent.

14.3.4 Why the Drude model is not applicable in the Lifshitz theory

As shown in Section 13.2, the dielectric permittivities for the normal skin effect
(13.18) and the Drude model (13.14) are the consequences of Maxwell’s equations
in the respective frequency regions. Because of this, it may be considered as
somewhat surprising that the substitution of these permittivities into the Lifshitz
formula leads to unexpected predictions (such as an anomalously large thermal
correction at separations below 1 µm) and even to the violation of the basic
principles of thermodynamics. Below, we elucidate the physical reasons why the
Drude model is not applicable in the Lifshitz theory of thermal Casimir forces.

We begin with a consideration of real metal plates in an external (not fluctu-
ating) field of electromagnetic plane waves of any frequency. In Section 13.2, the
dielectric permittivities εn(ω) and εD(ω) were derived from the Maxwell equa-
tions for an infinite medium (a semispace or a plate of infinitely large area) with
no external sources, zero induced charge density, and a nonzero induced current
j = σ0E. In such a medium, there are no walls (at least in the lateral directions)
limiting the flow of charges. Physically, the condition that a plate is infinite
means that its planar dimensions are much larger than the size of a wavefront.
In the framework of the Drude model (13.14), the total current is given by

jtot(t, r) = Re

[
− iω

4π
εD(ω)E(r)e−iωt

]
(14.51)

=
ω

4π

(
1 −

ω2
p

ω2 + γ2

)
Im

[
E(r)e−iωt

]
+

σ0γ
2

ω2 + γ2
Re

[
E(r)e−iωt

]
.
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Fig. 14.5. A configuration of two metallic plates of finite size. An incident
electromagnetic wave in a vacuum gap is characterized by an electric field
E and a wave vector k (Ei and ki in the interior of a plate). A short-lived
current inside the metal leads to the accumulation of surface charges with
densities ±Σ (Mostepanenko and Geyer 2008).

The first term on the right-hand side of this equation has the meaning of the
displacement current, whereas the second term is proportional to the physical
electric field and describes a real current of conduction electrons. Under the con-
dition γ � ω < ωp, i.e. in the region of infrared optics, the first term dominates.
This is the displacement current of the plasma model. In accordance with eqn
(13.19), it corresponds to a pure imaginary conductivity σ(ω) = iσ0γ/ω. Under
the opposite condition ω � γ, i.e. in the region of the normal skin effect, the
second term on the right-hand side of eqn (14.51) dominates; this term describes
the real current of the conduction electrons.

For real metal semispaces (for plates of finite thickness and area), the appli-
cability conditions of the Drude model are violated. The size of the wavefront of
a plane wave is much larger than any conceivable metal plate (see Fig. 14.5). For
plane waves of very low frequency, the electric field E i inside the plate is almost
constant and is parallel to the boundary surface (see Fig. 14.5, where k and ki

are the wave vectors outside and inside the plate, respectively). As described in
textbooks (Landau et al. 1984, Jackson 1999), a constant electric field E i in a
metal creates a very short-lived current of conduction electrons leading to the
formation of almost constant charge densities ±Σ on opposite sides of the plate
(see Fig. 14.5). As a result, both the electric field and the current inside the plate
are screened out. The field outside the plate becomes equal to the superposition
of the incident field E and the field EΣ produced by the charge densities ±Σ
(Jackson 1999). This was considered for two wires by Bimonte (2007) in con-
nection with Johnson noise. We emphasize that the time interval during which
charges on the sides of finite plates are accumulated and the total electric field
inside a metal becomes zero is extremely short. As an example, for gold with
4πσ0 ≈ 3.5 × 1018 s−1, the electric field inside the metal vanishes after the very
short time of 10−18 s (Geyer et al. 2007).

If the area of the plates is infinitely large, there is a drift current of conduction
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electrons in the longitudinal direction under the influence of the electric field E i

given by the second term on the right-hand side of eqn (14.51). The interaction
of the conduction electrons with the elementary excitations of the crystal lat-
tice (phonons) leads to Joule heating of the metal (ohmic losses). Thus, if one
wishes to substitute the Drude dielectric function into the Lifshitz formula, it is
necessary to introduce an interaction between the plates and a heat reservoir.
This interaction is needed to preserve the constant temperature of the plates.
It describes a unidirectional flux of heat from the plates to the heat reservoir
(Bryksin and Petrov 2008). An interaction of this kind is an irreversible process
violating time reversal symmetry (it is well known that any drift current is t-
asymmetric). However, irreversible processes, in principle, cannot be considered
in the state of thermal equilibrium assumed in the Lifshitz theory. According to
the definition of thermal equilibrium, not only is the temperature constant, but
all irreversible processes connected with the dissipation of energy to heat have
been terminated (Kondepugi and Prigogine 1998; Rumer and Ryvkin 1980). In
thermal equilibrium, only a zero-on-average bilateral fluctuating exchange of
heat between a system and a heat reservoir is admissible. Thus, the Drude di-
electric function cannot be substituted into the Lifshitz formula, because the
drift current violates thermal equilibrium, which is the basic applicability con-
dition of the Lifshitz theory. As noted by Geyer et al. (2003), the fluctuating
electromagnetic field in thermal equilibrium with a metal plate cannot lead to
the initiation of a drift current and the heating of the metal. This is strictly
prohibited by thermodynamics.

In the above, we have discussed plane waves of very low frequency and the
limiting case when the frequency vanishes. This is relevant only to the zero-
frequency contribution to the Lifshitz formula. For electromagnetic oscillations
at all other Matsubara frequencies ξl = lξ1 with l ≥ 1 (recall that at room
temperature ξ1 = 2.47×1014 rad/s, i.e. a rather high frequency), the drift current
of conduction electrons [given by the second term on the right-hand side of
eqn (14.51)] is small in comparison with the displacement current. As explained
above, the latter corresponds to a pure imaginary conductivity of the plasma (or
generalized plasma-like) model. The displacement current does not lead to Joule
heating of the metal and is consistent with the state of thermal equilibrium. That
is the reason why the conduction electrons in metals can be incorporated into
the Lifshitz theory by means of the generalized plasma-like dielectric permittivity
(Mostepanenko and Geyer 2008). It is worth noting that the substitution of the
Drude model into the Lifshitz formula does not create problems in the case of
zero temperature considered in Chapter 13. This is connected with the fact that
the frequencies around zero do not provide any contribution to the integral with
respect to frequency in the Lifshitz formulas (12.30) and (12.33).

14.3.5 Attempts at modifying the reflection coefficients

Several attempts have been undertaken in the literature to modify the reflection
coefficients in the Lifshitz formula in order to make it consistent with the Drude
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model. One attempt (Svetovoy and Lokhanin 2001) suggested the use of the
value −1 for the transverse electric reflection coefficient at zero frequency for
real metals. When this was done, both of the reflection coefficients at all nonzero
Matsubara frequencies were assumed to be the same as in the framework of the
Drude model approach. This is a phenomenological prescription. According to
this suggestion, at zero frequency real metals have the same reflection coefficients
(14.1) as given for ideal metals. Bezerra et al. (2004) checked whether the Lifshitz
theory combined with the above suggestion was thermodynamically consistent. It
was shown that the respective value of the Casimir entropy at zero temperature,

S̃D(a, 0) =
kBζR(3)

4πa2

δ0

a

(
1 − 3

δ0

a

)
> 0, (14.52)

is positive, i.e. the Nernst heat theorem is violated [here, δ0 = λp/(2π), λp is
the plasma wavelength, and a > λp is assumed]. This should be compared with
the negative value of the Casimir entropy at zero temperature (14.44) within the
standard Drude model approach. In Section 19.3.3, we show that the theoretical
Casimir pressures computed using the phenomenological prescription of Svetovoy
and Lokhanin (2001) are excluded by the experimental data at a 95% confidence
level.

Another attempt to modify the reflection coefficients in the Lifshitz formula
takes into account screening effects and diffusion currents of free charge carriers
(Dalvit and Lamoreaux 2008). The modified coefficients for the transverse mag-
netic and transverse electric modes at any frequency were obtained through the
use of the Boltzmann transport equation, which takes into account not only the
standard drift current j, but also the diffusion current eD ∇n, where D is the
diffusion constant and ∇n is the gradient of the charge carrier density. In this
approach the transverse magnetic coefficient along the imaginary frequency axis
takes the form

rmod
TM (iξ, k⊥) =

ε̃(iξ)q − k − k2
⊥η−1(iξ)ε−1(iξ)

[
ε̃(iξ) − ε(iξ)

]
ε̃(iξ)q + k + k2

⊥η−1(iξ)ε−1(iξ)
[
ε̃(iξ) − ε(iξ)

] . (14.53)

Here, q and k are defined in eqn (12.28), with the dielectric permittivity

ε̃(iξ) = ε(iξ) +
ω2

p

ξ(ξ + γ)
, (14.54)

where ε(iξ) is presented in eqn (12.86) and describes core electrons. By analogy
with eqn (13.46), ε̃(iξ) can be called the generalized Drude-like permittivity. The
parameter η(iξ) is defined as

η(iξ) =

[
k2
⊥ + κ2 ε0

ε(iξ)

ε̃(iξ)

ε̃(iξ) − ε(iξ)

]1/2

, (14.55)

where 1/κ is the screening length. The transverse electric reflection coefficient
rmod
TE (iξ, k⊥) is given by the standard expression (12.67), where the dielectric

permittivity (14.54) is substituted.
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Dalvit and Lamoreaux (2008) restricted the application of their approach to
intrinsic semiconductors only. They used a specific Debye–Hückel expression for
the screening length,

1

κ
=

1

κDH
= RDH =

√
ε0kBT

4πe2n
. (14.56)

This expression is applicable to particles obeying Maxwell–Boltzmann statistics.
It is obtained from the general representation for the screening length (Chazalviel
1999)

1

κ
= R =

√
ε0D

4πσ0(T )
. (14.57)

For this purpose, one must use the following expression for the dc conductivity
(Ashcroft and Mermin 1976),

σ0(T ) = µ |e|n, (14.58)

and Einstein’s relation for the case of Maxwell–Boltzmann statistics (Chazalviel
1999)

D

µ
=

kBT

|e| . (14.59)

Here µ is the mobility of the charge carriers.
However, there is nothing in the theory that restricts the application re-

gion of the reflection coefficients rmod
TM,TE with the Debye–Hückel screening length

(14.56) to only intrinsic semiconductors. These coefficients are applicable to all
materials where the density of charge carriers is not too large, so that they are
described by Maxwell–Boltzmann statistics. This means that in the framework
of the proposed approach, it is natural to apply eqns (14.53)–(14.55) to doped
semiconductors with a dopant concentration below the critical value, to solids
with ionic conductivity, to Mott-Habbard dielectrics, etc. (Decca et al. 2008).

Here, we consider the application of this approach to metallic plates. Metals
and semiconductors of the metallic type are characterized by a rather high con-
centration of charge carriers, which obey the quantum Fermi–Dirac statistics.
The general transport equation, however, is equally applicable to classical and
quantum systems. The only difference that one must take into account is the
type of statistics. Substituting the Einstein relation appropriate to the case of
Fermi–Dirac statistics (Ashcroft and Mermin 1976, Chazalviel 1999),

D

µ
=

2EF

3|e| , (14.60)

where EF = �ωp is the Fermi energy, into eqn (14.57), one arrives at the following
expression for the Thomas–Fermi screening length (Chazalviel 1999):

1

κ
=

1

κTF
= RTF =

√
ε0EF

6πe2n
. (14.61)



Metals described by the Drude model 379

With this definition of the parameter κ, it is natural to apply eqns (14.53)–(14.55)
to metals.

The behavior of the Casimir free energy and entropy at low temperature with
the use of the modified reflection coefficients rmod

TM,TE(iξ, k⊥) was determined by
Mostepanenko (2009) for metals and by Klimchitskaya (2009) for dielectrics [see
also Mostepanenko et al. (2009)]. For all metals, the screening length (14.61) is
very small. As a result, at any reasonable separation distance between the plates,
the dimensionless parameter 2aκTF is very large. Using a perturbative expansion
in the small parameter (2aκTF)−1, one can conclude (Mostepanenko 2009) that
the Casimir entropy per unit area of the plates at zero temperature, Smod(a, T ),
in the case of a perfect crystal lattice is given by the same equation (14.44) as in
the standard Drude model approach with the unmodified reflection coefficients
(12.67). Thus, in the case of metals, the Casimir entropy at zero temperature is
negative and the proposed modification of the reflection coefficients is inconsis-
tent with thermodynamics. In Section 19.3.4, it will be shown that when applied
to metals, the approach taking screening effects into account is excluded by the
experimental data at a 99.9% confidence level.

For dielectric materials, the asymptotic behavior of the Casimir entropy at
low temperature can be found using a perturbative expansion in powers of the
small parameter 4πσ0(T )/ξ1 (see Section 12.5.2). As a result (Klimchitskaya
2009), for intrinsic semiconductors and insulators [for these materials, n(T ) de-
cays exponentially to zero with vanishing temperature] S̃(a, T ) goes to zero when
T → 0, i.e. the approach under consideration is in agreement with the Nernst
heat theorem. However, there is a wide class of dielectric materials (such as doped
semiconductors with a dopant concentration below the critical value and solids
with ionic conductivity) for which n does not go to zero when T goes to zero.
Although σ0(T ) in eqn (14.58) goes to zero exponentially fast for all dielectrics
when T goes to zero, for most of them this happens owing to a vanishing mo-
bility µ. For all such materials, in accordance with eqn (14.56), κDH → ∞ when
T → 0. As a result (Klimchitskaya 2009),

Smod(a, 0) =
kB

16πa2

[
ζR(3) − Li3(r

2
0)
]

> 0, (14.62)

where r0 is defined in eqn (12.95). Thus, the approach taking screening effects
into account is in contradiction with thermodynamics.

We emphasize that the existence of dielectric materials for which n does
not go to zero but µ does go to zero when T vanishes demonstrates that the
reflection coefficient (14.53) at ξ = 0 is ambiguous. In reality, for such materials
rmod
TM (0, k⊥) → 1 when T and µ simultaneously vanish. This is because κDH →
∞ when T → 0 (i.e. the screening length goes to zero), in disagreement with
the physical intuition that there should be no screening at zero mobility. This
ambiguity is connected with the break in continuity of the reflection coefficient
rmod
TM (iξ, k⊥) at the point ξ = 0, T = 0. If one takes the limit T → 0 first, keeping

ξ = const �= 0, the standard Fresnel reflection coefficient rTM from eqn (12.67)
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with no screening is reproduced. This property is preserved in the subsequent
limiting transition ξ → 0. Once again, the violation of the Nernst heat theorem
is caused just by the break in the continuity of the reflection coefficients at the
origin of the (ξ, T ) plane (Intravaia and Henkel 2008). In Section 20.3.5, it will be
shown that the theoretical predictions using the modified reflection coefficients
for dielectrics are excluded experimentally at a 70% confidence level.

In Sections 12.5.2 and 14.3.4, the contradictions with thermodynamics and
with experimental data of the standard Lifshitz theory when the dc conductivity
and relaxation of conduction electrons are included were explained by the vio-
lation of its applicability condition, i.e. of thermal equilibrium, in the presence
of a drift current. In a similar way, the approach taking screening effects into
account applies the Lifshitz theory to physical phenomena involving both drift
and diffusion currents. The latter current is caused by a nonequilibrium distri-
bution of charge carriers in an external field, i.e. by a physical situation out of
thermal equilibrium. The reason is that the diffusion current is determined by
a nonzero gradient of charge carrier density, whereas for homogeneous systems
in thermal equilibrium the charge carrier density must be homogeneous. We
emphasize that the Boltzmann transport equation used to derive the reflection
coefficients rmod

TM,TE describes only nonequilibrium processes. It is not symmet-
ric under time reversal. As a result, the Boltzmann equation describes processes
which are related only to an increase of entropy (Rumer and Ryvkin 1980). Thus,
screening effects and diffusion currents cannot be considered in the framework
of the Lifshitz theory, as they violate its main applicability condition of thermal
equilibrium (Decca et al. 2008). In fact, the fluctuating electromagnetic field can
create neither drift nor diffusion currents.

14.4 Leontovich impedance approach at nonzero temperature

The description of metals at zero temperature by means of the Leontovich
impedance was considered in Section 13.4. This can be easily generalized to
the case of nonzero temperature (Bezerra et al. 2002c, Geyer et al. 2003). The
derivation of the Lifshitz formula starts from the expression (12.58) for the free
energy of all oscillator modes between two metallic semispaces. However, here,
the photon eigenfrequencies do not satisfy eqns (12.20) and (12.21) found from
the continuity boundary conditions (12.2). Instead, they satisfy eqn (13.36), fol-
lowing from the impedance boundary conditions (13.25). The additional steps
in the derivation repeat those in Section 12.3.1, with the simplification that
the integrals along the arcs of infinitely large radius vanish under the condition
(13.38). As a result, the Casimir free energy per unit area is expressed by eqn
(12.66), with the impedance reflection coefficients (13.40) calculated at imagi-
nary Matsubara frequencies iξl. The respective Casimir pressure is given by eqn
(12.70) with the same reflection coefficients. Equivalent formulations in terms of
real frequencies are presented in eqns (12.74) and (12.75), where the impedance
reflection coefficients defined on the real frequency axis must be used. All gener-
alizations of the Lifshitz formula considered in Section 12.2 refer equally to the
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case where the reflection coefficients are expressed not in terms of the dielectric
permittivity but in terms of the Leontovich surface impedance.

In Section 13.4.2, the computational results obtained using the Lifshitz for-
mula at zero temperature with the impedance reflection coefficients were com-
pared with those obtained using the dielectric permittivity. It was shown that
in the frequency region of infrared optics, the two approaches lead to practically
coincident results. Below, we consider the thermal Lifshitz formula (12.66) with
the impedance reflection coefficients (13.40) in various frequency regions. It is
shown that in application to the thermal Casimir force, the impedance approach
cannot be considered as only an approximate reformulation of the standard Lif-
shitz theory, but leads to important results that cannot be obtained using other
approaches.

14.4.1 Impedance in the frequency region of the normal skin effect

As considered in Section 13.4.1, the frequency region of the normal skin effect
is determined by eqn (13.26). The impedance function for this frequency re-
gion is given by eqn (13.27). According to Section 13.4.1, the normal skin effect
is characterized by a volume relaxation described by a temperature-dependent
relaxation parameter γ = γ(T ). This parameter decreases with decreasing tem-
perature (see Section 14.3.2). As a result, the mean free path of the conduction
electrons l = vF/γ(T ) increases with decreasing temperature and the application
conditions (13.26) of the normal skin effect are violated. Thus, the frequency re-
gion of the normal skin effect reduces to zero when the temperature vanishes
and becomes wider when the temperature becomes higher. Typically, at room
temperature, the frequency region of the normal skin effect extends from zero
frequency to frequencies of order 1012 rad/s. The characteristic frequency of the
Casimir effect ωc = c/(2a) belongs to this region at separations larger than
100 µm. This is the asymptotic limit of large separations (high temperatures),
where the zero-frequency term of the Lifshitz formula alone determines the total
result.

To find the Casimir free energy in the region of the normal skin effect, we
substitute the impedance function (13.27) into the reflection coefficients (13.40)
and consider the limit of zero frequency. The result is

rTM(0, k⊥) = 1, rTE(0, k⊥) = 1. (14.63)

Substituting this into eqn (12.66) and restricting ourselves to the contribution
of the zero-frequency term, we arrive at the Casimir free energy in the region of
the normal skin effect,

Fn(a, T ) = − kBT

8πa2
ζR(3). (14.64)

This coincides with eqn (7.95), obtained for ideal-metal planes in the case of high
temperatures (or large separations). Equation (14.64) is in agreement with the
classical limit.
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The results (14.63) and (14.64) are different from those obtained using the
dielectric permittivity for the normal skin effect (13.18) and the standard re-
flection coefficients (12.67). For the dielectric permittivity for the normal skin
effect, one obtains eqn (14.6) instead of eqn (14.63) and only one-half of the
free energy in eqn (14.64). Thus, the impedance approach in the region of the
normal skin effect leads to the same result as was obtained for ideal metals. The
standard approach using the dielectric permittivity for the normal skin effect
leads to the same result as for the Drude model. The latter is in contradiction
with the classical limit (see Section 14.1).

Torgerson and Lamoreaux (2004) and Bimonte (2006a) used the impedance
for the normal skin effect to compute the thermal correction to the Casimir
pressure at small separations. These computations, which are in disagreement
with the experimental data, are considered in Section 14.5 in connection with
the role played by evanescent waves.

14.4.2 Impedance in the region of the anomalous skin effect

At higher frequencies, satisfying eqn (13.29), the impedance for the anomalous
skin effect is applicable. It is given by eqn (13.31). At room temperature for gold,
for instance, the frequency region of the anomalous skin effect is rather narrow.
It includes frequencies of order from 1012 rad/s to 1013 rad/s. The characteristic
frequency of the Casimir effect ωc belongs to this frequency region at separations
of the order of tens of micrometers. With a decrease in temperature, however,
the lower application limit of the anomalous skin effect decreases. Substituting
the impedance (13.31) into the reflection coefficients (13.40), one gets the same
result (14.63) as for the normal skin effect. It is different only by a phase factor
from the case of an ideal metal (14.1).

Svetovoy and Lokhanin (2003) verified that the Casimir free energy calculated
using the impedance for the anomalous skin effect leads to zero entropy at zero
temperature in accordance with the Nernst theorem. At very low temperatures
satisfying the condition

kBT �
(

ωc

ωp

)2
�ωpvF

2πc
, (14.65)

the asymptotic behavior of the thermal correction to the Casimir energy per unit
area, ∆TF ∼ τ4/3 ln τ , was obtained [the parameter τ is linear in the tempera-
ture; this parameter was defined in eqn (12.89)]. The respective Casimir entropy
vanishes as −τ1/3 ln τ when the temperature goes to zero.

As explained in Section 13.4.1, in the frequency region of the anomalous skin
effect the concept of a dielectric permittivity which depends only on the frequency
is not applicable because of the effects of spatial nonlocality. In this frequency
region, the impedance approach is the only consistent approach for the theoret-
ical description of the Casimir force between metallic bodies. Computations of
the Casimir energy and free energy for gold plates using the impedance for the
anomalous skin effect were performed by Geyer et al. (2003). At separations of
about 5 µm and larger (to be exact, the impedance for the anomalous skin effect
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is applicable at a � 2.4 µm), the Casimir energy obtained practically coincides
with that for the ideal-metal case. The thermal correction to the Casimir energy
calculated using the impedance for the anomalous skin effect in its application
region is approximately equal to that computed using the impedance for infrared
optics (see below). Note, however, that if the impedance for the anomalous skin
effect is applied at shorter separations outside its application region, the resulting
magnitude of the thermal correction is significantly overestimated. As an exam-
ple, at a = 0.15 µm the values of the relative thermal correction δTF computed
using the impedances for the anomalous skin effect and for infrared optics at
T = 300 K are 1.55% and 0.0182%, respectively. At T = 70 K, the respective val-
ues are 0.485% and 2.76×10−4%. This means that outside its application region,
use of the impedance for the anomalous skin effect overestimates the magnitude
of the thermal correction by up to a factor of 85 at T = 300 K and up to a factor
of 1757 at T = 70 K. Such anomalously large thermal corrections at separations
from 100 to 500 nm at T ≤ 70 K were obtained by Svetovoy and Lokhanin (2003)
by using only the impedance for the anomalous skin effect outside its application
region.

14.4.3 Impedance in the region of infrared optics

The frequency region of infrared optics is determined by eqn (13.32). It extends
between frequencies of order 1014 rad/s to frequencies of order ωp/10. The ap-
plication region of infrared optics does not depend on the temperature. The
analytic form of the Leontovich impedance in this region is given by eqn (13.33).
The impedance for infrared optics leads to approximately the same results for
the thermal corrections to the Casimir energy and pressure as does the dielec-
tric permittivity of the plasma model (see the computational results in Section
14.3.1). At large separation distances (formally, in the application region of the
anomalous skin effect and then the normal skin effect), the predictions from all
three impedances practically coincide with that for an ideal metal.

An important question is the agreement between the Casimir entropy com-
puted using the impedance for infrared optics, and the Nernst heat theorem.
We consider this point under the assumption that eqn (13.33) can be extrapo-
lated from the frequency region of infrared optics to all lower frequencies. As is
discussed in the next section, this is justified if the characteristic frequency ωc be-
longs to the region of infrared optics. We start from the Lifshitz formula (12.108)
for the Casimir free energy in terms of the dimensionless variables (12.89) and
represent it as the sum of the Casimir energy, E(a), and the thermal correction
to it, ∆TF(a, T ), defined in eqn (12.90). The impedance reflection coefficients
are, in terms of dimensionless variables,

rTM(iζl, y) =
y − Z(iζlωc)ζl

y + Z(iζlωc)ζl
, rTE(iζl, y) =

yZ(iζlωc) − ζl

yZ(iζlωc) + ζl
. (14.66)

Using the same variables, the impedance for infrared optics (13.33) takes the
form
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Zi(iζlωc) =
αζl√

1 + α2ζ2
l

, (14.67)

where α, defined after eqn (14.31), is much less than unity throughout the entire
application region of the impedance approach. At zero frequency, from eqns
(14.66) and (14.67), we obtain

rTM(0, y) = 1, rTE(0, y) = −1 − αy

1 + αy
. (14.68)

These reflection coefficients at zero Matsubara frequency were used when the
impedance approach was compared with experiment (Decca et al. 2005b). In this
case the values of the impedance function at all nonzero Matsubara frequencies,
Zi(iξl), were calculated by use of eqn (13.34) with ω = iξl, where ε(iξl) was
obtained using optical data, as described in Section 13.3.

Now, we expand the function f(x, y) defined in eqn (12.90) in powers of the
small parameter α using eqns (14.66) and (14.67):

f(x, y) = 2y ln(1 − e−y) + 4α
x2 + y2

ey − 1
− 8α2 (x4 + y4)ey

y(ey − 1)2
+ O(α3). (14.69)

Substituting eqn (14.69) into the definition of F (x) in eqn (12.90), we obtain

F (x) = I0(x) + αI1(x) + α2I2(x) + O(α3), (14.70)

where

I0(x) = 2

∫ ∞

x

y dy ln(1 − e−y), I1(x) = 4

∫ ∞

x

dy
x2 + y2

ey − 1
,

I2(x) = −8

∫ ∞

x

dy
(x4 + y4)ey

y(ey − 1)2
. (14.71)

Integrating with respect to y and expanding the results in powers of x, we arrive
at [details are presented by Bezerra et al. (2007)]

F (itτ)−F (−itτ) = πi(tτ)2− 2

3
i(tτ)3+4iα

[
π(tτ)2 − 4

3
(tτ)3

]
+O

[
(tτ)4

]
. (14.72)

Here, we limit ourselves to terms of order τ 3, where powers of order α2 do not
contribute to the result (note that τ = 2πT/Teff). Substituting this into eqn
(12.90), we obtain the thermal correction to the Casimir energy and, from eqn
(12.79), the Casimir free energy

Fi(a, T ) = Ei(a) − �c

8πa3

{
ζR(3)

2t3
− π3

90t4
+

δ0

a

[
ζR(3)

t3
− 2π3

45t4

]}
, (14.73)

where we have introduced the notation t = Teff/T for convenience in compar-
ing this result with eqn (14.14). It is evident that eqn (14.73) coincides with
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the respective perturbation orders in eqn (14.14) and, thus, the impedance for
infrared optics leads to the same low-temperature behavior of the Casimir free
energy as does the dielectric permittivity of the plasma model. From eqn (14.73),
the Casimir entropy at low temperature is given by

Si(a, T ) =
kBτ2

16π3a2

{
3

2
ζR(3) − π2

45
τ +

δ0

a

[
3ζR(3) − 4π2

45
τ

]}
. (14.74)

This coincides with the respective perturbation orders of eqn (14.24) obtained us-
ing the dielectric permittivity of the plasma model. The Casimir entropy (14.74)
goes to zero when T vanishes, in agreement with the Nernst theorem.

14.4.4 Impedance using the Drude model

In the previous subsection, we extrapolated the impedance function for infrared
optics to all lower frequencies, including zero frequency. However, in the Lif-
shitz formula the zero Matsubara frequency does not belong to the region of
infrared optics. In the literature, an approach was suggested in which different
impedance functions should be substituted into the Lifshitz formula within dif-
ferent frequency regions in accordance with their applicability conditions [see
e.g. the comment by Svetovoy (2004)]. As was shown by Geyer et al. (2004), the
use of two impedance functions (that for infrared optics around the characteris-
tic frequency and that for the anomalous skin effect at the first few Matsubara
frequencies) results in a violation of the Nernst theorem.

Sometimes, in the literature, the impedance of the Drude model, ZD, is used
(Bimonte 2006b). It is defined by eqn (13.34) with the dielectric permittivity
(13.14). At small frequencies satisfying the condition ω � γ, the impedance
ZD coincides with the impedance for the normal skin effect Zn. In the region
of infrared optics, where ω � γ, the impedance of the Drude model coincides
with Zi. Therefore ZD provides a smooth analytic interpolation between the
impedances for the normal skin effect and infrared optics.

It can be seen from direct computations that the impedance ZD results in
an anomalously large thermal correction to the Casimir pressure at separations
below 1 µm. To demonstrate this, we substituted the impedance ZD into the
Lifshitz formula (14.17) with the impedance reflection coefficients (14.66) and
calculated the thermal correction to the Casimir pressure. At a separation dis-
tance a = 200 nm at T = 300 K, the result for gold is |∆T P | = 14.7 mPa. The
ratio of this value to the magnitude of the thermal correction for ideal-metal
planes computed under the same conditions is 7200. At a separation a = 1 µm,
the magnitude of the thermal correction to the Casimir pressure calculated using
the impedance of the Drude model is larger by a factor of 20 than for ideal-metal
planes. Note that the thermal correction obtained using the impedance ZD in-
creases the magnitude of the Casimir pressure at all separation distances. Recall
also that if the dielectric permittivity of the Drude model is used in the compu-
tations, the thermal correction decreases the magnitude of the pressure over a
wide separation region (see Section 14.3.1).
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Bezerra et al. (2007) have demonstrated that substitution of the impedance
of the Drude model into the Lifshitz formula for the free energy results in the
violation of Nernst’s theorem for metals with perfect crystal lattices. To do so,
ZD was presented in terms of the dimensionless variables:

ZD(iζlωc) =
αζl√

α2ζ2
l + [1/(1 + xl)]

, (14.75)

where xl = γ(T )/ξl and α has been defined after eqn (14.67). It was then ex-
panded in powers of the small parameter xl:

ZD(iζlωc) =
αζl√

1 + α2ζ2
l

+
(αζl)

−2xl

2[1 + (αζl)−2]3/2
+ O(x2

l )

= Zi(iζlωc) + x̃l + O(x2
l ). (14.76)

[The impedance for infrared optics Zi is expressed in this form in eqn (14.67).]
The quantity x̃l can be identically represented as

x̃l =
γ(T )

2ωp
(1 + α2ζ2

l )−3/2 � 1. (14.77)

The proof of the violation of Nernst’s theorem follows along the same lines as
in Section 14.3.2. We consider the Casimir free energy and separate the zero-
frequency term:

FD(a, T ) = F (l=0)
D (a, T ) + F (l≥1)

D (a, T ). (14.78)

The reflection coefficients obtained with the impedance ZD satisfy eqn (14.63).
This results in

F (l=0)
D (a, T ) =

kBT

8πa2

∫ ∞

0

y dy ln(1 − e−y) = − kBT

8πa2
ζR(3). (14.79)

Now we expand the term F (l≥1)
D (a, T ) in powers of the small parameters x̃l and

Zi:

F (l≥1)
D (a, T ) = F (l≥1)

i (a, T ) +
kBTγ(T )

2πa2ωp

ln τ

τ
ζR(3)

+O
[
Zix̃l, x̃

2
l

]
+

kBTγ(T )

2πa2ωp
O
(
τ−1

)
, (14.80)

where F (l≥1)
i is the contribution of all Matsubara frequencies with l ≥ 1 to the

Casimir free energy computed using the impedance for infrared optics. Details of
the perturbative expansion leading to eqn (14.80) were presented by Bezerra et
al. (2007). Taking into account that τ ∼ T and at low temperature γ(T ) ∼ T 2,
Zi ∼ T , and x̃l ∼ T 2, we conclude that not only do the last two terms on the
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right-hand side of eqn (14.80) vanish when the temperature goes to zero, but
their derivatives with respect to temperature vanish also. Because of this, we
omit these terms below.

Now we add the zero-frequency contribution F (l=0)
D , defined in eqn (14.79), on

the left- and right-hand sides of eqn (14.80). In addition, on the right-hand side of

eqn (14.80), we add and subtract the zero-frequency contribution F (l=0)
i obtained

using the impedance for infrared optics. Taking eqn (14.68) into account, this
contribution is given by

F (l=0)
i (a, T ) = − kBT

16πa2
ζR(3) +

kBT

16πa2

∫ ∞

0

y dy ln

[
1 −

(1 − αy

1 + αy

)2

e−y

]
. (14.81)

After using the identical transformations indicated above, eqn (14.80) takes the
form

FD(a, T ) = Fi(a, T ) − kBT

16πa2

{
ζR(3) +

∫ ∞

0

y dy ln

[
1 −

(1 − αy

1 + αy

)2

e−y

]}

+
kBTγ(T )

2πa2ωp

ln τ

τ
ζR(3). (14.82)

Here, the asymptotic behavior of the free energy obtained using the impedance
for infrared optics is given in eqn (14.73). Calculating the negative derivative of
both sides of eqn (14.82) with respect to temperature and putting T = 0, we
obtain the Casimir entropy

SD(a, 0) =
kB

16πa2

{
ζR(3) +

∫ ∞

0

y dy ln

[
1 −

(1 − αy

1 + αy

)2

e−y

]}
> 0. (14.83)

Thus, the use of the impedance of the Drude model results in a violation of the
Nernst theorem. The positive value of the entropy at T = 0 can be represented
perturbatively by expanding it in powers of the small parameter α = δ0/(2a):

SD(a, 0) =
kBζR(3)

4πa2

δ0

a

{
1 − 3

δ0

a
+ O

[(δ0

a

)2
]}

> 0. (14.84)

We conclude that the combination of the Lifshitz formula with the Leontovich
impedance for the Drude model is thermodynamically inconsistent. The mea-
surement data presented in Section 19.3 demonstrate that the large thermal
corrections to the Casimir force predicted from the use of this impedance at
short separation distances are experimentally excluded (Bezerra et al. 2007).

14.5 The role of evanescent and propagating waves

As was noted in Section 12.3.2, the representation of the Lifshitz formula in
terms of real frequencies enables one to represent the Casimir free energy and
pressure as a sum of contributions from propagating and evanescent waves. The
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propagating waves satisfy the condition ck⊥ < ω, which is valid for real pho-
tons. They propagate both in the vacuum gap and inside the semispaces. The
respective values of q, as defined in eqn (12.16), are pure imaginary. Evanescent
waves satisfy the condition ω ≤ ck⊥. They may propagate only along the bound-
ary planes z = ±a/2. The electromagnetic field of an evanescent wave decreases
exponentially with distance from the interface between the vacuum gap and the
semispace. For the evanescent waves, the quantity q is real.

Using these definitions, one can represent the Casimir free energy per unit
area (12.74) in the form

F(a, T ) = FPW(a, T ) + FEW(a, T ), (14.85)

where the contributions of propagating and evanescent waves are given by

FPW(a, T ) =
�

4π2

∫ ∞

0

k⊥dk⊥

∫ ∞

ck⊥

dω coth
�ω

2kBT
Im

{
ln
[
1 − r2

TM(ω, k⊥)e−2aq
]

+ ln
[
1 − r2

TE(ω, k⊥)e−2aq
]}

,

FEW(a, T ) =
�

4π2

∫ ∞

0

k⊥dk⊥

∫ ck⊥

0

dω coth
�ω

2kBT
Im

{
ln
[
1 − r2

TM(ω, k⊥)e−2aq
]

+ ln
[
1 − r2

TE(ω, k⊥)e−2aq
]}

. (14.86)

In a similar way, the Casimir pressure (12.75) can also be expressed as a sum of
contributions from propagating and evanescent waves,

P (a, T ) = PPW(a, T ) + PEW(a, T ). (14.87)

By using the identity

coth
x

2
= 1 +

2

exp(x) − 1
, (14.88)

we can present both the Casimir free energy and the Casimir pressure, as given
by eqns (12.74) and (12.75), in the form of eqn (12.76), where E(a, T ) and
P(a, T ) are contained in eqns (12.37) and (12.38), respectively, and ∆F(a, T )
and ∆P (a, T ) are given by

∆F(a, T ) =
�

2π2

∫ ∞

0

k⊥dk⊥

∫ ∞

0

dω

exp
(

�ω
kBT

)
− 1

Im
{
ln
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1 − r2

TM(ω, k⊥)e−2aq
]

+ ln
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1 − r2

TE(ω, k⊥)e−2aq
]}

,

∆P (a, T ) = − �

π2

∫ ∞

0

k⊥dk⊥

∫ ∞

0

dω

exp
(

�ω
kBT

)
− 1

Im
{
q
[
r−2
TM(ω, k⊥)e2aq − 1

]−1

+ q
[
r−2
TE(ω, k⊥)e2aq − 1

]−1
}

. (14.89)

The quantities E(a, T ) and P(a, T ) are of the same functional form as the Casimir
energy and pressure, E(a) and P (a), at zero temperature [see eqns (12.37) and
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(12.38)]. They are, however, calculated with ε = ε(ω, T ) (see the discussion in
Section 12.4). Equation (14.89) provides one more equivalent representation for
the quantities ∆F and ∆P [the first representation is contained in eqns (12.77)
and (12.78)]. If the dielectric permittivity (or the impedance) is independent of
the temperature, these quantities have the physical meaning of thermal correc-
tions to the Casimir energy and pressure, as discussed in Section 12.4.

All of the quantities E(a, T ), P(a, T ), ∆F(a, T ), and ∆P (a, T ) can be repre-
sented as sums of contributions due to propagating and evanescent waves, as was
done for the complete free energy and pressure in eqns (14.85) and (14.86). In
the case of the quantities E(a, T ) and P(a, T ), such a representation is difficult
to use in numerical computations because the contributions EPW and EEW (and
similarly for PPW and PEW) contain integrals of rapidly oscillating functions.
Representations of the form

∆F(a, T ) = ∆FPW(a, T ) + ∆FEW(a, T ), (14.90)

∆P (a, T ) = ∆PPW(a, T ) + ∆PEW(a, T )

are much more useful. Using the definition of propagating and evanescent waves,
from eqn (14.89) one obtains

∆FPW(a, T ) =
�

2π2

∫ ∞

0

k⊥dk⊥

∫ ∞

ck⊥
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exp
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�ω
kBT
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− 1

Im
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TM(ω, k⊥)e−2aq
]

+ ln
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TE(ω, k⊥)e−2aq
]}

,

∆FEW(a, T ) =
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2π2
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0
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exp
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kBT
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− 1

Im
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[
1 − r2

TM(ω, k⊥)e−2aq
]

+ ln
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1 − r2

TE(ω, k⊥)e−2aq
]}

(14.91)

(and similarly for the pressure). These expressions are convenient for numerical
computations because the exponents in the denominators of the integrands en-
sure quick convergence. Note that both ∆FPW and ∆FEW contain contributions
from transverse electric and transverse magnetic waves, as do ∆PPW and ∆PEW.

Torgerson and Lamoreaux (2004) calculated the contribution from transverse
electric waves to the quantity ∆P (a, T ) using the real-frequency-axis formalism
and the impedance function for the normal skin effect Zn(ω) defined in eqn
(13.27). At a separation a = 1 µm, a large thermal effect was found for the
Casimir pressure between two gold plates (a factor of 30 larger than in the case
of an ideal metal). This is several times smaller (and has the opposite sign)
than was predicted by Boström and Sernelius (2000b) at this separation using
the dielectric permittivity of the Drude model, but is still a very large effect.
According to Torgerson and Lamoreaux (2004), the large thermal effect found
by them is explained by the increased role of the transverse electric evanescent
waves contributing to ∆P (a, T ) at low frequencies. Qualitatively the same result,
with a corrected magnitude of the thermal effect, was found by Bimonte (2006a).
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Here, we present results of numerical computations of both the transverse
electric and the transverse magnetic contributions to ∆P (a, T ), as functions of
separation, at T = 300 K for gold plates described by the impedance Zn. We
also study the role of the propagating and evanescent waves in the significant
increase in the value of ∆P (a, T ) when compared with the case of an ideal
metal. The static conductivity σ0 = 2.8 × 1017 s−1 was used in these computa-
tions, as obtained from eqn (13.20) with ωp = 9.0 eV and γ = 0.035 eV. The
computational results are presented in Table 14.1, where column 1 contains the
values of the separation distance between the plates, and column 2 the values
of ∆P . These values were computed using the imaginary-axis formulas (12.33),
(12.70), and (12.76) and also using the real-axis formula (14.89) with coinci-
dent results. Note that although the magnitude of ∆P increases with decreasing
separation, the relative thermal correction becomes smaller at shorter separa-
tions. The same is the case for metals described by the dielectric permittivity
of the plasma model (see Section 14.2). In column 3 of Table 14.1, the ratio of
∆P computed using the impedance Zn to ∆P IM computed for an ideal metal is
presented. Columns 4 and 5 contain the relative contributions to ∆P from trans-
verse electric evanescent waves and propagating waves, respectively. In columns
6 and 7, the relative contributions to ∆P from transverse magnetic evanescent
waves and propagating waves, respectively, are presented. All computations were
performed at separations a ≥ 200 nm in order to remain in the application re-
gion of the impedance approach. For example, at a = 200 nm the characteristic
frequency ωc = c/(2a) = 7.5 × 1014 rad/s and Zn(ωc) = 1.4 × 10−2 � 1. As can
be seen from columns 2 and 3 in Table 14.1, the magnitudes of ∆P computed
using the impedance for the normal skin effect Zn are rather large. At a = 1 µm,
∆P is larger by a factor of 16 than ∆P IM for ideal-metal planes. This ratio
quickly increases with decreasing separation. At a = 200 nm, it is as large as
5900. By summation of the values presented in columns 4 and 5, in one case and
6 and 7 in the other, we find that the dominant contributions to ∆P are given

Table 14.1. The quantity ∆P for two Au plates at T = 300 K (column 2)
and various contributions to it as a function of separation, computed using the
impedance for the normal skin effect Zn. See text for further discussion.

a (µm) ∆P (mPa) ∆P
∆P IM

∆PTE,EW

∆P
∆PTE,PW

∆P
∆PTM,EW

∆P
∆PTM,PW

∆P

0.2 –12.1 5.9 ×103 0.998 –9 ×10−5 2 ×10−3 –2 ×10−4

0.25 –5.4 2.6 ×103 0.997 –7 ×10−5 3.6 ×10−3 –2 ×10−4

0.3 –2.8 1.4 ×103 0.995 –3 ×10−6 5 ×10−3 –3 ×10−4

0.35 –1.6 7.8 ×102 0.994 1.5 ×10−4 6 ×10−3 –3 ×10−4

0.4 –0.96 4.7 ×102 0.992 5 ×10−4 8 ×10−3 –2 ×10−4

1 –0.032 16 0.91 0.03 0.03 0.02
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by the transverse electric mode, whereas the contributions from the transverse
magnetic mode are negligibly small. The largest value obtained for the latter
at a = 1 µm is 0.05. Similarly, comparing columns 4 and 5 in one case and 6
and 7 in the other, we conclude that in both cases the dominant contribution
is given by the evanescent waves. If we consider only the contribution from the
transverse electric mode discussed by Torgerson and Lamoreaux (2004), we ob-
tain ∆PTE/∆P IM

TE = 29.6 and 1.2 × 104 at separations a = 1 µm and 0.2 µm,
respectively.

The large thermal effect discussed above is caused by the contribution of
evanescent waves at relatively low frequencies in the GHz range. The charac-
teristic frequencies in the separation region considered (from 200nm to 1 µm)
belong to the region of infrared optics. Thus, if the impedance Zn were used
to calculate the complete Casimir free energy F(a, T ) and pressure P (a, T ), the
results would be in error. This is because at the frequencies of infrared optics,
the impedance for the normal skin effect Zn leads to a much smaller skin depth
than the correct value, λp/(2π), given by the impedance for infrared optics Zi. In
other words, the impedance Zn when applied in the frequency region of infrared
optics significantly underestimates the effect of the skin depth. In this situation,
it is beyond reason to believe that the use of the impedance Zn may lead to a
proper theoretical description of the thermal correction. It is notable also that
the quantity ∆P (a, T ) computed by Torgerson and Lamoreaux (2004) is not
equal to the thermal correction to the Casimir pressure ∆T P (a, T ), because the
conductivity σ0 and, consequently, the impedance function Zn are functions of
temperature (see Section 12.4 for a discussion of this subject). The experimen-
tal results presented in Section 19.3 exclude the theoretical approach using the
impedance for the normal skin effect to describe the thermal Casimir force at
separations of 1 µm and lower (Bezerra et al. 2007).

The role of propagating and evanescent waves has also been investigated
for plates described by a frequency-dependent dielectric permittivity. Henkel et
al. (2004) have shown that at short separation distances the evanescent waves
provide a dominant contribution to the Casimir force between plates described by
the plasma model and also plates made of weakly absorbing materials. A detailed
investigation of the propagating and evanescent waves at any separation between
the plates in the framework of the plasma model was performed by Intravaia and
Lambrecht (2005) and Intravaia et al. (2007). Specifically, it was shown that while
the propagating waves always contribute to the attractive force, evanescent waves
may lead to a repulsive contribution as well. Of course, the resulting Casimir force
between the plates always remains attractive, as expected.

Evanescent waves play an important role in radiative heat transfer through
a vacuum gap, which was considered in Section 12.10. Equation (12.140) rep-
resents the power of heat transfer, G(a, T1, T2), as a sum of contributions from
propagating and evanescent waves. The total power G and the contributions to
it from the two types of waves, GPW and GEW, were computed as a function
of separation for two gold plates at temperatures T1 = 320 K and T2 = 300 K
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using the dielectric permittivity of the Drude model (13.14), the impedance for
the normal skin effect (13.27), and the impedance of the Drude model (13.34),
(13.14) (Bezerra et al. 2007). As an example, at a = 0.3 µm the power of heat
transfer calculated using the dielectric permittivity of the Drude model is equal
to GD = 89 Wm−2. If, at the same separation, the impedances for the normal
skin effect and that of the Drude model are used, the results are 185 Wm−2 and
107 Wm−2, respectively. The contribution of the transverse electric evanescent
waves to these results is dominant. Thus, when εD is used in the computations,
they contribute 94% of the total power. For the impedances Zn and ZD, the
contribution of transverse electric evanescent waves is equal to 93% and 95%,
respectively. These contributions decrease with increasing separation distance.
For example, at a = 0.8 µm the transverse electric waves contribute 66% of the
power of heat transfer when εD is used in the computations and 55% and 69%
when Zn and ZD, respectively, are used.

As can be seen from the above, the use of different models leads to different
predictions for the power of radiative heat transfer through a vacuum gap. At
present there is insufficient experimental information which could constrain the
theoretical choice.

14.6 Metals described by the generalized plasma-like model

In the foregoing, several different approaches to the thermal Casimir force were
considered using different models for the dielectric permittivity and surface
impedance. Many observations were made indicating that the Lifshitz theory
runs into problems when it includes the drift current ofthe conduction electrons.
When the relaxation of the conduction electrons is taken into account, one arrives
at contradictions between the Lifshitz theory and thermodynamics. We have dis-
cussed an attempt to avoid the violation of the Nernst theorem by the inclusion
of impurities. This, however, cannot be considered as satisfactory because, in
accordance with quantum statistical physics, the Casimir entropy must vanish
at zero temperature in the case of a perfect crystal lattice. In addition, the large
thermal corrections predicted when one takes the relaxation of the conduction
electrons into account are excluded experimentally. Another attempt exploits
the concept of the Leontovich impedance and impedance boundary conditions.
This allows one to avoid consideration of the volume relaxation and provides a
practical resolution of the problem, at least on a phenomenological level, because
it leads to results in qualitative agreement with the case of an ideal metal and
is consistent with experiment. The impedance approach, however, is not appli-
cable at separations below the plasma wavelength and, thus, cannot be used for
comparison with measurements of the Casimir force between metals at short
separations.

As discussed in Section 14.3.4, a drift current violates the applicability condi-
tion of the Lifshitz theory, i.e. thermal equilibrium. Thus, in the Lifshitz theory,
the relaxation properties of conduction electrons connected with the drift cur-
rent should be disregarded. This is parallel to our conclusion stated in Section
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12.5.2 that, in the framework of the Lifshitz theory, one should disregard the
conductivity of dielectrics at nonzero temperature. Below, we show that the gen-
eralized plasma-like model, considered at zero temperature in Section 13.5, can
be used to describe conduction electrons in metals in the framework of the Lif-
shitz theory at any temperature, in a way consistent with the basic principles of
thermodynamics.

14.6.1 Computational results

As discussed in Chapters 13 and 14, the usual plasma model (13.1) disregards
all relaxation processes. Because of this, at short separation distances below
the plasma wavelength, predictions obtained from the Lifshitz formula using the
plasma model deviate from those obtained using tabulated optical data (see Sec-
tions 13.2.2 and 13.3). Thus, the usual plasma model cannot be used to calculate
the van der Waals force. The generalized plasma-like model (13.44), (13.46) elim-
inates this defect. It takes into account the relaxation of core electrons due to
interband transitions, but disregards the relaxation of conduction electrons, just
as suggested in the introduction to this section. Thanks to this property, the
generalized plasma-like dielectric permittivity provides a consistent description
of the thermal Casimir force between real metals in the Lifshitz theory. We begin
with computational results obtained using this permittivity and consider general
theoretical properties of this approach in the following subsections.

We have performed computations of the Casimir free energy per unit area and
the Casimir pressure between gold semispaces at T = 300 K using the Lifshitz
formulas (12.108) [with r(1) = r(2)] and (14.17) expressed in terms of dimension-
less variables. Keeping in mind applications at both small and large separations,
we used the dielectric permittivity of the generalized plasma model along the
imaginary frequency axis, shown as a solid line in Fig. 13.2. This was obtained
by using the dispersion relation (13.61) and the tabulated optical data with the
contribution from the relaxation of conduction electrons subtracted, as discussed
in Section 13.5.2. In Fig. 14.6(a), the solid line presents the correction factor to
the Casimir energy, ηE = Fgp(a, T )/E(a), as a function of the separation at
T = 300 K, where Fgp(a, T ) is computed using the generalized plasma-like per-
mittivity, and the energy for an ideal metal E(a) is defined in eqn (1.5). For
comparison purposes, in the same figure the dashed line shows the correction
factor when the dielectric permittivity is obtained from the optical data extrap-
olated to zero frequency by means of the Drude model (see Section 13.3). As is
seen in Fig. 14.6(a), the solid and dashed lines demonstrate different behaviors;
the dashed line is a nonmonotonic function of the separation.

It is instructive to compare Fig. 14.6(a) with Fig. 13.6(a), which presents
the same correction factor at zero temperature. The solid line in Fig. 14.6(a) at
separations below 1 µm is very close to the solid line in Fig. 13.6(a), indicating
that the thermal corrections predicted by the generalized plasma-like model are
small at short separations. In contrast, the dashed line in Fig. 14.6(a) deviates
significantly from the dashed line in Fig. 13.6(a) even at a = 200 nm, demon-
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Fig. 14.6. (a) The correction factor and (b) the relative thermal correction
to the Casimir free energy as a function of separation for two gold semis-
paces at T = 300 K. The solid lines were computed by using the general-
ized plasma-like dielectric permittivity. The dashed lines represent results
obtained using the optical data extrapolated to low frequencies by use of the
Drude model.

strating a large thermal effect, as predicted when the relaxation of conduction
electrons is taken into account.

In Fig. 14.6(b), we present the relative thermal correction to the Casimir
energy computed using the generalized plasma model,

δTFgp(a, T ) =
∆TFgp(a, T )

Egp(a)
, (14.92)

as a function of separation (solid line). In the same figure, the dashed line shows
the relative thermal correction δTFD(a, T ) computed using the optical data ex-
trapolated by means of the Drude model [it practically coincides with the relative
thermal correction computed using the Drude model alone, as shown by the solid
line in Fig. 14.2(a)]. As is seen in Fig. 14.6(b), the thermal correction computed
using the generalized plasma model is positive and increases with increasing sep-
aration. It almost coincides with the relative thermal correction computed using
the usual plasma model [the dashed line in Fig. 14.2(a)].

Similar results are obtained for the Casimir pressure. In Fig. 14.7(a), the
correction factor ηP = Pgp(a, T )/P (a) calculated using the generalized plasma-
like model as a function of separation is shown by the solid line [the Casimir
pressure for ideal-metal planes, P (a), is defined in eqn (1.1)]. In the same figure,
the correction factor to the Casimir pressure computed using the optical data
extrapolated by means of the Drude model is shown by the dashed line. The lat-
ter is a nonmonotonic function of separation. A comparison with the respective
correction factors plotted at zero temperature in Fig. 13.6(b) shows that at sep-
arations below 1 µm, the thermal effects at T = 300 K only slightly influence the
correction factor calculated using the generalized plasma-like model. At the same
time, the dashed line in Fig. 14.7(a) deviates significantly from the dashed line
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Fig. 14.7. (a) The correction factor and (b) the relative thermal correction
to the Casimir pressure as a function of separation for two gold semis-
paces at T = 300 K. The solid lines were computed by using the general-
ized plasma-like dielectric permittivity. The dashed lines represent results
obtained using the optical data extrapolated to low frequencies by use of the
Drude model.

in Fig. 13.6(b) at separations above 200nm. This demonstrates an anomalously
large thermal effect, as predicted by the Drude model.

The relative thermal correction to the Casimir pressure,

δT Pgp(a, T ) =
∆T Pgp(a, T )

Pgp(a)
, (14.93)

computed using the generalized plasma-like model is shown by the solid line in
Fig. 14.7(b). It almost coincides with the respective result for the usual plasma
model, shown by the dashed line in Fig. 14.2(b). The Drude model predicts a
nonmonotonic relative thermal correction, as shown in Fig. 14.7(b) by the dashed
line.

Some analytic asymptotic results for the Casimir free energy in the framework
of the generalized plasma-like model are considered below.

14.6.2 Perturbation theory for the generalized plasma model

To obtain the behavior of the free energy at low and high temperature (small
and large separations), we use the analytic expression for the plasma-like dielec-
tric permittivity given in eqns (13.44) and (13.46). Keeping in mind applications
to real experimental situations, we consider the Casimir free energy in a con-
figuration of two similar plates of finite thickness d. It is convenient to use the
dimensionless variables (12.89) and start from the Casimir free energy in the
form of eqn (12.108) with r(1) = r(2). For plates of finite thickness, the reflection
coefficients are contained in eqn (12.52). In terms of dimensionless variables, they
are given by

rTM(iζl, y) =
(ε2

l − 1)(y2 − ζ2
l )

(εl + 1)y2 + (εl − 1)ζ2
l + 2εlyhl(y) coth [hl(y) d/(2a)]

,
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rTE(iζl, y) =
(εl − 1)ζ2

l

2y2 + (εl − 1)ζ2
l + 2yhl(y) coth [hl(y) d/(2a)]

, (14.94)

where

hl(y) =
[
y2 + (εl − 1)ζ2

l

]1/2
. (14.95)

The generalized plasma-like dielectric permittivity along the imaginary frequency
axis [eqn (13.46) with an arbitrary number of oscillators K] can also be presented
in terms of the dimensionless variables:

εl = εgp(iωcζl) = 1 +
ω̃2

p

ζ2
l

+ Al = 1 +
1

α2ζ2
l

+ Al. (14.96)

Here the following notation has been used:

Al = A(ζl) =

K∑
j=1

g̃j

1 + αjζ2
l + βjζl

, (14.97)

where αj , βj , and g̃j are defined in eqn (12.93) and ω̃p = ωp/ωc = 1/α.
Now we represent the free energy in the form of eqn (12.76), where E(a) =

E(a) and ∆F(a, T ) = ∆TF(a, T ) are given in eqn (12.90), and determine the
asymptotic behavior of the thermal correction ∆TF(a, T ) at low temperature
(Geyer et al. 2007).

First, we expand the reflection coefficients (14.94), with ζl replaced by ζ,
in powers of the small parameter α, preserving all powers, including the fourth
order. Thus we consider separation distances such that α = λp/(4πa) � 1,
i.e. a > λp (see Section 14.4.4). In fact, it is more convenient to expand the
logarithmic functions contained in f(ζ, y), as defined in eqn (12.90). The results
are as follows:
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(14.98)

y ln
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3 (ey − 1)
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− α4
8y3ey

[
− (ey − 1)

2
ζ2A(ζ) + y2

(
e2y + 6ey + 1

)]
(ey − 1)

4 .

It is significant that these expansions do not depend on d (the thickness of
the plates), which is contained in eqn (14.94). This is because the factor in the
denominator of eqn (14.94),

coth

[
d

2a
hl(y)

]
= coth

(
d

2a

√
y2 +

1

α2
+ Alζ2

l

)
(14.99)

=
1 + exp

[
−d
√

1 + α2y2 + α2Alζ2
l /(aα)

]
1 − exp

[
−d
√

1 + α2y2 + α2Alζ2
l /(aα)

] ,

behaves asymptotically as 1 + 2 exp[−d/(aα)] when α goes to zero. Thus, this
factor can only contribute exponentially small terms in the expansion (14.98),
providing the plate thickness d is much larger than the skin depth [recall that
2aα = λp/(2π)]. Under this condition, the perturbative expansions (14.98) are
the same for two semispaces and for two plates of finite thickness. We note also
that the terms in eqn (14.98) of order α0, α, and α2 do not contain contributions
from the core electrons. The latter are contained only in the terms of order α3

and α4.
Below, we consider the limit of low temperature, i.e. of the small parameter

τ defined in eqn (12.89). The contribution from the terms of order α0, α, and
α2 in eqn (14.98) to the thermal correction is the same as for the usual plasma
model. It is denoted by ∆TFp(a, T ) and is given by eqn (14.14), where t = Teff/T
and the exponentially small terms are omitted. Now we deal with the terms of
order α3 and α4 in eqn (14.98), which contain the contributions from the core
electrons. The respective functions in eqn (12.90) can be denoted by F (3)(x) and
F (4)(x). They are given by

F (3)(x) = −2α3

{[
A(x) − 1

]
x2

∫ ∞

x

y2 dy

ey − 1
− 1

3

∫ ∞

x

y4
(
15e2y + 18ey − 1

)
(ey − 1)

3 dy

+
[
A(x) + 2

]
x4

∫ ∞

x

dy

ey − 1
−2

3
x6

∫ ∞

x

(3ey + 1)
2

y3 (ey − 1)
3 dy

}
, (14.100)

F (4)(x) = 8α4

{
A(x)x2

∫ ∞

x

y3ey dy

(ey − 1)2

−
∫ ∞

x

y5
(
e2y + 6ey + 1

)
ey dy

(ey − 1)4
+
[
A(x) + 2

]
x6

∫ ∞

x

ey dy

y (ey − 1)2

−x4

∫ ∞

x

yey dy

y3 (ey − 1)
2 − 2x8

∫ ∞

x

ey (ey + 1)
2

y3 (ey − 1)
4 dy

}
.
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Calculating all of the integrals in eqn (14.100) as asymptotic expansions at small
x [details are presented by Geyer et al. (2007)], we arrive at

F (3)(iτt) − F (3)(−iτt) = −2iα3


2τ3t3ζR(3)

K∑
j=1

g̃jβj + πτ4t4


 K∑

j=1

g̃j + 2




 ,

F (4)(iτt) − F (4)(−iτt) = 8iα4


8τ3t3ζR(3)

K∑
j=1

g̃jβj + πτ4t4


 . (14.101)

The terms omitted in eqn (14.101) are of order τ 5.
We denote the contribution from the terms of order α3 and α4 in the thermal

correction by ∆Fg(a, T ). This contains both the higher-order terms of the usual
plasma model that were not taken into account in eqn (14.14) and the terms
specific to the generalized plasma-like model. Substituting eqn (14.101) into eqn
(14.98), we obtain

∆Fg(a, T ) = − �c

32π2a3


−α3


ζR(3)

60

K∑
j=1

g̃jβj τ4 +
3ζR(5)

2π4


 K∑

j=1

g̃j + 2


 τ5




+α4


4ζR(3)

15

K∑
j=1

g̃jβj τ4 +
6ζR(5)

π4
τ5




 . (14.102)

The total Casimir free energy computed using the generalized plasma-like per-
mittivity can now be found as

Fgp(a, T ) = Egp(a) + ∆TFp(a, T ) + ∆Fg(a, T ), (14.103)

where Egp(a) is the Casimir energy at zero temperature (see Section 13.5.3). Us-
ing eqns (14.14) (with exponentially small contributions omitted) and (14.102),
we get the result

Fgp(a, T ) = Egp(a) − �cζR(3)

16πa3

1

t3


1 + 2

δ0

a

− π3

45ζR(3)

1

t


1 + 4

δ0

a
+

3ζR(3)

4

(δ0

a

)3 K∑
j=1

g̃jβj − 6ζR(3)
(δ0

a

)4 K∑
j=1

g̃jβj




−2ζR(5)

ζR(3)

1

t2

(δ0

a

)2


1 +

3

2

δ0

a


 K∑

j=1

g̃j + 2


− 3

(δ0

a

)2




 . (14.104)

Here we can see that the free energy calculated using the generalized plasma-
like permittivity contains a correction of order 1/t4 = (T/Teff)4 not only in the
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terms of order (δ0/a)0 and δ0/a (as in the usual plasma model) but also in the
third- and fourth-order expansion terms in δ0/a. In the usual plasma model, the
terms of order (δ0/a)3 and (δ0/a)4 contain thermal corrections only to the order
of (T/Teff)5 and higher. To estimate the relative role of the additional terms
arising from the use of the generalized plasma-like permittivity, we can employ
the following values of the parameters for gold from Table 13.1:

6∑
j=1

g̃j = 6.3175,

6∑
j=1

g̃jβj =

{
0.272, a = 200 nm,
0.109, a = 500 nm.

(14.105)

Equation (14.104) is applicable at low temperatures T � Teff . It is easy to
obtain the high-temperature asymptotic behavior of the Casimir free energy as
determined by the generalized plasma-like dielectric permittivity. In this case
the zero-frequency term of the Lifshitz formula alone determines the total result.
However, the substitution of the generalized plasma-like permittivity (13.46)
into the reflection coefficients (12.67) leads at zero frequency to the same re-
flection coefficients (14.3) as for the usual plasma model. Thus, in the high-
temperature limit, the Casimir free energy and pressure found by using the
generalized plasma-like model are given by eqn (14.4), which was found for the
usual plasma model. As noted in Section 14.1, the asymptotic expressions ob-
tained are in agreement with the case of an ideal metal and with the classical
limit.

14.6.3 Agreement with the Nernst heat theorem

The asymptotic expression for the Casimir free energy in the limit of low tem-
peratures in eqn (14.104) allows one to find the temperature behavior of the
Casimir entropy and to test the consistency of the generalized plasma-like model
with the third law of thermodynamics. For this purpose we calculate the Casimir
entropy from eqns (5.4) and (14.104), with the result

Sgp(a, T ) =
3ζR(3)kB

32π3a2
τ2


1 + 2

δ0

a

− 2π2

135ζR(3)
τ


1 + 4

δ0

a
+

3ζR(3)

4

(δ0

a

)3 K∑
j=1

g̃jβj − 6ζR(3)
(δ0

a

)4 K∑
j=1

g̃jβj




− 5ζR(5)

6ζR(3)π2
τ2
(δ0

a

)2


1 +

3

2

δ0

a


 K∑

j=1

g̃j + 2


− 3

(δ0

a

)2




 . (14.106)

As can be seen from eqn (14.106), Sgp(a, T ) remains positive and goes to
zero when T → 0 (recall that τ = 2π/t = 2πT/Teff). This means that the
Lifshitz theory combined with the generalized plasma-like dielectric permittivity
is consistent with thermodynamics.
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As can be seen from the foregoing, the generalized plasma-like model leads
to reasonable physical results at both short and long separation distances and
is consistent with thermodynamics. In Chapter 19, it will be shown also that
this model is consistent with all available experimental data in the case of metal
surfaces. As argued in Sections 14.3.4 and 14.3.5, the Drude model leads to a
nonzero drift current of conduction electrons, which results in the violation of
thermal equilibrium. This physical situation is outside the application region of
the Lifshitz formula. The generalized plasma-like permittivity, which disregards
the relaxation of conduction electrons, leads only to a displacement current.
Thus, there is both theoretical and experimental evidence showing that in the
application of the Lifshitz theory, the conduction electrons should be described
in the framework of the generalized plasma-like model, so that their relaxation
is disregarded. In Section 19.3, several experimental results are presented which
provide convincing confirmation of this rule.



15

THE CASIMIR INTERACTION BETWEEN A METAL AND A

DIELECTRIC

This chapter is devoted to the Casimir interaction between two parallel plates,
one metallic and the other dielectric. This hybrid configuration of metal and
dielectric plates was first considered by Geyer et al. (2005a), and attracted in-
stant attention owing to its unique properties. As discussed in Chapter 12, for
dielectrics the transverse electric reflection coefficient vanishes at zero frequency.
Thus, owing to the mathematical structure of the Lifshitz formula, it is not im-
portant which of the proposed models of the real metal is used when we calculate
the Casimir force between dielectric and metal plates. Experimentally, this opens
up considerable opportunities for the investigation of the role of the conductivity
properties in the Casimir effect by keeping the metal plate fixed but consider-
ing dielectrics (semiconductors) with different conductivity properties, varying
from insulating to metallic. Such experiments have already been successfully
performed and have yielded important new insights (see Chapter 20).

Below, we demonstrate that if the static permittivity of a dielectric plate
is finite, the Lifshitz theory is thermodynamically consistent and the Nernst
heat theorem is satisfied for the Casimir entropy. The remarkable feature of the
dielectric–metal configuration is that the Casimir entropy takes negative val-
ues within some temperature interval while going to zero when the temperature
vanishes. This is akin to the Casimir–Polder interaction of an atom with a plate
(see Chapter 16). In contrast, if the dc conductivity of the dielectric material
at nonzero temperature is included in the model of the dielectric response, the
Nernst theorem is violated for the Casimir entropy in the configuration of a
metal and a dielectric plate. This provides additional confirmation of the rules
formulated in Chapters 12 and 14 on how to apply the Lifshitz theory to real
materials in a thermodynamically and experimentally consistent way. Approx-
imate analytical formulas for the Casimir energy density and pressure at zero
temperature in the configuration of one metal and one dielectric plate are also
presented.

15.1 An ideal-metal plate and a plate with constant permittivity

Below, we consider the model where one plate is made of an ideal metal and
the other plate is a dielectric with a frequency-independent ε = ε0. It appears
that this simplified model correctly reflects some important features inherent in
real materials. The Casimir free energy in a configuration of two thick dissimilar
plates (semispaces) is given by eqn (12.108), expressed in terms of the dimension-
less variables (12.89). Let the metal plate be labeled (1) and the dielectric plate
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(2). The free energy can be represented exactly by eqn (12.76), where, for a model
with temperature-independent parameters, E(a, T ) = E(a) (the Casimir energy
at zero temperature) and ∆F(a, T ) = ∆TF(a, T ) (the thermal correction to the
Casimir energy). Equation (14.1) is valid for the reflection coefficients of the ideal

metal, labeled (1). Then, by using the notation r
(2)
TM,TE(iζ, y) ≡ rTM,TE(iζ, y), we

can represent the Casimir energy at zero temperature and the thermal correction

to it by eqn (12.90), where r2
TM,TE is replaced with r

(1)
TM,TEr

(2)
TM,TE and

f(ζ, y) = y
{
ln
[
1 − rTM(iζ, y)e−y

]
+ ln

[
1 + rTE(iζ, y)e−y

]}
. (15.1)

Here, the reflection coefficients for the dielectric plate are given by eqn (12.91).
The values of these coefficients at ζ = 0 are contained in eqn (12.107) with the
index (n) omitted, and r0 is defined in eqn (12.95).

15.1.1 The asymptotic behavior at low and high temperature

Now we proceed with the derivation of the asymptotic behavior of the Casimir
free energy at low temperature (Geyer et al. 2006). This can be done under the
condition τ ≡ 2πT/Teff � 1 [see eqn (12.85) for the definition of Teff ]. The
expansion of f(x, y) defined in eqn (15.1) takes the form

f(x, y) = y ln
(
1 − r0e

−y
)
− x2

(
ε0 − 1

4y
e−y − ε0

ε0 + 1

∞∑
n=1

rn
0

e−ny

y

)
+ O(x3).

(15.2)
To find F (x) in eqn (12.90), we integrate the right-hand side of eqn (15.2) with
respect to y. Note that the first term on the right-hand side of eqn (15.2) does
not contribute to the first expansion orders in F (ix)−F (−ix), which are in fact
the quantity of interest similarly to eqn (12.90). This is because in the expression∫ ∞

x

y dy ln(1 − r0e
−y) =

∫ ∞

0

v dv ln(1 − r0e
−v) + O(x2), (15.3)

where a new variable v = y − x has been introduced, the contribution from the
first-order term in x vanishes. Thus, this term can contribute to F (ix)−F (−ix)
starting only from the third order in x. Integrating the second term on the right-
hand side of eqn (15.2) with the use of the formula∫ ∞

x

dy
e−ny

y
= −Ei(−nx), (15.4)

where Ei(z) is the exponential integral function, we finally obtain

F (ix) − F (−ix) = iπ
(ε0 − 1)2

4(ε0 + 1)
x2 − 240iK4x

3 + O(x4). (15.5)

Here, K4 is some as yet unknown coefficient. It cannot be determined at this
stage, because all terms in the expansion of f(x, y) in powers of x contribute to
it.
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Substituting eqn (15.5) into eqn (12.90) for ∆F and using eqn (12.76), we
find

F(a, T ) = E(a) − �c

32π2a3

[
ζR(3)

16π2

(ε0 − 1)2

ε0 + 1
τ3 − K4τ

4 + O(τ5)

]
. (15.6)

Then the Casimir pressure is obtained:

P (a, T ) = −∂F(a, T )

∂a
= P (a) − �c

32π2a4

[
K4τ

4 + O(τ5)
]
. (15.7)

In order to determine the coefficient K4, we now consider the Casimir pressure
in the form of eqn (12.76). Here, P(a, T ) = P (a) is the Casimir pressure at zero
temperature. For the case of a frequency-independent ε = ε0 under consideration
here, the function f(ζ, y) in eqn (15.1) does not depend on the separation, and
P (a) is obtained from eqn (12.90) by differentiation of the factor in front of the
integral:

P (a) =
3�c

32π2a4

∫ ∞

0

dζ

∫ ∞

ζ

f(ζ, y) dy. (15.8)

The thermal correction ∆P (a, T ) = ∆T P (a, T ) is given by eqn (12.98), where,
for our configuration, we obtain from eqn (12.99)

ΦTM(x) =

∫ ∞

x

y2 dy rTM(ix, y)

ey − rTM(ix, y)
, ΦTE(x) = −

∫ ∞

x

y2 dy rTE(ix, y)

ey + rTE(ix, y)
. (15.9)

To find the expansion of Φ(ix) − Φ(−ix) in powers of x, we deal first with
ΦTE(x). We add and subtract the asymptotic behavior of the integrand function
at small x,

− y2 rTE(ix, y)

ey + rTE(ix, y)
=

1

4
(ε0 − 1)x2e−y + O(x3), (15.10)

inside the integral in eqn (15.9). Then we introduce a new variable v = y/x and
expand the integrand in powers of x, with the result

ΦTE(x) =
1

4
(ε0 − 1)x2e−x (15.11)

+ x3

∫ ∞

1

dv

[
v2

∞∑
n=1

(−1)nrn
TE(iv)e−nvx − 1

4
(ε0 − 1)e−vx

]

=
1

4
(ε0 − 1)x2(1 − x) − x3

∫ ∞

1

dv

[
v2rTE(iv)

1 + rTE(iv)
+

ε0 − 1

4

]
+ O(x4).

By integrating on the right-hand side of eqn (15.11), we arrive at

ΦTE(x) =
ε0 − 1

4
x2 − 1

6
(ε0

√
ε0 − 1)x3 + O(x4). (15.12)

To deal with ΦTM(x), we add and subtract under the integral in eqn (15.9) the
first two expansion terms of the integrand function in powers of x:

ΦTM(x) =

∫ ∞

x

y2 dy

[
r0

ey − r0
− ε0r0e

−yx2

y2(ε0 + 1)(1 − r0e−y)2

]
(15.13)
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+

∫ ∞

x

y2 dy

[
rTM(ix, y)

ey − rTM(ix, y)
− r0

ey − r0
+

ε0r0e
−yx2

y2(ε0 + 1)(1 − r0e−y)2

]
.

Calculating the asymptotic expansions of both integrals in powers of x, we find

ΦTM(x) = 2Li3(r0) −
ε0(ε0 − 1)

2(ε0 + 1)
x2 (15.14)

− 1

6
[ε0 − 1 + ε0(ε0

√
ε0 − 1) − 3ε0(ε0 − 1)

√
ε0 ] x3 + O(x4),

where Lin(z) is the polylogarithm function. After summing eqns (15.12) and
(15.14), the following result is obtained:

Φ(ix) − Φ(−ix) = −2i

3

(
1 − 2ε0

√
ε0 + ε2

0

√
ε0

)
x3 + O(x4). (15.15)

Substituting this in eqn (12.98) and using eqn (12.76), we get

P (a, T ) = P (a) − �c

32π2a4

[
1

360

(
1 − 2ε0

√
ε0 + ε2

0

√
ε0

)
τ4 + O(τ5)

]
. (15.16)

On comparing this equation with eqn (15.7), we get

K4 =
1

360

(
1 − 2ε0

√
ε0 + ε2

0

√
ε0

)
. (15.17)

Thus, the explicit asymptotic expression (15.6) for the free energy has also been
completely determined.

Using the definition (5.4), we obtain from eqn (15.6) the asymptotic behavior
of the Casimir entropy at low temperature (Geyer et al. 2005a, 2006),

S(a, T ) =
3kBζR(3)(ε0 − 1)2

128π3a2(ε0 + 1)
τ2 (15.18)

×
[
1 − 8π2(ε0 + 1)

(
1 − 2ε0

√
ε0 + ε2

0

√
ε0

)
135ζR(3)(ε0 − 1)2

τ + O(τ2)

]
.

As can be seen in eqn (15.18), the entropy of the Casimir interaction between
metal and dielectric plates vanishes with vanishing temperature, as is required
by the Nernst heat theorem. At low temperatures, the entropy remains posi-
tive and goes to zero with vanishing temperature. At the same time, at larger
temperatures entropy is nonmonotonic and may take negative values (Geyer et
al. 2005a). This will be illustrated with numerical computations in Section 15.3.
Note that the perturbative expansions (15.6), (15.16), and (15.18) do not allow
one to consider the limiting case ε0 → ∞. The mathematical reason is that in
a power expansion of a function depending on ε0 as a parameter, the limiting
transitions ε0 → ∞ and τ → 0 are not interchangeable.
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Now we consider the opposite limiting case τ � 1, i.e. the limit of high
temperature (large separation). Here, the main contribution to the free energy
(12.108) is given by the term with l = 0, whereas all terms with l ≥ 1 are
exponentially small. As a result, the free energy is given by

F(a, T ) =
�cτ

64π2a3

∫ ∞

0

y dy ln(1 − r0e
−y), (15.19)

where, owing to eqn (12.107), only the transverse magnetic mode contributes.
By integrating eqn (15.19) and using the definition of τ , we obtain

F(a, T ) = − kBT

16πa2
Li3(r0). (15.20)

For the Casimir pressure and entropy at τ � 1, we get

P (a, T ) = − kBT

8πa3
Li3(r0), S(a, T ) =

kB

16πa2
Li3(r0). (15.21)

15.1.2 The Casimir energy and pressure at zero temperature

Now we consider the Casimir energy per unit area, E(a), and the pressure,
P (a), in the configuration of an ideal-metal plate and a plate with a constant
permittivity ε0. By using eqns (12.90) and (15.8) with the function f(ζ, y) defined
in eqn (15.1), we obtain

E(a) = − π2

720

�c

a3
ψDM(ε0), P (a) = − π2

240

�c

a4
ψDM(ε0), (15.22)

where the function ψDM(ε0) is defined as

ψDM(ε0) = − 45

2π4

∫ ∞

0

dζ

∫ ∞

ζ

f(ζ, y) dy. (15.23)

In fact, the function ψDM in eqns (15.22) and (15.23) has the physical meaning
of a correction factor to the famous Casimir results (1.1) and (1.5), obtained
for two ideal-metal plates. It is equal to the function ϕDM multiplied by r0, as
introduced in the textbook by Lifshitz and Pitaevskii (1980).

The function ψDM(ε0) in eqn (15.23) can be put into a simpler analytical
form. For this purpose, we represent the logarithms in eqn (15.1) as a series and
change the order of the integrations:

ψDM(ε0) =
45

2π4

∞∑
n=1

1

n

∫ ∞

0

y dy e−ny

∫ y

0

dζ [rn
TM(iζ, y) + (−1)nrn

TE(iζ, y)] .

(15.24)
Introducing a new variable w = ζ/y, we rearrange eqn (15.24) to the form

ψDM(ε0) =
45

2π4

∞∑
n=1

1

n

∫ ∞

0

y2 dy e−ny

∫ 1

0

dw [rn
TM(iw) + (−1)nrn

TE(iw)] , (15.25)
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Fig. 15.1. The factor ψDM(ε0) in the Casimir energy per unit area (solid line)
as a function of the static dielectric permittivity. The long-dashed lines 1 and
2 and the short-dashed line show the coefficients C1(ε0), C2(ε0), and B(ε0),
respectively, in eqn (15.46) for the Casimir energy per unit area between
plates made of a real metal and a dielectric (Geyer et al. 2008a).

where

rTM(iw) =
ε0 −

√
1 + (ε0 − 1)w2

ε0 +
√

1 + (ε0 − 1)w2
, rTE(iw) =

1 −
√

1 + (ε0 − 1)w2

1 +
√

1 + (ε0 − 1)w2
.

(15.26)
Calculating the integral with respect to y and performing the summation with
respect to n in eqn (15.25), we arrive at (Geyer et al. 2008a)

ψDM(ε0) =
45

2π4

∫ 1

0

dw {Li4 [rTM(iw)] + Li4 [−rTE(iw)]} . (15.27)

In Fig. 15.1, the function ψDM(ε0) given in eqn (15.27) is plotted versus ε0 as
a solid line (when ε0 → 1, it goes to zero, and when ε0 → ∞, it goes to unity,
reproducing the limit of an ideal metal).

It is notable that the model used in this section (one ideal-metal plate and a
second plate of constant permittivity) correctly reproduces the zero-temperature
Casimir energy and pressure only in the retarded regime (i.e. at sufficiently large
separations). Regarding the thermal corrections in eqns (15.6) and (15.16), the
expressions obtained are also valid at small separations (the nonretarded regime)
as long as the parameter τ is sufficiently small at sufficiently low temperatures.

15.2 Metal and dielectric plates with permittivities depending on

frequency

In this section, analytical expressions for the Casimir energy, free energy, and
pressure are presented for a configuration of two plates, one made of a metal and
the other of a dielectric, taking into account the dependence of the permittivi-
ties of both the metal and the dielectric on the frequency (Geyer et al. 2008a).
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The metal plate is described by the dielectric permittivity of the plasma model
ε(1)(ω) = εp(ω) (13.1). As discussed in Chapters 13 and 14, this description is
good for separations between the plates greater than the plasma wavelength.

For the dielectric plate, we use the representation of the dielectric permittivity
along the imaginary frequency axis

ε(2)(iξl) = ε(iξl) = 1 +
∑

j

Cj

1 + (ξ2
l /ω2

j )
,

∑
j

Cj = ε0 − 1, (15.28)

where ε0 = ε(0) < ∞ [to be compared with eqn (12.132) with d = 0 and
eqn (12.86) with γj = 0]. The dielectric material is assumed to be nonpolar.
Equation (15.28) leads to the same values of the reflection coefficients at zero
frequency, given in eqn (12.107), as were obtained from the simplified model with
a constant dielectric permittivity ε(ω) = ε0 in the previous section. The repre-
sentation (15.28) gives rather precise description of the dielectric permittivity for
many dielectrics. It has been successfully used for a comparison of experimental
data with theory (Bergström 1997). We first consider asymptotic expressions for
the Casimir free energy, pressure, and entropy in the low-temperature limit and
then approximate formulas for the Casimir energy and pressure at zero temper-
ature.

15.2.1 The low- and high-temperature limits

The Casimir free energy is represented by eqn (12.108). Owing to the equality

r
(2)
TE(0, y) = 0, valid for the dielectric plate, the transverse electric mode does not

contribute to the free energy (12.108), regardless of the value of the reflection

coefficient r
(1)
TE(0, y) of the metal. Because of this, in the configuration of a metal

and a dielectric, the various approaches to the definition of r
(1)
TE(0, y) discussed

in Chapter 14 actually lead to the same result. We represent the free energy
in the form of eqn (12.76), with E(a, T ) = Eω(a) and the thermal correction
∆Fω(a, T ) defined in eqn (12.90). Here and below, the index ω means that plate
materials with frequency-dependent permittivities are considered. In the case of
different plates, the quantities r2

TM,TE in the definition of the function fω(ζ, y)

in eqn (12.90) must be replaced with r
(1)
TM,TEr

(2)
TM,TE = r

(p)
TM,TEr

(ω)
TM,TE, where the

index “(p)” indicates that the metal is described by the plasma model. Now the
function f(x, y) can be represented in the form

fω(x, y) = f
(ω)
TM(x, y) + f

(ω)
TE (x, y), (15.29)

f
(ω)
TM,TE(x, y) = y ln

[
1 − r

(p)
TM,TE(ix, y)r

(ω)
TM,TE(ix, y)e−y

]
.

To obtain the analytical expressions of interest, we develop a perturbation
theory in the two small parameters τ (in the limit of low temperature) and
α = δ0/(2a), where δ0 is the skin depth defined in Section 13.1. The condition
α � 1 is satisfied at separations above the plasma wavelength. For the sake of
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simplicity, we shall consider dielectrics which can be described by eqn (15.28)
with only one oscillator, i.e. with j = 1. High-resistivity Si is a typical example of
such a material. The function F (x) in eqn (12.90) can be conveniently represented
in the form

F (ω)(x) = F
(ω)
TM(x) + F

(ω)
TE (x), F

(ω)
TM,TE(x) =

∫ ∞

x

dyf
(ω)
TM,TE(x, y). (15.30)

As the first step, we perform an expansion in powers of the small parameter α.
This results in

F
(ω)
TM(x) =

∫ ∞

x

y dy ln
[
1 − r

(ω)
TM(ix, y)e−y

]
+ 2x2α

∫ ∞

x

dy
r
(ω)
TM(ix, y)

ey − r
(ω)
TM(ix, y)

−2x4α2

∫ ∞

x

dy
eyr

(ω)
TM(ix, y)

y[ey − r
(ω)
TM(ix, y)]2

+ O(α3),

F
(ω)
TE (x) =

∫ ∞

x

y dy ln
[
1 + r

(ω)
TE (ix, y)e−y

]
− 2α

∫ ∞

x

y2dy
r
(ω)
TE (ix, y)

ey + r
(ω)
TE (ix, y)

+2α2

∫ ∞

x

y3 dy
eyr

(ω)
TE (ix, y)

[ey + r
(ω)
TE (ix, y)]2

+ O(α3). (15.31)

The reflection coefficients r
(ω)
TM,TE of the dielectric in eqn (15.31) are obtained

after substitution of eqn (15.28), with j = 1, into eqn (12.91):

r
(ω)
TM(ix, y) =

[
1 + (ε0 − 1)/(1 + χ2x2)

]
y −

√
y2 +

[
(ε0 − 1)/(1 + χ2x2)

]
x2

[
1 + (ε0 − 1)/(1 + χ2x2)

]
y +

√
y2 +

[
(ε0 − 1)/(1 + χ2x2)

]
x2

,

r
(ω)
TE (ix, y) =

y −
√

y2 +
[
(ε0 − 1)/(1 + χ2x2)

]
x2

y +
√

y2 +
[
(ε0 − 1)/(1 + χ2x2)

]
x2

, (15.32)

where χ ≡ ωc/ω1 and ωc = c/(2a) is the characteristic frequency.
Let us consider in sequence the contributions to F (ω)(x) in eqn (15.30) from

the terms of order α0, α, and α2 in eqn (15.31). Regarding the terms of order
α0 [the first terms on the right-hand side of the equalities in eqn (15.31)], an
expansion in powers of small x (small τ) performed using eqn (15.32) leads to

F
(ω)
α0 (x) = F (x) − χ2x4

{
3ε2

0 + 2ε0 − 1

(ε0 + 1)2

∞∑
n=1

nrn
0 Ei(−nx)

−r2
0

∞∑
n=1

nrn
0 Ei[−(n + 1)x] +

ε0 − 1

4
Ei(−x)

}
+ O(x5). (15.33)

Here, F (x) has already been calculated in Section 15.1.1 and results in eqn (15.5).
The additional contributions on the right-hand side of eqn (15.33) lead to a term
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of order τ4 in F
(ω)
α0 (iτt) − F

(ω)
α0 (−iτt) and of order τ5 in the free energy. Thus,

they can be omitted (as in Section 15.1.1, we keep only terms of order τ 3 and
τ4).

To find the contribution to F (ω)(x) of order α [which is labeled F
(ω)
α (x)], we

expand the following quantities under the integrals in eqn (15.31) in powers of
x:

x2r
(ω)
TM(ix, y)

ey − r
(ω)
TM(ix, y)

= x2 r0

ey − r0
− x4 eyr0ε0

y2(ε0 + 1)(ey − r0)2
(15.34)

−2χ2x4 eyr0

(ε0 + 1)(ey − r0)2
+ O(x5),

− y2r
(ω)
TE (ix, y)

ey + r
(ω)
TE (ix, y)

= x2 (ε0 − 1)e−y

4
− x4 (ε0 − 1)2e−2y(2ey − 1)

16y2

−χ2x4 (ε0 − 1)e−y

4
+ O(x5).

By integrating the third terms on the right-hand sides of eqn (15.34) with respect

to y from x to infinity, we find that their contributions to F
(ω)
α (iτt)−F

(ω)
α (−iτt)

are only of order τ5 and, thus, their contributions to the free energy are of order
τ6. Thus, they can be omitted. The integration of the first two terms on the
right-hand sides of eqn (15.34) leads to

F
(ω)
TM,α(iτt) − F

(ω)
TM,α(−iτt) = iατ3t3(ε0 − 1)(ε0 + 2), (15.35)

F
(ω)
TE,α(iτt) − F

(ω)
TE,α(−iτt) =

i

4
ατ3t3(ε0 − 1)(ε0 + 3).

From eqn (15.35), we get

F (ω)
α (iτt) − F (ω)

α (−iτt) =
i

4
ατ3t3(ε0 − 1)(5ε0 + 11). (15.36)

Considering the terms of order α2 in eqn (15.31), their lowest-order contributions

to F
(ω)
TM,α2(iτt) − F

(ω)
TM,α2(−iτt) and F

(ω)
TE,α2(iτt) − F

(ω)
TE,α2(−iτt) are of order τ4

and τ5, respectively. This leads to respective contributions of order τ 5 and τ6 to
the free energy, which we omit in our analysis.

Using eqn (12.90), the respective correction to the Casimir free energy takes
the form

∆F (ω)
α (a, T ) = − �c

30720π2a3
ατ4(ε0 − 1)(5ε0 + 11). (15.37)

Remarkably, ατ4 ∼ a3 and the correction (15.37) does not depend on the sepa-
ration. Thus, there are no corrections to the Casimir pressure of order ατ q with
q ≤ 4 due to the nonzero skin depth of a real-metal plate. Note that in a config-
uration of two ideal-metal plates, the leading thermal correction to the Casimir
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pressure at low temperature is of order τ 4 [see eqn (7.82)]. If the nonideality of
the metal is taken into account, a correction of order τ 3 arises, as shown in eqn
(14.22). From this it follows that the thermal correction in a metal–dielectric
configuration is less sensitive to the effect of nonzero skin depth than in a con-
figuration of two metals.

Combining the contributions from the zero- and first-order terms in α in eqns
(15.6) and (15.37), the free energy at low temperature for the configuration of a
real metal and a real dielectric is (Geyer et al. 2008a)

F (ω)(a, T ) = E(ω)(a) − �c

32π2a3

[
ζR(3)

16π2

(ε0 − 1)2

ε0 + 1
τ3 − K4τ

4

+
1

960
(ε0 − 1)(5ε0 + 11)ατ4 + O(τ5)

]
, (15.38)

where K4 is defined in eqn (15.17). It should be noted that if the representation
(15.28) for the dielectric permittivity is used, the low-temperature behavior of
the free energy is not influenced by the absorption bands of the dielectric ma-
terial and is determined only by the static dielectric permittivity. If, instead of
eqn (15.28), the representation (12.86) is used with nonzero relaxation parame-
ters γj , the perturbative expansion of F (ω)(a, T ) starts from a term of order τ2

depending on the absorption bands [in comparison with eqn (12.96) for the case
of two dielectric plates]. For the Casimir pressure P (ω)(a, T ) between plates made
of a real metal and a dielectric, eqn (15.16) is preserved, with the replacement
of P (a) by P (ω)(a) given in the next subsection.

From eqns (5.4) and (15.38), we obtain the asymptotic behavior of the Casimir
entropy at small τ for a metal plate and a dielectric plate made of real materials,

S(ω)(a, T ) =
3kBζR(3)(ε0 − 1)2

128π3a2(ε0 + 1)
τ2

{
1 − π2(ε0 + 1)

45ζR(3)(ε0 − 1)
τ

(15.39)

×
[
8(1 − 2ε0

√
ε0 + ε2

0

√
ε0)

3(ε0 − 1)
− (5ε0 + 11)α

]
+ O(τ2)

}
.

As can be seen in eqn (15.39), S(ω)(a, T ) goes to zero when the temperature
vanishes, as is required by the Nernst heat theorem. This conclusion remains
valid even if the model of the dielectric includes nonzero relaxation parameters
γj. In the latter case, however, the Casimir entropy vanishes as the first power
of the temperature, as in eqn (12.104).

We complete this subsection with a consideration of the high-temperature
limit. Here, the zero-frequency term (15.19) of the Lifshitz formula determines
the total result. As mentioned above, in the configuration of a metal plate and
a dielectric plate only the transverse magnetic mode (for which the reflection
coefficient of the metal is equal to unity) contributes to the zero-frequency term.
Thus, unlike the case of two plates made of real metals, there are no corrections
due to nonzero skin depth at large separations (high temperatures) for the case
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of one metal and one dielectric plate. As a result, for metal and dielectric plates
made of real materials, eqns (15.20) and (15.21), obtained for an ideal metal and
a dielectric plate with a constant permittivity, remain valid.

15.2.2 Analytical results at zero temperature

Now we derive an analytical representation for the Casimir energy E(ω)(a) in
the configuration of a metal and a dielectric plate described by the frequency-
dependent dielectric permittivities (13.1) and (15.28). Expanding the right-hand
side of the first equality in eqn (12.90) in powers of α, where the function f is
replaced with f (ω) defined in eqn (15.29), we obtain

E(ω)(a) =
�c

32π2a3



∫ ∞

0

dζ

∫ ∞

ζ

y dy
[
ln
(
1 − r

(ω)
TM(iζ, y)e−y

)

+ ln
(
1 + r

(ω)
TE (iζ, y)e−y

)]
(15.40)

+2α

∫ ∞

0

dζ

[
ζ2

∫ ∞

ζ

dy
r
(ω)
TM(iζ, y)

ey − r
(ω)
TM(iζ, y)

−
∫ ∞

ζ

y2 dy
r
(ω)
TE (iζ, y)

ey + r
(ω)
TE (iζ, y)

]

−2α2

∫ ∞

0

dζ


ζ4

∫ ∞

ζ

dy
eyr

(ω)
TM(iζ, y)

y
(
ey − r

(ω)
TM(iζ, y)

)2 −
∫ ∞

ζ

y3 dy
eyr

(ω)
TE (iζ, y)(

ey + r
(ω)
TE (iζ, y)

)2




 .

Here, the reflection coefficients for a dielectric with a frequency-dependent di-
electric permittivity are defined in eqn (15.32). For many dielectrics, in the repre-
sentation (15.28) with one oscillator, the characteristic frequency at typical sep-
arations is much less than the absorption frequency, leading to χ = ωc/ω1 � 1.
In fact, the small parameter χ is of the order of another small parameter, α. The
expansion of eqn (15.32) in powers of χ takes the form

r
(ω)
TM(ix, y) = rTM(ix, y) (15.41)

−χ2 (ε0 − 1)x2y
[
2y2 + (ε0 − 2)x2

]
√

(ε0 − 1)x2 + y2(ε0y +
√

(ε0 − 1)x2 + y2)2
+ O(χ4),

r
(ω)
TE (ix, y) = rTE(ix, y)

+χ2 (ε0 − 1)x2y√
(ε0 − 1)x2 + y2(y +

√
(ε0 − 1)x2 + y2)2

+ O(χ4),

where rTM,TE(ix, y) are the reflection coefficients for a dielectric with a frequency-
independent dielectric permittivity ε0. Our goal is to obtain an expression for
E(ω)(a) up to the second power in the small parameters α and χ.

To attain this goal, we note that eqn (15.41) contains terms of zero order
and second order in χ. Thus, both of these terms should be substituted in the
expression for the zero-order term in α in eqn (15.40). Considering the terms of
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order α and α2 in eqn (15.40), we should restrict ourselves to only the zero-order

term in χ, i.e. replace r
(ω)
TM,TE(ix, y) with rTM,TE(ix, y). The calculation method

for all of the coefficients accompanying α, α2, and χ2 is the same as was used in
Section 15.1.2 for obtaining an analytical expression for the function ψDM(ε0).
It consists of expansion of the integrands in a power series, changing the order
of the integrals, and introducing a new variable w = ζ/y. For the order α0 in
eqn (15.40), we obtain the contribution already calculated in eqns (15.22) and
(15.27) and the contribution of order χ2. The latter takes the form

E
(ω)
χ2 (a) =

�cχ2(ε0 − 1)

32π2a3

∞∑
n=1

∫ ∞

0

dy y4e−ny

∫ 1

0

dw
w2√

(ε0 − 1)w2 + 1
(15.42)

×



[
2 + (ε0 − 2)w2

]
rn−1
TM (iw)[

ε0 +
√

(ε0 − 1)w2 + 1
]2 +

(−1)n−1rn−1
TE (iw)[

1 +
√

(ε0 − 1)w2 + 1
]2

 ,

where the reflection coefficients rTM,TE(iw) are given in eqn (15.26). After inte-
gration with respect to y and summation, we get

E
(ω)
χ2 (a) =

3�cχ2

4π2a3

∫ 1

0

dw
w2√

(ε0 − 1)w2 + 1
(15.43)

×
{

2 + (ε0 − 2)w2

ε0 + 1 − w2
Li5[rTM(iw)] + Li5[−rTE(iw)]

}
,

Following the same procedure, for the terms of order α in eqn (15.40) we obtain

E(ω)
α (a) =

3�cα

8π2a3

∫ 1

0

dw
{
w2Li4[rTM(iw)] + Li4[−rTE(iw)]

}
. (15.44)

Similarly, for the terms of order α2 in eqn (15.40), we obtain

E
(ω)
α2 (a) = −3�cα2

2π2a3

∫ 1

0

dw
{
w4Li4[rTM(iw)] + Li4[−rTE(iw)]

}
. (15.45)

By combining eqns (15.22) and (15.43)–(15.45), we arrive at the Casimir energy
for a configuration of a metal plate and a dielectric plate made of real materials,

E(ω)(a) = − π2
�c

720a3
ψDM(ε0)

[
1 − C1(ε0)

δ0

a
+ C2(ε0)

δ2
0

a2
− B(ε0)

ω2
c

ω2
1

]
, (15.46)

where the positive coefficients C1, C2, and B are defined as

C1(ε0)
δ0

a
≡ −E

(ω)
α (a)

E(a)
, C2(ε0)

δ2
0

a2
≡ E

(ω)
α2 (a)

E(a)
, B(ε0)

ω2
c

ω2
1

≡ −
E

(ω)
χ2 (a)

E(a)
,

(15.47)
and E(a) is given in eqn (15.22).
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In Fig. 15.1, the above coefficients are plotted as functions of ε0 by the long-
dashed lines 1 and 2 (C1 and C2, respectively) and the short-dashed line (B).
From eqn (15.46), it is easy to obtain the respective analytical expression for the
Casimir pressure,

P (ω)(a) = − π2
�c

240a4
ψDM(ε0)

[
1 − 4

3
C1(ε0)

δ0

a
+

5

3
C2(ε0)

δ2
0

a2
− 5

3
B(ε0)

ω2
c

ω2
1

]
.

(15.48)
Equations (15.46) and (15.48) allow one to find the Casimir energy per unit area
and the Casimir pressure between a metal and a dielectric plate with rather high
precision (see the next section).

15.3 Computational results

As mentioned in Section 15.1.1, in a configuration with one plate made of a
metal and another made of a dielectric, the thermodynamic quantities may be
nonmonotonic functions of the temperature (and separation). To demonstrate
that this is really so, we consider the case where one plate is made of gold and
the other plate is made of a real dielectric (Si or α-Al2O3). Both of these di-
electrics possess relatively large values of the static dielectric permittivity, but
they exhibit different behaviors of ε(iξ) around the characteristic frequency de-
fined at a separation of about 1 µm. The dielectric permittivity of Si along
the imaginary frequency axis is shown in Fig. 12.2(a). There is only one step
in this figure. The dielectric permittivity of α-Al2O3 along the imaginary fre-
quency axis can be given in the Ninham–Parsegian representation (12.127), where
ωIR = 1× 1014 rad/s and ωUV = 2× 1016 rad/s are the characteristic absorption
frequencies, and CIR = 7.03 and CUV = 2.072 are the corresponding absorption
strengths (Bergström 1997). This material has not only an electronic but also
an ionic polarization, and the corresponding dependence of ε(iξ) on ξ contains
two steps. The dielectric permittivity of gold as a function of ξ is shown in Fig.
13.2 (for a metal–dielectric configuration, the computational results obtained by
using the dashed and solid lines in Fig. 13.2 coincide at T = 300 K).

The computations were performed by using the Lifshitz formula for the free
energy (12.108). In Fig. 15.2(a), the computational results for the relative ther-
mal correction (12.128) to the Casimir energy between Au and Si plates at
T = 300 K are shown as a function of the separation between the plates (solid
line). In the same figure, the dashed line shows the relative thermal correction for
the case of an ideal metal and a dielectric with a constant dielectric permittivity
ε0 = 11.66 (as for Si at ξ = 0). As can be seen in Fig. 15.2(a) (solid line), there is
a wide range of separations 0.2 µm ≤ a ≤ 1.3 µm where the relative thermal cor-
rection to the Casimir energy is negative (in terms of the dimensionless variable
τ , this holds for 0.33 ≤ τ ≤ 2.14). The minimum value of the thermal correction
δTF (ω) = −0.006 is achieved at a = 0.95 µm (τ = 1.56). This means that the
Casimir entropy in the case under consideration is negative within the range
of separations 0.2 µm ≤ a ≤ 0.95 µm (or, in terms of τ , for 0.33 ≤ τ ≤ 1.56).
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Fig. 15.2. Relative thermal correction to the Casimir energy at T = 300 K as
a function of separation for two plates, one made of Au and the other of (a)
Si and (b) α-Al2O3, shown by the solid lines. The corresponding quantity
is shown by the dashed lines for an ideal metal and a dielectric with a fre-
quency-independent dielectric permittivity (a) ε0 = 11.66 and (b) ε0 = 10.1
(Geyer et al. 2005a).

