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PREFACE

The general subject of this book is the physical phenomenon named after the
Dutch physicist Hendrik Brugt Gerhard Casimir, who predicted it in 1948. In
the last fifteen years the Casimir effect has received widespread attention in both
fundamental and applied physics. This is due to the Casimir effect being a direct
manifestation of the most intriguing yet basic type of physical reality, i.e. the
quantum vacuum. The Casimir effect in its simplest form is the attraction of
a pair of neutral, parallel conducting plates resulting from the modification of
the electromagnetic vacuum by the boundaries. It is a purely quantum effect.
There is no force acting between neutral plates in classical electrodynamics. The
roots of the Casimir effect date back to the introduction by Planck in 1911 of
half-quanta in the context of black-body radiation. In quantum field theory, this
results in an infinite energy of the vacuum state (the so-called zero-point energy).
Casimir was the first to provide a method to subtract the infinite vacuum energy
in free Minkowski space from the infinite vacuum energy in the presence of plates.
Both infinite quantities were made finite through the use of a procedure called
regularization. After subtraction, the regularization was removed, leaving a finite
result, which leads to the Casimir force.

The Casimir force is closely connected with the well-known phenomenon of
the van der Waals force. It provides an extension of the van der Waals interactions
to larger separation distances between the interacting bodies, where relativistic
effects come into play. The Casimir effect has become an interdisciplinary sub-
ject. It plays an important role in various fields of physics such as condensed
matter physics, quantum field theory, atomic and molecular physics, gravitation
and cosmology, and also in mathematical physics. Most recently, the Casimir
effect has been applied to nanotechnology and for obtaining constraints on the
predictions of unification theories beyond the Standard Model. In many phys-
ical phenomena the Casimir effect plays a primary role, while in many others
it must be taken into account to provide a complete quantitative description.
Some examples are the formation of hadron masses, the interaction of thin films,
surface tension, bulk and surface critical phenomena, Bose—Einstein condensa-
tion, atom—surface interactions, the problem of the cosmological constant, the
interaction of cosmic strings, compactification of extra dimensions, stiction in
microdevices, and absorption phenomena in carbon nanotubes.

This book attempts to presents a comprehensive picture of the extensive
studies in the field of the Casimir effect and its applications. Equal emphasis
is placed on experiment and theory, and on fundamental and applied aspects.
The book is not a monograph in the literal sense of the word, because it covers a
wider range of diverse topics and even many subdisciplines of physics, for example
quantum field theory, condensed matter physics, atomic and molecular physics,
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gravitation and cosmology, mathematical physics, and nanotechnology. This is
due to the extraordinary role played in modern physics by the concepts of the
quantum vacuum and zero-point oscillations. Another unique feature of this book
has already been mentioned. It presents both experiment and theory, including
their mutual influence. To comply with the requirements of experiments, special
attention is paid to the Casimir force acting between real media, including effects
of nonzero skin depth, surface roughness, nonzero temperature, etc.

Although the book is not intended as a textbook (because it requires some
prior basic knowledge of both theory and experiment), it will serve as an intro-
duction to the subject. On problems where there is no consensus, the authors
provide a critical analysis of all the pros and cons. It is intended for all physicists,
both experimentalists and theorists, who are working on the various manifesta-
tions of vacuum oscillations. This includes not only experts in van der Waals
and Casimir forces but also those in elementary particle physics, condensed mat-
ter physics, atomic physics, and gravitation and cosmology. Applied physicists
working, for instance, on single-electron transistors or carbon nanostructures,
or on the design of new generations of microchips, nanotweezers, and nanoscale
actuators will find in the book material that is both interesting and illuminating,
and useful for their research.

Most of the text is written with sufficient detail, with explanations and links
to publications, that it can be used by advanced students, both undergraduate
and graduate, who are beginning work in the field of van der Waals or Casimir
forces and related subjects. It is expected that students will have a prior acquain-
tance with basic courses in electrodynamics and quantum mechanics. Some initial
knowledge of the elements of quantum field theory is also desirable. Postgradu-
ate scientists working on all the above-mentioned subjects can use this book as
a basic source of information and reference in their research.

Leipzig

St. Petersburg and Leipzig G.
Riverside

St. Petersburg and Leipzig V.
December, 2008

SEAW

M.

L.
U.
M.
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1

INTRODUCTION

1.1 Zero-point oscillations and their manifestations

The Casimir effect, discovered more than 60 years ago in the seminal paper by
Casimir (1948), is one of the most direct manifestations of the existence of zero-
point vacuum oscillations. For a long time Casimir’s paper remained relatively
unknown, but starting from the 1970s it has rapidly received increasing attention
and in the last few years has become highly admired.

The Casimir effect, in its simplest form, is the attraction between two elec-
trically neutral, infinitely large, parallel conducting planes placed in a vacuum.
This is an entirely quantum effect because in classical electrodynamics the force
acting between two neutral planes is equal to zero. So, it is only the vacuum of
the quantized electromagnetic field, i.e. the ground state of quantum electrody-
namics, which causes the planes to attract each other. According to Casimir’s
prediction, the attractive force per unit area, i.e. the pressure between two in-
finitely large, neutral parallel planes made of an ideal metal at zero temperature,
is given by

7% he
P(a) = P1M<a) = 240 a4. (1.1)
Here a is the separation distance between the planes, i is the Planck constant,
and ¢ is the velocity of light (below, the index IM is used where needed to
distinguish between results obtained for ideal metals and for real materials).

Below, we shall repeatedly derive eqn (1.1) in different formalisms (this will be
done for the first time in Section 2.5) and present the far-reaching generalizations
of this equation for the cases of real materials at nonzero temperature and for
bodies of various geometrical shapes. As an example, for two planes separated by
a relatively large (on the atomic scale) distance of @ = 1 pum, the Casimir pressure
(1.1) is P ~ 1.3 mPa, a macroscopic value. It is remarkable that a macroscopic
effect is caused by the quantum vacuum.

In fact, the roots of the Casimir effect date back to the introduction by Planck
(1911) of half-quanta. According to quantum mechanics, a harmonic oscillator
has discrete energy levels

E, = hw (n + %) : (1.2)

where w is the angular frequency of the oscillator, and n = 0, 1, 2, ... is the
number of energy quanta. From eqn (1.2) it follows that the energy of the ground
(vacuum) state which contains a number n = 0 of energy quanta is
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Eoy = (1.3)

2 )
i.e. it is not equal to zero. This is the energy of a zero-point oscillation with
frequency w.

The canonical quantization procedure of quantum mechanics relates the gro-
und state energy to the arbitrariness of the operator ordering in the definition
of the Hamiltonian operator H = H(p,§) by replacing the dynamical variables
p and ¢ in the classical Hamiltonian H(p,q) with the corresponding operator
quantities p and ¢. It must be underlined that the energy Ey of a vacuum state
containing a zero number of energy quanta cannot be observed by measurements
within the quantum system under consideration, i.e. in transitions between dif-
ferent quantum states, or, for instance, in scattering experiments. It may happen,
however, that the frequency w of the oscillator depends on some classical param-
eter (or parameters) external to the quantum system. It was as early as 1919
that the ground state (vacuum) energy was successfully used to explain the va-
por pressures of different isotopes. In this case the mass of the isotope plays
the role of the external parameter, leading to different oscillator frequencies for
isotopes of different masses [a historical review was presented by Milonni (1994)
and Rechenberg (1999)].

In the framework of quantum field theory any quantized field, the electro-
magnetic field for example, is considered as a set of oscillators of all frequencies.
Then, in accordance with eqn (1.3), the energy of the ground state of a field is
given by the sum of the energies of zero-point oscillations

h
EO — 5 ;th (14)

where the collective index J labels the quantum numbers of the field modes.
For instance, for the electromagnetic field in free Minkowski space, the modes
are labeled by a three-dimensional wave vector k with continuous components
and a two-valued discrete index fixing the polarization state. In bounded regions
of space, however, some of the wave vector components become discrete. As
an example, the tangential component of the electric field vanishes on a metal
surface, leading to a discrete component of the wave vector in the perpendicular
direction. Note that for a quantized spinor field, the right-hand side of eqn (1.4)
is negative (see Section 3.3 for more details). The sum (1.4) is clearly infinite, as
always happens in quantum field theory when one tries to assign a ground state
(vacuum) energy to each mode of the field. This is one of the manifestations of
the problem of ultraviolet divergences.

It was Casimir who first subtracted from the infinite vacuum energy of the
quantized electromagnetic field in the presence of ideal-metal planes the infinite
vacuum energy of the same field in free Minkowski space. Both infinite energies
were regularized, and after subtraction, the regularization was removed, leaving
a finite energy per unit area,
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which depends on the separation distance a between the planes. The Casimir
pressure (1.1) was then obtained as

E(a) = Env(a) = (1.5)

P(a) = D0 (1.6)

The removal of the infinite energy of vacuum oscillations in free Minkowski
space performed by Casimir is presently the standard procedure in textbooks
on quantum field theory. It is motivated by the fact that in all fields of physics,
with the exception of Einstein’s gravitational theory, energy is defined only up
to an additive constant. Thus it is generally assumed that all physical energies
should be measured starting from the top of the infinite vacuum energy in free
Minkowski space. As a result, effectively the physical energy of free space is
set to zero rather than being equal to infinity. Mathematically, the removal of
the infinite energy of the zero-point oscillations in free space is achieved by the
so-called normal ordering procedure. This operation is applied to the operators
of all physical observables, defined in free Minkowski space and prewritten in a
symmetrical form with respect to the creation and annihilation operators. It puts
all creation operators to the left of annihilation operators as if they commute
or anticommute depending on the spin of the field (Milonni 1994; Itzykson and
Zuber 2005; Bogoliubov and Shirkov 1982; Weinberg 1995).

It would be incorrect, however, to neglect the infinite zero-point energy found
in the presence of material boundaries, for example parallel metallic planes. In
that case the frequencies of field oscillators depend on the separation distance
between the planes and there is an infinite set of different vacuum states for
different separations. These vacuum states change continuously with adiabatic
changes in the separation distance between the planes. Thus, it is incorrect to
preassign zero energy to several states between which transitions are possible.
Here, in quantum field theory, the state of affairs is in perfect analogy to that
discussed above in quantum mechanics. In the presence of metallic planes, there
is an external parameter (the separation distance) which is similar to the mass
of an isotope and leads to different frequencies of oscillators of the quantized
field for different separation distances between the planes. Because of this, the
finite difference between the infinite zero-point energy in the presence of metallic
planes and that in free Minkowski space is an observable and gives rise to the
Casimir effect.

In the remainder of this section, we briefly discuss the relation of the Casimir
effect to other effects in quantum field theory connected with the existence of
zero-point oscillations. It is well known that classical external fields (the Coulomb
field, for instance) polarize the quantum vacuum (Itzykson and Zuber 2005).
The effect of polarization of the vacuum by an external field is described by
some nonzero vacuum energy depending on the field strength. The strength of
the external field is the classical parameter which plays the same role as the
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isotope mass or the separation distance above. In fact, material boundaries can
be considered as concentrated external fields. In this respect the Casimir effect,
which results in a vacuum energy such as that in eqn (1.5) in quantization vol-
umes restricted by material boundaries, is analogous to the polarization of the
vacuum by an external field. We can say, then, with reasonable accuracy that
material boundaries polarize the vacuum of a quantized field, and the Casimir
force acting on a boundary is a result of this polarization.

Another quantum vacuum effect connected with the existence of zero-point
oscillations is the creation of particles from the vacuum by an external field
(Greiner et al. 1985; Grib et al. 1994). In this effect, energy is transferred from the
external field to the zero-point oscillations (they are often referred to as virtual
particles) transforming them into real particles. As an example, a nonstationary
classical electric field can create electron—positron pairs from the vacuum. Al-
though a material boundary is somewhat analogous to an external field, there is
no particle creation from the vacuum in the case of static boundaries. However, if
the boundaries are nonstationary, and the boundary conditions depend on time,
there is particle creation from the vacuum in addition to the Casimir force. This
effect is often called the nonstationary or dynamical Casimir effect (see Section
7.7 for further discussion).

Zero-point oscillations of the quantized electromagnetic field also contribute
to many other effects of quantum electrodynamics in unbounded Minkowski
space that are not only vacuum processes, but also involve real particles. Exam-
ples are spontaneous emission from atoms, the Lamb shift, and the anomalous
magnetic moment of an electron (Milonni 1994). The contributions of zero-point
oscillations to such processes are usually called “radiative corrections”. These
processes are usually considered in textbooks on quantum electrodynamics. It is
significant that in free Minkowski space zero-point oscillations of quantized fields
may give rise to an observable effect only if real physical particles are involved
in the process. If there are material boundaries in Minkowski space, two types of
effects caused by the zero-point oscillations are possible. The first type includes
purely vacuum effects, such as the Casimir effect at zero temperature. In the
second type, real particles are present in addition to the boundaries.

Quantum processes in the presence of boundaries are studied by quantum
field theory with boundary conditions. This includes quantum field theory at
nonzero temperature in the Matsubara formulation, where, in order to intro-
duce the concept of temperature in quantum field theory, one must impose a
boundary-type “identification” condition in the Euclidean time variable (see Sec-
tion 5.1 for more details). In this book we shall consider quantum field theory
with external conditions only in application to the Casimir effect at both zero and
nonzero temperature. The Casimir effect in spaces with a non-Euclidean topol-
ogy will also be discussed. Similarly to the Matsubara formulation, there are no
boundaries in spaces with a non-Euclidean topology, but there are identification
conditions which play the same role as the boundary conditions.

There are many other effects studied in quantum field theory with boundary
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conditions, where zero-point oscillations lead to important contributions. One
example is provided by an atom whose spontaneous emission is changed in a
cavity. Another example is the so-called apparatus correction to the anomalous
magnetic moment of an electron. Here, the zero-point oscillations of the electro-
magnetic field (i.e. the virtual photons) that are responsible for the anomalous
contribution to the magnetic moment of an electron are affected by the bound-
aries. In both cases a real particle is involved in the process, and the quantity
to be considered is the expectation value of the energy operator in one particle
state instead of the vacuum. The same holds for the cavity shift of the energy
levels of a hydrogen atom. These topics, together with a number of related ones,
are called “cavity quantum electrodynamics” (Dutra 2005). They are outside the
scope of the present book.

1.2 Connection between van der Waals and Casimir forces

The Casimir force is closely related to the familiar phenomenon of the van der
Waals force (Parsegian 2005). The van der Waals attraction acts between two
nearby atoms or molecules even if neither has a permanent dipole moment (i.e.,
it is nonpolar). As a consequence, two neutral macrobodies separated by a short
distance of a few nanometers are also attracted by the van der Waals force.
Similarly to the Casimir effect, the phenomenon of the van der Waals force is
entirely of quantum origin. Although atoms, molecules, and neutral macrobod-
ies have zero net charge, they consist of moving charged particles producing a
fluctuating electromagnetic field in the interatomic (or intermolecular) space, in
close proximity to the surface of a macrobody (Kardar and Golestanian 1999).

The quantum theory of the van der Waals interaction was developed by Lon-
don (1930). The expectation values of the operators of the dipole moment are
zero for nonpolar atoms and molecules. However, the fluctuating electromagnetic
field induces instantaneous dipole moments in atoms and molecules. As a result,
the dispersion of the operator of the dipole moment is not equal to zero. Lon-
don obtained his expression for the interatomic (or intermolecular) interaction
potential in fourth-order perturbation theory for the interaction of a dipole op-
erator with a fluctuating electric field (the interatomic potentials are discussed
in Section 16.1). The result obtained is entirely quantum (because it depends
on fi), but it does not contain ¢, i.e. it is nonrelativistic. In fact the fluctuating
electromagnetic field can be considered as a model for zero-point oscillations. For
closely spaced separate atoms or two atoms belonging to different macrobodies,
a virtual photon emitted by one atom reaches the other atom during its lifetime.
The resulting correlated oscillations of instantaneously induced dipole moments
in both atoms give rise to the nonretarded (i.e. not dependent on ¢) van der
Waals force.

Let us now consider larger separation distances between the two atoms so
that a virtual photon emitted by one atom cannot reach the other during its
lifetime. This case was considered for the first time by Casimir and Polder (1948),
who investigated van der Waals forces in colloids. At such large distances, the
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usual nonretarded van der Waals force is absent. However, the correlation of
the quantized electromagnetic field in the vacuum state calculated at the two
spatial points where the atoms are situated is not equal to zero. Once again,
this leads to correlated oscillations of the induced atomic dipole moments and
results in an attractive interaction between the two atoms. This interaction,
named after Casimir and Polder, is not only quantum but also relativistic. It
depends on both A and ¢, and also on the atomic polarizability (see Section
16.1). Sometimes it is referred to as the retarded van der Waals interaction.
The existence of interatomic (or intermolecular) retarded forces leads to similar
forces acting between an atom (or molecule) and a macrobody and between two
macrobodies. The role of the relativistic effects increases with separation distance
and becomes dominant at separations of the order of hundred nanometers. The
generic name for both the van der Waals and Casimir interactions is dispersion
forces, because both of them are caused by dispersions of the operator of the
dipole moment (Mahanty and Ninham 1976).

The work by Casimir and Polder (1948) opened the way for the development
of a unified theory of van der Waals and Casimir forces between real materials.
This was done by Lifshitz (1956) in the case of plane parallel dielectric plates
described by a frequency-dependent dielectric permittivity. As is demonstrated
below, this theory reproduces all of the results of Casimir, London, and Casimir
and Polder in their respective limiting cases, and also provides smooth transitions
between them.

From the above discussion, it can be seen that the Casimir force between
material boundaries can be considered as simply the retarded van der Waals
force. The universality of eqn (1.1), which depends only on the fundamental
constants i and ¢ and does not depend on charges or other interaction constants,
is explained by the ideal-metal approximation used for the planes. On the surfaces
of real metals, the tangential component of an electric field is not precisely equal
to zero. As a result, there arise some corrections to eqn (1.1) for ideal-metal
planes which depend on the electron charge and other parameters. This prompted
Jaffe (2005) to argue that the Casimir effect should be tackled by the same
approaches as used for the vacuum polarization contribution to the Lamb shift.

A slightly different situation arises, however, for the Casimir effect in spaces
with a non-Euclidean topology, i.e. in the closed Friedmann model used in cos-
mology. In this case there are no material boundaries and no moving charged par-
ticles producing the fluctuating electromagnetic field. However, there are identi-
fication conditions imposed on field operators owing to the nontrivial topology
of space—time, which play the same role as boundary conditions due to material
boundaries. The role of a classical parameter is played by the scale factor of the
metric. As a result, a universal Casimir energy density similar to (1.5) arises,
which depends only on the fundamental constants and on the scale factor of the
metric (see Chapter 11). Thus, this kind of Casimir effect cannot be considered
as a close relative of the van der Waals forces.
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1.3 The Casimir effect as a multidisciplinary subject

From the above discussion it follows that the Casimir effect is a quantum and
relativistic phenomenon caused by the zero-point oscillations of quantized fields.
In a general way, it can be characterized as a specific type of vacuum polariza-
tion which depends on some external classical parameters and arises owing to
the presence of material boundaries or the non-Euclidean topology of a quantiza-
tion volume. The electromagnetic Casimir effect in the presence of real material
boundaries is a subset of the general dispersion forces and is closely connected
with subtle aspects of condensed matter physics. At the same time, the Casimir
effect for quantized fields of different spin in topologically nontrivial spaces goes
to the heart of gravitation, cosmology, and modern unification theories beyond
the Standard Model, including string theory. The quantum vacuum is the most
basic type of physical reality. Thus it is not surprising that the Casimir effect is
found to be important in practically all fields of modern physics. Quite recently,
nanotechnological applications of the Casimir effect have also become the subject
of intensive study.

Many fundamental results on the Casimir effect have been obtained using
quantum field theory. The calculation of the Casimir force is a particularly com-
plicated theoretical problem. In the simplest case of flat boundaries, the vac-
uum energy approaches infinity at large momentum, similarly to that in free
Minkowski space. Thus, for Casimir, it was sufficient to subtract the contribu-
tion of free Minkowski space in order to obtain a finite physical result. This is,
however, not the case for arbitrary domains bounded by curved surfaces (for
example, for the interior of a sphere). For curved boundaries, in addition to the
highest-order infinity (which is proportional to the fourth power of the cutoff
momentum and is the only one present for flat boundaries), there exist other,
lower-order infinities. An understanding of the general structure of these infini-
ties for arbitrary domains with ideal boundary conditions has been obtained by
using a combination of zeta function regularization and heat kernel expansion.
Remarkably, for closed configurations, i.e. for the Casimir effect for one body
instead of two, the Casimir force can be not only attractive but also repulsive.
As was shown by Boyer (1968), the latter is true for an ideal metal spherical
shell.

Investigation of the Casimir effect with quantum field theory has resulted
in three main applications which will be considered in the book. It has been
shown that the Casimir energy makes an important contribution to the total en-
ergy of a nucleon. In multidimensional Kaluza—Klein theories, the Casimir effect
provides a mechanism for spontaneous compactification of extra spatial dimen-
sions. Furthermore, measurements of the Casimir force in the laboratory help
us to obtain constraints on the parameters of the light hypothetical particles
predicted by many extensions of the Standard Model and on corrections to New-
ton’s gravitational law predicted by extra-dimensional physics with a low-energy
compactification scale.

In condensed matter physics, the Casimir effect leads to both attractive and
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repulsive forces in layered systems. It contributes to the interaction of a surface
with the tip of an atomic force microscope and should be taken into account in
the investigation of various properties of thin films, surface tension, and latent
heat. The Casimir effect plays a role in both bulk and surface critical phenomena
and depends on the concentration of free carriers in semiconductors.

Experimental and theoretical investigations of the Casimir force between both
metal and semiconductor test bodies have helped to formulate and solve some
important problems in thermodynamics and statistical physics related to the
interaction of a fluctuating electromagnetic field with real materials.

In atomic physics, the Casimir effect is important for the understanding of
atom—atom and atom-wall interactions. The Casimir force influences physical
processes in quantum reflection and Bose-Einstein condensation. Both Casimir
and van der Waals forces play a role in the absorption of atoms by various
microstructures, and specifically by carbon nanotubes.

In astrophysics, gravitation, and cosmology, the Casimir effect arises in space—
times with a nontrivial topology. The polarization of the vacuum due to the
Casimir effect plays a role in the resolution of the problem of the cosmological
constant. In some cosmological scenarios of the early Universe before the Big
Bang, this polarization drives the inflation process. The theory of structure for-
mation in the Universe employs the concept of topological defects, such as cosmic
strings, which produce a Casimir-type polarization of the vacuum.

In mathematical physics, the Casimir effect has stimulated the development
of powerful regularization methods based on the use of the Riemann and Epstein
zeta functions and the heat kernel expansion.

In addition to fundamental physics, the Casimir effect is quickly becoming a
part of nanoscience. Given the shrinking of microdevice dimensions to nanome-
ters, the important role of the Casimir force in the performance, fabrication, and
function of devices is now well recognized. Recent advances in the application
of the Casimir force to nanotechnology show that it is possible to exert control
over the sign of the force and its magnitude by optical modification of the charge
carrier density with laser light. This opens up prospects for a new generation of
nanodevices driven by the Casimir effect.

1.4 A guide to this book

The journal literature on the Casimir effect is quite extensive and contains many
hundreds of papers. However, there are only a few books devoted to this sub-
ject. The first book dedicated to the Casimir effect was published in Russia by
Mostepanenko and Trunov (1990). It covers all aspects of the theory, including
the Casimir interaction between real bodies, before 1989 but contains only a
very brief presentation of the preceding experiments. A slightly enlarged trans-
lation of this book into English was published later (Mostepanenko and Trunov
1997). The book by Milonni (1994) is partially devoted to the Casimir effect and
contains a detailed investigation of Casimir’s discovery in the context of quan-
tum electrodynamics and the concept of the quantum vacuum. This book has
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played an important role in drawing attention to the subject. A more specialized
book by Krech (1994) concentrates on the role of the Casimir effect in critical
systems. A more recent book by Milton (2001) is primarily devoted to the field-
theoretical aspects of the Casimir effect in ideal configurations and covers the
state of knowledge in 2000.

Since the publication of the previous books, the volume of scientific informa-
tion on the Casimir effect has more than doubled. In addition, new fundamental
methods have been developed and some basic concepts revised. This is true for
both experiment and theory. The present book sums up the state of the art in
Casimir research, including fundamental field-theoretical results and their adap-
tation to real material bodies, measurements and their comparison with theory,
and nanotechnological applications. The presentation of the three main lines
(the fundamental theory, real material bodies, and experiment) is performed in
three respective parts of the book, which are closely connected to each other and
contain a number of cross-references. Each part is based on the previous part;
nevertheless, individual parts of the book, with some obvious limitations, can be
used separately by experts in the respective areas.

Part T of the book presents the physical and mathematical foundations of
the Casimir effect in ideal configurations. In this part, all boundary surfaces
are assumed to be perfect, and Dirichlet, Neumann, Robin, semitransparent,
or identification-type boundary conditions are used. Chapter 2 presents simple
models to illustrate some key points in the theory of the Casimir effect. The
elementary approach to the Casimir force between two parallel ideally conduct-
ing planes is also contained here. Chapters 3 and 4 are central to the develop-
ments in Part I. In Chapter 3, field quantization in the presence of boundaries
is performed, and various representations of the vacuum energy are considered.
Propagators with boundary conditions are introduced. Chapter 4 contains the
general theory of regularization and renormalization in the case of the Casimir
effect. The regularization schemes presented here are repeatedly used in other
chapters of the book. The divergent part of the vacuum energy is found using
the heat kernel expansion. The finiteness of the Casimir force acting between
two solid bodies is also proved here.

The foundations of the Casimir effect at nonzero temperature are consid-
ered using the Matsubara approach in Chapter 5. Here, both high- and low-
temperature asymptotic expansions are discussed. In Chapter 6, several approx-
imate methods applicable to the calculation of the Casimir energy in general
geometries are discussed. In some cases, the method used does not by itself al-
low estimation of its accuracy (e.g. the proximity force approximation and semi-
classical approaches). However, by comparison with exact results in cases where
these are available, we can obtain reliable quantitative values for the accuracy
and justify the use of such methods in the comparison of experiment with theory.

Chapters 7 and 8 are devoted to the Casimir effect for the configurations
of two parallel planes and a rectangular box, respectively, with ideal boundary
conditions. The important results for various fields, using various regularizations
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at zero and nonzero temperature, are discussed. The case of mixed boundary
conditions is considered. Nonparallel planes (a wedge) and moving planes (the
dynamical Casimir effect) are also briefly considered. Special attention is paid
to the repulsive Casimir force arising in a rectangular box with particular ratios
of the sides. Novel results on the Casimir piston are also discussed.

Chapter 9 presents important results on the Casimir effect for spherical and
cylindrical shells with various boundary conditions. These configurations present
good and informative examples for the general methods developed in Chapters 3
and 4. Chapter 9 also includes the Casimir effect for a dielectric ball. This finds
applications in the bag model of quantum chromodynamics. In Chapter 10 a new,
powerful description of the Casimir energy based on functional determinants is
presented. This description allows one to make exact calculations of the Casimir
energies and forces in general geometries. Special attention is paid to a spherical
and a cylindrical shell above a plane. In both cases, exact solutions have recently
been obtained. These solutions can be compared with the approximate results
and thus can be used for determination of the accuracy of these results. In
Chapter 11, a few examples of the Casimir effect in spaces with a non-Euclidean
topology are presented. Here, the Casimir effect arises not because of the presence
of material boundaries but because of identification conditions. The interactions
of cosmic strings, along with applications to cosmology and the compactification
of extra dimensions, are briefly discussed.

The primary purpose of Part I is to prepare the reader for the investigations
of the Casimir effect between real bodies. Because of this, many results of purely
mathematical character considered in the literature (such as the Casimir effect
in multidimensional boxes, for automorphic fields, and for numerous topologies
of space) are not covered. Here, we provide only selected references.

In Part II of the book, we concentrate on the Casimir force between real
material bodies. This subject is in fact intermediate between the general theory
and the experimental investigation of the Casimir effect. Experiments deal with
real bodies that have a nonzero skin depth and are bounded by rough surfaces,
not with perfectly shaped surfaces made of an ideal metal. Thus, to compare
experiment with theory, the properties of real material boundaries must be taken
into account. The theoretical methods presented in Part IT were mostly developed
during the last ten years in response to experimental advances. As will be clear
from Part II of the book, surprisingly, the adaptation of the general theory of
the Casimir effect between ideal boundaries to the experimental conditions is
physically nontrivial. This presents an important theoretical challenge to some
fundamental physical principles and has given rise to controversial opinions.

In Chapter 12, we present the main results of the Lifshitz theory, giving a
unified description of both the van der Waals and the Casimir force between
plane dielectrics. Various formulations of the well-known Lifshitz formula at zero
and nonzero temperature are considered in terms of both real and imaginary
Matsubara frequencies. The asymptotic expansions of the Lifshitz formula at low
temperature are found, and the consistency of the Lifshitz theory with the third
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law of thermodynamics (which depends on the conductivity properties of the
dielectric) is investigated. The results of numerical computations of the Casimir
free energy per unit area and the pressure in a configuration of two dielectric
semispaces are presented. The version of the Lifshitz formula for anisotropic
plates is also provided. Some attention is paid to the closely related Lifshitz-
type formula for radiative heat transfer through a vacuum gap. At the end of
Chapter 12, we discuss the application region of the Lifshitz theory in connection
with the effects of spatial dispersion.

Chapters 13 and 14 are devoted to the Casimir interaction between two par-
allel plates made of real metals at zero and nonzero temperature, respectively.
Here, a perturbation theory in terms of the relative skin depth of the electro-
magnetic oscillations and the relative temperature is developed. The Kramers—
Kronig relations and tabulated optical data are applied to find the dielectric
permittivity of a real metal along the imaginary frequency axis. The computa-
tional results at zero temperature are shown to be in good agreement with the
analytic perturbation theory. The plasma model, the Drude model, and a gen-
eralized plasma-like model that takes into account interband transitions of core
electrons are considered. Special attention is paid in Chapter 14 to the problem
of the zero-frequency term in the Lifshitz formula. Several approaches to the de-
termination of this term proposed in the literature are analyzed. Computational
results for the Casimir free energy, pressure, and entropy are obtained in the
framework of each approach. The approach based on the use of the Drude model
is shown to be in violation of the third law of thermodynamics in the case of
perfect crystal lattices. It also violates the classical limit. Possible physical rea-
sons for this are discussed. The Lifshitz formula, in application to real metals,
is reformulated in terms of the Leontovich surface impedance. The generalized
plasma-like model and the impedance approach are shown to be in agreement
with both the third law of thermodynamics and the classical limit. The role of
evanescent and traveling waves in the Casimir interaction between metals is con-
sidered. The subjects of Chapters 13 and 14 are used extensively in Part III of
the book in the analysis of measurements of the Casimir force between metal
test bodies.

In Chapter 15, the Casimir interaction between a metallic plate and a dielec-
tric plate is considered. The results for the free energy, pressure, and entropy
are obtained both analytically, using perturbation theory, and numerically, with
the use of optical data. These results are compared with those for two dielectric
plates. The consistency of the Lifshitz formula with the third law of thermody-
namics is demonstrated for the interaction between a metal and a dielectric only
when the static dielectric permittivity of the dielectric is finite. If it is infinite,
the third law of thermodynamics is violated. The results of Chapter 15 are used
in Part IIT of the book in the interpretation of the experiments on measuring the
Casimir force between metal and semiconductor test bodies.

Chapter 16 deals with the application of the Lifshitz theory to atom—wall in-
teractions. It starts from the derivation of the van der Waals and Casimir—Polder
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interatomic potentials. Then the Lifshitz formula for an atom near a cavity wall
is obtained. The atom—wall interaction is investigated for the cases of metal and
dielectric walls. Various approaches to the inclusion of the dc conductivity of a
dielectric wall are considered in connection with the requirements of thermody-
namics. The impact of magnetic properties on the atom—wall interaction is briefly
presented. The atom—wall interaction out of thermal equilibrium is discussed for
use in the interpretation of experiments on Bose—Einstein condensation (Chapter
22). The interaction of hydrogen atoms with a graphite wall is also calculated,
keeping in mind the application to carbon nanostructures to be discussed in
Chapter 23 of the book.

Chapter 17 is devoted to the calculation of the Casimir force between cor-
rugated surfaces and in the presence of surface roughness. This subject is very
important for all applications of the Casimir effect. The approximate method of
pairwise summation is the simplest method, though not always an exact one, for
taking account of the effect of corrugations and surface roughness described by
analytic functions for real bodies of finite conductivity. This method is devel-
oped in the chapter and compared with the proximity force approximation. The
corrugations and surface roughness are described by using perturbation theory
in terms of relative roughness (or corrugation) amplitudes. Stochastic roughness
is also considered in the same way. The consideration of corrugated surfaces
leads to an important prediction about the existence of a lateral Casimir force.
The experimental confirmation of this prediction is presented in Part ITI. The
application region of the pairwise summation method for rough and corrugated
surfaces is determined by the more fundamental path integral approach (which
is valid for ideal metal boundaries) and by the statistical approach, taking the
roughness correlation length and the nonideality of the metal into account. The
role of surface roughness in the atom-wall interaction is discussed at the end of
the chapter.

The most striking developments in the Casimir effect during the last ten
years are new, more precise measurements of the Casimir force using modern
technology. These measurements allow a quantitative comparison between ex-
periment and theory. They have opened up promising opportunities for the use
of the Casimir effect in nanotechnology and as a test for fundamental physical
theories. Part III of the book covers all of these subjects.

In Chapter 18, the general requirements for Casimir force measurements are
considered. Here, a brief survey of older experiments is presented and the ex-
perience from these experiments is summarized. Special attention is paid to the
determination of the experimental errors, theoretical errors, and their combina-
tion. The methods for comparison of experiment and theory for measurements
of the Casimir force are described.

Chapter 19 is devoted to measurements of the Casimir force between metal
surfaces. The presentation starts with a discussion of an experiment using a
torsion pendulum and a series of experiments with an atomic force microscope.
The experimental configurations used were those of a spherical lens and a sphere
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above a plate, respectively. The experiments with the atomic force microscope
demonstrated for the first time the corrections to the Casimir force due to the
nonzero skin depth and surface roughness. The discussion of all of the experi-
ments in this and the following chapters of Part III is combined with a careful
comparison with the theory of the Casimir effect between real bodies presented in
Part II of the book. Next, Chapter 19 presents experiments with a micromechan-
ical torsional oscillator. In these experiments, which are the most precise ones
to date, both the Casimir force between a plate and a sphere and the equivalent
Casimir pressure between two parallel plates were measured. The comparison
of the experimental results with theory leads to important conclusions concern-
ing the validity of the various theoretical approaches to the thermal Casimir
force discussed in Part II. In particular, the approach using the Drude dielectric
function to determine the zero-frequency term in the Lifshitz formula is exper-
imentally excluded at the 99.9% confidence level. Then, an experiment using a
linear piezoelectric transducer is presented. This experiment exploits the original
Casimir configuration of two parallel plates. The chapter ends with a discussion
of several related experiments.

Chapters 20 and 21 contain presentations of experiments on measuring the
Casimir force between a metal and a semiconductor and of the force in configu-
rations with corrugated surfaces, respectively. Three experiments on the Casimir
interaction between a metallized sphere and a semiconductor plate, considered
in Chapter 20, allowed one to measure the change in the magnitude of the force
due to a change in the semiconductor charge carrier density and to demonstrate
modulation of the Casimir force with laser light. A comparison of the optical-
modulation experiment with theory shows that an approach taking into account
the zero-frequency conductivity of dielectric materials is experimentally excluded
at a 95% confidence level. The use of corrugated surfaces allows one to study
the nontrivial boundary properties of the Casimir force and to demonstrate for
the first time the physical phenomenon of the lateral Casimir force, which was
previously predicted theoretically (see Chapter 17).

Chapter 22 discusses measurements of the Casimir—Polder force in the exper-
iments on Bose—Einstein condensation and quantum reflection. Special attention
is paid to an experiment where the thermal Casimir—Polder force was measured
for the first time (Obrecht et al. 2007). The experimental data are shown to be in
disagreement with a theoretical approach taking into account the dc conductivity
of dielectric materials.

In Chapter 23, the applications of the Casimir effect in nanotechnology are
considered. This is a new and a rapidly developing subject, driven by the focus
on miniaturization in modern technologies. When the characteristic sizes of the
elements of microdevices and/or the surface separations shrink below a microm-
eter, the Casimir force becomes comparable to the characteristic electrostatic
forces and must be taken into account in device design, operation, and fabrica-
tion. We discuss the actuation of microelectromechanical systems by the Casimir
force and its influence on the oscillatory behavior of microdevices. The role of
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the Casimir effect in carbon nanostructures is also analyzed.

The last chapter in Part III, Chapter 24, is devoted to the constraints on
non-Newtonian gravity which follow from the Casimir effect. Many extensions of
the Standard Model, including supersymmetry, supergravity, and string theory,
predict corrections to Newton’s law of gravitation. These corrections follow from
the exchange of light elementary particles between atoms of macrobodies and
from extra-dimensional physics with a low-energy compactification scale. The
measurements of the Casimir force and the extent of the agreement between the
experimental data and theory lead to the strongest constraints on the correc-
tions to Newtonian gravitation over a wide interaction range. In this chapter we
present the constraints on the Yukawa-type corrections to Newton’s law follow-
ing from older measurements of the Casimir force between dielectric plates and
from all modern measurements between metal plates. The so-called Casimir-less
experiment, where the influence of the Casimir force is canceled, is also discussed.

The book ends with Chapter 25, containing our conclusions and outlook. The
main conclusion is that we have already achieved very good agreement between
the theory, adapted to the case of real material boundaries, which is presented in
Part IT of the book, and the measurements of the Casimir force. A generalization
of this theory to the case of materials with spatial dispersion and a more funda-
mental approach to the Casimir effect at nonzero temperature are expected in
the near future. Applications of the Casimir effect in both fundamental physics
and nanotechnology appear very promising and may have an unexpected impact
on basic scientific concepts and technological approaches.

The main notation used in this book is as follows. In relativistically covariant
expressions, Greek indices «, 3, ..., u, v,... take the values 0, 1,2, 3, and Latin
indices 14, k, [, ... take the values 1,2,3. Capital Latin letters (J, J' etc.) are
used as collective indices to denote a collection of quantum numbers. The scalar
product of the 4-vectors a and b is written as

a, b = a"b, = g,a'b’ = g"a,b, = apbo — a - b,

where g,,,, is the metric tensor having the signature (+, —, —, —). The repetition
of an index in the lower and upper positions implies a summation over this index.

In Part I of the book (with exception of Chapter 2), we use a system of units
in which 2 = ¢ = 1. However, in some final expressions of major importance,
the usual units are restored. In Parts II and III, which deal with real materials
and experiments, the fundamental constants in all mathematical expressions are
explicitly indicated. The electromagnetic equations are written in the Gaussian
system of units. Some values of experimentally measured quantities and simple
formulas are given in the International System (SI) of units. This is indicated
in the text. When this does not create confusion, operators and c-functions are
notated in a similar way. Other special notations particular to a chapter are
introduced where necessary.
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2

SIMPLE MODELS OF THE CASIMIR EFFECT

In this chapter we discuss several basic ideas and methods related to the calcu-
lation of the Casimir energies and forces in some simple models. The simplicity
of these models allows one to avoid cumbersome mathematical calculations and
to demonstrate the basic problems that will be repeatedly considered in the fol-
lowing chapters of this book in a more sophisticated context. Such important
procedures as regularization and renormalization of infinite quantities are illus-
trated here both physically and mathematically in a manner readily accessible
to all physicists, not just to experts in quantum field theory [see also the re-
view papers by Plunien et al. (1986) and Mostepanenko and Trunov (1988)].
The complete field quantization procedure in the presence of boundaries will be
covered in Chapter 3. Despite the elementary character of the present chapter,
we discuss the main physical situations where the Casimir effect arises (i.e., in
regions with boundaries and in spaces with a nontrivial topology). We consider
also local and global approaches to the Casimir effect and derive well-known
formulas (1.1) and (1.5) for the electromagnetic Casimir pressure and energy per
unit area between two parallel ideal-metal planes. A more detailed derivation
and far-reaching generalizations of these formulas can be found in the following
chapters of the book.

2.1 The scalar Casimir effect on an interval

We start with a scalar field (¢, 2) which depends on the time ¢ and one co-
ordinate z = z', obeying the Klein-Fock-Gordon equation in two-dimensional
space—time
m2c?
Oz p(t, z) + NN
Here m is the mass of the field and the two-dimensional d’Alembert operator is
defined by

o(t,x) = 0. (2.1)

Po(t,r)  O%p(t,x)
o2 922
Note that this scalar field in two-dimensional space—time is dimensionless.
Let us consider the properties of the scalar field defined on an interval 0 <
x < a with Dirichlet boundary conditions imposed at its ends,

»(t,0) = p(t,a) = 0. (2.3)

Next we shall consider the scalar field along the entire axis —oco < z < co. In
both cases our primary goal is to find the spectrum of scalar oscillations.

Oz p(t,z) = Cl2 (2.2)
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For the case of the interval [0, a], the scalar product of the two (in general
complex) solutions of eqn (2.1), f and g, is

A .09 OfF
=i [ae (552 - ). (24)

where 79 = 2% = ct. From eqn (2.1), it follows that (f,g) does not depend on
time. One may readily check that the complete orthonormal set of the positive-
and negative-frequency solutions of eqn (2.1), obeying the boundary conditions
(2.3) and satisfying the equalities

+
(#),65) = our, (62,65) =0, (2:5)
is given by
e \ /2
B (t,z) = — Flonl gin k. 2.6
At = () o sina (26)
Here, the discrete oscillation frequencies and the wave numbers are given by
m2ct 219 1/2 ™
wn=< 2 —l—ckn) , kn:7, n=123,... (2.7)

and 0, is the Kronecker delta symbol.

In Section 2.4 we shall consider the quantization procedure of the field ¢(¢, z),
define the vacuum state |0), and ensure that the quantities w, in eqn (2.7) are
exactly the frequencies of the zero-point oscillations entering eqn (1.4) in the
Introduction. Thus, the energy of the ground state (i.e. the vacuum energy) of
a field (¢, x) on an interval is given by

B he= /m2c*  Ar2n? 1/2
Eo(a,m):izwn:52<7+7> . (2.8)
n=1 n=1

If the field o(t,x) is defined on the entire axis —oo < = < oo, the scalar
product of the two solutions of eqn (2.1) takes the form

A «0g Of
(f7g)—1/ dx( 5‘—550_(%09)’ (2.9)

—00

which is similar to eqn (2.4). In this case the complete orthonormal set of solu-
tions of eqn (2.1) obeying the boundary conditions (2.3) satisfies the equalities

(o, 0) = w0t — k), (#1707 =0, (2.10)

where the positive- and negative-frequency solutions are the traveling waves

on (b ) = (

1/2
Fi(wrt—ka) 2.11
47ka> ¢ ( )
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Here, the continuous oscillation frequencies are defined as

2 4 1/2
wp = (m ¢ +02k2> , (2.12)

hZ

with a continuous wave number —oco < k < oo, and 6(k — k') is the one-
dimensional delta function.

The energy of the vacuum state of the field (¢, z1) on the entire axis is given
by

ho[* dk oo (m2t )\

oo 2T

In this case the sum (1.4) is interpreted as an integral with the measure dk/(27),
and L — oo is the length of the axis (referred to as the normalization length).
The lower index M in the vacuum energy (2.13) labels the case of an unbounded
one-dimensional space and one-dimensional time, which is a simple analogue of
the free Minkowski space—time.

The expressions (2.8) and (2.13) for the vacuum energy of the scalar field in
two-dimensional space—time on an interval and on the entire axis, respectively,
are both infinite. They diverge at large values of n and k. Such expressions are
the standard starting point in the theory of the Casimir effect. To deal with
infinite quantities in a meaningful way, one must first make them finite. This
is achieved by using what is referred to as a regularization procedure. There are
many different regularization procedures that have been proposed in the litera-
ture, and some of them are discussed in this book. Here, we use the most simple
one, which introduces an exponential cutoff function of the forms exp(—dck,,) and
exp(—dck) after the summation and integration signs in eqns (2.8) and (2.13),
respectively, where § > 0 is a parameter. After all of the operations with the
regularized finite quantities have been performed, the regularization is removed
by putting & — 0. It is necessary to prove that the result obtained does not
depend on the specific form of the cutoff function employed in the regularization
procedure.

Now we apply the regularization procedure to eqn (2.8). For simplicity, we
consider only the massless field with m = 0 and omit the argument m in the
vacuum energies. From eqn (2.8), we obtain the regularized vacuum energy of a
massless field on the interval (0, a),

h = cmn cm™n whe | . _odcm
EY0) =5 3 Srew (05F) = Tremon )

This quantity is finite, but it diverges when 0 goes to zero. In the limit of small
J, one obtains from eqn (2.14)
ha whe

() 2
E = —— 4 0(5%. 2.1
0 (@) 9rcd?  2da (6%) (2.15)
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This equation represents the vacuum energy as the sum of a singular term and
a finite contribution. The latter contains a term E(a) that does not depend on
the regularization parameter 9.

Next we apply the regularization procedure to eqn (2.13), i.e. to the vacuum
energy of a scalar field on the entire axis. Keeping m = 0, we obtain

8) _ée hL
E) = QW/ kdke "ML= . (2.16)

This is the regularized vacuum energy for the entire axis.

Let us now separate out the interval (0, a) of the entire axis without imposing
any boundary conditions at = 0 and = a. According to eqn (2.16), the
vacuum energy for such an interval is

(9)
) (a) _ EOMa _ ha )
M L 2mcd?

(2.17)

This result should be compared with eqn (2.15), obtained for the same interval
with the boundary conditions (2.3). It is notable that eqn (2.17) coincides with
the first term on the right-hand side of eqn (2.15), diverging when ¢ goes to zero.
Following Section 1.1, in order to obtain a finite physical result one must
subtract the infinite vacuum energy (2.17) for a field on an unconstrained interval
(with no boundary conditions) from the infinite vacuum energy (2.15) for an
interval constrained by the boundaries. This leads to the finite quantity

I
E®)(a) = B (a) — B (a) = ng; +0(62). (2.18)
By removing the regularization, we obtain the Casimir energy for the scalar field

on an interval,

E(a) = lim E® () = — 2

— 2.19
§—0 24a ( )

This result is analogous to eqn (1.5), obtained for the vacuum energy of the elec-
tromagnetic field between ideal-metal planes. In the next section, we shall show
that eqn (2.19) does not depend on the form of cutoff function used. We shall
see that eqn (2.19) retains its validity for any regularization function satisfying
some general requirements. The magnitude of the Casimir energy E(a) increases
monotonically as the boundary points approach each other. From eqn (2.19), the
Casimir force acting between the boundary points of the interval is
OE(a) mhe

Fla)= —— 2 = 2= (2.20)

This is similar to the electromagnetic Casimir pressure (1.1) between two parallel,
ideal-metal planes.

Equation (2.18) is a typical example of what are commonly referred to as sub-
traction procedures, used in quantum field theories in order to remove infinities
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from divergent expectation values of physical quantities. Usually, the subtrac-
tion of any infinite quantity is interpreted as a renormalization of some physical
constant in the bare effective action (see Chapter 4 for more details). In the
simplest case considered in this section, we have subtracted a quantity equal to
the vacuum energy for an unbounded axis in a given interval. Below, we shall
demonstrate that the subtraction of the vacuum energy density and pressure of
an unbounded Minkowski space can be formally interpreted as a renormalization
of the cosmological constant.

The above results are easily generalized to other types of boundary conditions.
It is of interest to consider a Dirichlet boundary condition at x = 0 and the
Neumann boundary condition at x = a,

o(t,0) = Oop(t, )

o =0. (2.21)

r=a

Such conditions are sometimes called unusual, hybrid, or mized. The complete
orthonormal set of solutions of eqn (2.1) has the same form as eqn (2.6), with

us 1
kn = — =, =0,1,2,.... 2.22
a<n+2> n=>0 (2.22)

For a massless field, the regularized vacuum energy is given by

h 1
E(()(s)(a) _n Z e <n + 5) e—dcm(2n+1)/(2a)

2 n=0 a
I 0 ]

= X7 coth 27 csch 28 (2.23)
8a 2a 2a

In the limit of small §, we obtain

ha whe

= ores? T 18a

EY (a) +0(5%). (2.24)
Importantly, the divergent term has the same form as in eqn (2.15) and is, thus,
equal to the contribution of free space (2.17). As a result, the Casimir energy
of a scalar field on an interval with the boundary conditions (2.21) is positive
(Fulling et al. 2007a), and the respective Casimir force is repulsive:

whe whe

Bla)= T Fla)= 155 (2.25)

Below, we shall discuss many situations where the Casimir force can be both
attractive and repulsive.

2.2 The Abel-Plana formula and regularization

Discrete sums and integrals with respect to a continuous variable, such as those
in eqns (2.8) and (2.13), respectively, are of frequent occurrence in calculations of
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the Casimir effect. In some cases the handling of such quantities can be simplified
with the help of the Abel-Plana formula (Erdélyi et al. 1981),

> F(n) - /0 h F(t)dt = %F(O) +i /O Tt [F(it) — F(—it)],  (2.26)
n=0

eQﬂ't —1

where F'(z) is an analytic function in the right half-plane. This formula was first
applied to the theory of the Casimir effect by Mamayev et al. (1976).

To illustrate the utility of eqn (2.26), we apply it to the massive scalar Casimir
effect on an interval. We start by setting

h
F(n) = iwnf(wmé), (2.27)
where w,, is determined in eqn (2.7). Here, f(w,d) is some cutoff function which
decreases monotonically sufficiently fast with increasing w that both the sum
and the integral in eqn (2.26) converge:

fw,8) =0 when w— oo forall 4§ #0. (2.28)
This function must also satisfy the conditions
f@,0) <1, f(w,0)=1. (2.29)

It is evident that in the limiting case § — 0, the integral on the right-hand side of
eqn (2.26) does not depend on the specific form of f(w, §). This follows from the
exponentially fast convergence of this integral, which permits taking the limit
6 — 0 under the integral. Thus, one can simply omit the cutoff function in all
calculations, as we do below. At the same time, the independence of the results
obtained of the form of the cutoff function is automatically guaranteed. This is
true for all applications of the Abel-Plana formula, and is not limited to the
scalar Casimir effect on an interval.
As a result, by separating the term with n = 0, we obtain

Z F(n) = % + Eo(a,m), (2.30)
n=0

where Ey(a,m) is defined in eqn (2.8). In a similar manner, taking into account
the change of variable ak = nt, we find

/OO dt F(t) = EOMT(”‘)" — Eou(a,m), (2.31)
0

where Egy(m) is defined in eqn (2.13). Then the Casimir energy

E(a,m) = Ey(a,m) — Eom(a, m) (2.32)
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is found from the Abel-Plana formula (2.26) with the regularization already
removed:

mc? whe [ dt

Blaym) = = 4150 | o Galit) — Gal-io)]. (2.33)

Here, the function G 4(¢) is defined by

1/2 mca
A= —.
mh

Ga(t) = (A% + %) (2.34)

It is useful to consider the more general function fo)(z)7 which is defined by
G (z) = ex A+, (2.35)

This has branch points z7 2 = +iA. By going around the branch points, one can
prove the equality

G (it) — G (=it) = 2ie® ™"~ gin o O(t — A), (2.36)

where 6(x) is the step function. For @ = 1/2, one obtains eqn (2.34) from
eqn (2.35), and

1/2

Galit) — Ga(~it) = 21 (2 — A4%)/* ot — 4) (2.37)

from eqn (2.36).
Substituting eqn (2.37) in eqn (2.33), one arrives at

VYo (2.38)

~mdc®
FE =
(a,m)  dwa /QH ev —1

where 27t = y and mA = mca/h = p (the latter parameter has the meaning of a
dimensionless mass). The first contribution on the right-hand side of eqn (2.38)
is associated with the total energy of the boundary points. It does not depend
on a and hence does not contribute to the Casimir force.
For =0 (m = 0), eqn (2.38) leads to
he [ ydy mwhe

E(CL,O):E(CE):—R A oV —1 :—%, (239)

in agreement with eqn (2.19). In the opposite case of large masses, u > 1, we

get
2

mce ﬁc\/_
E - — 2.40
(am) ~ T - e, (2.40)
i.e. the distance-dependent term is exponentially small. The same is obtained
for a configuration of two parallel planes in three-dimensional space-time for
massive fields with spins 0, 1/2, and 1. This is valid, however, only for plane
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boundaries. If some curvature is present, either in the boundary or in space—
time, the Casimir energy may depend on the mass of the field in accordance
with powers of some geometrical characteristic, such as the curvature radius.
For scalar fields with mixed or antiperiodic boundary conditions (see the pre-
vious and the next section, respectively) and also for spinor fields, a modification
of the Abel-Plana formula is useful for summation over half-integer numbers:

iF (n + %) - /Ooo F(t) dt = —i/ooo e%f% [F(it) — F(=it)].  (2.41)

Further generalizations of the Abel-Plana formula are discussed by Mostepa-
nenko and Trunov (1997) and by Saharian (2006a).

2.3 The scalar Casimir effect on a circle

As noted in Section 1.1, when the topology of the space is nontrivial (i.e., non-
Euclidean), identification conditions may be imposed on fields. These are similar
to boundary conditions for classical material boundaries. The simplest example
is provided by the interval 0 < x < a whose initial and end points are identified
by means of the following periodic conditions:

@(tv O) = QO(L a)v 895(,0@, $)|;1;:0 = ang(t, x)|aj:a . (242)

The geometrical image of an interval with the identification conditions (2.42)
is a circle of circumference a. Both manifolds are flat, but their topologies are
different. Interval I [Fig. 2.1(a)] possesses a Euclidean topology, whereas the
same interval with the conditions (2.42) possesses the topology of a circle S!
[Fig. 2.1(b)]. In all cases the scalar field satisfies equs (2.1) and (2.2). Here, for
S1, in contrast to eqn (2.3), new solutions are allowed, such that ¢ # 0 at the
points x =0, a.

The complete orthonormal set of positive- and negative-frequency solutions
of eqns (2.1) and (2.2) with the identification conditions (2.42) can be written
in the form

RS

(a) (b) ()

Fia. 2.1. Three one-dimensional flat manifolds, with (a) Euclidean topology,
and the topology of a circle with (b) periodic and (c) antiperiodic identifica-
tion conditions.
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1/2
@;i)(tvx) — (Qaw ) e¥1(wnt—knz)7 (243)

2,4 1/2

2

wn:<m20 +02k72l> ) kn:ﬂ; n=0,=%1, %2, ....
h a

These solutions satisfy eqn (2.5). The only difference from eqn (2.7) is in the
values of the wave numbers k,,. This leads to different oscillator frequencies than
for the scalar field on the interval considered in Section 2.1.

The vacuum energy of the field (¢, 2) on a circle S! is given by

Eo( Z wn—thn wo—thn—— (2.44)

(here we have used the evenness of w,, in n). In the same way, as in Section 2.2,
the Casimir energy is obtained by subtracting the contribution of free Minkowski
space within the length of the interval

E(a,m) = Ey(a,m) — Eom(a, m), (2.45)

where Eon(a, m) is defined in eqns (2.13) and (2.31).
Substituting eqns (2.44), (2.13), and (2.31) in eqn (2.45), we obtain

2 e 00
E(a,m) = _% R wa - %/O wkdk]
n=0
mc  27he | e o
=+ > VB2 +n? —/ VB2 +t2dt|, (2.46)
n=0 0

where B = mac/(2nh) and ak = 2nt. The Casimir energy (2.46) can be calcu-
lated by using the Abel-Plana formula (2.26) and eqns (2.34) and (2.37), leading
to the following result:

E(a,m) = _he /OO VYo (2.47)

dy.
Ta e¥ —1 4

Here, 27t = y as in eqn (2.38) and the dimensionless mass is y = mca/h = 27 B.
It is notable that the term
1 27rhc mc?

5F(0)=—=B=— (2.48)

on the right-hand side of the Abel-Plana formula cancels out the first term
on the right-hand side of eqn (2.46). Because of this, eqn (2.47), in contrast
to eqn (2.38), does not contain a contribution linear in the mass. The physical
explanation for this fact is that the space with the topology of a circle does not
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contain boundary points and hence the vacuum energy does not contain their
energy.

For a massless field, y = 0 and eqn (2.47) leads to (Mamayev and Trunov
1979a)

he [ ydy mhe
E(a,0) = F(a) = —— = ——. 2.49
(@.0) = Bla) = —= [ J2 T (2.49)
In the case of a large mass, p > 1, we obtain from eqn (2.47)
h
Bla,m) ~ — B n (2.50)

2ma

i.e. the Casimir energy is exponentially small.
At the end of this section, we briefly discuss what are referred to as antiperi-
odic conditions imposed on a scalar field,

o(t,x +a) = —p(t, ). (2.51)

In the massless case, the allowed oscillator frequencies take the form

2 1
a

[compare with eqn (2.22)]. The application of the Abel-Plana formula (2.41),
adapted for summation over semi-integer numbers, results in the Casimir energy

whe
E(a) = —. 2.53
()= T2 (253)
We emphasize that for the antiperiodic conditions (2.51), the sign of the
Casimir energy changes, similarly to the case for mixed boundary conditions.
The periodic conditions (2.42) discussed at the beginning of this section can be
presented as one equation,

QD(t,SC + a’) - go(t,:r), (254)

similar to eqn (2.51). They were described geometrically by a circle of circumfer-
ence a. If the antiperiodic conditions (2.51) are imposed on the field, one returns
to the same field value

o(t,x) = p(t, z + 2a) (2.55)

only after two round trips, i.e. after traveling a distance 2a [see Fig. 1(c)]. Such
a continuous line can be drawn on a Mo6bius strip. It is notable that a spinor
wave function is antiperiodic and takes its initial value after two round trips, i.e.
after a rotation by an angle 47. Fields satisfying the condition (2.51) are often
called twisted.
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2.4 Local and global descriptions of the Casimir effect

In previous sections, the Casimir effect was characterized by the difference be-
tween the total vacuum energy in the presence of boundaries (or in a topologi-
cally nontrivial space) and the free, topologically trivial Minkowski space. Such
an approach is called global because it deals with total energies. In this section
we discuss another, local, approach to the Casimir effect, which starts from vac-
uum energy densities. In this case the total energy of the vacuum is obtained by
the integration of the energy density over the quantization volume. The vacuum
energy density is defined as the expectation value of the energy density opera-
tor of the quantized field in the vacuum state. Here, we present only the most
elementary aspects of field quantization for a scalar field in two-dimensional
space-time. We save the more general discussion of field quantization in the
presence of boundaries for Chapter 3.

The quantization of a real scalar field on an interval 0 < x < a with boundary
conditions (2.3) is performed through the replacement of a c-function field (¢, z)
with the field operator

plt,x) = Y [t w)an + o0 (8, 2)at] (2.56)

where the positive- and negative-frequency solutions of the field equation (2.1)
are defined in eqns (2.6) and (2.7). The operators a,, and a; are the annihilation
and creation operators of a scalar particle with quantum number n. They obey
the standard commutation relations

[an,a;t,] = Onnts [, an] = [ai,a;‘;,] =0. (2.57)
The vacuum state |0) of the field on an interval is defined by
an|0) = 0. (2.58)

The energy density operator of the scalar field in two-dimensional space—time
is given by the 00-component of the energy—momentum tensor

Jﬁmmzﬁ{g@ﬂmW+mﬂmW+@;wwm} (2.59)

2

The infinite vacuum energy density of the field on an interval is given by the
expectation value of the operator Tég)(t, x) in the vacuum state |0). It is calcu-
lated by the substitution of eqn (2.56) into eqn (2.59) using eqns (2.6), (2.57),
and (2.58):

> 2.4

(0) _h m2ct o= cos 2k, x
(0|50 (¢, 2)[0) = % Z::lw .

— 2.60
2ah = wn ( )

The total vacuum energy of the field ¢ on an interval is obtained by the integra-
tion of eqn (2.60):
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Eo(a,m):/ (O Too (£, 2)[0) d = ° an (2.61)

n=1

This is in agreement with eqn (2.8) [note that the second, oscillating, term on
the right-hand side of eqn (2.60) does not contribute to the result].

We now consider the quantization of a scalar field on the entire axis —oco <
x < 0o. The field operator is given by

plt) = [ dk [t oan + o7 m)at ] (262)

where the positive- and negative-frequency solutions are defined in eqn (2.11)
and the commutation relations are as follows:

lak,af] = 6(k — k), [ak, aw] = [af,af] = 0. (2.63)

The vacuum state of the scalar field on an unbounded axis is defined by the
equality
ax|Onm) = 0. (2.64)

Substituting eqn (2.62) into eqn (2.59) and using eqn (2.63), we find the infinite
vacuum energy density of the scalar field on the axis:

h o0
OmITSO (¢, 2) 00 = - / dk wy. (2.65)

Then the total vacuum energy for the whole axis is

B dk
Eona(m) = (Onil T30 (1, ) 0n) L = & / o, (2.66)

in agreement with eqn (2.13). We recall that L is the infinite length of the axis.
As a result, the Casimir energy density on an interval can be found using the
local version of eqn (2.32),

e(x) = (0730 (t,2)[0) — (Ona|Tgg) (£, ) On), (2.67)

where the vacuum expectation values on the right-hand side of eqn (2.67) are
given by eqns (2.60) and (2.65). From eqn (2.67) we obtain

E(a,m) m2ct X cos 2k, x
= — 2.68
€(x) . ST > o (2.68)

where E(a,m) is defined in eqn (2.32) and, using eqn (2.38), we finally find

mc? he [ y? —4p? >\ cos 2kn:c
() = — " /2 By — § j (2.69)
n n=1

a 4ma? eV —1
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Integration of eqn (2.69) with respect to x leads to

/Oa e(x) dx = E(a,m), (2.70)

where the total Casimir energy on an interval, E(a,m), is given in eqn (2.38).
This is, however, true only for flat boundaries. In the case of curved boundary
surfaces, there may be nonintegrable singularities in the Casimir energy density
when the boundary surface is approached (see e.g. Chapter 9).

2.5 Elementary approach to the Casimir force between two parallel
planes

As discussed in the Introduction, the Casimir effect is the attractive force act-
ing between parallel ideal-metal planes which arises from vacuum oscillations
of the electromagnetic field. In Chapter 7, we shall present the detailed theory
of the Casimir effect between ideal-metal planes for various fields at both zero
and nonzero temperature. However, it is appropriate to include an elementary
derivation of eqns (1.1) and (1.5) in this chapter, which is devoted to simple
models.

A configuration of two parallel planes of very large area S spaced a distance a
apart is shown in Fig. 2.2. Mathematically, the area S of each plane is supposed to
be infinitely large. However, the results obtained are applicable for the condition
a < /S. From classical electrodynamics, the electric field and the magnetic
induction, of both polarizations, satisfy the following boundary conditions on
the surface of an ideal metal:

E(t,7)g = Bu(t,r)|g = 0. (2.71)

Here, r is the radius vector of any point, n is the unit vector normal to the
surface, and the index “t” denotes the tangential component, which is parallel to

Fia. 2.2. Two parallel ideal-metal planes of area S spaced a distance a apart.
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the planes. The conditions (2.71) imply that an electromagnetic field can exist
only outside an ideal conductor.

The boundary conditions (2.71) can be viewed as an ideal case of the in-
teraction of real metal surfaces with an electromagnetic field. In general, this
interaction is much more complicated and is modified by the finite conductivity
of a metal, i.e. by the penetration of the electromagnetic field into the metal
to a characteristic length scale given by the skin depth. This problem becomes
particularly involved at nonzero temperature (see Chapters 12 and 14).

We consider the electromagnetic field as an infinite set of harmonic oscillators
with frequencies w; and vacuum energy (1.4), where J is the photon wave vector.
In free space (i.e. without boundaries), J = k = (k!, k%, k3), where all k* are
continuous. In the presence of metal planes, this is not so, however. Here and
below, we shall also use the notation z! = z, 22 = y, 2 = 2 and k' = k,,
k* = ky, k* = k, where there is no cause for confusion with four-dimensional
quantities. Let us choose Cartesian coordinates with the z-axis perpendicular to
the planes. Then the components k;, k, remain continuous, but the component
k. = kzn = mn/a, n = 0, £1, £2, becomes discrete. Note that in contrast to
eqn (2.7) for a scalar field on an interval, here n can be a negative integer,
which takes the two photon polarizations into account. The wave vector of the
form (kg, ky,0) also leads to a nonzero contribution (see Section 7.2, where the
complete orthonormal set of solutions of the wave equation between the two
parallel planes is explicitly presented).

As aresult, the vacuum energy of the electromagnetic field between the ideal-
metal planes can be presented in the form

h [ dk, [ dk,
Eofa) = / % / LS W, (2.72)

Here, k1 = (kg,ky) is the projection of the wave vector onto the metal planes
(it is perpendicular to the z-direction, i.e. to the direction of the Casimir force),
ki =|ki| = (k2 +k2)"/2, and the oscillator frequencies are given by

2
Wj =Wk, n=C sz_—&—(ﬂa—n) ) (2.73)

By introducing polar coordinates on the planes and noting that wy, , is an even
function of n, we can rearrange eqn (2.72) to

h [k, dk =
Ey(a) = 5/0 Lgﬂ- S (2 Zwkhn - CkJ_) S. (2.74)
n=0

The respective vacuum energy of the electromagnetic field in the free Minkowski
space in the volume between the planes but with no boundary conditions is given
by
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Fon(a) = ha / / / dk (2.75)
wi = clk| = cy k2 + k2 + k2 (2.76)

and a factor of 2 has been used to take into account the two polarizations of the
electromagnetic field. Equation (2.75) can be rearranged to

Fow(a) = 12 /0 ’”;Z” /O k. wiS. (2.77)

™

where

From eqns (2.74) and (2.77) the Casimir energy per unit area of the ideal-
metal planes is defined as

(2.78)

[ kudky (& cki a [%
_ho = (Z%’" 5 7T/O dkzwk>.

Substituting eqns (2.73) and (2.76) here and introducing a new variable ¢ =
ak, /m, we arrive at

he [ kidky (= [k?a?
E(a) = H/ LONL <§ ;—g + n2 (2.79)
0

The difference between the infinite sum and the infinite integral in eqn (2.79) is
calculated using the Abel-Plana formula (2.26) with F = G 4(t) defined in eqn
(2.34) and A = k3 a?/m%. The application of this formula leads to the Casimir
energy between the planes,

E(a) = 2hc/ ydy/ vi—y *y dt, (2.80)

where the dimensionless variable y = k a/7 has been introduced instead of k| .
It is notable that E(a) is finite. As in Section 2.2, the result (2.80) does not
depend on the specific form of the regularization that might be applied to make
the quantities Ey(a)/S and Egm(a)/S in eqn (2.78) finite.

To evaluate eqn (2.80), it is sufficient to change the order of the integration:

m2he [
E(a) = - / e27ft . /y\/thy dy
; .

a3
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2 1 oo .3
_ mhe / v° dv (2.81)
0

T 3a3 201 ), ev -1’

where one more new variable, v = 27t, has been introduced. After integration of
eqn (2.81), we finally obtain (Gradshtein and Ryzhik 1994)

w2 he

E(a) = EIM(G/) = —7—20 a—g,

(2.82)
in agreement with eqn (1.5). We can use eqn (1.6) to reproduce the Casimir
result (1.1) for the Casimir pressure.

Thus, in the case of the electromagnetic vacuum confined between two parallel
ideal-metal planes, the final result is obtained by deleting the energy of free
Minkowski space using the Abel-Plana formula. This is appropriate for the case
under consideration. In more complicated configurations, however, even after the
removal of the contribution from free Minkowski space, the result will in general
be infinite, so that some additional renormalization has to be carried out.



3

FIELD QUANTIZATION AND VACUUM ENERGY IN THE
PRESENCE OF BOUNDARIES

From the standpoint of quantum field theory, the Casimir effect is related to
the vacuum polarization arising in quantization volumes restricted by bound-
aries or in spaces with nontrivial topology. Both boundaries and a nontrivial
topology of space—time can be considered as classical external conditions, on
which background the field quantization should be performed. In this chapter
we briefly present some basic facts related to the quantization procedure for fields
of various spin obeying boundary (or identification) conditions. We start with
the classical wave equations and then consider various boundary conditions that
may be imposed on their solutions. The rest of the chapter is devoted to both
the canonical and the path-integral field quantization procedure in the presence
of boundaries, with stress put on several different representations of the vacuum
energy. Propagators with boundary conditions are also introduced. Although we
touch on fields of different spin in both Minkowski and curved space—time, our
presentation is primarily devoted to the case of the electromagnetic field in the
presence of material boundaries, which is the main subject in the second and
third parts of this book.

We recall that, starting from this chapter and throughout Part I of the book,
we use units with h =c = 1.

3.1 Field equations for fields of various spins

In the preceding chapter, we have already considered a scalar field in two-
dimensional space-time. Here, all fields are defined in four-dimensional space—
time, with 4-vector arguments x = z# = {2° 2!, 2% 2*} = {27} and z, =
G’ = {xo, x1, 2, 23} = {2°, —r}. The Klein-Fock-Gordon equation for a free
real scalar field ¢(x) is given by

(O 4+ m?) p(z) =0, (3.1)
where the four-dimensional d’Alembert operator is defined by

0? 0? 0? 0? 0?

O0=0 = nv = — — —
1=9 Ozroxy 029920 Ozloxl  0x22022 Ox30x3

=98, (3.2)

and m is the mass of the field. If some external source Y(z) of the scalar field
is present (this is not the case for scalar zero-point oscillations), eqn (3.1) is
generalized to

(O 4+ m?) p(z) = Y(z). (3.3)
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Both eqn (3.1) and eqn (3.3) can be obtained from the Euler-Lagrange equa-
tions from the action of a scalar field

2
Sle] = /d4a: L£O(z) = /d4x (%a”cpaygo - m7<p2 + Tcp) (3.4)

with T = 0 and T # 0, respectively [£(?)(x) is the Lagrangian density]. Using
integration by parts in eqn (3.4), one can present the action in the form

/d4 ( <pK<p+T<p) (3.5)

K=K(z)=0+m? (3.6)

where the operator

is the kernel of the action.
The scalar product of the two (in general complex) solutions of eqn (3.1) is

defined as 5 5
- Op2  0v1
(rpn) =i [ ar (5152 - FLia), 1)

where V' is the quantization volume (free infinite space or some region restricted
by boundaries).
From Noether’s theorem, the canonical energy—momentum tensor of the scalar
field (without sources) is
1% = 8,000 — g L, (3.8)
where L(%) is defined in eqn (3.4), with T = 0. Sometimes what is referred to as
the metrical energy—momentum tensor of the scalar field is also used (Chernikov
and Tagirov 1968, Callan et al. 1970),
T;Eg) = T;Eg) - [auau - g;wapap] @27 (3'9)
where £ = (D — 2)/4(D — 1), which differs from eqn (3.8) by a 4-divergence (D
is the dimensionality of space—time).
Equation (3.1) can be generalized to the case of curved space-time in the
form

(O+ER+m?) p(z) =0, (3.10)

where O = V,,V#, V), is the covariant derivative, the scalar curvature R = RJ; is
the trace of the Ricci tensor, and £ is the coupling coefficient. Equation (3.10)
is conformally invariant in the limit of zero mass if £ in the above expression is
given by £ = 1/6 (for D = 4). The case of curved space-times will be considered
only in Chapter 11 and will not be discussed here.

The most important case for us is the electromagnetic field because the elec-
tromagnetic Casimir effect is experimentally observable. Here, we restrict the
discussion to only the electromagnetic field in the vacuum. The case of material
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media is dealt with in the second part of the book. We start with the Maxwell
equations for the electric field E(x) and magnetic induction B(x) (with ¢ = 1):

0B
V'E:47Tp, VXE"‘E:O, (311)
OF
VxB-22 _urj, V-B=0

ot

where j and p are current and charge densities satisfying the local charge con-
servation law
dp
ot
Later, when we consider the electromagnetic zero-point energy, we shall put
p=0and j=0.
Electrodynamics is a relativistically invariant theory. Because of this, it is

often convenient to represent the physical fields £ and B in terms of the 4-
potential A* = (AY A) such that

+divj = 0. (3.12)

E:—VAO—%, B=V x A, (3.13)

and to introduce the antisymmetric field tensor
FH = grAY — 9V AP, (3.14)

The components of this tensor are the components of the electric field and mag-
netic induction:

F%"=—-F', F?=-B% F®=B% F»=-B" (3.15)
Introducing also the 4-current j# = (p, 7), one can rearrange Maxwell’s equations
(3.11) into the covariant form

O FM =4mj¥,  9,FM =0, (3.16)

where the dual tensor is )
e — 55“1’67}757, (3.17)

and e**P7 is the antisymmetric tensor equal to +1 or —1 depending on whether
(1, v, 8,7) is an even or odd transposition of the indices (0,1,2,3). The repre-
sentation in terms of the 4-potential A* is especially useful for the quantization
of the electromagnetic field.

Equations (3.13) and (3.14) do not define the 4-potential A* in a unique way,
leaving the freedom for a gauge transformation

AP (z) — AR (z) + 0" ¢(z), (3.18)
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where ¢(z) is some arbitrary smooth function. In terms of the 4-potential, the
Maxwell equations (3.11) or (3.16) can be rewritten as

OA* — 9" (8,AY) = 4mj*. (3.19)

The form of these equations is preserved under the gauge transformation (3.18).
However, under some conditions that fix the gauge, a certain term in eqn (3.19)
may vanish. The only relativistically invariant condition is

d,A" =0, (3.20)

which is called the Lorentz gauge. It is always possible to find a set of functions
¢(z) in eqn (3.18) such that the condition (3.20) is satisfied. Functions belonging
to this set differ from one another by a function ¢ satisfying the equation
O¢o = 0. In the Lorentz gauge, eqn (3.19) takes the simplest form,

OA* = dmj*. (3.21)

For us, a particular case of these equations with the source equal to zero is most
important,
OA* = 0. (3.22)
The Maxwell equations (3.19) can be obtained from the action of the elec-
tromagnetic field

1 A
_ 4 (1) _ 4 - w2 uy2 o
S = /d x LY (x) —/d T { 16 ' 3 (0, A*) Augtl, (3.23)

where A is a coefficient of what is referred to as the gauge-fizing term. The
Euler-Lagrange equations following from eqn (3.23) are
OA* — (1 — N)o* (0,AY) = 4mj*. (3.24)

If A =0, eqn (3.24) coincides with eqn (3.19). The choice of A = 1 is equivalent
to the fixing of the Lorentz gauge (3.20). In this case eqn (3.24) coincides with
eqn (3.21). After integration by parts, eqn (3.23) can be rearranged into the form

1
S = /d4x <§A#K“”AV - Aw“) , (3.25)
where the kernel of the action is given by the differential operator
K" =KW (x)=g¢""0—(1-\)o"0". (3.26)

The energy-momentum tensors of the electromagnetic field obtained from
different forms of the action may differ by a 4-divergence. For example, by ap-
plying Noether’s theorem to the action (3.23) with A = 0, j# = 0, we obtain

- 1 1
71 = _ — VAP + g, Fs 7. 2
124 A7 :uﬁga +16ﬂ,gl" By (3 7)

This expression is not gauge invariant and not symmetric, i.e. Tﬁ) #+ TL(})
By adding to Tﬁ) terms having the form of the 4-divergence 85(FuﬁAl,), it is
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possible to obtain a gauge-invariant, symmetric energy—momentum tensor of the
electromagnetic field (Itzykson and Zuber 2005)

1 1
T =1 (FwFﬁu - ZgHVFMFM) . (3.28)

For the 00-component of this tensor, using eqn (3.15), we obtain the familiar
expression in terms of the electric field and the magnetic induction

E?+ B?
8t

At the end of this section, we mention briefly the main facts related to a
spinor field of mass m with spin one-half. This field obeys the Dirac equation

T = (3.29)

(iy"0, —m)Y(x) =0, (3.30)
where the v* are 4 x 4 Dirac matrices satisfying the condition
VAt = {0} = 29" (3.31)

and ¥ (x) is a 4-component bispinor. Hereafter, we shall use the representation
of Dirac matrices where the matrix o is diagonal, i.e.

(I 0 (0 o

and the oy, are the Pauli matrices (I is a 2 X 2 unit matrix).
The action for the Dirac equation is given by

Sh] = / o L0/ (), (3.33)
where the Lagrangian density is

£l = [W“f’uw (Quib )] — mapp. (3.34)

Here, 1) = 914 is the Dirac conjugate bispinor.
The scalar product of two solutions of the Dirac equation takes the form

(th1,102) = /V dr T, (3.35)

where V' is the quantization volume (the whole space or some finite region re-
stricted by boundaries).
The energy—momentum tensor of the spinor field is given by

T4/ = (m L — Oy hyu)) - (3.36)

It is notable that all of the energyfmomentum tensors obtained above in the
absence of sources satisfy the conservation law

T =0, (3.37)
where s =0, 1/2, or 1 is the spin of the field.



38 Field quantization and vacuum energy in the presence of boundaries

3.2 Various boundaries and boundary conditions

In Part I of the book, we consider the Casimir effect in regions of space restricted
by ideally smooth boundaries. Mathematically, for scalar and electromagnetic
fields, the problem includes consideration of the field equation (3.1) in the scalar
case and the field equation (3.11) with 5 = 0 and p = 0, or (3.22), in the
electromagnetic case, with appropriate boundary conditions. The boundaries S
are considered to be stationary. This allows the separation of the time variable.
For example, for the scalar field

Y (3.39)
using eqn (3.1) we get
~V20;(r) = Ay s(r), Ay =wi —m? (3.39)
Here, V2 = A is the Laplace operator
0? 0? 0?

(3.40)

J is a collective index for the generalized wave vector, and ® ;(r) satisfies some
boundary conditions on the surfaces S. Equation (3.39) together with the bound-
ary conditions imposed on the function ® ;(r) defines a standard elliptic problem
for the self-adjoint operator A.

The most frequently used boundary condition is the Dirichlet one,

Oy (r)|g = 0. (3.41)

Physically, this means that the boundary surface is totally impermeable to the
field. The Dirichlet boundary condition can be imposed on several surfaces, i.e.
on two parallel planes or on the four sides of a parallelepiped. In order to solve
the Dirichlet problem (3.39), (3.41), one must find an explicit expression for the
eigenfrequencies w .
If the normal derivative of the function ® ;(r) on the boundary surface van-
ishes, i.e.
9%,(r)
on

we are dealing with Neumann boundary condition. Together, equs (3.39) and
(3.42) are called the Neumann boundary problem.
A combination of the Dirichlet and Neumann boundary conditions

3@J(T)]

on

=0, (3.42)
S

=0, (3.43)

() + .

where u is some parameter or a function of the radius vector, is called a Robin
boundary condition.
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For the electromagnetic field in the Lorentz gauge (3.20), the field equation
(3.21) has the form of eqn (3.1) with m = 0. After separation of the time variable,
ie.

1 .
A () = —=e it 3.44
(z) N Agp(T), (3.44)

we arrive at the same equation as in eqn (3.39),
VP Au(r) = AsAs(r), Ay =l (3.45)

If the boundary surfaces S are made of an ideal metal, the boundary con-
ditions (2.71) must be satisfied at each point of S. These conditions can be
equivalently rewritten as

n, F™ (t,r) =0 (3.46)

where n, = (0, —n), n is the external normal to the surface at a point r, and
the dual tensor F*” is defined in eqn (3.17).

For electromagnetic fields without sources, it is always possible to fix the
vector potential such that

A%(r) =0, divA(r) = 0. (3.47)

This is usually referred to as the Coulomb gauge. In the Coulomb gauge, the first
of the boundary conditions (2.71), E(t,7)|g = 0, results in

Aji(r)|g =0, (3.48)

where the index “t” marks the components of E and A; tangential to the
surface. To obtain eqn (3.48), we have used the first equality in eqn (3.13), and
eqn (3.44).

From eqn (3.48), using the second equality in eqn (3.13), it follows that
B, (t,7)|g = 0, which is the second boundary condition in eqn (2.71). Here, we
have assumed that both the electric field and the magnetic induction vary sinu-
soidally in time as exp(—iwt), which is always true for any static configuration
of boundary surfaces.

The boundary condition (3.48) is of Dirichlet type. Thus, the same elliptic
boundary problem as in the case of a scalar field is relevant to the electromag-
netic field. In the next chapters of Part I, the solutions of various boundary
problems will be presented for a number of configurations of boundary surfaces.
We shall also discuss cases where a complete solution of such problems for the
electromagnetic field is not yet known.

At the end of this section, we note that for a spinor field the Dirichlet bound-
ary condition is not meaningful, because it is in contradiction with the Dirac
equation (3.30). Instead, what are referred to as bag boundary conditions are
used, which prevent a current from flowing through the boundary (see Sections
7.5 and 9.4 for details).
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In this section, we restrict ourselves to the case of ideal boundaries. In the
second part of the book, nonideal boundary surfaces consisting of real dielectrics,
semiconductors, and metals will be considered and more complicated boundary
conditions will be discussed.

3.3 Canonical quantization and the vacuum energy as a mode
expansion

The quantization procedure for a scalar field in two-dimensional space—time has
already been illustrated in Section 2.4. Here, we begin with a scalar field in
four-dimensional space-time satisfying the Klein—Fock—Gordon equation (3.1).
For smooth static boundaries of any geometrical shape, it is always possible
to introduce the positive- and negative-frequency solutions of the Klein—Fock—
Gordon equation

<pf]+) (t,r) = e_i‘”"tq)J(r), gofjf)(t,r) = [(pffr) (t,r)} , (3.49)

1
V2w
where ®;(r) is the solution of the elliptic boundary problem [i.e. of eqn (3.39)

with one of the boundary conditions (3.41)—(3.43)]. The functions (3.49) satisty
the normalization conditions

(gof,i)(x),ngf)(mv ==+ds07, (‘szi)(if)a‘PFijF) (x)) =0, (3.50)

where the scalar product is defined in eqn (3.7). From eqn (3.7), we also obtain
the normalization condition for the solutions ® ;(r) of the boundary problem,

/VdT (133(7‘)(1)]/(7”‘) = 5JJ/. (351)

Following the procedure of canonical quantization, we present the field oper-
ator as the sum of the modes

p@) = ¢ @as + ¢ @)at] (3.52)
J

where a; and a:'} are the annihilation and creation operators of a particle with
quantum numbers indicated by the collective index J. The summation over J
may also mean integration if some (or all) of the quantum numbers are continu-
ous. The annihilation and creation operators satisfy the commutation relations

[aJ,af,r,} =05y, [ay,ay] = [aj,a}] =0. (3.53)
The vacuum state of the field is defined by
ay|0) =0. (3.54)

The states with particles are obtained by applying the creation operators to the
vacuum state. For example, the state with one particle is
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1) = aj0). (3.55)

In the case where there are no boundary conditions (i.e. when we consider
the quantized scalar field in free Minkowski space), the index J coincides with
the wave vector, i.e. J =k = (k', k% k?), the oscillator frequencies are given by
wy=wk = (m?+ k*)'/2 and

eik-'r‘

CI:’J(T‘) = <I>k(7‘) = W (356)

In this case the symbol 47 in equs (3.50), (3.51), and (3.53) should be under-
stood as 63(k — k). The vacuum state of the scalar field in free Minkowski space
is defined by

ag|Om) = 0. (3.57)

The vacuum energy density of the scalar field in the presence of boundaries
is the mean value of the 00-component of the energy—momentum tensor (3.8) in

the vacuum state,
3 2
dp 2 2
E — 0). 3.58

Substituting eqn (3.52) in eqn (3.58) and using eqns (3.49), (3.53), and (3.54),
we obtain

1
Q@0 =Y
<0‘ 00 - 4(.«)]

OIT (@)]0) = 3 <o

3
0% 5(r) 09%(r)
2 * J
wJ—i-m )<I>J(7')<I>J(r)+; 9k Dk

(3.59)
This energy density is divergent and, in the general case, depends on the spatial
point 7.

Now we consider the total vacuum energy of the scalar field in the quanti-
zation volume V. We assume that the functions ® ;(r) satisfy the Dirichlet or
Neumann boundary condition (3.41) or (3.42) on the boundary surface S. By
integrating eqn (3.59) over V using eqns (3.39) and (3.51), the following result
is obtained:

EO_/ dr (0| T (2)]0) = Z“J (3.60)

Note that in obtaining this result, the last term on the right-hand side of eqn
(3.59) has been integrated by parts. Thus, the integration of the vacuum energy
density in the presence of boundaries leads to the general result (1.4), which was
discussed in Section 1.1.
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For free Minkowski space without boundaries, the vacuum energy density is
obtained from eqns (3.56) and (3.59):

(0) 1 dk
The total vacuum energy in the volume V is
B (0) 1 dk

Equations (3.61) and (3.62) are analogous to eqns (2.65) and (2.66), obtained
in two-dimensional space-time. Any manipulations with them assume the use of
some regularization (see Section 2.2).

We consider now the quantization of an electromagnetic field in the presence
of boundaries. This is a nontrivial problem, owing to the existence of differ-
ent polarization states of the photon. The point is that the physical boundary
conditions (2.71) are formulated in terms of the electric field and the magnetic
induction, i.e. gauge-invariant quantities. However, it is preferable to perform
the quantization of the electromagnetic field in terms of the vector potential A,,.
First, we choose the Coulomb gauge, where Ag(x) = 0 and divA(xz) = 0, as was
done in the previous section devoted to the discussion of boundary conditions.
In this gauge, eqn (3.22) takes the form

82 A(x)

— 2 —
B V2A(z) = 0. (3.63)

Thereafter, we separate the time variable and present the positive- and nega-
tive-frequency solutions of the wave equation (3.63) in the form

AP @) = e A, AP =40 G

where A ;(r) satisfies the equation
~V2A;(r) = Wi As(r), (3.65)
following from eqn (3.45) with appropriate boundary conditions. The functions
A ;(r) in eqn (3.64) are orthonormal, satisfying the equation
/ dr A5 () Ay (1) = 650, (3.66)
v
Now we assume that the boundaries under consideration allow the definition
of two orthonormal polarization vectors eSA):

e(J)\) . E(J)\/) = 6/\)\/, )\, )\, = ]., 2. (367)
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These are also perpendicular to the generalized wave vector defined by the quan-

tum number J. The vector function A;(r) in eqn (3.64) can be expanded in
terms of different polarizations:

2 2
As(r) =3 AV () = 3" AP ()Y, (3.68)
A=1 A=1

where the expansion coeflicients are given by the scalar products
ANV () = A;(r) - €. (3.69)

These coefficients satisfy the normalization condition following from eqn (3.66)

2
3 / dr AV (1) AN (r) = 4x555.. (3.70)
r=1"V

The two polarizations are said to be separable if eqns (3.68) and (3.69) are valid.
In this case the expansion coefficients flf,/\) (r) satisfy the boundary conditions.

The quantization of the electromagnetic field can be performed in the follow-
ing way:

2
I o) [miwgt jOO A iwst OO At
A(x) :ZZ w}ef]) {e "tAS)(r)a(J)+e "tAf]) (r)af]) }, (3.71)
J a=1 V¥
(N

Jr
where a;’ and af]k) are the annihilation and creation operators of a photon
with a generalized momentum J and in the polarization state A. They satisfy
the commutation relations

"+ ’ + "+
{ag»,agw } = Srrdas [a,a8] = [agﬂ ) } _o. (372
The photon vacuum state is defined by

aM]0y = 0. (3.73)

We note that in the simplest cases of free Minkowski space and plane boundaries,
the polarization vectors perpendicular to the wave vector k = (k', k2, k%) have
the form

) k2 1 k'E3
aV=— k), =k, (3.74)

kl kkl 2

0 —k7

where k = |k|. If there are no boundary surfaces, the coefficients A(JA) (r) in eqn
(3.68) depend only on r and do not depend on the polarization state A. In fact, in
the case of curved boundary surfaces even the polarization vectors may become
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position-dependent and the polarizations may not be separable. Then, one is left
with the general formulation (2.71) or (3.46).

Substituting eqn (3.71) into eqns (3.13) (with Ag = 0) and (3.29) and using
eqn (3.73), we obtain the vacuum energy density of the electromagnetic field in
the presence of boundaries,

O () ZZ {JA” (AP ()

J =1
+ [v X (Agﬂ(r)ef,*))} : [v X (Ag*)*(r)ef,”)} } (3.75)

The total energy of the electromagnetic field in the volume V is obtained from
eqn (3.75), taking account of the ideal-metal boundary conditions (3.48) on the
boundary surface and the Coulomb gauge (3.47). If both polarizations contribute
to the result at all J, one obtains

1

2
Eo / dr (0TS (z =5 Z D wy = EJ:W. (3.76)

This is different by a factor of 2 from eqn (3.60) and reflects the existence of
two polarization states of the photon. If, for some J, one of the polarizations
does not contribute to the result, the respective term in eqn (3.76) is missing
and there is no doubling of the scalar-field contribution for this J (see Section
7.2 for more details and an example). Similarly, in free Minkowski space we get

(O |7 () 0nr) = / %k (3.77)

dk
P = | dr (O[T @)0w) = [ Gozkv.

where, in this case, wi = k.
For a spinor field, the positive- and negative-frequency solutions of the Dirac
equation (3.30) with appropriate boundary conditions,

M) = ety (), @) = ety (), (3.78)

are orthonormal:
(w(J,a( ), w5 ( )) = 5700, (wJ(,( ), 7 (x)) —0,  (3.79)

where J is the generalized wave vector and o« = 1, 2 is the spin index. The scalar
product is defined in eqn (3.35). The field operator and the Dirac conjugate
operator can be presented in the form

=>. > [ (@)bsa+ 05 ) (@ )dia}, (3.80)

J a=1,2
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Z Z [ bJJra+¢Ja( )dJ,Oz .

J a=1,2

Here, b, and bJr

dj o and d ., are the creation and annihilation operators of antiparticles. These
operators satlsfy the anticommutation relations

J.o Are the annihilation and creation operators of particles, and

{Boas Vs b = {dsa @0} = 810000, (3.81)
{brasbrrart = {50 b0 0} = {dsardyart = {df s o} =0.
The vacuum state of the Dirac field is defined by the operations
b7.a|0) = djl0) =0. (3.82)

To find the vacuum energy density of the spinor field, we substitute eqn (3.80)
into the 00-component of the energy—momentum tensor (3.36) and use eqns
(3.81) and (3.82):

0755 (=« ZwaJ (rxG o (r). (3.83)

It is notable that the vacuum energy of the spinor field enters with a minus
sign. Within the formalism of canonical quantization, this follows from the use
of anticommutators in eqn (3.81) instead of the commutators for the scalar and
electromagnetic fields, and it is really a consequence of the spin—statistics theo-
rem. By integrating over the quantization volume with the use of eqn (3.79), we
obtain the total vacuum energy of the spinor field,

Eo = /dr 0|78 ()]0) = ZWJ_—zsz (3.84)

The magnitude of this result differs from the similar result (3.60) for a scalar
field by a factor of 4. This is due to the two types of particles described by the
spinor field (particles and antiparticles) and the two possible spin states for each
of them.

In free Minkowski space, the vacuum energy density and the total vacuum
energy of the spinor field are given by

(M [T’ () 0n) = —2/%% (3.85)

Eomn = /Vdr (Om|Tso > ()] 0m) = —2/ (2dk)

These differ from eqns (3.61) and (3.62), obtained for a scalar field, by a factor
of 4 and are opposite in sign.
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3.4 Vacuum energy in terms of Green’s functions

In the preceding section, we considered the easiest approach to a representation
of the vacuum energy in terms of a mode expansion. In fact, there are other
approaches and representations which are useful. One such case is the represen-
tation of the vacuum energy in terms of Green’s functions. These are solutions of
the wave equations with a delta function on the right-hand side of the equation.
For a scalar field, the appropriate equation is

(O + m?) G(z,2) = 6*(x — o). (3.86)

The Green’s function G(x,z’) can be interpreted as an inhomogeneous solution
of the wave equation (3.3) with a point-like source at 2’. The Green’s functions
are not uniquely defined by the equation, since an arbitrary solution of the
homogeneous equation (3.1) can be added. This arbitrariness is used to define
different types of Green’s functions (below, we shall use the causal one) and to
satisfy the boundary conditions.

The Green’s functions can be represented in terms of the solutions (3.38),

* dw D (r)®%(r") iy
G(:L‘,JC/) = /_OO % Zm e ( t). (387)

In this integral, the integration over w has poles at w = tw resulting from the
zeros in the denominator. The arbitrariness can be removed by defining a rule
about how to go around the poles. In eqn (3.87), we have defined the causal
Green’s function by means of the infinitesimal addition —i0.

In order to establish the relation between the vacuum energy and the Green’s
function, we first consider the vacuum expectation value of a product of two field
operators,

Ee—iw“—t )@ 5 (r)®% (r'), (3.88)

(Ol(@)(z)|0) =D
J

which itself is not yet a Green’s function. To obtain a Green’s function, we need
to consider the vacuum expectation value of the time-ordered product of the two
field operators

To(x)p(a') = 6(t — t)p(z)p(a) + 6(t" — t)p(z")p(2), (3.89)

which results in
{0|Tp(x)p(2")|0) = G(z, ). (3.90)

The latter relation follows from carrying out the frequency integration in eqn
(3.87) according to the pole-bypassing rule (for the causal Green’s function, the
poles are located in w = +4/w? — i0), to obtain

3 1 iw —t' *
iGx,y) =Y 507 © TN @ S () D5 (), (3.91)
J N

and applying eqn (3.88) to eqn (3.89).



Vacuum energy in terms of Green’s functions 47

In order to establish the relation to the vacuum energy density as defined
in eqn (3.58), we note that the energy-momentum tensor contains the product
of two field operators at coincident arguments. Such expressions are, by their
mathematical nature, singular and need to be regularized. This will be discussed
in detail in Section 4.1; here we adopt the following procedure. We take Tﬁg) (z),
eqn (3.8), with the field operators at separate points, x # ', and consider the
limit of coincidence of these arguments following the rules for the T-product of
operators (3.89). In this way, we represent the vacuum expectation value of the
energy—momentum tensor in the form

. 3
0T (x)]0) = —= ( o 9 m2> G(z,2") (3.92)

2 Ot D'
n=0

/=

Here, we need to mention that the definition of the vacuum energy density (and
of the vacuum expectation values of other observables) is not unique. In addition
to the freedom to add a gradient term to Tég) (x), there is another nonuniqueness
following from taking the limit in eqn (3.92), which can be done in many different
ways. We restrict ourselves here to arguing that eqn (3.92), after insertion of the
expression (3.90) for the Green’s function in terms of solutions, coincides with
the definition (3.59) at least on the formal level.

The global vacuum energy (3.60) can also be expressed in terms of Green’s
functions by taking the spatial integral of eqn (3.92). Under the integral sign,
we integrate the derivatives /02" by parts. Using eqn (3.86) and making use
of the fact that, owing to the time stationarity, the time dependence enters the
Green’s function as a difference xy — z{, we obtain

2 /
Eo:i/ g LE@T)
1%

57 (3.93)

x'=x

A further necessary remark on the derivation of this representation is that we
have performed the transformations mentioned above for separated arguments,
i.e. for x # 2’. In this way, the delta function on the right-hand side of eqn (3.86)
does not contribute.

For an electromagnetic field, the Green’s function corresponding to the vec-
tor potentials used in Section 3.3 for quantization is a tensor with components
Gij(z,2"). It is defined by the equation

DmGij (33‘, 33/) = 5(t — t/) |:5zj 63(7' — ’I"/)
— Oyi /dr” (Vz)_l(r, ") 6(r" — 1), (3.94)

with a unit tensor in the space of transverse functions 9,:A;;(z) = 0 and the
inverse of the Laplace operator
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V2(V2) (') = 3 (r — 1) (3.95)

on the right-hand side. The following steps are analogous to the case of a scalar
field. Using the solutions of eqn (3.65), the corresponding representation is

ity Agi(r) A% (r')
Gij(z,z') / Z (¢t _w2+w“ = (3.96)

In the final representation of the vacuum energy,

3

82
Eo = 1/ Z 6(1;‘0

one has to take the trace over the indices of this Green’s function.

, (3.97)

z'=x

3.5 Path-integral quantization

One of the most beautiful methods in quantum field theory is path-integral quan-
tization. The idea (Feynman 1948) is to consider the classical paths (trajectories)
that a system may follow and to sum over these paths with suitable weights. In
this way, quantities defined in quantum theory such as transition amplitudes can
be formulated completely in terms of classical quantities. As a result, however,
infinite-dimensional integrations appear, which are in general not well defined
mathematically. There are nevertheless many applications where path integrals
are very useful. With respect to the vacuum energy, we are usually concerned
with free-field theories (the nontrivial content results from boundaries or back-
ground fields). For these, the path integral is well defined and the problem of its
calculation is reduced to a Gaussian integration, which, in turn, ends up with
functional determinants. The latter can be calculated if, for example, the solu-
tions of the underlying wave equation are known. In this way, the path-integral
formulation results in problems of the same difficulty as in canonical quantiza-
tion. Its advantage is that in many cases it allows a much more elegant and
transparent formulation. In addition, in recent years several methods have been
developed within the path-integral approach which allow more direct calculations
and also numerical computations.

In this section, we restrict ourselves to the case of a scalar field in order to
focus on the representation of the vacuum energy, and postpone any discussion
of the peculiarities related to the gauge freedom in electrodynamics. Also, we do
not consider a spinor field, and restrict ourselves to the remark that the minus
sign entering its vacuum energy is related to the Grassmann variables which one
must use in its path-integral representation.

As the basic quantity to be represented in the path-integral approach, we
take the generating functional Z[Y] (we use square brackets here to denote a
functional dependence) of the Green’s functions for a scalar field. These can be
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obtained by taking functional derivatives with respect to the source Y(x). For
the propagator, which in this context is a two-point Green’s function, we get

58
5T (x) 3T ()

Z[Y|y_g = G(z,2"). (3.98)

Here, the functional derivative §/6Y (x) is defined as

1)
Y ()

Y(2') = 6*(x — ). (3.99)
In terms of a path integral, the generating functional is given by
Z[] = C/Dsa e'Slel, (3.100)

with the action S[p] = S[p, Y] given by eqn (3.5), i.e. including the source Y (z).
In eqn (3.100), the integration goes over all fields in a suitably defined space. A
general discussion of this space can be found, for example, in the book by Vasiliev
(1998). Here and below, we shall be interested only in restrictions imposed on
this space by boundary conditions. Concerning the constant C' in front of the
integral in eqn (3.100), it should be mentioned that in quantum field theory, path
integrals are usually defined up to a constant (in general, infinite), which does
not influence the final results. In application to the vacuum energy, this constant
is, for instance, independent of external parameters such as the plate separation.
We choose C' = 1.

Another important quantity frequently used in the formulation of the vacuum
energy is the effective action,

iWeg[T] = In Z[Y). (3.101)

For vanishing sources and time-independent boundaries and backgrounds, this is
proportional to the total time T and the vacuum energy (Peskin and Schroeder
1995),

Weg[0] = —TEy (3.102)

such that the latter can be represented by means of
By = %an[O] (3.103)

in terms of a path integral. It must be mentioned that this representation does
not coincide completely with the vacuum energy defined in the preceding sec-
tion. However, as is discussed in Section 4.2.2, the difference between the two
representations does not influence physical quantities.

From the point of view of how to perform the integration in a path integral,
one has to observe that the action (3.5) is quadratic in the fields and hence the
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integrations are Gaussian. The finite-dimensional analogue is an integral over
R’I’L

)

/ A"z efmTKz/Q%*mTh _ (27_‘_)774/2 (det K)_1/2 e7hTK71h7 (3104)

where z,h € R?, K is a real nxn matrix, and K~! is its inverse. Written in
components, the quadratic form can be represented as

—533 Ke+xz' h= —5 ZmiKijxj + lehl (3105)

,J i

The formula (3.104) assumes that all eigenvalues of K are positive, otherwise the
integral would not converge. It is obvious that K can be assumed to be symmet-
ric. By making the substitution x = ' + K~1h, i.e. by “completing the square”,
the linear term can be removed, and the remaining integration results in a deter-
minant. The direct generalization of eqn (3.104) to the infinite-dimensional case
can be done by the formal substitution z; — ¢(x) and h; — Y(x), where the ar-
gument x takes the place of the index 7. The matrix K;; becomes some function
of two arguments, K(z,y), and the sums turn into corresponding integrations.
In this way, the exponential in eqn (3.104) is transformed as follows:

1
3 Z xi Kijxy + szhz
i i
1
-3 /d4x d*2’ o(x)K (z,2")p(z') + /d4x o(z)Y(x).  (3.106)

Here K (z,z') is the kernel of an integral operator
Kf(z) = /d4x/ K(z,z")f('), (3.107)

where f(z) is a test function. The kernel of an integral operator can be equiva-
lently represented in the form

K(z,2") = (2/|K|x). (3.108)

All subsequent constructions can be done with such a kernel. The differential
operator K (z) in eqn (3.6) is a special case of the integral operator with a
local kernel K (x,2") = 6(x — 2’) K (2’). Tt should be mentioned that all of these
constructions can be done for very general fields and space—times. Keeping in
mind the application to the Casimir effect, we restrict ourselves here to the
simplest formulation.
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The generalization of eqn (3.104) in the case of a scalar field leads to the
generating functional

Z[Y] = C (det K)'/* exp B /d4x d*z’ Y(2)K Yz, 2" )Y ()|,  (3.109)
where K ~!(z,2’) is the inverse of K (z,1'), i.e.
/d4x’ K(z, oYK (z/,2") = 6*(z — o) (3.110)

must hold. Comparing eqn (3.109) with eqn (3.98,) we arrive at
K Yz,2') = G(z,2), (3.111)

i.e. the operator K ! is the propagator of the scalar field.
From this formula, the vacuum energy is given by

_ 1 “2_ 1
Ey = T In (det K) 5T TrinK (3.112)

(where we have made use of the well-known formula In det K = Tr1ln K). Here we
have put the source T = 0 and have dropped the contribution from the constant
C since it gives only an irrelevant additive constant.

3.6 Propagators with boundary conditions

In the presence of boundaries, the propagator can, in general, be constructed
in terms of the mode functions, for example by use of eqn (3.91). In this case
it is assumed that the mode functions ® ;(7) satisfy the corresponding bound-
ary conditions, eqn (3.41) or eqn (3.42) for example. This representation is not
always convenient. So, for a boundary of general shape, when the variables in
the wave equation do not separate, explicit expressions are not available, neither
for the mode functions nor for the corresponding eigenvalues. We consider here
another general representation of the Green’s function and of the vacuum energy
which does not rely on the mode expansion and which highlights some general
properties.

In order to derive this representation, we start from the expression (3.100)
for the generating functional of the Green’s functions Z[Y] in terms of the path
integral. For simplicity, we consider a scalar field ¢(x) fulfilling Dirichlet bound-
ary conditions (3.41) on a surface S given by some functions xg = ug(n9) = 10,
r = u(ny,72) or, in a more compact notation, z = u(n), where u = (ug, u) and
n = (N0, m,n2).

We denote the corresponding Green’s function by “G(z,2’). It has to obey
eqn (3.86) for x ¢ S, i.e. outside the surface, and to obey the boundary conditions

G(z,2') =0 for z€ S or 2’ €S5. (3.113)

This Green’s function can be obtained from the path-integral representation
(3.100) by choosing the integration space to consist of those fields ¢(z) which
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fulfill the boundary conditions. By means of eqns (3.109) and (3.111), this is
then reduced to the above-mentioned problem and the corresponding methods
can be applied.

The idea of the new method is to start from a path integral in empty space,
i.e. without boundary conditions, and to restrict the integration space by use
of the corresponding functional delta functions. This method was developed for
quantum electrodynamics with conductor boundary conditions by Bordag et al.
(1985) and, independently, by Li and Kardar (1992) for fluctuations in a fluid. In
this way, the path integral goes over fields which are free of boundary conditions.
The necessary restriction of the integration space is achieved by the insertion of
the functional delta function

IT s(e(=)) (3.114)

zeS

into the path integral (3.100) for the generating functional,

Z[Y] = / Dy [] d(e(x)) eI (3.115)

xzesS

By construction, it is clear that this is another representation of the same path
integral as in the case when one integrates over a field ¢ fulfilling the boundary
conditions.

The next steps are technical. We represent the functional delta function by
a Fourier representation,

H §(p(x)) = C’/Db ol s dn(m) b(me(u(n) (3.116)
zes

where C' is an irrelevant constant like that in eqn (3.109), du(n) is the volume
element on S, and the variable of integration, b(n), is an auxiliary field defined
on the surface S. It is useful to rewrite the exponential in this equation in the
form

/Sdu(n) b(m)e(u(n)) = /

duo) [ d's b HE D@, (1)
S

with a kernel H(n, ), which in this case is simply H(n,z) = é*(z — u(n)). It
is clear that this construction can easily be generalized to include derivatives
or to carry indices. Now we insert this representation into the path integral
(3.115). The resulting integral is now over two fields, ¢(z) and b(n). Since it is
bilinear in these fields, the integration is Gaussian. It can be carried out after
diagonalization of the quadratic form, which is achieved by

f% /d4:17 d*s" o(2)K (x, 2 )p(z') + /d4z o(z)Y(x)

+/Sd17/d4x b(n)H (n, z)p(x) (3.118)
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l\'>|H

{ / dhz da’ (p(x) — po(x)) K (z,2') (o(z') — po(a)

+ [ [an sk e+ [ate [l w6t a1)

where
wolz) = /d4x' K x,2)) (T(:c’) + / dn H(n,x’)b(n)) . (3.119)
S
The kernel K (n,7') is defined by

R(n.) = / dx / dha’ H(n,2)G(x,«'\H (' 2') = Glu(n),u(n')).  (3.120)

In the case of Dirichlet boundary conditions, this is just a restriction of the
empty-space propagator G(z,x’) with both of its arguments on the surface S.
The inverse, K ~!(n,7n’), must be taken on S, i.e.

LLdﬂM”)KOL#WK’W#Z#)=5%n—nﬁ. (3.121)

Finally, in eqn (3.118) we have introduced

SG(gcx) .7;3;‘ /d4 ///d4//// /dM
S

« Glr.a")H ) 1,V H O 2")G (", o)
— Gz, 2) / (i / da(y) G, w(m) K= (7, 1)G (i), 2')
= G(z,2') — G(z,2") (3.122)

Now the functional integration can be carried out by first shifting p(z) — ¢(x)+
©o(x) and applying eqn (3.109). Subsequently, the integration over b(n) can be
carried out in the same manner. The generating functional then takes the form

Z[Y] = C (det )~/ (det K)71/2 exp [% /d4x da’ T(w)SG(x,x')T(x')} ,
(3.123)

where the factor (det 16)71/2 results from the integration over b(n). In this way,
we have obtained another representation for the generating functional in the
presence of boundaries. The energy according to eqn (3.112) is
~1/2

%:—immkz%m®%)

3.124

Here, along with the constant C, we have also dropped the contribution from
det KC. This is possible since K results from empty space and thus does not
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depend on the geometry of the boundaries. So it also delivers an irrelevant con-
stant. In fact, this constant, being the contribution from empty space, carries
the divergences associated with it such that in the Ey given by eqn (3.124), only
subleading divergences remain.

From a comparison of eqns (3.122) and (3.123), it follows that “G(x,z’) as
defined by eqn (3.122) is just the propagator in the presence of boundaries.
It has a specific representation. According to the last line of eqn (3.122), it is
given by the difference between the free-space part G(z,z’) and a boundary-
dependent part G(z,2’). It can be easily checked that it fulfills eqn (3.86) and
the boundary conditions. Indeed, let = w(n1,72) € S. Then, in the second term
on the right-hand side of the first line in eqn (3.122), we can apply eqn (3.121)
and the resulting expression just cancels the first term. Also, it is easy to check
eqn (3.86). For the first term, this is obvious. For the second term, i.e. for the
boundary-dependent addition, one has to notice that, after applying the wave
operator to G(z, z') within the resulting expression, a delta function 6*(z —wu(n))
appears so that outside the surface, i.e. for z ¢ S, this expression vanishes.

We remark that in terms of homogeneous and inhomogeneous solutions of the
wave equation, the first term is just an inhomogeneous solution and the second
term is a homogeneous solution which is chosen in such a way as to ensure that
the boundary conditions are satisfied. A further remark concerns an alternative
derivation of the representation (3.122). This can be obtained from considering
the boundary conditions as constraints when one is solving the wave equation.
In that case one may use Lagrange multipliers. These just correspond to the
auxiliary fields b(n) introduced in eqn (3.116). In the end, one again arrives at
the representation (3.122).

A last remark concerns the structure of the propagator °G(z, z'). In its deriva-
tion from the path integral, we did not specify on which side of the surface S
the points = or z’ are located. In fact, the representation (3.122) is valid for any
choice. For instance, for a surface S dividing the space into two disconnected
parts this implies that if z and 2z’ are taken in different parts, the propagator
must vanish. This property can easily be checked.



4

REGULARIZATION AND RENORMALIZATION OF THE
VACUUM ENERGY

As previously discussed, the vacuum energy is a divergent quantity. In the va-
cuum, quantum field theory assigns half a quantum to each of the infinitely
many degrees of freedom. These divergences are of an ultraviolet nature similar
to that known from higher loop expansions. Their treatment, however, requires
special approaches because of the presence of boundaries. Powerful methods are
available for this. The most general one is the heat kernel expansion, which can
be considered as the standard method and the natural language to represent
these divergences. From a mathematical point of view, it is closely related to
spectral geometry [see e.g. the book by Gilkey (1995)]. The heat kernel expansion
is also related to zeta function regularization, which can be considered as the
most elegant among the many different regularization schemes. In the present
chapter, we use this method together with cutoff regularization to separate the
divergent part of the vacuum energy.

After having regularized the vacuum energy, we consider the procedure of
renormalization. We start with the case where some smooth background fields
are present. To some extent this is not central to this book, but it is necessary
for an understanding of the renormalization procedure. In a smooth background
field, the renormalization procedure is the same as that known in quantum field
theory. The divergent contributions have a structure which allows their removal
by a redefinition of the parameters in the “noninteracting theory” (including
the parameters of a classical background field if one is present). However, this
procedure is not always possible. For the case of background fields (if these are
singular or if one uses some limiting process which makes them singular), these
questions are not completely settled, and we shall discuss them briefly in Section
4.3.

For the Casimir energy resulting from the boundary of a single body, geomet-
ric characteristics such as the volume, surface area, and curvature should be used
for renormalization. If such characteristics are not available, the vacuum energy
cannot be given a physical meaning except when the divergences are absent. The
same also holds for other quantities such as the Casimir pressure and force. We
shall discuss some examples below.

The most important case is the Casimir force between separate objects. Here
the situation is completely different. In general, this force is always finite, as
opposed to the interaction energy, which becomes finite when the contribution
of the vacuum energy of free space is removed. This will be discussed in the last
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section of this chapter.

4.1 Regularization schemes

Regularization is a method to change an infinite quantity into a finite one. A
regularization parameter is introduced such that, in the appropriate limit, the
original expression is restored. Of course, this procedure is not unique, and dif-
ferent schemes are possible, some of which will be discussed below. Beyond this
formal definition, regularizations sometimes have a direct physical meaning. For
instance, since ideal conductors do not exist in nature, one has in all real ap-
plications some natural frequency, usually of the order of the plasma frequency,
beyond which the reflectivity rapidly decreases. However, this decrease might not
provide a regularization for some systems. The most important regularization
schemes are frequency cutoff, point splitting, and zeta function reqularization.

In a frequency cutoff regularization, one introduces some cutoff function in the
mode expansion which makes the corresponding sum/integral converge. Equation
(3.60) defines the nonregularized (infinite) vacuum energy Ey. In this case we
introduce the regularized vacuum energy Fy(d), and in place of eqn (3.60) we
get

Eo(6) = % D wye (4.1)
J

The regularization is removed in the limit § — 0, restoring eqn (3.60). Obviously,
the sum in eqn (4.1) converges for any § > 0.

This regularization was used in the original work by Casimir and also in Sec-
tion 2.1. A modification of this scheme would be a sharp frequency cutoff in place
of the exponential in eqn (4.1). In addition, any other sufficiently fast-decreasing
function of wy (such as a sufficiently fast-decreasing frequency-dependent per-
mittivity) or a momentum-dependent decreasing function (a momentum cutoff)
can be used.

In a point splitting regularization, one starts from the representation (3.93)
of the vacuum energy in terms of a Green’s function without carrying out the
coincidence limit. Then

. 0?
Eo(e) = 1/ dr gy Gz, 2" )|y (4.2)
v 0

where the regularization parameter € is a four-dimensional vector. To obtain a
finite Ey(e), it is frequently sufficient to keep only the time component nonzero
[e = (€0, 0) with ¢y # 0]. The point-splitting technique emerged from quantum
field theory. It was used in operator product expansions and for quantum fields
in curved backgrounds. Moretti (1999) has shown that it is equivalent to zeta
function regularization.

In a zeta function regularization, one temporarily changes the power of the
frequency wy; in the mode sum (3.60), leading to
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2s
Iz —2s
Eo(s) = 5 > Wi (4.3)
J

This converges for Res > (d + 1)/2, where d is the dimensionality of the space.
The factor p2*, where u has the dimension of a mass, is arbitrary. It is introduced
in order to keep the dimension of Fy. It disappears on removing the regularization
in the limit s — 0. This regularization is called zeta function regularization
because the vacuum energy Ey(s) is given by

Eo(s) = “;S p <s - %) ; (4.4)

which is expressed in terms of the generalized zeta function

w(s) =Y o (15)

7 Y

The zeta function (p(s) is associated with an elliptic boundary value problem.
In our case this problem is specified by eqn (3.39) with the operator —A + m?
along with some boundary conditions, such as eqn (3.41) or (3.42). This zeta
function can be viewed as a generalization of the Riemann zeta function

Cr(z) = %
n=1

(4.6)

and shares most of its beautiful properties (Elizalde et al. 1994, Elizalde 1995).
For instance, (gr(z) is meromorphic with a single pole at z = 1 on the real axis
and (p(s) is meromorphic with a finite number of poles on the real axis. The
special case of the operator —d?/dz? on the interval z € [0, 7] with Dirichlet
boundary conditions leads to (p(s) = (r(2s).

It must be mentioned that, owing to the analytic properties of (p(s), the
vacuum energy in this regularization is defined on the entire complex plane for
the parameter s with the exception of the poles. In three-dimensional space, its
sum representation (4.5) is valid for Re s > 2 only, but still serves as a starting
point for analytic continuation.

4.2 The divergent part of the vacuum energy

The regularizations (4.1), (4.2), and (4.3) were introduced to have a finite repre-
sentation of the vacuum energy. Here, we consider that part of this representation
which becomes singular in the limit of removing the regularization.

4.2.1 The divergent part in the cutoff reqularization

We consider the vacuum energy for a scalar field in a finite volume V enclosed by
a surface S where boundary conditions, such as those discussed in Section 3.2, are
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imposed. In this case the eigenvalues in eqn (3.39) can be labeled by an integer
n =1, 2,.... The frequencies w; — w, = VA, +m?2 also become labeled by
the same integer n. Note that in some specific cases (e.g. the rectangular boxes
considered in Chapter 8) it is convenient to use several integer indices. However,
the values of these indices can be renumbered and represented by one index with
integer values. For § — 0, the divergent part of the vacuum energy (4.1) results
from the asymptotic behavior of the eigenvalues for n — oo,

2\ 2/3
o 2/3 03 Cyq o 61
A,=Cn <1+1—/3+ 273 gﬂ-mﬂ-...), C—<7> , (4.7)

as was first obtained by Weyl (1912). The coefficients ¢; depend on the area and
other geometric characteristics of S. The easiest way to calculate the asymptotic
expansion of Fy(d) in eqn (4.1) for 6 — 0 is to consider its Mellin transform

Eo(s) :/ (1;6 5% By (6 wi=?% Res > s, (4.8)
0

where, in the last equality, we have integrated the individual terms of the sum
over n in eqn (4.1). Ey(s) is defined by eqn (4.8) for Res > s (so must be
sufficiently large to ensure the convergence of the integral). It is a meromorphic
function with poles on the real axis for Res < s¢. The inverse Mellin transform
is
IOO
Ea0) = [ 55, (4.9)
—ioco 7T1

where the integration goes parallel to the imaginary axis with Res > s¢. In this
representation, the behavior for small § follows from the residues of Ey(s) at the
poles situated to the left of sg. The poles of E()(S) can be found by inserting
the asymptotic expansion (4.7) of the eigenvalues into eqn (4.8). We include the
mass term by substituting ca — éa = c2 +m?/C and obtain

- (2 =
Bo(s) = (25) C(1-25)/2 Zn(172s)/3 (4.10)
n=1
bl(s) bz(S) b3(8) b4($)
L+ nl/3 + n2/3 + n + n4/3 LEERI
1—2s 1—2s _
bi(s) = 5 CL a2(s) = 3 [4é5 — (1 + 2s)ci],
1-2
by(s) = 48 % [24¢5 — 12(1 + 28)c1és + (3 + 85 + 452)c?]
1-
ba(s) = 384 {19204 (1+2s) [48¢5 + 96¢1c3 — 24(3 + 25)ciés

+(15+ 165 + 4s%)ct] } -

Equation (4.10) can be further transformed using eqn (4.6) into
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s (s)Cr <283+ 2) +ba(s)Cr (28;3> +.. } . (4.11)

From the pole of the Riemann zeta function (4.6) at z = 1, it follows that Ep(s)
has simple poles at s = 2, 3/2, 1, 1/2 and double poles at s =0, —1/2, —1, ...
because of the poles of the gamma function. From the residues at these poles,
the divergent part of the vacuum energy is

. 3V 1 V21 8b1) £ VNP
div 2
Ey™(0) = 5z 57 +30(15) (W) FEi (m) 5
/3
3b4(0) (672"

The highest-order divergence is 1/d*. This is proportional to the volume and
corresponds to the contribution of empty space. The next-order divergence, 1/63,
is proportional to the surface area. The weakest divergence is proportional to In §,
which comes from the first double pole.

We note that these are the contributions which must be subtracted from
the vacuum energy in order to get a finite expression when the regularization is
removed. We postpone discussion of the justification and interpretation of the
subtraction procedure. From eqn (4.12), we see that the first five terms in the
asymptotic expansion (4.7) of the eigenvalues contribute to the divergent part of
the vacuum energy. Thus, for an arbitrary surface S, direct numerical approaches
to the calculation of the vacuum energy as a sum over the eigenvalues have not
yet been successful.

4.2.2 The divergent part in the zeta function reqularization and the heat kernel

expansion
The powers of the frequency in eqn (4.3) can be identically represented as an
integral,
Xt 7z
wh=2s :/ — 721 et (4.13)
0 t F(S — 5)

Interchanging the order of the summation and integration, the vacuum energy
in the zeta function regularization can be expressed as

2s [ee] s—1
19 dt t 2 —tm?
E = —— K(t 4.14

where

K(t)=Y e (4.15)
J
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is called the heat kernel. This is the spatial trace over the local heat kernel (Seeley
1969a, 1969b),

K(t) = / dr K (v, |6) | - (4.16)
1%
The local heat kernel obeys the heat conduction equation
0 2 /
T Vi | K(r,v'|t)=0 (4.17)

with the initial condition K (r, 7’|t = 0) = §2(r —r’). It must also fulfill the same
boundary conditions as the field ¢(z).

In general, the heat kernel is the key object in the theory of heat conduction.
It is important for the Casimir effect because its behavior for small ¢ describes
the divergences in the vacuum energy. An important feature of the heat kernel
is that it has an asymptotic expansion for small ¢,

1

K(#) = (4rt)3/2

(a0+a1/2\/£+a1t+a3/2t3/2—|—...> , (4.18)

where the ay/ (k =0, 1,2, ...) are the heat kernel coefficients. In this expan-
sion, the term in front of the parentheses is universal. It depends only on the
dimensionality of the space [it is (47t)~%? in a d-dimensional space]. For an
elliptic differential operator, such as the Laplace operator, the expansion is in
powers of /1.