A comparison with the dashed line shows that for Si the simple model used in
Section 15.1 leads to the same qualitative results, with only minor differences in
the minimum value of δTF and the widths of the intervals where the thermal
correction and the Casimir entropy are negative (Geyer et al. 2005a).

We now consider the Casimir interaction of a gold plate with a plate made
of α-Al2O3. As discussed above, the behavior of the dielectric permittivity of
α-Al2O3 along the imaginary frequency axis is different from that of Si. The
computational results for the relative thermal correction to the Casimir energy,
as a function of separation at T = 300 K, are shown in Fig. 15.2(b) by the solid
line. The dashed line in Fig. 15.2(b) was computed for an ideal-metal plate and
a dielectric plate with a frequency-independent dielectric permittivity ε0 = 10.1.
As is seen in Fig. 15.2(b), in this case the solid line represents a monotoni-
cally increasing positive function of the separation distance. The corresponding
Casimir entropy is also nonnegative within the range of separations reflected in
the figure. The application of the simplified model of Section 15.1 to α-Al2O3

leads to qualitatively different results, shown by the dashed line in Fig. 15.2(b).
This line demonstrates a negative thermal correction within the range of separa-
tions from 0.25 µm to 1.27 µm and a negative Casimir entropy within the range
from 0.25 µm to 0.9 µm. Thus, the inclusion of realistic optical data is especially
important for dielectrics with ionic polarization.

Now we compare the results of the analytical and numerical computations of
the Casimir energy per unit area and the Casimir pressure for a configuration of

two plates, one made of Au and the other of Si. The analytical results, E
(ω)
a (a)

and P
(ω)
a (a), were calculated by using eqns (15.46), (15.48) and the plasma fre-

quency of gold ωp = 9.0 eV, and setting the characteristic absorption frequency
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Fig. 15.3. Relative difference between analytical and numerical results for (a)
the Casimir energy per unit area and (b) the Casimir pressure, at zero tem-
perature, versus separation (Geyer et al. 2008a).

of Si equal to ω1 = 4.2 eV (Palik 1985). The numerical results, E
(ω)
n (a) and

P
(ω)
n (a), were computed using the Lifshitz formulas (12.44) and (12.46) with the

dielectric permittivity of Si shown in Fig. 12.2(a) and the dielectric permittivity
of gold shown in Fig. 13.2 (at separations of about 1 µm the contributing fre-
quencies belong to the region of infrared optics, so that the solid and dashed lines
lead to almost coincident results). In Fig. 15.3, we plot in percent the relative
difference between the analytical and numerical computations versus separa-

tion for (a) the Casimir energy, δE = (E
(ω)
a − E

(ω)
n )/E

(ω)
n , and (b) the Casimir

pressure, δP = (P
(ω)
a −P

(ω)
n )/P

(ω)
n . As can be seen in Fig. 15.3, the largest devi-

ations between the analytical and numerical results (−4.3% and −7.1% for the
energy and pressure, respectively) occur at the shortest separation of 100nm.
This is because the plasma model works well only at separations larger than the
plasma wavelength. At shorter separations, in order to obtain precise results,
one should use not the analytical representation of ε but the tabulated optical
data. At separations larger than 200 and 300 nm, |δE| is less than 0.9% and
0.25%, respectively. Regarding |δP |, this quantity is less than 0.9% and 0.25%
at separations larger than 250 and 370 nm, respectively. The analytical formulas
obtained for the Casimir energy per unit area and the Casimir pressure at zero
temperature, between metal and dielectric plates, provide rather precise results
over a wide separation range with a precision of a fraction of a percent. Thus,
in some cases it is unnecessary to perform the much more cumbersome numer-
ical computations using the Lifshitz formula together with optical data for the
complex index of refraction.

15.4 Conductivity of a dielectric plate and the Nernst heat theorem

In the earlier sections of this chapter, it was assumed that at zero frequency
the permittivity of the dielectric plate had some finite value ε0 = ε(0). As was
discussed in Section 12.5, however, at nonzero temperature all dielectrics possess
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some small but physically real dc conductivity σ0 = σ0(T ), which decreases
exponentially with vanishing temperature. In order to include this conductivity,
the dielectric permittivity of the dielectric plate ε(ω) used above must be replaced
with that in eqn (12.113) [with the upper index (n) omitted]. As a result, the
permittivity of the dielectric plate along the imaginary frequency axis is given
by eqn (12.116). In Section 12.5.2, it was shown that for a configuration of two
dielectric plates, the inclusion of the dc conductivity in the model of the dielectric
response results in a violation of the Nernst heat theorem for the Casimir entropy.

A relevant question is the possible role of the dc conductivity of the dielectric
in the Casimir interaction between a metal and a dielectric. As was demonstrated
by Geyer et al. (2006, 2008a), the inclusion of the conductivity of the dielectric
plate leads to an inconsistency of the Lifshitz theory with thermodynamics re-
gardless of what approach is used for the description of the metal. To show
this, we substitute the dielectric permittivity (12.116) into eqn (12.108) for the
Casimir free energy instead of the dielectric permittivity ε(iξl) from eqn (15.28)
used in the previous sections of this chapter. For the metal, the dielectric permit-
tivity of the plasma model (13.1) is used. Then we get the Casimir free energy
F̃(a, T ), which takes into account the dc conductivity of the dielectric plate. It
is convenient to separate the zero-frequency term of F̃(a, T ) and substract and
add the zero-frequency term of the free energy F (ω)(a, T ) calculated by using
the dielectric permittivity ε(iξl):

F̃(a, T ) =
kBT

16πa2

∫ ∞

0

y dy [ln(1 − ey) − ln(1 − r0e
y)] +

kBT

16πa2

∫ ∞

0

y dy ln(1 − r0e
y)

+
kBT

8πa2

∞∑
l=1

∫ ∞

ζl

y dy
{
ln
[
1 − r

(p)
TM(iζl, y)r̃TM(iζl, y)e−y

]
(15.49)

+ ln
[
1 − r

(p)
TE(iζl, y)r̃TE(iζl, y)e−y

]}
.

Here, the reflection coefficients r̃TM,TE are found from eqn (12.91), where the
dielectric permittivity ε(iξl) from eqn (15.28) is replaced with ε̃(iξl) from eqn
(12.116).

To find the behavior of F̃(a, T ) at low temperatures, we expand the last in-
tegral on the right-hand side of eqn (15.49) in powers of the small parameter
β(T )/l. The zero-order contribution in this expansion, together with the second
integral on the right-hand side of eqn (15.49), is equal to the Casimir free energy
F (ω)(a, T ) calculated by using the dielectric permittivity ε(iξl). Calculating ex-
plicitly the first integral on the right-hand side of eqn (15.49), we rearrange this
equation to the form

F̃(a, T ) = F (ω)(a, T ) − kBT

16πa2
[ζR(3) − Li3(r0)] + Q(a, T ), (15.50)

where Q(a, T ) contains all of the powers in the expansion of the last integral
on the right-hand side of eqn (15.49) in the small parameter β(T )/l equal to or
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higher than the first power. The explicit expression for the main term in Q(a, T ),
linear in β(T )/l, is

Q1(a, T ) =
kBT

8πa2

∞∑
l=1

β(T )

l

∫ ∞

ζl

dy y2e−y√
y2 + ζ2

l (εl − 1)
(15.51)

×




(2 − εl)ζ
2
l − 2y2[√

y2 + ζ2
l (εl − 1) + εly

]2 r
(p)
TM(iζl, y)

1 − r
(p)
TM(iζl, y)r

(ω)
TM(iζl, y)e−y

+
ζ2
l[√

y2 + ζ2
l (εl − 1) + y

]2 r
(p)
TE(iζl, y)

1 − r
(p)
TE(iζl, y)r

(ω)
TE (iζl, y)e−y


 ,

where εl = ε(iξl) is defined in eqn (15.28).
To determine the asymptotic behavior of eqn (15.51) in the limiting case

where τ → 0, we expand the integrated function in powers of τ (recall that
ζl = τl) and consider the main contribution in this expansion at τ = 0,

Q1(a, T ) = − kBTr0

4πa2(ε2
l − 1)

∞∑
l=1

β(T )

l

∫ ∞

ζl

dy ye−y

1 − r0e−y
(15.52)

= − kBTβ(T )

4πa2(ε2
l − 1)

∞∑
n=1

rn
0

n2

[ ∞∑
l=1

e−nτl

l
+ nτ

∞∑
l=1

e−nτl

]
.

Performing the summation over l, we get

Q1(a, T ) = − kBTβ(T )

4πa2(ε2
l − 1)

∞∑
n=1

rn
0

n2

[
− ln(1 − e−nτ ) +

nτ

enτ − 1

]
. (15.53)

The right-hand side of eqn (15.53) can be rearranged with the help of the equality

− ln(1 − e−nτ ) +
nτ

enτ − 1
= − ln τ + 1 − ln n + O(τ2). (15.54)

As a result, we obtain

Q1(a, T ) = − kBLi2(r0)

2πa2(ε2
l − 1)

Tβ(T ) ln τ + Tβ(T )O(τ0). (15.55)

Taking into account the fact that β(T ) ∼ (1/T ) exp(−const/T ) (see Section
12.5.2), we arrive at

Q1(a, T ) ∼ e−const/T ln(T/Teff). (15.56)

From eqn (15.56), it follows that both Q1(a, T ) and its derivative with respect to
T go to zero when T vanishes. The terms of higher order in the small parameters



418 The Casimir interaction between a metal and a dielectric

β(T )/l and τ , omitted in the above analysis, go to zero even faster than Q1.
Thus, the quantity Q(a, T ) in eqn (15.50) and its derivative with respect to T
have limits equal to zero when the temperature goes to zero.

Now we are in a position to find the asymptotic behavior of the entropy for
the metal–dielectric configuration with the inclusion of the dc conductivity of
the dielectric plate. Using eqn (5.4), we obtain from eqn (15.50)

S̃(a, T ) = S(ω)(a, T ) +
kB

16πa2
[ζR(3) − Li3(r0)] −

∂Q(a, T )

∂T
, (15.57)

where S(ω)(a, T ) is defined in eqn (15.39). In the limit T → 0, eqn (15.57) results
in

S̃(a, 0) =
kB

16πa2
[ζR(3) − Li3(r0)] > 0, (15.58)

i.e. for a metal–dielectric configuration with the inclusion of the dc conductivity
of the dielectric plate, the Nernst heat theorem is violated. This result was ob-
tained by Geyer et al. (2006) for dielectric and ideal-metal plates and by Geyer
et al. (2008a) for plates made of a dielectric and a real metal. The analogous
result for two dielectric plates was discussed in Section 12.5.2.

Thus, the metal–dielectric configuration provides one more confirmation of
the conclusion reached in Section 12.5.2 that the Lifshitz theory is inconsistent
with thermodynamics when the dc conductivity of a dielectric is included in the
model of dielectric response. This happens because of the violation of thermal
equilibrium by the drift current. In Chapter 20, measurements of the Casimir
force between a metal sphere and a semiconductor plate are considered. For a
semiconductor plate with a dopant concentration below the critical value (i.e.
in the dielectric phase), the theory including the dc conductivity is shown to
be inconsistent with the measurement data. The data are shown to be in agree-
ment with theory when the dc conductivity of the dielectric plate is neglected.
This confirms the rule, formulated in Section 12.5.2, that the dc conductivity
of dielectric materials should be neglected. Further discussion of this subject is
contained in the next chapter.



16

THE LIFSHITZ THEORY OF ATOM–WALL INTERACTIONS

The Lifshitz theory of the van der Waals and Casimir interactions between two
semispaces separated by a gap can be applied to obtain the interaction poten-
tial between two atoms or molecules at a distance r or between an atom (or
molecule) and a semispace. For this purpose, the substance of both semispaces
(or of the one semispace) is assumed to be rarefied. As a result, the interac-
tion energy (free energy) of two semispaces can be obtained as an additive sum
of interatomic potentials between pairs of constituent atoms or, alternatively,
as a sum of atom–wall potentials between the separate atoms of one semispace
and another semispace. This permits one to reproduce the well-known results
for atom–atom interaction potentials at small separations (London 1930) and at
large separations (Casimir and Polder 1948) usually obtained by the application
of quantum mechanical or quantum electrodynamic perturbation theory to the
dipole–dipole interaction.

The Lifshitz-type formula for the atom–wall interaction obtained when one
of the two walls is treated as a rarefied medium contains both the nonrelativistic
and the relativistic limit and describes the smooth transition between them.
Below, we apply this formula for various wall materials and various atoms. It is
shown that the Casimir interaction between an atom and a metal wall does not
depend on the model of the metal used. The respective Casimir entropy satisfies
the Nernst heat theorem. In the case of an atom interacting with a dielectric
wall, the Lifshitz theory is thermodynamically consistent if the dc conductivity
of the dielectric material is neglected. If the dc conductivity of the dielectric wall
is included in the model of the dielectric response, the Nernst heat theorem is
violated. In the present chapter, we consider an attempt to remedy this situation
by using a generalization of the Lifshitz theory taking spatial dispersion into
account. We discuss the possible impact of the magnetic properties of an atom
and a wall material on the atom–wall interaction. We also discuss the atom–wall
interaction in the nonequilibrium case, when the temperatures of the wall and of
the environment are different, and consider the atom–wall interaction when the
wall material is anisotropic. The results presented in this chapter will be used
in Part III of the book in connection with the role of the Casimir–Polder force
in experiments on Bose–Einstein condensation and quantum reflection (Chapter
22), and in applications in nanotechnology (Chapter 23).

16.1 The van der Waals and Casimir–Polder interatomic potentials

We start with the case of two rarefied semispaces at a short separation a, much
less than the characteristic absorption wavelength, at zero temperature. Let the
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dielectric permittivity of one semispace be ε(1)(ω) and that of the other be
ε(2)(ω). For the case ε(1)(ω) = ε(2)(ω), the van der Waals pressure is given in eqn
(12.40). The respective van der Waals energy per unit area is obtained by the inte-
gration of eqn (12.40) with respect to a [and generalizing it to ε(1)(ω) �= ε(2)(ω)]:

E(a) = − H

12πa2
, (16.1)

H =
3�

8π

∫ ∞

0

dξ

∫ ∞

0

y2 dy

{[
ε(1)(iξ) + 1

] [
ε(2)(iξ) + 1

][
ε(1)(iξ) − 1

] [
ε(2)(iξ) − 1

] ey − 1

}−1

.

For rarefied semispaces, ε(n)(iξ) − 1 � 1. Expanding eqn (16.1) in these two
small parameters and integrating with respect to y, we obtain

E(a) = − �

64π2a2

∫ ∞

0

dξ
[
ε(1)(iξ) − 1

] [
ε(2)(iξ) − 1

]
. (16.2)

Then we expand the dielectric permittivity in powers of the numbers of atoms
N (n) per unit volume, preserving only the first-order contributions (Lifshitz
1956):

ε(n)(iξ) = 1 + 4πα(n)(iξ)Nn + O(N2
n), (16.3)

where the α(n)(ω) are the dynamic polarizabilities of the atoms (or molecules).
Substituting eqn (16.3) into eqn (16.2), we obtain

E(a) = −�N1N2

4a2

∫ ∞

0

dξ α(1)(iξ)α(2)(iξ). (16.4)

Exactly this dependence of the energy per unit area between the two semispaces
is obtained by a pairwise summation of the interatomic potentials EAA(r) =
−A/r6 over the volumes of the two semispaces. To see this, we choose a coordi-
nate plane (x, y) coinciding with the boundary surface of the lower semispace.
Then the additive interaction energy of an atom in the upper semispace with the
lower semispace is given by

EA,add
nr (z2) = −2πAN1

∫ ∞

0

ρ dρ

∫ 0

−∞

dz1[
(z2 − z1)2 + ρ2

]3 = −πN1A

6z3
2

. (16.5)

Integrating this result over the volume of the upper semispace, we find the ad-
ditive interaction energy between the two plates (semispaces) due to the inter-
atomic potential EAA(r):

Eadd
pp,nr(a) = −πN1N2AS

6

∫ ∞

a

dz2

z3
2

= −πN1N2AS

12a2
, (16.6)

where S is the infinite surface area of the boundary plane. Comparing the right-
hand side of eqn (16.4) with Eadd

pp,nr(a)/S obtained from eqn (16.6), we arrive at
the following explicit form of the interatomic potential:
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EAA(r) = − A

r6
, A =

3�

π

∫ ∞

0

dξ α(1)(iξ)α(2)(iξ). (16.7)

Equation (16.7) is in agreement with the standard quantum mechanical result
obtained by London (1930), which does not take the relativistic retardation into
account. To underline this, the quantities (16.5) and (16.6) have been marked
“nr” (nonrelativistic).

Alternatively, one can consider the case of a large separation between rarefied
semispaces. In this case the Casimir pressure is given by eqn (12.42). The respec-
tive Casimir energy per unit area is obtained by the negation and integration of
eqn (12.42), taking into account the fact that now ε(1)(ω) �= ε(2)(ω):

E(a) = − π2
�c

720a3
Ψ(ε

(1)
0 , ε

(2)
0 ), Ψ(ε

(1)
0 , ε

(2)
0 ) =

15

2π4

∫ ∞

0

dζ

∫ ∞

ζ

y2 dy (16.8)

×




ε

(1)
0 y +

√
y2 + ζ2(ε

(1)
0 − 1)

ε
(1)
0 y −

√
y2 + ζ2(ε

(1)
0 − 1)

ε
(2)
0 y +

√
y2 + ζ2(ε

(2)
0 − 1)

ε
(2)
0 y −

√
y2 + ζ2(ε

(2)
0 − 1)

ey − 1



−1

+


y +

√
y2 + ζ2(ε

(1)
0 − 1)

y −
√

y2 + ζ2(ε
(1)
0 − 1)

y +

√
y2 + ζ2(ε

(2)
0 − 1)

y −
√

y2 + ζ2(ε
(2)
0 − 1)

ey − 1



−1

 ,

where ε
(n)
0 ≡ ε(n)(0) are the static dielectric permittivities of the plate materials.

Expanding the integrated function in powers of the small parameters ε
(n)
0 −1

and using eqn (16.3), we obtain

Ψ(ε
(1)
0 , ε

(2)
0 ) =

15

2π2
α(1)(0)α(2)(0)N1N2

∫ ∞

0

dζ

∫ ∞

ζ

y2 dy

[(
2 − ζ2

y2

)2

+
ζ4

y4

]
.

(16.9)
The integration in eqn (16.9) results in

Ψ(ε
(1)
0 , ε

(2)
0 ) =

138

π2
α(1)(0)α(2)(0)N1N2. (16.10)

Thus, using eqn (16.8), the Casimir energy per unit area for a configuration of
two dilute semispaces at a large separation is given by

E(a) = − 23�c

120a3
α(1)(0)α(2)(0)N1N2. (16.11)

The same dependence on separation distance was obtained in eqn (6.43) by
the pairwise summation of interatomic potentials EAA(r) in eqn (6.41) acting
between the atoms belonging to the two semispaces. We equate the right-hand
sides of eqn (6.43) divided by S and eqn (16.11) and obtain
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EAA(r) = −B

r7
, B =

23�c

4π
α(1)(0)α(2)(0). (16.12)

This is the retarded interaction potential between two sufficiently remote atoms
derived by Casimir and Polder (1948) using perturbation theory in the dipole–
dipole interaction.

16.2 The Lifshitz formula for an atom above a plate

The Lifshitz formula can be used to describe the van der Waals and Casimir
interactions between an isolated atom or a molecule and a semispace, a material
plate, or a layered structure. This is achieved by considering two dissimilar semi-
spaces and assuming that the substance of one semispace is rarefied (Lifshitz
and Pitaevskii 1980).

The free energy for a configuration of two dissimilar semispaces is given by
eqn (12.71). In order to derive the free energy for an atom near the dielectric
semispace labeled (1), we consider the rarefied dielectric semispace labeled (2).
Then we expand the dielectric permittivity ε(2)(iξl) in powers of the number
of atoms N2 ≡ N per unit volume in accordance with eqn (16.3). Substituting
ε(2)(iξl) from eqn (16.3) with α(2)(iξ) ≡ α(iξ) into eqns (12.67) and (12.68),
written for the medium labeled (2), and expanding the quantities obtained to
the first power in N , we find

r
(2)
TM(iξl, k⊥) = πα(iξl)N

(
2 − ξ2

l

q2
l c2

)
+ O(N2),

r
(2)
TE(iξl, k⊥) = −πα(iξl)

Nξ2
l

q2
l c2

+ O(N2). (16.13)

Using eqn (16.13), the free energy (12.71) takes the form

F(a, T ) = −kBTN

2

∞∑
l=0

′
α(iξl)

∫ ∞

0

k⊥dk⊥ (16.14)

×
[(

2 − ξ2
l

q2
l c2

)
r
(1)
TM(iξl, k⊥) − ξ2

l

q2
l c2

r
(1)
TE(iξl, k⊥)

]
e−2aql + O(N2).

Using the additivity of the first-order term in the expansion of the free energy
in powers of N , we can also write

F(a, T ) = N

∫ ∞

a

FA(z, T ) dz + O(N2), (16.15)

where FA(z, T ) is the free energy of one atom spaced a distance z from the
dielectric wall labeled (1).

Setting the right-hand sides of eqns (16.14) and (16.15) equal to each other
and calculating the derivative with respect to a in the limit N → 0, we arrive at

FA(a, T ) = −kBT
∞∑
l=0

′
α(iξl)

∫ ∞

0

k⊥dk⊥qle
−2aql (16.16)
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×
{

2r
(1)
TM(iξl, k⊥) − ξ2

l

q2
l c2

[
r
(1)
TM(iξl, k⊥) + r

(1)
TE(iξl, k⊥)

]}
.

From here, we obtain a Lifshitz-type formula for the Casimir–Polder force acting
on an atom [or a molecule if α(iξl) is the molecular dynamic polarizability] near
a dielectric wall:

FA(a, T ) = −∂FA(a, T )

∂a
= −2kBT

∞∑
l=0

′
α(iξl)

∫ ∞

0

k⊥dk⊥q2
l e−2aql (16.17)

×
{

2r
(1)
TM(iξl, k⊥) − ξ2

l

q2
l c2

[
r
(1)
TM(iξl, k⊥) + r

(1)
TE(iξl, k⊥)

]}
.

The interesting characteristic feature of eqns (16.16) and (16.17) describing the
atom–wall interaction is that the transverse electric reflection coefficient at zero
frequency, r

(1)
TE(0, k⊥), does not contribute to the result, as it is multiplied by the

factor ξ2
0 = 0. Because of this, in the case of a metal wall the values obtained

for the free energy and force do not depend on the model of the metal used.
However, in the case of a dielectric wall, the results obtained depend on the

transverse magnetic reflection coefficient at zero frequency, r
(1)
TM(0, k⊥). We shall

see later that this can be used as a test for the model of the dielectric permittivity
of the wall material (Sections 16.4.1 and 16.4.3).

Below, we perform computations of the van der Waals and Casimir–Polder
interactions between different atoms and semispaces made of different materials.
For this purpose it is useful to express eqns (16.16) and (16.17) in terms of the
dimensionless variables introduced in eqn (12.89). Thus, the Casimir–Polder free
energy for an atom near a semispace is given by

FA(a, T ) = −kBT

8a3

∞∑
l=0

′
α(iζlωc)

∫ ∞

ζl

dy e−y (16.18)

×
{
2y2r

(1)
TM(iζl, y) − ζ2

l

[
r
(1)
TM(iζl, y) + r

(1)
TE(iζl, y)

]}
.

The reflection coefficients are expressed in terms of these variables in eqn (12.91).
The respective expression for the Casimir–Polder force acting on an atom or a
molecule is

FA(a, T ) = −kBT

8a4

∞∑
l=0

′
α(iζlωc)

∫ ∞

ζl

dy ye−y (16.19)

×
{
2y2r

(1)
TM(iζl, y) − ζ2

l

[
r
(1)
TM(iζl, y) + r

(1)
TE(iζl, y)

]}
.

It is also simple to write Lifshitz-type formulas for the Casimir–Polder inter-
action of an atom (or molecule) with a multilayered structure or a plate of finite
thickness. For this purpose, the reflection coefficients in eqns (16.16) and (16.17)
must be replaced with those given in eqn (12.49) or (12.52). The generalization
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to the case of an atom interacting with a semispace or a plate of finite thickness
made of a uniaxial crystal can be done by replacement of the reflection coeffi-
cients with those defined in eqn (12.135) or (12.137). Here, we consider atoms
in the ground state and assume that thermal radiation is not strong enough to
excite electrons to higher states. The case of excited atoms was discussed by
Buhmann and Welsch (2007). The possible impact of virtual-photon absorption
on the Casimir–Polder force was considered by Buhmann and Scheel (2008).

Similarly to Section 12.4, the Casimir–Polder free energy, as given in eqn
(16.18), can be represented in the form

FA(a, T ) = EA(a, T ) + ∆FA(a, T ). (16.20)

Here, the quantities EA(a, T ) and ∆FA(a, T ) are obtained from eqn (16.18) by
the application of the Abel-Plana formula (2.26):

EA(a, T ) =
�c

32πa4

∫ ∞

0

dζ

∫ ∞

ζ

dy h(ζ, y), (16.21)

h(ζ, y) = −α(iωcζ)e−y
{
2y2r

(1)
TM(iζ, y) − ζ2

[
r
(1)
TM(iζ, y) + r

(1)
TE(iζ, y)

]}
,

∆FA(a, T ) =
i�cτ

32πa4

∫ ∞

0

dt
H(itτ) − H(−itτ)

e2πt − 1
, H(x) ≡

∫ ∞

x

dy h(x, y).

As noted in Section 12.4, for a temperature-independent permittivity we get
EA(a, T ) = EA(a), where EA(a) is the Casimir–Polder energy at zero tempera-
ture, and ∆FA(a, T ) = ∆TFA(a, T ) is the thermal correction to it.

Equations (16.16) and (16.17) present the Casimir–Polder energy and force
at any separation between an atom and a wall. In the nonrelativistic limit (short
separations compared with the characteristic absorption wavelength of the wall
material), the summation in these equations can be replaced by an integration
over continuous frequencies according to eqn (12.69). Then the Casimir–Polder
(or van der Waals) atom–wall interaction energy is given by

EA(a) = − �

2π

∫ ∞

0

dξ α(iξ)

∫ ∞

0

k⊥dk⊥

√
k2
⊥ +

ξ2

c2
e−2a

√
c2k2

⊥
+ξ2/c (16.22)

×
{

2r
(1)
TM(iξ, k⊥) − ξ2

c2k2
⊥ + ξ2

[
r
(1)
TM(iξ, k⊥) + r

(1)
TE(iξ, k⊥)

]}

≈ − �

π

∫ ∞

0

dξ α(iξ)

∫ ∞

0

k2
⊥dk⊥e−2ak⊥r

(1)
TM(iξ, k⊥).

In the nonrelativistic limit, we obtain the following from eqn (12.67):

r
(1)
TM(iξ, k⊥) ≈ ε(1)(iξ) − 1

ε(1)(iξ) + 1
. (16.23)

Substituting this into eqn (16.22), we arrive at the van der Waals energy for the
atom–wall interaction,
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EA(a) = −C3

a3
, C3 =

�

4π

∫ ∞

0

dξ α(iξ)
ε(1)(iξ) − 1

ε(1)(iξ) + 1
. (16.24)

Note that this expression can be obtained directly from eqn (16.1), which rep-
resents the interaction energy between two parallel semispaces in the nonrel-
ativistic approximation. We assume that one of the semispaces is dilute, i.e.
ε(2)(ω) − 1 � 1, use eqn (16.3) with n = 2, and repeat the calculations done at
the beginning of this section. The relativistic limit of the atom–wall interaction
will be considered separately for metals and dielectrics.

16.3 Interaction of atoms with a metal wall

As mentioned above, the Lifshitz-type formulas describing the atom–wall inter-
action are not sensitive to the value of the TE reflection coefficient of the metal at
zero frequency. This makes the results obtained to a large extent independent of
the model used to describe the metal wall. At the same time, the configuration of
an atom near a metallic wall suggests some interesting and unexpected features
connected with the behavior of the Casimir–Polder entropy at low temperature.
This can be observed even in the simplest case of an atom interacting with an
ideal-metal plane.

16.3.1 Atom near an ideal-metal plane

The Casimir–Polder free energy of the atom–wall interaction is given by eqn
(16.16). On substitution of the reflection coefficients (14.1) for an ideal-metal
plane, we obtain

FA(a, T ) = −2kBT

∞∑
l=0

′
α(iξl)

∫ ∞

0

k⊥dk⊥qle
−2aql . (16.25)

In the region of small and moderate separation distances between the atom
and the metal plane, where thermal effects can be neglected, the free energy is
approximately equal to the energy. The latter can be obtained from eqn (16.25)
by the substitution of eqn (12.69):

EA(a) = − �

π

∫ ∞

0

dξ α(iξ)

∫ ∞

0

k⊥dk⊥qe−2aq. (16.26)

Introducing the dimensionless variables (12.41) and integrating with respect to
y, we can rearrange this equation to

EA(a) = − �c

16πa4

∫ ∞

0

dζ α(iωcζ)(ζ2 + 2ζ + 2)e−ζ . (16.27)

If we consider moderate separations from about 1 µm to 3 µm only, the ap-
proximation of a static atomic polarizability, α(iωcζ) ≈ α(0), works well. In this
case eqn (16.27) leads to
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EA(a) ≡ EA
CP(a) = −C4

a4
= − 3�c

8πa4
α(0). (16.28)

This result was first obtained by Casimir and Polder (1948).
At shorter separations, we can use the single-oscillator model for the dynamic

atomic polarizability,

α(iξ) =
α(0)

1 + (ξ2/ω2
0)

=
α(0)

1 + (ω2
c/ω2

0)ζ
2
≡ α(iωcζ) (16.29)

(we shall compare this model below with accurate results for the polarizability
of some specific atoms). Here, ω0 is the characteristic absorption frequency for
the atom under consideration. We perform the calculation under the assumption
βA ≡ ωc/ω0 = λ0/(4πa) � 1, where λ0 = 2πc/ω0 is the characteristic absorption
wavelength. This assumption is satisfied at atom–plane separations a � λ0. Once
more, we introduce the new variables (12.41) into eqn (16.26), but change the
order of integrations with respect to ζ and y rather than first integrate with
respect to y as was done previously. The result is

EA(a) = − �c

16πa4

∫ ∞

0

y2 dy e−y

∫ y

0

dζ α(iωcζ). (16.30)

Substituting eqn (16.29) eqn into (16.30) and integrating with respect to ζ, we
get

EA(a) = − �c

16πa4
α(0)

1

βA

∫ ∞

0

y2 dy e−yarctan(βAy). (16.31)

Taking into account the fact that βA � 1, it is possible to replace arctan(βAy)
with π/2 without loss of accuracy. This leads to

EA(a) = − �c

4λ0a3
α(0). (16.32)

Note that although eqn (16.32) demonstrates the same distance dependence (the
inverse third power of separation) as does the nonrelativistic limit in eqn (16.24),
it is quite different in nature. Particularly, eqn (16.24) does not contain the
velocity of light, as appropriate for the nonrelativistic limit, whereas eqn (16.32)
does. In fact, the nonrelativistic limit cannot be achieved for an ideal-metal wall.
The dependence of the Casimir–Polder energy at short separation distances in
eqn (16.32) on the velocity of light should be considered as a sign that at these
separations the approximation of an ideal metal is not applicable.

Now we consider any separation distance larger than 1 µm, including values
larger than 3 µm. Here, we can use the static atomic polarizability but must take
thermal effects into account. Introducing the dimensionless variables (12.41), we
rearrange the free energy (16.25) to the form

FA(a, T ) = −kBT

4a3
α(0)

∞∑
l=0

′ ∫ ∞

ζl

y2 dy e−y. (16.33)
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After performing the integration and summation, we obtain

FA(a, T ) = EA
CP(a) η(a, T ), (16.34)

where the Casimir–Polder energy is given in eqn (16.28) and the correction factor
is

η(a, T ) =
τ

6

[
1 +

2

eτ − 1
+

2τeτ

(eτ − 1)2
+

τ2eτ (eτ + 1)

(eτ − 1)3

]
. (16.35)

Note that the parameter τ , defined in eqn (12.89), is linear in the separation
and the temperature. The asymptotic behavior of the correction factor (16.35)
at low temperature is given by

η(a, T ) = 1 − τ4

2160
+

τ6

15120
− τ8

241920
+ O(τ10). (16.36)

The Casimir–Polder force between an atom and an ideal-metal plane can also
be presented in a form similar to eqn (16.34). For this purpose, we can use eqn
(16.19) with the reflection coefficients (14.1) or calculate the negative derivative
with respect to a of both sides of eqn (16.34). The result is

FA(a, T ) = FA
CP(a)κ(a, T ), FA

CP(a) = − 3�c

2πa5
α(0). (16.37)

The correction factor to the Casimir–Polder force F A
CP(a) can be represented as

κ(a, T ) =
3

4
η(a, T ) +

τ4eτ (e2τ + 4eτ + 1)

24(eτ − 1)4
. (16.38)

The asymptotic behavior of this correction factor at low temperature is given by

κ(a, T ) = 1 − τ6

30240
− τ8

241920
+ O(τ10). (16.39)

It is interesting that representations like eqns (16.34) and (16.36) for the free
energy and eqns (16.37) and (16.39) for the force of the atom–wall interaction
can be obtained directly from the results of Chapter 15, which deals with the
Casimir interaction between metallic and dielectric plates. As an example, we
start with eqn (15.16) for the Casimir pressure in the configuration of an ideal-
metal plane and a dielectric plate with a static permittivity ε0. We assume that
the material of the dielectric plate is dilute, so that from eqn (16.15) we obtain

P (a, T ) = NFA(a, T ) + O(N2) and P (a) = NEA
CP(a) + O(N2) (16.40)

at nonzero and zero temperature, respectively. Then eqns (15.16) and (16.3)
result in

NFA(a, T ) + O(N2) = NEA
CP(a) (16.41)
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− �cτ4

11520π2a4

{
1 − 2 [1 + 4πα(0)N ]3/2 + [1 + 4πα(0)N ]5/2 + O(τ)

}
.

Expanding in powers of N and taking the limit N → 0, we arrive at

FA(a, T ) = EA
CP(a)

[
1 − τ4

2160
+ O(τ5)

]
, (16.42)

i.e. the same leading term at small τ as in eqn (16.36) is obtained.
Now we are in a position to find the entropy of the Casimir–Polder interaction.

Calculating the negative derivative of eqn (16.34) with respect to temperature,
we derive the expression

S(a, T ) =
3kB

2a3
α(0)σ(a, T ), (16.43)

σ(a, T ) =
1

τ
η(a, T ) − τ3eτ (e2τ + 4eτ + 1)

6(eτ − 1)4
.

It can be easily seen that the asymptotic expansion of the entropy factor σ at
low temperature is given by

σ(a, T ) = − τ3

540
+

τ5

2520
+ O(τ7). (16.44)

Thus, the Casimir–Polder entropy goes to zero when temperature vanishes, in ac-
cordance with the Nernst heat theorem. Note, however, that at low temperatures
(small τ) the entropy (16.43) takes negative values. In Fig. 16.1, we plot the en-
tropy factor σ obtained from eqn (16.43) for the configuration of an atom near an
ideal-metal plane as a function of τ . As is seen in Fig. 16.1, the Casimir–Polder
entropy is negative for 0 < τ < 3 and positive for larger τ . This is in accor-
dance with the corresponding results presented in Chapter 15 (Sections 15.1.1
and 15.3) for a configuration of metal and dielectric plates. Keeping in mind
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Fig. 16.1. The entropy factor σ obtained from eqn (16.43) for an atom near an
ideal metal wall as a function of τ (Bezerra et al. 2008).
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that the Lifshitz formula for an atom near a metal plate was obtained from the
formula describing the case of two parallel plates, one of which is metallic and
the other is a dilute dielectric, the similarity obtained in the behavior of the
entropy appears quite natural.

In the high-temperature limit T � Teff , only the zero-frequency term in eqn
(16.33) determines the total result, whereas all terms with l ≥ 1 are exponentially
small. In this case eqn (16.33) leads to

FA(a, T ) = −kBT

4a3
α(0). (16.45)

This is the classical limit of the Casimir–Polder free energy because the right-
hand side of eqn (16.45) does not depend on �. The respective expressions for
the Casimir–Polder entropy and force are given by

SA(a, T ) = − kB

4a3
α(0), FA(a, T ) = −3kBT

4a4
α(0). (16.46)

16.3.2 A real-metal plate and an atom

Here, we consider a metal plate made of Au, described by the plasma model
(13.1) with a plasma frequency ωp = 9.0 eV. This allows rather precise results at
separation distances larger than the plasma wavelength λp = 137 nm. At these
separations, the dynamic polarizability of an atom can be represented using the
single-oscillator model (16.29). For example, for the metastable helium atom
He∗, we have α(0) = 315.63 a.u. [one atomic unit (a.u.) of polarizability is equal
to 1.482 × 10−31 m3] and ω0 = 1.18 eV = 1.794 × 1015 rad/s (Brühl et al. 2002).
Equation (16.29), with the above value of ω0, is appropriate in the frequency
region contributing to the Casimir–Polder interaction. This is demonstrated be-
low by a comparison of computational results obtained using the single-oscillator
model with results obtained using a highly accurate atomic dynamic polarizabil-
ity. In this subsection, we present computations of the correction factors to the
Casimir–Polder free energy and force at separations larger than λp. We also dis-
cuss the influence of various factors, such as the nonzero skin depth of the metal,
the dynamic polarizability of the atom, and nonzero temperature, on the results
obtained.

In Fig. 16.2(a), we present the correction factor η(a, T ) to the Casimir–Polder
energy EA

CP(a) defined in eqn (16.34) as a function of the separation at T =
300 K (Babb et al. 2004). Computations of the Casimir–Polder free energy were
performed using the Lifshitz formula (16.18) at separations a ≥ 150 nm. Line 1
was computed with the plasma dielectric function (13.1) and the dynamic atomic
polarizability (16.29). This line takes into account all of the major factors which
have an impact on the free energy. Other results for η(a, T ) are also plotted,
omitting one or more of the above factors, in Fig. 16.2(a) for comparison. Line 2
was computed using the Lifshitz formula (16.18) with the reflection coefficients
(14.1), i.e. for an ideal-metal wall, and the dynamic atomic polarizability (16.29).
Line 3 was computed with the Lifshitz formula combined with the plasma model,



430 The Lifshitz theory of atom–wall interactions

1 2 3 4 5

0.6

0.8

1

1.2

1.4

1

2

3

4

� � � � 	


 � � � � 	

1 2 3 4 5

0.5

0.6

0.7

0.8

0.9

1

1.1

1

2

3

4

� � � � �

� � � � � �

� � � � � �

Fig. 16.2. Correction factors to the Casimir–Polder energy (a) and force (b)
for an He∗ atom and an Au wall computed at T = 300 K including the effect
of the nonzero skin depth of the metal and the dynamic polarizability of the
atom (line 1), with inclusion of only the dynamic polarizability (line 2), with
inclusion of only the nonzero skin depth (line 3), and for an ideal metal and
an atom described by a static polarizability (line 4), versus separation (Babb
et al. 2004).

but with a static atomic polarizability. Finally, line 4 was computed with the
Lifshitz formula for an ideal-metal wall and an atom with a static polarizability.
Thus, all of the lines 1–4 take into account the effect of nonzero temperature.
They can be compared with the flat line η(a, T ) = 1 [not shown in Fig. 16.2(a)]
representing the case of an atom described by a static polarizability near an
ideal-metal wall at T = 0.

As can be seen from a comparison of lines 3 and 4 on the one hand and lines
1 and 2 on the other hand, at short separations the effect of the nonzero skin
depth of the metal wall is much greater for an atom described by a static polar-
izability than for an atom described by a dynamic polarizability. In particular,
for a real atom characterized by a dynamic polarizability, the corrections due to
the nonzero skin depth are much less than for two metal plates. As shown in
Section 13.2.2, for two parallel plates, the use of the plasma model instead of the
tabulated optical data at the separations considered leads to an error of less than
2%. For the atom–wall interaction, however, the use of the plasma model leads
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to less than 1% error in the values of the Casimir–Polder free energy and force
compared with the use of ε(iξ) obtained from the complete tabulated optical
data. One can also conclude that at shorter separations, taking proper account
of the dynamic atomic polarizability is more important than taking account of
the nonzero skin depth. This becomes clear from a comparison of lines 2 and 3
with line 4. At intermediate separation distances from 1 to 3 µm, the dynamic
atomic polarizability and the nonzero skin depth of the metal play qualitatively
equal roles. With increasing a, the role of the dynamic polarizability becomes
negligible, and the free energy is determined by only α(0). The high-temperature
asymptotic expression (16.45) becomes applicable at a > 6 µm.

Overall, Fig. 16.2(a) leads to the conclusion that at the shortest separation
considered here, the total correction to the Casimir–Polder free energy due to
the various factors can be as large as 50%. This should be taken into account in
any comparison of measurement data with theory. At intermediate separations
from 1 to 3 µm, the corrections may vary from 5% to 7%, which should be taken
into account in precise experiments.

In Fig. 16.2(b), similar computational results for the correction factor κ(a, T )
to the Casimir–Polder force are presented as a function of the separation for a
He∗ atom near an Au wall (Babb et al. 2004). Computations were performed us-
ing the Lifshitz formula (16.19). Lines 1–4 in Fig. 16.2(b) are numbered similar
to those in Fig. 16.2(a). Line 1 takes into account all corrections to the Casimir–
Polder force, line 2 was computed for an ideal-metal wall but for an atom with
a dynamic polarizability, line 3 was computed for a real-metal wall but for an
atom described by a static polarizability, and line 4 takes into account only the
thermal effects. The lines in Fig. 16.2(b) demonstrate the same characteristic
features as were discussed above with respect to the free energy. In particular,
at short separations the effect of the nonzero skin depth is suppressed if the
dynamic polarizability of the atom is taken into account. The dynamic polariz-
ability appears to be more important at short separations than does the effect
of the nonzero skin depth. At intermediate separations, the two effects lead to
approximately equal contributions. The high-temperature asymptotic expression
(16.46) becomes applicable at a > 8 µm.

As can be seen in Fig. 16.2(b), in the case of the force, the correction factors
play a stronger role than in the case of the free energy. For example, at the
shortest separation considered in Fig. 16.2(b), the overall correction to the force
reaches 57%. At intermediate separations from 1 to 3 µm, the correction varies
between 5% to 9%.

Now we discuss the validity of the single-oscillator model (16.29) used here at
separations a ≥ 150 nm. For this purpose, we have repeated some computations
using highly accurate values of the nonrelativistic dynamic atomic polarizabil-
ity of the He∗ atom (Yan and Babb 1998) with a relative error of about 10−6.
In Section 16.3.4, we show some results obtained using highly accurate polariz-
abilities of the He∗ and Na atoms to compute the Casimir–Polder interaction at
short separations larger than a few nanometers, where the single-oscillator model
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leads to large errors. An accurate representation of the polarizabilities along the
imaginary frequency axis can be presented in the form

α(iξl) =

K∑
j=1

gj

ω2
0j + ξ2

l

, (16.47)

where K is the number of oscillators and the gj are the oscillator strengths. The
static atomic polarizability is expressed as

α(0) =

K∑
j=1

gj

ω2
0j

. (16.48)

In Fig. 16.3, the accurate dynamic polarizabilities, normalized to their static
values, are shown as functions of the frequency for He∗ (line 1) and for Na (line
2).

The correction factor to the Casimir free energy of an He∗ atom interacting
with an Au wall was computed using the Lifshitz formula (16.18), the plasma
model (13.1), and the highly accurate polarizability shown in Fig. 16.3, at the
shortest separation considered in this section, a = 150 nm, where the largest
difference between the results obtained by use of the two models of the dy-
namic polarizability is expected. Here, the characteristic frequency ωc is equal
to 1015 rad/s ≈ ξ4 at T = 300 K. The numerical data related to Fig. 16.3 show
that at ξ ≤ ξ10, the difference in the relative polarizability given by the two
models is less than 1%. This difference reaches 28% at ξ = ξ40 = 10 ωc (the
higher Matsubara frequencies do not contribute to the Casimir–Polder interac-
tion). The respective variation in the correction factor η(a, T ) at a = 150 nm is
negligibly small. Thus, using the accurate and single-oscillator polarizabilities,
we obtain η(a, T ) = 0.5039 and 0.5032, respectively, i.e. only a 0.14% difference.
For the correction factor to the force, the respective results are κ(a, T ) = 0.4298
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Fig. 16.3. Highly accurate normalized atomic dynamic polarizabilities for He∗

(line 1) and for Na (line 2) versus frequency expressed in atomic units (Babb
et al. 2004). One a.u. of frequency is equal to 27.21 eV.
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and 0.4284, i.e. only a 0.32% difference. With increasing separation, these differ-
ences decrease rapidly. Because of this, the single-oscillator model can be used
reliably to calculate the Casimir–Polder free energy and force at separations of
a ≥ 150 nm with an accuracy better than 1%.

Within the range of separation distances from 1 to 3 µm, where the thermal
correction is small, the role of the corrections to the Casimir–Polder energy
due to the nonzero skin depth and the dynamic polarizability can be illustrated
analytically. For this purpose, we can start from the plasma and single-oscillator
models and use the perturbative expansion in the relative skin depth δ0/a (as
in Sections 13.1 and 14.6.2) and in the oscillator parameter βA. Expanding the
function h(ζ, y) in eqn (16.21) up to the second power in both parameters, we
obtain

h(ζ, y) = −α(0)e−y

[
2y2 − 2β2

Aζ2y2 +

(
ζ4

y
− 3ζ2y

)
δ0

a

+
1

2

(
2ζ4 − ζ6

y2
+ ζ2y2

)(
δ0

a

)2
]

. (16.49)

Now we substitute eqn (16.49) into the first equality of eqn (16.21), change the
order of integrations, and calculate the integrals with respect to ζ and y. The
result is

EA(a) = EA
CP(a)

[
1 − 20

3
β2

A − 8

5

δ0

a
+

62

21

(
δ0

a

)2
]

, (16.50)

where EA
CP(a) is defined in eqn (16.28). Substituting the parameters given above

for the Au wall and He∗ atom, we find that at a = 1 µm the correction to unity
due to the nonzero skin depth is equal to −0.034, whereas the correction due
to the dynamic polarizability is equal to −0.046. At a = 2 µm, these corrections
are −0.018 and −0.012, respectively, and they decrease further with increasing
separation. From eqn (16.50), it can be seen that at a separation distance of
about 1 µm, the corrections to the Casimir energy due to the nonzero skin depth
and the dynamic polarizability of the atom play a qualitatively equal role, as
was discussed on the basis of the numerical computations.

The respective expression for the Casimir–Polder force is obtained from the
negative derivative of both sides of eqn (16.50) with respect to a:

FA(a) = FA
CP(a)

[
1 − 10β2

A − 2
δ0

a
+

31

7

(
δ0

a

)2
]

, (16.51)

where FA
CP(a) is defined in eqn (16.37).

16.3.3 Asymptotic behavior at low temperature

We now turn to an examination of the low-temperature behavior of the Casimir–
Polder free energy, entropy, and force for an atom interacting with a metallic wall
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made of a real metal. This allows one to solve complicated problems about the
consistency of the Lifshitz theory, as adapted for atom–wall interactions, with
thermodynamics. The asymptotic expressions obtained in this subsection can
also serve as a test for some generalizations of the Lifshitz theory. As above, we
describe a real metal by means of the plasma model, and the atom by means
of a single-oscillator expression for the dynamic polarizability. Thus, separation
distances larger than 150nm are applicable.

We start once again from the function h(x, y) defined in eqn (16.21) but
expand it to the second power of only one parameter, δ0/a:

h(x, y) = − α(0)

1 + β2
Ax2

e−y

[
2y2 +

(
x4

y
− 3x2y

)
δ0

a
(16.52)

+
1

2

(
2x4 − x6

y2
+ x2y2

)(
δ0

a

)2
]
≡ h0(x, y) + h1(x, y) + h2(x, y),

where the hk(x, y), with k = 0, 1, 2, are the contributions to h(x, y) of order
(δ0/a)k. The function H(x) defined in eqn (16.21) is given by

H(x) = H1(x) + H2(x) + H3(x), Hk(x) =

∫ ∞

x

dy hk(x, y). (16.53)

To calculate the thermal correction to the Casimir–Polder energy defined in eqn
(16.21), one needs to find the difference H(itτ) − H(−itτ). This is most easily
done for every Hk(x) separately. Thus, for k = 0,

H0(x) = − 2α(0)

1 + β2
Ax2

∫ ∞

x

dy e−yy2 = − 2α(0)

1 + β2
Ax2

e−x(2 + 2x + x2). (16.54)

Expanding this in powers of x, we obtain

H0(itτ) − H0(−itτ) = −4iα(0)τ3t3
[
1

3
−
(

1

10
− β2

A

3

)
τ2t2

+

(
1

168
− β2

A

10
+

β4
A

3

)
τ4t4

]
. (16.55)

Substituting eqn (16.55) into the third equality of eqn (16.21) and integrating
with respect to t, we find the respective contribution to the thermal correction,

∆TFA
0 (a, T ) =

�cα(0)

128πa4
τ4

[
1

45
− τ2

315

(
1 − 10

3
β2

A

)

+
τ4

5040

(
1 − 84

5
β2

A + 56β4
A

)]
. (16.56)

For βA = 0, this is just the thermal correction for an atom described by a static
polarizability near an ideal-metal plane, calculated using a different method in
Section 16.3.1 and contained in eqns (16.34) and (16.36).
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In a similar way, for k = 1 we have

H1(x) = − α(0)

1 + β2
Ax2

δ0

a

∫ ∞

x

dy e−y

(
x4

y
− 3x2y

)
(16.57)

=
α(0)

1 + β2
Ax2

δ0

a

[
3x2e−x(1 + x) − x4Γ(0, x)

]
,

where Γ(z, x) is the incomplete gamma function. Expanding this in powers of x,
we obtain

H1(itτ) − H1(−itτ) = iα(0)τ4t4
δ0

a

(
π + πβ2

Aτ2t2 − 4

45
τ3t3

)
. (16.58)

The contribution from this to the thermal correction is given by

∆TFA
1 (a, T ) = − �cα(0)

128πa4
τ5 δ0

a

[
3ζR(5)

π4
+ β2

Aτ2 45ζR(7)

2π6
− τ3

1350

]
. (16.59)

For k = 2 we arrive at

H2(x) = − α(0)

2(1 + β2
Ax2)

(
δ0

a

)2 ∫ ∞

x

dy e−y

(
2x4 − x6

y2
+ x2y2

)
(16.60)

= − α(0)

2(1 + β2
Ax2)

(
δ0

a

)2 [
2x4e−x − x6Γ(−1, x) + x2e−x(2 + 2x + x2)

]
.

After an expansion in powers of x, the following equality is obtained:

H2(itτ) − H2(−itτ) =
iα(0)

2
τ5t5

(
δ0

a

)2 [
20

3
− πτt +

2

15
(1 + 50β2

A)τ2t2
]

.

(16.61)
This results in the respective contribution to the thermal correction,

∆TFA
2 (a, T ) = − �cα(0)

128πa4
τ6

(
δ0

a

)2 [
5

189
− 45ζR(7)

4π6
τ +

1

1800
(1 + 50β2

A)τ2

]
.

(16.62)
Taking eqns (16.56), (16.59), and (16.62) together, we find the low-temperature

asymptotic behavior of the Casimir–Polder free energy,

∆TFA(a, T ) =
�cα(0)

128πa4
τ4

{
1

45
− τ2

315

(
1 − 10

3
β2

A

)
(16.63)

+
τ4

5040

(
1 − 84

5
β2

A + 56β4
A

)
− τ

δ0

a

[
3ζR(5)

π4
+ β2

Aτ2 45ζR(7)

2π6
− τ3

1350

]

− τ2

(
δ0

a

)2 [
5

189
− 45ζR(7)

4π6
τ +

1

1800
(1 + 50β2

A)τ2

]}
.

This expression includes the effect of both the nonzero skin depth of the metal
plate and the dynamic polarizability of the atom. Several terms on the right-hand
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side of eqn (16.63) do not contribute to the Casimir–Polder force, because the
quantities τ/a and τβA do not depend on the separation distance a. Calculating
the negative derivative of eqn (16.63) with respect to a, we obtain the thermal
correction to the Casimir–Polder force at zero temperature (16.51),

∆T FA(a, T ) =
�cα(0)

128πa5
τ6

[
2

315
− τ2

30

(
1

42
− 1

5
β2

A

)
(16.64)

− 3τ2 δ0

a
− τ

(
δ0

a

)2(
45ζR(7)

4π6
− 2τ

)]
.

At δ0 = βA = 0, this expression coincides with the thermal correction contained
in eqns (16.37) and (16.39) derived for an ideal-metal wall interacting with an
atom characterized by a static polarizability.

Equation (16.63) allows the calculation of the Casimir–Polder entropy at low
temperature. Calculating the negative derivative with respect to the temperature
of both sides of eqn (16.63), we arrive at

SA(a, T ) = −kBα(0)

32a3
τ3

[
4

45
− 2τ2

105

(
1 − 10

3
β2

A

)

− τ
δ0

a

15ζR(5)

π4
− 10

63
τ2

(
δ0

a

)2
]

. (16.65)

It can be seen that this entropy goes to zero when the temperature vanishes, i.e.
the Nernst heat theorem is satisfied. Although we used the plasma model in the
derivation of eqn (16.65), this conclusion is valid for any other approach to the
description of real metals, including the Drude model approach discussed in Sec-
tion 14.3. The point to note is that the TE reflection coefficient at zero frequency
does not contribute to the Casimir–Polder atom–wall interaction. Regarding the
contributions of all other Matsubara frequencies and the TM reflection coefficient
at ξ = 0, several different theoretical approaches to the description of a real metal
in the framework of the Lifshitz theory lead to practically coincident results (see
Chapter 14). Thus the standard Lifshitz theory of atom–wall interactions in the
case of a metal wall is thermodynamically consistent. At the same time, as can be
seen from eqn (16.65), SA(a, T ) at low temperature is negative. This property of
the atom–wall configuration, discussed above for the case of an ideal-metal wall
(Section 16.3.1), is also preserved for real-metal walls. Note that the asymptotic
expressions (16.45) and (16.46) obtained for an atom near an ideal-metal wall
at high temperature are valid for real-metal walls as well. A nonzero skin depth
does not play any role at high temperatures (or large separations).

In contrast to the case of a metal wall, the interaction of an atom with a
dielectric wall runs into problems when the dc conductivity of the wall material
is included in the model of the dielectric response (see Section 16.4.3 below). This
led to an attempt to modify the TM reflection coefficient at zero frequency by
including the microscopic density of charge carriers as a characteristic of the wall
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material in addition to the macroscopic dielectric permittivity (Pitaevskii 2008a).
Whenever feasible, this approach would recover the cases of a metallic and a
dielectric wall for a large and a small density, respectively, of charge carriers.
In Section 16.4.3, we consider this problem both for a dielectric wall and in the
limiting case of a metallic wall. It will be shown that for metals and for many
types of dielectrics, the proposed modification results in a violation of Nernst’s
theorem.

16.3.4 The case of short separations

In this subsection, we shall present an accurate description of the atom–wall
interaction, including the dynamic polarizability of the atom and the real-metal
properties of the wall, at short separation distances from 3nm to 150 nm. Sepa-
rations of a few nanometers belong to the region of van der Waals forces. Larger
separations belong to the transition region between van der Waals and Casimir
forces. At short separations below 150 nm, the use of the plasma model leads
to large errors in the atom–wall interaction. Because of this, here we use the
dielectric permittivity of an Au wall along the imaginary frequency axis pre-
sented in Fig. 13.2. This permittivity was obtained from the tabulated optical
data for the complex index of refraction (see Section 13.3). As was justified in
Section 14.6, the solid line in Fig. 13.2, obtained using the generalized plasma
model, is theoretically preferable to the dashed line, obtained from extrapolation
of the optical data by means of the Drude model. However, in the separation
region below 150nm, the two approaches to the definition of ε(iξ) lead to almost
coincident computational results for the atom–wall interaction.

Computations of the Casimir–Polder free energy were performed using the
Lifshitz formula (16.18). For convenience in comparison with the nonrelativistic
van der Waals atom–wall energy (16.24), we represent the free energy (16.18) in
the identical form

FA(a, T ) = −C3(a, T )

a3
, (16.66)

where

C3(a, T ) = −kBT

8

∞∑
l=0

′
α(iζlωc)

∫ ∞

ζl

dy e−y (16.67)

×
{
2y2r

(1)
TM(iζl, y) − ζ2

l

[
r
(1)
TM(iζl, y) + r

(1)
TE(iζl, y)

]}
.

Here, the dependence of C3 on a and T signifies the deviation from the standard
van der Waals result (16.24). As two examples, we consider atoms of metastable
He∗ and Na, for which highly accurate values of the dynamic polarizability are
available (Yan and Babb 1998, Kharchenko et al. 1997). These values are repro-
duced graphically in Fig. 16.3. We shall compare the results obtained for the
coefficient C3 with results computed using the single-oscillator model (16.29).
The parameters of this model for He∗ were presented in Section 16.3.2. For Na,
the parameters are ω0 = 2.14 eV and α(0) = 162.68 a.u. (Derevianko et al. 1999).
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Fig. 16.4. Van der Waals coefficient C3 versus separation for (a) metastable
He∗ and (b) Na atoms near an Au wall, calculated by use of the complete
optical data for Au and accurate atomic dynamic polarizabilities (solid lines)
or by use of the single-oscillator model (long-dashed lines). The short-dashed
lines were computed for an ideal metal by use of the accurate dynamic po-
larizabilities of the atoms (Caride et al. 2005).

The single-oscillator model was used for computations of the Casimir–Polder in-
teraction between a hydrogen atom and a silver wall (Boström and Sernelius
2000c).

The computational results for the van der Waals coefficient C3 in the case of
an Au wall at T = 300 K are represented in Fig. 16.4 by the solid lines for (a)
metastable He∗ and (b) Na (Caride et al. 2005). Note that one atomic unit (a.u.)
for C3 is equal to 4.032× 10−3 eVnm3. In the same figure, the long-dashed lines
show the results obtained with a single-oscillator model for the atomic dynamic
polarizability. The short-dashed lines illustrate the dependence of C3 on a in the
case of a wall made of an ideal metal but with the accurate dynamic polarizability
of the atom. Note that at the separations considered, the computational results
depend only slightly on the temperature.

As can be seen from a comparison of the solid and long-dashed lines with the
short-dashed lines, the use of realistic properties of the wall metal is important
for all separations under consideration. At the shortest separation of a = 3 nm,
the result for an ideal-metal wall differs from the accurate result given by the
solid line by about 16% for He∗ and by 28% for Na. These strong deviations
decrease only slightly with increasing separation. From Fig. 16.4, it can be also
seen that the use of the accurate data for the polarizability (in comparison with
the single-oscillator model) is of most importance at short separations below a
few tens of nanometers. Thus, at a = 3 nm the relative error in C3 given by the
single-oscillator model is 4.4% for He∗ and 2.2% for Na. At a = 15 nm, the single-
oscillator model becomes more precise. For He∗, it leads to an error of only 3.3%,
and for Na an error of 1.6% . The values of the van der Waals coefficient C3 for
He∗ and Na were tabulated by Caride et al. (2005). Note that at a = 150 nm, the
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above calculation results obtained by the use of the tabulated optical data for Au
and those in Section 16.3.2 obtained using the simple plasma model differ by less
than 1%. Thus, at a = 150 nm the value of C3 computed using the optical data
for Au and the accurate dynamic polarizability of He∗ is equal to 0.925 a.u. If the
metal is described by the plasma model and the accurate atomic polarizability
is used, the respective result is 0.918 a.u.

As shown in Section 16.3.2, the effect of the atomic dynamic polarizability
(used in the single-oscillator model) strongly influences the Casimir–Polder free
energy in comparison with the original result (16.28) obtained in the static ap-
proximation. We emphasize that in the case of the van der Waals atom–wall
interaction, the influence of the dynamic effects is even greater than for the
Casimir–Polder force. Thus, if we restrict ourselves to only the static polarizabil-
ity of the He∗ atom, the values of C3 are found to be 11.6 and 1.64 times greater
than those given by the solid line in Fig. 16.4(a) at separations of a = 3 nm and
a = 150 nm, respectively.

16.4 Interaction of atoms with a dielectric wall

The case of a dielectric wall provides a test to investigate the impact of the
dc conductivity of the wall material on the Casimir–Polder interaction. The
point to note is that the inclusion of the dc conductivity in the model of the
dielectric response changes the TM reflection coefficient at zero frequency. In
contrast to the TE reflection coefficient at zero frequency (which does not enter
the zero-frequency contribution to the Lifshitz formula describing the atom–
wall interaction), this leads to a change in the Casimir–Polder free energy and
force. This change is most pronounced at large separation distances of a few
micrometers and it is observable in experiments on Bose–Einstein condensation
and quantum reflection. Thus the interaction of various atoms with dielectric
walls is of special interest. As we shall see below, the properties of this interaction
can be used as a validity test of the Lifshitz theory and its generalizations.

16.4.1 Asymptotic properties at low and high temperature for a finite static
permittivity of the wall material

The dielectric permittivity of the wall material is described here by eqn (15.28).
As mentioned in Section 15.2, this equation gives a very accurate description of
the dielectric properties along the imaginary frequency axis. All parameters in
eqn (15.28) are assumed to be temperature-independent in accordance with the
discussion in Section 12.5.1. The dynamic polarizability of an atom is described
by the single-oscillator model (16.29). As shown in Section 16.3.4, this model
provides very accurate results for atom–wall interactions at separations larger
than a few tens of nanometers. Under these conditions, we shall find the asymp-
totic behavior of the Casimir–Polder free energy and entropy at low temperature
and investigate the consistency of the Lifshitz theory with thermodynamics.

We start from the representation of the Casimir–Polder free energy in eqn
(16.20), with EA(a, T ) = EA(a) and ∆FA(a, T ) = ∆TFA(a, T ) defined in eqn



440 The Lifshitz theory of atom–wall interactions

(16.21). In this section we consider the case ε0 = ε(0) < ∞, i.e. the dc conductiv-
ity of the dielectric material is disregarded. To find the primary contribution to
the low-temperature asymptotic behavior of the Casimir–Polder free energy, it
is sufficient to restrict ourselves to a frequency-independent permittivity εl = ε0.
This was discussed in Section 12.5.1 for the case of two dielectric plates and
in Section 15.2.1 for the case of a metal and a dielectric plate. Now we use
eqn (16.29) for the dynamic polarizability, and the expressions for the reflection
coefficients

rTM(iζl, y) =
ε0y −

√
y2 + ζ2

l (ε0 − 1)

ε0y +
√

y2 + ζ2
l (ε0 − 1)

, rTE(iζl, y) =
y −

√
y2 + ζ2

l (ε0 − 1)

y +
√

y2 + ζ2
l (ε0 − 1)

(16.68)
following from eqn (12.91) in order to expand the function H(x) from eqn (16.21)
in powers of x. Preserving only the terms up to the third power in x, we obtain

H(x) = −α(0)

[
4r0 + r0

(
4β2

A − 2
ε0

ε0 + 1
− 1

)
x2 + CD(ε0)x

3

]
. (16.69)

Here, r0 is defined in eqn (12.95) and βA is defined after eqn (16.29). The coef-
ficient CD(ε0) is given by

CD(ε0) = r0
7ε0 + 1

3(ε0 + 1)
+

(
√

ε0 − 1)
[
(3ε2

0 + 1)(2
√

ε0 + 1) + 3ε0(
√

ε0 − 1)
]

3(
√

ε0 + 1)(ε0 + 1)2

+
2ε2

0

(ε0 + 1)5/2

(
Artanh

√
ε0

ε0 + 1
− Arcoth

√
ε0 + 1

)
. (16.70)

In the limiting case ε0 → 1, we have CD(ε0) → 0 so that H(x) → 0, as expected.
Typical values of this coefficient are CD(ε0) = 0.585 and 7.60 for ε0 = 1.5 and
16, respectively. For the commonly used dielectrics SiO2, with ε0 = 3.81, and Si,
with ε0 = 11.66, we get CD(ε0) = 2.70 and 6.33, respectively, from eqn (16.70).

As a result, from eqn (16.70) we obtain

H(iτt) − H(−iτt) = 2iτ3t3α(0)CD(ε0). (16.71)

Substituting this into eqn (16.21) for the thermal correction, we arrive at the
Casimir–Polder free energy

FA(a, T ) = EA(a) − �cπ3

240a4
α(0)CD(ε0)

(
T

Teff

)4

. (16.72)

The respective low-temperature behavior of the Casimir–Polder entropy is given
by (Klimchitskaya et al. 2008a)

SA(a, T ) =
π3kB

30a3
α(0)CD(ε0)

(
T

Teff

)3

. (16.73)

As can be seen from eqn (16.73), the entropy goes to zero when the temperature
vanishes, in accordance with the Nernst heat theorem. Thus, the Lifshitz theory
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of the atom–plate interaction is thermodynamically consistent if the dc conduc-
tivity of the dielectric plate is neglected. This conclusion is still true when the
frequency dependence of the dielectric permittivity is taken into account, as long
as ε(0) < ∞. Note that for an atom near a dielectric wall, the Casimir–Polder
entropy is positive. This is in contrast to the case of an atom near a metal wall
considered in Sections 16.3.1 and 16.3.3.

The limiting case of high temperature, T � Teff , can be considered in the
same way as in Section 16.3.1. In this case only the zero-frequency term gives
the dominant contribution to the Lifshitz formulas (16.18) and (16.19), the other
terms being exponentially small. This leads to the following asymptotic expres-
sions for the Casimir–Polder free energy and force:

FA(a, T ) = −kBT

4a3
α(0)r0, FA(a, T ) = −3kBT

4a4
α(0)r0. (16.74)

From eqn (16.74), the high-temperature (large-separation) asymptotic expression
for the Casimir–Polder entropy is given by

SA(a, T ) =
kB

4a3
α(0)r0. (16.75)

In the limiting case ε0 → ∞, we have r0 → 1, and eqns (16.74) and (16.75)
coincide with the respective expressions in eqns (16.45) and (16.46) valid for an
atom near an ideal (or real) metal wall.

16.4.2 Computations of the free energy

Here, we present some typical computational results characterizing the interac-
tion of atoms with dielectric walls at different separation distances. The free en-
ergy of the Casimir–Polder interaction was computed using the Lifshitz formula
(16.18) with a frequency-dependent dielectric permittivity ε(ω). For compari-
son purposes, dielectric walls described by a static dielectric permittivity will be
also considered. The dynamic polarizability of an atom was represented by the
single-oscillator model. At the shortest separations, accurate data for the atomic
dynamic polarizability were also used.

We start with the example of an Si wall interacting with an He∗ or Na
atom at separations from 3nm to 150 nm. The dielectric permittivity of Si along
the imaginary frequency axis, obtained from the tabulated optical data for the
complex index of refraction, was considered in Section 12.6.1. Computational
results were presented in Fig. 12.2(a) for T = 300 K. The single-oscillator and
accurate dynamic polarizabilities for He∗ and Na were considered in Sections
16.3.2 and 16.3.4. The Casimir–Polder free energy (16.18) was represented by eqn
(16.66) in terms of the separation-dependent van der Waals coefficient C3(a, T ).
The computational results are shown in Fig. 16.5(a) for metastable helium He∗

and in Fig. 16.5(b) for Na. The solid lines were obtained by using the accurate
atomic dynamic polarizabilities and the long-dashed lines by using the single-
oscillator model (16.29). The short-dashed lines were computed with the accurate
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Fig. 16.5. Van der Waals coefficient C3 versus separation for (a) metastable
He∗ and (b) Na atoms near an Si wall calculated by use of the complete
optical data for Si and accurate atomic dynamic polarizabilities (solid lines)
or by use of the single-oscillator model (long-dashed lines). The short-dashed
lines were computed for a semiconductor described at all frequencies by the
static dielectric permittivity of Si and the accurate dynamic polarizabilities
of the atoms (Caride et al. 2005).

dynamic polarizabilities but with the assumption that the dielectric permittivity
of the wall material does not depend on the frequency and is equal to its static
value. At the shortest separation a = 3 nm, the error in C3 due to the use of
the static dielectric permittivity is equal to approximately 13% for He∗ and 24%
for Na. As is seen in Fig. 16.5, C3(a, T ) is a decreasing function of distance.
Even at the shortest separations considered, of about 3 nm, there is no range of
separations where C3 is constant. Thus, for Si the pure van der Waals regime
(16.24) is not realized.

Figure 16.5 and the corresponding numerical data permit us to follow the
influence of the characteristics of the atom and of the Si on the Casimir–Polder
interaction. Thus, comparing the solid and long-dashed lines in Fig. 16.5(a),
one can conclude that for He∗ the use of the single-oscillator model leads to a
4.4% error at a = 3 nm and 3.1% error at a = 15 nm. From Fig. 16.5(b), one
can conclude that for Na, these errors are 1.8% and 1%, respectively. With an
increase of the separation distance to 150 nm, the errors given by the single-
oscillator model decrease to 0.4% for He∗ and practically to zero for Na. This
confirms that at larger separations, the single-oscillator model is quite sufficient
for high-precision calculations of the Casimir–Polder interaction (Caride et al.
2005, Mostepanenko et al. 2006a).

Now we consider a much wider range of separations, where relativistic effects
are more pronounced and thermal effects come into play. At larger separations it
is more convenient to represent the Casimir–Polder free energy not in the form
of eqn (16.66) but as

FA(a, T ) = −C4(a, T )

a4
, (16.76)
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Fig. 16.6. Casimir–Polder coefficient C4 versus separation for an Na atom in-
teracting with (a) Si and (b) SiO2 walls. The solid and dashed lines were
computed by using frequency-dependent permittivities and static dielectric
permittivities, respectively, for the wall material.

i.e. separating the inverse fourth power of a as in eqn (16.28), obtained at rela-
tively large separations. We have computed the function C4(a, T ) at T = 300 K
for the Na atom and two wall materials (Si and SiO2), demonstrating the different
roles of the frequency dependence of the dielectric permittivity. Computations
were performed in the separation region from 20nm to 5µm using the Lifshitz for-
mula (16.28). The dielectric permittivity of SiO2 along the imaginary frequency
axis is presented in Fig. 12.2(b). As opposed to the case of Si, it has two steps
owing to the two types of polarization (see Section 12.6.1). The dynamic polar-
izability of the Na atom was described in the single-oscillator approximation. As
can be seen in Fig. 16.5(b), at separations a > 20 nm, the single-oscillator model
for Na leads to the same results as does the accurate dynamic polarizability.

In Fig. 16.6, the coefficient C4 is plotted as a function of separation for
an Na atom interacting with (a) Si and (b) SiO2 walls. The solid lines were
computed using frequency-dependent dielectric permittivities. The dashed lines
were computed using static dielectric permittivities for Si and SiO2 (ε0 = 11.66
and 3.81, respectively) at all frequencies. As can be seen in Fig. 16.6(a), for Si
the solid and dashed lines practically coincide. The largest deviation between
them is equal to 9%, which happens at the shortest separation a = 20 nm. At
a = 100 nm, this deviation falls to 2.8%, and it is less than 1% at a > 200 nm.
Thus, the frequency dependence of the dielectric permittivity of Si plays a minor
role in the atom–wall interaction. For SiO2, the dashed line deviates markedly
from the solid line. The largest deviation, of 38%, is achieved at a = 20 nm. It
decreases slowly to 32% at 200nm, 21% at 700nm, and 10% at 1.6 µm. Because of
this, for SiO2 the dependence of the dielectric permittivity on frequency must be
taken into account in precise computations of the atom–wall interaction. From
Fig. 16.6(a), it can be seen that within the range of separations from about
0.5 µm to 2 µm the function C4 can be approximated by a constant. This means
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that in this range, the Casimir–Polder free energy falls as 1/a4, i.e. following the
same law as eqn (16.28) for an ideal metal. At larger separations, thermal effects
contribute increasingly to the Casimir–Polder free energy.

16.4.3 Various approaches to including the dc conductivity, and the Nernst
theorem

As shown in Sections 16.3.3 and 16.4.1, the Lifshitz theory of atom–wall interac-
tions is thermodynamically consistent in the cases of a metal wall and a dielectric
wall when the dc conductivity is neglected. Now we reconsider the problem of
the consistency of the Lifshitz theory for the interaction of an atom with a di-
electric wall when the dc conductivity is included. Similarly to the cases of two
dielectric plates (Section 12.5.2) and dielectric and metal plates (Section 15.4),
the inclusion of the dc conductivity in the model of the dielectric response results
in a violation of the Nernst heat theorem. We also discuss the consistency with
thermodynamics of a generalization of the Lifshitz theory of atom–wall interac-
tions (Pitaevskii 2008a) taking into account the effect of Debye screening. It is
shown that this generalization also violates Nernst’s theorem for a wide class of
dielectric materials.

The permittivity of a dielectric plate with the dc conductivity included is
given by eqn (12.113), where the upper index (n) is omitted. As shown in Section
12.5.2, the inclusion of the dc conductivity leads to only negligible additions to
all terms of the Lifshitz formula with l ≥ 1. These additions decay exponentially
to zero with vanishing temperature. However, the term with l = 0 is modified
because, according to eqn (16.68), the inclusion of the dc conductivity leads to
the replacement of the reflection coefficient rTM(0, y) = r0 with r̃TM(0, y) = 1.
As a result, with the dc conductivity included, the free energy of the atom–wall
interaction at low temperature takes the form

F̃A(a, T ) = FA(a, T ) − kBT

4a3
(1 − r0)α(0) + N(a, T ). (16.77)

Here, FA(a, T ) is given by eqn (16.72), and N(a, T ) goes exponentially fast to
zero together with its derivative when the temperature goes to zero. From eqn
(16.77), one can immediately arrive at a violation of the Nernst heat theorem
(Klimchitskaya et al. 2008a) by taking the derivative with respect to T :

S̃A(a, T ) =
kBα(0)

4a3
(1 − r0) > 0. (16.78)

This is analogous to the corresponding results obtained for the configurations of
two dielectric plates and of a metal and a dielectric plate (see Sections 12.5.2
and 15.4, respectively). It provides one more confirmation of the fact that the
Lifshitz theory with inclusion of the dc conductivity of the dielectric material
is thermodynamically inconsistent. Thus, in the corresponding applications of
the Lifshitz theory, the dc conductivity must be disregarded. In the case of
the atom–plate interaction, this conclusion was confirmed experimentally in a
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measurement of the Casimir–Polder interaction between 87Rb atoms and an SiO2

wall (Obrecht et al. 2007). It was shown that with the dc conductivity neglected,
the Lifshitz theory was in excellent agreement with the data (Obrecht et al.
2007). By contrast, with the dc conductivity of SiO2 included, the predictions
of the Lifshitz theory were found to be inconsistent with the measurement data
(Klimchitskaya and Mostepanenko 2008b). A discussion of this experiment and
a comparison of the data with theory is contained in Section 22.1.

An interesting attempt to generalize the Lifshitz theory and to solve the
problem of the zero-frequency contribution to eqn (16.18) describing the atom–
wall interaction was undertaken by Pitaevskii (2008a). According to the proposed
generalization, the electric field in the conductor can be screened owing to the
presence of free charge carriers with a density n. As a result, the potential around
a point charge e takes the Yukawa-type form e exp(−κr)/r. If the charge carriers
can be described by classical Maxwell–Boltzmann statistics, the Debye–Hückel
approximation is valid, where κ = κDH is defined by eqn (14.56). The effect
of screening, which is taken into account only for the static field, leads to the
replacement of the transverse magnetic reflection coefficient at zero frequency,
rTM(0, y) = r0, as given by eqn (16.68), with

rmod
TM (0, y) =

ε0

√
4a2κ2 + y2 − y

ε0

√
4a2κ2 + y2 + y

. (16.79)

At the same time, all of the coefficients rTM,TE(iζl, y) with l ≥ 1 remain un-
changed (Pitaevskii 2008a). The reflection coefficient (16.79) is a particular
case of the reflection coefficient (14.53) defined at any frequency in the ap-
proach of Dalvit and Lamoreaux (2008). To see this, we can put ξ = 0 and
k⊥ = y/(2a) in eqn (14.53). When the total density of charge carriers n is zero,
eqn (16.79) leads to the same result as eqn (16.68). For n → ∞, at fixed T �= 0,
rmod
TM (0, y) = r̃TM(0, y) = 1, as in the case of the standard Lifshitz theory when

the dc conductivity is included in the model of the dielectric response.
The proposed generalization (Pitaevskii 2008a) includes the effect of the con-

ductivity properties of the material in the zero-frequency term of the Lifshitz
formula by introducing the microscopic quantity n rather than by adding a con-
tribution from conduction electrons to the frequency-dependent dielectric per-
mittivity as in eqn (12.113). However, this procedure can be formulated identi-
cally as the inclusion of spatial dispersion in the standard Lifshitz theory. For
this purpose, the plate material is characterized by two dissimilar dielectric per-
mittivities εx = εy and εz, as was done in Section 12.8.1 for uniaxial crystals.
If the two dielectric permittivities εx and εz depend only on the frequency, the
reflection coefficients are given by eqn (12.135) with the notation in eqn (12.136).
In this case the standard Lifshitz formulas for the free energy and force are valid.
To obtain the suggested generalization (Pitaevskii 2008a), one puts

εx0 = εx(0) = ε0, εz0 = εz(0) = ε0

(
1 +

κ2

k2
⊥

)
. (16.80)
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We emphasize that εz0 in eqn (16.80) depends on the wave vector in the plane
of the plate, i.e. it is incorrect to substitute it into the reflection coefficient

r
(u)
TM(iξl, k⊥) in eqn (12.135) and into the Lifshitz formula (see the discussion

in Section 12.10). If, however, one disregards this warning and substitutes eqn
(16.80) in eqn (12.135) at zero frequency, the following result is obtained:

r
(u)
TM(0, k⊥) =

ε0

√
k2
⊥ + κ2 − k⊥

ε0

√
k2
⊥ + κ2 + k⊥

. (16.81)

Taking into account the relation (12.89) between dimensional and dimensionless
variables y = 2ak⊥, one arrives at

r
(u)
TM(0, k⊥) ≡ rmod

TM (0, y), (16.82)

i.e. the reflection coefficients (16.79) and (16.81) coincide precisely. This shows
that the generalization of the Lifshitz theory under consideration (Pitaevskii
2008a) is in fact the standard Lifshitz theory, with the plate material described
by two dissimilar dielectric permittivities where one of them is allowed to depend
on the wave vector (see Section 12.10).

Now we check if the proposed generalization is thermodynamically consistent.
The calculation of the Casimir–Polder free energy at low temperature with the
modified TM reflection coefficient at zero frequency (16.79) results in

FA,mod(a, T ) = FA(a, T ) − kBTα(0)

8a3

∫ ∞

0

rmod
TM (0, y)e−yy2 dy +

kBT

4a3
α(0)r0,

(16.83)
where the exponentially small terms have been omitted and FA(a, T ) is defined
in eqn (16.72). The respective Casimir–Polder entropy is given by

SA,mod(a, T ) = SA(a, T ) +
kBα(0)

4a3

[
1

2

∫ ∞

0

rmod
TM (0, y)e−yy2 dy − r0

]

+
kBT

8a3
α(0)

∫ ∞

0

∂rmod
TM (0, y)

∂T
e−yy2 dy, (16.84)

where SA(a, T ) has been defined in eqn (16.73). It is easily seen that the last
term on the right-hand side of eqn (16.84) goes to zero when the temperature
vanishes, regardless of the temperature dependence of n. The second term is
more involved. We discuss it first for various kinds of dielectric materials.

If n(T ) decays exponentially to zero with vanishing temperature (as is true
for pure insulators and intrinsic semiconductors), then so does κ(T ). As a re-
sult, rmod

TM (0, y) → r0 and the Casimir–Polder entropy SA,mod(a, 0) is equal to
zero, in accordance with the Nernst theorem. However, if n does not go to zero
when T goes to zero (this is true, for instance, for dielectric materials such as
semiconductors doped below the critical doping concentration, semimetals with
strong electronic correlation, and solids with ionic conductivity), κ → ∞ with
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vanishing temperature and rmod
TM (0, y) → 1 when T → 0. In this case we obtain

from eqn (16.84) (Klimchitskaya et al. 2008a)

SA,mod(a, 0) = S̃A(a, 0) =
kBα(0)

4a3
(1 − r0) > 0, (16.85)

i.e. the proposed generalization violates the Nernst heat theorem. Precisely the
same result for the entropy of the atom–wall interaction appears (Klimchitskaya
et al. 2009b) in the approach by Dalvit and Lamoreaux (2008), where the TM
reflection coefficient is modified at all Matsubara frequencies (see Section 14.3.5).
As can be seen from the comparison of eqns (16.78) and (16.85), both theoret-
ical approaches with the modified reflection coefficients violate the Nernst heat
theorem in the same way as does the standard Lifshitz theory with the inclusion
of the dc conductivity. In fact, the conductivity is given by σ0(T ) = n|e|µ, where
µ is the mobility of the charge carriers (Ashcroft and Mermin 1976). Although
σ0(T ) goes to zero exponentially fast for all dielectrics when T goes to zero, for
most of them this happens owing to a vanishing µ. For instance, the conductivity
of SiO2 is ionic in nature and is determined by the concentration of impurities
(alkali ions), which are always present as trace constituents. According to the
above result, for this material the generalization of the Lifshitz theory under
consideration violates the Nernst theorem (note that here the entropy of the
fluctuating field is nonzero at T = 0 and depends on the separation, whereas the
entropy of the plates is separation-independent). This is in agreement with the
fact that the extension of the Lifshitz theory with the inclusion of spatial disper-
sion is controversial (see Section 12.10). Note that Pitaevskii (2008b) ignored the
contradiction of his theory with the Nernst theorem for semiconductors doped
below the critical value and dielectric-type semimetals.

According to Svetovoy (2008), the nonlocal generalization of the Lifshitz the-
ory satisfies the Nernst theorem; this was stated specifically for ionic conductors
possessing an activation-type conductivity. To prove this, the thermal depen-
dence of the mobility, ∼ exp(−C/kBT ), where C is the activation energy, was
arbitrarily separated and attributed to the “effective density of charges, which
are able to move”. This transfer of the temperature dependence from µ to n
is incorrect (Klimchitskaya et al. 2008c) because the commonly used density of
charge carriers n that produce the effect of screening in ionic conductors and
their mobility are independently measured quantities (Schütt and Gerdes 1992).
In Section 20.3.5, it will be shown that the proposed generalization is also incon-
sistent with experimental data on the measurement of the Casimir force between
an Au sphere and an Si plate illuminated with laser pulses.

The reason for the contradictions between the generalization of the Lifshitz
theory by Pitaevskii (2008a) and thermodynamics is the same as in the ap-
proach by Dalvit and Lamoreaux (2008). Physically, this generalization includes
the effect of screening, i.e. nonzero gradients of n. This situation is out of ther-
mal equilibrium, which is the basic applicability condition of the Lifshitz theory
(Geyer et al. 2008d). As was recognized by Pitaevskii (2008a), “It is not clear if
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the fields with the very low frequencies. . . are in the thermodynamic equilibrium
with the bodies. The problem is worth experimental investigation.”

Now we consider the thermodynamic consistency of a theoretical approach
which uses electrostatic screening for the description of atom–wall interactions
in the case of metal walls. In Section 16.3.3, it was shown that the standard
Lifshitz theory of the interaction of an atom with a metal wall is thermodynam-
ically consistent. To check the thermodynamic consistency of an approach with
a modified TM reflection coefficient given by (16.79) or (16.81), we separate the
zero-frequency contribution in eqn (16.16) and represent the modified free energy
in the form

FA,mod(a, T ) = FA(a, T ) − kBTα(0)

∫ ∞

0

k2
⊥dk⊥e−2ak⊥

[
r
(u)
TM(0, k⊥) − 1

]
,

(16.86)
where FA(a, T ) is the free energy of the atom–wall interaction in the stan-
dard Lifshitz theory with rTM(0, k⊥) = 1 for a metal wall [in contrast to eqn
(16.83), dimensional variables are used in eqn (16.86)]. The asymptotic behavior
of FA(a, T ) at low T is given in eqn (16.64).

To find the asymptotic behavior of the second term on the right-hand side
of eqn (16.86) at low temperature, one must take into account the fact that
in this case, the electrons obey quantum statistics. As a result, instead of the
Debye–Hückel κ defined in eqn (14.56), applicable when the electrons in a metal
obey Maxwell–Boltzmann statistics, one must use the expression (14.61) for κTF

derived in the Thomas–Fermi approximation. Thus, using eqn (16.81), we obtain
the result that the asymptotic behavior of the modified Casimir–Polder free
energy at low temperature is given by

FA,mod(a, T ) = FA(a, T ) + 2kBTα(0)

∫ ∞

0

dk⊥
k3
⊥e−2ak⊥

ε0

√
k2
⊥ + κ2

TF + k⊥
, (16.87)

where ε0 is the contribution of core electrons to the dielectric permittivity of the
metal.

Bearing in mind that the integral on the right-hand side of eqn (16.87) is
temperature-independent, we obtain the asymptotic behavior of the modified
Casimir–Polder entropy at low temperature,

SA,mod(a, T ) = SA(a, T ) − 2kBα(0)

∫ ∞

0

dk⊥
k3
⊥e−2ak⊥

ε0

√
k2
⊥ + κ2

TF + k⊥
, (16.88)

where SA(a, T ) is presented in eqn (16.65). In the limiting case T → 0, we obtain

SA,mod(a, 0) = −2kBα(0)

∫ ∞

0

dk⊥
k3
⊥e−2ak⊥

ε0

√
k2
⊥ + κ2

TF + k⊥
< 0, (16.89)

i.e. the generalization of the Lifshitz theory of the atom–wall interaction by the
inclusion of spatial dispersion due to electrostatic screening, as suggested by
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Pitaevskii (2008a), violates the Nernst heat theorem. Note that the approach by
Dalvit and Lamoreaux (2008) satisfies the Nernst heat theorem in the case of an
atom interacting with a metal wall (Klimchitskaya et al. 2009b).

16.5 The impact of magnetic properties on atom–wall interaction

Previous sections were devoted to a pure electrically polarizable atom near a
metallic or dielectric wall described by the frequency-dependent dielectric per-
mittivity ε and a magnetic permeability µ equal to unity. However, the role of
the magnetic properties of an atom and the wall material has also been discussed
in the literature. Magnetic properties have received much attention due to an
expectation of a repulsive atom–wall interaction based on the work of Boyer
(1974) that an ideal-metal plane repels an infinitely permeable plane (see sec-
tion 7.2.2). Keeping in mind that both the atoms and the walls used in cavity
quantum electrodynamics may possess magnetic proiperties, the impact of these
properties on the atom–wall interaction deserves consideration.

Safari et al. (2008) developed the theory of atom–wall interaction for the case
of both a polarizable and a (para)magnetizable atom near a magnetodielectric
macrobody. This theory was applied to the case of an atom near a semispace
(thick magnetodielectric wall described by the frequency-dependent ε and µ). It
was shown that the resulting potential of the atom–wall interaction is very similar
to the well-known potential of a polarizable atom interacting with a dielectric
wall. It is pertinent to note that Safari et al. (2008) deal with paramagnetic
atoms which are magnetizable but have no intrinsic magnetic moment. This is
usually referred to as Van Vleck paramagnetism (Van Vleck 1932). It is caused
by the deformation of the electronic structure of the atom by an external field
which creates the induced magnetic moment. Usually such deformation leads
to a diamagnetic effect. However, in some specific cases paramagnetism results.
Thus, Van Vleck paramagnetism is of induced origin and the respective magnetic
susceptibility is temperature-independent.

Here, we present the Lifshitz-type formulas describing the impact of magnetic
properties on atom–wall interaction for both magnetizable atoms and for atoms
possessing an intrinsic (permanent) magnetic moment. Such atoms (for instance
H or Rb) participate in different physical processes involving atom–surface inter-
action (see e.g. Sections 22.1 and 23.4). The case of atoms possessing a permanent
magnetic moment is interesting in two aspects. First, the magnitude of a perma-
nent magnetic moment is much larger than that of an induced one. Second, the
resulting magnetic susceptibility is temperature-dependent.

We start from the Lifshitz formula for the free energy per unit area in the
configuration of two parallel dissimilar magnetodielectric semispaces separated
by a distance a, in thermal equilibrium at temperature T [see the first equality

in eqn (12.71)]. The reflection coefficients r
(n)
TM,TE for each one of the two mag-

netodielectric semispaces (n = 1, 2) are given by eqn (12.56), where ε and µ are
replaced with ε(1) and µ(1) or ε(2) and µ(2).
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In order to obtain the Lifshitz-type formula for the free energy of a magnetic
atom near a magnetodielectric semispace we use the same method as was used
in Section 16.2 for the case of an electrically polarizable atom near a dielectric
semispace. For this purpose we leave the first semispace (n = 1) unchanged, but
we replace the second semispace by a rarefied magnetodielectric medium. Upon
expanding the dielectric permittivity and the magnetic permeability of the latter
medium in powers of the number N2 of atoms per unit volume, and keeping only
contributions of order N2, we obtain eqn (16.3) with n = 2 and

µ(2)(iξ) = 1 + 4πβ(2)(iξ)N2 + O
(
N2

2

)
. (16.90)

Here, β(2)(iξ) is the dynamic magnetic susceptibility for an atom of the rarefied
material (the semispace with n = 2). Similar to Section 16.2 we use the nota-
tion N2 ≡ N and β(2)(iξ) ≡ β(iξ). It should be remembered that the quantity
α(iξ) is usually temperature-independent whereas β(iξ), for paramagnetic ma-
terials displaying orientation polarization, is proportional to the inverse of the
temperature.

By repeating the derivation of Section 16.2, we arrive at the Lifshitz-type
formula for the Casimir-Polder free energy for a magnetic atom near a magne-
todielectric semispace (Bimonte et al. 2009)

FA(a, T ) = −kBT

∞∑
l=0

′ ∫ ∞

0

k⊥dk⊥qle
−2aql (16.91)

×
{

2
[
α(iξl)r

(1)
TM(iξl, k⊥) + β(iξl)r

(1)
TE(iξl, k⊥)

]

− ξ2
l

q2
l c2

[α(iξl) + β(iξl)]
[
r
(1)
TM(iξl, k⊥) + r

(1)
TE(iξl, k⊥)

]}
.

At zero temperature a similar formula for the energy of a magnetizable atom
was obtained by Safari et al. (2008) using the Green’s function method. For a
nonmagnetic atom, β(iξl) = 0, near a dielectric wall, µ(iξl) = 1, eqn (16.91)
coincides with eqn (16.16).

Starting from eqn (16.91) it is straightforward to derive the expression for
the force acting on a magnetic atom placed near a magnetodielectric wall

FA(a, T ) = −∂FA(a, T )

∂a
= −2kBT

∞∑
l=0

′ ∫ ∞

0

k⊥dk⊥q2
l e−2aql (16.92)

×
{

2
[
α(iξl)r

(1)
TM(iξl, k⊥) + β(iξl)r

(1)
TE(iξl, k⊥)

]

− ξ2
l

q2
l c2

[α(iξl) + β(iξl)]
[
r
(1)
TM(iξl, k⊥) + r

(1)
TE(iξl, k⊥)

]}
.

Computations show (Bimonte et al. 2009) that the largest influence of the
magnetic properties on the atom–wall interaction holds for paramagnetic atoms
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possessing a permanent magnetic moment and for a wall made of ferromagnetic
dielectrics. For such atoms the dynamic magnetic susceptibility along the imag-
inary frequency axis is given by (Morrish 1965, Vonsovskii 1974)

β(iξl) =
g2µ2

BJ(J + 1)

3kBT

1

1 + τξl
, (16.93)

where g is the Lande factor, µB = e�/(2mec) is the Bohr magneton, me is the
electron mass, J is the total momentum and τ is the relaxation time. As an
example, ground state atoms of H and 87Rb have approximately equal magnetic
moments (Valberg and Ramsey 1971). For both atoms g = 1 and J = 1/2
[the magnetic moment of H atoms was determined by Phipps and Taylor (1927);
relativistic and radiative corrections are discussed by Faustov (1970)]. For various
atoms at T = 300 K, τ varies in the range from 10−10 to 10−4 s and it increases
when the temperature decreases.

It can be seen (Bimonte et al. 2009) that for Rb atoms the influence of
magnetic properties on the Casimir–Polder force is negligibly small, as compared
to H atoms. Bimonte et al. (2009) have performed numerical computations of the
Casimir–Polder force acting between H atoms with frequency-dependent electric
polarizability and magnetic susceptibility and walls made of either an ideal metal,
Au, Fe or a ferromagnetic dielectric. In the first three cases inclusion of the atomic
magnetic moment was shown to lead to a decrease of the force magnitude, while
in the fourth case to an increase of it. Although the impact of the permanent
magnetic moment of an atom on the atom–wall interaction was found to be
always equal to only a fraction of a percent, it is nevertheless larger than the
effect of the induced (para)magnetic moment (Safari et al. 2008). The smallness
of the corrections to the atom–wall interaction from the magnetic properties
allows one to disregard them in related experiments and theoretical approaches.

16.6 Atom–wall interactions in the nonequilibrium case

In previous sections it was supposed that an atom interacts with a plate which
is in thermal equilibrium with an environment. If the substance of the plate is
at a temperature TP but the environment (remote bodies) is at temperature TE,
the system is out of thermal equilibrium. This case, which is beyond the scope of
standard Casimir problems, was investigated by Antezza et al. (2005). It opens
up interesting opportunities for the measurement of thermal Casimir forces in
experiments on Bose–Einstein condensation and quantum reflection, considered
in Chapter 22. Because of this, here we provide a brief summary of the results
obtained, which is needed for a comparison of experiment with theory.

It is assumed that the plate is locally in thermal equilibrium and the atom
is in its ground state. Thus, the thermal radiation between the plate and the
environment is not of sufficient strength to excite atomic electrons to higher
states. In this case the Casimir–Polder force consists of three contributions. One
of them, FA(a, TE), is given by the standard expression (equilibrium) for the
Lifshitz formula (16.17) at the environmental temperature. The two additional
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contributions have a common form specific to the nonequilibrium situation. The
first of the two, FA

n (a, TP), is taken at the plate temperature TP and the second,
−FA

n (a, TE), is taken at the environmental temperature TE. The total force acting
between the atom and the plate is given by (Antezza et al. 2005)

FA(a, TP, TE) = FA(a, TE) + FA
n (a, TP) − FA

n (a, TE). (16.94)

When the temperatures of the plate and environment are equal, the last two
contributions on the right-hand side of eqn (16.94) cancel each other and we
return to the Lifshitz expression (16.17). The explicit form of the nonequilibrium
contribution is given by an integral along the real frequency axis (Antezza et al.
2005):

FA
n (a, T ) = −K

∫ ∞

0

dω

∫ ∞

0

dx f(ω, x) exp
(
−2ωxa

c

)
, (16.95)

f(ω, x) =
ω4x2

exp
(

�ω
kBT

)
− 1

[
|p(ω, x)| + Re ε(ω) − 1 − x2

]1/2

×
[

1

|
√

p(ω, x) + ix|2
+

(2x2 + 1)(x2 + 1 + |p(ω, x)|)
|
√

p(ω, x) + iε(ω)x|2

]
,

K ≡ 2
√

2�α(0)

πc4
, p(ω, x) ≡ ε(ω) − 1 − x2.

Note that the nonequilibrium contribution is derived in the approximation
of a static atomic polarizability. Because of this, the equilibrium contribution
FA(a, TE) must be calculated in the same approximation (as shown in Section
16.3.2, at separations larger than 2 µm the correction to the Casimir–Polder en-
ergy due to the dynamic atomic polarizability is less than 1.2%). Equation (16.94)
in the absence of environmental radiation (TE = 0) was obtained by Henkel et al.
(2002). As was shown by Antezza et al. (2005), at separations of a few microme-
ters the theoretical effects of conditions out of thermal equilibrium influence the
force significantly and provide promising opportunities for the measurement of
atom–wall interactions (see Chapter 22). Thus, by increasing TP while keeping
the environment at room temperature, one can increase the magnitude of the
attractive force. If TP < TE, the force changes sign from attraction to repulsion
with increasing separation distance.

In the limiting case of large separations, the main contribution to the integral
with respect to t in eqn (16.95) is given by t � 1. Expanding f(ω, t) in powers
of t and integrating, one obtains (Antezza et al. 2005, Antezza 2006)

FA
n (a, T ) = −Kc3

4a3

∫ ∞

0

ω dω

exp
(

�ω
kBT

)
− 1

g(ω), (16.96)

g(ω) =
[
|ε(ω) − 1| + Re ε(ω) − 1

]1/2 2 + |ε(ω) − 1|√
2 |ε(ω) − 1|

.
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For temperatures such that ωT = kBT/� is much less than the characteristic
absorption frequency of the plate material, one may replace ε(ω) in eqn (16.96)
with the static permittivity ε0. Then, when the integration with respect to ω
is performed and the definition of K in eqn (16.95) is used, the nonequilibrium
contribution (16.96) reduces to (Antezza et al. 2005, Antezza 2006)

FA
n (a, T ) = −πα(0)(kBT )2

6c�a3

ε0 + 1√
ε0 − 1

. (16.97)

This expression is obtained under the assumption that the dielectric material
is described by a finite permittivity at zero frequency, i.e. the dc conductivity is
ignored. We emphasize that the substitution of ε(ω) = ε0+4πiσ0/ω in eqn (16.96)
leads to practically the same values of F A

n (a, T ) as are given by eqn (16.97), if
the condition σ0 � ωT is satisfied. The latter condition is easily fulfilled for
typical dielectric materials. Thus, as opposed to the equilibrium contribution to
the Casimir–Polder force FA(a, T ), given by the standard Lifshitz formula, the
nonequilibrium contribution FA

n (a, T ) is not sensitive to the inclusion of a small
dc conductivity in the model of the dielectric response.

For metals, σ0 > ωT . Because of this, at all frequencies contributing to the
integral (16.96), the real part of ε(ω) can be neglected in comparison with the
imaginary part. As a result, g(ω) ≈

√
2πσ0/ω and the integration in eqn (16.96)

leads to (Antezza et al. 2005)

FA
n (a, T ) = −α(0) ζR(3/2)

√
σ0 (kBT )3/2

c
√

2� a3
. (16.98)

Thus, at large separations the nonequilibrium contribution to the atom–wall
force possesses very different temperature dependences in the cases of dielectric
and metal wall materials.

16.7 Anisotropic materials: interaction of hydrogen atoms with

graphite

In this section, we consider the interaction of atoms with a wall made of an
anisotropic material. This is interesting as an application of the Lifshitz formula
for anisotropic plates discussed in Section 12.8.1 and in connection with the
carbon nanostructures to be discussed in Section 23.4. Bearing these applications
in mind, here we choose a hydrogen atom or molecule to be the microparticle
interacting with a graphite wall. We pay special attention to the behavior of
the dielectric permittivity of graphite along the imaginary frequency axis. The
van der Waals coefficient is calculated as a function of the separation for the
interaction of hydrogen atoms and molecules with a graphite semispace and
with a plate of finite thickness.

16.7.1 Dielectric permittivity of graphite along the imaginary frequency axis

Graphite is an example of the uniaxial crystals discussed in Section 12.8.1. Thus,
it can be characterized by two dissimilar dielectric permittivities εx(ω) = εy(ω)
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and εz(ω). Below, we consider a microparticle located near a graphite semispace
or a plate of finite thickness d restricted by a boundary z = const. The optical axis
z is perpendicular to the boundary plane of the semispace. This configuration is
useful for applications of the theory to nanostructures such as carbon nanotubes.
The Casimir–Polder free energy for the interaction of an atom with a graphite
semispace or a wall of finite thickness is given by eqns (16.16) and (16.18) with
the reflection coefficients (12.135) (for a semispace) or (12.137) (for a plate of
thickness d). To calculate the free energy and the force of the atom–graphite wall
interaction, one needs to know the dielectric permittivities εx(iξl) and εz(iξl) at
the imaginary Matsubara frequencies.

These quantities can be computed with the help of the Kramers-Kronig rela-
tion (12.125), applied separately to εx and εz. The imaginary parts of the respec-
tive dielectric permittivities along the real frequency axis are expressed through
the real and imaginary parts of the complex refractive index of graphite, nx,z(ω),
for ordinary and extraordinary rays in the same way as in Section 12.8.1.

The handbook by Palik (1991) contains measurement data for both the real
and the imaginary parts of nx,z(ω), obtained by various authors in the frequency
region from Ω1 = 0.02 eV to Ω2 = 40 eV. The use of these data to calculate
εx,z(iξ) with eqn (12.125) is, however, plagued by two problems. First, the in-
terval [Ω1, Ω2] is too narrow to calculate εx,z(iξ) at all Matsubara frequencies
contributing to the Casimir–Polder force (by comparison, for Au the complex
refractive index has been measured up to 10000eV; see Section 13.3). Second,
although for nx the data from the various authors are in agreement, in the case
of nz there are contradictory data in the literature at ω ≤ 15.5 eV.

The first problem can be solved by the use of extrapolation. At high frequen-
cies ω ≥ Ω2, the imaginary parts of the dielectric permittivities of graphite can
be presented analytically in the form (Palik 1991)

Im ε(h)
x,z(ω) =

Ax,z

ω3
. (16.99)

Here, the values of the constants Ax = 9.60 × 103 eV3 and Az = 3.49 × 104 eV3

have been determined by the condition of a smooth overlap with the values of
Im εx,z given by the tabulated data at ω = Ω2.

At low frequencies ω ≤ Ω1, one may extrapolate Im εx with the help of the
Drude model,

Im ε(l)
x (ω) =

ω2
pγ

ω(ω2 + γ2)
, (16.100)

where the plasma frequency ωp = 1.226 eV and the relaxation parameter γ =
0.04 eV have again been determined from the condition of a smooth overlap with
the tabulated data at ω = Ω1.

The extrapolation of the tabulated data for Im εz to the region of low frequen-
cies is connected with the second problem discussed above, i.e. the contradictory
measurement results from different authors. Thus, the measurement data for
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nz(ω) of Klucker et al. (1974) differ considerably from the data of Venghaus
(1975) in the frequency region ω ≤ 15.5 eV. According to both of these papers,
the imaginary part of εz(ω) can be extrapolated to low frequencies ω ≤ Ω1 by
taking it to be a constant:

Im ε(l)
z (ω) ≡ ε′′z0 = const. (16.101)

The values of this constant, however, were found to be different: ε′′z0 = 3 (Veng-
haus 1975) and ε′′z0 = 0 (Klucker et al. 1974).

As a result, the calculation of the dielectric permittivities of graphite along
the imaginary frequency axis using eqn (12.125) was performed as follows:

εx,z(iξ) = 1 +
2

π

∫ Ω1

0

dω
ω Im ε

(l)
x,z

ω2 + ξ2
+

2

π

∫ Ω2

Ω1

dω
ω Im ε

(t)
x,z

ω2 + ξ2
+

2

π

∫ ∞

Ω2

dω
ω Im ε

(h)
x,z

ω2 + ξ2
,

(16.102)

where Im ε
(t)
x,z were found from the tabulated optical data and Im ε

(h,l)
x,z were given

by eqns (16.99)–(16.101). Substituting eqns (16.99)–(16.101) in eqn (16.102), one
finds (Blagov et al. 2005)

εx(iξ) = 1 +
2ω2

p

πξ(ξ2 − γ2)

(
ξ arctan

Ω1

γ
− γ arctan

Ω1

ξ

)
(16.103)

+
2

π

∫ Ω2

Ω1

dω
ω Im ε

(t)
x

ω2 + ξ2
+

2Ax

πξ2

(
1

Ω2
− 1

ξ
arctan

ξ

Ω2

)
,

εz(iξ) = 1 +
ε′′z0

π
ln

ξ + Ω1

ξ
+

2

π

∫ Ω2

Ω1

dω
ω Im ε

(t)
z

ω2 + ξ2
+

2Az

πξ2

(
1

Ω2
− 1

ξ
arctan

ξ

Ω2

)
.

The calculation results for εx(iξ) and εz(iξ) obtained from eqn (16.103) by
the use of the tabulated optical data (Palik 1991, Klucker et al. 1974, Venghaus
1975) are shown in Figs. 16.7(a) and 16.7(b), respectively, in the frequency range
from ξ1 = 2.47× 1014 rad/s to ξ2000 at T = 300 K (Blagov et al. 2005). These re-
sults allow a precise calculation of the Casimir–Polder interaction in the range of
separations a ≥ 3 nm (as usual, with increasing separation, the number of Mat-
subara frequencies giving a nonnegligible contribution to the result decreases).

At zero Matsubara frequency ξ0 = 0, eqn (16.103) leads to r
(u)
TM(0, k⊥) = 1 for

both of the reflection coefficients defined in eqns (12.135) and (12.137), which
follows from the fact that εx(iξ) → ∞ when ξ → 0. As always in this chapter de-

voted to the atom–wall configuration, the other reflection coefficient r
(u)
TE(0, k⊥)

does not contribute to the result, owing to the multiplier ξ2
0 on the right-hand

side of eqns (16.16)–(16.19).
The dependence of εx(iξ) on ξ in Fig. 16.7(a) is typical of good conductors

(compare with Fig. 13.2 for Au). In Fig. 16.7(b), the solid line was obtained
with ε′′z0 = 3, as found by Venghaus (1975) and reviewed by Palik (1991). The
dashed line in Fig. 16.7(b) was obtained with ε′′z0 = 0 (Klucker et al. 1974, Palik
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Fig. 16.7. Dielectric permittivities of graphite along the imaginary frequency
axis (a) for directions parallel to the hexagonal layers and (b) for the direction
perpendicular to the layers. The solid and dashed lines in part (b) were
obtained by using different sets of optical data (Blagov et al. 2005). See text
for discussion.

1991). It is seen that the dashed line differs markedly from the solid line in the
frequency region ξ < 1017 rad/s. The respective differences in the free energy
are discussed in the next section. There are physical arguments, however, to
prefer the solid line in Fig. 16.7(b) as giving the correct behavior of εz along
the imaginary frequency axis. The point to note is that the difference between
the two lines is due to the absence of absorption bands near the frequencies of
5 eV and 11 eV in the data of Klucker et al. (1974) related to εz [note that in
the data for εx, there are absorption bands in both sets of data (Klucker et al.
1974, Venghaus 1975)]. This raises doubts about the former measurement data
related to εz because, from the theory of the band structure of graphite (Johnson
and Dresselhaus 1973), it follows that corresponding absorption bands must be
present simultaneously in sets of data for εx and εz.

16.7.2 Computational results for plates of different thickness

To perform computations, one needs sufficiently precise information on the be-
havior of the dynamic polarizability of hydrogen atoms and molecules along the
imaginary frequency axis. A highly accurate expression for the atomic dynamic
polarizability of hydrogen is given by eqn (16.47) with K = 10. The respective
parameters of the oscillators were found by Johnson et al. (1967). They are listed
in Table 16.1 (note that one a.u. of energy = 4.3597× 10−18 J = 27.11 eV). It is
worthwhile to mention that before substitution of eqn (16.47) into the Lifshitz
formula, the atomic polarizability must be expressed in cubic meters.

In addition to the accurate expression (16.47), the atomic dynamic polar-
izability of a hydrogen atom can be expressed in terms of the simpler single-
oscillator model (16.29) with ω0 ≡ ω0A = 11.65 eV and α(0) ≡ αA(0) = 4.50 a.u.
(Rauber et al. 1982). Below, it is demonstrated that the substitution of the
expressions (16.29) and (16.47) into the Lifshitz formula leads to equal results
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Table 16.1. The values of the strengths and
eigenenergies of the oscillators for a hydrogen
atom in the framework of the ten-oscillator model.

j gj (a.u.) ω0j (a.u.)

1 0.41619993 0.37500006

2 0.08803654 0.44533064

3 0.08993244 0.48877611

4 0.10723836 0.56134416

5 0.10489786 0.68364018

6 0.08700329 0.89169023

7 0.06013601 1.2698693

8 0.03259492 2.0478339

9 0.01199044 4.0423429

10 0.00197021 12.194172

within the limits of the required accuracy. This allows one to use the simpler
eqn (16.29) in the computations.

For a hydrogen molecule, the single-oscillator model for the dynamic polar-
izability is even more precise than for the atom. For this reason, it is acceptable
to represent the dynamic polarizability of a hydrogen molecule by eqn (16.29)
with parameters ω0 ≡ ω0M = 14.09 eV and α(0) ≡ αM(0) = 5.439 a.u. (Rauber
et al. 1982).

Computations of the Casimir–Polder free energy (16.16) were performed for
a hydrogen atom or molecule at a separation a from a hexagonal-plane boundary
of a graphite semispace or a plate of thickness d (Blagov et al. 2005, Klimchit-
skaya et al. 2006a). Note that the separation distance between two hexagonal
layers in graphite is approximately 0.336nm. Because of this, all computations
were performed for a ≥ 3 nm, where one can neglect the atomic structure of
graphite and describe it in terms of the dielectric permittivities εx(ω) and εz(ω).
The free energy was represented in the form of eqn (16.66) with a separation-
and temperature-dependent van der Waals coefficient C3(a, T ). The expression
for C3(a, T ) is contained in eqn (16.18), written in terms of the dimensionless
variables (12.89). In these variables, the reflection coefficients for a graphite
semispace (12.135) are rearranged as follows:

r
(u)
TM(iζl, y) =

√
εxlεzly − fz(y, ζl)√
εxlεzly + fz(y, ζl)

, r
(u)
TE(iζl, y) =

y − fx(y, ζl)

y + fx(y, ζl)
, (16.104)

where

f2
z (y, ζl) = y2 + ζ2

l (εzl − 1), f2
x(y, ζl) = y2 + ζ2

l (εxl − 1). (16.105)
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Fig. 16.8. Van der Waals coefficient C3 versus separation for (a) a hydrogen
atom and (b) a molecule near a graphite semispace (Blagov et al. 2005). The
solid and dashed lines were obtained by using different sets of optical data
[the solid and dashed lines, respectively, in Fig. 16.7(b)].

Analogously, the reflection coefficients (12.137) for a graphite plate of thickness
d take the form

r
(u)
TM(iζl, y) =

εxlεzly
2 − f2

z (y, ζl)

εxlεzly2 + f2
z (y, ζl) + 2

√
εxlεzlyfz(y, ζl)coth[fz(y, ζl)d/(2a)]

,

r
(u)
TE(iζl, y) =

y2 − f2
x(y, ζl)

y2 + f2
z (y, ζl) + 2yfx(y, ζl)coth[fx(y, ζl)d/(2a)]

. (16.106)

We then substituted into the equation for C3(a, T ) the reflection coefficients
for a semispace (16.104), the accurate atomic dynamic polarizability (16.47) with
the parameters in Table 16.1, and the data in Fig. 16.7(a) for εx and Fig. 16.7(b)
(solid line) for εz. The computational results for C3 as a function of separation
are shown in Fig. 16.8(a) by the solid line. For comparison, the dashed line in Fig.
16.8(a) shows the computational results obtained with the use of the alternative
data for εz [the dashed line in Fig. 16.7(b)]. As can be seen in Fig. 16.8(a), at
the shortest separation a = 3 nm the use of the alternative data for εz leads to
a 15% error in the value of C3, which decreases with an increase in separation
(Blagov et al. 2005).

The computation of C3 was repeated using the same procedure as described
above but using the single-oscillator model (16.29) for the atomic dynamic po-
larizability instead of the accurate expression (16.47). The computational results
were found to be practically coincident with those in Fig. 16.8(a) (the maximum
deviation within the range of separations from 3 to 150nm was less than 0.2%).
This shows that for hydrogen atoms, the single-oscillator model is more exact
than for He∗ or Na (see Section 16.3.4). Thus, the single-oscillator approxima-
tion is quite sufficient for an investigation of the Casimir–Polder interaction of
hydrogen atoms (and, consequently, molecules) with a graphite surface.

Similarly to the above, the van der Waals coefficient C3(a, T ) for the inter-
action of an H molecule with a graphite semispace can be calculated (Blagov
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Fig. 16.9. Ratio of the free energy of the Casimir–Polder atom–plate interaction
to that for the atom–semispace interaction as a function of plate thickness
for a hydrogen atom located at different separations from a graphite surface
(Blagov et al. 2005). Lines 1, 2, 3, and 4 correspond to separations a = 3, 10,
20, and 50 nm, respectively.

et al. 2005). The only difference is the use of the dynamic polarizability of a
molecule instead of that for an atom. The computational results are presented in
Fig. 16.8(b) by the solid line (the dashed line was calculated with the alternative
data for the dielectric permittivity εz discussed in Section 16.7.1). A comparison
of Figs. 16.7(a) and 16.7(b) leads to the conclusion that the magnitudes of the
van der Waals coefficient for the H2 molecule are larger than for the atom.

Now we consider a hydrogen atom at a separation a from a graphite plate
of thickness d. It is interesting to investigate the dependence of the Casimir–
Polder free energy as a function of d and compare it with the case of an atom
at the same separation from a semispace. Computations of the free energy were
performed by use of eqn (16.18) with the reflection coefficients (16.104) (for a
semispace) and (16.106) (for a plate of thickness d). The values of the dielectric
permittivities along the imaginary frequency axis were taken from Fig. 16.7 (solid
lines), and the single-oscillator model for the atomic dynamic polarizability was
used. In Fig. 16.9, the ratio of the free energy FA

p (a, T ) for an atom near a plate

of thickness d to FA
s (a, T ) for an atom near a semispace is plotted as a function

of d for different atom–semispace (or atom–plate) separations (lines 1, 2, 3, and
4 are for separations a = 3, 10, 20, and 50 nm, respectively). As is seen in Fig.
16.9, at a separation a = 3 nm the finite thickness of the plate has a noticeable
effect on the free energy (more than 1% change) only for thicknesses d < 8 nm.
At separations a = 10, 20, and 50 nm, the finite thickness of the plate leads
to a smaller magnitude of the van der Waals free energy, as compared with a
semispace, of more than 1% if the thickness of the plate is less than 19, 32, and
61 nm, respectively. For example, if the separation between the atom and the
plate is a = 3 nm, then plates of thickness larger than 8 nm can be considered as
semispaces with good accuracy.



17

THE CASIMIR FORCE BETWEEN ROUGH SURFACES AND

CORRUGATED SURFACES

In the preceding chapters of Part II of this book, devoted to the Casimir force
between real bodies, we have discussed many effects due to the presence of charge
carriers at both zero and nonzero temperature. In doing so, we supposed the sur-
faces of the bodies under consideration (parallel plates) to be perfectly smooth.
It was also mentioned that many of the results obtained can be approximately
extended to the case of a material ball of large radius in close proximity to a flat
plate. The surface of the ball was assumed to be perfectly spherical.

The surfaces of real bodies, however, are not characterized by a perfect ge-
ometrical shape. Even if special efforts are made to avoid large-scale deviations
from a planar or spherical shape, any real surface is invariably covered with dis-
order called surface roughness. This disorder may be on a relatively large or small
scale (in relation to the separation distance between the two bodies), and may
be formed by native atoms or molecules or may consist of defects and clusters of
them or foreign inclusions. In some cases the roughness profile can be described
mathematically by a regular function, but in other cases the roughness can be
considered as stochastic. In the Lifshitz theory, dispersion forces are determined
by the reflection of electromagnetic waves from a surface. Thus, scattering pro-
cesses on rough surfaces become important for investigations of corrections to
the Casimir force due to surface roughness. In the case of surfaces with stochas-
tic roughness, the scattering of both classical waves and quantum particles was
considered by Brown et al. (1985), Tutov et al. (1999), and Leskova et al. (2005)
and in many other papers. It was concluded that surface roughness might have
a significant effect on the van der Waals force at short separations by increas-
ing its magnitude (Maradudin and Mazur 1980, Mazur and Maradudin 1981,
Rabinovich and Churaev 1989).

The calculation of roughness corrections to the Casimir force between real
bodies is an extremely difficult problem. As shown in Chapters 6 and 10, even for
perfectly shaped bodies different from plane parallel plates, exact calculations
have been performed only recently and only for a few simple cases. Because
of this, various approximate methods have been developed. In many cases it is
possible to consider the roughness as small in the sense that the characteristic
roughness amplitude is much less than the separation distance between the two
bodies. Then perturbative methods can be applied. An important characteristic
of roughness is the correlation length, which is the average distance between ad-
jacent peaks and valleys. The ratio between the roughness period (for periodic
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roughness) or the correlation length and the separation distance shows when a
simple phenomenological calculation of the roughness correction to the Casimir
force is possible and when a more fundamental theory is necessary. In the case of
stochastic roughness, the root-mean-square deviation of the surface from flatness
(i.e. the dispersion) plays the role of the amplitude. It is important to remember
that the role of roughness should be considered not in isolation, but in combi-
nation with the previously investigated corrections to the Casimir force between
real bodies due to the dielectric properties, nonzero skin depth, and nonzero
temperature.

In this chapter we consider all of the above-mentioned problems, emphasizing
those approaches that can be used for comparison between theory and the mea-
surement data presented in Part III of the book. Thus, the method of pairwise
summation (PWS) allows one to calculate roughness corrections for large-scale
roughness of both the regular and the stochastic type (van Bree et al. 1974). The
method of geometrical averaging is based on the proximity force approximation
(PFA). This was discussed in Section 6.5. Here, it is considered in connection
with the limits of its validity. The relationship between these two phenomeno-
logical methods is discussed with the help of the example of two nonparallel
plates which, in itself, is of interest for the understanding of experiments. The
more fundamental approaches suggested in the literature which are needed for
the description of short-scale roughness are also considered. At the end of the
chapter, we present various approaches to the theoretical description of both the
normal and the lateral Casimir force between sinusoidally corrugated surfaces.
This configuration has already been successfully used in the first experiment
on the measurement of the lateral Casimir force (Chen et al. 2002a, 2002b).
It presents interesting opportunities to study the application regions of various
methods and demonstrates the nontrivial geometry dependence of the Casimir
force. The influence of sinusoidal corrugations on atom-wall interactions is also
considered.

17.1 Method of pairwise summation for real bodies with rough

surfaces

Here, we apply the approximate phenomenological method of PWS formulated
in Section 6.4 to describe the roughness corrections to the Casimir force between
real material bodies. After the formulation of the method, a perturbation theory
in the relative roughness amplitude is developed for the configurations of two
parallel plates and a sphere above a plate. The results obtained are applied to
the case of large-scale roughness in accordance with the validity region of the
PWS method. A description of the role of stochastic roughness in the framework
of the PWS method is also provided.

17.1.1 Formulation of the method

The PWS method was formulated in Section 6.4 for perfectly shaped bodies

made of ideal materials (dielectrics with constant permittivities ε
(1)
0 and ε

(2)
0
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and the limiting case when ε
(i)
0 → ∞) It suggests that the additive interaction

energy of two bodies with volumes V1 and V2 can be obtained as an integral
of the interatomic potentials of the retarded Casimir-Polder interaction (16.12)
over the volumes of both bodies. This energy is expressed by eqn (6.45). After
division by the normalization factor (6.44) which takes approximate account of
the nonadditivity, the resulting interaction energy takes the form (6.46). In this
chapter we consider bodies with roughness, and both the total interaction energy
and the energy per unit area of the plates are denoted by an index “R”:

Etot
R (a) = −π�c

24
Ψ(ε

(1)
0 , ε

(2)
0 )

∫
V1

dr1

∫
V2

dr2 |r1 − r2|−7, (17.1)

where the function Ψ(ε
(1)
0 , ε

(2)
0 ) is defined in eqn (16.8). Recall that the PWS

method is formulated in such a way that in the particular case of two perfectly
shaped parallel semispaces, it leads to the exact result. Thus, for two perfectly
shaped semispaces, ∫

V1

dr1

∫
V2

dr2 |r1 − r2|−7 =
π

30a3
S, (17.2)

where S is the infinite area of the boundary plane of a semispace. Substituting
this into eqn (17.1), we return to the same energy per unit area E(a) = Etot

R (a)/S
as in eqn (16.8).

Now we consider two parallel plates of thickness D with sides of length 2L,
and with surface roughness described by regular functions. Let us first assume

that the plate materials are described by constant dielectric permittivities ε
(1)
0

and ε
(2)
0 . This assumption means that the separation distance between the plates

is sufficiently large. The choice of the coordinate system (see Fig. 17.1) permits
the description of the rough surfaces of the first and second plates by the equa-
tions

z
(s)
1 = A1f1(x, y), z

(s)
2 = a + A2f2(x, y), (17.3)

where a is the mean distance between the plates. The amplitudes A1 and A2 are
defined in such a way that max |fi(x, y)| = 1. The origin of the z-axis is chosen
such that

〈z(s)
1 〉 ≡ A1〈f1(x, y)〉 =

A1

(2L)2

∫ L

−L

dx

∫ L

−L

dyf(x, y) = 0,

〈z(s)
2 〉 ≡ a + A2〈f2(x, y)〉 = a. (17.4)

Corrections to the Casimir force between the plates due to the surface roughness
described by eqn (17.4) can be calculated perturbatively under the assumptions
Ai � a, a � D, and a � L. In addition, in all of the experimental situations
considered in Part III of the book, a/D, a/L � Ai/a. Because of this, the
perturbation theory used in the PWS approach for the description of the surface
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Fig. 17.1. Two parallel plates with rough surfaces.

roughness is based on a perturbative expansion in powers of Ai/a but is restricted
to the zeroth order in a/D and a/L.

The above method uses pairwise summation of the retarded Casimir-Polder
potentials (16.12). Because of this, the results obtained are approximately appli-
cable only at sufficiently large separations. Alternatively, one could use the same
additive method but with the nonretarded interatomic potential (16.7). In this
case the additive interaction energy between the two bodies V1 and V2 is given
by

Eadd
R,nr(a) = −AN1N2

∫
V1

dr1

∫
V2

dr2 |r1 − r2|−6, (17.5)

where N1 and N2 are the numbers of atoms per unit volume of the first and the
second body. The normalization constant, KE,nr, can be obtained in the same
way as in Section 6.4, devoted to the relativistic case. By applying eqn (17.5) to
two perfectly shaped plates (or semispaces) at short separations a, one obtains
the additive interaction energy Eadd

pp,nr(a) defined in eqn (16.6). At the same time,
the exact van der Waals interaction energy per unit area, E(a), in this case is
given by eqn (16.1). By dividing eqn (16.6) by eqn (16.1), the normalization
factor is found to be

KE,nr =
Eadd

pp,nr(a)

E(a)S
=

π2AN1N2

H
, (17.6)

where H is the Hamaker constant, defined in eqn (16.1). As a result, a normal-
ized interaction energy between the bodies V1 and V2 taking partial account of
nonadditivity is obtained from eqn (17.5):

Etot
R,nr(a) ≡

Eadd
R,nr(a)

KE,nr
= −H

π2

∫
V1

dr1

∫
V2

dr2 |r1 − r2|−6. (17.7)

For two perfectly shaped semispaces, this equation leads to the exact result
(16.1). It can be applied to plates with rough surfaces described by eqn (17.3)
by performing a perturbative expansion in the small parameters Ai/a.
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It should be kept in mind, however, that the application region of the van der
Waals interaction potential is rather narrow. In fact, eqn (17.5) is valid only at
separations r below a few nanometers. At larger separations, relativistic effects
come into play. This is the beginning of a wide transition region between the
nonrelativistic and pure relativistic regimes. At the end of this region (typically
at separations of a few hundred nanometers), the relativistic Casimir–Polder
potential (16.12) becomes fully applicable. If one takes into account the fact
that it is hard to decrease roughness amplitudes much below 1nm, it becomes
clear that the application region of the perturbation theory based on eqn (17.7)
is very narrow.

From the above, it may appear that the PWS method developed below for the
treatment of surface roughness is applicable only in the pure relativistic regime,
where the role of roughness is in fact very small. For the transition region of
separations from a few nanometers to a few hundred nanometers, where the
roughness corrections are really important from the experimental point of view,
this method seems to provide no more than an order-of-magnitude estimate
of the role of roughness. However, the application region of the PWS method
based on the Casimir-Polder potential (16.12) and the perturbative expansion
obtained below can be widened to shorter separations. For this purpose, one can
use a separation-dependent normalization factor, obtained as the ratio of the
additive interaction energy between two perfectly shaped semispaces (16.1) and
the exact Casimir energy per unit area (13.4) in this configuration calculated
using frequency-dependent permittivities. The latter energy can be represented
in the form

E(a) = − π2
�c

720a3
ηE(a), (17.8)

where, for two dissimilar plates, r2
TM,TE in eqn (13.4) is replaced with a product

r
(1)
TM,TEr

(2)
TM,TE. As a result, the correction factor ηE(a) is given by

ηE(a) = − 45

2π4

∫ ∞

0

y dy

∫ y

0

dζ
{
ln
[
1 − r

(1)
TM(iζ, y)r

(2)
TM(iζ, y)e−y

]
+ ln

[
1 − r

(1)
TE(iζ, y)r

(2)
TE(iζ, y)e−y

]}
> 0. (17.9)

The reflection coefficients entering eqn (17.9) can be found from eqn (12.91),
with ε = ε(1) for the first plate (or semispace) and ε = ε(2) for the second plate
(or semispace). Note that at sufficiently large a, when one can neglect the de-
pendence of the dielectric permittivity on frequency, ηE(a) becomes separation-

independent and coincides with the function Ψ(ε
(1)
0 , ε

(2)
0 ) defined in eqn (16.8).

Thus, the separation-dependent normalization factor is equal to

K̃E(a) =
Eadd

pp (a)

E(a)S
=

24BN1N2

π�cηE(a)
. (17.10)

After division of the additive energy between two rough bodies Eadd
R (a), obtained

from eqn (6.45), by this factor, the refined version of the PWS method results in
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Etot
R (a) =

Eadd
R (a)

K̃E(a)
= −π�c

24
ηE(a)

∫
V1

dr1

∫
V2

dr2 |r1 − r2|−7. (17.11)

As shown below, eqn (17.11) provides a basis for the multiplicative approach
to taking account of the corrections due to surface roughness and frequency-
dependent dielectric properties. The latter is important for metals, where the
corrections due to the nonzero skin depth depend on the separation (see Section
13.1). Because of this, we shall often discuss the multiplicative approach below
in relation to metals. In this case the multiplier ηE(a) incorporates corrections
due to the nonzero skin depth and the integral over V1 and V2 due to the sur-
face roughness. In Section 17.2, the multiplicative approach is compared with
another method for taking account of roughness and the skin depth based on ge-
ometrical averaging. Using eqn (17.2), it is evident that for two perfectly shaped
semispaces, eqn (17.11) leads to the exact result (13.4).

The PWS method in the version given by eqn (17.11) has some ambiguity
when applied to the Casimir pressure. On the one hand, the Casimir pressure
between two rough bodies can be obtained from eqn (17.11) as

P̃R(a) =
π�c

24S

∂

∂a

[
ηE(a)

∫
V1

dr1

∫
V2

dr2 |r1 − r2|−7

]
, (17.12)

where S is the surface area and both the function ηE and the integrals depend
on a. Using eqn (17.2), it can be seen that for perfectly shaped semispaces, eqn
(17.12) results in exactly the same pressure as eqn (17.8). On the other hand,
it is natural to define a nonnormalized additive pressure by the equation below,
which follows from eqn (6.45):

P add
R (a) =

BN1N2

S

∂

∂a

∫
V1

dr1

∫
V2

dr2 |r1 − r2|−7. (17.13)

The additive pressure between two perfectly shaped semispaces is obtained from
eqn (6.43):

P add(a) = −BN1N2π

10a4
. (17.14)

The corresponding exact Casimir pressure can be represented with the help of
eqn (13.9) as

P (a) = − π2
�c

240a4
ηP (a), (17.15)

ηP (a) =
15

2π4

∫ ∞

0

y2 dy

∫ y

0

dζ

{[
r
(1)
TM

−1
(iζ, y)r

(2)
TM

−1
(iζ, y)ey − 1

]−1

+
[
r
(1)
TE

−1
(iζ, y)r

(2)
TE

−1
(iζ, y)ey − 1

]−1
}

.

Following the same lines as above for the energy, we can define a separation-
dependent normalization factor for the pressure according to
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K̃P (a) =
P add(a)

P (a)
=

24BN1N2

π�cηP (a)
. (17.16)

Then the normalized Casimir pressure between two rough bodies is given by

PR(a) =
P add

R (a)

K̃P (a)
=

π�c

24S
ηP (a)

∂

∂a

∫
V1

dr1

∫
V2

dr2 |r1 − r2|−7. (17.17)

This equation also coincides exactly with the Lifshitz result (17.15) in the par-
ticular case of two perfectly shaped semispaces. Equation (17.17) is analogous to
eqn (17.11). It allows the roughness and skin depth corrections to the Casimir
pressure to be taken into account multiplicatively.

It can be easily seen that at sufficiently large separation distances, where
one can neglect the frequency dependence of the dielectric permittivity, eqns

(17.12) and (17.17) lead to a common result. In this case ηE(a) = Ψ(ε
(1)
0 , ε

(2)
0 )

and ηP (a) = ηP (i.e. the two quantities do not depend on the separation), and

ηP = Ψ(ε
(1)
0 , ε

(2)
0 ) also. However, at relatively short separations, eqns (17.12) and

(17.17) lead to slightly different results. The difference between the two results
can be estimated analytically for metals described by the plasma model using
the perturbative description of surface roughness (see Section 17.1.3).

All of the above approaches using the PWS method were developed for zero
temperature. This is justified because the surface roughness is the most im-
portant factor at relatively short separation distances, where the temperature
corrections are very small and can be disregarded.

17.1.2 Perturbation theory in the roughness amplitudes for two parallel plates

Now we perform the perturbative expansion of the integral (17.2) containing the
Casimir–Polder interatomic potential over the volumes of the rough plates shown
in Fig. 17.1 (Bordag et al. 1994, 1995a). The same expansion can be used in both
eqn (17.1) and eqn (17.11), which present the two versions of the PWS method,
and also in eqns (17.17) and (17.12) for the Casimir pressure. We start with the
nonnormalized energy of an atom at a point (x2, y2, z2) belonging to the upper
plate. This energy is obtained by the additive summation of the Casimir–Polder
potentials (16.12) over the volume of the lower plate

Eadd
A (x2, y2, z2) = −BN1

∫ L

−L

dx1

∫ L

−L

dy1

∫ A1f1(x1,y1)

−D

dz1 (17.18)

×
[
(x2 − x1)

2 + (y2 − y1)
2 + (z2 − z1)

2
]−7/2

.

We expand this expression in powers of the parameter A1/z2, which is small
owing to the inequalities A1 � a ≤ z2. In doing these calculations, we neglect
the corrections of order z2/L and z2/D, as explained in Section 17.1.1. The result
of the expansion up to the fourth order can be presented in the form

Eadd
A (x2, y2, z2) = −BN1

{
π

10z4
2

+

∫ L

−L

dx1

∫ L

−L

dy1

[
z2f1(x1, y1)

X7/2

A1

z2



Method of pairwise summation for real bodies with rough surfaces 467

+
7z3

2f
2
1 (x1, y1)

2X9/2

(
A1

z2

)2

+
7z3

2

6X9/2

(
9z2

2

X
− 1

)
f3
1 (x1, y1)

(
A1

z2

)3

+
21z5

2

8X11/2

(
11z2

2

X
− 3

)
f4
1 (x1, y1)

(
A1

z2

)4
]}

, (17.19)

where X = (x1 − x2)
2 + (y1 − y2)

2 + z2
2 . Note that we have performed the

limit L → ∞ in the first term on the right-hand side of eqn (17.19), which
describes the contribution from a perfectly flat plate surface with no roughness
[a similar perturbative expansion can be performed starting from the van der
Waals potential (16.7) (Bordag et al. 1995b)].

The interaction energy between the rough plates can be obtained by the
integration of eqn (17.19) over the volume V2 of the upper plate, including the
shape of its boundary surface:

Eadd
R (a) = N2

∫ L

−L

dx2

∫ L

−L

dy2

∫ a+D

a+A2f2(x2,y2)

dz2 EA(x2, y2, z2). (17.20)

The nonnormalized Casimir pressure between the plates is given by

P add
R (a) = − 1

(2L)2
∂Eadd

R (a)

∂a
. (17.21)

Substituting eqn (17.20) into eqn (17.21), we obtain

P add
R (a) =

N2

(2L)2

∫ L

−L

dx2

∫ L

−L

dy2 EA[x2, y2, a + A2f2(x2, y2)]. (17.22)

Here we have omitted the contribution of the upper integration limit in eqn
(17.20) using the condition a � D.

Using eqn (17.19), the quantity EA in eqn (17.22) can be presented as an
expansion up to the fourth order in the small parameter A2/a. After the substi-
tution of this expansion into eqn (17.22), the Casimir pressure takes the form

P add
R (a) = P add(a)

4∑
k=0

4−k∑
l=0

ckl

(
A1

a

)k (
A2

a

)l

, (17.23)

where P add(a) is the pressure (17.14) between two semispaces with flat surfaces
obtained by the additive summation of the interatomic potentials. In the zeroth-
order expansion (i.e. for k = l = 0), P add

R (a) = P add
pp (a). It follows from this that

c00 = 1. From our choice (17.4), we also obtain c01 = c10 = 0. The coefficients
whose first index is zero are the simplest ones:

c02 = 10〈f2
2 〉, c03 = −20〈f3

2 〉, c04 = 35〈f4
2 〉. (17.24)

The remaining coefficients in eqn (17.23) are

c20 =
35

π
a7〈〈f2

1 Y −9〉〉, c30 =
35

π
a7〈〈f3

1 ϕ1(Y )〉〉, (17.25)



468 The Casimir force between rough surfaces and corrugated surfaces

c40 =
105

4π
a9〈〈f4

1 ϕ2(Y )〉〉, c11 = −70

π
a7〈〈f1f2Y

−9〉〉,

c12 =
35

π
a7〈〈f1f

2
2 ϕ1(Y )〉〉, c21 = −35

π
a7〈〈f2

1 f2ϕ1(Y )〉〉,

c13 = −105

π
a9〈〈f1f

3
2 ϕ2(Y )〉〉, c31 = −105

π
a9〈〈f3

1 f2ϕ2(Y )〉〉,

c22 =
315

π
a9〈〈f2

1 f2
2 ϕ2(Y )〉〉.

Here, the following notation has been used:

Y =
[
(x1 − x2)

2 + (y1 − y2)
2 + a2

]1/2
, (17.26)

ϕ1(Y ) = 9a2Y −11 − Y −9, ϕ2(Y ) = 11a2Y −13 − 3Y −11,

and the averaging procedure for a function of four variables

〈〈Φ(x1, y1; x2, y2)〉〉 =
1

(2L)2

∫ L

−L

dx2

∫ L

−L

dy2

∫ L

−L

dx1

∫ L

−L

dy1Φ(x1, y1; x2, y2).

(17.27)
For brevity, we have used f1 ≡ f1(x1, y1), f2 ≡ f2(x2, y2).

The calculation of the expansion coefficients (17.25) is rather cumbersome.
The simplest ones are cl0, which depend only on one roughness function. Inte-
grating over x2 and y2 according to eqn (17.27) with L = ∞, we obtain the
results which are valid in the zeroth order of the small parameter a/L,

c20 = 10〈f2
1 〉, c30 = −20〈f3

1 〉, c40 = 35〈f4
1 〉. (17.28)

These results are in agreement with eqn (17.24) and can also be obtained from
symmetry considerations. For the calculation of the mixed coefficients depending
on both roughness functions f1 and f2, these functions and their powers, f i

1 and
fk
2 , should be considered as periodic functions with a period 2L in both coor-

dinates. The Fourier coefficients can be denoted as [g
(i)
00 , g

(i)
l,mn] and [h

(k)
00 , h

(k)
l,mn]

(l = 1, 2, 3, 4; m, n = 0, 1, 2, . . .) for the functions f i
1 and fk

2 , respectively.
Then the mixed expansion coefficients cik take the following form [details were
presented by Bordag et al. (1995a), although several misprints in the original
publication have been corrected here]:

c11 = −4

3

√
2

π

∞∑
m,n=0

G(1,1)
mn z7/2

nmK7/2(zmn), (17.29)

c12 =
2

3

√
2

π

∞∑
m,n=0

G(1,2)
mn z7/2

nm

[
zmnK9/2(zmn) − K7/2(zmn)

]
,

c13 = −1

6

√
2

π

∞∑
m,n=0

G(1,3)
mn z9/2

nm

[
zmnK11/2(zmn) − K9/2(zmn)

]
,
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c22 = 210g
(2)
00 h

(2)
00 +

1

4

√
2

π

∞∑
m,n=0

G(2,2)
mn z9/2

nm

[
zmnK11/2(zmn) − K9/2(zmn)

]
,

where

G(i,k)
mn =

1

4
(1 + δm0 + δn0)

4∑
l=1

g
(i)
l.mnh

(k)
l,mn, zmn =

πa

L

√
m2 + n2, (17.30)

and Kν(z) are the Bessel functions of imaginary argument. Note that c21 is

obtained from c12 in eqn (17.29) by the replacement of G
(1,2)
mn with −G

(2,1)
mn . The

coefficient c31 is obtained from c13 by the replacement of G
(1,3)
mn with G

(3,1)
mn .

As mentioned above, the approximate approach based on the PWS is applica-
ble to the case of large-scale roughness with a characteristic uniaxial length scale
Λ � a. Under the stronger condition Λ � 2πa, the expressions (17.29) for the
expansion coefficients can be simplified considerably. For this purpose, we first
perform an identical transformation of eqn (17.29) using the explicit expressions
for the Bessel functions of imaginary argument and obtain (Bordag et al. 1995a)

c11 = −20

∞∑
m,n=0

G(1,1)
mn e−znm

(
1 + zmn +

2

5
z2

mn +
1

15
z3

mn

)
,

c12 = 60

∞∑
m,n=0

G(1,2)
mn e−znm

(
1 + zmn +

13

30
z2

mn +
1

10
z3

mn +
1

90
z4

mn

)
,

c13 = −140
∞∑

m,n=0

G(1,3)
mn e−znm [1 + zmnΠ(zmn)] , (17.31)

c22 = 210

{
g
(2)
00 h

(2)
00 +

∞∑
m,n=0

G(2,2)
mn e−znm [1 + zmnΠ(zmn)]

}
,

where

Π(z) = 1 +
25

56
z +

19

168
z2 +

1

168
z3 +

1

840
z4. (17.32)

For roughness characterized by a lateral scale Λ (such as the period or correlation
length), the main contribution to ckl is given by the Fourier coefficients of the
roughness functions f1,2 and of their powers with m, n ∼ 2L/Λ. For the harmon-

ics with much larger values of m and n, the respective quantities G
(i,k)
mn decrease

rapidly. From the definition (17.30), we obtain the result that zmn ∼ 2πa/Λ.
Under the condition 2πa/Λ � 1, we can put zmn = 0 in eqn (17.31) without loss
of accuracy, and arrive at

c11 = −20

∞∑
m,n=0

G(1,1)
mn , c12 = 60

∞∑
m,n=0

G(1,2)
mn , (17.33)
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c13 = −140

∞∑
m,n=0

G(1,3)
mn , c22 = 210

[
g
(2)
00 h

(2)
00 +

∞∑
m,n=0

G(2,2)
mn

]
.

Taking into account eqn (17.30) for G
(i,k)
mn and elementary properties of Fourier

expansions, we can rewrite eqn (17.33) in the form

c11 = −20〈f1f2〉, c12 = 60〈f1f
2
2 〉, c13 = −140〈f1f

3
2 〉, (17.34)

c22 = 210〈f2
1f2

2 〉, c21 = −60〈f2
1f2〉, c31 = −140〈f3

1f2〉.

Here and below, f1 = f1(x, y) and f2 = f2(x, y), i.e. both functions are already
expressed in terms of the same coordinates.

Substituting eqns (17.24), (17.28), and (17.34) into eqn (17.23), we obtain
the perturbative expansion for the Casimir pressure

P add
R (a) = P add(a)κP (a), (17.35)

where

κP (a) = 1 + 10

[
〈f2

1 〉
A2

1

a2
− 2〈f1f2〉

A1A2

a2
+ 〈f2

2 〉
A2

2

a2

]
(17.36)

+ 20

[
〈f3

1 〉
A3

1

a3
− 3〈f2

1 f2〉
A2

1A2

a3
+ 3〈f1f

2
2 〉

A1A
2
2

a3
− 〈f3

2 〉
A3

2

a3

]

+ 35

[
〈f4

1 〉
A4

1

a4
− 4〈f3

1 f2〉
A3

1A2

a4
+ 6〈f2

1 f2
2 〉

A2
1A

2
2

a4
− 4〈f1f

3
2 〉

A1A
3
2

a4
+ 〈f4

2 〉
A4

2

a4

]
.

We emphasize that eqns (17.35) and (17.36) are obtained under the condition
2πa/Λ � 1. However, the PWS method is applicable in a wider range of sep-
arations. Thus, if the condition 2πa/Λ � 1 is violated, one should use not
eqn (17.35) but eqn (17.23) with the coefficients (17.31) (see Section 17.2.2).
The mixed terms in eqn (17.36) which contain both f1 and f2 are evidence of
interference-like behavior. For example, for f2 = ∓f1, eqns (17.35) and (17.36)
result in

P add
R = P add

[
1 + 10〈f2

1 〉
(A1 ± A2)

2

a2
+ 20〈f3

1 〉
(A1 ± A2)

3

a3
+ 35〈f4

1 〉
(A1 ± A2)

4

a4

]
.

(17.37)
From eqns (17.35) and (17.36), we easily obtain the respective Casimir energy

for two rough plates of area S = (2L)2,

Eadd
R (a) = −(2L)2

∫ a

−∞
P add

R (z) dz = Eadd
pp (a)κE(a), (17.38)

where

κE(a) = 1 + 6

[
〈f2

1 〉
A2

1

a2
− 2〈f1f2〉

A1A2

a2
+ 〈f2

2 〉
A2

2

a2

]
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+ 10

[
〈f3

1 〉
A3

1

a3
− 3〈f2

1f2〉
A2

1A2

a3
+ 3〈f1f

2
2 〉

A1A
2
2

a3
− 〈f3

2 〉
A3

2

a3

]
(17.39)

+ 15

[
〈f4

1 〉
A4

1

a4
− 4〈f3

1f2〉
A3

1A2

a4
+ 6〈f2

1 f2
2 〉

A2
1A

2
2

a4
− 4〈f1f

3
2 〉

A1A
3
2

a4
+ 〈f4

2 〉
A4

2

a4

]
,

and where Eadd
pp (a) is the Casimir energy (6.43) obtained by additive summation

for the configuration of two perfectly shaped semispaces.
Both the Casimir pressure (17.35) and the energy (17.38) can be normalized,

as discussed in Section 17.1.1, in order to take approximate account of the effects
of nonadditivity. Thus, for the Casimir energy per unit area ER(a) = Etot

R (a)/S,
we divide both sides of eqn (17.38) by the normalization factor (17.10) and obtain

ER(a) =
Eadd

R (a)

SK̃E(a)
= − π2

�c

720a3
ηE(a)κE(a), (17.40)

where ηE(a) and κE(a) are defined in eqns (17.9) and (17.39), respectively. In
this equation, the factor ηE(a) takes into account the corrections to the ideal-
metal Casimir energy due to the nonzero skin depth. The factor κE(a) takes into
account the corrections due to surface roughness.

To normalize the Casimir pressure, we divide both sides of eqn (17.35) by
the factor (17.16). The result is

PR(a) =
P add

R (a)

K̃P (a)
= − π2

�c

240a4
ηP (a)κP (a), (17.41)

where ηP (a) is defined in eqn (17.15) and κP (a) in eqn (17.36). Similarly to
the energy, eqn (17.41) represents the pressure as an ideal-metal result with two
correction factors, one due to the nonzero skin depth and the other due to surface
roughness.

An alternative procedure for obtaining the Casimir pressure using PWS is
given by eqn (17.12). Calculating the negative derivative of both sides of eqn
(17.40) with respect to a, we arrive at

P̃R(a) =
π2

�c

720

∂

∂a

[
1

a3
ηE(a)κE(a)

]
. (17.42)

As can be seen in eqn (17.42), the pressure P̃R(a) is not represented as a product
of two correction factors. However, numerically, P̃R(a) ≈ PR(a) for a wide range
of parameters (see the next subsection), and for practical purposes it is more
convenient to use PR(a) as defined in eqn (17.41).

17.1.3 Applications to large-scale roughness

The perturbative equations (17.40) and (17.41) obtained in the previous subsec-
tion can be applied to various kinds of large-scale roughness. The most typical
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Fig. 17.2. (a) An example of surface roughness periodic in the x and y direc-
tions. (b) Side view of two finite-size cylinders where the top surface of the
lower cylinder, of height H , is of paraboloidal shape.

example is roughness with a sinusoidal profile under the condition that the sep-
aration distance and the roughness period satisfy the condition 2πa � Λ. For
sinusoidal roughness, we also assume that the roughness period is much less than
the plate size 2L. In this case one can replace the integration from −L to L over
the plate in all quantities of the form 〈fk

1 f l
2〉 with an integration over the period

of the function. The case of nonperiodic functions f1,2 will also be considered,
and various definitions of the Casimir pressure in eqns (17.41) and (17.42) will
be compared.

Let the surfaces of the plates be covered by roughness with a sinusoidal
profile, such that functions f1,2 in eqn (17.3) are given by (Klimchitskaya and
Shabaeva 1996)

f1(x, y) = sin αx sin βy, f2(x, y) = sin(αx + φ1) sin(βy + φ2). (17.43)

These functions describe roughness with two different periods Λx = 2π/α and
Λy = 2π/β in the x and y directions, respectively. A typical example is shown in
Fig. 17.2(a). The Casimir pressure can be calculated using eqn (17.41), applicable
under the conditions 2πa � Λx, Λy. Using the functions (17.43) and performing
the integration from 0 to Λx with respect to x and from 0 to Λy with respect to
y, we obtain the following average values:

〈f2
1 〉 = 〈f2

2 〉 =
1

4
, 〈f1f2〉 =

1

4
cosφ1 cosφ2, 〈f3

i 〉 = 〈fif
2
j 〉 = 0,

〈f4
1 〉 = 〈f4

2 〉 =
9

64
, 〈f2

1 f2
2 〉 =

1

64
(2 + cosφ1)(2 + cosφ2),

〈f1f
3
2 〉 = 〈f3

1 f2〉 =
3

64
cosφ1 cosφ2. (17.44)

Now we substitute eqn (17.44) into eqns (17.35) and (17.36). The result is
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PR(a) = − π2
�c

240a4
ηP (a)

{
1 +

5

2

(
A2

1 + A2
2

a2
− 2 cosφ1 cosφ2

A1A2

a2

)

+
315

64

[
A4

1 + A4
2

a4
− 4

3
cosφ1 cosφ2

A3
1A2 + A1A

3
2

a4
(17.45)

+
2

3
(2 + cosφ1)(2 + cosφ2)

A2
1A

2
2

a4

]}
.

For equal roughness amplitudes A1 = A2 = A, eqn (17.45) simplifies to

PR(a) = − π2
�c

240a4
ηP (a)

[
1 + 5(1 − cosφ1 cosφ2)

A2

a2
(17.46)

+
105

32
(7 − 3 cosφ1 cosφ2 + 2 cosφ1 + 2 cosφ2)

A4

a4

]
.

All of the terms in eqns (17.45) and (17.46) containing cosφi are of interferen-
ce-like character. If cosφ1 = 0 or, alternatively, cosφ2 = 0, the interference is
absent in the second perturbation order. Note that eqns (17.45) and (17.46) were
obtained for roughness functions whose periods along each of the coordinates x
and y on both plates are equal, i.e. Λx,1 = Λx,2 and Λy,1 = Λy,2. If these
periods were different along at least one coordinate axis, i.e. Λx,1 �= Λx,2, all
interference terms in eqns (17.45) and (17.46) would disappear. The presence
of interference terms when the roughness functions have equal periods along
the respective coordinate axes leads to the interesting phenomenon of the lateral
Casimir force (Golestanian and Kardar 1997, 1998). To define the lateral force in
a configuration of two plates with the roughness profiles (17.43), we first obtain
the Casimir energy per unit area using eqns (17.40), (17.39), and (17.44):

ER(a) = − π2
�c

720a3
ηE(a)

{
1 +

3

2

(
A2

1 + A2
2

a2
− 2 cosφ1 cosφ2

A1A2

a2

)

+
135

64

[
A4

1 + A4
2

a4
− 4

3
cosφ1 cosφ2

A3
1A2 + A1A

3
2

a4
(17.47)

+
2

3
(2 + cosφ1)(2 + cosφ2)

A2
1A

2
2

a4

]}
.

Let the phase shift φ2 be fixed and let the Casimir energy ER(a) be considered
as a function of φ1 ≡ 2πx0/Λx. Then, from eqn (17.47), we derive the following
expression for the lateral Casimir force:

F lat
R (a) = −∂ER(a)S

∂x0
=

π3
�cS

120a3Λx
ηE(a) sin φ1

A1A2

a2
(17.48)

×
{

cosφ2 +
15

32

[
2 cosφ2

A2
1 + A2

2

a2
− (2 + cosφ2)

A1A2

a2

]}
.

The lateral force is discussed in more detail in Section 17.5, devoted to the case
of plates with uniaxial sinusoidal corrugations.
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Now we consider the case of deviations of the plate surfaces from flatness with
the same scale as the plate size. As a first example, let both plates be cylinders of
some finite height, with the top surface of the lower cylinder being of paraboloidal
shape [see Fig. 17.2(b)]. It is assumed that the height of the paraboloid is small,
i.e. H � a. In this case the deviation amplitudes are A1 = H/2 and A2 = 0, and
the functions describing the deviation from flatness in the cylindrical coordinates
take the form

f1(ρ, ϕ) = 1 − 2ρ2

L2
, f2(ρ, ϕ) = 0. (17.49)

Note that in cylindrical coordinates, the averaging defined in eqn (17.4) is un-
derstood as

〈f(ρ, ϕ)〉 =
1

πL2

∫ 2π

0

dϕ

∫ L

0

ρ dρ f(ρ, ϕ). (17.50)

Using the functions (17.49), the following average values can easily be calculated:

〈f2
1 〉 =

1

3
, 〈f3

1 〉 = 0, 〈f4
1 〉 =

1

5
, (17.51)

and all of the average values containing the function f2 are equal to zero. Sub-
stituting eqn (17.51) into eqn (17.41), we obtain the Casimir pressure in the
configuration of Fig. 17.2(b) (Bordag et al. 1995a),

PR(a) = − π2
�c

240a4
ηP (a)

[
1 +

5

6

(
H

a

)2

+
7

16

(
H

a

)4
]

. (17.52)

This result is in agreement with the corresponding result in Chapter 6 obtained
by additive summation for a paraboloid of any height H . To see this, we can
consider the limiting case of eqn (6.84) under the condition H � a and take
into account the fact that the separation distance in eqn (6.84) is defined as
a−H/2, where a is defined as in eqn (17.52). The same Casimir pressure (17.52)
is obtained if the convex paraboloid shown in Fig. 17.2(b) is replaced with a
concave one described by the equation

f1(ρ, ϕ) = −1 +
2ρ2

L2
. (17.53)

If we consider the configurations with two convex or two concave paraboloidal
surfaces for both plates with equal amplitudes A1 = A2 = H/2, the nonzero
average values of the functions f1,2 and their products and powers are

〈f2
1 〉 = 〈f2

2 〉 = −〈f1f2〉 =
1

3
, (17.54)

〈f4
1 〉 = 〈f4

2 〉 = 〈f2
1 f2

2 〉 = −〈f3
1f2〉 = −〈f1f

3
2 〉 =

1

5
.

Substituting these expressions into eqns (17.41) and (17.36), we obtain
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Fig. 17.3. Two parallel plates with a step of height H on their boundary sur-
faces. (a) The separations between the two halves of the plates are different.
(b) The separations between the two halves of the plates are the same.

PR(a) = − π2
�c

240a4
ηP (a)

[
1 +

10

3

(
H

a

)2

+ 7

(
H

a

)4
]

. (17.55)

Note that in contrast to eqn (17.52), this Casimir pressure contains contributions
from interference-like mixed terms.

Another example of a deviation from flatness is shown in Fig. 17.3(a), where
the surfaces of both plates contain a step of height H � a and width L. Here,
the amplitudes of the functions describing the two surfaces are equal, i.e. A1 =
A2 = H/2, and the functions themselves are given by

f1(x, y) =

{
1, −L ≤ x < 0,

−1, 0 ≤ x ≤ L,
f2(x, y) = −f1(x, y). (17.56)

Using eqn (17.37) with the first condition, we arrive at

PR(a) = − π2
�c

240a4
ηP (a)

[
1 + 10

(
H

a

)2

+ 35

(
H

a

)4
]

. (17.57)

For small H/a, this result coincides with half the sum of the exact Casimir pres-
sures between two pairs of plates at separation distances a1,2 = a ± H . For the
similar configuration of two plates with steps on their surfaces shown in Fig.
17.3(b), we have f1 = f2. Using eqn (17.37) with the second condition, all cor-
rections due to the presence of the steps vanish. As a result, the Casimir pressure
coincides with that for two parallel plates with flat surfaces at a separation a.

In the above calculations, we have used the multiplicative expression (17.41)
for the Casimir pressure PR(a) obtained within the PWS method. It is interesting
to compare the results obtained with those found from the alternative expression
for the Casimir pressure (17.42). To compare the two sets of results analytically,
we shall consider metallic plates and describe the metal by means of the plasma
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model (13.1). In this case the functions ηE(a) and ηP (a) in eqns (17.40)–(17.42)
can be represented in the following form:

ηE(a) =

4∑
i=0

di

ai
, ηP (a) =

4∑
i=0

3 + i

3

di

ai
, (17.58)

where the coefficients di are defined in eqn (13.8); for example, d0 = 1, d1 = −4δ0,
d2 = 72δ2

0/5, etc. where δ0 is the skin depth. In a similar way, the functions κE(a)
and κP (a) entering eqns (17.40)–(17.42) can be represented as

κE(a) =
4∑

k=0

hk

ak
, κP (a) =

4∑
k=0

3 + k

3

hk

ak
, (17.59)

where the coefficients hk are defined in eqn (17.39).
Now we are in a position to estimate the difference between the Casimir

pressures (17.41) and (17.42). For this purpose we substitute eqns (17.58) and
(17.59) into eqns (17.41) and (17.42), and arrive at

P̃R(a) − PR(a) =
π2

�c

2160a4

4∑
i=1

4−i∑
k=1

ik
dihk

ai+k
. (17.60)

Taking into accountthe fact that, in accordance with eqn (17.39), h1 = 0, we
obtain

P̃R(a) − PR(a) =
π2

�c

2160a4

(
2
d1h2

a3
+ 3

d1h3

a4
+ 4

d2h2

a4

)
, (17.61)

i.e. the difference under consideration is a quantity of the third order in the small
parameters (of the first order in the relative skin depth and of the second order in
the relative roughness amplitude). We note also that h2, d2 > 0, whereas d1 < 0.
This leads to a partial compensation of the terms contributing to eqn (17.61).
As an example, we can estimate the relative contribution from the difference
of pressures (17.61) to the Casimir pressure. For this purpose, we consider the
case of sinusoidal roughness on gold plates described by eqn (17.43) with equal
roughness amplitudes A1 = A2 = 20 nm and φ1 = φ2 = π/2. The Casimir
pressure calculated using the multiplicative equation (17.41) is presented in eqn
(17.46), where we put cosφ1 = cosφ2 = 0. At a separation distance a = 200 nm,
the relative difference of the pressures [P̃R(a) − PR(a)]/|PR(a)| is only 0.01%.
At the same time, the relative contribution from the term of order (A/a)4 to
the Casimir pressure at a = 200 nm is about 22%. From this we can conclude
that it may be meaningful to calculate the Casimir pressure taking account
of the roughness correction up to the fourth order in A/a in the framework
of the multiplicative approach. Further discussion of the various approaches to
surface roughness is contained in Sections 17.2–17.4. In Part III of the book,
these approaches are used for comparison between experiment and theory.
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17.1.4 Perturbation theory for a sphere above a plate

The configuration of a sphere (or a spherical lens) of large radius of curvature
R, in comparison with the separation distance to a plate, is very important for
experiments on measuring the Casimir force. Because of this, we consider here
the perturbative description of the roughness corrections to the Casimir force
in this configuration. In fact, only a relatively thin spherical section of height h
and diameter 2r contributes to the Casimir force. The parameters of the plate
(thickness D and length 2L) are the same as those shown in Fig. 17.1. Note that
h ∼ D so that a/h � Ai/a.

The roughness of the plate is described by the function z
(s)
1 given in eqn (17.3).

The rough surface of the spherical lens can be described in polar coordinates ρ
and ϕ:

z
(s)
2 = a + R −

√
R2 − ρ2 + A2f2(ρ, ϕ). (17.62)

The perturbative calculation of the Casimir force acting between the rough
surfaces of the sphere and plate is performed in the same way as for two plates
in Section 17.1.2. The unnormalized energy of one atom of the sphere located at
a point (ρ, ϕ, z2) is given by

Eadd
A (ρ, ϕ, z2) = −BN1

∫ L

−L

dx1

∫ L

−L

dy1

∫ z
(s)
1 (x1,y1)

−D

dz1 (17.63)

×
[
(x1 − ρ cosϕ)2 + (y1 − ρ sinϕ)2 + (z1 − z2)

2
]−7/2

.

This function can be expanded in powers of A1/z2 according to eqn (17.19),
where (x2, y2, z2) is now replaced with (ρ, ϕ, z2) and

X = (x1 − ρ cosϕ)2 + (y1 − ρ sin ϕ)2 + z2
2 . (17.64)

The additive interaction energy between the sphere and the plate takes the form

Eadd
R (a) = N2

∫ 2π

0

dϕ

∫ r

0

ρ dρ

∫ h+a

z
(s)
2 (ρ,ϕ)

dz2 Eadd
A (ρ, ϕ, z2). (17.65)

Calculating the negative derivative of both sides of this equation, we obtain the
unnormalized Casimir force acting between the sphere and the plate,

F add
R (a) = −N2

∫ 2π

0

dϕ

∫ r

0

ρ dρ Eadd
A [ρ, ϕ, z

(s)
2 (ρ, ϕ)], (17.66)

where the function z
(s)
2 is defined in eqn (17.62).

Below, we restrict ourselves to second-order perturbation theory in each
roughness amplitude. Then we keep only the first three terms on the right-hand
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side of eqn (17.19). Expanding the Eadd
A (ρ, ϕ, z2) obtained up to the second power

in the small parameter A2/a, we get

F add
R (a) = F add

sp (a)

2∑
k=0

2−k∑
l=0

Ckl

(
A1

a

)k (
A2

a

)l

. (17.67)

Here, F add
sp (a) is the Casimir force between a perfectly shaped sphere and a

plate (or semispace) calculated by integration of the interatomic Casimir–Polder
potential (16.12). It is given in eqn (6.50), obtained under the condition a � R.
From the definition of the functions describing the roughness, we have C00 = 1.
The other coefficients in eqn (17.67) can be found in a manner analogous to those
for rough plates. The results are (Klimchitskaya and Pavlov 1996)

C01 = − 6

πRa

∫ 2π

0

dϕ

∫ ∞

0

ρ dρ f2(ρ, ϕ)

(
1 +

ρ2

2aR

)−5

, (17.68)

C02 =
15

πRa

∫ 2π

0

dϕ

∫ ∞

0

ρ dρ f2
2 (ρ, ϕ)

(
1 +

ρ2

2aR

)−6

,

C10 =
15a4

π2R
〈〈f1Y

−7〉〉, C20 =
105a5

4π2R2
〈〈(2aR + ρ2)f2

1 Y −9〉〉,

C20 = − 105a5

4π2R2
〈〈(2aR + ρ2)f1f2Y

−9〉〉.

In these expressions, we have used the notation

Y =

[
(x1 − ρ cosϕ)2 + (y1 − ρ sin ϕ)2 +

(
a +

ρ2

2R

)2
]1/2

(17.69)

and the following averaging procedure for functions depending on four variables:

〈〈Φ(ρ, ϕ; x1, y1)〉〉 =

∫ 2π

0

dϕ

∫ ∞

0

ρ dρ

∫ ∞

−∞
dx1

∫ ∞

−∞
dy1Φ(ρ, ϕ; x1, y1). (17.70)

For the sake of brevity, it has also been assumed that f1 = f1(x1, y1), f2 =
f2(ρ, ϕ).

The calculation of the expansion coefficients (17.68) can be performed by
considering the function f1 = f1(x1, y1) as a periodic one with a period 2L in
both variables. The function f2(ρ, ϕ) is considered as a periodic function of ρ
with a period r. By applying the properties of the respective Fourier expansions
to large-scale roughness on the plate and the sphere with periods much larger
than the separation distance but much smaller than

√
aR, we can express Ckl

in terms of the average quantities 〈fk
1 f l

2〉, where f1 = f1(ρ cosϕ, ρ sinϕ) and
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f2 = f2(ρ, ϕ) (Klimchitskaya and Pavlov 1996). Then the Casimir force can be
represented in the form (up to fourth-order perturbation theory)

F add
R (a) = F add

sp (a)κE(a), (17.71)

where the factor κE(a) coincides with that defined in eqn (17.39). Thus, direct
application of perturbation theory to calculating the force in the configuration
of a sphere above a plate, under certain conditions, leads to the same correction
factor as for the energy in the configuration of two parallel plates.

Equation (17.71) can be normalized in order to take approximate account of
the effects of nonadditivity, similarly to what was done in Section 17.1.2. For
the configuration of a perfectly shaped sphere and a semispace, a very accurate
expression for the force can be obtained using the PFA and eqn (17.8),

F (a) = 2πRE(a) = −π3
�cR

360a3
ηE(a). (17.72)

Note that here the PFA has been used to establish the connection between the
case of a perfectly smooth large sphere near a plate and the case of two plates
but not for the description of surface roughness. The normalization factor for the
force acting between a sphere and a plate can then be defined from eqns (6.50)
and (17.72) as

K̃F (a) =
F add

sp (a)

F (a)
=

24BN1N2

π�cηE(a)
= K̃E(a). (17.73)

It can be seen that this factor coincides with the factor (17.10) for the energy
in the configuration of two parallel plates. By normalizing the force (17.71) with
the help of the factor (17.73), we obtain

FR(a) =
F add

R (a)

K̃F (a)
= −π3

�cR

360a3
ηE(a)κE(a). (17.74)

In similarity to eqn (17.41), the correction factor κE(a) takes into account cor-
rections due to surface roughness and the correction factor ηE(a) due to the
nonzero skin depth. In Sections 17.2, 17.3, and 17.5 the PWS method will be
applied in several configurations and compared with the PFA and exact results
where they are available.

Although eqn (17.74) was obtained for large-scale roughness, the respective
periods were assumed to be much less than

√
aR. Now we consider deviations

from a planar and a spherical shape described by the functions

f1(x, y) = cos

(
2πx

Λx
+ φ1

)
, f2(ρ, ϕ) = cos

(
2πρ

Λρ
+ φ2

)
, (17.75)

i.e. uniaxial corrugations on the plate and concentric corrugations on the sphere,
respectively. Here, it is assumed that the periods are of the order of the size of
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the plate and the spherical lens: Λx ∼ L, Λρ ∼ r. In this case eqn (17.74) with
κE(a) defined in eqn (17.39) is not applicable. Instead, direct calculation using
eqn (17.68) results in (Klimchitskaya and Pavlov 1996)

FR(a) = −π3
�cR

360a3
ηE(a)

[
1 + 3 cosφ1

A1

a
− 3 cosφ2

A2

a

+3

(
A1

a

)2

+ 3

(
A2

a

)2

− 12 cosφ1
A1A2

a2

]
. (17.76)

The important difference between this expression and the cases considered above
is the presence of first-order terms in the relative distortion amplitudes. The
leading terms of the first order, which can arise when large-scale deviations
from perfect geometry are present, depend on the phase shifts and change their
magnitude and sign depending on the position of the sphere.

17.1.5 Stochastic roughness with large correlation length

In the preceding subsections, the roughness of the plate surfaces was described
by regular functions f1 and f2. However, the roughness of real material surfaces
is often extremely irregular and can be better modeled by stochastic functions.
We consider once more the configuration shown in Fig. 17.1, where the surface
roughness is now considered as stochastic. The surfaces of the plates are described
by

z
(s)
1 = δ1f1(x, y), z

(s)
2 = a + δ2f2(x, y), (17.77)

where the two stochastic functions {δifi(x, y)}, i = 1, 2, have variances δi and
zero mean values 〈δifi(x, y)〉i = 0. The symbol 〈 〉i denotes an average over the
ensemble of all particular realizations δifi(x, y) of the corresponding stochastic
function. In the framework of PWS, the energy of an atom belonging to the upper
plate can be represented by eqn (17.18), where the amplitude A1 in the upper
integration limit is replaced with the variance δ1. The perturbative expansion of
this energy in eqn (17.19) also preserves its validity with this replacement.

In our further discussion, we assume a normal distribution at each point of
the surface and that the correlation lengths of the stochastic functions under
consideration are sufficiently large in comparison with the separation distance
between the plates. In this situation, any correlation of the roughness at two
different points of the surface may occur for sufficiently remote points only, and
the following mean values are obtained:

〈fi〉i = 〈f3
i 〉i = 0, 〈f2

i 〉i = 1, 〈f4
i 〉i = 3. (17.78)

By averaging eqn (17.19) over the realizations δ1f1(x, y) of the stochastic function
{δ1f1(x, y)} with the use of eqn (17.78), we arrive at

〈Eadd
A (x2, y2, z2)〉1 = −BN1

{
π

10z4
2

(17.79)
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+

∫ L

−L

dx1

∫ L

−L

dy1

[
7z3

2

2X9/2

δ2
1

z2
2

+
63z5

2

8X11/2

(
11z2

2

X
− 3

)
δ4
1

z4
2

]}
.

If the deviations of the plate surfaces from planes are described by stationary
stochastic functions with δi = const, eqn (17.79) in the limiting case L → ∞
leads to

〈Eadd
A (x2, y2, z2)〉1 = −BN1

π

10z4
2

(
1 + 10

δ2
1

z2
2

+ 105
δ4
1

z4
2

)
. (17.80)

In order to obtain the Casimir energy in the configuration of two rough plates, we
integrate eqn (17.80) over the volume V2 of the upper plate, taking into account

the fact that its boundary surface is described by the stochastic function z
(s)
2

defined in eqn (17.77). Then we calculate the mean value over all realizations of
the stochastic function {δ2f2(x, y)} and obtain

〈〈
Eadd

A (x2, y2, z2)
〉
1

〉
2

= N2

〈∫ L

−L

dx2

∫ L

−L

dy2

∫ a+D

a+δ2f2(x2,y2)

dz2

〈
Eadd

A (x2, y2, z2)
〉
1

〉
2
.

(17.81)
Calculating the negative derivative with respect to a on both sides of eqn (17.81)
and dividing by (2L)2 in accordance with eqn (17.21), we obtain the Casimir
pressure

P add
R (a) =

N2

(2L)2

∫ L

−L

dx2

∫ L

−L

dy2

〈〈
Eadd

A [x2, y2, a + δ2f2(x2, y2)]
〉
1

〉
2
. (17.82)

Now we expand the quantity 〈Eadd
A 〉1 in powers of the small parameter δ2/a using

eqn (17.80). Calculating the mean value over the realizations δ2f2(x2, y2) of the
stochastic function {δ2f2(x2, y2)} with the help of eqn (17.78) and dividing the
result obtained by the normalization factor (17.16), we find the Casimir pressure
with partial account for the effects of nonadditivity (Bordag et al. 1995c),

PR(a) = − π2
�c

240a4
ηP (a)

[
1 + 10

δ2
1 + δ2

2

a2
+ 105

(δ2
1 + δ2

2)2

a4

]
. (17.83)

It can be seen that the correction factor due to stochastic roughness obtained
here depends on δ2

1 + δ2
2 and does not depend on the correlation lengths of the

stochastic functions. This is because we have considered stochastic roughness
with a sufficiently large correlation length. The case where this condition is not
satisfied is considered in Section 17.4. The above result, up to the second-order
term, was obtained by van Bree et al. (1974). For a typical value of δ1,2/a = 0.1,
the correction due to stochastic roughness given by eqn (17.83) is equal to 24%
of the pressure between plates with plane surfaces, of which 4% results from the
fourth-order contribution.

The same calculation procedure as presented above can be applied to the
configuration of a sphere (or a spherical lens) of large radius above a plate with
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stochastic roughness. For stationary stochastic functions, the Casimir force act-
ing between a sphere and a plate is given by

FR(a) = − π3
�c

360a3
ηE(a)

[
1 + 6

δ2
1 + δ2

2

a2
+ 45

(δ2
1 + δ2

2)2

a4

]
. (17.84)

The case of surface roughness described by nonstationary stochastic functions is
more complicated. Some results for the Casimir pressure in this case have been
obtained under the condition that the mean values are constant but the variances
depend on coordinates, i.e. δi = δi(x, y) (Bordag et al. 1995c, Klimchitskaya and
Pavlov 1996).

17.2 The proximity force approximation for real rough bodies

The PFA introduced in Section 6.5 can be used for the case of two perfectly
shaped macroscopic bodies, such as a sphere and a plate or a cylinder and a
plate, but it can also be used for two bodies with surface roughness. In this
case, the roughness profiles on two opposite plates are represented by a set of
pairs of parallel plates at corresponding separations, and the sum of the results
obtained for each pair is considered. This approximate approach to including
surface roughness has some advantages in comparison with the PWS method.
As shown in Section 17.1, the latter uses the retarded Casimir–Polder potential
and takes into account the nonzero skin depth at some average separation a
by means of a multiplicative procedure. In contrast, the PFA when applied to
surface roughness includes corrections due to the nonzero skin depth in a non-
multiplicative way. The disadvantage of the PFA in studying roughness is that it
is applicable to a narrower region of separation distances, as compared with the
roughness period or the correlation length. Below, we compare the two methods
and discuss all the pros and cons in more detail.

17.2.1 Geometrical averaging for regular roughness

The PFA has some specific characteristic features when applied to regular and
stochastic roughness. Here, we consider the application of this approximate
method to surface roughness described by the regular functions (17.3) in the
configuration of two plates shown in Fig. 17.1. The case of stochastic roughness
is left for the next subsection.

If the functional form of f1(x, y) and f2(x, y) is fixed, this means that there is
a correlation between the roughness profiles of the two surfaces. The separation
distance d between any two points on the surfaces with the coordinates (x, y) is
determined from eqn (17.3):

d = a + A2f2(x, y) − A1f1(x, y). (17.85)

By replacing the surface elements in the vicinities of the points z
(s)
1 (x, y) and

z
(s)
2 (x, y) with small plane plates perpendicular to the z-axis, we can approxi-

mately express the corresponding Casimir energy per unit area using eqn (17.8),
which is exact for two infinite parallel plates:
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∆E(d) = − π2
�c

720d3
ηE(d), (17.86)

where the function ηE(a) is defined in eqn (17.9). To obtain the Casimir energy
between two rough plates, we now integrate eqn (17.86) over the plate area and
arrive at

ER(a) = − π2
�c

720(2L)2

∫ L

−L

dx

∫ L

−L

dy
1

[a + A2f2(x, y) − A1f1(x, y)]3

(17.87)
× ηE [a + A2f2(x, y) − A1f1(x, y)].

A similar expression for the Casimir pressure in the framework of the PFA is
given by

PR(a) = − π2
�c

240(2L)2

∫ L

−L

dx

∫ L

−L

dy
1

[a + A2f2(x, y) − A1f1(x, y)]4

(17.88)
× ηP [a + A2f2(x, y) − A1f1(x, y)].

An important feature of eqns (17.87) and (17.88), in comparison with eqns
(17.40) and (17.41) obtained using the PWS method, is that the argument of the
functions ηE and ηP depends on the separation. In eqns (17.40) and (17.41), the
argument of ηE and ηP is calculated between the zero levels of the roughness (see
Fig. 17.1). Because of this, the PFA provides a more exact, nonmultiplicative,
method of taking account of the nonzero skin depth than does the PWS method,
expecially at short separations, where the effect of the skin depth contributes
up to several tens of percent to the energy and pressure. At relatively large
separations, the functions ηE and ηP in eqns (17.87) and (17.88) are practically
constant. In this case one can factor them out from the integrals. Expanding
the remaining power-type functions under the integrals in powers of A1/a and
A2/a, we return to the multiplicative eqns (17.40) and (17.41) for the Casimir
energy and pressure obtained using the PWS method. Thus, at relatively large
separations, the PFA when applied to surface roughness leads to the same results
as does the PWS method applied under the condition 2πa/Λ � 1 [in this case
one can use the simplified eqn (17.33) for the expansion coefficients instead of the
more exact values given by eqn (17.31)]. Note, however, that the PWS method
has a wider application region when eqn (17.31) is used to calculate the expansion
coefficients ckl. In the case of an ideal metal, ηE = ηP = 1 and the PWS method
leads to the same result as does the PFA at all separations satisfying the condition
2πa � Λ.

We now consider the case where the roughness of the lower plate is de-
scribed by a function f1(x, y) whereas the surface of the upper plate is flat,
i.e. f2(x, y) = 0. Let the functions ηE and ηP in eqns (17.87) and (17.88) be
constant. This happens at sufficiently large separations a for plates made of real
materials or at any separation for plates made of an ideal metal or materials
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with frequency-independent dielectric permittivities ε
(1)
0 and ε

(2)
0 . Then, for the

configuration with one plane plate, all of the interference-type coefficients given
by eqns (17.31) and (17.33) are exactly equal to zero and the PFA leads to pre-
cisely the same results as does the PWS method [we note that in this case eqns
(17.31) and (17.33) are equivalent]. In the general situation, where the functions
ηE and ηP depend strongly on the separation, the PFA provides a more exact,
nonmultiplicative, combined method of taking account of surface roughness cor-
rections and realistic dielectric properties of the material bodies. This conclusion
is important at short separations, where both the roughness corrections and the
corrections due to the nonzero skin depth (for metals) are rather large.

As an example, we shall apply eqn (17.88) to calculate the Casimir pressure in
the configuration of two plates with steps shown in Fig. 17.3(a). This is a typical
situation where the deviations from flatness of the two plates are correlated.
Substituting eqn (17.56) into eqn (17.88), we obtain

PR(a) = −π2
�c

480

[
ηP (a − H)

(a − H)4
+

ηP (a + H)

(a + H)4

]
. (17.89)

For small H � a, we assume ηP (a−H) ≈ ηP (a+H) ≈ ηP (a). Substituting this
into eqn (17.89) and expanding in powers of the small parameter H/a, we return
to eqn (17.57). Thus, the results obtained using the PFA and PWS methods are
in agreement. For the configuration in Fig. 17.3(b), both methods lead to the
same result as for two parallel plates with flat surfaces at a separation distance
a.

It is interesting to compare the two methods at shorter separations and larger
H , where ηP is separation-dependent and simple analytic estimates, such as
those above, are not applicable. We have performed computations using eqns
(17.41) and (17.88) for the plates with steps shown in Fig. 17.3(a) made of Au
(the dielectric permittivity along the imaginary frequency axis is given by the
solid line in Fig. 13.2). It is convenient to present the computational results
as a correction factor XR,P (a) = PR(a)/PIM(a), which takes into account the
combined effect of the surface roughness and the nonzero skin depth of gold.
In the case of the PWS method, this correction factor is equal to κP (a)ηP (a).
For the PFA, XR,P (a) does not have a simple representation in terms of κP (a)
and ηP (a). At a = 100 nm for a step of height H = 2 nm, the correction factor
XR,P (a) = 0.476 and 0.474 if the computations are performed in the framework
of the PWS multiplicative method and the PFA, respectively. At a = 200 nm,
even closer results [XR,P (a) = 0.631 and 0.630, respectively] are obtained. This
means that both methods work well. The situation changes, however, if a step of
height H = 20 nm is considered. In this case, at a = 100 nm, the PWS method
results in XR,P (a) = 0.690 and the PFA results in XR,P (a) = 0.513, i.e. a
34.5% difference. At a = 200 nm, the PWS leads to XR,P (a) = 0.695 and the
PFA to XR,P (a) = 0.643 (8.1% difference). Thus, the computational results
differ significantly. The reason is that at short separation distances (about 10 to
20 times the amplitude of the step-like roughness), the multiplicative approach
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incorporated into the PWS method introduces large errors into the corrections
to the Casimir pressure due to the nonzero skin depth. At short separations, a
combined description of the corrections due to surface roughness and nonzero
skin depth is provided by the PFA in accordance with eqns (17.87) and (17.88).

17.2.2 Geometrical averaging for stochastic roughness

The metallic films and semiconductor surfaces used in measurements of the
Casimir force are covered with irregularly distributed peaks and valleys. These
irregularities on the two plates are not correlated. Because of this, they cannot
be described by eqn (17.3) by regular functions f1 and f2. The description by
means of stochastic functions in Section 17.1.5 is based on the PWS method. It
includes the dielectric properties by means of the multipliers ηE(a) and ηP (a)
calculated at some mean separation distance. As shown in Section 17.2.1, this
makes the method inaccurate at short separations, where the role of roughness
corrections is most important. Here, we present another approach for stochastic
roughness based on the PFA, which is applicable at short separation distances
(Klimchitskaya et al. 1999).

As is customary in the PFA, we replace the elements of the two rough surfaces
at a separation z with two small parallel plates. The fraction of the total plate
area S spaced at separations from z to z + ∆z is ∆S(z)/S = ρ(z)∆z. Here,
ρ(z) is the distribution function for the probability that the separation between

points z
(s)
1 and z

(s)
2 with fixed (x, y) on the rough surfaces in Fig. 17.1 lies in

the interval [z, z +∆z]. Using the exact expression (17.8) for the Casimir energy
per unit area between two perfectly shaped parallel plates at a separation z, we
can approximately represent the interaction energy per unit area of two rough
surfaces in the form

ER(a) = −π2
�c

720

∫ zmax

zmin

dz

z3
ρ(z)ηE(z), (17.90)

where zmin and zmax are the minimal and maximal separations between the
roughness profiles of the two surfaces. The respective Casimir pressure is given
by

PR(a) = −π2
�c

240

∫ zmax

zmin

dz

z4
ρ(z)ηP (z). (17.91)

Equations (17.90) and (17.91) are applicable when the separation distance be-
tween the plates is at least several times smaller than the correlation length of
the stochastic roughness of the two surfaces (see Section 17.4).

The distribution function ρ(z) can be determined experimentally from atomic
force microscope images of plate surfaces (see Chapters 19–21). From these im-
ages, the roughness of the plates (1) and (2) can be characterized by the fractions

of plate area v
(1)
i and v

(2)
k with heights h

(1)
i and h

(2)
k , respectivly (i = 1, 2, . . . , N1

for the first plate and k = 1, 2, . . . , N2 for the second plate). These heights are

measured from the absolute minimum level on each plate h
(1)
1 = h

(2)
1 = 0. The
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data for the roughness heights and the respective fractions of the plate area allow

one to determine the zero levels H
(1,2)
0 , relative to which the mean values of the

roughness profiles are zero. The zero levels of the roughness are found from the
equalities

N1∑
i=1

[
H

(1)
0 − h

(1)
i

]
v
(1)
i = 0,

N2∑
k=1

[
H

(2)
0 − h

(2)
k

]
v
(2)
k = 0. (17.92)

From the definition of the roughness amplitudes in eqn (17.3), one obtains

Ai = max
[
h

(i)
Ni

− H
(i)
0 , H

(i)
0

]
, i = 1, 2. (17.93)

Taking into account the fact that there is no correlation between the roughness

profiles of the two plates, the probability that there is a peak h
(1)
i on the first plate

and a peak h
(2)
k at the same surface position on the second is given by v

(1)
i v

(2)
k .

The discrete versions of eqns (17.90) and (17.91) are the following (Decca et al.
2005b):

ER(a) =

N1∑
i=1

N2∑
k=1

v
(1)
i v

(2)
k E[a + H

(1)
0 + H

(2)
0 − h

(1)
i − h

(2)
k ],

PR(a) =

N1∑
i=1

N2∑
k=1

v
(1)
i v

(2)
k P [a + H

(1)
0 + H

(2)
0 − h

(1)
i − h

(2)
k ]. (17.94)

Here, a is the separation between the zero levels of the roughness for the two
plates, and E(a) and P (a) are defined in eqns (17.8) and (17.15). As is shown in
Chapters 19–21, eqn (17.94) is best suited for taking account of corrections to
the Casimir energy per unit area and the Casimir pressure at separations below
200nm, where the multiplicative approach is not exact enough.

The variances describing the stochastic roughness are found from the formulas

δ2
1 =

N1∑
i=1

[
H

(1)
0 − h

(1)
i

]2
v
(1)
i , δ2

2 =

N2∑
k=1

[
H

(2)
0 − h

(2)
k

]2
v
(2)
k . (17.95)

Equation (17.94) can be generalized in a simple way to the case of nonzero
temperature by replacing the energies with the free energies. At larger separa-
tions, E(z) and P (z) in eqn (17.94) are almost constant within some separation
interval determined by the surface roughness. One can then put these quanti-
ties in front of the summation sign. In this case eqn (17.94) leads to the same
computational results as does the PWS method.

17.3 Nonparallel plates as large-scale roughness

A configuration which provides an opportunity to compare the efficiency of differ-
ent approximation methods and also allows exact calculation in the ideal-metal
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Fig. 17.4. A configuration of two plates inclined at a small angle ϕ0 to one
another. (a) One plate is parallel to the x-axis and the other is inclined. (b)
One plate is inclined in the positive direction and the other in the negative
direction. (c) Both plates are inclined in the negative direction.

case consists of two plates inclined at a small angle ϕ0 to one another. The
role of nonparallelity of the plates is important for measurements of the Casimir
force (see Section 18.1.1). Small deviations from parallelity can be considered
as a large-scale distortion with a characteristic length equal to the size of the
plate. The same methods as were developed above to describe surface roughness
can then be applied to calculate the corrections due to the nonparallelity of the
plates. We start with an approach which uses the PWS method.

A configuration of two plates of area 2L× 2L inclined at a small angle ϕ0 to
one another can be represented in three different ways, as shown in Fig. 17.4. In
Fig. 17.4(a), the lower plate is not perturbed, and the upper plate is inclined at
an angle ϕ0 with respect to the lower one. In terms of eqn (17.3), the surfaces of
the plates are given by the functions

f1(x, y) = 0, f2(x, y) =
x

L
, A2 = ϕ0L. (17.96)

Then, from eqns (17.36) and (17.41), we obtain

PR(a) = − π2
�c

240a4
ηP (a)

(
1 + 10〈f2

2 〉
A2

2

a2
− 20〈f3

2 〉
A3

2

a3
+ 35〈f4

2 〉
A4

2

a4

)
. (17.97)

Taking into account the fact that

〈f2
2 〉 =

1

3
, 〈f3

2 〉 = 0, 〈f4
2 〉 =

1

5
, (17.98)

the Casimir pressure between the nonparallel plates takes the form

PR(a) = − π2
�c

240a4
ηP (a)

[
1 +

10

3

(
ϕ0L

a

)2

+ 7

(
ϕ0L

a

)4
]

. (17.99)

In this case, when only one of the two plates is perturbed, there are no interference-
type contributions to the Casimir pressure.
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The same configuration, however, can be represented in two other ways, as
shown in Figs. 17.4(b) and 17.4(c). The analytic representation of the distortion
functions related to Fig. 17.4(b) is given by

f1(x, y) = − x

L
, f2(x, y) =

x

L
, A1 = ϕ1L, A2 = ϕ2L, (17.100)

where ϕ0 = ϕ1 + ϕ2. In a similar way, Fig. 17.4(c) is described analytically by

f1(x, y) = − x

L
, f2(x, y) = − x

L
, A1 = ϕ1L, A2 = ϕ2L, (17.101)

where ϕ0 = ϕ1−ϕ2. It is evident that in both of the cases given by eqns (17.100)
and (17.101), interference contributions to the Casimir pressure are present. To
find the pressure, we can use eqn (17.37) [normalized by the factor (17.16)]
because the equalities f2 = ∓f1 are satisfied. By calculating the mean values

〈f2
i 〉 =

1

3
, 〈f3

i 〉 = 0, 〈f4
i 〉 =

1

5
(17.102)

with the help of eqns (17.100) and (17.101) and substituting them into eqn
(17.37), we return to eqn (17.99). Thus, in the configurations of Figs. 17.4(b) and
17.4(c), the interference terms contribute exactly the right amount to produce
the result obtained when the interference is absent.

Now we consider the configuration of two plates inclined at a small angle ϕ0

using the PFA. In the framework of this approximation, the Casimir pressure is
given by eqn (17.88). Let the two plates be described by eqn (17.96) [see Fig.
17.4(a)]. Substituting eqn (17.96) into eqn (17.88) and making the change of
variables z = a + ϕ0x, we obtain

PR(a) = − π2
�c

480ϕ0L

∫ a+ϕ0L

a−ϕ0L

dz

z4
ηP (z). (17.103)

Now we represent the correction factor ηP due to the nonzero skin depth by using
eqn (17.58), obtained in the framework of the plasma model. The integration with
respect to z leads to

PR(a) = − π2
�c

1440ϕ0L

4∑
i=0

di

[
1

(a − ϕ0L)3+i
− 1

(a + ϕ0L)3+i

]
. (17.104)

Expanding the right-hand side of eqn (17.104) in powers of the small parameter
ϕ0L/a, we can represent the Casimir pressure in the form

PR(a) = − π2
�c

240a4

[
1 +
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3

(
ϕ0L
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)2

+ 7

(
ϕ0L
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(
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ϕ0L

a

)2

+ 2
d3

a3
+

7d4

3a4

]
. (17.105)

On comparing this with eqn (17.99), obtained using the PWS, it can be seen
that for an ideal metal, where ηP (a) = 1 and di = 0 for i ≥ 1, the two results
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coincide. Substituting eqn (17.58) for ηP into eqn (17.99), we find that it differs
from eqn (17.105) by terms of the third order in the small parameters. Below,
we estimate this difference numerically.

It is interesting to compare the approximate results (17.99) and (17.104)
obtained using the PWS and PFA methods, respectively, with an exact result
derived for ideal-metal plates inclined at an angle ϕ0 using the configuration of
a wedge. For this purpose, the exact energy density of the electromagnetic field
ε(ρ) inside the wedge must be integrated over the space between square plates
of sides 2L = ρ2 − ρ1. The energy obtained is given by

Etot(a) =

∫ ϕ0

0

dϕ

∫ 2L

0

dz

∫ ρ2

ρ1

ρ dρ ε(ρ), (17.106)

where we have used the ε(ρ) for a wedge defined in eqn (7.134) with an added
factor �c. Performing the integration in eqn (17.106) under the condition ϕ0 � 1,
we arrive at

Etot(a) = −π2
�cL

720ϕ0

[
1

(a − ϕ0L)2
− 1

(a + ϕ0L)2

]
. (17.107)

Then the Casimir pressure is obtained from eqn (17.21):

P (a) = − π2
�c

1440ϕ0L

[
1

(a − ϕ0L)3
− 1

(a + ϕ0L)3

]
. (17.108)

This result coincides with that in eqn (17.104) (PFA) when we put d0 = 1 and
di = 0 with i ≥ 1, as is the case for an ideal metal. As can be seen from eqn
(17.105), the result (17.108) also coincides with eqn (17.99) (PWS) after the
expansion in the small parameter ϕ0L/a is performed.

As an example, we have compared numerical results computed for Au plates
inclined at an angle ϕ0 such that ϕ0L = 10 nm by using eqn (17.99) (PWS)
and eqn (17.103) (PFA). In both cases, the exact expression for the function
ηP (z) presented in eqn (17.16) was used in the computations. At a separation
distance a = 100 nm, the correction factor XR,P (a) to the ideal-metal pressure
PIM between parallel plates due to the nonzero skin depth and the tilt, computed
using the PWS, was equal to 0.4899. The correction due to the tilt alone was
equal to 1.034. If the PFA was used, XR,P (a) = 0.4866 and a value of 1.027 for
the correction due to the tilt was obtained. The relative difference between the
magnitudes of XR,P (a) computed using the two methods was only 0.68%. At a
separation a = 200 nm, we obtained XR,P (a) = 0.6355 (PWS) and XR,P (a) =
0.6346 (PFA), i.e. only a 0.14% difference. The correction due to the tilt varied
from 1.008 (PWS) to 1.007 (PFA). Thus, for small tilt angles, the two methods
lead to almost coincident results for real materials.
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17.4 Various approaches for short-scale roughness

For roughness characterized by a small period or a small correlation length (not
much less than the separation distance), the dependence of the roughness cor-
rection on the separation may become more involved owing to the effects of
nonadditivity. The reflection of electromagnetic waves from short-scale distor-
tions of the surface leads to diffraction-type and correlation effects which cannot
be described adequately by the summation of interatomic potentials or by the
replacement of the roughness profiles with a set of small, plane parallel plates.
However, with decreasing roughness period or correlation length, the limits of
applicability of the PWS method and the PFA are different. Below, we discuss
how these limits can be estimated and what alternative methods can be applied
for the description of short-scale roughness in the context of the Casimir effect.

In the case of an ideal metal, the path-integral approach allows a complete
calculation of the roughness corrections to the second perturbation order in the
roughness amplitudes (see Section 10.5). For uniaxial roughness on one plate
(with the second plate perfectly smooth) described by the regular functions

f1(x, y) = cos
2πx

Λx
, f2(x, y) = 0, (17.109)

the roughness correction has been investigated analytically for any separation
and roughness period (Emig et al. 2003). Thus, in the limiting case a � Λx, the
Casimir energy per unit area is given by

ER(a) = − π2
�c

720a3

[
1 + 3

A2
1

a2
+ O

(
A3

1

a3

)]
. (17.110)

This is in agreement with eqn (17.40), obtained using PWS, if one substitutes
A2 = 0 and 〈f2

1 〉 = 1/2 in eqn (17.39). However, in the opposite limiting case
a � Λx, a rather different behavior of the Casimir energy follows from the path-
integral approach (Emig et al. 2003):

ER(a) = − π2
�c

720a3

[
1 + 2π

A2
1

Λxa
+ O

(
A3

1

a3

)]
. (17.111)

This behavior cannot be obtained by the PWS method, which does not take
into account the correlations between different points on the plates. The limiting
case (17.111) was first derived by Karepanov et al. (1987). Novikov et al. (1990a,
1990b, 1992a, 1992b) developed a perturbation theory for the electromagnetic
Green’s function in terms of small roughness amplitudes, applicable to media
with a frequency-dependent dielectric permittivity. The result (17.111) was red-
erived by Novikov et al. (1992b). Note that if both plates have roughness, eqn
(17.40) is applicable under the more stringent condition 2πa � Λx.

The validity limits of the PFA, as applied to surface roughness, have been
investigated within the scattering approach for real metals described by the
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plasma model, using a second-order perturbation theory in the roughness am-
plitudes (Maia Neto et al. 2005). This approach describes roughness by stochas-
tic functions A1f1(r) and A2f2(r) defined as in eqns (17.3) and (17.4), where
r = (x, y), and assumes that the roughnesses of the two surfaces are statistically
independent. It is also assumed that the roughness amplitudes are the smallest
parameters, much less than the separation distance a, the plasma wavelength
λp, and the correlation length Λc. The correlation length satisfies the condition

Λc �
√

S, where S is the plate area. From the translational symmetry in the
(x, y) plane, the correlation function of each plate depends only on r − r′:

Ci(r, r′) = corr[Aifi(r), Aifi(r
′)] = Ci(r − r′, 0), i = 1, 2. (17.112)

From this, the correlation function for coincident arguments is expressed as a
mean value,

Ci(r, r) = Ci(0, 0) =
〈
[Aifi(r)]2

〉
. (17.113)

The roughness spectrum is defined as

σii(k) =

∫
dr e−ik · rCi(r, 0), (17.114)

where k = (kx, ky) is the two-dimensional wave vector.
The Casimir energy per unit area for the rough plates can be represented in

the form (Maia Neto et al. 2005)

ER(a) = E(a) +

∫
dk

(2π)2
G(k)σ(k), (17.115)

where E(a) is the exact Casimir energy per unit area for flat plates defined in
eqn (17.8), σ(k) ≡ σ11(k)+σ22(k), and G(k) is the roughness response function.
Under the above conditions, this function can be expressed in a second-order
perturbation theory in terms of the relative roughness amplitudes A1/a and
A2/a through the specular and nonspecular reflection coefficients (Maia Neto et
al. 2005).

Now we consider the connection between the Casimir energy per unit area
in eqn (17.115) and in eqn (17.87), obtained with the PFA. For this purpose, we
assume that the roughness profiles are sufficiently smooth that with the use of
eqns (17.113) and (17.114), the roughness spectrum can be represented as

σii(k) ≈ (2π)2
〈
[Aifi(r)]2

〉
δ(2)(k). (17.116)

Substituting this in eqn (17.115), we arrive at

ER(a) ≈ E(a) + G(0)
〈
[A1f1(r)]2 + [A2f2(r)]2

〉
. (17.117)

The limiting value of the response function G(k) when k → 0 in the second-order
perturbation theory satisfies the condition (Maia Neto et al. 2005)



492 The Casimir force between rough surfaces and corrugated surfaces

G(0) =
1

2

∂2E(a)

∂a2
. (17.118)

Substituting this in eqn (17.117), we get

ER(a) ≈ E(a) +
1

2

∂2E(a)

∂a2

〈
[A1f1(r)]2 + [A2f2(r)]2

〉
. (17.119)

On the other hand, the Casimir energy per unit area for rough surfaces in
the PFA is given by eqn (17.87). This equation can be rearranged as

ER(a) =
1

(2L)2

∫ L

−L

dx

∫ L

−L

dy E[a + A2f2(x, y) − A1f1(x, y)]. (17.120)

Here, the Casimir energy per unit area for the flat plates has the form

E(a) =

∫ ∞

0

k⊥dk⊥

∫ ∞

0

dξ Φ
(
k⊥, ξ, e−2aq

)
, (17.121)

where the explicit expression for the function Φ is contained in eqn (12.30).
Substituting eqn (17.121) into eqn (17.120) and expanding up to the fourth
order in the small parameter A2f2 − A1f1, we get

ER(a) =
1

(2L)2

∫ L

−L

dx

∫ L

−L

dy

∫ ∞

0

k⊥dk⊥

∫ ∞

0

dξΦ
[
k⊥, ξ, e−2(a+A2f2−A1f1)q

]

≈ 1

(2L)2

∫ L

−L

dx

∫ L

−L

dy

∫ ∞

0

k⊥dk⊥

∫ ∞

0

dξ

[
4∑

n=0

Φ(n)
(
k⊥, ξ, e−2aq

)
n!

(A2f2 − A1f1)
n

]
,

(17.122)

where (n) denotes the order of differentiation with respect to a. By changing the
order of integrations and using the definitions of the mean values in eqn (17.4),
eqn (17.122) can be rearranged to

ER(a) = E(a) +
1

2

∂2E(a)

∂a2

(
A2

1〈f2
1 〉 − 2A1A2〈f1f2〉 + A2

2〈f2
2 〉
)

− 1

6

∂3E(a)

∂a3

(
A3

1〈f3
1 〉 − 3A2

1A2〈f2
1 f2〉 + 3A1A

2
2〈f1f

2
2 〉 − A3

2〈f3
2 〉
)

+
1

24

∂4E(a)

∂a4

(
A4

1〈f4
1 〉 − 4A3

1A2〈f3
1 f2〉 + 6A2

1A
2
2〈f2

1 f2
2 〉

−4A1A
3
2〈f1f

3
2 〉 + A4

2〈f4
2 〉
)
. (17.123)

This representation of the energy per unit area for rough surfaces in the frame-
work of the PFA, if extended to higher orders, is equivalent to the representa-
tion (17.87), but is not as convenient for applications. Note that in the case of
ideal-metal plates, where E(a) = EIM(a) = −CE/a3, all derivatives are easily
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calculated and eqn (17.123) leads to the result in eqns (17.39) and (17.40) with
ηE(a) = 1, obtained with the PWS method.

For stochastic roughness, 〈f1f2〉 = 0. In this case eqn (17.119), obtained
within the scattering approach in the second-order perturbation theory for smooth
roughness profiles, coincides with eqn (17.123) if one neglects terms of the third
and fourth orders. In this simplified form, eqn (17.123) was derived by Genet et
al. (2003a). Then the deviation of the roughness response function G(k) from
G(0) can be used as a measure of the disagreement between the second-order
scattering approach and the second-order PFA (Maia Neto et al. 2005). Thus,
it was found that for Au plates (λp = 137 nm) at a separation a = 100 nm,
G(k) ≈ G(0) for k ≤ 0.02 nm−1. On the other hand, at a separation a = 200 nm
and k = 0.02 nm−1, G(k)/G(0) ≈ 1.6. In the first case one would expect that
for roughness with a sufficiently large correlation length, the second-order PFA
would lead to the same results for the roughness correction as does the second-
order scattering approach, whereas at larger distances, as in the second case,
deviations between the two approaches are possible. This was confirmed by di-
rect computations (Maia Neto et al. 2005). For a Gaussian spectrum, it was
shown that the second-order PFA was in agreement with the second-order scat-
tering approach if a ≤ 100 nm and the correlation length Λc > 150 nm. Thus,
the PFA appears to be applicable not under the general requirement a � Λc

but under the much less stringent requirement a < 2Λc/3. On the other hand,
at a separation a = 300 nm (two times larger than the correlation length), the
second-order scattering result for the roughness correction is approximately 50%
larger than that given by the second-order PFA.