The heat kernel coefficients have a very long history. They were introduced
independently several times and are known under different names such as the
Minakshisundaram—Pleijel coefficients and the Seeley or Seeley—deWitt coefhi-
cients. The heat kernel coefficients have been very well investigated [recently, an
excellent review was given by Vassilevich (2003)]. They are universal in the sense
that they depend only on the geometric characteristics of the volume V' and its
enclosing surface S, such as the curvature and its derivatives, and on the type
of the boundary conditions.

In the following, we consider a volume V with a background field U (r), which
can be introduced as a position-dependent mass density by the substitution
m? — m? + U(r) in the operator (3.6). We postpone considering a curvature
such as in eqn (3.10) for later. Furthermore, we assume that the volume V' is
bounded by a surface S. The geometric properties of the surface can be expressed
in terms of its second fundamental form at a point 7,

L1 d?ﬁ + 2L12dny dne + Log dn%, (4.19)
where 71, 12 are coordinates on a surface in three-dimensional space and

0? 0 0 92
Liu=mn-o=r, Lm:LQl:n.a—mﬁ—ngr’ Lzzin-a—ng

r. 4.20
on? (4.20)
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Here n is the outward-pointing normal vector to the surface at a point r (Gray
1997). The heat kernel coefficients are represented as a sum of two local integrals,
one over the volume (bulk part) and the other over the surface (surface part),

ak/z:/Vdrbkm(?”)+/Sdu(77)0k/2(77)- (4.21)

Here, we use the same parametrization for S as in Section 3.6. The surface part
is absent if the volume V has no boundary (for example, an interval with peri-
odic conditions). We must warn readers that several different notations for the
heat kernel coefficients are used in the literature. Sometimes the factor (4)~3/2
is included in their definition. Sometimes the enumeration is done with inte-
ger numbers, i.e. ay/; — ay. In the notation of eqns (4.18) and (4.21) and for
Dirichlet boundary conditions (upper entry in the curly brackets) and Neumann
boundary conditions (lower entry in the curly brackets), the first few coefficients
read

-1 ™ 1
bO:17 00:07 b1/2:0, 01/2{ 1 }%a ble( )7 :g

L,
byjp =0, czy9= % ({ _11 } 96U (u(n)) + { 1;} L2, + { } abLab>

1, 1 [(-120
—_ — = — n 12 Laa 24Laa'
by 2U (r), co 360 H 940 }8 U(r) + 120U (r) Lo + bb

1 40 —264 320
— L3 LapLapLee LavLveLea ). 4.22
5 <{280} W+{ 168 } bab +{224} bb )] (4.22)

Here, there is a summation over the repeated indices a, b =1, 2, i.e.

Loo = L11 + LQQ, LopLay = Lll =+ 2L 19 T L22, etc., (423)
and the following notation is used:
0? 0?
Laavy = m=5Laa + =5 Laa- 4.24
;bb o + o2 ( )

When inserted into eqn (4.21), the coefficient by leads to the volume of V, ag = V,
and ¢/ is proportional to the area S of the surface. It should be noted that the
coefficients with half-integer numbers result only from the boundary.

Below, we shall consider a sphere without a background field. Here the sec-
ond fundamental form is simply L., = dap/R, such that L, = 2/R and the
coefficients become

4 -1 8
ag = %RB, aj g = { 1 }2773/2R2, ay = —ﬂ-R,

—1) #%/2 —1) 167
_ _ om 4.2
“s/2 { 7 } 6 = " {35 } 315R (425)

Thus, in terms of the heat kernel expansion, complete information about the
divergences of the vacuum energy is available. This is contained in the poles of
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Ey(s). These poles follow from eqn (4.14) together with eqn (4.18), from the
integration in the vicinity of ¢ = 0. We divide the integration over ¢ into t € [0, 1]
and ¢ € [1,00). The integral over the second interval gives a regular expression.
The contribution to Eo(s) from the interval [0, 1], denoted by FEy(s), can be
calculated after a power series expansion of the exponent in eqn (4.14) has been
performed. The result is

2s o ~

= 0 ln = a(2k+1)/2
Eo(s) = ., (4.26
0(s) 2(47)3/2T (s — 1) nz:% +}; s—2+(2k+1)/2 (4.26)

where the mass has been included in the redefined coefficients

~ n _1l _1l
3o (-1

k
anm?, Ggpinye = Z T Gkt1-20/2 m*. (4.27)
As we are interested in the pole at s = 0, we separate the pole part of Fy (s):

=0

EP( ) as 2a9 — 2a1m?2 + agm?
S) = — = —
0 3272s 647m2s

(4.28)

This is the part of the vacuum energy which diverges when the regularization
is removed. It contains the coefficients up to and including as. Higher-order
coeflicients do not contribute.

For massive fields, the heat kernel expansion provides an expansion in inverse
powers of m. This can be obtained by inserting the heat kernel expansion (4.18)
into eqn (4.14) and performing the integrations in each term of the sum:

25 T (s+£-2)
H 2 4—2s—k
E = E . 4.2

o(s) 1673/2 — T (s—13) " /2 (429)

It must be stressed that this is an asymptotic expansion for Ey(s).

The terms of this expansion for 0 < k < 4 diverge when s — 0. These terms
contain nonnegative powers of the mass. Expanding the terms with £ < 4 in eqn
(4.29) in powers of s around the point s = 0, we arrive at

4 2 3
div m 1 4 1 m
Eo™(s) = ~ G2 (; TInE T g) 0 Gamen 2 (4.50)

m? 1 4/~L2 m 1 1 4/1*2
" 327 (5 R 1) “F ez 42 T 3 (E Ty 2) @

We call this the divergent part of the vacuum energy in zeta function regulariza-
tion, although it also contains some finite contributions. This definition makes
sense only for a theory with a nonzero mass m or, equivalently, with a gap in
the spectrum. For a massless field or a gapless spectrum, one must return to the
divergent pole part, eqn (4.28), which is also meaningful for m = 0.
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For comparison, it is instructive to express the vacuum energy using cutoff
regularization, eqn (4.1), in terms of the heat kernel coefficients. As can be
seen from eqns (4.8) and (4.3), the Mellin transform Ey(s) (4.8) of the vacuum
energy in cutoff regularization is related to the vacuum energy in zeta function
regularization by means of

Eo(s). (4.31)

Substituting the series (4.26) into eqn (4.31) and using the inverse Mellin trans-
form (4.9), we obtain the divergent part of the vacuum energy in cutoff regular-
ization in terms of the heat kernel coefficients,

3a0 1 (11/2 1 a1

div _
B0 =gzt ong &rzaz

5 Ind. (4.32)

The coefficients a1, as are defined in eqn (4.27). We mention that a comparison
of this formula with eqn (4.12) allows one to establish a connection between
the heat kernel coefficients and the coefficients ¢; in the Weyl expansion of the
eigenvalues (4.7).

Now we consider the representation (3.112) of the vacuum energy which fol-
lows from the effective action. Using eqn (3.111), we represent the effective vac-
uum energy in the form

(4.33)

r=x'"

1
Ey=FEyer = 5T Trin G(x,2')|

Here “Tr” is understood as the sum of all of the diagonal matrix elements cal-
culated with the functions

by () = et P i (7). (4.34)

1
V2r
It is easily seen that the matrix of the Green’s function (3.87) is diagonal in the
basis (4.34). Because of this, we obtain

InG(z,2') = —/ Z O y(r ) In(—w? + w})e W), (4.35)

Calculating Tr of eqn (4.35) using the orthonormality of the basis functions
(4.34), we get

TrinG(z,2") = —i dw Z/ dt/dr/ dt’ /dr’ W' (t=t")

dw . ’
X ®%, () / o Z B 7 (r) 0% (') In(—w? + w?)e WD 4 ()
oo ¥
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* dw 9 9
=-T /_Oo o ZJ;ln(—w + w?). (4.36)

Note that the integration with respect to ¢ in eqn (4.36) results in 2mé(w’ — w)
and the subsequent integration with respect to w’ and t' gives a total time 7.
Substituting eqn (4.36) into eqn (4.33) and using eqn (3.39), we arrive at

i [ dw
Epef = —— — In(—w? + A 2y, 4.
0,cff 2/0027rz]:n(w+ 7 +m?) (4.37)

Again we are faced with an infinite expression. Its zeta function regularization
is

*d s
Eyem(s) 2 35 / wz —w? +Ayj+m?) (4.38)

where g, which has the dimension of a mass, is again an arbitrary parameter. In
fact, by introducing this parameter we have added a constant in Fy eq(s) which
arises from the differentiation of the factor u?¢. However, this constant does not
depend on the boundary conditions or on the background in the limit of removing
the regularization s — 0. The derivative of the integral in eqn (4.38) restores
the logarithm and, on removal of the regularization, we return to eqn (4.38).
The sum on the right-hand side is also a zeta function, but it is different from
eqn (4.5). Introducing a new variable w = t+/Ay + m?, we obtain from eqn (4.38)

— 00

i, s [ -
Boanls) = 1= 5oi® (A +m?)~C W?/ dt (12~ (4.39)
J

Using the definition of the generalized zeta function (4.5) and calculating the
integral (Gradshtein and Ryzhik 1994), we get

Eocqi(s) = —ﬁ % 2 F(;(_)_) CP( ;) : (4.40)

Comparison with eqn (4.4) allows one to establish the relationship with the
vacuum energy in zeta function regularization, eqn (4.3),

1 9T(s—1)
2/ 05 I(s)

In this representation, a remarkable property of the vacuum energy defined by
eqn (3.112) follows. This energy is not singular if the zeta-function-regularized
vacuum energy has at most a simple pole in s = 0. Indeed, representing this
energy as

Eperi(s) = — Ey(s). (4.41)

Eo(s) = By (s) + Eg*(s), (4.42)

i.e. as a sum of the pole part (4.28) and a regular part for s — 0, we get from
eqn (4.41)
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a2

1672
We note that this expression does not contain a singularity for s — 0, and, as a
result, Ey e (s) in eqn (4.38) is finite for s — 0 (provided Ey(s) has only a single
pole at s = 0). It should be mentioned that sometimes, because of this property,
the zeta function regularization resulting in eqn (4.43) has been interpreted as
zeta function renormalization. This interpretation, however, has limited applica-
bility since it does not provide a unique definition of the vacuum energy. This
follows from the fact that the quantity F;"®(s) contains terms depending on p
[see eqn (4.30)],

Eoe(0) = (In2 — 1)—2 + E%(0). (4.43)

re &2 M
E%(s) = T lnE +... (4.44)

(unless the heat kernel coefficients in ao are zero). In Section 4.3, we shall treat
the renormalization of Eyer(s) in the same manner as in the other representa-
tions.

We conclude this section with a definition of the divergent part

div _ 1 QF(S_%)
EO,eff(s) - 2ﬁ s F(S)

which uses eqn (4.41) and EZV(s), found in eqn (4.30). Performing the differen-
tiation in eqn (4.45) and then expanding in powers of s, we obtain

Ev(s) (4.45)

= 2

iv az H
Ei(s) = i (4.46)
16+/7
+ R (_3m4a0 _ T\/_m?’al/g + 4m2a1 + Sﬁmag/g) + 0(8)

Again, similarly to eqn (4.43), this expression is finite for s — 0, and the notation
has been chosen in uniformity with eqns (4.30) and (4.32). As expected, the first
term in eqn (4.46) coincides with that in eqn (4.44).

4.3 Renormalization of the vacuum energy

After we have obtained regularized expressions for the vacuum energy, it is nec-
essary to remove the divergences, give an interpretation of this procedure, and
address the key question about its uniqueness. Nonunique features are always
present owing to the choice of the regularization scheme and parameters such as
W in eqn (4.3).

The simplest case of renormalization is that of a quantum field coupled to a
smooth background field. We start with this case, where one can follow the well-
known procedures from quantum field theory. Next, complications to this can be
added in two ways, either by adding a boundary or by making the background
field singular. We conclude this section with the easiest (from the renormalization
point of view) case of forces between two separate bodies, which are always finite.
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4.3.1  Smooth background fields

Here we consider the vacuum energy of a quantum field of mass m with a back-
ground of a smooth classical field of mass M in unbounded space-time. Some
physical examples are the quantum fields for matter and radiation in a gravita-
tional or electrodynamic background. However, there are no smooth background
fields in Casimir problems, and we discuss this case only to illustrate the renor-
malization procedure. Thus, it is reasonable not to deal with electromagnetic
or gravitational fields but instead to choose a technically simpler example of a
classical scalar field ¢(x) (the background field) and a quantum field ¢(x) with
the action

S = —% / d*z () [3 + M? + Ap? ()] p()
—% /d4x e(z)[0+m? + 5«/)2(95)] o(x). (4.47)

Here we have included a self-interaction term for the background field with some
constant . In the action of the quantum field, the interaction term \¢?(x)p?(z)
can be viewed as an additional position-dependent mass density. We assume the
background field to be static, i.e. ¢(x) — ¢(r). Thus, when the quantum field is
in the vacuum state, the system has a definite energy,

E = Eqass + o, (4.48)

where

Eass = %/dr o(r) [7V2 + M2y )\¢2(r)] o(r) (4.49)

is the classical part of the energy. As to the vacuum energy Ej, we take this in
the form given by eqn (3.60) and use zeta function regularization (4.3),

2s
Eo(s) = “2 Swb, (4.50)
J

The eigenvalues in eqn (4.50), after the replacement m? — m? + \¢2(r), are
subject to the equation

[—VZ’ + 5@2(7‘)} O(r) = Asdy(r), (4.51)

a generalization of eqn (3.39). The divergent part of the vacuum energy is given
by eqn (4.30) with the heat kernel coefficients

B 12
a; = /\/dr P*(r), ax= % /dr (7). (4.52)

These coefficients follow from the bulk part in eqn (4.22), where we have inserted
U(r) = A\¢*(r) (a1/2 and a3/ are zero since we have no boundary). We drop the
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contribution to eqn (4.30) from ag = V, which is infinitely large in unbounded
space (see the discussion at the end of this subsection). As a result,

2\ /1 4
Edv(s) = ;;WQ (g +1nmi - 1) /dr¢>2(7")
21
g (5] ‘2>/d’"¢ (459

It should be noted that the divergent part repeats the structures present in the
classical energy.
Representing the complete energy (4.48) in the form

E = Eetass + E§(s) + Eo(s) — 5™ (s), (4.54)

we can absorb E3!Y(s) into the classical energy by introducing the renormalized
parameters of the classical field

23 2
2 . 2, MA R
Mien = ;13(1) M 3272 ( +in m2 1)]
. 221 4p2
Aren = limy [A g (5 - 2)] (4.59)

Thus, the renormalized classical part of the energy is given by

B = 1 [Baass + B§™(s)]

class —

1
=5 / dr ¢(r) [=V? + M2, + Aend® ()] (7). (4.56)
The renormalized vacuum energy is then given by
Eg™ = lim [Eo(s) — E™(s)] . (4.57)

The same approach can be used in other regularization schemes. For instance,
we can consider the cutoff regularization. When using, instead of eqn (4.50), the
vacuum energy in cutoff regularization (4.1), one needs to use the divergent
part given in eqn (4.32). The heat kernel coefficients are the same as before
[eqn (4.52)], and the only change in the above scheme will be slightly different
formulas for the renormalized mass M., and the self-interaction constant Ayen,

A 2 22
M2, =M 2 (5_2 —m?n 5) Men = A+ 55— Ind. (4.58)

Finally, we consider this procedure for the vacuum energy (3.112),

i ~
__ O 2 2 .
Eo ot 2TTrha( +m?+ 2o (r)), (4.59)

which follows from the effective action in Section 3.5 with the replacement m? —
m? + A (7).
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In the presence of the background field, the divergent part Eg’ie"ff can be
defined in the same way as in Section 4.2.2. Inserting the heat kernel coefficients
(4.52) into eqn (4.46), we obtain

iv mQS\ MQ
Egee(s) = 3972 (ln i 1)/dr ¢ (r) (4.60)
32 MQ

a2 In o dr ¢*(r) + O(s).

In this case the renormalized parameters of the classical field are

2y 2 N2 2
2 _ a2, MA M _ A H
Mren =M + 32772 (ln W + 1), )\rcn =— W In W (461)

Here, in contrast with equs (4.55) and (4.58), both Myen, Aren and M, X are
finite, but, as mentioned above, this is only a peculiarity of the representation
used.

We thus obtain a finite vacuum energy (4.57) which must be added to the
classical energy (4.56). As explained above, the parameters of the classical energy
have been renormalized. This is, however, not a problem, since the renormalized
values must be determined independently anyway (usually experimentally). This
is the general scheme of renormalization known in quantum field theory.

It must be mentioned that in this model, renormalization requires the self-
interaction term in the classical part, and this is in agreement with the standard
counting of the superficial degrees of divergence. Furthermore, we remark that
there is no renormalization of the term containing the derivatives in the classical
energy. This follows from the absence of a corresponding structure in the heat
kernel coefficients and implies the nonrenormalization of the classical field ®(r).

Also, note that a renormalization scheme such as that suggested by eqn (4.55)
or (4.58) is not unique. This is due to the fact that with an infinite renormaliza-
tion, we can always include a finite renormalization and still remove the singu-
larities. This is similar to a change in the definition of the divergent part of the
vacuum energy. Also, the parameter 1 and the choice of the regularization lead
to nonuniqueness.

A discussion of this nonuniqueness involves deeply the particular model con-
sidered. For instance, within the model given by eqn (4.47), it would be natural
to look for a minimum of the complete energy F in eqn (4.48). It is clear that one
may perform a redistribution of the energy between the two parts of eqn (4.48).
This can be viewed as an additional finite renormalization. Consequently, here,
the vacuum energy does not have an independent meaning.

Another method of proceeding is to impose a normalization condition on
the renormalized vacuum energy such that it becomes uniquely defined after
the regularization is removed (regardless of the regularization scheme). One of
these conditions is the so-called no-tadpole condition introduced by Graham et
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al. (2004). A second approach follows from a consideration of the mass of the
quantum field together with the large-mass expansion (4.29), by demanding that

Ef" —0 for m—oo. (4.62)

The motivation for this condition is that an infinitely heavy field should not have
quantum fluctuations and hence should not produce a vacuum energy. This con-
dition, as follows from the heat kernel expansion, is equivalent to the subtraction
of all contributions involving the heat kernel coefficients a¢ through as because
these enter the large-mass expansion with nonnegative powers of the mass. In
this manner, one can give the vacuum energy a unique meaning independent
of a classical model. The definitions (4.30), (4.32), and (4.46) of the divergent
part are given in such a way that the corresponding renormalized vacuum energy
fulfills the normalization condition (4.62). As a consequence, the renormalized
vacuum energy given by eqn (4.57) is unique, i.e. it does not depend either on
the regularization chosen or on the parameter u. This normalization condition
was discussed by Bordag (2000). However, as mentioned there, this condition is
meaningful for massive fields only. In the case of a massless field, this approach
is not applicable, and there is as yet no known way to give a satisfactory renor-
malization condition independent of the classical model (unless, of course, the
corresponding heat kernel coefficients are zero).

Next, we draw special attention to the divergent contribution resulting from
the heat kernel coefficient ag. On the one hand, in this simple model, we do not
have a classical counterpart that has the same structure (proportional to the
volume V', which is infinite here). On the other hand, this contribution does not
depend on the background field. This is clearly the contribution which would be
present in empty space, i.e. in the absence of the background field. Because of
this, we do not relate it to the vacuum energy resulting from the background, and
therefore drop it. This is the same case as when one considers only the response
of the vacuum energy to a change in the background field. There is, however,
one scenario where this is not possible. Namely, when we consider quantum
fluctuations in a gravitational background, we cannot drop this contribution,
because it is the source of the gravitational field. But in that case there exists
a structure for renormalization, namely the term containing the cosmological
constant, which needs to be renormalized in the same way as the gravitational
constant.

4.3.2  Singular background fields and boundary conditions

The situation described in the preceding subsection changes when nonsmooth
background fields are considered. From a formal point of view, one first observes
that the heat kernel coefficients aj, /o become infinite starting from some k. This is
because the coefficients contain powers of the background field and its derivatives
in increasing order. For instance, when the interaction potential in the model
(4.47) becomes proportional to a delta function on a sphere of radius R, i.e.

#*(r) = ad(r — R), (4.63)
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az becomes singular since it contains the delta function squared, which is not a
well-defined object. Mathematically, the problem is related to the noncommuta-
tivity of the two limits, one arising from the asymptotic expansion of the heat
kernel for small argument ¢ and the other from making the background singu-
lar. The physical meaning can be seen from the model (4.47) considered in the
preceding subsection. If one takes the classical part in order to accommodate
the renormalization, then it must contain the A¢?* self-interaction term. But this
term gives an infinite contribution to the classical energy in the limit (4.63). Thus
one would need an infinite amount of energy in order to make the background
field singular. For these reasons, the scheme of letting the background become
singular does not seem very natural, as observed by Graham et al. (2002, 2003,
2004).

The situation is different when one starts from an already singular back-
ground. Here, the only case which has been investigated so far in any detail is
a one-dimensional delta function potential on a spherical surface. In that case
the spectral problem for the fluctuations is well defined and all the heat kernel
coefficients exist. For example, with eqn (4.63), the heat kernel coefficients are
(Bordag et al. 1999a)

ago = 47rR20k/2 with ¢12 =0, c=-q,
1
C3/2 = ?0427 Co = —6043. (4.64)

In the above, we have written down only those coefficients which are relevant
to the renormalization. It is a characteristic of this singular background that
the coefficient ag,, with a half-integer number, appears [for a more general
discussion see Bordag and Vassilevich (1999, 2004)].

Finally, we consider the vacuum energy in the presence of boundary condi-
tions. This case is the most relevant for the Casimir effect. For simplicity, we
restrict ourselves to the case of a sphere with Dirichlet or Neumann boundary
conditions. The heat kernel coefficients are given by eqn (4.25). Since no back-
ground field exists, one needs to introduce other classical parameters in order
to accommodate the renormalization. Blau et al. (1988) suggested the geometric
structure

1
Eolass = pV + oS+ hiR+ he + hgﬁ, (465)

where p has the meaning of a pressure and o of a surface tension. But h1, ho, and
hs do not appear to have standard meanings. Now, taking the vacuum energy in
any regularization, the divergent part can be removed by a corresponding renor-
malization of the parameters p, o, h1, ho, and hs. This procedure is completely
parallel to that in the preceding subsection, done for smooth background fields.
It is also clear that it can be directly generalized to a surface of a generic shape
using the heat kernel coeflicients in eqn (4.22).
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However, a situation may arise where there is no classical system available
for the justification of the renormalization. In that case one could take the nor-
malization condition (4.62), provided the quantum field has a mass. If the field is
massless and the corresponding heat kernel coefficients do not vanish, one cannot
give the vacuum energy a satisfactory interpretation. The most important ex-
amples are that of a conducting sphere of finite thickness and that of a dielectric
ball. These will be discussed in Sections 9.3.3 and 9.3.4.

4.3.3 Finiteness of the Casimir force between separate bodies

We have seen in Section 4.2.2 that the divergent part of the vacuum energy
follows from the heat kernel coefficients ag through as. These coeflicients are
represented by eqn (4.21) as integrals over local quantities: the background po-
tential and the coefficients of the second fundamental form (4.19), including their
derivatives and powers. This locality is a fundamental property of the heat kernel
coefficients that holds under very general assumptions. It is believed that it is
related to the locality of the ultraviolet divergences in quantum field theory.

With respect to the Casimir effect, the local nature of the coefficients deter-
mining the divergent part of the vacuum energy has a far-reaching consequence.
The definition of the heat kernel coefficients presented in Section 4.2.2 is of a
rather general character. It refers both to simply connected manifolds (a com-
pact body with some finite volume restricted by a boundary surface S) and to
nonsimply connected manifolds. As an example of the latter, let us consider two
separate, i.e. nonintersecting bodies with volumes V; and V5 and surfaces S
and S5 having no common points. We also assume that there is no background
field. It follows from the latter that all of the local heat kernel coefficients by, /5 in
eqn (4.22), excepting by, are equal to zero. Thus, none of the global heat kernel
coefficients ay/, in eqn (4.21) with £ > 1 contain a volume contribution. They
are given by

ak/gz/s du(n ngl/)z /du c,(f/)z n). (4.66)
1

(1)
k/2
tive parts S7 and Sy of the éurface S. These coefficients need not be the same.
Even the boundary conditions on S; and S; may be different.

In the case of two separate interacting bodies, it is reasonable to consider
the spatial region V' — V; — V5, where V is the infinite volume of the entire
three-dimensional space, restricted by the boundary surface S consisting of Sy
and Ss. In doing so, we change the sign of the direction of the local normal
vector n to the surface. This leads to an opposite sign for the coefficients of the
second fundamental form given in eqn (4.19). For example, in the case of the

(2 )

Here the local coefficients ¢, /, and ¢, , are defined by eqn (4.22) for the respec-

Casimir interaction between two spheres with radii Ry and Rs, L((l}l) = —-2/Ry
and Lfﬁ) = —2/Ry. As a result, from equns (4.21) and (4.22) we obtain

ap =V —-Vi = V. (4.67)
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We drop the contribution proportional to this coefficient in the divergent part
of the vacuum energy (4.30). This is equivalent to subtraction of the zero-point
energy arising from the free space between the bodies.

The divergent part of the vacuum energy (4.30) is then determined by the
coefficients (4.66) with 1 < k < 4. As is seen from the structure of eqn (4.66), the
ar/2 do not contain any information about the relative location of the parts 51
and Sy of the boundary surface S. In other words, the heat kernel coefficients do
not depend on the distance between the interacting bodies under consideration.
If we now insert the ay,/; into the divergent part (4.30) or (4.32) or the pole part
(4.28) of the vacuum energy in any regularization, that part is also found to be
independent of the distance. The distance dependence is contained only in the
finite renormalized vacuum energy EJ°" defined in eqn (4.57). We emphasize that
information about the distance dependence of E§°" cannot be obtained from the
heat kernel expansion. It is contained in the finite part of the energy remaining
after subtraction of the divergent part. As the divergent part is independent of
the separation, the force between two separate bodies is always finite.



5

THE CASIMIR EFFECT AT NONZERO TEMPERATURE

So far, we have limited our discussion to the Casimir effect resulting from the
energy of the vacuum state of a quantum field in the presence of boundaries.
All excitations were neglected. In practice, the appropriate state of the quantum
field is a state containing real particles. The typical situation is a state containing
particles in thermal equilibrium. In fact, one has to consider an ensemble of states
characterized by a temperature T and a probability distribution. The energy of
such an ensemble in the presence of spatial boundaries is then considered as the
Casimir energy at nonzero temperature.

So, let us consider a quantum system at nonzero temperature 7' in thermal
equilibrium. It is characterized by a Gibbs distribution and a partition function

Z =Y e B/l (5.1)

where kp is the Boltzmann constant. The sum is taken over all states n, and
E,, is the energy of the state n. From the partition function, all thermodynamic
quantities, such as the free energy,

F=—kgTlnZ, (5.2)
the pressure
dF
pP—_ (_) , (5.3)
av ) .
and the entropy
OF
=—— 4
s=-2 (54)

can be derived.

In quantum field theory, there exist several methods to treat a system at
nonzero temperature. The easiest and most frequently used method is the imagi-
nary-time Matsubara formalism, which is applicable to a system at thermal equi-
librium (Matsubara 1955). For time-dependent and nonequilibrium processes,
the real time formalism may be used. But this and other related approaches
have not played a significant role in the study of the Casimir effect.

5.1 The Matsubara formulation

In the Matsubara formalism, one uses a Euclidean field theory, considered as a
continuation of the theory in Minkowski space—time by a rotation of the time
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coordinate ¢ — —ir. The Euclidean time 7 is confined to the interval 7 € [0, 3],
where 8 = 1/(kgT) is the equivalent dimension corresponding to the inverse
temperature. The fields must obey periodicity conditions on this interval; bosonic
fields must be periodic, (7 + §,7) = (7, 7), and fermionic fields (which we
do not consider at nonzero temperature) must be antiperiodic, (7 + 8,7) =
—p(7,r), in accordance with their statistics. In the limit of zero temperature
one reobtains the theory on the whole time axis.

In the Matsubara formalism, the partition function Z in eqn (5.1) has the
following representation in terms of a functional integral:

Z = c/Dwe*SEM (5.5)

where Sg[y] is the Euclidean action. It can be obtained from the corresponding
action in Minkowski space—time (3.100) by the replacement of S with iSg. For
example, using eqn (3.5), for a scalar field with T = 0, we have

B
Sulo] = % /0 dr / dr oK o, (5.6)

where
Kg = (—0Og +m?). (5.7)

The Fuclidean wave operator

82

Op = —
E 5‘7’2+

v? (5.8)
is the continuation of the d’Alembertian (3.2), which in fact is the four-dimen-
sional Laplacian. In the functional integral (5.5), the field to be integrated over
must fulfill the corresponding periodicity conditions.

In general, in the Matsubara formalism, the construction of the theory, to a
large extent, goes in parallel to the zero-temperature case. In this way, most of
the formulas for the vacuum energy in Chapter 3 may be directly translated to
the case of nonzero temperature. This is true, for instance, in the calculation of
the functional integral. Since we are continuing to consider free-field theories, the
functional integral is Gaussian and can be calculated directly. Using an approach
similar to that in Section 3.5 and the infinite-dimensional analogue of eqn (3.104),
we obtain the following from eqn (5.5) for the partition function:

Z = C (det Kg)/?, (5.9)

where C' is an irrelevant constant, which will be dropped below. Further, for the
free energy we get

1
F = g5 TrinKe, (5.10)

which is analogous to eqn (3.112). The trace in this expression is taken over the
space of fields to be integrated over in the functional integral (5.5).
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Since we assume thermal equilibrium, it is always possible to separate the

Euclidean time variable from the spatial variables. Assuming for the spatial part
an eigenfunction expansion as in eqn (3.39),

—V2®;(r) = A (r), (5.11)

we obtain a basis in the space of fields ¢,

efigl‘l'
Py y(7,7) = T ®y(r), (5.12)
which contains the Matsubara frequencies
& =2mkpTI, 1=0,=£1, £2,.... (5.13)

These functions are periodic in 7 (for a fermionic field, one has to take half-
integer values of 1), and these are eigenfunctions of Kg,

Kp®,5 = (& + Ay +m?) & (5.14)

As a consequence, the trace in the free energy becomes a sum over the logarithms
of the eigenvalues,

1 o0
Fo = ksT SN (g +A+m?). (5.15)

l=—00 J

As before for the energy, the lower index 0 stands for the nonrenormalized quan-
tity. This formula generalizes eqn (3.112) to the case of nonzero temperature.
Note that if the field is massless and all quantum numbers in the collective index
J are discrete, it is assumed in both eqn (3.112) and eqn (5.15) that there are
no physical states with Ay = 0.

In eqn (3.112), Ey is the energy of the vacuum of the corresponding quan-
tum field. In eqn (5.15), Fp is the energy (more exactly, the free energy in the
thermodynamic sense) of an ensemble of states containing particles at the tem-
perature T'. In the special case of T' — 0, the time interval stretches over the
whole axis and the sum over the Matsubara frequencies becomes an integral over
the frequency &:

Wt > g6~ [ e (5.16)

l=—00

[here f(&) is a function which must allow an analytic continuation from discrete
values to continuous ones|. In this way, Fo defined in eqn (5.15) turns into the
vacuum energy Fy in eqn (3.112) [to be exact, in eqn (3.112) one should in
addition pass to the Euclidean time variable].
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The free energy, as given by eqn (5.15), still contains ultraviolet divergences
and one has to introduce a regularization. For this, all cases considered in Chapter
4 apply. In zeta function regularization, the free energy becomes

19 = s
Fols) :—Eg;ﬂskBT SN (g +As+m?)

l=—0c0 J

(5.17)

The regularization is removed for s — 0, and g is an arbitrary parameter with
the dimension of mass. The separation of the ultraviolet divergences can be done
quite easily because these are the same as at zero temperature. There are two
ways to proceed. In the first method, one has to apply the Abel-Plana formula
to the frequency sum in eqn (5.17). This way has the advantage that it can also
be applied to the case where there is an additional dependence on [, for example
through a dielectric permittivity entering in the form ¢2 — e(i€)¢2. Another,
to some extent easier, way is through the application of the Poisson summation
formula (Titchmarsh 1948). According to this formula, if ¢(c) is the Fourier
transform of a function b(z), i.e.

cla) = L /OO b(x)e " dx, (5.18)

2 J_ o

then it follows that

i ) =27 Z (2nl). (5.19)

l=—o00 l=—00
By putting
1
b(z)=e ",  cla) = ——e @ /012), (5.20)

we obtain from eqn (5.19) the following equality:
SRR SR 21
l=—00 n=-—o0

where Re z > 0 is assumed. In order to use this equality, we represent eqn (5.17)
as a parametric integral,

10 dt t‘s
Fo(s) = ~5 55" 23/0 Z Ze (&8 +As+m?) (5.22)

and apply eqn (5.21) with z = (2rkpT)?t = (27r/3)*t. The result is

2[32 442 (A +m?2 4
Fols) = -1 2 Z/ — Z +42 (A +m?)] /(41) (5.23)

n=—oo

The n-dependent factor in the exponential provides convergence for the t-
integration at ¢ — 0 for all terms in the sum over n except for n = 0. The
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latter is just the zero-temperature contribution. This can be seen by applying
eqn (5.16) to the frequency sum in eqn (5.22):

o e [T dE e 1
ksT > e ' /m 5 i (5.24)

As a consequence, we can split the free energy into a zero-temperature part and
a temperature-dependent addition ApFy as

Fo(s) = Eoer(s) + ArFo(s). (5.25)

Here, the vacuum energy at zero temperature is

10 2s * dé_ 2 2\ —S
EO,CH(S) = —5%,“ [m % ; (f +Aj+m ) . (5.26)

l=—00

This representation coincides with eqn (4.38) after the inverse Wick rotation
¢ = —iw is performed. The temperature-dependent addition (thermal correction)
is given by

0 2 [0 dt t° 252 442 2
ArFo(s) = — 228 / dt B NT [ auemd)] /a0 g or
Fo(s) = —5-u §:j T Tﬂt%j (5.27)

Note that eqn (5.25) has a transparent physical interpretation only for the
temperature-independent boundary conditions considered here (see Chapter 12
for further discussion).

The ultraviolet divergences are contained in Fy ¢ (s) and can be dealt with
in the same way as described in Section 4.3. This results in the replacement of
Ep et (s) with Ef* in eqn (5.25). In ArFy(s) in eqn (5.27), the integration over
t is convergent and we can remove the regularization, i.e. we can put s = 0 using
the equality

9 f(s)

Jm s @ = f(0), (5.28)

where f(s) is any regular function at s = 0. Following this, the integration over
t and the summation over n can be carried out explicitly:

ArFy=ksTY In (1 - e*ﬁvAﬁmz) . (5.29)
J

In this formula, we see the sum of the T-dependent contributions to the free
energies of the individual degrees of freedom, or modes, A; of the system con-
sidered. Taking A + m? = w? into account, the total free energy of all of the
oscillator modes appears to be

Fo=Ey" + kT » In(l—e ), (5.30)
J

where the zero-temperature contribution Ey given by eqn (3.60) has already been
replaced with E§°". For instance, if we take the volume V' to be a volume of empty
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space, the modes are plane waves, the index J becomes the wave vector k, and
the sum over J turns into the corresponding momentum integration with respect
to dk/(2m)3. As a result, from eqn (5.29) we obtain the free-energy density of
black-body radiation

Fon(T) = kBT/ % In (1 - e—ﬁlkl) = 7%. (5.31)

We note that eqn (5.31) holds for a scalar field. For an electromagnetic field,
one would have to multiply it by a factor of 2. In fact, for empty space, fpp
defined in eqn (5.31) is the complete free energy. This is because in this case the
zero-temperature part is the vacuum energy of empty space, which we have to
disregard. Using the thermodynamic connection between the energy at a tem-
perature T and the free energy

(5.32)

it is evident that for F(T') = fei*(T) = 2 fuu(T'), the respective energy density is
in agreement with Planck’s black-body radiation density

u= T U

= (5.33)

If we consider the free energy in a restricted volume V', then we have to keep
the zero-temperature part Ej". For the temperature-dependent part, we have
to note that we are interested in the change in energy which comes from the
volume V. Therefore we need to subtract from the temperature-dependent part
ArFy of the free energy the corresponding amount related to empty space, i.e.
the black-body radiation density fi;, multiplied by the volume V. As a result,
we arrive at the following expression for the renormalized free energy associated

with a finite volume V,

Fo=Ey™" + ArFo =V fob. (5.34)

In the general case, however, eqn (5.34) cannot be considered as the physical
Casimir free energy associated with the volume V. As we shall see in Section 5.2,
the asymptotic expression for the quantity ApFy at high temperatures (large
separations) contains the following terms:

(k‘BT)4 _ WQ(kBT)4 (kBT)B (/{:BT)2
o — 00?0 Vet T he

Qg (5.35)

Here, we have returned to the usual units in order to underline that all of these
terms are of quantum character. Note that the first of these terms is just equal
to V fyp. The coefficients a1 and as depend on geometrical parameters of the
configuration (e.g. the surface area and the sum of edge lengths, see Section
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8.5). They can be expressed in terms of the heat kernel coefficients a,,, and
a1 (see the next section). The presence of the terms (5.35) in the free energy
would lead to forces of quantum nature which do not vanish with an increasing
characteristic size of the body. At the same time, the next expansion term in
the high-temperature limit of the free energy has the form of aszkgT, with a
dimensionless coefficient aj3. It is of classical origin and does not contribute to
the Casimir force.

In fact, the geometrical structure of the coefficients a; and «s is just the
same as that in the respective infinite terms to be subtracted from the zero-
temperature Casimir energy Fj in the cutoff regularization to make it equal to a
finite value E{°" (see the explicit examples in Section 8.5). Thus, all of the terms
in eqn (5.35) can be absorbed by means of an additional, finite renormalization
of the free energy. As a result, the physical Casimir free energy takes the form

F=E""+ArF, (5.36)
where the physical thermal correction is given by (Geyer et al. 2008c¢)

AT]: = AT]:() - Vfbb — a7 (kBT)g - ag(kBT)2 (5.37)
= ArFo — ag(kgT)* — a1 (ksT)? — ap(kpT)?.

The respective Casimir force obviously vanishes when the characteristic sizes of
the volume V" along all three coordinate axes go to infinity.

Below, we shall use eqns (5.36) and (5.37) to investigate the thermal Casimir
effect in various configurations (see e.g. Sections 7.4.1 and 8.5 for the cases of two
parallel ideal-metal planes and rectangular boxes, respectively). All other ther-
modynamic quantities, such as the pressure and entropy, can be derived from
these formulas using eqns (5.3) and (5.4). For configurations containing trans-
lationally invariant directions, such as parallel planes or a cylinder, one must
bear in mind that all quantities in eqn (5.34) must be divided by correspond-
ing parameters such as the area of a plate so that they become the respective
densities.

5.2 The Casimir effect at low and high temperature

Specific calculations of the Casimir free energy for real bodies will be considered
in subsequent chapters (in Chapter 12 for dielectrics, and Chapter 14 for metals).
Here we consider the low- and high-temperature asymptotic expansions of the
free energy in general terms. We start with the low-temperature case. The leading
contribution is, of course, the zero-temperature part, i.e. the vacuum energy
E5™ in eqn (5.36). The correction ApFy in eqn (5.37) is given by eqn (5.29) in
terms of the eigenvalues A ; of the spatial part of the system under investigation.
Basically, its behavior depends on the general properties of the spectrum A j,
particularly on whether it has a gap or is continuous. Further, it depends on the
number of translationally invariant directions. The easiest example is the case
where all directions are translationally invariant, i.e. empty space, which resulted
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in eqn (5.31). Some more complicated examples are provided by parallel planes,
having two translationally invariant directions, or a cylinder, having one. So,
let us assume that we have r (r = 1,2,...) translationally invariant directions.
Then the index J becomes J = (k1,...,k,,n) and the eigenvalues A; become
A; = k% + ...+ kf + An, where the A, are the eigenvalues in the remaining
directions, which take on discrete values only. The temperature-dependent part
of the nonrenormalized free energy for this configuration reads

d'k
_ _ o= BVEZEN,+m?
ApFy = kBT/ oy §n In (1 e BV ) (5.38)

We consider the asymptotic expansion of this expression for T'— 0, i.e. for § —
00, and for a massless field m = 0. It is clear that the dominating contribution
comes from small & and the smallest eigenvalue \y. The next step depends on
whether the smallest eigenvalue is zero or not, i.e. on whether the spectrum of
A has a gap. Both situations are possible. For example, for parallel planes we
have A, = (7n/a)® (n = 0,1,...), with Ao = 0, in the electromagnetic case. For
a cylinder we have \g ~ 1/a, where a is the radius of the cylinder.

We first consider the gapless case, i.e. Ao = 0. Here, the leading contribution
to the sum comes from n = 0, and all higher n result in exponentially suppressed
contributions. After integrations, we arrive at

20 (r)¢r(r + 1)

ArFo=Crop(ksT) ..., Cp=—
TY°0 Q(B ) + ) (47T)T/2F(7"/2),

(5.39)
where g, is a length (for r = 1), an area (for r = 2), or a volume (for r = 3).
Equation (5.39) shows a power-like behavior of the thermal corrections. For
r = 3, we get back to the black-body radiation free energy density (5.31). For
r=1and r =2, we get
™ (r(3)
Cy=—— =——. 4

1 5’ Co o (5.40)
Then, according to eqns (5.36) and (5.37), the renormalized Casimir free energy
associated with a volume V is given by

F = EF" + Crop(kgT)™ ' — C3(kgT)*V — a1 (kgT)? — aa(ksT)?.  (5.41)

For r = 1, 2, this equation represents the low-temperature behavior of the
Casimir free energy (for the specific example of two parallel planes, a; = ag = 0;
see Section 7.4.2). For r = 3, Ef*™ =0, oy = ag = 0, and eqn (5.41) results in a
zero Casimir free energy, as necessary in empty space.

Next we consider the case of a nonzero smallest eigenvalue Ay # 0. We expand
the square root in eqn (5.38) for small & and replace In(1 + x) with 2. Then,
after integration, we arrive at

r/2
A
ArFo=— (\/_0> 0r(kpT)2/2 e=V20/(kaT) o (5.42)

21
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i.e. an exponentially suppressed contribution. Thus we arrive at the result that
the low-temperature asymptotic behavior of ArFy is determined by the lower
part of the spectrum of the spatial operator. The power-like or exponentially
suppressed behavior of the first-order correction depends on the presence or
absence of a gap in the spectrum.

In contrast, the high-temperature behavior is determined by the upper part
of the spectrum and can be expressed in terms of the heat kernel coefficients.
In order to derive this property, we represent eqn (5.22) for the regularized free
energy in the form

1O, [dt Com?
Fols) = 285” /0 ; F(S)KT(t) K(t)e , (5.43)
where -
t)=ksT D et (5.44)
l=—00

is the heat kernel associated with the temporal part of the operator (5.8) and
K (t) is the heat kernel of the spatial part as given by eqn (4.15). We proceed by
separating the term in eqn (5.44) with [ = 0:

Kr(t) = kpT + 2ksT Y et (5.45)
=1

Since this term does not depend on ¢, its contribution to eqn (5.43) can be
expressed in terms of the zeta function (p(s) of the spatial part, defined in eqn
(4.5). Using eqn (4.13) with 1 — 2s replaced by —2s, we obtain

dt ¢ I
/0 T KO =@l (5.46)

Noting that for elliptic problems (p(s) is regular at s = 0, we have

D 2Go(s) = Ghl0) + Ce(0) s (5.47)

s=0

Substituting eqns (5.45)—(5.47) into eqn (5.43), we arrive at

C{D (0) + ¢p(0) ln,u 25 Z /oo $s—1 ,tg,?K(t)e,tmz

.7:0(3) = —kgT B)

(5.48)
The behavior of the integral with respect to ¢ in eqn (5.48) as T' — oo is com-
pletely determined by the behavior of the heat kernel K (t) at ¢ — 0. Thus, to
find the behavior of Fy(s) at T — oo, we can use the heat kernel expansion
(4.18). Tt should be mentioned that this statement is equivalent to the corre-
sponding statement for the expansion in inverse powers of the large mass in eqn
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(4.29). Similarly, we can hide the mass in the heat kernel coefficients by passing
from a,, /o to @,/ with the help of eqn (4.27). Thus, inserting eqn (4.18) into
eqn (5.48) and carrying out the integration with respect to ¢ and the summation
over [, which results in Riemann zeta functions, we obtain

kgT
Fols) = =5 [6h(0) + o(0) Inp?] (5.49)
kT 8 Soo~ F(s""ﬂ_é) —2s—n
e ast ey CrkeT) T s e -3,

which is an asymptotic expansion. Here, the limit s — 0 can be performed. For
this purpose we need to use the reflection property of the Riemann zeta function,

I (2) () =n0rT <1

which provides the analytic continuation of this function to Rez < 0. First we
perform the differentiation in eqn (5.49) with respect to s by considering this
equation as a product of two factors: [u/(27kpT)]?* and a sum from 0 to oo
containing all other quantities. The derivative of the first factor in the limit
s — 0 results in 21n[u/(27kpT)], whereas only the two terms with n = 3 and 4,
containing poles in the numerator, survive in the sum (one pole in the gamma
function and one in the zeta function). When we differentiate the sum, there is
no dependence on y in the limit s — 0 and all terms give a nonzero contribution.
As a result, we arrive at the representation

Z> Cr(l— 2), (5.50)

knT w2
Fo= _B_ (¢ (0) + Cp(0) In 2] — %ao(kBT)‘l E;Rg/g a1 /2(ksT)?
1 . as/o 4 1 H B
_— T+ L kpgTln —— — —— 1
510 (ke T)" + (4m)3/2 T p T ™ Tom2 <7+ n47rkBT> *
2 (3 2n)/2 —3 ~ _
fz Dt (55 - Bty (550

Here, v = 0.577216 is Euler’s constant. It can be shown that the terms in
eqn (5.51) linear in kg7 do not depend on u. To see this, we substitute eqn
(4.18) into eqn (5.46) and calculate integrals with respect to ¢. In the limiting
case s — 0, with the help of eqn (4.27), this results in

1 2 643/2
(47r)3/2(_a1/2m +az) = (4m)3/2°

(0) = (5.52)

Using eqn (5.52), we rewrite eqn (5.51) in the form

2 (r(3)

1
Fo = —%GO(kBT)‘l 47372 al/?(kBT) - ﬁal(kBT)2
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kgT 1
—BT [¢p(0) + ¢p(0) In(kpT)?] — To-2 (7 +In 47T:BT> ax

3—2n)/2

[e'e] T ( n —
_ Z (2 )2\/5 r < 5 3> Cr(n — 3)&n/2(kBT)4in- (5.53)
n=>5

It should be noted that after the substitution of ¢/ (0) and ¢(p(0) for a specific
configuration, the quantity kg7 in the logarithm is multiplied by a factor which
makes the argument of the logarithm dimensionless (see the example given in
Section 9.5.2). The expression (5.53) was first derived by Dowker and Kennedy
(1978).

In order to get the final form of the high-temperature expansion for the free
energy, one has to subtract from eqn (5.53) the divergent part of the vacuum
energy E&ZH(O) given by eqn (4.46) and the three terms presented in eqn (5.35).
Because ag = ag = V, the subtraction of the first term in eqn (5.35) just can-
cels the contribution of order T in eqn (5.53). From this, one concludes that
oo = —m2an/90. The subtraction of the second term in eqn (5.35) cancels the
contribution of order 7°. Keeping in mind that from eqns (4.21), (4.22), and
(4.27), @12 = a1/ = —/7S/2, for a scalar field with Dirichlet boundary condi-
tions, one arrives at

(r(3) . (r(3)
S (5.54)

a1 = — a =
1 47‘(’3/2 1/2 .

This expression for the coefficient o is obtained independently for a rectangular
box in Section 8.5. Finally, the subtraction of the third term in eqn (5.35) from
the right-hand side of eqn (5.53) cancels the contribution of order T2 if we take
into account the fact that oy = —a;1/24. In Section 8.5, it is shown that for
a rectangular box a; is proportional to the sum of the side lengths of the box.
The ultraviolet renormalization concerns only the term proportional to ao, which
becomes independent of the arbitrary parameter p. Note that the contribution
linear in kgT on the right-hand side of eqn (5.53) has the meaning of the classical
limit. It will be discussed repeatedly in the following chapters.
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APPROXIMATE AND NUMERICAL APPROACHES

The calculation of the vacuum energy for nontrivial geometries is a complicated
task. Thus it took 20 years from Casimir’s original work on plane parallel plates
for the first calculation for a spherical shell to appear (see Chapter 9). The main
technical obstacle was the separation of ultraviolet divergences, which required
a detailed knowledge of the asymptotics of the Bessel functions involved. It took
approximately another 20 years before this problem was solved in an efficient
way in terms of the heat kernel expansion, together with zeta function regular-
ization. Still, the progress was limited to geometries which allow a separation
of variables, i.e. a reduction to a one-dimensional problem. Beyond that, the di-
vergences remained a problem, especially for numerical approaches. To solve the
problem, one could consider a mode sum representation of the vacuum energy.
The calculation of the eigenvalues of a wave operator in a cavity to some given
accuracy is a manageable problem. However, this does not provide a direct way
to subtract the ultraviolet divergences. The general structure of the divergences
is known in terms of the heat kernel coefficients together with the high-frequency
expansion of the eigenvalues (see Section 4.2.2). But, after the subtraction of the
first few asymptotic contributions in a numerical calculation, numerical precision
is lost and the problem becomes intractable.

Because of this, before the recent exact methods appeared (see Chapter
10), several approximate methods were developed. One of them is the multiple-
reflection expansion introduced by Balian and Bloch (1970). This allows an it-
erative calculation of the corresponding Green’s function. This expansion works
best for the high-frequency contribution, and it was used mainly to investigate
the dependence of the divergent contributions on the geometry of the boundaries.
Another set of expansions is the semiclassical expansions. These are based on
the idea of the WKB approximation in quantum mechanics, or, equivalently, the
eikonal approximation in optics. In application to the Casimir effect (Schaden
and Spruch 1998, Jaffe and Scardicchio 2004), such methods should work best
if the separation between the interacting bodies is small and the main contri-
butions come from high frequencies. The multiple-reflection expansion and the
semiclassical methods are briefly considered in Sections 6.1 and 6.2, respectively.

Since 2001, the numerical world line approach has been developed (Schubert
2001). Inspired by string theory, it uses the Feynman path-integral representation
of the transition amplitudes. The contributions from the paths are calculated
numerically and the result appears as a sum over a large number of paths (clouds
of paths). This method was originally developed for the calculation of the one-
loop effective action in background fields. Soon it was also applied to Dirichlet
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boundary conditions and some interesting results were obtained, which will be
discussed below (Section 6.3).

Historically, the first two simple approximate methods were pairwise sum-
mation, which goes back to Lennard-Jones (1932), and the proximity force ap-
proximation (Derjaguin 1934). The method of pairwise summation, considered in
Section 6.4, permits one to calculate the Casimir force between two macroscopic
bodies as the sum of the forces between the microparticles belonging to them.
In doing so, all effects of nonadditivity are taken into account approximately by
means of a special normalization procedure. The proximity force approximation,
considered in Section 6.5, is most important for the purpose of applications. Ac-
cording to this method, the surfaces of the interacting bodies are divided into
small plane plates, to which the force per unit area known from the case of in-
finitely extended parallel plates is applied. Then one must sum the energies and
forces from all pairs of plates. This method works well for very small separa-
tions and, so far, it has been sufficient for experimental configurations. In cases
where both of the methods of pairwise summation and the proximity force ap-
proximation are applicable, they lead to coincident leading contributions to the
Casimir energy and force. However, the application region of the proximity force
approximation is much wider.

6.1 The multiple-reflection expansion

The multiple-reflection expansion can be interpreted as the propagation of the
field under consideration from a source point 7 to a drain point 7/, which occurs
freely in between the boundaries and has multiple reflections at the boundaries.
These reflections are not specular, and the reflection point must be integrated
over the whole surface. The multiple-reflection expansion, as initially considered
(Balian and Bloch 1970), is written in terms of the Green’s function

P (r)®5(r)
/
w\T = - 1
Gy (r,r") Z_w2+w3_10 (6.1)
J
of the Helmholtz equation
(—w? = V?) Gu(r,r) = d(r — 7). (6.2)

The function G, (r,r’) is related to the Green’s function defined in eqn (3.87)
by

G(z,z') = / ‘21—;’ Go(r,7') e 1wt (6.3)

— 00

We assume a static boundary S and denote points on the boundary, o € S, by
Greek letters, in contrast to points in the bulk, for which we keep Latin letters.
In this notation, Dirichlet boundary conditions are denoted by

Gu(a,?)=0 for Yaes. (6.4)



86 Approxzimate and numerical approaches

The starting point for the multiple-reflection expansion is a representation of the
Green’s function in terms of the potential v(3,r’) of a double layer known from
electrostatics,

(0)
Gulrar) =60 )+ [ auip) LB v (0

where du(3) is the measure on S and el (r,r') is the Green’s function (6.1)
with no boundary conditions, i.e. the free-space Green’s function. Its well-known
explicit expression is

ele

4R’
where R = |r — '] is the distance between the points r and 7’. The derivative in
eqn (6.5) is the normal derivative towards the interior region and must be taken
before the second argument of the Green’s function is put on the surface:

GO (r,7') = (6.6)

0) (e
aG#(B’ﬁ) =nsVe GO (r,7) g’ (6.7)
where ng is the inward-pointing normal to the surface S at a point 3.

In eqn (6.5), the Green’s function obeying the boundary conditions is rep-
resented as the sum of the free-space Green’s function and the potential of a
double layer v(3,r’). The latter is still unknown. It is determined by imposing
the boundary conditions (6.4) on eqn (6.5). In order to do this, we remind the
reader of a basic property of the potential of a double layer. Namely, the limit
of putting the point 7 on the surface S, r — «, and the integration over 3 do
not commute. Instead, the following formula holds:

Gy (r.8) B, ﬁ)
i
Jim [ dp(B) —5—— s / du(

1
v(B,r') + Sular).
(6.8)
Here it is assumed that r approaches the point « from the interior region (other-
wise an additional contribution would appear with an opposite sign). The integral
on the right-hand side converges.

Using eqn (6.8), we get from eqns (6.4) and (6.5) for r — a

(0)
0= G0+ [ du(p) “’T(ﬁm VBt e (69)

This is an integral equation for the double-layer potential

oG\ (r, B)

g v(B,r'), (6.10)

ver') = <269 (@ r') 2 [ dulp)

and the multiple-reflection expansion emerges from its iterative solution. The
first step is to put v(B3, ') = v (B,7') = 0 on the right-hand side. This gives
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vD(a, ') = —2GO (e, ), (6.11)

which is the first iteration for the potential. The next order is obtained by in-
serting eqn (6.11) into the right-hand side of eqn (6.10), and so on.

From these iterations for the potential, the respective expansion of the Green’s
function emerges,

Go(r,r) =GO ")+ GO v+ GO (r,r') + ..., (6.12)

which starts from the free-space Green’s function (6.6). The latter appears as
the contribution from zero reflections. The higher-order contributions are

(0)
6 r.1") = [aue) "2 [0 5ty -0 V(g0 p=2e
(6.13)

For instance,

(0)
G = =2 [ au(p) LB 60 5.) (6.14)

ng

is the contribution from one reflection. From the above, the physical interpreta-
tion can be seen. We have a free propagation from r to 3, some kind of operator
there (—20/0,,), and a free propagation from B to r’. The point 8 must be
integrated over the whole surface S. The reflection is not specular, and should
be extended over the whole surface, even over shadowed regions.

This expansion was originally derived by Balian and Bloch (1970), who in-
vestigated the asymptotic distribution of the eigenvalues of the Laplace operator
obeying boundary conditions. In fact, in that work, using a different notation,
a systematic way was shown for how to calculate the heat kernel coefficients,
and the coefficient ¢; in eqn (4.22) was derived. Several years later, this method
was applied to the Casimir effect (Balian and Duplantier 1978) and the divergent
surface contribution to the vacuum energy for a conducting sphere was obtained.
In the following years, the multiple-reflection expansion was investigated in de-
tail in a number of papers [for instance, by Balian and Bloch (1971) and by
Hansson and Jaffe (1983a, 1983b)]. Several reformulations of this expansion are
possible; for example, in the representation (6.5), a monolayer potential may be
added. It is possible also to consider all kinds of boundary conditions and fields.
Specifically, the multiple-reflection expansion for spinor fields was investigated
by Hansson and Jaffe (1983a).

The convergence of the multiple-reflection expansion is a much-discussed
question. Obviously, this method delivers at least an asymptotic expansion of
the Green’s functions for high frequency. This property makes it possible to ob-
tain any heat kernel coeflicient of given order from a finite number of reflections
(Bordag et al. 2001b). The multiple-reflection expansion also proved useful for
obtaining the heat kernel coefficients in singular background fields and in similar
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applications (Bordag et al. 2001b). However, the examples where it was used to
obtain approximate results for the Casimir effect did not go beyond simple ge-
ometries. This was connected primarily with the increasing technical difficulties.
Also, we must mention that in the application of the multiple-reflection expan-
sion to the Casimir effect, there is no natural small expansion parameter (unless
one considers small or large separations).

6.2 Semiclassical approaches

The idea of all semiclassical approaches is to consider situations where the quan-
tum system is in some sense close to some classical ones and where classical
trajectories dominate in a path-integral representation. This idea is the same as
that which relates wave and ray optics. A necessary condition for the applica-
bility of such ideas is that the phenomena under consideration are dominated
by short-wavelength contributions. With respect to the Casimir effect this ap-
plies, for example, at small separations between the interacting bodies. In view
of the big success that semiclassical methods have had in quantum mechanics
and quantum field theory, much effort has been put into this direction, starting
with the work of Schaden and Spruch (1998). Here the vacuum energy was rep-
resented as a sum over paths. Using the well-known Gutzwiller trace formula,
attention was focused on the periodic paths which dominate in the semiclassical
limit (Schaden 2006). More recently, a new semiclassical approach has been pro-
posed (Jaffe and Scardicchio 2004, Scardicchio and Jaffe 2005, 2006, Schroder et
al. 2005), which is inspired by the eikonal approximation of classical optics. This
so-called optical approach includes a larger number of paths than the previous
approach.

It should be mentioned that the notion of a semiclassical approximation is
misleading in applications to the Casimir effect (Scardicchio and Jaffe 2005). In
general, the semiclassical expansions are expansions in powers of the Planck con-
stant h. However, the Casimir energy and force are simply proportional to i [see
equs (1.1) and (1.5)]. For massless fields, no other dependence on h enters, since
the boundaries are classical objects. Thus, there can be no expansion in powers
of h. Nevertheless, the notion of a semiclassical expansion of the Casimir energy
is widely used, and it is justified insofar as one takes over the corresponding ideas
from quantum mechanics.

Now we describe the basic ideas of the optical approach. The starting point
is the Green’s function of a Schrédinger equation related to the spatial equation
(3.39) with a fictitious time variable ¢,

0
(—ia - V2> G(r,r';t) =86(r —1'). (6.15)
This is connected with the Green’s function G, (7, 7’) in eqn (6.1) by means of
~ dE .
G(r,7r';t) = /_OO 5 G p(r,r) e P (6.16)
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It should be mentioned that this Green’s function is quite analogous to the local
heat kernel introduced in eqn (4.17). This can be seen by inserting eqn (6.1) into
eqn (6.16) and carrying out the integration over E:

G(r,r';t) = K(r,r'|it) 0(t). (6.17)

Here 6(t) is the step function.
The optical approximation for this Green’s function introduced by Jaffe and
Scardicchio (2004) reads

G (r,r'st) = Z Dy, (r,7';t) expliSn(r, 7’5 1)]. (6.18)

Here the sum is over all classical paths from a point = to a point 7’ obeying the
laws of ray optics, and n is the number of reflections that these paths undergo
on the boundary. If the space between the boundaries is empty, the paths are
straight lines. In eqn (6.18), the function S, (r,7’;¢) is the action along such a
path and is given by

Lp(r,r")
Sh ) = 22 6.19
(r.0t:0) = 2T (6.19)
where [, (r,7’) is the length of the path. Further, in eqn (6.18),
D12 (r,7'5t)
Dy (7' t) = det | D52 2
TL(T7 r 7t) det ( axlax; (6 0)

is the Van Vleck determinant. In this case it takes the simple form (Scardicchio
and Jaffe 2005)

Dy(r,7'st) = % VA, (6.21)

where
o der
T dAp

is the enlargement factor known from geometrical optics. Here, dAyp: is the area
of the rays originating from an infinitesimal area d€ly. This approach can be
compared with the eikonal approximation in optics or the WKB approximation
in quantum mechanics. However, it goes a step beyond as it also includes the
effects of the Van Vleck determinant.