Thus, the scattering approach provides an opportunity to determine the ac-
curacy of the second-order PFA. This approximation has been confirmed to be
accurate at sufficiently small separations compared with the correlation length,
which is the region where the effect of surface roughness is very important. How-
ever, in its present form the scattering approach is not preferred for comparison
between experiment and theory. The reason is that at sufficiently large separa-
tions, where this approach provides a more accurate description of the effect of
roughness than does the PFA, the total magnitude of the roughness correction is
much less than a fraction of a percent. As a result, in this region the roughness
correction amounts to very little and can be neglected. At relatively small sepa-
rations of around 100 nm, where surface roughness plays an important role and
must be taken into account, both the simple plasma model description of the
dielectric properties and the second-order perturbation theory employed by the
scattering approach are not accurate enough. At these separations, the complete
(higher-order) PFA, taking into account the dielectric properties by means of
tabulated data or the generalized plasma-like model, is both more accurate and
convenient for practical computations (see Chapters 19–21).
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17.5 Sinusoidally corrugated surfaces

The configuration of parallel plates with uniaxial sinusoidal corrugations is of
special interest owing to the possibility of a nontrivial interplay between the
geometry and the material properties. This configuration gives rise to both a
normal and a lateral Casimir force. The latter is a function of the phase shift
between the corrugations of the two plates. The first experimental demonstra-
tion of the lateral Casimir force (Chen et al. 2002a, 2002b) was performed using
a configuration of a corrugated plate and a sphere and was related to the case
of two corrugated plates by means of the PFA (see Section 21.2). The configu-
ration of two plates made of real materials with periodically corrugated surfaces
is an interesting subject from a theoretical point of view because the size of the
corrugation amplitudes relative to the separation can be tailored. However, this
creates the problem of how to simultaneously take into account both the dielec-
tric properties of the plate materials and the deformed geometry with sufficient
accuracy. As shown below, the PWS method is better suited for complicated
geometrical shapes, whereas the PFA is more accurate when realistic dielectric
properties are to be included, and the exact methods are presently soluble only
in second-order perturbation theory in relation to the corrugation amplitudes.
This problem has not been completely solved to date. In this section, we present
the results obtained with an emphasis on those useful in the comparison between
experiment and theory.

17.5.1 The Casimir energy and pressure

We consider the configuration of two parallel plates shown in Fig. 17.1. Now the
surfaces of the two plates are covered with uniaxial sinusoidal corrugations of
equal periods but different amplitudes, as shown in Fig. 17.5. These corrugations
are described by eqn (17.3) with the following functions f1 and f2:

f1(x, y) = sinαx, f2(x, y) = sin(αx + φ). (17.124)

Here, α = 2π/Λ and φ = 2πx0/Λ, where Λ is the corrugation period and x0

is the shift of the corrugations on the upper plate in relation to those on the
lower plate. We start with a consideration of separation distances satisfying
the condition 2πa � Λ. In this case the Casimir energy per unit area of the
corrugated surfaces is given by eqns (17.39) and (17.40), derived within the
PWS method. Below, we shall mostly discuss the energy rather than the normal
force because the former is the quantity needed to calculate the lateral Casimir
force. The nonzero mean values of the functions f1,2, their products, and powers
are

〈f2
i 〉 =

1

2
, 〈f1f2〉 =

1

2
cosφ, 〈f4

i 〉 =
3

8
,

〈fif
3
j 〉 =

3

8
cosφ, 〈f2

1 f2
2 〉 =

1

8
(2 + cos 2φ). (17.125)

Substituting eqn (17.125) into eqn (17.39), we obtain the correction factor to the
Casimir energy due to the corrugations,
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Fig. 17.5. Uniaxial sinusoidal corrugations of equal periods Λ but different
amplitudes and with a phase shift φ = 2πx0/Λ between the two corrugated
plates.

κE(a) = 1 + 3

[
A2

1 + A2
2

a2
− 2 cosφ

A1A2

a2

]
(17.126)

+
45

8

[
A4

1 + A4
2

a4
− 4 cosφ

A1A
3
2 + A3

1A2

a4
+ 2(2 + cos 2φ)

A2
1A

2
2

a4

]
.

For ideal-metal plates, the correction factor due to the nonzero skin depth, ηE ,
is equal to unity, and exactly the same Casimir energy per unit area as in eqns
(17.40) and (17.126) is obtained from eqn (17.87), derived using the PFA. Thus,
in this case the two methods lead to the same results provided the separation
distance satisfies the condition 2πa � Λ.

It is interesting to determine the role of the fourth-order terms in eqn (17.126)
for different corrugation amplitudes and phase shifts. For phase shifts φ = 0 and
π between the corrugations, eqn (17.126) results in

κE(a) = 1 + 3
(A1 ∓ A2)

2

a2
+

45

8

(A1 ∓ A2)
4

a4
. (17.127)

Thus, in the case φ = 0 and for equal amplitudes, i.e. A1 = A2, we get κ
(2)
E =

κ
(4)
E = 1, where the superscript in brackets indicates in what perturbation order

the calculation has been done. For φ = π, a = 200 nm, and A1 = A2 = 50 nm,
the magnitudes of κE computed up to the second and fourth perturbation orders

are different: κ
(2)
E = 1.750 and κ

(4)
E = 2.102. For φ = π/2, eqn (17.126) takes the

form

κE(a) = 1 + 3
A2

1 + A2
2

a2
+

45

8

(A2
1 + A2

2)
2

a4
. (17.128)

Then, with the same values of the separation and of the amplitudes, κ
(2)
E = 1.375

and κ
(4)
E = 1.463. It can be seen that for the equal amplitudes considered, the

fourth perturbation order contributes up to 17% of the total result.
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Fig. 17.6. The correction factor to the Casimir energy per unit area for plates
due to sinusoidal corrugations with amplitudes A1 = A2 = 50 nm (solid and
dashed lines labeled 1) and A1 = 85 nm, A2 = 15 nm (solid and dashed lines
labeled 2), versus x0/Λ. The solid and dashed lines were computed up to the
fourth- and second-order terms, respectively, in the corrugation amplitudes.
The separation between the plates is (a) a = 200 nm and (b) a = 300 nm.

Another example important for the consideration of experiments is the case
of different amplitudes, for example A1 = 85 nm and A2 = 15 nm, with the
same sum as above, equal to a/2 = 100 nm. In this case the following results

are obtained: κ
(2)
E = 1.368, κ

(4)
E = 1.452 (φ = 0), κ

(2)
E = 1.559, κ

(4)
E = 1.754

(φ = π/2), and κ
(2)
E = 1.750, κ

(4)
E = 2.102 (φ = π). The latter magnitudes are

the same as those for equal amplitudes, in agreement with eqn (17.127). The
largest contribution from the fourth perturbation order, equal to 16.7%, takes
place at φ = π. Computational results for arbitrary phase shifts obtained using
eqn (17.126) are presented in Fig. 17.6(a), where the correction factor κE is
plotted as a function of x0/Λ at a = 200 nm. The solid and dashed lines labeled
1 are related to the case of equal amplitudes A1 = A2 = 50 nm. The solid and
dashed lines labeled 2 are related to the case of different amplitudes A1 = 85 nm,
A2 = 15 nm. In both cases the dashed lines were computed up to the second
perturbation order and the solid lines up to the fourth perturbation order. As
can be seen in Fig. 17.6(a), the relative contribution of the fourth order strongly
depends on the phase shift and reaches its maximum value at x0/Λ = 1/2 or,
equivalently, φ = π.

With increasing separation distance, the relative role of the fourth perturba-
tion order decreases. As an example, the correction factor κE is plotted in Fig.
17.6(b) as a function of x0/Λ for a separation a = 300 nm between the plates.
The meanings of the solid and dashed lines are the same as those in Fig. 17.6(a).
At x0/Λ = 1 (φ = π), where the relative contribution of the fourth perturba-

tion order is the largest, κ
(2)
E = 1.333 and κ

(4)
E = 1.403. This leads to a 5%

contribution from the fourth-order correction in the value of κE .
Now we compare computational results obtained with inclusion of the nonzero

skin depth using the PFA (17.87) and the PWS method (17.40) (the latter up
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Table 17.1. The correction factor due to the nonzero skin depth
for corrugated surfaces with A1 = A2 = 50 nm.

a = 200 nm a = 300 nm

φ PFA PWS(4) PWS(2) PFA PWS(4) PWS(2)

0 0.6980 0.6980 0.6980 0.7747 0.7747 0.7747

π/2 0.9676 1.021 0.9597 0.8980 0.9173 0.9038

π 1.3925 1.4669 1.2215 1.0474 1.0867 1.0329

to the second- and fourth-order perturbative expansions in the corrugation am-
plitudes). The correction factor due to the nonzero skin depth ηE was computed
by use of eqn (17.9) using the dielectric permittivity of Au along the imaginary
frequency axis (the solid line in Fig. 13.2). Within the PFA, the factor ηE was
integrated in agreement with eqn (17.87). When the PWS is used, one must
multiply the result for κE by the value of ηE(a) at the mean separation. The
computational results for the correction factor XR,E(a) = ER(a)/EIM(a) in the
case of corrugation amplitudes A1 = A2 = 50 nm are presented in Table 17.1 and
those in the case of A1 = 85 nm, A2 = 15 nm in Table 17.2, for various phase
shifts φ (first column) and for separation distances a = 200 nm and 300nm.
The second and fifth columns of the two tables contain results computed us-
ing the PFA, the third and sixth columns contain results computed using the
PWS method up to the fourth-order terms [PWS(4)], and the fourth and seventh
columns present similar results computed up to the second-order terms [PWS(2)].

As can be seen in Tables 17.1 and 17.2, the second-order PWS method un-
derestimates the influence of the geometrical factor on the Casimir energy. The
PWS results for XR,E(a) obtained in the fourth perturbation order are typically
larger than those computed using the PFA. This is because including the effect
of the nonzero skin depth by means of multiplication for the mean separation
[ηE(a) = 0.6980 at a = 200 nm and ηE(a) = 0.7747 at a = 300 nm] underes-
timates the effect of the nonzero skin depth. The overall conclusion is that at
separations 2πa � Λ, where both the PFA and PWS methods are applicable,
the former should be considered more accurate.

Table 17.2. The correction factor due to the nonzero skin depth
for corrugated surfaces with A1 = 85 nm and A2 = 15 nm.

a = 200 nm a = 300 nm

φ PFA PWS(4) PWS(2) PFA PWS(4) PWS(2)

0 0.9586 1.0134 0.9544 0.8941 0.9141 0.9012

π/2 1.147 1.224 1.088 0.9661 0.9969 0.9671

π 1.388 1.4669 1.2215 1.0458 1.0867 1.0329
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From here on, we disregard the constraint 2πa � Λ. Now eqns (17.36) and
(17.39) for the geometric correction factors κP (a) and κE(a) are not applica-
ble. In this case we must use the more accurate version of the PWS method
given by eqns (17.28) and (17.30)–(17.32) for the coefficients of the perturbative
expansion,

κP (a) =
4∑

k=0

4−k∑
l=0

ckl

(
A1

a

)k (
A2

a

)l

. (17.129)

Calculating the functions G
(k,l)
mn in eqn (17.30) for the corrugation profiles (17.124),

substituting the results obtained into eqn (17.31), and using eqn (17.28), we ar-
rive at

c02 = c20 = 5, c04 = c40 =
105

8
,

c11 = −10 cosφ e−aΛ

(
1 + aΛ +

2

5
a2
Λ +

1

15
a3
Λ

)
, (17.130)

c13 = c31 = −105

2
cosφ e−aΛ [1 + aΛΠ(aΛ)] ,

c22 =
105

2
+

105

4
cos 2φ e−2aΛ [1 + 2aΛΠ(2aΛ)] ,

where aΛ = 2πa/Λ and Π(z) is defined in eqn (17.32). The respective coefficients
for the correction factor to the energy,

κE(a) =
4∑

k=0

4−k∑
l=0

c̃kl

(
A1

a

)k (
A2

a

)l

, (17.131)

are given by

c̃02 = c̃20 = 3, c̃04 = c̃40 =
45

8
, c̃11 = −6 cosφ e−aΛ

(
1 + aΛ +

1

3
a2
Λ

)
,

c̃13 = c̃31 = −45

2
cosφ e−aΛ [1 + aΛQ(aΛ)] , (17.132)

c̃22 =
45

2
+

45

4
cos 2φ e−2aΛ [1 + 2aΛQ(2aΛ)] .

Here,

Q(z) = 1 +
17

40
z +

11

120
z2 +

1

120
z3. (17.133)

An important characteristic feature of the more exact coefficents (17.130) and
(17.132) is that they depend on the corrugation period Λ. This dependence is
neglected both in the PFA and in the less accurate version of the PWS method
[eqns (17.36) and (17.39)] applicable under the condition 2πa � Λ. Equation
(17.131) will be used below for the calculation of the lateral Casimir force. In
Section 17.5.3, we compare the result given in eqns (17.131) and (17.132) with
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exact computations performed for an ideal metal to estimate the area of its
applicability.

At the end of this subsection, we now present a few computational results
illustrating the dependence of the PWS correction factors κE(a) and κP (a) given
in eqns (17.131) and (17.129) on the corrugation period. In Fig. 17.7, κE(a)
is plotted as a function of Λ−1a at a fixed separation a = 200 nm, for equal
corrugation amplitudes A1 = A2 = 50 nm and for phase shifts φ = 0 [Fig.

17.7(a)] and φ = π [Fig. 17.7(b)]. The solid and dashed curved lines show κ
(4)
E (a)

and κ
(2)
E (a) computed using the more accurate PWS method (17.131) up to the

fourth and second perturbation orders, respectively. For comparison purposes,

the flat horizontal lines (solid and dashed) present κ
(4)
E (a) and κ

(2)
E (a) computed

for an ideal metal up to the fourth and second perturbation orders, respectively,
using the PFA (17.123). Note that in this case the second- and fourth-order
PFA methods lead to the same result as the respective orders of a less accurate
version of the PWS method (17.39). In the case φ = 0 [Fig. 17.7(a)], the total
result given by the PFA coincides with that computed up to the second or fourth
order [see eqn (17.127)]. Because of this, the solid horizontal line in Fig. 17.7(a)
coincides with the dashed line. As is seen in Fig. 17.7, the relative contribution
of the fourth perturbation order depends on the phase shift. It changes the
magnitude of κE(a) significantly for φ = π [Fig. 17.7(b)]. The computational
results obtained using the more accurate version of the PWS method are very
close to the corresponding results obtained with the PFA for corrugation periods
Λ > 10a.

The dependence of the correction factor to the Casimir pressure κP (a) on the
corrugation period is illustrated in Fig. 17.8. The corrugation amplitudes have
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Fig. 17.7. The correction factor to the Casimir energy per unit area for
plates due to uniaxial sinusoidal corrugations versus Λ−1a at a separation
a = 200 nm, for equal corrugation amplitudes A1 = A2 = 50 nm and for
phase shifts (a) φ = 0, (b) φ = π. The solid and dashed curved lines were
computed using the PWS method up to the fourth- and second-order terms,
respectively. The solid and dashed flat lines show the respective results com-
puted in the PFA.
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Fig. 17.8. The correction factor to the Casimir pressure due to sinusoidal corru-
gations versus Λ−1a for corrugation amplitudes A1 = 85 nm and A2 = 15 nm
and a phase shift δ = π, at separations (a) a = 200 nm, (b) a = 300 nm. The
solid and dashed lines have the same meaning as in Fig. 17.7.

been chosen to be A1 = 85 nm and A2 = 15 nm, the phase shift is φ = π, and the
separation distance is a = 200 nm [Fig. 17.8(a)] and a = 300 nm [Fig. 17.8(b)]. As
can be seen in both figures, there is a pronounced contribution from the fourth
order terms in both the PWS and the PFA result (the differences between the
solid and dashed curved and flat lines, respectively). The computational results
using the PWS method and PFA are close for Λ > 7a.

As shown in Section 17.5.3, for Λ ∼ a or Λ < a, in the case of ideal-metal
corrugated plates, the second-order PWS results deviate from those calculated
in the second order of the exact path-integral theory (see Section 10.5). Because
of this, the above computations within the more accurate version of the PWS
method can be reliably used only under the condition a � Λ, which is, however,
not as constrained as 2πa � Λ, under which the PFA is applicable.

17.5.2 The lateral Casimir force

As noted in Section 17.1.3, the surface roughness described by eqn (17.43) leads
to the existence of a lateral Casimir force (17.48). The configuration of parallel
plates with uniaxial corrugations of equal period opens up an opportunity for
the experimental observation of lateral displacements caused by zero-point os-
cillations. Because of this, we consider some important properties of the lateral
force acting between two sinusoidally corrugated plates in more detail.

Using the geometric scale factor κE(a) defined in eqn (17.131), the Casimir
energy per unit area for a configuration of two corrugated plates made of real
materials can be presented in the form

ER(a) = ER(a, φ) = − π2
�c

720a3
ηE(a)

4∑
k=0

4−k∑
l=0

c̃kl

(
A1

a

)k (
A2

a

)l

. (17.134)

Substituting here the coefficients c̃kl from eqn (17.132), we obtain the lateral
Casimir force in the framework of the PWS method,
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F lat
R (a, φ) = −∂ER(a, φ)S

∂x0
=

π3
�cS

60a3Λ
ηE(a)

A1A2

a2
sinφ (17.135)

×
{

e−aΛ

(
1 + aΛ +

1

3
a2
Λ

)
+

15

4
e−aΛ [1 + aΛQ(aΛ)]

A2
1 + A2

2

a2

−15

2
cosφ e−2aΛ [1 + 2aΛQ(2aΛ)]

A1A2

a2

}
.

An important condition for the existence of the lateral force (17.135) is that the
periods of the corrugations on the two plates must be equal, as in eqn (17.124),
or differ by a factor of an integer. Otherwise, on averaging over the plate area,
all φ-dependent interference terms in the geometric factor κE(a) would vanish.
As a result, the lateral Casimir force would become zero.

The respective expression for the lateral Casimir force in the first four orders
of the less accurate version of the PWS method is obtained from eqn (17.39)
with the functions f1 and f2 given in eqn (17.124):

F lat
R (a, φ) =

π3
�cS

60a3Λ
ηE(a)

A1A2

a2
sinφ

[
1 +

15

4

A2
1 + A2

2

a2
− 15

2
cosφ

A1A2

a2

]
.

(17.136)
It can be seen that eqn (17.136) follows from eqn (17.135) with aΛ = 0. For
an ideal metal, ηE(a) = 1 and eqn (17.136) coincides with the respective result
obtained for corrugated ideal-metal plates using the PFA. Because of this, it
is sometimes stated in the literature that the less accurate version of the PWS
method is equivalent to the PFA. This is, however, not the case for real materials.

To obtain the lateral force in the PFA, one must substitute the mean val-
ues of the corrugation functions (17.125) into eqn (17.123), which leads to the
Casimir energy per unit area calculated up to the fourth perturbation order of
this approximation. Calculating the derivative of the resulting expression with
respect to x0, we get the lateral Casimir force,

F lat
R (a, φ) = −πA1A2S

Λ
sinφ

[
∂2E(a)

∂a2
+

1

8

∂4E(a)

∂a4
(A2

1 + A2
2 − 2A1A2 cosφ)

]
.

(17.137)
This expression coincides with eqn (17.136) only if the multiplier ηE(a) in eqn
(17.8) does not depend on the separation. If ηE is separation-dependent, F lat

R

given by eqn (17.137) in the PFA leads to different results in comparison with
eqn (17.136), derived using the less accurate version of the PWS. This can be
easily verified analytically using the perturbative expansion for ηE(a) (17.58)
obtained in the framework of the plasma model, or numerically using the Lifshitz
formula for E(a). A comparison of the PWS and PFA methods with more exact
approaches is performed in the next subsection.

Now we compare the calculation results obtained by using eqns (17.135) and
(17.137) up to the fourth- and second-order terms. In Fig. 17.9(a), the ratio
F lat

R /N is plotted as a function of x0/Λ for a separation between the plates
a = 200 nm and a corrugation period Λ = 1.2 µm, where the scaling factor is
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Fig. 17.9. The rescaled lateral Casimir force as a function of x0/Λ at a separa-
tion a = 200 nm and with a corrugation period Λ = 1.2 µm. (a) Corrugation
amplitudes A1 = 85 nm and A2 = 15 nm. The solid and dashed lines were
computed using the PWS and PFA, respectively. The computational results
up to the fourth- and second-order terms are labeled 1 and 2. (b) Corruga-
tion amplitudes A1 = A2 = 50 nm. The solid and dashed lines were obtained
using the same methods up to the fourth perturbation order.

N =
π3

�cSA1A2

60a5Λ
. (17.138)

In this figure, the corrugation amplitudes are different: A1 = 85 nm and A2 =
15 nm. The solid and dashed lines labeled 1 show the results computed up to the
fourth-order terms using the PWS method (17.135) and the PFA (17.137), re-
spectively. The solid and dashed lines labeled 2 show similar results computed up
to the second-order terms. The quantities ηE(a) in eqn (17.135) and ∂2E(a)/∂a2,
∂4E(a)/∂a4 in eqn (17.137) were computed for Au by using the Lifshitz formula
and the plasma model with ωp = 9.0 eV. As can be seen in Fig. 17.9(a), for both
methods the correction of the fourth order significantly increases the amplitude
of the lateral force.

Equations (17.135)–(17.137) indicate that the dependence of the lateral Casi-
mir force on the phase shift is not merely sinusoidal, because the phase-dependent
cosφ is present in the fourth-order term of the perturbative expansion in the
corrugation amplitudes. The deviation of the lateral force from a sinusoidal shape
is more pronounced for equal corrugation amplitudes. This is illustrated in Fig.
17.9(b), where the dependence of F lat

R /N is shown as a function of x0/Λ for
A1 = A2 = 50 nm, Λ = 1.2 µm, and a = 200 nm. The solid and dashed lines
were computed in the fourth-order perturbation theory using the PWS method
(17.135) and PFA (17.137), respectively.

17.5.3 Application regions of approximate methods

As repeatedly stated above, the PWS and PFA methods are approximate phe-
nomenological approaches to the calculation of the Casimir force with uncon-
trolled accuracy. In applications to corrugated plates, they work well only at
sufficiently small separation distances, much less than the corrugation period.
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To fully determine the application regions of these approximate methods, one
needs to compare the computational results obtained with exact results. Unfor-
tunately, for the configuration of two parallel corrugated plates, exact results for
the Casimir energy per unit area and the Casimir pressure are available only for
ideal-metal plates and only in the lowest, second, order in the corrugation am-
plitudes. These results were obtained by Emig et al. (2003) and were presented
in Section 10.5. Below, we compare them with corresponding results obtained in
the second order using the PWS and PFA methods.

We start with the normal Casimir force in the configuration of parallel plates
with sinusoidal corrugations (17.124) of equal amplitudes A = A1 = A2. The
exact expression for the Casimir energy per unit area in the second-order per-
turbation theory can be presented in the form

ER(a, φ) = − π2
�c

720a3

[
1 + c̃2

( a

Λ
, φ
) A2

a2

]
, (17.139)

where, according to eqn (17.131), c̃2 = c̃20+ c̃02+ c̃11. Using the original notation
(Emig et al. 2003),

c̃2 =
1440

π2

[
GTM

( a

Λ

)
+ GTE

( a

Λ

)]
− 720

π2
cosφ

[
JTM

( a

Λ

)
+ JTE

( a

Λ

)]
, (17.140)

where the functions GTM,TE(z) and JTM,TE(z) are defined explicitly in eqns
(10.164) and (10.171).

The coefficient c̃2 in eqn (17.140) is plotted as a function of a/Λ in Fig.
17.10(a) as the solid lines 1 (φ = 0), 2 (φ = π/2), and 3 (φ = π). In the same
figure, the dashed lines 1 (φ = 0), 2 (φ = π/2), and 3 (φ = π) show the same
coefficient computed using eqn (17.132) within the framework of a more accurate
version of the PWS method. As is seen in Fig. 17.10(a), the PWS method is in
very good agreement with the exact results for a ≤ 0.2Λ. At separations larger
than 0.2Λ, the calculation results using the PWS method deviate from the exact
results and this deviation increases with increasing separation.

In the simplest case φ = π/2, the exact expression for the Casimir pressure
is given by

PR(a) = − π2
�c

240a4

[
1 + c2

( a

Λ
,
π

2

) A2

a2

]
, (17.141)

where, from eqn (17.129), c2 = c20 + c02 (recall that for φ = π/2, c11 = 0). The
coefficient c2 can be found from eqns (17.139) and (17.140):

c2 =
2400

π2

[
GTM

( a

Λ

)
+ GTE

( a

Λ

)]
− 1440

π2

a

Λ

[
G′

TM

( a

Λ

)
+ G′

TE

( a

Λ

)]
, (17.142)

where the prime means differentiation with respect to the argument. In Fig.
17.10(b), we plot the coefficient c2 in eqn (17.142) versus a/Λ as the solid line.
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Fig. 17.10. (a) The coefficient c̃2 in eqn (17.139) for the Casimir energy per unit
area for corrugated plates as a function of a/Λ. The solid and dashed lines
were computed using the exact theory and the PWS method, respectively, for
φ = 0 (lines labeled 1), φ = π/2 (lines labeled 2), and φ = π (lines labeled 3).
(b) The coefficient c2 in eqn (17.141) for the Casimir pressure as a function
of a/Λ. The solid and dashed lines were computed using the exact theory and
the PWS method, respectively, for φ = π/2.

In the same figure, the respective results obtained using the PWS method are
shown by the dashed line. This line is flat because, for the phase shift φ = π/2, the
coefficients (17.130) do not depend on the separation or the corrugation period.
As is seen in Fig. 17.10(b), the computational results obtained using the PWS
method coincide with the exact results under the condition a ≤ 0.1Λ. However,
for the Casimir pressure, over a wide range of parameters 0 ≤ a/Λ ≤ 1, the
deviations between the exact results and those obtained using the PWS method
do not exceed 12%.

Now we compare exact calculations of the lateral Casimir force with results
obtained by using the PWS method and the PFA. The exact result for ideal-metal
plates is obtained from eqns (17.139) and (17.140) by the negative differentiation
of ER(a)S with respect to x0 = φΛ/(2π):

F lat
R (a, φ) = 2π

�cA2S

a6
sinφ

a

Λ

[
JTM

( a

Λ

)
+ JTE

( a

Λ

)]
. (17.143)

In Fig. 17.11(a), we plot the exact rescaled lateral Casimir force (17.143), F lat
R /Ñ ,

where the scaling factor is Ñ = �cA2S/a6, as a function of a/Λ (solid line). In
the same figure, the dotted line shows the respective results obtained up to
the second-order terms using the PWS method. These results are given by eqn
(17.135) with A1 = A2 = A and ηE = 1, neglecting the contributions from
the fourth-order terms. The dashed straight line in Fig. 17.11(a) represents the
second-order results for the rescaled lateral Casimir force computed using the
PFA. This is obtained from the first term on the right-hand side of eqn (17.137),
where E(a) is put equal to EIM(a). As is seen in Fig. 17.11(a), the results obtained
using the PWS method practically coincide with the exact results within a wide
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Fig. 17.11. The rescaled lateral Casimir force up to the second order in the
corrugation amplitude using the exact theory (solid line), the PWS method
(dotted line), and the PFA (dashed line), for (a) ideal-metal plates, (b) gold
plates at a = 200 nm.

region a ≤ 0.25Λ. The PFA reproduces the exact results in a narrower range of
separations a ≤ 0.1Λ.

The above results concerning the application region of the PWS method and
the PFA should be considered as provisional because, as was shown in Sections
17.5.1 and 17.5.2, the higher-order terms in the corrugation amplitudes con-
tribute significantly to both the vertical and the lateral force and cannot be
neglected. These terms are easily calculated using the approximate phenomeno-
logical methods under consideration. However, their exact values remain un-
known and, thus, a comparison between the exact and approximate values is not
possible. The other obstacle is that the exact results used have been obtained for
ideal-metal plates and their generalization to real materials is problematic. Be-
cause of this, there is nothing to compare with the computational results for real
materials obtained using the phenomenological methods. Note that the compar-
ison between the PFA and the more fundamental scattering approach performed
by Maia Neto et al. (2005) and Rodrigues et al. (2007) using the plasma model
was based on an intermediate spectral characteristic G(k) in the lowest pertur-
bation order (see Section 17.4), and does not provide the Casimir energy between
rough or corrugated plates as a function of separation. We shall return to this
comparison in Chapter 21 for the configuration of a corrugated sphere above a
corrugated plate used in the measurement of the lateral Casimir force.

To illustrate the role of real material properties in the exact and PWS cal-
culation methods, we have taken them into account in a multiplicative way. In
so doing, the computational results in Fig. 17.11(a) shown by the solid and dot-
ted lines (exact and PWS, respectively) were multiplied by the factor ηE(a) for
Au computed using the definition (17.9) with the dielectric permittivity of the
plasma model for a fixed separation distance a = 200 nm between the zero lev-
els of the corrugations on the two plates. Regarding the second-order PFA, real
material properties were taken into account in a nonmultiplicative way, as given
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by the first term on the right-hand side of eqn (17.137). The computational re-
sults for the rescaled lateral Casimir force including the effect of real material
properties are presented in Fig. 17.11(b) as a function of a/Λ (i.e. of the inverse
corrugation period). The solid, dotted, and dashed lines indicate the results ob-
tained using the exact path-integral method, the PWS method, and the PFA,
respectively. As can be seen in the figure, all of these methods are in agreement
for corrugation periods Λ ≥ 5a. In general, for inclusion of material properties,
the PFA should be considered as a more exact method than the PWS method
because the latter incorporates this effect in a multiplicative way. As can be seen
in Fig. 17.11(a), for ideal-metal plates the exact result for the lateral Casimir
force obtained up to the second-order terms is constrained between the results
derived using the approximate methods of the PWS method and the PFA. The
exact result corrected for the nonzero skin depth almost coincides with both of
the approximate results for a/Λ < 0.2 and is between them for a/Λ ≥ 0.2 [see
Fig. 17.11(b)].

The possibility of rigorous determination of the application regions of the two
phenomenological methods depends on the availability of exact results which take
into account both the nonplanar geometry and the material properties in higher
perturbation orders (see Sections 21.3 and 21.5).

17.5.4 The role of roughness and corrugations in atom–plate interactions

Here, we consider corrections to the Casimir–Polder interaction between an atom
and a plate with sides of length 2L due to imperfections in the plate geometry.
This can be done using the approximate PWS method developed in Sections
17.1.2 and 17.1.4 for the cases of two parallel plates and a sphere above a plate,
respectively. The application region of the PWS method (the separation a be-
tween the atom and the plate is much smaller than the roughness correlation
length Λc or corrugation period Λ) can be estimated from a comparison with
more fundamental calculations under conditions when those can be performed.

We start with the additive energy of the atom–plate interaction (17.19) cal-
culated up to the fourth perturbation order, where the roughness profile of the
plate is described by the function f1(x, y) introduced in eqn (17.3) and the height
of an atom above the plate z2 is replaced with a. Integration of eqn (17.19) with
respect to x1 and y1 results in (Bezerra et al. 2000b)

Eadd
A,R(x2, y2, a) = Eadd

A (a)

4∑
i=0

hi(x2, y2, a)

(
A1

a

)i

, (17.144)

where the additive energy of the interaction of an atom with a semispace is
given by eqn (6.42), and h0(x2, y2, a) = 1. The other expansion coefficients of
the powers of A1 � a in eqn (17.144) are given by

h1(x2, y2, a) = 4

∞∑
m,n=0

u(1)
mn(x2, y2)e

−zmn

(
1 + zmn +

z2
mn

3

)
, (17.145)
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h2(x2, y2, a) = 10

[
g
(2)
00 +

∞∑
m,n=0

u(2)
mn(x2, y2)e

−zmn

(
1 + zmn +

2z2
mn

5
+

z3
mn

15

)]
,

h3(x2, y2, a) = 20

[
g
(3)
00 +

∞∑
m,n=0

u(3)
mn(x2, y2)e

−zmn

×
(

1 + zmn +
13z2

mn

30
+

z3
mn

10
+

z4
mn

90

)]
,

h4(x2, y2, a) = 35

[
g
(4)
00 +

∞∑
m,n=0

u(4)
mn(x2, y2)e

−zmn

×
(

1 + zmn +
19z2

mn

42
+

5z3
mn

42
+

2z4
mn

105
+

z5
mn

630

)]
,

where znm is defined in eqn (17.30). Here, we assume that m + n �= 0; the same

notation for the Fourier coefficients [g
(i)
00 , g

(i)
l,mn] of the function f1 and its powers

f i
1 as in Section 17.1.2 are used, and

u(i)
mn(x2, y2) = g

(i)
1,mn sin

πmx2

L
sin

πny2

L
+ g

(i)
2,mn sin

πmx2

L
cos

πny2

L

+ g
(i)
3,mn cos

πmx2

L
sin

πny2

L
+ g

(i)
4,mn cos

πmx2

L
cos

πny2

L
. (17.146)

In order to take approximate account of the effects of nonadditivity in eqn
(17.144), we normalize it to the case of an atom interacting with a semispace
with a flat boundary surface. In this case the exact interaction energy at zero
temperature is given by eqn (16.21). This can be written in the form

EA(a) = − 3�c

8πa4
α(0)ηA

E(a), (17.147)

where

ηA
E(a) =

1

12

∫ ∞

0

e−y dy

∫ y

0

dζ
α(iωcζ)

α(0)

{
2y2r

(1)
TM(iζ, y) (17.148)

−ζ2
[
r
(1)
TM(iζ, y) + r

(1)
TE(iζ, y)

]}
.

Then the normalization factor is

K̃A
E(a) =

Eadd
A (a)

EA(a)
. (17.149)

Dividing both sides of eqn (17.144) into K̃A
E(a), we obtain

EA
R (x2, y2, a) =

Eadd
A,R(x2, y2, a)

K̃A
E (a)

= − 3�c

8πa4
α(0)ηA

E(a)κA
E(x2, y2, a), (17.150)
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where the geometric factor is given by

κA
E(x2, y2, a) =

4∑
i=0

hi(x2, y2, a)

(
A1

a

)i

. (17.151)

The energy EA
R in eqn (17.150) includes the effect of the surface imperfections in

a multiplicative way, similarly to eqns (17.40) and (17.41) for two parallel plates
with roughness.

The component of the Casimir force acting on an atom normal to the plate
has the form

FA
R (x2, y2, a) = − 3�c

2πa5
α(0)ηA

F (a)κA
F (x2, y2, a). (17.152)

This expression is obtained in the same way as for eqn (17.41) for the Casimir
pressure between two rough plates (see the discussion concerning the alternative
representation of the pressure within the PWS method in Section 17.1.3). The
correction factor ηA

F (a) is obtained from eqn (16.19) rewritten for T = 0,

ηA
F (a) =

1

48

∫ ∞

0

e−yy dy

∫ y

0

dζ
α(iωcζ)

α(0)

{
2y2r

(1)
TM(iζ, y) (17.153)

−ζ2
[
r
(1)
TM(iζ, y) + r

(1)
TE(iζ, y)

]}
.

The geometric correction factor to the force, κA
F (x2, y2, a), has the form of eqn

(17.151), where the coefficients hi(x2, y2, a) are replaced with

h̃i(x2, y2, a) = −a5+i

4

∂

∂a

[
1

a4+i
hi(x2, y2, a)

]
. (17.154)

Equation (17.150) for the energy of an atom above a rough or corrugated
surface shows that there is a lateral Casimir force acting on the atom. For ex-
ample, by negative differentiation of both sides of eqn (17.150) with respect to
x2, we obtain

FA,lat
R (x2, y2, a) = − 3�c

8πa4
α(0) ηA

E(a)

4∑
i=1

hi,x2(x2, y2, a)

(
A1

a

)i

, (17.155)

where

hi,x2(x2, y2, a) = − ∂

∂x2
hi(x2, y2, a). (17.156)

Similarly to Sections 17.1.2 and 17.1.3, the above equations can be signif-
icantly simplified for large-scale roughness satisfying the condition 2πa � Λ,
where Λ is the corrugation period or the roughness correlation length. In this
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case the coefficients of the correction factor to the normal force, κA
F (x2, y2, a),

take the form (Bezerra et al. 2000b)

h̃1(x2, y2) = 5

∞∑
m,n=0

u(1)
mn(x2, y2), h̃2(x2, y2) = 15

[
g
(2)
00 +

∞∑
m,n=0

u(2)
mn(x2, y2)

]
,

h̃3(x2, y2) = 35

[
g
(3)
00 +

∞∑
m,n=0

u(3)
mn(x2, y2)

]
, (17.157)

h̃4(x2, y2) = 70

[
g
(4)
00 +

∞∑
m,n=0

u(4)
mn(x2, y2)

]
.

The expansion coefficients in eqn (17.155) are given by

hi,x2(x2, y2) = −ci

∞∑
m,n=0

∂u
(i)
mn(x2, y2)

∂x2
, (17.158)

where c1 = 4, c2 = 10, c3 = 20, and c4 = 35.
As an example, we consider an atom above a plate with uniaxial sinusoidal

corrugations described by the function f1 in eqn (17.124). The coefficients u
(i)
mn

in eqn (17.157) can be easily calculated, leading to the following result for the
Casimir force acting in the direction normal to the surface (Bezerra et al. 2000b):

FA
R (x2, a) = − 3�c

2πa5
α(0) ηA

F (a)

[
1 + 5 sin

2πx2

Λ

A1

a
(17.159)

+
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)
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1
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+
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2πx2

Λ
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1
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+
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1 − 4

3
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4πx2

Λ
+

1

3
cos
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)
A4

1

a4

]
.

In the same way, from eqns (17.155) and (17.158) we obtain the lateral Casimir
force acting between an atom and a corrugated plate,

FA,lat
R (x2, a) =

3�c

4a4Λ
α(0) ηA

E(a)
A1

a

[
4 cos

2πx2

Λ
+ 10 sin

4πx2

Λ

A1

a
(17.160)

+15

(
cos

2πx2

Λ
− cos

6πx2

Λ

)
A2

1

a2
+ 35

(
sin

4πx2

Λ
− 1

2
sin

8πx2

Λ

)
A3

1

a3

]
.

Note that the function FA
R reaches a minimum at xmin

2 /Λ = 0.25 and a maximum
at xmax

2 /Λ = 0.75 (i.e. the largest magnitude of the normal force is reached
when the atom is above the position with the maximum value of the corrugation
function). For a typical ratio A1/a = 0.1, the perturbation orders from the first
to the fourth contribute 50%, 15%, 3.5%, and less than 1%, respectively, of the
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magnitude of the normal force between an atom and a flat surface at the points
of the maxima and minima. The lateral force F A,lat

R vanishes at the points of
the maxima and minima of the function F A

R . If the atom is in the vicinity of the
point xmin

2 , it experiences a lateral Casimir force which attracts it to the point
xmin

2 . After the atom crosses the point xmin
2 , the lateral force changes its sign.

As a result, the atom oscillates around xmin
2 with a decreasing amplitude. If the

atom is in the vicinity of xmax
2 , the lateral Casimir force repels it from xmax

2 in
the direction of the nearest point xmin

2 .
The interaction of an atom with a corrugated plate has been considered within

the scattering approach under the conditions A1 � a, Λ, λA, λ0, where λA and
λ0 are the characteristic absorption wavelengths of the atom and of the material
of the plate (Dalvit et al. 2008). Results obtained using the scattering approach
in only the first perturbation order, A1/a, were compared with corresponding
results found using the PFA. A large deviation of about 30% was found for a
corrugation period Λ = 3.5 µm and an atom–plate separation of a = 2 µm. This
case is expected to be outside the application region of the PFA because 2πa > Λ
(see the previous section). The computations performed in this section within
the application regions of both the PFA and the PWS method demonstrate the
important role of contributions to the Casimir force of higher order in powers of
A1/a. Thus, although the scattering approach in the lowest perturbation order
can be used to indicate the applicability limits of the PFA, it is insufficient for
configurations of experimental interest (see Chapter 21).
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18

GENERAL REQUIREMENTS FOR CASIMIR FORCE

MEASUREMENTS

The large body of material presented in the first two parts of the book shows that
the measurement of the Casimir force is a complicated scientific and technological
problem. Given the small value of the force for the experimentally accessible sur-
face areas, the force sensitivity of the available measurement techniques has been
a severe limitation. Another limitation is that the separation distances where the
Casimir force becomes measurable are very small and their accurate determina-
tion has been difficult. Given that the force has a very strong dependence on
the separation and on the geometrical and material properties of the boundary
surfaces, the comparison between experiment and theory is a challenging task.
In this chapter, we briefly consider older measurements of the Casimir force and
formulate the general experimental requirements and best practices which follow
from these measurements. Next we discuss rigorous procedures for comparison
of experiment with theory in relation to force–distance measurements. Specifi-
cally, we elaborate on the presentation of experimental errors and precision and
of the theoretical uncertainties for real materials. We also discuss the statistical
framework for the comparison between experiment and theory. The concepts in-
troduced in this chapter are used in all of the other chapters of Part III of this
book, where the main experiments on the measurement of the Casimir force are
considered.

18.1 Primary achievements of older measurements

In the half century after the theoretical prediction of the Casimir effect, there
were only a few attempts to measure the Casimir force. Here, we briefly discuss
the main experiments which were performed before the year 1997, when the
modern stage in this field of research started. In all cases, special attention is
drawn to one or a few of the necessary requirements for an ideal force–distance
measurement that were met or not met in the experiment under consideration.
This will allow us to summarize the experience gained from the older experiments
in the next section.

18.1.1 Experiment with parallel plates by Sparnaay

Sparnaay (1958) made the first reported attempt to measure the Casimir force.
He used a configuration of two flat metal plates. A force balance based on a
spring balance was used in the final series of measurements. The sensitivity of
the spring balance was between 10−4 and 10−3 dyn. The extension of the spring
was measured through a measurement of the capacitance of the capacitor formed
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by the two flat plates. Calibration of this capacitance was done with the help of
tungsten and platinum wires, though the uncertainties in this calibration were
not reported. Care was taken with vibration isolation. It was noted that the knife-
edges and the springs used led to a large hysteresis, which made determination of
the separation distance of the surfaces difficult. This was reported to be the most
severe drawback of the measurement technique. The plates were mounted such
that they were electrically insulated from the rest of the apparatus. Sparnaay
realized that even a small potential difference of 17mV between the two parallel
plates was sufficient to overwhelm the Casimir force.

To take care of any potential differences between the surfaces, the two plates
were brought into contact at the start of the experiment. Three types of pairs
of metal plates, namely two aluminum plates, two chromium plates, and a
chromium plate and a steel plate, were used in the measurements. Even with
a variety of electrical and mechanical cleaning procedures, dust particles larger
than 2–3 µm were observed on the plates. The plates were aligned parallel by
visual inspection with about 10% variation in the interplate distance from one
of the plates to the other. Because of the presence of the dust particles it was
estimated that even on contact, the plates were separated by 0.2 µm (the pro-
cedure used to determine this value was not provided). The pair consisting of
chromium and steel plates and the pair consisting of two chromium plates both
had attractive forces between them, whereas the pair of aluminum plates showed
a repulsive force. The peculiar repulsive force noticed in the case of the aluminum
plates was thought to be due to the presence of impurities on the aluminum sur-
face. In the case of the attractive force for the chromium and chromium–steel
pairs, given the uncertainties in the measurement of the interplate distance, only
general agreement with the Casimir pressure formula (1.1) for perfectly reflect-
ing boundaries could be achieved. If we ignore the repulsive forces measured
with the aluminum plates, the following improvements other than an increase in
the force sensitivity would have been desirable. The first was a more accurate
measurement of the surface separation. The second desirable improvement was
a more accurate measurement of the parallelism between the two surfaces. For
plates of area 1 cm2 (L = 0.5 cm) at a separation a = 1 µm, the correction to
the Casimir pressure due to the nonparallelity does not exceed 10% if an angle
ϕ0 less than 3.4 × 10−5 rad between the plates is guaranteed (see Section 17.3).
As a third improvement, a measurement of any residual electrostatic potential
difference present between the two surfaces was required, given the presence of
the dust particles.

In conclusion, these measurements were the first indication of an attractive
Casimir force between metallic surfaces, approximately in line with expectations.
(Note that the aluminum plates showed a repulsive force and therefore the ob-
servation of an attractive force was not conclusive.) But, above all, the problems
that needed to be overcome for a careful and conclusive measurement of the
Casimir force were clearly elucidated.
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18.1.2 Experiments by Derjaguin et al.

One of the major improvements that was pioneered by Derjaguin’s group was
the use of curved surfaces to avoid the need to maintain two flat plates perfectly
parallel. This was accomplished by replacing one or both plates by a curved
surface such as a lens, sphere, or cylinder. The first use of this technique was to
measure the force between a silica lens and a plate (Derjaguin 1934, Derjaguin et
al. 1956, Derjaguin and Abrikosova 1958). Sparnaay (1958) pointed out that this
work did not take into account the presence of the “gel layer” which is usually
present on such surfaces. Also, the possible substantial electrostatic forces due
to the use of dielectric silica surfaces, which would result in systematic errors,
were not reported in the experimental results. These experiments will not be
discussed further here.

There was also related work with metallic surfaces by Derjaguin et al. (1956,
1987). In this case, the forces between platinum fibers and gold beads were
measured. The force measurement was done by keeping one surface fixed and
attaching the other surface to the coil of a galvanometer. The rotation of the
galvanometer coil in response to the force led to the deflection of a light beam,
which was reflected off mirrors attached to the galvanometer coil. The deflected
light beam was detected through a resistance bridge, two of whose elements could
be photoactivated. The measured data indicated a nonretarded van der Waals
forces for distances below 50–80nm and a retarded-force region for larger dis-
tances. However, more accurate modern theoretical results (Klimchitskaya et al.
2000) predict an unretarded force below distances of 2 nm in the case of gold. Der-
jaguin et al. (1987) reported a discrepancy in the force measurements of around
60%. Also, any possible electrostatic forces due to potential differences between
the two surfaces appear to have been neglected. While the distance on contact
of the two surfaces appears to have been taken as the zero distance (ignoring the
role of surface roughness), it was mentioned that surface roughness might have
affected the experimental measurements and have made the comparison with
theory very difficult, particularly for distances less than 30 nm.

18.1.3 Experiments by Tabor, Winterton, and Israelachvili

In the intervening years between the experiments conducted by Sparnaay (1958)
and by van Blockland and Overbeek (1978) using metallic surfaces, there were
many force measurements on nonconductive surfaces. Of these, the experiments
on muscovite mica will be discussed here (Tabor and Winterton 1968, Israelachvili
and Tabor 1972, Israelachvili 1992, White et al. 1976). The major improvement
in these experiments was the use of atomically smooth surfaces obtained from
cleaved muscovite mica. This provides the possibility of very close approach of
the two surfaces. As a result, it was possible to measure the transition region
between the retarded and nonretarded van der Waals forces for this particular
material. Cylindrical surfaces of radii between 0.4 and 2 cm, obtained by wrap-
ping mica sheets around glass cylinders, were used to measure the force. The
procedure used in the making of the mica cylinders led to uncertainties of 50%
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in their radius. A spring-type balance based on the jump method was used (for
large separations, modifications to this were made). Here, the force of attach-
ment of one of the cylinders to an extended spring was overcome by the attractive
force from the opposite cylindrical surface. By using springs of different exten-
sions and different spring constants, a variety of distances could be measured.
Multiple-beam interferometry was used for the measurement of the surface sep-
aration, with a reported resolution of 0.3 nm. In what appears to be the final
work in this regard (Israelachvili and Tabor 1972), a sharp transition from the
retarded to the nonretarded van der Waals force was reported at 12 nm [earlier
work had measured a transition at larger surface separations (Tabor and Win-
terton 1968)]. Later reanalysis of the data with more precise spectral properties
for the mica revealed that the data could be reconciled with the calculations only
if errors of at least 30% in the radius of curvature of the mica cylinders were ad-
mitted (White et al. 1976). The possibility of changes in the spectral properties
of the mica surface used to make the cylinders was also mentioned to explain the
discrepancy. The separation on contact of the two surfaces was assumed to be
zero, i.e. the surfaces were assumed to completely free of dust, impurities, and
any atomic steps on the cleaved surface. Additionally, as mica is a nonconductor
which can easily accumulate static charge, the role of electrostatic forces between
the cylinders is hard to estimate, and was not considered in the experiments.

18.1.4 Experiments by van Blockland and Overbeek

The next major set of improved experiments with metallic surfaces was per-
formed by van Blockland and Overbeek (1978). Here, many of the improvements
achieved with the dielectric surfaces previously used were incorporated. Also, care
was taken to address many of the concerns discussed above. [Earlier measure-
ments by the same group (Rouweler and Overbeek 1971) with dielectric surfaces
did not report on the effects of the chemical purity of the surfaces or the role of
electrostatic forces between them.] The final improved version of the experiment
using metallic surfaces was done by van Blockland and Overbeek (1978). The
measurements were performed using a spring balance. The force was measured
between a lens and a flat plate coated with either 100 ± 5 nm or 50 ± 5 nm of
chromium. The chromium surface was expected to be covered with 1–2nm of
surface oxide. Water vapor was used to reduce the surface charges. This use of
water vapor might have affected further the chemical purity of the metal surface.
At the outset, the authors recognized several outstanding problems in Casimir
force measurements. The first of them was that there was a potential difference
between the two surfaces, leading to electrostatic forces which complicated the
measurement. The second stubborn problem was that an exact determination
of the separation distance between the two surfaces needed to be performed.
The third problem, inherent in some measurement schemes, required an exact
determination of the nonzero surface separation on contact of the two surfaces.

The above authors then tried to address these problems. The first problem
was dealt with by two methods: by looking for a minimum in the Casimir force
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as a function of an applied voltage, and by measuring the potential difference
from the intersection point of the electrostatic forces with application of positive
and negative voltages. The two methods yielded approximately consistent values
for the potential difference, of between 19 and 20mV. This potential difference
results in an electric force equal to the Casimir force at around 400nm surface
separation. Thus, to measure the Casimir force, the experiment had to be carried
out with a compensating voltage present at all times.

The separation distance between the two surfaces was measured through a
measurement of the lens–plate capacitance using a Schering bridge. This capac-
itance method was applicable only for a relative determination of distances, as
the capacitances of cables and stray capacitances were of the same order as those
between the spherical surface and the plate. Additional problems such as the tilt
of the lens with respect to the plate were recognized by the authors. The distance
was calibrated with the help of the electrostatic force at a few points. The force
was measured for distances between 132 and 670nm for the 100nm thick metal
coating. Only distances larger than 260 nm could be probed for the 50 nm metal
coating.

The theoretical treatment of metallic chromium was noted to be problematic
as it has two strong absorption bands around 600 nm. Given this, it was very hard
to develop a complete description based on the Lifshitz theory, and some empir-
ical treatment was necessary. The imaginary part of the dielectric permittivity
corresponding to this absorption was modeled by a Lorentz atom (Krupp 1967).
The two overlapping absorption bands were treated as a single absorption band.
The strength of this absorption band could only be taken into account approxi-
mately in the theoretical modeling. However, this absorption band was found to
cause about 40% of the total force. The long-wavelength response of chromium
was modeled as that of a Drude metal with a plasma frequency based on an
electron number density of 1.15 × 1022 cm−3. With this theoretical treatment,
the measured force was shown to be consistent with the theory.

The authors of the study estimated the effect of surface roughness (see Chap-
ter 17), which was neglected in the theoretical treatment, to make a contribution
of order 10%. The relative uncertainty in the measured force was reported to be
around 25% near 150nm separation but much larger around 500nm separation.
The authors reported that noise came from the force measurement apparatus.
Given the above, we can estimate the experimental error to be of about 50%.
But it is worth noting that this was the first experiment to grapple with all
of the important systematics and other factors which are necessary to make a
clear measurement of the Casimir force. This experiment can therefore be consid-
ered as the first unabiguous demonstration of the Casimir force between metallic
surfaces. Thus, it was also the first measurement of surface forces, in general,
where an independent estimate of the experimental precision could be attempted
(though none was provided by the authors).
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18.1.5 Dynamical measurements by Hunklinger and Arnold et al.

In theory, dynamical force measurements are more sensitive, as the signal (and
the noise) in a narrow bandwidth is monitored. A dynamical force measurement
technique was first used to measure the Casimir force between silica surfaces and
silica surfaces coated with a thin layer of silicon (Hunklinger et al. 1972, Arnold
et al. 1979). Here, a glass lens of radius 2.5 cm was attached to a metal-coated top
membrane of a loudspeaker, while a flat glass plate was made the top surface of
a microphone. In one case the glass surfaces were coated with silicon (Arnold et
al. 1979). A sinusoidal voltage (at the microphone resonance frequency of 3 kHz)
was applied to the loudspeaker such that the distance between the two surfaces
also varied sinusoidally. The variation resulted in a sinusoidal oscillation of the
flat plate on the microphone due to the Casimir force. This oscillation of the mi-
crophone was detected. The calibration was done by removing the plate and lens
and applying an electrostatic voltage between the top of the loudspeaker and the
microphone. A probable error of 20% (Hunklinger et al. 1972) or 50% (Arnold et
al. 1979) in the force calibration was reported. The possible force sensitivity was
about 10−7 dyn. The electrostatic force was minimized by use of water vapor
and acetic acid vapor. No measurement of the residual electrostatic force was
provided. The compensation of such forces was not possible, given the use of
insulating surfaces such as silica. Even when Si surfaces were used, they were
coated onto glass and not electrically connected. Given the glass manufacturers’
roughness specifications of 50 nm for the surfaces, the surface separation on con-
tact was estimated to be around 80 nm. Deviations from the expected behavior
were found for separation distances below 300nm and larger than 800nm. Such
deviations might be possible owing to the presence of the “gel layer” pointed out
by Sparnaay (1958) and the role of electrostatic charges.

The change in the force on irradiation of Si-coated glass with white light was
also reported. Surprisingly, illumination led to changes in the force only for large
separation distances greater than 0.3 µm.

18.1.6 Measurements of the Casimir–Polder force by Sukenik and Hinds et al.

The magnitude and the distance dependence of the Casimir–Polder force acting
between an atom and a cavity wall were measured by Sukenik et al. (1993) when
they studied the deflection of ground-state Na atoms passing through a micron-
sized gold cavity. The intensity of the atomic beam transmitted through the
cavity was measured as a function of the plate separation. The measurement
scheme was as follows. Na atoms at 180◦C effused from a vertical oven slit into
a vacuum of approximately 10−7 Torr. After traveling a distance of 18 cm, they
entered a vertical gold cavity 3 cm high, 8mm long, and adjustable in width
from 0.5 to 8 µm (Sukenik et al. 1993). The cavity walls were made of thermally
evaporated chromium (≈ 0.7 nm) followed by gold (42± 3 nm), on two flat silica
plates. The plates were arranged so that they touched each other along one
side to form a wedge. The distance between the plates on the opposite side
was controlled by a nickel foil spacer. In the cavity, atoms were deflected by
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the atom–wall interaction. For ground-state atoms between parallel ideal-metal
walls, a position-dependent interaction potential was found by Barton (1987a,
1987b). When the atom is not too close to one of the cavity walls, this potential
depends on the distance between the walls as a−4, i.e. in the same way as the
Casimir–Polder potential (16.28). For a narrow cavity of plate separation a, the
van der Waals dependence ∼ a−3 is reproduced, as given in eqn (16.24). In the
experiment, the atom–wall interaction caused the Na atoms to stick to the walls
of the cavity. Thus the fractional transmission of atoms through the cavity was a
measure of the strength of this interaction. The atoms that exited from the cavity
were resonantly excited and ionized by two laser beams so that they could be
detected using an electron multiplier. The transmitted atom fraction (normalized
to the transmission at 6 µm separation) was measured at different laser excitation
positions along the wedge. The corresponding plate separation at those positions
was determined using the interference pattern with Hg green light (λ = 546 nm)
or Na yellow light (λ = 589 nm). The data were compared with a Monte Carlo
calculation in which atoms having a Maxwell–Boltzmann velocity distribution
propagated through a cavity under the influence of the Casimir–Polder or van
der Waals potential. The data were shown to be in agreement with the Casimir–
Polder potential over the measurement range from 0.75 to 7.5 µm. The same
data within the range of separations from 0.75 to 1.15 µm were inconsistent with
the hypothesis of a van der Waals interaction between an atom and the cavity
wall. The magnitude of the Casimir–Polder interaction potential was confirmed
with a relative error of 13%. The authors discussed a possible correction to the
theoretical potentials used due to the nonzero skin depth of gold and found it
negligible. The surface roughness correction and thermal effects at separations
above 1.2 µm were not taken into account (the latter might be important, keeping
in mind that the measurements were done to separation distances as large as
7.5 µm).

18.2 General requirements following from the older measurements

The first experiments dealing with the Casimir force clarified the problems to be
solved so that precise and reproducible measurements could be performed. From
the instrumental standpoint there are clear requirements, such as an extremely
high force sensitivity and the capability to reproducibly measure the separation
between the two surfaces. Other than these, there are material requirements
necessary for a good measurement of the Casimir force. These fundamental re-
quirements, as spelled out by Sparnaay (1958, 1989), are:

1. The plate surfaces must be completely free of chemical impurities and dust
particles.

2. Precise, independent, and reproducible measurements of the separation
between the two surfaces must be performed. In particular, the fact that
the average distance on contact of the two surfaces is nonzero owing to the
roughness of metal surfaces and the presence of dust must be taken into
account.
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3. Low electrostatic charges on the surfaces and a low potential difference be-
tween the surfaces are necessary. Note that there can exist a large potential
difference between clean, grounded metallic surfaces owing to differences
between the work functions of the materials used, and the cables used
to ground the metal surfaces. Thus an independent measurement of the
residual electrostatic force is absolutely necessary.

Each of the above instrumental and material requirements is difficult to com-
ply with in practice and they are certainly very difficult to comply with together.
They have bedeviled this field because at least one of the above was neglected
in all of the early force measurements. Regarding the material requirements, as
pointed out by Sparnaay (1958), requirement 1 was ignored in the experiments
with glass and quartz surfaces (Derjaguin 1934, Derjaguin et al. 1956, Derjaguin
and Abrikosova 1958), where surface reactions with moisture and silicone oil
from the vacuum apparatus led to the formation of a “gel layer” on the sur-
face. Sparnaay (1958) expected this gel layer to completely modify the forces
for surface separation distances less than 1.5 µm. The last two requirements are
particularly difficult to meet in the case of nonconductive surfaces or substrates
such as glass and quartz (Derjaguin 1934, Derjaguin et al. 1956, Derjaguin et al.
1987, Hunklinger et al. 1972, Arnold et al. 1979), and mica (Tabor and Winter-
ton 1968, Israelachvili and Tabor 1972, Israelachvili 1992, White et al. 1976). Yet
all of these early measurements possibly neglected the systematic correction due
to the electrostatic force in their experiments. Some other requirements, such
as the necessity to determine the exact surface separation distance and to take
account of surface roughness, were neglected in all but oldest experiments. Some
experimenters have tried to use an ionized environment (Overbeek and Sparnaay
1954) to neutralize the static charges but have reported additional electrostatic
effects. Also, all early measurements took the surface separation on contact to be
zero. This can be a significant error for large flat surfaces or surfaces with large
radius of curvature, as the inevitable presence of obstacles prevents achieving
close contact between them. As stated by Sparnaay (1958), this is also true for
some experiments with Pt metallic wires, where the point of contact was assumed
to be zero separation distance (Derjaguin et al. 1987). Thus independent checks
of the surface separation are necessary for correct analysis of the data.

Of the earlier experiments with metallic surfaces, only two meet at least some
of the stringent criteria necessary for careful measurements of the Casimir force.
The first one is that by Sparnaay (1958). The second is that by van Blockland
and Overbeek (1978). It should be mentioned that both experiments were a
culmination of many years of improvements, references for which are provided
in the respective publications.

18.3 Rigorous procedures for comparison of experiment and theory

The comparison between experiment and theory for Casimir force measurements
is a complicated problem which has been addressed in the literature in sufficient
detail only recently (Decca et al. 2005b, Chen et al. 2006b, Klimchitskaya et
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al. 2006b). The difficulties which arise in such a comparison are connected with
the impossibility of measuring the separation distance to the desired precision
and with the fact that the Casimir force is a strongly nonlinear function of the
separation. Insufficient information concerning the material properties of the
test bodies also presents a challenge to the theorists. Below, we demonstrate
that comparisons between measurement data and theoretical computations for
Casimir force experiments can be performed in three independent steps. In the
first step, the total experimental error in the measurement data must be ascer-
tained, regardless of the theory to be used. Then the theoretical uncertainties
must be analyzed and the total theoretical error calculated. Finally, we discuss
various statistical approaches to comparing experiment with theory.

18.3.1 Experimental errors and precision

In the first step of the comparison between experiment and theory, we deal only
with the experimental data for the measured quantity. Our aim is to character-
ize how precise these data are, regardless of the theory. To do this, the total
experimental error of the measurement results must be calculated as a combi-
nation of systematic and random errors. Let the measured quantity be denoted
by Πexpt. This may be, for instance, the separation distance between the two
bodies, Πexpt = a, or the Casimir pressure (or force) as a function of the sepa-
ration distance, Πexpt = Πexpt(a) = P expt(a) [or F expt(a), respectively]. In the
two latter cases, the errors may also be separation-dependent.

We start with a discussion of systematic errors. We denote the absolute error
of the physical quantity Π by ∆Π. In so doing, systematic errors (and other
types of errors) are denoted by an additional superscript, for example ∆systΠ. In
each experiment, there are several (total number J) sources of systematic errors
∆syst

i Πexpt, which are usually called absolute systematic errors, where 1 ≤ i ≤ J .
The respective relative systematic errors are defined as

δsyst
i Πexpt =

∆syst
i Πexpt

|Πexpt| . (18.1)

It is necessary to stress that both in metrology and in all natural sciences
(physics, chemistry, biology, etc.) the term systematic error is used with two dif-
ferent meanings (Rabinovich 2000). According to the first meaning, a systematic
error is some bias in a measurement which always makes the measured value
higher or lower than the true value. Such systematic errors in the measurement
results are usually removed using some known process, i.e. through a calibra-
tion. They can be also taken into account as corrections (see, for example, the
description of the calibration procedure and an example of a correction in mea-
surements of the Casimir force in Section 19.2.3). The systematic errors in this
understanding are often called systematic deviations. Below, it is assumed that
the experimental data under consideration are already free of such deviations.

Another meaning, which is used below in this book, defines the systematic
errors as the errors of a calibrated measurement device. The errors of a theoretical
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formula used to convert a directly measured quantity into an indirectly measured
one (see e.g. Section 19.3.2) are also considered as systematic. In accordance with
common understanding, the error of a calibrated device is the smallest fractional
division of the scale of the device. At the limits of this range, systematic errors are
considered as random quantities characterized by a uniform distribution (equal
probability). The total systematic error at a chosen confidence level is obtained
from the following statistical rule (Rabinovich 2000):

∆systΠexpt = min


 J∑

i=1

∆syst
i Πexpt, k

(J)
β

√√√√ J∑
i=1

(
∆syst

i Πexpt
)2 . (18.2)

Here, β is the confidence level, and k
(J)
β is a tabulated coefficient depending on

β and on the total number of systematic errors J . The same rule is also valid for
the combination of the relative systematic errors (18.1) leading to the combined
systematic error δsystΠexpt. Note that in precise experiments, errors are usually
determined at a confidence level of 95% or higher. In this case, for instance,

k
(2)
0.95 = 1.1 and k

(4)
0.95 = 1.12. However, in Casimir force measurements much

lower confidence levels are often used, and sometimes the experimental errors
are not reported at all (see Chapter 19).

Next we discuss random experimental errors. Usually the measurement of the
Casimir force or pressure at separations ai (1 ≤ i ≤ imax) within a separation
interval (amin, amax) is repeated several times, up to a total number n. This is
done in order to decrease the random error and to narrow the confidence interval.
All the measurement data from n sets of measurements can be represented as
pairs [aij , Π

expt(aij)], where 1 ≤ i ≤ imax, 1 ≤ j ≤ n. If the separations with
fixed i are approximately the same in all sets of measurements (i.e. aij ≈ ai),
the mean and the variance of the mean at each separation ai are obtained in the
standard way (Rabinovich 2000):

Π̄expt
i =

1

n

n∑
j=1

Πexpt(aij), s2
Π̄i

=
1

n(n − 1)

n∑
j=1

[
Πexpt(aij) − Π̄expt

i

]2
. (18.3)

Direct calculations show that typical mean values Π̄expt
i are uniform, i.e. they

change smoothly with a change of i. The variances of the mean, sΠ̄i
, needed for

the determination of the random error, however, are not uniform. To smooth
them, a special procedure is used in statistics (Brownlee 1965, Cochran 1954).
This procedure is as follows. At each separation a0, in order to find the uniform
variance of a mean, we consider not only this given separation point, but also
N neighboring points ai on both sides of a0. Then the smoothed variance of the
mean at the point a0 is given by (Brownlee 1965, Cochran 1954)

s2
Π̄(a0) = max

[
N

N∑
i=1

λ2
i s

2
Π̄i

]
, (18.4)



Rigorous procedures for comparison of experiment and theory 523

where the λi are statistical weights. The maximum in eqn (18.4) is chosen by
comparing values from two sets of λi,

λi =
1

N
, λi =

1

ci

∑N
k=1 c−1

k

, (18.5)

where the constants ck are determined from

s2
Π̄1

: s2
Π̄2

: · · · s2
Π̄N

= c1 : c2 : · · · : cN . (18.6)

The number of points N is chosen such that any further increase of N does
not influence the magnitude of sΠ̄(a0) obtained. Note that the maximum in eqn
(18.4) leads to the most conservative results, i.e. it overestimates the random
error. Finally, the confidence interval for the quantity Πexpt(a0), determined at
a confidence level β, takes the form[

Π̄expt(a0) − ∆randΠexpt(a0), Π̄expt(a0) + ∆randΠexpt(a0)
]
. (18.7)

Here, the random absolute error is given by

∆randΠexpt(a0) = sΠ̄(a0)t(1+β)/2(n − 1), (18.8)

where tp(f) can be found in tables for Student’s t-distribution [see e.g. the text-
book by Brandt (1976)].

Note that the experimental points used in the determination of the confidence
interval should be checked for the presence of outlying results (Rabinovich 2000).
For this purpose, at each point ai it is necessary to consider the quantity

Ti =
1√

nsΠ̄i

max |Πexpt(aij) − Π̄expt
i |, (18.9)

where Π̄expt
i and sΠ̄i

are defined in eqn (18.3) and the evaluation of the maximum
is done considering all measurement sets 1 ≤ j ≤ n. Let us assume that the
maximum is reached for the set where j = j0. If the inequality Ti > Tn,1−β

is satisfied, where the Tn,1−β are tabulated quantities, then the measurement
result Πexpt(aij0) belonging to the set where j = j0 is an outlying result with
a confidence level β (Rabinovich 2000). If the measurement set j = j0 contains
outlying results at many different points ai, it should be rejected at the confidence
level β and not used in the data analysis.

Now we consider a more complicated experimental situation where the sep-
arations aij with fixed i but different j may be different. This happens when it
is difficult to obtain approximately the same intermediate distances a1, a2, . . .
in every set of measurements. In such a situation, the entire separation interval
(amin, amax) is divided into partial subintervals of length 2 ∆a, where ∆a is the
total absolute error in the measurements of the separations. Each subinterval,
numbered k, contains a group of mk points aij ≡ akl, where 1 ≤ l ≤ mk. Inside
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each subinterval, all points akl can be considered as equivalent, because within
an interval of width 2 ∆a the random quantity representing the absolute separa-
tion is distributed uniformly. The mean and variance of the mean of the physical
quantity Πexpt for the subinterval k are then defined as

Π̄expt
k =

1

mk

mk∑
l=1

Πexpt(akl), s2
Π̄k

=
1

mk(mk − 1)

mk∑
l=1

[
Πexpt(akl) − Π̄expt

k

]2
.

(18.10)
Similarly to the case where aij ≈ ai considered above, the mean values Π̄expt

k are
uniform, but the variances of the mean, sΠ̄k

, are not uniform. To smooth them,
the same statistical procedure as described above can be used. In this case one
considers several subintervals (N altogether) situated to the left and to the right
of the subinterval containing the point a0. The smoothed variance of the mean at
the point a0, sΠ̄(a0), is determined from eqn (18.4) with the statistical weights
defined in eqns (18.5) and (18.6). Then, the confidence interval for the confidence
level β is found from eqn (18.7) where, instead of eqn (18.8), the random error
is

∆randΠexpt(a0) = sΠ̄(a0)t(1+β)/2(minmk − 1). (18.11)

It is evident that eqn (18.11) leads to a larger random error than does eqn (18.8)
because min mk < n, where n is the total number of measurement sets. In fact,
if the intermediate separation distances are not approximately the same in each
set of measurements, the averaging of the data can be performed only over a
smaller number than the number of actual repetitions n.

In the case where the separations aij with fixed i but different j are differ-
ent, one must also exclude outlying measurement results (if any) from the error
analysis. For this purpose, instead of the quantity Ti obtained from eqn (18.9),
one must use

Tk =
1√

mksΠ̄k

max |Πexpt(akl) − Π̄expt
k |, (18.12)

where the mean value and the variance are defined in eqn (18.10) and the max-
imum is taken over all mk points belonging to subinterval number k.

Similarly to the relative systematic error, one can define the relative random
error

δrandΠexpt =
∆randΠexpt

|Πexpt| . (18.13)

To find the total experimental error ∆totΠexpt(a) in the measurements of
the quantity Πexpt(a), one must combine the random and systematic errors.
The random error is described by the normal (or Student) distribution. The
systematic error is described by a combination of uniform distributions. To be
conservative (i.e. overestimating the errors), one can assume that the resulting
systematic error is described by a uniform distribution as well (other assumptions
would lead to a smaller total error). There are various methods in statistics to
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combine errors described by normal and uniform distributions (Rabinovich 2000).
A widely used method is based on the value of the quantity

r(a) =
∆systΠexpt(a)

sΠ̄(a)
. (18.14)

According to this method, at all separations where r(a) < 0.8, the contribution
of the systematic error to the total experimental error is negligible. In this case
one can put

∆totΠexpt(a) = ∆randΠexpt(a) (18.15)

at a 95% confidence level, provided the random error is also determined with the
same confidence using eqn (18.8) or (18.11). If the inequality r(a) > 8 is valid,
the random error is negligible and the total experimental error determined at a
95% confidence level is

∆totΠexpt(a) = ∆systΠexpt(a), (18.16)

where the systematic error is given by eqn (18.2) with β = 0.95. Note that eqn
(18.16) is generally fulfilled for precise experiments in metrology, where the sys-
tematic error alone determines the total error and all necessary measures are
undertaken to make the random error negligible. For the moment, there is only
one experiment on the physics of the Casimir effect satisfying this condition
(Decca et al. 2007a, 2007b), described in Section 19.3.4. In the range of separa-
tions where 0.8 ≤ r(a) ≤ 8, the combination of the errors is performed using the
rule

∆totΠexpt(a) = qβ(r)
[
∆randΠexpt(a) + ∆systΠexpt(a)

]
. (18.17)

The coefficient qβ(r) at a confidence level β = 0.95 varies between 0.71 and 0.81
depending on the value of r(a). To be conservative, one can use q0.95(r) = 0.8.

We emphasize that the total experimental error of the measurements of the
Casimir force and pressure ∆totΠexpt(a) and the corresponding total relative
error

δtotΠexpt(a) =
∆totΠexpt(a)

|Πexpt(a)| (18.18)

characterize the precision of an experiment on its own, without comparison with
any theory.

18.3.2 Theoretical uncertainties for real materials

The theoretical values of the quantity Π(a) (e.g. of the Casimir pressure between
two parallel plates or the force between a sphere and a plate) are also burdened
with some errors and uncertainties. The most important theoretical tool for
calculating the Casimir force between real materials is the Lifshitz theory. For
the simplest case of plane parallel plates it expresses the force in terms of the
frequency-dependent dielectric permittivities of the plate materials. The dielec-
tric permittivity of a material can be found using optical data for the complex
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index of refraction (see Sections 12.6.1 and 13.3). These data are determined with
some errors and may also depend on the particular sample. As a result, the the-
oretical values Π(a) are computed with some error ∆1Π

theor(a). Note that there
are different sets of optical data in the literature for films made of the same
material but of different qualities and thicknesses which differ by far more than
the error in the optical measurements. When such sets of the optical data are
used in the Lifshitz theory, one can arrive at computational results for Πtheor(a)
differing by about 5% (Pirozhenko et al. 2006). But this, however, should not be
confused with the relative theoretical error δ1Π

theor(a) = ∆1Π
theor(a)/|Πtheor(a)|

due to the errors in the optical data, because the former is usually an order of
magnitude smaller (see Section 19.2.3). The point to note is that the choice of
a specific set of optical data from those available in the literature is similar to a
hypothesis, which, however, can be independently verified when the experiment
is compared with theory (see the next subsection).

Another theoretical error, which we may denote by ∆2Π
theor(a), is connected

with the deviation of the boundary surfaces from the perfect geometrical shape
(because of roughness, corrugations, etc.). The respective corrections to the
Casimir pressure or force can be calculated only approximately (see Chapter
17), and this results in some error. There are other theoretical errors due to
surface effects, for example uncertainties due to patch potentials (see Sections
19.2.3 and 19.3.3).

An important theoretical error arises when the proximity force approximation
is used with the configuration of a sphere above a plate. In this case the proximity
force approximation is part of the theoretical expression for the Casimir force
acting between a sphere and a plate, and the inherent approximations result in
some theoretical error ∆3Π

theor(a). Note, however, that in some cases the error
due to the use of the proximity force approximation should be included in the
evaluation of the experimental systematic errors. This happens in the dymanic
determination of the Casimir pressure between two parallel plates by means of the
frequency shift of a sphere oscillating above a plate (see Section 19.3). Here, the
exact Lifshitz formula for two parallel plates is used in the theoretical description.
The proximity force approximation is applied only for the recalculation of one
set of measurement data into another one in the process of making an indirect
measurement.

Another example where the same error can be relevant to both experiment
and theory is the error in the measurement of the separation distance ∆a. Taken
alone, this error is entirely experimental. However, in one of the approaches to
the comparison between experiment and theory (see the next subsection), the
theoretical values Πtheor(a) are calculated not throughout the entire measure-
ment range (amin, amax) but at the experimental separations ai. In this case the
values Πtheor(ai), in addition to the errors discussed above, are affected by one
more error. This can be approximately estimated as (Iannuzzi et al. 2004a)
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δ4Π
theor(ai) =

∆4Π
theor(ai)

|Πtheor(ai)|
= α

∆a

ai
(18.19)

if one accepts, for simplicity, the model of two parallel ideal-metal plates (α = 4)
or an ideal-metal sphere above an ideal-metal plate (α = 3).

All of the theoretical errors described above must be combined together to
obtain the total theoretical error representing the accuracy of the theory. For this
purpose, we assume that all of them are described by a uniform distribution and
in this sense are similar to systematic errors. Note that any other assumption
would lead to a smaller total error. Then one can apply the statistical rule in
eqn (18.2) with an appropriate value of J and β = 0.95 to obtain the total
theoretical error ∆totΠtheor(a) at the 95% confidence level. Together with the
total experimental error, this quantity can be used to find a rigorous measure of
the agreement between experiment and theory.

18.3.3 Statistical framework for the comparison of theory with experiment

When experimental data from Casimir force measurements are compared with
theory, the important question of how to quantitatively characterize the agree-
ment between them has to be addressed. In many experiments (see Chapter 19),
the agreement between data and theory was characterized by a global quantity,
the root-mean-square deviation

σN =

{
1

N

N∑
k=1

[
Πtheor(ak) − Πexpt(ak)

]2}1/2

, (18.20)

where N = nimax is the total number of measurements in all measurement sets.
It is known, however, that this method is not appropriate for strongly nonlinear
quantities (Rabinovich 2000) such as the Casimir force, which changes rapidly
with separation. It has been shown (Ederth 2000) that the calculation of the
root-mean-square deviation between experiment and theory leads in this case to
different results when applied in different separation intervals. Because of this,
alternative, local methods have been suggested (Decca et al. 2005b, Chen et
al. 2006b, Klimchitskaya et al. 2006b), using statistical methods in which the
measures of agreement are separation-dependent.

In the first method, the experimental data are traditionally represented as
crosses centered at points with coordinates [ai, Π

expt(ai)] where the length of
the horizontal arms is equal to 2 ∆a and the height of the vertical arms is equal
to 2 ∆totΠexpt(ai). Both of the absolute errors ∆a and ∆totΠexpt(ai) are meant
to be determined at a common confidence level β (95%, for instance) as de-
scribed above. The theoretical values Πtheor(a) are computed over the entire
measurement range (amin, amax) and presented in the form of a band as a func-
tion of separation. The width of this band is equal to 2 ∆totΠtheor(a), where the
total theoretical error is determined according to the method in the previous
subsection at the same confidence level β as for the experimental errors. If the
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theoretical band overlaps with the experimental data, including their errors, the
data are consistent with the theory. If there is no overlap between the experimen-
tal crosses and the theoretical band over a wide separation range, one concludes
that the theory is excluded by the data at a confidence level β within this range
of separations.

Below, we consider situations where the measurement data are compared
with the various theoretical approaches discussed in Chapters 12 and 14 (for
instance, based on the Drude or the plasma model or with the inclusion or
neglect of the small dc conductivity of a dielectric at nonzero temperature) and
where the calculations are done with different sets of optical data available in
the literature. Each theoretical approach using some definite set of optical data
can be considered as a hypothesis and the process of its comparison with the
data as a verification of the hypothesis. The procedures for such verification
are well developed in statistics. To make a comparison of different hypotheses
with experiment, one plots the theoretical bands and the experimental data as
described above on one graph. A hypothesis whose corresponding band does
not overlap with the data over a wide separation region must be rejected at a
confidence level β. Importantly, the data and the theory are compared not at
one point but over a wide separation region where the distance dependence is
nonlinear. Thus, a set of optical data which is inconsistent with the experimental
results when combined with any theoretical approach should be considered as
irrelevant to the actual properties of the film used in the experiment. We note
that in this first method of comparison between experiment and theory, the
theoretical values Πtheor(a) are computed over the entire measurement range
amin ≤ a ≤ amax. They are not affected by the error ∆a in the measurement of
the separation distances.

A second, local method to compare theory with experiment is based on con-
sideration of the confidence interval for the random quantity Πtheor(a)−Πexpt(a)
(Decca et al. 2005b, Chen et al. 2006b, Klimchitskaya et al. 2006b). Here, a is
the separation at which the quantity Πexpt has been measured with an exper-
imental error ∆totΠexpt(a). The theoretical value Πtheor must be computed at
the same separation a, which is known with an error ∆a. Because of this, in
this second method of comparison between experiment and theory, ∆totΠtheor(a)
includes the contribution (18.19), depending on the experimental error in the
measurement of the separation. Note that if several measurements are performed
at practically the same separation a, one should consider the random quantity
Πtheor(a) − Π̄expt(a) to characterize the deviations between theory and experi-
ment.

The absolute error of the random quantity characterizing the deviations
between theory and experiment, ΞΠ(a), at a confidence level β, can be ob-
tained from the total theoretical and experimental errors, ∆totΠtheor(a) and
∆totΠexpt(a). To be conservative, we use for this purpose the composition rule
(18.2) with J = 2, valid for two uniform distributions (otherwise the error would
be smaller):
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ΞΠ(a) = min

{
∆totΠtheor(a) + ∆totΠexpt(a), (18.21)

k
(2)
β

√
[∆totΠtheor(a)]

2
+ [∆totΠexpt(a)]

2

}
.

The confidence interval for the quantity Πtheor(a) − Πexpt(a) at a 95% confi-
dence level is given by [−ΞΠ(a), ΞΠ(a)], where ΞΠ(a) is determined from eqn

(18.21) with k
(2)
0.95 = 1.1. When one compares a theoretical approach with ex-

perimental data, the differences between the theoretical and experimental values
of the quantity Π may or may not belong to this interval at each fixed value
of a. A theoretical approach for which no fewer than 95% of the differences
Πtheor(a) − Πexpt(a) belong to the interval [−ΞΠ(a), ΞΠ(a)] within any separa-
tion subinterval [a1, a2] of the entire measurement range is consistent with the
experiment. In this case the measure of agreement between experiment and the-
ory is given by ΞΠ(a)/|Πexpt(a)|. In contrast, if for some theoretical approach
a subinterval [a1, a2] exists where almost all differences Πtheor(a) − Π̄expt(a) are
outside the confidence interval [−ΞΠ(a), ΞΠ(a)], this approach is excluded by ex-
periment at separations from a1 to a2 at a 95% confidence level. If the theoretical
approach (hypothesis) is excluded by experiment at a 95% confidence level, the
probability that it is true is at most 5%. It may happen that several theoretical
approaches i = 1, 2, . . . are consistent with experiment, i.e. no fewer than 95%
of the differences Πtheor

i (a)− Π̄expt(a) (i = 1, 2, . . .) belong to the confidence in-
terval

[
−ΞΠ(a), ΞΠ(a)

]
(such situations are considered in Chapters 19 and 20).

The statistical criteria used do not allow one to indicate the probability of the
event that one of these approaches or all of them are false. The rejection of some
of the experimentally consistent approaches can be done on a theoretical basis
only. For example, if the measurement is performed at room temperature and
theoretical computations done both at T = 0 K and at T = 300 K are consistent
with the data, the computation at T = 300 K can be considered as preferable. In
fact, to reliably discriminate between two experimentally consistent theoretical
approaches, more exact measurements are desirable. These general criteria are
illustrated below in Chapters 19 and 20 using the examples of various Casimir
force measurements.

In this subsection, we have considered two local methods for the comparison
of experiment with theory in Casimir force measurements. It should be noted
that the conclusions concerning the consistency or rejection of hypotheses do not
depend on the method of comparison used. In Chapters 19 and 20, both methods
are applied repeatedly, and in all cases the results obtained are in agreement.
This allows one to conclude that the local methods for the comparison of exper-
iment with theory provide a satisfactory statistical framework for Casimir force
experiments.
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MEASUREMENTS OF THE CASIMIR FORCE BETWEEN

METALS

Based on the older measurements of the van der Waals and Casimir forces con-
sidered in Section 18.1, it is clear that metallic test bodies have major advantages
in comparison with dielectric ones as they enable one to ensure low electrostatic
charges on the surfaces and a low potential difference between the surfaces.
Thus, the first experiments in the modern phase of Casimir force measurements,
performed by various research groups in several countries, exploited test bod-
ies coated with metallic films. The thickness of these films was large enough to
produce the same Casimir force as in the case of bulk metal bodies. Another
idea taken from the older measurements is the use of a spherical lens or a sphere
as one of the test bodies [only one modern experiment, by Bressi et al. (2002),
considered in Section 19.4, uses the original Casimir configuration of two parallel
metallic plates]. This has spared investigators the difficult necessity to preserve
parallelity of the plates and allowed close approach of the surfaces. In the modern
phase of Casimir force measurements started with the experiment performed by
Lamoreaux (1997), the above experience was combined with advanced position-
ing and force measurement techniques utilizing recent technological achievements
in microfabrication, micromechanics, and fiber optics.

In this chapter we present the main breakthroughs in the measurement of the
Casimir force between metallic surfaces. We start with the first demonstration
of the corrections to the Casimir force due to the nonzero skin depth and sur-
face roughness, obtained by means of an atomic force microscope by Mohideen
and Roy (1998), Klimchitskaya et al. (1999), Roy et al. (1999), and Harris et
al. (2000). The second breakthrough was a series of precise indirect measure-
ments of the Casimir pressure between two parallel plates by means of a mi-
cromechanical torsional oscillator by Decca et al. (2003a, 2003b, 2005b, 2007a,
2007b). These measurements allowed a definitive choice between different theo-
retical approaches to the thermal Casimir force with real metal surfaces. Many
other experiments performed in the last few years using metallic test bodies
are also presented. The chapter ends with a brief discussion of some proposed
experiments using metallic surfaces.

19.1 Experiment with torsion pendulum

Chronologically the first experiment in the recent phase of Casimir force mea-
surements was performed by Lamoreaux (1997). While this experiment rekindled
interest in the investigation of the Casimir force and stimulated further devel-
opment in the field, the results obtained contained several uncertainties. The
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Casimir force between an Au-coated spherical lens and a flat plate was mea-
sured using a torsion pendulum. A lens with a radius of 11.3 ± 0.1 cm [later
corrected to 12.5± 0.3 cm (Lamoreaux 1998)] was used. The surfaces of the lens
and plate were first coated with 0.5 µm of Cu followed by a 0.5 µm coating of Au.
Both coatings were deposited by thermal evaporation. The lens was mounted on
a piezoelectric stack and the plate on one arm of the torsion balance in vacuum.
The other arm of the torsion balance formed the center electrode of dual parallel-
plate capacitors C1 and C2. Thus, the position of this arm and consequently the
angle of the torsion pendulum could be controlled by application of voltages to
the plates of the dual capacitor. The Casimir force between the plate and lens
surfaces resulted in a torque, leading to a change in the angle of the torsion bal-
ance. This change in angle, in turn, resulted in changes in the capacitances C1

and C2, which were detected with a phase-sensitive circuit. Then, compensating
voltages were applied to the capacitors C1 and C2 through a feedback circuit to
counteract the change in the angle of the torsion balance. These compensating
voltages were a measure of the Casimir force.

The calibration of the measurement system was done electrostatically. When
the lens and plate surfaces were grounded, a “shockingly large” (Lamoreaux
1997) potential difference of 430mV was measured between the two surfaces.
This large electrostatic potential difference was partially compensated by appli-
cation of a voltage to the lens. From the analysis, there appears to have been
an electrostatic force even after this compensation. The latter was determined
only by fitting to the total force, including the Casimir force, above 1 µm. “Typ-
ically, the Casimir force had a magnitude of at least 20% of the electrostatic
force at the point of closest approach” (Lamoreaux 1997). The uncertainty in
the measurement of the absolute separations ∆a “was normally less than 0.1 µm”
(Lamoreaux 1997).

The lens was moved towards the plate in 16 steps by application of a voltage to
the piezoelectric stack on which it was mounted. At each step, the restoring force,
given by the change in the voltage required to keep the pendulum angle fixed,
was noted. The maximum separation between the two surfaces was 12.3 µm. The
average displacement for a 5.75V step was about 0.75 µm. A considerable amount
of hysteresis was noted between the up and down cycles, i.e. the approach and
retraction of the two surfaces. The displacement as a function of the 16 applied
voltages was measured to 0.01 µm accuracy with a laser interferometer. The total
force was measured for separations from 10 µm to contact of the two surfaces. The
experiment was repeated, and 216 up/down sweeps were used in the final data
set. The total measured force data was binned into 15 surface separation points.
Two of the important experimental values needed, (a) the residual electrostatic
force and (b) the surface separation on contact of the two surfaces, were obtained
by curve fitting of the total measured force for separations greater than 2 µm to
the sum of the Casimir force and the electrostatic force. Neither systematic nor
random experimental errors in the measured forces were reported. The total
experimental error in the force measurements can be estimated as ∆totF expt ≈
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10−11 N on the basis of the graphical information (Lamoreaux 1997).
Data were compared with theory for an ideal-metal lens and plate using the

least-squares method. This is a global method for the comparison of experiment
and theory, as discussed in Section 18.3.3. In comparison with the use of the root-
mean-square deviation, the least-squares method contains one or more fitting
parameters, chosen so as to make the deviation between experiment and theory
smaller. Thus, this method cannot provide an adequate characterization of the
agreement between experiment and theory over a wide range of separations for a
quantity which is a strongly nonlinear function of separation (see Section 18.3.3).
Corrections to the Casimir force due to surface roughness or the skin depth were
not taken into account.

Agreement between experiment and theory at the level of 5% was reported
in the measurement range from 0.6 to 6 µm (Lamoreaux 1997). This conclusion
is incompatible with the magnitude of the thermal correction to the Casimir
force (Bordag et al. 1998b), because at separations of 4, 5, and 6 µm the thermal
correction is 86%, 129%, and 174%, respectively, of the zero-temperature force
(6.51). The data, however, were found to be “not of sufficient accuracy to demon-
strate the finite temperature correction” (Lamoreaux 1997). The contradiction
can be reconciled if one takes into account the fact that the actual relative er-
ror of the force measurements at, for example, a = 6 µm was not 5% but 700%
(Bordag et al. 1998c). From this it follows that agreement of the data with the
theory at the level of 5%–10% could exist only at separations of about 1 µm.
Here, the thermal correction is relatively small, and the larger corrections due to
the nonzero skin depth and surface roughness have opposite signs and partially
compensate each other. Keeping in mind that the theoretical forces calculated
at the experimental separations were burdened with an additional error of about
3 ∆a/a ≈ 30% at a = 1 µm (see Section 18.3.2), the errors in the differences
F expt(ai) − F theor(ai), as shown in Fig. 4, bottom, of Lamoreaux (1997), were
significantly underestimated.

In conclusion, this experiment introduced the modern phase-sensitive detec-
tion of forces and thus brought possible increased sensitivity to the measurement
of Casimir forces. Two of the three required criteria outlined by Sparnaay (the
second and third, as discussed in Section 18.2) were only partially accomplished.
By using piezoelectric translation of the lens towards the plate, reproducible
measurements of the surface separation could be done. However, the value of
the residual electrostatic force and the surface separation on contact could only
be determined by curve fitting of part of the experimental data to the expected
Casimir force. Such a procedure biases that part of the experiment with the in-
put value of the Casimir force. Thus it cannot be considered as an independent
measurement of the surface separation or the residual electrostatic force.

The results of this experiment at about 1 µm separation were used (Torgerson
and Lamoreaux 2004, Lamoreaux 2005) to exclude a theoretical approach to the
thermal Casimir force which uses the Drude model at low frequencies (see Section
14.3.1). The latter predicts a thermal correction of −18.9% at a = 1 µm (to be
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compared with a 1.2% thermal correction in the case of an ideal metal), which was
not experimentally observed. At a high confidence level, the conclusion that the
Drude model approach is inconsistent with the data was obtained in the much
more precise experiments of Decca et al. (2003b, 2004, 2005b, 2007a, 2007b)
considered in Section 19.3.

19.2 Experiments with an atomic force microscope

The increased sensitivity of the atomic force microscope (AFM) was used by
Mohideen and coworkers to demonstrate for the first time the influence of the
nonzero skin depth and surface roughness on the Casimir force. In three succes-
sive measurements of the Casimir force between metallized surfaces of a sphere
and a plate in vacuum, all of the requirements set forth by Sparnaay, i.e. the use
of nonreactive and clean surfaces, the determination of the average separation
on contact, and the minimization and independent measurement of electrostatic
potential differences, were achieved independently of the Casimir force measure-
ment. Below, we briefly consider the first two experiments in this series and
then discuss in more detail the third one, which presents the most unambiguous
results with respect to experimental precision and comparison with theory. A
dynamic measurement using an AFM is also discussed.

19.2.1 First AFM experiment with aluminum surfaces

A schematic diagram of this experiment (Mohideen and Roy 1998) is shown in
Fig. 19.1. A force between the sphere and plate causes the cantilever to flex.
This flexing of the cantilever is detected by the deflection of the laser beam,
leading to a difference signal between the photodiodes A and B. This difference
signal from the photodiodes was calibrated by means of an electrostatic force.

Fig. 19.1. Schematic diagram of the experimental setup using an atomic force
microscope. Application of a voltage to the piezoelectric element results in
movement of the plate towards the sphere (Mohideen and Roy 1998).
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Polystyrene spheres of diameter 200 ± 4 µm were mounted on the tip of metal-
coated cantilevers with Ag epoxy. Such spheres are lightweight and can be easily
attached to AFM cantilevers. They can be readily coated with smooth layers of
a variety of materials, including metals such as Al, Cr, and Au, appropriate for
Casimir force measurements. A 1 cm diameter optically polished sapphire disk
was used as the plate. The cantilever (with sphere) and the plate were then
coated by thermal evaporation with about 300 nm of aluminum. To prevent the
rapid oxidation of the aluminum coating and the development of space charges,
the aluminum was then sputter-coated with a 60%/40% Au/Pd coating of less
than 20 nm thickness. In the first and second experiments, aluminum metal was
used owing to its high reflectivity at short wavelengths (corresponding to small
surface separations). Aluminum coatings are also easy to apply owing to the
strong adhesion of the metal to a variety of surfaces and its low melting point.

To measure the Casimir force, the sphere and plate were grounded together
with the AFM. The plate was then moved continuously towards the sphere and
the corresponding photodiode difference signal was measured at time intervals
corresponding to 3.6 nm. The signal obtained for a typical scan is shown in
Fig. 19.2. Here “0” separation stands for contact between the sphere and plate
surfaces. It does not take into account the absolute average separation between
the Au/Pd layers due to the surface roughness, which was about 80 nm. If one
also takes into account the fact that the Au/Pd cap layers can be considered
transparent at small separations, the absolute average separation between the Al
layers at contact was about 120nm. Note that in the experiment, the separation
distance on contact, a0 = 120±5 nm, was found by fitting the experimental data
for the measured force at relatively large separations above 250nm with the sum
of the theoretical electrostatic and Casimir forces. The electrostatic force arises
because of the residual potential difference between the sphere and the plate.
Thus, the second of the three requirements set forth by Sparnaay (see Section
18.2), concerning the independent measurement of the separation on contact, was
only partially accomplished. At the same time, the first and third requirements,
concerning the use of a clean surface and the independent measurement of the
residual electrostatic force between the two surfaces, were satisfied (see below
concerning the independent determination of the residual potential difference
from the measurement of electric forces).

Region 1 in Fig. 19.2 shows that the force curve at large separations is dom-
inated by a linear signal. This is due to increased coupling of scattered light
into the photodiodes from the approaching flat surface. Embedded in the signal
is a long-range attractive electrostatic force from the contact potential differ-
ence between the sphere and plate, and the Casimir force (small at such large
distances). In region 2 (where the absolute separation varies from contact to
250nm), the Casimir force is the dominant characteristic, far exceeding all the
systematic errors. Region 3 corresponds to the flexing of the cantilever resulting
from the continued extension of the piezoelectric actuator after contact of the
two surfaces. Given the distance moved by the flat plate (the x-axis), the dif-



Experiments with an atomic force microscope 535

Fig. 19.2. Typical force curve as a function of the distance moved by the plate
(Mohideen and Roy 1998).

ference signal of the photodiodes can be calibrated to a cantilever deflection in
nanometers using the slope of the curve in region 3.

Next, the force constant of the cantilever was calibrated by an electrostatic
measurement performed at separations greater than 3 µm, where the Casimir
force is negligible. The sphere was grounded to the AFM, and different voltages
V in the range ±0.5 V to ±3 V were applied to the plate. The exact expression
for the electrostatic force between a charged sphere and a plate (in SI units) can
be written as (Smythe 1950)

Fel(a) = 2πε0(V − V0)
2

∞∑
n=1

coth α − n cothnα

sinh nα
≡ X(α)(V − V0)

2. (19.1)

Here, V0 represents the residual potential on the grounded sphere and coshα =
1 + a/R. The function X(α) in the range of separations from a = 100 nm to
a = 6 µm can be represented by the following polynomial with a relative error
less than 10−4 (Chen et al. 2006b):

X(α) = −2πε0

6∑
i=−1

ci

( a

R

)i

, (19.2)

where

c−1 = 0.5, c0 = −1.18260, c1 = 22.2375, c2 = −571.366, (19.3)

c3 = 9592.45, c4 = −90200.5, c5 = 383084., c6 = −300357.

From the difference in force for voltages ±V applied to the plate starting at
separations sufficiently far from the sphere (to make the Casimir force negligible)
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Fig. 19.3. Measured mean Casimir force as a function of plate–sphere separa-
tion, shown by open squares. The theoretical Casimir force with corrections
due to surface roughness and nonzero skin depth is shown by the solid line,
and for ideal-metal surfaces by the dashed line (Klimchitskaya et al. 1999).

to about 2 or 3 µm, the residual potential of the grounded sphere V0 could be
measured as 29mV. This residual potential is a contact potential that arises
from the different materials used to ground the sphere. The electrostatic-force
measurement was repeated at five different separations and for eight different
voltages V . The cantilever was electrostatically calibrated, and an equivalent
force constant could be derived using Hooke’s law and the force from eqn (19.1).
The average value thus derived was k =0.0182N/m.

In the original work (Mohideen and Roy 1998), the random and systematic
experimental errors in the resulting data for the Casimir force were not specified
and the force sensitivity of the AFM was about 10−12 N. The theoretical Casimir
force, including the effect of the nonzero skin depth, was represented in a multi-
plicative way as in eqn (17.74). The factor ηE(a) in this equation including the
effect of the nonzero skin depth was found up to the second order in the small
parameter δ0/a [see eqn (13.8)]. The factor κE(a) was defined according to eqn
(17.39) up to the second order in the roughness amplitudes Ai/a with 〈f2

i 〉 = 1/2
and 〈f1f2〉 = 0. Later, the theoretical Casimir force for this experiment was re-
calculated up to the fourth perturbation order in the parameter δ0/a using the
nonmultiplicative approach (17.94) to take account of surface roughness (Klim-
chitskaya et al. 1999). For this purpose the surface roughness, which was assumed
to be the same on the sphere and the plate, was measured with the AFM. The
scans obtained were used, as described in Section 17.2.2, to obtain the zero level
of the roughness H0 = 12.6 nm and the roughness amplitude A = 27.4 nm. At
the shortest separation, the roughness correction contributed up to 17% of the
magnitude of the Casimir force.

In Fig. 19.3, the mean measured Casimir force from the 26 measurement
sets is shown by the open squares for the separation range from 120 to 500nm.
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The Casimir force data were obtained after subtraction from the total measured
force of corrections due to two systematic deviations: the residual electrostatic
force and the contribution to the force from the coupling of scattered light into
the photodiodes. The solid line in Fig. 19.3 shows the theoretical Casimir force
calculated as described above, including corrections due to the nonzero skin
depth and the surface roughness (Klimchitskaya et al. 1999). The dashed line
indicates the Casimir force (6.51) between an ideal-metal plate and an ideal-
metal sphere of the radius R = 100 µm used in the experiment. As is seen in Fig.
19.3, the solid line is in very good agreement with the data, thus demonstrating
the role of the skin depth and roughness corrections. The data in Fig. 19.3 clearly
deviate from the dashed line, which does not take these corrections into account.

The quantitative comparison between experiment and theory performed by
Mohideen and Roy (1998) and Klimchitskaya et al. (1999) was based on the
concept of the root-mean-square deviation. Later it was demonstrated that this
global method may lead to inconsistent results when applied to strongly nonlinear
functions of separation defined over a wide separation range (see Section 18.3.3).
Nevertheless, it was shown (Klimchitskaya et al. 1999) that the root-mean-square
deviation σN given in eqn (18.20) calculated using a more accurate theory, taking
into account the skin depth corrections up to the fourth order and roughness
corrections by the method of geometrical averaging, was a smoother function of
the separation range (or the number of experimental points N) than the same
σN calculated using the less accurate theory. The value of the root-mean-square
deviation obtained, σN ≈ 1.5 pN (which is approximately 1% of the Casimir
force at the closest separation), was considered as a measure of the agreement
between experiment and theory at this separation. More rigorous methods of
comparing experiment and theory at a given confidence level are considered
below (see Section 19.2.3) in the case of the more conclusive, third experiment,
on the measurement of the Casimir force between Au surfaces by means of an
AFM.

19.2.2 Improved measurement with aluminum surfaces

An improved version of the measurement of the Casimir force between Al sur-
faces coated with Au/Pd layers was reported by Roy et al. (1999). The particular
experimental improvements were (i) use of smoother metal coatings, which re-
duces the effect of surface roughness and allows closer separations between the
two surfaces; (ii) implementation of vibration isolation, which reduces the total
noise; (iii) independent electrostatic measurement of the surface separation; and
(iv) reductions in the systematic errors due to the residual electrostatic force,
scattered light, and instrumental drift. Also, the complete dielectric properties
of Al were used in the theory. For this purpose, εAl(iξ) was determined from the
tabulated optical data for the complex index of refraction of Al extending from
0.04 to 1000 eV (Palik 1985). This procedure was illustrated in Section 13.3 for
the case of Au. Then the Casimir force between a perfectly shaped sphere and
plate taking account of the nonzero skin depth was computed by using the prox-
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imity force approximation and the Lifshitz formula at zero temperature (12.30).
As in the previous experiment, the roughness of the metal surface was mea-

sured directly with the AFM. The metal surface was composed of separate crys-
tals on a smooth background. The height of the highest distortions was 14nm
with intermediate distortions of height 7 nm, both on a stochastic background of
height 2 nm, having fractional surface areas of 0.05, 0.11, and 0.84, respectively.
The crystals were modeled as parallelepipeds. Then the roughness amplitude
A = 11.8 nm was determined, as defined in Section 17.1.1. The role of the rough-
ness was included by means of the multiplicative factor κE(a) [see eqn (17.39)],
calculated up to the fourth perturbation order in A/a. The roughness correction
was found to be only about 1.3% of the measured force (i.e. there was more than
an order of magnitude improvement over the previous measurement).

The preparation and measurement procedures of the improved experiment
can be briefly described as follows. The same technique as before for the attach-
ment of the sphere to the AFM cantilever was used. Then a 250 nm aluminum
metal coating was evaporated onto the sphere and onto a 1 cm diameter sap-
phire plate. Next, both surfaces were sputter-coated with a 7.9 ± 0.1 nm layer
of 60%Au/40%Pd. Thus, here, the Au/Pd coating was made much thinner, and
also its thickness was precisely measured. The diameter of the sphere was mea-
sured using a scanning electron microscope to be 201.7± 0.5 µm. The AFM was
calibrated in the same manner as reported in the previous section. Next, the
residual potential of the grounded sphere was measured as V0 = 7.9± 0.8 mV by
the application of voltages to the plate at large separations from the sphere where
the Casimir force could be neglected. Thus, the residual potential difference was
a factor of 3.5 lower than in the previous experiment.

To measure the Casimir force between the sphere and the flat plate, they were
both grounded together with the AFM. No voltage was applied to the plate. The
data obtained for the photodiode difference signal were akin to those shown in
Fig. 19.2. In this case the region 2 extended from contact to about 550nm. Here,
the Casimir force was the dominant characteristic, far exceeding all systematic
deviations. These deviations were primarily due to the residual electrostatic force
(less than 1.5% of the magnitude of the force at the closest separation) and a
linear contribution from scattered light. The latter was observed and measured in
region 1, which now started at separations a > 550 nm. The corrections arising
from the systematic deviations were computed and subtracted from the force
data.

In this experiment, a key improvement was that the electrostatic force be-
tween the sphere and the plate at large separation distances was used to arrive
at an independent and consistent measurement of a0, the average surface separa-
tion on contact of the two surfaces. This technique has now become the standard
technique for precise determination of the separation distance between the zero
roughness levels of two surfaces. The electrostatic-force measurement was done
immediately following the Casimir force measurement, without breaking the vac-
uum and with no lateral movement of the surfaces. The flat plate was connected
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Fig. 19.4. The measured electrostatic force for an applied voltage of 0.31V on
the plate. The solid line shows a best χ2 fit to the data (Roy et al. 1999).

to a dc voltage supply while the sphere remained grounded. The applied volt-
age V in eqn (19.1) was so chosen that at sufficiently large separations, the
electrostatic force was much greater than the Casimir force. The open squares
in Fig. 19.4 represent the measured force for an applied voltage of 0.31V as
a function of distance. This force can be considered as entirely electrostatic at
a ≥ 300 nm (at a = 300 nm, the contribution from the Casimir force is already
less than 1% and it decreases rapidly with an increase of separation). The solid
line, which is a best χ2 fit for the data in Fig. 19.4, results in a value a0 = 47.5 nm.
This procedure was repeated for other voltages from 0.3 to 0.8V, leading to an
average value of a0 = 48.9 ± 0.6 nm. Given the 7.9 nm Au/Pd coating on each
surface, this would correspond to an average surface separation 64.7± 0.6 nm in
the Casimir force measurement. Thus, the experiment by Roy et al. (1999) was
the first one satisfying all three requirements for a precise measurement of the
Casimir force discussed in Section 18.2.

The measurement was repeated 27 times over the range of separations from
100 to 500nm, and the mean Casimir force measured is shown by the open
squares in Fig. 19.5 as a function of the surface separation. The solid line shows
the theoretical Casimir force, including corrections due to surface roughness and
nonzero skin depth computed as discussed above. Similarly to the first AFM
measurement, the systematic errors of the force measurement were not reported
here. However, the absolute random error from thermal noise was found to be
∆randF expt = 1.3 pN at a 67% confidence level, which leads to a relative random
error δrandF expt less than 1% at the shortest separation a = 100 nm. The experi-
mental data were compared with the theory using the root-mean-squre deviation,
which was found to be equal to 2.0 pN. This is also of the order of 1% of the force
measured at the closest separation. The complete evaluation of the experimental
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Fig. 19.5. The measured mean Casimir force, shown by squares. The solid line
shows the theoretical Casimir force taking account of corrections due to sur-
face roughness and nonzero skin depth (Roy et al. 1999).

and theoretical errors and a rigorous comparison between experiment and theory
are considered in the next subsection, where we discuss the third experiment on
the Casimir force, performed by means of an AFM using gold surfaces.

19.2.3 Precision measurement using gold surfaces

The primary difference in the third measurement of the Casimir force using an
AFM (Harris et al. 2000) was the use of gold surfaces, which resulted in related
experimental changes. The use of a thin Au/Pd coating on top of the aluminum
surface to reduce the effects of oxidation in the previous two experiments pre-
vented a complete theoretical treatment of the properties of the metal coating.
For layers a few nanometers in thickness, the standard theoretical results de-
rived for stratified media (see Section 12.2) are not applicable because of the
effects of spatial dispersion (Klimchitskaya et al. 2000). Thus, it is important to
use chemically inert materials such as gold for the measurement of the Casimir
force.

The fabrication procedures had to be modified, given the different material
properties of gold as compared with the aluminum coatings used by Mohideen
and Roy (1998) and Roy et al. (1999). The 320 µm long AFM cantilevers were
first coated with about 200nm of aluminum to improve their thermal conductiv-
ity. This metal coating on the cantilever decreased the thermally induced noise
when the AFM was operated in vacuum. Aluminum coatings were better, as
applying thick gold coatings directly to these silicon nitride cantilevers led their
curling owing to the mismatch in the thermal expansion coefficients. Next, a
polystyrene sphere was mounted on the tip of a metal-coated cantilever with Ag
epoxy. A 1 cm diameter optically polished sapphire disk is used as the plate. The
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Fig. 19.6. Typical atomic force microscope image of an Au coating on a plate
(Chen et al. 2004a).

cantilever (with sphere) and the plate were then coated with gold in an evap-
orator (uniformity was maintained by rotation). The sphere diameter after the
metal coating has been deposited was measured using a scanning electron mi-
croscope to be 191.3± 0.5 µm. The scanning electron microscope was calibrated
using AFM calibration gratings, which were in turn calibrated independently.
The roughness of the metal coating was investigated using an AFM. A typical
scan of the surface is shown in Fig. 19.6. As is seen in this figure, the roughness
is represented by stochastically distributed distortions and rare pointlike peaks.
The amplitude of the random roughness Ast of the gold surface was determined
to be 1.2 ± 0.1 nm. The thickness of the gold coating was measured using the
AFM to be 86.6 ± 0.6 nm. Such a coating thickness is sufficient to reproduce
the properties of an infinitely thick metal. To reduce the development of contact
potential differences between the sphere and the plate, great care was taken to
follow identical procedures in making the electrical contacts. This was necessary,
given the large difference in the work functions of aluminum and gold. The resid-
ual potential difference between the grounded sphere and the plate was measured
to be V0 = 3 ± 3 mV as described previously, with the application of voltages
±V to the plate. It was shown that the value of V0 obtained did not depend on
the separation at which it was determined. The residual potential led to forces
which were less than 0.1% of the Casimir force at the closest separations.

Kim et al. (2008) have claimed that the residual potential V0 obtained from an
electrostatic calibration in the sphere–plate configuration is separation-dependent.
This conclusion was obtained by using an Au-coated glass lens of 30.9mm radius
at separations of a few tens of nanometers above an Au-coated plate. The mea-
surement data were fitted to the largest contribution to the electric force (19.1),
given by the term of eqn (19.2) with i = −1. Decca et al. (2009a) demonstrated
that for a centimeter-size spherical lens at such short separations from the plate,
the electrostatic force law given by eqn (19.1) is not applicable, owing to the
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inevitable deviations from a perfect spherical shape of the mechanically polished
and ground surface. Because of this, the anomalies in the electrostatic calibration
observed by Kim et al. (2008) are irrelevant to the experimental results consid-
ered in this chapter. Small polystyrene spheres of about 100 µm radius made
from the liquid phase are extremely smooth and almost perfectly spheroidal ow-
ing to surface tension (they have less than 10−3 asphericity). The investigation
of the surface quality of such spheres in the scanning electron microscope did
not reveal any scratches or bubbles, which are always present on the surface
of centimeter-size glass lenses. The absence of the anomalous scaling in electro-
static calibrations for Casimir-force measurements was confirmed by de Man et
al. (2009).

The measurement of the Casimir force was performed within the separation
region from 62 to 350nm in the same way as in the second experiment. The mea-
surements were repeated 30 times, but three repetitions were later found (Chen
et al. 2004a) to be outlying on the basis of the statistical criterion presented in
Section 18.3.1. Because of this, the data analysis presented here used only 27 sets
of measurement data. Note that the small correction due to the residual poten-
tial difference was the only correction which was subtracted from the force data.
The small deviation due to the coupling of scattered light into the photodiodes
discussed in the case of the first two experiments was eliminated here by using
a very smooth gold coating on the cantilever surface and, thus, the respective
correction was not needed.

In this experiment, special attention was paid to an independent and precise
determination of the surface separation a, including the separation on contact
of the two surfaces, a0. The actual separation between the bottom of the gold
coating of the sphere and top of the gold coating on the plate was given by

a = a0 + apiezo + Sdefm. (19.4)

Here, apiezo is the distance moved by the plate owing to the voltage applied
to the piezoelectric actuator, Sdef is the photodiode difference signal, and m
is the deflection coefficient. The last term on the right-hand side of eqn (19.4)
represents a small additional correction to the separation, which results from the
deflection of the cantilever in response to the attractive Casimir force. The latter
leads to a decrease of the separation between the two surfaces (Sdef < 0). The
electrostatic force between the sphere and the flat plate was used to arrive at
an independent measurement of the constant m in the deflection correction, of
the force constant k, and of a0, the average surface separation between the zero
levels of the roughness on contact of the two surfaces. For this purpose, the flat
plate was connected to a dc voltage supply while the sphere remained grounded.
The applied voltage V in eqn (19.1) was so chosen that the electrostatic force
was much greater than the Casimir force. The values m = 8.9± 0.3 nm per unit
photodiode difference signal, km = 0.386 ± 0.003 nN per unit deflection signal,
and a0 = 32.7 ± 0.8 nm were determined from many different applied voltages.
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Fig. 19.7. (a) The mean measured Casimir force as a function of separation
distance, shown by dots. The solid line shows the result for an ideal metal. (b)
Differences between the theoretical and mean experimental Casimir forces,
shown by dots. The solid lines indicate the borders of 95% confidence intervals
(Klimchitskaya et al. 2007a).

It was confirmed that the value of a0 obtained did not depend on the separation
when it was determined within the range from 1 to 3 µm.

The mean Casimir force measured from the 27 scans is shown in Fig. 19.7(a)
by dots. In the same figure, the solid line shows the Casimir force between an
ideal-metal sphere and ideal-metal plate. It can be seen that the model of ideal-
metal boundary surfaces is inconsistent with the data and a more sophisticated
theory is required that takes real material properties into account. Before dis-
cussing such a theory, we consider the experimental errors and precision. In the
original publication (Harris et al. 2000), the experimental random error was es-
timated based on all 30 measurement sets. Chen et al. (2004a) reanalyzed the
data related to 27 sets of measurements (i.e. excluding the three sets of outlying
measurements according to the statistical criterion of Section 18.3.1). A ran-
dom error equal to ∆randF expt = 5.8 pN at a 95% confidence level over the entire
measurement range was obtained using eqn (18.8) (Chen et al. 2004a). The main
contributions to the systematic error in this experiment were given by the error
in the force calibration, ∆syst

1 F expt ≈ 1.7 pN, by the noise when the calibration
voltage was applied to the cantilever, ∆syst

2 F expt ≈ 0.55 pN, by the instrumen-
tal sensitivity, ∆syst

3 F expt ≈ 0.31 pN, and by the restrictions on the computer
resolution of the data, ∆syst

4 F expt ≈ 0.12 pN (Chen et al. 2004a). By combining
these systematic errors at a 95% confidence level using the standard rule (18.2)
with J = 4, we obtain ∆systF expt = 2.1 pN [note that the slightly larger value
obtained by Chen et al. (2004a) can be explained by the use of a less rigorous
combination rule that provides only an upper estimate of the magnitude of the
resulting error]. This value of the combined systematic error is given by the sec-
ond term on the right-hand side of eqn (18.2). The total experimental error at
the 95% confidence level can now be calculated using eqn (18.17), with the result
∆totF expt = 6.3 pN. It does not depend on separation. The respective relative
experimental error varies from 1.4% to 1.9% when the separation increases from
63 to 72 nm. It increases to 4.5% and 28% when the separation increases to 100
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and 200nm, respectively. We can conclude that the rigorous statistical approach
leads to a 1.4% total experimental error in the measurement of the Casimir force
using the AFM at the shortest separation. Regarding the error in the measure-
ment of absolute separations, ∆a = 1 nm, this is caused by the error in the
determination of the separation on contact and by the error in the deflection
coefficient m (the contribution to ∆a owing to the error in apiezo is negligible).
We emphasize that the major contribution to ∆a is given by the error in the
surface separation on contact, ∆a0 = 0.8 nm. As a result, all experimental points
relative to one another are uncertain not by 1 nm but by a negligible amount.

Now we compare the experimental results with theory. In the original publi-
cation (Harris et al. 2000), the Casimir force, including the effect of the nonzero
skin depth, was calculated using the Lifshitz formula at zero temperature (12.30)
and the proximity force approximation. The negligibly small corrections due to
nonzero temperature and surface roughness (both much less than 1% of the cal-
culated force) were taken into account in a multiplicative way. Chen et al. (2004a)
also used the Lifshitz theory at T = 0 and the proximity force approximation,
but presented a complete analysis of the surface roughness in the framework of
the nonmultiplicative approach (17.94). For this purpose, the zero level of the
roughness on the plate and on the sphere, H0 = 2.734 nm, was found using eqn
(17.92) with N1 = N2 = 17. If the roughness is defined by regular functions
(17.3), this corresponds to a roughness amplitude A = hmax

i − H0 = 13.266 nm.
If the roughness is described by stochastic functions (17.77), the respective vari-
ance is equal to δ = 0.837 nm and, for the amplitude of a random process, one
obtains Ast =

√
2δ = 1.18 nm ≈ 1.2 nm, in agreement with what was determined

from an AFM scan similar to that shown in Fig. 19.6. At the shortest separation
a = 62 nm, where the surface roughness correction takes its maximum value, this
correction contributes only 0.22% of the Casimir force between perfectly shaped
bodies. This contribution decreases to 0.1% at a = 90 nm. At a = 62 nm, the
relative difference between the combined effect of the surface roughness and of
the nonzero skin depth corrections, calculated in a multiplicative and a nonmul-
tiplicative way, is only 0.09% (Chen et al. 2004a). The role of diffraction-type
and correlation effects in the effect of surface roughness was also investigated and
found to be negligible. From AFM scans of the surface, the correlation length
Λc was estimated to be ≈ 200 nm (see Section 17.4). The role of surface rough-
ness, including correlation effects, was only 0.24% at a = 62 nm and 0.13% at
a = 90 nm. Thus, although the role of the correlation effects in the effect of sur-
face roughness increases with increasing separation, the contribution from the
total roughness correction to the Casimir force decreases rapidly, thus making
the role of the correlation effects negligible (Chen et al. 2004a).

Both the original paper (Harris et al. 2000) and the subsequent reanalysis
(Chen et al. 2004a) used the global concept of the root-mean-square deviation
between experiment and theory. A rigorous comparison of the experiment with
theory using the local methods considered in Section 18.3.3 was performed by
Klimchitskaya et al. (2007a). The Casimir free energy in the configuration of
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two plane plates (12.66) was computed at T = 300 K, i.e. at the laboratory
temperature, using the dielectric permittivity ε(iξ) of the generalized plasma-
like model (the solid line in Fig. 13.2). For gold, ωp = 9.0 eV was used. Note
that the same value of ωp was used by Harris et al. (2000) (the value indicated
in the original publication is a typographical error). The results obtained were
converted into a force between the sphere and the plate, F sp(a, T ), by means
of the proximity force approximation (6.71). Then, the final theoretical results
taking roughness into account were obtained by means of geometrical averaging:

F theor(a, T ) = 2πR

17∑
i,k=1

vivkF(a + 2H0 − hi − hk, T ), (19.5)

where a table of the fractions of the surface area with heights hi was presented
in the paper by Chen et al. (2004a). Note that, here and below, we use the
superscript “theor”, to indicate that all corrections to the respective computed
quantity, including that due to surface roughness, have been taken into account.

In Fig. 19.7(b), we plot as dots the differences between the theoretical Casimir
force (19.5) and the mean experimental Casimir force versus separation. The solid
lines indicate the borders of the 95% separation-dependent confidence intervals
[−ΞF (a), ΞF (a)] for the quantity F theor(a)− F̄ expt(a), where ΞF (a) is defined in
eqn (18.21). To calculate ΞF (a), one needs to know the total experimental error
∆totF expt (already determined above) and the total theoretical error ∆totF theor.
The latter has several parts, considered below as relative quantities (see Section
18.3.2). The first theoretical error, as discussed in Section 18.3.2, is due to the
uncertainties in the optical data used to determine ε(iξ). Ignoring anomalous
sets of data which lead to disagreement with all experiments performed on the
Casimir force (see Section 19.3.4 for further discussion), the theoretical error
introduced into the magnitude of the force by the errors in the optical data was
estimated as δ1F

theor = 0.5% (Chen et al. 2004a). The error introduced in the
experiment under consideration due to the inaccurate description of the surface
roughness was negligibly small, as demonstrated above.

As the second source of theoretical errors, we consider the uncertainty related
to patch potentials. For the configuration of a sphere above a plate, the electric
force due to random variation in the patch potentials is given by (Speake and
Trenkel 2003)

Fpatch(a) = − 4πε0σ
2
vR

k2
max − k2

min

∫ kmax

kmin

dk
e−kak2

sinh ka
, (19.6)

where σv is the variance of the potential distribution, and kmax and kmin are
the magnitudes of the extremal wave vectors corresponding to the minimum
and maximum sizes of the grains. The values of the work function of gold are
V1 = 5.47 eV, V2 = 5.37 eV, and V3 = 5.31 eV for the crystallographic surface
orientations (100), (110), and (111), respectively. Assuming equal areas of these
crystallographic planes, one obtains
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σv =
1√
2

[
3∑

i=1

(Vi − V̄ )2

]1/2

≈ 80.8 mV. (19.7)

Using AFM images of the surface as in Fig. 19.6, the extremal sizes of the grains
in the gold layers covering the test bodies were determined as λmin ≈ 68 nm and
λmax ≈ 121 nm. This leads to kmax ≈ 0.092 nm−1 and kmin ≈ 0.052 nm−1. The
grain sizes obtained are of the same order as the film thickness. Computations
with eqn (19.7) using the above data lead to the patch effect electric forces
Fpatch/R ≈ −1.15×10−8 N/m and −1.25×10−10 N/m at a = 62 nm and 100nm,
respectively. Comparing the results obtained with the values of the Casimir force
at the same separations (F theor/R ≈ −4.88× 10−6 N/m and −1.41× 10−6 N/m,
respectively), we conclude that the electric force due to the patch potentials
contributes only 0.23% and 0.008% of the Casimir force at a = 62 nm and a =
100 nm, respectively (Chen et al. 2004a).

The third source of theoretical errors in this experiment is the proximity force
approximation (6.71), which was used in the theoretical expression. The related
error is estimated as δ3F

theor ≈ a/R.
The method used compares experiment with theory at the experimental sep-

aration distances. Because of this, the error δ4F
theor = 3 ∆a/a, as discussed in

the context of eqn (18.19), with α = 3, should be included in the calculation of
the theoretical errors.

As one more theoretical error, the error arising from the uncertainty in the
measurement of the sphere radius, δ5F

theor = ∆R/R ≈ 0.16%, should be con-
sidered. Finally, we estimate the theoretical error caused by the finiteness of the
plate used in the experiment by Harris et al. (2000). The theoretical expressions
(6.71) and (19.5) were derived for an infinite plate or a disk of infinite radius L.
In the experiment under consideration L = 5×10−3 m. Using eqn (6.58), for the
theoretical Casimir force taking into account the finiteness of the disk, we obtain

F theor
fin (a, T ) = β(a)F theor(a, T ), (19.8)

where

β(a) = 1 − a3

R3

(
1 − R√

R2 + L2

)−3

. (19.9)

Here we have used the fact that for a sphere, in contrast to a spherical lens of
some height H , one always has Q = R/

√
R2 + L2 in eqn (6.55). To make β(a)

have the maximum difference from unity, we put a = 350 nm and arrive at

β(a) = 1 − 8
a3R3

L6
≈ 1 − 2.2 × 10−17. (19.10)

Thus, the finiteness of the plate size leads to a negligible contribution to the
Casimir force and does not play any role in this experiment.

By combining all the above-mentioned errors in accordance with the sta-
tistical rule (18.2) at a 95% confidence level, we arrive at the magnitudes of
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δtotF theor(a) and ∆totF theor(a). As an example, at the separations 62, 100, and
200 nm the total theoretical error is equal to 5.5%, 3.4%, and 1.8%, respectively,
of the theoretical magnitude of the force. At short separations the major con-
tribution to the error is given by δ4F

theor, which characterizes the comparison
procedure, but not the theory itself. The total theoretical error ∆totF theor(a), to-
gether with ∆totF expt(a), results in the confidence intervals shown in Fig. 9.7(b)
as the solid lines.

As is seen in Fig. 19.7(b), almost all of the dots are inside the error bars. Thus,
the theoretical description by means of the generalized plasma model is consistent
with the data. Note that a comparison of the data from this experiment with
the zero-temperature theoretical force practically coincides with that shown in
Fig. 19.7(b). This is because measurements of the Casimir force between metals
by means of an AFM are still not of sufficient precision to measure the thermal
effects predicted by theory at short separations.

Now we are in a position to quantify the agreement between experiment and
theory. In accordance with Section 18.3.3, this agreement at a 95% confidence
level can be characterized by the quantity A = ΞF (a)/|F expt(a)|. This quantity
depends strongly on separation. At a = 61 nm, it is equal to 6.2%, and it is
approximately constant and equal to 5.4% within the interval 77.5 nm ≤ a ≤
85.5 nm. At separations of 100, 130, and 200nm it is equal to 6.2%, 10%, and
30%, respectively. The relatively large magnitude of A at the shortest separations
is explained by the contribution of the theoretical error, which dominates over the
experimental error due to the error in the measurement of the separations. With
increasing a, ∆totF theor(a) decreases. At larger a, the value of ΞF (a) is mostly
determined by the total experimental error, which is separation-independent.

In Section 18.3.3, we also considered another local method for the compari-
son between experiment and theory, which we illustrate here in Fig. 19.8. In this
method, the data are represented as crosses with horizontal and vertical arms
equal to 2 ∆a and 2 ∆totF expt(ai), respectively, and the theoretical results are
shown as a band with a width equal to 2 ∆totF theor(a). The important point is
that in this case the major error ∆4F

theor(a) due to the error in the measure-
ment of the separations is not included in ∆totF theor(a), because the theoretical
forces F theor(a) are computed not at the experimental points but over the mea-
surement interval. In Fig. 19.8, we present the experimental data as crosses and
the theoretical results as a black band of the appropriate width over the range
of separations from 62 to 100 nm. All errors are determined at a 95% confi-
dence level. It can be seen that all crosses overlap with the theoretical band
which means that the data are consistent with a theory based on the generalized
plasma-like dielectric permittivity and the Lifshitz formula at nonzero T . These
two methods of comparison between experiment and theory for the Casimir force
measurements will be repeatedly used in the following sections and chapters.
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Fig. 19.8. The measured mean Casimir forces, together with the absolute er-
rors in the separation and force, versus separation are shown as crosses. The
theoretical Casimir force computed using the generalized plasma-like model
is shown by the black band.

19.2.4 Dynamic measurement

A measurement of the Casimir force between a gold-coated sphere and a plate
was performed by means of an AFM operated in the dynamic mode (Jourdan
et al. 2009). Direct sphere–plate contact was avoided. The separation on contact
was not needed for the determination of absolute separations as in the earlier
experiments by Decca et al. (2005b, 2007a, 2007b) described in Sections 19.3.3
and 19.3.4. The AFM cantilever with the sphere glued to it was considered as
a harmonic oscillator with a natural resonant frequency ω0 = 2π × 50182 rad/s
which was modified by the Casimir force. In the linear regime,

∂F (a)

∂a
= k0 − keff , (19.11)

where F (a) is the Casimir force acting between the sphere and the plate, k0 =
mω2

0, keff = mω2
r , m is the mass of the oscillator, and ωr is its resonant frequency

in the presence of the Casimir force. This experimental approach also resembles
the earlier experiments of Decca et al. (2005b, 2007a, 2007b), performed by means
of a micromechanical torsional oscillator to be discussed in Section 19.3. However,
the uncertainty in the measurement of the absolute separation, ∆a = 2 nm, was
more than twice as large as in the previous AFM experiments and three times
larger than in the experiments using a micromachined oscillator. The calibration
procedures and the determination of the absolute separation used electrostatic
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forces as in the experiments described previously. However, a much larger residual
potential difference V0 = 75 ± 3 mV was reported. The calibration was done at
separations a < 500 nm and the total force (electrostatic in addition to the
Casimir force) was used in the fit. Thus, the second and third requirements for
the precise measurement of the Casimir force proposed by Sparnaay (see Section
18.2) were only partially met.

The experimental data for the force gradient ∂F/∂a were compared with
the Lifshitz theory at zero temperature (measurements were performed under a
10−6 Torr vacuum at T = 300 K). The dielectric permittivity along the imag-
inary frequency axis was found using the complete optical data (Palik 1985),
extrapolated to zero frequency by means of the Drude model with ωp = 9.0 eV
and γ = 0.035 eV (Lambrecht and Reynaud 2000a). This permittivity is shown
by the dashed line in Fig. 13.2. The variances of the surface roughness were
measured using the AFM to be 3 and 2 nm on the sphere and on the plate,
respectively. The effect of the roughness was not taken into account in the theo-
retical analysis. Both systematic errors and random errors at a 67% confidence
level were discussed, but the total experimental error was not provided. As two
major sources of theoretical errors, an uncertainty of the order of 5% due to the
sample dependence of the optical data and an uncertainty of less than 1% due
to the use of the proximity force approximation were considered. The differences
between the force gradient measurements and the results of the theoretical com-
putations described above were found to be within 3% of the theoretical force
at separations between 100 to 200 nm. This 3% discrepancy, however, cannot be
stated as a rigorous measure of agreement between the experiment and theory.
This is because the authors of that study considered a 5% error in the calculated
force gradient as part of the theoretical error (see Sections 18.3.2 and 18.3.3 for a
discussion of this subject). In addition, in considering the differences between the
force gradient measurements and theoretical computations at the experimental
separations, one must include the contribution (18.19) with α = 4 due to the
error in the measurement of the separations in the theoretical Casimir force. At
a = 100 nm, this error is equal to 8% of the theoretical Casimir force. Thus,
using eqn (18.2), the total theoretical error in this experiment reaches 10.4%
at a = 100 nm and the agreement between experiment and theory needs to be
characterized by a larger percentage.

The measured Casimir force gradient was also compared with the values
computed using ideal-metal surfaces and a clear deviation was reported. On this
basis it was concluded that the experimental data again demonstrated the effects
of the skin depth on the Casimir force.

19.3 Experiments with a micromechanical torsional oscillator

Microelectromechanical systems are well adapted for the investigation of small
forces acting between closely spaced surfaces. One such system, a micromachined
torsional oscillator, was first used by Chan et al. (2001a, 2001b) to demonstrate
the influence of the Casimir force on the static and dynamic properties of mi-
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Fig. 19.9. Schematic diagram of the measurement of the Casimir force using a
micromachined oscillator (Decca et al. 2005b).

cromechanical systems. These results are considered in Sections 23.2 and 23.3.
Here, precision measurements of the Casimir force and pressure between metal-
lic surfaces by means of a micromachined oscillator are described (Decca et al.
2003a, 2003b, 2004, 2005b, 2007a, 2007b). These measurements were accom-
plished in three successive experiments and resulted in the demonstration of the
highest experimental precision ever achieved in Casimir force measurements. The
data obtained have been successfully used to perform conclusive tests of various
theoretical models of the thermal effects discussed in Chapter 14. We start with
a presentation of the experimental setup and the measurement scheme used,
with some modifications, in all three experiments. After a discussion of the first
two experiments, we then concentrate on the third one, which incorporated im-
provements in both the experimental procedures and theoretical analysis. An
experimental test of the proximity force approximation is also considered.

19.3.1 Experimental setup and measurement scheme

A schematic diagram of the experimental setup, including the micromechanical
torsional oscillator, is shown in Fig. 19.9. The oscillator consisted of a 3.5 µm
thick, 500 × 500 µm2 heavily doped polysilicon plate suspended at two opposite
points on the midplane by serpentine springs. The springs were anchored to a
siliconnitride-covered Si platform. When no torques were applied, the plate was
separated from the platform by a gap of about 2 µm. Two independent elec-
trically contacted polysilicon electrodes located under the plate were used to
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measure the capacitance between the electrodes and the plate. They could also
be used to induce oscillation in the plate at the resonant frequency of the micro-
machined oscillator when the dynamic measurement regime was used. An 80 µm
wide ribbon at the edge of the plate, below the sphere, was covered with metallic
layers (different in different experiments). Above the oscillator, a large Al2O3

sphere of radius R was also covered with a metallic layer. The coated sphere
was mounted with conductive epoxy on the side of an Au-coated optical fiber,
establishing an electrical connection between them. The sphericity of the Al2O3

ball was measured with a scanning electron microscope. The metal-deposition-
induced asymmetries were found to be smaller than 10 nm, the resolution of
the scanning electron microscope. The entire setup (oscillator and fiber–sphere
combination) was rigidly mounted into a can, where a pressure < 10−5 Torr was
maintained. The can had built-in magnetic-damping vibration isolation and was,
in turn, mounted on an air table.

The separation distance between the metallic coatings on the plate and on
the sphere was given by

a = zmeas − D1 − D2 − bθ. (19.12)

In this expression, zmeas is the separation between the end of the cleaved fiber
and the platform (see Fig. 19.9), which was measured interferometrically with
an absolute error ∆zmeas = 0.2 nm. The quantities D1, D2, the rotation angle
of the plate in response to the Casimir and electric force, and the lever arm b
are also shown in Fig. 19.9. The value of b was determined optically. The value
of θ was found by measuring the difference in capacitance Cright −Cleft between
the plate and the right and left electrodes. In all reported cases, θ ≤ 10−5 rad.
Finally, the force between the two metallic surfaces separated by the distance a
was F (a) = k(Cright − Cleft), where k is a constant coefficient.

Before performing the Casimir force measurements, the surfaces of the plate
and the sphere were characterized using an AFM probe with a radius of curvature
of 5 nm in the tapping mode. Regions of the metal plate and of the sphere
varying in size from 1 × 1 µm2 to 10 × 10 µm2 were scanned. The character of
the roughness in the first experiment was very different from that in the second
and third experiments. Because of this, it is discussed below with respect to each
particular experiment.

An important part of the measurement scheme was system calibration. It was
done electrostatically in all three experiments and used to find the proportional-
ity constant k between the force and the difference in capacitance Cright −Cleft,
the residual potential difference V0, the exact value of the sphere radius R, and
the parameter D = D1 + D2. To perform the calibration, a known potential
difference V was applied between the metal-coated sphere and the plate. This
was done at separations a > 3 µm, where the Casimir force was smaller than
0.1% of the total force. Thus, the total force could be approximated by only the
electrostatic force Fel(a) as given by eqn (19.1). The electric force, with differ-
ent applied voltages, was measured and fitted to eqn (19.1). This allowed the
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values of all of the above parameters to be determined with high precision. The
values obtained were different in different experiments. In each experiment, V0

was observed to be constant for wide ranges of separations and it did not vary
when measured over different locations of the sphere above the metal layer on
the plate.

19.3.2 Static and dynamic measurements

Now we present the results of the first experiment on precision Casimir force
measurement by means of a micromachined oscillator (Decca et al. 2003a, 2003b,
2004). In this experiment, the surface of the plate was coated with a 1 nm layer of
Cr followed by 200nm of Cu. The sphere, with a nominal radius of 300 µm, was
coated with a 1 nm layer of Cr followed by a 203nm layer of gold. Thus, in this
experiment, the Casimir interaction between dissimilar metals was investigated.
An analysis of AFM scans of the plate and sphere surfaces showed the presence
of rather tall roughness peaks. Even peaks with h ≥ h59 = 98.5 nm (but with
h ≤ 100 nm) were found, with a fractional area v59 = 0.085. The zero level of
roughness was calculated to be H0 = 35.46 nm using eqn (17.92) with N1 = N2 =
59, which leads to a roughness amplitude A = 63.04 nm, determined from eqn
(17.93). This makes taking careful nonmultiplicative account of the roughness
corrections necessary. A rather high residual potential difference V0 = 632.5 ±
0.3 mV was also found. This reflects the difference in the work functions for the
dissimilar metals used (Au and Cu). The value of V0 obtained was observed to
be constant for a from 0.2 to 5 µm. Other calibration parameters were found
from more than 100 force–distance relations with different applied voltages: k =
50280±6 N/F, R = 294.3±0.1 µm, and separation on contact a0 = 78.8±0.6 nm
[note that only in the first experiment with the micromachined oscillator were
the absolute separations expressed not by using eqn (19.12) but by means of the
separation on contact a0].

The first experiment included two different measurements, a static one and
a dynamic one. In the static regime, the sphere was brought into proximity with
the plate and electrostatic measurements were performed. Without breaking the
vacuum in the system, a measurement of the Casimir force between the sphere
and the plate was then carried out. This was repeated 19 times within the range
of separations from 190nm to 1.15 µm. Each data point was obtained with an
integration time of 10 s. The magnitudes of the Casimir force in one of 19 data
sets are shown in Fig. 19.10(a). This set contains approximately 300 data points.
The random error, estimated as ∆randF expt ≈ 0.3 pN at a 95% confidence level,
was much higher than the systematic errors and determined the value of the
total experimental error. The relative total experimental error at the shortest
separation was estimated to be 0.27% (Decca et al. 2003b).

The experimental results were compared with theoretical computations using
the Lifshitz formula for the Casimir energy per unit area of two dissimilar plates
(12.44) at zero temperature. The force F sp was calculated by means of the PFA
[eqn (6.71) at T = 0]. The dielectric permittivity of Au along the imaginary



Experiments with a micromechanical torsional oscillator 553

200 400 600 800 1000 1200

20

40

60

80

100

120

� � � � � 
 �  � � �

�  � � � 200 400 600 800 1000

-2

-1

0

1

2

3�
� � � � ! #

�
� $ % � ( ) * ,

- ( ) . ,

0 2 4 0 5 4

Fig. 19.10. (a) Absolute value of the measured Casimir force as a function
of separation, obtained using the static regime. (b) Differences between the
theoretical and experimental Casimir forces in a sphere–plate configuration
versus separation (Decca et al. 2003b).

frequency axis as given by the dashed line in Fig. 13.2 (this line was obtained
using the tabulated optical data extrapolated to low frequencies by means of
the Drude model) was used. Almost coincident results follow from the solid line
in Fig. 13.2 (the generalized plasma-like dielectric permittivity). The dielectric
permittivity of Cu along the imaginary frequency axis was obtained in a similar
way. The corrections due to the surface roughness were calculated using the
nonmultiplicative approach (17.94). In Fig. 19.10(b), the differences between the
theoretical and experimental force values F theor(ai) − F expt(ai) as a function
of surface separation ai are shown as dots for one typical set of measurements.
As can be seen from the figure, all of the data points are clustered around zero,
demonstrating good agreement between experiment and theory. The quantitative
measure of agreement between experiment and theory (Decca et al. 2003b) used
the global concept of the root-mean-square deviation. A rigorous approach to the
comparison of experiment with theory is discussed below for the second and third
experiments using micromachined oscillators (see Sections 19.3.3 and 19.3.4).

The dynamic measurement also performed in the first experiment was an
indirect measurement, resulting in the first precise determination of the Casimir
pressure in the configuration of two parallel plates. In this measurement, the
vertical separation between the sphere and the plate was varied harmonically,

a(t) = a + Az cosωrt, (19.13)

where ωr is the resonant angular frequency of the oscillator in the presence of the
sphere. An amplitude Az between 3 and 35 nm, depending on a, was chosen in
such a way that the oscillator exhibited a linear response. In the presence of the
Casimir force F (a), the resonant frequency ωr differed from the natural angular
frequency of the oscillator, ω0 = 2π × 687.23 Hz. The solution for the oscillator
motion yields (Chan et al, 2001a, 2001b)
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ω2
r = ω2

0

[
1 − b2

Iω2
0

∂F sp(a)

∂a

]
, (19.14)

where I is the moment of inertia of the oscillator. The electrostatic measurements
were used to find b2/I = 1.2978 µg−1.

The actual measured quantity in this dynamic measurement was the change
of the resonant frequency of the oscillator, ωr − ω0, under the influence of the
Casimir force. Using eqn (19.14), the experimental data for ωr − ω0 obtained at
different separation distances can be transformed into ∂F sp(a)/∂a. It is less use-
ful, however, to recover the force F sp(a) between the sphere and plate using the
force gradient. A better approach is given by using the proximity force approx-
imation (6.71). Differentiating it with respect to a and taking into account eqn
(1.6), one arrives at an expression for the Casimir pressure in the configuration
of two parallel plates,

P (a) = − 1

2πR

∂F sp(a)

∂a
. (19.15)

From eqns (19.14) and (19.15), one can immediately convert the experimental
data for the frequency shift into data for the Casimir pressure between two par-
allel plates. Thus, the dynamic measurement is in fact an indirect measurement
of the pressure. Note that in metrological terms (Rabinovich 2000), the results
of direct measurements are found only from experiment. The results of indirect
measurements are obtained with the help of calculations using known equations
[in our case eqns (19.14) and (19.15)] which relate the quantity under consid-
eration (the pressure) to some other quantity measured directly (the frequency
shift).

The Casimir pressure was dynamically measured five times within the range
of separations from 260nm to 1.15 µm. The data from one set of measurements
are shown in Fig. 19.11(a) as a function of the separation. The random error
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Fig. 19.11. (a) Magnitude of the measured Casimir pressure as a function of
separation, obtained using the dynamic technique. (b) Differences between
the theoretical and experimental Casimir pressures in a configuration of two
plates versus separation (Decca et al. 2003b).
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of the force measurements was estimated to be ∆randP expt = 0.31 mPa. Here,
the systematic errors should also be taken into account. The error in the mea-
surement of the frequency was approximately 2π × 10−2 Hz, which, from eqn
(19.14), leads to an absolute error in ∂F/∂a equal to 4.2×10−7 N/m. The latter,
when combined with the error in the sphere radius (equal to 0.1 µm), leads via
eqn (19.15) to a systematic error in the pressure ∆systP expt, which varies from
0.31mPa at a = 260 nm to 0.23mPa at all separations a ≥ 450 nm. As a result,
the value of ∆totP expt obtained by Decca et al. (2003b) at a 95% confidence level
as a sum of random and systematic errors varies from 0.62mPa at a = 260 nm
to 0.54mPa at a ≥ 450 nm. Hence, the relative error is δtotP expt = 0.26% at
the shortest separation a = 260 nm. A more accurate error analysis using the
rigorous methods of Section 18.3.1 will be considered in application to the third
experiment using the micromachined oscillator. This analysis includes the error
of the proximity force approximation as a part of the measurement procedure
for the indirect measurement of the Casimir pressure (see Section 19.3.4).

The theoretical Casimir pressure to be compared with the data from the
dynamic measurement was calculated in the same way as for the Casimir force
for the static measurement at T = 0 (Decca et al. 2003b). The only difference
was that eqn (12.46) for the Casimir pressure was used instead of eqn (12.44) for
the Casimir energy. As an example, the differences between the theoretical and
experimental pressures, P theor(ai) − P expt(ai), for one typical measurement set
are presented in Fig. 19.11(b). This figure demonstrates that the mean difference
pressure is equal to −0.26 mPa, i.e. about half the absolute error of the pressure
measurements. Thus, the theory is in a good agreement with the data.

The first dynamic measurement by means of the micromachined oscillator
provided an experimental test of the large thermal corrections predicted in the
various approaches to the thermal Casimir force (see Sections 14.3.1 and 14.3.5).
Decca et al. (2003b) repeated the computations of the Casimir pressure using
ε(iξ) obtained from the optical data extrapolated to low frequencies by use of
the Drude model (the Drude model approach), but did so for T = 300 K, the
laboratory temperature. The differences P theor

D (ai)−P expt(ai) obtained are plot-
ted in Fig. 19.12(a) for the same measurement set as in Fig. 19.11. It is obvious
that at separations a < 700 nm the quantity P theor

D −P expt deviates significantly
from zero. At the shortest separation a = 260 nm, this deviation reaches 5.5mPa,
i.e. a factor of 9 larger than the total experimental error. Thus, the large ther-
mal corrections to the Casimir pressure predicted by the Drude model approach
are ruled out by the data. The more rigorous comparison between experiment
and theory in the case of the second and third experiments (Sections 19.3.3 and
19.3.4) is in support of this conclusion.

The computations of the theoretical Casimir pressure were also repeated us-
ing the Lifshitz theory at the laboratory temperature and the same ε(iξ) as in
the Drude model approach, but with the transverse electric reflection coefficient
at zero frequency equal to unity instead of zero, as discussed at the beginning of
Section 14.3.5. The differences P theor

m −P expt obtained are shown in Fig. 19.12(b)
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Fig. 19.12. Differences between the theoretical and experimental Casimir pres-
sures in a configuration of two plates versus separation. The theoretical results
were calculated using the Lifshitz theory at room temparature, (a) combined
with the Drude model approach and (b) using a modified zero-frequency
contribution from the transverse electric term (Decca et al. 2003b).

as dots. The same measurement set as in Fig. 19.11 was used. As can be seen
in Fig. 19.12(b), at separations less than 600nm the quantity P theor

m − P expt

deviates significantly from zero. It reaches 5mPa at a = 260 nm. This is a factor
of 8 larger than the total experimental error. Note that in the computations of
P theor

m , all contributions to the Lifshitz formula with the exception of the TE
term at ξ = 0 were the same as in the Drude model approach. It follows that
the large thermal correction arising from the modified TE reflection coefficient
at zero frequency is also in contradiction with the first experiment using the
micromachined oscillator. This conclusion is also strengthened by the results of
subsequent experiments.

19.3.3 Improved dynamic measurement

The second experiment using a micromachined oscillator (Decca et al. 2005b,
Klimchitskaya et al. 2005) was significantly improved in comparison with the
first one. The results obtained were compared with theory using the rigorous
methods presented in Section 18.3.3. One of the new features of the second
experiment was that the Casimir attraction was measured between two layers of
Au rather than between two dissimilar metals. The edge of the plate was coated
with 10 nm of Pt followed by 150 nm of Au. A sphere with a nominal radius
R = 150 µm was coated with a 10 nm layer of Ti followed by a 200nm layer of
Au. Characterization of the sample using an AFM was performed both before
and after the Casimir force measurements, to check that the sample was not
modified during the measurement. In Fig. 19.13(a,b), 10 × 10 µm2 AFM images
of the film on the plate are shown before and after the experiment, respectively.
Figure 19.13(c,d) contains similar 5 × 5 µm2 AFM images of the bottom of the
sphere. Special measures were taken in this experiment before film deposition
to obtain smoother surfaces. As a result, much lower roughness peaks on the
Au coating than in the first experiment were obtained. From an analysis of the
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Fig. 19.13. Typical AFM images of the surface of the plate (a) before and (b)
after the experiment, and of the sphere (c) before and (d) after the experiment
(Decca et al. 2005b).

AFM images, numbers of bins N2 = 105 and N1 = 112 for the roughness heights
were selected on the plate and on the sphere, respectively. The highest peaks had

heights h
(2)
105 = 20.65 nm on the plate and h

(1)
112 = 11.06 nm on the sphere. Using

eqn (17.92), zero levels of H
(2)
0 = 9.72 nm and H

(1)
0 = 5.03 nm on the plate

and on the sphere, respectively, were obtained. From eqn (17.93), this leads
to roughness amplitudes A2 = 10.93 nm on the plate and A1 = 6.03 nm on the
sphere. The respective variances defined by eqn (17.95) are equal to δ2 = 4.06 nm
and δ1 = 1.91 nm.

The calibration of the setup was performed by means of the electrostatic
force as described in Section 19.3.1. For the residual potential difference, a much
lower value, V0 = 17.5± 0.1 mV than in the first experiment was obtained. This
value was observed to be constant for a in the range from 0.15 to 5 µm, and
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it did not vary for different locations of the sphere above the plate. Note that
Fel was measured between the zero levels of the roughness on the plate and the
sphere, relative to which the mean values of the roughness profiles were zero.
As a result, the absolute separations obtained from eqn (19.12) were also de-
termined between the zero levels of the roughness. For these reasons, there was
no systematic error due to roughness in the measurements of the separations in
addition to the uncertainties in the various parameters in eqn (19.12) discussed
below. In particular, a set of 120 curves of Fel(a) was used to fit the parameter
D = D1 + D2, with the result D = 9349.7 ± 0.5 nm. Other parameters deter-
mined from the electrostatic-force measurements were R = 148.7 ± 0.2 µm and
k = 50455 ± 7 N/F. A measurement of θ through the difference in capacitances
and the interferometric measurement of zmeas then yielded the absolute separa-
tion a. Unlike the first experiment, contact between the two surfaces was not
made. In the second experiment, the separation on contact was not needed for
determination of the absolute separations. In this experiment the lever arm was
b = 210 ± 3 µm, b2/I = 1.2579 ± 0.0006 µg−1, and ω0 = 2π × 702.92 Hz. The
absolute error in the measurement of ωr was ∆ωr = 2π × 6 mHz, a factor of 1.7
smaller than in the first experiment.

The dynamic measurement of the Casimir pressure was performed as de-
scribed in the previous subsection over a range of separations from 160 to
750nm. The minimum value of the amplitude of harmonic oscillations given
by eqn (19.13), Az = 1.2 nm, was used at a = 160 nm. The possibility to perform
measurements at lower separations than in the first experiment was connected
with the smaller sphere radius used and the decreased surface roughness. The
measurement was repeated 15 times at different positions on the sample (with
288–293 points in each set of measurements). One of the data sets is shown in
Fig. 19.14(a). Each point of this figure was obtained with an integration time
of 10 s. Decca et al. (2005b) performed rigorous error analysis of the experimen-
tal data obtained. In the measurement procedure employed, the separation step
between two neighboring points was not uniform, even within one set of measure-
ments, and additionally was quite different in different sets of data. This leads
to the absence of even a few points (let alone 15) taken at the same separation
which could be used for averaging during statistical analysis. Statistical methods
adapted for such data are presented in Section 18.3.1.

The 15 available sets of measurements were analyzed for the presence of out-
lying results with the help of a statistical criterion (see Section 18.3.1) using
the quantity given in eqn (18.12). One set of measurements was found to be
outlying. As an example, at separations 170, 174, 180, and 250nm the probabil-
ities that the points of the rejected set were outlying were 80%, 98%, 95%, and
98%, respectively. For this reason, only 14 sets of measurements were used in
the subsequent analysis. The random experimental error was found using eqns
(18.10) and (18.11) (usually, it was necessary to consider four or five subintervals
to the left and to the right of any point a0 in order to find a uniform variance)
over the entire measurement range at a 95% confidence level. The random er-
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Fig. 19.14. (a) Magnitude of the measured Casimir pressure as a function of
separation, obtained using the dynamic technique (Decca et al. 2005b). (b)
The total experimental and theoretical relative errors of the Casimir pres-
sure versus separation are shown as the solid and dashed lines, respectively
(Klimchitskaya et al. 2005).

ror increased rapidly with decreasing separation. This is a consequence of eqns
(18.10) and (18.11) and the decrease of mk for subintervals k at the shortest
separations. The main systematic errors were due to the error in the sphere
radius ∆R = 0.2 µm and the error in the angular frequency of the oscillator
∆ωr = 2π× 6 mHz [the quantities ω0 and b2/(Iω2

0) were determined so precisely
that their uncertainties did not contribute to the overall systematic error]. Ac-
cording to Section 18.3.2, the error introduced by the use of the proximity force
approximation should also be considered as a systematic error in this indirect
measurement of the pressure. However, in the original publication (Decca et al.
2005b) it was included as a part of the theoretical error. This does not change the
resulting confidence interval used for the comparison of experiment and theory.
The relative errors due to ∆R and ∆ωr were combined at a 95% confidence level
using eqn (18.2) and the resulting systematic error was obtained. The statistical
rule (18.17) was used to combine this result with the random error determined
at the same confidence level. The resulting total experimental error defined at
a 95% level is shown in Fig. 19.14(b) as the solid line. As can be seen in the
figure, the total experimental error is almost constant (it varies between 0.55%
and 0.6%) over a wide range of separations from 170 to 300 nm.

The experimental error ∆a in the measurement of the surface separations
should be considered as a systematic one. Using eqn (19.12), it can be found by
combining the two errors ∆zmeas = 0.2 nm and ∆D = 0.5 nm [the third term on
the right-hand side of eqn (19.12) does not contribute, because θ ≤ 10−5 rad].
The application of the statistical rule (18.2) leads to ∆a = 0.6 nm at a 95%
confidence level.

The theoretical Casimir pressure was computed by using the Lifshitz for-
mula at nonzero temperature (12.70) with the Leontovich-impedance reflection
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coefficients (13.40). At all nonzero Matsubara frequencies ωl = iξl with l ≥ 1,
the Leontovich impedance was taken in the form (13.34), where ε(iξ) was given
by the dashed line in Fig. 13.2 using the Drude parameters ωp = 9.0 eV and
γ = 0.035 eV. At l = 0, the impedance (13.33) for infrared optics was used.
The surface roughness was incorporated using a nonmultiplicative approach [the
second equality in eqn (17.94)], where the Casimir pressures P (a) were replaced
with the P (a, T ) defined in eqn (12.70). We emphasize that in this second ex-
periment by means of a micromachined oscillator, the role of surface roughness
was rather small. Thus, at the shortest separation a = 160 nm, the roughness
contributed only 0.65% and at a = 200 nm only 0.42% of the Casimir pressure.
The contribution of correlation effects was negligible, as the correlation length
was found to be rather large: Λc ≥ 600 nm (Decca et al. 2005b). The contribution
of patch effects was estimated similarly to Section 19.2.3, where, instead of eqn
(19.6), the corresponding result for the pressure was used (Speake and Trenkel
2003),

Ppatch(a) = − 2ε0σ
2
v

k2
max − k2

min

∫ kmax

kmin

dk
k3

sinh2 ka
(19.16)

(see Section 19.2.3 for notation). Here, the extremal sizes of the grains in the Au
layers covering the test bodies were λmin ≈ 25 nm and λmax ≈ 300 nm, which
lead to kmax = 0.251 nm−1 and kmin = 0.0209 nm−1. From eqn (19.16), this
results in patch pressures Ppatch = 0.42 and 0.25mPa at separations a = 160
and 170nm, respectively. In comparison with the Casimir pressures at the same
separations, the relative contributions of the patch effect are 0.037% and 0.027%,
respectively, and decrease further with increasing a. As a result, the theoretical
error in the second experiment can be estimated as a combination of three errors:
δ1P

theor = a/R due to the use of the proximity force approximation, δ2P
theor =

0.5% due to the uncertainties in the optical data, and δ3P
theor = 4 ∆a/a due to

the calculation of the theoretical pressures at the experimental points. The total
theoretical error obtained by the combination of these errors at a 95% confidence
level using the statistical rule (18.2) is shown in Fig. 19.14(b) by the dashed line.
It can be seen that at short separations the total theoretical error is larger than
the experimental error (owing to the contribution of δ3P

theor), but at a > 380 nm
the experimental error becomes dominant.

In Fig. 19.15, the differences between the theoretical Casimir pressures com-
puted as described above and the experimental values from 14 sets of measure-
ments are shown by dots. The solid lines indicate the boundaries of the confidence
intervals [−ΞP (a), ΞP (a)] for the quantity P theor(a)− P expt(a) determined at a
95% confidence level in accordance with eqn (18.21) using the total experimen-
tal and theoretical errors ∆totP expt and ∆totP theor. As can be seen in the figure,
fewer than 5% of all points fall outside the confidence interval. Thus, the theoret-
ical approach using the Leontovich surface impedance at T = 300 K is consistent
with the experimental data. The measure of agreement between experiment and
theory is A = ΞP (a)/|P expt(a)|. This quantity depends only slightly on a over
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Fig. 19.15. Differences between the theoretical pressure computed using the
impedance approach and the experimental Casimir pressure in a configuration
of two plates versus separation, shown by dots. The solid lines indicate the
borders of the 95% confidence interval (Klimchitskaya et al. 2005).

a wide separation range. Thus, it decreases from A = 1.9% at a = 170 nm to
A = 1.4% in the interval 270 nm ≤ a ≤ 370 nm, and then increases to A = 1.8%
at a = 420 nm. The largest values of A are achieved at a < 170 nm (A = 2.4% at
a = 160 nm) and a > 420 nm (A = 13% at a = 750 nm). The overall conclusion
is that the impedance approach is in agreement with the data at the 1.5% level
at a 95% confidence level for a wide range of separations.

The measurement data from the second experiment using the micromechan-
ical oscillator were compared with two alternative theoretical approaches to the
thermal Casimir force, based on the use of tabulated optical data extrapolated
to low frequencies by means of the Drude model or by taking the TE reflec-
tion coefficient at zero frequency to be equal to unity (see Section 14.3.1 and
the beginning of Section 14.3.5, respectively). In Fig. 19.16(a), the differences
P theor

D (a)−P expt(a) are shown by dots, using the experimental data from all 14
measurement sets. The solid lines indicate the confidence intervals determined
at a 95% confidence level for the differences between theory and experiment (the
confidence intervals are the same for both theoretical approaches). As can be seen
in Fig. 19.16(a), in a wide range of separations from 230 to 500nm all of the data
fall outside the confidence interval. It follows that the Drude model approach to
the thermal Casimir force is excluded by this experiment at a 95% confidence



562 Measurements of the Casimir force between metals

200 300 400 500 600 700

5

10

15

20

25

30

35

� � � � � 
� � � � � � � � � � � �

� � � � � 200 300 400 500 600 700

-30

-25

-20

-15

-10

-5

0

5

� ! " $ & '( ) � $ + , ! / 0 2 4 6

7 / 8 0 6

9 ; = 9 ? =

Fig. 19.16. Differences between the theoretical and experimental Casimir pres-
sures in a configuration of two plates versus separation, shown by dots. The
theoretical results were calculated using the Lifshitz thery at room tempara-
ture, (a) combined with the Drude model approach and (b) using the modified
zero-frequency contribution from the transverse electric term. The solid lines
indicate the borders of the 95% confidence intervals (Decca et al. 2005b).

level. In fact, this conclusion was obtained in an extremely conservative way.
As can be seen in Fig. 19.16(a), even if the confidence intervals were widened
to reach a 99% confidence level, the differences P theor

D (a) − P expt(a) would still
remain outside those intervals within some range of separations. To make this
argument quantitative, we calculate the half-width of a new confidence interval
from the following equality:

Ξ 0.99
P (a)

Ξ 0.95
P (a)

=
t(1+0.99)/2(2)

t(1+0.95)/2(2)
≈ 2.31. (19.17)

(To be conservative, we keep only two degrees of freedom, i.e. the minimum
value obtained from the analysis of the random errors.) Using eqn (19.17), we
find that Ξ0.99

P = 3.67, 1.46, and 1.13mPa at separations a = 300, 400, and
500nm, respectively. From this it follows that within the range of separations
from 300 to 500nm, the Drude model approach is excluded experimentally at a
99% confidence level (Decca et al. 2005b, Klimchitskaya et al. 2005). In the next
subsection it will be shown that the Drude model approach is excluded at even
higher confidence level.

In Fig. 19.16(b), we present the differences P theor
m (a) − P expt(a), where the

Casimir pressure P theor
m (a) was computed by taking the TE reflection coefficient

at zero frequency to be equal to unity (Svetovoy and Lokhanin 2001). The same
experimental data and confidence intervals as in Fig. 19.16(a) have been used.
As can be seen in Fig. 19.16(b), within the range of separations from 160 to
350nm almost all dots fall outside the confidence interval. It follows that the
theoretical approach based on the modified contribution from the TE term at
zero frequency is excluded experimentally at a 95% confidence level.
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19.3.4 More precise dynamic measurement, and conclusive test for some
models of the thermal Casimir force

The third experiment in this series of dynamic determinations of the Casimir
pressure by means of a micromachined oscillator (Decca et al. 2007a, 2007b) in-
corporated additional improvements which made it the most precise and reliable
Casimir effect measurement performed to date. First, a new experimental pro-
cedure was implemented which permitted the measurements to be repeated over
a wide range of separations, in such a way that data were acquired at practi-
cally the same points in each repetition. This made unnecessary the complicated
statistical analysis employed in the second experiment. Second, the random ex-
perimental error was substantially reduced compared with the systematic error,
as required for precision measurements. This was achieved by 33 repetitions of
the measurement and a reduction in vibration noise by approximately 7%. Third,
the plasma frequency of the Au films used in the experiment was determined us-
ing the measured temperature dependence of the resistivity of the films. The
experimental data obtained were compared with various theoretical approaches
to the thermal Casimir force using rigorous statistical methods.

A silicon plate of thickness 3.5 µm was first coated with a 10 nm thick layer of
Cr and then with a 210nm thick layer of Au. A sapphire sphere with a nominal
radius of 150 µm was first coated with a 10 nm thick layer of Cr and then with a
180 nm thick layer of Au. Sample characterization was performed as described in
the previous subsection. From AFM images of the surfaces, the fraction of surface

area v
(1,2)
i with height h

(1,2)
i was determined for each surface. It was found that

for the plate (1 ≤ i ≤ N2 = 85), h
(2)
i varied from 0 to 18.35nm, and for the

sphere (1 ≤ i ≤ N1 = 106), h
(1)
i varied from 0 to 10.94nm. From eqn (17.92),

this results in the zero levels of roughness H
(2)
0 = 9.66 nm and H

(1)
0 = 5.01 nm

for the plate and the sphere, respectively. The respective roughness amplitudes
were A2 = 8.69 nm and A1 = 5.93 nm. The roughness variances were δ2 = 3.6 nm
for the plate and δ1 = 1.9 nm for the sphere. The Casimir pressure, including the
effect of surface roughness, was calculated in a nonmultiplicative way using eqn
(17.94). The contribution of the roughness correction to the Casimir pressure was
found to be very small. For example, at the shortest separation a = 162 nm, the
roughness correction contributed only 0.52% of the total pressure. At separations
a = 170, 200, and 350nm the roughness contributed only 0.48%, 0.35%, and
0.13%, respectively, of the Casimir pressure. The contributions from correlation
effects and patch potentials to the Casimir pressure were negligibly small, as
described in the previous subsection.

The calibration of the setup was performed as in the two earlier experiments
and described by Decca and López (2009). The residual potential difference V0

was found to be 15.29mV, with a standard deviation equal to 0.13mV. It was
observed to be constant over the separation range from 160.4 to 5150.4nm (Decca
et al. 2009a). The resulting error in the measurement of the absolute separation
was ∆a = 0.6 nm at a 95% confidence level. The natural angular frequency
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Fig. 19.17. (a) The mean measured Casimir pressure as a function of separa-
tion, obtained using the dynamic technique (Decca et al. 2007b). (b) The
absolute total, systematic, and random experimental errors of the Casimir
pressure are shown by the solid, short-dashed, and long-dashed lines, respec-
tively (Decca et al. 2007a).

of the oscillator was equal to ω0 = 2π × (713.25 ± 0.02)Hz, the radius of the
coated sphere R was 151.2± 0.2 µm, and the parameter in eqn (19.14) b2/I was
1.2432± 0.0005 µg−1.

Indirect measurements of the Casimir pressure were performed over the range
of separations from a1 = 162.03 nm to a293 = 745.98 nm and repeated 33 times.
The values of the oscillator amplitude in eqn (19.13) were chosen in such a way
that the oscillator exhibited a linear response. All data sets were analyzed for the
presence of outlying results using the statistical criterion of Section 18.3.1 and
no such results were found. Thus, all 33 measurement sets were used in the data
analysis. Based on the advantage that in all measurement sets the data for the
pressure were collected at approximately the same points ai (up to the error ∆a
in the measurement of the absolute separations), the error analysis was simpler
than in the second experiment. Here, eqns (18.3) and (18.8) were used for the
determination of the mean experimental pressures P̄ expt(a) and the random error
∆randP expt(a), at a 95% confidence level. The mean experimental pressures are
plotted as dots in Fig. 19.17(a). The random error, as a function of separation,
is shown by the long-dashed line in Fig. 19.17(b). It reaches a maximum value
equal to 0.46mPa at a = 162 nm, decreases to 0.11mPa at a = 300 nm, and
maintains this value up to a = 746 nm.

The systematic error in this experiment is determined by the error in the
measurement of the resonance frequency, ∆ωr, the error in the radius of the
sphere, ∆R, and also the error from using the proximity force approximation. In
previous work (Decca et al. 2003b, 2004, 2005b), the latter was attributed to the
theory, whereas the theoretical calculation of the Casimir pressure between two
parallel plates is independent of the proximity force approximation. Also, the
equivalent experimental Casimir pressure in eqn (19.15) requires the error of the
proximity force approximation to be attributed to the experimental systematic
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errors. In Fig. 19.17(b), the systematic error ∆systP expt(a), obtained by combin-
ing the above three errors with the help of the statistical rule (18.2), is shown
by the short-dashed line. The total experimental error ∆totP expt(a), obtained
from eqn (18.17), is shown by the solid line. As is seen in Fig. 19.17(b), it is the
systematic error which now dominates the magnitude of the total experimen-
tal error ∆totP expt(a). This dominance of the systematic error over the random
error had never before been achieved in Casimir force experiments. The total
experimental relative error δtotP expt defined in eqn (18.18) varies from 0.19% to
9.0% as the separation increases from 160 to 750nm. Note that the contribution
to the total experimental error from the use of the proximity force approxima-
tion varies from 0.04% to 0.5%, respectively. The precision achieved in the third
experiment at short separations is a significant improvement over that of the
second experiment.

The experimental data were compared with several theoretical approaches
using the two different comparison methods described in Section 18.3.3 (Decca
et al. 2007a, 2007b). We start with the approaches using the Leontovich sur-
face impedance and the tabulated optical data extrapolated by use of the Drude
model. These approaches have already been described in Section 19.3.3. Here,
slightly different values of the Drude parameters were used in the extrapolation
of the optical data, namely ωp = 8.9 eV and γ = 0.0357 eV, as determined from
the measurements of the resistivity of the Au films (Decca et al. 2007b). The
single theoretical error in the Casimir pressure of about 0.5% arises from the un-
certainties in the tabulated optical data. When the first method of comparison
between experiment and theory is used, the theoretical pressures are computed
not at the experimental points but rather over the whole measurement range
from 160 to 750 nm. Because of this, the error in the measurement of the sepa-
ration ∆a is irrelevant to the theory and should be included in the analysis of
the experimental errors. The theoretical Casimir pressures, taking the surface
roughness into account by means of the nonmultiplicative method of geometrical
averaging, are shown in Fig. 19.18(a) by the light gray band (for the Leontovich
impedance approach), and the dark gray band (for the Drude model approach)
for separations from 500 to 600nm. The width of the bands in the vertical di-
rection is equal to twice the total theoretical error, 2 ∆totP theor(a), determined
at a 95% confidence level. The mean values of the Casimir pressure P̄ expt(ai)
averaged over all 33 sets of measurements are shown in Fig. 19.18(a) by crosses.
The horizontal arms of the crosses are equal to twice the absolute errors, i.e.
2 ∆a = 1.2 nm, determined at a 95% confidence level in the measurement of the
separations between the zero levels of the roughness of the plate and the sphere.
The vertical arms of the crosses are equal to twice the total experimental error,
2 ∆totP expt(ai), determined at a 95% confidence level in the measurement of the
Casimir pressure. The latter is a function of separation and is shown by the solid
line in Fig. 19.17(b). As seen in Fig. 19.18(a), the Leontovich impedance ap-
proach is consistent with the data over the entire separation range. In contrast,
the Drude model approach, which leads to a relatively large thermal effect at
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Fig. 19.18. The crosses show the measured mean Casimir pressures together
with the absolute errors in the separation and pressure as a function of the
separation. (a) The theoretical Casimir pressures computed using the gen-
eralized plasma-like model and the optical data extrapolated by use of the
Drude model are shown by the light gray and dark gray bands, respectively
(Decca et al. 2007a). (b) The theoretical Casimir pressures computed using
various sets of optical data available in the literature, versus separation, are
shown by the dark gray band (Klimchitskaya et al. 2009a).

a < 1 µm, is excluded experimentally at a 95% confidence level over the entire
separation range. The same conclusions are obtained for any range of separations
from 160 to 750 nm, the range in which the measurements were performed [see
Decca et al. (2007a), where appropriate figures are provided].

In Section 18.3.2, alternative sets of optical data were discussed which differ
from the standard set (Palik 1985) by much more than the error in the optical
measurements. It would be interesting to verify the hypothesis that the Drude
model approach can be made consistent with the experimental data if some alter-
native set of optical data for Au films existing in the literature is used. To answer
this question, the theoretical Casimir pressure was computed in the Drude model
approach with ωp varying from 6.85 to 9.0 eV, and the corresponding values of
γ (Pirozhenko et al. 2006). The results obtained are plotted in Fig. 19.18(b) as
the dark gray band. Note that the values of the relaxation parameter influence
the Casimir pressure only slightly. The experimental data in Fig. 19.18(b) are
the same as those in Fig. 19.18(a). As shown, the use of any alternative value of
ωp contained in the literature makes the disagreement even more acute between
the Drude model approach and the measurement data. It is notable that in the
framework of the Leontovich impedance approach, any value of ωp < 8.8 eV is
excluded by the data.

We now apply another local method of comparison between experiment and
theory, discussed in Section 18.3.3, which is based on consideration of the differ-
ences P theor(ai) − P̄ expt(ai). Using this method, we first compare the data with
the theoretical approaches based on the Leontovich surface impedance and on the
generalized plasma-like dielectric permittivity. In Fig. 19.19(a), the differences
between the theoretical Casimir pressure, computed as discussed above using
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Fig. 19.19. The differences between the theoretical and mean experimental
Casimir pressures versus separation are shown by dots, and the 95% confi-
dence intervals are shown by the solid lines. The theoretical Casimir pressures
were computed (a) using the Leontovich surface impedance approach and (b)
using the generalized plasma-like model (Decca et al. 2007b).

the Leontovich impedance, and the mean experimental values are plotted. The
solid lines represent the boundaries of the confidence intervals [−ΞP (ai), ΞP (ai)]
computed with eqn (18.21) at a 95% confidence level. Now the theoretical er-
ror ∆totP theor(ai) used for the determination of this interval includes the error
(18.19) with α = 4, due to the uncertainties in the measurement of the separa-
tions. As can be seen from the figure, the second method of comparison between
experiment and theory demonstrates the consistency of the impedance approach
with the data, similarly to the first method.

The dielectric permittivity of the generalized plasma-like model εgp along
the imaginary frequency axis is given by eqn (13.46), where the oscillator pa-
rameters are presented in Table 13.3 and ωp = 8.9 eV (there is no need for
a more accurate form of εgp at a > 160 nm). Using eqns (12.70) and (17.94),
one obtains the theoretical pressure P theor(ai), including the effect of surface
roughness, in the framework of the generalized plasma-like model. The differ-
ences between this pressure and the experimental data are plotted as dots in
Fig. 19.19(b). As shown in the figure, all dots (and not only 95% of them, as
required by the rules of mathematical statistics) are well inside the confidence
interval at all separations considered. This means that the experimental data
are consistent with the theory based on the generalized plasma-like dielectric
permittivity, and that in our conservative error analysis the errors (especially at
short separations) are overestimated. Thus, both of the theoretical approaches,
using the Leontovich impedance and using the generalized plasma-like model,
are consistent with the data. However, while in Fig. 19.19(b) (for the generalized
plasma-like model) there are practically no deviations between experiment and
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Fig. 19.20. Differences between the theoretical and mean experimental Casimir
pressures in a configuration of two plates versus separation, shown by dots.
The theoretical results were calculated using the Lifshitz theory at room
temparature (a) combined with the Drude model approach (Decca et al.
2007b) or (b) using the modified transverse electric term at zero frequency.
The solid and dashed lines indicate the boundaries of the 95% and 99.9%
confidence intervals, respectively.

theory at a > 350 nm, in Fig. 19.19(a) (for the Leontovich impedance) devia-
tions are noticeable up to a = 450 nm. Thus, the generalized plasma-like model
is in somewhat better agreement withthe data than is the surface impedance
approach. As can be seen in Fig. 19.19, the largest deviations between the two
theoretical approaches and the experimental data are at short separations from
160 to 200nm. These deviations are not statistically meaningful, because they
are well inside the confidence interval.

The method of comparison between experiment and theory using confidence
intervals for the differences P theor(ai)− P̄ expt(ai) is well adapted for tests of al-
ternative approaches to the thermal Casimir force. Using the parameters of the
Drude model determined by Decca et al. (2007b) from the resistivity measure-
ments, the theoretical values of the Casimir pressure P theor

D (ai) were computed
in the framework of the Drude model approach. The calculation procedure, tak-
ing the surface roughness into account, was described in Section 19.3.3. The
differences P theor

D (ai) − P̄ expt(ai) at all experimental separations are shown as
dots in Fig. 19.20(a). The confidence intervals [−ΞP (ai), ΞP (ai)] at each ai, de-
termined at a 95% confidence level, are the same for all theoretical approaches.
Once again, the limits of these confidence intervals are denoted by solid lines
[only one such line, corresponding to the upper bound, is shown in Fig. 19.20(a)
because almost all dots are above it]. As can be seen in Fig. 19.20(a), the Drude
model theoretical approach is experimentally excluded at a 95% confidence level
over the entire measurement range from 162 to 746 nm. This conclusion is in
agreement with that obtained above using the first local method for comparison
between experiment and theory.

The wide gaps between the solid line and the dots in Fig. 19.20(a) suggest
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that the Drude model approach is actually excluded experimentally at an even
higher confidence level than 95%. To make this argument quantitative, we have
calculated the half-width of the confidence interval at the 99.9% confidence level
from

Ξ 0.999
P (a)

Ξ 0.95
P (a)

=
t(1+0.999)/2(32)

t(1+0.95)/2(32)
≈ 1.85, (19.18)

where tp(f) is the Student coefficient. The boundaries of the 99.9% confidence
intervals obtained from eqn (19.18) are shown in Fig. 19.20(a) by the dashed
line. As shown in Fig. 19.20(a), the differences P theor

D (ai) − P̄ expt(ai) are found
to be completely outside the 99.9% confidence interval at separations from 210 to
620 nm. This conclusively demonstrates that the results of the third experiment
by means of a micromachined oscillator are irreconcilable with the Drude model
approach to the thermal Casimir force. This brings experimental confirmation to
the phenomenological rule formulated in Section 14.6.3 that, in the application of
the Lifshitz theory to real metals, the relaxation processes of conduction electrons
should be disregarded.

It is instructive to apply this method of comparison between experiment and
theory to the theoretical approach of Dalvit and Lamoreaux (2008) considered in
Section 14.3.5. This approach attempts to include screening effects and diffusion
processes in the Lifshitz theory. Computations of the theoretical Casimir pres-
sures P theor

m (ai) were performed using the Lifshitz formula (12.70) at T = 300 K
with the TM reflection coefficient (14.53) and the standard TE reflection co-
efficient defined using the dielectric permittivity (14.54). The Thomas–Fermi
screening length (14.61) was used, as this is appropriate for metals with a large
carrier density n: for Au, n ≈ 5.9 × 1022 cm−3. In Fig. 19.20(b), the differences
P theor

m (ai)−P̄ expt(ai) are shown by dots (Mostepanenko 2009; Decca et al. 2008).
In the same figure, the solid and dashed lines indicate the borders of the 95% and
99.9% confidence intervals, respectively. The theoretical approach taking screen-
ing effects and the diffusion current into account is experimentally excluded at a
95% confidence level over the entire measurement range from 160 to 750 nm and
at a 99.9% confidence level at separations from 160 to 640nm.

From the above discussion, it is clear that the three experiments performed
with the micromechanical torsional oscillator satisfy all of the requirements for
precision experiments of the Casimir force presented in Section 18.2. However,
the role of the third experiment in this series is exceptional because it was the
single one where the random error was made much smaller than the systematic
error, and the comparison with theory here was performed in a most straight-
forward and transparent way. The results of this experiment are consistent with
the Leontovich impedance approach and with the generalized plasma-like model.
The computational results obtained using the Lifshitz formula at zero tempera-
ture are also consistent with the data. This means that the precision of Casimir
force measurements is still insufficient to measure the small thermal effect at
separations below 1 µm predicted by the traditional theoretical approaches, in
qualitative agreement with the case of ideal metals. However, relatively large
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thermal effects, as predicted by the Drude model approach and by an approach
based on the modification of the TE reflection coefficient at zero frequency,
are excluded by all three successive experiments with increasing confidence. In
addition to the figures, we present in Table 19.1 the magnitude of the mean
experimental Casimir pressure at a few separations measured in the third exper-
iment (column a). These data are compared with the theoretical Casimir pressure
computed using the generalized plasma-like model (column b), the Leontovich
surface impedance (column c), the Drude model approach (column d), and the
half-width of the confidence interval for P theor − P̄ expt determined at a 95%
confidence level (column e). All of these quantities are given in mPa. The last

Table 19.1. Magnitude of the mean experimental
Casimir pressure P̄ expt (column a) at different separations
a compared with the magnitude of the theoretical pressure
P theor computed using the generalized plasma-like model
(column b), the Leontovich surface impedance (column c),
and the Drude model approach (column d). Column e con-
tains the half-width Ξ of the 95% confidence interval for
P theor − P̄ expt. All pressures are given in mPa. Column f
contains the values (in %) of the quantity Ξ/|P̄ expt|, which
describes the agreement between experiment and experi-
mentally consistent theories

a (nm) a b c d e f

162 1108.4 1098.4 1094.2 1076.2 21.2 1.9

166 1012.7 1007.1 1002.7 985.40 19.0 1.9

170 926.85 923.71 919.56 902.96 17.1 1.8

180 751.19 750.58 747.06 732.14 13.3 1.8

190 616.00 616.71 613.70 600.28 10.5 1.7

200 510.50 511.26 508.70 496.62 8.40 1.6

250 225.16 225.71 224.45 217.11 3.30 1.5

300 114.82 114.87 114.18 109.48 1.63 1.4

350 64.634 64.574 64.176 61.004 0.98 1.5

400 39.198 39.096 38.850 36.617 0.69 1.8

450 25.155 25.034 24.874 23.247 0.54 2.2

500 16.822 16.785 16.678 15.456 0.47 2.8

550 11.678 11.669 11.595 10.654 0.42 3.6

600 8.410 8.365 8.312 7.573 0.39 4.6

650 6.216 6.151 6.113 5.522 0.38 6.1

700 4.730 4.626 4.598 4.118 0.36 7.6

746 3.614 3.620 3.598 3.198 0.35 9.7
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column (f) contains the quantity ΞP /|P̄ expt|, determined at a 95% confidence
level, which is the measure of agreement between experiment and the experi-
mentally consistent theories. Comparing column (a) with columns (b) and (c),
one can conclude that the generalized plasma-like model (column b) provides a
more accurate description of the data than does the Leontovich impedance (col-
umn c). Bearing in mind that the Leontovich approach is not applicable to short-
separation experiments performed using an atomic force microscope, we arrive at
the conclusion that the generalized plasma-like dielectric permittivity provides
the single approach that is consistent with the results of both short- and long-
separation measurements of the Casimir force. The data in Table 19.1 confirm
that the Drude model approach is excluded by experiment over the entire mea-
surement range. Subtracting the magnitudes of the theoretical pressures |P theor

D |
(column d) from the experimental values |P̄ expt| (column a), we obtain at all
separations larger results than the half-width of the confidence interval Ξ 0.95

P (a)
(column e). The theoretical approach taking screening effects into account leads
to approximately the same differences |P theor

m (a)|−|P̄ expt(a)| > Ξ 0.95
P (a), as does

the Drude model approach. Thus, both of these approaches are experimentally
excluded.

Column (f) in Table 19.1 demonstrates that the agreement of the data with
the theoretical approaches consistent with them varies with the separation. The
best agreement, of about 1.5%, occurs at separations from 250 to 350 nm. At
the shortest separations, an agreement of approximately 1.9% is achieved. This
is much worse than the experimental precision and is mostly determined by the
errors in the measurement of separations.

To conclude, the two local methods (see Section 18.3.3) for comparison be-
tween experiment and theory for Casimir force measurements lead to results in
mutual agreement concerning both consistency with data and rejection of some
theoretical approaches.

19.3.5 Experimental test of proximity force approximation

The micromechanical torsional oscillator described in Section 19.3.1 was used to
perform an experimental test of corrections to the proximity force approximation
(Krause et al. 2007). To date, exact results for the electromagnetic Casimir effect
between a sphere and a plate are not available. Because of this, the accuracy of
the proximity force approximation was estimated from the respective results
for the scalar Casimir effect and the electromagnetic Casimir effect between a
cylinder and a plate (see Section 10.3). Taking into account corrections to the
proximity force approximation, the Casimir force between a sphere of radius R
and a plate can be presented in the form (Scardicchio and Jaffe 2006)

F (a, R) = 2πRE(a)

[
1 + β

a

R
+ O

(
a2

R2

)]
. (19.19)

Here E(a) is the Casimir energy per unit area of two parallel plates and β is
a dimensionless parameter characterizing the lowest-order deviation from the
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proximity force approximation. Static measurements of the Casimir force be-
tween a sphere and a plate, as described in Section 19.3.2, can be used to obtain
constraints on the parameter β in eqn (19.19).

Dynamic measurements of the Casimir pressure, considered in Sections 19.3.2,
19.3.3, and 19.3.4, are more precise than static ones. Substituting the Casimir
force (19.19) into the right-hand side of eqn (19.15), one obtains the following
expression for the effective Casimir pressure:

P eff(a, R) = P (a)

[
1 + β̃(a)

a

R
+ O

(
a2

R2

)]
, (19.20)

where P (a) is the Casimir pressure between two parallel plates and the dimen-
sionless quantity β̃(a) is given by

β̃(a) = β

[
1 − E(a)

aP (a)

]
. (19.21)

Note that for ideal-metal bodies, β̃(a) = 2β/3 = const.
To obtain constraints on β and β̃ in eqns (19.19) and (19.20), a series of exper-

iments has been performed to measure and compare the Casimir force between
five Au-coated spheres and Au-coated plates using a micromachined oscillator
(Krause et al. 2007). A gold coating thickness of about 200nm was used. An
electrostatic calibration of the setup was performed separately for each sphere,
as described in Sections 19.3.1–19.3.3. Spheres with radii R = 10.5, 31.4, 52.3,
102.8, and 148.2µm were used. The surface roughness of both the spheres and
the plate was measured using an AFM. In all cases the highest peaks were less
than 21 nm in height and the respective variances were less than 5 nm.

A static measurement of the Casimir force between a sphere and a plate was
performed at separations from 160 to 750nm in 10 nm steps. The measurement
was repeated 10 times. A dynamic determination of the effective Casimir pres-
sure between two parallel plates was done at separations from 164 to 986nm
in 2 nm steps. The influence of the effects of the nonzero skin depth and of
the surface roughness on the deviation from the proximity force approximation
at a = 160 nm was estimated to be of order 10% and 1%, respectively, of the
dominant a/R correction. A comparison between data and theory at separations
a < 300 nm leads to the result |β̃(a)| < 0.4 at a 95% confidence level. In the
same range of separations |β| < 0.6 was obtained (Krause et al. 2007).

These constraints are compatible with exact results (see Section 10.4.3) ob-
tained for a sphere above a plate (for the scalar Casimir effect with Dirichlet and
Neumann boundary conditions) and for a cylinder above a plate (for the electro-
magnetic Casimir effect). Note that in the error analysis in Sections 19.2.1–19.2.3
and 19.3.2–19.3.4 a less stringent estimate β = 1 was assumed, resulting in a rel-
ative error due to the use of the proximity force approximation equal to a/R.
This confirms that the above analysis is indeed conservative.
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19.4 Experiment using a configuration of two parallel plates

The only experiment in the recent series of Casimir force measurements which
used the original configuration of two plane plates was performed by Bressi et
al. (2002). A Si cantilever and a thick plate rigidly connected to a frame (the
source), both covered with a Cr layer and with an adjustable separation distance
between them, were used as the two plates. The coarse separation distance was
adjusted with a dc motor and fine tuning was achieved using a linear piezo-
electric transducer attached to the frame. Calibration was performed using the
electrostatic force. As a result, the error in the absolute separation was found
to be ∆a = 35 nm. Small oscillations induced in the source by the application
of a sinusoidal voltage to the piezoelectric transducer induced oscillations of the
cantilever through the Casimir force. The motion of the resonator, placed in a
vacuum, was detected by means of a fiber optic interferometer. After subtracting
the electrostatic forces, the residual frequency shift was given by

∆ν2
expt(a) = ν2 − ν2

0 = −α
∂P (a)

∂a
. (19.22)

Here, ν0 = 138.275 Hz was the natural frequency in the absence of the Casimir
pressure P , and α = S/(4π2meff) ≈ 0.0479 m2/kg (where S is the area of the
capacitor formed by the plates, and meff is the effective mass).

As discussed above, this measurement was a dynamic one and the directly
measured quantity was the frequency shift (19.22) arising from the effect of the
Casimir force. This frequency shift is related to the gradient of the Casimir
pressure by eqn (19.22). Thus, although this experiment uses a configuration
of two parallel plates, it is an indirect measurement of the Casimir pressure
between the plates, similar to the experiments using a sphere–plate configuration
in the dynamic regime for the same purpose (see Sections 19.3.2–19.3.4). Bressi
et al. (2002) did not aim to recover the Casimir pressure from the pressure
gradient. Instead, they fitted the experimental data for ∆ν2

expt(a) to ∆ν2
theor(a),

computed from the theoretical dependence of the Casimir pressure between two
ideal-metal plates, −KC/a4, with a free parameter KC. The best fit resulted in
KC = (1.22 ± 0.18) × 10−27 Nm2. This was compared with the exact Casimir
coefficient for ideal-metal plates in eqn (1.1), KC = π2

�c/240 = 1.3×10−27 Nm2.
The conclusion was drawn that the related force coefficient had been determined
at the 15% precision level (Bressi et al. 2002).

From the point of view of the general method for the comparison of exper-
iment with theory (which was developed after this experiment was performed), it
would be reasonable to compare ∆ν2

expt(a) with an exact expression for ∆ν2
theor(a)

with no adjustable parameters such as KC. In Fig. 19.21(a), the results of such a
comparison are presented, where the experimental data are shown as crosses and
the solid line shows ∆ν2

theor computed from the exact expression for the Casimir
pressure PIM(a) between two ideal-metal plates, as given in eqn (1.1). As can
be seen in the figure, at separations below 1 µm the experimental crosses only
touch the solid line. This can be explained by the role of the nonzero skin depth.
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Fig. 19.21. The square of the measured frequency shift versus separation, to-
gether with the absolute errors in the separation and in ∆ν2, is shown by
the crosses. The solid lines indicate the theoretical frequency shift squared,
calculated for (a) ideal-metal plates and (b) real metals with inclusion of the
skin depth correction (Klimchitskaya et al. 2009a).

If, instead of P (a) = PIM(a), one uses the Casimir pressure with the first- and
second-order corrections due to the nonzero skin depth from eqn (13.11),

Pp(a) = − π2
�c

240a4

(
1 − 16

3

c

ωpa
+ 24

c2

ω2
pa

2

)
, (19.23)

there is improved agreement with the data. As an illustration, ∆ν2
theor has been

recalculated using the theoretical Casimir pressure (19.23) with ωp ≈ 13 eV for
Cr. The results are shown by the solid line in Fig. 19.21(b). It is seen that the
Casimir pressure taking the nonzero skin depth into account is in much better
agreement with the data than is the ideal-metal Casimir pressure. Suggestions on
how to improve the sensitivity of this experiment, as proposed in the literature,
are discussed in Section 19.7.

19.5 Related experiments

Here, we briefly consider a few additional experiments on the measurement of
the Casimir force between metallic bodies performed in the last few years. Some
of them (Lisanti et al. 2005) confirmed earlier results on the role of the nonzero
skin depth. The others (Ederth 2000, van Zwol et al. 2008a) were performed in
an ambient environment and do not satisfy all of the requirements necessary for
precise measurements of the Casimir force. The measurement of the Casimir force
in liquids is also considered in connection with the experiment by Munday and
Capasso (2007). This experiment has attracted new attention to the complicated
and unresolved problem that arises in the case where there is a liquid between
the interacting surfaces.

19.5.1 Thin metal layers

Lisanti et al. (2005) reported an observation of the effect of nonzero skin depth
on the Casimir force between metallic surfaces. The Casimir force between a
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thick plate and a 100 µm radius polystyrene sphere coated with metallic films
of different thicknesses was measured. The sphere was positioned above a mi-
cromachined torsional balance. The Casimir attraction between the sphere and
the top plate of the balance induced a rotation angle, which was measured as
a function of the separation between the surfaces. Without an indication of er-
rors and confidence levels, it was reported that the Casimir attraction between
the metallic plate and a sphere with a coating thinner than the skin depth was
smaller than that for the same plate and a sphere with a thick metal coating.
Physically, this is the same effect as that demonstrated in Figs. 19.3 and 19.7(a)
in Sections 19.2.1 and 19.2.3, where the Casimir forces acting between ideal met-
als and between real metals were compared with corrections due to the nonzero
skin depth (finite-conductivity corrections). Ideal metals are better reflectors,
and the magnitude of the Casimir force between them is larger than between
real metals. In a similar manner, thick real metal films are better reflectors than
thin real metal films.

Lisanti et al. (2005) compared their experimental results with the Lifshitz
theory at zero temperature, adapted for the description of layered structures as
presented in Section 12.2. It was shown that the experimental forces obtained for
films of thickness smaller than the skin depth had smaller magnitudes than those
computed for such films using the Lifshitz theory. This result is not surprising,
because, as it has been argued in the literature, for films of small thickness
the effects of spatial dispersion, which are not included in the Lifshitz theory,
should be taken into account (Klimchitskaya et al. 2000). The problem of spatial
dispersion is discussed in more detail in Section 12.10.

19.5.2 Ambient measurements

In this recent period, two ambient (open to the air) experiments on measuring
the Casimir force have been reported. Neither used a vacuum environment, and
the presence of water layers on the interacting surfaces was reported in both
cases. The first of these was an experiment by Ederth (2000), where the force
was measured between two cylindrical template-stripped gold surfaces with 0.4
nm roughness, in a distance range from 20 to 100nm. The 200nm gold films
were fixed to 10mm radius silica cylinders using a “soft glue”. In addition, a
hydrocarbon layer of hexadecanethiol was applied to the interacting surfaces. It
was noted that this top hydrocarbon layer was necessary to preserve the purity
of the gold surface in the ambient environment. This hydrocarbon organic layer
prevented a direct measurement of the electrostatic forces and an independent
determination of the surface separation. Also, the presence of the hydrocarbon
layer means that the experiment cannot be classified as a measurement of the
force between two gold surfaces. The inability to measure the residual potential
differences and the presence of water and hydrocarbon layers on the surface
violate all of the requirements for precise Casimir force measurements discussed
in Section 18.2. One of the cylinders was mounted on a piezoelectric actuator and
the other on a bimorph deflection sensor. The charge produced by the bimorph
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in response to the deflection induced by a force on the interacting surfaces was
measured by an electrometer amplifier. The soft glue led to a deformation which
was estimated to be 18–20nm for the glue thicknesses used. To compensate for
this deformation, the two measured force–distance curves were shifted, one by 9
and the other by 12 nm, to overlap the calculations. The author reported that
“it is not possible to establish with certainty” the validity of the displacement
due to the deformation and that it “diminishes the strength of the measurement
as a test of the Casimir force and also precludes a quantitative assessment of the
agreement between theory and experiment.”

A second experiment, done in an ambient environment using an AFM for
separation distances between 12 and 200nm, was reported recently (van Zwol et
al. 2008a). Here, an Au-coated sphere of radius R = 20 µm was fixed to a gold-
coated AFM cantilever. The Au-coated plate was mounted on a piezoelectric
actuator. Both the sphere and the plate were coated with 100 nm of Au. The
optical properties of the Au-coated plate were measured with an ellipsometer
in the wavelength region from 137nm to 33 µm and fitted to obtain a plasma
frequency of 7.9 ± 0.2 eV and a relaxation parameter of 0.048 ± 0.005 eV, since
the corrections due to nonzero skin depth for the separation range considered
are large. The roughness and the water layer reported to be present were not
taken into account in the fit. The influence of stochastic roughness at short
separations was explored by van Zwol et al. (2008b). The errors in the cantilever
spring constant and the deflection coefficient were reported to be 4% and 3%,
respectively, which together were reported to lead to errors from 4% to 10%.
The calibration errors were reported to lead to an overall error in the range from
5% to 35%. The electrostatically measured contact potential, 10 ± 10 mV, was
reported to lead to a 10% error. The authors reported that they were not able
to independently determine the separation on contact of the two surfaces owing
to the stiff cantilevers employed. Based on the roughness, they estimated a 1 nm
error in the contact separation, “leading therefore to a 28% relative error at the
smallest separations.” However, a general 10% agreement with the theory was
reported below 100 nm separation. Given the ambient nature of the experiment,
water layers “typically a few nanometers” thick on both surfaces were present,
but these were not treated in the theoretical comparison or systematic errors. The
two factors here that do not meet the requirements for precise measurements,
as discussed by Sparnaay (see Section 18.2), are the presence of the water layer
and the lack of an independent measurement of the separation. Repeating the
experiments in a vacuum environment should allow a more definitive comparison.

19.5.3 Measurements in liquids

The Casimir interaction between two thick plates (semispaces) with a liquid layer
between them has long attracted attention because of the possibility of repulsive
forces. In this case the interaction energy per unit area is given by eqn (12.47)
with the reflection coefficients defined in eqn (12.53). In the nonrelativistic limit,

where R(±)
TE � R

(±)
TM and k(0) ≈ k(±) ≈ k⊥, eqns (12.47) and (12.50) lead to
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E(a) =
�

4π2

∫ ∞

0

k⊥dk⊥

∫ ∞

0

dξ (19.24)

× ln

[
1 − ε(1)(iξ) − ε(0)(iξ)

ε(1)(iξ) + ε(0)(iξ)

ε(−1)(iξ) − ε(0)(iξ)

ε(−1)(iξ) + ε(0)(iξ)
e−2k⊥a

]
.

It is evident that E(a) > 0 (i.e. the Casimir interaction is repulsive) if either of
the inequalities

ε(−1)(iξ) < ε(0)(iξ) < ε(1)(iξ) or ε(1)(iξ) < ε(0)(iξ) < ε(−1)(iξ) (19.25)

is satisfied. For three-layer systems, the possibility of repulsive Casimir forces
is also present in the relativistic limit when the interaction is described by the
complete eqns (12.47) and (12.53).

In the region of nonretarded van der Waals forces, the observation of repul-
sion has been reported using an AFM (Milling et al. 1996, Meurk et al. 1997). Lee
and Sigmund (2002) reported the observation of repulsive van der Waals forces
at separations larger than 4 or 5 nm, where retardation effects contribute to the
result obtained. No errors or experimental controls were reported in the above
experiments. The Casimir repulsion in three-layer systems was measured at sep-
arations of about 30 nm by Munday et al. (2009). However, at larger separations,
the Casimir repulsion in a three-layer system has not yet been investigated. The
resolution of this problem is complicated by the presence of double layers of
charges on the solid–liquid interfaces. Because of this, even the standard, attrac-
tive, Casimir forces in the presence of a liquid layer have not been investigated
yet, and the Lifshitz theory for such systems has not been tested.

An interesting preliminary test of the Lifshitz theory for three-layer sys-
tems was the measurement of the attractive Casimir force between an Au-coated
sphere and a plate immersed in ethanol using an AFM (Munday and Capasso
2007). The experimental data obtained were compared with the Lifshitz theory,
taking into account the frequency dependence of the dielectric functions of Au
and ethanol and the correction due to the surface roughness. Consistency of
the data obtained with the Lifshitz theory was claimed, although at separations
below 50 nm a disagreement was observed which increases with decreasing sepa-
ration. However, as commented in the literature (Geyer et al. 2008b), theoretical
computations of the Casimir force between smooth Au surfaces separated by
ethanol done according to the method provided by Munday and Capasso (2007)
[i.e. by the use of the Kramers-Kronig relations and tabulated optical data (Palik
1985)] lead to a discrepancy of up to 25% with respect to the reported theoreti-
cal results. The latter results can be reproduced if, at all imaginary frequencies,
one uses the Drude dielectric function (13.14) for both the sphere and the plate
material. A second drawback is that the effect of the residual potential difference
between the sphere and the plate was calculated incorrectly and was significantly
underestimated by a factor of 590. Finally, the possible interaction between the
double layer formed in liquids owing to salt impurities, which would decrease
the electrostatic force, was not taken into account, without any justification.
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The resulting electrostatic force is of the same magnitude as the Casimir force
to be measured. All this makes the interpretation of this experiment uncertain
(Geyer et al. 2008b). In their reply, Munday and Capasso (2008) recognized that
the original paper (Munday and Capasso 2007) did in fact use the Drude model.
It was also recognized that the equation originally used to estimate the resid-
ual electrostatic force “is not strictly correct” and that salt contaminants exist
even in the purest solutions, leading to the screening of electrostatic interac-
tions. However, the reply claims that the experimental results are still consistent
with the Lifshitz theory (Munday and Capasso 2008). Thus, this configuration
remains interesting for future investigations. Later, Munday et al. (2008) in-
vestigated further the effect of electrostatic forces and Debye screening on the
measurement of the Casimir force in fluids. The electrostatic force with account
taken of Debye screening was calculated as outlined by Geyer et al. (2008b). The
relative random experimental error of the Casimir force measurements in this
experiment determined at a 67% confidence level was equal to approximately
7% at a = 30 nm and increased to 60% at a = 80 nm. Within this range of sep-
arations, the measurement data were found to be in qualitative agreement with
the Lifshitz theory (for a < 30 nm, the authors admitted deviations between the
theory and data).

19.5.4 Dynamic holography techniques

Another experiment used an adaptive holographic interferometer to measure
periodic nonlinear deformations of a thin pellicle caused by an oscillating Casimir
force due to a spherical lens (Petrov et al. 2006). Both test bodies were coated
with a thin Al film and placed in a vacuum chamber. The lens was mounted on
a vibrating piezodriver. As a result, the oscillations of the lens position led to a
periodic modulation of the Casimir force. The experimental data were found to
be in only qualitative agreement with a theory based on ideal-metal boundaries
at separation distances of a few hundred nanometers. Corrections due to the
finite skin depth and surface roughness were not provided. Also, the use of Al,
whose surface undergoes rapid oxidation even in relatively high vacuum, adds
uncertainty to the results of this experiment. However, the new measurement
technique used may be promising for future measurements of the Casimir force.
Later, an attempt was undertaken to calculate corrections to the Casimir force
in this experimental configuration due to the nonzero skin depth (Bryksin and
Petrov 2008). The dielectric permittivity of the plasma model (13.1) was used in
the calculation. It was concluded, however, that the experimental results (Petrov
et al. 2006) were consistent with theory only under the condition λp > 1000 nm.

19.6 Prospects for future measurements

As described in this chapter, there have been several important improvements
in the measurements of the Casimir force between metallic bodies. However, the
experiments performed to date have not been of sufficient precision to measure
the magnitude of the thermal effect. The experiments using the micromachined
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oscillator (Section 19.3) possessed the highest experimental precision at sepa-
rations below 1 µm. They have been used to exclude thermal effects predicted
by approaches using the Drude model at low frequencies. However, the ther-
mal effects predicted by the generalized plasma-like model at short separations
remain below the experimental sensitivity. In this respect, large-separation mea-
surements of the Casimir force would be of great interest. At separations of a
few micrometers, the thermal regime is reached, where the Casimir free energy
is entirely of thermal origin. Calculations using the plasma model or the general-
ized plasma-like model result in eqn (14.5), which is the same as for ideal metals.
The Drude model approach to the thermal Casimir force leads to only one-half
of the result for ideal-metal plates [see eqn (14.7)]. Thus, large-separation mea-
surements of the Casimir force would bring direct information to bear on the
magnitude of the thermal effect between macroscopic bodies (such a measure-
ment in the atom-plate configuration has been performed already; see Section
22.1.1).

In Section 19.1 it was shown that the experiment using a torsion pendulum
within the region from 0.6 to 6 µm was in fact uncertain at separations above
2 µm, where the thermal effects begin to make a substantial contribution. An
analysis (Lamoreaux and Buttler 2005) shows that the torsion pendulum tech-
nique has the potential to measure the Casimir force between a plate and a
spherical lens at a = 4 µm with a relative error of 10%. Bearing in mind that
at a = 4 µm the thermal correction contributes as much as 86% of the zero-
temperature Casimir force, such an experiment, if successfully performed, holds
great promise.

There is a proposal aimed at measuring the Casimir force in the cylinder–
plate configuration at separations around 3 µm (Brown-Hayes et al. 2005). This
geometry can be considered as a compromise between the two-parallel-plate con-
figuration (which is connected with serious experimental difficulties associated
with the parallelity of the plates) and a sphere above a plate. In addition, as
discussed in Section 10.3, an exact solution for the ideal-metal cylinder–plate
configuration has been obtained recently. This gives us the possibility to de-
termine the accuracy of the PFA and to apply it to real materials with high
reliability. Finally, it was concluded that using a dynamic measuring scheme it
is possible to measure the Casimir force between a plate and a cylinder at sep-
arations of about 3 µm with a precision of a few percent (Brown-Hayes et al.
2005).

Another proposal suggests the use of a highly sensitive torsion balance in the
separation range from 1 to 10 µm to measure the Casimir force in the config-
uration of two parallel plates (Lambrecht et al. 2005). The construction of the
balance is similar to that used in Eötvos-type experiments aimed at testing the
equivalence principle. It is planned to measure the thermal Casimir force with
an accuracy of a few percent and to discriminate between different theoretical
approaches discussed in the literature.
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One more experiment exploiting the two-parallel-plate configuration at sepa-
rations larger than a few micrometers has been proposed (Antonini et al. 2006).
The experimental scheme is based on the use of a Michelson-type interferometer
and the dynamic technique, with one oscillating plate. Calibrations show that
a force of 5 × 10−11 N can be measured in this setup with a relative error from
about 10% to 20%. This would be sufficient to measure the thermal effect at a
separation of 5 µm (Antonini et al. 2006).