In this approximation, the inverse Fourier transform of eqn (6.16),

A, (6.22)

Gu(r,r') = i/ dt < IG(r, 7' t), (6.23)
0

gives

GPHr,r') = T*/_" expliwly, (r, 7). (6.24)
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This function can be used in eqn (3.93) to obtain the optical approximation

to the vacuum energy. Carrying out the frequency integration, one arrives at
(Scardicchio and Jaffe 2005)

EJPt = / Z n+1\/_. (6.25)

21203 (r, 1)

This is the final general formula for the vacuum energy in the optical approxi-
mation with Dirichlet boundary conditions. For Neumann boundary conditions
one needs to remove the sign factor (—1)™.

The next step is to find all classical paths with coincident start and end
points, and their enlargement factors, for some specific geometry. Then one needs
to integrate over the point r and to sum over the number of reflections. This
task involves, in general, quite complicated geometrical considerations. So here
we restrict ourselves to the simple example of two parallel planes. In this case
the paths are straight lines perpendicular to the planes. We take the planes
perpendicular to the z-axis with a distance a between them. Paths with an even
number of reflections n = 2k (k = 1,2,...) do not depend on the position of the
starting point:

log(r,7) = 2ka. (6.26)

Paths with an odd number n =2k + 1 (k= 0,1,...) do depend on position:
logt1(r,r) = 2ka + 2z. (6.27)
Accordingly, the energy becomes a sum of two contributions,

E°P* = B8 + B, (6.28)

The contribution from the even number of reflections to the energy is

=1 [ 1 2
gert — 9N~ [g - 6.29
even ; o2 /0 “(2ka) 144047 (6:29)

This is finite and coincides with the known result for the scalar Casimir energy
per unit area.
The contribution from the odd reflections can be written in the form

ot (k:+1)a 1 o0 1
E°Y =2 = — dz —. .
odd — Z 272 / 2 /O 4 (22’)4 (6 30)

This contribution contains the ultraviolet divergence. This results from the zero-
reflection path. If one introduces some length A as a regularization, all odd
reflection paths add up to a distance-independent expression which does not
contribute to the Casimir force and can be discarded.

Thus, the optical approach becomes exact for two parallel plates. Much work
has been done to apply it to more complicated geometries aimed at checking
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the precision of the proximity force approximation, which is another approxi-
mate method to calculate the Casimir energy and force, discussed in Section 6.5.
Specifically, the optical approach has been applied to a sphere in front of a plane
(Scardicchio and Jaffe 2005). Up to four reflections were taken into account, and
their contribution to the scalar Casimir energy was calculated numerically. For
small separations, the result can be written in the form

Eopt a a2
W =1+ 005E +0 (ﬁ) R (631)

where EPFA is the corresponding energy in the proximity force approximation.
Here a is the separation between the plane and the sphere and R is the radius
of the sphere. The ratio a/R is assumed to be small. In this case the coefficient
0.05 found by optical methods, which is the first correction beyond the proximity
force approximation, can be compared with the analytical result, which is 1/3
[see eqn (10.157)]. However, one can expect that if all of the reflections are
summed, the optical approach will come closer to the analytical result. Similarly
to the multiple-scattering expansion, the optical approach has no internal means
to verify and control the accuracy of the results obtained.

The optical approach has also been applied to a number of other geometries.
Specifically, it has been applied to a hyperboloid in front of a plane, where up
to six reflections were included (Schroder et al. 2005), and to a tilted plane in
front of another plane. Using the optical approach, local energy densities were
considered and nonzero temperature was taken into consideration (Scardicchio
and Jaffe 2006).

6.3 World line numerical methods

The methods considered in this section use a path-integral representation of a
fictitious particle, which, in the end, is evaluated numerically. We start from eqn
(3.112) representing the vacuum energy as a trace,

i
Ey =~z TrnK, (6.32)

and take the operator in the form
K=-0+XU(r), (6.33)

where U(r) is some background potential and A is a coupling constant with the
dimension of mass. This method was initially developed for the calculation of
one-loop effective actions in background potentials (Schubert 2001) and was later
applied to boundary conditions as well (Gies et al. 2003).

We restrict ourselves to an introduction to the basic ideas of the approach and
present some of the results obtained. The first step is to switch to an exponential



92 Approxzimate and numerical approaches

representation of the logarithm. Technically, this is the same procedure as that
used in zeta function regularization. So, we write

10 [Tdv v ok
EO(S) = 7%%4 7@ Tre ; (634)

where s must be set to zero in the end. In this formula, v is an auxiliary parameter
with the dimension of the second power of length, which can be interpreted as a
fictitious time variable, and the trace is calculated as a space—time integral,

Tre V% = /d4x <zle™z > . (6.35)

For the trace in eqn (6.34), we use the path-integral representation (Gies and
Klingmiiller 2006b)

" :/x Da(r) exp{—/ov dr ch?(r) +/\U(x(7))} } (6.36)

(0)=z(v)

Here, the integration goes over the paths with coincident start and end points,
and the Wick rotation has already been done. The dot denotes the derivative
with respect to the fictitious variable v. Substitution of eqn (6.36) into eqn (6.34)
leads to

1 0 [*Cdv v* v [a%(r)
B =g f| T [ 2w [ ar| 5P Hw o] |
(6.37)
But this is still not the final expression. For a time-independent background
potential, one has to separate the total time 7', which drops out. Also, it is nec-
essary to separate the divergences. Afterwards, the derivative can be calculated
using eqn (5.28). Thus, one arrives at a representation where the path integral
can be evaluated numerically. To do so it is necessary to generate a large number
of random loops, called a cloud of loops, and to evaluate the integral on these
loops.

Computations of Casimir energies by means of world line numerics were ini-
tiated by Gies et al. (2003), who developed the necessary algorithm to create the
clouds of loops. Boundary conditions were implemented by selecting from the
cloud those loops which fulfill the boundary conditions. In this procedure, it is
quite easy to implement Dirichlet boundary conditions. However, implementing
Neumann or other boundary conditions involving a derivative is technically more
complicated. This circumstance has prevented a more general use of the method
beyond Dirichlet boundary conditions.

Later, the numerical precision was increased considerably, and the distance
dependence of the Casimir force acting between a sphere or a cylinder and a
plane were calculated for a scalar field obeying Dirichlet boundary conditions
(Gies and Klingmiiller 2006b). The known limiting cases for large and small
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separations were reproduced. Particularly, at short separations, the first analytic
corrections beyond the proximity force approximation found for a cylinder in
front of a plane (Bordag 2006a) and for a sphere in front of a plane (Bordag
and Nikolaev 2008) were reproduced (see Sections 10.3.3 and 10.4.3 for details
of these corrections).

Valuable information was also obtained for a semi-infinite plane (z > 0) par-
allel to an infinite plane (a) or another semi-infinite plane (b) (one stacked exactly
above the other) (Gies and Klingmiiller 2006¢). In both cases, for dimensional
reasons, the force can be written in the form

S L
Fe 2 L 6.38
Y01~ Yab 3 (6.38)

Here, the first term is the contribution from the force density for two infinitely
extended plates, i.e. the contribution without any edge effect. It is proportional
to the area S of the upper plate, and

7.(.2

-2
=150 = 2.056 x 10 (6.39)
is the value known for the Casimir effect for a scalar field between such plates (see
Section 7.1.1). For dimensional reasons, the edge contribution is proportional to
the length L of the edge, and it is assumed that the separation a of the planes is
the smallest parameter, i.e. a < L, and that L < v/S. Under these assumptions,
the numerical results for the coefficients in eqn (6.38) are

Yo = 5.23(2) x 1073, 75 = 2.30(1) x 1073, (6.40)

Here the digits in brackets indicate the numerical error. These results allow one,
at least for a scalar field, to estimate the contribution of the edge effects.

6.4 Pairwise summation

In this section, we consider a simple approximate method which allows calcula-
tion of the Casimir force between two bodies as a sum of the forces acting between
their constituents (atoms or molecules). Although the Casimir force is not an ad-
ditive quantity, the effects of nonadditivity can be partially taken into account
with the help of a special normalization procedure which relates the case under
consideration to a similar configuration where both the additive and the exact
results are available. The additive method has been widely used in the theory
of disperion forces, following Lennard-Jones (1932). This is a simple calculation
for many configurations of experimental interest. Under certain conditions, the
results obtained turn out to be very accurate, although the method of pairwise
summation (PWS) does not contain any internal means for the determination of
their accuracy.

To illustrate the method, we start with a configuration of two thick plates
(semispaces) at a sufficiently large separation a, described by constant dielectric
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permittivities 581)

limit where 5(()1’2) — 00. Let the boundary plane of the lower semispace be z =0
and let that of the upper semispace be z = a. We assume that two atoms (one
in the lower semispace at a point 1 and the other in the upper semispace at a

point r2) are characterized by an interaction energy

and 582). This also includes the case of ideal metals in the

B
AA( Y
E5N(r) = — =, (6.41)
where B is some constant and r = |rg — r1|. After integration of eqn (6.41)

over the lower semispace, we find the additive interaction energy of an atom at
a point ro with the lower semispace,

N1 B
B3 (zy) = —27erB/ pdp/ “l g =~ 1014 . (6.42)
22— 21)2 + p?] %

Here N; is the number of atoms per unit volume in the lower semispace. Inte-
grating eqn (6.42) over the volume of the upper semispace, we find the additive
Casimir energy of the two plates (semispaces),

EX(a) = — o = (6.43)

7TN1NQBS /oo dZQ 7TN1NQBS
u 30a?

Z2

where Ns is the density of atoms in the upper semispace and S is the infinite area
of the boundary surface. Note that the same dependence on separation as in eqn
(6.43) is obtained from the Lifshitz formula for two dilute semispaces sufficiently
far apart from each other (see Section 16.1). There, the constant B is related
to the static atomic polarizabilities. This justifies our choice of the atom—atom
interaction energy in the form (6.41).

As mentioned above, results such as eqn (6.43) do not take the effects of
nonadditivity into account. The role of these effects in a configuration of two
semispaces can be characterized by the normalization constant

E3dd(g) 24BN, N

_ _pp _ 14V2

Kp = B@)S o @ (6.44)
a mW(ey s €0 )

Here, the exact expression for the Casimir energy per unit area of the semispaces
at sufficiently large separations, E(a), is obtained from the Lifshitz formula [see
eqn (16.8)]. The latter takes the nonadditivity effects into account. Generally,
it is true that Kg > 1. For ideal metals 5(1) ( ) 00, \I/(sgl),eéz)) — 1, and
E(a) = Env(a) as defined in eqn (1.5).

We now deal with two arbitrarily shaped bodies V7 and V5. In this case the
additive interaction energy takes the form

Eadd(a) = 7BN1N2\/ drl/ dry |re — 11 -, (6.45)
1 Va
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By assuming that for two arbitrary bodies the effects of nonadditivity play ap-
proximately the same role as for two thick parallel plates, one can define the
normalized interaction energy as (Mostepanenko and Sokolov 1988)

Eadd
Etct(a) = e (Cl) = —— \I’ 2) / dTl/ d’l"g "’"2 — 'I”1| 7 (646)
E \%1 Vs

For ideal-metal plates, the function \I/(e(()l),eé )) is replaced by unity. In this

case eqn (6.46) represents the Casimir energy of two ideal-metal bodies in the
framework of the PWS method.

As a first application of the PWS method, we consider the configuration
of a sphere of radius R above a plate. This configuration is often used in the
measurement of the Casimir force (see Chapters 19-21). Let both bodies be
made of an ideal metal. The application of eqn (6.45) leads to

a+2R
2’/Tp1 dpl
E¥d(g) = —BN; N. / d / d / 6.47
sp (a) 14V2 i 227TP2 ) 21 pl (22— 21)2 ]7/27 ( )

where
p3(z2) = R — (R +a — 22)°. (6.48)

All integrations in eqn (6.47) can be performed explicitly, with the result

. R¥R+2a R a
E%(a) = BN Ny 20 ——BNlNQ@ [1 +0 (E)} . (6.49)

30a2(R+a)® 30

The respective additive Casimir force is given by

R a
add _
Fop™(a) 15JEI Wz [140 ()] (6.50)
By dividing the additive energy (6.49) and force (6.50) into the normalization

constant (6.44) with \Il(sé ), (2)) = 1, one obtains the following approximate
expressions for the Casimir energy and force in the sphere—plate configuration,
as given by the PWS method:

m™R
360a3"

™R

Elsfa(a) = —72—0(12,

Fy(a) = - (6.51)
The same results can be obtained directly from eqn (6.46).

Note that in eqns (6.49) and (6.50) and in the final equation (6.51), we do
not include corrections of order a/R and of higher orders in this parameter. The
point is that the PWS method uses a normalization to the case of two parallel
plates. So, the results obtained are meaningful only if the geometrical region that
gives the major contribution to the force corresponds closely to a configuration
of two parallel plates, as happens for very small a/R. In fact, corrections to eqn
(6.51) in powers of a/R obtained from eqn (6.46) are physically meaningless. At
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the same time, for three-dimensional bodies V; and V5 at arbitrary separation,
the additive result (6.45) correctly reproduces the dependence of the interaction
energy on the separation distance (Barash 1988).

Another configuration of experimental interest is a cylinder of radius R above
a plane plate (a semispace). In the ideal-metal case, the electromagnetic Casimir
force between a cylindrical shell and a plane was recently calculated analytically
starting from the first principles of quantum field theory (see Section 10.3).
However, the approximate methods preserve their usefulness because they are
applicable to nonideal materials also (see the next section).

Let the cylinder be parallel to the (x,y) coordinate plane at the shortest

distance a. The Casimir energy is then given by eqn (6.46) with \Il(sé ), sé )) =1,

T a+2R 271'[)1 dp1
E® =—— dz z / dz / , 6.52
mi(a) =75 ) 2 p2(22 1 T (a — )T (6.52)

where pa(z2) is defined in eqn (6.48). Calculating all integrals in eqn (6.52)
explicitly, one obtains

mR? a+ R
2400572 (a + 2R)7/2’

Efi(a) = - (6.53)
As in the configuration of a sphere above a plane, only the leading contribution
in the small parameter a/R is physically meaningful. Thus, eqn (6.53) leads to
the following approximate expressions for the Casimir energy and force in the
ideal-metal cylinder—plane configuration:

3 R w3 R
EP (@) = —— 2 FP@) =L\t 54
(@) = ~ge02z \ 207 mil@) =~ 355 20 (6.54)

In Section 10.3, these results are reproduced using exact methods, and the first
corrections to them of the order of a/R are also presented.

Finally, we briefly review the application of the PWS method to the case of
a spherical lens of thickness H and radius R at a shortest separation a above
a finite disk of radius L and thickness D (Bezerra et al. 1997). Both the lens
and the plate are supposed to be made of dielectric materials with permittivities
5(()1) and 582), respectively. The results obtained are useful for the estimation of
corrections to the Casimir force due to the finiteness of the plate (see Section
19.2.3). Tt is assumed that the conditions ¢ <« H,D,R and D,H <« R, L are
satisfied, which are usually fulfilled in experimental configurations.

As shown by Bezerra et al. (1997), the application of eqn (6.46) to the con-
figuration of a spherical lens above a finite plate results in

R+D+a
(v+ u)
Egn(a) = UV, el / tdt / / . (6.55)
120 w0 Reta (v—up

where @ = max(R/vVR?+ L?, (R — H)/R). Thus, the magnitude of Q de-
pends on the relative sizes of the lens and the plate. If L < +/2RH, then
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= R/VR?+ L% However, if L > vV2RH, then Q@ = (R — H)/R and the
value of the Casimir force, owing to the rapid decrease of the potential 1/r7 with
separation, does not depend on any further increase in L.

To calculate the Casimir force, we remove one integration in eqn (6.55) and
arrive at

(R+a+u)?> (R+a+D+u)?

Fan(a) = G D) /tdt/ -
fin(a) = 120 RS (R+a—u)® (R+a+D—wu)®
(6.56)

In the limiting case of an infinite plate, L — oo, in the lowest order of the small
parameter a/R, eqn (6.56) results in

R
Fla) =~ o) g0

This equation is a generalization of the second equality in eqn (6.51), which

applies to the case of a dielectric sphere above a dielectric plate. In the limit

581), 5(()2) — 00, eqn (6.57) coincides with the respective equation in eqn (6.51).
Now we perform the remaining integrations in eqn (6.56) explicitly. The main

contribution to the result, which depends on the size of the plate, appears in the
third order in the small parameter a/R and has the form

a? 1
1 QP
where F'(a) is defined in eqn (6.57). For typical configurations used in an ex-

periment, the correction to the value of unity in this equation is very small (see
Section 19.2.3).

(6.57)

Fan(a) ~ {1+ } Fl(a), (6.58)

6.5 The proximity force approximation

Another approximate method for the calculation of the Casimir force between
bodies of arbitrary shape is the proximity force approximation (PFA). This pow-
erful method, which allows generalization to the case of bodies made of real
materials and to forces of different physical nature, was suggested by Derjaguin
(1934). It was applied to the interpretation of measurements of the Casimir force
in the sphere-plate configuration by Derjaguin et al. (1956) and reconsidered for
application to various forces by Blocki et al. (1977).

We start from the most general formulation of the prescription given by
the PFA for the calculation of the interaction energy between two arbitrarily
shaped bodies V; and V5. Let the top surface of the lower body and the bottom
surface of the upper body be described by the equations z; = z1(z,y) and
zo = zo(x,y) > z1(x,y) in an appropriate coordinate system. The separation
distance between these surfaces along the z-axis is given by

Z(l’7y) :zg(x,y)le(z,y). (659)

This is the variable width of the gap between the two interacting bodies. We
use a to denote the smallest value of z(z,y). Now we consider an arbitrary point
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(z,y) and replace the elements of the curved surfaces dS; and dS; around the
points z1(z,y) and z2(z, y), respectively, with parallel surface elements dx dy. In
so doing, we simultaneously replace the unknown interaction energy between the
elements of the curved surfaces dS; and dSs with a known energy F (z(z:, y)) per
unit area of plane surface elements spaced at a separation z(x,y), defined in eqn
(6.59). Then the interaction energy between the bodies V7 and V2 is obtained
by the integration of interaction energies between the plane surface elements.
The integration region o is the part of the (x,y) plane where both surfaces are
defined:

Eppp(a) = //dx dy E(z(z,y)). (6.60)

IftE (z(x, y)) represents the Casimir energy per unit area of ideal-metal planes,
the Eppa obtained is also related to ideal-metal surfaces z1(x,y) and z2(x,y). If,
however, £ (z(x, y)) takes into account real material properties of the interacting
bodies (see Chapters 12-15), so does Eppa. Note that in this case E' may depend
on the properties of a real body at a point (x,y): E = E(x, y, z(x, y))
Equation (6.60) is a universal one. It can be applied to arbitrary bodies,
leading to results of varying precision when compared with the respective exact
analytical results where those are available. This precision is usually determined
by the separation distance a in comparison with the geometrical parameters of
the bodies. From eqn (6.60), the force acting between the interacting bodies is
given by
_ 6EPFA(G)
da

Equations (6.60) and (6.61) can be further simplified in the case where the
surfaces of the interacting bodies are described by continuous functions having
continuous derivatives up to an arbitrary order. If one also assumes that there is
a single point = y = 0 where the width of the gap z(z,y) reaches a minimum,
one can use a Taylor expansion in the form

FPFA(CL) = . (661)

! (() “) £L'2 y2
yy\ > 2
4 =a+ + +...=a+ + —+.... 6.62

Here, the directions z,y are chosen along the principal axes of the quadratic

form of the function z(z,y). Because of this, there is no cross term in zy in eqn

(6.62). R, and R, are the principal radii of curvature at the point (0, 0).
Substituting eqn (6.62) into eqn (6.60) and introducing new variables £ =

z/vV2Rg, n =y/+/2R,, one obtains
Eppala) = 2\/R.R, // dédn E(a+ & +n?). (6.63)

In terms of the polar coordinates ¢ and ¢ = /&2 + 12, this can be rearranged
as



The prozimity force approzimation 99

Eppala) = 2\/R. R, / 0027r< d¢ E(a+ ¢?). (6.64)
0

Finally, taking into account that a + (? = z, we arrive at (Blocki et al. 1977)

Epra(a) = 2rRP(a), Pla) = /OOE(Z) dz, R=\/R;R,. (6.65)

Using eqn (6.61), one obtains an expression for the force in the framework of the
PFA, B
Fppa(a) = 2nR E(a), (6.66)

where E(a) is the energy per unit area in the configuration of two parallel plates.
Note that the geometrical mean of the two principal radii, R, is connected with
the Gaussian curvature at the origin K (0,0) by R = 1/,/K(0,0).

We emphasize that eqns (6.65) and (6.66) do not have as wide an application
range as eqn (6.60). In fact, they are applicable only to compact gaps that have a
single point of minimum width and are characterized by a finite mean curvature.
Two typical examples are a sphere above a plane, and two spheres of radii Ry and
Rs. However, this formulation of the PFA in the form of eqns (6.65) and (6.66)
is not applicable to cases where at least one radius of curvature is infinitely large
(for instance, for a cylinder above a plane) or when a gap cannot be characterized
by a single mean curvature radius. The latter happens, for instance, when the
boundary surfaces are described by periodic functions. Equations (6.65) and
(6.66) are also not applicable when the characteristic size of the upper body in
the z-direction is smaller than or of the order of a. In fact, for the applicability
of eqn (6.65) it is required that this size goes beyond the range of z where the
interaction energy E(z) drops to zero, so that the integral becomes independent
of its upper limit. In all cases when this condition is not satisfied, the formulation
of the PFA given by eqn (6.60) works well.

The first example of the application of the PFA is an ideal-metal sphere of
radius R above an ideal-metal plane [see Fig. 6.1(a)]. The gap is restricted by
the plane z1(x,y) = 0 and by the lower hemisphere

zo(z,y) =a+ R—+/R?— 22— 42 (6.67)

Replacing the surface elements of the sphere dS by the plane plate dx dy parallel
to the plane z; = 0 and introducing the polar coordinates z = pcosp, y = psiny,
we rearrange eqn (6.60) into the form

R 2
E EESpaZ—/27rd7T7, 6.68
PFA IM( ) 0 pap 7202§(p) ( )

where z5(p) is obtained from eqn (6.67), and E(zs) for ideal-metal plates is taken
from eqn (1.5). The integration in eqn (6.68) results in
w3 R? R

- A1 C3)
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Ry

() (b)

Fia. 6.1. Configurations (a) of a sphere above a plane and (b) two spheres of
different radii.

Here, only the leading order is meaningful, and the correction of the order of a/R
should be omitted. The negative differentiation of this expression with respect
to the separation returns us to eqn (6.51) for the Casimir force between an
ideal-metal sphere and an ideal-metal plane obtained using the PWS method.
The same result also follows from eqn (6.66), which is readily applicable to
the sphere—plate configuration. In this case one obtains R, = R, = R from
eqn (6.67), so that

TR

FPFA = FISI\I/)[(G) = 27TREIM(G) = —m.

(6.70)

Equation (6.70) allows a far-reaching generalization to the case of a sphere
and a plate made of real materials and kept at nonzero temperature. In this
case Fiv(a) must be replaced with the free energy per unit area, F(a,T), for a
configuration of two plane parallel plates made of a real dielectric or real metal
(see Chapters 12-15). Then, according to eqn (6.70), the Casimir force between
a large sphere and a plate is given by

F*(a,T) = 2rRF(a, T). (6.71)

This equation is widely used in Part III of the book for comparison of experiment
and theory in relation to measurements of the Casimir force. Qualitatively, the
error introduced by the use of the approximate eqn (6.71) is of the order of the
terms neglected above, i.e. of the order of a/R. More exact, quantitative conclu-
sions concerning the accuracy of the PFA can be found in Sections 10.3.3 and
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10.4.3, where some exact analytical results valid beyond the PFA are presented.
Experimentally, however, a/R is usually of order 1073, so that theoretical results
based on the use of eqn (6.71) are highly reliable.

The configuration of two ideal-metal spheres of radii R; and Ry < R; can
also be considered using both eqn (6.60) and eqn (6.66). Let the sphere centers
lie on the z-axis [see Fig. 6.1(b)]. The width of the gap between the lower and
the upper sphere is described by the function

z(x,y) = z(p) = a+ R1 — \/ R} — p> + Ry — \/ R3 — p?, (6.72)

where p? = 2% + y2. Using eqn (1.5) for the energy per unit area of ideal-metal
planes, we obtain from eqn (6.60)

) Ro pdp
EE = —— . 6.73
fule) = 355 [ 5o (6.73)
Calculating this integral under the condition a/Rs < 1, we arrive at
71'3 R1R2 a
E = E3 == 114+0(—=—]]. 6.74
eral) = Biue) = e e 1o ()] e

Neglecting the terms of order of a/ R and using eqn (6.61), we obtain the Casimir
force acting between two ideal-metal spheres,

7T3 R1R2

Ferala) = Fivule) = —55505 7 Ry

(6.75)

The same result can be obtained from eqn (6.66). For this purpose, using eqn
(6.72), we find

1 1
R. = = R Ry Ry: = Ry (6.76)

T 2,(0,0)  Ri+ Ry’ 20,00 Ri+Ry

Then eqn (6.66) leads to

R1 R2 7T3 Rl R2

Ei(a) = — oo -2
(@) = = 36003 Bt I

Fi(a) =2n——
v (@) WR1+R2 I

(6.77)

We now come to the case of an ideal-metal cylinder of radius R above an ideal
metal plane. In this case one of the principal radii becomes infinite. Because of
this, we use the formulation of the PFA in the form of eqn (6.60). The minimal
separation distance between the plane and cylindrical surface is given by a. The
gap between the two bodies is restricted by the surfaces z1(x,y) = 0 and

z9(y) = R+a— v/ R?—y2. (6.78)

In this case the cylinder axis coincides with the x-axis. In accordance with eqn
(6.60), the Casimir energy per unit length of the cylinder is given by
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R 2

. m
Eppa(a) = Epy(a) = —2/ dy
0

Wg(y). (6.79)

Calculating this integral under the condition a/R <« 1, we obtain

E () = 79;;2 \/;% {1 +0 (%)} : (6.80)

in accordance with the first equality in eqn (6.54), derived using the PWS
method. As usual, only the leading contribution is meaningful and the terms
of the order of a/R should be omitted. Then the Casimir force per unit length
is given by the second equality in eqn (6.54). By analogy with eqns (6.70) and
(6.77), the Casimir force per unit length between a cylinder and a plane can be
represented using the Casimir energy per unit area of two parallel planes,

157 | R 73 R
(o) = 57y g Fm(@) = —5575 \ 3 (6.81)

In this form, the result obtained can be generalized to a cylinder and a plate
made of any real materials.

One more example, where the formulation (6.66) of the PFA does not work,
is the case of a paraboloid of sufficiently small height H, above a plane. For this
configuration, z1(z,y) = 0 and the surface of the paraboloid can be represented
in the form

H H
zo =a+ ﬁ($2 +y?) =a+ ﬁpQ, (6.82)

where L is the radius of the top cross section. Substituting this in eqn (6.60),
one obtains

L 2
E aEEparaz—/Qﬂ'd —
A . S (6.83)
720 H Jy (a+t)3 1440 H |a®2 (a+ H)2|

From eqn (6.61), the respective Casimir force is given by

Fppa(a) = Fyj (a) =

™ L [1 L } (6.84)

720 H |&®  (a+ H)?
This result is applicable when H is of the order of a. For paraboloids of large

height H > a, the formulation of the PFA (6.66) is also applicable. This leads
to a Casimir force equal to the first term on the right-hand side of eqn (6.84).
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THE CASIMIR EFFECT FOR TWO IDEAL-METAL PLANES

In the present chapter, we consider the simple, yet most important configuration
of two parallel ideal-metal planes. The original Casimir effect is based on this
configuration (Casimir 1948). First we present the theory of the scalar and elec-
tromagnetic Casimir effects between parallel planes. In comparison with Chapter
2, some basic facts are added concerning the relation between local and global
approaches and the polarizations of the electromagnetic field. The radiative cor-
rections to the Casimir force are considered.

The configuration of two parallel ideal-metal planes is the first configuration
where we investigate the Casimir effect at nonzero temperature. Here, we present
general analytical formulas for the Casimir free energy, entropy, and pressure and
consider the limits of low and high temperature. The agreement with thermo-
dynamics of the results obtained is analyzed. This is the starting point for the
thermal Casimir force between real materials, considered in Part II of the book.
The spinor Casimir effect between planes and the Casimir effect for a wedge are
also discussed.

At the end of the chapter, we briefly consider the dynamic Casimir effect
connected with uniformly moving or oscillating planes.

7.1 The scalar Casimir effect for parallel planes

Here, we consider the Casimir vacuum energy of a scalar field in a configuration
of two parallel planes in three dimensions (see Fig. 2.2) with Dirichlet or mixed
boundary conditions.

7.1.1  Dirichlet boundary conditions

We start from local quantities and pay special attention to the regions of space
external to the plane—plane configuration. Let the two planes be at 23 = 2 = 0
and z = a.

In the region between the planes, the complete orthonormal set of solutions
to eqn (3.1) satisfying the Dirichlet boundary conditions is given by eqn (3.49),
where

Ds(r) =0, n(r) = %\@ ellkerthut) gin k., 2, (7.1)

9 ™

2 _ 2 2
ka,n =m +kL +kzn7

Substituting these solutions into eqn (3.59), we obtain the vacuum energy density
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ki dk 24+ k3
<O|Té8 (2)0) = 2a/ L Z {Wh,n S TA cos(2k.nz)|, (7.2)

27 o— Wk, n

where the last term is oscillating and does not contribute to the total energy. In
free Minkowski space, the complete orthonormal set of solutions is given by eqn
(3.56), leading to

1 [ dk
(00T 0yr) = 5 / P (7.3)

where dk = dk, dk, dk., wy = (m? 4+ k?*)'/2, and the vacuum states |0) and [Oy)
have been defined in eqns (3.54) and (3.57), respectively.
The Casimir energy density

e(z) = (0739 (2)]0) — (Om|Tes |0m) (7.4)

is found from equs (7.2) and (7.3) using the Abel-Plana formula (2.26) in the
same manner as in Section 2.5, with the result

o(z) = 2a/ ko dky [«/mz—kk? 2 (VB 5)

2 2 et — 1

o €082k,
(m® + 12 Z o ]
kimn

where

A ay/m? + k% . ak,

’
s ™

(7.6)

Note that the first term on the right-hand side of eqn (7.5) is connected with the
energy of the boundary planes (see below), whereas the third term is oscillating
and, as explained previously, does not contribute to the Casimir energy. As a
result, the Casimir energy per unit area of the planes is given by

a 1 0o 2 k‘2 9 e
E(a):/dZe(z):,E/ kidky (er_ﬂ \/7
0 0

27 2 a Ja e27”5—1

(7.7)
For a massless field (m = 0), we have A = ak, /7 and the integrals can be
calculated simply, in the same way as at the end of Section 2.5. The result is

E(a):—”—z—i/wkidlﬂ. (7.8)
1440a® 87 J,

The first term on the right-hand side of this equation is just one-half of eqn (2.82),
obtained for the electromagnetic Casimir effect. From eqn (7.8), the Casimir
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pressure between two parallel planes due to scalar field oscillations takes the

form

7T2

The second, infinite, term in eqn (7.8) does not depend on the separation distance
and does not contribute to the force. Below, we discuss its physical meaning.

We start by noting that so far, only the region of space 0 < z < a between
the parallel planes has been considered. Now let us find the vacuum energy of a
semispace z < 0 with a Dirichlet boundary condition on the plane z = 0. In this
case the complete orthonormal set of solutions of eqn (3.1) can be presented in
the form

(7.9)

(£) 1 Fi(wit—kez—kyy) o

t,r —e v¥sink 7.10
50 ( ) ﬂ_m M K22, ( )
where 0 < k, < oo and wi = m? + |k|?. These solutions are normalized in terms
of the scalar product (3.7), where the integration is over the semispace z < 0.
The set of solutions of eqn (3.1) in free Minkowski space is given in eqn (3.56).
It can be presented in a form similar to eqn (7.10),

(:I:) # :Fi(wktkawfkyy) . 7 11
Pkj (, ) QW\/MQ wkzj(z>7 ( . )

where

Yr,1(2) = cosk,z, Y. 2(z) = sink,z, (7.12)

and 0 < k, < oo. These functions are normalized for the entire volume of free
Minkowski space.

Calculating the Casimir energy density in the same way as for the region in
between the planes, we arrive at the result

cos 2k z

2

6(2)27% dekL/ dk. m? + k3
s Wk

i * kidk,

Com 0 27

(m*+ k%) Ko (2 m2 + k3|z|) ,  (7.13)

where the K, (z) are the Bessel functions of imaginary argument.
The total Casimir energy in the region z < 0 per unit area of the boundary
plane z = 0 is given by

0
/ﬂ_d/ﬂ_ /

Note that the first term on the right-hand side of eqn (7.7) is just twice the
expression (7.14). This is because eqn (7.14) represents the Casimir energy arising
from one side of a plane, whereas the respective term in eqn (7.7) originates from
the external sides of two different planes.
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To conclude, when the local approach to the Casimir effect is used for plane
boundary surfaces, the energy densities obtained may contain some constant
and position-dependent terms. This is true for both interior and exterior regions
of the configuration under consideration. The energy densities obtained are not
defined uniquely and can be changed by adding a 4-divergence to the energy—
momentum tensor (Itzykson and Zuber 2005). This does not influence the total
Casimir energy obtained by the integration of the energy density over the vol-
ume of the system. After integration over the volume, there also remain terms
(generally infinite) that do not depend on the separation between the interact-
ing surfaces. In particular, this is the case for the exterior regions outside the
boundary planes. Such constant terms can be interpreted as the proper ener-
gies of these planes, and they do not influence measurable quantities such as
the Casimir force or pressure that are defined as derivatives of the energy with
respect to the separation. Because of this, in the subsequent text we concentrate
only on those contributions to the Casimir energy that are dependent on the
separation between the interacting surfaces. The problem of uniqueness in the
definition of the vacuum energy density will be discussed further in Chapter 11,
devoted to spaces with non-Euclidean topologies.

7.1.2  Mized boundary conditions

Now we consider a scalar field for a configuration of two parallel planes with a
Dirichlet boundary condition on one plane, z = 0, and a Neumann boundary
condition on the other plane, z = a:

a@(t 1:7 y’ Z)

o —0. (7.15)

(p(t7 :I:7 y? O) =

z=a

The complete orthonormal set of solutions of eqn (3.1) satisfying these conditions
is given by eqns (3.49) and (7.1), where k,,, = 7n/a is replaced with

oy 1
kop = — -, =0,1,2,.... 7.16
a<n+2> n (7.16)

The vacuum energy of the scalar field (for simplicity, we consider the massless
case) is expressed as

1 o) o] 2 1 2
Eo(a) = 5/0 ’“;Z” nz_% k2 + % <n+ 5) s, (7.17)
where S is the area of the planes.

Now we subtract from eqn (7.17) the vacuum energy of free Minkowski space
for the volume between the planes. This is done using a version of the Abel-
Plana formula (2.41) adapted for summation over half-integers. The resulting
finite Casimir energy per unit area is
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oo 00 m
a Jo kia/m

eQTrt +1

Substituting the new variable y = k; a/7 and changing the order of the integra-
tions, we obtain

2 2

B =g [ [V = T (o

2a3 1440a3

As is seen from eqn (7.19), the Casimir energy for the case of mixed boundary
conditions is different only by a factor of —7/8 from the first term in eqn (7.8),
related to Dirichlet boundary conditions on both planes. It is also notable that
for mixed boundary conditions there is no separation-independent contribution
to the Casimir energy, such as found in eqn (7.8), which describes the energy
of the boundary planes. This is because, for mixed boundary conditions, the
summation starts from zero instead of unity.
From eqn (7.19), the repulsive Casimir pressure between the planes is equal
to
2
Play= 2@ T T (7.20)
da 8 480a*
i.e. a factor —7/8 different from the Casimir pressure in eqn (7.9). This is another
example where the subtraction of the infinite vacuum energy of free space leaves
us with a positive Casimir energy. The scalar Casimir effect with Robin boundary

conditions on two parallel planes was considered by Romeo and Saharian (2002).

7.2 The electromagnetic Casimir effect between parallel planes

In this section, we present a more detailed picture of the electromagnetic Casimir
effect between two ideal-metal parallel planes and between an ideal-metal plane
and an infinitely permeable plane. This includes the complete orthonormal set of
solutions and a justification of eqn (3.76) for the summation of modes. We also
illustrate the method of zeta function regularization. Our presentation is based
on the canonical quantization of the electromagnetic field in Section 3.3.

7.2.1 Ideal-metal planes

In the case of parallel planes at z = 0, a, the set of solutions of the Dirichlet
boundary problem introduced in eqns (3.64) and (3.65) takes the form

by cos kyx sinkyy sink,p,2
A, o (r) = | by sinkyz coskyy sink,,z | . (7.21)
b, sink,x sinkyy cosk,,z

Here, k., = mn/a, n = 0,1, 2, ..., and thus the first and second components
of the vector potential vanish on the planes. This is equivalent to the boundary
condition (2.71) written in terms of the electric field and magnetic induction, as
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discussed in Section 3.2. It is easily seen that the normalization condition (3.66),
with

8100 = (ke — ki)O(ky — k) )onnr,  wit, o =k + K2

kin — zn>
/dr*/ dx/ dy/dz

and the gauge-fixing condition div.Ay, , = 0, leads to the following values of the
coefficients b, and b,:

(7.22)

4V2r Een

Va [k, + ky)2 +2k2,
42 ky + Ky

Va (ke + ky)? +2k2,

b, = — (7.23)

Now we introduce the polarizations of the electromagnetic field between the
planes, which will be repeatedly used throughout the book. The plane formed
by the wave vector k = (kg, ky, k.,) and the normal to the boundary plane n
is called the plane of incidence. The two polarization vectors introduced in eqn
(3.74) can be rewritten in the form

Gkgl) = — 7]’(?1; 5 Ek-§2) = kykzn . (724)
ki 0 kky —k2
1

The vector V) is perpendicular to k and to the plane of incidence, whereas €2
is perpendicular to k but parallel to the plane of incidence. The electromagnetic
wave with E parallel to ef") is called the transverse electric (TE) mode. For the
TE mode, the magnetic induction B is in the plane of incidence. The electro-
magnetic wave with E parallel to €2 is called the transverse magnetic (TM)
mode. For the TM mode, B is perpendicular to the plane of incidence.

From equns (7.21) and (7.24), we can find the coeflicients (3.69) of the expan-
sion of the vector potential (7.21) in the polarization vectors,

figj’n(r) b (% B gy) coskyx coskyy sink,, z, (7.25)
(® () _L P P2 ) i K
Akbn(r) = T (bz 5205 + by 8 5 + kL sinkyx sin kyy cos k2.

We emphasize that .%I,(clﬁ o(r) = 0. Thus, for all n > 1 there are two different
polarizations of the electromagnetic field confined between the parallel planes,
but at n = 0 only one polarization survives.



The electromagnetic Casimir effect between parallel planes 109

Now we can use the general equations (3.75) and (3.76) to find the total
Casimir energy of the electromagnetic vacuum:

1 [ kodky * kidky &
E =| = n . 2
o(a) (2/ o+ [ 2 Z_p)s (7.26)

Here we have accounted for the fact that there is only one polarization state at
n = 0. Equation (7.26), derived using the complete orthonormal set of solutions
of the wave equation (3.63), coincides with eqn (2.72), formally obtained by the
summation of the oscillator frequencies over both negative and positive n. In
Section 2.5, a finite Casimir energy per unit area of the planes was obtained
from eqn (7.26) by subtracting the energy of free Minkowski space and using the
Abel-Plana formula. It was shown that the result obtained does not depend on
the form of the cutoff function used to regularize eqn (7.26) and the respective
expression in free space to be subtracted from eqn (7.26).

Here, we demonstrate the application of zeta function regularization, dis-
cussed in Section 4.1, to the case of two parallel planes. To begin, we disregard
the first term on the right-hand side of eqn (7.26) because it does not depend
on the separation distance (see the previous section). Next, we introduce the
regularization parameter s and rewrite eqn (7.26) in the regularized form

2,2\ (1-25)/2
B (q Z / lud/u ( 2 +%> 5 (7.27)

Note that we have dropped the factor ;2% in eqn (4.3). By making the change of
variable k| = mny/a, we obtain

3—2s s

The sum in eqn (7.28) reduces to the Riemann zeta function (4.6) with
z = 2s — 3. As was explained in Chapter 4, this function is defined by eqn
(4.6) for Rez > 1, i.e. for Res > 2. We, however, need the value of (r(z) at
z = —3 in the limit of removing the regularization, s — 0. If we use the defini-
tion of (r(z) according to eqn (4.6), the value of (g(—3) evidently diverges. To
obtain from E(()s) (a) the physical Casimir energy per unit area E(a), the method
of zeta function regularization suggests the use of the analytic continuation of
the Riemann zeta function. As was discussed in Section 4.1, there exists a mero-
morphic function with a simple pole at z = 1 which can be obtained by analytic
continuation of the right-hand side of eqn (4.6) to the entire complex plane. Such
an analytic continuation is unique and well defined, for instance, at the point
z = —3. Needless to say, the values of this analytic continuation for Rez < 1 are
not represented by the right-hand side of eqn (4.6). For Rez < 0, these values
can be obtained from the reflection relation (5.50).
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Equation (5.50) results in (g(—3) = 1/120. The integral in eqn (7.28) also
can be calculated at Res > 3/2:

o0 2 1
dy (2 + 1) 7292 = . 7.29
/0 ydy (v° +1) Ty (7.29)

Substituting the regularized values of both the sum and the integral in eqn (7.28)

and replacing E(gs) (a)/S with E(a) in the limiting case s — 0, we obtain

2

72003’

i.e. just the Casimir energy per unit area (2.82). From this, the electromagnetic
Casimir pressure is equal to that given by eqn (1.1).

It should be noted that with the use of analytic continuation of the zeta
function at z = —3 (i.e. in the limit s — 0), not only did the vacuum energy
remain finite, but this procedure also made this energy equal to the physical value
(7.30) obtained in Section 2.5 after the subtraction of the vacuum energy of free
Minkowski space. Thus, the application of this method to two parallel planes
is sometimes referred to as renormalization by zeta function regularization. For
more complicated configurations, the final result in the limit of removing the
regularization will in general be infinite and some additional renormalization
might be needed.

As can be seen from the above, the zeta function regularization method for
the configuration of parallel planes is not as physically transparent as regulariza-
tion using a cutoff function. The latter makes the vacuum energy in the presence
of boundary planes and the respective energy in the free Minkowski space indi-
vidually finite. In that case, the Abel-Plana formula allows one to find a finite
difference between the two quantities when the regularization is removed. How-
ever, as was shown in Chapter 4, zeta function regularization has some mathe-
matical advantages and helps one to find the general structure of the ultraviolet
divergences.

E(a) = EIM(CL) = (730)

7.2.2  An ideal-metal plane and an infinitely permeable plane

The ideal-metal planes considered in Sections 2.5 and 7.2.1 are idealized thin
plates made of a material with an infinitely large magnitude of the dielectric
permittivity (more realistic models of metals will be considered in Part II). It
was H. B. G. Casimir himself who raised a question, in a letter to T. H. Boyer,
regarding magnetic boundary conditions in his effect. Stimulated by this letter,
Boyer (1974) solved the problem of the Casimir interaction between an ideal-
metal plane and an infinitely permeable plane characterized by an infinitely
large magnetic permeability. On the infinitely permeable plane, the tangential
component of the magnetic induction vanishes:

Bi(t,7)|g = 0. (7.31)

We assume that the plane z = 0 is made of an ideal metal and the plane z = a
is infinitely permeable.
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It is easily seen that the complete orthonormal set of solutions (7.21) satis-
fying Dirichlet boundary conditions on the plane at z = 0,

Aw;’umb:o = -Ay;lu,nlz:o =0, (7~32)

also satisfies eqn (7.31) on the plane at z = a if we replace k., = mn/a with the
k.n defined in eqn (7.16). This follows from the second equality in eqn (3.13)
and from the fact that the vector potential (7.22) with the above replacement of
k.n satisfies the Neumann boundary conditions

6"495"@_ n aAka n
— =—Fa. =0 7.33
0z r—a 0z a ( )
With the replacement of k.,,, we get
Azikynl,—y =0, (7.34)

and eqn (7.33) becomes equivalent to eqn (7.31). Thus, the configuration of
an ideal-metal plane and an infinitely permeable plane becomes equivalent to
the simpler Casimir problems for a scalar field with mixed boundary conditions
considered in Sections 2.1 and 7.1.2.

In analogy to eqn (7.27), the regularized Casimir energy takes the form

s 0 [Pk dk, 72 1\2
Eé)(a):Z/o o ki+§(n+§>
n=0

By making the change of variable k; = wy(n + 1/2)/a, this can be rearranged
as

() L (TN 2 283/‘” 5 | 1y(1-25)/2
Ef (a)_%( ) Z(Qn—i—l 0 ydy (42 +1) S. (7.36)

a
n=0

(1-25)/2
S. (7.35)

The sum can be expressed as ((2s—3,1/2) in terms of the Hurwitz zeta function

oo

1
((z,q) = —_ 7.37
(2,9) HZ::O CEAE (7.37)
which is well defined for Rez > 1 and ¢ # 0, —1, —2, .... We, however, need
¢(—3,1/2) in the limit when the regularization is removed. This value can be ob-
tained from the following analytic continuation (Gradshteyn and Ryzhik 1994):

2T(1 —2) | . 7z o= cos(2mqn) 7% = sin(27qn)
C(Z,Q):W Sln;;T—FCOS?;? . (738)

This continuation applies to the region Rez < 0 and 0 < ¢ < 1.
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In our case, eqn (7.38) leads to

¢ (—3, %) = —g 2—(1)0. (7.39)

Using eqns (7.29) and (7.39) with the regularization removed, we obtain from
eqn (7.36) the Casimir energy per unit area (Boyer 1974)

7 w2

This is the positive Casimir energy, leading to the repulsive Casimir pressure

7 w2
P(a) = 3 31053 (7.41)
which is equal to a factor of —7/8 times the classical Casimir result for ideal-metal
planes. Note that the change from attraction to repulsion occurs because of the
mixed boundary conditions. If two infinitely permeable planes were considered,
we would return to the results (7.30) and (1.1) for ideal-metal planes.
There are various generalizations of eqn (7.41) to the case of nonzero temper-
ature (Santos et al. 1999). In Part I of the book, we shall discuss the influence
of the magnetic properties of real materials on the Casimir force.

7.3 The radiative corrections to the Casimir force

The interaction of the electromagnetic field with the electron—positron field gives
additional contributions to the Casimir effect. These are the radiative corrections
which occur for all quantum electrodymanic processes. The vacuum energy, as
we have considered it so far, can be represented in terms of Feynman graphs in
the lowest order with respect to this interaction. This is referred to as a one-loop
contribution. The radiative corrections are two- and higher-loop contributions.
Their relative magnitude depends strongly on the configuration considered. First
we consider the physically relevant configuration of conductor boundary condi-
tions and a massive spinor field. For two parallel planes at a separation a, the
vacuum energy, including the first radiative correction, can be written in the

form )
i a
E(a) = 08 [1 —aGp (E) +.. } ; (7.42)

where the Compton wavelength of the electron A¢ and the fine structure constant
« (in the Gaussian system of units) are defined as

e = ~ 3.86 x 10" "¥m, a=—r~ — (7.43)

MeC he 137’

and Gp(a/Ac) is a dimensionless function. The representation (7.42) follows sim-
ply from dimensional considerations.
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The smallness of the radiative corrections is determined by two factors. The
first is the smallness of the coupling constant «. A similar expression in, for
example, quantum chromodynamics would have a bigger coupling constant in
place of a. The second factor is of geometrical nature, and its smallness follows
from the magnitude of the function Gp(a/Ac). This function was derived by
Bordag et al. (1985). In the region of interest, the plate separation a is much
larger than A\c in eqn (7.43). For instance, if the separation is about a micrometer,
we have A\c/a ~ 10~7. Thus, we need to know the behavior of the function G,

for large arguments,
a 9 )\c )\2
—)l=—=40(%). 7.44
G ()\c> 1287 a + ((12) (744)

Thus, in quantum electrodynamics, for a separation of 1 um, the radiative cor-
rection is suppressed by approximately ten orders of magnitude. It is too small
to be measurable.

Although this chapter is devoted to the configuration of two ideal-metal
planes, we briefly mention here the radiative corrections to the Casimir energy
arising in the configurations of an ideal-metal spherical shell and a rectangu-
lar box. The dominant, one-loop, contributions to the Casimir energy in these
configurations are considered in Chapters 9 and 8, respectively. Thus, for a con-
ducting spherical shell, a similar calculation (Bordag and Lindig 1998) results

1n
.0461
B(R) = 20401766 1y (B L (7.45)
R Mo

where R is the radius of the sphere. The leading-order contribution to the Casimir
energy of a spherical shell is considered in Section 9.3.3. The function Gs (R/Ac)
was calculated for a large argument and found to have an expansion similar to
eqn (7.44),

R Ac Ao A2
o= ) = (—0.001306 In 2 +0.01117 ) 22 ) 4
G (Ac> ( 0.001306 In =5 + 0.0 7) = +0(R2 (7.46)

Here, a logarithmic contribution has appeared, which is a result of the curvature.
The smallness of this radiative correction is similar to that for parallel planes.

Thus, at present, the interest in radiative corrections to the Casimir effect
is only theoretical. However, there are a number of interesting problems in this
area of research. First, there is the question of the ultraviolet divergences. From
the calculations by Bordag et al. (1985) and Bordag and Lindig (1998), it can
be seen that the renormalization of the additional loop can be done by charge
renormalization in the same way as in quantum electrodynamics without bound-
ary conditions. None of the remaining divergences affect the Casimir pressure.
However, a general investigation of the divergences resulting from higher loops
in the presence of boundaries is still missing.
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In the remaining part of this section, we discuss some extensions of the above
results and some questions of more theoretical interest. We start with the func-
tion Gy, (a/Ac). It was derived in the form of a double integral, and its asymptotic
expansion for large argument was found (Bordag et al. 1985). It was also cal-
culated numerically for all arguments (Milton 2001). Tt is a smooth, monotonic
function and its value at zero argument is G,(0) = 4.016. This is the radiative
correction in the case of a massless spinor field. A similar result can be expected
for the spherical case. So one can conclude that for massless spinor fields, there
is no geometrical suppression of the radiative correction. The radiative correc-
tions to the Casimir effect between parallel planes at nonzero temperature were
investigated by Robaschik et al. (1987).

For further discussion of the above results, it is necessary to consider some
details of their derivation. In parallel, we shall discuss the corresponding formulas
for a scalar field. The starting point is the functional-integral representation of
the vacuum energy, eqn (3.103). It should be mentioned that the derivation of this
representation in Section 3.5 is also valid for interacting fields. The generating
functional Z[Y] is given by eqn (3.100) and the action now consists of three
parts,

SQED = Sem + Sspinor + Sint7 (747)

where the action of the electromagnetic field Sey, is given by eqn (3.23) and the
action of the spinor field Sgpinor is given by eqns (3.33) and (3.34). The interaction
term,

Sint = —e/d4x 1/37“1#14,“ (7.48)
is the usual one following from the covariant derivative
D, =0,+1ieA,. (7.49)

In case of a scalar field, we would take

Sscalar = S[] + % / d'r o*(2), (7.50)
where S[p] is given by eqn (3.5) and A is the coupling constant.

In both cases, the general Feynman rules for calculating higher-loop correc-
tions retain their validity in the presence of boundary conditions which enter
through the propagators. According to these rules, the effective action Weg|[0] in
eqn (3.101) for a vanishing source is the sum of all connected vacuum graphs, i.e.
all connected graphs with no external legs. Then, from eqn (3.101), the effective
action for a vanishing source can be expressed through

1
In Zeearar[0] = In Z9_0] + < 8 ... (7.51)

for the scalar field and
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In Zqep|0] = In Z), 0] +@ F.. (7.52)

for quantum electrodynamics. Here, the wavy line represents the photon prop-
agator and the solid lines represent the spinor propagator. In equs (7.51) and
(7.52), the superscript (0) denotes the contribution following from the noninter-
acting parts of the actions and gives rise to the vacuum energies that we have
considered so far. For example, for parallel plates we get the electromagnetic
Casimir energy (1.5) or (2.82), and for the scalar field we get one half of that.
These are the one-loop contributions. The radiative corrections are given by the
graphs in eqns (7.51) and (7.52) and have two loops. Using the corresponding
Feynman rules, and inserting the two-loop contribution for the scalar field into
the vacuum energy (3.103), one obtains

P = 57 [ ate e, (759
where °G(z,z') is the scalar propagator obeying the corresponding boundary
conditions. This might be given, for example, by eqn (3.122). It should be men-
tioned that any representation of the propagator can be inserted into eqn (7.53),
for example a representation obtained using mirror images.

In quantum electrodynamics, the one-loop part consists of two contributions,
one from the electromagnetic field and one from the spinor field. The former
one, as in the scalar case, just gives the Casimir effect that we have considered
so far: that is, eqn (1.5) or (2.82) for parallel planes with conducting boundary
conditions. For the spinor contribution, the situation is different. Here, the only
local boundary condition is the bag boundary condition [see eqn (7.102)]. How-
ever, in the presence of the interaction (7.48), this condition is not compatible
with the conductor boundary conditions (3.46). The only compatible way is to
keep the spinor field without boundary conditions. Thus, the spinor field must be
considered for the whole space. As a consequence, the electromagnetic field must
also be considered for the whole space, i.e. on both sides of the boundary. In this
configuration, the radiative correction to the energy (3.103) following from the
graph in eqn (7.52) is

By oy = 57 / d'z / d'y 5, (e y) I (y — ). (7.54)

Here, SGW(ac,y) is the photon propagator obeying conductor boundary condi-
tions, which can be constructed as a direct generalization from eqn (3.122), and

" (x — y) = —ie” TryS(z — y)y"S(y — x) (7.55)

is the quantum electrodynamical polarization tensor for the spinor propagator
S(z — y) in free space. The physical picture for this setup is that we have an
infinitely thin conducting surface and a spinor field which freely penetrates this
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surface. One could think of a metallic mesh whose spacing is bigger than the
Compton wavelength of the electron. Exactly this configuration was used to de-
rive eqs (7.42) and (7.45). The consistency of this configuration was reconfirmed
later (Bordag and Scharnhorst 1998) by considering semitransparent mirrors,
which reproduce the result (7.44) in the limit of becoming ideal conductors.

Another configuration where the boundary conditions are compatible with
respect to the interaction is obtained by taking bag boundary conditions for
both the electromagnetic and the spinor field. These boundary conditions can be
used in both quantum electrodynamics and quantum chromodynamics. However,
in this scheme the radiative corrections to the Casimir effect have not been
considered so far.

The radiative corrections for a scalar field with a self-interaction given by
eqn (7.50) have been calculated more than once. The first calculation was done
by Ford (1979), who, however, did not obtain a finite result for parallel planes.
The finite result, obtained by Kay (1979) and Toms (1980b), is
w2 )

— 1
1440a3 + 64

E(a) = A+0(N)]. (7.56)
The number 5/64 is the scalar analogue of Gy, (0) in eqn (7.42). This result
has been later reconfirmed several times, and various boundary conditions and
massive fields have been considered (Barone et al. 2004).

For the electrodynamics of photons interacting with a massless scalar field in
a cube of size a, the first radiative correction has been calculated (Peterson et
al. 1982), and results in

0.09166
E(a) =

[14+8.07a+0 (a?)], (7.57)

where the leading contribution is the energy (8.64) for the electromagnetic field
in a cube, and « is the fine structure constant.

For parallel planes with periodic boundary conditions, the Casimir energy
is the same as the free energy in a finite-temperature theory with no bound-
ary conditions. This was first discussed by Toms (1980a). There and in a large
number of other papers [e.g. Langfeld et al. (1995)], mass generation due to the
vacuum energy was investigated. This includes spontaneous symmetry breaking
and phase transitions which occur when the radiative corrections given by the
graph in eqn (7.51) are taken into account. It should be mentioned that these
studies, strictly speaking, go beyond the Casimir effect as far as it is considered
in this book.

We conclude this section by mentioning some controversies concerning the
leading order of the radiative corrections. Using an effective-action approach,
Kong and Ravndal (1997) and Scharnhorst (1998) found that the leading term
in the radiative correction is of the second order in the fine structure constant and
that, in addition, it is suppressed by geometrical smallness. However, later it was
recognized (Bordag and Scharnhorst 1998, Ravndal and Thomassen 2001) that
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the first-order term is indeed present and does dominate. This was reconfirmed
recently by Aghababaie and Burgess (2004), who identified the correct procedure
to be used in the effective-action framework.

7.4 Two parallel planes at nonzero temperature

As explained in Chapter 5, temperature is an important parameter in the Casimir
effect. Here, we consider the thermal Casimir force in the configuration of two
parallel ideal-metal planes at z = 0, a (Fierz 1960, Mehra 1967, Brown and
Maclay 1969). These planes are supposed to be in thermal equilibrium with
the environment at a temperature 7. We start with the general case and then
consider the limiting cases of low and high temperature.

7.4.1 General case

In Section 7.2, eqn (7.22), we have already determined the eigenfrequencies wg,,
of the electromagnetic oscillations between ideal-metal planes. At nonzero tem-
perature, instead of the energy (7.26), one must consider the free energy. For
the electromagnetic case in the configuration of parallel planes, eqns (5.29) and
(7.26) result in

_ kydk. —wk, ,0/kBT
fo(a,T)_/o — {Q%OJrkBTln(l e )

+2 Z { Wk, m + kpTIn (1 e n/kBT)} } S, (7.58)

where S is the (inﬁnlte) area of the planes. Equation (7.58) reflects the existence
of two polarization states of the photon for all n > 1, and of only one polarization
state at n = 0. This equation can be identically rewritten as

° kidk, . Wk, .0 > . Wk | .n
T)= kT In  2sinh —= 2 In ( 2sinh —=
Fola,T) = kg /0 o [n( sin 2/€BT> + T;:l n( sin 2kBT) S
= 7" + 7"V a). (7.59)

In the limit 7' — 0, the value of Fy leads to the zero-point energy defined in eqn
(7.26). We notice that fénzo) does not depend on the separation, and concentrate

our attention on rearrangements of F (n>l)
First we use the argument prinaple (Ahlfors 1979)

;g(an Zg =3 ]{; g(z) dIn A(z), (7.60)

where ¢(z) is some analytic function and A(z) is a meromorphic function inside
a closed contour C4, with a,, and b, being the zeros and poles of A(z) located
inside C; [A(z) is assumed to be analytic on Cy]. We put

g(w) =1In (2 sinh 5 kBT) (7.61)
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FiG. 7.1. Integration paths (a) Cy and (b) Cy in the plane of the complex
frequency. The Matsubara frequencies are £; and the photon eigenfrequencies
are wy, n (Geyer et al. 2003).

Aw) = e 4@ ginay/w? — k2, ¢(w) =kl —w?

and choose the contour C; in the plane of the complex frequency w to go around
the poles in the counterclockwise direction, as shown in Fig. 7.1(a). Here, the
two arcs have an infinitely small radius € and an infinitely large radius R, and
the two straight lines Lq, Lo are inclined at angles of +45 degrees to the real
axis. It is clear that A(wg, ») = (—1)"sinmn = 0 and that A(w) has no poles (a
function with these properties is called a mode-generating function; see Chapter
9). Using eqns (7.59)—(7.61), we arrive at

ki dk
F§"= (0, T) = ks T / b 5[y, <2sinh
0 T 27 Jo

w
2ksT

> dinA(w). (7.62)

Note that the function g(w) in eqn (7.61) has branch points at imaginary
frequencies w; = 1§, where the & = 2wkpgTl with [ = 0, £1, £2, ... are the
Matsubara frequencies (see Section 5.1). The contour C in Fig. 7.1(a) is chosen
so as to avoid all of the branch points and to enclose all oscillation frequencies
wk, .n With n > 1. To calculate the countor integral in eqn (7.62), we represent
it as a sum of four integrals along the contours Cr, L, C¢, and Lo. It is easy to
check that the integral along C'r vanishes when R — oo. Then we integrate the
remaining three integrals by parts. It is seen that all of the terms, other than
the integrals obtained after integration by parts, cancel each other or are equal
to zero [such as at the points A and B in Fig. 7.1(a)]. The integral along L; can
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be calculated using the Cauchy theorem applied to the closed contour Csy [see
Fig. 7.2(b)], inside which the function under consideration is analytic:

ico

- coth In A(w) dw :/ coth In Alw) dw. 7.63
| coth g Ay = [ coth 527 ) (7.63)

The path (ie, ioo) contains semicircles of radius e about the poles i§; of the
function coth(w/2kpT). The integral along the line Lo is calculated in a similar
way (details are presented by Geyer et al. 2003). As a result of the integration by

parts, we obtain only poles instead of branch points and represent ]—'Onzl)(a7 T)
in the form

20,y = L [T Rk S © A d 4
F (a,T) 2/0 — 5 coth 7o— In (w)dw. (7.64)

—ioco B

The integration of this equation, involving poles at the points i§;, leads to

(n=1) 7y _ is delﬂ/ n A
Fo = (e T) =~ - of ST MAL) A
S [ dekL - w .
+ Z/o - l;w res [coth SEoT In A((,u)71§l]7 (7.65)

where
Aig) = e~ VF+6inhay /K2 + €2, (7.66)

Noting that A(if) is an even function of £, we conclude that the apparently
pure imaginary integral on the right-hand side of eqn (7.65) vanishes. After the
calculation of the residues, and using the evenness of the function A(i&;), we
arrive at the result

]__(n>1)( T) — @ / kj_dkj_ len A(lé‘l)a (767)
0

™
=0

where the prime on the summation sign means that the term for [ = 0 has to be
multiplied by 1/2.

The free energy (7.59), (7.67) is infinite. The finite Casimir energy per unit
area of the planes is obtained by subtraction from Fy(a,T) of the free energy for
infinitely separated planes,

fo(a’7T) _ lim

S a—00

fo (a, T) )

F(a,T) = (7.68)

This is equivalent to the replacement of A(i&;) in eqn (7.67),

A(ig) = (1 —e” vkzﬁﬁf) (7.69)
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[see eqn (7.66)], with A/A, where Ay = 1/2. The result is

_ kT
Fla R Z/ k:J_ko_ln 1—e vki+’5?). (7.70)

From eqn (7.70), the thermal Casimir pressure between the parallel planes
takes the form

/12 1 22
Pla,T) = _ 0F(a,T) QkBT Z / ki dk | & (7.71)
da a\/ki-i-ff -1

In Part IT of the book, the Casimir entropy, defined as

0F(a,T)

S(a’T):f oT )

(7.72)

plays an important role in thermodynamic tests of the various approaches to the
calculation of the Casimir force between real materials. From eqns (7.70) and
(7.72), one obtains

S(a,T) = —%]—"(a, T) + ’%B D> G (1—e ). (7.73)
=1

To calculate the Casimir free energy, pressure, and entropy for two ideal-metal
planes, it is convenient to introduce a dimensionless variable and a parameter

T
y =2ay\/k? + &, T=2r = 4rakgT, (7.74)
Teff

respectively, where kgTog = 1/(2a). Expressed in terms of these, the Casimir
free energy per unit area and the pressure are

T X [ _
Fla,T) = WZ /l ydyln(l —e™Y), (7.75)
=0 77

B < U
Pl =g [ g
=0 o

It is very convenient to rewrite eqn (7.75) with the help of the Poisson sum-
mation formula (5.18), (5.19). This formula was first used in the theory of the
Casimir effect by Mehra (1967), Brown and Maclay (1969), and Schwinger et al.
(1978). In the case of the free energy, we substitute

T o0
- T In(1—eV .
b(l) 397203 /rl| ydy n( e ) (7.76)

and obtain



Two parallel planes at nonzero temperature 121

1 oo
cla) = —/ b(x) cosax dx (7.77)
T Jo
because b(x) is an even function of x. Then, according to eqn (5.19),

Fla,T) = i b(l):47r§:lc(27rl), (7.78)
=0

l=—00

where

T oo oo B
c(2nl) = W/o dx cos2mlx /m ydy In (1—e7Y) (7.79)

1 [eS) )
= W/ dv cos lt’U/ ydy In (1 — e_y) .
™ 0 v

Here, a new variable v = 72 has been introduced and ¢ = Tog/T.
Substituting eqn (7.79) in eqn (7.78) and changing the order of the integra-
tion, we get

1 [ [
Fla,T) = o Z /0 ydyIn(1—e™Y) /0 dv cosltv. (7.80)
1=0

Calculating the integrals (Gradshteyn and Ryzhik 1994) and separating the [ = 0
term, we finally obtain

2 45 X [coth(nlt) v 1
Fla,T)= -1+ = ——7. (781
(a,T) 720a3 { T — [ ETE tQZQSiHhQ(ﬂ'tl):| tt (7.81)
As is seen from eqn (7.81), the contribution with [ = 0 is just the Casimir

energy per unit area at 7' = 0 obtained in eqn (7.30), whereas the other terms
correspond to the thermal correction.

In a similar way, by applying the Poisson formula to the second equality in
eqn (7.75), we obtain an expression for the thermal Casimir pressure,

P(a,T) = 2 {1+30 o0 { 1 _W?’ cosh(ﬁlt)]}. (7.82)

240a* mh [t tl sinh® ()
As with the free energy, the first term on the right-hand side of eqn (7.82) is
the Casimir pressure at 7' = 0 (1.1), and the other terms represent the thermal
correction.

In perfect analogy to the Casimir entropy (7.72), (7.73), the entropy per unit
area is given by (Mitter and Robaschik 2000)

3k . [coth(rlt 272cosh(wlt 473
S(a,T) = kB {Z [co (m )+ T 4 2mcos (m )] T }
=1

8ma? t213 ti2sinh?(7tl)  3lsinh®(7tl) 135¢3
(7.83)
Note that eqn (7.81) can be obtained directly from the general equations
(5.36) and (5.37), which represent the renormalized free energy associated with
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a volume V. In fact, for two parallel planes, a; = a2 = 0 and eqns (5.36), (5.37),
and (5.29) represent the electromagnetic Casimir free energy per unit area in the
form

712 kBT / 712(I€BT)4CL
- wk | n/kBT
F(a,T) 2003 + — / kidk ng . ln(l e ko ) + —

(7.84)
By introducing the new variable

1 1 ™ 2
Z_kB—TWkJ"’n_kB—T kl+(a> (785)

and changing the order of summation and integration, we can rearrange eqn

(7.84) as

2 2

T kBT T
Fla,T deln(l—e™) + ————.  (7.86
(@.7) = ~750a + Z /zmz in(l—e™) + opmm (7:80)

The integral entering eqn (7.86) can be evaluated using the series expansion

dzIn(1 —e%) dze
/Zzzn( e Z/sze

Tnt Tnt

- 1 —ZTn
5 Z(— 1+ 2mnlt)e =2t (7.87)

Substituting this into eqn (7.86) and performing the summation in n, we again
obtain eqn (7.81).

The limiting cases for low and high temperature of the above expressions for
the free energy, pressure, and entropy are considered below.

7.4.2 The limit of low temperature

Here, we consider the asymptotic behavior of the Casimir free energy, pressure
and entropy at low temperatures, i.e. under the condition 7" < Teg. This is
equivalent to t = Teg /T > 1. Terms in powers of the small parameter 1/t in eqn
(7.81) result only from those containing coth(ntl) and —1/t*. They are given by

s 45¢R(3) [ T \° T\*
Fla.T) = =553 [H 73 (Tcﬁ> _<Tcﬁ>

where (r(3) ~ 1.202. Equation (7.88) coincides with the low-temperature be-
havior of the Casimir free energy obtained in eqn (5.41) for configurations with

, (7.88)
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r = 2 translationally invariant directions. All corrections to eqn (7.88) are expo-
nentially small. The leading exponentially small correction to be added to the
terms in the square brackets in eqn (7.88) is

2
180 ( T ) e—QTrTCff/T. (789)

w2 \Teog

For example, at a separation of a = 1 um, the effective temperature is Teg ~
1145 K and the asymptotic expression (7.88) is clearly applicable at room tem-
perature.

In a similar way, the low-temperature behavior of the Casimir pressure (7.82)

is given by
2 1/ 7\*
Pa,T)=—— |14+ =
(@ T) = = 31001 l *3 (Teﬁ)

It is notable that if one obtains eqn (7.90) from eqn (7.88) using the first equality
in eqn (7.71), the second term on the right-hand side of eqn (7.88) does not con-
tribute to the result, because it does not depend on a. The leading exponentially
small correction to be added to the terms in the square brackets in eqn (7.90)
has the form

(7.90)

_120 T on/T (7.91)
m Teﬂ
Now we deal with the low-temperature behavior of the Casimir entropy per
unit area (7.83). Terms in powers of the small parameter 1/¢ arise from the first
and the fourth term in the curly brackets in eqn (7.83):

3Bk [T\ 4r® T
8(a,T) = =5~ (Teﬁ) [1_713541:{(3)@ : (7.92)

The leading exponentially small correction inside the square brackets in eqn

(7.92) is
8 Tet 2 —2nTege /T

Equation (7.92) can also be obtained from eqn (7.88) using eqn (7.72).

The properties of the Casimir entropy are important as a test of the consis-
tency of the Matsubara quantum field theory with thermodynamics. As can be
observed from eqn (7.83), S(a,T) > 0 at any a and any 7. From eqn (7.92), we
also get

S(a,T) -0 when T — 0, (7.94)

i.e. the third law of thermodynamics (the Nernst heat theorem) is satisfied. Thus,
the Matsubara formulation is in agreement with the thermodynamic test when
applied to ideal-metal planes. This test will be an important guide when we deal
with plates made of real materials in Part II of the book.
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We conclude this section with a remark about units. If the fundamental
constants /i and ¢ were restored in eqns (7.81)—(7.88) and (7.90) above, the right-
hand side of each equation would be multiplied by Ac. The Casimir free energy,
pressure, and entropy also depend on Ac through the definition of the effective
temperature: kgTeg = he/(2a). In the low-temperature limit considered in this
section, all of the above quantities are of quantum and relativistic character
because they depend on both A and c.

7.4.3 The limit of high temperature

Now we consider the Casimir free energy, pressure, and entropy in the configu-
ration of two parallel ideal-metal planes under the opposite condition 7' > Ty,
i.e. t < 1. It is easier to obtain the respective asymptotic expressions from eqn
(7.75) rather than from eqns (7.81)—(7.83).

We consider the contribution to the first equation in eqn (7.75) with I = 0,
i.e. the zero-Matsubara-frequency term:

Fa,T) = —— /Ooo ydyn(1—e V) = _kT ), (7.95)

3272q3 8ma?

It is easy to see that in the limit of high temperature, the neglected contributions
of all terms with [ > 1 are exponentially small:

T > T 1 [
—_— dyln(l—e™¥) = ———— - —nyd
1672a3 /Tl ydy In (1 —e7) 1672a3 ;n/ﬂ e 4
T =1 rin
n=1

Thus, the leading correction to eqn (7.95) is equal to

N
kBl T onrTi 7.97
202 Tog © (7.97)

In a similar way, from the second equation in eqn (7.75), one obtains the
following for the Casimir pressure at T >> Teg:

oL (). (7.98)

47

P(a,T)=—

The leading correction to eqn (7.98) is given by

keT (T \?
— (TH> o2 T/ Tt (7.99)

For the Casimir entropy per unit area at high temperature, one obtains

Cr(3), (7.100)
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where the leading exponentially small correction is

2
kg ( T ) 027/ Tets (7.101)

a? chf

In fact, at room temperature the asymptotic expressions (7.95), (7.98), and
(7.100) work well at separations larger than 6 pm.

We note that eqns (7.95), (7.98), and (7.100) have the same form in units
where 1 = ¢ = 1 and where & and c are indicated explicitly, because the results
obtained at high temperature do not depend on % and c. This is the so-called
classical limit (Feinberg et al. 2001, Scardicchio and Jaffe 2006). As is known from
quantum statistical physics, in this limit the Bose—Einstein and Fermi—Dirac
quantum distribution functions reduce to the Maxwell-Boltzmann distribution.
In Part IT of this book, agreement with the classical limit is also considered as
a test of consistency for any theory of the thermal Casimir force between real
material bodies.

It is also worth noting that the asymptotic behaviors of the thermal Casimir
pressure between ideal-metal planes at low and high temperature are connected
by means of inversion symmetry (Brown and Maclay 1969).

7.5 The spinor Casimir effect between parallel planes

A spinor field of mass m is described by the Dirac equation (3.30) and the
energy—momentum tensor (3.36). As was noted at the end of Section 3.2, a
Dirichlet boundary condition cannot be imposed on a bispinor v, because this
would be in contradiction with the Dirac equation. Therefore we use the bag
boundary condition (Johnson 1975)

(iy - m+ 1) ¥(2)[g = 0, (7.102)

where n is the unit vector normal to the surface. It can be easily observed that if
eqn (7.102) is satisfied, the current of Dirac particles flowing through the surface
in the direction m is equal to zero. To make sure that this is really the case, we
multiply eqn (7.102) by the Dirac conjugate bispinor ¢ from the left and obtain

j(x) m|g = W(2)y(z)|4, (7.103)

where j = ¥y1) is the current of Dirac particles. By considering the Hermitian
conjugate of eqn (7.102), we obtain

[ivt(@)yT - n+yt(z)] |S =0. (7.104)

Multiplication of eqn (7.104) from the right by the Dirac matrix 4% and use of
the anticommutation relations (3.31) leads to

[—iY(z)y - n+ Y(z)] |S =0. (7.105)
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Finally, multiplication of the above equation by ¢ (z) from the right results in
§(@) - mlg = — b)) 4 (7.106)
From a comparison of eqns (7.103) and (7.106), we conclude that
§() - nlg = iW@)()| = 0. (7.107)

Now we consider two parallel planes z = 0, a, with the boundary condition
(7.102) on both of them. The normal vector is given by n = (0,0,1) and n =
(0,0,—1) on the planes z = 0 and z = a, respectively. Solutions of the Dirac
equation (3.30) can be obtained in the usual manner:

et [ p(7) _ o V(r)
P(x)=e (X(”’)) , x(r) = tw (7.108)

where ¢ and x are two-component spinors and we use the standard representation

of the Dirac matrices
_(_o.i O)’ Y _(O—I> (7.109)

[T is the 2 x 2 unit matrix and o = (04, 0y,0,) is the Pauli matrices].
In the configuration under consideration, the upper spinor takes the form

() = eilkaathyn) (yikes | ge=ikaz) (7.110)

where u and v are constant spinors. Substituting eqns (7.108) and (7.110) into
the Dirac equation (3.30), we obtain

Vip+ (W =—mP)e=0, w?P=m?+k?+k% (7.111)

Equation (7.108) can be also used to eliminate the lower spinor x from the
boundary condition (7.102):

(m+w)o-np+o-Vy|ls=0. (7.112)

The substitution of eqn (7.110) into eqn (7.112) at z = 0 and z = a leads
to two equations for the spinors u and v, which are compatible only when the
eigenvalues k, = k., satisfy the following equality (Mamayev and Trunov 1980,
Mostepanenko and Trunov 1997):

f(kina) = masink,pa + kypacosk.,a = 0. (7.113)

Note that eqn (7.113) is obtained with the condition k. # 0. In fact, k, = 0 does
not satisfy the boundary condition (7.112). The respective eigenfrequencies w,,
are found from eqn (7.111) by replacing k, with k.,,.
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The vacuum energy of the spinor field, defined as

:/ dx/ dy/ dz (0| T2 (2)]0), (7.114)
—00 —00 0
(1/2)

where T,/ ™ is presented in eqn (3.36), takes the form

Eo(a):—Q/ kldk i (7.115)

It is easy to explicitly find the finite Casimir energy of a spinor field between
the planes in the massless case m = 0. In this case eqn (7.113) can be solved
with the result )

T
kan = — -, =0,1,2,.... 7.116
“(neg) (7.116)
Subtracting from eqn (7.115) the vacuum energy of the spinor field in the volume
between the planes in free Minkowski space

20 [ kidk, [
EOM(a):—?a i L%l/o dk, wiS (7.117)

[compare this with eqn (2.75) for the electromagnetic field], and dividing by the
area of the planes, we arrive at the Casimir energy per unit area,

1 [ oo 1 2 9
a)z—a/ ki dk, Z\/A2+<n+§> —/ dtv A2+t . (7.118)
0 n=0 0

Here, A = ak, /7 and t = ak,/m. The application of the Abel-Plana formula
(2.41) adapted for summation over half-integers leads to

T

= 11
El@) = ~ 555003 (7.119)
(see the end of Section 2.5 for calculation details, which are the same as for the

electromagnetic case). The respective Casimir pressure is given by

T2

P(a) = ~ge0aa° (7.120)
To change these equations to the usual units, fic must be added to the numerators
of eqns (7.119) and (7.120).

For a massive spinor field, one must perform a summation over the roots of
eqn (7.113). This can be done using the argument principle (7.60). As a result,
for ma < 1, small corrections to eqn (7.119) are obtained. For ma > 1, E(a) is

exponentially small in the parameter ma (Mostepanenko and Trunov 1997).
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7.6 The Casimir effect for a wedge

In this section we calculate the Casimir energy density for an ideal-metal wedge,
i.e. for two planes that are inclined at a given angle ¢g. Let the wedge axis
coincide with the z-axis and let the polar coordinates in the coordinate plane
(z,y) be (p,¢). For a massless scalar field, this problem was solved by Dowker
and Kennedy (1978) using zeta function regularization. The electromagnetic case
was considered by Deutsch and Candelas (1979) using Green’s functions and
point-splitting regularization techniques. Later these results were rederived by
means of Schwinger’s source theory (Brevik and Lygren 1996) and in terms of a
local zeta function (Nesterenko et al. 2002). Here we consider only an realistic
case of an electromagnetic field, bearing in mind the application of the results
obtained in Part IT of the book to the estimation of the effect of nonparallelity
of the plates.

After separation of the time variable in accordance with eqn (3.64), the set
of solutions of the boundary problem (3.48), (3.65) for the two independent
polarizations of the electromagnetic field can be presented in the form

(an/p)Jan(kpp) sin ang
-Afll)(r) = —Be=2 ko J.,, (kpp) cos ang ,
0
(7.121)
—k.kyJ.,., (kyp) sinang
—k.(an/p)Jan(kyp) cos ang
ik:ﬁJom (kpp) sin any

eikzz

AP (r) = 5,

We note that the Coulomb gauge (3.47) has been used in the above. Here, J,(z)
is a Bessel function and J/,(z) is the derivative of it with respect to its argument
z. The collective quantum number is J = (k,,n, k.), where 0 < k, < 00, —00 <
k., <oo,n=0,1,2, ..., and the oscillator frequency is equal to w?] =k2+ ki.
The parameter « is defined by « = 7/pg, and the normalization factor is given
by

8y = %2]% (1 - %%o) . (7.122)
Note that ASI)(T) is the transverse electric mode and A(JQ) (r) is the transverse
magnetic mode introduced in Section 7.2. The tangential components of both
modes vanish on the wedge faces, at ¢ = 0, ¢g, as is required by the boundary
conditions [allowance must be made for the fact that the tangential components
of the vector potentials (7.121) are defined by their p and z components, i.e. by
the first and the third component instead of the first and the second component,
as was the case in the configuration of two parallel planes perpendicular to the
z-axis]. A set of vector potentials similar to eqn (7.121) was used by Bezerra
de Mello et al. (2007) in an investigation of the electromagnetic Casimir effect
inside an ideal-metal cylindrical shell in a cosmic-string space—time.
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Representing the field operator in the form

ZZ [_lthu( Ja®) 1 et AN () } (7.123)

J)\l

substituting this in eqn (3.29), and using eqn (3.13) with Ag = 0, eqn (3.72), and
eqn (3.73), we obtain the following expression for the electromagnetic vacuum
energy density inside a wedge:

(7.124)

1)
0|T; )|0) dk., dk,
(0[T5y (p)|0) 422/ / \/m

{125 [0+ S )| + ) |

The respective expression in cylindrical coordinates in free Minkowski space is

1 o0 oo
(On| T [00) = H/ dkz/o k,dk,w, (7.125)
— 0o

and does not depend on position.
For the case of integer «, eqn (7.124) can be simplified using the following
summation formulas (Prudnikov et al. 1986, Bezerra de Mello et al. 2007):

0o a—1
/ 1 Cowl
ngzo J2, (kpp) = % é Jo (kapsm E) , (7.126)
a—1

Ny 2 2 1 7l
Z |:Jo/¢n(kp ) + k2 2J n pp)] ZCOS?JO (Qkppsmg>

n=0
Substituting eqn (7.126) in eqn (7.124), we obtain

0TV (p)]0) = (7.127)

Ly / / /

— dk. dk,————

872 Zo k2 + k2
2ml . ml

{(lﬂ + 2k?) cos — + k } Jo (2k,,psm E) .

The term with [ = 0 in this equation is equal to the vacuum energy density in
free Minkowski space (7.125). Thus it is canceled in the Casimir energy density

e(p) = (OIT5) (0)10) — (On TS5 |0n)- (7.128)

Bearing in mind that both of the quantities (7.125) and (7.127) are divergent,
we introduce a cutoff function exp(—dw) in the integrand and change to polar
coordinates (w,6) on the plane (k,,k.). As a result, eqn (7.128) takes the form

1
e(p) = yo 513(1) Z/ df cos 8 {(1 + sin 9) cos —l + cos?0
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o0 l
X / dw w3e™%% J, <2wpcos€sin W—) . (7.129)
O a

Now we introduce a new variable v = sinf and use the substitution y; =
1/sin(wl/c). Then eqn (7.129) can be rearranged to

a—1 1 00
Lo L 2 2 3, —ow 2pv1 —v?
5(P)_2W2}%;y—?/0 dv(ylflfv)/o dow?e ™ Jy [ w—T|.

Yi
(7.130)
Using the formula (Prudnikov et al. 1986)

o 20\/T — 12 3
/ dw w?e ™% Jy iy —8—3 i ,  (7.131)
0 Y 963 \/62y2 + 4p2(1 — v2)

we rewrite eqn (7.130) in the form

10 w1

e(p) = ——— lim — v .
4m2p 50 ; 08 Jo  \/82yF + 4p2(1 — 0?)

(7.132)

By performing the integration, differentiation, and limiting transition in eqn
(7.132), we obtain

a—1
1 4
=—-——— g 1
€(p) 167T2p4 o Y (7 33)

and after the summation we finally find

1

fm(cﬁ —1)(a® +11). (7.134)

e(p) =
This result has been obtained for an integer a (i.e. for ¢o = 7/2, 7/3, ...).
However, the formula (7.134) obtained can be analytically continued to any non-
integer value of a.

It is interesting to note that for « = 1 (po = m) we have e(p) = 0, as
would be expected for the Casimir energy density of a massless field near a
single plane. If we perform the limiting transition g — 0, p — oo under the
condition ¢op = a = const, the wedge is transformed into two parallel planes
with a separation distance a between them. In agreement with this, it can be
seen in eqn (7.134) that ae goes to —m2/(720a?), i.e. the Casimir energy per unit
area of the planes (7.30). Thus, the results obtained for both configurations are
consistent.

In a similar way, it is not difficult to obtain the Casimir energy density of
a massless scalar field described by the metrical energy—momentum tensor (3.9)
(Deutsch and Candelas 1979),

1

4

e(p) =
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7.7 The dynamical Casimir effect

There are various dynamical Casimir effects which arise from the movement
of planes. For a uniformly moving plane, the Casimir force acquires a velocity-
dependent correction. For an accelerated plane, the Casimir force is accompanied
by the creation of particles from the vacuum.

7.7.1  Uniformly moving plane

Here, we briefly discuss the simplest case where one of the ideal-metal planes,
at z = 0, is stationary and the other one, at z = a(t) = ag + vt, moves with a
constant velocity v in the positive direction of the z-axis. For a massless scalar
field, this situation was considered by Bordag et al. (1984) using the Green’s
function method. The vacuum energy density was obtained from eqn (3.92),
in each of the three domains [below the plane z = 0, in between the planes,
and above the plane z = a(t)]. After subtraction of the contribution from free
Minkowski space, the Casimir pressure between the two planes was obtained
under the condition that v < 1 (v < ¢ in the usual units):

2

Pla(t)] = —m [1 + gqﬁ + O(v4)] . (7.136)

It is seen that the first contribution on the right-hand side of eqn (7.136) agrees
with eqn (7.9) if we replace a with a(t). The second contribution is a nontrivial
correction due to the movement of the upper plane.

Similar results were obtained using the same method for the electromagnetic
Casimir effect (Bordag et al. 1986). For v <« 1, we get

Plat)] = _ﬁi(t) [1 - (% - ;) o? 0(1}4)} . (7.137)

It is notable that for v <« 1 the velocity-dependent correction to the Casimir
pressure has opposite signs in the scalar and electromagnetic cases. Formally,
one may consider also the case of large velocities, 1 — v < 1. In this case even
the leading term cannot be obtained from eqn (1.1) by the substitution a — a(t).
The result is

P la(t)] =—87r%4(t){1+%+0[(1—v2)4]}. (7.138)

Here we shall leave our discussion of the dynamic Casimir effect due to a uni-
formly moving plane, as it has been discussed previously in the literature (Mos-
tepanenko and Trunov 1997, Bordag et al. 2001a).

7.7.2 Particle creation from an accelerated plane

Another, more interesting, modification of the dynamical Casimir effect is the
creation of particles from the vacuum by accelerated boundaries (Moore 1970,
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Fulling and Davies 1976). The creation of particles from the vacuum by nonsta-
tionary external fields is a well-explored area (Greiner et al. 1985, Grib et al.
1994). Bearing in mind that a material boundary can be considered as a kind
of concentrated external field, it is not surprising that moving boundaries act in
the same way as a nonstationary external field. We shall outline the main ideas
of particle creation by moving boundaries with the example of a massless scalar
field on an interval [0, a(t)], where a(t) = ag = a(0) for t < 0 and a(t) is some
function of ¢ for ¢ > 0.
The boundary conditions (2.3) now read

p(t,0) =@ (t,a(t)) =0. (7.139)

We assume that |¢'(¢)| < 1. This allows one to consider the boundary point (a
mirror) as some material body. The original papers (Moore 1970, Fulling and
Davies 1976) reduced the problem of nonstationary boundary conditions to a
static one by means of a conformal transformation. This, however, is possible
only in two-dimensional space—time. Here, we follow another approach (Razavy
and Terning 1985, Law 1995) applicable both in two and in four dimensions.
At ¢t < 0, the complete orthonormal set of solutions of eqn (2.1) with m =0
and boundary conditions (7.139) is given by eqn (2.6), where we replace a with
ag. The complete orthonormal set of solutions of the same boundary problem at

t >0, Xsli)(t, x), should satisfy the initial conditions

XH(0,2) = pF(0,2) =

sin —, (7.140)

axsf) (t,x)
ot

e ()
- ot

t=0 t=0

The functions Xgﬁ(t, x), as yet unknown, can be found in the form of a series

ag wkx

1
HD(t,z) = —— t)y ]~ sin — 7.141
Xn ( ,l’) \/ﬁ ;an( ) a(t) sin a(t)’ ( )
where the initial conditions for @, are given by
TN
Qnk(0) = dnk, Q... (0) = ﬂa—énk. (7.142)
0
Note that X(f)(t, x) = Xsf)*(t, x). It is obvious that both of the boundary con-
ditions in eqn (7.139) are identically satisfied in eqn (7.141). Now we substitute
eqn (7.141) into the field equation (2.1) with m = 0 and, after some rearrange-
ment, arrive at an infinite coupled system of differential equations with respect
to the functions Qnx(t) (Law 1995),
w2 k2

Qni(t) + aQ—(t)an(t) (7.143)
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=D | 2Ok Q1 (8) + V' () g Qus (1) ZhjkhﬂQnm

Here, the following notation has been introduced:

a'(t) i 2kj
t) = —=, hij = —hj, = (—1)F T ———,
V( ) a(t) kj jk ( ) j2 _ k2
Let the boundary point a(t) return to its initial position ag after some time
T and remain at rest. For ¢ > T, we have v(t) = 0 and the right-hand side of
eqn (7.143) vanishes so that the two linearly independent solutions become the
same as at ¢t < 0:

j#k. (7.144)

Qe = e QR (1) = e, (7.145)

Thus, at t > T the solution of eqn (7.143) with the initial conditions (7.142) can
be represented in the form

an (t) = anke_iﬂ-kt/ao + ﬁnkeiﬂ-kt/ao, (7146)

where a,r and (B, are the Bogoliubov coefficients.

This is a familiar situation in the S-matrix theory of particle creation from
the vacuum by a nonstationary external field. The operator of a scalar field called
the in field (i.e. the field defined for ¢ < 0 when the boundary point ag is at rest)
is given by eqn (2.56), where the functions @S?) (t,x) are defined in eqn (2.6) with
Wy, = kn = mn/ag. The annihilation and creation operators a,,, aj are called the
operators of the in particles. The in vacuum state is defined by

n|0im) = 0. (7.147)

The field operator at any moment ¢ > 0, expressed in terms of the creation and
annihilation operators a;}, a,, is given by
plta) =) [Xgﬁ(t, z)an + x5t x)a) | (7.148)
n
However, at t > T it is possible to reexpand this operator in terms of the solutions

Lp;ci) = exp(Firkt/ag)sin(rkz/ag) /v k. For this purpose we substitute eqns

(7.141) and (7.146) into eqn (7.148), with the result

Tkx —inkt/ irkt/ao+
Z \/_5111— (e “h +e “Obk> , (7.149)

where the annihilation and creation operators are given by the equality

b= @ (nkan + Biral) (7.150)

and the Hermitian conjugate of this equality. The operators by, and b;’ are called
the operators of the out particles.
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Equation (7.150), connecting the creation and annihilation operators of the
in and out particles, is called the Bogoliubov transformation. The coeflicients of
the Bogoliubov transformation satisfy the equality

k
> - (Jonk|* = 1Bnkl?) = 1, (7.151)
k
which is a consequence of the unitarity condition (Grib et al. 1994, Birrell and
Davies 1982). The vacuum state at ¢ > T' (the out vacuum) is defined by

bi|Out) = 0. (7.152)

The number of particles with the quantum number % created from the vacuum
state |0i,) during a time T is given by the following matrix element calculated
using eqn (7.150):

= 1
nk = (Oin|by belOin) =k Y ~ 1Bk |- (7.153)

n=1

The total number of particles created in all modes during the time 7T is

N:an:ZkZ%WﬂkF. (7.154)
k=1 k=1 =1

An approximate solution of eqn (7.143) can be found in the case where the
boundary point oscillates harmonically with a small amplitude under the condi-
tion of parametric resonance,

a(t) = ag [1 + esin(2w1t)], (7.155)

where wy = 7/ag, € < 1. Using the theory of parametrically excited systems
(Bogoliubov and Mitropolsky 1985), the coefficients cv,; and B, in eqn (7.146)
can be treated as slowly varying functions of time. Substitution of eqn (7.146)
into eqn (7.143), after averaging over fast oscillations with frequencies wy, = kw1,
where k = 2, 3, ..., leads in the first order in powers of € to a simplified system
of equations (Dodonov and Klimov 1996):

dOén dan
?1 = —Bn1 + 33, di = (k+2)an itz — (k= 2)on k-2,
(7.156)
dsy, dBn
6 ! = —Qp1 + 3ﬂn37 ﬂ i = (k + 2)6n,k+2 - (k - 2)6%,]6—2-
dr dr

Here, the term slow time, represented by 7 = ewit/2, is introduced. Under the
conditions 7 < 1 and 7 > 1, approximate solutions of eqn (7.156) can be found,
resulting in (Dodonov and Klimov 1996)

1 9 dewqt 2 1
ny(t) = Z(swlt) ) ny(t) =~ — + 3 In4 — 3 (7.157)
respectively. The total number of created particles with all quantum numbers is

N ~ny(t)if 1< 1, and N ~ 72> nq(t) if 7> 1.
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The energy of the first mode is winq(t). The total energy in all modes is
found from eqn (7.153):

E(¢) :Zwlknk(t) :wliikgmnuz. (7.158)
k

k=1n=1

The calculation of this double sum does not require explicit expressions for the
coefficients 3%, and leads to (Dodonov and Klimov 1996)

BE(t) = %sth(%). (7.159)

Thus, the total energy of the created particles increases faster than their num-
ber, indicating a rapid pumping of energy into the high-frequency modes at the
expense of the low-frequency ones.

The above results can be generalized to the case of an electromagnetic field
in a three-dimensional oscillating cavity. In this case both the total number and
the total energy of the created photons grow exponentially with time. Note that
the periodically oscillating boundary (7.155) is mathematically equivalent to an
external electric field periodic in time. The number of bosonic particles created
by such a field from the vacuum depends exponentially on time if the condition of
parametric resonance is satisfied (Narozhnyi and Nikishov 1973, Mostepanenko
and Frolov 1974, Mostepanenko 2003). This concept is promising for the creation
of photons from the vacuum by use of the dynamical Casimir effect.

There is extensive literature on various aspects of the creation of photons due
to the dynamical Casimir effect using various theoretical methods. For example,
a Hamiltonian approach to the description of photon creation was suggested by
Haro and Elizalde (2006). Cavities with the insertion of dispersive mirrors or a
slab with a time-dependent dielectric permittivity were considered (Schaller et
al. 2002, Uhlmann et al. 2004). Multiple-scale analysis was applied to the calcu-
lation of the flux of created particles (Crocce et al. 2002). Photon creation in a
harmonically oscillating one-dimensional cavity with mixed boundary conditions
(see Sections 7.1.2 and 7.2.2) has been analyzed (Alves et al. 2006). A collection
of papers on the subject has been compiled and edited by Barton et al. (2005).

The experimental observation of the dynamical Casimir effect is a compli-
cated problem because the internal mechanical properties of the oscillating wall
do not permit oscillations in the GHz region (Dodonov and Dodonov 2006). Be-
cause of this, instead of a real moving metallic surface, it has been proposed to use
an effective electron—hole plasma mirror created on the surface of a semiconduc-
tor by illuminating it with laser pulses of appropriate frequency (Yablonovitch
1989, Braggio et al. 2004). In this case, the conducting layer is created period-
ically on the surface, simulating mechanical oscillations. The present status of
a proposed experiment which aims at measuring the dynamical Casimir effect
by using the effective motion of a wall of a superconducting microwave resonant
cavity has been reported by Agnesi et al. (2008).
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THE CASIMIR EFFECT IN RECTANGULAR BOXES

As was mentioned in Chapters 1 and 2, the Casimir energy and force may change
sign depending on the geometry of the configuration and the type of boundary
conditions. A dramatic example of this situation, which has given rise to many
discussions in the literature for several decades, is the case of a rectangular box
with sides a, b, and ¢. Lukosz (1971) noticed that the electromagnetic Casimir
energy inside an ideal-metal box may change sign depending on side lengths
a, b, and c. A detailed investigation of the Casimir energy for fields of different
spins, where it may again be either positive or negative, inside a rectangular box
as a function of the box dimensions was performed by Mamayev and Trunov
(1979a, 1979b). In particular, analytical results for two- and three-dimensional
boxes were obtained by repeated application of the Abel-Plana formula (2.26).
Ambjgrn and Wolfram (1983) used the Epstein zeta function to calculate the
Casimir energy for a scalar and an electromagnetic field in hypercuboidal regions
in n-dimensional space—time. The problem of isolation of the divergent terms in
the vacuum energy and their interpretation received the most attention. In recent
years, this problem has been reformulated in terms of a rectangular box divided
into two sections by an ideal-metal movable partition (piston) (Cavalcanti 2004,
Hertzberg et al. 2005). It was shown that the Casimir force acting on a piston
with Dirichlet boundary conditions attracts it to the nearest wall. Based on
this, some doubts about the results previously obtained demonstrating Casimir
repulsion in cubes have been raised. Below, we present both the old classical
results on the Casimir effect in ideal-metal rectangular boxes and the recent
results related to boxes with a piston. We demonstrate that the two sets of
results are in mutual agreement, and the attraction (or repulsion for a piston
with Neumann boundary conditions) of a piston to one of the box faces does
not negate the Casimir repulsion for boxes with some appropriate ratio between
a, b, and c.

8.1 The scalar Casimir effect in a rectangle

In this section, we consider the simplest geometry where the problems connected
with the change of the sign of the Casimir energy and of the force arise. This is
the case of a massless scalar field in a rectangle a x b. For this configuration, we
provide two different regularizations (one using the Abel-Plana formula and the
other using the Epstein zeta function) which lead to coincident results for the
Casimir energy. Then we discuss the Casimir force acting on a partition (piston)
which divides the rectangle into two rectangles.
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Fra. 8.1. Configurations of (a) a rectangle and (b) a rectangular box, with
pistons at y = by and z = ¢y, respectively.

8.1.1 Regularization using the Abel-Plana formula

Let the massless scalar field (¢, x,y) be defined in a rectangle 0 < z < a,
0 < y < b with Dirichlet boundary conditions on all sides, i.e. x = 0, a and
y = 0, b [see Fig. 8.1(a)]. The complete orthonormal set of solutions of the
equation

D3<p(t,ac,y) =0 (8.1)

with these boundary conditions is given by

2 .
gpSlE)(t,x,y) =\ aho eTwntt gin k,x sin ky, (8.2)
where '
kn:%, kl:%, W =Kk, nl=1,23,.... (8.3)

Note that n and I cannot be equal to zero because in that case the solution (8.2)
vanishes.

Repeating the same calculations as in Section 3.3, but in three-dimensional
space—time, we obtain the total vacuum energy of the scalar field inside a rect-

angle,
Eo(a,b) = gnzl_:l \/ (2)2 + (é)2 (8.4)

In order to perform the summation, we apply the Abel-Plana formula (2.26)
twice. As was explained in Section 2.2, in so doing some cutoff function is intro-
duced which makes all of the results finite. However, it is not necessary to write
it out explicitly, because the result obtained after removing the regularization
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does not depend on its specific form. First, we apply the Abel-Plana formula to
perform the summation over [, with the result

Eo(a,b):g [—--F/ dt,/
2 G- <s>2ﬁ]- &

Note that in obtaining eqn (8.5), eqn (2.37) has been used.
Next, we apply the Abel-Plana formula (2.26) to perform the first two sum-
mations over n on the right-hand side of eqn (8.5):

0t "= 24a’

dt,/ dt (8.6)
/ dt/ dv o) -5 2a2<R

Now we substitute eqn (8.6) into eqn (8.5). We also introduce a new variable
u = at/(nb) in the last integral on the rlght hand side of eqn (8.5). The result is

[ 1,1 1
EO_§l—§(a+— / tdt+/ dt/ dm/

1 b
+%_—8w2a2<R( )+ G(aﬂ (8.7)
where

G(z) = —z/l dU\/UQ—Z

Representing G(z) in the form

:_ZZ Z/ dur/u? — 1 e2mntuz (8.9)
n=1

and using the representation for the Bessel functions of imaginary argument
(Gradshteyn and Ryzhik 1994)

_(3/2)VF(1/2) * e (2v—-1)/2
Ky(z)—w/l e P (t* - 1) dt, (8.10)

e27rnuz _
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we can rearrange eqn (8.8) as
oo oo n
Glz) = —3 S TK1(2mnlz). (8.11)

Equation (8.7) contains two infinite integrals on the right-hand side. The
second one is proportional to the vacuum energy of the free unbounded two-
dimensional space contained within a rectangle of area ab. As was discussed in
Section 1.1, the physical energies are counted from the top of the vacuum energy
in free space, and thus this integral should be omitted. The first integral on the
right-hand side of eqn (8.7) is proportional to the perimeter of the rectangle
2(a + b), which plays the role of the boundary surface in the two-dimensional
case. Omission of this integral is equivalent to a renormalization of the geomet-
rical object inherent in the configuration under consideration, as we discussed in
Chapter 4. We shall return to the physical meaning of this omission below when
we discuss the Casimir force acting on a piston.

As a result, the renormalized Casimir energy of a rectangle is

7r b ™ b

E(a,b) = YTy WCR(B) + EG (E) . (8.12)
This is, in fact, symmetric with respect to the interchange of @ and b. This
symmetry is, however, implicit. The order of performing the summations chosen
above is advantageous when b > a. In this case, as follows from eqn (8.11),
G(b/a) is of order exp(—2mb/a), i.e. is exponentially small. For example, even
for a = b, the contribution from G(b/a) to the Casimir energy is only about 1%.
Numerical computations using the full equation (8.12) show that the Casimir
energy E is positive if

0.36537 < Z < 2.73686 (8.13)

and negative if b > 2.73686 or b < 0.36537. The Casimir forces acting on opposite
sides of the rectangle

0E(a,b) ™ b ™ b b b
Fa(e,b) = - da 4842 877@34R(3) * EG <a) * EG/ (5) ’
O0E(a,b 1 ™ (b

are repulsive and attractive, correspondingly, in the same intervals (a prime is
used here to denote a derivative with respect to the argument).

8.1.2  Regularization using the Epstein zeta function

The Epstein zeta function and its analytic continuation are very convenient tools
for the investigation of the analytic properties of multiple summations. The Ep-
stein zeta function can be defined as (Erdélyi et al. 1981)
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= —5/2
Zp(ar,ag,. .. ap;8) = Z [(n1a1)® + ...+ (npap)?] /
Ni,..;Np=—00
X (1 _6n10"'6np0)~ (815)

The inclusion of the negative product of d-symbols in eqn (8.15) is equivalent to
the condition that the term with all n; = 0 is omitted.

The series in eqn (8.15) is convergent when Re s > p. It can be analytically
continued over the entire complex plane except for a pole at s = p, using the
reflection formula

ar---apl’ (%) WﬁS/QZp(al,...,aP;s) (8.16)

=T m(s= p)/QZ L L ip— s
2 ay’ ap’

We regularize the expression for the total vacuum energy of the scalar field
in the rectangle (8.4) by introducing a regularization parameter s:

wen-3 5[ Q] e

n,l=1

Equation (8.17) can be expressed in terms of the Epstein and Riemann zeta
functions in the following way:

SRR OR

n,l=—o0

2 . 2R (o
_EZ”( 1) _ EZ;Z( 1)}

[Zg (1 11, s — 1) —2 (2 + %) Cr(s — 1)} : (8.18)

In the limiting case s — 0 (i.e. when the regularization is removed), the quan-
tity (8.18) is divergent. By using the reflection relations (5.50) for the Riemann

zeta function and (8.16) for the Epstein zeta function, we obtain the analytic
9),

2 —(s—1)/2
} (1 = 6r0010)

oo

continuation of £ (

8

After removing the regularization (s — 0), we finally obtain the finite Casimir
energy for a rectangle,

B0 = g abd =9+ o (147 )@ —s (519

327 48 b

Let us now compare eqn (8.20) with the Casimir energy for the rectangle
(8.12) derived using repeated application of the Abel-Plana formula. For this

Blab) = -2 Zo(a,b:3) + <1 + 1) . (8.20)
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purpose, it is convenient to express the Epstein zeta function Z5 in terms of the
auxiliary function

(g)z + (%)21 7q/2, (8.21)

where 1 # 0 and the series is convergent for Re g > 1. The result is

S(n,r;q) =7 9T (%) i

k=—o00

= QCR(S)
. .22
Zy(a,b;3) = 3/2 2 7rbl 3 (8.22)
There is an integral representation for the function S (Ambjgrn and Wolfram
1983),
1—q
g—1 n
1q) = ri——|»|(—= 2
St i) { (3%) (%) (5.23)
o0 2
+ / dx z= (1D /2= /(m2) [0(0; k%) —1] 5,
0
where
Z efﬂ'n%:eQﬂ'nz (824)

is the Jacobi theta function.
Substituting eqn (8.24) into eqn (8.23) and performing the integration with
respect to x, we arrive at

S, kiq) =k (\%) a [T (q;_l) + 4g(nm)(q_l)/zfﬂq—n/z(277*6”)] :

(8.25)
As a result, eqn (8.22) takes the form
22 167 = n 2¢r(3)
Zo(a,b;3) = —— + 22 5" Ui (2
2(a, b; 3) sz T a2 2.7 1 ( nl— ) "

272 2(gr(3) 327 b
= — Gl-]. 8.26
3ab? * a3 a’b a (8.26)

The substitution of eqn (8.26) into eqn (8.20) brings us back to eqn (8.12), with
G(z) defined in eqn (8.11). Thus, the methods based on the Abel-Plana formula
and the Epstein zeta function are in agreement. They lead to the same finite
result for the Casimir energy of a scalar field in a rectangle.
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8.1.3 A Casimir piston in a rectangle

Let us now consider a partition (a piston) y = by with a Dirichlet boundary
condition on it which divides the rectangle into two rectangles [see Fig. 8.1(a)].
This piston may take any position 0 < by < b. Because of this, it is often called
a movable piston. We shall calculate the Casimir force acting on the piston, in-
cluding the infinite integrals in eqn (8.7), making sure that it is finite (Cavalcanti
2004). For this purpose, we explicitly introduce the cutoff function

Flwm6) = exp [—5 (3)2 + (éﬂ (8.27)

when applying the Abel-Plana formula, and rewrite eqn (8.7) before removing
the regularization in the form

E (a,b) = Iy(a,b) + I (a, b) + E(a, b), (8.28)

where F(a, b) is the finite Casimir energy defined in eqn (8.12) and the regularized
infinite integrals are
272 m
Io(a,b) = ?ab, Il(a,b) = _4T;2
Equations (8.28) and (8.29) have been derived in the absence of the piston.
The total regularized energy of the two boxes a x by and a x (b — b1) in the
presence of a piston is given by

(a+1b). (8.29)

s b

2
(5) (5) _ T 2
o™ (a,b1) + Bo™(a,b = by) = = Qa4+ 0) + “gmab 50 = 9

7 [G (%) +G<b_ab1>] (8.30)

As can be seen from eqn (8.30), the divergent terms, and the finite terms outside
the square brackets containing the function G, do not depend on b;. Thus, the
force acting on the piston,

)
Fla.bby) = — - [Eg‘” (a,b1) + ES (a,b — bl)}

o)) e

is uniquely defined regardless of the regularization and renormalization proce-
dures used.

It can be shown that F'(a, b, by) is always negative. This means that the piston
is attracted to the nearer side of the rectangle. One can also say that the piston
is repelled from the more remote side. If the forces acting on the piston from
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the top and bottom sides are equal in magnitude (this is the case, for instance,

for b = 2a, by = a), the resulting force is equal to zero, i.e. we have a state

of equilibrium. This equilibrium is, however, unstable, and its violation in any

direction would lead to movement of the piston to the nearer side of the rectangle.
In particular, for b > a and by ~ a, eqn (8.31) results in

™ > bl ™ b1
F(a,b,bl) = ? Z Ki <2’/T7’Ll;> ~ —W exp <27T;> . (832)

n,l=1

In this case the piston is attracted to the bottom side a even if, for instance,
b1 = a, i.e. the rectangle a x by satisfies the inequality (8.13), under which
the Casimir energy should be positive and the force should be repulsive. This,
however, does not mean that the regularization-independent results obtained for
the piston raise questions about eqns (8.12) and (8.13), obtained after omitting
the two infinite integrals I1 and I2 from eqn (8.29). The reason is that eqn (8.12)
is relevant to the case of an empty space outside the rectangle a x b. In this
case the vacuum energy outside the rectangle does not depend on a and b, and
there is no force acting on the rectangle from the outside, whereas eqn (8.32)
is relevant to the case where there is a long additional rectangle a x (b — by)
above the rectangle a x b1, with Dirichlet boundary conditions on its sides. The
vacuum energy inside the rectangle a x (b — b1) depends on by and gives rise to
an additional force which would be absent for an isolated rectangle a x by. This
changes the physical situation and leads to a total Casimir force attracting the
piston to the nearer side of the rectangle.

One can conclude that although the regularization-independent results may
be considered as somewhat more transparent than the regularization-dependent
ones, the above consideration of a piston inside a rectangle neither adds to nor
diminishes the reliability of the classical result (8.12) for the Casimir energy
inside an empty rectangle in free space.

8.2 The scalar Casimir effect in a three-dimensional box

In this section we consider the problem of the attractive and repulsive Casimir
forces for a massless scalar field in the more realistic geometry of a three-
dimensional box with sides a, b, and ¢ arranged along the z, y, and z axes,
respectively [see Fig. 8.1(b)]. It will be shown that in spite of additional techni-
cal difficulties, the qualitative results obtained for a rectangle are preserved for
a three-dimensional box [see the review by Actor (1995); a scalar field confined
by soft boundaries represented as a harmonic-oscillator potential was considered
by Actor and Bender (1995)].

The complete orthonormal set of solutions of eqn (3.1) with m = 0 and with
Dirichlet boundary conditions on all six faces of the box takes the form

(£) 4
t =
@nlp( ) T) abe lp

eFlwnint sin k,,x sin kyy sin k2, (8.33)
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where

kp =", wh,=ki+ki+kl, p=123 ..., (8.34)

and the other notation has been introduced in eqn (8.3).
The total vacuum energy of the scalar field inside the box is given by

Eola, b, ¢) Z \/ g (2)2. (8.35)

n,l,p=1

All desired results can be obtained by repeated application of the Abel-Plana
formula (three times in this case) or by using the Epstein zeta function regular-
ization technique. In this case we begin with the Epstein zeta function approach.

First, we identically rearrange the regularized eqn (8.35) for the vacuum
energy in order to separate the contributions of the various Epstein and Riemann
zeta functions in the sums from unity to infinity:

oo

)1 me (1 2]
teno=T{L S s |2+ (5) ()]

n,l,p=—o0

S GRCI
I (LNl
. %n,im(l — Su0610) l(g)z N ( ! ﬂ o1z
EOTEE TR0 o

Equation (8.35) is obtained from eqn (8.36) when s — 0. Using the definitions
of the Epstein and Riemann zeta functions in eqns (8.15) and (4.6), respectively,
we represent eqn (8.36) in the form

. 111 11
E5>(a,b,c):116[23 (E’E’E;s_1>_22(b’ s—l) (8.37)

_Z2 1,1;8—1 —Zz l,l;s—l +2 1+1+ CR(S—l)
a ¢ a’ b b

All terms on the right-hand side of eqn (8.37) are evidently divergent in the
limiting case s — 0 when the regularization is removed. To perform renormaliza-
tion by means of the zeta function, we use the reflection relations (8.16) (for the
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Epstein zeta function) and (5.50) (for the Riemann zeta function). As a result,
the finite Casimir energy of the massless scalar field inside the box is

abe
3272

ab 1 1 1
+ ZQ(CLC3)+—Z2(ab3) 96 <_+Z+E>

b
E(a,b,c) = — Zs(a,b,c;4) + GTcZg(b7 ¢ 3) (8.38)

Equation (8.26) provides an explicit expression for Z3(a,b;3) and, with appro-
priate permutations of the arguments, for Z5(b, ¢; 3) and Zs(a, ¢; 3). Now we shall
obtain a similar expression for Z3(a, b, ¢;4).

For this purpose, we employ once more the function S(n, k; q) defined in eqn
(8.21). From the definitions of the functions S(n, ; ¢) and Zs(a, b, ¢; 4), it follows

that
> 4
Z3(a,b, c;4) = Z (1 — 8100p0)S (Mip, K3 4) + CI;(AL ), (8.39)
l,p=—o00
where )
K== mp=T (b1)2 + (cp)?. (8.40)

Now we substitute the expression (8.25) for S in eqn (8.39) and arrive at

f Z (1= 8106,0) [(BD)? + (ep)?] ™2 (8.41)

l,p=—00

r & Kap [2mi /07 F ()]
9 42 —3/2

R PN o

Equation (8.41) can be identically rewritten as

Zs(a,b,¢;4) = 45a

4 3272 b ¢
b,c; 4 Z b,¢;3)+ ——R| —, — 8.42
(Cl G ) 45a 4+ 2( G ) a2bc <a7a)a ( )
where the following notation has been introduced:
Z122 >
R(Zl, 2’2) = ? l p_g_oo(l — 5[05p0) (843)

i~ . 3/2
J .
x R K 2\ /1222 + p222> .
; («/—ZQZ% +p_2z§> 5/ < e

Substituting eqn (8.42) in eqn (8.38), we notice that the contributions of the
form Z5(b, ¢; 3) cancel each other. Using eqn (8.26), we represent the final result
in the form (Edery 2007)

w2bc  GREB)b+c) 7

E —_ - A4
(0.0,6) =~ 703 T~ 32na2 964 (8.44)
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-5 o (2)+e ()] -ar ()

where G is defined in eqn (8.11). After division of this equation by bc, we obtain
in the limit b, ¢ — oo the scalar Casimir energy per unit area [see the first term
in eqn (7.8)] for a configuration of two plane parallel plates.

This equation contains both positive and negative contributions. However, it
is easily seen that for any relationship between a, b, and ¢, E(a,b,¢) < 0 holds.
Thus, for a massless scalar field inside an ideal-metal box, all opposite faces
attract each other independently of the magnitudes of a, b, and c. It is simple
to check analytically that this is really so under the conditions b/a, ¢/a > 1. In
this case the energy is approximately given by the first three terms on the right-
hand side of eqn (8.44), the other contributions containing the Bessel functions
of imaginary argument being exponentially small. Note that eqn (8.44) is in
fact symmetric relative to cyclic permutations of the arguments a, b, and c. This
symmetry is, however, implicit. In particular, if the above conditions b/a, ¢/a > 1
are violated, it is worthwhile to use another order of arguments in eqn (8.44).
The absence of a Casimir repulsion for a scalar field in a three-dimensional box
is qualitatively different from the case of a rectangle, where opposite sides repel
each other if the condition (8.13) is fulfilled.

The result (8.44) for the Casimir energy of a scalar field in a box can be
obtained by a three-fold application of the Abel-Plana formula, in analogy to
Section 8.1, where it was applied twice. The advantage of the Abel-Plana formula
in comparison with the Epstein zeta function is that the former permits explicit
separation of divergent terms that are hidden in the analytic continuation of the
latter. To apply the Abel-Plana formula, we introduce the cutoff function

F(wnipd) = eV O/ UL +w/)? (8.45)
As a result, we obtain the regularized Casimir energy in the form
E (a,b,¢) = E(a,b,¢) + Ip(a,b,¢) + I (a, b, ¢) + I(a, b, ¢), (8.46)

where the finite Casimir energy E(a, b, ¢) is defined in eqn (8.44) and the regu-
larized integrals are given by

o(a,b,c) = /dt/dv/dU\/ +(%)2

% eﬂs\/(v/a) - (t/b) 2+ (u/c)? ’
Ii(a,b,c) = —%/OOZt/OOZU [ (2)2 + (%)Qe—a 0/ P+ (2 /07 (8.47)
4 (2>2 n (f)Ze—aW n /(%)2 n (E)%—é (v/b>2+<t/c>2] ,
a & C
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o 1 1 1
Iz(a,b,c) = z/ tdt | —e 0@ 4 Ze0t/b 4 _o=0t/c
8 Jo a b c

The analytic continuations of the Epstein and Riemann zeta functions used above
are effectively equivalent to the omission of the integrals (8.47).

A physical interpretation of this omission can be obtained from an explicit
integration in eqn (8.47), which leads to

1272abe 72(ab + ac + be
IO(avbvc):Ta Il(a'vbvc):_%?
m(a+b+c
Is(a,b,c) = % (8.48)

Note that Iy is proportional to the box volume, I; is proportional to the total
surface area of the box, and I5 is proportional to the sum of the sides. Thus the
omission of all of these integrals, which is done implicitly in the zeta function
regularization and explicitly in the regularization using the Abel-Plana formula,
can be interpreted as deletion of the vacuum energy of free space in the volume
of the box and renormalization of the respective geometrical objects.

Now we consider a Casimir piston for a massless scalar field in a three-
dimensional box. Let the piston be at a point z = ¢1, as shown in Fig. 8.1(b).
The total regularized energy of the two three-dimensional boxes a x b x ¢; and
a X b x (¢—cy1) in the presence of the piston is given by

5 5 m(2a+2b+c) w%(2ab+ ac+ be)
E(() )(a7b’cl)+Eé)(a,b,c—C1)= 842 B 93
1272abe 3 m2be (r(3)(2b+ ) T (8.49)
5 144043 327a2 48a '

“a 20() o) o) 2n( )+ 2R(2 )|

As can be seen from eqn (8.49), none of the singular terms depend on the piston
position ¢;. The same is true for all finite terms outside the square brackets.
Thus the Casimir force acting on the piston does not depend on whether the
divergent integrals are omitted. It is given by

F(a,b,c,c1) = —ai {E(é (a,b,c1) + E(()(s)(a,b,c— cl)} (8.50)
c1

=0 (0(3) -0 () 2R () - 2w (G )]

where the prime on R denotes the derivative with respect to the second argument.
As in the case of the rectangle, eqn (8.50) determines the Casimir attraction
of a piston to the nearest face of the box. As an example, we consider a box with
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¢1 < a="band ¢ — oco. In this case eqn (8.50) leads to the following attractive
force (Hertzberg et al. 2005):

<R(3) ™ A
.01
480ct T 8wcd 96¢2 Tz (8:51)

F(a,a,00,¢1) = —

Here
2 (3) = Zo(1,1:4)
A =
3272

~ 0.00483. (8.52)

Another example is that of a cube a = b = ¢, preserving the condition ¢ — oo
(Edery 2007). In this case the attractive force on the piston originating entirely
from this cube is F; = —0.005244/a® However, the force Fy = 0.004832/a?
acting on the piston from the box a x b x (¢ — ¢1) repels it from the cube bottom
at z = 0 (Edery 2007). The total force acting on the piston, F' = F; + F» =
—0.000412/a?, attracts it to the cube bottom at z = 0 and simultaneously repels
it from the top of the box axbx (c—¢1) at z = ¢. This example demonstrates that
the force depends on whether there is empty space outside the box axbx (¢—c¢q).
As was shown above, the Casimir force for a scalar field inside any isolated box
(including a box of dimensions a x b x (¢ — ¢1) with ¢ — 00) is attractive.
However, the presence of an adjacent cube a x b X ¢; changes the attraction
to a repulsion. The Dirichlet piston problem for a massless scalar field and an
arbitrary rectangular box with dimensions a x b x ¢ was solved by Edery (2007)
and by Hertzberg et al. (2007).

8.3 The electromagnetic Casimir effect in a three-dimensional box

The most realistic configuration related to the Casimir effect in a rectangular
box is the case of an electromagnetic vacuum confined in a three-dimensional box
with arbitrary sides a x b X ¢. As a first approximation, it is possible to consider
walls made of an ideal metal and impose on them the boundary conditions (2.71).

The complete set of solutions of eqn (3.65) in the Coulomb gauge with the
boundary condition (3.48) on the walls is given by

N by c-os kzn sin kyy s%n kopz
Ap(r) = by sinkznx coskyy sink.pz | . (8.53)
M b, sinkzpx sinkyy cosk.pz
Here, kyn = mn/a, ky, = wl/b, and k., = wp/c, where n, [, p =0, 1, 2, ... but
only one of the three indices may have a value zero (otherwise the vector potential
would be equal to zero). As is seen from eqn (8.53), on each wall of the box the
respective pair of components of the vector potential forming a tangential vector
vanishes. The normalization condition (3.66) must be considered with

R

_ 2 _ _
oy = 57”1'5”'51710'7 wy = wnlp kxn 2p)
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a b c
/d’l”E/ dm/ dy/ dz. (8.54)
v 0 0 0

Together with the gauge-fixing condition div.A,;, = 0, this leads to

k.
bx = by - L ’
\/(kxn + kyl)2 + 2k§p
ken + k
b, = — o+ Byl . (8.55)

The total regularized energy of the electromagnetic vacuum inside a box can
be written using eqn (3.76) in the form

E( )(a b, c) (2 Z wnlp + Zwmp + Z wn()p + Z wnlo) (8.56)

n,l,p=1 l,p=1 n,p=1 n,l=1

In order to express this quantity in terms of the zeta function, we do a transfor-
mation similar to that in the previous section and obtain

By (a,b,¢) = 5 {Z?,(l 2 %,s—l)—2<é+%+%> gR(s—n]. (8.57)

If we compare this with eqn (8.37), the electromagnetic case appears somewhat
simpler than the scalar one.