The thermal effect on the Casimir force can be measured at short separations
below 1 µm if the difference in the thermal forces F (a, T2)−F (a, T1) at different
temperatures rather than the absolute value of the thermal Casimir force is
measured (Chen et al. 2003). For real metals, this difference in the thermal
Casimir forces (in contrast to the relative thermal correction) does not increase
but decreases with increasing separation distance. This allows the observation
of the thermal effect on the Casimir force at small separations of about 0.5 µm,
where the relative thermal correction, as predicted by the generalized plasma-
like model, is rather small. Preliminary estimation shows that with a sphere of
radius R = 2 mm attached to the cantilever of an AFM, measurable changes in
the force amplitude of order 10−13 N are achievable from a 50K change in the
temperature. Such a temperature difference can be obtained by illumination of
the sphere and plate surfaces with laser pulses of 10−2 s duration (Chen et al.
2004b). From the above it is clear that experimental investigations of thermal
effects on the Casimir force appear feasible in the near future.



20

MEASUREMENTS OF THE CASIMIR FORCE WITH

SEMICONDUCTORS

The experiments on measuring the Casimir force described in Chapter 19 dealt
with metallic test bodies. However, the most important materials used in nano-
technology are semiconductors, with conductivity properties ranging from metal-
lic to dielectric. The reflectivity of a semiconductor surface can be changed over
a wide frequency range by changing the carrier density through variation of the
temperature, using different kinds of doping, or via illumination of the surface
with light. It should be noted that measuring the van der Waals and Casimir
forces between dielectrics has always been a problem owing to the need to elim-
inate residual charges and contact potential differences. Semiconductors with a
reasonably high charge carrier density have the advantage that, under appropri-
ate conditions, they avoid accumulation of charge and screening effects but, at
the same time, possess a dielectric-like dependence of the permittivity on the
frequency over a wide frequency range. This makes it possible to examine the
influence of material properties on the Casimir force and opens up new oppor-
tunities to modulate the magnitude and separation dependence of the force.

An early attempt to measure the van der Waals and Casimir forces on semi-
conductor surfaces and modify them by light was reported by Arnold et al.
(1979). Attractive forces were measured between a glass lens and an Si plate and
also between a glass lens coated with amorphous Si and an Si plate. The glass
lens, however, was an insulator and therefore the electric forces, such as those
due to work function differences, could not be controlled. This might explain
why Arnold et al. (1979) found no force change occurred on illumination at sep-
arations below 350nm, where it should have been most pronounced. One more
attempt to modify the Casimir force was made by Iannuzzi et al. (2004b) when
they measured the Casimir force acting between a plate and a sphere coated with
a hydrogen-switchable mirror that became transparent upon hydrogenation. De-
spite expectations, no significant decrease of the Casimir force resulting from the
increased transparency was observed. This negative result can be explained by
the Lifshitz theory, which requires a change of the reflectivity properties over
a wide range of frequencies in order to markedly affect the magnitude of the
Casimir force. This requirement was not satisfied by hydrogenation.

In this chapter, we consider three experiments on measuring the Casimir
force between an Au-coated sphere and an Si plate by means of an atomic force
microscope. The first experiment (Chen et al. 2005a, 2006b) revealed that the
measured Casimir force for a plate made of p-type Si was markedly different
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from the calculation results for high-resistivity dielectric Si. In the second ex-
periment (Chen et al. 2006a), the difference between the Casimir forces for an
Au-coated sphere and two plates made of n-type Si with different charge carriers
densities was measured. Through this, a dependence of the Casimir force on the
charge carrier density was demonstrated. The modification of the Casimir force
through an optically induced change in the charge carrier density was first reli-
ably demonstrated in the third experiment in this series, performed by Chen et
al. (2007a, 2007b). This experiment was also used as a test of various theoretical
approaches to the description of charge carriers in dielectrics and semiconductors
(see Sections 12.5.2 and 16.4.3). Specifically, it was found that the inclusion of the
static conductivity of a dielectric material in the model of the dielectric response
was experimentally inconsistent. All of these results are presented below.

20.1 Experiment with gold-coated sphere and silicon plate

In this experiment, the Casimir force between an Au-coated sphere of diame-
ter 2R = 202.6 ± 0.3 µm and a single-crystal Si〈100〉 plate was measured. The
thickness of the Au coating was 105 nm. A schematic plan of the experimental
setup was shown in Fig. 19.1 and described in Section 19.2. The Si plate (doped
with B) had an area of 5× 10 mm2 and a thickness of 350µm. The resistivity of
the plate, ρ = 0.0035 Ω cm, was measured using the four-probe technique. Note
that the resistivities of metals are usually two or three orders of magnitude lower
than this. Because of this, the Si plate used had a relatively large absorption,
typical of semiconductors for all frequencies contributing to the Casimir force at
the experimental separations.

The main improvements in the experimental setup in comparison with that
described in Section 19.2.3 were the use of a much higher vacuum, and a reduction
of the uncertainty in the determination of the absolute separations a. A much
higher vacuum of 2×10−7 Torr was needed to maintain the chemical purity of the
Si surface, which otherwise would oxidize rapidly to SiO2. A high-vacuum system
was also needed to prevent contamination. This vacuum system consisted of oil-
free mechanical pumps, turbopumps, and ion pumps. To maintain the lowest
pressure during data acquisition, only an ion pump was used. This helped to
reduce the influence of mechanical noise. The absolute error in the determination
of the absolute separations a was reduced to ∆a = 0.8 nm in comparison with
the value of ∆a = 1 nm as described in Section 19.2.3. This was achieved by
using a piezoelectric actuator capable of traveling a distance of 6µm from the
initial separation to contact of the test bodies (in the experiment described in
Section 19.2.3, the movement of the piezoelectric actuator was used only for
separations less than 2µm, and the movement to larger separations of the plate
from the sphere was done mechanically). Such large extensions of the actuator
were also found necessary to allow time for the decay of noise associated with
the separation of the gold sphere and plate after contact of the two surfaces. The
complete movement of the piezoelectric actuator, apiezo, was calibrated using a
fiber optic interferometer (Chen and Mohideen 2001). To extend and contract
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the actuator, a continuous triangular voltage at 0.02 Hz was applied. Given that
the experiment was done at room temperature, applying a static voltage would
lead to creep of the actuator and loss of position sensitivity. The extension and
contraction of the actuator were fitted to terms up to fourth order in the applied
voltage. Because of this, the error in the calibration of the piezoelectric actuator
did not contribute practically to ∆a.

In contrast to Au, the Si surface is very reactive. Because of this, a special pas-
sivation procedure was needed to prepare the surface for force measurements. For
this purpose, nanostrip (a combination of H2O2 and H2SO4) was used to clean
the surface of organics and other contaminants. This cleaning, however, oxidizes
the surface. Then a 49% HF solution was used to etch SiO2 off the surface.
This procedure also leads to hydrogen termination of the surface. The hydrogen
termination prevents the reoxidation of the Si surface as long as it is kept in a
high-vacuum environment. The termination is stable for more than 2 weeks un-
der the vacuum conditions described above (Gräf et al. 1990, Arima et al. 2000).
The effectiveness of the passivation technique in preventing the contamination
of the Si surface was checked by the measurement of the distance dependence
of the electrostatic force resulting from the residual potential difference between
the interacting surfaces (see below).

To characterize the topographies of both surfaces, the Au coating of the
sphere and the surface of the Si plate were investigated using an AFM. Images
resulting from a surface scan of the Au coating demonstrated that the roughness

was mostly represented by stochastically distributed distortions of heights h
(1)
i ≤

25 nm (1 ≤ i ≤ N1 = 26). The fractions v
(1)
i of the Au coating with heights h

(1)
i

were determined. The surface of the Si plate was much smoother, with heights

h
(2)
i ≤ 1 nm (1 ≤ i ≤ N2 = 11); the respective fractions of the surface v

(2)
i

were again determined [the values of v
(1,2)
i are presented by Chen et al. (2006b)].

From eqn (17.92), the zero levels of the roughness of the sphere and of the

plate were H
(1)
0 = 15.352 nm and H

(2)
0 = 0.545 nm, respectively. The roughness

variances determined from eqn (17.95) were δ1 = 3.446 nm for the sphere and
δ2 = 0.111 nm for the plate.

Now we consider in sequence the calibration of the setup, together with re-
lated procedures such as the determination of the residual electrostatic force and
the separation on contact; the measurement results and the error analysis; and
the comparison between experiment and theory.

20.1.1 Calibration of the setup

All calibrations and determinations of the residual electrostatic force and of the
separation on contact were done immediately before the Casimir force measure-
ments in the same high-vacuum apparatus. As described in Section 19.2, the
force was determined through the deflection of a cantilever. The calibration of
the deflection signal Sdef , which was negative for an attractive force and was
measured by using two photodiodes either as a current or a voltage, was done
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by applying dc voltages to the Si plate. Care was taken to make ohmic electri-
cal contacts to the silicon. Direct contact to the Si plate led to large residual
potentials. Because of this, the electrical contact was made from a 100-nm-thick
gold pad attached to the bottom of the plate. The electrical contact to the gold
sphere was accomplished by applying a very thin gold coating to the cantilever.
In addition, a small correction had to be applied to the separation distance be-
tween the gold sphere and the Si plate owing to the movement of the cantilever
in accordance with eqn (19.4).

The measurement of the deflection coefficient m was performed by applying
different dc voltages V between +0.2 to −0.4 V to the plate. To find the coefficient
m, the cantilever deflection signal was measured as a function of the distance. A
0.02Hz triangular wave was applied to the piezoelectric actuator to change the
distance between the sphere and the plate. Larger applied voltages led to more
cantilever deflection and therefore earlier contact of the two surfaces. The change
in the contact position of the sphere and the plate as a function of the applied
voltage could then be used to measure the deflection coefficient m (see Section
19.2.3). In order to determine the contact of the two surfaces precisely, 32 768
data points at equal time intervals were acquired for each force measurement.
In distinction to the procedure previously used, in case where the contact was
between two neighboring data points, a linear interpolation was used to identify
the exact value. The deflection coefficient m was found to be 43.3 ± 0.3 nm per
unit deflection signal. This value was used to correct the separation distance in
all measurements.

The determination of the residual potential difference between the two sur-
faces, V0, was performed by fitting electric-force measurements far away from
contact (where the Casimir force is practically zero) to the exact force–distance
relation. To measure the force, a calibration of the deflection signal was done. For
this purpose Chen et al. (2005a, 2006b) used an improved method, rather than
simple application of a dc voltage V to the plate. This method was employed to
avoid systematic errors due to scattered laser light. In addition to the application
of the dc voltage V to the Si plate, square voltage pulses with amplitudes in the
range ±0.4 V during the time interval corresponding to a separation distance
between 1 and 5 µm were also applied to the plate. The dc voltage was close to
the residual potential difference V0 in order to decrease the systematic errors due
to large deflections. Figure 20.1(a) shows the deflection signal of the cantilever
in response to both the applied dc voltage and the square pulse as a function of
the separation distance between the gold sphere and Si plate. By measuring only
the difference in the signal during the pulse, it was possible to avoid the need for
a background subtraction. Also, the large width of the pulse allowed checks of
the distance dependence of the residual potential and any position dependence
in the calibration.

The average values of the measured electric forces as a function of separa-
tion were used to fit the exact force–distance relation (19.1) or its approximate
representation in eqns (19.2) and (19.3). Within the range of separations from
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Fig. 20.1. (a) Deflection signal of the cantilever in response to a dc voltage and
two square voltage pulses applied to the Si plate, as a function of separation.
(b) Mean measured Casimir force between the Si plate and Au sphere, as a
function of separation (Chen et al. 2006b).

1.8 to 5µm, the relative error introduced by the use of X(α) obtained from
eqn (19.2) instead of eqn (19.1) did not exceed 1.5 × 10−5. Equation (19.2) at
a fixed separation a was used to fit the difference signal, and the residual po-
tential difference was determined to be V0 = −0.114 ± 0.002 V. The calibration
of the deflection signal was also performed using the same procedure. The force
calibration constant was determined to be 1.440 ± 0.007 nN per unit cantilever
deflection signal.

The value of V0 was found to be independent of separation. This confirms
the absence of localized charges and large screening effects, because these would
lead to a dependence of Fel on a different from eqn (19.1), resulting in a residual
potential difference varying with distance when we apply eqn (19.1) for the fit.
As mentioned above, the relatively high conductivity of the Si plate used in this
experiment was important in preventing the formation of localized charges and
screening effects (see Section 20.2 for more details). The independence of V0 of
the separation also confirms the absence of any contamination of the Si or Au
surface.

The average distance between the two zero levels of the roughness on contact
of the two surfaces, a0, needed to be independently determined for a compari-
son of the measured Casimir force with the theory. To achieve this goal, various
dc voltages were applied to the Si plate (as in the measurement of m) and the
electrostatic force was measured as a function of separation. This measurement
at each voltage was repeated five times and the average signal curve was ob-
tained. A compensation dc voltage equal to V0 was applied to the plate and the
resulting deflection signal was subtracted from the signal corresponding to the
electrostatic-force curves at all other dc voltages. This procedure eliminated the
need for subtraction of the background and Casimir forces from the electrostatic-
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force curves. In contrast to Harris et al. (2000), in the determination of a0 a dif-
ferent procedure was used in order to reduce the role of uncertainties in V0. This
procedure also gives an additional way to determine V0 and to check its distance
independence. It was as follows. At a fixed separation a, different voltages V were
applied to the plate and the electrostatic force was plotted as a function of V .
The parabolic dependence of this force [see eqn (19.2)] was used to determine the
values of V0 and X(α) (van Blockland and Overbeek 1978). This was repeated
for many different values of a. The value of V0 was found to be the same as
that determined earlier and to be independent of separation distance. Note that
this determination was also independent of errors in the cantilever calibration.
In order to determine a0, X(α) was then plotted as a function of a and fitted
to eqn (19.2). The value of a0 so determined was 32.1nm. The uncertainty in
the quantity a0 + Sdef m [see eqn (19.4)] due to both the uncertainty in m and
the calibration was found to be 0.8 nm. As mentioned above, the error in the
calibration of the piezoelectric actuator contributed negligibly to the error in the
measurement of the absolute separations ∆a. Because of this, using eqn (19.4),
we arrive at ∆a = 0.8 nm.

20.1.2 Measurement results and experimental errors

The Casimir force between the sphere and the plate was measured as a function
of distance. In this process, the sphere was kept grounded while a compensat-
ing voltage V0 was applied to the plate to cancel the residual electrostatic force.
The distance was varied continuously from large to small separations by applying
continuous triangular voltages at 0.02Hz to the piezoelectric actuator. The actu-
ator was extended to its maximum range of over 6µm. The force data F expt(ai)
were collected at 32 768 equal time intervals as the distance between the sphere
and plate was changed. This measurement was repeated for n = 65 times. A
great advantage of the atomic force microscopy technique for the averaging was
that the contact point between the two surfaces a0 provided a starting point for
alignment of all 65 measurements. Nevertheless, thermal noise in the cantilever
deflection signal, Sdef , leads to noise in the corresponding separations a. To ac-
count for this in the averaging, the separation distance was divided into a grid
of 32 768 equidistant points separated by 0.17nm. For each measured Casimir
force–distance curve, the value of the force at each grid point was computed using
linear interpolation of the neighboring two data points. Because the separation
distance between neighboring points was as small as 0.17 nm, higher-order inter-
polation procedures were not required. Also, the noise spectrum and amplitude
of the interpolated data were confirmed to be the same as those of the raw data.
This allowed the averaging of the 65 Casimir force measurements, even including
the effect of the change in the separation distance due to the thermal noise of
the cantilever.

The measurement results were presented within the separation range from
62.33nm to 349.97nm. This distance range (containing 1693 points) was chosen
because for larger separations the experimental relative error of the force mea-
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Fig. 20.2. (a) Variance of the mean measured Casimir force as a function of
plate-sphere separation (Chen et al. 2006b). (b) Total relative experimental
error δtotF expt (solid line) and theoretical error δtotF theor (dashed line) as a
function of plate–sphere separation (Chen et al. 2005a).

surements caused by the noise exceeded 100% (see below), i.e. the data were not
informative.

The mean values of the Casimir force computed using eqn (18.3) with n = 65
are plotted in Fig. 20.1(b) as a function of the separation. As seen from Fig.
20.1(b), at short separations the mean force F̄ expt(a) is uniform, i.e. it changes
smoothly with changes of a. The measurement data in all 65 sets were checked for
the presence of outlying results using the statistical criterion presented in Section
18.3.1. It was found that there were no outlying results among the measurement
data and, thus, all of them could be used in the determination of experimental
errors.

The variance of the mean was computed using eqn (18.3). The computational
results are shown in Fig. 20.2(a). It is seen that sF̄i

is not uniform, i.e. it changes
stochastically with increasing separation. It was replaced with the smoothed
variance sF̄ ≈ 1.5 pN defined in eqn (18.4). Then the random absolute error
∆randF expt = 3.0 pN at a 95% confidence level was calculated using eqn (18.6)
with t(1+0.95)/2(64) = 2. The respective relative random error δrandF expt is given
by eqn (18.13). It reaches its smallest value of 0.78% at the shortest separation
a = 62.33 nm and increases with increasing separation.

There were the following four systematic errors in this experiment (Chen et
al. 2005a, 2006b): ∆syst

1 F expt ≈ 0.82 pN due to the error in the force calibration,
∆syst

2 F expt ≈ 0.55 pN due to noise when the calibration voltage is applied to
the cantilever, ∆syst

3 F expt ≈ 0.31 pN due to the instrumental sensitivity, and
∆syst

4 F expt ≈ 0.12 pN due to the restrictions on the computer resolution of the
data. Combining these errors using the statistical rule (18.2) with J = 4 and

k
(4)
0.95 = 1.12, the value ∆systF expt = 1.17 pN was obtained at a 95% confidence

level. The respective relative systematic error δsystF expt takes its smallest value
of 0.31% at the shortest separation. In fact, at all separations the magnitude of
the relative systematic error is about 0.4 times the random error.
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To find the total experimental error in the Casimir force measurements, it
was necessary to combine the random and systematic errors. This was done using
the statistical rule (18.17) with a conservative value of the coefficient q0.95 = 0.8.
As a result, the total experimental error determined at a 95% confidence level
is equal to ∆totF expt = 3.33 pN. The total relative experimental error defined in
eqn (18.18) is equal to only 0.87% at the shortest separation, increases to 5.3% at
a = 120 nm, and reaches 64% at a separation a = 299.99 nm. At a = 350 nm, it
exceeds 100%. In Fig. 20.2(b), the total relative experimental error is shown as a
function of separation (the solid line). At all separations, the major contribution
to it is given by the random error.

20.1.3 Comparison between experiment and theory

As demonstrated in the preceding subsection, the lowest experimental errors
are achieved at separations a ≤ 120 nm. At such short separations, thermal
effects are not important. Because of this, to compare experiment and theory
Chen et al. (2005a, 2006b) used the proximity force approximation (6.71) at
T = 0 and the Lifshitz formula (12.44) with the reflection coefficients (12.45).
The dielectric permittivity of Au along the imaginary frequency axis ε(1)(iξ),
as given by the dashed line in Fig. 13.2, was used. This was obtained from the
tabulated optical data extrapolated to low frequencies by use of the Drude model.
At the separations considered, practically the same results follow from using the
solid line in that figure (the generalized plasma-like model).

The dielectric permittivity ε(2)(iξ) of dielectric Si, with a resistivity ρ0 =
1000 Ω cm, is presented in Fig. 12.2(a). These values of ε(2)(iξ) can be used in
precise computations of the Casimir and van der Waals interactions between test
bodies made of high-resistivity (dielectric) Si. Note that the use of the analytical
approximation for ε(2)(iξ) suggested by Inui (2003) leads to an error of about 10%
in the magnitude of the Casimir force and, thus, is not suitable for comparison
with precise measurements. The same analytical approximation with different
set of parameters (Inui 2006) leads to errors of less than 1% in the magnitude of
the Casimir force. Another analytical expression for the dielectric permittivity of
Si along the imaginary frequency axis was suggested by Lambrecht et al. (2007).
This also results in errors of less than 1% if it is compared with computations
using the tabulated optical data for Si. In the experiment under consideration,
however, a Si plate of much lower resistivity, ρ = 0.0035 Ω cm, than ρ0 was used.
This resistivity corresponds to B-doped Si. The plasma frequency for such Si

given by eqn (13.2) is equal to ω
(2)
p ≈ 7 × 1014 rad/s. Here, the doping concen-

tration leads to a carrier density n ≈ (2.9–3.2) × 1019 cm−3. This value of n
corresponding to a sample with a resistivity ρ = 0.0035 Ω cm was obtained from
Fig. 2.18 of the reference manual by Beadle et al. (1985). The optical effective
mass for the B-doped Si used in this experiment is m∗ = m∗

p = 0.206me (Hell-

wege 1982). The respective relaxation parameter of the Drude model γ(2) was
determined from eqn (13.20):
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γ(2) =
ω

(2)
p

2

4πσ
(2)
0

=
1

4π
ρ ω(2)

p

2 ≈ 1.5 × 1014 rad/s. (20.1)

Since the optical properties of Si at the frequencies that make a nonnegligible
contribution to the Casimir force depend on the concentration of charge carriers,
the optical data of dielectric Si should be adapted for the case under considera-
tion. This can be done (Palik 1985) by adding the imaginary part of the Drude
dielectric function to the imaginary part of the dielectric permittivity ε(2)(ω) (see
Section 12.6.3). For the Si plate of lower resistivity ρ used in the experiment,
this results in

ε̃(2)(iξ) = ε(2)(iξ) +
ω

(2)
p

2

ξ
(
ξ + γ(2)

) . (20.2)

This permittivity is different from the solid line in Fig. 12.2 only at ξ ≤ 1015 rad/s.
Once the dielectric permittivities of Au and Si along the imaginary frequency
axis have been computed, the Casimir force F between a smooth sphere and
plate can be found by use of eqns (12.44) and (6.71). Note that experimentally
indistinguishable results for F were obtained if the charge carriers were taken
into account by means of the plasma model, i.e. by putting γ(2) = 0 in eqn
(20.2). The theoretical Casimir force F theor taking account of surface roughness
was computed by using the method of geometrical averaging presented in eqn

(17.94), with the H
(1,2)
0 and h

(1,2)
i discussed at the beginning of Section 20.1.

The computational results show that in this experiment the influence of surface
roughness is very small. For example, if the separation increases from 62.33 to
100.07nm, the ratio F theor/F decreases from 1.015 to 1.006. Thus, the contri-
bution of surface roughness reaches its maximum value of 1.5% at the shortest
separation and decreases to only 0.6% at a = 100.07 nm. The contributions of
diffraction-type and correlation effects to the roughness correction, which are
not taken into account in the method of geometrical averaging, were found to be
negligible at the separations considered (Chen et al. 2006b).

Now we discuss the theoretical errors which may occur in the computation of
the Casimir force. These are the same errors as were considered in Section 19.2.3,
devoted to the precision measurement of the Casimir force using gold surfaces.
The first theoretical error, δ1F

theor = 0.5%, is due to uncertainties in the optical
data used to determine ε(1,2)(iξ). The anomalous sets of data which would lead to
quite different force values were discussed in Section 19.3.4. This experiment does
not support the hypothesis that the Au films used could be described by such
data. The uncertainties due to patch potentials, δ2F

theor, were shown to be equal
to a fraction of a percent (see Section 19.2.3). The uncertainty due to the use of
the proximity force approximation is δ3F

theor = a/R. When theory is compared
with experiment by considering the differences F theor(ai) − F expt(ai), the error
δ4F

theor = 3 ∆a/a should be taken into account (it should be, however, discarded
when the theoretical forces are computed not at the experimental separations ai

but over the entire measurement range; see Section 18.3.3). The last theoretical
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Fig. 20.3. Differences between the theoretical and mean experimental Casimir
forces versus separation. The theoretical forces were computed for (a) the
Si plate used in the experiment and (b) for dielectric Si. The solid and
dashed lines indicate 95 and 70% confidence intervals, respectively (Chen
et al. 2006b).

error is due to the uncertainties of the sphere radius δ5F
theor = ∆R/R ≈ 0.15%.

When all theoretical errors are combined using the statistical rule (18.2) at a
95% confidence level, the total theoretical error obtained is that presented by
the dashed line in Fig. 20.2(b). This error reaches its largest value of 3.8% at
the shortest separation a = 62.33 nm, decreases to 2% at a = 119.96 nm, and
decreases further to 1.2% at a = 299.99 nm.

To compare the experimental data with the theoretical computations, the
confidence intevals [−Ξ0.95

F (a), Ξ0.95
F (a)] for the quantity F theor(a) − F expt(a)

were found at all experimental separations at a 95% confidence level using eqn
(18.21). In the comparison of experiment with theory, the confidence intervals
[−Ξ0.7

F , Ξ0.7
F ] obtained at a 70% confidence level were also needed. It is well known

that for a normal distribution,

Ξ0.95
F

Ξ0.7
F

=
t0.975(∞)

t0.85(∞)
= 2. (20.3)

The distribution law of the quantity F theor(ai) − F expt(ai) was investigated
(Chen et al. 2006b) by using a method for testing hypotheses about the form
of the distribution function of a random quantity (Rabinovich 2000). As a re-
sult, it was found that the hypothesis of a normal distribution was confirmed
at all separations with probabilities larger than 70%. Note that for distribu-
tions, different from the normal distribution, Ξ0.95

F /Ξ0.7
F > 2 holds. Thus, putting

Ξ0.7
F (ai) = Ξ0.95

F (ai)/2 in the error analysis is in fact conservative, as the confi-
dence interval is wider than required.

Now the experimental data can be compared with theory. In Fig. 20.3(a),
the differences F theor(ai)− F̄ expt(ai) are plotted for all experimental points over
the separation range from 62.33 to 150 nm, where the total experimental error is
less than 10%. The theoretical forces in this figure were computed as described
above for a Si sample of the conductivity ρ used in the experiment. The solid



Experiment with gold-coated sphere and silicon plate 591

75 80 85 90 95 100

-10

-5

0

5

10

15

� � � � 	


 �  � � � � �
 � � � � � � � 	

75 80 85 90 95 100

-10

-5

0

5

10

15

�  ! " #

$% & ' ( ) * + ,% ( - . &  / 0 #

1 3 5 1 7 5

Fig. 20.4. Differences between the theoretical and mean experimental Casimir
forces versus separation plotted on an enlarged scale. The theoretical forces
were computed for (a) the Si plate used in the experiment and (b) for dielec-
tric Si. The solid and dashed lines indicate 95 and 70% confidence intervals,
respectively (Chen et al. 2006b).

lines indicate the confidence intervals [−Ξ0.95
F (ai), Ξ

0.95
F (ai)]. The dashed lines

show the confidence intervals [−Ξ0.7
F (ai), Ξ

0.7
F (ai)]. As is seen from Fig. 20.3(a),

experiment and theory are consistent, being inside the 95% confidence interval.
In fact, not only 95% of individual points but all of them belong to the 95%
confidence interval. What is more, not 30% (as is required at a 70% confidence
level) but only 10% of all individual points are outside the 70% confidence in-
terval. This is a clear manifestation of the fact that the theory is in excellent
agreement with experiment and that the error analysis used is very conservative,
overestimating the above-discussed errors and uncertainties. The main reason for
the overestimation is that the exact magnitudes of the theoretical errors (such
as those due to sample-to-sample variation of the optical data for Au and dielec-
tric Si, the use of the proximity force theorem, and uncertainties in the surface
separation) are not known, and they therefore were replaced with their upper
limits.

In Fig. 20.3(b), the same information as in Fig. 20.3(a) is presented but the
differences F̃ theor(ai) − F̄ expt(ai) were computed with the theoretical forces for
dielectric Si. As is seen from Fig. 20.3(b), many points at all separations are
outside the 70% confidence interval, and practically all of them are outside at
a < 100 nm. In Fig. 20.4(a,b), the differences F theor − F̄ expt and F̃ theor − F̄ expt,
respectively, are presented on an enlarged scale within the separation range from
60 to 100nm. From Fig. 20.4(a) it can be seen that the theory for a sample of
the conductivity ρ used in the experiment is consistent with the experimental
data. There are no points outside the 95% confidence interval, and fewer than
3% of all points are outside the 70% confidence interval (once again, this is
an indication that the errors have been overestimated). A completely different
situation is observed in Fig. 20.4(b). Here almost all points representing the
differences F̃ theor(ai) − F̄ expt(ai) computed for dielectric Si (all except two) are
outside the 70% confidence interval. What this means is that the theory for
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Fig. 20.5. Magnitudes of the experimental Casimir force with their error bars
versus separation for (a) the points 1, 11, 21, . . . and (b) all points on an
enlarged scale. The solid lines show the theoretical dependence for the sam-
ple used in the experiment, and the dashed lines show the dependence for
dielectric Si (Chen et al. 2006b).

dielectric Si is rejected by the experiment at 70% confidence within the separation
range from 60 to 100nm. The consistency of the experimental data with the
theoretical forces F theor(ai) and the rejection of the theory for dielectric Si at
a 70% confidence level demonstrates how the density of charge carriers in a
semiconductor influences the Casimir force between a metal and a semiconductor.

This conclusion was obtained using one of the two local methods for the
comparison of experiment with theory presented in Section 18.3.3. The other
method considered in Section 18.3.3 leads to similar results. In Fig. 20.5(a,b),
the experimental points are plotted with their error bars (±∆a,±∆totF expt)
determined at a 95% confidence level, and the theoretical dependences for the
conductive Si used and for dielectric Si are shown by the solid and dashed lines,
respectively. It is not possible to plot all of the experimental points with error
bars over the wide separation range from 60 to 100 nm. Because of this, in Fig.
20.5(a) the points with numbers 1, 11, 21, . . . have been plotted. As can be seen
from Fig. 20.5(a), the solid line is in very good agreement with experiment,
whereas the dashed line deviates significantly from the experimental data. For
a narrower range of separations from 75 to 90 nm, all experimental points have
been plotted in Fig. 20.5(b) with their error bars, and, also, theoretical lines for
conductive Si (solid line) and dielectric Si (dashed line). Once again, the solid
line is consistent with experiment, whereas the dashed line is inconsistent (Chen
et al. 2006b). Thus, as demonstrated in this first experiment on the Casimir
effect using semiconductor surfaces, the measured force magnitude is consistent
with the theory for a charge carrier density of about 3× 1019 cm−3 (as in the Si
plate used) and inconsistent with the theory for a dielectric Si characterized by
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a zero density of charge carriers. This conclusion was directly confirmed in the
second experiment, where the Casimir force between a gold-coated sphere and
two Si samples with radically different densities of charge carriers was successfully
measured.

20.2 Experiment on the difference Casimir force for samples with

different charge carrier densities

The experiment by Chen et al. (2006a) pioneered the demonstration of the dif-
ference Casimir force between a gold-coated sphere and two Si samples which
possess radically different charge carrier densities. In this experiment, a high-
vacuum-based (2 × 10−7 Torr) atomic force microscope was used to measure
the Casimir force between a gold-coated polystyrene sphere with a diameter
2R = 201.8± 0.6 µm and two 4× 7 mm2 size Si plates placed next to each other.
The thickness of the gold coating on the sphere was measured to be 96 ± 2 nm.
The details of the setup were as described in the previous section devoted to the
experiment with one Si plate. For this second experiment two identically pol-
ished, single-crystal, 〈100〉 orientation Si samples were chosen, 500µm thick and
with a resisitivity 0.1–1 Ω cm. They were n-type and doped with P. The resistivity
of the plates was measured using the four-probe technique to be ρa ≈ 0.43 Ω cm,
leading to a concentration of charge carriers na ≈ 1.2× 1016 cm−3. One of these
samples was used as the first Si plate in the experiment. The other one was
subjected to thermal-diffusion doping to prepare the second, lower-resistivity,
plate. A phosphorus-based spin-on-dopant (SOD) solution (P450, commercially
available from Filmtronics Co.) was used. The wafer was spin-coated at a speed
of 5000 × 2π rad/min for 0.25min, followed by prebaking at 200 ◦C for 15min
on a hotplate. The sample was then placed in a diffusion furnace. The diffu-
sion was carried out at 1000–1050 ◦C for 100 hours in an N2(75%)+ O2(25%)
atmosphere. A 49% HF solution was used to etch off the residual dopant after
the diffusion process. The effectiveness of the above procedure was determined
using both a four-probe resistivity measurement and a Hall measurement of a
similarly doped 0.3 µm thick single-crystal 〈100〉 Si sample grown epitaxially on
a sapphire wafer [in the original publication (Chen et al. 2006a), the substrate
material was mistakenly indicated as Si]. This thin equivalent sample was homo-
geneously doped under the above conditions (Teh and Chuah 1989) and allowed
a measurement of the carrier density. The resistivity and the carrier density were
measured to be ρb ≈ 6.7 × 10−4 Ω cm and nb ≈ 3.2 × 1020 cm−3. Both plates,
of the higher and the lower resistivity, were subjected to a special passivation
procedure to prepare their surfaces for the force measurements. For this purpose,
Nanostrip was used to clean the surface and a 49% HF solution to etch SiO2 and
to hydrogen-terminate the surface in the same way as described in the previous
section. Finally, both plates were mounted adjacent to each other in the AFM.

The calibration of the spring constant k and the measurements of the residual
electrostatic potential V0, deflection coefficient m, and separation on contact a0

were done using a significantly improved experimental technique as compared
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with previous experiments. All calibration and other measurements were done in
the same high-vacuum apparatus as the Casimir force measurements. The actual
separation distance a between the bottom of the gold sphere and the Si plates
was given by eqn (19.4), where apiezo is the distance moved by the piezoelectric
actuator and Sdef is the cantilever deflection signal from the photodiodes. First,
the value of m was found for the higher-resistivity plate following the improved
procedure. For this purpose, the sphere was grounded and 28 different voltages
between –0.712 and –0.008V were applied to the plate through a thick gold pad
attached to the plate bottom. The change in the contact position between the
sphere and the plate was used to find m = 47.8 ± 0.2 nm per unit deflection
signal.

Then the values of V0, km (this product is needed for force measurements),
and a0 were found for the higher-resistivity plate by fitting the deflection signal
Sdef to the theoretical expression. From the definition of the deflection coefficient
ad = mSdef , it follows that

Sdef = S0 +
Fel

km
, (20.4)

where the electric force between the sphere and the plate, Fel, is given by eqn
(19.1) and S0 is the voltage-independent deflection caused by the contribution of
the Casimir force to the signal. The value of S0 was not used in the determination
of V0 and km. Because of this, it was not necessary to subtract the contribution
of the Casimir force from the total deflection signal (uncertainties in the contact
position due to drift of the piezoelectric actuator were found to lead to an error
of 0.4% and corrected).

The parabolic dependence of the signal on the applied voltage, in accordance
with eqns (19.1) and (20.4), was used to obtain the residual potential difference
V0 between the grounded sphere and the plate. For this purpose, at each separa-
tion distance a the deflection signal Sdef was plotted as a function of the applied
voltage V . In Fig. 20.6, two typical dependences of Sdef on V are shown, one for
the Si plate of higher resistivity (ρa = 0.43 Ωcm) and one for the plate of lower
resistivity (ρb = 6.7× 10−4 Ωcm) (Chiu et al. 2008). The applied voltage ranged
between –0.712 and –0.008V in Fig. 20.6(a) and between –0.611 and –0.008V
in Fig. 20.6(b). The least-squares method was then used to obtain the voltage
value at the maximum of the parabola, which is V0, and the value of X(α) in
eqn (19.1). The values obtained for the particular sets of data shown in Fig.
20.6(a,b) are also shown in the figure. The plotting of the parabola was repeated
for every a, and V0 was measured as a function of a. The mean value of V0 so
determined was the residual potential difference. Note that at this point of the
measurement, the exact value of a was uncertain as the mean separation between
the zero levels of the roughness on contact, a0, had not yet been determined. In
Fig. 20.7(a,b), the residual potential differences V0 obtained are plotted as a
function of separation a for semiconductor plates of high and low resistivity, re-
spectively (Chiu et al. 2008). As can be seen in the figure, the mean value of
V0 is relatively constant as a function of separation. The larger random error
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Fig. 20.6. Deflection signal plotted as a function of the voltage applied to the
plate at a fixed separation distance for the silicon plate with (a) high and (b)
low resistivity (Chiu et al. 2008).

with increasing separation is due to the decrease in the signal-to-noise ratio. For
the sphere and the higher-resistivity plate, the mean residual potential difference
was determined to be V0 = −0.341± 0.002 V.

The value of X(α) (we recall that α is a known function of a) obtained
from fitting the parabolic curves in Fig. 20.6 was used to determine both a0 and
the cantilever spring constant multiplied by the calibration coefficient, km. This
was done with the help of an iterative fitting procedure, requiring the output of
the value of only one unknown parameter [details are presented by Chiu et al.
(2008)]. For the higher-resistivity plate, the start point of the fit was from 300
to 400 nm, with the end point separation equal to 2.5 µm. The fit was repeated
with different start points and the mean values of km and a0 were determined.
Typical values of a0 obtained as a function of the start point of the fit are shown
in Fig. 20.8(a,b) for the plates of higher and lower resistivity, respectively. The
resulting mean values for the high-resistivity plate were a0 = 32.4 ± 1.0 nm
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Fig. 20.7. Residual sphere–plate potential difference as a function of the sep-
aration where it was determined, for the silicon plate with (a) high and (b)
low resistivity.



596 Measurements of the Casimir force with semiconductors

320 340 360 380 400

26

28

30

32

34

36

38

40

� � � � �

� 
 � � � �

125 150 175 200 225 250 275 300

26

28

30

32

34

36

38

40

 � � � �

 � � � � �

� � � � � �

Fig. 20.8. Mean separation between the zero levels of the roughness on
sphere–plate contact a0, obtained from fitting of the electrostatic force, as
a function of the start point of the fit for the silicon plate with (a) high and
(b) low resistivity.

and km = 1.646 ± 0.004 nN per unit deflection signal. The above measurements
include corrections for thermal noise of the cantilever and mechanical drift of the
plate and the piezoelectric actuator described in detail by Chiu et al. (2008).

An important point to note is that the expression for the electric force Fel

used does not take into account the possible influence of the space-charge layer
at the surface of high-resistivity Si. According to Bingqian et al. (1999), for n-
type Si with a concentration of charge carriers of order 1016 cm−3, the impact of
this layer on the electrostatic force is negligible at separations larger than 300–
400nm. The use of the expression for the electric force between metallic surfaces
may lead to nothing more than an increased error in the determination of a0.
The above fit was performed just within this range of separations, with the start
point ranging within 300–400nm to 2.5µm. However, as is seen in Fig. 20.8(a),
the value of a0 obtained does not depend practically on the start point of the fit.
This demonstrates that eqn (19.1) is applicable. An independent experimental
confirmation of the applicability of eqn (19.1) in the case of the higher-resistivity
plate is given by Fig. 20.7(a). This demonstrates that the residual potential dif-
ference determined from eqn (19.1) at different separations is relatively constant
at a ≥ 100 nm. This, however, could not be the case if there were noticeable
deviations from eqn (19.1) at the separations considered. In Figs. 20.7(b) and
20.8(b), it is clearly seen that for the lower-resistivity plate any possible devia-
tions of the electric force from that given by eqn (19.1) are even more negligible.
We emphasize that if V0 were found to be separation-dependent, it would indi-
cate the presence of electrostatic surface impurities, space charge effects such as
screening, and/or electrostatic inhomogeneities (patch effects) on the sphere or
plate surface.

After the calibration and related measurements for the higher-resistivity sam-
ple were done, the Casimir force between this sample and the sphere was mea-
sured from contact as a function of distance. Finally, the results at a ≥ 61.19 nm
were reported to avoid the influence of nonlinearities associated with the jump



Experiment for samples with different charge carrier densities 597

80 100 120 140 160 180 200

-400

-300

-200

-100

0

� �

� � � 	 �

� � � � � � � � �

Fig. 20.9. The mean measured Casimir forces as a function of separation be-
tween the gold-coated sphere and the two Si plates of higher and lower re-
sistivities are shown by the dots labeled a and b, respectively (Chen et al.
2006a).

to contact at shorter distances. For this purpose, the sphere was kept grounded
while an appropriate compensating voltage was applied to the plate to cancel
the residual electrostatic force. The distance between the sphere and the plate
was varied continuously from large to small separations by applying triangular
voltages at 0.02Hz to the piezoelectric actuator. The force data F expt

a (ai) were
collected at equal time intervals corresponding to equidistant points separated
by 0.17nm. This measurement was repeated 40 times, and the forces obtained
were averaged to reduce the influence of various random factors, including ther-
mal noise. The mean values F̄ expt

a of the experimental Casimir force data as a
function of separation are represented by the dots labeled a in Fig. 20.9. Note
that the voltage-independent deflection S0 in eqn (20.4) can be used for an inde-
pendent determination of the Casimir force. The respective results were shown
to be in agreement with those obtained from applying compensation voltages.

Next, all the above calibrations and measurements were repeated for the
second, lower-resistivity, Si plate. In this case 25 different dc voltages were applied
to the plate [see Fig. 20.6(b)]. The deflection coefficient m was found to be
47.9± 0.2 nm per unit deflection signal. Here again, the drift of the piezoelectric
actuator was measured and corrected. After the same fitting procedure of the
measured deflection signal, the following values of all related parameters were
obtained: V0 = −0.337±0.002 V, km = 1.700±0.004 nN per unit deflection signal,
and a0 = 32.3 ± 0.8 nm. The fit was performed within the range of separations
from 100–300nm to 2.5 µm. Note that closer separations can be used here, as the
effect of the space charge layer is negligible for the lower-resistivity sample. The
values of km were slightly different in the two cases owing to changes in the level
of the cantilever arm arising from minor deviations from the horizontal position
in the mounting of the samples. Next, the Casimir force acting between the lower-
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resistivity sample and the sphere was measured from contact after application of
the appropriate voltage to cancel the residual electrostatic force. The results in
the linear regime at a ≥ 60.51 nm were reported. This measurement was repeated
39 times. The resulting mean values F̄ expt

b of the Casimir force data as a function
of a are represented in Fig. 20.9 by the dots labeled b. As is seen from the figure,
the dots labeled a and b are distinct from each other, demonstrating the effect of
the different charge carrier densities in the two Si plates used in the experiment.
The Casimir force measured by applying a compensating voltage was checked to
be consistent with that obtained as the excess force leading to the deflection S0

when different electric voltages were applied [see eqn (20.4)].
For the quantitative characterization of the deviation between the two mea-

surements, the random errors were calculated using the procedure outlined in
Section 18.3.1 based on Student’s t-distribution. For the sample of higher re-
sistivity (measurement a), the random error at a 95% confidence level is equal
to 8 pN at a = 61.19 nm, decreases to 6 pN at a = 70 nm, and becomes equal
to 4 pN at a ≥ 80 nm. Measurement b, for the sample of lower resistivity, is
slightly more noisy. Here the random error at a 95% confidence level changes
from 11pN at a = 60.51 nm and 7pN at a = 70 nm to 5 pN at a ≥ 80 nm. The
systematic error determined at a 95% confidence level is equal to only 1.2 pN for
both measurements (see Section 20.1.2 for details). Using the statistical criterion
in Section 18.3.1, it was concluded that the total experimental errors ∆totF expt

a,b

determined at a 95% confidence level were equal to the random errors in each
measurement. From Fig. 20.9, it is seen that the deviation between the two sets
of data is several times larger than the total experimental error in the range of
separations from 61.19 to 120nm.

Then the force–distance relations measured for the two Si samples were com-
pared with the theory. At separations below 150nm, where the differences be-
tween the two measurements are most pronounced, the magnitudes of the pre-
dicted thermal corrections are negligible. At larger a, the relative contribution
from thermal corrections is much less than the relative error of the force mea-
surements. Because of this, the force between a smooth sphere and each of the
plates was computed using the Lifshitz formula at zero temperature (12.44) and
the proximity force approximation (6.71) (where T was also set equal to zero).
The dielectric permittivity of gold ε(1)(iξ) and that of dielectric Si ε(2)(iξ) have
already been considered in Section 20.1.3. For the higher-resistivity plate, the
concentration of charge carriers na is below the critical value (see Section 12.5.2).

Because of this, one should put ε
(2)
a (iξ) = ε(2)(iξ). For the plate with lower resis-

tivity, its dielectric permittivity ε
(2)
b (iξ) = ε̃(2)(iξ) was obtained from eqn (20.2)

with a plasma frequency ω
(2)
p,b ≈ 2.0 × 1015 rad/s and a respective relaxation pa-

rameter γ
(2)
b ≈ 2.4×1014 rad/s [these values were calculated by use of eqns (13.2)

and (20.1), with the effective mass of the electron m∗ = m∗
e = 0.26me]. Then

the Casimir forces Fa and Fb were calculated over the experimental separation
range.
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Fig. 20.10. Differences between the theoretical and mean experimental Casimir
forces versus separation. The forces were computed and measured for (a)
higher- and (b) lower-resistivity Si. The solid lines indicate 95% confidence
intervals (Chen et al. 2006a).

The results obtained were corrected for the presence of surface roughness. To
do this, the topographies of the sphere and of both Si samples were investigated
with an AFM. Then the roughness data were used to compute the Casimir forces
F theor

a and F theor
b starting from Fa and Fb, in accordance with the method of

geometrical averaging as described in Section 20.1. The contributions from the
roughness to the Casimir force for the two plates were equal. These contributions
changed from 3.6% of the total force at a ≈ 60 nm to 2.7%, 1.4%, and 0.65%
at separations of 70, 100, and 150 nm, respectively. The surface distortion of the
single-crystal Si was very low and did not contribute practically to the roughness
correction, which was determined primarily by the roughness of the sphere.

The errors in the computation of the Casimir force between the gold-coated
sphere and the Si plate were analyzed in Section 20.1.3. At the shortest a, they
are mostly determined by the error ∆a = 1.0 nm (for plate a) and ∆a = 0.8 nm
(for plate b) in the measurement of the separations ai at which the theoretical
values of the Casimir force were calculated for comparison with experiment. A
0.5% error due to the variation of the optical parameters was also included. At
a = 60 nm, the total theoretical error determined at a 95% confidence level is
equal to 19.6 pN (4.9% of the force) for plate a and 17.2pN (4.0% of the force) for
plate b. It decreases to 11 pN (4.2% of the force) for plate a and 9.6 pN (3.4% of
the force) for plate b at a = 70 nm. The total theoretical error becomes less than
the total experimental error at a > 90 and 85 nm for plates a and b, respectively.

The total theoretical error was combined with the total experimental error at
a 95% confidence level using the statistical rule (18.21) to find the error ΞF (a) in
the difference between the theoretical and experimental forces. The confidence
interval [−ΞF (a), ΞF (a)] obtained, as a function of separation, is shown in Fig.
20.10 as solid lines. The differences F theor

a − F̄ expt
a versus separation for the

experiment with the higher-resistivity Si are plotted in Fig. 20.10(a) as dots.
Similarly, the differences F theor

b − F̄ expt
b for the lower-resistivity Si are shown as
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Fig. 20.11. The differences between the mean measured Casimir forces for the
lower- and higher-resistivity Si samples versus separation are shown by dots.
The corresponding theoretically calculated differences are shown by the solid
line (Chen et al. 2006a).

dots in Fig. 20.10(b). As can be seen from Fig. 20.10, the two measurements are

consistent with theories using the dielectric permittivity ε
(2)
a (iξ) [Fig. 20.10(a)]

and ε
(2)
b (iξ) [Fig. 20.10(b)].

To illustrate the effect of the modification of the Casimir force by a change
of carrier density, the differences between the measured mean Casimir forces for
the plates of lower and higher resistivities, F expt

diff = F̄ expt
b − F̄ expt

a , are plotted in
Fig. 20.11 as dots, versus separation. In the same figure, the difference between
the respective theoretically computed Casimir forces, F theor

diff = F theor
b − F theor

a ,
versus separation is shown as a solid line. As can be seen from Fig. 20.11, the
experimental and theoretical difference Casimir forces as a function of separation
are in good agreement. It can be easily shown that the magnitude of the mean
difference of the measured Casimir forces exceeds the experimental error in the
force difference in the range of separations from 70 to 100nm.

Thus, in the second experiment with semiconductors, the Casimir force be-
tween a gold-coated sphere and two Si plates with resistivities differing by several
orders of magnitude has been measured. Each measurement was compared with
theoretical results obtained using the Lifshitz theory with different dielectric per-
mittivities and found to be consistent with it. The difference between the mea-
sured forces for the two resistivities is in good agreement with the corresponding
difference between the theoretical results. The results of this experiment may find
applications in the design, fabrication, and function of microelectromechanical
and nanoelectromechanical devices (see Chapter 23).

20.3 Experiment on optically modulated Casimir forces

The most suitable method of changing the charge carrier density in a semicon-
ductor is through the illumination of its surface with light (Opsal et al. 1987,
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Vogel et al. 1992). The present section contains a description of an experiment
on the modulation of the Casimir force by the irradiation of a Si membrane with
laser pulses (Chen et al. 2007a, 2007b). In this experiment, the charge carrier
density in the Si membrane was changed by the incident light, and the difference
in the Casimir force acting between that membrane and a gold-coated sphere
in the presence and in the absence of light was measured. An important feature
of this experiment, in contrast with the experiment described in the previous
section, is that the individual Casimir forces between a sphere and two plates
with different charge carrier densities were not measured in sequence, but only
their difference. This permits one to achieve much higher precision and to use
the results obtained as a test of the various theoretical approaches to the thermal
Casimir force between metallic and dielectric (semiconductor) surfaces.

20.3.1 Experimental setup and sample preparation

Here, the experimental setup used to demonstrate the modification of the Casimir
force through a radiation-induced change in the carrier density is discussed. The
general scheme of the setup is shown in Fig. 20.12. A high-vacuum-based AFM
was employed to measure the change in the Casimir force between a gold-coated
sphere of diameter 2R = 197.8 ± 0.3 µm and a Si membrane (colored black) in
the presence and in the absence of incident light. An oil-free vacuum chamber
with a pressure of around 2 × 10−7 Torr was used. A polystyrene sphere coated
with a gold layer of 82 ± 2 nm thickness was mounted at the tip of a 320 µm
conductive cantilever. The Si membrane (see below for the process of prepara-
tion) was mounted on top of a piezoelectric actuator, which was used to change
the separation distance a between the sphere and the membrane from contact
to 6 µm. The excitation of the carriers in the Si membrane was done with 5 ms
wide light pulses (50% duty cycle). These pulses were obtained from a cw Ar
ion laser at 514nm wavelength, modulated at a frequency of 100Hz using an
acousto-optic modulator (AOM). The AOM was triggered with a function gen-
erator. The laser pulses were focused on the bottom surface of the Si membrane.
The Gaussian width of the focused beam on the membrane was measured to be
0.23 ± 0.01 mm.

The cantilever of the AFM flexed when the Casimir force between the sphere
and the membrane changed depending on the presence or absence of incident light
on the membrane. This cantilever deflection was monitored with a 640nm beam
from a second laser (see Fig. 20.12), reflected off the top of the cantilever tip.
An optical filter was used to prevent interference of the 514 nm excitation light
with the cantilever deflection signal. The transmission of this filter at 514 nm was
0.001%. Including the transmission of less than 1% through the Si membrane and
the diode solid angle of 10−4, the impact of leakage of the 514 nm light leads to a
change in the force difference of less than 10−6 pN. These changes are negligibly
small as compared with the measured cantilever deflection signal. The change in
the Casimir force due to the incident light led to a difference signal between the
two photodiodes. The resulting response to the carrier excitation was measured
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Fig. 20.12. Schematic of the experimental setup, showing its main components
(Chen et al. 2007b).

with a lock-in amplifier. The same function generator signal used to generate the
Ar laser pulses was also used as a reference for the lock-in amplifier.

The most important part of such a setup is the Si membrane. It should be
sufficiently thin and of appropriate resistivity to ensure that the density of charge
carriers increases by several orders of magnitude under the influence of the laser
pulses. The Si membrane should be thick enough to make negligible the photon
pressure of the transmitted light, as the illumination is incident on the bottom
surface of the membrane. Therefore the thickness of the Si membrane has to
be greater than 1 µm, i.e. greater than the optical absorption depth of Si at
the wavelength of the laser pulses. The fabrication of an Si membrane a few
micrometers thick with the necessary properties is described below.

A commercial wafer of Si grown on an insulator was used as the initial sub-
strate. The insulator in this case was SiO2, which is the native oxide of Si and
thus leads to only small reductions of the excited-carrier lifetime in Si. The lay-
out of the wafer is shown in Fig. 20.13. The wafer consisted of an Si substrate of
thickness 600 µm and a Si top layer of thickness 5 µm (both were single crystals
and had a 〈100〉 crystal orientation), with a buried intermediate SiO2 layer of
thickness 400nm [see Fig. 20.13(a)]. The Si was p-type doped with a relatively
high nominal resistivity of about 10 Ω cm. The corresponding carrier density was
equal to n ≈ 5 × 1014 cm−3 (Palik 1985).

The thickness of the Si substrate was reduced to about 200 µm through me-
chanical polishing. Then, after RCA cleaning of the surface, the wafer was oxi-
dized at T = 1373 K in a dry O2 atmosphere for a duration of 72 hours. As a
result, in addition to the buried SiO2 layer, a thermal oxide layer with a thick-
ness of about 1 µm was formed on both (bottom and top) sides of the wafer
[Fig. 20.13(b)]. This oxide layer served as a mask for subsequent tetramethy-
lammonium hydroxide (TMAH) etching of the Si. First, a hole with a diameter
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Fig. 20.13. Fabrication process of Si membrane. (a) The Si substrate (colored
black) with a buried SiO2 layer (white). (b) The substrate was mechanically
polished and oxidized, and (c) a window in the bottom SiO2 layer was etched
with HF. (d) Next, TMAH was used to etch the Si. (e) Finally, the SiO2

layer was etched away in HF solution to form a clean Si surface (Chen et al.
2007b).

of 0.85mm was etched with HF in the center of the bottom oxide layer [Fig.
20.13(c)]. This exposed the Si substrate. Next, TMAH was used at 363K to
etch the Si substrate through the hole formed in the oxide mask [Fig. 20.13(d)].
Note that TMAH selectively etches Si, as its etching rate for Si is 1000 times
greater than for SiO2. TMAH etching led to the formation of a hole through the
Si substrate. Given the selectivity of the etching, the buried 400nm oxide acted
as an etch stop layer. Finally, all of the thermal oxidation layers and the buried
oxidation layer in the hole were etched away in HF solution to form a clean Si
membrane over the hole as shown in Fig. 20.13(e). The thickness of this mem-
brane was measured to be 4.0± 0.3 µm using an optical microscope. In order for
voltages to be applied to the Si membrane, an ohmic contact was formed by a
thin film of Au deposited on the edge followed by annealing at 673K for 10 min.
The Si membrane was cleaned with Nanostrip and then passivated by dipping in
49% HF for 10 s. The passivated Si membrane was then mounted on top of the
piezoelectric actuator as described above.

20.3.2 Calibration and excited-carrier lifetime measurement

All calibrations and other measurements were done during the same period of
time as the measurement of the difference of the Casimir forces and in the same
high-vacuum apparatus. The calibration of the deflection signal of the cantilever
obtained from the photodiodes, Sdef , and the determination of the average sep-
aration on contact and residual potential difference between the gold-coated
sphere and the Si membrane were done by measuring the distance dependence
of an applied electrostatic force. For this purpose, the same function genera-
tor (see Fig. 20.12) was used for applying voltages to the membrane. For an
attractive force, Sdef < 0 and this can be measured either as a current or as
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a voltage. In addition, a small correction had to be applied to the separation
distance between the gold sphere and the Si membrane owing to the movement
of the cantilever. The actual separation distance a between the bottom of the
sphere and the membrane was given by eqn (19.4). It should be noted that the
quantity a0 in this equation is the absolute separation between the zero levels of
the roughness at the position where physical contact between the two surfaces
is achieved. The complete movement of the piezoelectric actuator was calibrated
using a fiber optic interferometer. To extend and contract the actuator, continu-
ous triangular voltages between 0.01 and 0.02Hz were applied to it. Given that
the experiment was done at room temperature, the application of static voltages
would lead to creep of the actuator and loss of position sensitivity.

The gold sphere was kept grounded. Electrical contact to the sphere was
accomplished by applying a very thin gold coating to the cantilever. The electro-
static force between the sphere and the membrane is given by eqn (19.1). First, 30
different dc voltages between 0.65 and –0.91V were applied to the Si membrane.
The cantilever deflection signal was measured as a function of the distance. A
0.02Hz triangular wave was applied to the piezoelectric actuator to change the
distance between the sphere and the membrane over a range of 6 µm. Larger ap-
plied voltages led to more cantilever deflection and, according to eqn (19.4), to
contact of the two surfaces at a larger apiezo. The dependence of apiezo at contact
of the sphere and the membrane on the applied voltage was then used to measure
the deflection coefficient m. In order to determine the contact of the two surfaces
precisely, 32 768 data points at equal time intervals were acquired for each force
measurement (i.e. the interval between two points was about 0.18 nm). In cases
where the contact point was between two neighboring data points, a linear inter-
polation was used to identify the exact value. The deflection coefficient m was
found to be 137.2±0.6 nm per unit deflection signal. The difference in this value
of m from the measurements described in the previous sections is due to the use
of the 514nm filter, which reduced the cantilever deflection signal. The value of
m obtained was used to correct the separation distance in all measurements as
described in eqn (19.4). The electrostatic force resulting from the application of
dc voltages was also used in the determination of the separation on contact of
the two surfaces. The fit of the experimental force–distance relation to the theo-
retical eqn (19.1) was done as outlined in the previous sections. The separation
distance on contact was determined to be a0 = 97 nm. The uncertainty in the
quantity a0 + mSdef obtained from eqn (19.4) was found to be 1 nm. This leads
to the same error in the absolute separations ∆a = 1 nm because the error in
the calibration of the actuator was negligibly small.

For the calibration of the deflection signal and the determination of the resid-
ual potential difference between the two surfaces, an improved method, rather
than simple application of dc voltages to the membrane, was used. This was
done to avoid systematic errors due to scattered laser light. In addition to the
application of a dc voltage to the membrane, described above, a square voltage
pulse with an amplitude from 1.2 to –0.6V and lasting for a time interval corre-



Experiment on optically modulated Casimir forces 605

� � � � 	


 � � � � � � � � � � � � � � � � � � 	

! # % & '

( * , * . 0 1 2 1 0 6 # 7 8 9 1 0 8 7 8 6 ; < 1 0 & '

= > @ = A @

Fig. 20.14. (a) Deflection signal of the cantilever in response to a dc voltage and
square voltage pulse applied to the Si membrane, as a function of separation.
(b) Change in reflectivity after the termination of the laser pulse (Chen et
al. 2007b).

sponding to a separation between 1 and 5 µm was also applied to the membrane.
Figure 20.14(a) shows the deflection signal of the cantilever in response to both
the applied dc voltage and the square pulse as a function of the separation be-
tween the gold sphere and the Si membrane. By measuring only the difference
in the signal during the pulse, the investigators were able to avoid the need for a
background subtraction. A fit of the difference signal to eqn (19.1) led to a value
of the signal calibration constant km = 6.16± 0.04 nN per unit deflection signal.
The same fit was used to determine the residual potential difference between the
sphere and the membrane, which was found to be V0 = −0.171 ± 0.002 V. The
large width of the pulse applied in addition to the dc voltage allowed confirma-
tion of the distance independence of the values of the calibration constant and
the residual potential difference obtained.

An independent measurement of the lifetime of the carriers excited in the
Si membrane by the pulses from the Ar laser was performed. For this purpose,
a noninvasive optical pump–probe technique was used (Sabbah and Riffe 2002,
Nagai and Kuwata-Gonokami 2002). The same Si membrane and Ar laser beam,
modulated by the AOM at 100Hz to produce 5ms wide square light pulses,
as used in the Casimir force measurement were employed as the sample and the
pump, respectively. The diameter of the pump beam on the sample was measured
to be 0.72 ± 0.02 mm. A cw beam with a power of 1mW at a wavelength of
1300nm was used as the probe. The probe beam photon energy was below the
bandgap energy of Si and was thus not involved in carrier generation. This beam
was focused to a Gaussian width w0 = 0.135±0.003 mm. Thus the focal spot size
of the probe beam was much smaller than the focal spot size of the pump light.
As a result, it was possible to measure the lifetime in a homogeneous region of
excited carriers. The change in the reflected intensity of the probe beam in the
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presence and in the absence of the Ar laser pulses was detected with an InGaAs
photodiode. The change in the reflected power of the probe beam was monitored
as a function of time and found to be consistent with the change of carrier density.
Near-normal incidence for the pump and probe beams was used, with care taken
to make sure that the InGaAs photodiode was isolated from the pump beam. The
time decay of the reflected probe beam in response to the square Ar light pulses
is shown in Fig. 20.14(b). The change in the reflectivity of the probe was fitted to
an exponential of the form − exp(−t/τ), where τ is the effective carrier lifetime.
By fitting the whole 5ms decay of the change in reflected power, the effective
excited-carrier lifetime was measured to be τ = 0.47 ± 0.01 ms. Note that this
time represents both surface and bulk recombination and is consistent with that
expected for Si. Some dependence of the lifetime of the excited carriers on their
concentration was observed. In the first 0.5ms, while the charge carrier density
was still high, the average value of the excited-carrier lifetime was measured to
be τ = 0.38 ± 0.03 ms. The measured values of the carrier lifetime were used
in theoretical computations of the change in Casimir force for many different
incident laser powers.

20.3.3 Experimental results and error analysis

Here, the measured difference in the Casimir force resulting from the irradia-
tion of the Si membrane with 514 nm laser pulses is presented. In fact, it was
the difference in the total force (Casimir and electric) which was measured. As
indicated above, even with no applied voltage there was some residual potential
difference V0 between the sphere and the membrane. A preliminary value of V0

was determined during the calibration of the setup in the absence of laser pulses.
In the presence of the pulses (even during the dark phase of the pulse train),
the value of the residual potential difference could be different. These residual
potential differences during the bright and dark phases of a laser pulse train
(the latter was not exactly equal to the value determined during calibration) are
denoted here by V l

0 and V0, respectively. During the bright phases of the pulse
train, a voltage V l was applied to the Si membrane, and during the dark phases,
a voltage V . Using eqn (19.1) for the electric force, we can represent the dif-
ference in the total force (electric and Casimir) for the states with and without
carrier excitation in the following form:

F tot
diff(a) = X(α)

[
(V l − V l

0)2 − (V − V0)
2
]
+ F expt

diff (a). (20.5)

Here
F expt

diff (a) = F l(a) − F (a) (20.6)

is the difference between the Casimir forces F l and F with and without light,
respectively. The difference in the total force in eqn (20.5) was measured using a
lock-in amplifier with an integration time constant of 100ms, which corresponds
to a bandwidth of 0.78Hz. The measurement procedure is described below.

First, the voltage V was kept constant and V l was changed. The parabolic
dependence of F tot

diff on V l in eqn (20.5) was measured at different separations
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a. Care was taken to apply only small voltage amplitudes (up to a few tens of
millivolts) so as to keep the space charge region negligible. At every measured
separation distance, F tot

diff was plotted as a function of V l. As can be seen from eqn
(20.5), the value of V l where the parabola reaches a maximum is V l

0 [recall that
X(α) < 0]. In this way, the value V l

0 = −0.303±0.002 V was found and shown to
be independent of the separation from 100 to 500nm, where the difference in the
Casimir force could be measured. This confirms that any possible deviations from
eqn (19.1) due to screening effects were negligible and did not influence the results
obtained. Next, V l was kept constant, whereas V was changed and the parabolic
dependence of F tot

diff on V was measured at different separations. The value of V
where the parabolas reached their minima was V0 = −0.225 ± 0.002 V. These
values of the residual potential difference between the sphere and the membrane
in the presence and in the absence of excitation light were substituted in eqn
(20.5). The small change of around 78mV in the residual potential difference
between the sphere and the membrane in the presence and in the absence of
excitation light is primarily due to the screening of surface states by a few of
the optically excited electrons and holes. The above small value is equal to the
change in band bending at the surface. It is consistent with the fact that almost
flat bands are obtained at the surface with the surface passivation technique used
here [see, e.g. Angermann (2002) and Kronik and Shapira (2001)].

Then, other voltages (V l, V ) were applied to the Si membrane and the dif-
ference in the total force F tot

diff was measured as a function of separation. Data
were collected from contact, at equal time intervals corresponding to 3 points
per 1 nm (i.e. at 1209 points within the separation interval from 100 to 500nm).
From these measurement results, the difference in the Casimir force F expt

diff (a) was
determined from eqn (20.5). This procedure was repeated with some number J of
pairs of different applied voltages (V l, V ), and at each separation the mean value
F̄ expt

diff (a) was found. In Figs. 20.15(a), 20.16(a), and 20.17(a) the experimental

data for F̄ expt
diff (a) as a function of separation are shown by dots for different

absorbed laser powers: P eff = 9.3 mW (J = 31), 8.5mW (J = 41), and 4.7mW
(J = 33), respectively. The corresponding incident powers were 15.0, 13.7, and
7.6mW, respectively. As expected, the magnitude of the Casimir force difference
has the largest values at the shortest separations and decreases with increasing
separation. It also decreases with decreasing absorbed laser power [the solid,
short-dashed and long-dashed lines in Figs. 20.15(a), 20.16(a), and 20.17(a) are
explained in Sections 20.3.4 and 20.3.5, devoted to the comparison with theory;
Figs. 20.15(b), 20.16(b), and 20.17(b) are also discussed there]. We emphasize
that although the difference Casimir force F̄ expt

diff obtained in this experiment is

somewhat analogous to the F expt
diff considered in the experiment with two plates

with different charge carrier densities (Section 20.2), the two quantities are in fact
distinct. The point is that in the experiment on the optically modulated Casimir
force, F̄ expt

diff is the mean value of the immediately measured quantity, the differ-
ence Casimir force. When this is measured, the individual Casimir forces between
the sphere and the plate in the dark and bright phases remain undetermined.
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Fig. 20.15. (a) Differences between the Casimir forces in the presence and in
the absence of light versus separation for an absorbed power of 9.3mW. The
measured differences F expt

diff are shown by dots; the differences calculated at
T = 300 K and at T = 0 are shown by the solid and short-dashed lines,
respectively; and the differences calculated including the dc conductivity of
high-resistivity Si are shown by the long-dashed lines. (b) Theoretical minus
experimental differences in the Casimir force versus separation. The results
computed at T = 300 K using the model with a finite static permittivity
for high-resistivity Si are labeled 1, and those including the dc conductivity
are labeled 2. The solid lines show the 95% confidence intervals (Chen et al.
2007b).

For the experiment with two plates, the individual Casimir forces between the
sphere and each of the plates were measured first, and F expt

diff was calculated as
the difference between the mean measured forces afterwards. Additionally, the
present experiment is effectively a dynamic measurement, where the change in
the Casimir force only at the modulation frequency is measured. These charac-
teristic features make the optical-modulation experiment much more sensitive
than the experiments described in Sections 20.1 and 20.2.

Now, we proceed with the analysis of the experimental errors. The variance of
the mean difference in the Casimir force is defined by eqn (18.3), where Πexpt =
F expt

diff ; n = J ; i is the number of points in one set of measurements, varying
from 1 to 1209; and j is the number of pairs of applied voltages. Using Student’s
t-distribution with a number of degrees of freedom f = 30 (or 40 and 32 for
the measurements with different absorbed powers) and choosing a confidence
level β = 0.95, we obtain p = (1 + β)/2 = 0.975 and tp(f) = 2.00. Then the
absolute random error in the measurement of the difference Casimir force is
given by eqn (18.8). This is presented in Fig. 20.18(a) as a function of separation
for the three different measurements with different absorbed laser powers (the
lines labeled a, b, and c correspond to decreasing power as indicated above). As
can be seen from Fig. 20.18(a), the random error is rather different for different
measurements. It is lowest for measurement b, which was done with 8.5mW
absorbed power. In this measurement, the random error decreases from 0.32pN
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Fig. 20.16. (a) Differences between the Casimir forces in the presence and in
the absence of light versus separation for an absorbed power of 8.5mW.
(b) Theoretical minus experimental differences in the Casimir force versus
separation. All notation is explained in the caption to Fig. 20.15 (Chen et al.
2007b).

at a = 100 nm to 0.23pN at a = 250 nm and preserves the latter value at larger
separations. Figure 20.18(b) will be referred to in the discussion of the theoretical
errors in the next subsection.

The main systematic error was due to the instrumental noise and was equal
to ∆syst

1 F expt
diff ≈ 0.08 pN, independent of separation. The systematic error de-

termined from the resolution error in data acquisition, ∆syst
2 F expt

diff ≈ 0.02 pN,

also does not depend on separation. The calibration error, ∆syst
3 F expt

diff , depends
on separation and was equal to 0.6% of the measured difference in the Casimir
force. These systematic errors can be combined at a given confidence probability
β using the statistical criterion (18.2). Choosing β = 0.95 (the 95% confidence
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Fig. 20.17. (a) Differences between the Casimir forces in the presence and in
the absence of light versus separation for an absorbed power of 4.7mW.
(b) Theoretical minus experimental differences in the Casimir force versus
separation. All notation is explained in the caption to Fig. 20.15 (Chen et al.
2007b).
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Fig. 20.18. (a) Random experimental errors (which are equal to the total er-
ror) and (b) total theoretical errors, versus separation. The cases of different
absorbed powers 9.3, 8.5, and 4.7mW are labeled a, b, and c, respectively
(Chen et al. 2007b).

level), we arrive at a total systematic error for all three measurements varying
from 0.092 to 0.095pN.

The total experimental error in the force difference, ∆totF expt
diff (a), at a 95%

confidence level can be found using the combination rule (18.15) because in this
case the quantity r(a) defined in eqn (18.14) is less than 0.8. Thus, the total
experimental error in the values of F expt

diff (a) for all three measurements coincides
with the random error, which is presented in Fig. 20.18(a). As a result, the
relative experimental error varies from 10% to 20% at a separation a = 100 nm
and from 25% to 33% at a separation a = 180 nm for the different absorbed laser
powers. This allows us to conclude that modulation of the Casimir force with light
has been demonstrated with high reliability and confidence. The observed effect
could not be due to the thermally induced mechanical motion of the membrane.
This is because membrane movement due to heating (in this case less than 1◦C)
would lead to a different force–distance relation for both the electrostatic force
and the Casimir force, in disagreement with what was observed and with the
distance-independence of V0 and V l

0 . The temperature rise of less than 1◦C was
estimated based on the net thermal-energy increase in the Si membrane. The
absorption of photons during the course of the optical pulse increases the thermal
energy of the membrane, while the conductive and radiative heat outflow to the
Si around the membrane and the surroundings leads to a decrease in its thermal
energy. The net change is less than 1◦C. The latter would lead to a negligible
(less than 10−6) relative expansion in the diameter of the membrane.

In order to account for roughness, the surface topography of the sphere and
membrane was characterized using the AFM. Images obtained from a surface
scan of the gold coating on the sphere demonstrated stochastically distributed

roughness peaks with heights h
(1)
i ≤ 32 nm (1 ≤ i ≤ N1 = 33). A surface scan of

the Si surface demonstrated much smoother relief, with heights h
(2)
i ≤ 1.68 nm

(1 ≤ i ≤ N2 = 17). The fractions v
(1,2)
i of the Au and Si surfaces with heights
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h
(1,2)
i were tabulated by Chen et al. (2007b). The roughness data were used in

the theoretical computations of the differences in the Casimir forces.

20.3.4 Theoretical Casimir force differences and comparison with experiment

The Casimir force F (a) = F (a, T ) acting between a large gold sphere of radius R
and a plane Si membrane at T = 300 K can be calculated by means of the Lifshitz
formula (12.71), along with the use of the proximity force approximation (6.71).
Keeping in mind that the difference force technique employed in this experiment
was more sensitive, the thermal version of the Lifshitz theory at laboratory tem-
perature was chosen for the comparison with data. The dielectric permittivities
of gold, ε(1)(iξ), and of high-resistivity Si, ε(2)(iξ), in the absence of laser light
have been repeatedly used above (see e.g. Section 20.1.3). On irradiation of the
Si membrane by light, an equilibrium value of the carrier density is rapidly es-
tablished during a period of time much shorter than the duration of the laser
pulse. Therefore, one can assume that there is an equilibrium concentration of
pairs (electrons and holes) when the light is incident. Thus, in the presence of
laser radiation, the dielectric permittivity of Si along the imaginary frequency
axis can be represented in the commonly used form (Vogel et al. 1992, Palik
1985)

ε
(2)
l (iξ) = ε(2)(iξ) +

ω
(2)
p(e)

2

ξ
[
ξ + γ

(2)
(e)

] +
ω

(2)
p(p)

2

ξ
[
ξ + γ

(2)
(p)

] , (20.7)

where ω
(2)
p(e,p) and γ

(2)
(e,p) are the plasma frequencies and the relaxation parameters

for electrons and holes, respectively.

The values of the relaxation parameters are γ
(2)
(e) ≈ 1.8 × 1013 rad/s and

γ
(2)
(p) ≈ 5.0 × 1012 rad/s (Vogel et al. 1992). The plasma frequencies were calcu-

lated using eqn (13.1), where the effective mass was replaced by m∗
p = 0.2063me

(for holes) and m∗
e = 0.2588me (for electrons). The value of the concentration of

charge carriers in the bright phase, which enters eqn (13.2), was calculated for
the different absorbed powers in the following way. First, it was noted that for
a membrane of thickness d = 4 µm the concentration n does not depend on the
depth. The reason is that a uniform concentration in this direction is established
even more rapidly than the equilibrium discussed above (Vogel et al. 1992). In
fact, the assumption of uniform charge carrier density in the Si membrane is
justified by the long carrier diffusion lengths and the ability to obtain almost
defect-free surfaces in silicon through hydrogen passivation (Yablonovitch et al.
1986). Next, the central part of the Gaussian beam, of diameter w, can be ap-
proximately modeled by a uniform cylindrical beam of the same diameter. The
power contained in this cylindrical beam, P eff

w , is equal to the power in the cen-
tral part of a Gaussian beam with a diameter w. Elementary calculation using
a Gaussian distribution leads to P eff

w = 0.393P eff. The power P eff
w is absorbed

uniformly in the central part of the Si membrane of diameter w, which has
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a volume V = πw2d/4. Incidentally, the central region of the membrane with
a diameter w contributes almost 100% [99.9999% using eqn (19.9)] of the to-
tal Casimir force acting between the membrane and sphere. At equilibrium, the
number of created charge carrier pairs per unit time per unit volume P eff

w /(�ωV ),
where ω = 3.66 × 1015 rad/s is the frequency of Ar laser light, is equal to the
recombination rate of pairs per unit volume, n/τ . Thus, at equilibrium,

n =
4P eff

w τ

�ωdπw2
. (20.8)

Equations (13.2) and (20.8) allow one to calculate the densities of charge
carriers na = (2.1 ± 0.4) × 1019 cm−3, nb = (2.0 ± 0.4) × 1019 cm−3, and nc =
(1.4 ± 0.3) × 1019 cm−3 and the respective plasma frequencies

ω
(2a)
p(e) = (5.1 ± 0.5)× 1014 rad/s, ω

(2a)
p(p) = (5.7 ± 0.6) × 1014 rad/s,

ω
(2b)
p(e) = (5.0 ± 0.5)× 1014 rad/s, ω

(2b)
p(p) = (5.6 ± 0.5)× 1014 rad/s,

ω
(2c)
p(e) = (4.1 ± 0.4)× 1014 rad/s, ω

(2c)
p(p) = (4.6 ± 0.4)× 1014 rad/s,

(20.9)

for all of the measurements a, b, and c with different powers of absorbed laser
light. All of the above errors were found at a 95% confidence level. Note that in

the original publication (Chen et al. 2007b,) the values of ω
(2c)
p(e) and ω

(2c)
p(p) contain

misprints, corrected here. In the calculations of charge carrier densities using eqn
(20.8), the values τa = τb = 0.38± 0.03 ms and τc = 0.47± 0.01 ms were used, in
accordance with the measurement results in Section 20.3.2, taking into account
the fact that τ decreases when n increases. Recall that τa and τb were obtained
from first 0.5ms of the time decay. The value for τc, obtained using the whole
5ms decay, may lead to a minor underestimation of the carrier density, a fact
included in the resulting 21% error in the value of nc. Note that the above values

of the relaxation parameters γ
(2)
(e) and γ

(2)
(p) do not depend on the absorbed power

(Vogel et al. 1992) and can be used in all measurements.

The values of ε(1)(iξ) and ε(2)(iξ) or ε
(2)
l (iξ) were substituted in the Lifshitz

formula (12.71) combined with eqn (6.71) and the difference of the Casimir forces
in the presence and in the absence of laser light, Fdiff(a), was computed at
the laboratory temperature T = 300 K. The results obtained were corrected
for the presence of surface roughness using the nonmultiplicative approach. The
roughness data discussed at the end of Section 20.3.3, after substitution into

eqn (17.92), led to H
(1)
0 = 20.0 nm and H

(2)
0 = 1.1 nm. Then the theoretical

values of the difference Casimir force taking account of the surface roughness
were calculated by geometric averaging:

F theor
diff (ai) =

33∑
k=1

17∑
l=1

v
(1)
k v

(2)
l Fdiff(ai + H

(1)
0 + H

(2)
0 − h

(1)
k − h

(2)
l , T ). (20.10)
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In the experiment under consideration, the contribution from the roughness cor-
rection was very small. Thus, at a = 100 nm, it contributed only 1.2% of the
calculated F theor

diff (a). At a = 150 nm, the contribution from surface roughness
decreased to only 0.5% of the calculated force difference. Similarly to Section
19.2.3, it could be easily seen that the contribution from nonadditive, diffraction-
type effects to the roughness correction [which is not taken into account in eqn
(20.10)] was negligibly small.

The results of the numerical computations of the difference Casimir force
between rough surfaces, F theor

diff (a), are shown by solid lines in Figs. 20.15(a),
20.16(a), and 20.17(a) for the measurements with different powers of absorbed
laser light. They are in very good agreement with the experimental data, shown
by dots in the same figures (see below for the quantitative measure of agreement
between experiment and theory).

For completeness, it is also reasonable to present the results of theoretical
computations using the Lifshitz formula at zero temperature. These were ob-
tained following the same procedure as at T = 300 K. These results are shown
by the short-dashed lines in Figs. 20.15(a), 20.16(a), and 20.17(a). As can be
seen from these figures, in all cases the short-dashed lines describe a slightly
larger magnitude of the Casimir force difference than at T = 300 K and are in
rather good agreement with the experimental data shown by the dots. Thus, this
experiment is not sensitive enough to measure the small thermal effect which is
predicted at the separations considered, where in the dark phase Si is charac-
terized by zero conductivity [i.e. by the permittivity ε(2)(iξ)] and in the bright
phase by the permittivity (20.7).

Importantly, the experimental data are also in agreement with theory if the
dielectric permittivity of Si in the presence of light (the bright phase) is described
by the generalized plasma-like model (see Sections 13.5 and 14.6). This permit-

tivity can be obtained from eqn (20.7) by putting γ
(2)
(e) = γ

(2)
(p) = 0. Repeating the

above computations of the thermal difference Casimir force F theor
diff under these

conditions with Peff = 9.3 mW, one obtains the results shown by the solid line
in Fig. 20.19(a). In this figure, the same experimental data as in Fig. 20.15(a)
are shown by dots. The dotted theoretical line reproduces the theoretical results
computed using the dielectric permittivity (20.7) in the bright phase [in Fig.
20.15(a), this line is shown as a solid line]. The dashed lines in Figs. 20.19(a)
and 20.19(b) are explained below. As can be seen in Fig. 20.19(a), both the solid
and the dotted lines are in agreement with the experimental data (Mostepanenko
and Geyer 2008). Thus, the experiment under consideration does not allow one to
discriminate between the theoretical approaches using the dielectric permittivity
(20.7) and the generalized plasma-like model. The same conclusions follow from
a consideration of the measurement data obtained with the two other absorbed
powers.

Before considering the quantitative comparison of data with various theoret-
ical approaches, it is necessary to state the theoretical errors in the computation
of the Casimir force acting between a sphere and a membrane. The major source
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Fig. 20.19. (a) Differences between the Casimir forces in the presence and in
the absence of light versus separation for an absorbed power of 9.3mW. The
measured differences F expt

diff are shown by dots; the differences calculated at
T = 300 K using the generalized plasma-like permittivity and the permittiv-
ity (20.7) are shown by the solid and dotted lines, respectively; and those
calculated including the dc conductivity of high-resistivity Si are shown by
the long-dashed lines. (b) Theoretical minus experimental differences in the
Casimir force versus separation. The results computed at T = 300 K using
the model with a finite static permittivity in the dark phase and the gener-
alized plasma-like permittivity in the bright phase are shown by dots. The
solid lines indicate the 95% confidence intervals (Mostepanenko and Geyer
2008).

of the theoretical uncertainty in this experiment is the error in the concentration
of charge carriers n when the light is on. From above, this error is about 20%.
Calculations using the Lifshitz formula show that the resulting relative error in
the difference Casimir force, δ1F

theor
diff , is approximately equal to 0.12, i.e. 12%,

and does not depend on separation. The error due to the uncertainty of the
experimental separations ai, at which the theoretical values F theor

diff should be
computed, is equal to 3 ∆a/a and takes its maximum value of 3% of the Casimir
force at the shortest separation of a = 100 nm (recall that ∆a = 1 nm). This
leads to only a 2% error in the difference of the Casimir force at a = 100 nm (so
that δ2F

theor
diff ≈ 0.02) and to smaller errors at larger separations. The other the-

oretical errors discussed in Section 18.3.2, such as those due to sample-to-sample
variation of the tabulated optical data for Au, the use of the proximity force the-
orem, patch potentials, and the finite thickness of the gold coating on the sphere,
are negligible. Thus, for example, using the Lifshitz formula for a polystyrene
sphere covered with a gold layer of 82 nm thickness instead of eqn (12.71) for
a solid gold sphere, one would get only a 0.03% decrease in the Casimir force
magnitude.

A specific uncertainty which is present in this experiment is connected with
the pressure of the light transmitted through the membrane and incident on
the bottom of the sphere. This effect is present only during the bright phase
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of the pulse train and can be easily estimated. The maximum intensity of laser
light incident on a section of the sphere with radius 0 ≤ r ≤ R parallel to the
membrane is

I(r) =
2α0P

eff

πw2
e−2r2/w2

, (20.11)

where α0 is the fraction of the absorbed power transmitted through the mem-
brane. The value of α0 is given by

α0 = re−d/lopt ≈ 0.00641, (20.12)

where lopt = 1 µm (see Section 20.3.1) and the transmission coefficient r is ap-
proximately 0.35. The gold sphere is assumed to be perfectly reflecting.

The force due to the light pressure acting on the sphere takes the following
form in spherical coordinates:

Fp =
4πR2

c

∫ π/2

0

dϑ I(R sinϑ) cos2 ϑ sin ϑ. (20.13)

Substituting eqn (20.11) in eqn (20.13) and integrating, we obtain

Fp =
2α0P

eff

c

[
1 − e−2R2/w2

√
πw Erfi(

√
2R/w)

2
√

2R

]
, (20.14)

where Erfi(z) is the imaginary error function.
For the absorbed powers used in the three experiments (P eff = 9.3, 8.5,

and 4.7mW, respectively), eqn (20.14) leads to the following maximum forces
which may act on the sphere owing to the light pressure: Fp = 0.085, 0.078,
and 0.043pN. The force due to light pressure can be taken into account as one
more error in the theoretical evaluation of the difference Casimir force F theor

diff .
At a separation a = 100 nm, the respective relative error, δ3F

theor
diff , is equal to

2.3%, 2.7%, and 1.5% for the three absorbed powers. At a = 200 nm, the relative
theoretical error in F theor

diff due to light pressure increases to 8.9%, 8.7%, and
5.0%, respectively.

All three errors discussed above can be combined using the statistical rule
(18.2). The resulting total absolute theoretical error, ∆totF theor

diff , is presented in
Fig. 20.18(b) as a function of separation for the three experiments with decreas-
ing power of absorbed laser light (lines a, b, and c, respectively). As can be seen
from this figure, the total theoretical errors for the measurements a and b are
almost equal, and for the measurement c, this error is slightly lower. The relative
total theoretical error varies from 13.5% to 13.7% at a = 100 nm and from 13.7%
to 14.4% at a = 140 nm for the three different absorbed powers. At a = 200 nm,
the relative total theoretical error ranges from 14.9% to 17.2% for the different
absorbed powers.

Now the quantitative comparison between experiment and theory can be done
using the methods described in Section 18.3.3. For this purpose, the quantity
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F theor
diff − F expt

diff is considered. The absolute error of this quantity, Ξ0.95
Fdiff

(a), as
a function of separation at a confidence level of 95%, is found by using eqn
(18.21). The resulting confidence intervals [−Ξ0.95

Fdiff
(a), Ξ0.95

Fdiff
(a)] are shown in

Figs. 20.15(b), 20.16(b), and 20.17(b) by solid lines for the three measurements
with the largest, intermediate, and smallest powers, respectively.

The differences between the theoretical values of F theor
diff computed at T =

300 K and the measured F̄ expt
diff are shown in Figs. 20.15(b), 20.16(b), and 20.17(b)

by dots labeled 1 (once again, these dots are related to the three measurements
with different power). As is seen in these figures, practically all of the dots labeled
1 are well inside the confidence intervals at all separation distances. This means
that the Lifshitz theory at nonzero temperature, using the dielectric permittiv-
ity of high-resistivity Si ε(2)(iξ) in the absence of laser light and the dielectric

permittivity ε
(2)
l (iξ) given by eqn (20.7) in the presence of light, is consistent

with the experiment. The consistency of the experiment with the theory is pre-
served when the theoretical values of F theor

diff are computed at zero temperature
[see the short-dashed lines in Figs. 20.15(a), 20.16(a), and 20.17(a)]. The conclu-
sion is that the thermal effect cannot be resolved, taking into consideration the
experimental and theoretical errors reported above.

The same method of comparison between experiment and theory can be ap-
plied when the generalized plasma-like dielectric permittivity of Si is used in the
presence of light instead of the permittivity (20.7). In this case the computa-
tional results for the difference F theor

diff − F̄ expt
diff are shown by dots in Fig. 20.19(b)

for an absorbed power Peff = 9.3 mW. It is seen that the dots are inside the
95% confidence intervals in the same way as the dots labeled 1 in Fig. 20.15(b),
where F theor

diff was computed using the dielectric permittivity (20.7). The same
occurs for the two other absorbed powers. To distinguish between the two models
using the generalized plasma-like permittivity and the permittivity (20.7) of a
metal-type semiconductor in the presence of light, more precise experiments are
required (Mostepanenko and Geyer 2008).

For illustrative purposes, the agreement between experiment and theory is
presented in Fig. 20.20 using another method from Section 18.3.3. Here, a nar-
rower separation interval, from 150 to 200 nm, is considered and each third ex-
perimental point from measurement c is plotted together with its error bars[
±∆a,±∆totF expt

diff

]
, shown as crosses (there are too many points to present all

of them in this form). The theoretical force difference F theor
diff computed with the

Lifshitz formula at T = 300 K using the generalized plasma-like model is shown
by the solid line, and that computed using the permittivity (20.7) by the dotted
line. It can be seen that the experimental data are consistent with both the-
oretical approaches, in confirmation of the conclusion drawn above using Fig.
20.19.

20.3.5 Tests for the effect of charge carriers in dielectrics

In the calculations in the previous subsection, the dielectric response of high-
resistivity Si in the absence of the incident laser light was described by the
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Fig. 20.20. The experimental differences in the Casimir force, with their exper-
imental errors, are shown by crosses (the absorbed power is equal to 4.7mW).
The solid and dotted lines represent the theoretical differences computed at
T = 300 K using a finite static permittivity for high-resistivity Si, but dif-
ferent models for Si in the presence of light (see text for further discussion).
The dashed line represents the theoretical differences computed at the same
temperature including the dc conductivity.

function ε(2)(iξ), which has a finite static value ε(2)(0) ≈ 11.66. However, as
discussed in Section 12.5.2, dielectrics have some nonzero dc conductivity σ0 at
any nonzero temperature. If this is included, the dielectric permittivity of the
Si plate has the form (12.113) with the index n = 2. Using eqns (13.19) and
(13.20), it can be represented in the form

ε̃(2)(iξ) = ε(2)(iξ) +
ω

(2)
p(p)

2

ξ
[
ξ + γ

(2)
(p)

] . (20.15)

The value of the plasma frequency in eqn (20.15) can be found by substituting

the carrier density n ≈ 5 × 1014 cm−3 in eqn (13.2), with the result ω
(2)
p(p) ≈

2.8 × 1012 rad/s. Note that for n ≤ 1.0 × 1017 cm−3, the value of the relaxation
parameter has an insignificant effect on the magnitude of the Casimir force.

Because of this, the same value of γ
(2)
(p) as in eqn (20.7) was used in eqn (20.15).

The presence of a low dc conductivity in dielectric materials was used (Zurita-
Sánches et al. 2004, Joulain et al. 2005) to obtain a large effect of van der Waals
friction which could bring some observations (Stipe et al. 2001) into agreement
with theory. In Section 12.5.2, for two dielectric plates, and in Section 15.4, for
one metal and one dielectric plate, it was proved, however, that the inclusion
of the dc conductivity of a dielectric in the Lifshitz theory leads to a violation
of the third law of thermodynamics (the Nernst heat theorem). Thus, it is not
acceptable from a theoretical point of view.
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The experiment on the modification of the Casimir force with laser pulses
clarified the problem of whether or not the dc conductivity of high-resistivity Si
should be taken into account in the Lifshitz theory of the Casimir and van der
Waals forces. For this purpose, the theoretical computations of the difference
Casimir force presented in Section 20.3.4 were completely repeated, replacing
the dielectric permittivity of Si ε(2)(iξ) used above with ε̃(2)(iξ) given in eqn
(20.15). The theoretical results obtained for F̃ theor

diff versus separation are shown
by the long-dashed lines in Figs. 20.15(a), 20.16(a), and 20.17(a) for all of the
three measurements with different powers of absorbed light. As can be seen in
these figures, all of the long-dashed lines are far outside both the experimental
data, shown by dots, and the solid lines calculated using the Lifshitz theory
disregarding the dc conductivity of high-resistivity Si at laboratory temperature.
Notice that the computational results at T = 0 [shown by the short-dashed
lines in Figs. 20.15(a), 20.16(a), and 20.17(a)] do not depend on whether the
dc conductivity is included in the dielectric permittivity used to describe the
high-resistivity Si.

To draw a quantitative conclusion about the measure of agreement between
the data and the two models with and without the inclusion of the dc conduc-
tivity of high-resistivity Si, the differences F̃ theor

diff − F̄ expt
diff , where F̃ theor

diff was com-
puted including the dc conductivity according to eqn (20.15), have been shown
as dots, labeled 2, in Figs. 20.15(b), 20.16(b), and 20.17(b). As is seen in Figs.
20.15(b) and 20.16(b), the model including the dc conductivity of high-resistivity
Si is excluded experimentally at a 95% confidence level within the region from
100 to 250 nm. From Fig. 20.17(b), it follows that this model is excluded at a
95% confidence level within the range of separations from 100 to 200 nm.

The conclusion that the model of high-resistivity Si which includes the dc con-
ductivity is inconsistent with the experiment on the optically modulated Casimir
force is confirmed also in Figs. 20.19(a) and 20.20, where the quantity F̃ theor

diff ver-
sus separation is plotted as a dashed line. It can be clearly observed that the
dashed line not only is far away from the solid line based on the theory neglecting
the dc conductivity of Si in the absence of excitation light but is also distant
from all of the error bars representing the experimental data.

In Section 12.5.2, a rule concerning the application of the Lifshitz theory
to dielectric materials having zero conductivity at zero temperature was formu-
lated. According to this rule, the dc conductivity of such materials that arises
at nonzero temperature must be disregarded. Otherwise, owing to the violation
of thermal equilibrium, the Lifshitz theory becomes inconsistent with thermody-
namics. The experiment on the optically modulated Casimir force demonstrates
that if this rule is not followed, the theoretical results obtained are excluded
by the data. One can conclude that the experiment on the optically modulated
force is complementary to the experiments by means of a micromechanical os-
cillator with metallic test bodies (see Section 19.3). In those experiments, the
difference between the Casimir forces using the Drude and the plasma-like per-
mittivities was resolved and the former was excluded. As mentioned above, the
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present experiment is not sensitive enough to discriminate between the Drude
and plasma-like permittivities, but provides a radically new test of the inclusion
of the dc conductivity of dielectrics in the Lifshitz theory.

The results of the experiment on the optically modulated Casimir force were
also applied (Klimchitskaya et al. 2008a) to test the modification of the transverse
magnetic reflection coefficient at zero frequency given by eqn (16.81) (Pitaevskii
2008a). As an example, in Fig. 20.21(a,b) the experimental data for the difference
of the Casimir forces in the presence and in the absence of laser light are shown
for the largest and smallest absorbed powers, 9.3mW and 4.7mW, respectively.
Note that in contrast to Fig. 20.20, the absolute errors of the force measurements
(the vertical arms of the crosses) are now indicated at a 70% confidence level.
This was done to obtain more conclusive results. The solid lines in Fig. 20.21
were computed as explained above using the Lifshitz formula, with Si in the dark
phase described as a dielectric with the permittivity ε(2)(iξ). In the presence of

light, the dielectric permittivity (20.7) was used, with γ
(2)
(e) = γ

(2)
(p) = 0 (the

generalized plasma-like model). Almost the same results were obtained if eqn
(20.7), with nonzero values of the relaxation frequencies, as indicated above,
was used. The dashed lines were computed using eqn (16.81) for the modified
transverse magnetic reflection coefficient at zero frequency, with corresponding
concentrations of charge carriers n in the dark phase and 2na or 2nc in the
presence of light. At all nonzero Matsubara frequencies, the standard terms of
the Lifshitz formula were used with the dielectric permittivity of Si as given by
eqn (20.7) (note that in the dark phase, the Drude additions are negligible at all
nonzero Matsubara frequencies).

As can be seen in Fig. 20.21, the experimental data are consistent with the
theoretical results computed using the standard Lifshitz theory with the dc con-
ductivity of dielectric Si neglected in the dark phase (the solid lines). The the-
oretical results computed using the modified TM reflection coefficient at zero
frequency taking into account the effect of charge screening are excluded by the
data at a 70% confidence level. The same conclusion follows from the third data
set, obtained at 8.5mW absorbed power.

According to Svetovoy (2008), the experimental data for the difference Casimir
force are equally consistent with the nonlocal approach using the reflection coef-
ficient (16.81) and the Lifshitz theory, with the dc conductivity neglected in the
dark phase. To prove this, the experimental data of Fig. 20.21(a) at a 70% confi-
dence level were used, but the dashed line was replaced with a theoretical band
whose width was determined at a 95% confidence level using the corresponding
uncertainty in the charge carrier density ∆n = 0.4 × 1019 cm−3. Such a mis-
matched comparison of experiment with theory is irregular. It can be easily seen
that the theoretical bands related to the solid and dashed lines in Fig. 20.21(a)
do not overlap if one uses in the computations the uncertainty in the charge
carrier density ∆n = 0.3 × 1019 cm−3, determined at the same 70% confidence
level as for the experimental errors (Klimchitskaya et al. 2008c, Mostepanenko
et al. 2009).
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Fig. 20.21. Difference between the Casimir forces between an Au-coated sphere
and an Si plate in the presence and in the absence of laser light on the plate,
versus separation, for absorbed powers of (a) 9.3mW and (b) 4.7mW. The
experimental data are shown by crosses. The solid and dashed lines were
computed using the standard Lifshitz theory, with the dc conductivity of
Si in the dark phase neglected and taking into account the effect of charge
screening for the transverse magnetic mode, respectively (Klimchitskaya et
al. 2008a).

The experiment on the optically modulated Casimir force also excludes the
theoretical approach of Dalvit and Lamoreaux (2008) (see Section 14.3.5), as ap-
plied to high-resistivity semiconductor materials. The screening effects in these
materials are characterized by the Debye–Hückel screening length as in the orig-
inal formulation of the approach (Dalvit and Lamoreaux 2008). Note that the
contribution of the zero-frequency TM reflection coefficient in this approach is
the same as in the approach of Pitaevskii (2008a). The contributions of all other
terms to the Lifshitz formula are almost equal in the two approaches. Because
of this, the dashed lines in Fig. 20.21 reproduce the computational results for
the difference Casimir force in the framework of the theoretical approach of
Dalvit and Lamoreaux (2008). Thus, this approach that attempts to take the
screening effects and the diffusion current into account in the Lifshitz theory is
experimentally excluded not only for metals (see Section 19.3.4), but also for
semiconductors.

20.4 Proposed experiments with semiconductor surfaces

The experiments presented in Sections 20.1–20.3 demonstrate the enormous po-
tential of semiconductor materials for further investigation of the Casimir effect
and the nontrivial interplay between zero-point and thermal fluctuations. Addi-
tional interest in this direction is being stimulated by the promise of nanotechno-
logical applications. Because of this, several new experiments with semiconductor
surfaces have been proposed. Some of them are considered below.
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20.4.1 The dielectric–metal transition

An exciting possibility for modulation of the Casimir force due to a change in
the charge carrier density is offered by semiconductor materials that undergo a
dielectric–metal transition with an increase in temperature. From a fundamental
point of view, the modulation of the Casimir force by phase transitions of various
kinds offers one more precision test of the role of the conductivity and optical
properties in the Lifshitz theory of the Casimir force.

An experiment has been proposed (Castillo-Garza et al. 2007) to measure the
change of the Casimir force acting between an Au-coated sphere and a vanadium
dioxide (VO2) film deposited on a sapphire substrate, where the VO2 undergoes
a dielectric–metal transition with an increase in temperature. It has been known
that VO2 crystals and thin films undergo an abrupt transition from a semicon-
ducting monoclinic phase at room temperature to a metallic tetragonal phase
at 68◦C (Zylbersztejn and Mott 1975, Soltani et al. 2004, Suh et al. 2004). The
phase transition causes the resistivity of the sample to decrease by a factor of
104 from 10 to 10−3 Ω cm. In addition, the optical transmission for a wide region
of wavelengths, extending from 1 µm to greater than 10 µm, decreases by more
than a factor of 10, up to 100.

The increase in temperature necessary for the phase transition can be induced
by laser light (Soltani et al. 2004, Suh et al. 2004). Thus, a setup similar to the
one employed in the demonstration of optically modulated dispersion forces (see
Section 20.3) can be used. In the initial stage of the experimental work, the
procedures for film fabrication and the heating of the films were investigated
(Castillo-Garza et al. 2007). Some preliminary theoretical results were also ob-
tained (Castillo-Garza et al. 2007, Pirozhenko and Lambrecht 2008a) based on
the Lifshitz theory and the optical data for VO2 films (Verleur et al. 1968).
Calculations of the difference Casimir force between an Au sphere and a VO2

film on a sapphire substrate after and before the phase transition showed that
the proposed experiment has much promise for the understanding of the role of
conductivity in the Lifshitz theory of dispersion forces.