To perform the renormalization by means of the zeta function, we use the
reflection relations (8.16) and (5.50) and arrive at

abc 1 1 1
E(a,b,c):—16 5 (abC4)+4_8(_+3+E)' (8.58)

The Epstein zeta function Zs(a,b,c;4) contained in this equation has already
been calculated in eqns (8.42) and (8.26). Substituting these equations in eqn

(8.58), we obtain the electromagnetic Casimir energy inside a three-dimensional
box,

w2be (R(B)c w (1 1 T, /c b c
Ela.b.¢) = 7550 ~ Tomp? T 13 (a * b) T3¢ (b) aR (a a) (8:59)
After dividing both sides by bc, we obtain in the limit b, ¢ — oo the electromag-
netic Casimir energy per unit area of two plane parallel plates obtained in eqns
(2.82) and (7.30).
The same expression has been obtained using the Abel-Plana formula (Ma-
mayev and Trunov 1979a, 1979b). All of the calculations are similar to those

presented in Section 8.1.1. As was mentioned above, the advantage of the Abel-
Plana formula is that it allows clear identification of the divergent contributions
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that are effectively omitted in the analytic continuation of the zeta functions. In-
troducing the cutoff function (8.45) and applying the Abel-Plana formula three
times, we arrive at the following regularized vacuum energy of the electromag-
netic field inside a box:

E (a,b,¢) = E(a,b,¢) + Io(a,b,¢) + Ix(a, b, c). (8.60)

Here, the finite electromagnetic Casimir energy E(a, b, ¢) has been presented in
eqn (8.59) and the regularized divergent integrals are

Io(a,b,c) = 2Iy(a, b, c), Ly(a,b,¢) = —2I5(a, b, c), (8.61)

where I (a,b,c) and I5(a,b,c) are defined in eqn (8.47). From eqn (8.48), we

obtain ) ( )
24m4abe - m(a+b+c
st 12(11,1770):*T

Thus, in the calculation of the electromagnetic Casimir energy inside a box, we
have discarded the vacuum energy of free space inside the volume of the box
and renormalized the constant proportional to the total size of the sides. We
emphasize that eqn (8.60) does not contain a divergent integral proportional to
the total surface area of the box [notated as Iz(a,b,c) in eqn (8.48)], which is
present for a scalar field. For the electromagnetic field, the divergent contribu-
tions to the vacuum energy proportional to the areas of the various faces cancel
each other.

The electromagnetic Casimir energy inside a box (8.59) can be both negative
and positive depending on the relationship between the sides a, b, and c¢. The
respective Casimir forces between the opposite faces of a box

Io(a,b,c) = . (8.62)

_ 0E(a,b,c) _ 0E(a,b,c) _ 0E(a,b,c)
F, = SO R = S F= o (8.63)

can be both attractive and repulsive. Thus, for a cube with a = b = ¢, computa-
tions using eqn (8.59) result in

0.09166

E(a) = ,

> 0. (8.64)

Because of this, the opposite faces of an ideal-metal cube would attract each
other. For a box with a = b but arbitrary ¢, the Casimir energy FE(a,a,c) is
positive under the condition

0.2042 < 2 < 3.429 (8.65)

and negative if this condition is not satisfied. Maclay (2000) performed numerical
computations of Casimir energies and forces for boxes of various dimensions
and found the regions in (a, b, ¢) space where the energy is negative or positive.
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The electromagnetic Casimir effect in three-dimensional boxes was considered
by Hacyan et al. (1993) using the Hertz potentials.

Next, we consider the electromagnetic Casimir force acting on a piston at
z = ¢1, shown in Fig. 8.1(b). This was first considered by Hertzberg et al.
(2005). The regularized electromagnetic Casimir energy of the boxes a x b X ¢1
and a X b x (¢ — ¢1) is given by

m(2a + 2b + ¢) N 24m2abe
442 04

72bc (R(B)e w (1 1 T c1 c—c
T 72047 1672 +ﬂ<5+5>+3 [G<?)+G( b )}

2 2) s (5]

Just as for a scalar field, the divergent terms do not influence the force acting
on the piston, and the force is equal to

F(a,b,c,c1) = _612 [G’ (%) o (C—bcl>]
- (12_2 {R/ (2%) el (2 C_aclﬂ : (8.67)

Here, the prime stands for differentiation with respect to the argument (the
second argument in the case of R). For a box with ¢; < a = b and ¢ — oo, the
asymptotic behavior of the force on the piston is given by (Hertzberg et al. 2005)

ES(a,b,¢1) + ES (a,b,c— ) = —

n2a? T Zx(1,1;4)

F s Uy ) = -
(a:0,00,¢1) = =526 ¥ 82 ~ T16n2a2

<0, (8.68)

where Z3(1,1;4) ~ 6.027. Thus, this force is attractive. Note that the last term
on the right-hand side of eqn (8.68) originates from the rectangular box a x b x
(¢ — ¢1). This term does not depend on ¢;, and demonstrates the influence on
the piston of the box a x b x (¢ — ¢1) adjacent to the box a x b X ¢;.

In the electromagnetic case, further generalizations of configurations with
pistons have been considered in the literature. Thus, Barton (2006) found, using
other boundary conditions (weakly reflecting dielectrics) that the force on a
circular piston inside a cylinder can change sign as the distance from the top of
the cylinder increases. In the case of two ideal-metal pistons inside an ideal-metal
cylinder of arbitrary cross section, the force acting on each of the pistons was
shown to be attractive (Marachevsky 2007).

We conclude from the above that the examples of a piston introduced into
a rectangle or a three-dimensional box do not add direct information about the
problem of the reality of the Casimir repulsion in rectangular boxes. So far, all
results on this subject have been obtained using a model of ideal-metal walls.
However, a conclusive resolution of the problem requires consideration of real
material walls of finite conductivity.
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8.4 Rectangular boxes with different boundary conditions

In the previous sections, we have considered Dirichlet boundary conditions im-
posed on scalar and electromagnetic fields at the internal edges and faces of two-
and three-dimensional boxes. Similar results can be obtained for different types
of boundary conditions. As a simple case, let us begin with a massless scalar
field in a rectangle whose opposite sides are identified with each other (we have
the topology of a 2-torus, which can be symbolically written as S x S1). In this
case k, = 2mn/a, k; = 2wl /a [see eqn (2.43)], and the vacuum energy is given by

Eo(a,b) = " l:f;m [(g)z + (%)2] " (8.69)

Bearing in mind that the term with n = = 0 does not contribute in eqn (8.69),
the regularized vacuum energy can be presented in the form

EO(ab) == i (1 = Gn0d10) {(3)2 + (éﬂ e

n,l=—o0
- wzz(i, %;s - 1). (8.70)

This should be compared with the more complicated result (8.18) valid for Dirich-
let boundary conditions.
Using the reflection formula (8.16) and removing the regularization, we arrive
at the finite result )
E(a,b) = —Z—Zg(a, b;3). (8.71)
T
An explicit expression for Zs(a, b; 3) has already been obtained in eqn (8.26).
A massless scalar field in a three-dimensional box with identified opposite
faces (which has the topology S x St x S! of a 3-torus) has a vacuum energy

Eo(a,b,c) = 7 i {(g)z + (2)2 + (%)2} ” (8.72)

n,l,p=—

The regularized value of this energy is given by
oo —(s—1)/2
9 n 2 I\ 2 Py 2
= 3 0-suioin) (24 ()" ()
0 (ab,c) = ( Ol0p0)|:a ;) TG

n,l,p=—o00
111
— 77 (—,—,—; —1). 8.73
ey e’ ( )
This expression is much simpler than the corresponding eqn (8.37) for Dirichlet
boundary conditions. The finite physical result is obtained using the reflection
formula (8.16) and removing the regularization:

abe

E(a,b,c) = —ﬁZg(a,b, ¢ 4). (8.74)

An explicit expression for Zs(a, b, ¢;4) is contained in eqns (8.42) and (8.26).
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It is of some interest to consider a hybrid situation, for example an identi-
fication condition on one pair of sides of a rectangle, and a Dirichlet boundary
condition on the other (we have the topology of S x I, where I is a Euclidean
interval). The vacuum energy of a massless scalar field takes the form

B = ¥ 3 [(5) +(5)]

n=—oo [=1

1/2

- [e’e] [e’e] n 2 l 2 1/2
=3 Z Z (1 —duwo) [(E) + (2_b> ] . (8.75)
n=-—00|=—00
This can be identically rearranged to
ar &2 a2 [N21V/2 o X
Eo(a,b) = 5 ) lzz_oo(l — 0n0010) [(5) + (%) ] - 2 n. (8.76)

Then the regularized vacuum energy in the hybrid configuration is

™

Eés) (a,b) = B {Z2(

%,%;3—1) _§CR(5_1)} ; (8.77)

which should be compared with eqn (8.18). After application of the reflection
relations (5.50) and (8.16), the following finite result is obtained:

b
E(a,b) = —%ZQ(a, 2b;3) + %a (8.78)

where Zs(a, 2b; 3) can be expressed using eqn (8.26).

The calculational technique used above can be applied in other cases; for
example, scalar and electromagnetic fields in configurations S! x I x I, St x
S1 x I, ete. can be considered. Mamayev and Trunov (1979a, 1979b) obtained
the Casimir energy in these configurations using the Abel-Plana formula. Cor-
responding results for multidimensional rectangular cavities, including the case
of Neumann boundary conditions, were obtained by Edery (2006, 2007). Mul-
tidimensional rectangular cavities were also considered by Caruso et al. (1991,
1999) and Li et al. (1997).

We now pursue our discussion with an interesting example of the role of mixed
boundary conditions in rectangular cavities. We demonstrate that if a Neumann
boundary condition is imposed on the piston, and Dirichlet boundary conditions
are imposed on the other sides, the piston is repelled from the nearest side (Zhai
and Li 2007). Let us begin with the simplest case of a rectangle a x b containing
no piston, with Dirichlet boundary conditions on the sides of length b. For the
sides with length a, we impose a Dirichlet boundary condition at 0 < z < a,
y = 0 and a Neumann boundary condition at 0 < x < a, y = b.
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Using the oscillation frequencies obtained when we studied mixed boundary
conditions in Sections 2.1, 7.1.2, and 7.2.2, the nonregularized Casimir energy of
a massless scalar field in such a rectangle is given by

wien =323+ (+3) 5

=0

S VO O]

n,l=1

s

The regularized energy can be rearranged in the following way:

e =5 {0 T (@07
T 07T

Il
|3
(]
o
|
(=2
3
>
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| — |
—
Q|3
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+
—
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fwp

—

H[pCde ) ale )] RGord) sw

where the Hurwitz zeta function ((z, ¢) is defined in eqn (7.37).

Using the reflection relations (7.38) and (8.16), we obtain, after removing the
regularization, the following finite Casimir energy for a scalar field in a rectangle
with one pair of mixed boundary conditions and one pair of Dirichlet conditions
(Zhai and Li 2007):

b
f;;—ﬂ 2Z2(a,2b;3) — Zo(a,b;3)] — —— (8.81)

E(a,b) = :
(a,b) 96k

Using eqn (8.26) for Z3(a,b; 3), we can represent eqn (8.81) in the final form

Elap) = RGBT {G(Q—b) —G(é)}, (8.82)

16ma?  «a a a

where the function G(z) is defined in eqn (8.11).
The same result can be obtained by repeated application of the Abel-Plana
formulas (2.26) and (2.31). In so doing, the cutoff function

Flwnd) = e~V (/0> +@1+1)2/(46?) (8.83)

is used. This method not only allows one to find E(a, b) but also specifies explicit
expressions for the divergent integrals in the regularized vacuum energy
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E (a,b) = Io(b) + L (a,b) + E(a, b), (8.84)
where
— 271—2 I —
I>(a,b) = =z-ab, 1) = — 15 5219 (8.85)

The first integral in eqn (8.85) equals that in eqn (8.29). Its omission is equiva-
lent to the subtraction of the energy of free space corresponding to the area of
the rectangle. The second integral depends only on b. Thus, the use of mixed
boundary conditions on the sides of size a removes the infinity proportional to
a from the vacuum energy.

We now introduce a piston into the rectangle at y = by < b [see Fig. 8.1(a)].
Let the boundary condition on the piston be of Neumann type and let that on
the four other sides be of Dirichlet type. Using eqns (8.82), (8.84), and (8.85),
we find that the divergent terms in the energy for the two boxes a x b; and

X (b — b1) do not depend on the piston’s position b;:
2m? Cr(3)b

©) ©)
ES (a,b1) + ES (a,b— by) = 252b+5—3b e

o) o) o) o)

Thus, the force acting on the piston is given by

F(a,b,by) = % {— 26 (le) + G’( ) 420 (@) e (b - bl)] . (8.87)

a

(8.86)

In the limiting case b — oo, eqn (8.87) reduces to
k3 , (2b1 , (b1
F(a,00,b1) = = { 2G ( ) e, (a)] . (8.88)

Numerical calculations show that this force is positive for all values of a and b.
Thus, a piston with a Neumann boundary condition is repelled from the nearer
side of the rectangle. The same results are obtained for a massless scalar field
inside a three-dimensional box a x a x ¢ with Dirichlet boundary conditions on all
sides, divided into two sections by an infinitely permeable piston at z = ¢; (Zhai
and Li 2007). The force acting on the piston is again repulsive. For example, in
the limiting case ¢ — oo and ¢; = a (the configuration of a cube), the force F
on the piston is equal to 0.000412/a>.

The above examples demonstrate that rectangular configurations with pistons
leave room for the existence of repulsive Casimir forces. The final resolution of
this problem has to include real material properties of the boundary surfaces.

8.5 Rectangular boxes at nonzero temperature

An independent problem is the thermal Casimir effect in a rectangular box.
The first calculations on this subject (Ambjgrn and Wolfram 1983) resulted in
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a divergent free energy after removing the regularization. More recent results
appear to be either infinite (Santos and Tort 2000) or ambiguous (Jduregui et al.
2006). Lim and Teo (2007) reconsidered the derivation of the Casimir free energy
for massless scalar and electromagnetic fields using zeta function regularization.
However, the renormalization was not complete. This led to irregular conclusions
about the behavior of the free energy as a function of temperature. Here we
consider the thermal Casimir effect in a rectangular box starting from the general
equations (5.36) and (5.37) for the renormalized free energy associated with a
finite volume V. These equations lead to physically meaningful results for the
Casimir free energy and force for rectangular boxes with arbitrary sides a x b x c.

8.5.1 The scalar Casimir effect

We start with the case of a massless scalar field with Dirichlet boundary condi-
tions. Equations (5.36), (5.37), and (5.29) can be written in the form

oo
Fla,b,c,T) = E(a,b,c) + kgT Y In(l—e P} — ag(kpT)*
n,l,p=1

—o (kgT)? — an(kpT)?, (8.89)

where 8 = 1/(kgT), ap = —m2abc/90, wy, is defined in eqn (8.34), and the finite
Casimir energy at zero temperature is given by eqn (8.44).

Equation (8.89) represents the finite renormalized value of the Casimir free
energy for a scalar field with Dirichlet boundary conditions in a box with sides
a, b, and ¢, valid at any temperature. However, the values of a1 and as remain
unknown. To determine them, one must find an asymptotic expression for the
nonrenormalized thermal correction ApFy at high temperature (or large sepa-
ration). To do this, we rearrange ApFy to the form

ArFola,b,e,T) = ksTX (Ba, Bo, Be)s (8.90)
X(Bas By Be) =Y I (1= em VARG,
n,l,p=1
where
Ba:ﬂ’ ﬁb:ﬂa Bc:@ (891)
a b c

Note that the quantity X does not depend on a, b, ¢, and T separately, but only
through the products a7, bT', and ¢T'. Below, we find an asymptotic expression for
X under the conditions 8, 8y, 8. < 1. This can be done by repeated application
of the Abel-Plana formula (2.26).

First we put

Foy = 3 In (1L - oV (8.92)
l

,p=1
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Then the application of eqn (2.26) leads to

X (Ba, By, Be) = — = Z In (1 - " VAT (8.93)
lp=1
b [T 3 (1 e VI L On ).
0 l,p=1

Here, we take into account the fact that the last term on the right-hand side of
eqn (2.26) with F' defined in eqn (8.92) is of order In 3,, In 8y, and In g..
Applying the Abel-Plana formula to each of the sums in eqn (8.93), we get

X (Ba: By, Be) = Zln (1— e Per) (8.94)

(k) [uSn -

/dy/ deln (1_8—\/y2+_v2+ﬂ§p2) + O(In B, In By, In 3,).
0 (N —

L1
ﬁaﬂb

Bearing in mind that

(In B.) (8.95)

Zln (1 — efﬁcp) =
p=1

and applying the Abel-Plana formula to the remaining two sums, the following

result is obtained:
2

X i) =51+ 1 (5 + 3 ) | dwm-e)
B R N eV
(5aﬂc+ﬁbﬁc+ﬂaﬂb>/ dy/ dvln 1 e )

ﬁﬁbﬁ / dy/ dv/ dw In lfe \ 2+”2+w>
+ O(Eln ﬁ;, In By, In B.). (8.96)

Calculating all integrals and using eqn (8.90) and the notation in eqn (8.91), we
arrive at the asymptotic expression for the nonrenormalized thermal correction
at high temperature (or large separation):

ArFo(a,b,c,T) = —L(kBT)2(a +b+c)+ CZ(S) (ksT)?(ac + be + ab)
— —(k‘BT) abc + O(kBT In B, kgT In By, kgT In ﬁc) (897)

90

Thus, it has been demonstrated that at high temperature (or large separation)
the nonrenormalized thermal correction really contains terms of the form (5.35).
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From a comparison of eqn (8.97) with eqn (5.35), it follows (Geyer et al. 2008c)

that
CR( )(ac—i—bc—i—ab) g = —ﬂ(a—i—b—i—c) (8.98)

ie. agis proportlonal to the total surface area of the box, and as is proportional
to the sum of the sides. These geometrical objects (together with the box volume)
are usually renormalized when Ej g is replaced with E{* (see Sections 8.1.1,
8.2, and 8.3). Thus the subtraction of the last three terms on the right-hand
side of eqn (8.89) can be interpreted as an additional finite renormalization, giv-
ing a physically meaningful temperature-dependent contribution to the Casimir
energy.

As mentioned in Section 5.1, ag, a1, and as can be expressed in terms of
heat kernel coeffcients. Thus, keeping in mind that the heat kernel coefficient
aijy = —/mS/2 [this follows from eqn (4.25) and has also been shown in the
review by Vassilevich (2003)], where S is the surface area of box, and comparing
eqn (8.97) with the general asymptotic expression for the free energy (5.53), one

arrives at

_(r(3) r(3 )
Ars2 2 T T
in agreement with eqn (8.98). A similar comparison of the general expression
(5.53) with eqn (8.97) leads to oy = —ay/24. The heat kernel coefficient a; can

be calculated from the known expression for the heat kernel coefficient for an
angle 6 (Nesterenko et al. 2003),

o = (8.99)

2 _ 92
() =" T (8.100)

In the case of a rectangle, § = 7/2 and ¢; = w/4. In the three-dimensional case,
this must be multiplied by the lengths of all sides, leading to

ap =4ci(a+b+c)=n(a+b+c). (8.101)

From this, the expression for as in eqn (8.98) is again obtained.
The Casimir force acting between opposite faces of the box is obtained from
(8.89) and (8.98):

OF (a,b,¢,T) e — n?
F.(a,b,¢,T)= ———""- = Fy(a,b,¢c) + — _—
Oa ’ m%n::l Wnip (eﬁwmp o 1)
7% (ksT)* r(3) 3 m 2
90 be + = (kgT)°(b+¢) — ﬂ(k:BT) . (8.102)

It is well known that the scalar Casimir energy FE(a,b,c) is negative and the
respective force Fy(a,b,c) = —0F(a,b,c)/da is attractive for any ratio of a, b,
and ¢ (see Section 8.2). Because of this, we restrict ourselves to the consideration
ofacubea=>b=c
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In the limit of low temperature, T' < T, the leading terms in eqn (8.89) are

Fla,T) = E(a) — kgT e~ ™V3/(aksT) (8.103)
m(ksT)* 5 3Cr(3)(ksT)* ,  w(kpT)?
T T mw T T @

where the scalar Casimir energy for a cube can be calculated numerically using
eqns (8.44), (8.11), and (8.43), with the result

.0102
E(a) = _ooao . (8.104)

At an arbitrary temperature, it is convenient to represent both the free energy
and the force in terms of the dimensionless variable ¢t = Teg /T

F(a,T) = Bf™a) + 5= > In(l— e 2mV/n+4p?)

w2 33 1 7w 1

B 32 at? 8.105
14400,t4 32 at3 32 atg? ( )
Fi(a,T) = Fy(a) + — i n? 1
z\ @, = I'yla —
o n,l,p=1 \/n2 + 12+ p? eQﬂ't\/n2+l2+p2 3
@B 1 1

 1440a2t* T 167 23 96 a2t
where the force at zero temperature, in agreement with eqn (8.104), is given by

_ 0.0102
3a2

In Fig. 8.2(a), the scalar Casimir free energy in a cube, obtained from (8.105),
is plotted as a function of the side length a at T'= 300K (solid line). As can be

Fyla) = (8.106)

F x 102 (J) F x 102 (J)
1 2.

0.5

(b)
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o U= N U
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F1a. 8.2. The scalar Casimir free energy for a cube as a function of (a) side
length a at T'= 300 K (solid line; the dashed line shows the energy at T' = 0)
and (b) temperature at a = 2 um (Geyer et al. 2008c).
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FiG. 8.3. The scalar Casimir force between opposite faces of a cube as a function
of (a) side length a at T = 300K (solid line; the dashed line shows the force
at T'=0) and (b) temperature at a = 2 um (Geyer et al. 2008c).

seen from this figure, the free energy increases monotonically with increasing a.
At large separations (not shown in the figure), it approaches to a constant. The
Casimir energy £ = E(a) at zero temperature is shown in the same figure by the
dashed line. In Fig. 8.2(b), the scalar Casimir free energy is plotted as a function
of temperature for a cube with @ = 2 ym. It is seen that at large temperatures
F is proportional to the temperature in accordance with the classical limit.

The magnitude of the scalar Casimir force obtained from eqn (8.105) (on a
logarithmic scale) as a function of a at T = 300K is shown in Fig. 8.3(a) by the
solid line. The force is attractive for cubes of any size and its magnitude goes to
zero with increasing a. In the same figure, the dashed line shows the magnitude
of the Casimir force (on a logarithmic scale) acting on opposite faces of the cube
at T' = 0. Figure 8.3(b) shows the Casimir force as a function of temperature for
a cube with ¢ = 2 um. It can be seen that for both negative and positive values
of the free energy, the Casimir force is attractive.

8.5.2  The electromagnetic Casimir effect

Now we consider the electromagnetic thermal Casimir effect in a rectangular box
with sides of lengths a, b, and c. For an electromagnetic field, the renormalized
free energy (5.36), (5.37), and (5.29) is specified as

Fla,b,¢,T) = E(a,b,c) + ksT | > In(1—e ) (8.107)
l,p=1
+ Z ln(l — e_ﬂ‘””l) + Z ln(l — e_ﬁ“’"p) +2 Z ln(l — e_gw"lp)
n,l=1 n,p=1 n,l,p=1

— ag(kgT)* — a1 (kgT)? — an(ksT)>.

Here, g = —m2abe/45, wyyp is defined in eqn (8.34), wyy = wpio, and &, do have
to be determined. The electromagnetic Casimir energy at T = 0, E(a,b,c), is
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given by eqn (8.59).

In order to find the coefficients &; and &s, one must determine the asymptotic
behavior of ApFy in the limit of high temperature (or large separation). In the
electromagnetic case, the nonrenormalized thermal correction can be identically
rearranged to the form

ATfO(aaba c, T) = kBTY(ﬂaaﬂlnﬂc) (8108)
Y (Bas B, Be) = 2X (Ba, B, Be) + Zm( e V)
lp=1
+ i In (1 —e VvV ﬁgn2+ﬂ§l2) + Z In (1 —e VvV 5§n2+ﬂ§p2) 7
n,l=1 n,p=1

where the asymptotic behavior of X (84, Op, Bc) at small 3,, B, and [, has been
determined above. Taking equs (8.90) and (8.97) into account, this is given by

o1 1 1 mr(3) (1 1 1
X(ﬂa,ﬁbaﬂc)iiﬂ (E+E+E)+ 4 (ﬁaﬁb+ﬁaﬁc+ﬁbﬁc)

+ O(In Ba, In By, In 3.). (8.109)

£

T 1
90 Buffe

The asymptotic behavior of Y (8, Bs, 8:) at small B4, Bp, O. is obtained, in
perfect analogy with the case of a scalar field, by repeated application of the
Abel-Plana formula (2.26) to the remaining three summations in eqn (8.108).
The result obtained, taking account of eqn (8.109), is

m (1 1 1 ™ 1
nmﬁwa—ﬁ(@+@+a)ﬁﬁﬁi

+ O(In Ba, In By, In B.). (8.110)

Substituting this into eqn (8.108) and using the notation in eqn (8.91), one
obtains an asymptotic expression for the thermal correction at high temperature
(or large separation)

2
ArFola,b,e,T) = %(kBT)Z(a tbte)— %(kBT)‘*abc
+O(kBT1nﬁa,k‘BTll’lﬁb,]{BTlnﬁc). (8.111)

It is notable that eqn (8.111) does not contain a contribution proportional to
the surface area of the box [in contrast to eqn (8.97) for the scalar field]. In the
electromagnetic case, such a contribution is also absent in the divergent Casimir
energy of the box Fy at zero temperature (see Section 8.3). Thus, from eqns
(8.111) and (5.35), one arrives at (Geyer et al. 2008c¢)

a1 =0, &= 12(a+b+c) (8.112)

Hence, similarly to the scalar case, g, &1, and as have the same geometrical
structure as the infinite expressions in eqn (8.62).
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The Casimir force acting between opposite faces of a box is obtained as the
negative derivative of eqn (8.107) with respect to a:

2 o0
™

Fx aba 7T :FI ’b7 -3

(a,b,e,T) = Fula,b,0) + Zwl(eﬁw_l +;1wnpegwn,,_1)

> TL2 _ Wz(kBT)

+2 Wnlp (eﬁw"”’ - 1) 45

bet 45 (kBT) (8.113)

n,l,p=1

It is known that the electromagnetic Casimir energy inside a box at T =
0, E(a,b,c), can be both positive and negative and that the Casimir force,
F.(a,b,c) = —0E(a,b,c)/0a, can be both attractive and repulsive depending
on the ratio of the sides a, b, and ¢ (see Section 8.3). Here we consider in more
detail the thermal electromagnetic Casimir effect for a cube a = b = ¢, where
the electromagnetic Casimir energy at zero temperature (8.64) is positive and
the force is repulsive.

For a cube, the electromagnetic Casimir free energy (8.107) and force (8.113)
are given by

Fla,T) = Z ln _2”“”2'”2)
nl 1
1 > o n2412 2 7T2 s
+EZIH(1—e2tV AP

720at*  16at?’
n,l,p=1

2 n? 1
Z Vn2 + 12 e2mtvn?+iz _ 1

n,l=1

Fo(a,T) = Fy(a) + (8.114)

n Z 1 2 n ™
el \/TL2 + l2 +p2 e27rt\/n2+l2+p2 -1 720a2t4 48a2t2’

where the force at T'= 0 is

0.09166
3a?

F.(a) = (8.115)

In Fig. 8.4(a), we plot the electromagnetic Casimir free energy in a cube
as a function of @ at T = 300K (solid line). The Casimir energy at 7' = 0
is shown in the same figure by the dashed line. As can be seen in this figure,
the electromagnetic Casimir free energy decreases with increasing separation.
Similarly to the scalar case, at large separations F approaches a constant. In
Fig. 8.4(b), the electromagnetic Casimir free energy is shown as a function of
temperature for a cube with @ = 2 ym. The free energy decreases with increasing
T'. At high temperature, F approaches the classical limit. The respective thermal
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Fia. 8.4. The electromagnetic Casimir free energy for a cube as a function of
(a) side length a at T = 300K (solid line; the dashed line shows the energy
at T =0) and (b) temperature at a = 2 um (Geyer et al. 2008c¢).

electromagnetic Casimir force at T = 300K, as a function of a, is shown in
Fig. 8.5(a) by the solid line. It is positive (i.e. repulsive) for cubes of any size.
Thus, thermal effects for cubes in the electromagnetic case increase the strength
of the Casimir repulsion. The dashed line in Fig. 8.5(a) shows the electromagnetic
Casimir force at T'= 0 as a function of a. This force is given by eqn (8.115), i.e.
it is always repulsive. Figure 8.5(b) shows the electromagnetic Casimir force in
a cube of side ¢ = 2 um as a function of temperature. It is seen that the force
increases with increasing temperature.

Note that the results presented here differ from those found by Lim and Teo
(2007), where the terms of order (kgT)* and of lower orders in the Casimir free
energy were obtained in the high-temperature regime. Also, the Casimir free
energy obtained by Lim and Teo (2007) for both the scalar and the electro-
magnetic field is always a decreasing function of temperature, opposite to the
result in Fig. 8.2(b). This is due to the fact that Lim and Teo (2007) did not
perform subtraction of the contributions from black-body radiation and of the

F, (N) F, (N)

(b)

o O O o
N o> O o
o o o o
N b O 00

200 400 600 800 1000
a (pm) T (K)
Fia. 8.5. The electromagnetic Casimir force between the opposite faces of cube
as a function of (a) side length a at T = 300K (solid line; the dashed line
shows the force at T = 0) and (b) temperature at @ = 2 um (Geyer et al.
2008c).
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terms proportional to the surface area of the box and the sum of its sides.

The above equations (8.89), (8.102), (8.107), and (8.113) can be used to
compute the scalar and electromagnetic free energy and force for boxes with
arbitrary sides a, b, and c. Specifically, it follows that the temperature-depen-
dent contribution to the electromagnetic Casimir force [which is obtained as
—O0A7pF/da from the physical thermal correction defined in eqn (5.37)] can be
both positive and negative depending on the sides a, b, and ¢. On the one hand,
as shown above (see Fig. 8.5), for a cube a X a X a the temperature-dependent
contribution to the Casimir force is positive, and computations show that this
is preserved for any box a X b x b with @ > b. On the other hand, for a box
with b = ¢ = 10 um and a; = 2.942 um or as = 34.29 pm, the Casimir energy at
T = 0 is equal to zero (see Section 8.3). Computations using eqn (8.113) show
that for a box a; X b x b the temperature-dependent contribution to the force is
negative, whereas for a box as X b X b it is positive.

The thermal corrections to the Casimir energy and force acting on a piston
were investigated by Hertzberg et al. (2007) for a scalar field with Dirichlet or
Neumann boundary conditions using the definition (5.30). The electromagnetic
Casimir free energy and force acting on a piston were found in the case of ideal-
metal rectangular boxes and a cavities with a general cross section (Hertzberg et
al. 2007). In the limit of low temperature, the thermal correction to the Casimir
force on a piston was shown to be exponentially small. In the case of an inter-
mediate temperature a < [ < b, ¢, Hertzberg et al. (2007) obtained terms of
order (kgT)* and of order (kgT)? in the electromagnetic Casimir free energy. In
the scalar Casimir free energy, a term of order (kgT)? was also obtained. This
results in a contribution to the force which does not depend on the position of the
piston. The same results for the thermal correction to the Casimir force acting
on a piston are obtained if the free energy is defined in accordance with eqn
(5.37). This is because the contribution of black-body radiation to the energy of
the entire box in Fig. 8.1 is equal to

—abcy fop — ab(c — c1) fop = —abe fop, (8.116)

i.e. it does not depend on the position of the piston. This is also true for the
terms of order (kgT)? and (kgT)?, which are proportional to the surface area of
each section of the box and to the sum of its sides.

Notwithstanding the fact that the two expressions for the Casimir free energy
(5.30) and (5.37) lead to a common Casimir force acting on the piston, the latter
should be considered as preferable on physical grounds. The reason is that from
a thermodynamic point of view (Kubo 1968), any equilibrium system can be
characterized by both the free energy (5.2) and the respective pressure (5.3).
From this point of view, it would not be consistent to allow consideration of the
force acting on the piston but to exclude from consideration those forces which
act on the faces of the box where this piston serves as a partition. Thus, it is
important to use the definition of the Casimir free energy in a box (5.37) which
leads to physically meaningful forces acting not only on the piston, but on all box
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faces as well. The point of view (Hertzberg et al. 2005, 2007) that the definition
of a force acting on a box face requires elastic deformations of a single body
that is treated as perfect is not accurate. To define a force and a pressure in
a static configuration, one need not involve elastic deformations. This is simply
done using the principle of virtual work, and virtual displacements through the
action of real forces (Charlton 1973).

The above results were obtained for rectangular boxes with Dirichlet bound-
ary conditions (in the scalar case) and for ideal-metal boxes (in the electromag-
netic case). In the same way as for zero temperature, the consideration of the
thermal Casimir effect in a rectangular box has to incorporate real material prop-
erties of the boundary surfaces. At present, this problem remains unsolved.



9

SINGLE SPHERICAL AND CYLINDRICAL BOUNDARIES

In this chapter we consider the Casimir effect for simple, single bodies having
a spherical or cylindrical shape. As we have seen in Section 4.3.3, the Casimir
force and the corresponding interaction energy for separate bodies are always
finite. Thus renormalization is not an issue. However, for single bodies, such as
the rectangular boxes considered in the previous chapter, this is not the case,
because the divergent contributions to the vacuum energy depend on the lengths
of the sides. For a sphere, the divergent contributions usually depend on its
radius and cannot be neglected. Therefore renormalization schemes, as discussed
in Section 4.3.2, must be employed. This requires some classical system for the
interpretation of the renormalization. While such schemes are known to work
well in quantum field theory, for example in the case of quantum corrections to
the mass of solitons, for the Casimir effect there is presently a lack of physical
examples.

It must be mentioned that the interest in the Casimir effect for single bodies
such as a sphere is enormous. This is due to a number of reasons. Historically, the
first and most intriguing follows from Casimir’s model for the electron (Casimir
1953). He assumed the charge of the electron to be distributed over a conductive
spherical shell. The resulting electrostatic self-repulsion would be balanced by
an attractive Casimir force (in analogy with the case of parallel metal planes). If
this model has been proved to be correct, it would have revolutionized physics by
allowing calculation of the fine structure constant. However, the question of what
balances the electrostatic self-repulsion of the electron and other charged parti-
cles has still not been answered and is probably poorly formulated. As Casimir
himself said, “It would have been embarrassing if you really got 137 because
such a model can never be very close to reality...” (Casimir 1999). But Boyer
(1968) showed that the Casimir effect for a conducting sphere is repulsive. Re-
calculations using different methods (Davies 1972, Balian and Duplantier 1977,
1978, DeRaad and Milton 1981) confirmed this result. The interest in this con-
figuration has continued over the decades. While the initial calculation was very
laborious, the use of advanced computational tools has simplified such calcula-
tions considerably. The basic methods used, are the multiple-reflection expansion
(Balian and Duplantier 1977), the Green’s function method (DeRaad and Milton
1981), and the zeta function method. As we shall see in Section 9.3.3, there is a
complete understanding of the cancellation of the divergences.

The second reason for the interest in the Casimir effect for a sphere is the
phenomenological bag model of hadrons (Chodos et al. 1974), which is intended
to describe their properties until a complete solution of the confinement prob-
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lem is available. Here, boundary conditions are imposed on the quark and gluon
fields in order to prevent the escape of color from some region in space (the
bag, in the simplest case, is a sphere). For gluon fields, because of duality, this
is equivalent to the Casimir energy of a conducting sphere. For quark fields, a
special type of boundary condition appears, which will be considered in Section
9.4. However, within this model, the renormalization issue is not really settled
and the model remains physically unsatisfactory. An attempt to collect different
phenomenological approaches together within the bag model was recently un-
dertaken by Milton (2001). Here we restrict ourselves to a representation of the
Casimir effect for quark fields in a bag and focus on the calculation procedure.

Thirdly, the Casimir effect has received much attention as a possible expla-
nation for sonoluminescence. The latter is the production of short flashes of light
from air bubbles in a liquid driven by an ultrasonic wave. This phenomenon has
been experimentally investigated [see the review by Barber et al. (1997)] but
a complete understanding of the underlying physics has still not been reached.
Schwinger (1992, 1993) attempted to relate the energy release in the light flashes
to differences in the vacuum energy of a collapsing dielectric ball. Eberlein (1996)
adopted the dynamical Casimir effect as an explanation. Work in this direction
was continued by Liberati et al. (2000), but there is as yet no final answer. At
this point it should be mentioned that a spherical geometry is also being used
in connection with attempts to consider the vacuum energy in black holes.

A fourth reason for the interest in spherical geometries is driven by the re-
pulsive character of the force acting on a conducting spherical shell (the same
holds for some rectangular cavities; see Chapter 8). It would be exciting to find
a repulsive Casimir force between real bodies in contrast to the attractive van
der Waals forces between atoms and molecules. If found, this would provide a
means to reduce stiction in nanomechanical systems.

In this chapter, we focus on the technical methods necessary to calculate
the Casimir effect in spherical and cylindrical geometries and on the analysis
of the ultraviolet divergences. In general, most of the technical matter is well
known from classical electrodynamics, and the mathematics involved does not
go much beyond Bessel functions. Nevertheless, we feel it worthwhile to collect
the relevant formulas together in one place and to present them from a common
point of view. Our representation is completely in terms of global quantities. For
a local treatment, especially for a representation in terms of Green’s dyadics, we
refer the reader to the book by Milton (2001), where the relevant literature is
collected together. The physical content of the Casimir effect for a sphere depends
much on the ultraviolet divergences. We discuss them in detail using the approach
of heat kernel coefficients. Adopting the philosophy of renormalization used in
Section 4.3, we discuss for which system (the interior or exterior of a sphere or
the total space) a meaningful definition of the vacuum energy is possible. We
shall come to the conclusion that this is possible only for a few selected cases.
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9.1 Separation of variables and mode summation

Problems with boundary or matching conditions on a sphere or on a cylinder al-
low a separation of variables in the corresponding wave equation (3.1), (3.22), or
(3.30). This reduces the problem to one-dimensional radial equations. However,
because of the necessary summation over the orbital momenta, the details of the
renormalization are quite different from the one-dimensional case. As a conse-
quence, these problems require their own technical tools. The most important
ones are the Green’s function method, especially that based on dyadic Green’s
functions (Milton 2001), the multiple-reflection method (Balian and Duplantier
1977, 1978), and the mode summation method. Thus different regularization
schemes have been employed, which are sometimes referred to as separate meth-
ods. In fact, all these methods are equivalent, at least for the calculation of global
quantities such as the vacuum energy. For the calculation of local quantities such
as the energy density or the charge density, the Green’s function method is prefer-
able. However, since we are interested only in global quantities, in order to avoid
unnecessary technical details, we use only the mode summation method below.

9.1.1 Spherical symmetry

We start from the representations of the vacuum energy in eqn (3.60) for a scalar
field, eqn (3.76) for an electromagnetic field, and eqn (3.84) for a spinor field.
The corresponding eigenvalue problems are equs (3.39) and (3.45). For the scalar
field, using separation of variables in spherical coordinates (r, 6, ), the solution
to the Laplace equation is

D5(r) = fin(r)Yin (0, ¢). (9.1)

The index J = (n,l, M) is now composed of the orbital momentum =0, 1, ...,
its azimuthal component M with |M| <[, and the radial index n =1, 2, .. ..

For the electromagnetic field, instead of eqn (3.68), the separation of variables
and the separation of polarizations are achieved by use of a representation of the
vector potential in the form

Aj(r) = ETEf17(r) Y (6, 9) + BTN ) Yie (6, ¢), (9:2)

with the known (nonnormalized) operator polarization vectors
E™=L, E™M=VxL. (9.3)
Here, L is the operator of the orbital angular momentum, having the property
L*Yin (0, 0) = U1+ 1)Yinr (60, ) (9.4)

The spherical harmonics Yy (6, ) are defined as

2 1 M
Yint (0, ) \/_ﬂ/ +1 e R (eoso), 9.5)
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and the PM(z) are the associated Legendre functions. The polarization vectors
(9.3) are orthogonal to each other, i.e. ETE.E™ — 0, and satisfy the equalities

V-E'™=v.E™=0, VvxE™=Ff™ V x E™ = _v?2ETE,
(9.6)
These polarization vectors are conveniently chosen in spherical geometry instead
of the e(J)‘) in eqn (3.74), which were used in the plane parallel geometry. It must
be mentioned that in the decomposition (9.2) the angular momentum ! = 0,
i.e. the s-wave, is absent. This is because the orbital-momentum operator, when
acting on a function which does not depend on the angles such as Yoo(0, ¢),
leads to zero. Therefore, in contrast to the scalar case, the orbital momenta have
values [ = 1,2,.... Note that in accordance with the definition (9.3), E™¥ is
dimensionless and the dimension of E™ is 1/cm.
Using eqn (3.13), and the time dependence ~ exp(—iwt) in eqn (3.44), the
electric field and magnetic induction are

E,(r) = iw [E™ fF2(r) + B™ M) | Yo (0. 0),
By(r) = [-VET () + E™TEG) [ Yin(0.0). (97)

The notation “TE”, denoting a transverse electric field, follows from this repre-
sentation since the vector ETT is perpendicular to the wavefront of a spherical
wave, i.e. n+ ET® = 0, where n is the unit vector in the radial direction. The
case of a transverse magnetic field, denoted by “TM”, is similar owing to duality.
This can be seen in eqn (9.7) where, except for some factors, the two lines differ
only by an interchange of the radial functions f\¥(r) and fM(r). The radial
function f¥(r) has the dimension of 1/cm, whereas flT;\/[(r) is dimensionless.
Thus, the physical fields (9.7) have the correct dimension of 1/cm?. Similar for-
mulas can be written down for the spinor case. Since these are technically more
involved, we postpone their discussion to Section 9.4.

In all cases, the wave equations (3.39) and (3.45) translate into the radial
equation

2
0 =20 D) ) = Ao (9:8)

or? ror r

for each of the functions fi () in eqn (9.1) or f1¥(r) or fTM(r) in eqn (9.2), as

the polarization vectors (9.3) commute with the Laplace operator. In eqn (9.8),
we have used the Laplace operator in spherical coordinates,

”? 20 L
or2  ror r2’
and the eigenvalues of the angular-momentum operator from eqn (9.4). The
solutions of eqn (9.8) are the spherical Bessel functions.

Further progress depends on the boundary conditions. We assume them to
be compatible with the separation of variables such that they translate into

V2= (9.9)
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conditions on the radial functions. We assume further that these conditions,
together with eqn (9.8), constitute a well-posed eigenvalue problem. This may
be on an interval r € [0, R] (the interior of a sphere) or on an infinite interval
r € [R,00) (the exterior region). In the following, we consider these two cases
separately.

9.1.2 Mode summation for the interior problem

For the interior of the sphere, we have to consider eqn (9.8) on the interval
r € [0, R]. For an arbitrary k, the solutions are spherical Bessel functions j;(z)
obeying

& 206 l(l:;l)]jl(kr) = K2 jy(kr), (9.10)

) =\ 3y 2, i

are related to the ordinary Bessel functions. The functions j;(z) are chosen be-
cause they are regular at the origin, i.e.

jl(Z)TZO\/§<§)l l—‘(li:—%)’ (9.12)

ensuring the renormalizability of the wave function.

The discrete eigenvalues of the radial problem appear as solutions of the
corresponding boundary condition. For a scalar field with Dirichlet boundary
conditions, from eqns (3.41) and (9.1), the radial functions f,;(r) must vanish
at r = R. This is achieved for discrete radial momenta k,; obtained from

which, by means of

ji(kR) = 0, k:];’%", n=1,2 ..., (9.13)

where the j,, are the zeros of the Bessel functions, i.e.

1
Ju(ju,n) =0, v=I1+ 3 (9.14)

In this way, the solutions of eqn (9.8) are given by

fin(r) = cjl<j;’; r) , (9.15)

where ¢ is a constant, and the eigenvalues are

. 2
App = (%) . (9.16)

At this point we introduce a mode-generating function A;(k), which is defined as
a function whose zeros are just the eigenvalues A,, ; (9.16). For Dirichlet boundary
conditions, we define



Separation of variables and mode summation 171

AP (k) = (kR) "D, (kR), (9.17)
The superscript “D” indicates Dirichlet boundary conditions and the “i” refers
to the interior. The definition of this function is not unique; for instance, it can
always be multiplied by an arbitrary constant. We have introduced the factor
(kR)™" in order to give the function positive real values along the imaginary
frequency axis, preserving the finiteness at k& = 0. Other examples of mode-
generating functions will be given in subsequent sections.
Now we insert the eigenvalues A; ,,, which are given by eqn (9.16) or can be
obtained from a mode-generating function A;(k), into the regularized expression
for the vacuum energy. In zeta function regularization (4.3), we then have

2s 0 oo

=oY@+ 1) (A +m 2)(1=29)/2. (9.18)

n=11=0

“;

The summation in eqn (4.3) was over a generic index J, which in this case has
the form J = (n,l, M). The summation over M can be carried out owing to
the azimuthal symmetry of the mode-generating function, and this summation
results in the factor (27 + 1).

Equation (9.18) was derived for a massive scalar field. It is clear that such
a representation holds for any problem with spherical symmetry in an interior
region. In principle, using an asymptotic expansion such as eqn (4.7) for the
eigenvalues, one can use such a representation to construct the analytic continu-
ation to s = 0. This method is attractive because it is in terms of eigenvalues, i.e.
in terms of the physical spectrum. However, it is technically quite complicated
and is not used in practice. An easier way to proceed is to transform the sum
over n into an integral over the radial momentum using the argument principle
(7.60):

2s & dk 1-25)/2 O
Eo(s) = “2 2:(2z+1)/%(k2+ 2y1=2/ = (k). (9.19)
1=0 R

Here, a closed contour « contains all of the zeros of the mode-generating function
kin = y/Ain. It must be mentioned that the same contour can be chosen for
all [ without any loss in convergence of the sum over [. The next step is to
deform ~ towards the imaginary axis as was done in Section 7.4.1. Thus we
use the fact that the mode-generating function does not have a pole at k = 0,
which is ensured by the behavior of the Bessel functions for small argument in
eqn (9.17). We assume also that there are no poles in the upper complex half-
plane, which holds at least for all mode-generating functions following from the
boundary conditions. Finally, we assume A;(—k) = A;(k) to hold. With this, we
turn the upper half of the contour v towards the positive imaginary axis and the
lower half towards the negative imaginary axis, i.e. make substitutions k — +ik
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with k& > 0. Then we introduce the function Gg,(f), as defined in eqn (2.35), with
a = (1/2) —s. As a result, eqn (9.19) takes the form

:LL 2s dk (a) @) g '
= ;”“/ T (G h) = G (k)] o AdGk). (9.20)

Using the equality (2.36), we arrive at

o0

Eos) = —p2e < ZZZ—H/ dk (k2 —m?)1 722 ai In A (ik). (9.21)
1=0 m

It should be mentioned that this expression is real since A;(ik) is real. For ex-
ample, for Dirichlet boundary conditions, from eqn (9.17),

AP (k) = (kR)"CHV21 ) (kR) (9.22)

follows, where I,,(z) is a modified Bessel function related to the usual Bessel
functions by J,(iz) = i¥I,(z).

The representation (9.21) for the regularized vacuum energy in an interior
region is the most convenient form for further calculations. This is because an
explicit knowledge of the eigenvalues is not necessary, and the use of the integral
representation instead of the sum over eigenvalues is convenient for analytic
continuation.

9.1.3 Mode summation for the exterior problem

For the exterior of the sphere, the mode summation method is slightly more
complicated since one has, at least partly, a continuous spectrum. This is because
the space is unbounded. At the same time, there is a contribution proportional to
the volume of the space which is infinite, and which must be eliminated because
of the definition of the vacuum energy as the change with respect to empty space.
In general, there are several ways to handle this problem. One is to use the local
energy density and to integrate it over the space, dropping the unwanted volume
contribution. Another way, which we follow here, is to enclose the whole system
inside a large sphere and to take the limit where its radius R, tends to infinity.
Of course, the two approaches are equivalent, but in the latter it is not necessary
to introduce local quantities.

In a large sphere of radius R., the spectrum is discrete and we start from
eqn (9.19) with an appropriate mode-generating function Aﬁc(k). We have to
impose boundary conditions on that sphere. In the end, the vacuum energy will
not depend on the type of these boundary conditions, and we take Dirichlet ones
for simplicity. In this way, we return to an interior problem with an additional
smaller sphere inside.

The next task is to remove the large sphere, i.e. to consider the limit R, — oo.
To do so, we consider the general problem of scattering on a hard sphere given
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by the boundary conditions at 7 = R. The corresponding radial equation for this
problem reads

2 20 Ii+1)
+

o2 ror 2 +V(r)| dur(r) = K*dri(r), (9.23)

with k € [0,00). We take ¢; () to be the regular scattering solution, i.e. the
one which becomes the free solution for a vanishing scattering center (R — 0),

Sui(r) ~ iy (kr). (9.24)

Details of these definitions can be found, for example, in the books by Newton
(1966) and Taylor (1972).

For r — oo, the scattering solution becomes a superposition of incoming and
outgoing spherical waves,

Gurlr) ~ 5 [ hr) + £ (R0 ()], (9.25)

T—00

(=) =\ 55 HP ) (9.26)

are the spherical Hankel functions of the first and second kind, which also satisfy
eqn (9.10). The coefficients in this superposition are the Jost functions f;(k)
and their complex conjugates. These are uniquely determined by the equation,
the boundary conditions, and the potential V(7). In general, the Jost functions
are commonly used in potential scattering (for details, see the above-mentioned
books). Here we need only their relation to the scattering phase shifts §;(k),

flk) 2 (9.27)

(k) ’
and some basic properties. The Jost functions are meromorphic functions of the
variable k in the upper half of the complex plane. Their continuation to the real
axis is a continuous function and the only poles in the upper half-plane are on the
imaginary axis (the corresponding solutions describe bound states). In addition,
we should mention their reflection property fi(—k) = f;*(k) for real k.
Now we apply the boundary condition on the large sphere to the scattering
solution and define the mode-generating function

where

A (k) = d(Re). (9.28)

We insert this function into the representation (9.19) of the vacuum energy and,
in order to perform the limit R. — oo, we divide the integration contour into two
parts v; and 79, one above the real axis and the other below. For large R, we
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use the asymptotic expression (9.25). Resulting from the asymptotic behavior of

the Hankel functions,
H D (kR,) ~ exp(£ikR.), (9.29)
2

the primary contribution on v, is
InAf* (k) =Infi(k) + ..., (9.30)

where we have neglected contributions which vanish when R. — oo or which do
not depend on R. On the other part, 2, we have

InAf(k) =Inf* (k) +.... (9.31)

Now we return the integration path to the real axis. This is possible because
the poles have been removed together with the dropped contributions. From eqn
(9.19), with the use of eqn (9.27), we get

2 &= > dk —25)/2 O
Eols) = 1 Z(zz+1)/0 B (w2 ) D), 9.32)
=0

From eqn (9.32), we obtain a representation of the vacuum energy for the exterior
problem. It is parallel to the representation (9.21) for the interior problem. It has
the advantage of being in terms of the physical spectrum and the scattering phase
shifts. Its disadvantage is the oscillating behavior of the phase shifts and their
complicated asymptotic behavior, which makes both the numerical evaluation
and the analytic continuation in s difficult. For these reasons, it is preferable
to rotate the integration to the imaginary axis. For that, with eqn (9.27), we
return to the Jost functions. In the contribution containing f;(k), we rotate the
~1 part of the contour by means of k£ — ik and, in the other contribution, we use
f*(k) = fi(—k) and rotate 2 in the opposite direction. In this way, eqn (9.32)
leads to

2s

Eo(s) = - 3 (21+1)/

2
1=0

* dk
2mi

[Ggfp (ik) — Ggg)(fik)} % In f(ik), (9.33)

where G2 is defined in eqn (2.35) and @ = (1/2) —s. Then, by using the equality
(2.36), we obtain

_ 25 Cos(ms) c- - 2 2\(1-25)/2 O .
Eo(s) = —p* —— ;(21+1)/m dk (k* —m?) o (k). (9.34)

This is one more representation of the vacuum energy for the exterior region.
Formally, it is identical to eqn (9.21) for the interior region. This allows one to
unify the notation by defining a mode-generating function A;(k) for the exterior



Separation of variables and mode summation 175

region. From eqns (9.34) and (9.21), it follows that we can use the Jost function
for this purpose:

A(k) = fi(k). (9.35)
We remark that this can be multiplied by an arbitrary constant. Now eqn (9.21)
is a representation of the regularized vacuum energy valid in both regions, inside
and outside the sphere.

9.1.4 Cylindrical symmetry

In this subsection, we collect together the formulas for a cylinder with a circular
section. We follow the same method as in the case of a sphere, and elaborate
on the differences. We separate the variables in the wave equation in cylindrical
coordinates (p, ¢, z), and represent the solutions for a scalar field in the form

Dy(r) = fin(p)ell? elh==, (9.36)
Now the index J = (n,l,k,) is composed of the radial index n, the angular
momentum [ = 0,£1,4+2, ..., and the momentum k, parallel to the axis of the

cylinder. We have translational invariance in the z-direction for both the interior
and the exterior problems.
The electromagnetic potential can be represented by the decomposition

Ay(r) = [ET[IE(p) + B™ TN (p) | el o2 (9.37)
with the operator polarization vectors
E™=(e.xV), E™=Vx(e.xV). (9.38)
Here,
0
e.= |0 (9.39)
1

is the unit vector pointing along the axis of the cylinder. These polarization vec-
tors are orthogonal to each other, i.e. ETE . E™ = 0, and satisfy the equations
V.E™ = v.E™ = 0 and the other properties in eqn (9.6). According to
eqn (9.38), the operator polarization vectors E™* and E™ have the dimensions
1/cm and 1/cm?, respectively.

Using eqns (3.13) and (3.47), and the time dependence ~ exp(—iwt) in eqn
(3.44), the decomposition of the field strengths is

EJ(’T‘) — iw |:ETE TE(p) + ETM TM(p)] eilga ei!czz7

l,n l,n

B,(r) = [~V2E™ [N (0) + E™IE(p) | el'e et (9.40)

Because of

10 L g

e,—— te,—,
Ppop  Cop
where e, and e, are the unit vectors in the radial and azimuthal directions, the
amplitude flTnE (p) describes an electric field orthogonal to the axis of the cylinder.

E™ = — (9.41)



176 Single spherical and cylindrical boundaries

By duality, the amplitude flTTILVI(p) describes a magnetic induction orthogonal to
the axis of the cylinder. The function f;'*(p) is dimensionless and the function

IM(p) has the dimension of length. As in the spherical case, the polarization

vectors commute with the Laplacian, and eqns (3.39) and (3.45) result in the
radial equation
0? 10 2
e ———+ =+ k2 fin =N fin . 9.42
(~302 ~ 55+ 35 ) i) = M (o). (0.2)
The dependence on the momentum k, can be separated, and by defining A; ,, =
Ay + k2 we get the pure radial equation
02 10 I? ~
—_—— 1+ — n(p) = Ain fin(p). 9.43
(“352 335+ 52) fin(6) = R i) (9.43)
The vacuum energy takes the form
2s

Eo(s) = ”2 /OO ‘;’j: Z_:UZ (Z\l,n + K2 +m2)(1728)/2, (9.44)

— 00

=—00

which is the general representation for the cylindrical geometry in terms of the
discrete eigenvalues /~\17n in the plane perpendicular to the axis of the cylinder.
We proceed in parallel to the spherical case and define mode-generating func-
tions. We consider first the interior region, p € [0, R], and take as an example
Dirichlet boundary conditions. The solutions of eqn (9.43) are Bessel functions
obeying , ,
1
(—a% o ;—) Jilkp) = 2 i (kp), (9.45)

where we have chosen functions which are regular at p = 0. The eigenvalues JNXl,n
follow as solutions of the boundary conditions:

J(kR) =0, k*=A,, = ‘%”, n=1,2,.... (9.46)

The solutions of eqn (9.43) obeying the boundary conditions are

fin(p) = cJi (‘%”p) ; (9.47)

where c¢ is some constant. Finally we define the mode-generating function,
AP (k) = (kR) ™' Ti(kR), (9.48)

again multiplied by a factor which ensures real values along the imaginary fre-
quency axis. We see that in contrast to the spherical case, described by eqn
(9.17), the orbital momentum is an integer.
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The procedure used to transform the summation over the radial index n into
an integral is identical to that in the spherical case, and from eqn (9.44) we arrive
at the representation

Fo(s) = s cos(m Z / dk

o (1—2s)/2 O
X / dk (k* — k2 —m?) InA(ik).  (9.49)
/k§+m2 ak

Sometimes a mode-generating function does not depend on the momentum k. In
that case the integration over k, can be carried out and the representation of the
vacuum energy is simplified. For this purpose, we change the order of integrations
with respect to k, and k and introduce a new variable t = k,/vk? — m?. The
result is

Eo(s) = p*

1 1—s a .
TG TE ) Z[ dk (k* —m?) o [0 A (iF)-

(9.50)

A similar formula holds for the exterior region also. However, we first have to

define the mode-generating function. For this purpose, we consider the scattering
problem in the plane perpendicular to the cylinder,

0 o 12
<_3p [1)8p )¢lk( ) = k% dui(p)- (9.51)

The regular scattering solution ¢; ,(p) is the one which for R — 0 turns into the
free solution. In this case it is the Bessel function J;(kp). For large p, it becomes
a superposition of incoming and outgoing cylindrical waves,

ouelp) ~ 3 [k B o) + 17 (6) B (ko) (952)

p—00

and defines the corresponding Jost functions f;(k). These have the same general
properties as in the spherical case. Now we use a large cylinder with Dirichlet
boundary conditions at p = R, and define the eigenvalues inside this cylinder by

¢l7k(RC) =0, kQ = Al,n~ (953)

The corresponding mode-generating function is given by the formula (9.28) from
the preceding subsection with the function ¢;x(r) defined here in eqn (9.51).
Next, we follow the same steps as in the spherical case. We perform the limit
R, — o0 by separately considering the two parts of the contour v in a represen-
tation parallel to eqn (9.19) and, using eqn (9.29), we arrive at formulas identical
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to eqns (9.49) and (9.50) with a mode-generating function now defined by the
Jost function of the cylindrical scattering problem (9.52),

A (ik) = £ (ik). (9.54)

Thus we obtain the basic formulas for the calculation of the vacuum energy in
the cylindrical geometry.

It should be mentioned that on the level of these formulas, the difference
with respect to the spherical geometry is just in the indices of the Bessel func-
tions involved and in the k, integration. In general, the cylindrical problem is
less symmetric than the spherical one. For the scalar problem, in the case of a
mode-generating function which is independent of k&, this difference in symme-
try does not show up in the formulas. The same holds for the electromagnetic
field with conductor boundary conditions. However, for a dielectric cylinder, the
mode-generating function does depend on k., and, even more importantly, the
polarizations are not separable (see Section 9.6.2).

9.2 The scalar Casimir effect for a spherical shell

Studying the Casimir effect for a scalar field on a spherical shell is a useful
exercise as the mathematical methods developed are important for both elec-
tromagnetic and spinor fields. In this section we consider a scalar field obeying
eqn (3.39) and certain boundary conditions. First we consider a massive field
and, in the last subsection, the massless case. We collect the relevant formulas
together, especially the heat kernel coefficients. Using the representation of the
vacuum energy derived in Section 9.1, we construct the analytic continuation of
the vacuum energy in zeta function regularization. Then we discuss the relevant
models with respect to their renormalization and, finally, represent the known
results.