Interesting results can also be obtained when the change in the Casimir free
energy associated with the phase transition of a metal to the superconducting
state is investigated. The variation of the Casimir free energy during this transi-
tion is very small (Mostepanenko and Trunov 1997). Nevertheless, the magnitude
of this variation can be comparable to the condensation energy of a semiconduct-
ing film and causes a measurable increase in the value of the critical magnetic
field (Bimonte et al. 2005a, 2005b). Another proposed experiment is to measure
the change of the Casimir force in a superconducting cavity due to a small change
in temperature (Bimonte 2008).

20.4.2 Casimir force between a sphere and a patterned plate

Difference force measurements are very sensitive to relatively small variations
of the Casimir force (see Section 20.3). Recently, an experimental scheme has
been proposed (Castillo-Garza et al. 2007) which promises a record sensitivity
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Fig. 20.22. (a) Schematic diagram of an experimental setup for the measure-
ment of the difference Casimir force between an Au-coated sphere and a
patterned Si plate (Klimchitskaya et al. 2009a). (b) Casimir pressure versus
separation in a three-layer system α-Al2O3–ethanol–Si with no light on the
Si plate (line 1) and with the Si plate illuminated (line 2). [See Klimchitskaya
et al. (2007b).]

to a force difference, at the level of 1 fN. Here, a patterned Si plate with two
sections of different doping concentrations [see Fig. 20.22(a)] is mounted on a
piezoelectric actuator below an Au-coated sphere attached to the cantilever of
an AFM. The actuator oscillates in the horizontal direction, causing flexing of
the cantilever in response to the Casimir force above different regions of the
plate. Thus, the sphere is subject to the difference Casimir force, which can
be measured using the static and dynamic techniques. The patterned plate is
composed of single-crystal Si specifically fabricated to have adjacent sections with
two different charge carrier densities. A special procedure has been developed for
the preparation of a Si sample with two sections having different conductivities
(Castillo-Garza et al. 2007), where both p- and n-type dopants can be used (B
and P, respectively). Sharp transition boundaries between the two sections of the
Si plate, with a width less than 200nm, can be achieved. Identically prepared but
unpatterned samples can be used to measure the properties which are needed for
the theoretical computations (with Hall probes for measuring the charge carrier
concentration, and a four-probe technique for measuring the conductivity). The
measurement of the difference Casimir force is planned as follows. The Si plate
is positioned such that the boundary is below the vertical diameter of the sphere
[see Fig. 20.22(a)]. The distance between the sphere and the Si plate, a, is kept
fixed and the Si plate oscillates in the horizontal direction using the piezoelectric
actuator such that the sphere crosses the boundary in the perpendicular direction
during each oscillation [a similar approach has been exploited (Decca et al. 2005a)
for constraining new forces using the oscillations of an Au-coated sphere above
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two dissimilar metals, Au and Ge, see Section 24.4.2]. The Casimir force on the
sphere changes as the sphere crosses the boundary. This change corresponds to
the differential force Fdiff , equal to the difference between the Casimir forces due
to the different charge carrier densities nb and na. This causes a difference in
the deflection of the cantilever. In order to reduce random noise by averaging,
the periodic horizontal movement of the plate will be at an angular frequency
Ω ∼ 0.1 Hz. The amplitude of the oscillations of the plate is limited by the
characteristics of the actuator, but can be of order 100 µm, much larger than the
typical width of the transition region, equal to 200 nm.

The proposed experiment holds promise for an investigation of the possi-
ble variation of the Casimir force associated with the dielectric–metal transition
that occurs in semiconductors with an increase in doping concentration (Klim-
chitskaya and Geyer 2008). It has the potential to distinguish between the two
models of the dielectric permittivity of a semiconductor with a concentration of
charge carriers above the critical value [see eqn (20.7), with nonzero and zero
relaxation frequencies].

20.4.3 Pulsating Casimir force

At present, a clear consensus has been reached that the applications of the
Casimir force in the design, fabrication, and actuation of micromechanical and
nanomechanical devices are ripe for exploitation. When the characteristic dimen-
sions of a device shrink below a micrometer, the Casimir force becomes larger
than the typical electric forces. Considerable opportunities for micromechani-
cal design would be opened up by the use of pulsating Casimir plates, moving
back and forth entirely because of the effect of the zero-point energy, without
the action of mechanical springs. This can be achieved only through the use of
both attractive and repulsive Casimir forces. In connection with this, it should
be noted that while the existence of repulsive Casimir forces for a single cube or
sphere is still debated, the Casimir repulsion between two parallel plates is well
understood (see Section 19.5.3). Repulsion occurs when the inequalities in eqn
(19.25) are satisfied.

Recently it was shown that the illumination of one (Si) plate in the three-
layer systems Au–ethanol–Si, Si–ethanol–Si, and α-Al2O3–ethanol–Si with laser
pulses can change the Casimir attraction to a Casimir repulsion and vice versa
(Klimchitskaya et al. 2007b). The illumination can be performed in the same way
as described in Section 20.3. Calculations show that in the system Au–ethanol–
Si, the force is repulsive at separations a > 160 nm. The illumination of the Si
plate changes this repulsion to attraction. In the system Si–ethanol–Si, the force
between the Si plates is attractive; however, with one Si plate illuminated, the
attraction is replaced with repulsion at separations a > 175 nm.

In the systems mentioned above, the magnitude of the repulsive force is sev-
eral times less than the magnitude of the attractive force at the same separations.
However, it is possible to design a system where the light-induced Casimir re-
pulsion is of the same order of magnitude as the attraction. A good example is
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given by the three-layer system α-Al2O3–ethanol–Si, where the Si plate is illu-
minated with laser pulses. Computational results for the Casimir pressure versus
separation in this system are presented in Fig. 20.22(b). The Casimir attraction
(solid line 1) changes to repulsion at separations a > 70 nm when the Si plate is
illuminated (solid line 2).

Note that the observation of a pulsating Casimir force requires that the plates
be completely immersed in a liquid, far away from any air–liquid interfaces. This
prevents the occurrence of capillary forces. Surface preparation of the plates is
necessary to bring about intimate contact between the plates and the liquid. The
only liquid-based force is the drag force due to the movement of the plates in
response to the change of the force. For pressure values of around 10mPa and
typical spring constants of 0.02N/m, the corresponding drag pressure from the
plate movement would be six orders of magnitude less in value. Thus, in the
near future one can expect an experimental confirmation of Casimir repulsion
modulated by light.



21

MEASUREMENTS OF THE CASIMIR FORCE IN

CONFIGURATIONS WITH CORRUGATED BOUNDARIES

As discussed in Section 17.5, configurations with sinusoidally corrugated bound-
aries present interesting opportunities for the observation of a new physical phe-
nomenon, the lateral Casimir force. In this chapter, we consider the results of
three experiments performed to date where the Casimir force due to corrugated
boundaries has been measured. In the experiment of Roy and Mohideen (1999),
the normal Casimir force between a sinusoidally corrugated plate and a smooth
sphere was measured. Chen et al. (2002a, 2002b) first experimentally demon-
strated the phenomenon of the lateral Casimir force in a sphere–plate configura-
tion, where both bodies were covered with uniaxial sinusoidal corrugations. Chan
et al. (2008) measured the normal Casimir force between a plate with rectangular
corrugations and a smooth sphere. We also consider two theoretical approaches
used for the interpretation of the experimental results, and the possibility to
control the lateral Casimir force due to uniaxial corrugations of arbitrary shape.

21.1 Experiment with a sphere above a corrugated plate

The schematic diagram of the experimental setup of this experiment was the
same as in Fig. 19.1, but the surface of the 7.5×7.5 mm2 plate was covered with
uniaxial sinusoidal corrugations, described by

z = Af(x, y) = A sin
2πx

Λ
. (21.1)

Here, A = 59.4 ± 2.5 nm was the amplitude of the corrugation and Λ = 1.1 µm
was its period. The diameter of the sphere was 2R = 194.6 ± 0.5 µm. Both the
sphere and the plate were covered with 250nm of Al and 8 nm of Au/Pd. The
variances of the stochastic roughness of the corrugated plate and of the bottom
of the sphere were measured to be 4.7 and 5 nm, respectively (Roy and Mohideen
1999).

The setup was calibrated electrostatically using the same procedures as de-
scribed in Section 19.2.2. First, the residual potential of the grounded sphere
was found. For this purpose, the electrostatic force between the sphere and the
plate was measured for different applied voltages at five different separations
a � A, leading to V0 = 14.9 mV. Next, by applying voltages V such that the
electrostatic force was much larger than the Casimir force, the separation on
contact a0 = 132±5 nm was determined. The theoretical expression for the elec-
trostatic force used in the fit was obtained from eqn (19.1) for a sphere above a
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Fig. 21.1. The mean measured Casimir force between the sphere and the cor-
rugated plate is shown by the circles. The theoretical lines numbered from
1 to 4 were computed under various alternative assumptions concerning the
probability distribution of different sphere positions above a corrugated plate
(Klimchitskaya et al. 2001). See text for further discussion.

smooth plate using the proximity force approximation. When the force was cal-
ibrated electrostatically, the average value of the force constant in Hooke’s law
was found to be k = 0.021 ± 0.001 N/m. The systematic corrections due to the
residual potential difference and the coupling of scattered light from the plate
into the photodiodes were subtracted from the measured total force. The exper-
iment was repeated 15 times, and the mean measured Casimir force is presented
by solid circles in Fig. 21.1. The errors in the force measurement 2 ∆F = 10 pN
are shown in the figure as error bars.

In cases where the surface of a plate is corrugated, the comparison between
experiment and theory is not trivial. The reason is the uncertainty in the position
of the sphere with respect to the corrugation; for example, the bottommost point
of the sphere can be above a maximum or a minimum of the corrugation or in
between. As a result, not only a vertical Casimir force but also a lateral force
arises (see Sections 17.1.3 and 17.5.2). The lateral force may cause displacements
of the sphere in the x-direction, so that the positions of the sphere above the
points 0 < x < Λ within a corrugation period are not equally probable. Both the
vertical and the lateral Casimir force acting on a sphere because of a corrugated
plate were found by Klimchitskaya et al. (2001). It was shown that the lateral
Casimir force has a zero value at the extremum points of the corrugation (21.1)
and reaches a maximum at x = 0 and Λ/2, where the corrugation function is
zero. If the center of the sphere is at a position x < Λ/4 (i.e. to the left of the
corrugation maximum), the sphere experiences a positive lateral force Fx > 0.
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If it is to the right of x = Λ/4, we have Fx < 0. In both cases the sphere tends
to change its position in the direction of the corrugation maximum, which is a
position of stable equilibrium (similarly to the case of an atom above a rough
plate discussed in Section 17.5.4).

Using the proximity force approximation, the vertical Casimir force to be
compared with the experimental data is given by

F theor(a) = 2πR

∫ Λ

0

dx ρ(x)Ep[d(a, x)]. (21.2)

Here, d(a, x) is the separation between the bottom of the sphere and the point x
on the plate surface, including both the corrugations and the roughness; ρ(x) is
the probability distribution of the positions of the sphere above different points
x within a corrugation period, and Ep is the Casimir energy per unit area of two
parallel plates, calculated perturbatively in the framework of the plasma model
using eqn (13.8). Computational results obtained using eqn (21.2) under different
assumptions concerning the probability distribution ρ(x) are presented in Fig.
21.1. The solid line 1 was computed with a uniform probability distribution, i.e.
assuming that the positions of the sphere above all points on the plate are equally
probable. This assumption was used in eqns (17.90) and (17.91), representing
the application of the proximity force approximation to the problem of surface
roughness. In the case of stochastic roughness, the average lateral force is equal
to zero and the hypothesis of a uniform distribution is justified. The short-dashed
line 2 was computed under the assumption that the sphere is located with equal
probability above any point of the convex section of the corrugations. The long-
dashed line 3 was computed with a distribution function which increases linearly
when the sphere approaches a point of stable equilibrium, and the dashed-dotted
line 4 is for a sphere situated above a point of stable equilibrium. As can be seen
in Fig. 21.1, line 3 is consistent with the experimental data within the limits of
the uncertainties ∆F = 5 pN and ∆a = 5 nm. A complete comparison between
experiment and theory would require simultaneous measurements of both the
vertical and the lateral Casimir force.

21.2 Measurement of the lateral Casimir force

The first measurement of the lateral Casimir force between corrugated surfaces
was performed by Chen et al. (2002a, 2002b) in the configuration of a sphere
and a plate, both covered with uniaxial sinusoidal corrugations of equal peri-
ods. A schematic of the experiment is shown in Fig. 21.2. Measurements were
performed at a pressure below 50mTorr at room temperature. The axes of the
corrugations were held strictly parallel. A misalignment by 3◦ can lead to zero
lateral force owing to the crossing of the corrugation axes. A plastic diffraction
grating with uniaxial sinusoidal corrugations of period Λ = 1.2 µm and an am-
plitude A = 90 nm was used as the substrate for the corrugated plate. In order
to obtain perfect orientation and a phase φ between the two corrugated surfaces,
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Fig. 21.2. Schematic diagram of the measurement of the lateral Casimir force
between corrugated surfaces (Chen et al. 2002b).

a special in situ procedure was developed, where the corrugations of the plate
were imprinted onto the gold-coated sphere by pressure.

A polystyrene sphere was attached to the tip of a 300 µm long cantilever
with conductive silver epoxy. After this, a piece of freshly cleaved mica less than
10 µm thick, 100–200 µm wide, and 0.5mm long was attached to the bottom of
the sphere with silver epoxy. A second polystyrene sphere was then attached
to the end of the mica plate. This second sphere was the one to be imprinted
with corrugations and to interact with the corrugated plate. The cantilever (with
mica plate and spheres), the corrugated plate, and a smooth flat plate (polished
sapphire, see Fig. 21.2) were all coated with about 400 nm of gold in a thermal
evaporator. A small region close to one edge of the corrugated plate was also
coated with 100nm of aluminum. As Al exhibits more hardness than gold, this
region was used to imprint the corrugations from the plate onto the gold-coated
sphere. The sphere and the plate were mounted as shown in Fig. 21.2. The
addition of the first sphere and the mica plate was needed to isolate the laser
reflection spot on the cantilever tip from the interaction region between the two
corrugated surfaces.

To imprint the corrugations on the sphere, it was moved over to the region of
the corrugated plate coated with Al. The other side of the sphere was mechani-
cally supported and the corrugations were imprinted on the gold coating of the
sphere by pressure using the piezoelectric tubes shown in Fig. 21.2. An AFM
scan of the imprinted corrugations on the sphere, taken after the completion of
the experiment, is shown in Fig. 21.3. The procedure used leads to uniaxial cor-
rugations of equal period and to parallel allignment of the corrugations on the
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Fig. 21.3. AFM image of the imprinted corrugations on the sphere.

two bodies. If there is a nonzero angle θ between the axes of the corrugations,
the phase shift along the x-axis becomes a periodic function of y with a period
Λy = Λ cotθ. Within one period, φ(y) depends linearly on y, taking values from
0 to 2π. The resulting lateral force must be averaged over the period Λy. In the
case of infinite bodies, this leads to a zero force at any θ �= 0. For real bodies
of finite size with characteristic dimensions L and R, the lateral Casimir force
is measurable only for small deviations of the corrugation axes from parallelity
such that

Λ cotθ � min(R, L). (21.3)

The amplitude of the imprinted corrugations was measured from the AFM scan
to be A2 = 8 ± 1 nm. The amplitude of the corrugations on the metallized
plate, also measured using the AFM, was A1 = 59± 7 nm. After imprinting, the
mechanical supports were removed and the sphere was translated over to the
gold-coated area of the plate. Special care was taken to preserve the orientation
of the corrugation axes during the translation.

The corrugated plate was mounted on two piezoelectric tubes that allowed
independent movement of the plate in the vertical and horizontal directions; the
two tubes used for this purpose will be referred to here as the “x-piezo” and “z-
piezo”, respectively. Movement in the x-direction with the x-piezo was necessary
to achieve a lateral phase shift φ between the corrugations on the sphere and
the plate. Independent movement in the z-direction was necessary for control of
the surface separation between the sphere and the plate. The vertical position of
the corrugated plate resulted in the usual bending of the cantilever in response
to the lateral Casimir force, which acted tangentially to the plate, whereas a
force acting normal to the sphere and the corrugated plate (the usual normal
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Casimir force) would lead to a torsional deflection (rotation) of the cantilever.
The torsional spring constant of this cantilever ktor was much greater than the
bending spring constant kben, making it much more sensitive to detecting the
lateral Casimir force, while simultaneously suppressing the effect of the normal
Casimir force.

The calibration of the cantilever (i.e. the determination of ktor and kben) and
the measurement of the residual potentials between the sphere and the plate
were done by electrostatic means, as described in Sections 19.2.1–19.2.3. Here,
in order to measure ktor, the sphere was kept grounded and various voltages were
applied to the corrugated plate. Using the proximity force approximation, the
electrostatic force normal to the plate takes the form (Chen et al. 2002a, 2002b)

Fel,z(a, φ) = −πRε0
(V − V0)

2

a

1√
1 − β2

, (21.4)

where V is the voltage applied to the corrugated plate, V0 is the residual potential
of the grounded sphere, and

β =
b(φ)

a
=

1

a
(A2

1 + A2
2 − 2A1A2 cosφ)1/2. (21.5)

When V was applied to the corrugated plate, the electrostatic force on the sphere
led to a torsional rotation of the cantilever. From the electrostatic force at dif-
ferent values of V , the torsional spring constant was measured to be ktor =
0.138 ± 0.005 N/m, and V0 = −0.135 V was also measured. The measurement
of kben was done after the measurement of the Casimir force but is discussed
here to preserve continuity. For this purpose, the sphere was moved away from
the vertical corrugated plate and brought closer to the smooth plate, which
was positioned horizontally at the bottom as shown in Fig. 21.2. Again, var-
ious voltages V were applied to the bottom plate, and the electrostatic force
led to the normal bending of the cantilever. By fitting of the measured force
to eqn (21.4) with A1 = A2 = β = 0 owing to the smooth surface, the value
kben = 0.0052 ± 0.0001 N/m was obtained. Note that ktor � kben is required.
The extension of the piezoelectric tube in the x-direction as a function of the
applied voltage was calibrated by optical interferometry (Chen and Mohideen
2001). The horizontal extension of the tube in the z-direction was calibrated
with AFM standards.

The separation on contact of the two surfaces was determined from the mea-
surement of the lateral electrostatic force. This can be found using the proximity
force approximation (Chen et al. 2002b),

Fel,x(a, φ) = 2π2Rε0(V − V0)
2 A1A2

Λa2

sin φ√
1 − β2(1 +

√
1 − β2)

. (21.6)

The measurement of the lateral electrostatic force was repeated 60 times with
two different applied voltages. The surface separation on contact of the two
corrugated surfaces was measured to be a0 = 186 ± 38 nm.
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Fig. 21.4. The mean measured lateral Casimir force as a function of the lateral
displacement is shown by solid squares. The solid line is the best-fit sine
curve to the data, leading to a lateral-force amplitude of 0.32 pN (Chen et al.
2002b).

To measure the lateral Casimir force, the residual potential difference between
the corrugated sphere and the plate was compensated by application of a voltage
V0 to the corrugated plate. The sphere was brought close to the corrugated plate
and the separation distance was kept fixed. To measure the lateral force F lat as a
function of the phase shift φ, for a given sphere–plate separation, the corrugated
plate was moved in the x-direction in average steps of 0.46 nm using the x-piezo
and the lateral Casimir force was measured at each step. The measurement was
repeated 60 times. The mean lateral Casimir force measured is shown by the
solid squares in Fig. 21.4. The sinusoidal oscillations in the lateral Casimir force
as a function of the phase difference φ expected from theoretical analysis (see
the next section) are clearly observed. The periodicity of the lateral Casimir
force oscillation is in agreement with the corrugation period of the plate. A sine
curve fit to the observed data is shown by the solid line, with an amplitude
AF = 3.2× 10−13 N. This corresponds to a separation distance between the two
corrugated surfaces in the range from 218 to 221 nm (see the theoretical analysis
in the next section).

The variance of the mean lateral-force amplitude is sĀF
= 0.22 × 10−13 N.

Using eqn (18.8), this leads to a random error determined at a 95% confidence
level,

∆randAexpt
F = sĀF

t(1+0.95)/2(59) = 0.44 × 10−13 N. (21.7)

The largest source of the systematic error was due to the resolution of the
A/D board used in the data acquisition. This systematic error was ∆systAexpt

F =
0.33× 10−13 N. Combining the two errors in accordance with the statistical rule
(18.17), one arrives at a total experimental error ∆totAexpt

F = 0.62 × 10−13 N,
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determined at a 95% confidence probability. The resulting precision of the am-
plitude measurement at the closest point is around 19% [the larger value of 24%
indicated in the original publication by Chen et al. (2002b) can be explained by
the use of a nonrigorous combination rule for random and systematic errors).

The above lateral-force measurement was repeated for other surface sepa-
rations. First, the separation between the sphere and the corrugated plate was
increased by 12 nm with the z-piezo. The mean measured amplitude of the lateral
force was 2.6 × 10−13 N. The separation distance was increased in 12 nm steps
and the lateral Casimir force was measured for two more surface separations. The
respective force amplitudes were found to be 2.1 × 10−13 N and 1.7 × 10−13 N.
These data are consistent with an inverse fourth-power dependence of the lateral-
force amplitude on a (Chen et al. 2002a, 2002b). Thus, the lateral Casimir force
demonstrates a very different dependence on separation distance than the lateral
electrostatic force (21.6), which has an inverse second-power dependence on a,
which was checked independently.

21.3 Calculation of the lateral Casimir force in the configuration of

a sphere above a plate

The starting point for the calculation of the lateral Casimir force between a
corrugated sphere and a corrugated plate is the case of two parallel corrugated
plates considered in Sections 17.5.1 and 17.5.2. In this case the surfaces of the
corrugated plates are described by eqns (17.3) and (17.124). Using the proximity
force approximation, the Casimir energy per unit area for the corrugated plates
can be represented in the form

Ecorr(a, φ) =
1

Λ

∫ Λ

0

E[z
(s)
2 − z

(s)
1 ] dx. (21.8)

Here, we integrate the Casimir energy per unit area for the configuration of two
flat plates including the effect of the nonzero skin depth. We consider the latter
effect in the framework of the plasma model. We can then use E = Ep as given
by eqn (13.8) because, at the separations in the experiment considered, the skin
depth δ0 � a. The normal separation distance between opposite points of the
corrugations on the two surfaces is

z
(s)
2 − z

(s)
1 = a + A2 sin

(
2πx

Λ
+ φ

)
− A1 sin

2πx

Λ
. (21.9)

This can be represented as

z
(s)
2 − z

(s)
1 = a + b(φ) cos

(
2πx

Λ
− α

)
, (21.10)

where the quantity b(φ) is defined in eqn (21.5) and

tan α =
A2 cosφ − A1

A2 sinφ
. (21.11)
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Substituting eqns (13.8) and (21.10) into eqn (21.8) and integrating, we obtain

Ecorr(a, φ) = − π2
�c

720a3

4∑
n=0

cn

(
δ0

a

)n

Xn(β), (21.12)

where β is defined in eqn (21.5), and the following notation has been used:

X0(β) =
2 + β2

2(1 − β2)5/2
, X1(β) =

2 + 3β2

2(1 − β2)7/2
,

X2(β) =
8 + 24β2 + 3β4

8(1 − β2)9/2
, X3(β) =

8 + 40β2 + 15β4

8(1 − β2)11/2
,

X4(β) =
16 + 120β2 + 90β4 + 5β6

16(1 − β2)13/2
. (21.13)

Now the normal Casimir force between the corrugated plate and the corrugated
sphere can be calculated approximately by use of the proximity force approxi-
mation, as

F norm
corr (a, φ) = 2πREcorr(a, φ), (21.14)

where Ecorr(a, φ) is given in eqn (21.12). Note that eqn (21.14) is valid under
the condition a � R, which is easily satisfied here. Regarding eqn (21.12), this
equation was derived under the condition 2πa � Λ (see Section 17.5.1), which
is not satisfied for the parameters used in this experiment. However, as shown
below, in this particular case the proximity force approximation works well.

By integrating the normal force (21.14) with respect to the surface separation,
the energy of a corrugated sphere above a corrugated plate is obtained. Then, by
differentiating with respect to the phase shift, we get the lateral Casimir force
acting between them,

F lat(a, φ) = −2π

Λ

∂

∂φ

∫ ∞

a

dz F norm
corr (z, φ). (21.15)

Substituting eqns (21.12)–(21.14) into eqn (21.15), after integration and differ-
entiation, we finally obtain

F lat(a, φ) =
π4R�c

120a4

A1A2 sinφ

Λ(1 − β2)5/2

[
1 +

4∑
n=1

cn,x

(
δ0

a

)n
]

, (21.16)

where the expansion coefficients are given by

c1,x =
4 + β2

3(1 − β2)
c1, c2,x =

5(4 + 3β2)

12(1 − β2)2
c2, (21.17)

c3,x =
8 + 12β2 + β4

4(1 − β2)3
c3, c4,x =

7(8 + 20β2 + 5β4)

24(1 − β2)4
c4.

It was shown (Chen et al. 2002b) that the corrections to eqn (21.16) due to
surface roughness in the experiment under consideration were less than 1% and
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thus could be neglected. Note that eqn (21.16) takes into account all orders
of perturbation theory with respect to the relative amplitudes Ai/a. However,
this equation takes only approximate account of the material properties, up
to the fourth-order term of the expansion series in the small parameter δ0/a.
This can lead to large errors at small separations. It is possible to take exact
account of the material properties in accordance with the Lifshitz formula, but
restrict oneself to the perturbative terms up to the fourth order in Ai/a. For
this purpose, one must start with the representation of the Casimir energy per
unit area (17.123) between two corrugated plates obtained in the framework of
the proximity force approximation. Substituting this into eqn (21.14) instead of
Ecorr(a, φ) and performing the integration and differentiation in eqn (21.15), we
get

F lat(a, φ) = 2π2R
A1A2

Λ
sin φ

[
∂E(a)

∂a
+

1

8

∂3E(a)

∂a3
b2(φ)

]
. (21.18)

Before comparing eqn (21.16) for the lateral Casimir force with the exper-
imental data, we shall derive an alternative theoretical expression using the
method of pairwise summation. This method, as explained in Section 17.5.1,
is applicable under the weaker condition a � Λ, which is met in the experiment.
We start with eqn (17.40) as applied to ideal-metal corrugated plates, i.e. with
ηE(a) = 1. Using the proximity force approximation, the normal force between
the corrugated sphere and the corrugated plate is given by

F norm
corr = −π3

�cR

360a3
κE(a). (21.19)

Note that the proximity force approximation is used only to relate the plate–
plate to the sphere–plate configuration, whereas the corrugations are described
only by using the pairwise summation method. Then, substituting eqn (21.19)
into eqn (21.15), we find the lateral Casimir force betwen the corrugated sphere
and corrugated plate,

F lat
IM (a, φ) =

π4
�cR

360a2Λ

∂

∂φ

[
c̃
(s)
11

A1A2

a2
+ c̃

(s)
13

A1A
3
2

a4
+ c̃

(s)
31

A3
1A2

a4
+ c̃

(s)
22

A2
1A

2
2

a4

]
. (21.20)

The phase-dependent coefficients c̃
(s)
kl are easily calculated by using eqns (17.131)

and (17.132). They are given by

c̃
(s)
11 = −3 cosφS(1)(aΛ), c̃

(s)
22 =

15

4
(2 + cos 2φ)S(2)(2aΛ),

c̃
(s)
13 = c̃

(s)
31 = −15

2
cosφS(2)(aΛ), (21.21)

where

S(1)(x) = e−x

(
1 + x +

1

6
x2 − 1

6
x3

)
+

1

6
x4Γ(0, x),
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S(2)(x) = e−x [1 + xQs(x)] − 1

480
x6Γ(0, x), (21.22)

Qs(x) = 1 +
31

80
x +

13

240
x2 − 1

480
x3 +

1

480
x4.

Substituting eqns (21.21) and (21.22) into eqn (21.20), we arrive at

F lat
IM (a, φ) =

π4
�cR

120a4Λ
A1A2 sin φ

[
S(1)(aΛ) (21.23)

+
5

2

A2
1 + A2

2

a2
S(2)(aΛ) − 5

A1A2

a2
cosφS(2)(2aΛ)

]
.

Under the condition aΛ = 2πa/Λ � 1, we have S(1) ≈ S(2) ≈ 1. In this case eqn
(21.23) coincides with eqn (21.16) with δ0 = 0 (the ideal-metal case), expanded
up to the terms of order β2. To get the lateral Casimir force between a real ma-
terial plate and sphere using the pairwise summation method, we must multiply
eqn (21.23) by a correction factor defined by

−
∫ ∞

a

E(a′) da′ =
π2

�c

1440a2
η
(sp)
E (a), (21.24)

where E(a) is the Casimir energy per unit area of two parallel plates given by
the Lifshitz formula (12.30). As a result, the lateral Casimir force between a
corrugated sphere and plate made of real materials is given by

F lat(a, φ) = F lat
IM (a, φ)η

(sp)
E (a). (21.25)

The interesting characteristic feature of eqns (21.16) and (21.25) is that the
dependence of F lat(a, φ) on φ is not exactly sinusoidal. This is because the quan-
tity β in eqn (21.16) and the last term in the square brackets in eqn (21.23) also
depend on φ which leads to some deviations from the exact sine function. The
anharmonic dependence of the lateral Casimir force on the phase shift between
the corrugations of both bodies was predicted by Chen et al. (2002b). This pre-
diction awaits experimental confirmation.

Now we compare the computational results obtained by using eqns (21.16)
and (21.25) with the experimental data. The measured amplitude of the lateral
force at the closest sphere–plate separation a1 is Aexpt

F (a1) = 0.32 pN (see Section
21.2). Using eqns (21.16) and (21.25), this corresponds to separation distances
between the sphere and the plate equal to a1 = 221 nm and ã1 = 218 nm, re-
spectively. Three other measurements of the lateral force were performed, each
time with an increase in the separation of 12 nm. This was done with the z-
piezo, so that the separation shifts of 12 nm are practically exact. This leads
to the following values of the separations at which the measurements were per-
formed: a2 = 233 nm, a3 = 245 nm, and a4 = 257 nm [based on eqn (21.16)], or
ã2 = 230 nm, ã3 = 242 nm, and ã4 = 254 nm [based on eqn (21.25)]. Compu-
tations using the proximity force approximation (21.16) result in Atheor

F (a2) =
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0.26 pN, Atheor
F (a3) = 0.21 pN, and Atheor

F (a4) = 0.18 pN. Alternatively, the pair-
wise summation method leads to Ãtheor

F (ã2) = 0.25 pN, Ãtheor
F (ã3) = 0.20 pN,

and Ãtheor
F (ã4) = 0.18 pN. Both sets of theoretically computed lateral-force am-

plitudes are in very good agreement with the experimental data: Aexpt
F = 0.26 ,

0.21, and 0.17pN, respectively. We emphasize that two parameters of the exper-
imental configuration are not small (A1/a1 ≈ 0.27 and A1/λp ≈ 0.43). Specifi-
cally, the contribution of the fourth-order terms to the lateral-force amplitude is
up to 18% of the second-order contribution. In the pairwise summation method,
the contribution of the fourth-order terms is up to 22% of the second-order terms.

Recently a scattering approach for real metals described by the plasma model
(see Section 17.4) was applied (Rodrigues et al. 2006b) to calculate the lateral
Casimir force in the experimental configuration. Rodrigues et al. (2007) sug-
gested that all of the experimental separations should be shifted by −20 nm in
order to bring the measured force amplitudes into agreement with their theoreti-
cal approach based on the assumptions A1,2/a � 1 and A1,2/λp � 1, developed
only up to order A1A2/a2. This arbitrary shift of data is, however, without merit
(Chen et al. 2007c) because, as demonstrated above, the higher-order terms in
A1A2 make a large contribution and cannot be neglected. In fact, as physical
intuition suggests, the exact theoretical result taking proper account of both the
nontrivial geometry and the material properties should lie between the predic-
tions of the proximity force approximation and pairwise summation methods
discussed above. More exact computations for sinusoidally corrugated surfaces
within the scattering approach must be based on the general results of Chapter
10 without using the assumption that the corrugation amplitudes are small.

21.4 Control of the lateral Casimir force

Symmetric corrugations of sinusoidal shape were considered in both Section 17.5
and Section 21.3. Using the same methods, one can investigate the lateral Casimir
force between two parallel plates covered with uniaxial grooves of arbitrary shape.
This opens up opportunities to change the magnitude of the lateral Casimir force
and obtain asymmetric lateral forces with a more complicated character of their
equilibrium points. For the sake of simplicity, we consider the case of ideal-metal
plates with the boundary functions f1 and f2 in eqn (17.3) depending on only
one variable x. Let these functions be periodic with equal periods Λ1 = Λ2 = Λ,
but have some phase shift x0. In this case eqn (17.40) takes the form

ER(a, x0) = EIM(a)κE(a, x0), (21.26)

where κE is defined in eqn (17.39). The lateral Casimir force directed along the
x-axis is

F lat(a, x0) = −∂ER(a, x0)

∂x0
S = P IM(a)

2A1A2

a
S (21.27)

×
[
2

∂

∂x0
〈f1f2〉 + 5

(
A1

a

∂

∂x0
〈f2

1 f2〉 −
A2

a

∂

∂x0
〈f1f

2
2 〉
)



Control of the lateral Casimir force 637

+10

(
A2

1

a2

∂

∂x0
〈f3

1 f2〉 −
3

2

A1A2

a2

∂

∂x0
〈f2

1 f2
2 〉 +

A2
2

a2

∂

∂x0
〈f1f

3
2 〉
)]

.

This equation is applicable under the condition 2πa � Λ.
Blagov et al. (2004) applied eqn (21.27) to the case of periodic sawtoothed

corrugations with equal amplitudes [see Fig. 21.5(a)]. Within one period (from
0 to Λ for f1 and from x0 to x0 + Λ for f2), the analytic representations of f1

and f2 are

f1(x) =
2x

Λ
− 1, f2(x) = 1 − 2

Λ
(x − x0). (21.28)

Calculating all of the mean values entering eqn (21.27), we arrive at

F lat(a, x0) = 8 |PIM(a)| A2

aΛ

(
2x0

Λ
− 1

)[
1 + 10

A2

a2

(
1 − 2

x0

Λ
+ 2

x2
0

Λ2

)]
S.

(21.29)
As an illustration, Fig. 21.5(b) shows the dependence of F lat/(|P IM|S) on x0/Λ
computed using eqn (21.29) with the values of parameters A/a = 0.3 and a/Λ =
0.03. Similarly to the case of sinusoidal corrugations, the lateral force in Fig.
19.26(b) is symmetric, and the points of unstable equilibrium x0/Λ = 0.5, 1.5, . . .
are midway between the points of stable equilibrium x0/Λ = 0, 1, 2, . . . . The
lateral force is negative over one half of the period and positive over the other
half. The magnitudes of the maximum and minimum values of the force are
equal. At the same time, the case of a sawtoothed structure is different from
that of sinusoidal corrugations because here the extreme values of the lateral
force are obtained near the points of stable equilibrium, where the force is dis-
continuous. The points of stable equilibrium in this configuration are particularly
stable. Even a small deviation from the stable equilibrium (where the value of
the lateral force is taken as equal to zero, i.e. half the sum of the limiting values
from the left and from the right) leads to a large lateral force, restoring the
stable equilubrium. Blagov et al. (2004) also gave an example of a more asym-
metric uniaxial corrugation that allowed one to obtain different magnitudes of
the maximum and minimum values of the lateral Casimir force.

�
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Fig. 21.5. (a) Periodic uniaxial sawtoothed corrugations. (b) Lateral Casimir
force as a function of the phase shift (Blagov et al. 2004).
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Periodic uniaxial corrugations of arbitrary shape on two parallel plates were
considered by Emig (2007), and the lateral Casimir force was found for ideal-
metal plates up to the second-order terms in the corrugation amplitudes. This
force was shown to generate a ratchet effect, allowing periodic lateral motion of
the plates. Ashourvan et al. (2007a, 2007b) suggested that the lateral Casimir
force could be used in the configuration of a sinusoidally corrugated plate (rack)
and a sinusoidally corrugated cylinder (pinion). The nonlinear dynamics of a
pinion was studied for the case of a vibrating rack. Configurations with corru-
gated boundaries are attracting attention in connection with the possibility to
experimentally investigate Casimir torques (see Section 12.8.2). One proposal
is to observe the Casimir torque in a configuration of two corrugated Au plates
with a small angle θ between the corrugation directions (Rodrigues et al. 2006a).
From eqn (21.3), the lateral Casimir force and related torque are observable for
an angle between the corrugation axes θ � Λ/L, where L is the size of the
plate along the corrugation axis. The optimum values of the corrugation pe-
riod Λ and the plate separation were found in order to get larger values of the
Casimir torque (Rodrigues et al. 2006a). Another experimental scheme, aimed
at observing the Casimir torque using anisotropic test bodies, was proposed by
Munday et al. (2005). The schematic of the setup includes an anisotropic disk
placed above a barium titanate plate immersed in ethanol. The dielectric per-
mittivities of the three materials are chosen in such a way that the Casimir force
between the anisotropic bodies is repulsive (see Section 19.5.3). The disk would
float parallel to the plate at a distance where its weight is counterbalanced by the
Casimir repulsion, and would be free to rotate in response to the small torque.
Detailed numerical calculations were performed demonstrating the feasibility of
this experiment (Munday et al. 2005). Both of these experiments, if successfully
performed, will provide important new information about the dispersion forces
between real materials.

21.5 Experiment with a sphere above rectangular trenches

The two experiments considered in this chapter so far used sinusoidally corru-
gated boundaries. Chan et al. (2008) reported a measurement of the Casimir
force between a gold-coated sphere of radius R and a silicon surface that had
been structured with nanoscale rectangular corrugations (trenches). Measure-
ments were performed in the dynamic regime using a micromechanical torsional
oscillator (see Section 19.3). This means that the directly measured quantity was
the change of the resonant frequency of the oscillator, which is proportional to
the derivative of the Casimir force with respect to the separation distance. Using
the proximity force approximation given by eqn (19.15), this derivative is equal
to

F ′(a) = −2πRP (a), (21.30)

where P (a) is the Casimir pressure between one rectangularly corrugated plate
and one plane plate (see Fig. 21.6).
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�

�

�

Fig. 21.6. The periodic uniaxial rectangular corrugations on one of the plates.

For the ideal-metal case, such a configuration was considered by Büscher and
Emig (2004) using the exact methods presented in Chapter 10. It was shown
that in the limiting case a � Λ [recall that the separation is measured between
the zero levels of the corrugations of the lower and upper plates defined in eqn
(17.92)], the Casimir pressure when the width of a rectangular trench is equal
to half the period is given by

P (a) = −π2
�c

240

1

2

{
1

[a − (H/2)]
4 +

1

[a + (H/2)]
4

}
. (21.31)

This is in fact the minimum value of the Casimir pressure between rectangular
corrugated and plane plates. Under the condition a � Λ, for an ideal metal, the
same result is obtained from the application of the proximity force approximation
or the pairwise summation method (see Section 17.2).

In the opposite limit a � Λ, the exact result is given by (Büscher and Emig
2004)

P (a) = −π2
�c

240

1

[a − (H/2)]
4 , (21.32)

which is up to a factor of 2 larger in magnitude than the prediction of the proxim-
ity force approximation and the pairwise summation method in eqn (21.31). This
is the maximum value of the Casimir pressure in the configuration of rectangular
corrugated and plane plates made of an ideal metal. Note that the interpretation
of the previous experiment on geometry dependence, considered in Section 21.1
(Roy and Mohideen 1999, Klimchitskaya et al. 2001), in the case of sinusoidal
corrugations, was complicated by the presence of the lateral Casimir force. In
the experiment by Chan et al. (2008), lateral movements between the surfaces
were avoided by keeping the corrugation axis perpendicular to the torsional axis
of the micromechanical torsional oscillator.

The trenches were fabricated in p-doped silicon (the density of charge carriers,
2 × 1018 cm−3, was determined from the dc conductivity, equal to 0.028 Ω cm).
Silicon oxide was used as the mask. Deep UV lithography followed by reactive
ion etching was used to transfer the pattern. Trenches of depth H ≈ 1 µm were
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created. Three types of samples were made on the same wafer: sample A, with
a period ΛA = 1 µm; sample B, with a period Λ = 400 nm; and one sample with
a flat surface. The sidewalls of the trenches were described as forming angles
with 90.3◦ and 91.0◦ with the top surface in samples A and B, respectively, and
the bottom corners were reported to have some degree of rounding in compar-
ison with the top corners. Perfect corners were assumed in all of the analysis.
Fractional areas of the top surfaces of the unetched regions were found to be
pA = 0.478 ± 0.002 and pB = 0.510 ± 0.001 for the samples A and B using a
scanning electron microscope. The residual hydrocarbons were removed by oxy-
gen plasma etching and the oxide mask was etched with HF. Samples of size
0.7 × 0.7 mm2 were used for the force measurement. The corrugated silicon sur-
face was passivated as in the papers by Chen et al. (2006a, 2006b) using hydrogen
fluoride. However, after this the silicon chip was baked to 120 ◦C to remove the
residual water from the bottom of the trenches, which might have also desorbed
the passivation layer.

The torsional oscillator used in the measurements consisted of a 3.5 µm thick,
500 µm square silicon plate. Unlike in previous experiments with torsional os-
cillators, the spheres were attached to the plate. Two glass spheres of radius
R = 50 µm, sputter-coated with gold of about 400nm thickness, were attached
on top of each other to the torsional oscillator at a distance of b = 210 µm using
conductive epoxy. The two spheres were used to provide a large distance between
the corrugated surface and the top of the torsional oscillator. The resonant fre-
quency (ω0 = 2π×1783 Hz, quality factor Q = 32 000) was excited by applying a
voltage to one of the bottom electrodes. The oscillations were detected with ad-
ditional voltages with an amplitude of 100mV and a frequency of 2π × 102 kHz,
which were applied to measure the capacitance change between the top plate
and the bottom electrodes. A phase-locked loop was used to detect the change
in the resonant frequency as a function of the distance between the sphere and
the corrugated plate, which was varied using a closed-loop piezoelectric actuator.

The measurements were done in a vacuum of 10−6 Torr using a dry roughing
pump and a turbopump. The residual potential difference V0 and the initial
separation between the surfaces a0 were determined, and a calibration was done
using electrostatic forces. No value of a0 or errors in its determination were
provided. A residual potential difference V0 ∼ −0.43 V was found between the
sphere and the flat Si plate and was noted to vary by 3 mV over the range of
separations from 100nm to 2 µm. Whether the same variation was found for the
corrugated Si surfaces was not mentioned. Voltages between V0 + 245 mV and
V0 + 300 mV were applied, and the calibration constant was found to be 628 ±
5 mN−1 s−1. Since no analytic expression for the electrostatic force is available
for a trench geometry, a 2D numerical solution of the Poisson equation was used
to calculate the electrostatic energy between a flat plate and the trench surface.
This energy was then converted to a force between a sphere and the trench
surface using the PFA. The electrostatic force was found to be insensitive to
even 10% deviations in the trench depth.
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The Casimir force gradients between the flat plate and samples A and B
were measured after the application of compensating voltages to the plates. The
main uncertainty in these measurements was reported to be that coming from
thermomechanical noise, with a value of about 0.64 pNµm−1 at a = 800 nm. The
phase-locked loop prevented operation for separation distances below 650nm.
The Casimir force gradient between the flat plate and the gold sphere F ′

flat was
first measured. Good agreement was found with calculation results using the
Lifshitz theory. The tabulated data for gold and silicon (Palik 1985) were used,
along with a modification corresponding to the carrier density of the silicon
(Chen et al. 2006a). The roughness correction was taken into account using an
rms roughness of 4 nm on the sphere and 0.6 nm on the silicon surface, measured
using an AFM (Klimchitskaya et al. 1999). The larger roughness on the sphere
was possibly due to the use of sputtering for the gold coating. Next, the force
gradients F ′

A,expt and F ′
B,expt were measured on the corrugated surfaces using

the same gold sphere.
As discussed in Section 17.2, for real material bodies the proximity force

approximation and the pairwise summation method lead to different results even
if only one body is covered with corrugations. For the configurations used by
Chan et al. (2008), one can neglect the contribution of the remote bottom parts
of the trenches. Then the proximity force approximation leads to the following
force gradients for the samples A and B:

F ′
A,PFA(a) = −2πRpAPR

(
a − H

2

)
, F ′

B,PFA(a) = −2πRpBPR

(
a − H

2

)
,

(21.33)
where PR(a) is the Casimir pressure between two noncorrugated plates covered
with a stochastic roughness, calculated using the Lifshitz formula.

To compare the experimental data with theory, Chan et al. (2008) considered
the ratios

ρA =
F ′

A,expt

F ′
A,PFA

, ρB =
F ′

B,expt

F ′
B,PFA

. (21.34)

It was shown that for sample A there were deviations of ρA from unity of up
to 10% over the measurement range from a = 650 to 750 nm, exceeding the
experimental errors. For sample B, there were deviations of ρB from unity of
up to 20% over the same measurement range. This difference in the results of
the comparison of the experimental data for the samples A and B with the PFA
results is natural, as a/ΛA = 0.7 and a/ΛB = 1.75 at the typical separation
considered, a = 700 nm. Thus, for sample B the applicability condition of the
PFA, a/Λ � 1, is violated to a larger extent than for sample A.

The measurements were repeated three times for each sample, and consis-
tent results were reported to have been observed. The data were also compared
with values obtained from the path-integral approach for ideal-metal boundaries,
which was converted to the case of a sphere and a trenched plate using the PFA.
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However, the measured deviations from the PFA, as applied to the rectangu-
lar corrugations, were found to be 50% less than that expected for ideal-metal
boundaries. This discrepancy was reported as being quite natural, owing to the
interplay of the nonzero skin depth and geometrical effects.

In conclusion, the experiment by Chan et al. (2008) reported the measure-
ment of a deviation resulting from the geometry for corrugated rectangular
trenches of relatively small period. The depth of the trenches allowed good
comparison with the results obtained using the proximity force approximation,
taking into account only the fractional area of the top surface. Deviations of 10–
20% from the PFA were reported. At present, no theoretical computations exist
which would allow a comparison between experiment and theory for spherical
and corrugated surfaces made of real metals at room temperature. For T = 0,
such computations have been performed by Lambrecht and Marachevsky (2008)
within the scattering approach. The metal was described using a simple plasma
model. In future similar computations can be performed at nonzero temperature
for metals described by the generalized plasma-like model.
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MEASUREMENTS OF THE CASIMIR–POLDER FORCE

The influence of the Casimir–Polder force on the movement of atoms through a
narrow cavity has been well investigated. Comparison of the measurement data
with corresponding computational results allows one to verify the predictions
of the Lifshitz theory concerning the character of the interaction potential (see
Section 18.1.6, where one of the first of such experiments is discussed). Modern
laboratory techniques make possible the investigation of the role of the Casimir–
Polder force in experiments on Bose–Einstein condensation and quantum reflec-
tion. Thus, Antezza et al. (2004) demonstrated that the collective oscillations
of a Bose–Einstein condensate of ultracold atoms provide a sensitive probe of
Casimir–Polder forces. Later, the first measurement of the temperature depen-
dence of the Casimir–Polder force was performed in this way (Obrecht et al.
2007). The Casimir–Polder interaction plays an important role in the scattering
of atoms on various surfaces. Of special interest are situations where the wave
nature of an atom becomes dominant in comparison with its classical behavior
as a particle (this is referred to as quantum reflection). In this chapter, both
types of experiments are considered in connection with the properties of the
Casimir–Polder force.

22.1 Measurement of the thermal Casimir–Polder force

The present section contains the results of the experiment by Obrecht et al.
(2007) on the measurement of the Casimir–Polder interaction between 87Rb
atoms and a SiO2 plate, and a comparison of these results with various the-
oretical approaches in the framework of the Lifshitz theory. This experiment was
the first one in Casimir physics where the thermal effect has really been mea-
sured. The experimental data were found to be in a very good agreement with
theory if the dc conductivity of the SiO2 plate was disregarded. However, if the
dc conductivity of SiO2 was included in the calculation, the theoretical results
were shown to be inconsistent with the data (Klimchitskaya and Mostepanenko
2008b). Thus, this experiment provides additional confirmation of the rule on
how to apply the Lifshitz theory to dielectric materials discussed in Sections
12.5.2 and 20.3.5.

22.1.1 Measurement scheme and technique

The experiment by Obrecht et al. (2007) was an indirect dynamic measurement
of the Casimir–Polder force acting between approximately 2.5×105 87Rb ground
state atoms, belonging to a Bose–Einstein condensate, and a dielectric substrate



644 Measurements of the Casimir–Polder force

(a fused silica plate of size 2 × 8 × 5 mm3 in the z, y, and x directions, respec-
tively, where z is perpendicular to the plate). The substrate was placed on top
of a monolithic Pyrex glass holder inside a Pyrex glass cell, which composed
the vacuum chamber. The condensate was produced in a magnetic trap with
frequencies of ω0 = 2πν0, and ν0 = 229 Hz and 6.4Hz, in the perpendicular and
longitudinal directions, respectively. This resulted in respective Thomas–Fermi
radii Rz = 2.69 µm and Rl = 97.1 µm. The back face of the fused silica sub-
strate (opposite to that interacting with the 87Rb atoms) was painted with a
100 µm thick opaque layer of graphite and treated in a high-temperature oven
before placing in the vacuum chamber. By illuminating the graphite layer with
laser light from an 860 nm laser, it was possible to vary the temperature of the
substrate. The vacuum chamber used reached a residual gas pressure of about
3× 10−11 torr in the region of the condensate. The temperature of the substrate
was varied while the vacuum chamber walls were maintained at room tempera-
ture.

The cloud of 87Rb atoms was shifted a distance a, in the range from 7 to
15 µm, from the substrate by the imposition of a vertical bias magnetic field.
Then the condensate cloud was resonantly driven into a dipole oscillation by
an oscillatory magnetic field (Obrecht et al. 2007). An oscillation amplitude
Az = 2.50 µm in the z direction was chosen, and was kept constant in all mea-
surements. The unperturbed trap frequency ω0 was measured at a separation
a = 15 µm between the substrate and the center of mass of the condensate; this
separation was sufficiently large to avoid the influence of the Casimir–Polder
force. Then measurements of the perturbed oscillation frequencies ωz were per-
formed at separations a from 7 to 11 µm. The separation distances between the
center of mass of the condensate and the plate were measured by means of an
absorption imaging technique (Harber et al. 2005). For this purpose, 87Rb atoms
were illuminated with a light beam perpendicular to the long axis of the conden-
sate. The fractional frequency difference

γz =
|ω0 − ωz|

ω0
≈ |ω2

0 − ω2
z |

2ω2
0

(22.1)

was measured as a function of a both in and out of thermal equilibrium.
In thermal equilibrium, the temperature of the fused silica plate TP was equal

to the temperature TE of the environment: TP = TE = 310 K. Out of thermal
equilibrium, two sets of measurements were performed, for TP = 479 K and
TE = 310 K and for TP = 605 K and TE = 310 K.

Harber et al. (2005) carefully estimated the random, systematic, and total
errors in the measured values of γz in similar experiments at a 66% confidence
level. Obrecht et al. (2007) performed a corresponding analysis for each exper-
imental point separately. In the next two subsections, where the experimental
data obtained are compared with various theoretical approaches, the total abso-
lute errors in the measurement of the separation distances a and of the relative
frequency shifts γz are represented as crosses shown to true scale. The main
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sources of systematic errors discussed by Harber et al. (2005) were connected
with the possible presence of spatially inhomogeneous electric or magnetic sur-
face contamination or uniform magnetic and electric fields. Special investigations
were done to obtain upper bounds on all systematic errors.

22.1.2 Comparison with theory in thermal equilibrium

The experimental data for γz obtained by Obrecht et al. (2007) in thermal equi-
librium at separations below 10 µm are shown by crosses in Fig. 22.1 (the mea-
surement results at a = 11 µm are not statistically meaningful). To compare
this data with theory, we need to calculate the change of the center-of-mass
oscillation frequency of a Bose–Einstein condensate under the influence of the
Casimir–Polder force FA(a, T ) given in eqn (16.17) acting between the 87Rb
atoms and the fused silica wall. Using the description of a dilute gas trapped by
means of a harmonic potential, we arrive at the mechanical problem solved by
Antezza et al. (2004), with the result

ω2
0 − ω2

z = − ω0

πAzma

∫ 2π/ω0

0

dτ cos(ω0τ) (22.2)

×
∫ Rz

−Rz

dz nz(z)FA[a + z + Az cos(ω0τ), T ].

Here, ma = 1.443×10−25 kg is the mass of a rubidium atom, Az is the amplitude
of the center-of-mass oscillations in the z-direction, z is the vertical coordinate of
each individual atom in the condensate cloud measured from its center of mass,
and the distribution function of the gas density is

nz(z) =
15

16Rz

(
1 − z2

R2
z

)2

. (22.3)

The expansion of the function FA in eqn (22.2) up to terms linear in Az leads
to the result (Antezza et al. 2004)

ω2
0 − ω2

z ≈ − 1

ma

∫ Rz

−Rz

nz(z)
∂FA(a + z, T )

∂a
dz, (22.4)

where terms proportional to A2
z and higher powers of Az have been omitted

on the right-hand side. In the form (22.4), the frequency shift of the oscillator
under the influence of the Casimir–Polder force is analogous to the previously
used eqns (19.11), (19.14), and (19.22) describing dynamic measurements of the
Casimir force and Casimir pressure in sphere–plate and plate–plate configura-
tions. However, in the case of the present experiment one must not use the linear
approximation (22.4) but, instead, perform all calculations with the exact eqn
(22.2), because the oscillation amplitude Az is rather large.

Now we are in a position to discuss the computations of γz under various as-
sumptions about the conductivity of fused silica. Following Antezza et al. (2004),
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Fig. 22.1. Fractional change in the trap frequency versus separation in thermal
equilibrium with TP = TE = 310 K, computed by neglecting (solid line)
and including (dashed line) the conductivity of the dielectric substrate. The
experimental data are shown by crosses (Klimchitskaya and Mostepanenko
2008b).

the static atomic polarizability of rubidium atoms α(0) = 4.73×10−23 cm−3 was
used in the computations. As discussed in Section 16.4.2, this allows one to obtain
highly accurate results at the large separations under consideration. For fused
silica, ε(iξl) as a function of ξl can be taken to be as in Fig. 12.2(b). This cor-
responds to the neglect of the dc conductivity and to the assumption that fused
silica is a perfect insulator with a finite static permittivity ε0 = ε(0) = 3.81.

Computations were performed by using eqns (22.1)–(22.3) and (16.17). In
doing so, the averaging procedures could be performed analytically. By integrat-
ing with respect to z and τ , the quantity γz can be represented in the form
(Klimchitskaya and Mostepanenko 2008b)

γz =
1

maAzω2
0

∣∣ΦA
e (a, T )

∣∣ , (22.5)

where

ΦA
e (a, T ) = −2kBTα(0)

[
ε0 − 1

ε0 + 1

∫ ∞

0

k3
⊥dk⊥e−2k⊥aI1(2k⊥Az)g(2k⊥Rz)

+

∞∑
l=1

∫ ∞

0

k⊥dk⊥h(ξl, k⊥)e−2qlaI1(2qlAz)g(2qlRz)

]
, (22.6)

g(z) ≡ 15

z5

[
(3 + z2) sinh z − 3z cosh z

]
,

h(ξl, k⊥) ≡
(

2q2
l − ξ2

l

c2

)
r
(1)
TM(iξl, k⊥) − ξ2

l

c2
r
(1)
TE(iξl, k⊥),
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and I1(z) is a Bessel function. The computational results obtained in this way for
γz are shown in Fig. 22.1 by the solid line (Obrecht et al. 2007, Klimchitskaya and
Mostepanenko 2008b). Note that the results computed using ε(iξl) = ε0 (Obrecht
et al. 2007) and with a frequency-dependent dielectric permittivity (Antezza et
al. 2004, Klimchitskaya and Mostepanenko 2008b) are almost coincident at large
separation distances (only small deviations are observed at a < 8 µm). As is seen
in Fig. 22.1, the theoretical computations are in excellent agreement with the
data.

Although fused silica is a good insulator, at nonzero temperature it possesses
a nonzero dc conductivity. The electrical conductivity of fused silica is ionic in
nature and is determined by the concentration of impurities (alkali ions), which
are always present as trace constituents. At TP = TE = 310 K, the conductivity
varies within a wide region from 10−9 s−1 to 102 s−1 (Bansal and Doremus 1986,
Shackelford and Alexander 2001).

The inclusion of the dc conductivity in the model of the dielectric response,
as in eqn (12.129), dramatically affects the calculational results. This changes
the value of the reflection coefficient rTM(0, k⊥) and, consequently, the Casimir–
Polder force (16.19), which leads to a corresponding change in the magnitude of
γz computed using eqns (22.2) and (22.3). We emphasize that this change does
not depend on the value of the conductivity σ0 in eqn (12.129), but only on the
fact that it is nonzero. The respective computational results for γz are shown in
Fig. 22.1 by the dashed line. As is seen in this figure, the first two experimental
points are in clear disagreement with the theory taking the conductivity of fused
silica into account.

22.1.3 Comparison with theory out of thermal equilibrium

The experimental data for γz obtained by Obrecht et al. (2007) out of thermal
equilibrium are shown by crosses in Fig. 22.2(a) (TP = 479 K) and Fig. 22.2(b)
(TP = 605 K). In this case eqns (22.2)–(22.4) for the oscillator frequency shift
remain valid, with the replacement of the Casimir–Polder force F A(a, T ) with
the force FA(a, TP, TE) obtained from eqn (16.94), acting between an atom and a
plate in an out-of-thermal-equilibrium physical situation. Performing integration
with respect to z and τ , we arrive at (Klimchitskaya and Mostepanenko 2008b)

γz =
1

maAzω2
0

∣∣ΦA
e (a, TE) + ΦA

n (a, TP) − ΦA
n (a, TE)

∣∣ . (22.7)

Here, the function ΦA
e (a, T ) is defined in eqn (22.6) and the function ΦA

n (a, T )
is expressed by eqn (16.95), where the function f(ω, x) is replaced with

f̃(ω, x) = f(ω, x)I1

(
2Azωx

c

)
g

(
2Rzωx

c

)
. (22.8)

The computational results for γz in the nonequilibrium situation, obtained
by neglecting the dc conductivity of fused silica (Obrecht et al. 2007, Klimchit-
skaya and Mostepanenko 2008b) are presented in Fig. 22.2(a) (TP = 479 K) and
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Fig. 22.2. Fractional change in the trap frequency versus separation for the
out-of-thermal-equilibrium case (a) with TP = 479 K and TE = 310 K and (b)
TP = 605 K and TE = 310 K. Computations were done by neglecting (solid
line) and including (dashed line) the conductivity of the dielectric substrate.
The experimental data are shown by crosses (Klimchitskaya and Mostepa-
nenko 2008b).

Fig. 22.2(b) (TP = 605 K) by solid lines. Note that the frequency dependence of
ε(ω) does not affect the contribution to the frequency shift from the nonequilib-
rium terms in the total atom–wall force (16.94) (Antezza et al. 2005, Antezza
2006). As is seen in Fig. 22.2, the computations, performed with the neglect of
the dc conductivity of fused silica, are in excellent agreement with the data.

The situation changes significantly when the dc conductivity of the substrate
material is included. Direct computations using eqn (22.7) show that in the
nonequilibrium case the disagreement between the experimental data and the
theory widens further. The respective results are presented in Fig. 22.2 by the
dashed lines (Klimchitskaya and Mostepanenko 2008b). As is seen in Fig. 22.2(a),
the three experimental points for TP = 479 K exclude the dashed line and the
other two only touch it. The dashed line in Fig. 22.2(b) demonstrates that all
data for TP = 605 K exclude the theoretical prediction calculated with the in-
clusion of the dc conductivity of fused silica. Thus, the confidence with which
the theoretical approach based on eqn (12.129) is excluded by the data increases
with an increase of substrate temperature. A comparison of the complete set of
data, as given by the crosses in Figs. 22.1 and 22.2, with the dashed lines shows
that the inclusion of the static conductivity of fused silica in computations of
the Casimir–Polder force is inconsistent with the measurement data of the ex-
periment by Obrecht et al. (2007). This conclusion is consistent with a related
but different experiment on the measurement of the Casimir force between a
semiconductor plate and a gold sphere (see Section 20.3.5), where it was found
that the dc conductivity of the semiconductor plate with a doping concentration
below the critical value must be neglected.

We emphasize that the inclusion of the dc conductivity of SiO2 in the model
of the dielectric response does not affect the contributions to the frequency shift
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arising from the nonequilibrium terms ΦA
n (a, T ) in eqn (22.7) (Klimchitskaya

and Mostepanenko 2008b). The magnitudes of ΦA
n (a, T ) computed with different

values of σ0 from 0 to 103 s−1 coincide up to six significant figures. Thus, the
conductivity influences the computational results only through the equilibrium
term ΦA

n (a, T ).
It is pertinent to note that the modification of the transverse magnetic re-

flection coefficient considered in Section 16.4.3 (Pitaevskii 2008) was suggested
just to describe the role of the free charge carriers in the experiment performed
by Obrecht et al. (2007). However, as noticed in Section 22.1.2, the conductiv-
ity of fused silica and, consequently, charge carrier density at room temperature
varies over a wide range. Because of this, from the experiment by Obrecht et
al. (2007) it is not possible to discriminate within the limits of the experimen-
tal errors between the predictions of the standard Lifshitz theory with the dc
conductivity neglected and a theoretical approach with a modified reflection co-
efficient rTM(0, k⊥). As was discussed above, the latter approach is inconsistent
with thermodynamics (Section 16.4.3) and is excluded by the experimental data
from a more precise measurement of the difference Casimir force between an Au
sphere and Si plate illuminated with laser pulses (Section 20.3.5).

22.2 Experiments on quantum reflection

Quantum reflection is a process in which a particle moving through a classically
allowed region is reflected by a potential without reaching a classical turning
point. In this section, we consider the quantum reflection of atoms interacting
with a cavity wall. Usually, the interpretation of experimental data on quantum
reflection is done with the help of a phenomenological potential which provides
an interpolation between the van der Waals and Casimir–Polder interaction en-
ergies. Below, we discuss the exactness of the commonly used phenomenological
potential by comparing it with more exact interaction energies obtained on the
basis of the Lifshitz theory.

22.2.1 Main experimental results

The possibility of reflection of an ultracold atom under the influence of an at-
tractive atom–wall interaction was predicted long ago on quantum-mechanical
grounds [see e.g. Devonshire (1936)]. However, the experimental observation of
this phenomenon has become possible only recently, owing to success in the pro-
duction of ultracold atoms. First, it was investigated using liquid surfaces, by
the reflection of He and H atoms from liquid He (Nayak et al. 1983, Berkhout
et al. 1989) and on the basis of the sticking coefficient of H atoms on liquid
He (Doyle et al. 1991, Yu et al. 1993). Later, the specular reflection of very slow
metastable Ne atoms from Si and BK7 glass surfaces was studied (Shimizu 2001).
The observed velocity dependence was explained by quantum reflection which
was caused by the attractive Casimir–Polder interaction.

Quantum reflection becomes efficient when the motion of the particle can no
longer be treated semiclassically (Friedrich and Trost 2004). The behavior of the
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particle is of quantum character when

∂λB(z)

∂z
≥ 1, (22.9)

where λB(z) = 2π�/
√

2m[E − V (z)] is the local de Broglie wavelength for a
particle of mass m and initial kinetic energy E moving in the potential V (z).
The same condition can be formulated as the condition that the variation of the
local wave vector k = 2π/λB(z) perpendicular to the surface, within a distance
equal to the atomic de Broglie wavelength, is larger than k itself (Shimizu 2001),

Φ =
1

k2

dk

dz
> 1. (22.10)

The reflection amplitude depends critically on the energy V (z) of the atom–
wall interaction. This has attracted considerable attention to the theoretical
investigation of the dependence of the reflection amplitude on the atomic en-
ergy and the form of the interaction potential (Friedrich et al. 2002, Jurisch
and Friedrich 2004, Madroñero and Friedrich 2007, Voronin and Froelich 2005,
Voronin et al. 2005). The reflection probability tends to unity as the incident
velocity tends to zero. Thus, a high probability of quantum reflection calls for
small incident velocities, i.e. for cold atoms.

Advances in cooling techniques in the past decade have made it possible to
perform experiments with cold atoms interacting with solid surfaces. Quantum
reflection of 3He atoms in scattering from an α-quartz crystal was observed at
energies far from E → 0 (Druzhinina and DeKieviet 2003). The observation of
large reflection amplitudes for a dilute Bose–Einstein condensate of 23Na atoms
on an Si surface (Pasquini et al. 2004, 2006) allows the possibility of using quan-
tum reflection as a trapping mechanism.

Practically all papers devoted to the investigation of quantum reflection [see
e.g. Shimizu (2001), Friedrich et al. (2002), Druzhinina and DeKieviet (2003),
Oberst et al. (2005)] use a phenomenological potential for the atom–wall inter-
action at zero temperature to calculate the reflection amplitude. In fact, the
reflection amplitude depends critically on the form of this potential and on the
atomic energy (Friedrich et al. 2002, Jurisch and Friedrich 2004, Madroñero and
Friedrich 2007, Voronin and Froelich 2005, Voronin et al. 2005). The most often
used phenomenological potential (interaction energy) has the form

EA(a) = − C4

a3(a + l)
, (22.11)

where l is a characteristic parameter with the dimensions of length that depends
on the material. It is assumed that at short separations a � l (typically at
separations of the order of a few nanometers), EA(a) coincides with the van
der Waals potential (16.24), so that C4 = lC3. Coincidence between EA(a) and
the retarded Casimir–Polder potential (16.28) is achieved at separations of about
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10 µm, where l is negligibly small in comparison with a. At such large separations,
the correction factor to the Casimir–Polder energy due to the nonzero skin depth
and the dynamic atomic polarizability is almost equal to unity. Comparison
of computational results with measurement data for the reflection amplitudes
allows one to estimate the parameters of the potential (22.11) (Druzhinina and
DeKieviet 2003, Oberst et al. 2005). The increased precision of the measurements
opens up new opportunities for a comparison with the more exact results for
the energy of the atom–wall interaction given by the Lifshitz theory. Such a
comparison could yield important new information on the role of the atomic and
material properties in dispersion forces (Klimchitskaya et al. 2009a).

22.2.2 Accuracy of phenomenological potential

Here we compare the phenomenological potential (22.11) with more exact cal-
culations of the atom–wall interaction energy on the basis of the Lifshitz theory
(Bezerra et al. 2008). This allows us to determine the accuracy of this potential
and its application region.

As an example, we consider an Au wall and an atom of metastable He∗.
Using the value of α(0) presented in Section 16.3.2, we obtain from eqn (16.28)
the magnitude of the Casimir–Polder coefficient CAu

4 ≈ 1.1 eVnm4 ≈ 1.8 ×
10−55 Jm4. The value of the van der Waals coefficient C3 for Au can be computed
from eqn (16.24). This has been done using the tabulated optical data for the
complex index of refraction of Au (Palik 1985) in order to find the values of
ε along the imaginary axis (Fig. 13.2), and the highly accurate data for the
dynamic polarizability of He∗ atom presented in Fig. 16.3 [at short separations
of a few nanometers, the plasma model (13.1) and the single-oscillator model
(16.29) are not applicable in precise computations]. The computations (Caride
et al. 2005) lead to CAu

3 ≈ 1.6 a.u. ≈ 6.4 × 10−3 eVnm4 ≈ 10.2 × 10−49 Jm4.
From this we obtain lAu = CAu

4 /CAu
3 ≈ 172 nm for an Au wall and an He∗ atom.

In Fig. 22.3(a), the phenomenological interaction energy (22.11) multiplied
by factor of a4 is plotted as a function of separation for the case of an He∗ atom
interacting with an Au wall (the dashed line). In the same figure, the solid line
shows the computational results for the quantity a4EA(a), where the accurate
interaction energy EA(a) = EA(a) is defined in Eq. (16.21) in accordance with
the Lifshitz formula. As is seen in Fig. 22.3(a), at small and large separations
the phenomenological potential (22.11) almost coincides with the accurate inter-
action energy as given by the Lifshitz formula. To give a better understanding of
the correlation of the two potentials at separations below 1 µm, i.e. in the most
important region for the experiments on quantum reflection, the two lines are
shown in Fig. 22.3(b) on an enlarged scale. It can be seen that the solid and
dashed lines coincide at a ≤ 50 nm. The relative difference between the accurate
and the phenomenological interaction energy,

δEA(a) =
EA

acc(a) − EA
ph(a)

EA
acc(a)

, (22.12)
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Fig. 22.3. Magnitude of the interaction energy between an atom of metastable
He∗ and an Au wall multiplied by the fourth power of the separation, versus
separation. Computations were performed using the Lifshitz formula at T = 0
(solid lines) and the phenomenological potential (22.11) (dashed lines). (a)
Separation varies from 20nm to 10 µm. (b) Separation varies from 20nm to
1 µm (Bezerra et al. 2008).

is a nonmonotonic function and varies from 5.7% at a = 100 nm to 7.9% at
a = 1 µm. The largest values of δEA happen at moderate separations, which
are interesting from the experimental point of view: δEA = 10.2%, 10.4%, and
10.2% at separation distances a = 300, 400, and 500nm, respectively.

Now we consider an He∗ atom near a high-resistivity Si wall (dielectric materi-
als are often used in experiments on quantum reflection). In this case eqn (16.28)
is not applicable. The value of the Casimir–Polder coefficient CSi

4 ≈ 0.75 eVnm4

was computed by Oberst et al. (2005) using the Lifshitz formula. The permittiv-
ity of dielectric Si along the imaginary frequency axis, with εSi(0) = 11.66, was
computed from the tabulated optical data and the Kramers–Kronig relations
[see Fig. 12.2(a)]. In a similar way, the value of the van der Waals coefficient
CSi

3 ≈ 5.5× 10−3 eVnm4 was obtained by Caride et al. (2005) and Oberst et al.
(2005). This leads to lSi ≈ 136 nm for an He∗ atom near an Si wall.

For example, in Fig. 22.4(a), the phenomenological interaction energy (22.11)
multiplied by a factor of a4 is plotted as a function of separation for the case of
He∗ atom interacting with an Si wall (the dashed line). The solid line presents
the computational results for the quantity a4|E(a)| obtained using the Lifshitz
formula as described above. In Fig. 22.4(b), the same lines are reproduced on an
enlarged scale at separations below 1 µm. As can be seen in Figs. 22.4(a,b), at
separations below 50 nm and at about 10 µm the limiting cases of the nonrela-
tivistic and the relativistic potential V3 and V4, respectively, are achieved. The
relative difference (22.12) between the accurate and phenomenological interac-
tion energies varies from 9.4% at a = 100 nm to 8.6% at a = 1 µm. However, at
intermediate separations δEA reaches its largest values, which are equal to 12%,
12.5%, 12.2%, and 11.6% at separations a = 200, 300, 400, and 500 nm, respec-
tively. Thus, for the Au wall the phenomenological interaction energy provides
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Fig. 22.4. Magnitude of the interaction energy between an atom of metastable
He∗ and an Si wall multiplied by the fourth power of the separation, versus
separation. Computations were performed using the Lifshitz formula at T = 0
(solid lines) and the phenomenological potential (22.11) (dashed lines). (a)
Separation varies from 20nm to 10 µm. (b) Separation varies from 20nm to
1 µm (Bezerra et al. 2008).

a more accurate model of the atom–wall interaction than for the Si wall. This is
connected with the fact that the strength of the atom–wall interaction for the Si
wall is weaker than in the case of the Au wall.

The above computations using the Lifshitz formula were performed at zero
temperature. It is instructive to compare the phenomenological potential (22.11)
with the results of more accurate computations using the Lifshitz formula at the
laboratory temperature T = 300 K. Computations were performed by substitut-
ing the above dielectric permittivity of Au and Si and the dynamic polarizability
of the He∗ atom along the imaginary frequency axis into eqn (16.18). The com-
putational results for the quantity a4|FA(a, T )| are shown by the solid lines in
Fig. 22.5(a) for the Au wall and in Fig. 22.5(b) for the Si wall. In addition the
same results as in Figs. 22.3(a) and 22.4(a) for the quantity a4|EA(a)|, where
EA(a) is the phenomenological potential (22.11) for an Au or Si wall, are repro-
duced in this figure by dashed lines. From a comparison between Figs. 22.3(a)
and 22.5(a), it can be seen that for an Au wall at separations a ≤ 2 µm from the
He∗ atom the relative differences between the accurate and phenomenological
potentials are approximately the same in the cases where the accurate potential
is computed at zero temperature and at T = 300 K. However, with an increase
in separation the accurate potential, i.e. the free energy, computed at T = 300 K
(the solid line) deviates significantly from the phenomenological potential in ac-
cordance with the classical limit in eqn (16.45). For Au [Fig. 22.5(a)], the largest
deviation shown in the figure is equal to 31%, which is reached at a = 5 µm.

For an He∗ atom near an Si wall [Fig. 22.5(b)], the thermal effects play a more
important role. A comparison between Figs. 22.4(a) and 22.5(b) demonstrates
that here the differences between the accurate potential FA(a, T ) and the phe-
nomenological potential EA(a) can be considered as temperature-independent
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Fig. 22.5. Magnitude of the free energy between an atom of metastable He∗

and (a) Au or (b) Si wall, multiplied by the fourth power of the separation,
as a function of separation (solid lines). The free energy was computed at
T = 300 K using the Lifshitz theory. For comparison, the phenomenological
potential (22.11) for (a) Au and (b) Si walls is shown by the dashed lines
(Bezerra et al. 2008).

only below 0.5 µm. Computations show that at a = 1 µm, the relative differ-
ence between them is equal to 9.6% (whereas, as indicated above, it is equal to
only 8.6% when the zero-temperature Lifshitz formula is used). At a separation
a = 5 µm the relative difference between the accurate temperature-dependent
potential and the phenomenological potential reaches 43.5%.

The larger deviations between the accurate temperature-dependent potential
and the phenomenological potential for dielectrics than for metals are explained
by the existence of temperature and separation regions where the Casimir–Polder
entropy is negative (see Sections 16.3.1 and 16.3.3). The phenomenon of nega-
tive entropy occurs only for atoms near a metallic plate. As a result, within some
range of temperature, the sign of the thermal correction to the Casimir–Polder
energy is opposite to the sign of the energy, and the respective free energy be-
comes nonmonotonic. This makes the difference between the accurate free energy,
as computed by use of the Lifshitz formula, and the phenomenological poten-
tial smaller. In contrast, for an atom near a dielectric wall, the Casimir–Polder
entropy is always positive (see Section 16.4.1). This follows from the same prop-
erty of the entropy in the configuration of two dielectric plates (Section 12.5.1).
Then the thermal correction and the Casimir–Polder energy have the same sign,
and the magnitude of the free energy is a monotonically increasing function of
the temperature. Thus, with increasing temperature (or separation), the differ-
ences between the accurate free energy and the phenomenological potential can
only increase. Thus, future experiments on quantum reflection need to use the
accurate free energy of the atom–wall interaction, obtained on the basis of the
Lifshitz theory, for the interpretation of measurement data.
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APPLICATIONS OF THE CASIMIR FORCE IN

NANOTECHNOLOGY

The immense technological promise and the possibility of novel physical phenom-
ena offered by devices of small dimensions was anticipated by Feynman (1960)
almost 50 years ago. The continual drive to increase functionality while mini-
mizing energy consumption will inevitably lead to further shrinking of device
sizes. Advances in integrated-circuit fabrication techniques based on photolitho-
graphy and electron beam lithography and plasma and chemical etching have
now allowed fabrication of mechanical and electromechanical devices with sizes
ranging from microns to nanometers (Allen 2005). Microelectromechanical sys-
tems (MEMS) is a general term used in the present-day literature to describe
nanofabricated devices. MEMS find applications in industries such as those as-
sociated with optical communication and cellular communication, and as variety
of sensors. When MEMS dimensions shrink to submicron levels, these systems
are usually called nanoelectromechanical systems (NEMS) (Ekinci and Roukes
2005).

The first papers, by Srivastava et al. (1985) and Srivastava and Widom
(1987), anticipating the dominant role of Casimir forces in nanoscale devices
appeared over 20 years ago but were largely ignored, as silicon chip fabrication
dimensions were then on the order of many micrometers. Now, with device dimen-
sions shrinking to nanometers, the important role of Casimir forces in nanoscale
devices is well recognized. In this chapter, we discuss both the theoretical and the
experimental aspects of the combined role of electrostatic and Casimir forces in
MEMS. Then we consider the first MEMS actuated by the Casimir force, and the
nonlinear micromechanical Casimir oscillator (Chan et al. 2001a, 2001b). Special
attention is paid to the interaction of atoms with multiwalled and single-walled
carbon nanotubes. At the end of the chapter, some prospective applications of
the Casimir force in nanotechnology are discussed.

23.1 Combined role of electrostatic and Casimir forces in MEMS

and NEMS

In present-day MEMS devices, the method of actuation is primarily electrostatic.
Increasingly, as larger actuating forces and torques are demanded with the ap-
plication of smaller voltages, the separations between the moving components
and the fixed electrodes are shrinking. Thus the role of the Casimir effect has
to be included for effective treatment of the device properties. Even without
this consideration, we have to take account of the fact that the moving parts
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of MEMS, on close approach to the fixed electrodes, frequently jump into con-
tact with the electrodes and adhere to them. This phenomenon, usually referred
to as pull-in and stiction, leads to loss of functionality in devices. It has now
become recognized that the Casimir force, owing to its strong distance depen-
dence, is the primary cause of pull-in and stiction in devices. The opportunity
to exploit anharmonicity and to understand and modify pull-in and stiction has
motivated many theoretical and experimental investigations of the combined role
of electrostatic and Casimir forces in MEMS, which are discussed below.

23.1.1 Modeling of the combined role of electrostatic and Casimir forces in
MEMS and NEMS

Most nanomechanical devices are based on thin cantilever beams above a sili-
con substrate, fabricated by photolithography followed by dry and wet chemical
etching (Allen 2005). Such cantilevers are usually suspended about 100nm above
the silicon substrate. The cantilevers move in response to the Casimir force and
voltages applied to the substrate (Bishop et al. 2001) or in response to incoming
radio-frequency signals (Lucyszyn et al. 2008). In the case of radio-frequency
transmitters and receivers, a high quality factor Q is necessary for narrow-band-
width operation of these devices. However, owing to the coupling to the substrate
and neighboring cantilevers through the Casimir force, the vibration energy of
the cantilever can be dissipated. This dissipation of mechanical energy leads to a
decrease in Q and crosstalk with neighboring receivers, both leading to degrada-
tion in the signal. The problem will be exacerbated in the dense arrays of high-Q
transmitters and receivers needed for future mobile communication. Thus effec-
tive incorporation of the Casimir force is necessary in the design of these devices
to optimize their performance.

Serry et al. (1995) developed a simple model of the competitive interaction
between the Casimir and elastic forces and showed that it might give rise to
nonlinear behavior in MEMS devices. This model was called the anharmonic
Casimir oscillator. The suggested model represents the MEMS device as a simple
system of parallel plates at a separation distance a. One of the plates is movable.
The elastic response of the movable plate is modeled as that of a linear spring
with spring constant k, i.e. Hooke’s-law-like behavior. A schematic of the model
is shown in Fig. 23.1(a). For such a system, the total potential energy per unit
area of the plates is given by the sum of the elastic and Casimir energies,

U(a) =
k(b − a)2

2S
− η

π2
�c

720a3
. (23.1)

Here, we have placed the stationary plate on the left in Fig. 23.1(a) at some
distance b from an unstretched spring. The phenomenological prefactor η was
introduced to account for the material properties. Serry et al. (1995) estimated
the approximate value of η for two Si plates and considered it to be independent
of separation (in reality, however, η depends on separation; see the computational
results for Si in Section 12.6.2). In further calculations, ideal-metal plates with
η = 1 were assumed.
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Fig. 23.1. An anharmonic Casimir oscillator: (a) schematic of the model and
(b) a typical potential energy (see text for further details).

In terms of the dimensionless displacement δ = (b−a)/b, the potential energy
(23.1) can be rewritten as

U(δ) = Uk

[
1

2
δ2 − 1

3

C

(1 − δ)3

]
, (23.2)

where Uk ≡ kb2/S is the unit of the elastic energy per unit area and C ≡
ηπ2

�cS/(240kb5). The behavior of U as a function of δ is shown in Fig. 23.1(b)
for sufficiently strong springs (large k), which means that C is less than some
critical value Ccr ≈ 0.0819. As can be seen in Fig. 23.1(b), the potential energy
has a metastable minimum followed by a barrier. For δ → 1, i.e. a → 0, the
potential energy goes to minus infinity because of the Casimir energy. Serry et
al. (1995) pointed out that the depth of the potential well at δ = 1 would be
finite owing to the roughness of the plates, which prevents the two surfaces from
having zero separation distance.

Based on numerical simulations, it was found that the metastable minimum
was at the bottom of an asymmetric potential well and therefore would lead to
an anharmonic oscillator and result in bistability. Serry et al. (1995) studied the
height of this energy barrier by changing the spring constant. As the spring gets
weaker (or the Casimir force is somehow increased), the energy barrier vanishes
at the critical value C = Ccr. This phenomenon could be used to open and close
a Casimir effect switch. The switch would be in the closed state when the two
parallel plates were in contact. It was proposed to accomplish this by effectively
changing the ratio of the elastic force to the Casimir force. One proposal to mod-
ify the ratio of the forces and accomplish the closed phase was to decrease the
separation a. The attainment of the open state was acknowledged to be a little
more difficult but could be accomplished by moving the fixed end of the spring
in Fig. 23.1(a). In order to reduce the height of the energy barrier but still retain
the anharmonic potential well, a pneumatic approach was discussed, where a gas
would be introduced between the two parallel plates. The mechanical compres-
sion of this gas during the period when the switch was in the closed position
would decrease the depth of the potential well and facilitate the reopening of the
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switch. Another scheme, based on the application of dc voltages with insulating
layers on the plate, was also proposed to facilitate the opening and closing of the
switch.

Following the above study, Serry et al. (1998) performed a numerical estima-
tion of the Casimir effect in the context of MEMS deflection and stiction. As the
Casimir force between parallel surfaces has approximately a fourth-order depen-
dence on the separation distance between the surfaces, it becomes comparable
to other technologically important forces such as electrostatic forces when the
separation falls below a micron. It was pointed out that the gravitational force
and the Casimir force are equal for a 2 µm thick, highly doped silicon membrane
suspended about 0.4 µm above an underlying rigid substrate. On the other hand,
the Casimir force can exceed typical applied electrostatic forces in actuators for
separation distances below 100nm.

According to Serry et al. (1998), for typical MEMS device configurations the
collapse of suspended membranes onto an underlying rigid substrate (stiction)
due to the Casimir force can be avoided for some geometries. In MEMS fabrica-
tion, the problem of stiction is encountered during the wet etching of sacrificial
layers between the membrane and the rigid substrate. Suspended membranes
are used in many devices, such as accelerometers, micromirrors, and microdis-
play actuators. The collapse of the membrane adversely affects the yield during
fabrication. It also leads to device failure, thus severely limiting the lifetime of
the device. For a model membrane strip of length L and thickness D (L � D),
fixed at both ends, Serry et al. (1998) studied the static deflection at the center
of the strip due to the Casimir force as a function of the physical and geometric
parameters that are relevant to microfabrication of the device. As the membrane
was curved between the supports owing to the combined action of the elastic
and Casimir forces, the analysis was confined to a flat region (sufficiently small)
near the center of the membrane where one could use the local-value approx-
imation. The deflection of the membrane strip element from flatness under an
external load was described by a differential equation of fourth order. The force
balance was given by the flexural forces, the membrane-stretching forces, and
the Casimir force between the suspended membrane and the rigid substrate in
the parallel-plate approximation. The role of the flexural forces was neglected in
comparison with the membrane-stretching forces.

It was shown that the stability of the membrane depends on the value of the
quantity

Kc =
�cπ2L4

240EDb7
, (23.3)

where E is the Young’s modulus of the membrane and b is the initial separa-
tion distance between the membrane and the underlying rigid substrate. Thus,
the membrane is unstable and will collapse if Kc > 0.245. This result can be
somewhat modified in the presence of additional forces such as electrostatic or
capillary forces in liquids during fabrication. For typical device parameters with
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gold-coated polymer membranes of E = 109 Pa , L = 500 µm, and D = 1 µm,
collapse will result if b decreases below 0.8 µm.

Importantly, Serry et al. (1998) drew the attention of the MEMS commu-
nity to the fact that the Casimir effect needs to be considered as a vital fac-
tor in the future design of MEMS. The results obtained served as a starting
point for future developments of applications of the Casimir effect in MEMS sys-
tems, some of which are reviewed below. In particular, it was revealed that the
Casimir effect might be the critical factor in the stiction failure of MEMS. New
schemes for switches were also suggested that would take advantage of the same
large Casimir force that leads to stiction. The theoretical modeling of pull-in
and stiction phenomena and the role of the Casimir force in them is undergo-
ing rapid development. Increasingly, the combined roles of material properties
(Gusso and Delben 2006) and of roughness and electrostatic effects (Palasantzas
2007a, 2007b) in MEMS are being considered. Stiction and pull-in instabilities in
micromembranes of various geometries under the influence of the Casimir force
were investigated by Batra et al. (2007).

23.1.2 Experimental investigation of the stability of MEMS

Buks and Roukes (2001a) studied the combined role of the electrostatic and
Casimir forces using an extremely thin nanofabricated cantilever. A gold can-
tilever fixed at both ends was fabricated on a silicon substrate using photoli-
thography, electron beam lithography, and thermal evaporation. A cantilever of
length 200 µm, width 240 nm, and thickness 250nm fabricated between two gold
electrodes was used. The thermal vibrations of the cantilever were studied in a
scanning electron microscope. The scattered electron beam obtained by focusing
the electrons on the side of the gold cantilever was collected by a photodiode and
used to study the dynamical response. The resonant frequencies were found to
be equally spaced at 176.5, 354.4, and 529.8Hz and the quality factor was found
to be 1800. Stiction (adhesion of the cantilever to the neighboring electrode)
was introduced with a drop of deionized water. However, no estimate of the van
der Waals interaction could be made experimentally. Only theoretical estimates
were made. It was proposed that the methodology might allow calculation of the
adhesion energies in the future.

In a follow-up to the above, using the same type of resonator, Buks and
Roukes (2001b) investigated the metastability of cantilever resonators under the
combined action of electrostatic and Casimir forces. The Au cantilever beam,
separated from an adjacent counterelectrode by a 1 µm vacuum gap, jumped into
contact at some critical distance and permanently adheres to the electrode. It was
pointed out that, therefore, the free state of the cantilever was a metastable state
and the state of contact had a lower energy owing to the large Casimir interaction.
The height of the energy barrier separating these two states determined the
lifetime of the oscillator in the metastable state. The mechanical properties of
the beam were studied by applying dc voltages until contact occurred. By also
applying small ac voltages, it was possible to study the nonlinear response as a
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function of the frequency and the applied dc voltage. An attempt was undertaken
to model the potential-energy surface of the system and deduce the lifetime in
the metastable state.

For this study a gold cantilever beam, fixed at both ends, 200 µm long,
0.28 µm wide, and 0.25 µm thick was used. The neighboring parallel counter-
electrode had a 20 µm long rectangular protrusion, which was separated from
the beam by a vacuum gap of 1.28 µm. All measurements were done at room
temperature inside a scanning electron microscope. The first three mechanical
resonances were excited by applying ac voltages and were noted to be 185.53,
372.4, and 563.8 kHz. This result was used to extract the elastic properties of the
system. A dc voltage of 20V was applied to the counterelectrode, and the non-
linear dynamic response for close proximity between the Au cantilever and the
counterelectrode was studied by using ac frequencies. The oscillation amplitude
was measured as a function of the frequency for a range of applied ac voltages.
A nonlinear (skewed) response was observed for ac voltages of 25 and 50mV.
At larger ac voltages between 75 to 225mV, hysteretic behavior was observed.
Here, the oscillation amplitude dropped sharply at a critical frequency on the
high-frequency side. On reversing the frequency scan, the amplitude remained
low and then jumped at a frequency past the critical frequency. The mechanical
nonlinearity parameter was extracted from this nonlinear response.

Using all of the above, the potential energy was represented as the sum of
the elastic mechanical energy of the beam, the electrostatic energy (from the dc
voltage), and the Casimir energy between the beam and the counterelectrode.
The parallel-plate approximation was used for both the electrostatic and the
Casimir energy. Then the system under consideration resembled that shown in
Fig. 23.1(a), where, in addition, a voltage V was applied between the stationary
plate on the left and the movable plate connected to the spring. In this situation,
the potential energy per unit area (23.1) is replaced with

U(a) =
k(b − a)2

2S
− η

π2
�c

720a3
− V 2

8πa
. (23.4)

Introducing the dimensionless displacement δ = (b− a)/b once more, this can be
rewritten in the form

U(δ) = Uk

[
1

2
δ2 − 1

3

C

(1 − δ)3
− C1

1 − δ

]
, (23.5)

where C1 ≡ V 2S/(8πkb3). It is easily seen that for relatively small values of
C and C1, the behavior of U as a function of δ is the same as that shown in
Fig. 23.1(b), i.e. the system under consideration has a local minimum associated
with a metastable state.

Buks and Roukes (2001b) calculated the position of the metastable minimum
of the potential (23.5) in the approximation of small electrostatic and Casimir
energies in comparison with the elastic energy. To overlap with the experimental
results, the area had to be multiplied by a factor of 2.3. Based on the predicted
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potential-energy surface, the lifetime in the metastable state was calculated based
on the Kramers model. The calculated results for the lifetime were found to be
in “gross contradiction with experimental observations”.

To conclude, Buks and Roukes (2001a, 2001b) studied the nonlinear mechan-
ics of a MEMS device under the combined action of electrostatic, elastic, and
Casimir forces. It was pointed out that the free state of the cantilever was indeed
a metastable state, as was discussed in Section 23.1.1, and that the Casimir force
would lead to a stable state of stiction, i.e. adhesion of free parts to neighbor-
ing substrates or electrodes. The nonlinearities resulting from this metastablility
were measured and shown to lead to asymmetric resonances and hysteretic be-
havior. The size of the Casimir contribution in relation to the electrostatic one
was not estimated. Based on the voltage of 20V applied and the 20 × 0.25 µm2

area of the protrusion, the role of the Casimir effect in these experiments appears
to be a factor of 1000 weaker than the electrostatic contribution.

23.2 Actuation of MEMS by the Casimir force

Chan et al. (2001a) achieved the first experimental demonstration of the actua-
tion of a MEMS device by the Casimir force. The device was fabricated by stan-
dard nanofabrication techniques such as photolithography and chemical etching
on a silicon substrate. This device consisted of a 3.5 µm thick, 500 µm2, heavily
doped polysilicon plate freely suspended on its central axis by thin torsional rods.
The ends of the torsional rods were anchored to the substrate by support posts.
Two fixed polysilicon electrodes were located beneath the plate, symmetric with
respect to the torsional axis (a similar device is shown in Fig. 19.9). An SiO2

sacrificial layer was etched to create a 2 µm gap between the plate on the top and
the electrodes on the bottom. Thus, in response to an applied torque, the plate
rotated freely around the torsional rod. The rotation of the plate was detected
through measurement of the capacitance between the plate and the bottom elec-
trodes. It was reported that the capacitances from the plate to the two bottom
electrodes were almost equal. When the plate rotated in response to a torque,
one of the capacitances increased and the other decreased. A small ac voltage
of 100 mV was used on the bottom electrodes to measure the capacitances. A
bridge circuit enabled the investigators to measure the change in capacitance to
1 part in 2× 105, which was equivalent to a rotation angle of 8× 10−8 rad, using
an integration time of 1 s, when the device was in a vacuum of less than 1 mTorr.

In order to demonstrate actuation by the Casimir force, a polystyrene sphere
of radius R = 100 µm was fixed by conductive epoxy to the end of a copper
wire. A 200nm thick gold film was evaporated on the sphere and on the top
plate of the MEMS device. An additional 10nm layer of gold was sputtered
onto the sphere to provide electrical contact to the wire. The MEMS device
was placed on a piezoelectric translation stage, with the sphere mounted closer
to one side of the top plate. Extension of the piezoelectric stage moved the
micromachined device toward the sphere. The measurements were performed at
room temperature. The spring constant of the torsional rods was calibrated by
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measuring the electric force between the sphere and the top plate as a function of
the sphere–plate distance. The top plate was grounded, while various voltages V
were applied to the sphere. A theoretical expression for the electric force acting
between the sphere and the plate was obtained using the PFA. It coincides with
the first term (i = −1) in eqns (19.1) and (19.2),

Fel(a) = −πε0
R(V − V0)

2

a
. (23.6)

Here, the value of the separation a at the closest approach of the sphere and the
plate is the separation on contact a0, and V0 is the residual potential difference.
From a fit of the measured electric forces to eqn (23.6), the values a0 = 67.0 nm
and V0 = 30 mV were found. From the electrostatic calibration, the proportion-
ality coefficient α between the force applied to the top plate and its tilt angle,
where Fel = αθ, was found to be 5.97×10−5 Nrad−1. No error bars in the above
measurements were reported.

In the demonstration of the actuation of the top plate by the Casimir force,
a compensating voltage corresponding to V0 was applied to the sphere. The
tilt of the top plate was measured as a function of the sphere–plate distance.
The authors reported a tilting of the top plate in response to the Casimir force
for separation distances less than 300nm. The tilt angle reached a maximum
of 6 µrad at the closest approach. The tilt angles were used to calculate the
experimental values of the Casimir force. A theoretical expression for the Casimir
force F (a) = 2πRE(a), where E(a) is the energy per unit area of two parallel
plates defined in eqn (12.30), was obtained using the PFA. The values of E(a)
were calculated numerically using the tabulated optical data for the complex
refractive index of gold. The surface roughness was considered as stochastic with
a variance δ and an amplitude A =

√
2δ. The roughness correction was taken

into account in a multiplicative way. In accordance with eqn (17.84), this leads
to

FR(a) = 2πRE(a)

(
1 + 6

A2

a2
+ 45

A4

a4

)
. (23.7)

Note that the coefficient 15 given instead of 45 in the corresponding equation in
the original publication, eqn (9) of Chan et al. ( 2001a), is in error. The roughness
amplitude A = 30 nm was measured using an atomic force microscope.

The theoretical Casimir force (23.7) was fitted to the data, leaving the clos-
est separation a0 as a fitting parameter. From the fit, a0 was reported to be
75.7± 1 nm. This was reported to be consistent with the 67.0nm found from the
electrostatic fit. It was stated that the difference was due to the large roughness.
The authors reported that “relatively large surface roughness complicates an ex-
act comparison between data and theory,” as “the expansion parameter A/a is
about 0.4 at the smallest separation, resulting in surface roughness corrections
of more than 50% of the net force.” However, eqn (23.7) with A/a = 0.4 leads
to a roughness correction equal to 96%, if applied up to the terms of the second
order, and to 211%, if applied up to the fourth-order term. Ideally, at such short
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separations and large roughness amplitudes one should use not eqn (23.7) but
the method of geometrical averaging to take surface roughness into account (see
Section 17.2.2).

In conclusion, Chan et al. (2001a) reported the first demonstration of the
actuation of a MEMS device due to the action of the Casimir force. A clear
difference in the response of the MEMS between that due to an electric force
and the Casimir force was reported. The distance dependence of the force was
fitted well by the Lifshitz theory. However, it was reported that the large rough-
ness prevented a definitive calculation of the agreement between experiment and
theory.

23.3 Nonlinear micromechanical Casimir oscillator

The nonlinearity of a MEMS due to the influence of the Casimir force was also
investigated by Chan et al. (2001b). This effect is different from the one described
in the previous section, where the static deflection of the plate was used to
demonstrate the influence of the Casimir force. Here, the polysilicon plate of the
MEMS was oscillated about its central axis with a frequency ω near the resonance
frequency ω0, and the shift of the resonance frequency under the influence of the
Casimir force from the sphere was monitored. A simple model of this experiment
is shown in Fig. 23.2. This was the first observation where the Casimir force
was unambiguously shown to lead to frequency shifts and hysteretic behavior
in a periodically driven MEMS. As predicted earlier by Serry et al. (1995) (see
Section 23.1), MEMS display anharmonicity and bistability owing to the Casimir
force. As shown in Section 23.1.2, nonlinearities in MEMS due to electrostatic
effects have been previously demonstrated (Buks and Roukes 2001b, Krommer
et al. 2000). Chan et al. (2001b) noted that while Buks and Roukes (2001b)
considered the role of the Casimir force in the MEMS nonlinear response, its
contribution was negligible. In the experiment reported, the movable plate of
the oscillator was subject to a linear elastic restoring force and the nonlinear
Casimir force. For separations larger than a critical value, the movable plate was
bistable, i.e. the potential energy had a local minimum (primarily due to the
elastic force) followed by a global minimum (adhesion due to the Casimir force),
separated by a barrier whose width and height were determined by the elastic
and Casimir force properties of the system [see Fig. 23.1(b)].

�

Fig. 23.2. Schematic diagram of the model of an oscillator actuated by the
Casimir force.
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The micromachined oscillator used was the same as that described in Section
23.2. The torsional oscillations were excited by supplying ac voltages to elec-
trodes below the plate. In addition, a small dc bias was necessary to linearize
the voltage dependence of the driving torque. The plate was grounded. Oscilla-
tions of the plate resulted in a time-varying capacitance between the plate and
the electrodes. The change in capacitance was assumed to be linearly propor-
tional to the amplitude of the oscillations. This change in capacitance at the
excitation frequency was detected using a lock-in amplifier. The measurements
were performed at room temperature and at pressures of less than 1 mTorr. The
spring constant of the oscillator was reported as k = 2.1 × 10−8 Nmrad−1. The
resonance frequency was found to be constant at 2753.47Hz, independent of
the amplitude of the excitation voltage, demonstrating that the oscillator had a
linear behavior in the absence of other external forces.

In this experiment the Casimir force F (a) arose owing to an Au-coated poly-
styrene sphere of diameter 200 µm, as in the experiment by Mohideen and Roy
(1998) considered in Section 19.2.1. This sphere was mounted above one side of
the top plate of the oscillator, at distance b from the torsional axis. The distance
a between the sphere and the equilibrium position of the top plate was controlled
by using a closed-loop piezoelectric stage. The oscillator equation describing the
motion of the plate is (Chan et al. 2001b)

θ̈ + 2γθ̇ + ω2
r θ =

τ

I
cos(ωt) − αθ2 − βθ3, (23.8)

where I = 7.1 × 10−17 kgm2 is the moment of inertia of the plate, γ is the
damping parameter, τ is the amplitude of the external torque, α ≡ b3F ′′(a)/(2I),
and β ≡ −b4F ′′′(a)/(6I). The quantity ωr defined by eqn (19.14) is connected
with the resonance frequency ω0 =

√
k/I, where k = 2.1× 10−8 Nmrad−1 is the

torsional spring constant. If the oscillations are small and one can neglect the
terms αθ2 and βθ3 in eqn (23.8), ωr corresponds to the resonance frequency in
the presence of the Casimir force. The same equation is valid in the absence of the
Casimir force (for example, at sufficiently large separations) when an electrostatic
force is applied between the sphere and the plate. In this case F (a) in eqn (19.14)
is replaced by Fel(a) from eqn (23.6). From the electrostatic calibration, it was
found that V0 = 75 mV, a0 = 122.4 nm, and b = 131.0 µm. Here, contact between
the sphere and the plate was avoided, as the top plate of the oscillator adhered
to the sphere when they were close. Thus, a0 corresponds to some chosen closest
approach of the sphere to the plate in the electrostatic measurements, but not
the minimum achievable separation. The errors in the parameters a0 and b were
not reported.

A compensating voltage V0 was then applied to the sphere, and the frequency
shift due to the Casimir force was measured as a function of the separation
distance between the sphere and the plate for the case of small oscillations. Using
eqn (19.14), the results obtained were recalculated as the gradient of the Casimir
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force. The data for the force gradient were fitted to the theoretical expression
obtained for ideal-metal surfaces from eqn (6.51),

∂F (a)

∂a
=

π3
�cR

120a4
. (23.9)

The value of the separation at the closest approach was determined from the fit
to be a1 = 85.9 nm (no errors were provided).

Next, to demonstrate the linear behavior of the oscillator when the Casimir
force is negligible, the amplitude, as a function of the applied frequency, was
measured for a sphere-plate separation of 3.3 µm. The amplitude profile was
shown to be the same regardless of the direction of change of frequency, i.e.
whether the frequency increased or decreased. To demonstrate the nonlinear
behavior, the piezoelectric stage was extended to bring the sphere closer to the
top plate (to a distance of 141nm), while the excitation voltage was maintained
constant at 55.5 µV. In this case a shift in the resonance to lower frequencies and
an asymmetry in the resonance peak were observed. At even smaller sphere-plate
separations of 116.5 nm, the asymmetry was shown to become stronger and led to
hysteresis, where the amplitude response at the same driving voltage depended
on the direction of change of the excitation frequency. This was shown to be
most pronounced at the shortest separation distance considered, of 98 nm. It was
reported that the response curve could be fitted for any particular a, using only
the spatial derivatives of the ideal-metal Casimir force, without any adjustable
parameters (Chan et al. 2001b). Some deviations from the fit were observed at
98 nm and were attributed to the truncation of the Taylor expansion of F to the
third order in eqn (23.8). It was pointed out that this nonlinear response could be
applied to demonstrate a spatial memory effect, which could be used for distance
sensing. As the sphere–plate distance is changed, the resonance frequency shifts
in response to the change in the derivatives of F . If the driving voltage and
the excitation frequency are fixed and the sphere–plate distance is varied, the
amplitude of the oscillator will trace an asymmetric curve which depends on
whether the sphere-plate distance is being increased or decreased, owing to the
nonlinearities. Thus the response retains a memory of the direction of the change
of the sphere–plate distance.

In conclusion, Chan et al. (2001b) have reported the first clear observation of
a nonlinear response of a MEMS due to the Casimir force. This observation bore
out the expectations (see Section 23.1) that the nonlinearities introduced by the
strong distance dependence of the Casimir force would lead to a metastable state
and therefore might be responsible for the adhesion or stiction of the mobile parts
of MEMS. These nonlinearites were shown to limit the operational capabilities
of MEMS. It was also convincingly shown that the Casimir force has to be taken
into account in the design and fabrication of MEMS and that the amplitude and
operational frequency bandwidth of MEMS will be constrained by the effect of
the Casimir force. It has since been shown that the material property dependence
of the Casimir force can lead to even more interesting effects in MEMS, such as
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the pulsating Casimir force (Klimchitskaya et al. 2007b) considered in Section
20.4.3. It is certain that future work, taking into account the complete panoply
of material dependences of the Casimir force, can exploit these nonlinearities
further.

23.4 The Casimir–Polder interaction between atoms and carbon

nanostructures

Carbon nanostructures (buckyballs, nanotubes, and nanowires) are attracting
much attention in both fundamental science and nanotechnology owing to their
unique electrical, optical, and mechanical properties [see e.g. the book by Har-
ris (1999)]. One of the most attractive applications of carbon nanostructures is
the proposed possibility to use them for the solution of the problem of hydro-
gen storage. According to the review by Nechaev (2006), there are conceptual
possibilities to create carbon nanostructures capable of absorbing more than 10
mass percent of hydrogen. The solution of this fundamental problem requires a
detailed investigation of the microscopic mechanisms of the interaction between
hydrogen and graphite. In this section, we show how the Lifshitz formulas used
in Section 16.7 for the investigation of the interaction of atoms with a graphite
wall can be generalized to the case of atoms interacting with multiwalled carbon
nanotubes (Blagov et al. 2005, Klimchitskaya et al. 2006a). Then we apply the
normal modes and the reflection coefficients for the interaction of electromag-
netic oscillations with a plasma sheet found by Barton (2004, 2005) to obtain
Lifshitz-type formulas describing the interactions of atoms with graphene and
single-walled carbon nanotubes (Bordag et al. 2006, Blagov et al. 2007, Klim-
chitskaya et al. 2008b). Some calculation results for the interaction of hydrogen
atoms and molecules with carbon nanotubes are also presented.

23.4.1 Lifshitz-type formulas for the interaction of an atom with a multiwalled
carbon nanotube

A multiwalled carbon nanotube can be modeled as a cylindrical shell of thick-
ness d made of a uniaxial crystal. It is assumed that the crystal optic axis z is
perpendicular to the cylindrical surface of the crystalline layers. The thickness
d of the nanotube is assumed to be large enough that the nanotube contains
sufficiently many layers. It is then possible to neglect the atomic structure of
graphite and to describe it in terms of the dielectric permittivity. As is shown
below, a nanotube with only three or four layers can be described in this ap-
proximation (the separation distance between two neighboring hexagonal layers
in graphite is equal to 3.4 Å).

Now we shall obtain the Lifshitz-type formula describing the free energy of a
microparticle located at a separation a from the external surface of a cylindrical
shell of radius R and thickness d made of a uniaxial crystal. The crystalline
material of the cylindrical shell is described by the dielectric permittivities εx(ω)
and εz(ω) (see Sections 12.8.1 and 16.7.1). The derivation follows the same lines
as in Section 16.2 for an atom above a plane plate. The cylindrical shape of the
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Fig. 23.3. Schematic illustration of (a) a cylindrical shell of radius R and thick-
ness d made of a uniaxial crystal (Blagov et al. 2005) and (b) a cylindrical
graphene sheet of radius R, which are concentrically placed into a cylindrical
cavity of radius R + a in an infinite space filled with an isotropic substance
(Blagov et al. 2007).

nanotube is taken into account using the PFA. Let us consider an infinite space
filled with an isotropic substance having a dielectric permittivity ε(ω), containing
an empty cylindrical cavity of radius R + a. We introduce our cylindrical shell
inside this cavity so that the cylinder axis coincides with the axis of the cavity
[see Fig. 23.3(a)]. There is a gap of thickness a between the cylindrical shell and
the boundary surface of the cylindrical cavity. Each element of the cylindrical
shell experiences an attractive van der Waals (or Casimir) interaction from the
boundary surface of the cylindrical cavity. With the help of the PFA, the free
energy of this interaction can be represented in the form (Mazzitelli 2004)

Fc,c(a, T ) = 2πL
√

R(R + a)Fp,s(a, T ). (23.10)

Here, Fp,s(a, T ) is the free energy per unit area in the configuration of a flat
plate of thickness d and a semispace separated by a gap of width a, where the
plate is made of a uniaxial crystal and the semispace is made of a material with
a dielectric permittivity ε(ω). In eqn (23.10), L is the length of the cylindrical
shell, which is supposed to be much larger than its radius R.

As shown by Mazzitelli (2004) for the case of an ideal metal [see also similar
results by Mazzitelli et al. (2003)], the accuracy of eqn (23.10) is rather high.
For example, within the range of separations 0 < a < R/2, the results calculated
with eqn (23.10) coincide with the exact ones within 1% (for real materials, the
accuracy may be only slightly different).

An explicit expression for the free energy Fp,s(a, T ) is given by eqn (12.71),

where the reflection coefficients r
(1)
TM,TE are defined by eqn (12.137) and the

reflection coefficients r
(2)
TM,TE are defined by eqn (12.31). We now suppose that

the isotropic substance is sufficiently rarefied, with N atoms or molecules per
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unit volume. Expanding the quantity F c,c(a, T ) on the left-hand side of eqn
(23.10) in powers of N and using the additivity of the first-order term, we can
write, in analogy with eqn (16.15),

Fc,c(a, T ) = N

∫ ∞

a

FA,c(z, T )2π(R + z)L dz + O(N 2), (23.11)

where FA,c(z, T ) is the free energy of the dispersion interaction of a single atom
of an isotropic substance with a cylindrical shell made of a uniaxial crystal (note
that the separation z is measured perpendicular to the external surface of the
cylindrical shell).

By differentiating both sides of eqn (23.11) with respect to a, we obtain

−∂Fc,c(a, T )

∂a
= 2π(R + a)LNFA,c(a, T ) + O(N2). (23.12)

The same derivative can be found by differentiating both sides of eqn (23.10)

−∂Fc,c(a, T )

∂a
= 2πL

√
R(R + a)

[
−Fp,s(a, T )

2(R + a)
+ P p,s(a, T )

]
, (23.13)

where

P p,s(a, T ) = −∂Fp,s(a, T )

∂a
(23.14)

is the pressure between a flat plate made of a uniaxial crystal and a semispace
with a dielectric permittivity ε. The expression for this pressure is given in eqn
(12.71), with the reflection coefficients as specified above for the free energy
Fp,s(a, T ).

The dielectric permittivity of a rarefied isotropic substance can be expanded
in a Taylor series in accordance with eqn (16.3) with n = 2 (below, the index
2 on α and N is omitted). Then, for the reflection coefficients of an isotropic
semispace, we obtain eqn (16.13). From this, the free energy Fp,s(a, T ) is repre-

sented by eqn (16.14) with r
(1)
TM,TE = r

(u)
TM,TE, as defined in eqn (12.137). Then,

using eqn (23.14), we obtain the following expression for the pressure:

P p,s(a, T ) = −kBTN

∞∑
l=0

′
α(iξ)

∫ ∞

0

k⊥dk⊥ql (23.15)

×
[(

2 − ξ2
l

q2
l c2

)
r
(u)
TM(iξl, k⊥) − ξ2

l

q2
l c2

r
(u)
TE(iξl, k⊥)

]
e−2aql + O(N2).

Substituting eqn (23.15) into eqn (23.13), we find

−∂Fc,c(a, T )

∂a
= −2πLNkBT

√
R(R + a)

∞∑
l=0

′
α(iξ)

∫ ∞

0

k⊥dk⊥ e−2aql (23.16)
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×
[
ql −

1

4(R + a)

] [(
2 − ξ2

l

q2
l c2

)
r
(u)
TM(iξl, k⊥) − ξ2

l

q2
l c2

r
(u)
TE(iξl, k⊥)

]
+ O(N2).

Finally, we substitute eqn (23.16) into the left-hand side of eqn (23.12), take
the limit N → 0, and arrive at the desired expression for the free energy of
interaction of a microparticle and a cylindrical shell made of a uniaxial crystal
(Blagov et al. 2005),

FA,c(a, T ) = −kBT

√
R

R + a

∞∑
l=0

′
α(iξ)

∫ ∞

0

k⊥dk⊥ e−2aql (23.17)

×
[
ql −

1

4(R + a)

]{
2r

(u)
TM(iξl, k⊥) − ξ2

l

q2
l c2

[
r
(u)
TM(iξl, k⊥) + r

(u)
TE(iξl, k⊥)

]}
.

In the limiting case R → ∞, this equation coincides with the known result (16.16)
for the free energy of a microparticle near a plane surface. In Section 23.4.3, eqn
(23.17) is applied to compute the free energy of the van der Waals and Casimir
interaction of hydrogen atoms and molecules with multiwalled carbon nanotubes.

23.4.2 Lifshitz-type formulas for graphene and single-walled carbon nanotubes

The classical idealization of the dielectric permittivity used in the previous sub-
section to describe multiwalled nanotubes is not applicable for the description
of single-walled nanostructures. This narrows the applicability of the standard
Lifshitz theory and leads to application of phenomenological approaches such
as density-functional theory (Dobson et al. 2006). There is, however, a possibil-
ity to obtain Lifshitz-type formulas in the case of single-walled nanostructures.
The point is that some properties of a hexagonal monoatomic sheet of C atoms
(graphene) admit a simplified model description in terms of a two-dimensional
free-electron gas. In this description, the graphene sheet is characterized by some
typical wave number K determined by the parameters of the hexagonal structure
of graphite. Barton (2004, 2005) considered the interaction of electromagnetic os-
cillations with such a sheet and found the reflection coefficients. Bordag (2006b)
obtained a Lifshitz-type formula for the van der Waals and Casimir interaction
between two parallel plasma sheets. Using this model, the interaction between
graphene and a material plate, between graphene and an atom or a molecule,
and between a single-walled carbon nanotube and a material plate was also de-
scribed by means of Lifshitz-type formulas (Bordag et al. 2006). Finally, Blagov
et al. (2007) obtained a Lifshitz-type formula for the van der Waals and Casimir
interaction between an atom or molecule and a single-walled carbon nanotube.

We begin by noting that the reflection coefficients for a sheet of graphene
cannot be obtained from eqn (12.137) in the limit d → 0 [in fact, the coefficients
(12.137) go to zero when d vanishes]. The reason is that the case of a thin plate
implies that d/a is sufficiently small, whereas d must be large enough for the
validity of the macroscopic description in terms of ε.
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Let us describe graphene as an infinitely thin plasma sheet, where the π-
electrons are treated as a continuous, charged fluid moving in an immobile, over-
all neutralizing background of positive charge. Such plasma sheets have been
considered by Fetter (1973) and, more recently, by Barton (2004, 2005) in con-
nection with the Casimir effect for a fullerene and for a single basal plane of
graphite. The plasma sheet model describes a charged planar fluid film by a two-
dimensional displacement vector R(x, y) exp(−iωt). The fluid has a charge ne
and a mass nm per unit area of the film, where e and m are the electron charge
and mass, respectively. For the hexagonal structure of a carbon layer, there is
one π-electron per atom, resulting in two π-electrons per hexagonal cell. This
leads to n = 4/(3

√
3l2), where l = 1.421 Å is the side length of the hexagon.

The fluid provides a source for the Maxwell equations with the following surface
charge and surface current densities:

σ = −ne∇t · R, j = −iωneR, (23.18)

where the operator ∇t acts in the tangential direction to the sheet [here and
below, σ, j, and the fields E and B depend on the coordinates; their dependence
on time is obtained through multiplication by a common factor exp(−iωt)]. The
Maxwell equations are

∇ · E = 4πσδ(z), ∇ × E − iω

c
B = 0, (23.19)

∇ · B = 0, ∇ × B +
iω

c
E =

4π

c
jδ(z).

By integration of these equations across the sheet, we obtain the matching con-
ditions on the tangential and normal components of the fields (Barton 2005),

Et,2 − Et,1 = 0, Ez,2 − Ez,1 = 2K
c2

ω2
∇t · Et, (23.20)

Bz,2 − Bz,1 = 0, Bt,2 − Bt,1 = −2iK
c

ω
j × Et.

Here j = (0, 0, 1) is the unit vector pointing in the z-direction, and the wave
number of the sheet is

K = 2π
ne2

mc2
= 6.75 × 105 m−1. (23.21)

This is the main characteristic of graphene in the model under consideration.
The value in eqn (23.21) corresponds to the frequency ωK = cK = 2.02 ×
1014 rad/s. From eqn (23.19), outside the surface [i.e. with δ(z) = 0], one obtains
the usual Poisson equations (12.12) with ε(ω) = 1 for all components of the
fields. These equations together with the matching conditions (23.20) provide
a complete description of the interaction of an electromagnetic field with the
plasma sheet.
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After the separation of variables in eqn (12.12) with ε(ω) = 1 and (23.20),
we arrive at a one-dimensional scattering problem. The solution of this problem
leads to the following reflection coefficients for the graphene plasma sheet taken
along the imaginary frequency axis (Barton 2005):

r
(1)
TM(iξl, k⊥) =

c2qlK

c2qlK + ξ2
l

, r
(1)
TE(iξl, k⊥) = − K

K + ql
. (23.22)

The reflection coefficients (23.22) can be substituted into eqn (12.71) for the
Casimir free energy per unit area and the Casimir pressure. By choosing the

reflection coefficients r
(2)
TM,TE in these formulas, as defined in eqns (12.67) or

(12.52), we obtain Lifshitz-type formulas for the free energy and the pressure
in the configuration of a graphene sheet interacting with a semispace or with a
plate of thickness d, respectively, made of an isotropic material. The substitution

r
(2)
TM,TE = r

(1)
TM,TE results in the free energy and pressure between two graphene

sheets (Bordag 2006b). The substitution of r
(2)
TM,TE = r

(u)
TM,TE obtained from eqn

(12.135) or (12.137) allows us to calculate the Casimir free energy or pressure
in the configuration of a graphene sheet interacting with a graphite semispace
or a graphite sheet of finite thickness. A Lifshitz-type formula for an atom or
a molecule interacting with graphene is obtained by the substitution of eqn
(23.22) into eqn (16.16) or (16.17) for the free energy and force for the atom–
wall interaction. Some of the computational results are presented in the next
subsection.

Now we obtain the Lifshitz-type formula for the interaction of a single-walled
nanotube of radius R with a thick material plate (Bordag et al. 2006). Let the
nanotube lie along the y-axis at a separation a from the plate. For sufficiently
small a � R, the desired result can be obtained using the PFA. We start with the
Lifshitz-type formula (12.44) for the energy of the dispersion interaction at zero
temperature between graphene and a material semispace. Here, the reflection

coefficients r
(1)
TM,TE are given by eqn (23.22) and the coefficients r

(2)
TM,TE by eqn

(12.45). Using the PFA, we replace the cylindrical surface of the nanotube by a
set of long plane strips of width dx. The interaction of each strip, substituted for
a part of the cylindrical surface, and the opposite strip belonging to the plate is
calculated using eqn (12.44). The separation distance between the two opposite
strips with coordinate x is

z = z(x) = a + R −
√

R2 − x2. (23.23)

Expanding the logarithms in eqn (12.44) in a power series, the interaction energy
per unit area between the strips can be presented in the form

E[z(x)] = − �

4π2

∫ ∞

0

k⊥dk⊥

∫ ∞

0

dξ

∞∑
n=1

1

n
(23.24)
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×
[(

r
(1)
TMr

(2)
TM

)n

+
(
r
(1)
TEr

(2)
TE

)n]
e−2z(x)qn.

To find the interaction energy Ens per unit length between the semispace and
the nanotube, we integrate eqn (23.24) from x = −R to x = R (the result of
this is equal to twice the integral from zero to R). The integration variable k⊥
is replaced with q, leading to

Ens(a) = − �

2π2

∫ ∞

0

q dq

∫ cq

0

dξ

∞∑
n=1

1

n
e−2aqn (23.25)

×
[(

r
(1)
TMr

(2)
TM

)n

+
(
r
(1)
TEr

(2)
TE

)n] ∫ R

0

dx e−2qn(R−√
R2−x2).

By introducing a new variable s = 1−
√

1 − x2/R2, the integral with respect to
x in eqn (23.25) (which we denote by I) can be written in the form

I = R

∫ 1

0

(1 − s) ds√
s(2 − s)

e−2qnRs. (23.26)

The major contributions in eqns (23.25) and (23.26) come from q ∼ 1/a. Taking
into account the fact that the PFA works well for R � a, we conclude that
the magnitude of the integral I is determined by the behavior of the integrand
around the lower integration limit. Neglecting s in comparison with unity in eqn
(23.26), we arrive at

I =
R√
2

∫ 1

0

1√
s
e−2qnRs ds =

1

2

√
πR

qn
erf(

√
2qnR), (23.27)

where erf(z) is the error function. Using once more the conditions q ∼ 1/a and
R � a, we conclude that erf(

√
2qnR) ≈ 1 and obtain from eqn (23.25)

Ens(a) = −�
√

πR

4π2

∫ ∞

0

√
q dq

∫ cq

0

dξ

∞∑
n=1

1

n
√

n
e−2aqn

×
[(

r
(1)
TMr

(2)
TM

)n

+
(
r
(1)
TEr

(2)
TE

)n]
(23.28)

= − �
√

R

4π3/2

∫ ∞

0

√
q dq

∫ cq

0

dξ
[
Li3/2

(
r
(1)
TMr

(2)
TMe−2aq

)
+ Li3/2

(
r
(1)
TEr

(2)
TEe−2aq

)]
,

where Lip(z) is the polylogarithm function.
In a similar way, for the force per unit length between a nanotube and a

semispace, we get (Bordag et al. 2006)

Fns(a) = − �
√

R

2π3/2

∫ ∞

0

q3/2 dq

∫ cq

0

dξ
[
Li1/2

(
r
(1)
TMr

(2)
TMe−2aq

)
+ Li1/2

(
r
(1)
TEr

(2)
TEe−2aq

)]
.

(23.29)
It is apparent that the Lifshitz-type formulas (23.28) and (23.29) can be adapted
to describe the interaction of a single-walled nanotube with an isotropic plate of
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finite thickness or with an anisotropic semispace or plate of finite thickness by

choosing the reflection coefficients r
(2)
TM,TE accordingly. By choosing r

(2)
TM,TE =

r
(1)
TM,TE, one obtains from eqns (23.28) and (23.29) the interaction energy and

force for a nanotube and a graphene sheet.
We conclude this subsection with the Lifshitz-type formula describing the

interaction between a microparticle and a single-walled carbon nanotube. This
case can be treated in perfect analogy to the case of a multiwalled nanotube (see
Section 23.4.1). To repeat the derivation of Section 23.4.1, it is convenient to
introduce a single-walled nanotube of radius R inside a cylindrical cavity of radius
R+a in an isotropic substance with a dielectric permittivity ε at temperature T
[see Fig. 23.3(b)]. By rarefying the isotropic substance, as described in Section
23.4.1, we arrive once again at eqn (23.17) for the free energy of the interaction
between an atom and a single-walled nanotube, FA,n(a, T ), where the reflection

coefficients r
(u)
TM,TE must be replaced with r

(1)
TM,TE given by eqn (23.22).

The van der Waals and Casimir force acting between a microparticle and
a single-walled carbon nanotube is obtained as the negative derivative of eqn
(23.17) with respect to the separation distance,

FA,n(a, T ) = −kBT

√
R

R + a

∞∑
l=0

′
α(iξ)

∫ ∞

0

k⊥dk⊥ e−2aql (23.30)

×
[
q2
l − 3

8(R + a)2

]{
2r

(1)
TM(iξl, k⊥) − ξ2

l

q2
l c2

[
r
(1)
TM(iξl, k⊥) + r

(1)
TE(iξl, k⊥)

]}
.

This equation also gives the force F A,c(a, T ) between an atom and a multiwalled

nanotube if one replaces the reflection coefficients r
(1)
TM,TE with r

(u)
TM,TE.

The above Lifshitz-type formulas describing the interaction of nanotubes with
graphene and microparticles were obtained using the PFA, i.e. they are appli-
cable only at sufficiently small separations. Bordag (2007) derived Lifshitz-type
formulas describing the interaction of a cylindrical plasma sheet with a dielec-
tric semispace and with graphene using the method of functional determinants
(see Chapter 10). This allowed the first corrections beyond the PFA to be found
for these configurations. A consideration of the vacuum energy of a spherical
plasma shell, which is relevant to the description of buckyballs, was performed
by Bordag and Khusnutdinov (2008).

It should be emphasized that the description of a single-walled nanotube in
the approximation of a two-dimensional gas of free electrons used in this section
is only a simplified model. It does not claim to be a complete description of
all nanotube properties, for example the chirality of a nanotube. Specifically,
it remains unclear whether it is possible to describe nanotubes with metallic
or semiconductor surfaces by varying only one parameter K in the reflection
coefficients (23.22).
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23.4.3 Computational results for atom–nanotube interaction

We start with the calculation of the van der Waals and Casimir interaction
between a hydrogen atom or molecule and a multiwalled carbon nanotube. In
Section 16.7, the interaction of hydrogen with a graphite plate was considered.
Here, we use the dielectric permittivities of graphite along the imaginary fre-
quency axis εx(iξ) and εz(iξ) presented in Section 16.7.1 and the dynamic atomic
polarizabilities of hydrogen atoms and molecules considered in Section 16.7.2. For
convenience in numerical computations, we rewrite eqn (23.17) for the interaction
of a cylindrical shell (which models a nanotube) with an atom in the form

FA,c(a, T ) = −C c
3 (a, T )

a3
, (23.31)

where

C c
3 (a, T ) =

kBT

8

√
R

R + a

{
4R + 3a

2(R + a)
α(0) (23.32)

+

∞∑
l=1

α(iζlωc)

∫ ∞

ζl

y dy e−y

[
y − a

2(R + a)

]

×
[
2r

(u)
TM(iζl, y) − ζ2

l

y2

[
r
(u)
TM(iζl, y) + r

(u)
TE(iζl, y)

]]}
.

The dimensionless variables used here were introduced in eqn (12.89), and the re-
flection coefficients expressed in terms of these variables are given in eqn (16.106).

Computations of the van der Waals coefficient C c
3 using eqn (23.32) were per-

formed for a hydrogen atom located at a separation a = 5 nm from the external
surface of a nanotube of radius R = 20 nm at T = 300 K. The computational
results are presented in Fig. 23.4 as a function of the nanotube thickness d. Note
that d = 20 nm corresponds to the case of a solid cylinder. As can be seen in
Fig. 23.4, at d = 11 nm the magnitude of C c

3 is only 1% lower than the value
obtained for a solid cylinder of radius R = 20 nm. For thinner cylindrical shells,
smaller values of the van der Waals coefficient are obtained. The same is also
true for the hydrogen molecule. A comparison of the free energies of a hydrogen
atom outside and inside a nanotube shows that a position inside a multiwalled
nanotube is energetically preferable (Blagov et al. 2005, Klimchitskaya et al.
2006a).

Now we briefly consider the computational results for the interaction of hy-
drogen atoms and molecules with a graphene sheet (Bordag et al. 2006). In
this case the free energy is given by eqn (16.16) with the reflection coefficients
(23.22). In terms of the van der Waals coefficient, eqn (16.16) takes the form
of eqns (16.66) and (16.67). The computational results for C3 as a function of
separation are presented in Fig. 23.5. The solid and dashed lines are related
to the interaction of graphene with a hydrogen atom and a hydrogen molecule,
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Fig. 23.4. Dependence of the van der Waals coefficient C c
3 on the thickness of

a cylindrical shell with an external radius R = 20 nm for a hydrogen atom at
a separation a = 5 nm from the shell (Blagov et al. 2005).

respectively. As can be seen in Fig. 23.5, the magnitude of the van der Waals
coefficient for a hydrogen molecule interacting with graphene is larger than for
an atom at all separations.

The next configuration considered in Section 23.4.2 is that of a single-walled
nanotube near a semispace or a plate of finite thickness. In this case the inter-
action energy and force are given by eqns (23.28) and (23.29), respectively. We
present the computational results for a nanotube of radius R in close proximity

to an Au and an Si semispace. The reflection coefficients r
(1)
TM,TE are given by

eqn (23.22). The reflection coefficients r
(2)
TM,TE are defined in eqn (12.31). The
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Fig. 23.5. Dependence of the van der Waals coefficient C3 on separation for the
interaction of a hydrogen atom (solid line) and molecule (dashed line) with
graphene (Bordag et al. 2006).
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Table 23.1. Ratios Ens(a)/Ec
IM(a) and

Fns(a)/F c
IM(a) for the van der Waals inter-

action of a carbon nanotube with Au and Si
semispaces.

a Ens(a)/Ec
IM(a) Fns(a)/F c

IM(a
(nm) Au Si Au Si

1 0.0151 0.0126 0.0114 0.00945

1.5 0.0193 0.0162 0.0147 0.0123

2 0.0230 0.0193 0.0175 0.0147

2.5 0.0262 0.0221 0.0201 0.0169

3 0.0291 0.0245 0.0224 0.0189

dielectric permittivities of Si and Au along the imaginary frequency axis are
presented in Sections 12.6.1 and 13.3, respectively. A few computational results
for the normalized interaction energy Ens/Ec

IM and the force Fns/F c
IM per unit

length, where Ec
IM and F c

IM are the PFA results for the energy and force per unit
length for an ideal-metal cylinder near an ideal-metal plane defined in eqn (6.54),
are presented in Table 23.1. Column 1 shows the separation distance. Columns 2
and 3 contain the values of Ens(a)/Ec

IM(a) for Au and Si, respectively. Columns
4 and 5 contain the analogous values of Fns(a)/F c

IM(a). As is seen in Table 23.1,
the magnitudes of the normalized energies and forces for Si are smaller than
those for Au and they are monotonically increasing functions with increasing
separation. Note that the normalized magnitudes in Table 23.1 do not depend
on the nanotube radius. However, keeping in mind that the largest diameter of
a single-walled carbon nanotube is about 10 nm, the range of separations where
the approximate equations (23.28) and (23.29) are applicable is very narrow.

The last point to be considered here is the calculation of the van der Waals
coefficient Cn

3 (a, T ) for the interaction of hydrogen atoms and molecules with
single-walled carbon nanotubes. An expression for Cn

3 (a, T ) is given by eqn

(23.32), where the reflection coefficients r
(u)
TM,TE are replaced with r

(1)
TM,TE defined

in eqn (23.22). The computations were performed for a nanotube with R = 5 nm
at T = 300 K (Blagov et al. 2007). In Fig. 23.6(a), the computational results for
Cn

3 are plotted as a function of separation. The solid line 1 labels the case of an
H atom and the solid line 2 the case of an H2 molecule. For comparison, in the
same figure, the previously computed van der Waals coefficients (see Fig. 23.5)
for the interaction of an H atom (dashed line 1) and an H2 molecule (dashed line
2) with a plane graphene sheet are included. As can be seen in Fig. 23.6(a) (solid
lines 1 and 2), at all separations, the van der Waals coefficient for the molecule–
nanotube interaction is larger than that for the atom–nanotube interaction. At
the same time, the van der Waals coefficients for the interaction of an atom or a
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Fig. 23.6. The van der Waals coefficient (a) C3 and (b) CF as a function of
separation for the interaction of a hydrogen atom (lines labeled 1) and a
molecule (lines labeled 2) with a single-walled carbon nanotube of radius
R = 5 nm (solid lines) and with a plane graphene sheet (dashed lines). [See
Blagov et al. (2007).]

molecule with graphene (dashed lines 1 and 2, respectively) are larger than the
respective coefficients for the interaction with a single-walled carbon nanotube.
The increase is about 30%. Note that all results discussed in this subsection are
almost independent of temperature in the temperature region from 0 to 300K.

The force (23.30) acting between an atom or molecule and a single-walled
carbon nanotube can also be presented in the form

FA,n(a, T ) = −Cn
F (a, T )

a4
, (23.33)

where

Cn
F (a, T ) =

kBT

8

√
R

R + a

{
3(2R + 3a)(2R + a)

2(R + a)2
α(0)

+

∞∑
l=1

α(iζlωc)

∫ ∞

ζl

dy y e−y

[
y2 − 3a2

4(R + a)2

]

×
[
2r

(1)
TM(iζl, y) − ζ2

l

y2

[
r
(1)
TM(iζl, y) + r

(1)
TE(iζl, y)

]]}
. (23.34)

In Fig. 23.6(b), the coefficient Cn
F is plotted as a function of separation for

an H atom (solid line 1) and an H2 molecule (solid line 2) interacting with a
nanotube of radius R = 5 nm. Similarly to the coefficients C3, the values of CF

for a molecule are larger than for an atom at all the separations considered. The
dotted lines in Fig. 23.6(b) (labeled 1 for an atom and 2 for a molecule) represent
the calculation results obtained with the assumption that CF = 3C3, i.e. for the
case where the van der Waals coefficient C3 = const and does not depend on
separation distance. As is seen in Fig. 23.6(b), the differences between the solid
and dotted lines are about 15%–20%. Thus, the dependence of the van der Waals
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coefficient on separation for a microparticle–nanotube interaction is important
for obtaining precise computational results.

It is interesting to compare the van der Waals coefficients computed for the
interaction of a hydrogen atom or molecule with single-walled and multiwalled
carbon nanotubes. This permits us to determine how thick a multiwalled nan-
otube must be in order for the idealization of the dielectric permittivities of
graphite to be applicable.

The van der Waals coefficient Cc
3 for a multiwalled nanotube is given by eqn

(23.32). The same equation gives the coefficient Cn
3 for a single-walled nanotube

if the reflection coefficients r
(u)
TM,TE are replaced with r

(1)
TM,TE. The computational

results for the coefficients Cc
3 (for numbers of walls k = 2, 3, 4, 5) and Cn

3 (k = 1)
are presented in Fig. 23.7(a) for a hydrogen atom. The solid dots marked 1, 2,
and 3 indicate the calculation results for Cn

3 for a single-walled carbon nanotube
of 5 nm radius at separations a = 1, 2, and 3 nm, respectively, from the atom. The
solid dots connected by solid lines represent the magnitudes of Cc

3 for multiwalled
nanotubes of 5 nm external radius with k = 2, 3, 4, and 5 at the same separations
from the atom. The dashed lines provide a smooth interpolation between the
computational results for multiwalled and single-walled nanotubes. Note that
the thickness of a multiwalled nanotube is related to the number of walls by
d = 3.4(k−1) Å. As can be seen in Fig. 23.7(a), the van der Waals coefficient Cn

3

is different from Cc
3 with k = 1. This is expected because the reflection coefficients

in eqn (16.106) approach zero when the nanotube thickness d vanishes. At the
same time, as Fig. 23.7(a) suggests, the coefficients Cc

3 for a multiwalled nanotube
with k = 3 walls at 1 nm from the atom and for a multiwalled nanotube with
k = 2 walls at a separation of 2 or 3 nm from the atom are in proper proportion
to the coefficients Cn

3 computed for a single-walled carbon nanotube. This allows
us to conclude that the macroscopic concept of the dielectric permittivity of
graphite is applicable even for nanotubes containing only two or three walls,
depending on the separation distance between the nanotube and the atom.

Figure 23.7(b) contains the same information as in Fig. 23.7(a) but for a
hydrogen molecule. It can be seen that the approximation of the dielectric per-
mittivities of graphite is a good approximation for a multiwalled nanotube with
three walls at a separation of 1 nm from a molecule and for a two-walled nan-
otube at a separation of 2 or 3 nm from a molecule. The values of the van der
Waals coefficient for a molecule are, however, larger than for an atom, as was
discussed above.

The model of a continuous plasma sheet considered above is not applicable
at separations below 1nm between an atom and a nanotube, where other forces
in addition to dispersion interactions should be taken into account. Using the
method of phenomenological potentials and disregarding the role of chemical
forces, Klimchitskaya et al. (2008b) have shown that below 1nm, exchange re-
pulsion gives rise to a lateral force that moves H atoms towards the cell centers.
In the position above a cell center, the repulsive force cannot balance the van
der Waals attraction. As a result, the atom penetrates inside the nanotube. This
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Fig. 23.7. The van der Waals coefficient C3 as a function of the number of walls
for the interaction of (a) a hydrogen atom and (b) a hydrogen molecule with
multiwalled carbon nanotubes of different wall numbers and a single-walled
carbon nanotube of the same radius (solid dots 1, 2, and 3) spaced at 1, 2,
and 3 nm from the atom (or molecule), respectively (Blagov et al. 2007). See
text for further discussion.

effect is analogous to the discontinuities in the constant-force surfaces that arise
when a monoatomic tip of an atomic force microscope is scanned above a closely
packed lattice in contact mode (Blagov et al. 1996, 1998, 1999).

23.5 Prospective applications

Many experimental and theoretical results on the Casimir effect considered in
Parts II and III of this book may find applications in nanotechnology. In this
chapter some of these applications, for instance MEMS actuators based on the
Casimir force, have been discussed. In a reversal of roles, MEMS have already
been exploited for precision measurements of the Casimir force (see Section 19.3).
It should be noted that even the AFM cantilever used in the measurements of
the Casimir force by means of an AFM (see Section 19.2) is one of the most
important MEMS elements based on silicon chip nanofabrication technology.
It has been shown (Chumak et al. 2004) that both electrostatic and Casimir
forces have a strong effect on the vibrations of a cantilever, depending on the
geometry of the tip. This demonstrates that the investigations in the fields of
nanotechnology and Casimir effect are closely related.

In fact, some of the previously performed experiments on the measurement of
the Casimir force discussed above may find nanotechnological applications. Thus,
the effect of the optically modulated Casimir forces (Chen et al. 2007a, 2007b)
considered in Section 20.3 could be used in the design and function of nanoscale
actuators, micromirrors, and nanotweezers. The experimentally demonstrated
phenomenon of the lateral Casimir force (Chen et al. 2002a, 2002b) gives the
possibility to actuate not only normal but also lateral translations in nanodevices
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by means of electromagnetic zero-point oscillations (see Sections 21.2–21.4). The
experiment by Chan et al. (2008) shows that by using a nanostructured silicon
plate, it is possible to control the magnitude of the Casimir force (Section 21.5).
The experiments by Chen et al. (2006a, 2006b) demonstrate that such control
can also be achieved using different charge carrier densities in the semiconductor
elements of microdevices (Sections 20.1 and 20.2). All these phenomena await
future applications in nanotechnology.

In addition to the already demonstrated phenomena involving the Casimir
force, there are some promising theoretical suggestions for nanotechnology. These
are primarily about systems which suggest a possibility of a repulsive Casimir
force, i.e. rectangular boxes (Chapter 8), spheres (Chapter 9), and three-layer
systems (Sections 19.5.3 and 20.4.3). The realization of Casimir repulsion would
help to resolve the problem of stiction, which is a challenge in the fabrication of
ever more miniaturized microdevice elements. Specifically, there is always a liquid
between the top and bottom Si microscopic elements during the manufacture of
microdevices. If visible light of sufficient intensity was to shine on the device
from the top, then nearly all of it would be absorbed by the top element. This
could lead to a repulsive Casimir force, as described in Section 20.4.3. Thus, if
the manufacture of MEMS is done under a source of bright light, stiction should
be substantially reduced. However, many questions concerning the possibility of
a Casimir repulsion between real materials still remain to be answered.

The introduction of micromechanical and nanomechanical devices has brought
to light a host of new engineering problems not seen or anticipated before. In
particular, owing to the large surface areas at the short separations involved,
tribological effects (friction and adhesion) result in the wearing-out of device
components. As traditional lubricants display large viscosities at the molecular
scale, this problem needs an urgent solution. In this regard, proposals for nan-
odevices that transmit motion without contact are highly desirable. Two such
proposals (Ashourvan et al. 2007a, 2007b, Emig 2007) for bringing about con-
tinuous linear motion of one corrugated surface by a periodic or linear motion
of another were mentioned in Section 21.4.

Ashourvan et al. (2007a, 2007b) proposed the frictionless transduction of mo-
tion via the lateral Casimir force. They put forward a design of a nanoscale rack
and pinion without intermeshing cogs. The suggested system consists of a cor-
rugated plate (rack) and a corrugated cylinder (pinion) that are kept away from
contact. Uniform sinusoidal corrugations with the same amplitude and period
on both surfaces were considered. For uniform linear motion of the rack, it was
found that the pinion velocity was locked to the rack velocity until a threshold
was reached and the pinion underwent a skipping transition, after which it could
no longer hold the corrugations in registry with those of the rack. In the skip-
ping regime, it was found that the average pinion velocity could be positive or
negative depending on the initial phase difference between the corrugations of
the rack and pinion. The effect of an external load on the pinion and the effect
of friction were also analyzed.
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In the second such idea of a Casimir-force-driven ratchet, Emig (2007) sug-
gested the use of asymmetric corrugations, which leads to the breaking of the
reflection symmetry between the two surfaces, and therefore the surfaces could be
set into relative lateral motion in the direction of the broken symmetry. The en-
ergy for this motion is provided by an external driver that periodically changes
the surface separation between the corrugations in the normal direction. The
transport velocity under the influence of the lateral Casimir force was shown to
be stable across sizable intervals of the amplitude and frequency of modulation of
the separation distance between the surfaces, even with the inclusion of damping.
In these stable intervals the velocity of the lateral motion scales linearly with the
frequency and is almost constant below some critical surface separation, beyond
which it was shown to drop sharply.

If it is possible to generalize the above approaches to the case of real mate-
rials, they could be used for transferring motion between two MEMS without
mechanical contact. This might be a solution to the tribological problems plagu-
ing the MEMS industry.



24

CONSTRAINTS ON HYPOTHETICAL INTERACTIONS FROM

THE CASIMIR EFFECT

Many extensions to the Standard Model of elementary particles predict the
existence of long-range interactions between neutral macrobodies in addition
to Newtonian gravity. The constraints on these interactions have traditionally
been obtained from gravitational experiments (Fischbach and Talmadge 1999).
Kuzmin et al. (1982) were the first to suggest that constraints on hypothetical
Yukawa-type long-range interactions could be obtained from measurements of
the van der Waals force. Mostepanenko and Sokolov (1987a, 1987b) have shown
that measurements of the Casimir force lead to strong constraints on power-
type long-range interactions. The availability of new precise measurements of
the Casimir force, considered in Chapter 19, has provided further impetus for
rapid progress in this direction. As a result, in the last few years, the previ-
ously known constraints on Yukawa interactions in the submicrometer range
have been strengthened by up to ten thousand times. In this chapter we sum-
marize the results obtained in comparison with parallel progress in gravitational
measurements.

24.1 Long-range forces and constraints on them from gravitational

experiments

Here, we briefly discuss two of the main theoretical schemes, which predict both
Yukawa-type and power-type long-range interactions. These are the exchange of
light and massless elementary particles between the atoms of two separate mac-
robodies and extra-dimensional unification theories with a low-energy compacti-
fication scale. We also list the strongest constraints on the parameters of the hy-
pothetical long-range interactions obtained to date from Eötvos- and Cavendish-
type gravitational experiments.

24.1.1 Light particles and extra-dimensional physics

It is common knowledge that the concept of a spontaneously broken symmetry
leads to the prediction of massless bosons. If some symmetry is broken not only in
the vacuum but in the Lagrangian as well, an initially massless particle acquires
a nonzero mass. Because of this, there are many predictions of new massless
and light bosons in various theoretical schemes, such as the arion (Anselm and
Uraltsev 1982), scalar axion (Peccei and Quinn 1977), graviphoton (Ferrara et
al. 1977), dilaton (Fujii 1991), goldstino (Deser and Zumino 1977), and moduli
(Dimopoulos and Giudice 1996), among others. In fact, new light and massless
elementary particles are predicted by almost every unification model (De Sabbata
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et al. 1992). They are electrically neutral and possess extremely small interaction
constants. This makes it difficult to investigate these particles using the usual
laboratory setups of elementary particle physics.

The exchange of light bosons of mass m = �/(λc) between two atoms gener-
ates an effective Yukawa-type potential. This is a hypothetical long-range inter-
action with an interaction range λ that can vary from 1 Å (a separation distance
much larger than the size of a nucleus) to hundreds of meters or even longer.
Considering that the Yukawa-type hypothetical interaction coexists with gravita-
tion, it is customary to describe it as an addition to the Newtonian gravitational
potential. When this is done, the total interaction energy between the two neu-
tral point masses m1 and m2 (atoms) at a separation r due to gravitation and
the exchange of light bosons takes the form (Adelberger et al. 1991, 2003)

V (r) = −Gm1m2

r

(
1 + αe−r/λ

)
. (24.1)

Here, G is the Newtonian gravitational constant and α is a dimensionless con-
stant characterizing the strength of the Yukawa interaction. Note that, in the
literature, the hypothetical long-range interaction coexisting with gravity is often
referred to as a fifth force.

The exchange of one massless particle between two atoms leads to an effec-
tive potential which is inversely proportional to the separation. This is just the
usual Coulomb potential. Effective potentials inversely proportional to higher
powers of the separation distance appear if the exchange of an even number of
pseudoscalar particles is considered. Thus, it has been shown that the exchange
of two arions leads to an interaction potential between atomic electrons falling as
r−3 (Mostepanenko and Sokolov 1987a). Such power-type potentials with higher
powers of the separation arise also in the exchange of two neutrinos, two gold-
stinos, or other massless fermions [reviews have been presented by Fischbach
(1996) and by Mostepanenko and Sokolov (1993)]. Constraints on power-type
hypothetical interactions were considered by Feinberg and Sucher (1979). As a
correction to Newtonian gravity, power-type potentials between two point-like
masses can be represented in the form

Vl(r) = −Gm1m2

r

[
1 + Λl

(r0

r

)l−1
]

. (24.2)

Here, Λl is a dimensionless constant, l is a positive integer, and r0 = 10−15 m
(the latter is introduced to preserve the correct dimension for the interaction
energy).

The total force acting between two macrobodies due to the potential (24.1)
or (24.2) can be obtained by integration over the volumes of the two bodies, and
the subsequent negative differentiation with respect to separation distance.

Another prediction of Yukawa-type corrections to Newtonian gravity comes
from those extensions of the Standard Model which exploit the Kaluza–Klein
unification approach. According to this approach, the true dimensionality of
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space–time is D = 4 + N , where the additional N spatial dimensions are com-
pactified at some small length scale (see Section 11.4). For a long time it was
generally believed that the compactification scale should be on the order of the
Planck length lPl = (�G/c3)1/2 ∼ 10−33 cm. The corresponding energy scale,
EPl = (�c5/G)1/2 ∼ 1019 GeV, is so high that direct experimental observation of
the effects of extra dimensions would seem impossible in the foreseeable future.

The situation changed dramatically with the proposal of models for which the
compactification energy may be as low as the extra-dimensional Planck energy

scale, E
(D)
Pl = (�1+N c5+N/GD)1/(2+N), which is assumed to be of the order of

1TeV (Antoniadis et al. 1998, Arkani-Hamed et al. 1998, 1999). Here, GD is the
fundamental gravitational constant in the extended D-dimensional space–time.
It is related to the Newtonian gravitational constant by the equality GD = GΩN ,
where ΩN ∼ RN

∗ , and R∗ is the size of the compact manifold (see Section 11.4).
Note that this proposal eliminates the hierarchy problem, since the characteristic
energy scales of the gravitational and gauge interactions coincide. In order to be
consistent with observations, the usual gauge fields of the Standard Model are
presumed to exist on four-dimensional branes, whereas gravity alone propagates
into the D-dimensional bulk. The characteristic size of the compact manifold is
given by (Arkani-Hamed et al. 1999)

R∗ ∼ �c

E
(D)
Pl

(
EPl

E
(D)
Pl

)2/N

∼ 10(32−17N)/N cm. (24.3)

The usual Newton’s law of gravitation is valid only in a four-dimensional
space–time. If extra dimensions exist, it is modified. It has been shown (Floratos
and Leontaris 1999, Kehagias and Sfetsos 2000) that at separations r � R∗ the
resulting gravitational potential has the form of eqn (24.1). For extra-dimensional
theories with N ≥ 1 extra dimensions, α ∼ 1 and λ ∼ R∗. Thus, for N = 1
(one extra dimension) one finds R∗ ∼ 1015 cm from eqn (24.3). The existence
of such a large extra dimension is excluded by solar-system tests of Newtonian
gravity (Fischbach and Talmadge 1999). If, however, N = 2 or 3 the sizes of
the extra dimensions are R∗ ∼ 1 mm and R∗ ∼ 5 nm, respectively. Note that at
separations below 10 µm, corrections to Newton’s law that are many orders of
magnitude larger than the standard gravitational interaction are not excluded
experimentally.

For extra-dimensional models with noncompact (but warped) extra dimen-
sions (Randall and Sundrum 1999a, 1999b), the interaction energy takes the form
of a Newtonian potential with a power-type correction,

V3(r) = −Gm1m2

r

(
1 +

2

3k2r2

)
, (24.4)

where r � 1/k and 1/k is the warping scale. This is a particular case of the
potential (24.2) with l = 3.
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24.1.2 Eötvos- and Cavendish-type experiments

Constraints on the parameters α, λ, and Λl of hypothetical interactions in eqns
(24.1) and (24.2) can be obtained from gravitational experiments of the Eötvos
and Cavendish types. In Eötvos-type experiments, the difference between the
inertial and gravitational masses of a body is measured, i.e. the equivalence
principle is tested. The influence of a hypothetical force that is not proportional
to the masses of the interacting bodies would lead to an effective difference be-
tween the inertial and gravitational masses. Thus, if such a difference is not
registered within the limits of experimental errors, this places some limits on the
magnitude of the hypothetical force. Constraints on the parameters of hypothet-
ical interactions following from Eötvos-type experiments have been reviewed by
Adelberger et al. (1991, 2003), Mostepanenko and Sokolov (1993), and Mostepa-
nenko (2002b). Here, we present only the strongest constraints, following from
the experiments by Schlamminger et al. (2008) and Smith et al. (2000). The
constraints on a Yukawa-type interaction based on the data by Schlamminger et
al. (2008) are shown by line 1 in Fig. 24.1. In this figure, the permitted regions
of the (λ, α)-plane lie beneath the lines, whereas the regions above the lines are
excluded by the results of one experiment or another. In a similar way, the con-
straints following from the experiment by Smith et al. (2000) are indicated by
line 2.

Strong constraints on hypothetical interactions can also be obtained from
Cavendish-type experiments. These experiments aim to measure probable de-
viations of the gravitational force Fgr from Newton’s law. In the case of two
point-like bodies a distance r apart, such deviations can be characterized by a
dimensionless parameter

ε =
1

rFgr

d

dr

(
r2Fgr

)
. (24.5)

Numerous Cavendish-type experiments have been performed to date. Here, we
present only those which lead to the strongest constraints on hypothetical in-
teractions within particular interaction ranges. It is notable that the theoretical
predictions of the possibility of large extra dimensions have spurred the perfor-
mance of new experiments at as short a separation as possible.

The best constraints at moderate separations of about 1 cm follow from the
experiment by Hoskins et al. (1985). These are shown by line 3 in Fig. 24.1.
Recent experiment by Kapner et al. (2007) placed the strongest constraints
on the parameters of the Yukawa interaction in a wide interaction range from
λ = 9 × 10−6 m to λ = 4 × 10−3 m (line 4 in Fig. 24.1). At smaller λ, from
4.7× 10−6 m to 9× 10−6 m, the best constraints, shown by line 5, were obtained
by Smullin et al. (2005). At λ < 4.7×10−6 m, the strongest constraints on Yukawa
interactions (line 6 in Fig. 24.1) follow from measurements of the Casimir force
(see the next section, where, in Fig. 24.2, line 6 is shown over a wider interac-
tion range). Note that gravitational experiments at short separation distances
are making rapid progress. Thus, Weld et al. (2008) have proposed a new ap-
paratus for detecting micron-scale deviations from Newtonian gravity. The first
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Fig. 24.1. The strongest constraints on Yukawa-type corrections to Newton’s
gravitational law following from various gravitational experiments (lines 1–5)
and measurements of the Casimir force (line 6). The allowed values in the
(λ, α)-plane lie beneath the lines (see text for further discussion).

constraints on the attractive hypothetical force obtained with the new apparatus
at λ = 5 µm are equal to the best existing constraints shown in Fig. 24.1. The
constraints obtained on repulsive Yukawa-type forces are several times better.
The prospective constraints that can be achieved by using the new apparatus
are more than one order of magnitude stronger than the existing ones (Weld et
al. 2008).

The constraints on Yukawa-type interactions shown in Fig. 24.1 place limits
on the parameters of light hypothetical particles. Thus, for a dilaton in various
models, 1 < |α| < 2500 (Kapner et al. 2007), and then line 4 restricts the possible
range of the dilaton mass m = �/(λc). In a similar way, various kinds of light
hypothetical particles called moduli, used to determine the geometry of the extra
dimensions, correspond to α < 105 (Dimopoulos and Giudice 1996, Dimopoulos
and Geraci 2003, Smullin et al. 2005, Kapner et al. 2007). Constraints on the
ranges of masses of the fields of the moduli then follow from lines 1–4 in Fig. 24.1.

Figure 24.1 also constrains the possible number of extra dimensions. Thus,
if N extra dimensions are compactified on a flat torus with the same radius
R∗ for each dimension, this leads to α = 8N/3 and λ = R∗ (Adelberger et al.
2003). From Fig. 24.1, it can be seen that for N = 1 and 2 (α = 8/3 and 16/3)
the permitted values of λ are less than 44 and 40 µm, respectively. These are
much less than the respective values of R∗ determined from eqn (24.3) (1015 cm
and 1mm). It then follows that the cases of N = 1 and 2 extra dimensions
are experimentally excluded. However, for N = 3, we have α = 8, and, from
Fig. 24.1, λ < 36 µm. This is consistent with the value R∗ ∼ 5 µm obtained from
eqn (24.3). Because of this, the possibility of three extra dimensions is consistent
with the constraints presented in Fig. 24.1.
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Table 24.1. Constraints on the constants of
power-type potentials

l |Λl|max Source

1 1 × 10−9 Gundlach et al. (1997)

2 4 × 108 Smith et al. (2000)

3 1.3 × 1020 Adelberger et al. (2007)

4 4.9 × 1031 Adelberger et al. (2007)

5 1.5 × 1043 Adelberger et al. (2007)

We emphasize that the constraints listed above obtained by means of gravi-
tational measurements are of high reliability. In particular, all possible sources of
experimental errors were carefully analyzed and the final results were obtained
at a 95% confidence level. No evidence for the presence of Yukawa-type correc-
tions to Newtonian gravity in the millimeter range has been found. However, at
scales λ < 5 × 10−5 m, gravity remains poorly tested. Thus, at λ = 5 × 10−5 m
a Yukawa-type correction to Newton’s law of order unity is not excluded exper-
imentally, and at λ = 10−5 m experiment allows a correction that is in excess
of Newtonian gravity by a factor of 105. A general observation is that with de-
creasing λ, the strength of the constraints obtained by means of gravitational
experiments rapidly decreases. As is discussed in the next sections, for an in-
teraction range of order 1 µm or less the strongest constraints on Yukawa-type
hypothetical interactions follow from measurements of the Casimir force, which
is the dominant background at short separation distances.

Next, we briefly list in Table 24.1 the constraints on the power-type correc-
tions to Newtonian gravitation presented in eqn (24.2). The strongest of them
obtained to date follow from gravitational experiments. They are collected to-
gether in Table 24.1. For l = 1 and 2, the constraints presented in Table 24.1 were
obtained from Eötvos-type experiments, and for l = 3, 4, and 5 from Cavendish-
type experiments [note that Adelberger et al. (2007) used a different convention
for the value r0 in eqn (24.2)].

24.2 Constraints from older measurements of the Casimir force

Here, we present constraints on the parameters of Yukawa-type hypothetical in-
teractions following from the older measurements of the Casimir force between
dielectrics (Sections 18.1.2 and 18.1.3). In this section, we also consider con-
straints from the experiment performed by means of a torsion pendulum (Section
19.1) and the open-air experiment using hydrocarbon layers (Section 19.5.2). As
explained in the respective sections, in all of these experiments the total experi-
mental error at a given confidence level was not determined, and the comparison
with theory was done in a qualitative manner. Because of this, the constraints
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obtained on the Yukawa-type hypothetical interactions are not of the same high
reliability and confidence as those following from the Cavendish- and Eötvos-type
experiments.

24.2.1 Constraints from measurements between dielectric test bodies

In the experiment by Derjaguin et al. (1956), which was briefly discussed in
Section 18.1.2, the Casimir force acting between a spherical lens of thickness
H and radius R and a plate of length L and thickness D made of quartz was
measured. We consider one atom of the lens at a height l above the plate. The
interaction potential of this atom with all atoms of the plate is obtained by the
integration of the second term of eqn (24.1) over the plate volume:

vhyp(l) = −2πGm2αNλ2e−l/λ
(
1 − e−D/λ

)
, (24.6)

where m1 = m2 = m and N is the number of atoms per unit volume of the
plate and lens [below, we compare the Yukawa interaction between the lens and
the plate with the Casimir interaction, which is much stronger than the gravita-
tional interaction at separations less than 1 µm; because of this, the gravitational
contribution in eqn (24.1) can be neglected].

The number of atoms in a horizontal section of the lens of thickness dl at a
height l ≥ a above the plate is given by

dσ(l) = πN
[
2R(l − a) − (l − a)2

]
dl. (24.7)

Here, a is the separation distance between the plate and the point of the lens
closest to it. By integrating the interaction potential (24.6) weighted with eqn
(24.7) between the limits from a to a + H , we obtain the interaction potential
between the lens and the plate. Then the hypothetical force is found as the
negative derivative of this potential with respect to a,

F hyp(a) = −4π2Gρ2λ3Rα
(
1 − e−D/λ

)
e−a/λ (24.8)

×
[
1 − λ

R
+ e−H/λ

(
H

R
− 1 +

λ

R
+

H2

2Rλ
− H

λ

)]
,

where ρ is the density of the plate and sphere materials. In the above calcu-
lations, the inequalities L, R, H, D � a have been used, which are satisfied in
the experimental configuration. For values of λ belonging to the submillimeter
range, D, H, R � λ is also valid, so that eqn (24.9) is simplified to

F hyp(a) = −4π2Gρ2λ3Rαe−a/λ. (24.9)

Using the interaction potential (24.6) it is easy to calculate the hypothetical
energy per unit area in the configuration of two large parallel plates of thicknesses
D1 and D2

Ehyp(a) = −2πGρ2λ3α
(
1 − e−D1/λ

)(
1 − e−D2/λ

)
e−a/λ. (24.10)
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Under the condition that D1, D2 � λ, this leads to

Ehyp(a) = −2πGρ2λ3α e−a/λ. (24.11)

As a result, the quantities (24.9) and (24.11) are connected by eqn (6.71). Thus,
if the interaction range is much smaller than the sizes of the interacting bodies,
the Yukawa-type force can be calculated (Decca et al. 2009b) using the proximity
force approximation.

Based on the agreement between experiment and theory estimated to be
within 10%, the constraints on the constants of the Yukawa-type interaction α
and λ were obtained from the condition that the magnitude of the hypothetical
force is less than 10% of the magnitude of the Casimir force (Mostepanenko and
Sokolov 1989a, 1989b):

|F hyp(a)| < 0.1 |E(a)| 2πR. (24.12)

Here, the Casimir force between the sphere and the plate was calculated by using
the PFA, where E(a) is the Casimir energy per unit area in the configuration of
two parallel plates at sufficiently large separation distances:

E(a) = − π2

720

�c

a3
Ψ(ε0), (24.13)

with the correction factor Ψ(ε0) defined in eqn (12.43). The constraints obtained
are shown by line 7 in Fig. 24.2. Note that the numbering of the lines in Fig. 24.2
continues from that in Fig. 24.1. Line 7 belongs to the region where the gravi-
tational measurements do not place any constraints of comparable strength on
the Yukawa-type hypothetical force.

24.2.2 Constraints from torsion pendulum experiment

As discussed in Section 19.1, the Casimir force between an Au-coated spherical
lens and a flat plate was measured in an experiment with a torsion pendulum
(Lamoreaux 1997). The experimental data were claimed to be consistent with
the theoretical result F sp

IM in eqn (6.51) derived for an ideal metal within the limit
of the absolute error of the force measurements ∆totF expt = 10−11 N. However,
the corrections to this result due to surface roughness, ∆RF , the nonzero skin
depth, ∆δ0F , and nonzero temperature, ∆T F , which have different signs and
may not lie within the limits of ∆totF expt, were not taken into account. For this
reason, the constraints on the Yukawa-type interaction following from the torsion
pendulum experiment were found from the inequality (Bordag et al. 1998b)

|F theor(a) − F sp
IM(a)| ≤ ∆totF expt. (24.14)

Here, F theor(a) is the theoretical value of the force including FIM(a), all of the
corrections to it mentioned above, and also the hypothetical Yukawa-type inter-
action:
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Fig. 24.2. The strongest constraints on Yukawa-type corrections to Newton’s
gravitational law following from the older measurements of the Casimir force
between dielectric test bodies (line 7), from measurements by means of a
torsion pendulum (line 6), and from the ambient measurement between two
crossed cylinders (line 8). Line 5 was obtained from gravitational measure-
ments (see Fig. 24.1). The allowed values in the (λ, α)-plane lie beneath the
lines.

F theor(a) = F sp
IM(a) + ∆RF (a) + ∆δ0F (a) + ∆T F (a) + F hyp(a). (24.15)

The hypothetical interaction of Yukawa type was calculated taking account
of the layer structure of the plate and of the lens used in the experiment. The
quartz lens and the plate, with respective densities ρ′ = 2.23 × 103 kg/m3 and

ρ = 2.4×103 kg/m
3
, were coated with Cu and Au layers of thickness ∆1 = ∆2 =

0.5 µm and with densities ρ1 = 8.96 × 103 kg/m
3

and ρ2 = 19.32 × 103 kg/m
3
,

respectively. Calculation of the Casimir force can be performed under the same
assumptions and following the same procedure as in Section 24.2.1. Under the
condition that the sizes of the bodies are much larger than the interaction range
λ, instead of eqn (24.9), we arrive at

F hyp(a) = −4π2αGλ3e−a/λ (24.16)

×
[
ρ2 − (ρ2 − ρ1)e

−∆2/λ − (ρ1 − ρ)e−(∆2+∆1)/λ
]

×
[
Rρ2 − (R − ∆2)(ρ2 − ρ1)e

−∆2/λ − (R − ∆2 − ∆1)(ρ1 − ρ′)e−(∆2+∆1)/λ
]
.

For thin layers with thicknesses ∆1, ∆2 � R eqn (24.16) takes the form (Bordag
et al. 1998b)

F hyp(a) = −4π2αGλ3e−a/λR
[
ρ2 − (ρ2 − ρ1)e

−∆2/λ − (ρ1 − ρ)e−(∆2+∆1)/λ
]

×
[
ρ2 − (ρ2 − ρ1)e

−∆2/λ − (ρ1 − ρ′)e−(∆2+∆1)/λ
]
. (24.17)
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In a similar way, for two large parallel plates with thicknesses D1, D2 � λ
each covered with thin layers with thicknesses ∆1 and ∆2, instead of eqn (24.11),
we obtain

Ehyp(a) = −2παGλ3e−a/λ
[
ρ2 − (ρ2 − ρ1)e

−∆2/λ − (ρ1 − ρ)e−(∆2+∆1)/λ
]

×
[
ρ2 − (ρ2 − ρ1)e

−∆2/λ − (ρ1 − ρ′)e−(∆2+∆1)/λ
]
. (24.18)

We see that the hypothetical force between a spherical lens and a plate from eqn
(24.17) can be obtained as the energy per unit area from eqn (24.18) multiplied
by 2πR. This means that under the above conditions, the Yukawa-type force
between layered bodies can also be found (Decca et al. 2009b) using the proximity
force approximation (6.71).

The constraints obtained are shown by line 6 in Fig. 24.2. Typically, line
6 gives stronger constraints by a factor of 30 than the continuation of line 7,
obtained from the old measurements of the Casimir force between dielectric
surfaces. Lines 6 and 7 in Fig. 24.2 permit one to constrain the parameters of
the gauge baryons predicted in many extra-dimensional models (Dimopoulos
and Geraci 2003). The existence of these particles would result in a Yukawa-type
interaction with |α| in the range from ∼ 1012 to ∼ 1015 and λ in the range from
10−8 m to 3 × 10−6 m (Decca et al. 2005a). Note that Long et al. (1999) made
their own analysis of the constraints on the Yukawa-type interaction following
from this torsion pendulum experiment and obtained a much weaker result than
did Bordag et al. (1998b). The reason is that Long et al. (1999) did not take into
account the various corrections to the ideal-metal result for the Casimir force
between a lens and a plate, which significantly influence the computations in the
case of real gold surfaces.

24.2.3 Constraints from ambient experiment with two crossed cylinders

This experiment was briefly considered in Section 19.5.2. The two cylinders, with
R = 1 cm, were made of quartz with ρ = ρ′ = 2.23 × 103 kg/m

3
. Each cylinder

was coated first with a layer of Au with a density ρ1 = 18.88 × 103 kg/m
3

and thickness ∆1 = 200 nm, and then an outer layer of hydrocarbon with a
density ρ2 = 0.85 × 103 kg/m3 and thickness ∆2 = 2.1 nm. The absolute error
of the force measurements was ∆totF expt = 10 nN (Ederth 2000). As shown by
Mostepanenko and Novello (2001), under the assumption λ, a � R, where a is the
closest separation between the cylindrical surfaces, the same eqn (24.17) which
was derived for a sphere-plate configuration is also valid for the hypothetical
interactions between crossed cylinders.

The Casimir force in the experimental configuration was computed taking ac-
count of the corrections due to the nonzero skin depth of Au and the stochastic
roughness of the hydrocarbon layer [the temperature corrections were negligibly
small at the separations from 20 to 100nm used by Ederth (2000)]. This theoret-
ical expression for the Casimir force between two crossed cylinders was found to
be consistent with the measurement data within the limits of the experimental
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error ∆totF expt. Since no Yukawa-type interaction was observed within the limits
of the experimental error, the constraints on the parameters of the hypothetical
force were found from the inequality

|F hyp(a)| ≤ ∆totF expt. (24.19)

The constraints obtained, calculated at a = 20 nm, are shown by line 8 in
Fig. 24.2. This experiment leads to the strongest constraints in the interaction
range where λ ∼ 10−8 m.

To conclude this section, we note that Casimir force measurements between
metallic surfaces produce some constraints not only on Yukawa-type hypotheti-
cal interactions, but also on power-type interactions of the form (24.2) as well.
However, the constraints on power-type interactions with l ≤ 5 obtained from
the Casimir effect (Mostepanenko and Sokolov 1987a, 1987b, Klimchitskaya et
al. 1998, Mostepanenko and Novello 2001) are weaker than the respective con-
straints obtained from gravitational measurements of the Eötvos and Cavendish
types (see Table 24.1). Because of this, we shall not consider this subject in
more detail here. As was mentioned above, the constraints on hypothetical in-
teractions from the older measurements of the Casimir force (including the first
modern measurements considered in this section) rank below the constraints ob-
tained from the gravitational measurements in reliability and confidence. In the
next two sections, we consider the most precise measurements of the Casimir
force, which result in constraints of the same reliability as those derived from
the gravitational measurements.

24.3 Constraints from experiment with gold surfaces using an

atomic force microscope

Constraints on the parameters of hypothetical long-range interactions of the
Yukawa type were obtained from each of the three successive experiments using
an atomic force microscope described in Sections 19.2.1–19.2.3 (Bordag et al.
1999b, 2000b, Fischbach et al. 2001). These constraints were reviewed by Bor-
dag et al. (2001a), Mostepanenko (2002a, 2002b), Klimchitskaya and Mohideen
(2002), and Chen et al. (2005b). Here, however, we consider in more detail only
the strongest constraints on Yukawa-type interactions which follow from the
most conclusive measurement of the Casimir force by means of an atomic force
microscope between Au surfaces, performed by Harris et al. (2000) (see Sec-
tion 19.2.3). The point is that this measurement was later reanalyzed using the
rigorous methods of data processing and comparison between experiment and
theory presented in Section 18.3 (Klimchitskaya et al. 2007a). As a result, the
constraints on a Yukawa-type hypothetical interaction were determined at a 95%
convidence level. These constraints are of the same reliability as those obtained
from the gravitational experiments.

In this experiment, the Casimir force was measured between a sapphire disk
and a polystyrene sphere (with a diameter 2R = 191.3 µm) coated with an
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Au layer of thickness ∆1 = 86.6 nm and density ρ1 = 18.88 × 103 kg/m
3
. The

densities of the sapphire and polystyrene were ρ = 4.0 × 103 kg/m
3

and ρ′ =

1.06 × 103 kg/m3, respectively. Then, the Yukawa-type hypothetical force could
be calculated using eqn (24.17) with ∆2 = 0 and ρ2 = 0, because there was only
one covering layer in this experiment.

Using rigorous procedures for the comparison of experimental data with the-
ory (see Section 18.3), the constraints on the Yukawa-type interaction follow-
ing from the experiment by Harris et al. (2000) were obtained by Decca et al.
(2007b). For this purpose, the confidence intervals [−ΞF (a), ΞF (a)] for the quan-
tity F theor(a) − F̄ expt(a) found by Klimchitskaya et al. (2007a) at a 95% confi-
dence level were used (see Section 19.2.3). The theoretical Casimir force F theor(a)
was computed with the help of the Lifshitz formula at the laboratory tempera-
ture T = 300 K, using the generalized plasma-like dielectric permittivity. Note
that the total theoretical error ∆totF theor includes all possible sources of errors,
as discussed in Section 19.2.3. As a result, at each a the confidence interval
[−ΞF (a), ΞF (a)] lies between the solid lines shown in Fig. 19.7(b). For example,
at a = 61.08 nm the half-width of the confidence interval is ΞF = 31.6 pN; with
an increase of the separation to 100.15 and 200.46nm, it decreases to 9.17 and
7.20 pN, respectively. The resulting constraints at a 95% confidence level were
determined from the inequality

|F hyp(a)| ≤ ΞF (a). (24.20)

These constraints are represented by line 1 in Fig. 24.3. Note that the constraints
given by line 1 in Fig. 24.3 are up to an order of magnitude weaker than those
obtained by Fischbach et al. (2001) from the original publication by Harris et
al. (2000). However, they benefit from high confidence, and they can be reliably
compared with future work on the subject by using the same rigorous approach
to the comparison of experiment with theory as that presented in Section 18.3,
and also with constraints obtained from gravitational measurements. The first
comparison with rigorous constraints obtained at a larger λ is contained in the
next section.

24.4 Constraints from experiment using a micromachined oscillator

As discussed in Section 19.3, a set of experiments using a micromechanical tor-
sional oscillator have achieved the highest precision in the measurement of the
Casimir pressure. In the third experiment of this series, the random error was
made much smaller than the systematic error, giving this measurement a metro-
logical quality. Constraints on Yukawa-type hypothetical interactions were ob-
tained from all measurements in this series (Decca et al. 2003b, 2004, 2005b,
2007a, 2007b, Klimchitskaya et al. 2005, Mostepanenko et al. 2008). Here, we
present the strongest constraints on Yukawa-type interactions obtained by Decca
et al. (2007a, 2007b) and describe the results of the so-called Casimir-less exper-
iment, where the role of the Casimir force was largely excluded.
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Fig. 24.3. The strongest constraints obtained on Yukawa-type corrections to
Newton’s gravitational law obtained at a 95% confidence level from the mea-
surement of the Casimir force using an atomic force microscope (line 1), from
the measurement of the Casimir pressure by means of a micromachined oscil-
lator (line 2), and from the Casimir-less experiment (line 3). Line 6 indicates
constraints obtained from the torsion pendulum experiment (see Fig. 24.2).
The allowed values in the (λ, α)-plane lie beneath the lines.

24.4.1 Constraints from Casimir pressure measurement

The most precise indirect measurement of the Casimir pressure between gold-
coated plates is described in Section 19.3.4. In this experiment, a sapphire sphere
of density ρ′ = 4.1 × 103 kg/m3 was first coated with a layer of Cr of density

ρ1 = 7.14 × 103 kg/m
3

and thickness ∆1 = 10 nm, and then with an external

layer of Au of density ρ2 = 19.28× 103 kg/m
3

and thickness ∆2 = 180 nm. A Si

plate of density ρ = 2.33 × 103 kg/m
3

was also first coated with a layer of Cr of
thickness ∆1 = 10 nm, and then with a layer of Au of thickness ∆̃2 = 210 nm.
The equivalent Yukawa pressure between two parallel plates with the same layer
structure as that of the above sphere and plate can be obtained in a similar way
as in Section 24.2.2. The result is

P hyp(a) = −2πGαλ2e−a/λ
[
ρ2 − (ρ2 − ρ1)e

−∆2/λ − (ρ1 − ρ′)e−(∆2+∆1)/λ
]

×
[
ρ2 − (ρ2 − ρ1)e

−∆̃2/λ − (ρ1 − ρ)e−(∆̃2+∆1)/λ
]
. (24.21)

The experimental data from this experiment have been analyzed and com-
pared with various theoretical approaches using the rigorous statistical methods
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presented in Section 18.3. In this process a conservative analysis of the errors
[and consequently of the width of the confidence interval 2ΞP (a)] was used,
which overestimated both the errors and the value of 2ΞP (a). The reason for
this overestimation was that the error due to the uncertainty in the experimen-
tal separations ∆a was included in the analyses of the theoretical errors when
the second method for comparison between experiment and theory described
in Section 18.2.3 was used. As a result, the theoretical pressures acquired an
extra error of ≈ 4 ∆a/a, which led to an enormous widening of the confidence
interval at short separations (see Figs. 19.19 and 19.20). However, as is seen in
Fig. 19.19, the actual width of the confidence interval is much less than that
between the solid lines (recall that the actual confidence interval determined at
a 95% confidence level is the narrowest interval which contains about 95% of the
data dots). It is easily seen that if the theoretical error of 4 ∆a/a due to uncer-
tainties in the experimental separations is disregarded, the resulting narrower
confidence interval [−Ξ̃P (a), Ξ̃P (a)] still contains all dots representing the differ-
ences P theor(a)−P̄ expt(a) within the range of separations from 180 to 746 nm. At
a separation a = 180 nm, the half-width of this interval is Ξ̃P = 4.80 mPa. At the
typical separations a = 200, 250, 300, 350, 400, and 450nm, Ξ̃P is equal to 3.30,
1.52, 0.84, 0.57, 0.45, and 0.40mPa, respectively. Thus, for 180 nm ≤ a ≤ 746 nm,
the magnitude of the hypothetical pressure should satisfy the inequality

|P hyp(a)| ≤ Ξ̃P (a). (24.22)

Bearing in mind that the half-width of the confidence interval Ξ̃P (a) is defined
at a 95% confidence level, the same confidence also applies to the constraints
following from the inequality (24.22).

Decca et al. (2007b) performed a numerical analysis of eqns (24.21) and
(24.22) and determined the resulting region of the (λ, α)-plane where the inequal-
ity (24.22) was satisfied, such that the existence of a Yukawa-type interaction
would be consistent with the level of agreement achieved between the experi-
mental data and the relevant theory. The strongest constraints within the range
of interaction distance 10 nm ≤ λ ≤ 56 nm were obtained from a comparison of
measurements with theory at a separation a = 180 nm. With an increase of λ,
the strongest constraints on α were obtained from consideration of larger separa-
tions. Thus, constraints in the regions 56 nm ≤ λ ≤ 71 nm, 71 nm ≤ λ ≤ 89 nm,
89 nm ≤ λ ≤ 140 nm, 140 nm ≤ λ ≤ 220 nm, and 220 nm ≤ λ ≤ 500 nm were
obtained from the agreement between the Casimir pressure measurements and
the theory at the separations a = 200, 250, 300, 350, and 400nm, respectively.

The resulting constraints are plotted in Fig. 24.3 for different values of λ (line
2). It can be seen that the measurements of the Casimir pressure by means of
a micromachined oscillator lead to the strongest constraints at larger values of
λ than for the measurements of the Casimir force by means of an atomic force
microscope. Line 2 in Fig. 24.3 places stronger limits on the parameters of gauge
baryons and strange moduli (Decca et al. 2005a).
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Recently, the measurements of the Casimir pressure by Decca et al. (2007a,
2007b) were used to constrain the predictions of chameleon field theories. Like
many other extensions of the Standard Model, this theory introduces one or more
scalar fields. A specific feature of these fields is that their masses depend on the
local background matter density and that they can couple directly to matter with
gravitational strength (Brax et al. 2007, Mota and Shaw 2007). The chameleon
scalar field φ, if it really exists in nature, leads to an additional chameleon force
acting between two nearby macrobodies. The form of this force as a function of
separation distance is rather complicated and depends on the potential of the
chameleon field. This potential can be chosen as (Brax et al. 2007)

V (φ) = Γ4
0

(
1 +

Γn

φn

)
, (24.23)

where n can be both positive and negative, and Γ0 and Γ are some constants. To
fit the data for the acceleration of the Universe, one requires Γ0 ≈ 2.4×10−3 eV.
The hypothetical pressure Pφ arising between two parallel plates in chameleon
theories with a potential (24.23) and Γ = Γ0 was calculated by Brax et al.
(2007). It was shown that for n > 0, the experimental results of Decca et al.
(2007a, 2007b) do not impose any constraints on the predictions of chameleon
theories. The current limits in Fig. 24.3 must be strengthened by at least two
orders of magnitude in order for constraints on chameleon theories with n > 0
to be obtained. At the same time, the experimental data of Decca et al. (2007a,
2007b) rule out chameleon theories with n = −4 and n = −6 (Brax et al. 2007).

24.4.2 Constraints from Casimir-less experiment

In the Casimir-less experiment (Decca et al. 2005a), the micromachined oscillator
shown schematically in Fig. 19.9 was used to measure the difference between
forces over two dissimilar materials, Au and Ge, which had been coated with a
common layer of Au. This common Au top layer was of a sufficient thickness
(more than the Au plasma wavelength λp = 137 nm) to make the Casimir forces
equal between an Au-coated sphere and the two halves of the patterned Au–Ge
plate. However, Yukawa-type hypothetical forces between the sphere and the two
halves of the plate should be different, owing to different densities of Au and Ge
under the common Au top layer. Thus, when the micromechanical oscillator is
moved back and forth parallel to the x-axis below the sphere, there should be
some difference hypothetical force (if the latter exists in nature).

In the measurements, the static regime described in Section 19.3.2 was ex-
ploited, which meant that the vertical separation between the sphere and the
plate was not varied harmonically. The difference hypothetical force between the
sphere and the plate could be obtained in a way similar to that described in
Section 24.1. The sapphire sphere of density ρ′ was covered by a Cr layer of
density ρ1 with thickness ∆1 = 1 nm, and by an outer Au layer of density ρ2 and
thickness ∆2 = 200 nm. The silicon plate was covered by a Ti layer of thickness
1 nm. Then one half of it was covered by a layer of Ge with density ρGe and
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thickness ∆Ge = 200 nm, followed by a layer of Pt of thickness ∆Pt = 1 nm and
an outer layer of Au with thickness ∆̃2 = 150 nm. The other half of the plate
was covered by a layer of Au with thickness ∆Au = ∆Ge = 200 nm followed by a
common layer of Pt of thickness ∆Pt = 1 nm and a common outer layer of Au of
thickness ∆̃2 = 150 nm. The resulting difference Casimir force is given by (Decca
et al. 2005a)

∆F hyp(a) = −4π2αGλ3e−a/λR
[
ρ2 − (ρ2 − ρ1)e

−∆2/λ − (ρ1 − ρ′)e−(∆2+∆1)/λ
]

×
[
(ρ2 − ρGe)e

−(∆̃2+∆Pt)/λ
(
1 − e−∆Ge/λ

)]
. (24.24)

Here, the radius R of the sphere was approximately 50 µm, and the difference
between the densities of Au and Ge is ρ2 − ρGe = 13.96 × 103 kg/m3.

The measurements by Decca et al. (2005a) permitted limits on the quantity
|∆F hyp(a)| to be obtained, of the order of fN depending on the value of the sep-
aration distance in the region from 150 to 500nm. This results in the constraints
on the parameters (λ, α) of the hypothetical Yukawa interaction shown by line
3 in Fig. 24.3. These constraints were determined at a 95% confidence level.
They are only slightly different from the constraints following from the absolute
measurements of the Casimir pressure by means of a micromechanical torsional
oscillator (see line 2). For comparison purposes, we also show in Fig. 24.3 a part
of line 6 related to larger λ which was obtained from the torsion pendulum ex-
periment (for this line, we have retained the numbering of Section 24.2.2). This
line is presented in more detail in Fig. 24.2 (see also Fig. 24.1).

We can conclude that the increased precision of measurements of the Casimir
force and the use of rigorous statistical procedures for data processing and for
the comparison of experiment with theory permit the determination of new con-
straints on the parameters of Yukawa-type hypothetical interactions with the
same reliability as for those obtained from gravitational measurements, but for
shorter interaction ranges.
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CONCLUSIONS AND OUTLOOK

This book was aimed at providing the reader with a comprehensive review of all
of the important work that has been done in the wide area of Casimir physics.
It has discussed material on the field-theoretical foundations of the Casimir ef-
fect, theoretical approaches to the description of the Casimir force between real
material bodies, and experiments on measuring the Casimir force in different
configurations. The above topics were presented sequentially in Parts I, II, and
III of the book. As mentioned in Section 1.3 of the Introduction, the Casimir
effect is a multidisciplinary subject which plays a major role in quantum field
theory, condensed matter physics, atomic physics, astrophysics, gravitation and
cosmology, and mathematical physics. It finds applications in nanotechnology
and even for constraining the predictions of fundamental physical theories. Re-
sults from all these diverse areas have been presented in the book.

The main conclusion following from Part I of the book, devoted to the foun-
dations of the Casimir effect for ideal boundaries, is that, 60 years after Casimir’s
discovery, we now have a general field-theoretical approach which allows inves-
tigation of the Casimir effect between two bodies of arbitrary shape with vari-
ous boundary conditions on their surfaces. In the framework of this approach,
all divergent contributions are separated, and finite expressions for the Casimir
energy and force are obtained in terms of scattering matrices and functional
determinants. In the case of single bodies (e.g. an ideal-metal rectangular box
or a dielectric ball), no consensus has yet emerged. Specifically, the problem of
divergences in the Casimir energy inside ideal-metal rectangular boxes is still
being debated. According to one point of view, the divergences present in the
calculations cannot be removed by a renormalization of the physical constants,
as is done in quantum electrodynamics. As a result, the Casimir force depends on
a cutoff function. From another point of view, the geometrical parameters of the
configuration under consideration play the role of the constants to be renormal-
ized. The latter point of view is based on renormalization procedures developed
for quantum field theory in curved space-time (Birrell and Davies 1982, Grib et
al. 1994).

The last ten years have witnessed rapid progress in the application of the
Lifshitz theory to describe the van der Waals and Casimir forces acting between
metallic, dielectric, and semiconductor test bodies. Some unexpected results ob-
tained from this body of work are reflected in Part II. These have given rise to
a lively debate in the literature. The many points of view have been presented
in the book. An important conclusion obtained here is that real (drift or diffu-
sion) currents of conduction electrons should not be included in the model of the
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dielectric response used in the Lifshitz theory. The presence of such a current
violates the state of thermal equilibrium, which is the fundamental applicability
condition of the Lifshitz theory. If a drift current of the Drude type (for metals)
or the dc conductivity (for dielectrics) is included, this immediately results in
contradictions between the Lifshitz theory and thermodynamics. However, if drift
and diffusion currents are neglected and free carriers in metals are described by
the plasma model, the Lifshitz theory is always found to be in perfect agreement
with thermodynamics.

A good question to ask, then, is whether one should look for a new theory
of the van der Waals and Casimir forces which incorporates the role of charge
carriers in real materials on more fundamental grounds. As was demonstrated
in Part II, there is a consistent way to deal with charge carriers in the stan-
dard Lifshitz theory. For any dielectric material (whose conductivity goes to
zero when the temperature vanishes), the role of the free charge carriers that
exist at nonzero temperature must be neglected. For metallic materials (whose
conductivity does not go to zero when the temperature vanishes), the charge car-
riers must be included by means of the free-electron plasma model, which allows
only displacement currents. The Lifshitz theory supplemented with this rule is
in agreement with thermodynamics and universally applicable to any material in
thermal equilibrium with its environment. By contrast, drift and diffusion cur-
rents violate thermal equilibrium owing to the existence of a unidirectional flux
of heat from the system to a heat reservoir. Such currents can be created only by
real electric fields. Fluctuating fields have a zero mean value. They lead to equal
and mutual exchange of heat between a system and a heat reservoir, resulting
in a zero mean heat flux. This suggests that fluctuating electromagnetic fields
have important differences from real ones. It is common knowledge that when
placed in an external electric field, a system goes out of thermal equilibrium and
the fluctuation–dissipation theorem is violated. This should not and does not
happen when the system is under the influence of fluctuating electromagnetic
fields of any frequency, as are all physical systems at all times. At present there
is no consensus in the published literature on the ideas that we have sketched
here, but they find additional support from experiment.

Part II of the book contained many applications of the Casimir effect to
real materials. First the Lifshitz theory was introduced. It was then applied to
both wall–wall and atom–wall Casimir and Casimir–Polder interactions for var-
ious types of wall materials, such as metals, semiconductors, dielectrics (both
polar and nonpolar), magnetic media, stratified media, and various atoms and
molecules. All theoretical approaches proposed in the literature were reflected
and the predictions made were carefully compared and analyzed. Special atten-
tion was paid to the role of surface roughness, and the methods used to incor-
porate it into the theoretical calculations were explained in detail. The inclusion
of surface roughness allows a careful comparison of the experimental data with
the theory.

Part III of the book presented all experiments to date on the measurement of
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the Casimir force. This section described general requirements for precise mea-
surements of the Casimir force and the statistical framework for analyzing the
data. A brief review of the older measurements was provided. The more modern
measurements were discussed in detail. The methods for a rigorous comparison of
the experiments with theory were presented. Observations of some new, interest-
ing phenomena, such as the modulation of the Casimir force by light, the lateral
Casimir force, the dependence of the Casimir force on geometry and the thermal
Casimir–Polder force, were presented in detail. The main conclusion here is that
the Lifshitz theory supplemented with the above rules is in very good agreement
with all available experimental data. This has been demonstrated in three types
of experiments performed by different experimental groups with metallic, semi-
conductor, and dielectric plates for both the Casimir and the Casimir–Polder
interactions. By contrast, all attempts to include a drift or diffusion current in
the model of the dielectric response have been found to be in contradiction with
the experimental data.

An important conclusion following from the experiments presented in Part
III is that the Casimir effect is central for nanotechnology. This has been con-
firmed by the actuation of micromechanical systems by the Casimir force and
by the demonstration of a nonlinear micromechanical Casimir oscillator. Greater
promise is offered by the possibility to change the magnitude of the Casimir force
through the phenomenon of optical modulation. Additionally, the theoretical po-
tential for using the lateral Casimir force in a rack and pinion arrangement has
been put forward. This would be an important achievement if experimentally
applied, as it would bring about a transfer of motion without contact, an impor-
tant requirement in nanoscale devices, because lubrication cannot be used and
direct contact will rapidly wear away small structures.

A no less important conclusion following from the experimental work on
the Casimir effect is that it can be used as an effective test of theoretical pre-
dictions obtained from fundamental unification theories beyond the Standard
Model. In the last few years the constraints on Yukawa-type corrections to New-
tonian gravity, following from the exchange of light elementary particles and
extra-dimensional physics, have been strengthened by up to a factor of 104

based on measurements of the Casimir force. In this respect, as the Casimir
force dominates interactions at the nanometer scale, a complete understanding
of it is required for effective measurements of deviations from Newtonian gravity
at very short distances.

In this book, we have not discussed some Casimir-related phenomena which
might have considerable promise for the future, but at present have not been
completely explored theoretically and lack experimental confirmation. One ex-
ample is the Casimir force between metamaterials, which has attracted much
attention in electrodynamics and optics in the last few years (Vinogradov et al.
2008). Thus, Henkel and Joulain (2005) have determined the extent to which
the Casimir interaction between two metamaterial plates can be manipulated
by engineering their magnetodielectric response. Rosa et al. (2008) calculated
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the Casimir force between magnetodielectric and anisotropic metamaterials and
found the possibility of repulsive forces in special cases. Leonhardt and Philbin
(2007) and Yang et al. (2008) considered the Casimir effect between two idealized
left-handed metamaterials. The possibility of obtaining Casimir repulsion using
metamaterials based on metallic inclusions has been questioned by Pirozhenko
and Lambrecht (2008b). Presently, extensive effort is being devoted to exploring
the opportunities offered by realistic metamaterials for the Casimir effect.

The prospective applications of the Casimir effect in both fundamental physics
and nanotechnology require the development of more powerful theoretical meth-
ods which would be applicable to real bodies of arbitrary geometrical shape and
material properties. Specifically, a future theory of the thermal Casimir force
should provide a more fundamental explanation for the rules presently used and
incorporate a consistent description of spatial dispersion. This could be achieved
on the basis of general representations of the Casimir energy and force as dis-
cussed in Chapter 10. The application of these representations to real materials
should be accompanied, however, by the use of new physical ideas concerning the
character of the reflection amplitudes of the fluctuating field from the interfaces
of real bodies.

We believe that the infancy of this field of physics is over and that the Casimir
effect is on the threshold of becoming a subject of major importance in both fun-
damental and applied science. Many new exciting developments are anticipated.
We hope that this book will serve as a reference and resource for these future
developments.
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Erdélyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F. G. (1981). Higher
Transcendental Functions, Vol. 1. Kriger, New York.



References 719

Esquivel, R. and Svetovoy, V. B. (2004). Corrections to the Casimir force due
to the anomalous skin effect. Phys. Rev. A 69, 062102-1–12.

Esquivel, R., Villarreal, C., and Mochán, W. L. (2003). Exact surface impedance
formulation of the Casimir force: Application to spatially dispersive metals.
Phys. Rev. A 68, 052103-1–5.
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Pis’ma v ZhÉTP 36, 49–52 (JETP Lett. 36, 59–62).
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See also expansion heat kernel
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van der Waals, 676, 678
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conductivity
dc, 12, 13, 309, 310, 316–318, 324, 352,

378, 380, 401, 416, 418, 419,
439–441, 453, 528, 618, 621,
648, 649, 699

pure imaginary, 375, 376
static, 307, 308, 318, 333, 390, 582, 648

confidence interval, 522–524
confidence level, 13, 363, 377, 380, 522,

524, 525
conformal anomaly, 272
conformal time, 268, 271
contact potential, 534, 536, 541, 576, 581

See also residual potential
correction factor

to the Casimir energy, 335, 337, 364,
393, 494, 499

to the Casimir pressure, 334, 364, 394
to the Casimir-Polder energy, 430, 651

correction factors, 334, 338, 350, 471, 498
cosmic strings, 262, 276– 278
current

diffusion, 377, 380, 569, 620, 700
displacement, 375, 376, 400, 699
drift, 375–377, 380, 392, 400, 418

dielectric
ball, 71, 167, 193–196, 200–204, 206,

224, 225, 236
cylinder, 178, 216, 221, 222, 224
permittivity,

generalized plasma-like, 343–345,
347, 349, 352, 376, 393, 399,
553, 566

of the Drude model, 333
of the normal skin effect, 332

dilute approximation, 200, 201, 203, 207,
216, 225, 236

Dirac equation, 37, 125, 207, 266
direct measurement, 554, 575
Drude model, 331–338, 351, 361
dynamic magnetic susceptibility, 450, 451
dynamic polarizability, 423, 429

early Universe 8, 262, 276
effective action, 21, 49, 63, 67, 84, 91,

114, 116
effective temperature, 123, 124, 302
Einstein model, 268–270
Einstein relation, 378
Einstein’s equations, 270, 272, 273, 276

multidimensional, 274
electrostatic measurement, 537
elliptic boundary value problem, 39, 40
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energy-momentum tensor, 27, 34, 36, 37,
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262–264, 266, 268, 270–275,
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error
absolute, 521, 523, 527, 528, 548, 551,

555, 558, 565, 566, 574, 582,
587, 616, 644

of the force measurement, 689, 691
of the pressure measurement, 555

random, 521, 522, 524, 525, 539, 543,
549, 552, 564, 565, 569, 587,
594, 598, 608, 610, 693

systematic, 515, 521, 522, 524–527, 539,
549, 552, 555, 559, 564, 565,
587, 609, 645

theoretical, 526
total

experimental, 521, 524, 525, 588, 610
relative 525
systematic, 522, 610
theoretical, 527, 545, 547, 549, 560,

565, 590, 599, 615, 693
expansion

heat kernel, 7–9, 55, 59, 61, 62, 69, 72,
81, 84, 189, 211

high-frequency, 84
high-temperature, 83, 214, 215
large-mass, 69
low-temperature, 212
multiple-reflection, 84–88, 166
semiclassical, 84, 88, 257
Weyl, 63

extra dimensions, 265, 274, 684

Fermi–Dirac statistics, 378
Fermi energy, 281, 378
Fermi velocity, 339
fluctuation–dissipation theorem, 283, 323,

324, 699
force–distance

curve, 576, 586
measurement, 513
relation, 552, 584, 598, 604, 610

frequency cutoff, 56
Friedmann model, 6, 262, 270, 272

gauge
Coulomb, 39, 42, 44, 128, 148, 230
Lorentz, 36, 39

gauge-fixing term, 36
gauge transformation, 35, 36
grand unification theories, 262

half-quanta, 1
Hamaker constant, 290, 463

heat kernel, 60, 70, 81, 89, 185
local, 60
See also expansion heat kernel

hypothetical interaction
power-type, 683
Yukawa-type, 683, 687, 688

identification conditions, 24, 262–264
impurities, 344, 372
indirect measurement, 526, 553–555, 559,

564, 573
inflation, 273
inflaton field, 273
infrared optics, 333, 340, 342

Johnson noise, 375
jump into contact, 656, 659

Kaluza–Klein theories, 7, 262, 274
Klein-Fock-Gordon equation, 17, 33, 40
Kramers–Kronig relations, 310, 331, 344

generalized, 348

Lande factor, 451
Leontovich impedance, 339

for the Drude model, 385
Lifshitz formula, 287, 299, 351

at zero temperature, 287
for an atom above a plate, 422
for anisotropic plates, 321
for stratified and magnetic media,

290
Lifshitz-type formula, 423, 425, 449, 450,

666, 669, 671–673
light pressure, 615

magnetic moment, 449, 451
magnetic permeability, 110, 293, 294, 449,

450
magnetodielectric, 294, 449, 450
mass-shell equation, 355
Matsubara frequencies, 75, 118, 295, 297
Maxwell equations, 35, 282, 325, 670
Maxwell–Boltzmann statistics, 378, 445
measure of agreement between

experiment and theory, 529
Möbius strip, 26, 264
moduli, 682, 686, 695

Nernst heat theorem, 123, 305, 309, 355,
362, 365, 370, 373, 374, 377,
379, 380, 383, 399, 401, 404,
410, 416, 418, 419, 436, 444

Ninham–Parsegian representation, 312
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outlying results, 523, 558, 564, 587

paramagnetic atoms, 449, 450
parametric resonance, 134, 135
patch potentials, 526, 545, 563, 589, 614
penetration depth, 328, 340

relative, 328
See also skin depth

piezoelectric
actuator, 534, 542, 575, 576, 582–584,

586, 594, 596, 597, 601, 603,
604, 622, 640

element, 533
stack, 531
stage, 661, 664, 665
transducer, 573
translation, 532, 661
tube, 628–630

plasma
frequency, 329–332, 334, 348, 355, 356
model, 329
sheet, 666, 669, 670, 671, 673, 678
wavelength, 329, 331, 334, 377

point splitting, 56
Poisson summation formula, 76, 120, 358
polar dielectrics, 283, 319
polarization

electronic, 319, 320
ionic, 319, 320
orientation, 319, 320, 450
state, 2, 42–44, 109, 117
tensor, 115
vector, 42, 43, 108, 117, 168, 169, 175,

176, 194
See also separation of polarizations

quantum vacuum, 1, 7, 8
quasi-Euclidean models, 271

radiative heat transfer, 323
reflection amplitude, 650, 651
reflection property of the Riemann zeta

function, 82
regularization, 17, 19, 20, 21, 23, 31, 55,

57, 62, 64, 65, 67–70, 72, 76,
77, 90, 136, 142, 147, 156, 168,
198, 200–204, 276

cutoff, 55–57, 63, 67, 79, 189, 198, 203
Epstein zeta function, 144
point splitting, 56, 128
zeta function, 55–57, 59, 62–66, 76, 92,

107, 109, 110, 128, 147, 156,
171, 178, 180, 185, 189, 197,
198, 201, 202, 217

regularization parameter, 20, 56, 109, 140,
180, 181, 226

relaxation parameter, 332–334
See also residual relaxation

relaxation time, 451
renormalization, 17, 21, 32, 55, 56, 58, 60,

62, 64–66, 68–72, 110, 113, 142,
144, 147, 149, 156, 166–168,
178, 179, 185, 186, 188–190,
198, 207, 210, 211, 217

finite, 68, 79, 158, 186, 189
infinite, 68
of the cosmological constant, 21
of the geometrical object, 139, 147
ultraviolet, 83
zeta function, 65

renormalization condition, 292, 296
residual charge, 581
residual electrostatic force, 518, 520, 531,

532, 534, 537, 538, 578, 583,
586, 597, 598

residual gas pressure, 644
residual potential, 534–536, 538, 541, 542,

549, 551, 552, 557, 563, 575,
577, 583–585, 594–596,
603–607, 625, 626, 630, 631,
640, 662

residual relaxation, 372
residual resistivity, 372

Schwinger prescription, 352
screening length, 377, 378

Debye–Hückel, 378
Thomas–Fermi, 378

separation of polarizations, 168
See also polarization state; polarization

vector
skin depth, 328, 329, 340

relative, 328, 329
skin effect

anomalous, 326, 340–342, 382
normal, 332, 339, 382

sonoluminescence, 167
spatial dispersion, 325–327
spectrum

infrared, 319
ultraviolet, 312, 319

static atomic polarizability, 425
stiction, 656, 659, 661, 665
surface impedance, 340

exact, 343
See also Leontovich impedance

systematic deviations 521, 537, 538

T -matrix approach, 228
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T -matrix representation, 235
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TGTG representation, 235

See also T -matrix representation

thermal correction, 77, 79, 80, 121, 161,
164, 212–214, 299–301, 310,
314–318, 328, 356–364, 368,
371, 374, 383, 385, 393, 410,
436, 440, 555, 556, 579, 598

nonrenormalized, 156, 157, 161

relative, 314–318, 320, 362–364, 383,
390, 394, 580

to the Casimir energy, 164, 364,
382–384, 394

to the Casimir force, 164, 354, 532

to the Casimir–Polder energy, 434, 654

to the Casimir–Polder force, 436

to the Casimir pressure, 316, 317, 359,
360, 363, 382, 389, 391, 555

thermal equilibrium, 12, 73, 75, 117, 283,
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324, 362, 376, 380, 392, 400,
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third law of thermodynamics, 123, 307

See also Nernst heat theorem

three-layer system, 577, 622, 624, 680

time reversal symmetry, 376

topological defects, 262, 276–278

topology, 24, 33, 152, 153, 262, 264, 265,
270, 271, 273, 274
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non-Euclidean, 6, 7, 264–267, 273

of a 2-torus, 152, 262

of a 3-torus, 264, 265, 273

of a circle, 24, 25, 262

of a cylinder, 263

of the Euclidean plane, 263

of the Klein surface, 263

twisted field, 26, 265

ultraviolet divergences, 71, 76, 77, 84, 110,
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uniaxial crystals, 321
uniform distribution, 522, 524

vacuum
energy density, 21, 27, 28, 41, 42, 44,
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263, 261, 265, 269, 277

oscillations, 1, 3, 29
polarization, 6, 7, 33, 270–272, 276

van der Waals force, 5, 6, 8, 167, 308, 338,
393, 437, 460, 515, 516, 577,
618, 682

Van Vleck determinant, 89
Van Vleck paramagnetism, 449
verification of the hypothesis, 528
virtual photons, 5

See also zero-point oscillations

waves,
cylindrical, 177, 241
evanescent, 289, 299, 324, 382, 387–392
plane, 78, 241, 251, 374–376
propagating, 289, 299, 324, 387, 390
spherical, 173, 251
traveling, 11, 18, 351
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world line, 84, 92, 248, 257

Yukawa-type
corrections, 683, 686, 687, 690, 700
potential, 683

zero-point oscillations, 2–5, 7, 18, 33, 299,
500, 680

zeta function,
Epstein, 8, 136, 139–141, 144–146, 149
generalized, 57, 64, 192, 276
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