9.2.1 Boundary conditions and mode-generating functions

As discussed in Section 3.2, there are independent Dirichlet [eqn (3.41)] and
Neuman [eqn (3.42)] boundary conditions for the scalar field ® ;(r) which, with
eqn (9.1), imply for the radial function f;,,(r) the conditions

0
frn(r)l,_g =0 or = fin(r) =0. (9.55)
r r=R
The Robin boundary condition (3.43) implies
0
1y fin(r) + ufin(r) =0, (9.56)
r r=R

where u is a parameter or a function of the radius r. For u = 0, eqn (9.56)
is the Neumann boundary condition. For v = 1, it is the boundary condition
which appears in the next section for the TM mode of the electromagnetic field.
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In the remaining part of this section, we consider only the Dirichlet and Neu-
mann conditions. It should be mentioned that the separation of variables holds
independently for any set of the indices.

In the following, we consider three cases for each set of boundary conditions.
These are labeled as follows:

e (i), the interior region of the sphere, r € [0, R];

e (e), the exterior region of the sphere, r € [R, 00);

e (b), both regions together, r € [0, c0).
Since the boundaries determined by the conditions (9.55) and (9.56) are impen-
etrable, i.e. the fields in both regions are completely independent of each other,
the corresponding spectral problems are independent. The third case is math-
ematically the sum of the first two. As a result, the vacuum energy or, more
exactly, the regularized vacuum energy of the case (b), is the sum of the energies
of the cases (i) and (e). We also note that the heat kernel coefficients for (b)
are the sum of the coefficients for (i) and (e). However, regarding the physical
interpretation, and especially the renormalization, the third case may behave
quite differently and therefore should be considered independently.

As seen in Section 9.1, the solutions of the wave equation are spherical Bessel
functions. In the interior region, we take those which are regular at the origin,

Jin(r) = gi(kr), (9.57)

with & following from the boundary conditions. In the Dirichlet case, eqn (9.13)
is satisfied and the mode-generating function can be defined by

; 1
AP k) = (kR)™VJ,(kR), v=1+ 5 (9.58)
This is the same as that already discussed in Section 9.1.1. We shall use the
notation v below.
For Neumann boundary conditions, we have to demand

il (kR)])" = 0, (9.59)

where, here and below, the prime denotes the following differentiation with re-
spect to the argument kr:

= [F(kR)]. (9.60)
r=R

For this condition, the mode-generating function can be taken in the form

1
VER

Again, the factor in front is chosen appropriately using eqns (9.11) and (9.12).

AN (k) = (kR)M { Ju(kR)] /. (9.61)
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Now we consider the exterior region. Here we have to use the regular scat-
tering solution defined in Section 9.1, which for » > R is

bu(r) = 3[R (k) + 17 (") ()] (9.62)

i.e. it coincides with the asymptotic expression (9.25). The Jost functions must
be chosen such that eqn (9.62) satisfies the boundary conditions. In the Dirichlet
case this is achieved by

\/— I+1 1)
h,;’ (kR). .
P =g () HwR) (9.63)
The factors in front are chosen in order to satisfy eqn (9.24), where we have used
eqn (9.26) and
T(v) rz2\~"
HD(2) ~ Fi—o () 9.64
09() = Fim2 (2 (9.64)
Now, from eqn (9.35), we can define the mode-generating function for the Dirich-
let boundary conditions in the exterior region with

AP°(k) = (kR)”H{V (KR), (9.65)
where we have used eqn (9.26) and have omitted some constants.
For the Neumann boundary conditions (9.55), we proceed in the same way.

The expression (9.62) satisfies the second equality in eqn (9.55) if the Jost func-
tion is chosen to be

+2
70 =i () B (9.60)

From this, we define the mode-generating function by

AYC(k) = —(kR)"+? [ H(l)(kR)]/, (9.67)

vVER
which ensures the necessary properties along the imaginary frequency axis.

9.2.2  Analytic continuation for reqularized vacuum energy and divergent
contributions

In the preceding subsection we derived the mode-generating functions, eqns

(9.58), (9.61), (9.65), and (9.67), which are used in the representation (9.21)

of the vacuum energy in the zeta function regularization. In this subsection we

perform the analytic continuation in the regularization parameter s. In order to

simplify the notation, we represent the vacuum energy (9.21) in the form

@@Zy/;dk [k* — (mR)?]

=0

(1—2s)/2 8

Ey(s) = — 1 Ay(ik),

(9.68)
where we have substituted & — k/R and introduced the notation A;(ik) =
A(ik/R). Note that the mode-generating functions derived in the preceding



The scalar Casimir effect for a spherical shell 181

subsection depend only on the argument kR. Thus, the generating functions
A;(ik) depend only on k, and they are used in this form in eqn (9.68). The
explicit form for the functions A;(ik) follows from the relations for the Bessel
functions of imaginary argument

J(z) =i"I,(z),  HWM(iz) = rV% K, (2). (9.69)
The results are displayed in Table 9.1.

The need to perform the analytic continuation follows from the fact that
for a decreasing regularization parameter s, the sum and the integral in eqn
(9.68) become divergent. Since the logarithm of the mode-generating function is
a complicated object, a direct analytic continuation is impossible. A way out is
to use the uniform asymptotic expansion of that logarithm for large v and k with
fixed z = k/v. This expansion can be constructed using the uniform asymptotic
expansion of the modified Bessel functions in the following general form:

InA(ik) ~ vD_1(z) + Do(z) + %Dl(z) + ... (9.70)

[the functions D;(z) are discussed below]. Now we define the function

has(v,2) = > Diz) (9.71)

vt
i=—1

from the first five terms of the expansion (9.70). Then, in eqn (9.68), we first
subtract and then add h,s(v, z) from the A;(ik), such that we obtain two parts
of the regularized vacuum energy:

Eo(s) = Ef™ 4 E35(s). (9.72)

Here, the finite part is

E{}“:fLRZy/ dk \/k? — (mR)? {mAl (ik) — has(1,2)|,  (9.73)

0
1=0
where we have put s = 0. The asymptotic part is given by

TABLE 9.1. The mode-generating functions A;(ik) for a scalar field.

Region Dirichlet boundary condition Neumann boundary condition

Interior A?’i(ik) =k VI, (k) A}\I’i(ik) =k {L,(k)/\/ﬂ/

~ ~ li
Exterior AP*(ik) = kK, (k) ANe(ik) = —2H [Ky(k) /\/ﬂ
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2s &
ESS(S) — _(MR) COb ZZ;V\/m _ (mR)2] (1-2s)/2 % aS(V7Z)'
(9.74)
In fact, the finiteness of E™ imposes some conditions on h.s(v, z). Note that
it is not defined uniquely. For example, it is possible to include more than five
terms in the expansion (9.71). This would be unnecessary but might be useful
for numerical evaluations. Also, it is possible to obtain the expansion in terms of
the orbital momentum [ instead of v. However, it can be shown that this leads
to unnecessarily complicated intermediate steps. In general, the finite part can
be calculated only numerically. This is, however, an easy task. We finish the
discussion of the finite part with the remark that for the numerical evaluation,
it is useful to integrate by parts and to use the representation

Efin — RZ / dk k {mAl (ik) — has(v, 2)] - (9.75)

V= (mRp

Surface contributions do not appear provided that, in h.s(v, k), all constant
contributions, shown below in Table 9.2, are preserved.

In order to treat the asymptotic part E§®(s) of the vacuum energy, we need the
uniform asymptotic expansions of the mode-generating functions. These follow
from the corresponding expansions of the modified Bessel functions (Abramowitz
and Stegun 1972),

(wz) | _nt/2 1 Lun(z)
- /21/ (1 +22)1/4 €

?

1+ i(ﬂ)k“’“—g)

14
k=1

(9.76)

I, (vz) ~ inFl/z (1 +22)1/4 etvn(2)
K (vz) NeD, z

with the following notation:
1
\/1+22+ln , t= ——. 9.77
+ V1422 V1422 577)
The Debye polynomials uy(t) and vk(t) are given by the recurrence relations
u(t) =1,  wo(t) =1, (9.78)
t

1 1
upi1(t) = 5752(1 — 1)l (t) + 5, dr (1 —=5m%u(r), k=0,1,...,

v (t) = up(t) — t(1 — t?) [ ug—1(t) +tu;€_1(t)] , k=1,2,....

1+ fjm)’“”’;f)}

k=1

Inserting eqn (9.76) into the A;(ik) given in Table 9.1 and expanding the loga-
rithm, we find the functions D;(z). For ¢ = —1, the function D_;(2) is common
to both the Dirichlet and the Neumann boundary conditions. It is given by
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D_1(2) =% n(z) — Inz] (9.79)

for the interior region (4) and the exterior region (-). The functions Dg(z) are
shown in Table 9.2. Starting from i = 1, the D;(z) are polynomials in ¢ and can
be represented in the form

= wiat",  i=1,2,3 (9.80)

The coefficients z;  are real numbers shown in Tables 9.3 and 9.4. The symmetry
between the interior and exterior cases results in the signs shown. A symmetry
between the Dirichlet and Neumann boundary conditions is observed only in
D_1(z) and Dq(z).

For future discussion, it is useful to define individual contributions to the
asymptotic part of the vacuum energy by

B(s) = > Als), (9.81)

i=—1

Ay(s) = _(,uR cos(m ZV/OO (mR)Q](l_ZS)/Q %D;/SZ) 9.82)
=0 JmE

It should be mentioned that the analytic continuation requires careful treatment
in the complex plane. Details are presented by Bordag et al. (1997). First we
consider the Dirichlet boundary condition in the interior region. The results for
1 =—1,0 are

~ (uR)* 1
A_i(s) = — R 47T (s — %) (9.83)
2 (=) 2T (s + 5 — 1) ; . .
sz jl 1—25—2j (mR)2<(23+2j3’§),
ole) == (MI? : AT (sl— 3) (9.84)

TABLE 9.2. The functions Dg(z) entering the asymptotic expansion
has(v, z) in eqn (9.71).

Region Dirichlet boundary condition Neumann boundary condition

Interior %mt—%ln@ﬂ'y)—ulnu —llnt—f—llni—ulnu

Exterior %lnt+%ln%+l/lny fllnt+1ln +vinv
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TABLE 9.3. The coeflicients x; , for Dirichlet boundary
conditions. The upper sign is for the interior region and
the lower sign is for the exterior region.

a
i 1 2 3 4 5 6 7 8 9
1
1 £3 0 F% 0 0 0 0 0
1 3 5
20E0—§0‘E00
3.0 0 +2 0 F¥ o +2 0 715

TABLE 9.4. The coefficients z;, for Neumann boundary
conditions. The upper sign is for the interior region and
the lower sign is for the exterior region.

a
i 1 2 3 4 5 6 7 8 9
1 ¥F2 0 +% 0 0 o 0 0 0
2 0 —-% o I o0 —-% 0 0 0
3.0 0 TF47 0 £82 0 T3 o0 £45%

X i (_jl!)jr (s +j- %) (mR)¥¢ (25 +2j — 2, %) .

For ¢ =1, 2, 3, the contributions A4;(s) are

 (uR)* & i
A =R LT (0.8

xZ—(jI!)]F(s+j+a2—1) (mR)*¢ (25+2j”2’%)’

j=0

where ((z, ¢) is the Hurwitz zeta function defined in eqn (7.37). It results from
a summation over the orbital momenta.

With these formulas, the functions A4;(s) can be represented as a power series
in mR, which can be shown to converge for mR < 1. There is also an alternative
representation which is valid for all values of mR (Bordag et al. 1997). From
the representations (9.83)—(9.85), the analytic continuation of E§®, eqn (9.81),
to s = 0 can be found easily. We have poles in E§®(s) originating from the poles
of the gamma functions and the Hurwitz zeta functions, and the corresponding
finite parts. The finite parts result in rather cumbersome formulas, so here we
restrict ourselves to the pole part,
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1 1 1 5 1 4 0

7 | 630 + 12(mR) 5 (mR)*| + O(s"). (9.86)
We note that these formulas have been derived for Dirichlet boundary conditions
in the interior region. Using eqn (9.79) and Tables 9.2-9.4, similar formulas can
be derived for the other cases also.

Since the finite part of the vacuum energy Ef" eqn (9.75), by construction
does not have a pole contribution, eqn (9.86) is the complete pole contribution of
the vacuum energy in zeta function regularization. In fact, eqn (9.86) coincides
with the pole part in EJV(s), eqn (4.30), with the corresponding heat kernel
coefficients inserted from eqn (4.25). It is also possible to calculate the heat
kernel coefficients starting from EZ®(s) in eqn (9.74), as is done below in eqn
(9.131). For instance, the coefficients for the outside region follow from those for
the inside region by multiplication by (—1)**!, where k # 0.

Eg(s) =

9.2.3 The renormalized vacuum energy for a massive scalar field

In this subsection, we consider the vacuum energy for a massive scalar field with
boundary conditions on a sphere. We shall concentrate on the mass dependence,
and study some general properties and various contributions to the vacuum en-
ergy. This gives a deeper understanding of the structure of the vacuum energy
and puts the case of massless fields into a broader context.

We start by dividing the renormalized vacuum energy (4.57) into two parts,

E;™ = E™ + Eg", (9.87)

where Eg“ is the finite part, given in eqn (9.73), and the analytical part is defined
by
E§" = lim [E§(s) — E§™(s)] . (9.88)

The asymptotic part is contained in eqn (9.86) and the divergent part in eqn
(4.30), with the corresponding heat kernel coefficients inserted. The limit s — 0
in eqn (9.88) is finite since the ultraviolet divergences are contained in E§®(s)
and they are subtracted out by means of EZV(s).

With eqn (9.87), we have a representation of the renormalized vacuum energy
which is suitable for a discussion of its general properties and for numerical
evaluation. First we consider some general properties related to the dependence
on the mass m. These properties can be formulated in terms of the heat kernel
coefficients. For large m, we use the property of the heat kernel formalism that
it provides an asymptotic expansion in the inverse powers of the mass. This can
be seen directly from eqn (4.29). With our renormalization prescription (4.57),
we have subtracted all contributions containing nonnegative powers of the mass
such that E§*" vanishes for m — oo. In fact, this is the large-mass normalization
condition discussed in Section 4.3.1. Therefore, the leading order for m — oo in
E§™ comes from the first nonvanishing heat kernel coefficient ay /o with k > 5,

k
gen . _LE-2) ayz
0 m— oo 32772 m2k_4 '

(9.89)



186 Single spherical and cylindrical boundaries

For a sphere, the first nonvanishing coefficient is a5/3. It was first calculated by
Kennedy (1978) [see also Bordag et al. (1996a)]:

3/2 47 3/2

T T

a5/ = ———= and ag/9 = —— 9.90
52 T 120R? 52 7 T60R? (9.90)

for Dirichlet and Neumann boundary conditions, respectively. It is the same for

both interior and exterior regions. As a consequence, in all of the cases considered

in Section 9.2.1 this coefficient is nonzero and the vacuum energy decreases

according to
ren _ a5/2
Eo m—oo  32m3/2m’ (9:91)

ren

Inserting eqn (9.90) here, we obtain the behavior of Ef*® for R — oo:

1 47

Eren ~ — d Eren ~ —
0 3840mRz ¢ o 1920mR?

(9.92)
for Dirichlet and Neumann boundary conditions, respectively.

The behavior for the opposite case, i.e. for m — 0, is determined by E§"(s)
which is subtracted in the process of renormalization. This is because the regular-
ized energy Ey(s) has a finite limit at m — 0 and this limit can be interchanged
with the limit at s — 0. In E§"V(s), given in eqn (4.30), at m — 0 the logarithmic
contribution dominates such that the renormalized vacuum energy becomes

In(mR

E(r)en m:(] — % ag. (993)
Therefore, this limit is determined by the heat kernel coefficient as. It must be
mentioned that this is a result of our normalization prescription (4.62). However,
if we were to change this prescription by excluding the logarithmic contribution
from EgV(s), which would be equivalent to a finite renormalization, the renor-
malized vacuum energy would diverge logarithmically at m — oo. In this way,
the renormalized vacuum energy, as a function of m, can never be finite in both
limits, i.e. for both large and small masses. Here, it is assumed that the heat
kernel coefficient ay is nonzero, otherwise the logarithmic contribution is absent
and E§*™ has a finite limit for m — 0. An example of this is the case (b), where
the interior and exterior regions are considered together.

In eqn (9.93), the radius R appears in the argument of the logarithm. It enters
automatically for dimensional reasons, since as does not depend on m and the
argument of the logarithm must be dimensionless. Therefore this formula gives
the dependence of the renormalized vacuum energy on the radius for R — 0.

Now, having studied the general properties of the renormalized vacuum en-
ergy, we consider the two parts in eqn (9.87) separately. The finite part is given
by eqn (9.73) or (9.75), where the latter is more convenient for numerical evalua-
tion. Since the mode-generating functions and the asymptotic part h,s are given
explicitly or in terms of Bessel functions, the numerical evaluation might appear
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1=0

FiG. 9.1. The function efi"(z) and the contributions to it from the first three
orbital momenta entering eqn (9.94).

simple. However, in taking the difference between the logarithm of the mode-
generating function and its asymptotic expansion, a small value results from the
difference of two large terms in some regions of parameter space, leading to a
loss of numerical precision. Also, the convergence of the orbital-momentum sum
goes as > v~ 2, so a precise numerical evaluation is not trivial.

We take as an example the Dirichlet boundary condition in the interior region
and represent eqn (9.75) in the form

ﬁn R
Egi“—e (m ZeH_ (mR) (9.94)

in terms of a dimensionless function ef"(mR) and its contributions efi"(mR)
from individual orbital momenta. These functions have a finite value for mR = 0
and decrease for mR — oo. Examples are shown in Fig. 9.1 as functions of the
argument = mR. It is seen that the dominating contribution comes from [ = 0,
i.e. from the s-wave, in accordance with expectations.

Finally we consider the analytical part E§", given in eqn (9.88). An explicit
expression can be obtained from eqn (9.81) using eqns (9.83) and (9.85) and sub-
tracting the divergent part of the vacuum energy E{"V(s). As already mentioned
and as can be seen explicitly from eqn (9.74), the pole contributions cancel and
the limit s — 0 in eqn (9.88) is finite. From the above, we obtain E§" as a con-
vergent series, which is an alternative representation (Bordag et al. 1997). Since
the corresponding formulas are too cumbersome to be displayed here, we restrict
ourselves to a graphical representation for Dirichlet boundary conditions in the
interior region. For this purpose, in addition to eqn (9.94), we introduce also the
dimensionless functions e™*(mR) and e**(mR):

e (mR) e _ e*®(mR)

EI‘EII — —
R 0 R

(9.95)
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FiG. 9.2. The function e™"(x) and the contributions to it efi"(x) and e*"(z).

These functions are plotted versus x = mR in Fig. 9.2. For  — oo, all of them
decrease no more slowly than what is given by eqn (9.92). For x — 0, the func-
tions e (mR) and e™*(mR) diverge according to eqn (9.93), whereas efi*(mR)
has a finite limit. It should be mentioned that this behavior depends on the re-
gion considered (interior, exterior, or both). The logarithmic behavior is present
for the interior and the exterior cases considered separately, as the coefficient as
is nonzero. In contrast, if one considers both regions together, i.e. the case (b)
defined in Section 9.2.1, the situation is different. Since the coefficients a in the
interior and exterior regions differ by a sign only, the logarithmic contributions
cancel in the sum of the energies, and the vacuum energy has a finite limit at
m — 0.

From Fig. 9.2, the relative contributions of the finite and analytic parts can
be observed. For small z, the latter dominates. For large z, both are of the same
order and partly compensate each other. In the intermediate region, they are
mostly of the same order.

In this subsection we considered, as an example, a Dirichlet boundary condi-
tion in the interior region. Using the methods and formulas discussed here, other
cases can also be considered (Bordag et al. 1997, Bordag et al. 2001a, Kirsten
2000). The e™™ obtained are smooth functions similar to the e™® in Fig. 9.2,
interpolating between the asymptotic behaviors for small and large mR.

9.2.4 The vacuum energy for a massless scalar field

In contrast to the massive scalar field considered in the preceding subsection,
here we lack any a priori normalization condition. Therefore, as explained in
Section 4.3, we choose a classical model whose parameters will accommodate a
renormalization. Before considering such a model, we remark that the boundary
conditions (9.55) do not introduce any dimensional parameter. Hence the vacuum
energy in zeta function regularization (4.3) or (9.68) can be represented as
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-~ eo(s), (9.96)

where eg(s) is a dimensionless function depending only on s. On the other hand,
from the heat kernel expansion and from eqn (4.28) for m = 0, the pole contri-

bution is R 1
az ~
——— —+¢ép+ 0O(s), 9.97
3272 s + &+ 0(s) ( )
where we have introduced the notation €y for that part of eg(s) which is inde-
pendent of s. We note that for dimensional reasons asR is a number [see eqn

(4.25)]. Combining (9.96) and (9.97), and using (uR)?* ~ 1 + 2sIn(uR), we get

eo(s) =

az

Eo(s) = =557

1 é
[; + 2111(,uR)} + ES +0(s). (9.98)

Now we consider the classical model (4.65) together with the vacuum energy
(9.98). For the needs of renormalization, it is sufficient to keep only the last term
in eqn (4.65). Then, for the total energy, we get

s
R 3272

Bt — E + 21n(,,LR)} + 94 o). (9.99)

R

Obviously, we can accommodate the ultraviolet divergence by a redefinition of
the parameter hg

agR
32m2s’
Here, we are left with the remaining, finite renormalization of h5*". From this
it follows that the contribution éy/R, which one could naively consider as the
vacuum energy left after removing the ultraviolet divergence, is indistinguishable
from the classical contribution A5™/R. In this way, the only meaningful part
of the vacuum energy is that containing the logarithm of R in eqn (9.99). It
should be mentioned that this is a rather trivial contribution, since it depends
only on the heat kernel coefficient. We conclude this discussion with the remark
that any further attempt to give the energy (9.99) a physical meaning requires
additional information from the classical model considered, i.e. from outside the
pure quantum part.

The above considerations have assumed a nonvanishing heat kernel coeffi-
cient ag # 0. This holds for all cases, i.e. for Dirichlet and Neumann boundary
conditions in both the interior and the exterior region. In the case of the sum
of the two regions, as = 0. In Section 9.4, we shall have another example of a
vanishing as. In such cases, the vacuum energy in zeta function regularization
is finite. More exactly, it has a finite continuation to s = 0 and no renormal-
ization is required. Also, the arbitrariness arising from the parameter p drops
out. A similar situation holds in the cutoff regularization (4.32). In the presence
of boundary conditions, for symmetry reasons, it also follows from as = 0 that

h3 — hren = hg - (9100)
3
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a; = 0. Then one is left with the divergent contribution from a5, which is
proportional to the surface area of the sphere. In this case one could consider
the vacuum energy together with the classical model and remove the divergence
by a redefinition of the surface tension o in eqn (4.65).

Thus, there is an important difference between the cases defined in Section
9.2.1. For (i) or (e), because ay # 0, only the logarithmic contribution from the
vacuum energy can have a physical meaning. As regards the case (b), where
az = 0, the vacuum energy 3
€o
R
can be considered as having a physical meaning, similar to the Casimir interac-
tion energy for two parallel ideally conducting planes. This meaning, however,
should be understood only in the context of the total energy (9.99). Note that
the scalar field considered here does not have a direct physical application. It is
merely the simplest model for study. However, the conclusions connected with
the renormalization might hold for other fields also.

The calculation of the vacuum energy (9.72) in the massless case proceeds
along the same lines as in the massive case discussed in the preceding subsection.
The corresponding results can be obtained by putting m = 0 in formulas such
as equs (9.75) and (9.83)—(9.85). For m = 0, these formulas simplify in such
a way that it is instructive to show them in some detail. The starting point
is the separation (9.72) of the vacuum energy into finite and asymptotic parts.
Whereas the calculation of the finite part does not change much, the asymptotic
part simplifies. We define, as before, the asymptotic part E§(s) by eqn (9.81).
The functions A;(s) in eqn (9.82) now read

Ai(s) = — (“?25 cos(ms) §~ - 25/ dz 21~ S— VEZ), (9.102)

E™ = (9.101)

where we have substituted the variable of integration using k = vz. We see that
the dependence on the orbital momentum factorizes so that the sum over [ can
be carried out directly using eqn (7.37). The remaining integrations are simple.
Using

o 0 I(3-s)I(s—1)
1-2s ¥ _ — _ 2
/0 dzz o n(z) —Inz] e ,
1—2s _
/0 dzz E Int = Soos(ns)’ (9.103)
[ P BT )
0 9z r(s)

we get the functions

(R 1 T(s—1) 1
Aals) =75 4ﬁr(s+§)<(2‘”‘3’§>’
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AMS)=«—UZ2 <2 —2,%) (9.104)
R)% il Li,a r 5+a2 o1 .
Ai(s)z—(ﬂR) Z T (2) F(s—%)) (25—2—1—2,5), i=1,2,3

As discussed above, these formulas also follow from eqns (9.83)—(9.85) for m = 0.

From this representation, using eqn (9.81) and Table 9.3 or 9.4, we immedi-
ately get the asymptotic part of the vacuum energy. For example, for Dirichlet
boundary conditions in the interior region, this part is

N 1 [1 1385 2207 561

fora 2In(uR) + —22 _ 220 Pl

0 ()= Gaomg |5 TR Y S T o e
315 2205

5 (=D + == GR(=3)| +O(s), (9-105)

where v is Euler’s constant. The corresponding formula for Neumann boundary
conditions is

35
 6307R

1 1411 451 267
~+2In(uR) — o= + o + 2o in2

Eas,N —
o () 384 320 ' 64

+0(s). (9.106)

63 63
TG (-1) — 2GR (-3)

For the exterior region, we get the same expressions with an opposite sign. This is
due to the symmetry between the asymptotic expansions of the Bessel functions
involved and the equality ¢(0,1/2) = ((—2,1/2) = 0. As a consequence, in the
case (b) the asymptotic part of the vacuum energy is zero.

Therefore, the remaining task is to calculate Ef®, which is most conveniently
done using eqn (9.75) in the form

Egm = 77_1R ; V2 /0 dz {ln Al(iyz) — has(v, 2)| . (9.107)

This can only be performed numerically. Note that one might attempt to calcu-
late Ef® analytically from eqn (9.73) with m = 0 and eqns (9.70) and (9.71).
This leads to a series of the type

n DZZ
Ein ~ — — § : J[ dzz-—— ( ), (9.108)
i= 3

VZ

which does not converge and, thus, cannot be used for the calculation of Eg‘n.
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TABLE 9.5.

Single spherical and cylindrical boundaries

Zeta functions and the Casimir energy of a massless scalar

field for a spherical shell with Dirichlet boundary conditions.

d Cp interior Cp exterior REy(s)

2 +0.0098540 —0.0084955 -+0.0006792
—0.0039062/ s —0.0039062/ s —0.0039062/ s

3 +0.0088920 —0.0032585 +0.0028168
+0.0010105/s —0.0010105/s

4 —0.0017939 -+0.0004544 —0.0006698
+0.0002670/ s -+ 0.0002670/s +0.0002670/ s

5 —0.0009450 +0.0003739 —0.0002856
—0.0001343/s +0.0001343/s

6 +0.0002699 —0.0000611 +0.0001044
—0.0000335/ s —0.0000335/ s —0.0000335/ s

7 +0.0001371 —0.0000555 +0.0000408
+0.0000214 /5 0.0000214/s

8§ —0.0000457 +0.0000101 —0.0000178
$5.228x107%/s  +5228x107/s  +5.228x 1076/s

9 —0.0000230 -+0.0000094 —0.0000068

—3.769 x 1076/s

+3.769 x 1076/s

Calculations of Ef™ and E3* have been done repeatedly. The best compilation
has been given by Kirsten (2000). The results are represented in terms of the
generalized zeta function, which is related to the vacuum energy by means of

G (s— %) — 2Ey(s).

Computations were performed in d-dimensional space. This is instructive since
the vacuum energy, especially its divergences, is different in odd and even dimen-
sions. Such calculations were pioneered by Bender and Milton (1994). The results
for Dirichlet boundary conditions are presented in Table 9.5 (Kirsten 2000). The
regular contribution to the zeta function (p and its pole part at s = 0 are
presented for the interior region (first column) and the exterior region (second
column). The third column contains the vacuum energy REy(s) for both regions
taken together. In odd dimensions, the latter is a finite quantity. Similar results
for Neumann boundary conditions are presented Table 9.6 (Kirsten 2000).

For the case of d = 3 spatial dimensions, the vacuum energies of the scalar
field in the interior and exterior regions taken together are
0.0028168 0.2238216

EN(R) = B)" " = -
R ’ ( ) 0 R ?

(9.109)

EP(R) = E)™" = (9.110)
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TABLE 9.6. Zeta functions and the Casimir energy of a massless scalar
field for a spherical shell with Neumann boundary conditions.

d (p interior (p exterior REy(s)

2 —0.3446767 —0.0215672 —0.1831220
—0.0195312/s ~0.0195312/s — 0.0195312/s

3 —0.4597174 +0.0120743 —0.2238216
—0.0353678/s +0.0353678/s

4 —0.5153790 —0.00603940 —0.2607092
—0.0447159/s —0.0447159/s —0.0447159/ s

5 —0.5552071 +0.0030479 —0.2760796
—0.0489213/s + 0.0489213/s

6 —0.5949395 —0.0128321 —0.3038858
—0.0513727/s —0.0513727/s —0.0513727/s

and their sum is negative.

9.3 The electromagnetic Casimir effect for a spherical shell and for
a dielectric ball

In this section, we study the electromagnetic Casimir energy for a perfectly con-
ducting spherical shell and for a dielectric ball. These two cases have attracted
great attention since the publication of the paper by Boyer (1968). We start
with a derivation of the boundary and matching conditions, using a complete
separation of variables and polarizations, and then derive the mode-generating
functions. An important point is a discussion of the ultraviolet divergences. Fi-
nally, we display numerical and analytical results for the Casimir energy.

9.3.1 Boundary conditions and separation of polarizations

The boundary conditions for an electromagnetic field on a conductor were con-
sidered in Section 3.2. For a sphere of radius R, they are given by

Etlr:R:Oa BI1|T:R:O~ (9111)

For a dielectric ball, we have to consider the more general problem where one
medium, inside the sphere, has a permittivity €1 and a permeability p1, and the
other medium, outside, has a permittivity € and a permeability pus. We need
to consider the permeability of the material in order to discuss the special case
where the speeds of light, ¢; = 1//Eift;, are equal inside and outside the ball.
Nevertheless, we continue to refer to the ball as a dielectric ball.

From classical electrodynamics, the continuity boundary conditions across
the surface of the dielectric ball at = R require that the quantities

1
EEn, Et, Bn, —Bt (9112)
12
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are continuous. Sometimes these are referred to as matching conditions. In the
case of a conducting spherical shell, the eigenvalue equation (3.45) remains un-
changed. However, for the dielectric ball, because of the different speeds of light
inside and outside, the eigenvalues in eqn (3.45) take the form

Ay = —cipiws. (9.113)

For the boundary and matching conditions in eqns (9.111) and (9.112), the po-
larizations can be separated using the polarization vectors (9.3) and (9.6). Then
we need to apply the conditions (9.111) or (9.112) to the fields (9.7). The normal
component can be obtained by multiplying by the normal vector n:

E,=n-E, B,=n-B. (9.114)
For the two tangential components, it is convenient to take the projections
EV=r.E, E®»=(Lxn)-E,
BY=r.B, B®=(Lxn)-B. (9.115)

In order to insert eqn (9.7) into eqns (9.114) and (9.115), we need the following
properties of the operator polarization vectors (9.3):

i

L-E™ =17 L-E™ =, n-E™ =, n-ETM:;L2,
(L xn)-E™ =0, (L xn)-E™ = —%%L%. (9.116)
These can be easily verified using identities such as
n-L=0, n-(VxL)= %LZ, (Lxn)-(VxL)= —%%L% (9.117)

With these relations, the projections of the field strengths are
BV =L’ [P ()Y (0.¢), B = -V'L* ™M ()Y (0,9),  (9.118)

w_ o 0 i o
B = — Lo f™M )Y (0.¢), B = —L? v ()Y (0, ),
i i
B, = L[ (Y (0.9).  Ba =L’ ()Y (0. ¢).

Then the conductor boundary conditions (9.111) imply
li
g =0 [P

where the prime denotes differentiation with respect to r. For the TE mode, this
is a Dirichlet boundary condition. For the TM mode, this is a Robin condition
(9.56) with u = 1. For the dielectric ball, eqn (9.112) results in the following
terms being continuous across r = R:

=0 9.119
=0, (9.119)

e (), %[r TEE e ™M), ™M) (9.120)

In the above, simpler matching conditions follow if we set u = 1.
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9.3.2 The mode-generating functions

In the electromagnetic case, the mode-generating functions follow from the bound-
ary conditions similarly to the scalar case. For the TE mode, this is obvious,
since the boundary condition is of Dirichlet type. For the TM mode, there is
an additional radius in the condition. All discussions related to the interior and
exterior regions are the same as in Section 9.2.1 and we can write down the
mode-generating functions immediately. For the TE mode, we have in the inte-
rior AITE’I(k) = (kR)""J,(kR), which is the same as eqn (9.58). In the exterior,
A?E’e(k) = (kR)"ngl)(kR), which is the same as eqn (9.65). Correspondingly,
for the TM mode we have
!/ /
AT E) = (6R) [VERJ(R)|, A (k) = —(kR)'* [VERHD (kR)|
(9.121)
instead of eqns (9.61) and (9.67). We have modified the factors in front of the
Bessel functions to ensure all of the required properties at £ = 0 and along
the imaginary frequency axis. The next step is to rotate the momentum k to
the imaginary axis. For this it is common to use the modified Riccati-Bessel
functions, which, by means of

si(z) = > I,(z), el(z) = % K, (z), (9.122)
are related to the modified Bessel functions. The mode-generating functions for
the electromagnetic field are shown in terms of these functions in Table 9.7.
Here we have substituted k — k/R, used the notation A;(ik) = A;(ik/R), and
omitted unimportant numerical factors.

For the dielectric ball with the matching conditions (9.120), we have to con-
sider the problem on the whole axis r € [0,00). It can be treated similarly to
the case of the exterior region in Section 9.1.3. We have to write down the reg-
ular scattering solutions to eqn (9.23) satisfying the matching conditions. These
solutions can be written in the form

SR () = ilar)B(R — 1)+ 5 [V BN () -+ 5 k) (k)] 00 — R)
(9.123)
where the index “(T)” stands for either TE or TM. The radial momenta are
defined according to eqn (9.113):

TABLE 9.7. The mode-generating functions for the electro-
magnetic field with conductor boundary conditions.

Region TE mode TM mode

Interior AP (ik) = k= sy (k) AN (k) = ks (k)
Exterior  A™°(ik) = Klej(k) A MC(ik) = —ke) (k)
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q=+e1pw, k= /Eau2w. (9.124)

This is a free solution in the interior and it coincides with the asymptotic form
(9.25) in the exterior. The Jost functions can be found by inserting eqn (9.123)
into the matching conditions (9.120). The resulting equations can be solved.

Then, using the Wronskian
1 2 1 2 i
) I @ = [ () WP () = =25 (9.125)

)
2’2

the Jost functions can be obtained in the form

700) = —ikity [ 2 {pila) (SR GR)] o R o] 1Y 6R)
(9.126)

M (k) = ikR\/l;jj {gl jiaR) [kR hg”(kR)}' — 2 [qRji(qR)] hf”(kR)} .

Note that this spectral problem has a purely continuous spectrum, i.e. there
are no bound states and no surface plasmons. Accordingly, the Jost functions
(9.126) have no zeros on the positive imaginary k-axis. By rotating the argument
to the imaginary axis, we arrive at the final expressions which define the mode-
generating functions for the dielectric ball,

ATE(ik) = /e si(q)e(k) — ez si(q)e;(k),
A™(ik) = \/i1es sj(q)ei(k) — /izer si(q)e) (k).

Here, we have used the same change of variable k — k/R as before.

(9.127)

9.3.3 The electromagnetic Casimir effect for a conducting spherical shell

The mode-generating functions obtained in the preceding subsection allow one
to write the regularized vacuum energy (9.68) in the form

2s e e8] 5
Eo(s) = 7(“}}? COSET”) v /0 dk kHsa%lnAl(ik). (9.128)
=1

Here, we taken into account the fact that the electromagnetic field is massless
and that the values of the orbital momentum start from [ = 1. For A;(ik), we
have to insert only one generating function or a product of the mode-generating
functions listed in Table 9.7, depending on the case considered. As before for the
scalar field, we define the asymptotic part of the vacuum energy by eqn (9.74).
For this purpose, we expand the mode-generating function in a series (9.70)
and determine has(v, z) according to eqn (9.71). The asymptotic part E§*(s) is
represented by eqn (9.81), where, in the massless case, the functions 4;(s) are

2s jes} .
(/’[’R) COS(T(-S) V2—2$ / dz Z1_2s£ DZ (Z) . (9.129)
0

R T

WK

Ai(s) = = ‘ 0z UVt

Il
_
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The functions D;(z) can be obtained in the same way as in the scalar case. For
i = —1, they coincide with those given in eqn (9.79). For i = 0, the functions
Dy(z) are shown in Table 9.8. The functions D;(z) with ¢ =1, 2, 3 are given by
eqn (9.80) with the coefficients x; , presented in Table 9.9. Using the integrals
in eqns (9.103), we arrive at

_ (uR)* T (s—1) 3
A_4(s) = i F(S+%)C<283,5),
Ag(s) = — (”fﬂ), "¢ (25 —2, ;) : (9.130)
(RN wia T(s+ %) 3\
Ai(s) = — ir ;F(%) e §<28—2+z,§>, i=1,2,3

instead of eqn (9.104). In comparison with eqns (9.83)—(9.85), here the coeffi-
cients x; , must be taken from Table 9.9 instead of Table 9.3, and the parameters
of the Hurwitz zeta functions are different. Now, we can substitute eqn (9.130)
into eqn (9.81) and get the asymptotic part of the vacuum energy E§°(s). In
order to discuss the ultraviolet divergences, we calculate the first five heat ker-
nel coefficients. These can be obtained from the vacuum energy in zeta function
regularization (4.26) with m = 0 by taking the corresponding residues,

1
agjs = 167/ *res {F (5 — —) Eo(s);2 — E} . (9.131)

2 2

Note that Ef" does not contribute to the poles in eqn (9.131). Thus, according
to eqn (9.72), we can use E§*(s) for the calculation of aj/o. The results are

4T 4 -1 3/9 12 2] 2m
002337a1/2={1}2ﬂ/R7a1=— 14 ?R

231 ©3/2 1) 167
_ __Jty tor 9.132
9372 {7} 6 " {7}315R (9.132)

The upper entries in the curly brackets are for the TE mode and the lower are
for the TM mode. These heat kernel coefficients are different from those for a
scalar field given in eqn (4.25). They were calculated for a general surface by
Bernasconi et al. (2003).

TABLE 9.8. The functions Dy(z) entering the asymptotic expansion (9.71)
in the electromagnetic case.

Region Dirichlet boundary condition Neumann boundary condition

Interior %1nt—(y+%)lny—ln2 —%lnt—i—(—y—l—%)lny—i—an
Exterior %1Ht+(Vf%)lnl/ félnt+(y+%)1nz/
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TABLE 9.9. The coefficients x; , for the TM mode. The
upper signs are for the interior region, and the lower signs
are for the exterior region.

a
i 1 2 3 4 5 6 7 8 9
F£ 0 L 0 0 0 0 0 O
2 0 —&% 0 2 0o -%L 0 0 0
0 0 FZ 0+ o0 F2 o0 +48

The coefficients aj,/; in eqn (9.132) are for the interior region. Those for the
exterior region follow, as in the scalar case, by multiplication by (—1)**! (k # 0),
except for ag /. The latter, in the exterior region, is given by ag/, = —m3/2 /6 for
the TE mode and a3/, = —177%2/6 for the TM mode. Note that the coefficients
ay 3 for the TE and TM modes differ only in sign, as a consequence of conformal
symmetry. Therefore they cancel when the two modes are added together.

With these coefficients, we are in a position to discuss the ultraviolet di-
vergences of the Casimir energy for an ideally conducting spherical shell. Since
az # 0, the vacuum energies for the interior and exterior regions taken sepa-
rately are divergent and cannot be uniquely defined. This holds for each mode
and also for their sum. However, if one considers the interior and exterior regions
together, there is a cancellation in the coefficients as and aq such that their com-
bined contribution vanishes. Similarly to the case of a massless scalar field, here
also the vacuum energy can be uniquely defined, and in zeta function regular-
ization one obtains a finite result. In other regularization schemes there is, in
general, a surface divergence which must be removed by some renormalization.
In addition, in the electromagnetic case, if the TE and TM modes are taken
together, this divergence disappears because of the above-mentioned symmetry
in the coefficients a;/,. The only remaining potentially divergent contribution
comes from the coefficients as/s. In zeta function regularization (4.3) and in
cutoff regularization (4.1), this contribution does not show up. Hence, in these
regularization schemes the Casimir energy for a conducting sphere is finite when
the interior and exterior and both polarizations are taken together. In other reg-
ularization schemes, a divergence arising from as/» may show up. However, since
a3/, for dimensional reasons, does not depend on the radius, this divergence is
also independent of the radius (provided that the regularization does not intro-
duce any artificial dependence on the radius). Therefore it may be dropped, as
it does not contribute to the Casimir force acting on the spherical shell. It must
be remarked that, historically, just these fortunate compensations enabled Boyer
(1968) to obtain his well-known result for a conducting sphere.

At this point it may be useful to make a comment on the physical interpre-
tation. We have seen that the Casimir effect for a spherical shell can give a finite
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result if the interior and exterior regions are taken together. However, it must
be underlined that this implies an infinitely thin conducting shell. Any attempt
to consider a shell with a finite thickness will necessarily destroy the symmetry.
Specifically, the coefficient as becomes proportional to the difference between
the two radii (Bordag et al. 1999a). Thus, it becomes impossible to define the
Casimir energy in a meaningful way.

We now continue discussing the case of an infinitely thin, ideally conducting
spherical shell. Substituting A;(s) from eqn (9.130) into eqn (9.81), we obtain
the asymptotic part of the vacuum energy in the form

. 1 1 5612 5355w 229y 52013
Eas,TE,l _ 21n _ _
0 )= Gong |5 T 2R 61 T 128 61 ' 384
315 2205
——CR( 1)+ —CR( 3)| +O(s),
- 1 1 1743102 34657 539y 18067
Eas,TM,1 _ 21n(uR _ _
0 ) = G3ong |5 T2+ —¢; 128 64 334
315 92205

5 (=1 + =G (=3)| +0(s). (9.133)

These expressions are for the interior region. If we add the corresponding expres-
sions for the exterior region to eqn (9.133), the result is
17 < 11
Eas,TE,b _ 0 Eaa,TM,b _
o () =55 TO06), Eo (8) = ~12sR

In the derivation of these formulas, a number of cancellations have occurred,
which are the same as in the scalar case [however, here we have nonzero contri-
butions from ((2,3/2) = —1/4 and ((0,3/2) = —1]. Thus, in the case (b), i.e.
when the interior and exterior regions are taken together, the asymptotic part
of the vacuum energy is finite and nonzero. It is also nonzero if the TE and TM
contributions are added:

+0(s).  (9.134)

3
64R’
It is equal to the analytic part defined in eqn (9.88), since the divergent part is
zero. The finite part can be calculated in the same way as in Section 9.2.4. These
calculations have been carried out many times and reported in the literature for
different spatial dimensions [the results compiled in the book by Kirsten (2000)
are presented in Table 9.10]. Specifically, in three dimensions, the electromagnetic
Casimir energy for an ideally conducting spherical shell,

0.0461766
E(R) = B = ———— (9.136)

Egs,TE,b(S) + ESS-,Tva(S) — (9135)

is repulsive.
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TABLE 9.10. Zeta functions and electromagnetic Casimir energy for
a perfectly conducting spherical shell.

d (p interior (p exterior REy(s)

2 —0.3446767 —0.0215672 —0.1831220
—0.0195312/s —0.0195312/s —0.0195312/s

3 40.1678471 —0.0754938 +0.0461766
+0.0080841 /5 — 0.0080841 /s

4  +0.5008593 —0.1942082 +0.1533255
+0.0231719/s — 0.0564056/ s —0.0332337/s

5 +1.0463255 —0.2981425 +0.3740915
+ 0.1838665/ s —0.1838665/ s

9.3.4 The Casimir effect for a dielectric ball

As mentioned in Section 9.3.1, we consider a dielectric ball where the inside
medium has a permittivity €1 and a permeability p; and the outside medium
has a permittivity €2 and a permeability us. Such a configuration may describe
scenarios such as a dielectric ball made of an insulator, a bubble in a liquid,
or a hadronic bag. The electromagnetic field couples through the macroscopic
Maxwell equations and its vacuum energy depends on the radius of the ball
and on the parameters ¢; and u; (¢ = 1, 2). Since such a dielectric can be
considered as a reasonable idealization of a real physical body, one could expect
that the vacuum energy of the electromagnetic field (or at least the corresponding
pressure) would be finite. However, as discussed below, this is not the case, as
the ultraviolet divergences cannot be satisfactorily removed. In fact, this is still
an unresolved puzzle which continues to stimulate interest in this configuration.

The dielectric ball was originally considered in connection with the Casimir
model of an electron (Milton 1980, Brevik and Kolbenstvedt 1982). Soon it was
realized that this configuration has unremovable ultraviolet divergences which
do not allow one to obtain a finite result like that for an ideal-metal spherical
shell. An exception is the case for equal speeds of light ¢; = 1/,/€;/; (in relation
to the value in vacuum) in the inside and outside regions, as found by Brevik
and Kolbenstvedt (1982). These authors discussed this case in connection with
the hadronic bag model.

A decade later, this configuration became popular owing to attempts to ex-
plain sonoluminescence as the release of vacuum energy from the collapse of
air bubbles in water (Schwinger 1992, 1993). Although this phenomenon can
probably be explained by different physical processes (Liberati et al. 2000), the
vacuum energy of a dielectric ball was intensively investigated. In terms of heat
kernel coefficients, it was shown (Bordag et al. 1999a) that beyond the dilute
approximation, ultraviolet divergences are present independent of the regular-
ization scheme used. This prevents any conclusive result. At the same time, in
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the dilute approximation, after removal of the residual divergences, there are
regularization schemes which lead to a unique result. Here, the dilute approxi-
mation is understood as the contribution to the vacuum energy up to the second
order of some small parameter characterizing the diluteness of the ball material.
Definite results for F(R) are obtained in the following two cases. In the first
case, it is assumed that |c; — 2| < ¢1,¢2 and, thus, |¢; — c2| plays the role of
a small parameter. In this case it is usually also assumed that g1 = po = 1 but
€1 # €2 (1,2 = 1). In the second case, it is assumed that ¢; = ¢z but there is a
nonzero parameter

€1 — €&  H2— [

g_E1+52 p+ pe

(9.137)

In this case, the results are obtained for small ¢ and for & = 1. Both cases
have been solved by several authors, who obtained agreement using different
approaches.

We start with the consideration of the heat kernel coefficients of the electro-
magnetic field in the presence of a dielectric ball. These can be obtained using
eqn (9.131) from the vacuum energy in zeta function regularization, where the
asymptotic part given by eqns (9.81) and (9.82) must be inserted. The functions
D;(z) follow from the uniform asymptotic expansion of the mode-generating
functions (9.127). Changing the factor in front for convenience, we denote them
by

AP (k) = asifa)a(k) = sita)ei(k), = [ (9.139)
with p = 1 for the TE and TM modes, respectively. With this notation, we cal-
culate the heat kernel coefficients (9.131) using the formulas (9.128) and (9.129)
and the mode-generating functions (9.138). The only difference from the preced-
ing sections is that the functions D;(z) are now more complicated. With eqns
(9.70) and (9.76), we get

Peitacot
DPON=n(Z)—p(Z DP) () = ( SCt2C20 9.139
_1(2) n (Cl n o ’ 0 (Z) n 2m ) ( )

where n(z) is defined in eqn (9.77) and

1

t19g = ———.
2 \/1 +CL222
()

The expressions for D;” (i = 1, 2, 3) have been presented by Bordag et al.
(1999a). As before, the sum over the orbital momenta can be carried out, leading
to the Hurwitz zeta function. For ¢ = —1, using the first line in eqn (9.103), we
obtain

(9.140)

(pR)* T(s—3

A_q(s) = R IV +>1)g (25 -3, g) (172 — 3. (9.141)
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For : = 0, 1, 2, 3, the integration over z cannot be carried out and we are left
with

Ai(s) = — w COS(T&'s)

e T(<2s+i—2,g)/o dzzl—%%DgP)(z). (9.142)

Let us consider, as an example, the calculation of the heat kernel coefficient
az. For this purpose, according to eqn (9.131), we need the residue of E§®(s) at

s = 0. For ¢ = —1, the pole comes from the gamma function in eqn (9.141) and
we get
res[A_1(s);0] = i(e —c2) (9.143)
S T 19200 R ‘

For i = 0, there is no pole contribution, since the z-integration is convergent at
s = 0. The same holds for i = 2. For i = 1, the z-integration is divergent in the
upper bound because D(p)( ) = (c1 — ¢2)/(82) + O(273). This results in a pole

contribution with 1
A1(8);0] = —————(c1 — ¢2). 9.144
res [A1(s); 0] 1927TR(CI co) ( )
The last contribution is for ¢ = 3. Here the pole comes from the Hurwitz zeta

function and the residue is
1 o
res [As(s); 0] = ﬁ/@ dz Dép)(z), (9.145)

where an integration by parts has been done. This remaining integration cannot
be performed analytically. However, eqn (9.145) is a smooth function of the
parameter a and of the speed of light ¢;. This function can be expanded in
powers of (¢; — c2). When this is done, the zeroth and all even orders are absent.
To get the heat kernel coefficient ag, we take the sum of eqns (9.143), (9.144),
and (9.145) [multiplied by 1673/2I'(—1/2) = —3272 according to eqn (9.131)] for
both values p = £1. It so happens that in this sum the first-order contributions
cancel whereas the third order and higher are present:

26567 (c; — co)?
50058 &

The other coefficients have been calculated using the same methods (Bordag et
al. 1999a):

ag = — + 0 [(e1 — )] (9.146)

2

8 _ _ 2 — 2
a0=—R (C13—023), a1/2:—2773/2R272(21 2 2)22,

3 cics (cf +¢3)

227 dZ 0 1 —1
a =R -t 87rR/ . 82 DW(z) + D! >(z)},
2 2)2

agp = w2 A=) 0.147)

(2 +e3)°
Equations (9.146) and (9.147) determine the ultraviolet divergences for the di-
electric ball for any regularization. For instance, in zeta function regularization,
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where we have a divergent contribution from as only, it follows that in the dilute
approximation the vacuum energy Ey(s) has a finite and unique continuation to
s = 0. This is because eqn (9.146) starts from the third-order term. However, the
vacuum energy is not finite and cannot be uniquely defined beyond the dilute
approximation. In the cutoff regularization, from eqn (9.147), inserted into eqn
(4.32), divergences follow which are proportional to 1/6* and 1/63. They are
linear and quadratic in ¢; — co. However,by removing them in some way, one can
be sure that because of eqn (9.146), the result for the energy in the second order
will always be the same.

Thus, the vacuum energy for the dielectric ball is uniquely defined in the
dilute approximation but not beyond it. The latter case is still an unresolved
problem. As discussed, the case of a zero-point electromagnetic field interacting
with a material body is a physical one and should result in finite measurable
quantities, such as the surface stress. It has been argued that the permittivity
cannot be considered as a constant but should be a function of the frequency
which approaches unity at high frequencies. Because of this, the divergences
which result from the high frequencies might disappear. To investigate this pos-
sibility, a frequency-dependent dielectric permittivity inside the ball

alw)=1- "2+

St (9.148)

and g2 = 1 outside were considered (Bordag and Kirsten 2002). As a result, a
nonvanishing contribution to the heat kernel coefficient a5 was found,

az = 4—7rwfR3 + m—ﬂng:}’. (9.149)
3 3

Thus, the divergence is weakened by dispersion, as expected, but not sufficiently
to resolve the problem. The reason is that the permittivity does not decrease
faster than ~ w™2 (see Section 12.1). Another attempt to resolve the problem
considers a smooth function e(r) instead of a function with a jump at r = R. As
shown by Bordag et al. (1998a), however, for a smooth function the heat kernel
coefficient as is nonzero even in the dilute approximation. Thus, this approach
does not work either.

In the remainder of this subsection, we consider the vacuum energy in the
dilute approximation, for which reliable results can be obtained. As explained,
depending on the regularization scheme, either the vacuum energy is finite or
the divergent contributions can be discarded, leaving a unique result. We start
with the first case, putting p1 = pa = 1, and keep contributions up to the second
order in ¢; — ¢p. It is assumed that both of the dielectric permittivities €1 o are
approximately unity. In this case, the vacuum energy is

23
B(R) = By = == (1 = )’ +0 [(e1 = )] (9.150)

This has been found independently using several methods.
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Barton (1999) treated the dielectric ball as a small perturbation with respect
to empty space and arrived at eqn (9.150) in second-order perturbation theory. A
completely different approach is based on the integration of the Casimir-Polder
forces acting between the molecules of the ball in a vacuum (Milton and Ng
1998). The starting point is the physical picture of a ball composed of a finite
number of polarizable molecules. In Section 16.1, it will be shown that any two
molecules at points 71 and 79 in a dilute medium interact through the Casimir-
Polder potential

23 (61 - 1)2
(47T)3N2 |’I"1 — 7‘2|7’
where N is the density of molecules. Integrating with respect to both coordinates
in eqn (9.151) over the volume of the ball, taking into account the density of
molecules (see Section 6.4) and dividing by 2 to avoid double counting, the
interaction energy becomes

23 (e1 — 1)2 1
E=_-2 _ — .152
oy (47T)2 /V dTl /V d’I“Q |r1 — 7’2|7 (9 5 )

Here we have changed the power in the denominator to + in order to make the
integrations convergent. This is a regularization and, to make the integrals con-
vergent, one needs to make v < 3. At the end, one has to perform a continuation
to v = 7. The integrations can be carried out explicitly (Milton and Ng 1998),
and one arrives at

V(ry,re) = — (9.151)

23 re-12) 1

E=—— (e —1)? .
22+77r(€1 ) r4-3%)(3-~) R=6

(9.153)

This expression has a unique analytic continuation to v = 7, where it takes
a finite value coinciding with eqn (9.150), where cq is set equal to unity. The
regularization used in eqn (9.152) is not the only possible one. Another choice
could be to use point splitting, i.e. the replacement ry — ro — r1 — ro + 4
in the denominator, with § — 0 at the end. In that case one finds divergent
contributions proportional to the inverse powers of §. Disregarding them, one
arrives at the same result, i.e. eqn (9.150) with ¢y = 1.

It is interesting that the energy (9.150) is positive although it is represented in
eqn (9.152) as an integral over pairwise energies which are negative. The change
in sign comes from the analytic continuation in eqn (9.153) and demonstrates
that a finite, physically meaningful quantity, such as the vacuum energy for a
dilute dielectric ball, may have a sign contrary to expectation.

There is also a way to calculate the same vacuum energy from the mode-
generating functions that we have obtained so far. One has to insert eqn (9.138)
into eqn (9.128) and take the expansion in 2§, = co — ¢1 up to the second order.
In this case it is convenient to start from eqn (9.127) and to write /12 = 1£0,.
Then the product of the mode-generating functions can be written in the form

Apl(ik) = A (k) AT (i) (9.154)
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= [si(@)er(k) — si(@)e (k)] — 82 [s}(q)er (k) + su(a)ej (k)] .

The Riccati—Bessel functions in eqn (9.154) can be expanded in powers of a small
parameter .. Then, using the above procedure, the vacuum energy Fj in eqn
(9.128) can be calculated (Lambiase et al. 2001), leading to the result (9.150).
This result has also been confirmed numerically with high precision (Brevik et
al. 1999).

Finally, we consider the second case discussed above, i.e. a dielectric-diamag-
netic ball where the speeds of light inside and outside are equal. In this case the
arguments of the Riccati—Bessel functions in the mode-generating functions are
equal, and from eqn (9.127) we get (Brevik et al. 1999)

Aler=en(ik) = A (k) A (ik) = \/Eraz { [si(k)ef(k)]” + [si(k)er (b)) |

—(e1p2 + eapn)si(k)s;(k)e(k)ej (k) = f?l(gl +e9)% (1—&%07). (9.155)
1
Here, a simplification has been done using €11 = o9, the definition (9.137) of
the parameter &, and the identity

of = 4s;(k)s)(k)ei(k)ej(k) +1, where oy = [s;(k)ei(k)] . (9.156)
Dropping a constant, the mode-generating function can be rewritten as
A=) (i) = 1 - €202, (9.157)

Note that for & = 1 this is just the mode-generating function of a conducting
sphere when both polarizations and the interior and exterior regions are taken
together, i.e. it is the product of the functions in Table 9.7. In this way, for the
dielectric-diamagnetic ball with equal speeds of light, the vacuum energy for
& = 1 is known. This has also been calculated for small £ in the perturbation
order to £2. In that case the vacuum energy is

R)?® cos > o 0
Eo(s) = €2 (“R) 7(;”) Zy/o dk k' =7 (9.158)
=1

As explained above, this expression has a finite analytic continuation to s = 0.
This continuation can be constructed in the usual way by subtracting and adding
back the corresponding part of the asymptotic expansion for the logarithm of
the mode-generating function, as we did for the scalar field in Section 9.2.2.

Sometimes the mode-generating function (9.157) is presented in the form of
an asymptotic series, and the higher orders of this series have been discussed
(Brevik et al. 1998). The resulting series representation for the vacuum energy
allows the limit s — 0. However, this series diverges and cannot be used to get
reliable approximations for the vacuum energy. It should be mentioned that the
same also holds for scalar, electromagnetic, and other fields and for all boundary
conditions.
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There is a much more elegant way to calculate the vacuum energy (9.158) ex-
plicitly (Klich 2000). For this purpose, the summation over the orbital momenta
in eqn (9.158) is performed using the addition theorem for the Bessel functions
(Abramowitz and Stegun 1972)

o0

S+ Dalbal@P() = g, (9.159)
=0

where Q = \/k? + ¢% — 2kqu, |v| < 1. Putting ¢ = k and taking the derivative
with respect to k, we arrive at

@1+ o Pi(w) = %ek@, (9.160)
=0

where Q = /2 — 20. Now we square this equation and integrate over v using the
orthogonality relation of the Legendre polynomials,

! 20y
dv Py(v) Py = . 9.161
[ dvR@)R) = 555 (9161)
Again taking the derivative with respect to k, we obtain the relation
- (1- 2 1
> @+1) (o /d FQY(-2+4Q) - — [(1+2k)? e —1].
— 0 T 2%k
1=0
(9.162)

It remains to subtract the contribution from [ = 0 on the right-hand side of this
equation. Using so(k) = sinh(k) and eg(k) = exp(—k), we arrive at
. 1
S @i+1)(ef) = o (- 2k)2e~4 —1]. (9.163)
I=1
Since the sum here converges, this formula can be substituted into eqn (9.158)
and we arrive at

Ey(s) = %@@ /Ooodk 2 [(1—2k)% e —1]. (9.164)

The integral converges for 1/2 < s < 3/2. When we integrate by parts, it becomes

% (uR)* cos(ms) 1 oo 1-25 0 2 —dk

TR — 25—1/0 dk k 8k[(1 2k)% e 1].
(9.165)

In this representation, we can put s = 0 in the integral. Now the integration can

be carried out and we arrive at

2
Byt = 37% +0(¢Y). (9.166)

To conclude, the only results known so far for the Casimir effect for a dielectric
ball are eqn (9.166), which is for ¢; = ¢2 and small £; the limiting case of it for

Eo(s) =
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¢ = 1, which is for a conducting sphere; and eqn (9.150), for the dilute case. It
is also known that beyond the dilute approximation there are unremovable (at
least so far) ultraviolet divergences. This is a rather unsatisfactory situation, and
further work is necessary.

9.4 The spinor Casimir effect for a sphere

In this section we consider the Casimir effect for a spinor field obeying bag
boundary conditions on a sphere. The physical motivation is its relevance to the
bag model in QCD which describes hadrons. Although this model is phenomeno-
logically quite successful, all attempts to include the vacuum energy of gluons
and quarks have remained unsatisfactory owing to ultraviolet divergences. One
might expect that a renormalization scheme, as outlined in Section 4.3.2, should
be applicable. However, the ultraviolet divergences calculated in terms of the
heat kernel coeflicients have not yet been incorporated into the bag model in
a satisfactory way (Milton 2001). Note that this problem is more likely to be
connected with the formulation of the bag model than with the calculation of
the vacuum energy. As we shall see below, the divergences of the spinor vac-
uum energy can be isolated in terms of the heat kernel coefficients similarly to
other fields. The finite parts of the vacuum energy can be calculated numerically,
whereas the interpretation of these results within the bag model remains an open
question.

Here we focus on the spinor field. As to the gluon field, the results for the
vacuum energy are the same as for conductor boundary conditions if one ignores
the higher-loop corrections. In this case the corresponding results from Section
9.3.3 apply. We allow the spinor field to be massive, in which case additional
ultraviolet divergences are present. As is seen below, the methods previously
applied in this chapter for a scalar field work in the spinor case also.

We start from the Dirac equation (3.30) with the bag boundary conditions
(7.102). The solutions of the Dirac equation in spherical coordinates have the
form

1 Vo +mJj41-0)2(kr)iQ% 5, (6, 0)
YiMor(r) = —F=

VT \ ~ovko — md(aj 102 (kr) (0 - o) (0, 0)

where n = r/r, and o is the Pauli matrices. The Pauli spinors

21120 M+1
2(21+1) Yl,Mfé(QNP)

201—20M+1
74/ 2(21+1;r‘ Yime1(0,90)

are the eigenstates of the total momentum J = L + %0'. The eigenvalues of the
operators J2, L% J,, and I + o-L are j(j + 1), (I + 1), M, and o(2j + 1)/2,
respectively. These eigenvalues are related by j = (2]+¢)/2 with spin projections
o = £1. Each solution (9.167) describes two states with kg = +vm?2 + k2, cor-
responding to a particle and an antiparticle. The radial functions in eqn (9.167)

) . (9.167)

QL (0,0) = (9.168)
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are the Bessel functions. The solution is regular at » = 0, as is required for the in-
terior region of a sphere. The corresponding solutions for the exterior region, i.e.
the scattering solutions, can be obtained by replacement of the Bessel functions
with Hankel functions.

The matrix on the left-hand side of the bag boundary condition (7.102) can
be written in the form

i»y.n+1=(_i(;.n)i("j'")). (9.169)

When applied to eqn (9.167), this leads to the condition

[\/ ko +m J2ji1-0)/2(kr) — o/ ko — mJ(2j+1+a)/2(k7“)} ‘T:R =0, (9.170)

where we have used (o-n)(o-n) = 1. In fact, two conditions are obtained,
one from the upper two components of the bispinor and another one from the
lower two. They are identical up to a constant factor. The solutions of eqn
(9.170) with respect to k are the discrete eigenvalues. Therefore we can take the
left-hand side of it as the mode-generating function. However, the formulas are
simplified if one takes the product of the mode-generating functions for particles
and antiparticles, i.e. for the two signs of ky. One has to be careful with the
signs. From this the mode-generating function, up to a constant factor, is

Aj(k) =0 |:‘](22j+1+0)/2(kR) - J(22j+1—o)/2(kR)i|

_2m
A ——Jjt140)/2(kR)J2j41-0)/2(kR). (9.171)
The function (9.171) takes the same value for o = 1 and o = —1. Because of this,

one can take either value of ¢. Finally, we turn to the imaginary radial momentum
k — ik/R and, again dropping the constant factor, the mode-generating function
for the bag boundary condition becomes

Aj(ik) = T2, (k) + I2 (k) + ?Ijﬂ(k)fj(k). (9.172)

The regularized vacuum energy can be derived in the same way as for the
scalar field [see eqn (9.68)], and it becomes

R s s 0
Eo(s) = 4(“ cos(m Z:: / — (mRr)y?)"? W@ In A, (ik).
(9.173)
Here, j = (2n — 1)/2 and we have taken into account the fact that the vacuum
energy of a spinor field enters with the opposite sign and that we have an addi-
tional factor of 4 from the two kinds of particles and two spin projections (see

Section 3.3). There is also another difference with respect to the scalar field;
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namely, in the spinor case, the mode-generating function (9.172) depends on the
mass m.

Next we consider the asymptotic expansion of the mode-generating function.
For convenience, we rewrite it in the form

j2  2mRj mR—j

A;(ik) = I (k) (1+ﬁ— 12 )+[I;(k)}2+2

Ij(k:)Ij’(k) (9.174)
using the recurrence relation

Lia (k) = B(K) — 2 1;(8). (9.175)

From eqn (9.76), we represent the logarithm of the mode-generating function
(9.174) in the form (9.70) with z = k/j. Then, similarly to eqn (9.71), we define

haaliz) = 3 ) (9.176)

2

D_1(z)=2[n(z) —Inz], Dy(z) =In ———— — In(27j),
3i
Di(z) = > wiat", i=1,2,3. (9.177)

The coefficients z; , are shown in Table 9.11.

The corresponding formulas for the exterior region are obtained by multipli-
cation of the functions D;(z) by (—1)%*!. In addition, one must reverse the sign
of the mass, i.e. m — —m, because of the different sign in the recursion formula

Kj(k) = —K(k) + %Kj(k). (9.178)

Now we insert has(j,z) (9.176) into the vacuum energy (9.173) and follow
the same calculation procedure that was used in Section 9.2.2 in the case of the
massive scalar field. The result is (Elizalde et al. 1998)

TABLE 9.11. The coefficients z; , for a spinor field, using the notation x = mR.

a

71 2 3 4 5 6 7 8 9
dz—1 1

1 IT 0 is 0 0 0 0 0 O

2 1 1 1 1

2 0 -5 53 5§72 ~5 g 0 00

5 31 z? 9 2 z—1 56z—23 3 179

3.0 s TE 5 3T% mo—itT 5 Tero 5 57
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LR E(EDE L T(h+s—1)
A(2) = D B g e

0
x {2§(2k+253,%)+§(2k+252,%)],

R)2s L (—1)k or T(k+s
Aolz) = _RQ\/(EMF zs— ) kg)( k!) (mR) kzkiT—)l (9.179)
X |:2<(2k+28—2,% +C(2k+25—1,%)],
~ (BR)* SN(EDE s T (k4 s+ 25
Al(z) - 7R2\/EF (57 %) ];) k! (mR) k; F(G/Q) 2
X {2((2k+25+i2,%)+C(2k+23+i1,%)}

for ¢ = 1, 2, 3. This is a power series representation which converges for mR < 1.
A representation which is valid for mR > 1 was also given by Elizalde et al.
(1998).

From eqn (9.179), with eqn (9.131), it is possible to find the heat kernel
coefficients. These are given by

167 R3 167R
ap = — 7; . aip=0, ay=-2"[1+3mR+ (mR)?
azjs = 81%/% [mR + (mR)?] , (9.180)
16 21 21
=_— |14+ =mR—-21(mR)% +21(mR)> + ==(mR)*| .
as Gr R +5m (mR)* +21(mR) +2(m )

The magnitude of the coefficient ag represents the volume of the sphere multi-
plied by a factor of 4, accounting for particles, antiparticles, and the two spin
projections. The negative sign is due to the Fermi statistics. There is no simple
explanation for why the next coefficient, a; /9, vanishes. The higher coefficients
depend on the mass of the field. This is the mass dependence which appears
through the mode-generating function (9.172). Thus, all parameters in the renor-
malization procedure, as discussed in Section 4.3.2, except for o, are needed. This
is the case for a massless spinor field also. Note that if one takes the interior and
exterior regions of the sphere together, the situation for the massive spinor field
is worse in comparison with the scalar and electromagnetic cases, where the heat
kernel coefficients a; and as from both sides of the surface compensated each
other. This happens only partly in the spinor case. Owing to the mass depen-
dence of the mode-generating functions, there are remaining contributions. In
this case the heat kernel coefficients are

ap =0, ayp=0, a5 = 7327rmR2,
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F1G. 9.3. The vacuum energy of a spinor field of mass m in the interior of a bag
as a function of mR (Elizalde et al. 2008).

32m™m
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asjy = 167°*(mR)?,  ay = [1+5(mR)%]. (9.181)

As a result, there are additional divergences which are proportional to powers of
the mass.

As already mentioned, it is not clear if the formulation of the bag model can
accommodate the renormalization of these divergences. If one ignores this prob-
lem, it is possible to calculate the finite part of the vacuum energy (Elizalde et
al. 1998). The finite part was defined using the large-mass normalization condi-
tion (4.62). However, its application in this case is more complicated than for a
massive scalar field, where the large-mass behavior was given by the heat kernel
expansion. For the spinor field, an additional mass dependence is contained in
the mode-generating function. As a result, it is not possible to determine the
large-mass behavior analytically. Elizalde et al. (1998) implemented the renor-
malization condition (4.62) after a numerical analysis of the large-mass behavior.
Within this approach, the renormalized vacuum energy in the interior region of
the bag was calculated numerically (see Fig. 9.3). Note that this is a demonstra-
tion of the ability to calculate the finite part of the vacuum energy rather than a
physical result related to the bag model, because the renormalization issues are
not settled.

For a massless spinor field in the interior and exterior regions taken together,
the heat kernel coefficient as is zero. In this case a unique finite result can be
calculated. The corresponding energy is (Milton 1983, Elizalde et al. 1998)

0.0204
B(R) = By = ———. (9.182)
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9.5 Spherical shell at nonzero temperature

The calculation of the free energy and other thermodynamic quantities for a
spherical shell follows the general lines of Chapter 5. The limiting cases of high
and low temperature can be obtained analytically. In this section, we focus on
these cases.

9.5.1 Low-temperature expansion

The low-temperature expansion of the Casimir free energy was discussed in Sec-
tion 5.2. As with all configurations with a finite volume, a gap in the spectrum is
present for a sphere. In this case the physical thermal correction for the interior
of the sphere is defined by eqns (5.37) and (5.29) with m = 0:

ApFi=kgT Y > (214 1)In (1 —e e (9.183)

n=1 1

— Oé()’i(]'CBT)4 — 04171(117]311)3 — Ozg’i(kBT)Q.

Here, the A, are the eigenvalues of the Laplace operator [for instance eqn (9.16)
for Dirichlet boundary conditions]. For T' — 0 (3 — o0), the first term on the
right-hand side of eqn (9.183) decreases exponentially as exp(—3/R) according
to the scale set by the radius R of the sphere. A similar suppression takes place
for a massive field.

Now we consider a massless field in the exterior region of the sphere. Here,
we have a gapless continuous spectrum. In this case the asymptotic expansion
for low temperature can be derived from eqn (9.183) using the same methods as
in Section 9.1.3. We place the whole system into a large sphere with radius R,
and mode-generating function ¢; ;(R.). Then the radial sum in the temperature-
dependent part of the free energy (9.183) can be written as an integral,

dk P
= _ Bk

ApFe = kpT le(zz +1) /7 s (1—e™™) - ndui(Re)  (9.184)
— ape(ksT)* — 01,0 (ksT)? — g, (kpT)?.

Here, the limit R. — oo can be performed by the same sequence of steps as that
which resulted in eqn (9.32). In so doing, the contribution depending only on
R, was dropped. Now we explicitly write out this contribution, which originates
from the black-body radiation inside a sphere with radius R.. The result is

*° dk 0
ApF.=ksT» (2+1 —In(1—ePF) = 1
TF kB l (2l + )/0 - Il( e ) ok 01(k) (9.185)
4 2
- %Ri %(’fBT)4 —ae(kpT)! — are(kpT)?® — aze(kpT)?,

where the §;(k) are the scattering phase shifts defined in eqn (9.27).
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The expansion of the first term on the right-hand side of eqn (9.185) at low
temperature can be obtained by expanding the phase shifts for small argument
into a Taylor series. Taking into account also the fact that age = —Vemr?/90,
where V, is the difference between the volumes of spheres with radii R, and R,
one arrives at

ArFo=— Sl DTN @500 (9156)
j=1 1

+ Ck(),i(lﬂBT)4 — al,e(kBT)3 — Ckz,e(kBT)z.

The Riemann zeta functions appear from the integration over k.

As examples, we consider a massless scalar field and an electromagnetic field
with boundary conditions on a spherical shell of radius R. According to Sections
9.2.4 and 9.3.3, a finite vacuum energy at zero temperature, E°", can be obtained
by considering the interior and exterior regions together. The physical thermal
correction can also be obtained as a sum of eqns (9.183) and (9.186). In the
calculation of this sum, one must take into account the proportionalities oy ~
aij; and az ~ a1 (see the end of Section 5.2) and the symmetry properties of
the heat kernel coefficients a1/55 = a1/2.¢, a1; = —a1, (see the end of Section
9.2.2). As a result,

ArF = —% fj R+ D (ksT)Y D" (20 +1) 617 (0) = 201 (ks T)*. (9.187)
l

j=1

To calculate the derivatives in eqn (9.187), it is convenient to express the
phase shifts in terms of the mode-generating functions using eqns (9.27) and
(9.35). The expressions for the mode-generating functions can be taken from
equs (9.65) and (9.67) for the scalar field and from Section 9.3.2 for the electro-
magnetic field. The lowest-order nonzero contributions for the scalar field are

5,(0)=—R, &, (0) = —2R? (9.188)
for the Dirichlet boundary condition and

5 (0) = —2R% & (0)=R® (9.189)
for the Neumann boundary condition. For the electromagnetic field, where the
orbital momenta start from [ = 1, we have
5, (0) = —2R%, & (0)=4R® (9.190)
for the TE and TM modes, respectively.

From these expressions, using eqn (9.187), the low-temperature behavior of
the thermal correction follows. For the scalar field, using also eqn (5.54) and the
expressions for the heat kernel coefficient a, /5 in eqn (4.25), we obtain

™R

ArFP = == (keT)* — Gr(3) R (knT)’,
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N 2 s TR 4
ApFY = (R(3)R*(kgT)” — 90 (ksgT)". (9.191)
For the electromagnetic field, we get
T R3
ApF™ = —(r(3)R*(kgT)* + B (ksT)*,
2 3 3
ArF™ = (R(3)R?(kpT)? — ”Lf (kT)*. (9.192)

Note that above expressions hold for kTR < 1 such that the limit R — oo
cannot be performed here.

The total thermal correction for the electromagnetic field can be obtained as
a sum of the two contributions in eqn (9.192):

TSR3
15
Combining eqn (9.193) with the energy at zero temperature (9.136) we get

(Balian and Duplantier 1977, 1978)

0.0461766 3 R3
R 15

The corresponding radial force acting on the spherical shell is repulsive:

0.0461766 7> R?

R? +
Thus, for a spherical shell, the thermal correction is of the same sign as the
electromagnetic Casimir force at zero temperature, i.e. it leads to additional
repulsion.

ArF(R,T) = — (kgT)*. (9.193)

F(R,T) = (kgT)*. (9.194)

F(R,T)= (kgT)*. (9.195)

9.5.2 High-temperature expansion

For the high-temperature expansion of the free energy, we use eqn (5.53) with
m = 0. Equation (5.53) contains the derivative of the zeta function in addition
to the heat kernel coefficients. Using the definition (4.5), this derivative can be
expressed through the determinant of the operator P, which in our case is the
negative Laplace operator:

¢(p(0) = —Indet P. (9.196)

The determinant of the operator P entering eqn (9.196) is of wider interest and
can be found in the literature for various configurations. For a scalar field in
the interior region of a spherical shell with a Dirichlet boundary condition, one
obtains (Bordag et al. 1996a)

3 In2 InmR 33

L) = 5 2 In R Lo
1(0) = o1+ ez iy (=D (9.197)

Note that det P in eqn (9.196) and R in eqn (9.197) are understood mathemat-
ically as dimensionless quantities. After the substitution of these equations and
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the heat kernel coefficients in eqn (5.53), the correct dimensions are restored.
For the exterior region of a sphere with Dirichlet boundary conditions, we get

3 2 IR 3G(3)

3276 24 1672

1
Gh(0) = F3GED. (©198)
For an electromagnetic field with the interior and exterior regions taken to-
gether, the following result is obtained (Bordag et al. 2002):

1 13In2 InR
Gh(0) = =5+~ + == + 6Ch(~1). (9.199)

According to the discussion at the end of Section 5.2, the contributions pro-
portional to (kgT)*, (kgT)?, and (kgT)? should be subtracted [see also eqns
(9.183) and (9.186)]. Using eqn (9.197) for a scalar field with a Dirichlet bound-
ary condition in the interior region, we obtain

3, In2 3GEB) (-1 n In(RkpT)

D
DRT)=|= + == —
FRT) {64+24 322 4 48

} ksT + O(T°).

(9.200)
Now we consider the interior and exterior regions together. In this case the
high-temperature expansion of the free energy of the scalar field is given by
3 In2 (' (-1) In(RksT)

D _ |2 e -1
]—"(R,T)—{BQ 5 5+ — 5 }kBTJrO(T ). (9.201)

Note that the term O(T°) in eqn (9.200) contains the vacuum energy at T = 0
and contributions proportional to a,/, with n > 4. As to eqn (9.201), here
the term O(TY) contains only the vacuum energy at 7' = 0 and contributions
proportional to a,/; with odd n.

A similar formula holds for an electromagnetic field. Taking the TE and TM
modes together, the high-temperature expansion of the free energy in the entire
space is
1 131n2

F(R,T)=|—

- (RksT)
16 12

3¢(~1) - 2 | T 0. (9.202)
We conclude with the remark that the dependence on Planck’s constant can
be restored by the substitution T' — T'/(%ic) in the logarithms in eqns (9.200)-
(9.202). The terms of F which are linear in kg7 do not depend on A. This is the
classical limit (see Section 7.4.3), or the entropic contribution. It does not enter
the internal energy (5.32).

9.6 The Casimir effect for a cylinder

Other than for a sphere, there are only a few cases where a separation of variables
is possible and explicit calculations of the Casimir energy can be done. Among
them, the case of a cylinder is the only one without corners or edges. For this
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reason, it has attracted attention as the next object of study. However, because
of the lower symmetry it is technically more involved. The first results for a
cylinder were published only at the beginning of the 1980’s (DeRaad and Milton
1981). For a conducting cylindrical shell, the electromagnetic Casimir force is
attractive. This is somewhat analogous to the case of a sufficiently long rectan-
gular box (see Section 8.3). This result was confirmed by Gosdzinsky and Romeo
(1998), who also considered a scalar field. A dielectric cylinder was discussed by
Brevik and Nyland (1994). Divergences similar to those for a dielectric sphere
were noted. Later it was found that the heat kernel coefficient a9 for a dielectric
cylinder behaves in the same way as for a dielectric sphere, i.e. it vanishes in the
dilute approximation and is nonzero beyond it (Bordag and Pirozhenko 2001).
As a consequence, a meaningful result can be obtained in the dilute approxima-
tion only. The same two descriptions of the dilute approximation as in Section
9.4.3 can be considered. In the cases of both different and equal speeds of light,
the Casimir energy calculated up to the second order of the respective small
parameter was found to be equal to zero (Milton et al. 1999). These results were
analytically reconfirmed by Klich and Romeo (2000) for equal speeds of light and
by Barton (2001) for the dilute approximation using a perturbative expansion in
(cg —¢1). Further reconfirmations have been obtained by several authors (Romeo
and Milton 2005, 2006, Cavero-Pelaez and Milton 2005, 2006).

In the first subsection we derive the basic formulas in the case of a cylin-
drical geometry for a conducting shell and a dielectric cylinder. For the latter,
the polarizations do not separate. As a result, the formulas are more involved
and a generalization of the mode summation method is required. We sketch
the derivation of the heat kernel coefficients, highlighting the differences from
the spherical case. The differences arise from the need to consider zero orbital
momentum separately. Then we collect together the expressions necessary for
the numerical evaluation of the vacuum energy and present the known results.
In the second subsection, the case of a dielectric cylinder is considered. Again,
we present some basic formulas and sketch the calculation of the heat kernel
coefficients.

9.6.1 Conducting cylindrical shell

In the cylindrical case, the vacuum energy is given by eqn (9.50) with m = 0.
We use the mode decomposition (9.40) of the field strengths in a cylindrical
geometry and apply the general boundary condition (3.46) in the form (9.111),
where r is replaced with p. In this case the azimuthal and z-components play the
role of the tangential components, whereas the normal component is the radial
one. Thus eqns (9.40) and (9.41) lead to the conditions

6 TE T™M
apltn (p) T 0, i ()| ,_p =0 (9.203)

In the cylindrical configuration all solutions to the wave equation are Bessel and
Hankel functions, following the particular case (9.48). We can write down all of
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TABLE 9.12. The mode-generating functions A;(ik) for the
two polarizations of an electromagnetic field for a conducting
cylindrical shell.

Region TE mode TM mode
Interior ~ A™'(ik) = B'U(k)  AM(k) = BT (k)
Exterior A™¢(ik) = —k"EK] (k) A™MC(ik) = KK (k)

the mode-generating functions immediately. These mode-generating functions,
after rotation of the momentum to the imaginary axis and with the usual substi-
tution k — k/R, are shown in Table 9.12. Here again, multiples have been chosen
to satisfy all of the requirements imposed on the mode-generating functions. To
make progress, one hopes that the corresponding steps for the spherical case can
be followed directly. In fact, this is possible to a large extent. Especially, the
discussion of the heat kernel coeflicients and of the divergences is similar. For
the cases of the interior and exterior regions taken separately, the heat kernel
coefficient as is nonzero. Consequently, as the field is massless, we do not have
a natural renormalization condition and the vacuum energy cannot be defined
uniquely. For the case where both regions are taken together, the sum of the
coefficients ag is zero (the contributions from inside and outside the shell cancel
each other) and the vacuum energy can be uniquely defined. Since the coefficient
ay is zero for the same reasons, a divergent contribution may arise only from the
coefficients a; /5 and ag/o. Further, just as in the spherical case, the contributions
to the coefficient a;/, resulting from the two polarizations cancel. The remain-
ing coefficient, as3/9, for dimensional reasons, delivers a divergent contribution
which does not depend on the radius of the cylinder and may be omitted as not
physical. Because of these close similarities with the spherical case, we restrict
ourselves to the case where the interior and exterior regions are taken together.
Here, the vacuum energy for the two polarizations is uniquely defined and takes
finite values in zeta function regularization. There is, however, a difference with
respect to the spherical case because one needs to consider the orbital momentum
[ = 0 separately (see below).

In order to simplify the notation, we define the mode-generating functions
for the interior and exterior regions taken together,

AP = K L(KEK[(k),  A™ = L(k)Ki(k), (9.204)
Further, we divide the vacuum energy into two contributions,
Eo(s) = Elzo(s) + El¢0(8). (9.205)

Here, Ej—o(s) is the term in the sum (9.50) with [ = 0 and Ejx(s) is the
remaining part. In the latter contribution, we act exactly as in the spherical
case. First we define the asymptotic part has(l, z) from the first several terms of



218 Single spherical and cylindrical boundaries

the uniform asymptotic expansion of the mode-generating functions for large k
and [, while z = k/I is fixed. We arrive at the general formula

has(l,2) = ) Dile) (9.206)

lz
i=—1

which is similar to eqn (9.71). Using eqn (9.76), we find the following for the
nonzero coefficients D;(z) in the case of the interior and exterior regions taken
together:

DIF = —Int, DM =Int, Dy P M =N gy P2 (9.207)
j=1
3 5 7 1 3 5
ng__gv x}E:Z7 xGTE:_g’ erTM:§7 x4TM:_Z7 x6TM:§7

where ¢ is defined in eqn (9.77).

To continue, we represent Ejxo(s) as a sum of finite and asymptotic parts
similarly to eqn (9.72). The asymptotic part is represented as in eqn (9.81), where
the functions A;(s) are obtained from eqn (9.50):

_ (uR)* s—i 0
Ai(s) = R? 2\/7l(s— 3)T(2 - s) Zl2 i / de 2% 3ZD()

(9.208)
The sum over [ results in a Riemann zeta function. Integrating over z with the
use of eqn (9.103), we get

(1R)* VT

D= F G —l)F(2—s)sin(7rs) ¢r(2s = 2),
_ (uR)* & s+j 1)
Ay = = fr Z:j 2y r(29), (9:200)

where the signs in Ay denote the TE and TM modes, respectively, and the xo;
are defined in eqn (9.207). We note that the quantity Ej5(s) = Ao + A2 has a
pole at s = 0 arising from the term with j =1 in As:

1

as, 3 I
By B(s) = -+ 0(1),  Ejg(s) =  647R2s

T +0(1).  (9.210)

Now we consider the contribution to Ey(s) from I = 0 which will compensate this
pole part. This contribution consists only of an integration and no summation:

Ei—o(s) =

(uR)* 1 /oo N
dk k272 I Ag(ik).  (9.211
R* 4yal(s— DT(2-5) Jo 5 0 Ao(ik). (9.211)
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Here, in order to get the asymptotic expansion of the mode-generating function,
we need the asymptotic expansions of the modified Bessel functions for large
argument (Abramowitz and Stegun 1972),

I (k) } ~ n /2 otk

1+ Z (£1)° ] (9.212)

Ki(k) V2k
I'(k) _ aF1/2
e s

The quantities @, and v; are numbers which can be obtained as a limiting case
U; = limy_,ot *u;(t) from the Debye polynomials (9.78) (and similarly for o;).
Inserting these formulas into the mode-generating functions (9.204), we get

3
nA® =Ink—In2— 8k2+

mA™ = —Ink—In2+ — 8k2 . (9.213)

The higher expansion orders are not needed for the determination of the diver-
gences which appear in Ej—o(s) in the limit s — 0. However, eqn (9.213) cannot
be inserted directly into eqn (9.211) because the integral would diverge at k = 0.
For this reason we define the asymptotic functions ilas(k) as

7.TE _ / 2 7 7 T™M _ 2
has(k)—ln 1+I€ —m, has (k)——ln 1+k +m
(9.214)
These functions differ from eqn (9.213) in higher orders in k [not shown in eqn
(9.213)] and by a constant, which does not contribute to eqn (9.211) because
of the derivative. Inserting eqn (9.214) into eqn (9.211), we get the respective

contributions to Ej%,(s),

(uR)* (=3 +T7s)I(s — 1)
R a2l (s-1)
R)* (1-5s)I'(s—1

Eas,TM _ (:U'

=0 (8) R?2 327l (s —3)

It can be checked that the pole part in eqn (9.215) cancels the poles in eqn

(9.210). It can be shown that the same holds for the pole at s = 1, i.e. for the

heat kernel coefficient a1. Now the nonzero heat kernel coefficients can be easily
calculated. Using eqn (9.131), we get

Ejy F(s) =

) (9.215)

5 1

alfy =27°"R,  a3fs = 1—67r5/2ﬁ, (9.216)
1 1

a}%[ = 727r5/2R, a3T/1\é[ = fEWWQE.

A compensation between the TE and TM modes in a;/5 can be observed.
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Finally, in order to calculate the finite part of the vacuum energy, we define
E§™ = E[%) + EJ%,. (9.217)

The expression for EfY) (and a similar one for nggo) is obtained from eqn (9.211)
using integration by parts:

fin,TE 1 > A . 7
B = — /0 dk k [m ATP(ik) —thE(k)},
fintE 1 o [ ATE/: TE
EfinTE — TR‘Z;/O dk k [mAl (ik) — AT (l,k)} . (9.218)

Similar equations can be written for the TM mode. Further, we need to add to
eqn (9.218) the regular part of E§®, which in this case coincides with E§" defined
in eqn (9.88). This is the sum of the two contributions. From eqn (9.209), we get
the contribution to the regular part with [ # O:

1 25 3 1
Ean’TE = — | —— - 1 4 -
#0 = rge | T1s s MU T e B[
1 11 1 1
E™M — | = — In(4n) + — &(3)] . 9.219
1£0 TR? {128 33 0(4m) + 755 )] (9.219)
The contribution with [ = 0 can be obtained from eqn (9.215):
an.TE 5—1In8 an. TM —3—|—ln2
TE M _ T 2 22
1=0 327 R’ 1=0 327 R? (9.220)
The complete vacuum energy for the TE mode is given by
BT = B+ B B+ B (9.221)

and similarly for the TM mode.
A numerical evaluation of E;™ ™ and E;*™ ™ was done by Gosdzinsky and

Romeo (1998). The results for the renormalized vacuum energy are

0.002256

0.000098
Rz ’

ren, TE __
E, = 2

Epem ™ — (9.222)

The sum of these results gives the vacuum energy for the electromagnetic field
in the case of a conducting cylindrical shell,

~0.002158

B(R) = By = ———5—,

(9.223)

in accordance with the original result of DeRaad and Milton (1981). It is seen
that the TE mode dominates in the energy and that the force is attractive.
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9.6.2 Dielectric cylinder

For the case of a dielectric cylinder, the polarizations of an electromagnetic
field do not separate, and we need to generalize the derivation of the mode
sum representation of the vacuum energy. We start from the expansions (9.40)
of the field strengths and define the cylindrical components E, and B,, where

= (pv 907Z)a by

FE = E eaEa = E eaEa eiltpeikzz, B = § eaBa = E eaB(L eilapeikzz.
a a a a

(9.224)
Using eqn (9.41) and the corresponding formula for ET,

o 0 19 0 02 10 1 02
ETsz - = - - 2| == - —_—— .22
epapaz egppatpaere (ap2+PaP+102 8502>7 (9:225)

Lwlk,

- l » ;
By = i) + ke [IRN0) s Bo =i [0 +i

ln (p)v

~ ~ . wl
Ez = —I(U( zﬂzw - kz) TM(p)7 Bp = _1kz [flTrle(p)] IEZIU’ZW ; lelL\/I(p)u

e = kpl w(p) + eipiw [ZTTILVI(,O)]/, B, = —(eipiw? — k?) TE(p). (9.226)

jos)

Here we have also used eqn (9.113), taking into account the fact that there are
two different dielectric media inside and outside the cylinder.
In terms of these cylindrical components, the matching conditions at p = R

require that

1 1
¢eE,, E,, E., B, ;Bw, ;BZ (9.227)

should be continuous. These conditions define a scattering problem on the entire
axis p € [0,00), and for this case the scattering solutions are

Lk (p) = adi(ap)d(R - p)
b3 [ kD () + 57 k) H (k)] 00— R),
61N (0) = BIiap)B(R ~ p) (9.228)
g [ R P o) + 57 (k) Y ()] 0G0 — B,

Here the notation ¢ = \/e1pw? — k2 and k = \/eap0w? — k2 has been used and

we have inserted two arbitrary constants o and 3, where « is dimensionless and 3
has the dimension of length. This is necessary because the two solutions are not
independent. The Jost functions fT®(k, k.) and f,™(k, k.) must be determined
from the matching conditions (9.227). In fact, only four of the six conditions
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(9.227) are independent, and we impose continuity boundary conditions on the

following four combinations:

k1

E,+—5E,,

pk?

The resulting equations are

Re |7 (k, ko) H® (kR) | =
Re [flTM(k k.) }
[ TV (L k) (2) }

Re [flTE(k, k) H®) (kR)}

E., B,+—B., B..

sl (9.229)
pk? '

kz ]{/.2_ 2
kJ’(qu + - AiaR)B,

< I(aR)p, (9.230)

kzl k% — ¢?

€14

2
= £z Ji(gR)av.

pak?

The important difference with respect to the spherical case is that these equations
cannot be separated into TE and TM parts. This can be observed on using the
Jost functions following from eqn (9.230),

£ (ko k) = Wg (wira+wiB), Mk k) = 7T2 (waa+wzf),
(9.231)
where
2 ’
wiy = %Jz/(qR)Hl(l)(kR) - %Jl(QR)Hl(l) (kR),
k.l k? — ¢?
wiz = ksq Ji(qR)H, ) (kR), (9:232)
kl k% — g2 1
w1 = sy AR R,
2 7
way = LT (qR)HD (kR) — L5 Ji(aRH(™ (kR).
62]{1 k

With these Jost functions, the scattering solutions (9.228) are determined as
functions of the parameters o and (3, which describe, up to a common factor,
the relative weights of the two polarizations. The polarizations do not decouple,
because a solution with a single polarization on one side of the boundary (say
with 8 = 0, i.e. a pure TE wave inside the cylinder) has both polarizations
outside.

However, this mixing does not create a problem in the calculation of the vac-
uum energy. As before, we place the dielectric cylinder inside a larger concentric
cylinder with radius R, > R. On that cylinder, we impose conductor boundary
conditions. In this way, we get a discrete spectrum which includes both polariza-
tions. We apply the boundary conditions to the field strengths in the same way
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as in the preceding subsection. So we can use eqn (9.203), where now we have to
insert the solutions (9.228) at p = R. > R. The resulting equations are

FB e k) H® (KR,) + £ (k, k) HY (kR.) = 0,
™k, k) HP (kRe) + f™ (k, k) HY (KR.) = 0. (9.233)

Then we substitute eqn (9.231), for the Jost functions, into eqn (9.233). The
result is

Re [wqu(Q)’(ch)] o+ Re [me;Q)’(ch)] B =0, (9.234)
Re [wngF)(ch)] a + Re [wmﬂl@)(kRC)] 5=0.

This is a homogeneous system of equations for the coefficients « and 3. It has
nontrivial solutions only if its determinant, which we denote by A;(k, k., R, R.),
is equal to zero. The solutions of the equation A;(k, k., R, R.) = 0 with respect
to k give discrete frequencies inside the large conducting cylinder. So we can
take A;(k, k., R, R.) as a mode-generating function, as defined in Section 9.1.2.
The next step is to remove the large cylinder, and we can do this in the same
way as in Section 9.1.3. We represent the sum over the discrete eigenvalues as
an integral as in eqn (9.19) and divide the integration contour into two parts,
one above the real axis and the other below. On the upper part, for R, — oo,
the contributions which contain a product of two Hankel functions of the second
kind dominate [see eqn (9.29)], and we keep them. On the lower part, we keep the
contributions which contain a product of two Hankel functions of the first kind.
All other parts of the mode-generating function deliver vanishing contributions
and can be omitted. We denote the part of the mode-generating function which
we keep on the upper part by A;(k, k.). From eqn (9.234), this is equal to

Ay(k, k) = winwae — wi2wa1. (9.235)

On the lower part of the contour, we take the complex conjugate. The remain-
ing steps, for instance the deformation of the integration contour towards the
imaginary axis, proceed in the same way as in Section 9.1.4 and we end with eqn
(9.49) for m = 0, with eqn (9.235) inserted. Note that in this case the integration
with respect to k, cannot be done, since A;(k, k.) depends on k..

Finally, after a rotation k& — ik, the mode-generating function can be ex-
pressed in terms of modified Bessel functions. Now we change the variables by
the substitutions ¥ — k/R and k., — k,/R. Omitting the constant factor, we
rewrite the mode-generating function of the dimensionless variables in the form

2
L(q)Ki(k)| ., (9:236)

o c? — 2wkl
Au(ik, k) = DB (g, k) DI (g, k) + | T2 2
1t g

where ¢; = 1/,/g;p1; and
D" (q, k) = kI (q) Ki(k) — p2qli(q) K| (k),
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D™(q,k) = e1kI{(q)Ki(k) — e2q11(q) K| (k). (9.237)

The second term in eqn (9.236) results from the coupling between the two po-
larizations. It is absent, for example, for the s-wave, i.e. for [ = 0, and also for
equal speeds of light inside and outside. In the absence of polarization coupling,
DIE(q, k) and D™(q, k) are the mode-generating functions for the correspond-
ing polarizations.

Now we are in a position to obtain the mode sum representation of the
Casimir energy for a dielectric cylinder. For this purpose we make the same
change of variables (k — k/R, k, — k./R) in eqn (9.49) with m = 0, and
substitute the mode—generating function from eqn (9.236). The result is

25
Bo(s) = — (“R cos(rs) / /dk: (1-2¢) /2(;9 In A (ik, k).

(9.238)
This equation can be used for the calculation of the heat kernel coefficients. The
calculation procedure follows the same lines as for the dielectric ball. However,
it is more involved technically (Bordag and Pirozhenko 2001). The reasons are
that it is necessary to investigate the asymptotics of double integrals (since
the integration with respect to k. cannot be carried out explicitly) and the
contribution with [ = 0 requires a separate treatment. The calculations are
rather cumbersome, but straightforward. The starting point is eqn (9.238). The
heat kernel coefficients can be calculated using eqn (9.131) and, as before, we can
replace the mode-generating function with its asymptotic expansion. We have to
consider large [, k, and k, with fixed z = k/l and n = k. /(zl). Using eqn (9.76),
the expansion of the mode-generating function (9.236) with [ # 0 takes the form

oo

In A ik, k) ~ > Di(zm), (9.239)

lz
i=—1

For | = 0, we consider large k and k, with 7 = k,/k fixed, and the asymptotic

expansion is
B oo DZ ~
nAo(ik, k) = Y k(i”), (9.240)

i=—1

where we have used eqn (9.212). Explicit formulas for the functions D;(z,7) and
D;(7) are given by Bordag and Pirozhenko (2001). For the calculation of the
asymptotic part, it is sufficient to take ¢ < 3 in eqn (9.239) and ¢ < 2 in eqn
(9.240). Then the asymptotic part of the vacuum energy is given as a sum of the
corresponding contributions

E3(s Z Aq( (9.241)

i=—1

The functions A;(s) are found with the help of eqns (9.238) and (9.239). In
doing so, we change the order of integrations with respect to k and k, and use
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the relation between variables k, = nzl. The summation over all [ # 0 results in
the Riemann zeta function:

(“}];2) - Coigs) Cr(2s+i —2) (9.242)

1
2-2s o2\ (1-2s)/2 9 _n 9 ]
X/o dk k /0 dn (1 —n?) (_8k: k;_an) D;(z,n).

The function A(s) is found similarly by using eqn (9.240) instead of eqn (9.239),
and the relation between the variables k, = nk:

AZ(S) =

~ 25 cos(ms
Als) = _(Mgg 27(r2 )

0o 1 ~ N (= N (=
225 _ o an(=29)/2 (0 0\ | Di() | Da(7)
X/O dk k /0 dn(l M ) <0kz k@ﬁ) l 2 + 2

The calculation of the heat kernel coefficients is a repeat of that for the dielectric
ball. Again, for as there is a compensation, this time between As(s) and A(s).
The total contribution to as comes from the pole of the zeta function in As(s):

202/ dk k>~ 28/ dn/1T— 12 (a—%aé})z)g(z,n). (9.244)

It is not possible to calculate this expression explicitly, but it has been shown
that the expansion of as in powers of the difference of speeds of light starts from
the third order:

(9.243)

ar=0 [(c1 - 02)3} . (9.245)

The values of as in eqn (9.244) have been calculated numerically and plotted as
a function of ¢1/co (Bordag and Pirozhenko 2001). Also, the lower coefficients
have been calculated. For example,

2
ag = —21R* (¢;® — ¢3®) , aijs = _or3/2R (ci — )

. (9.246
ctes(pa + p2)(e1 + €2) ( )

which are similar to eqn (9.147).

As mentioned at the beginning of this subsection, in the dilute approximation
the vacuum energy is defined uniquely. This is now confirmed by eqn (9.245),
which states that the coefficient as is equal to zero when defined in the pertur-
bation order of (¢; — c2)?. The respective vacuum energy has been calculated
using various methods. As an example, we mention here the pairwise summation
of the Casimir-Polder potentials (9.151) in the dilute approximation. In place of
eqn (9.152), we now have the formula

23 (51 — ].)

E(y) =-¢- (an)? (9.247)
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/2
x /dBTl dry [(2’1 — 22) + pl + p3 — 2p1p2 cos(p1 — %02)] 2

Here, 7 is a regularization parameter and we have to set v — 7 at the end. The
energy (9.247) is equal to (Milton et al. 1999)

r(F)r(2-3) L
B-I (3T (F) B

23

2
— 234_77‘_ (61 - 1)

E(y) =

(9.248)

where L is the infinite length of the cylinder. For v = 7, one obtains E(7) =
0. This result was confirmed by Barton (2001) using the perturbative method
and by Cavero-Pelaez and Milton (2005) by first taking the orbital-momentum
sum. It should be mentioned that the latter calculation, though it follows the
same lines as that for the ball starting from eqn (9.159) (see Section 9.3.4), is
considerably more involved, and it cannot be represented here.

Finite results have been obtained also for the case of equal speeds of light
inside and outside the cylinder. In this case the mode-generating function (9.236)
can be written in a simpler form,

Ak, k) = DTE(R) DM (k) = 15 62);“1 ) 1 2p2a2(k)]. (9.249)

Here, we have used the notation oy(k) = [I;(k)K;(k)]" and the identity

1

of (k) = =

+ 4L, (k) I (k) K, (k) K| (k). (9.250)
For £ = 1, this mode-generating function coincides, up to a factor, with the prod-
uct of the functions (9.204) for a conducting cylindrical shell. We can denote the
corresponding vacuum energy by E(£2). As has been found numerically (Milton
et al. 1999) and analytically (Klich and Romeo 2000), this quantity is equal to
zero for small € to the order £2. Higher orders in the expansion for small & have
also been calculated (Nesterenko and Pirozhenko 1999, Klich and Romeo 2000).
Numerical results for the energy, calculated as a function of £2 for 0 < ¢ < 1, in-
terpolate smoothly between E(0) = 0 and the ideal-conductor value E(1) = E{*"
in eqn (9.223) (Nesterenko and Pirozhenko 1999). Thus, the vacuum energy for
a dilute cylinder has been calculated in those cases where a unique result can be
obtained.
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THE CASIMIR FORCE BETWEEN OBJECTS OF ARBITRARY
SHAPE

In Chapter 3, the vacuum energy of quantum fields with boundary conditions
on bodies of arbitrary shape was expressed in general terms. The force acting
between two bodies can be obtained as a derivative of the energy with respect to
the distance between them. As argued in Section 4.3.3, this force is always finite,
in agreement with what is expected on physical grounds, since force is a directly
measurable quantity. However, calculation of the Casimir force using the general
expressions of Chapter 3 is plagued by ultraviolet divergences at intermediate
steps. None of the expressions given there represents the force in terms of con-
vergent sums and integrals. All of them contain regularizations which cannot be
removed in general expressions. As a consequence, even a direct numerical ap-
proach is nearly impossible. For instance, when working with mode expansion,
one has to calculate the eigenvalues for a general geometry with a very high
precision, since it is necessary to subtract several terms of the asymptotic ex-
pansion of the eigenvalues. To date, there has been no successful attempt in the
literature to numerically calculate the Casimir force for a complicated geometry
in this manner.

A new approach has been found only recently. As shown by Bulgac et al.
(2006) and Emig et al. (2006), it is possible to rewrite a representation of the
vacuum energy in terms of a functional determinant such as eqn (3.124) which
does not contain any ultraviolet divergences and which is finite at all inter-
mediate steps. The key idea is to subtract the vacuum energy of each of the
interacting bodies separately. These are the only contributions which contain
divergences. The remaining expression can be rewritten in a compact form in
terms of convergent sums and integrals. The first applications of this method
were to the force between two parallel cylinders or between two spheres, which
are considered below. Here, reliable numerical results were obtained together
with asymptotic expansions to high orders for large separation. Also, the tech-
nically more involved asymptotic expansion for small separation was obtained.
To leading order, this reproduces the proximity force approximation (PFA) and,
from the next-to-leading order, the first corrections beyond the PFA were calcu-
lated (Bordag 2006a).

An independent and different derivation of the above-mentioned representa-
tion was performed in a remarkable paper by Kenneth and Klich (2006) using the
block structure of the functional determinants for potentials with disjoint sup-
port. Using general assumptions, it was shown that the Casimir force between
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two bodies which are mirror images of each other is always attractive. As we
shall see, this is quite illuminating for the understanding of the representation of
the vacuum energy in terms of functional determinants. We note also that a mi-
croscopic derivation of the Lifshitz formula in terms of functional determinants
was performed by Renne (1971).

It should be mentioned that the technical tools necessary for the new ap-
proach were developed earlier, in applications to corrugated planes (Li and Kar-
dar 1992, Biischer and Emig 2004, 2005). The calculations for corrugated surfaces
are more complicated than those for a sphere or a cylinder in front of a plane.
The reason is that inversion of matrices for a single plane with corrugations is
not possible in an explicit way. In this chapter, we provide only a brief summary
of the results obtained for corrugated surfaces.

We need to add a remark about the notation. In this chapter we use a va-
riety of different operators, infinite-dimensional matrices, and expansions. The
most appropriate mathematical language for this is in terms of operators and
mappings. This is, however, quite abstract and would hide the structure and
the physical meaning of the mathematical expressions. Therefore we use more
specific notations which, we hope, provide more physical intuition.

10.1 Various approaches to the calculation of the Casimir energy

The various techniques used for obtaining a finite representation of the interac-
tion energy in the form of simple formulas are quite different from each other.
We divide them into two groups. One group applies to boundary conditions, i.e.
to the case where the interaction of the quantum field with the bodies is limited
to their surface. The other is relevant to background fields. Here the interaction
takes place in the whole volume of the bodies; this group can be applied, for
example, to the case of the Casimir force acting between dielectrics.

The general starting point is the representation in eqns (3.111) and (3.112)
for the vacuum energy in terms of the trace of the logarithm of the Green’s func-
tion or, equivalently, in terms of a functional determinant. This is the complete
vacuum energy, in the sense that it still includes the contribution from empty
space which must be removed at a later step. Here, the Green’s function includes
the complete interaction with the background. We elaborate on this represen-
tation in Section 10.1.2 and derive the T-matriz approach. Although the latter
approach is also applicable to the case of boundaries, for these we start in the
next section from eqn (3.124), where the contribution of empty space has al-
ready been removed, and which is formulated in terms of the boundary surface.
It should be mentioned that an alternative derivation of this representation has
recently been given in terms of source theory (Emig et al. 2007, 2008).

10.1.1  Functional-determinant representation for the case of boundary
conditions on separate bodies

In this section, we consider the vacuum energy of a scalar field obeying Dirichlet
or Neumann boundary conditions and that of an electromagnetic field obeying
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ideal-metal boundary conditions on the surfaces of two separate bodies. For
these, we introduce the following notation. Let S be the boundary surface given
by

r=u(n) = u(n,n), (10.1)

where r is a radius vector in the initial space. The surface is assumed to be static,
such that it can be defined by functions u(n) with parameters n = (11, 72), which
can be viewed as coordinates on S. Further, we assume the surface to consist of
two nonintersecting parts, S4 and Sp, with

S=54US8p, SaNSg=0. (10.2)

Accordingly, we have to define two parametrizations, u4(n4) and ug(ng). Some
specific examples are considered below.

For the vacuum energy, we start from the representation (3.124) in terms
of the trace of the logarithm of the operator K. Since we consider only static
boundary surfaces here it is convenient to first perform the Wick rotation xy —
ir4 and to calculate the trace over the time variable,

TrinkK = i/ dzy (x4|TrIn K|z,), (10.3)

where “Tr” on the right-hand side of eqn (10.3) and below in this section is
calculated over only the spatial variables. Taking into account the translational
invariance with respect to the time variable, we represent the expression on the
right-hand side of eqn (10.3) in the form

i/ dxy <x4|TrlnI€\x4> :i/ dx4/ ;l—gTrlle
—o0 —o0 —o0 <T

o [T dE =
= 21T[m %Trlnng, (10.4)

where TrIn IQ is the Fourier image of Trln K.
Substituting eqns (10.3) and (10.4) into eqn (3.124), we arrive at the expres-
sion for the vacuum energy,

1 0 ~
Ey = —/ d€ Trn Ce. (10.5)
2 0

Considering that the translational invariance with respect to the time variable
is equivalent to the diagonality of the operators K and In K in the basis |x4) =
exp(ix4)/v/2m, the integral kernel of the operator K¢ is given by [see eqn (3.120)]

Ke(m,m') = /dr /dr’H(n,T) Ge(r,r')H(n',r"). (10.6)

For the scalar field, the Green’s function G¢(r,r’) is
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dk eik-(rfr’)
Gg(r7r’):/(27r)3 T (10.7)

This is the Fourier image with respect to the time variable of the Green’s function
(3.87) for a scalar field in free space. For an electromagnetic field (see Section
3.2), we take the Coulomb gauge, and the relevant field is the vector potential
A(z). For this field, V - A = 0, and the corresponding Green’s function is

dk kik;\ etk (=)
/ _ _ar o Nl
Ge(r,r'), —/(%)3 (613 2 ) EEE (10.8)
In Section 3.6, we introduced the projector H(n,z) for a scalar field with
Dirichlet boundary conditions. With the notation used in this section, this is

H(n,r)=6(r —u(n)). (10.9)

By integration over 7, it puts the argument of the Green’s function onto the
surface, as in eqn. (3.120). This projector can be generalized in an obvious way
to the case of Neumann boundary conditions:

H(n,r) =8 (r—um)(n - V,). (10.10)

Another generalization is that for the case of an electromagnetic field. Here the
boundary conditions are for a generic boundary surface, given by eqn (3.46). In
fact, these are two independent conditions, and it is always possible to define
two projection vectors Hi(s) with s = 1,2 such that these boundary conditions
are equivalent to

H (n,7) = H 8 (r — u(n)). (10.11)

In the following, we do not use the most general form of Hi(s). We restrict
ourselves to special cases. The first is that of a plane surface perpendicular to
the z-axis, for which an obvious choice is

HY —e, x V, H=¢,x(e.xV). (10.12)
The second example is that of a spherical surface. Here we define
HY =L ~ H®=Lxn, (10.13)

where L is the orbital-momentum operator and mn is the normal vector (see
Section 9.1.1). Using eqn (9.6), the fulfillment of the boundary conditions (9.111)
can be checked immediately. It must be mentioned that the kernel (10.6) now
carries additional indices indicating the two polarizations and, in place of eqn
(10.6), we have to write

S s +
Kt mm') = / dr / dr' H (n,7) [Ge(r, v\l HY (', r'). (10.14)

Here, the second factor is taken in Hermitian conjugation. For this, we note that
(L x n)t = —m x L. When inserting this kernel into the representation (10.5)
for the vacuum energy, one needs to take the trace over the indices s and ¢ also.
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After having defined all necessary objects on a generic surface, we consider
the division (10.2) of the surface into two parts and represent the kernel of K as
a block matrix with respect to the two surfaces,

70 <K§7AA(77A>77£4) : f(s,AB(nA,n’B)>

D= A ; (10.15)
Kepa(mp, '), Ke ss(Mp,np)

It must be mentioned that the kernels K¢ aa(n4,m) and K¢ p(ng,n'g), if
viewed as matrices, are square matrices whereas, in general, the off-diagonal
kernels are rectangular. Also, the parameters 14 and g may have completely
different structures, since the two parts of the surface S may be different.

The multiplication of two matrices such as those in eqn (10.15) must involve
a summation and integration over the corresponding variables. This becomes
important if, for example, we consider the inverse of one of the kernels on the
diagonal. The square matrices can be inverted using

/du(nm) Keaa(ma, ') Ko ham'a,mla) = 6% (ma — n')- (10.16)

The measure is given by the induced metric,

du(na) = Vgadna, (10.17)
where o 5
T T
= det . 10.1
ga=ce <5m 077j) (10.18)

Similar equations hold with A — B.

With eqns (10.5) and (10.15), we have a representation for the complete
vacuum energy related to the two surfaces S4 and Sp. It also contains the
vacuum self-energies of the individual surfaces, which are infinite. The most
important step is the separation of these energies into a distance-independent
part carrying all the divergences. This can be done by rewriting eqn (10.15) as

i _ (Keaa0) (10 L KeaaRean 10.19
o= N a0y
0 1 OK&,BB Kg,BBKvaA 1

Here, in order to simplify the notation, we have dropped the arguments. This
is a product of three matrices. The first two are diagonal and depend only on
the corresponding individual surfaces, whereas the third matrix includes the
nondiagonal contributions. The matrix element “1” in all of the matrices must
be understood as the unit matrix in the corresponding subspace, and the inverse
matrices are the same as those defined in eqn (10.16). The next step is to note
that in eqn (10.5), Trln K = Indet K. Thus, from eqn (10.19), we get three
additive contributions to the vacuum energy. The first two of these contributions
can be dropped, since they do not depend on the distance between the surfaces.
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In so doing, we have replaced the operator K in eqn (10.5) with its integral
kernel. This is possible if one includes all integrations with respect to the kernel
arguments in the definition of the trace. The last step is to rewrite the resulting
expression using the following simple relation which holds for block matrices:

d 1B*dlBC’*dlC’B 10.2
et o1 = det(1 — BC) = det(1 — CB). (10.20)

We then arrive at the following representation for the contribution to the vacuum
energy depending on the distance between the two surfaces,

o0
E= % /0 deTrin (1 - Kby ReanK hpRena) (10.21)
Here, the arguments have been dropped and we emphasize once again that the
integration over them is included in the definition of the “Tr”.

It must be mentioned that the contributions to the energy from the first
two factors on the right-hand side of eqn (10.19) are just what one would get if
each of the surfaces S4 and Sp were present alone. Hence, these are the energies
associated with a single surface and therefore they do not depend on the distance
between the two surfaces. Keeping in mind the general statement in Section 4.3.3
that the force between two bodies must be finite, it is the subtraction of these
energies which removes the infinities. To indicate that the expression for the
vacuum energy (10.21) is finite, we have dropped the lower index 0.

Equation (10.21) is a representation of the vacuum interaction energy between
two surfaces S4 and Sp which does not contain ultraviolet divergences. In fact,
all integrations and summations in this expression are convergent. Below, we
shall use it in specific calculations.

10.1.2  T-matriz approach for potentials with disjoint support

In the preceding subsection, we considered the vacuum energy in the presence
of boundaries. There the role of the interaction was played by some boundary
conditions. In this subsection, we consider a different scenario, where the quan-
tum field interacts with a background potential V(). For this, we have in mind
primarily the interaction of an electromagnetic field with a dielectric body. In
contrast to the case of ideal-metal boundary conditions, here the quantum field
penetrates into the body and the interaction takes place throughout the whole
volume, not just at the surface.

For the vacuum energy, we use the representation (3.112). As in Section
10.1.1, we assume a static background, and, similarly to eqn (10.5), arrive at

1 [ v)
By=-g | de Tringl"). (10.22)

Here, Qév) is the operator whose integral kernel is the Green’s function of the
field in the background potential V' (r), obeying the equation
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|4
(€ - V2 + V()] G (r, 7)) = 8 (r — ). (10.23)

Note that in eqn (10.5), the operator IQ is used, whereas eqn (10.22) is expressed

in terms of the operator gé‘/). Keeping in mind eqn (3.111), this resulted in the
negative sign on the right-hand side of eqn (10.22). A specific example of the
potential would be provided by a region D given by a characteristic function x/(r)
defined as x(r) =1 for r € D and x(r) = 0 for r ¢ D, filled with a dielectric of
permittivity €, so that

V(r) = (e —1)x(r)€2. (10.24)
However, the following derivations are valid for any background potential V(7).
Note that the frequency dependence of this potential does not pose any difficulty,
since we consider only a static region D.

We continue by introducing the T-matrix operator. For this, it is necessary to
perform a number of transformations, which are done at the operator level. For
all quantities involved, we introduce corresponding operators and denote them
by calligraphic letters. Thus, we rewrite eqn (10.23) in the form

[ - v +V]g) =1, (10.25)

where 1 is the unit operator and V is the operator for multiplication by the

function V' (r). The operator géo) for the Green’s function without a potential is
defined by

(€ -v)gl =1. (10.26)

The integral kernel of Qéo) is given by eqn (10.7). Using eqn (10.26), we rewrite
eqn (10.25) in the form of an integral equation for the Green’s function,

6" =g - gPvg". (10.27)

In scattering theory, this is known as the Lippmann—Schwinger equation. Another
expression for the same quantity is

1% 0 0
g = (1 +6! )V) G, (10.28)
which is a formal solution of eqn (10.25). This also gives a perturbative solution
if expanded in powers of the potential. Equation (10.27) can be rewritten with

the help of eqn (10.28) in the form

V) _ 00 (0)-(0)

where

T=V (1 + gg‘”v)_1 (10.30)
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is called the T-matriz. This is widely used in the theory of light scattering, where
it is the basic object for expressing the properties of scatterers [see e.g. the book
by Bohren and Huffmann (1998)]. Using
0
§=1-6"1, (10.31)

the T-matrix can be related to the scattering matrix (S-matrix). Using eqn (10.28),
the T-matrix (10.30) can also be related to the Green’s function:

T=v-v6"V. (10.32)
Below, we shall also use the relation
v =16, (10.33)

which follows from eqn (10.28) by multiplication by V using eqn (10.30).
In this section, we are interested in the vacuum interaction of two disjoint
bodies. Therefore we consider a potential consisting of the sum

Vir)=Va(r)+ Vs(r). (10.34)

We define the corresponding operators QZA and Qg/B using eqn (10.25) for the
individual potentials V4(r) and Vg(r), respectively. In a similar way, we define
the individual T-matrices 74 and 7 5. Now we separate the contributions from
the individual potentials. For this purpose, we rewrite the following expression
entering eqn (10.28):

1461 Va+Vp) = (1400Va) (1+6°V5) = G7Vag Vi
_ (1 + g<0>v,4) (1— Me) (1 n g(OWB) . (10.35)
Here we have introduced
Me = (1+6va) TGOV (1+90vs) o (10.36)

which can be expressed, using eqn (10.30) applied to the potentials V4 and Vg,
in terms of the T-matrices:

0 0
Me =GO T46TE. (10.37)
To obtain this equation, we have also made use of
(1+6Ov) 716 = g1 +vg{)~,
VA +GV) = (1+v6") . (10.38)

Inserting eqn (10.35) into eqn (10.28) and substituting the result into Trln Qg/
in eqn (10.22), we arrive at

Trin G2 — ¢+ Trin ¢V e in 6B —Trn (1 — M), (10.39
¢ 3 ¢ 3 3

Note that eqn (10.39) holds for any background potential. On a formal level,
it can also be justified by an expansion in powers of the potentials. In this sense,
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eqn (10.39) can be viewed as a resummation of the perturbative expansion. With
respect to the vacuum energy, the first three contributions on the right-hand side
of eqn (10.39) do not depend on the distance between the two bodies described by
the potentials V4 (r) and Vp(r). This is because the first term does not depend
on the potentials, and the second and the third terms depend individually on
only one of them. Therefore the vacuum interaction between the two bodies is
contained solely in the last term. Dropping the first three terms in eqn (10.39), we
arrive at a finite expression for the part of the vacuum energy (10.22) depending
on the separation distance:

o0 o0
E= %/0 d¢Trin (1 — M) = %/0 d¢ Tr1n (1 _ géO)TAgg(O)TB) . (10.40)
This equation is sometimes referred to as the TGTG representation or the T-
matriz representation. Note that it is possible to perform cyclic permutations of
the operators within a trace.

Now we take the final step in the derivation using the fact that the two
potentials have a disjoint support. We denote by

A = supp Va(r), B = supp Vi(r) (10.41)

the regions in space where the potentials take nonvanishing values, and we as-
sume that these regions do not overlap, i.e. AN B = 0. We are going to use this
property in the representation (10.37) of the operator M. For this, we note that
the integral kernel T'(r,r’) of a T-matrix obtained using eqn (10.32) [or, equiv-
alently, eqn (10.30)] is nonvanishing only if both arguments are in one support
region. As a consequence, the kernel of the operator Mg in eqn (10.40), with all
arguments and integrations shown explicitly, is given by

Mg(mr’):/dr”/ di'/ di' TV (r, ")
A B B
x Ggo) (r", #)T"? (%,%’)Géo) (#,r), (10.42)

where T'(r,r’) is the integral kernel of the operator 7. Here we have marked
the arguments from region B with a tilde; those from region A are without a
tilde. We note that after insertion of M into the expansion of the logarithm,
the arguments r and 7’ will take values from region A only. This structure makes
it meaningful to change the notation and to write 744 for the T-matrix whose
integral kernel is TV4(r,r""), with both arguments belonging to region A, and

to write Tgp for the kernel TVZ(# #'). In a similar way, we introduce QEOAB

and gé?}g 4- These are the operators for the free-space Green’s functions with
arguments in the corresponding regions. With this notation, again dropping the
arguments for brevity, and performing cyclic permutations of the operators, we
represent the vacuum e